AL/ICOM

PROGRAM: SNOBOL

BY: James R. Guard

Program Bulletin #67-006
Copyright (C)
December 29, 1967

Applied Logic Corporation

AL/COM is a direct access computing service from APPLIED LOGIC CORPORATION

SNOBOL

SNOBOL is a programming language for manipulating strings
of characters. SNOBOL'S simpTe statement formats,
simplified Input-Output‘and automatic storage allocation
makes it easy for the novice programmer to learn. On
the other hand, the power of SNOBOL's commands for
character string manipulation allow elegant and
sophisticated programs to be written in SNOBOL. SNOBOL
was developed by Farber, Griswold and Polansky of the
Bell Telephone Labs in 1962, and was implemented on the
IBM 7090. There are SNOBOL languages currently implem-
ented on a number of machines. Write-ups of SNOBOL

are contained in SNOBOL, "A String Manipulation
Language", Journal of the Association of Computing
Machinery, Vol. 11, No. 2 (January, 1964), PP. 21-30,

and "The SNOBOL3 Programming Language", The Bell System

Technical Journal, Vol. XLV, No. 6, July-August 1966.

See "SNOBOL3 Primer", by Allen Forte, 1967, MIT Press

for a simple, clear primer in paperback.

While FORTRAN deals mainly with numbers, SNOBOL deals
with strings of characters. In FORTRAN a variable usually
contains a fixed or floating point number. In SNOBOL,

a variable contains a pointer to a string of characters.

The Applied Logic implementation of SNOBOL has a simple
means of doing Input/Output using the Teletype and the

Disc (or Drum) for reading and writing character strings.

Before going into elaborate detail on the syntax of our
implementation of SNOBOL let us examine three simple
examples of its use.

EXAMPLE ONE

Example 1 we consider the task of printing a vertical
list of words contained in a sentence inputted on the
Teletype. Let us assume that a blank, comma-blank,

and period are the legal punctuation separating words.
Below is a listing of the SNOBOL source for a program
implementing this task. The compiling, assembling,

and loading needed to run the program are shown. Follow-
ing the‘example is a detailed explanation of the action

of each Tine of SNOBOL coding.

EXAMPLE -1-

S T

viTYseunliteXAMPI

DAV B SEXAMPLE #1

Lol s INPUT SENTENCL FROM TELETYPE ANU MAXE VERIICAL LIS1 OF WURLS.
PR sCONSIDER OSLANK, COMMA-BLANK, AND PEROIL AS LEGAL PUNCTUATION,

ces 4l

JE8Hd START: NTYPE "x" sTYPE x WITHOUT CARRIAGE KETI-LINt Fcolu.
AR Y «ACCEPT LINE $READ SENTENCE FROM TELETYPE

I PARSES LINE *WORDx ™ "!%, "1 ," = /F(LAST)

Lo oBE «IYPe WORD s TYPE WORD ANU CAnKIAGE RelTUkN LINE rEwL
IS / (PARSE)

vu bl LAST: «TYPE LINE $TYPE REMAINUER OF LINE

el sPRESUMABLY EMPTY.

o124 /(STAKT)

+tC

A SNOBOL
2iX 1. TEM-EXANP L

NO UNDEFINED SNOSOL AUDRESSES

cXIT

1C
.n WACKOD

#OnG S EXANF leURMSEX] JTEM

InERE AKE NO ERKORS
FrROGRAM BREAK IS p22131
54 CORE USED

. LOADEK

«-NOOPS ,EXAMPI .REL,/G

' JAUER

cune

eXl]
T

EXAMPLE -1- (cont'd.)

JLfand

*ICUAY 15 The unY FOK ¢ L 0w #aN T5 COMe 1U Ink Alu OF TInelr CULaar vy,
TsLay

Is

Tnt

JAY

FCR

ALL

GO3L

el

~
-

Cone

%

inc

Glu

Jdr
intin
COUNTRY

*

¢

Explanation of Example 1

1.

A semicolon and characters to the right of a semicolon are con-
sidered to be a comment by the SNOBOL compiler and are ignored.
Exception: a semicolon between matching quotes is considered as a
character in a string. Lines 10; 20, and 30 represent SNOBOL
lines which are comments. Lines 50, 60, 80, 100, and 110 show
the use of comments at the termination of SNOBOL lines.

Blank lines are ignored by the SNOBOL compiler and can be used

'by the programmer to improve the readability of his coding. For

example, see Line 40.

START , PARSE , and LAST are words used as address labels in
Example 1 in specifying the logical flow of the program. LINE and
WORD are words used to name string variables. A label or a
string variable is any word made up of letters, numerals, period,
percent sign, or dollar sign which does not start with a numeral or
a period. A label can be any number of characters, however only
the first six characters of a label or a variable are used by the
compiler. Words which start with period are reserved for various
SNOBOL command functions. A label followed by a colon at the be-
ginning of a SNOBOL line defines the label to be equal to that physi-
cal location in the program. For example, see Lines 50, 70, and
100. Such labels serve the same purpose as statement numbers in
a FORTRAN program. String variables such as LINE and WORD
are defined merely by their appearance. For example, LINE is
defined by its appearance in Line 60; WORD 1is defined by its appear-
ance in Line 70. As in FORTRAN, the appearance of a variable is
sufficient to define it. Care must be taken not to use the same word

for a string variable and a location label.

Blanks and tabs are used as delimiters in a SNOBOL line as needed

or desired. For example,

while in Line 60

in Line 50 no delimiters are needed,

.ACCEPTLINE would be ambiguous without the

blank between .ACCEPT and LINE .

Lines 50 through 130.

Note the use of tabs in

The execution of a SNOBOL program starts with the first executable

SNOBOL instruction--in this example,

command have already been explained.

.the instruction is the SNOBOL command

Line 50.

The label and the

The executable portion of

. NTYPE '"%" which re-

quests that the literal string consisting of an asterisk be typed. The

second executable SNOBOL instruction requests that a line be in-

putted from the Teletype and the string of letters corresponding to

the line typed be stored and a pointer to this character string be

stored in LINE .

Though, in fact, LINE contains a pointer to a

string of characters, for almost all purposes the programmer can

think of line containing a string of characters.

In the explanations

of the examples we will say that a variable contains a string, when

in fact it will contain a pointer to a string.

The carriage-return-

line-feed which normally terminates a typed line are deleted from

the end of the string of characters before being stored.

See the

sample runs for the asterisk outputted and the sentence inputted by

the user.

In Line 70 we have a SNOBOL instruction which does not involve

input/output and which is more typical of SNOBOL instructions The

label PARSE is defined as is described above.

The next element

of the line is a string variable and indicates that some action 1s to

be taken with the

string LINE . The second element

*WORD: |

is used as a filler in a string matching process which is at the

heart of SNOBOL.

The third element,

oty e
N 1

IR ATT
.

represents the

disjunction of three literal strings consisting of a blank. comma-
blank, and period. The exclamation point cah ‘be read as an '"or".
A fourth element is the equal sign. This instruction has the fol-
lowing action:

Step A

WORD is set equal to the null (empty) string.

Step B
The first (next) character(s) of LINE is{(are) examined to see

if it is a blank, cbmma-blank, or a periocd. If 1t is go to Step E.

Step C
The character just examined from LINE is appended to the

string in WORD .

Step D
If there is a next character in LINE go to Step B. If there is
not, a special dedicated accumulator--called the ''test accumula-

tor''--is set to '"'fail'" and terminate the action of the instruction.

Step E

The initial portion of LINE which matches WORD and the
blank, or the comma-blank, or the period, is replaced by the
string named to the right of the equal sign. In this example there
is no string to the right of the equal sign so these in.tial chzrac-
ters of LINE are simply deleted. The test accumulator 1s set

to '""'success''.

The /F(LAST) which terminates Line 70 indicates that the pru-
gram is to transfer to the instruction labelled LAST 1f the test
accumulator was set to fail. In the other c‘ase. that 1s, the case
where the string match was successful, and hence the test accumu-

lator was set to success, the next instruction (Line 80) 1s to be

10.

Line 90 is an unconditional transfer back to the instruction labelled

executed. Transfer instructions such as /F(LAST) can appear
to the right of SNOBOL commands or can -stand alone on line as
SNOBOL instructions. For example, Line 90 is an uncond.tionszl

transfer to the instruction labelled PARSE .

Line 80 is a command to type the string in WORD on the Tele-
type. A carriage-return line-feed is appended at the end of each

string typed by the .TYPE command.

PARSE . Looking at the first sample run, at the first time L:ine 90
is executed, WORD is a five-character string, TODAY and
LINE is the string IS THE DAY FOR ALL GOOD MEN TO COME
TO THE AID OF THEIR COUNTRY . In the first sentence tested

the loop from instructions 70-90 is executed 16 times and on the 17th
execution of Line 70, LINE is the null string and hence the string
match requested fails and the program transfers to the instruction
labelled LAST .

Line 100, which is the instruction labelled LAST , is a request to
type the contents of LINE . If a '"legal'" sentence has been typed

at Line 60, LINE will, in fact, be the null line and this accounts

for the blank line appearing in our sample run between COUNTRY

"and the * which indicates to the user that a second sentence is t-

be typed. .
Line 120 is an unconditional transfer back to the start of the pro-

gram. Line 130 contains the SNOBOL command .END This

command signals the end of the source to the SNOBOL comp:ler if

this statement is omitted the compiler gives a warning that no

.END was found and an .END 1is assumed.

A detailed description of the SNOBOL language will appear below.
Let us comment briefly on the compiling, assembling, loading, and
execution of Example 1. The Teletype output from this sequence of
operations is shown following the source language for Example 1 above.
The .R SNOBOL calls in the SNOBOL compiler from the SYS and
begins its execution. - It requests a command string from the user by
typing an asterisk. No devices should be given in the command string
since the DSC (or DRM) is always assumed. The compiler creates
a MACRO assembly language program which in our example we have
called EX1.TEM . The compiler has told us that here are no unde-
fined SNOBOL addresses, and returns to the monitor. The MACRO
assembler is then called in from SYS and the MACRO source file
EX1. TEM is assembled. In the example we have called the assembled
file EXAMPIl.REL . The loader is then called from SYS and our re-
locatable file, EXAMPIl.REL and the SNOBOL operating system,
SNOOPS.REL from the SYS are loaded. The SNOBOL operating sys-
tem is a collection of subroutines which is called by the MACRO coding
generated by the SNOBOL compiler from our SNOBOL source coding.
Observe that this sample program and the entire SNOBOL operating sys-

tem load in 1K.

EXAMPLE TWO

As a second example let us consider the SNOBOL program below

which accepts a FORTRAN IV source file name from the Teletype, gets
in that file from the Disc (or Drum) and replaces the leading spaces
from linesin card format,by a tab for Teletype format. The algorithm
which we use is as follows:

If a line from the source file does not contain five characters it is
assumed to either be a blank line or already be in Teletype format. if
" a line contains at least five characters and has a tab among the f{irst

five characters then the line is considered also to be in Teletype format;

otherwise the line is considered to be in card format. The first five
characters of a line are removed and stored in FRONT . All blanks
in FRONT are deleted and a tab is appended to the right-hand end of
FRONT . These two maneuvers work 1f there is or 1s not = statement
number. If the sixth character of the line, the continuation character,
is blank, it is deleted. Otherwise the sixth charac‘ter is replaced by
the numeral 1. The line is then outputted to the Disc (or Drum) and
the next line processed. This program creates a temporary out-
put file for the lines as they are processed. This file is called
QQTAB,. TEM . After the file is successfully translated the orig:nal i:le
is deleted and QQTAB.TEM is renamed to have the name of the origin

al FORTRAN IV source file.

Explanation of Example 2

Lines 10, 30, 40, and 50 are comment lines. Lines 20, 60, and
140 are blank lines. Line 70 types an asterisk without a terminating
CR-LF on the Teletype. Line 80 accepts a line of input from the T:le.
type, strips off the trailing CR-LF and stores the resulting string in
FILNAM . Line 90 contains the SNOBOL command to open the input file
whose name is stored in FILNAM . If the file named is not on the
Disc (or Drum) the SNOBOL operating system (SNOOPS) complains and
sets the test accumulator to 'fail'. The /F(START) terminating l:ne
90 causes a transfer back to Line 70 if the file is not fcund. otherwise
control passes to Line 100.

In Line 100, a Disc (or Drum) file is opened for output with the
name QQTAB.TEM .

Line 110 through Line 200 consititute a loop which reads a line of
. source, processes it; and writes it back out on QQTAB.TEM . In

Line liO, the SNOBOL command .READ LINE reads the next line of

- PIP2
*TTY ¢ «DRM:EXAMP2
22212 $EXAMPLE 2
%5020
30239 ;REMOVE BLANKS, INSERT TABS
29240 s CLLETE BLANKS IN COLUMN 6 OR REPLACE
22252 $ NVUN-BLANKS WITH 1.
P0267
02076 START: oNTYPE "%"
22082 +ACCEPT FILNAM 3READ FILE NANME
02099 «OPIN FILNAM /F(START)
20192 .0OPOUT "QQTAB.TEM"
3112 LINLUP: .READ LINE /FCEXIT)
221290 LINE *FRONT/5% = /F(OUTLN2)
28132 FRONT = - /SCTEST2)
0140
23156 SLNK: FRONT ™ " =. /S(3LNK)
22162 FRONT = FRONT " " $APPENDG A Ta3
s0173 TEST2: LINE« " " = /S COUTLIND
2J18p LINE *CHAR/1% = "1"
32192 OUTLIN: .WRITE FRONT LINE /(LINLUP)
29229 oQuUTLN2: .WRITE LINE /(LINLyYP)
22212 EXIT: LIN ""
54229 ' LROUT FILNAM /(START)
@@235 .El
*TTY :«DRM: TEST

sum=g,.

DO 12 I=1,1092
c FIND THE SUM OF THE NUMBERS FROM 1 TO l@@.

SUM = SUM + FLOAT(I)
12 CONTINUE

TYPE 9,5UM
9 FORMAT(3X,'SUM OF THE NUMBERS FROM 1| TO 12¢ IS’

1 F1.2//)

CALL

END

*x1C

EXIT

EXAMPLE -2-

sTYPE * WITHOUT CARREIAZE RET=-LINE Fl:.

- 11 -

EXAMPLE -2- (cont'd.)

L3l

~

* X022 MLCeTXAMDD

NI NLEFINT) SNT3IL ADDIESSES

eXIT
tC

ot "ACKO

wIAMIEXAMP2 . <EL, =5 TXAMP2 ,MAC

THenF ARE'NO ER10RS
PA05KAM 3REAK IS 733225
5K CORE #Sc)

«1C

t LOABER
~/SSNOOPS EXAMP2 3T L /5/"

LOADER
CORE 4
EXIT
*C
.SAVE DRM FXA™P2
J03 SAVED
tC
LS TART
*TEST
x1C
A PIPl
*T[Y2:e«IRM:TEST
sum=72,
. DO 12 [=1,1280
C FIND THE SUM OF THE NUMBERS FROM | TO 109,
SUM=SUM+FLOAT(I)
\ CONTINYE
TYPE 9,S'IM
9 FORMAT(3X,"SUM OF THE NUM3ERS FAROM | TO 123 IS®
1 F1.277)
CALL EXIT
END

*=1C

the input from the Disc (or Drum) input file. The trailing CR-LF is de-

leted, and the resulting string stored in LINE . If no next line
exists, . the test accumulator is set to ''fail'" otherwise the test accuimu-
lator is set to ''success'. In Line 110, the transfer to Line 210 is

effected when one attempts to read the last-plus-one line.

In Line 120, the first element is the SNOBOL 'variable Line . This
indicates to the compiler that this line is a form of string matching. In
this example there is only one element between the first element LINE
and ‘the equal sign. This element *FRONT/5%* indicates that five
characters from LINE should be copied into FRONT . The equal sign
has no element to its right, so the first five characters of LINE will
be deleted. Thé effect of Line 120 is that if LINE has five or more
characters the first five characters will be removed from LINE and
this five-character string is stored in FRONT and the test accumu-
lator is set to success; if LINE has four or fewer characters, then
LINE remains the same and the test accumulator is set to ''fail.'" 1In
the case that LINE does not contain at least five characters, transfer
passes to Line 200 where the line is written out on QQTAB. TEM and
control is then passed to the top of the loop at Line 110. If LINE had
five characters control transfers to Line 130,

The effect of Line 130 is that the five-character string in FRONT
is searched for a tab. (The string between the two quotes may look
like blanks; it is in fact a tab.) Notice in Line 130 that there is no
equa..l sign. Line 130 is an example of string matching whose sole pur
pose is for program control. In this case, if FRONT contains a tab.
control is transferred to Line 190. Let us assume that FRONT did
not contain a tab. In this case the original line must have been in cird

. format. Hence, control passes to Line 150.

Line 150 is an example of the convenience of SNOBOL. The effect
of Line 150 is to remove all blanks from string FRONT (the string
between quotes is in fact a single blank). Line 150 works as follows.

If a blank is found in FRONT it is replaced by nothing, since nothing
appears to the right of the equals. That is to say, the first blank in
FRONT if there is one, is deleted. If a blank was in fact deleted the
test accumulator is set to success and transfer is passed back to the
beginning of the instruction. The transfer is effected by the /S(BLNK)
at thé end of Line 150. FRONT is then scanned again for a blank. If
one is found, it is deleted and transfer is passed again to the fronr of
Line 150. This is continued until all the blanks are removed from
FRONT . After a search for a blank which fails, the test accumulator
is set to fail and control is transferred to Line 160.

The effect of Line 160 is to append a tab to the right-hand end of
FRONT . (The string within the quotes is in fact a single tab.) Line
160 works as follows. The first element in Line 160 is a string variable.
This signals the compiler that the line is an application of string match-
ing. Since there is no second element before the equal sign, this indi-
cates that the contents of the first string will be replaced by the con-

tents of the string(s) to the right of the equal sign. In Line 170 we have

another application of string matching. Notice however the back arrow
immediately following the first element LINE . This indicates that the
string being matched must include the first character of LINE . The

effect of this line is to delete the leading character of LINE if it is a
blank and transfer control to Line 190 or to do nothing to LINE and

fall through to dLine 180 if the first character of LINE was not a blank.
Since this character being examined was originally the sixth character of
the source line, this instruction tests the continuation field. In Line 180

we replace the first character in LINE , if there is one by the numeral]

If at this point LINE were empty Line 180 would not alter LINE,
Control then passes to Line 190.

Line 190 causes the string in FRONT concatenated with the string
in LINE to be outputted along with a CR-LF to QQTAB.TEM . Con-
trol is then passed to the top of the loop at Line 110. After all lines
have been inputted, the read command at Line 110 will fail and control
will pass to Line 210. The SNOBOL command in Line 210 calls for the
input file to be renamed to a file with a null name. That is, the null
string which is generated by two adjacent quotes, represents a null name.
The effect of renaming an input file to a null name, is to delete that
file. Control is then passed to Line 220.

In Line 220, the SNOBOL command .ROUT FILNAM renames the
output file to be the name contained in FILNAM . Control is then passed

to Line 70 so that the user can insert a new file name for processing.

EXAMPLE THREE

As a final example, let us consider the SNOBOL program below which
inputs a list of words, written one word to the line, and outputs the list
as a continuous stream of characters separated by commas, and then out-
puts an alphabetized list in the same format. The first word of the in-
put list is a number which gives the number of letters in the longest word

in the list. This number will be deleted before the list is printed.

Explanation of Example 3

In Lines.30 through 50 the program types an asterisk, accepts 2
f:le name typed on the Teletype and opens that file. If the file 1s not
foand cn the Disc (Drum) the program is restarted. In Line 70 we read
the first line of the drum input file. If the file is empty, the test accumu-
lator would be set to 'fail" and the transfer at the right-hand end of Line
70 would be effected. The string in SIZE is considered by th:s proc-
gram to be a SNOBOL integer. Any SNOBOL string can be considered to

15 -

72012
P0A20
722332
22040
02052
20355
20062
20272
200832
72092950
22103
n2110
pol120@
23130
P2142
20150
2162
23172
M12d
20159
pe200
22210
0ez20e
720230
73240
02259
20262
0221792
23283
20259
20503
20310
223329

22332

22342
22352
22360

*

EXAMPLE -3-

tALPHASETIZATION USINS A RADIX SORT TECHNIQUE

3ESIN: (NTYPE "=x"
+ACCEPT FILNAM
.OPIN FILNAM /F(BESIN)

tREAD YAXIMUM SIZE OF WORD
START: .READ SIze /F(3E3IN)
SIZE > "2" /F(3EGIN)

" sREAD ALL WORDS - SEPERATE WITH COMMAS,

LIST =
READER: ,3%AD YORD /F(TYPED)
LIST = LIST WORD "," /(READER)

s TYPE LIST TO 3F ALPHABETIZED
TYPEl: ,TY?E "LIST TO 3E ALPHA3ETIZED: " LIST

DECS17: SIZE = SIZE L

SI7’E < 0"
/SCFINAL)

GETWRD: LIST *WORDx " ," = /F(REMAKE)
WORD *HEAD/SIZEx* *PIT/ 1%
/F(STO3IN)

@PIT = EPIT WORD "," /(GETWRD)

STO3IN: SIN = 3IN WORD "," /(GETWRD)

nREMAKE: 3IN =LIST* =
ALPHA = "ABCDEF HIJKLMNOPQRSTUVWXYZ"
NXTLET: ALPHA =*PIT/1% = /F(DECS1Z)
LIST LIST @PIT
&2IT /(NXTLET)

"

FINAL: .TYPE "ALPHA3ETZED LIST: ™ LIST
/(BERIN)
«END

- 16 -

EXAMPLE -3- (cont'd.)
1C -

TN230L

¢ LIXAMPY, ¥ACHTYAVIZ /A
¥3 NDEFINED SNN3IL 1JDRESSTS

“XIT
+C

.1 “AZAD

x)AMTENA P ATL, «Da N IXAMP3 , MAC

m

THEAT Ar% XD E34053

()

P105RAM 3AEAK IS 72323413
5K CORE IJSED

*x1C

. LOADER
*/SSNOCPS,EXAMP3 ,AFL/D/"

LOADER
CN3E 4

EXIT
tC

LSAYI DAY TYAN23
JO0s SAV=®)
tC

.1 PI?I
*)IMeTESTTTY:

T=ZSTED

. TRI=D
ALNYAS
SIFT
XTAS
ACC=?T
37CAUS:
HOZPITAL
17

%

EXAMPLE -3- (cont'd.)

3 DRAM FXAMPY 4
JO3 SETUP’
e

ST

*TEST .

gég{rgf BT ALPHASETI7ZED:. TESTED,TRIED.ALWAYS,GIFT,XMAS,ACCEPT,SECAUSE,F
v

ALPHA3ZTZED LIST: ﬂCCEPT,ALWAYS,SECAUSE,GIFT,HOSPITAL,TESTED,TﬁIED,!ﬁAI

*1C

- 18 -

be ar integer by reading the initial numerals as a decimal integer. The
e~d of the string or the first non-numerical character ends the number.

Tke only exception to this rule is that a leading minus sign makes the

number which follows negative. For example, '"-", "0', ', 000"
0.3 0" "4+3" "..5" are all considered to be zero as a SNOBOL inte-
ger Also, '"-5'", "_.5 K" M_5A" are all considergd to be -5. In Line
80 we test to see if SIZE 1is indeed a positive integer. Notice the use
of the literal zero. This statement could also have been written

“1'& = SIZE / F(BEGIN)
The operation of Line 80 is performed as follows. A routine in the

SNOBOL operating system (SNOOPS) evaluates SIZE as a SNOBOL
.nteger. Simil#rly it evaluates a string consisting of a zero alone as a
SNOBOL integer and sets the test accumulator to ''success'', --if the value
of SIZE is currently greater than zero.

The transfer at the right hand side of Line 80 is effected if the first
characters in SIZE are not considered to be a positive integer. In
Lines 110 through 130 we read all the words and make them into a single
string separated by commas. In Line 160 we type the list to be alpha-
betized on the Teletype. In Line 180 we reduce the size of SIZE by

I and Line 190 we test to see if SIZE 1is negative. In Line 200 we
trinsfer to the final output coding if SIZE is negative.

The loop from Line 220 through Line 260 is used to sort all the
words on LIST into 27 ''bins.'" There is one bin for each letter of
the alphabet and the 27th bin for words which are less than or equal to
the number currently stored in SIZE . The initial use of this loop
sorts all words whose length is less than the maximum length into the
wn called BIN, and sorts the longest words into each of the bins
A, B, C,...,2 according as its last letter is A, B, C,...,Z respec-

t.vely. On the second application of this loop, the words of maximum

length are sorted on the next-to-the-last letter, the words of one less
ttin m»ximum length are sorted on their firal letter and words shor.-
ter than that are sorted into BIN,

In Line 220 the first word in LIST is copied into WORD and
the 1nit'al word and comma are deleted from LIST. However, if
LST wn2s empty, transfer is made to Line 280. In Line 230, we see
two different types of application of fixed length fillers. The first fil-
ler.

HEAD/SIZE

1= interpreted as follows. SIZE is interpreted as a SNOBOL integer
»z.d that namber of initial letters of WORD is copied into HEAD .
The second filler is a fixed length filler where the size is given by ar
integer so that the next character after the last character read into
- HEAD 1s stored in PIT . If this is successful the test accumulator is
set to ‘'success.' However, if WORD is too short, i.e., does not
contain SIZE+1l letters, the test accumulator is set to fail.' Line
240 effects a transfer to Line 260 in the case that WORD was too
short. In Line 250 the list whose name is in PIT is lengthened by
1dding the contents of WORD and a comma. The commercial -at
s.gr: (@) 1n front of PIT indicates that it is not the contents of PIT
but the contents of the string named in PIT that is being referred to

‘this feature 1s known as indirect naming. If the string in PIT

hipperied itself to be a variable name preceeded by a commercial at-

s.gn the 1ndirect naming would go down one level deeper. Indirect
anam:ng can be used to an arbitrary level of indirectness. Indirect-
ness cin also be used with addresses. That 1s, a transfer can be

m-:de to a label named 1n a SNOBOL string. Line 260 1s entered 1in
-1the case that WORD is shorter in length than the number in SIZE .

In Lines 280 through 320, LIST 1is regenerated by putting the shorter

words followed by all of the words in List A, List B,..., List Z- .

L:re 280 represents an interesting use of a filler. The action here

is 'o put the contents of BIN into LIST and to empty BIN.

Not :e that fillers are used to match the smallest possible string ex-
cepr in the case that a filler appears at the beginning or end of the
substring being matched. A filler at the beginning or end of the sub-
string. if it were to .be as short as possible would always be empty.
Therefore, 1t is convenient to have an initial filler to include all of the
bheg.nn:ng of the main list and a filler at the end of the substring to in-
clude all of tke characters at the end of the main list. Hence, a sub-
str.ng consisting only of a filler matches the entire main string. In
the case of Line 280, LIST matches all of BIN and the equal sign
:ndicates that the contents of BIN is to be deleted. Lines 300 through
320 are the loop which adds the 26 lists to LIST . After 26 passes
through the loop, control is transferred to Line 180, where SIZE is
decremented, etc. When SIZE has been decremented to -1, control
trainsfers to Line 340 where the alphabetized list is printed out. After
this typeout.control has passed to the beginning of the program for the
user to type in a new file name.

We now describe the syntax of the Applied Logic implemen-
tation of SNOBOL. In most respects we have followed the syntax of
the original implementations of SNOBOL. If we have diverted, it is
because we have the ASCII character set available and because the
ASSEMBLE/COMPILE feature (i.e., the in-]iné use of the MACRO assembly
language code) makes it desirable to have the syntax for comments and
labels be compatible with MACRO assembly language.

Liter sl Strings

I 1s a literal string representing the null (or empty) string.

2 "' is a literal string representing a string consisting of a quote
ilore.

3. “L]Lz"'Ln" is a literal string, where L]LZ"'Ln are any ASCII

characters other than quotes (n>1).

NOTE: Strings are stored internally as a continuous string ‘
of ASCII characters terminated by a null (a null is a 7-bit éﬁ'
field of all binary zeros).

Names

Any word using only letters of the alphabet, numerals, percent
sign or period--that does not start with a numeral or a period is a
name. Names are used as "string names" to name string variables and
as address labels. The compiler allows names of any non-zero length.
However, only the first six letters are used by the compiler. For ex--
ample, ABCDEF1 and ABCDEF2 are both legal names which are considered
to be the same name by the compiler.

Labels

A name'which is initially placed in a line and immediately .
followed by a colon is a label. Care should be taken not to allow
label and string names to coincide.

String Element

1. A string name is a string element.

2. A literal string is a string element.

Substring Element , 0
1. A string element is a substring element.

2. If S and T are string elements but not string literals and if n is a
positive decimal numeral, then

a) *S*

b) *S/n*

c) *S/T* and .
d) &S&

are substring elements.

3. If S], 52" S, (n>2) are string elements, 51152!...!Sn is a
substring element. (For example, "VAR"! "12"!VAR3:"345" is a
substring element.) The ! is read as OR.

NOTE:- Substring elements are concatenated together to make a
pattern which is to match a designated character string.

Comments

L
A semicolon, not captured within part of a literal, together with .
all characters to the right of such a semicolon, are considered to be
a comment.

- 22 -

1. Format: F S, S, Sy (n>1)

Action: Sets test accumulator to "success" if Si1 S2 :
matches a consecutive substring of F; otherwise
sets test accumulator to “fail."

n

Action (n=0): Replace E by R; R, R
test accumulator.

2. Format: E S; S, S_ =R, R, Ry (m>0, n>0)

m* .No effect on

Action (m=0): Delete first substring of E matched by
' S, S; .-... Sn and set test accumulator
to "success;" if no match, leave E in
tact and set test accumulator to “fail."

Action (n>0, m>0): Replace first substring of E matched
by S; S, Sp with the string
R, R, Rp and set the test
accumulator to "success;" if no
match, leave E in tact and set test
accumulator to "fail."

3. Format: ES; S, S, =A (n>0)

Action: Same as 2. above with the character string
which represents the value of A used in lieu
of R, R, R

.
4. Format: E Sy S, S;]S.4q .een Sy =Ry Ry ... R
(0<i<n, m>0)

Action: Same as 2. above except that only the portion
of the substring matched by S, S, S, is
replaced or deleted. 1

5. Format: E Sy Sz S:3Siy, Sy = A (0<icn)

Action: Analogous to 4. above.

6. Format: E Sy S, ... S Siq oo Sy s5ur oo sy

R, R2 cee. Rm (0<i<j<n, m>0)

Action: Analogous to 4. above except that the substring
of E corresponding to Si+] S. is replaced
or deleted. J

- 23 -

Format: E S; S, Si [Siﬂ Sj]SjH coee S, = A Q
(0<i<j<n)

Action: Analogous to 6. above.
Format: E S, Sp sj[:sj+] eee. S =R, R, R
(0<j<n, m>0)

Action: Analogous to 4. above except that the substring

of E corresponding to S, :e.. S is replaced
or deleted. J+1 n
Format: E S, S, Sj[SjH cees Sy = A

(0<j<n, m>0)

Action: Analogous to 8. above.

- 24 -

In ord r to understand the operation of the string command, con-
sider the command

NAME SUBI SUBZ2....SUBn = REPl REP2... REPm
This statement is executed in the following manner:
SUB1, SUB2...SUBn are to indicate a contiguous substring of NAME
which is to be replaced by the string obtained by concatenating the
strings represented by REPl, REP2.. . REPm . If this substring match
is successful, the test accumulator (T=17) is set to “success" (0); if
the match fails, the test accumulatc is set to ''failure' (-!).

The matching algorithm proceeds as follows:

The substring elements of the form *S*, *§/j*, *§/T¥ , and
&S& represent fillers whose lengths are respectively 'the shortest
possible, "' '"exactly j(j=1) characters,'" ‘''exactly t characters--where
T has value t as a SNOBOL integer--,'" and ''the biggest possible. "
The matching algorithm then attempts to find the left-most match for
SUB1 and NAME and then proceeds to find immediately after that a
match for SUBZ2 and so on through SUBm . If for SUBi+l , a match
is not possible, an attempt is made to extend thé right-hand end point of
SUBi one character to the right--in the case of &5%, contract %“he
right end point one character to the left. If this 1s not possiblc
then SUBi-1 is considered, etc. If this fails back throuch SURI
the left-hand end point of SUB1 is incremented 1 to the right

and the process is restarted.

If SUBI1 SUBZ2...5UBn does not appear in the commnand string,
the whole string NAME is considered to be matched. if REP1 REP2
...REPm is missing the matching substring of NAME i3 to be ce-
leted. If = REPI REPZ...RI::Pm is missiny (then n >0}, this opera-

tion is used strictly for setting the fail-success accumulator. For ex-
ample
| NAME = ",A,B,C,"

NAME '.'," *VAR* ", " =

results in NAME being B,C, and VAR being A and the test
accumulator is set to "success. '

NAME = ",A,B,C,"

NAME 'DELIM/1%* *VAR®* DELIM
sets DELIM to , and sets VAR to A . Again, the test accumu-
lator is set to ''success.'

It has been found to be convenient to make replacements within

a proper substring of the substring being matched. SNOBOL delimits
such a substring by including one or both of [or] between the SUBi's.
A missing [is tacitly assumed to appear before SUBIL ; similarly a
missing 7] is assumed to follow SUBn . For example

NAME = ",A,B,C,"

NAME #DELIM/l* *VAR#*] DELIM =
results in NAME being set to ,B,C, and VAR being A and

DELIM bpeing ., . Note that the comma preceeding B is not

replaced (deleted) since replacement is restricted to the bracketed

substrings.

SUBi can, .n addition, be a disjunction of string names or liter-
als. For example , replace the right-most occurrence of period or

comma by a semi-cclon:

NAME = ", A,B,C,"

NAME &VAR& [' "in, "= o
résults in NAME being ,A,B,C, in VAR belvng A, B,C and in
the test accumulater heing set to 'success. '

An additionz! feature of SNOBOL is the anchor mode for matching
the substring. In th.s mode the matching substring must include the first
character of the string. This mode is indicated by an ¥— immediately
follewing the first string name. Spaces and tabs are used in SNOBOL as

.syntac',ic delimiters for readability and in a few cases to remove ambig-
uities caused by nzmes running together. The delimiters however are

not needed in gener2l except in cases of such ambiguities.

- 26 -

“rithmetic Relations

Let A and B be s'trmg elements. Then

== B . (is A equal to B ?)
A # B (is A wunequal to B ?)
A< =B (is A less than or equal to Hh
A< B {is A less than B ?) ‘
A > B {is A greater than B 7)
A>- B {.> A greater than or iqual '+ B ™

are arithmetic relations. Note that A and B «(iwn not theirselves be
arithmetic terms. An arithmetic relation sets the :¢st ac: ir-ulator to

""success'' or ''failure'" according as the relation hoi¢s or dues nc: hold

Transfer Command

Let Ll and LZ be SNOBOL names which are used as labels

or are string names preceeded by a commercial-at sign or a dollar

sign. Then
/(Ll) (transfer to Ll)
/S(Ll) {transfer to Ll if test accamulator is '"success'')
/F(Ll) {rransfer to Ll if test accunmlator .= "fail')

/F(LZ)S(LI} ‘transfer to Ll if test ac. .a'mulator 1s "'success' | L.

/S(LI)F(LZ) transfer to L2 if test accumaulator is 'failure')

are all transfer commands. if desired, a trans:er command may be .-

cated to the right of a string command, #n arithimetic relation, or a

SNOBOL command.

SNOBOL Command:

Let El....,E be string elements. Let S be a string name.
n

JLetr L be a label! address or a string namec¢ preceeded by a (ommercial

at sign or a dollar sign. The legal SNOBOL ccmmands have the followiny

formats. Usc »i SNOBOL commands will be described below.

. TYPE E. E_...E (n21)
1 2 n

.NTYPE E FE ... E (nZ1)
1 2 n

CACCGEPT S

LCiNN S

LU T S

CNEOUT S .
>
YRITE . E_...E oy |
CWIGTE g,E, R {t)
LW RITE E_E .. E el '
1 2 n
JREAD S

- : "#IN

L LOUT

. RIN S
LHOUT S
. SNIN

. 7 SNIN

.SNOUT

. NSNOUT

. PUSH.Y 1.
. POPJ

. POP

.MACRO

. SNOBOL

EXIT

ot D

. TYPE E E_...E {(n>1)
1 2 n -

The strings referenced by the string elements which appear to the
right of a .TYPE - statement are concatenated together and outputted on
the Teletype and a terminating CR-LF is typed. For example

.TYPE "A" "B
ol

.TYPE "D"
o(ntputs
AB
C
D

on the Teletype. This command does not affect the test accumulator.

.NTYPE E EZ...E

1 (n>1)

n

The ..NTYPE statement is similar to the ,TYPE statement
except that the terminating CR-LF is not affixed. For example

.NTYPE "A" "B

c"
. TYPE "D"

outputs

Al

.CD

on the Teletype. This command does not affect the test accumulator.

LACCEPT S

This statement readies the Teletype for input, deletes S, reads
in the first line of input into S . In both the ,ACCEPT statement and
the READ statement described below the input is terminated by a

haradcter which represents a vertical movement. These charvacters arce

the line-frecd, form-feed, vertical tab, and the line-feed generated by a
carriage return (recallrthat the return character generates a CR and a
LF). In the case that the input line is terminated by a CR-LF or a
LF these terminating characters are deleted from the input line. The
vertical tab and the form feed hcwever are stored with the line. It has
been found that these conventions for input are very convenient in

SNOBOL. This command does not affect the test accumulator.

.OPIN S

' This statement opens an input file on the Disc (Drum) whose name
is contained in S . For example “

. OPIN "ABC.EXT"

looks on the user's directory for the file ABC.EXT . The operating
system, SNOOPS , complains if the Afvile is noft found or not accessible
The test accumulator is set to ''success' if the file is found and is
accessible. The. test accumulator is set to "fail" in the contrary case.

At most, one input file can be opened at a time from the Disc (Drum).

.OPOUT S

This statement opens an output file with the name contained in
S . At most, one output file on the Disc (Drum) can be opened at any
time. This command sets the test accumulator to "success' if the file

was successfully opened and to failure in the contrary case.

. APOUT S

Thnis statement is analagous to the ,OPOUT statement except that
the file named in S should be an existing file and output is to be ap-
pended on to the end of that file. SNOOPS complains if the file named

in S does not exist.

.WRITE E E_...E (n21)
1 2 n

The .WRITE statement is analagous to the .TYPE staterae:ut
except that output is to the Disc (Drum) file opened by the last ,OPOUT
or .APOUT statement. In both the .TYPE and (WRITE statements
a CR-LF is affixed to the end of the line if the characters typed do nut
terminate in a vertical tab or a form-feed. 'i‘he test accumulator :s not

affected.

.NWRITE E_ E_...E (n21)
1 2 n

This statement is identical to the ,WRITE statement except that

in no case is a CR-LF affixed.

.READ S

This statement is analagous to the ,ACCEPT statement except
that input is the next line of the Disc (Drum) file opened by the previous
.OPIN statement. If no Disc (Drum) input file is open SNOOPS com-
plains. The test accumulator is set to ''success' if a line was success-

fully read. In the contrary case, the test accumulator is set to '"fail."

LCLIN

This statement closes the input file.
.CLOUT -

This statement closes output file. It is not necessary to execute
the .CLIN or .CLOUT statements unless one is going to open a new

input, respectively output, file on the Disc (Drum).

.RIN S
This statement closes the input file currently open and renames

it to the name in S. If S contains the null string the input file is

deleted rather than renamed.

.ROUT S

This statement is alalagous to the ,RIN statement except that it

renames or deletes the output file opened on the Disc (Drum).

« SNIN

The normal mode of reading input from the Disc (Drum) strips
sequence numbers from the lines if they appear. This statement acts
as a switch which initiates the feature that sequence numbers are read
in as part of the line. The format of the sequence number is as fol-
lows. The first five characters are numerals; the sixth character is
a tab unless the content of the line is to be empty, in which case the
sixth character is a line-feed. Hence the .SNIN f{feature will cause
.READ to read in six characters plus the remaining characters of a
line (or read in exactly five numerals, since the terminating line-feed
is stripped, in the case that the line represented an empty line with a
sequence number). The remaining commands do not affect the test ac-

cumulator.

This statement turns off the feature initiated by the .SNIN.

.SNOUT
The normal mode for output on Disc (Drum) does not generate
sequence numbers. This statement initiates the feature that considers
the first six characters of each output line to be a sequence number.
The format for sequence numbers must be adhered to if the output file '
is- to be used with other programs on the Applied Logic system since
the .WRITE statement affixes a CR-LF . It is always safe in this
case to use a tab as the sixth character. The user who uses the
.NWRITE statement should take care not to get a seven-character line

consisting of five numerals, a tab, and a line-feed.

.NSNOUT
' This statement turns off the feature initiated by the .SNOUT

statement.

. PUSHJ L

This statement causes a transfer to L or in the case of in-
indirect addressing to the label named in L . The address of the
statement immediately following a .PUSHJ staterment ‘is saved on a

push-down list.

. POPJ ,
This statement pops the address pushed on by the last ,PUSHJ

statement and transfers to the address.

opop

This statement is used to pop off the last address pushed on the
push-down list by the last ,PUSHJ statement. However, no transfer

is made.

.MACRO
This statement is a signal to the SNOBOL compiler to consider

subsequent lines of coding to be MACRO assembly code.

.SNOBOL

This statement is a countermand to the SNOBOL compiler revok-
ing a previous .MACRO statement. Lines subsequent to this statement
are considered by the SNOBOL compiler to be SNOBOL source. If the
first character in a line is an up-arrow (1), the line is considered to
be MACRO code if ,SNOBOL is currently in effect, or to be SNOBOL
code if MACRO is in effect.

.EXIT

This generates an exit call to the system, closes all open files,
and results in the user being put in monitor command mode and the
"Teletype responding with
EXIT
+C

This statement signals the SNOBOL compiler that there is

no more code to follow. If this statement is omitted, the

compiler assumes an END statement.

a .EXIT statement.

- 34 -

The .END statement generates

SUMMARY OF SNOBOL FEATURES

LITERAL STRINGS

e null string

quote

aaa---a"

STRING ELEMENTS

123" literal strings

STR2 string names

SUBSTRING ELEMENTS

" STR2 string names

"123" 1literal strings

"123"!STR2 disjunctions of string elements

STR2 make STR2 be minimum length

STR2/n make STR2 be length n

STR2/TEE make STR2 (have length = integer value of TEE)

&STR2& make STR2 be maximum length

STRING COMMANDS

LBL: NAME STRNG = REP /S(LBL1)F(LBL2); REMARKS full statement-
replacement.

NAME STRNG = pattern search and delection.
NAME<« STRNG pattern search in Anchor mode
NAME SUB1]suB2 = REP1

NAME SUB][SUB@]SUBB REP2 partial substring replacements

NAME suall}uaz SUB3 = REP2 REP3

- 35 -

SUMMARY - (cont'd.)

NORMALIZED SNOBOL INTEGERS

" lero
“ABC" ler>
"7C" 7
“-7C" -7
"pP34T7" 34
“A73" lero
"383" 333

INTEGERS OPERATIONS

+ - %

NBR + "4"
NBR * SUM
wgn - wam

TRANSFER COMMANDS

/ (LABEL) unconditional
/S(LBL) if search or relation is successful
/F(LBL) if search or relation fails.

/S(LBL1)F(LBL2)
2-way branch
/F(LBL2)S(LBL1)

ARITHMETIC RELATIONS

STR1T == STRZ
STR1 # "73"

A <= B
A < STRI
STR1 > B

STR1 >= STR2

- 36 -

(@)

SPECIAL

, precedes a remark

SUMMARY - (cont'd.)

* precedes a line of Macro code in SNOBOL mode

SPECIAL COMMANDS

.TYPE
NTYPE
.ACCEPT
.OPIN
.0POUT

.APOUT
.WRITE

.READ
.CLIN
.CLOUT
RIN
.ROUT
.SNIN
NSNIN
. SNOUT
. NSNOUT
.PUSHJ
POPJ
.POP
.MACRO
SNOBOL
CEXIT

END

E'I Ez.-'En

SUBR

Type
Type
Read

Open

a string
a string
from TTY
the file

Create a file
output file.

Open the end of the file named in S as the output

file.

of characters plus <RETURN>
of characters.

into S until <RETURN>

named in S as the input file

named in S and open it as the

Write a string of characters plus <RETURN>
in the output file. :

Read from the input file one record into S.

Close the
Close the
Close the

Close the

input file.

output file.

input file and rename it as S.

Set i

Cancel the sequence no.

nput

output file and rename it as S.

mode to accept sequence numbers.

input mode.

Set output mode to write sequence numbers.

Cancel the sequence number output mode.

Call subroutine named SUBR

Return from subroutine.

Delete return address from last subroutine call.

Set mode to accept MACRO code.

Return mode from MACRO to SNOBOL mode.

Exit from running program into ALC monitor
command mode.

lenotes end of SNOBOL coding for a program.

- 37 -

