
1 

col_ 

PROGRAM: SNOBOL 

BY: James R. Guard 

Program Bulletin #67-006 
Copyright (C) 
December 29, 1967 

Applied Logic Corporation 

. AL/COM is a direct access computing service from APPUED LOGIC CORPORATION 



• 

SNOBOL 

SNOBOL is a programming language for manipulating strings 

of characters. SNOBOL'S simple statement formats, 

simplified Input-Output and automatic storage allocation 

makes it easy for the novice programmer to learn. On 

the other hand, the power of SNOBOL's commands for 

character string manipulation allow elegant and 

sophisticated programs to be written in SNOBOL. SNOBOL 

was developed by Farber, Griswold and Polansky of the 

Bell Tel~phone Labs in 1962, and was implemented on the 

IBM 7090. There are SNOBOL languages currently implem­

ented on a number of machines. Write-ups of SNOBOL 

are contained in SNOBOL, "A String Manipulation 

Language", Journal of the Association of Computing 

Machinery, Vol. 11, No. 2 (January, 1964), PP. 21-30, 

and "The SNOBOL3 Programming Language", The Bell System 

Technical Journal, Vol. XLV, No. 6, July-August 1966. 

See 11 SNOBOL3 Primer", by Allen Forte, 1967, MIT Press 

for a simple, clear primer in paperback. 

While FORTRAN deals·mainly with numbers, SNOBOL deals 

with strings of characters. In FORTRAN a variable usually 

contains a fixed or floating point number. In SNOBOL, 

a variable contains a pointer to a string of characters. 

- 1 -



The Applied Logic implementation of SNOBOL has a simple 

means of doing Input/Output using the Teletype and the 

Disc (or Drum) for reading and writing character strings. 

Before going into elaborate detail on the syntax of our 

implementation of SNOBOL let us examine three simple 

examples of its use. 

EXAMPLE ONE 

Example 1 we consider the task of printing a vertical 

list of words contained in a sentence inputted on the 

Teletype. Let us assume that a blank, comma-blank, 

and period are the legal punctuation separating words. 

Below is a listing of the SNOBOL source for a program 

implementing this task. The compiling, assembling, 

and loading needed to run the program are shown. Follow­

ing the example is a detailed explanation of the action 

of each line of SNOBOL coding. 

- 2 • 



EXAMPLE -1-
J t--It-2 

"' .JTY: ... urifti:EXAMPI 
.;.::~lit ;EXA!V!PL£ 11 
Z~~2~ ;INPUT ~ENTE~C~ fROM lELETYPE AND ~AKE ~ihIICAL LISl 0F W0ri~5. 
-~~a:;3~ ;CO~SIDC:R dLANI' 1 CO~MA-BLANI<, AND Pt:kOIL AS LEGAL f'iJ'.JCIU/.j'IUN • 
..::.:.:4z 
.) l~ ~: ~J STA~T: .NTYPE "*" ;TYPE • wlTttO~T CARRIAGE kEf·LIN~ ~~=~ . 

.ACCEPT LINE ;fiEAO SeNTENCE fROM TELiTYPE 
.• , o'. ~, ,:.. ~AHSE: LINE.•WOriG• " "!", "!"." = /FCLAST> 

.TYPi wuidJ ;TYPE W0F.D AN~ CArddAGE Rt.fUkN u:~i J-fa.t, 

...... 1 _; t 
,,,;llt:J 
·-· v l 2J 
b6i.3c.> 

LAST: 

.h SNObOL 
•E.X l. TEM+-EXAl"':P 1 

/CPARSE> 
.T'fPE LINE 

/CSTAF<T> 
.ENU 

NO U~D~FlNED SNOcOL ALDRESSES 

r:x I I 
1' c 

+J~~:EXA~Fl+-~kM:EXl.IEM 

fMERE ARE NO lHkO~S 

PROGriAM BREAK IS ~~~131 

~~ CORE USEU 

.~. LOADH< 
·~~GOPS,EXA~Pl.REL,IG 

:_.)AUER 
\..UK~ 1 

r.X I 1 
tC 

;TYPE RE~AINOlR Of Ll~E 
;PRESU~ABLY E~PTY. 

- 3 -



* i c u " r 1 ~ ltH. u " Y r a k 
T~~!\'t 
IS 
Th t·. 
jA '( 

F C Fl 
ALL 
(()'j[, 

re 
, .. 
av 
r,., c. 

Jr 
!MLln 
C0lJNit-.Y 

* 

E!AMPLE -1- {cont'd.) 

- 4 -



Explanation of Example 1 

1. A semicolon and characters to the right of a semicolon are con­

sidered to be a comment by the SNOBOL compiler and are ignored. 

Exception: a semicolon between matching quotes is considered as a 

character in a string. Lines 10, 20, and 30 represent SNOBOL 

lines which are comments. Lines 50, 60, 80, 100, and 110 show 

the use of comments at the termination of SNOBOL lines. 

2. Blank lines are ignored by the SNOBOL compiler and can be used 

'by the programmer to improve the readability of his coding. For 

example, see Line 40. 

3. START , PARSE , and LAST are words used as address labels in 

Example 1 in specifying the logical flow of the program. LINE and 

WORD are words used to name string variables. A label or a 

string variable is any word made up of letters, numerals, period, 

percent sign, or dollar sign which does not start with a numeral or 

a period. A label can be any number of characters, however only 

the first six characters of a label or a variable are used by the 

compiler. Words which start with period are reserved for various 

SNOBOL command functions. A label followed by a colon at the be­

ginning of a SNOBOL line defines the label to be equal to that physi­

cal location in the program. For example, see Lines 50, 70~ and 

100. Such labels serve the same purpose as statement numbers in 

a FOR TRAN program. String variables such as LINE and WORD 

are defined merely by their appearance. For example, LINE is 

defined by its appearance in Line 60; WORD is defined by its appear­

ance in Line 70. As in FORTRAN, the appearance of a variable is 

sufficient to define it. Care must be taken not to use the san1e word 

for a string variable and a location label. 

- 5 -



4. Blanks and tabs are used as delimiters in a SNOBOL line as needed 

or desired. For example, in Line 50 no delimiters are needed, 

while in Line 60 . ACCEPTLINE would be ambiguous without the 

blank between . ACCEPT and LINE . Note the use of t3.bs ir. 

Lines 50 through 130. 

5. The execution of a SNOBOL program starts with the first executable 

SNOBOL instruction- -in this example, Line 50. The label and the 

command have already been explained. The executable portion of 

·the instruction is the SNOBOL command • NTYPE "*" which re­

quests that the literal string consisting of an asterisk be typed. The 

second executable SNOBOL instruction requests that a line be :n­

putted from the Teletype and the string of letters corresponding to 

the line typed be stored and a pointer to this character string be 

stored in LINE . Though, in fact, LINE contains a pointer to a 

string of characters, for almost all purposes the programmer can 

think of line containing a string of characters. In the explanations 

of the examples we will say that a variable contains a string. when 

in fact it will contain a pointer to a string. The carriage-return-

line-feed which normally terminates a typed line are deleted from 

the end of the string of characters before being stored. See the 

sample runs for the asterisk outputted and the sentence inputted by 

the user. 

6. In Line 70 we have a SNOBOL instruction which does not involve 

input/ output and which is rnore typical of SNOBOL instrucb.ons The 

label PARSE is defined as is described above. The next el~nwnt 

of the line is a string variable and indicates that some act10n is to 

be taken with the string LINE The second element ·:.WORD; 

is used as a filler in a string matchrng process which is a.t the 

heart of SNOBOL. The third ele1nent, '' "'" "' 11
." represents the 

- 6 -



disjunction of three literal strings consisting of a blank. comma-

blank, and period. The exclamation point can be read 3.s an ''or!'. 

A fourth element is the equal sign. This instruct10n has the fol-

lowing action: 

Step A 

WORD is set equal to the null (empty) string. 

Step B 

The first (next) character(s) of LINE is(are) examined to see 

if it is a blank) comma-blank, or a period. If it is go to Step E. 

Step C 

The character just examined from LINE is appended to the 

string in WORD . 

Step D 

If there is a next character in LINE go to Step B. If there ~s 

not, a special dedicated accumulator--called the "test accumt4la­

tor"--is set to "fail" and terminate the action of the instruction. 

Step E 

The initial portion of LINE which matches WORD and the 

blank, or the comma- blank, or the period, is replaced by the 

string named to the right of the equal sign. In this example the re 

is no string to the right of the equal sign so these in:.t1 ~1 ch~- r .3.c.:.-

te rs of LINE are simply deleted. The test accumulator is set 

t 0 11 SUCCeSS 11
• 

The /F(LAST) which terminates Line 70 indicates that the pr0 -

gram is to transfer to the instruction labelled LAST if the test 

accumulator was set to fa.il. In the other case. that is, the case 

where the string mate h was successful, and hence the ~est ·.j_c1.: unH.1. -

lator was set to success, the next instrt.;ction (Line 80} 1s tu be 

- 7 -



executed. Transfer instructions such as I F(LAST) can appe~r 

to the right of SNOBOL commands or can stand alone on line as 

SNOBOL instructions. For example, Line 90 is an uncondAhon;.l 

transfer to the instruction labelled PARSE . 

7. Line 80 is a command to type the string in WORD on the Tele -

type. A carriage-return line-feed is appended at the end of each 

string typed by the • TYPE command. 

8. Line ·90 is an unconditional transfer back to the instruction labelled 

PARSE . Looking at the first sample run. at the first time Lme qo 

is executed, WORD is a five-character string, TODAY :itnd 

LINE is the string IS THE DAY FOR ALL GOOD MEN TO COME 

TO THE AID OF THEIR COUNTRY . In the first sentence tested 

the loop from instructions 70-90 is executed 16 times and on the 17th 

execution of Line 70, LINE is the null string and hence the string 

match requested fails and the program transfers to the instruction 

labelled LAST . 

9. Line 100, which is the instruction labelled LAST , is a request to 

type the contents of LINE . If a "legal" sentence has been typed 

at Line 60, LINE will, in fact, be the null line and this accoun~s 

for the blank line appearing in our sample run between COUNTRY 

and the * which indicates to the user that a second sentence is t :-, 

be typed. 

10. Line lZO is an unconditional transfer back to the start of the pro-

gram. Line 130 contains the SNOBOL command • END This 

command signals the end of the source to the SNOBOL complle r if 

this statement is omitted the compiler gives a warning that nn 

• END was found and an . END is assumed. 

- 8 -



A detailed description of the SNOBOL language will appear below. 

Let us comment briefly on the compiling, assembling, loading, and 

execution of Example 1. The Teletype output from this sequence of 

operations is shown following the source language for Example 1 above. 

The • R SNOBOL calls in the SNOBOL compiler from the SYS and 

begins its execution. It requests a command string from the user by •. 
typing an asterisk. No devices should be $iven in the command string 

since the DSC (or ORM ) is always assumed. The compiler creates 

a MACRO assembly language program which in our example we have 

called EXl. TEM . The compiler has told us that here are no unde­

fined SNOBOL addresses, and returns to the monitor. The MACRO 

assembler is then called in from SYS and the MACRO source file 

EXl. TEM is assembled. In the example we have called the assembled 

file EXAMPl. REL . The loader is then called from SYS and oti.r re-

locatable file, 

SNOOPS.REL 

EXAMPl.REL 

from the SYS 

and the SNOBOL operating system, 

are loaded. The SNOBOL operating sys-

tern is a collection of subroutines which is called by the MACRO coding 

generated by the SNOBOL compiler from our SNOBOL source coding. 

Observe that this sample program and the entire SNOBOL operating sys­

tem load in 1 K. 

EXAMPLE TWO 

As a second example let us consider the SNOBOL program below 

which accepts a FOR TRAN IV source file name from the Teletype, gets 

in that file from the Disc (or Drum) and replaces the leading spaces 

from lines in card format, by a tab for Teletype format. The algorithm 

which we use is as follows: 

If a line from the source file does not contain five characters it is 

assumed to either be a blank line or already be in Teletype format. If 

a line contains at least five characters and has a tab among the first 

five characters then the line is considered also to be in Teletype format; 

- 9 -



otherwise the line is considered to be in card format. The first five 

characters of a line are removed and stored in FRONT . All bl:=mks 

in FRONT are deleted and a tab is appended to the right- h:i.nd end of 

FRONT . These two maneuvers work if there is or is not :;.. st.'l.tement 

number. If the sixth character of the line, the. continuab.on character, 

is blank, it is deleted. Otherwise the sixth cha.ra.cter is repl 1.ced by 

the ·numeral 1. The line is then outputted to the Disc (or Dr~m) -l.nd 

the.next line processed. This program creates a temporary out-

put file for the lines as they are processed. This file is called 

QQTAB. TEM . After the file is successfully transb.ted the or1g:.nal idP 

is deleted and QQTAB. TEM is renamed to have ~he name of the origrn 

al FORTRAN IV source file. 

Explanation of Example 2 

Lines 10, 30, 40, and SO are comment lines. Lines 20, 60, and 

140 are blank lines. Line 70 types an asterisk without a terminating 

CR-LF on the Teletype. Line 80 accepts a line of input from the T •·h'. 

type, strips off the trailing CR-LF and stores the resulting string in 

FILNAM. Line 90 contains the SNOBOL command to open the input filt! 

whose name is stored in FILNAM . If the file named is not on the 

Disc (or Drum) the SNOBOL operating system (SNOOPS) comp) :.t.:.ns and 

sets the test accumulator to "fail". The I F(STAR T) terminating line 

90 causes a transfer back to Line 70 if the file is not foand. othenv1se 

control passes to Line 100. 

In Line 100, a Disc (or Drum) file is opened for output with the 

name QQTAB. TEM . 

Line 110 through Line 200 consititute a loop which reads ,\ line pf 

source, processes it; and writes it back out on QQTAB. TEM . In 

Line 110, the SNOBOL command . READ LINE reads the next line ni 

- 10 -



EXAMPLE -2-
.R PI P2 

*TT~:~DRM:EXAMP2 
'10210 ; EXAMPLE 2 
0Z020 
J00.32J 
~iJ~40 
i21~.2t5:J 
0~~06e 

0"'11.U 
~~080 
~0090 
i),J 10"' 
~)j 1 10 
~~~ 120 
JCl.30 
,,0140 
J~l50 
2216J 
MH7J 
~~ J l 8 0 
3~19~ 

00200 
00210 
~.122"' 
01l230 

;REMOVE BLANKS, I NSEfi T TABS 
;D~LETE BLANKS IN COLUMN 6 OR REPLAcg 
;N0N-BLANKS WITH 1. 

START: 

LI rJLUP: 

SLNK: 

TEST2: 

OUTLI N: 
ouTLN2: 
EXIT: 

.NTYPE "*" ;TYPE* WITHOUT CAR~l~~E RET-Ll~E 

.ACCEPT FILNAM ;READ FILE NAM:!: 

.OPIN FILNAM /FCSTAnT) 

.OPOUT "QQTAB.TEM" 

.READ LINE /FC€XIT> 
LINE *FRONT/5* : /FCOUTL~2> 
FRONT " " /SCTEST2> 

FRONT"":. /SC3LNK) 
FRONT = FRONT " " ;APPE'JD !'\ TA3 
LINE4- " " = /SCOUTLIN> 
LINE *CHAR/l* : "I" 
.WRITE FRONT LI~E /CLINLUP) 
.WRITE LINE /CLINLUP> 
.RI N "" 
.ROUT FI L~AM 
.END 

/CSTART> 

*TTY : .. ~RM: TEST 

SUM=0. 
DO l~ l=l,10~ 

C FIND THE SUM OF THE NUMBERS FROM 1 TO Hrn. 

• 

SUM : SUM + FLOATCI> 
1 a CONTINUE 

TYPE 9, SUM 
9 FORMATC3X,'SUr1 OF THE NUMBERS ram~ 1 TO iae IS' 

1 F7.2//) 
CALL EXIT 
Erm 

- 11 -

I - - L 



• ' ~ ~!~ 3 OL 
• ><~ ".:>'2. ·~t.c~~x~~.,2 

qr r 
tC 

5 K C 0 n E :JS C: .) 

t LOADE.i 
'' Is s ~ 0 0 ?S • E ~A'~? 2 •. '!: L I J I ... 

L0A)Er1 
CO~E 4 

£XIT 
tC 

.SAV~ Drt""I F.:-<A.,.·P2 
.103 SAVEJ 
tC 

.K ?I?l 

•T fY : ... JR~: T£ST 
su~=~. 
00 I 0 I: l , I ~0 

EXAMPLE -2- (cont'd.) 

C FIND THE SU, OF THE NUMBE~S FriOM I TO 100. 
SUM:SU~+FLOATC I> 
corHI NUE 
TYPE 9, S'J~ 

9 FO~~ATCJx,·su~ OF THE NUMJE~S F~OM I TO 133 1s· 
I F7. 2 I I> 
CALL EXIT 
EN~ 

- 12 -



the input from the Disc (or Drum) input file. The trailing CR-LF is de· 

leted,. and the resulting string stored in LINE . If no n€xt line 

exists, .. the test accumulator is set to ''fail" otherwise the test acc·.im"...1-

l;itor is set to "success". In Line 110, the transfer to Line 210 is 

effected when one attempts to read the last-plus-one line. 

In Line 120, the first element is the SNOBOL variable Line . This 

indicates to the compiler that this line is a form of string matching. In 

this example there is only one element between the first element LINE 

and 'the equal sign. This element *FRONT/5* indicates that five 

characters from LINE should be copied into FRONT . The eqG."i.l s1g~ 

has no element to its right, so the first five characters of LINE will 

be deleted. The effect of Line 120 is that if LINE has five or more 

characters the first five characters will be removed from LINE and 

this five-character string is stored in FRONT and the test accumu­

lator is set to success; if LINE has four or fewer characters, tht:n 

LINE remains the same and the test accumulator is set to "fail. ,. In 

the case that LINE does not contain at least five characters, transfer 

passes to Line 200 where the line is written out on QQTAB. TEM and 

control is then passed to the top of the loop at Line 110. If LINE had 

five characters control transfers to Line 130. 

The effect of Line 130 is that the five-character string in FRONT 

is searched for a tab. (The string between the two quotes may look 

like blanks; it is in fact a tab.) Notice in Line 130 that there is no 

equal sign. Line 130 is an example of string matching whose sole pt;r 

pose is for program control. In this case, if FRONT contains .1 tr1.b. 

control is transferred to Line 190. Let us assume that FRONT did 

not contain a tab. 

. format. Hence, 

In this case the original line must have be-?n in c ·:.1.rd 

control passes to Line 150. 

- 13 -



Line 150 is an example of the convenience of SNOBOL. The effect 

of Line 150 is to remove all blanks from string F.RONT {the string 

between quotes is in fact a single blank). Line 150 works as follows. 

If a blank is found in FRONT it is replaced by nothing, since nothing 

appears to the right of the equals. That is to say, the first blank in 

FRONT if there is one, is deleted. If a blank was in fact deleted the 

test accumulator is set to success and transfer is passed back to the 

beginning of the instruction. The transfer is effected by the I S(BLNK) 

at the end of Line 150. FRONT is then scanned again for a blank. If 

one is found, it is deleted and transfer is passed again to the front of 

Line 150. This is continued until all the blanks are removed from 

FRONT • After a search for a blank which fails, the test accumulator 

is set to fail and control is transferred to Line 160. 

The effect of Line 160 is to append a tab to the right-hand end of 

FRONT . (The string within the quotes is in fact a single tab. ) Lin€ 

160 works as follows. The first element in Line 160 is a string variable. 

This signals the compiler that the line is an application of string m.3.tch­

ing. Since there is no second element before the equal sign, this indi-· 

cates that the contents of the first string will be replaced by the con­

tents of the string( s) to the rig ht of the equal sign. In Line 170 we h we 

anoth.er application of string matching. Notice however the back arrow 

immediately following the first element LINE . This indicates th.'.l.t the 

string being matched must include the first character of 

effect of this line is to delete the leading character of 

LINE . The 

LINE if it is ,:i. 

blank and transfer control to Line 190 or to do nothing to LINE and 

fall through to Line 180 if the first character of LINE was not a. bh.nk. 

Since this character being examined was originally the sixth char1cter of 

the source line, this instruction tests the continuation field. In Line 180 

we replace the first character in LINE , if there is one, by the numera.l l 

- 14 -



. . 

If at this point LINE were empty Line 180 would not alter LINE , 

Control then passes to Line 190. 

Line 190 causes the string in FRONT concatenated with the string 

in LINE to be outputted along with a CR-LF to QQTAB. TEM . Con­

trol is then passed to the top of the loop at Line 110. After all lines 

have , been inputted, the read command at Line 110 will fail and control 

will pass to Line 210. The SNOBOL command in Line 210 calls for the 

input file to be renamed to a file with a null name. That is, the null 

string which is generated by two adjacent quotes, represents a null name. 

The effect of renaming an input file to a null name, is to delete that 

E:e. Control is then pas.sed to Line 220 . 

In Line 220, the SNOBOL ·command .ROUT FILNAM renames the 

output file to b~ the name contained in FILNAM . Control is then passed 

to Line 70 so that the user can- insert a new file name for processing. 

EXAMPLE THREE 

As a final example, let us consider the SNOBOL program below which 

inputs a list of words, written one word to the line, and outputs the list 

as a continuous stream of characters separated by commas, and then out~· 

puts an alphabetized list in the same format. The first word of the in-

put list is a number which gives the number of letters in the longest word 

in the list. This number will be deleted before the list is printed. 

Explanation of Example 3 

In Lines 30 through 50 the program types an asterisk. accepts "'l 

Ele name typed on the Teletype and opens that file. If the file is not 

fo.md en the Disc (Drum) the program is restarted. In Line 70 we read 

the first line of the drum input file. If the file is empty, the test accumu­

lator would be set to "fail" and the transfer at the right-hand end of Line 

70 would be effected. The string in SIZE is considered by th: s prc­

gram to be a SNOBOL integer. Any SNOBOL string can be considered to 

... 15 -



0301~ 
000J20J 
03~33 

00040 
00050 
ia03SS 
00tll6~ 
00073 
~CHJ80 

00"90 
0310~ 
0311 A 
00120 
~0130 
001~0 
00150 
03160 
0317~ 
iJ0 l 30 
2'0190 
00200 
00210 
00220 
30230 
0~240 
03250 
00253 
"~2 7~ 
iliJ2~3 
.?J0290 
~030J 
~0310 

213320 
;;,a.3.3 a. 
"~.340 
a2J353 
;;,2'.360 

* 

EXAMPLE -3-

:ALPHA3ETIZATIO~ USIN~ A RADIX SORT TECHNIQUE 

3E:JIN: .NTYPE "•" 
.ACCEPT FILNAPI 
.OPIN FILNA~ /FCaE~IN> 

:r<EAJ ~XIMUi'l SIZE OF WORD 
STA~T: .rtEAJ SIZE /FC3Ej1N> 

SIZ£ > .. ~.. /FC~EaIN> 

;READ ALL ~OriDS - SEPE~ATE ~ITH COMMAS. 
LIST = 

nEADEri: .~~AD ~ORD iFCTYPEJ> 
LIST : LIST WORD .. ,.. /CREAOE~> 

;TYPE LIST TO 3F. ALPHA3ETIZED 
TYPEI: .TY~E "LIST TO 3E ALPHA3ETI~£Dt •LIST 

OECSl7-: Sl~E : SIZE - "I" 
SI ?E < "0" 
/SCF'INAL> 

GET~~D~ LIST •~ORD• "," : /FCREMAKE> 
~OnD •HEAD/SIZE• •PIT/I• 
/JiCST0'.3IN> 
@PIT : SPIT WORD"," /CGETWRD> 

STOaIN: SI~ : a1N WORD"," /CGETWRD> 

RE~AKE: 31~ •LIST• : 
~LPHA = "ABCDEF~HIJKLMNOPQRSTUVwXYZ" 

NXTLET: ~LPHA •PIT/I* : /,CDECSIZ> 
LIST : LIST @PIT 
~?IT = /CNXTLET> 

F'INAL: • TYPE ••ALPHA1ET!ED LIST: " LIST 
l<B::r:IN) 
• END 

- 16 -



re 

• ' r: ~J-J 3 ~ L 
·~~A~~3.y~c.-~x~Y~3/l~~L 

?. ~I T 
tC 

EXAMPLE -3- {cont'd.) 

* J .1 ·'::~:"<A ·1?.). ~ -::::L, .-)., ~i: .?:.XAMP3. ~AC 

5K C OF<E iJSED 

.ii LOAOEr\ 
*/SSNOC?S,~XA~P3.~~L/J/~ 

L04JE~ 
r,1y~~ 4 

~XIT 
tC 

• c !\ 'J ?. ) ~ ~ t;" '( !\ 'Y: :> 3 
JO~ SAV~J 
tC 

*) .~ :11 : TE s T .-r r y : 

r::s r~D 
T~ I~'.) 

AL 'NYA~ 
~I F'T 
x··:AS 
ACCE:?f 
3~C!\:JS :. 
HOS~ITAL 
t 7. 

* 

- 17 -



1 L>i1 '.'1 F.lCA~P ~ 4 
J03 SETUP. 
+t 

• s r 

•n:s r 

EXAMPLE -3- (cont'd.) 

LIST to a~ ~LP~Aj~fl~EO! TESTED,T~I~1.~L~AYS,GIFT,XMAS,ACCEPT,JECAUSE,!= 
·JS Pl TAL., 
~L?HA'3~t~E;) LIST! ACCEPT,ALWAYS,SECAUSE,~IFT,HOSPITAL, TESTED, TrlU:o.~ ·i,1 ." 

- 18 -



~--~ ., 

he 1r integer by reading the initial numerals as a decimal integer. The 

e··d of the string or the first non-numerical character ends the number. 

Tr.e only exception to this rule is that a leading minus sign makes the 

n:_;mber which follows negative. For example, II II - , "0", II II "000" 

0. 3·· ··on "+3:' "--5" are all considered to be zero as a SNOBOL inte-

ge!"' Also,. "-5 11
, "-5. 5", "-5A" are all considered to be -5 . In Line 

80 we test to see if SIZE is indeed a positive integer. Notice the use 

of the literal zero. This statement could also have been written 

•:1 1iL = SIZE /F(BEGIN) 

The operation of Line 80 is· performed as follows. A routine in the 

SNOBOL operating system (SNOOPS) evaluates SIZE as a SNOBOL 

.nteger. Similarly it evaluates a string consisting of a zero alone as a 

SNOBOL integer and sets the test accumulator to "success", --if the value 

of SIZE is currently greater than zero. 

The tr3.nsfer at the right hand side of Line 80 is effected if the first' 

characters in SIZE are not considered to be a positive integer. In 

L~nes 110 through 130 we read all the words and make them into a single 

string separated by commas. In Line 160 we type the list to be alpha·· 

betized on the Teletype. In Line 180 we reduce the size of SIZE by 

J ~nd Line 190 we test to see if SIZE is negative. In Line 200 we 

tr 'l.nsfer to the final output coding if SIZE is negative. 

The loop from Line 220 through Line 260 is used to sort all the 

words on LIST into 2 7 "bins. " There is one bin for each letter of 

the alph3.bet and the 27th bin for words which are less than or equ1l to 

the number currently stored in SIZE . The initial use of this loop 

sorts a.11 words whose length is less than the maximum length into the 

:,.n c.3.lled BIN, and sorts the longest words into each of the bins 

A. B, C, ... , Z according as its last letter is A, B, C, ... , Z respec · 

t.vely. On the second application of this loop, the words of maximum 

- 19 -



iength are sorted on the next-to-the-last letter, the words of one less 

tt. in m:·~x1mum le!lgth are sorted on their fir..al letter and words shor·~ 

~er th l.n that are sorted into BIN • 

In Line 220 the first word in LIST is copied into WORD and 

the init' ~.I word a.nd comma are deleted from LIST . However, if 

L:ST ·w:1s empty, transfer is made to Line 280. In Line 230, we see 

t"'·o different types of application of fixed length fillers. The first fil­

ler. 

:i;~HEAD/ SIZE* 

1 ~ interpreted as follows. SIZE is interpreted as a SNOBOL integer 

;:-,d th::tt ff.lmber of initial letters of WORD is copied ir .. to HEAD . 

The second filler is a fixed length filler where the size is given by ar.. 

~nteger so th.l.t the next character after the last character re3.d into 

HEAD is stored in PIT . If this is successful the test accumulator is 

~et. t0 ;;success.''. However, if WORD is too short, i.e., does not 

ci:>nt3.in SIZE+l letters, the test accumulator is set to "fail." Line 

2 40 effects a transfer to Line 260 in the case that WORD was too 

short. In Line 250 the list whose name is in PIT is lengthened by 

1ddrng the contents of WORD and a comma. The commercial -at 

s.gr. c@) m front of PIT indicates that it is not the contents of PIT 

~Jut the contents of the string named in PIT that is being referred to 

·this feat~re is known as indirect naming. If the string in PIT 

h ,.ppened itself to be a variable n3.me preceeded by a commercial 3..t-

s. gn the ind1rE ct n:l.ming would go down one level deeper. 

~1-:am.;ng c3.n be ~sed to an arbitrary level of indirectness. 

Indirect 

Indirect-

ne&~ cl"". also be used with addresses. That is~ a transfer can b~ 

m ·de to a label named in a SNOBOL string. Line 260 is entered in 

•.ht- c. J.se th~t WORD is shorter in length than the number in SIZE 

!n Lines 280 through 320, LIST is regenerated by putt1ng the shorter 

- 20 -



words followed by all of the words in List A, List B, ... , List Z . 

L.;.r:e 2 80 represents an interesting use of a filler. The action here 

"' ; s •o pt:.t the conte!lts of BIN into LIST and to empty BIN . 

Not :e that fillers are used to match the smallest possible string ex­

cept ~n the case that a filler appears at the beginning or end of the 

s~bstring being matched. A filler at the beginning or end of the sub­

str:: !lg_ if it were to be as short as possible would always be empty. 

Therefore, it is convenient to have an initial filler to include all of the 

heg . .nn:ng of the main list and a filler at the end of the substring to in­

clude all of tr..e characters at the end of the main list. Hence, a sub-

s'r .. ng c0nsisting only of a filler matches the entire main string. In 

the ~ =tse of Line 280, LIST mate hes all of BIN and the equal sign 

:.r~d:c1tes that the contents of BIN is to be deleted. Lines 300 through 

3l0 ~re the loop which adds the 26 lists to LIST . After 26 passes 

thr oagh the loop, control is transferred to Line 180, where SIZE is 

decreme!lted, etc. When SIZE has been decremented to -1, control 

tr :l.nsfers to Line 340 where the alphabetized list is printed out. After 

" this type out: control has passed to the beginning of the program for the 

user to type in a new file name. 

We now describe the syntax of the Applied Logic implemen­

tation of SNOBOL. In most respects we have followed the syntax of 

the original implementations of SNOBOL. If we have diverted, it is 

because we have the ASCII character set available and because the 

ASSEMBLE/COMPILE feature (i.e., the in-line use of the MACRO assembly 

language code) makes it desirable to have the syntax for comments and 

labels be compatible with MACRO assembly language. 

Liter 11 S~rings 

I. 
.. ,, is a. literal string representing the null (or empty) string . 

I ' 111
'· is a literal string representing a string consisting of a quote 

=tlone. 

- 21 -



3. "L
1

L
2 

••• Ln" is a literal string, where L1L2 ... Ln are any ASCII 

characters other than quotes (n~l). 

NOTE: Strings are stored internally as a continuous string 
of ASCII characters terminated by a null (a null is a 7-bit 
field of all binary zeros). 

Names 

Any word using only letters of the alphabet, numerals, percent 
sign or period--that does not start with a numeral or a period is a 
name. Names are used as "string names" to name string variables and 
as address labels. The compiler allows names of any non-zero length. 
However, only the first six letters are used by the compiler. For ex-· 
ample, ABCDEFl and ABCDEF2 are both legal names which are considered 
to be the same name by the compiler. 

Labels 

A name which is initially placed in a line and immediately 
followed by a colon is a label. Care should be taken not to allow 
label and string names to coincide. 

String Element 

1. A string name is a string element. 

2. A literal string is a string element. 

Substring Element 

1. A string element is a substring element. 

2. If S and T are string elements but not string literals and if n is a 
positive decimal numeral, then 

a) *S* 

b) *S/n* 

c) *S/T* and 

d) &S& 

are substring elements. 

3. If s
1

, s 2 , ... ,Sn (n~2) are string elements, s 1!s 2! ... !Sn is a 

substring element. 
substring element.) 

(For example, "VAR"! "12"!VAR3!"345" is a 
The is read as OR. 

NOTE:· Substring elements are concatenated together to make a 
pattern which is to match a designated character string. 

Comments 

A semicolon, not captured within part of a literal, together with 
all characters to the right of such a semicolon, are considered to be 
a comment. 

- 22 -



"' 1. 

2 . 

Format: F s1 S2 . . .. Sn ( n~l) 

Action: Sets test accumulator to 11 success 11 if s l S2 ... 
matches a consecutive substring of F; otherwise 
sets 

Format: E S1 

Action (n=O): 

Action (m=O): 

test accumulator to "fail. II 

S2 . . .. Sn = R1 R2 .... Rm (m~O, n~O) 

Replace E by R1 R2 . . . . Rm. .No effect on 
test accumulator. 

Delete first substring of E matched by 
S1 S2 •••• Sn and set test accumulator 
to 11 success; 11 if no match, leave E in 
tact and set test accumulator to "fai 1. 11 

Action (n>O, m>O): Replace first substring of E matched 
by S1 S2 .... Sn with the string 
R1 R2 •••• Rm and set the test 
accumulator to "success;" if no 
match, leave E in tact and set test 
accumulator to "fai 1. 11 

3. Format: E S1 S2 •••• Sn = A (n~O) 

Action: Same as 2. above with the character string 
which represents the value of A used in lieu 
of R1 R2 •••• Rn. 

4. Format: E S1 S2 Si] S;+l .... Sn= R1 R2 .... Rm 

(O<i<n, m~O) 

Action: Same as 2. above except that only the portion 
of the substring matched by S1 S2 •••• Si is 
replaced or deleted. 

5. Format: E S1 S2 .... S;] S;+ 1 •••• _Sn = A (O<i<n) 

Action: Analogous to 4. above. 

6 . Format: E Si S 2 ••••. S; [ S; + 1 . . . . S j J S j + 1 . . . . Sn = 

R
1 

R •••• R (O<i<j<n, m~O) 
2 m 

Action: Analogous to 4. above except that the substring 
of E corresponding to Si+l .... S. is replaced 
or deleted. J 

- 23 -

Sn 



7. Format: E s 1 S2 . . . . s . [Si +l . . . . sj J sj+l . . .. Sn = A ~ 1 

(O<i<j<n) 

Action: Analogous to 6. above. 

8. Format: E S1 S2 sj[sj+l . . . . s = R1 R2 . . . . Rm n 
(O<j<n, m~O) 

Action: Analogous to 4. above except· that the substring 
of E corresponding to s . .... s is replaced 
or deleted. J + 1 n 

9. Format: E s1 S2 S; [sj+l Sn = A 
fJ 

(O<j<n, m~O) 

Action: Analogous to 8. above. 

- 24 -



In ord r to understand the operation of the string command, con-

sider the command 

NAME SUBl SUB2 .... SUBn = REPl REPZ ... REPm 

This statement is executed in the following manner: 

SUBI, SUB2 ... SUBn are to indicate a contiguous substring of NAME 

which is to be replaced by the string obtained by concatenating the 

strings represented by REPI, REPZ ... REPm If this substring match 

is successful, the test accumulator (T=l 7) is set. to "success" (OL if 

the match fails, the test accumulato is set to ''failure" (-1). 

The matching algorithm proceeds as follows: 

The substring elements of the form *S~ , *SI j* , ~·,s/ T*" , and 

&S& represent fillers whose lengths are respectively "the shortest 

possible," "exactly j(j :! I) characters," "exactly t characters--where 

T has value t as a SNOBOL integer--," and "the biggest possible. 11 

The matching algorithm then attempts to find the left-most match for 

SUBl and NAME and then proceeds to find immediately after that a 

match for SUB2 and so on through SUBm . If for SUBi+l , a match 

is not possible, an attempt is made to extend the right-hand end point of 

SUBi one character to the right--in the case of &S!1, contract the 

right end point one character to the left. If this 1s not possible 

then SUBi-1 is considered, etc. If this fails back through SUBl 

the left-hand end point of SUBl is incremented 1 to the right 

and the process is restarted. 

If SUBl SUB2 ... SUBn does not appe.:i.r in the con1r.~and string, 

the whole string NAME is considered to be matched. ... 
.1.l REPl REP2 

... REPm is missing the matching substring of NAME 1::t to be cie-

leted. If = RE Pl REPZ ... RE Pm is miss int~ (then n >0), this opera-

tion is used strictly for setting the fail- succe~ s accumulet.tor. For ex-

ample 

NAME= 11 ,A,B,C, 11 

NAME II II , *VAR~~ II II = 

-. 25 -



results in NAME he:~g B, C, and VAR being A and the test 

accumul2tor is set h"l 1 '5~ccess." 

NAME= ",A,B,C," 

NAME :· DELIM/ l* ·:<VAR~:-= DELIM 

sets DELIM to and sets VAR to A . Again, the test accumu-

lator is set to "s•.lcc.ess." 

It has been found to be convenient to make replacements within 

a proper substring of the substring being matched. SNOBOL delimit~ 

such a· substring by including one or both of C or .J between the SlJBi's. 

A missing [ is :acitly assumed to appear before SUBl ; similarly a 

missing J is assumed to follow SUBn For example 

NAME = ",A, B, C," 

NAME =:~nELIM/.l ~:: ~:cv AR~:: J DE LIM = 

results in NAME being set to , B, C, and VAR being A and 

DELIM being Note that the comma preceeding B is not 

replaced (deleted) since replacement is restricted to the bracketed ~ 
substrings. 

SUBi can .n addition, be a di.sjunction of string names or liter-

als. For example, :--eplace the right-most occurrence of period or 

comma by a semi-cclon: 

NAME= '',A,B,C," 

NAME &VAR& [ "."!"," = II• II , 

results in ~AME bc>ing ,A,B,C, in VAH being ,A,B,C and in 

the test accumulator heing set tc• '•success." 

An addit1on2.~ fea!.ure of SNOBOL is the anchor mode fer matching 

the sub~tring. In th,s modt:=> the rn3tching subs~ring must include the first 

character of •he string. Thi5 mode is indicated by an ~ immediately 

following the first string name. Sp:::t.ces and t3.bs are ·..iSed in SNOBOL as 

&ynt3ct_ic delimiters for readability a.-,d in a few cases to remove arnbig-

ui ties caused by :-ac..rne s r'un!'ling together. The delirniters however are 

not needed in ge:ier~l except in cases of such ambiguities. 

- 26 -



'-' 
··. r 1 thmet1c Relations 

Let A a.nd B be string elements. Then 

A B (is A equal to '1 r .. ? ) 

A " B (is A uneql1al to B ?j 

A<= B (is A less than or equal to " '\ 

A < B lis A less than B ?) 

A > B (ls A greater than B ::) 

·A>:.. B { ~ ~ A greater than or i ·q·~ :.1.'. B ,, ' 

are arithmetic relations. Note that A and B , • 1, not 1ht·11:selves bt: 

arithmetic terms. An arjthmetic relation sets Uat' :t :;t ac:. H":.datur to 

''success'' or "fail•.ire" according as the relation hoks or c!ut's nc~ hold 

Transfer Command 

Let L
1 

and L
2 

be SNOBOL names which are used as labels 

or are string names preceeded by a commercial-at sign or a dollar 

sign. Then 

I (L
1

) (transfer to Ll) 

IS( L l) {transfer to Ll if test ac c illnulator is "success'') 

/F~L 1 ) (~r.ansfer to Ll if te !' ~ ac. c .~ nmlator • !..\ "fall") 

/F(L 'S:L '· 2' ' l I 
·transfer to L 

1 
if test a~. .J ·nulato r IS "succes8"; 

IS( L l) F( L
2 

~ transfer to Lz if test ac c •1malator is "failure") 

t. 

~? e all transfer comn13.nds. If desired, 3. tran~:~r corrnnand may be I.:. 

cated to the right of a string command, an arithmetic relation, or a 

SNOBOL command. 

SNOBOL Command~ 

Let E , .. , E Le string elt-r:1ents. Let S bt> a string name. 
1 n 

Le• L be a label addre~~ or a string n;i.n.t· prl~,·t>eded by ,, l. on1mercial 

at sign or a dollar sign. The le gal SNOBOL ccrnmands have the follo\\-1ng 

- 27 -



formats. Csc: ~•i SNOBOL co1nrnands will be des<. r!bed below. 

_ 't-OUT 

. ;_ L1N 

• !_··LOUT 

, ~l fN 

. i·:OUT 

• S~IN 

. ~-.SNIN 

• S'JOUT 

• ?·-.7SNOUT 

• PUSH.! 

• 1-'0PJ 

.POP 

• :-V1 r\CRO 

.":'-JOBOL 

. ;:_x1 T 

• i· ·: D 

s 

I 
L-1 

> (r-, - 1) 

- 28 -



.TYPE E E ... E 
1 2 n 

(n > 1) 

The strings referenced by the string elements whit·h appt•ar tt, thv 

right of a • TYPE statement are concatenated together and outputt(~d :)n 

t~w Telt'lype and a terminating CR-LF is typed. For exa1nple 

.TYPE "A" "B 

C'' 

.TYPE "D" 

outputs 

AB 

c 
D 

on the Teletype. This command does not affect the test accumulator. 

(n > 1) 

The • NTYPE statement is similar to the • TYPE statement 

except that the terminating CR-LF is not affixed. For exarnplt· 

• NTY PE "A II "B 

C" 

• TY PE "D" 

u11tputs 

AB 

CD 

This com1nand dues not affl~ct thl' test accu1nuL.Ltor . 

• /\CCF.PT S 

This statement readit·s the Teletype for input, dt'lCtt's S, 1·,·;id~ 

in tlH· first line of input into S . In bnth the • ACCEPT statt·nH·nt ;uHI 

tht· • HEAD stall'lll('nt dt>scribPcl below thP input is tt-rminat...d bv a 

, hdrat lt·r which rl'prt•sents a vt•rtit·al n1on·nwnt. 

- 29 -



the line-fec·d, form-feed, vertical tab, and the line-feed generated by a 

carriage return (recall that the return character generates a CR and a 

LF). In the case that the input line is terminated by a CR-LF or a 

LF these terminating characters are deleted from the input line. The 

vertical tab and the form feed however are stored with the line. It has 

been found that these conventions for input are very convenient in 

SNOBOL. This command does not affect the test accumulator . 

• OPIN S 

This statement opens an input file on the Disc (Drum) whose name 

is contained in S . For example 

• OPIN "ABC. EXT" 

looks on the user's directory for the file ABC. EXT • The operating 

system, SNOOPS , complains if the _file is not found or not accessible 

The test accumulator is set to "success" if the file is found and is 

accessible. The. test accumulator is set to "fail" in the contrary case. 

At most, one input file can be opened at a time from the Disc (Drum) . 

• OPOUT S 

This statement opens an output file with the name contained in 

S . At mo st, one output file on the Disc (Drum) can be opened at any 

time. This command sets the test accumulator to "success" if the file 

\\··as successfully opened and to failure in the contrary case . 

• APOUT S 

T"lis statement is analagous to the • OPOUT statement except that 

the file named in S should be an existing file and output is to be ap­

pPnded on to the end of that file. SNOOPS complains if the file named 

in S does not exist. 

- 30 -



• WRITE E
1 

E ... E 
2 n 

(n 2' 1) 

The • WRITE statement is analagous to the • TYPE statene!;t 

e·xcept that output is to the Disc (Drum) file opened by the last • OPOUT 

or • APOUT statement. In both the • TYPE and • WRITE statemt·nts 

a CR-LF is affixed to the end of the line if the characters typed do n•Jt 

terminate in a vertical tab or a form-feed. The test accumulator is not 

affected. 

. NWRITE E E ... E 
l 2 n 

(n~l) 

This statement is identical to the • WRITE statement except that 

in no case is a CR-LF affixed . 

• READ S 

This statement is analagous to the • ACCEPT statement except 

that input is the next line of the Disc (Drum) file opened by the previous 

. OPIN statement. If no Disc (Drum) input file is open SNOOPS com-

plains. The test accumulator is set to "success" if a line was success-

fully read . In the contrary case, the test accumulator is set to "fail." 

• CLI N 

This statement closes the input file . 

. CLOUT 

This statement closes output file. It is not necessary to execute 

the • CLIN or • CLOUT statements unless one is going to open a new 

input, respectively output, file on the Disc (Drum) . 

• RIN S 

This statPment closes the input file currently open and renanws 

it to the name in S . If S contains the null string the input filt' i~ 

deleted rather than renamed . 

• ROUT S 

This statement is alalagous to the • RIN statement except that it 

renames or deletes the output file opened on the Disc (Drum). 

- 31 -



.SNIN 

The normal mode of reading input from the Disc (Drum) strips 

sequence numbers from the lines if they appear. This statement acts 

as a switch which initiates the feature that sequence numbers are read 

in .3.s part of the line. The format of the sequence number is as fol-

lows. The first five characters are numerals; the· sixth character is 

a tab unless the content of the line is to be empty, in which case the 

sixth character is a line-feed. Hence the • SNIN feature will cause 

• READ to read in six characters plus the remaining characters of a 

line (or read in exactly five numerals, since the terminating line-feed 

is stripped, in the case that the line represented an empty line with a 

sequence number). The remaining commands do not affect the test ac­

cumulator . 

• NSNIN 

This statement turns off the feature initiated by the • SNIN . 

• SNOUT 

The normal mqde for output on Disc (Drum) does not generate 

sequence numbers. This statement initiates the feature that considers 

the first six characters of each output line to be a sequence number. 

The, format for sequence numbers must be adhered to if the output file 

is· to be used with other programs on the Applied Logic system since 

the • WRITE statement affixes a CR-LF It is ,always safe in this 

case to use a tab as the sixth character. The user who uses the 

• NWRITE statement should take care not to get a seven-character line 

consisting of five numerals, a tab, and a line-feed . 

• NSNOUT 

This statement turns off the feature initiated by the • SNOUT 

statement. 

- 32 -



• PUSHJ L 

This statement causes a transfer to 

indirect addressing to the label named in 

L 

L. 

or in the case of in­

The address oi the 

~taten1ent irnmediately following a • PUSHJ staternent is saved on a 

push-· down list. 

• POPJ 

This statement pops the address pushed on by the last • PUSHJ 

state!Ylent and transfers to the address . 

• POP 

This statement is used to pop off the last address pushed on the 

push-down list by the last • PUSHJ statement. However, no transfer 

is made . 

• MACRO 

This statement is a signal to the SNOBOL compiler to consider 

subsequent lines of coding to be MACRO assembly code . 

• SNOBOL 

This statement is a countermand to the SNOBOL compiler revok­

ing a previous • MACRO statement. Lines subsequent to this stateme:!t 

are considered by the SNOBOL compiler to be SNOBOL source. If the 

first character in a line is an up-arrow ( t ), the line is considered to 

be MACRO code if • SNOBOL is currently in effect, or to be SNOBOL 

code if • MACRO is in effect. 

. EXIT 

Thi:; generates an exit call to the systern, closes all open files, 

and results in the user being put in monitor command mode and the 

Teletype responding with 

EXIT 

tC 

- 33 -



.ENO 

This statement signals the SNOBOL compiler that there is 

no more code to follow. If this statement is omitted, the 

compiler assumes an ENO statement. The .END statement generates 

a .EXIT statement. 

- 34 -



SUMMARY OF SNOBOL FEATURES 

LITERAL STRINGS 

1111 null string 

111111 quote 

II aaa---a" 

STRING ELEMENTS 

II 12 311 literal strings 

STR2 string names 

SUBSTRING ELEMENTS 

STR2 string names 

11 123 11 literal strings 

11 123 11 ~STR2 disjunctions of string elements 

*STR2* make STR2 be minimum length 

*STR2/n* make STR2 be length n 

*STR2/TEE* make STR2 (have length = integer value of TEE) 

&STR2& make STR2 be maximum length 

STRING COMMANDS 

LBL: NAME STRNG =REP /S(LBLl)F(LBL2); REMARKS full statement­
replacement. 

NAME STRNG = pattern search and delection. 

NAME+ STRNG pattern 

NAME susi]sus2 = REPl 

NAME SUB 1( susy SUB3 = 

NAME SUBlrUB2 SUB3 = 

search in Anchor mode 

REP2 

REP2 

- 35 -

partial sutstring replacements 



SUMMARY - {cont'd.) 

NORMALIZED SNOBOL INTEGERS 
II II Zero 

"ABC'' ZerJ 

II 7C II 7 

II - 7C" -7 

"0034T7" 34 

"A73" Zero 

II 383" 333 

INTEGERS OPERATIONS 

+ - * I 

NBR + "4" 

NBR * SUM 
11 4 11 

- "3" 

TRANSFER COMMANDS 

I (LABEL) 

/S(LBL) 

/F(LBL) 

/S(LBL1)F(LBL2) 

/F(LBL2)S(LBL1) 

unconditional 

if search or relation is successful 

if search or relation fails. 

2-way branch 

ARITHMETIC RELATIONS 

STRl - - STR2 

STRl # II 7 3" 

A <= B 

A < STRl 

STRl > B 

STRl >= STR2 

- 36 -



" 

"' 

SUMMARY - (cont'd.) 

_; P E_C I AL 

precedes a remark 

t precedes a line of Macro code in SNOBOL mode 

SPECIAL COMMANDS 

.TYPE 

.NTYPE 

.ACCEPT 

.OPIN 

.OPOUT 

.APOUT 

.WRITE 

. READ 

.CLIN 

.CLOUT 

.RIN 

.ROUT 

. SNIN 

. NSNlN 

. SNOUT 

. NSNOUT 

.PUSHJ 

POPJ 

. POP 

. MACRO 

SNOBOL 

.EXIT 

t. "• n .1 -

El 

E1 

s 

s 

s 

s 

El 

s 

s 

E 2 ••• En 

E 2 ••• En 

E2 ... En 

SUBR 

Type a string of characters plus <RETURN> 

Type a string of characters. 

Read from TTY into S until <RETURN> 

Open the file named in s as the input file 

Create a file named in s and open it as the 
output file. 

Open the end of the file named in s as the 
file. 

Write a string of characters plus <RETURN> 
in the output file. 

Read from the input file one record into S . 

Close the input file. 

Close the output file. 

Close the input file and rename it as s . 
Close the output file and rename it as s. 
Set input mode to accept sequence numbers . 

Cancel the sequence no. input mode . 

Set output mode to write sequence numbers . 

Cancel the sequence number output mode . 

Call subroutine named SUBR 

Return from subroutine. 

output 

Delete return address from last subroutine call . 

Set mode to accept MACRO code . 

Return mode from MACRO to SNOBOL mode. 

Exit from running program into ALC monitor 
command mode. 

Denotes end of SNOBOL coding for a program. 

- 37 -


