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1. Introduction

This is the final report for the second contract phase for development of the Cronus Project.

Cronus is the name given to the distributed operating system (DOS) and system architecture for I
distributed aplrication development environment being designed and implemented by BBN
Laboratories for the Air Force Rome Air Development Center (RADC). The project was begun in
1981. The Cronus distributed operating system is intended to promote resource sharing among
interconnected computer systems and manage the collection of resources which are shared. Its major
purpose is to provide a coherent and integrated system based on clusters of interconnected
heterogeneous computers to support the development and use of distributed applications. Distributed
applications range from simple programs that merely require convenient reference to remote data, to
collections of complex subsystems tailored to take advantage of a distributed architecture. One of
the main contributions of Cronus is a unifying architecture and model for developing these
distributed applications, as well as support for a number of system provided functions which are
common to many applications.

This work is a continuation of research and development performed under the previous DOS
Design/Implementation effort funded by RADC. For a description of previous Cronus development,
see CRONUS, A Distributed Operating System: Phase 1 Final Report*. During that initial phase,
the functional description, system design and initial system implementation were completed.

To satisfy the need for ongoing test and evaluation of the system, particularly its suitability to
application development in addition to the system development, we have also been performing an
adjunct C2 Intcrnet Experiment project. Under the C2 Internet Experiment effort, we have been ,
building a prototype distributed command and control application which emulates many of the
facilities of real C2 systems. The ongoing evaluation of the Cronus mechanisms and tools
contributed by this project has become an integral part of the development proces. For a description
of the C2 Internet project, see C 2 Internet Expriment: Final Report=*.

2. Project Overview

This report covers Cronus development for the period from October 1984 to January 1986.
The objective of this phase was to extend the Cronus Distributed Operating System implementation,
completing the basic functionality for supporting distributed system demonstration software; to
extend the testbed environment with additional hosts and tools to support the development and
evaluation of Air Force applications; and to begin to establish a second testbed cluster on-site at

RADC. The overall function of the DOS is to integrate the various data processing subsystems into
a coherent, responsive and reliable system which supports development of distributed command and
contrc! appiications. The development work for this contract is broken down into the following
areas:

*CRONUS, A Distributed Operating System: Phase 1 Final Report, R. Schantz, et al. BBN Report No.
5885. BBN Laboratories. Incorporated, January 1985.

tC2 Internet Experiment: Final Report, J. Berets, et al. BBN Laboratories, Incorporated, March 1985
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Area SOW Item

VAX-UNIX Integration 4.1.1.2.1
SUN Workstation Integration and Use 4.1.1.2.2

Resource Management 4.1.2

Survivability 4.1.3

Reconfiguration Support 4.1.3.2

Tool Integration 4.1.4.1

Application Development Support 4.1.4.2

RADC Cluster Support 4.1.5

Cluster Maintenance 4.1.6

In addition to the development work, a description of how new hosts and their resources are

integrated into a Cronus cluster was written and is included in this report.

Development of this systermL has followed a clearly defined, experimental approach. When

extending the capabilities of the system we first identify suitable mechanisms for supporting the

new facilities. Then, after some additional .xnsideration, an initial implementation is produced for

use by system components, such as the file or catalog manager. In cases where a mechanism might

be supported in more than one place, we make our choice to satisfy a compromise bet.-een

0 availability for other clients and facilities, implementation speed, and expected performance. This

initial implementation is used to evaluate the suitability of the mechanisms to the problem it was

intended to solve, and the mechanism will then be revis--l in response to criticism. When

appropriate, the mechanisms will be introduced into manager and appiication development tools, and

appropriate changes will be made. As the mechanisms are introduced for use at the application

le Pl. mo-- ;rtention is ,a ; ,4 to interf- es avrd the model hv which the user will understand the 0

system's behavior, these factors are also considered in the early stages, but are not as important as

having an initial version available for use and evaluation within the system.

3. Integration of New System Hardware

Under the previous Cronus development effort we established an initial demonstration

environment consisting of utility hosts and Generic Computing Elements (GCEs). Our

demonstration environment included two types of utility hosts for development support and

• application program execution: BBNCC C70 running UNIX and DEC VAX 11/750 running VMS.

Most of our development activities were centered on C70 Unix because of the ease of developing

new software afforded by the UNIX environment, and its rich set of development tools. The GCEs

are small dedicated-function computers of a single architecture but varying configurations. In our

demonstration environment we had several Motorola 68000 Multibus microprocessor systems

running the CMOS operating system. They provided specific Cronus services, such as file

* management and terminal access points.

4 Under the present effort, we have expanded the development environment in three ways.

First, we have added support for the SUN Workstation. The SUN Workstation represents a new
class of Cronus host, oriented toward providing access dedicated to a single user. This type of

system was included i. the original hardware architecture design for Cronus but was not supported

46 - - 2 .,. - . - . ..
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previously. Second, we have expanded the set of utility hosts to include VAX UNIX systems. The

VAX-UNIX represents an evolution of the existing Cronus timesharing and peripheral support to a

new, more advanced hardware base. And third, we have added limited support for access to

resources on other local area networks. Currently this allows clients on our Cronus c]tister to gain

remote access to devices, such as line printers, located on other networks but accessible through the

DARPA Internet. This represents the beginning of shared access among resources on remote clusters

connected by networks with varying performance capabilities integrated within the Cronus system

model.

3.1. VAX-UNIX

The VAX-UNIX system serves in the role of an application development host. Existing editors,

compilers, libraries and other Unix tools form the foundation for development support;

enhancements to these tools through trap-libraries, allow these tools to manipulate Cronus files and

directories. Cronus tools running on these hosts extend the support to simplify the development of

managers and applications. Further, because Unix is a timesharing system, the development
resources provided by the host may be shared among many users, including many who are not

* involved in Cronus development. Finally. as a service host, the Unix systems provide access to line

printers and file storage space, which can be accessed remotely through Cronus from any Cronus

host in the clucter.

The VAX-UNIX systems support the Cronus operation switch, all system managers, including

the le and catalog manager, several C2 Internet application managers, all the application
development tools, and all Cronus user commands. To speed development of Unix based utilities for

accessing Cronus files, we have modified the standard C conmpiler libraries so that file I/O routines
will invoke the appropriate Cronus operations whenever a Cronus file name is given. Simply

recompiling many UNIX file utilities, such as cp, cat, grep, and diff, and the text editors emacs and

vi, now produces versions that access both Unix and Cronus files. In some cases, minor modifications

were required to the source programs.

. We have implemented Cronus for VAX-UNIX to run on both the VAX 11/750 and 11/785.

* The hardware base for these implementations are currently owned and operated by the BBN

Computer Systems Division to supply timesharing support for the company. The larger of the
machines, the 11/785, typically supports 40-50 users. Cronus applications run concurrently with

non-Cronus timesharing workload on these hosts.

The VAX-UNIX system serves to replace the C70 as a hardware base for future DOS and

related application development. The VAX family of computers is widely accepted, with a large

installed hardware base, which increases the likelihood of finding existing machines to integrate into

Cronus. The VAX supports hardware architecture advances beyond the C70, including a large
virtual address space managed under the Berkeley 4.2BSD release of UNIX. In addition to virtual

memory support, the 4.2BSD provides many new features and languages, improved interprocess
communication and I/O facilities, and better overall performance.

-3-
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3.2. SUN Workstation Integration and Use

The SUN Workstation provides most of the facilities of an application development host. In
addition, workstations provide powerful computation and high performance graphic capabilities
dedicated to a single-user. These capabilities make feasible man-machine interfaces of significantly
higher quality than those possible on time-shared mainframe computers communicating with
terminals over slow, bit-serial links. To experiment with these additional capabilities, particularly
the use of graphics, we have implemented a prototype monitoring aid control interface on the SUN
Workstation. These capabilities are also exploited in application interfaces for the related
C 2 Internet experiment project. . ,

The SUN Workstation is representative of the trend toward more powerful, single-user
graphics workstations; there are others, including those produced by Digital, MassComp and Apollo,
and those thaz can be expected from IBM and others in the future. The SUN Workstation is a
Motorola 68000 Multibus system based on the SUN microprocessor board developed at Stanford "

Unix ersity. It includes a high-resolution, bitmap, raster graphics display, with keyboard and mouse
input deviccs, and a window based user interface. The system supports a version of Berkely 4.2BSD
Unix, essentiaflv the same as the V.A-UNIX described above, with virtual memory.

We have installed two Sun Model 120 Workstations, each with a 130 megabyte Winchester
disk drive and 2 megabytes of primary memory. These systems offer enough power for use as
workstations or for use as utility hosts for program development by 2-3 users performing typical
development tasks. The workstations support the Cronus operation switch, all managers, including -.'r
the file and catalog manager, all the application development tools and all Cronus user commands.
The sources for these Cronus programs are essentially identical to the sources used for the VAX-
UNIX system. N

The workstation also supports the console interface for the Monitoring and Control System

(MCS), a distributed application that monitors system status and behavior. The monitoring
components include managers, running on other hosts, that monitor host availability, managers that
log events and errors, and a manager that maintains configuration information used by the Cronus
kernels. The manager components monitor, collect and maintain copies of the status and event data;
the console interface is used by an operator to examine the data and initiate changes to component
status and resource management parameters.

Two kinds of data are displayed on the workstation, event reports and status information. The
event reports originate from managers or client programs when they submit an event report to the S
event collector, as when a Cronus host manager ;nnu..ces that a manager has crashed and is being %
automatically restarted. These reports are recorded by the collector and a copy is forwarded to the
program managing the event report window on the workstation. When the report is displayed, it is ",'
expected that the operator will use the MCS console to correct any problem indicated by the report.
The event display program requires no special terminal capabilites and therefore, can be run on a

conventional terminal.

Status data is currently both collected and displayed by the console interface program. The
collector portion gathers the status information by polling the managers for information about the
objects they manage. The status collector can be set to monitor particular parameters and alert the
operator through the event reporting facilities if a specified threshold is violated. The display S

.,
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portion permits the composition of interactive graphical diagrams, or views. These diagrams
resemble control panels that can be connected to data sources and sinks and used to graphically
control and display the state information. Using this system we have produced views that
summarize cluster host status, the status of each of the services, and the status of the managers for
each service.

3.3. Remote Resource Access

The processing nodes of the initial Cronus cluster were all connected via a single Ethernet
Local Area Network (LAN). While the architecture of Cronus requires only a minimal set of
interhost communication facilities, described as the virtual local network, the implementation of
Cronus exploits special capabilities of true local area networks, such as broadcasting, and e:iploits the
high bandwidth of these networks. To begin eztending the range of resource access available to
clients in a Cronus cluster, we have installed Cronus on a few systems accessible through a gateway
connecting the Cronus Ethernet to the DARPA Internet, which in turn provides the connection
either to the target system or its local area network.

Cronus was initially designed and implemented for an extended cluster internet environment,
even though the initial components were, in fact, on a single local area network. To facilitate the
later iatroduction of true internet capabilities, the Cronus message passing design is based on the
standard Internet datagram protocol, IP. Thus, from the outset, operation invocations could traverse
many networks, relying only on the IP message base. For primal objects, the UID for each object

identifies the host where the object resides. Hence locating primal objects requires no additional
work. The location of replicated and migratable objects must be discovered before operations can be
invoked on such objects. We have used the broadcast services provided by the local area network as
a basis for dynamically locating resources (objects) anywhere in our cluster. To extend this to

multiple local area networks, we have added a broadcast repeater, which propagates broadcast
requests between multiple, local area networks. Once the object has been located, its location is
stored in a location cache so that the locate procedure need not be repeated unless 'he object is moved 0
or that instance becomes inaccessible.

Through the use of these mechanisms, we now support remote file managers, although current
bandwidth limitations and other problems with the Internet gateways have limited our experience
in these areas. This approach has proven quite effective for providing remote access to line printers
managed by various machines on different networks within the BBN complex. These mechanisms,
with improved gateway support, will form the initial foundation for resource sharing between the
BBN and RADC facilities, when the RADC facility becomes operational. As they exist now, these
mechanisms do not restrict access to resources on a cluster beyond the normal Cronus object level
access control mechanisms; for true inter-cluster operation, which crosses administrative boundaries,
additional support for limiting foreign access to resources on a particular cluster will be necessary.

0 -5- '-Us
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4. Resource Management

As a distributed system architecture, Cronus faces a number of resource management issues not
present in non-distributed architectures. In this phase of development we have focused on the
binding of a request from a client to a particular rescrce manager for those resources which are
available redundantly. Redundancy comes in two forms: replicated objects and replicated managers.
In both cases the selection of an object manager to provide the given service is an important resource
management decision.

The general approach to resource management in Cronus is to individually control the
management of the classes of objects which make up the system, rather than restricting all
management of all resources to follow one particular, system enforced policy. This approach also
allows Cronus resource management concepts to flow into the abstract model of resources managed
by applications. In addition to system or service oriented resource management, application and
system interface code can use the same mechanisms to implement policies that incorporate larger
purviews of the resources, such as a policy which tries to optimize the use of collections of different
objects types used in a particular context.

We have implemented mechanisms that allow resource selections to be made at two levels: by
the client submitting the request and by the collection of managers responsible for a each type. The
client may collect status information about the available managers using any available means
(including the report status request) and then direct the invocation of an operation to a particular
host or manager. The client specifies in the request that the operation must be performed at the
specified host; no resource management decisions will be made by the manager itself in this case. If
the oneration cannot be performed by the manager at the selected host it will refuse the request and

the client must choose a diffetent manager to continue. Normally, requests do not identify a 0

particular site for the invocation and the managers for the type of resource collectively make %

resource management decisions. The managers dynamically collect status information from their
peers using the report status operation, and any other appropriate mechanism, and then forward the :,
client request -o the manager best suited to perform the operation. .'Iereafter, the manager to
which the request was forwarded will process the request, as if it was the original recipient, and 0
then reply directly to the client that originally issued the request.

To experiment with resource management and to test the mechanisms, we have modified the
primal file manager to implement a resource management policy for creating new files. The

mechanisms work as follows. An initial request to create a new file is routed to any available file
manager based on the first response to a locate operation or a manager already in the kernel's object ]
location cache. When a primal file manager at the selected host receives the file create request, it
checks the local space usage and processor load. If either of these parameters exceeds operator
selected thresholds, the file manager will not process the request itself. Instead, using status collected

from the other maaagers it will choose the one it considers to be best suited to perform the
operation. It then forwards the request to the selected manager for processing. The policy
parameters that guide the selection can be set by the operator through the MCS operator interface or

by invoking simple commands available elsewhere in the cluster.

-6-
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These mechanisms also support other resource management policies used in the C2 Internet
experiment. For example, timer managers elect one manager as a reference clock, which is then
responsible for periodically synchronizing the time of day clocks at the remaining timer managers.
The parameters that control this selection can be set by the operator. The managers themselves keep
statistics on how much their clocks drift from the reference clock so that when electing a n w
reference clock, the one with the least drift will be prefered. In another C 2 Internet experiment

example, a collection of mission data managers share the work of storing target detections by
examining each other's workload and rotating their responsibility for recording data for missions in
a round-robin fashion.

5. Survivability Enhancements and Reconfiguration Support

A primary goal of the Cronus architecture is survivability in the face of system component 0

failures. In the C2 environment it is especially important to provide continuous availability of key
applications despite system failures. There are two aspects of survivability which the Cronus
architecture addresses: the availability of the system and its services over a relatively long period of
time and the survivability of the applications which run on it. Application survivability is
dependent not only on sustaining the application itself and the abstractions it presents t, its users,
but also on sustaining the resources on which it depends for its computational support. The object W
oriented approach taken in Cronus decomposes this problem into two parts, each of which must be
made survivable: first, the objects and functions needed to sustain a computation, and second, the
access path between the client and the objects or functions, must both endure partial system failures.
We support object and function survivability through replication of the object instances a id the
managers which maintain and operate on these objects. We support survivabilty of the acces path .
to these instances by detecting when an access path or object becomes unavailable, locati. an
alternative site with a copy of the instance, and automatically reconfiguring the access pa to
connect the client to the site with the available copy. In addition, in the event of an access i nt
failure, the host independent nature of the application software makes it possible for the affec "d
functions to be performed elsewhere in the cluster.

The support for survivability is delivered at three levels. At the low level, we provide
mechanisms to support object replication and path reconfiguration: routines for recording the object
instance descriptors in permanent storage now detect when an instance is changed and notify
managers for the duplicates so that the change wil be reflected there; mechanisms that support

.. resource management provide the reconfiguration support needed to maintain an access path to an
object through location independent UIDs, kernel based UID searches to locate instances of objects ft

when their location is unknown and when their location changes, and caching these locations to %

improve performance. Second, we implement different replication strategies built upon these low
ft, level mechanisms to identify characteristics that distinguish different styles of object management

for which different replication strategies are appropriate. And third, we allow the developer to
select among various survivability properties offered in a high-level, language based interface.

Our first experiment was to introduce replication into the authentication manager. The
authentication manager maintains descriptions of principals, representing particular people or other
agents with whom access rights may be associated. It also maintains descriptions of groups, which
are collections of principals and other groups which allow access rights to be given to many people

-7-
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at once, without knowing each member individually. For a cluster the size of our demonstration

environment, two authentication managers which completely duplicate the entire principal and

group databases is adequate. This provides adequate performance in our configuration, and a

mechanism to independently control the replication of each object would have needlessly

complicated the problem.

In this first experiment, changes to a principal or group object instance made by a manager at

one site are broadcast to all other managers responsible for the same type. Each of these managers
then apply the changes to their copy. Copies of a modified object are also updated whenever a

manager is restarted-at restart time, the manager requests updates from its peers for all objects that 0

have been modified while the manager was unavailable.

After an initial version of the replicated authentication manager was implemented it P%
underwent a period of testing and revision. Then, use of the underlying replication mechanisms
was added to the Cronus program support library and to the manager development tools. The

authentication manager was then adapted to use these interfaces and tools, additional testing and
evaluation were performed, and the mechanisms were released for use by application developers. A
developer may currently choose whether objects of a particular type are replicated or not. He may
also choose whether all objects of that type will be replicated, or whether only objects which an

operator later identifies will be replicated. In the later case, replication can be independently

enabled and disabled for each object, as the user desires. The mechanisms were subseq, ently used in

the C 2 Internet project to produce a replicated timer manager, that controls the progress of the

experiment simulation. This particular manager uses the tool and library interfaces to replicate
particular simulation clocks called timers, and uses the more primitive broadcast and forwarding
facilites to elect a master clock which will then maintain the synchronization of the all the

managers of timer objects. '-.

A second experiment, to investigate a strategy that allows replication to be independently

controlled for each object along with commands to support this control, now supports the
survivability of the Cronus catalog manager. The Cronus catalog provides a system wide, user

maintained, logical name space for use by people and application programs. In previous versions,

global directory replication was limited to directories between the root and a boundary called the
dispersal cut. While this was an effective strategy for ensuring the survival of directories which

are shared and frequently needed, it was inconvenient to maintain because updates to this dispersal
cut where manually introduced, coordinated and distributed by a system operator. Also, a duplicate

of every directory between the root and the dispersal cut was kept by every catalog manager. In
improving this original strategy, we wanted to mechanize the update process to eliminate the need

for a specially skilled operator. We also wanted to allow the degree of replication to be varied for
each directory, both to reduce the overhead associated with each directory update, and to allow a

user to individually decide which directories need to be replicated and to tailor the number and

placement of the directory copies.

The revised catalog manager supports these additional features. We have also developed user
commands for controlling the replication and for reviewing the disribution of the copies and the

availability of each of them. Unlike the authentication manager, the catalog survivability scheme
is not currently available through the manager development tools. However, we anticipate that in
the future, the manager developments tools will offer a choice of replication techniques, based on

experience gained from those being used in the authentication manager and by the catalog manager.

-8-
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6. Tool Integration and Distributed Application Development Support

Cronus is an extensible operating system. It has been designed to support a common structure

for system and application components, so that mechanisms designed to aid distribution, resource

allocation and reliability, and tools used to develop the operating system, may also be applied to

developing distributed applications. We feel that the object oriented organization, used in

developing the Cronus operating systems, may be extended iLto the application domain. That is, a

new application may be organized and developed by identifying the types of objects involved and

the operation protocols that objects of each type follow.

For an individual Cronus application developer, there are a number of functions that the

implementer will perform repeatedly for each component he builds. For client software, these

include routines for composing messages, sending them to the correct target, awaiting a reply, and

parsing the reply to extract the requested information. For manager software, the needs include

routines for recieving invocation requests, identifying the operation, parsing and extracting the

parameters, dispatching to an appropriate routine to perform the operation, modifying the object

instance descriptor and returning a reply to the client. The implementer must also develop software

that supports various properties of the objects, such as access control restrictions and survivability.

The software to handle these tasks is quite regular for most objects; this argues for automation of
the process of producing support for these tasks.

The fact that distributed applications may span a wide geographic area and may require the
cooperation of several independent individuals introduces additional need for formalizing interfaces

between components. People responsible for different parts of an application must agree to

interfaces before integrating their pieces; over time, the system may grow and the implementation

change, but if we preserve the interfaces and their behavior, we can limit the effect of changes we

make to the implementation. Also, the interface to an existing component can be used as a model for

the interface to a new, but similar component.

As a first step toward satisfying these needs, we have introduced an interface specification

language. For the individual, this allows the implementer to reuse code, increasing his personal

productivity. For groups, this allows the members to specify interfaces among their components and

have the system police individual compliance with the specifications. New components can often be
fit into existing interfaces with appropriate support code. This language allows a designer or
implementor to specify the properties of an object type, such as access control rights and

survivability, and the parameterized operations that may be invoked on objects of the specified type.
The language also allows canonical types to be specified. Canonical types provide a representation 0

for data that is communicated between processes and stored by processes, regardless of the type of
machine on which the processes are operating. Canonical types are also typically used to specify the

variables that represent an instance of an object type.

Normally, an application developer will proceed by first identifying the functions to be

performed by his application and the resources that will be employed in performing these functions. 0

Then, object types will be specified for each kind of resource. Often, several resources will have
very similar interfaces, as is the case with primal files, COS files, and the line printer interface. In

such cases, a parent type, which specifies these common interface characteristics can be defined and

the ,ther types will be made subtypes of this parent type. The subtypes inherit the same definition

for the common operations, as defined by the parent, without the need to be repeatedly specified.

-9-
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6.1. Development of New Types

Designing a new type involves characterizing the role of objects of the new type in the
application, specifying operations that affect the status or behavior of objects of the new type, and
specifying the descriptor for instances of the object type. Support for easily adding new types has
already involved work in several areas, including specification, code generation, distribution, and
debugging support. These areas have been explored by first experimenting with facilities for use
with system objects, generalizing the interfaces, verifying the results with system components,
applying the results to applications needs and evaluating their effectiveness.

One problem with supporting a new type within the system is proL~uc.i the code which
implement object managers for the type. Much of this code has a regular structure. When invoking
an operation, the client creates a message buffer, identifies the operation to invoke, specifies the
parameters, uses the invoke primitive to transmit the message to a manager for the target object,
awaits a reply, parses the reply and processes the results. At the manager end, the request must be
parsed, access control checks made, the proper operation processing routine called, the results placed
in a message, and this reply message returned to the client. Multi-tasking support allows multiple
requests to be in-process concurrently. Object descriptions must be kept in stable storage to record
the current state of each object for which the manager is responsible.

Our initial approach to the problem of constructing new type managers includes code
generation and library support. The implementer produces a specification of the operations that are
appropriate for objects of the new type. The new type may also be made a subtype of another type,
causing the operations of the parent type to be inherited by the new type. The operation
specifications include access control checks and a description of each parameter;, canonical types may
be introduced to specify new types used to communicate information between client and manager. 0
From this specification, code for both the client and the manager is produced: client code provides
subroutines that package an appropriate request, invoke it on a specified object and return the results
to the caller of the subroutine; manager code handles message parsing, access control checks,
dispatching to operation processing routines and returning the reply to the client. The tools also
provide library support for facilities used regularly by managers: multi-tasking, access control list
modification, maintaining data associated with object instances, and support for generic operations
such as locate.

The distribution and sharing of these specifications introduce unique problems in a distributed
environment since clients may be on different hosts than the managers, and managers may be
developed on different hosts than their parent types. To maintain the information about Cronus •
object types in a globally accessible way, we have implemented a type definition manager. After a
developer has specified the operations and interfaces for a new object type, he invokes an operation
to transmit this information to the type manager. Thereafter, the information can be retrieved from
the type manager by any client in the cluster. The development tools which generate code for
clients and managers retrieve this information and produce machine independent code for -
compilation and link editing on appropriate target machines. This information can also be read
dynamically by programs before invoking an operation, as is done by the user interface program ui: .4'

this program retrieves the specification for a selected command and then interactively prompts the
user for parameters. ,...
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To speed development, support for many generic operations is supplied by the tools. Type
definitions are supplied for generic object operations appropriate to all objects, such as locate and
remove, and for generic operations on replicated objects, such as replicate, dereplicate, and show
changes. A developer may include these in a new type by naming the object or replicated object 1

type as the parent for his new type. Library support provides routines for performing these
operations.

To date, these development support tools have been used in producing several system managers,
including the authentication manager, COS directory and file managers and line printer manager. It
has also been used in producing all managers used in the C2 Internet experiment.

6.2. Software Distribution Manager

Software distribution in a distributed development environment, though seemingly simple,
often becomes an extremely complicated, time consuming, and error-prone task. Our primary goal
was to provide a simple abstract model to the developer and to limit the amount of information the
developer has to understand and manipulate. The volume of information a developer might have to
consider is potentially large, especially if all appropriate (file, site) pairs must be identified. Our
approach is to group files with identical distribution requirements into packages, and to identify to
which sites each package should be distributed. This representation is more natural to the developer
of large applications, since such a user will normally think in terms of collections of files composing
a distributed application or subsystem, and this representation provides a much more concise and
intelligible description of the distribution requirements than listing the individual (file, site) pairs.

The distribution process is controlled by a logically-centralized manager process, rather than

independently from a variety of client programs. This has the benefit of limiting knowledge of the
implementation of packages to one program, making it easier to enhance, and of minimizing the
interface requirements at the user access point, since the user need only be able to invoke a single
Cronus operation. Since the package data is only slowly changing, it is easily replicated to avoid
any single site outages preventing distribution. The package manager transmits each file to the
target host by using the Constituent Operating System (COS) Interface Manager on the host. Thus,
adding a new site bearing host only requires the development of COS Interface Manager on the new
host, a service normally provided anyway.

P"

For the initial version, we decided not to automatically trigger updates. This would have
required additional mechanisms to identify when a set of changes were actually suitable for
distribution. Instead, developers explicitly initiate updates when they are confident that the files
represented by a package are consistent. In the future, a daemon process might regularly look for
changes at a designated primary site and automatically initiate updates. For now, we are primarily

interested in providing the essential mechanisms and conceptual framework for managing the
contents of the packages.

Initiating component distribution and maintenance of the file lists and sites are independently ,'"
access controlled to reflect the differing roles of software developers. Developers modify the

implementations, affecting the contents of particular packages. System administrators determine the
ultimate placement of support for the services and application components.

-ll-
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The design and implementation of the software distribution component makes extensive use of
existing Cronus facilities. The Software Distribution Manager was constructed using the manager
development tools, and invokes operations on other managers using the automatically generated
program support library subroutines. The manager is not dependent on the contents of the files in a
package: they may be source files, language processor header files, command scripts, or, when
distributed between hosts of the same type, binary executable and library files.

6.3. Development Tools: Editors, Compilers and Utilities

Cronus is both a base operating system for supporting distributed applications and an
environment for developing these applications. One important aspect of supporting software
development in a distributed environment is a distributed file system. A distributed file system is
useful only to the extent that there are tools which can utilize the distributed file system. An
initial step toward making Cronus more useful for software development is to provide a set of
development tools which utilize Cronus functionality. Such tools include editors, compilers and
linkers.

At the outset, we have chosen to adapt existing tools to the Cronus environment whenever
possible, rather than developing tools specifically tailored for the Cronus environment in order to
gain at least some immediate functionality. To reduce the effort required to adapt existing tools, we

have modified the file system subroutine libraries for the VMS, C70 Unix and Vax Unix systems.
These trap libraries invoke Cronus operations whenever a file name specifies a Cronus file.
Otherwise, they behave as they did before modification, performing the operations on VMS or UNIX
files. The VAX-UNIX trap library was extended during the first part of this contract and has been
used to produce several UNIX based file utilities as mentioned in an earlier section.

To simplify use of electronic mail for communication among members of particular groups,
particularly for suggesting changes and notifying people when changes occur, we have implemented
a mail program that allows messages to be addressed to Cronus principals and groups. This has the
added benefit of supporting distributed maintainance of mailing lists.

6A. Distributed Access to Constituent Operating System File Systems

Through Cronus, it is also desirable to gain remote, distributed access to directories and files
maintained by a Constituent Operation System (COS). This allows remote access to mailboxes,
bulletin boards, on-line manuals and other data whose contents are customarilly maintained by COS
utilities, but for which access should be available throughout the cluster. We have implemented a
manager, called the COS Interface Manager, which provides access to directories and files stored on

the COS. Registering a COS file or directory with this manager returns a Cronus Unique Identifier
(UID) that can be later used to manipulate it remotely as a Cronus object and through the Cronus
catalog

-12.
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The operations of COS directories and files emulate those of the Cronus catalog and Cronus files

so that, in most cases, users need not be aware of whether a particular catalog entry refers to a

Cronus primal file or a COS file. Thus, the Cronus utilities, such as display and list directory, work

with COS files and directories as they do for compatible Cronus objects. The COS Interface manager

is a step in the gradual evolution between completely independent host systems and a completely

integrated distributed system.

7. RADC Cluster Support

An important part of demonstrating the applicability of Cronus in the C2 environment,

evaluating its capabilities, and successfully transferring DOS technology is the installation and

operation of a Cronus DOS cluster at RADC. Doing this will provide valuable experience in
transporting Cronus to another environment and seeing how well it can be operated and used by a

different user community. The Cronus cluster at RADC will be gatewayed to the DARPA Internet :

so that it can be accessed remotely from the cluster at BBN. This will allow both remote operation

and monitoring of the R-ADC cluster and experimentation with inter-cluster operations in the

Cronus DOS.

We have been assisting RADC with the selection of the hardware configuration for the Cronus

cluster. In order to facilitate installation and operation of the RADC cluster, our major guideline in

the selection has been compatibility with the BBN cluster, at least in terms of the types of machines

and operating systems supported and the underlying local network. We produced a cluster

installation report that details how to install Cronus once the cluster hardware has been installed.

RADC is in the process of acquiring and installing the necessary components.

8. Cluster Maintenance

The major maintenance effort in this area was transporting the existing GCE system to a more
modern, commercially supported hardware base. The processor, peripherals and other components of-/

the original GCE system where purchased from.commercial sources and integrated by project staff .

members several years ago. While we were able to maintain and repair the system, using

commercial field support when available, and performing the repairs ourselves otherwise, the

peripheral devices were failing more frequently. Compared with commercially available

microcomputer systems that have been produced in the past few years, our equipment was difficult

and costly to maintain, To correct this problem, we evaluated several microcomputer systems,

looking for a suitable replacement. We selected a MassComp 68000 based system and transported

Cronus to it. This machine, and possibly similar products from other vendors, wifl form the

hardware base for future GCE development.

To reduce the oveihead involved in routing and forwarding 1_.g. vUiume of data between

Cronus processes, we have fixed and enhanced the Cronus large message transfer mechanism.

Formerly, it was necessary to send large amounts of data using a series of small messages; in

addition to being processed by the sending and receiving process, each small message would pass
through the Cronus kernel at both the sending and receiving site. Now, large messages are S
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transmitted via a TCP connection between the sending and recieving process. The Cronus kernels
are still responsible for sending the initial portion of the message, which contains the information
necessary to establish the connection, but thereafter, all data is passed directly between the processes.
The choice of message type is made by the program suppnrt library routines and the connection is
established with the cooperation of the kernel. The sending process need not be aware of which
mechanism will be used, nor need it advise the routines which mechanism to use. As long as the
buffer supplied by the recieving side is large enough to contain the data, it need not be aware of
which mechanism is being used; if the receiving buffer is too small, the message will be delivered in
a series of consecutive pieces. A similar mechanism is provided ol the sending end to allow it to
send a message as a series of smaller pieces.

As the size of our cluster has grown, keeping backups of storage system has become an
increasingly time consuming task. As part of ouiT maintenance effort, we have developed an initial
version of a primitive backup and restore facility which allows Cronus objects to be copying to

magnetic tape and later restored. Using this facility allows us to dump sources and other valuable
files from any Cronus host to a single central location.

Performance and reliability of the Complon TCP/IP software, used under VAX-VMS, proved
to be unsatisfactory. We have replaced it with software provided by Wollongong, and have been
successfully using it for several months.

9. Papers and Technical Articles

Several papers describing different areas of the Cronus development have been written; a
number have already been accepted for presentation at conferences. In this section we summarize
the various papers. Copies of the papers are included either in the appendix to this report or in the
appendix to Interim Technical Report No. 5*.

9.1. ICDCS Papers

Two papers, included in Interim Technical Report No. 5 as Appendix A and Appendix B, have
been accepted for presentation at the Sixth International Conference on Distributed Computing
Systems, to be held in May 1986. The first of these, The Architecture of the Cronus Distributed
Operating System, describes the overall architecture of Cronus and details the design of key .,
components of the system. The second paper, Programming Support in the Cronus Distributed
Operating System, presents our approach to the problem of distributed application development,
describes the features of Cronus that support this development, and illustrates how Cronus
facilitates development using a Cronus object manager as an example.

*Cronus, A Distributed Opera.ing System: Intezim Technical Report No. 5, R. Schantz, et. al.Technical Report No. 5991. BBN Laboratories Incorporated, June 1988, RADC-TR-88-132, Vol TTI. .
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9.2. Use of Canonical Types

The Cronus Distributed Operating System has as one of its major goals the exchange of

information among heterogeneous hosts in an Internet environment. To allow this, a common data

representation must be adopted for network traffic. This paper describes that representation and its

application. Cronus canonical data types are extensible; new types may be constructed via a high-

level definition language. This ability, along with program development tools that automatically

generate code for data conversions, virtually eliminates representation considerations in the

development of Cronus distributed applications.

This paper has been submitted for presentation at the ACM SIGCOMIM '86 Symposium on

Communication Architectures and Protocols. A copy of it is included in this report as Appendix A.

9.3. Constituent Operating System Integration Guidelines

Integrating new hosts into Cronus is one of the long term objectives for the system. This

article discusses the issues surrounding the integration of Cronus with a constituent operating
N system (COS). In order to support different degrees of COS integration, Cronus has facilities have

been designed in layers. It is intended that a minimal integration may be achieved by implementing

only the lowest layers, and that greater degrees of integration can be added incrementally. This

approach has been experimentally tested by integrating a number of COS systems and host

arcitctuesinto the BBN Cronus cluster. The experience obtained from implementing Cronus on
thi variety of hosts and operating systems in the Cronus test configuration forms the basis of the

information in this article.

A copy of this article is included in this report as Appendix B.

9.4. Ethernet Experience

@, The Cronus project has owned and operated an Ethernet for several years. The network

currently provides services for over twenty hosts whose resources are either used directly or

indirectly by Cronus project members, and provides access to the DARPA Internet and other

networks through gateways. It has been our experience that all of these disparate hosts can be made 0

to coexist and intercommunicate on the same Ethernet. However, this intercommunication

capability has been achieved only after considerable effort. We have written a note which tries to

capture some of the experience that has been accumulated in managing the Cronus Ethernet, and to

indicate the types of problems which can be expected in the management of similar local area

networks.

A copy of this article is included in this report as Appendix C.
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9.5. Broadcast Repeater RFC

The paper was included in Interim Technical Report #5 as Appendix C; it has now also been
distributed as an Arpanet RFC 947. It describes the extension of a network's broadcast domain to
include more than one physical network through the use of a broadcast packet repeater.
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A. Use of Canonical Types

Canonical Data Representation in the
Cronus Distributed Operating System

Michael A. Dean

Richard M. Sands

Richard E. Schantz

BBN Laboratories Incorporated

10 Moulton Street
Cambridge, Massachusetts 02238

Abstract

The Cronus Distributed Operating System has as one of its major goals the
exchange of information among heterogeneous hosts in an internet environment.
To allow this, a common data representation must be adopted for network traffic.
This paper describes that representation and its application. Cronus canonical
data types are extensible; new types may be constructed via a high-level definition
language. This ability, along with program development tools that automatically
generate code for data conversions, virtually eliminates representation
considerations in the development of Cronus distributed applications.

A.1. Introduction

Cronus is an object-oriented distributed operating system under development since 1981 at BBN
Laboratories. It differs from other DOS projects in its use of a heterogeneous computing base, and
emphasis on interoperability with existing constituent operating system resources and facilities. Our
current configuration includes BBN C/70s, DEC VAXs running both Unix anc VMS, and Sun and

Masscomp workstations - integration of symbolic and parallel processing elements are planned for
the near future. We believe that the distributed application developer shouldn't nave to give up
familiar computing environments, programming languages, tools, and utilities. To such a user, the

Cronas ohject-model and its protocols present a uniform interface to diverse computing resources.

This paper describes a key feature of this uniform interface, the Cronus canonical data 0
representation scheme. This system component defines and implements a set of common data." -

representations used to exchange data among the elements of a distributed application in a
heterogeneous environment- A more complete discussion of the overall architecture of Cronus can

be found in [Schantz], an overview of the application development environment can be found in
[Gurwitzl and a prototype application is described in [Berets]. " -

Cronus development has bea spported by the Rome Air Development Center, under contracts F30602-81-C-
0132 and F30602-84-C-0171.
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0A

A.2. Background

One of the fundamental problems inherent in integrating a varied collection of computer

architectures and local operating systems is the differing representations that these systems may use

in storing and manipulating data. On the systems which Cronus is currently implemented, integers

may be signed or unsigned, and depending on the word size of the system, are 16, 20, 32. or 40 bits

long. Some of these systems store the low-ordcr bytes of an integer in lower memory addresses than

the high-order bits, and others store the high-order bytes of an integer in lower memory addresses.

All of these systems use two's complement integer representations, but there are systems which use

BCD, one's complemenI, and signed magnitude representations as well. This situation is not Limited

to integer data types; nearly all common basic data types have several popular representations.

Each system and the languages used to program on those systems are able to efficiently process

information onty in the representations which they directly support, usually with hardware. Data

interchange between systems with differing representations will therefore require translation from

one data represenaLtion to another.

One oOVI ,L. technique for solving this problem would be to communicate the data from source
macnine tc destination machine in the source machine's data representation, with the destination

macnine responsible tor converting the data to its own representation, based on the origin of the
S data. Similarly, the source machine could convert the data to the destination machine's format

before transmission, based on the destination's architecture and operating system. Either of these
techniques has the advantage that for transfers between similar machines, no data conversions are
needed. There are a number of disadvantages to these methods however that far outweigh this one
advantage.

One problem is that there must be two data conversion routines for each pair of representations of

some data type, available to all programs that will communicate data of that type. This results in a N

very large number of routines that must be maintained, debugged, and linked as part of each "
program's executable image. Another problem is that adding a new machine type would necessitate

relinking all programs on all machines, since the new data representations would require additional

conversion routines in all programs.

Another solution to this problem presents itself upon examination of the defects of the previously .

d .mentioned techniques. A canonical data representation for each data type could be invented, and all

data interchange would involve conversion of data from the originating machine's data formats to
canonical formats, transmission of the data in canonical form, and conversion from canonical

S: representations to the destination machine's data formats at the destination.

With this technique, each system architecture would require only one pair of conversion routines

per basic data type for converting between its own data representations and canonical

"-" representation. This results in a much more manageable number of conversion routines. When a
._. new machine type is added, no relinking of programs would be necessary, since data would be 0

received in canonical format no matter what the architecture of the originating system.

Cronus uses the technique of canonical data represeitation to solve the problem of data interchange W,

" in a heterogeneous computing environment. This method is far simpler to implement, and more

flexible than any techniwue involving communication of data in machine dependent form. Programs
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process data in formats directly supported by the systems on which they are implemented. When
data is transferred to another network component, it is encoded into a canonical form using
appropriate conversion routines. The reverse process takes place on the receiving end.

In Cronus, we take the data exchange problem a step further by incorporating it into the basic
computational model developed for the system. Cronus models operating system and application
resources as abstract objects, and access to resources as invoking operations on those objects.
Operation invocation is implemented using messages exchanged between the invoking client program
and an object manager program which performs the operation )n the data object. It is often the case
that the client and the object are on different computer systems, which exhibit significant differences
in architecture, operating system, and data representations. When the communicating systems are
different, care must be taken to insure that the data and control messages exchanged are
understandable to programs on both sides.

Programming support in Cronus is based on the assumption that heterogeneity will be common in
the applications which Cronus has been designed to support, and that it is desirable to provide
application developers with an environment in which such heterogeneity is handled without
directly involving the programmer. Although assuming that communicating components are
different may appear to be a worst-case assumption, we believe that it is easier to plan for

* heterogeneity at the outset rather than adding support for it to an already existing system. If
necessary, Cronus can be optimized later for the homogeneous case.

A.3. Canonical Types

Fundamentally, a Cronus canonical data type includes a canonical representation expressed as a
sequence of 8-bit octets, a set of internal representations, one for each target programming language,
and a set of subroutines for converting between internal and external representations and
determining the amount of memory which must be allocated to contain them.

Consider, for example, the canonical type U161, used to represent unsigned integers in the range 0 to
2"116-1. Its canonical representation consists of two octets containing the most-significant and least-
significant 8-bits of the number, respectively. It is represented in C language [Kernighan] programs
as unsigned int". Note that the internal representation must be able to represent all possible values
of the canonical representation, but the corresponding canonical representation may not be able to

represent the entire range of the internal representation. The conversion routines report an 0
argument out of range' error if an attempt is rnade to convert an internal value that is out of the
range of the corresponding canonical type. For flexibility, there are signed and unsigned 16 and 32

I. bit mteger canonical types available, called U161, S161, U321, and 321'.

* U161 is a "fixed length" canonical type, which means that both the canonical and internal '
%, representations require a constant amount of storage, whatever the value represented. ASC (ASCII i.F

character string, represented in C by "char *") is an example of a "variable length" canonical ty.pe, in
which both the canonical and internal representations require variable amounts of storage.

% depending on the value represented. If the amount of storage needed to represent a data type can
vary, then the corresponding canonical type will be variable length as well. Variable length

* canonical types always consist of a length field in octets, encoded as a U32I, followed by the S
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variable amount of data making up the canonical representation. In addition, all canonical types

consist of an integral number of octets. Other than these two restrictions, any encoding of an

internal representation's range into octets is acceptable.

There is a set of standard system-supplied canonical types that represent both common programming

language data types such as integers and booleans, and Cronus system types such as Unique Numbers

(UNOs). In addition, there is an ARRAY canonical type that can represent a one-dimensional array

of any other canonical type. A partial list of the current standard canonical types, their lengths, and

Canonical C Language Length Description

Type Representation (octets) _ _._ _

EBOOL int 1 Boolean true or false. The internal values
are limited to false = 0, and true = 1.

U161 unsigned int 2 Unsigned 16-bit integer

S161 int 2 Signed 16-bit integer
:N

U321 long 4 Unsigned 32-bit integer (C does not
allow a declaration of 'unsigned long')

S321 long 4 Signed 32-bit integer

ASC char * variable ASCII character string 0

OVEC struct OctetBuffer variable Self-defining - -et vector

EDATE struct DATE b Date/Time

EUNO struct UNO 10 Cronus unique number

CTYP typedef int TYPE 2 Cronus object type identifier

EUID struct UID 12 Cronus unique identifier

ARRAY <cantype> * variable One-dimensional array of some other

canonical type

MS struct OctetBuffer variable Message Structure

Standard Canonical Types
Figure 1

the corresponding internal representation in C is given in Figure 1.
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Canonical representations generally are quite straightforward, with simple mappings between
internal and external values. Usually, structured canonical types follow organizations similar to
their internal data type counterparts. For example, the canonical representation of an integer called
'value' converted to a U161 is:

value / 256 value mod 256

1 octet I octet

If value is 1859, its canonical representation (2 octets, in hexadecimal) would be 07 43.

As another example, the canonical representation of an ASCII character string is:

length charfl] - char~lengh]

4 octets length octets

where length is a U321 whose value is the number of characters in the string, and successive octets
after the length contain the 7-bit ASCII characters of the string, with the high-order bit 0. The
canonical representation of the string "Cronus* would be 00 00 00 06 43 72 6f 6e 75 73.

A more complex canonical type is the ARRAY aggregate type, for which there are two
representations: one for fixed length array elements, and one for variable length array elements.
Arrays of any canonical type can be represented.

The canonical form of fixed length item arrays consists of a type field followed by the canonical
forms of the items in the array, back-to-back in a contiguous string of octets. Lower indexed items,
starting with item[1, come before higher indexed items in the octet vector.

length cantype itemnl] _ item[n]

4 octets 2 length(item)*n

The canonical form of variable length item arrays consists of a type, the number of items in the
array, a block of descriptors giving the integer offset of each item in the following octet string, and
a string of octets containing the variable length items back-to-back. The lengths of the variable-
length items are encoded in the first four octets of the items themselves. A variable length item
array could be encoded as:

lengt cantype n offset(item[l])I
4 octets 2 2 4*n

- I offset(item[n]) iteml] [ item[2] -"

- I length(item[1D + -

[ itemn-l]J item[n]
+ length(item[n])

-21-
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Each canonical type <type> is defined by a pair of functions, one for converting the internal
representation to canonical form, called To<type>, and one for converting the canonical
representation into internal form, called From <type>. For example, the two conversion functions
for U161 are called ToU161 and FromU161. Variable length canonical types have two additional
functions for determining the canonical length of an internal value, and vice-versa, used for
memory allocation and message sizing. Because these functions are usually called from other
routines that do not know in advance which types they will be required to convert, these functions
are required to follow a strict interface convention. This convention also makes it possible to
dynamically add new canonical types to the set of known types without changing higher levels of
software.

Because Cronus is designed for a heterogeneous computing environment, the conversion functions
for the standard canonical types have been written to be portable to any machine architecture. They
do not depend upon the specific word length or byte ordering of any specific machine, and work
without modification on 10 bits per byte BBN C/70 minicomputers, on MC68000-based workstations
which require integers to be word-aligned with the most significant byte first and on DEC VAX
minicomputers with the opposite byte ordering.

New composite canonical types can easily be built out of existing ones. For example the Cronus
canonical type EUID, a unique identifier which is used for naming objects, actually consists of a

N EUNO (unique number) and an object type.

EUNO__ CTYP
10 octets 2

In addition to arrays, Cronus also supports lists of items, via the Message Structure constructor. This
is an octet vector containing an unordered sequence of key/canty pe/value triples.

key cantype value

2 octets 2 depends on cantype

The key serves as a name for the following type/value pair. Keys are represented as U16Is.
Individual fields within a Message Structure can be referenced by passing the desired key to a
collection of library routines for manipulating Message Structures. Values are always presented to
application programs in the internal format dictated by the canonical type.

Message Structures, as the name suggests, are used to build messages in Cronus. Each message
contains a set of standard fields specifying the target object, operation, and a transaction identifier,
along with any fields defined by the application. An example of the Message Structures used to
invoke a sample Cronus operation and its corresponding reply is given in Figure 2. This operation
creates and initializes a new Group object, returning its unique identifier. The figure notes which of
the keys are standard (found in all Cronus invocations and replies), and which are unique to this
application.

The ARRAY and Message Structure canonical types are examples of a class of canonical types called
constructors, which aggregate elements of other canonical types. These are fully recursive and
extensible, allowing arbitrarily complex structures to be represented. Additional constructors, such
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Key (std/applic) Cantype Value

MsgType (std) U 161 Invocation (0)
Object (std) EUID {group)

OperationName (std) ASC "Create"
TransactionlD (std) EUNO (bbn-vax:153:2191

InitialMembers (applic) array of EUID Dean, Sands

MsgType (std) U 161 Reply (1)
TransactionlD (std) EUNO lbbn-vax:153:2191
NewObject (applic) EUID {bbn-sun l:47:91:grou p)

Sample Invocation and Reply Messages
Figure 2

as Binary Tree, could easily be defined for applications requiring them.

AA. Automated Definition of New Canonical Types

With Cronus, we've sought to automate as much as possible of the distributed application ,
development process. The cornerstone of this approach is a high-level non-procedural specification
language for defining the operation invocation protocols for new Cronus object types. At the
definition level, Cronus types are similar to Smalltalk classes [Goldberg: a set of abstract operations
are specified for each object type, children inherit operations from their parent in the type hierarchy,
and each operation contains some number of parameters (fields). Figure 3 contains a partial
specification for a Cronus object type TextFile, having traditional file semantics. A specification has
three parts: the definition of the type, including parameters governing operation inheritance and
access control, a specification of the operations to be supported and their parameters, and the
definition of any new canonical types. Note that unlike Smalltalk, parameters in Cronus operations
are strongly typed, using canonical data types. Often a developer will want to use more than just
the system supplied canonical types for these parameters. We therefore provide a mechanism for
specifying new canonical types in terms of existing canonical types. From these specifications,

! implementation representations and conversion and sizing functions are automatically generated. 0

Because Cronus is targeted for a heterogeneous computing environment, it is important for our
interface specifications to be independent of any particular programming language. For specifying
new canonical types, we selected the smallest set of constructs which would provide suffcient
expressive power and yet be typesafe and directly representable in most modern programming
languages. We chose 1) enumerations, and 2) records (structures) made up of previously defined .
canonical types and unbounded arrays of previously defined canonical types.

1.

As an example, consider the definitions of the FILESTATUS canonical type in Figure 3, which is
returned by the Status operation. This contains the length of the file, the last time it was modified,

* and a list of the processes which have Opened the file but not Closed it. The latter includes the type .

',,
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of access (OpenMode) demonstrating the use of an enumerated canonical type.

Type specifications serve as the basis for automatically generating much of the distributed aspects of
the application. In addition to the functions implementing the defined canonical types, we generate
manager code to parse, decode, and validate messages, retrieve the permanent storage associated with
the object, perform access control checks, and dispatch to a developer-supplied operation processing
routine. For the client, we generate subroutine interfaces encapsulating the invocation message
construction, data conversion, operation invocation, and reply message parsing functions. On both
sides, the developer is provided with a simple typesafe interface using exclusively internal data
representations.

A.5. Relation to Other Work

Discussions of problems and solutions with communication in a heterogeneous computing
environment are by no means new. BBN's experience in this area dates back to the National
Software Works project beginning in 1975 tForsdick, Whitel

DeSchon [DeSchon] provides a brief comparison of several data representation systems currently in
use in the DARPA Internet. Of those, Cronus canonical types are most similar in their structure and
application to the Xerox Courier [Xerox] and Sun External Data Representation [Sun] protocols. In
fact, both the Xerox work and the Cronus work are derived from experience with the NSW system.
The Xerox and Sun approaches however, were designed with specific languages and computing
environments in mind; with Cronus we have tried to take a more general view. Cronus is already
used in the Unix computing environment for which Sun XDR was designed, and we believe that
environments like Xerox Mesa/Pilot could also easily be integrated.

The Cronus mechanisms could also be compared to Accent IPC [Rashid, where conversions are
performed within the communications kernel. This approach affords some optimization by
eliminating conversions if the target host is known to be of the same type as the sender, at the cost
of increased size and complexity of the kernel. The Cronus approach of making these non-kernel
functions, affords flexibility and simplicity. This is especially important in achieving another

project goal of keeping the size of the Cronus kernel to a minimum.

We believe that the most significant contribution of Cronus to the data representation area is in its

demonstration that these problems can be solved sufficiently to make them a non-issue for most
application developers. Almost all data conversions take place below the level of application code in
Cronus, and very few of our developers are intimately familiar with the material presented in this

paper. We believe such hiding is good, both for simplifying the development process and by making
it more convenient to accommodate future changes and optimizations to the data representation and
encoding facility.
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% %' % '.. % ' %. %' 4' %.



F BBN Laboratories Inc. Report No. 6183

type TextFile
subtype of Object
rights are read, write, append
generic rights are create;

generic operation CreateO 4'

returns(NewObject: EUID)
requires create;

operation Open(For: OPENMODE);

operation Close(&,

operation Read(MaxLength: U161)
returns(Data: ASC)
requires read;

operation Status()
returns(Status: FILESTATUS);

cantype OPENMODE
representation is OpenlMode: { read, write, readwrite };

cantype OPENSTATUS
representation is OpenStatus:
record %
process: EUID;-
mode: OPENMODE;
end OPENSTATUS;

cantype FILESTATUS
representation is FileStatus:
record

0 length: U321;
lastmodified: EDATE.
currentusers: array of OPENSTATUS;
end FILESTATUS, '.

end type TextFile;

Sample Type Specification
Figure 3
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A.6. Experience

Cronus has been running at BBN for over 2 years. Our current network includes 18 hosts of 6
different types. As of this writing, 43 different object types have been implemented, providing both
system and application services. These types define 265 operations and 118 new canonical data types.

The Cronus canonical type mechanism has evolved over time. Originally, we assumed that most of
our needs would be met via the primitive types and message structures (with lists of items in
message structures playing the role that records do now). Messages were constructed and parsed by
storing and retrieving key/type/value triples explicitly in message structures. We soon realized
that, given high-level definitions of the operations and their parameters, interface routines providing
a remote procedure call-like interface to operations could be machine-generated. The production of
new canonical data types could also be automated in a similar fashion. The resulting record
structures have significant advantages over message structures in terms of space efficiency and the
ability to perform static type checking.

Message structures are still the building blocks for messages, but their use is almost completely
encapsulated within machine-generated software.

We have found applications for canonical data types beyond their use in messages. In particular, we
also use them to store the application-dependent "instance variables" associated with Cronus objects.

a' This type of usage originally began as an expedient method of linearizing complex internal data
structures for storage on disk. This initial idea has been extended by application-independent
software for manipulating and transporting these canonical representations to support
backup/restore, debugging, and transparent object migration and replication.

Cronus has so far concentrated on applications written in the C programming language [Kernighan].
Language heterogeneity has from the outset been one of our objectives, and some early components
were written in Pascal to demonstrate language interoperability. We anticipate integrating support
for other languages, in the new future, including Lisp and Ada.

Overall, we believe our support for data representation in a complex distributed environment has
been quite successful. Heterogeneity in our computing base is no longer a significant issue.

~~a"
0 A.7. Conclusions 0

The Cronus Distributed Operating System relies heavily on an extensible data representation scheme
to facilitate communication in a heterogeneous multi-language distributed environment. New
canonical data types are specified as part of the high-level interface definitions for new Cronus
services. From these definitions we can automatically generate code implementing most of the

distributed aspects of these programs.

All data is presented to the application in internal representations appropriate for the target
programming language. By eliminating the need to write code for handling heterogeneity and
apphca-ion distribution, which tends to be repetitious and error prone, developers are freed to
concentrate on their applications, using familiar languages, tools, and environments. 0

.5,
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Data representation issues are no longer a major concern for developers of Cronus programs.
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B. Constituent Operating System Integration

Cronus COS Integration

Girome Bono

BBN Laboratories Incorporated
10 Moulton Street

Cambridge, Massachusetts 02238

B.1. Introduction

This note is a discussion of the issues surrounding the integration of constituent operating
system (COS) into Cronus. Cronus is a distributed operating system that provides a uniform
programming and user environment across a heterogeneous set of computers. It is the focus of an
ongoing research project designed to investigate the feasibility of building an environment for
distributed applications. One of Cronus' goals is to make the resources associated with each COS
available in a consistant and controlled way to all of the other machines on the network.

Cronus has already been integrated onto a number of COS and host architectures. The test
configuration at BBN includes several different UNIX implementations (4.2BSD, V7, SYSV), VMS,
and CMOS running on VAXes, C70s and 68000s all connected by a Xerox Ethernet. The experience
obtained from these implementations has been used as the basis for this paper.

There are many ways to integrate a new COS into a Cronus configuration. Minimally, the
goal is to support the Cronus interprocess communication primitives on the COS. This allows local
programs to access Cronus resources by invoking operations on them. A complete integration,
however, may involve suppor ing standard Cronus user interface and program development tools on
the system, and may also inclule implementing Cronus services on the system to allow remote access
to its resources.

In order to support different levels of COS integration Cronus has been designed in layers. It is
intended that a minimal integration may be achieved by implementing only the lowest layers, and
that adding each new additional layer adds new capabilities and functionality to the COS. These S

layers are not strictly ordered, although there are some dependencies noted below. ,

.W
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COS/Application User

Resource Manager Support Interface
Managers Library Programs

Cronus Kernel

TCP/IP Protocols

VLN Interface

The bottom three layers constitute a minimal Cronus integration. The first steps in integrating
a host into Cronus are to connect to the particular LAN for the cluster and to provide flexible
IP/TCP implementations to support the Cronus implementation. The virtual local network (VLN)
provides a minimal set of datagram communication facilities, transmitting messages addressed to
particular recipients and messages broadcast to all available recipients. A VLN may be a simple
local area network, such as an Ethernet, or it may be several networks connected via standard
Arpanet gateways. We currently use these VLN facilities through DoD's standard communicaticn
protocols (TCP/IP), which provides addition facilities such as reliable transport and connection based

communication, although Cronus requires far less and can be adapted to use other transport
protocols. The Cronus Kernel provides object addressed ICP, and performs simple process
management functions.

The higher layers consist of libraries and tools to provide a programming and user
environment on a Cronus system. These may be customized to the particular needs on the target
COS. In particular the user interface to Cronus tends to be geared towards the kind of environment -S

with which COS users are familiar.

B.2. Integration Procedure

The layers in Cronus provide a framework for a particular integration effort. The procedure
for dealing with a new COS is first to determine what level of integration is desired and then to
implement the necessary Cronus layers to reach that level. The following sections functionally

describe each layer starting at the bottom and going up.

B.2.1. VLN Interface ,

The VLN interface consists of both the hardware and software necessary to access a host's
physical network. Cronus requirements are defined as VLN characteristics rather than network
properties to avoid binding it to any particular local area network. In fact, in the test configuration 1%
at BBN Cronus has been implemented on three different physical networks: Ethernet, Fibernet, and .'
Pronet. %S

'.5e
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Cronus makes several basic assumptions about properties of the VLN, any of which may be
implemented in software as necessary, although this may result in major reductions in network
bandwidth. The assumptions are that:

" It is possible to send data packets between any two hosts on the VLN,

* The receiver must be able to determine the sender's identity,

" The maximum packet size is at least 1500 bytes, and

" There is a broadcast or multicast facility available on the network.

B.2.2. TCP/IP Protocols

Cronus uses TCP/IP to standardize communication between hosts on the VLN. These protocols -

multiplex incoming network packets and provide reliable communication over an unreliable
physical network. In addition they provide the ability to communicate with hosts beyond the
bounds of a single physical network. The Cronus Kernels use TCP to support reliable
communication among themselves and Cronus processes may establish direct TCP links between
each other.

TCP/IP was chosen largely because it is a standard and is available as a turn-key package for
various COSes. On all of the systems in the test configuration but one it was possible to acquire an
off the shelf TCP/IP. However, it was often the case that these implementations were unreliable 0
and in some cases lacking appropriate functions to support their intended use in Cronus. Cronus
uses the network communications facilities in a manner dissimilar to its use in standard higher cv-.'
protocols such as telnet and ftp.

B.2.3. Cronus Kernel -'''

The Cronus Kernel provides has three essential functions: local process manager to support
Cronus client and manager processes, communication with local processes and with kernels on other 0
hosts to support interprocess communication, and mechanisms to locate the manager responsible for a
particular object to support object based IPC addressing for invoke. These are merged into a single ,

component to facilitate data sharing and to provide a hard boundary between the secure and non-
secure system components.

Cronus Kernels communicate with one another using the Cronus Peer to Peer protocol.
Reliable delivery of datagrams is guaranteed through the use of TCP as the transport mechanism.
The Peer to Peer Protocol includes a specification for establishing TCP links between Kernels and for ,

closing them down. A provision is also included to send low effort datagrams and ./

broadcast/multicast messages between Kernels using UDP datagrams.

-31-
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The Kernels also provide basic process management services. These include process start up and
removal functions and support for maintaining process identities and inheritances. These are
implemented as Cronus operations on process objects.

The amount of system support required by Cronus is limited. This includes access to network
services, interprocess communication (PC) for communication between the kernel and Cronus
processes, simple process support functions, and a function to generate Cronus Unique Numbers
(UNOs) which are bit strings that are guaranteed to be unique over a Cronus system's life time.
These are all described in some detail in the Cronus System Subsystem Specification.

- B.2.4. Program Support Library

The program support library (PSL) consists of the subroutine interfaces to standard Cronus
system calls and functions. It includes IPC primitives as well as the subroutine library for
constructing and parsing messages (the MSL). In addition, various routines are included to support
standard programmer requirements.

The idea behind the PSL is to make useful programming functions a"ailable to Cronus
programmers on any COS environment. It is intended that the PSL should facilitate writing
portable Cronus programs. On a particular COS, though, this may not be a concern, especially if a
non-portable or unusual programing environment exists on the COS.

B.2.5. User Interface Programs

The nature of a particular COS determines what user interface programs should be
implemented. If it is simply a service host with little user interaction only system maintenence
programs are required. If it is a general purpose access point, a full complement of user programs

should be provided including programs for file editing, directory listing, and status probing.

'.m

B.2.6. Manager Development roois

Cronus is an object oriented system. Most conventional system services in Cronus are
implemented as operations on system objects such as processes and files. So that application

* programmers can make use of the object model to define their own new object types a set of too]s
has been designed to simplify the tasks of defining new object types and of writing new manager
programs to handle them.

-- 32-
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The manager development tools consist of a collection of library functions, a manager
specification language, and a code generator. All of these are oriented towards simplifying manager
development in a C language environment. Currently the manager specifications are compiled on a
machine running 4.2BSD Unix, but the generated code is portable to most C compilers without

modification.

The manager devolopment library code includes functions for maintaining an object database,
default object handling routines, and a multi-tasking facility to allow several concurrent tasks
within a single process. Most of the functions are portable to any COS with a C development
environment and a standard library interface. The tasking package, however, must be recoded for
each target COS.

B.2.7. Existing Managers

There are several Cronus system services that are typically added to new hosts. These are
described in detail in the Cronus System/Subsystem specification. Among the most commonly

installed are the Cronus catalog and file managers, and the constituent operating system directory
and file managers. Installing Cronus services extend the resource capacities of these services and, in
the case of the catalog, improve the likelihood of surviving failures of other hosts. To facilitate this
installation, the managers have been written in C, with special precautions to improve their
portability. Installing the COS managers allow the new host's native directories and files to be
accessed, maintained and administered from remote locations. These managers are also written in C,

but in two parts: a machine independent part that implements the operation dispatching and general
purpose portions of the operations, and a host dependent portion that uses native host system calls to
diccess and modify the constituent directories and files.

Several other managers exist, both for the system and applications. Whenever possible, these
are written to be transportable.

B.3. Integration Costs

There a number of factors that determine the cost in effort to integrate a new COS into
Cronus. The single biggest question tends to be whether the code already written for other Cronus
systems may be ported to the new system. Also critical is whether the COS already has a network
interface and a TCP/IP driver. If the answer to these questions is favorable, experience has shown
that the cost in man hours can be reduced by as much as ninety percent.

Most of the existing Cronus code has been written in the C programming language and,
wherever possible, has been written to be portable. COS and host architecture dependencies are

contained in several well defined modules. Because of this, it has been possible to port the same
source code to all the systems in the Cronus test configuration. It should be noted, however, that
Cronus is not dependent on C, and a Pascal version of the Cronus Kernel was implemented as part of
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SI

a related contract effort.

TCP/IP and Ethernet were chosen as the bottom two layers in Cronus mainly because they
were standards for which most COSes already have commercially available support. Experience has
demonstrated that when these are "off the shelf" technologies, getting a Cronus Kernel running is
greatly simplified.

The code supporting the higher levels of Cronus tends to have even fewer COS dependencies.
Two areas, however, that have required special support code on each system include
terminal/window interface routines and the multi-tasking facility used inside of the Cronus
managers. It is difficult to assess the level of effort spent on the former since very few of the
Cronus applications require special interactive interfaces. The multi-tasking facility, though, has
been implemented on all the Cronus hosts and it has generally required between one and four man-

4 weeks to write the machine specific code.

B.4. Implementation Issues

Cronus is typically installed as a collection of application programs that communicate using
facilities built on the host's IPC and networking facilities. Some COS's already have very good
facilities for supporting 'ronus, while others are extremely inflexable and require significant
modifications to the COS itself in order to support a Cronus implementation. The factors that can
complicate an integration effort fall into four catagories: Processor Architecture, Network Interface,
Programming Environment, and COS Problems. These are not always independent; e.g. a COS can
restrict access to the network interface.

B.4.1. Processor Architecture

Although most existing Cronus code has been written in a high level language, the processor
architecture characteristicly creates problems on each new integration. The design of Cronus does
provide provisions for most standard processor incornpatabilities, though. The Gperation Protocol
(OP) is used to encode and decode standard message data. By using abstract da' tves, OP masks
architectural differences such as word size, byte ordering ard data alignment rti:,:*izns. A set of
functions known as the message structure library (MSL) is used to create and pirse messiges.
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B.4.2. Network Interface

The ability to access the VLN is critical for the operation of Cronus. The Cronus Kernels

communicate with one another using TCP links for reliable data transfers and using UDP datagrams f W
for status probes. User programs may also establish TCP links with one another for large data

transfers. In addition, the VLN is assumed to have a broadcast or multicast facility.

Since Cronus exercises both network hardware and software more than and in different ways

from most applications, it tends to uncover bugs and problem areas. Some of the issues that have

come up on the different systems in the test configuration include:

" Non-standard IP broadcast addresses,

" Incompatible schemes for mapping physical network addresses to IP host addresses,

" Insufficient buffering capability in hardware or software to handle standard network

traffic,

• Buggy and non-standard UDP implementations,

• Software inability to handle maximum physical network buffer sizes,

* Software problems in dealing with Arpanet Standard Gateways, and ' ,.

" Non-standard restrictions in using TCP port numbers.

Many of these problems were simply bugs with commercial software. For these problems, vendors

varied from eager to totally uncooperative in coming up with fixes or work-arounds. 0

B.4.3. Programming Environment

The programming environment plays a key role in a COS integration. As with any large scale

software implementation project, it is imperative to have a reliable and complete set of development
tools available. This includes a C compiler, a linker, a debugger, and a librarian utility.

On several COSes the environment has been a source of difficulties. The C70 linker/librarian S

has trouble handling the number of object modules in the program support library. Also, the

original cross compiler for the 68000 CMOS systems had a number of bugs which were only found

through hours of source code/assembler output cross checking.

-35- 'p

_%

% ."

%, %r %?



Report No. 6183 BBN Laboratories Inc. 4

B.4 . COS Problems

Cronus puts fairly high demands on resources of the target COS. Bare minimum requirements

for a Cronus Kernel implementation include: facilities to add new system calls, or at minimum, an
efficient, flexible intra-host IPC mechanisms to emulate a system call; a reliable stable storage
interface; and some provision for performing asyncronous I/O requests to network channels. For a
complete integration including user and manager programs it also requires a large process address
space and it must be able to handle long lived processes in a graceful manner.

AU of these requirements are generally available on a large machine operating system, and are

increasingly available on many mini-computer and micro-computer bases systems. Current trends
in micro-computers lead us to believe that the availability of these facilities will continue to grow.
This was not true during our early development stages, and it proved to be a major stumbling block
in the initial Cronus implementation effort on C70 UNIX.

B.S. Test Configuration Experience

This section describes some of our experiences porting Cronus to various COSes on the BBN test

configuration. Each example starts with a discussion of the rational for adding the COS to Cronus
and includes some discussion of the implementation issues and what goals were achieved.

B.5.1. SUN 4.2BSD

The SUN workstation is a high performance graphics oriented personal computer. It runs
SUN's proprietary version of the Berkely 4.2 BSD UNIX operating system. The SUN was a
particularly good candidate for integration into Cronus because of its graphics capabilities and
because it was known to have a solid COS interface to TCP/IP.

Implementing the bottom levels of Cronus was fairly straight forward on the SUN. SUN's
Ethernet interface satisfied the VLN requirements. The TCP/IP implementation was also acceptable:
but there was a small incompatability with the other Cronus hosts on the net 'T Volving the IP
network broadcast address. This was fixed by patching the UNIX kernel.

The Cronus Kernel was transported to the SUN without significant prr't Ille Kernel was
implemented as a user process and relied on the 4.2BSD interprocess c-. ;win:aion facility to
communicate with user processes. A new UNIX system call was added to -:ierate T.... This
required some knowledge of the UNIX kernel.

SUN's C compiler and development environment proved to be adequate to port the PSL by
rewriting the COS dependent modules to work under the 4.2 BSD environment. Certain problems
did arise because of bugs and non-portable constructs in the code, but these were found and fixed as

they were discovered.
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Although the effort went smoothly, Cronus performance was somewhat of a disappointment
on the SUNs. Because the interprocess communication facility on the SUN was significantly more %
expensive than on any of the other hosts on the configuration Cronus ran about 10-209% slower than
the slowest of the others. Nonetheless, because of their availability SUN Unix became the main
development environment for Cronus.

B.5.2. VMS

One of the first machines in the BBN test configuration was a VAX 750 running VMS. VMS
was considered an important test of the portability efforts in Cronus, since it was the first Cronus
COS that was completely unrelated to UNIX. It seemed likely, though, that the integration would
not be too difficult since VMS was known to be well suited for building large subsystems.

The goal under VMS was to use as much off the shelf software/hardware as possible, so the
initial efforts were to purchase a C compiler and a TCP Ethernet implementation for VMS. Both
original C compiler and the original TCP/IP package that were chosen proved to be inadaquate and
were later replaced as new producets entered the marketplace.

VMS had a fast efficient interprocess communication mechanism called mailboxes and it had
many hooks for creating and monitoring processes. The Cronus Kernel VMS implementation makes %.7
use of these mechanisms as a user proccess. The Cronus Kernel was ported to VMS by writing new
system dependent modules. The UNO generator was implemented as a VMS system service for
efficiency reasons.

DEC's C compiler and development environment were very good and presented few problems 0
in porting the PSL or the manager development tools. There were several minor incompatabilities 04.
with other COS environments (for example the VMS linker was not case sensitive) but these were _.
all easily handled.

B.5-3. CMOS

It was decided early in the Cronus design effort that if Cronus could be implemented on a bare
machine with a minimal or no COS, it might be possible to get improved Cronus performance on
low cost hardware. These systems are called Generic Computing Elements (GCEs). A 68000 based
micro processor GCE was configured, and CMOS, a small real time operating system, was chosen to
provide the initial support for low level system functions.

The problems associated with CMOS were quite a bit different than on any of the other COSes.
It was necessary to write device drivers for the Ethernet interface and the disk controller. Since no
implementation was readily available, a complete TCP/IP package was implemented.
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Given the necessary lower level tools it was possible to port the Cronus Kernel to CMOS with

relatively few modifications. As it was assumed that the GCEs would be dedicated service hosts, no

support for dynamic process creation or removal was implemented. The rest of the kernel functions,

though, were all ported.

The PSL and some components of the manager development library were ported to the CMOS

environment. The first generation GCEs had some significant physical memory limitations and

various hardware problems, but it was possible to run several services on them. They were used as

file servers and terminal multiplexing access points to Cronus. Currently they are being replaced by

a next generation GCE which will have many more capabilities.

B.6. Conclusions

Overall the various COS integration efforts in BBN's configuration have proceeded smoothly.

All of the target machines have been successfully integrated at least sufficiently to run certain

object managers. Most importantly, this has been done without altering the design of Cronus and

without introducing any incompatabilities or limitations into the system. Experience has shown

that the design of Cronus is host independent in a practical sense as well as a theoretical one.
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C. Ethernet Experience

Cronus, A Distributed Operatin System:
Experiences in Operating An Ethernet

Richard Sands

BBN Laboratories Incorporated
10 Moulton Street

Cambridge, Massachusetts 02238

C.1. Introduction

For the past three years, the Cronus project has owned and operated an Ethernet, used in the
development of the Cronus distributed system testbed for RADC [I, 2] This network currently has
25 hosts and 2 gateways, including a wide variety of hosts, operating systems, and Ethernet
hardware. The network currently includes:

Processors __

VAX MASSCOMP 68000 GCE
C/70 Symbolics LSI-11 gateway
SUN Butterfly

Operating Systems

4.2 BSD Unix BBN CMOS gateway software
BBN OS (V7 Unix) MASSCOMP Unix Symbolics Lisp
VMS BBN Chrysalis

Ethernet Interfaces

3Com Unibus Interlan Qbus Excelan Multibus .

3Com Multibus DEC DEUNA Symbolics
Interlan Unibus BBN Mieni/Interlan NM10

Tranceivers

3Com Interlan DEC

Network Protocols

ARP/IP/TCP ARP/Chaos

As can be seen, there is a very wide variety of hosts. It has been our experience that all of these
disparate hosts can be made to coexist and intercommunicate on the same Ethernet. However, this
intercommunication capability has been achieved only after considerable headache and work. The

-39- I
- % - .% % %

-' ~ ."S~v*,~-'*5 *':*'~ . ~ ~.'SS ~'~&



Report No. 6183 BBN Laboratories Inc.

purpose of this note is to capture some of the experience that has been accumulated in manar;-g "he
Cronus Ethernet, and to indicate the types of problems which can be expected in the management of
similar Ethernets. Though several high-level protocols coexist on the Cronus Ethernet, this note
wifl be primarily concerned with describing our experiences with IP [3], the base-level Internet
datagram protocol for the DOD.

The IEEE has developed a set of local-area network (LAN) standards designated IEEE 802. This
family of protocols specifies physical and data link layers for two types of LANs, bus and token
ring [4, 5, 6, 7] The bus protocol (IEEE 802.2/802.3 [4, 7D is based on the Ethernet Version 2 ,,
standard [8]. The Ethernet Physical Layer and IEEE 802.3 are fully compatable, but the Ethernet
Data Link Layer and IEEE 802.2/802.3 Data Link Layer are incompatable. The Cronus Ethernet
conforms to the Ethernet Data Link Layer, rather than the IEEE 802.2/802.3 Data Link Layer.

C.2. The Ethernet Coax and Physical Network Layout

The Cronus Ethernet did not spring into its current configuration in one step. It has slowly evolved
from a small experimental network with only a few hosts to its current size. Initially, we had no
experience in setting up an Ethernet, and in hindsight, we made a number of mistakes in the
physical layout of the network.

The Ethernet standard [8] requires that the distances between taps on the cable be a multiple of 2.5
meters. Ethernet coax is required to have index marks every 2.5 meters to facilitate in meeting this
requirement. Our original batch of coaxial cable did not have 2.5 meter index marks, making it
very difficult to cut the cable into legal lengths. We thus have several pieces of cable in our

network which we are not sure of their length, and which in any case are of a non-standard length.
Because our network is not technically in compliance with published specifications, we can never
rule out the possibility that the inability of two hosts on the network to communicate is due to a
faulty network backbone. In addition to out-of-spec inter-tap cable lengths, there is a restrictive
requirement that inter-tap distances be one of several odd lengths if the Ethernet is to be composed
of cable pieces from different manufacturers or different batches, to eliminate the effects of signal
reflections at points where the impedance changes slightly. We have not followed this specification
either, which has inhibited us from installing some cable pieces from different manufacturers (such
as TEFLON pieces). To eliminate the possibility that difficulties are caused by an out-of-spec
Ethernet, be sure to scrupulously follow the IEEE 802.3 / Ethernet 2.0 specifications as to cable type,
allowable lengths, insulation, termination, etc.

Ethernet cable may be purchased either in bulk, or in precut, connectorized pieces. Buying in bulk ,
is less expensive, and more reliable, since it has been our experience that conrnectortzed, precut pieces
of Ethernet tend to be shoddily assembled. Buying in bulk has the additional benefit that t. a'!e
is guaranteed to be from the same batch. An Ethernet made entirely from a single batch of cable
can have less restrictive requirements for tap placement, and should be less susceptable to problems
caused by spurious reflections at impedance mismatch points. For maximum economy and
reliability, buy Ethernet coax in bulk, preferably enough for anticipated growth of the net, to avoid 'a

multiple batches and connector reliability problems. 500 meters is the maximum segment size, and
is thus enough per batch for any eventuality.
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If there is a problem with the Ethernet coax (shorts, open connections, grounded connectors, etc),

debugging the network will involve a binary search for the problem cable piece by successively

:L:-:Ug th, .;..work at connest..:s and e.tiug fo, 5V ohm impedance on either side of the break

with a multimeter. Thus, it is neccessary to know the locations of all cable pieces and connectors,

and to know where each end of a cable piece is. To facilitate this, keep an accurate map of the

network with the room numbers of all connectors and ends of cable pieces shown. This map MUST

be kept accurate! Also, be sure to label each end of a cable piece with the location of the other end.

Once an Ethernet has been installed, management of the physical network consists of fixing .

problems with the cable or connectors, and insuring that no additions or modifications to the net w.

cause any segment to exceed the maximum allowed length of 500 meters. Careful measurement and

accounting of cable lengths are required so that the lengths of segments are always known. If the

i network must grow longer than 500 meters, a repeater may be used between cable segments, with

up to 1500 meters total length between any two taps on the network.
7.71

C.3. Ethernet Tranceivers

It has been our experience that all tranccivers we've tried have been able to intercommunicate with

each other on an Ethernet. We have experienced almost no problems with tranceivers, with only .. '

one failing so far during the lifetime of the net. In practice, they are all equivalent, and any

tranceiver should do just fine.

There are two main types of tranceivers. The non-intrusive "vampire" taps (DEC, Interlan) connect yo

to the coax through a probe that is inserted into a carefully drilled hole that reaches through the L/

various layers of the cable almost to the core. A special tool kit is required to install these taps, but -.

the taps are cheaper, and can be installed (carefully) on a live network with no disruption.

The connectorized taps (3Com) have female coax connectors on either end, and are attached to the

network by screwing on cable pieces with male connectors. They are more expensive than the .

vampires.

Al tranceivers are compatable with all Ethernet interfaces with one exception; if the Ethernet

interface conforms to the IEEE 802.2 specification, a tranceiver that also complies with this ,

specification is required. The only difference between tranceivers that comply with IEEE 802.2, and 0

those that do not, is the capability of the IEEE tranceivers to loop back signals just before they reach

the coax, to allow for complete testing of the interface by operating system software before

enabling the interface for network I/O. Be sure to use IEEE 802.2 tranceivers with interfaces that

require them. Otherwise, any tranceiver will do.
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CA. Ethernet Interfaces

The Cronus project has had a lot of experience with various vendors and their Ethernet hArdware.
A list of interfaces and associated comments follows:

3Com

This product provides a relatively low-capacity Ethernet interface. It is low-
capacity primarily because it is not a DMA device, and because it requires that the
CPU handle most of the details of the Ethernet data-link prctocol such as the
collision handling algorithm, including computing binary exponential backoff times.
It thus consumes considerable CPU resources just in moving frames onto and off of
the interface's on-board memory.

The requirement that the CPU perform most of the Ethernet protocol means that
device drivers for this interface are relatively complicated. An in:orrect,
misbehaved implementation can also wreak various amounts of havoc with
communication on the net. On the other hand, because the capabilities of the
interface are so closely tied to the device driver, it is possible to provide a very
capable interface, including such features as arbitrary numbers of multicast

6 addresses recognized, etc.

Interlan

Al Interlan interfaces use a daughter board (called the NMIOA) which actually
implements the Ethernet data-link protocol. Interfaces to specific processor busses are
in essence adapter cards which interface the NM1OA to the specific system. The
NM10A has substantial on-board buffering for incoming packets, lessening the
chances t.at packets will be dropped. Interlan interfaces use DMA transfers to move
data into and out of main memory, and thus offer higher performance with less CPU
oveihead than the 3Com interfaces. The Interlan boards offer self-test diagnostics,
and are able to recognize up to 8 multicast addresses in hardware. I have heard that

Interlan also offers an intellegent interface board that implements ARP/IP/TCP in
firmware. This technique holds the promise of off-loading a significant amount of
operating system overhead from system CPUs, and placing it on specialized
hardware.

MienilInterlan NMIOA

The Mieni is a custom interface designed and implemented in the early Ethernet days
to connect C/70s to the Ethernet. There are only four in existence, and maintenence
is quite difficult and expensive. It uses the Interlan NIOA daughter board to
implement the Ethernet protocol, and interfaces this board to the NBB processor.

Building and debugging the Mieni board took a very long time, and was quite
expensive. In general, custom Ethernet interfaces are probably a bad idea, unless it is
very important to put a machine on the Ethernet, and there are no comimerciai

* interfaces available. Possible alternatives to custom Ethernet interfaces nigh,
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include a front-end processor with some form of high-speed communication with the

host.

DEC DEUNA

This IEEE 802.2 interface requires an IEEE 802.2 tranceiver, and to be safe, should
p;obably be used only with a DEC tranceiver. It is a DMA device, and seems to

perform well, with no unusual problems. These interfaces have been used by the
BBN Division 4 Computer Facility to connect VAX timersharing systems to the
Ethernet; the Cronus project itself has no experience with them.

Excelan

This company is relatively new to the Ethernet interface market, and seems W 'ffer
fairly high-performance interfaces that may be configured as intelligent interfaces
i, plementing ARP/IP/TCP in firmware. These boards are downloaded with their
protocol software from the host CPU. and thus may be customized to perform any
desired high-level protocol. We have only recently begun to use these deviL... Cn the

Cronus project to provide Ethernet access for the MassComp GCE. Offloading the
network protocol processing to the network interface board might provide
performance improvements when compared with the existing general purpose, single
processor implementation.

Sometimes, the choice of Ethernet interface will be predetermined, if there is only one manufacturer
for the machine, or if the Ethernet interface is bundled in with the rest of the system's hardware.
However, if there is a choice possible, buy Ethernet interfaces from reputable companies, that
perform at least the Ethernet data-link protocol in hardware. New intelligent interfaces hold the
promise of substantially reducing the overhead of connecting to a network, but we do not have

sufficient experience yet to confirm the performance claims.

C-5. The Address Resolution Protocol

The Ethernet data-link protocol provides for addressing of individual hardware stations on the
locally connected physical cable, of groups of stations (multicast), and of all stations (broadcast).
Higher-level protocols such as IP also provide for addressing. There must be a technique for
mapping higher-level protocol addresses into 48 bit Ethernet station addresses. This may be done in

several ways, the simplest of which is a static table. For small networks serving a dedicated role
with a fixed number of well-known hosts, a static table would be a sufficient mechanism for address
mappings. For the more typical service network, a dynamic discovery procedure if; preferable.

The Address Resolution Protocol, (ARP, [9]) is a standard technique for dynamically mapping
higher-level protocol addresses to the Ethernet's (or any other broadcast network's) station addresses.
Hosts on the Cronus Ethernet must correctly implement ARP to communicate with other hosts on
the net. Greatly simplified, the basis for the protocol is that a host that must identify the Ethernet
station address corresponding to a higher-level protocol address broadcasts an ARP request, and
receives a response with the required address translation from the destination host. Translations are
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stored in a table, so that future packets bound for the destination are address mapped without
resorting to ARP. As an optimization, all ARP implementations on an Ethernet that receive a
broadcast request update their table entries for the source of the request, making it unneccessary for
these hosts to use ARP to translate this host's address in the future.

Tb'--.h the basic idea of ARP is quite simple, in practice, the protocol poses some tricky
implementation issues. In addition, the protocol has some problems intrinsic to its algorithm that
can cause trouble.

One common ARP implementation error is improper handling of ARP requests for address mappings
of higher-level protocols not supported by a host. A host must silently throw away any ARP
request for translation of a higher-level protocol which it doesn't implement. Printing error
messages, saving the sender's mapping in the translation table, or any other action is incorrect. This
bug seems to crop up in implementations that were developed in an environment that has only IP as
a higher-level protocol on top of raw Ethernet. ARP can enable multiple logical networks using
different higher-level protocols to coexist on an Ethernet. This problem first appeared when the
CHAOS protocol LISP machines were first installed on the Ethernet.

Anothe: 1s-oblem is intrinsic to ARP itself, and is identified as a problem in [9]. This problem occurs
when an Ethernet sta io address is reassigned to a different host (usually by swapping Ethernet
controllers for testing purposes). Hosts which have already acquired the translation for the host
whose address has just been reassigned retain the outdated mapping until the reassigned host
broadcasts an ARP packet with the new address, updating the translation tables. !ntil this ui.az
occurs, packets cannot be routed to the reassigned host from hosts which have -quired the old
mapping. The designers of ARP assumes that reassignment of Ethernet addresses is q4 lte uncommon
so that the problem can be ignored. It has been our experience that one of the best ways to debug
Ethernet hardware is by swapping identical parts for suspected problem components, and seeing if
the problem goes away. This type of substitution debugging is to some extent stymied by the
inability of ARP to cope with changing hardware addresses for hosts.

This problem can be corrected in ,everal ways. One way is to age entries in the address translation
table, so that communication fa 'ure doesn't last until a reboot of the system with faulty table
entries. Another technique for correcting this problem is a method for manually purging bad
entries from the translation ta- :, or clearing the table outright. This second solution is difficult for

, a non-technical person to use, a "!d would likely have to be performed by system maintainers. Other
techniqueq that can help with *his problem include having higher-level protocols purge translation

*} table entries of hosts for w'.,ch a connection cannot be opened, or having newly booted hosts
broadcast an ARP request fo: themselves, thus resetting the translation tables of all hosts receiving
the broadcast.

d
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C.6. Transmitting IP Datagrams On An Ethernet

Mn'zt i-lemrnr!tati n ,f IP on an Ethernet conform to [10]. A standard fo, encapsulating IP

datagrams on on IEEE 802.2/802.3 network has also been defined, in [11]. The Cronus Ethernet uses

the Ethernet encapsulation. The 4.2 BSD implementation for the VAX uses a non-standard ,6 i

encapsulation of IP in Ethernet frames called a 'trailer encapsulation', for performance reasons [121.
Use of trailers on the Cronus Ethernet has been eliminated, by patches and bootstrap
parameterization on affected systems. Though performance may be increased somewhat between 4.2
systems using trailers, the inability to communicate with other systems seems too great a price to

bear. %

C.7. Internet Broadcast

The Ethernet is inherently a broadcast medium, since all stations on the Ethernet "hear" all :"'
transmissions. The Ethernet controller hardware on cach host discards all packets not litended for

that host, as determined by the Ethernet destination station address in the Ethernet header of the
packets. rhere is a single assigned Ethernet address, consisting of 48 bits all ones, that is received by

all Ethernet controllers regardless of their station address. This special address, called the Ethernet
broadcast address, may be used to direct a rucssage to ali hosts on an Ethernet simultaneously. . -.

Such a facility is quite useful for many applications. "W

A- with specific station addresses, there trust be a mapping from some higher-level protocol address A.N

to the Ethernet broazcast address. ARP is not needed to translate this address however, because the

mapping is standard and does not change. A standard has been specified in [10, 11), and reiterated in 0

[131 in which the host part of the 32-bit IP address on that net is all binary ones. For class A v
networks, the IP broadcast address on that network is of the form X.255.255.255, for class B
networks, X.X.255.255, and for class C networks, X.X.X.255. All broadcast IP packets on an .

Ethernet must have the IP broadcast address in their IP destination address fields.

The Ethernet controller hardware takes care of recognizing the Ethernet broadcast address, and
passing packets received from that address to higher-level protocols. IP must then recognize that it

should receive packets addressed to the IP broadcast address, rather than flagging such packets as IP
address errors. IP then hands the packet up to still higher-level protocols. If a host recognizes a

non-standard IP broadcast address, it will iot be able to broadcast to the hosts on the net meeting the
standard, because these hosts will discard the non-standard host's broadcasts as not addressed to them.

Conversely, the non-standard host will not receive broadcasts from standard hosts for the same

reason.

Unfortunately, 4.2 BSD Unix and its derivatives, the most common type of network software on the
Cronus Ethernet, uses a non-standard IP broadcast address with the host part of the IP address zero,
rather than all ones. These hosts cannot communicate via broadcasts with the hosts on the Cronus ,-

Ethernet that observe the standard. To make matters worse, the 4.2 BSD implementation acts as a "

gateway for packets it receives that are not addressed to it. Using a simplistic and faulty algorithm
for gatewaying packets, the 4.2 BSD implementation assumes that the broadcast packets it receives ,

that do not use its non-standard broadcast address are actually packets to be gatewayed to another
network. Not noticing that the source and destination networks are the same, the software attempts
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to forward the packet back onto the Cronus Ethernet. Luckily, the ARP request to translate the
correct IP broadcast address is not responded to, and the forwarding fails. This problem results in

l.ge numbei of unneccessary ARP request packets on the network, however.

It has been necessary to either replace or patch the 4.2 BSD Unix network software, to implement

the standard IP broadcast address on these systems. On VAX systems, the BBN network software has
replaced the 4.2 BSD software, providing the correct address. On SUN workstations, a special

version of the Unix kernel that has been patched with the correct broadcast address has been

produced, and now runs on SUN workstationi on the Cronus network. The Wollongong Group

TCP/IP implementation for VMS, a 4.2 BSD derivative originally used the non-standard address. In

response to our requests, they have provided a version which can be configured to use either the IP

or Berkeley 4.2 standard broadcast address.

To partially cope with the problems of the non-standard IP broadcast address, currently on the

Cronus Ethernet, hosts that are able to will accept broadcast packets received with the non-standard 0

address, but will only use the standard address for their own broadcasts. It is hoped that soon, no
non-standard implementations will be on the Cronus Ethernet, and we can revert to having a single,
correct IP broadcast address known and used network-wide.

4I

C.S. Internet Multicast

The EtherneT also supports a directed broadcast, or multicast facility, in which a subset of the hosts
on . Ethernet receive packets addressed to a special station address taken out of a reserved set of
addresse. Though this facility would prove quite useful for certain applications, it is currently not

used on the Ccnus Ethernet because of anticipated operational issues.

Differer!t Ethernet controllers offer varying amounts of hardware support for recognizing multicast
addresses, and thus, it is a design issue how to map an unlimited IP multicast facility onto the
limited support provided by the h,.dware. One technique for providing such a multicast facility is

described in [14].

C.9. The IP Layer and Gatevi. tys

Local-area networks such as t e Ethernet gain considerable utility by being tied into the Internet
through a gateway. The C onus Ethernet has a three-legged gatewa7 &nnecting it to the

ARPANET and the BBN Fiber !t.

When a host on an Ethernet eommunicates through a gateway with a host on the ARPANET, the

mismatch of maximum packet sizes between the two networks causes large Ethernet pacKets to be
fragmented at the gateway before being forwarded onto the ARPANFT. Fragmentation can cause a

substantial reduction of throughput, or communication failure between two hosts, so it may be
advisable for a host to use smaller packets when communicating with another host not on the local
Ethernet. These losses from fragmentation are due to a combination of the speed mismatches

between the networks, the unreliable transmission of fragments, and the 8 packet in transit limit 0
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between two hosts on the ARPANET. These factor.. combine to make fragmentation, originally
designed as a technique for facilitating such inter-network communication, a very questionable
technique. In addition to packet fragmentation, the mismatch of maximum packet sizes causes a
buffer allocation problem in the gateway, which is an LSI-11 with only a limited amount of
memory. The gateway can either allocate several different sizes of buffers for the different sized
packets it can receive from its networks, or allocate all buffers large enough for the laroest packets
it can receive from any network. In the first case, memory fragmentation can result in inefficient
use of buffer memory, and in the latter case, large buffers used for small packets also results in
inefficiencies.

Since fragmentation is undesirable, and gateways are strapped for memory as it is, there is an
incentive for administratively reducing the size of packets on an Ethernet to match the packet size ., .

of networks on the tar side of a gateway. This approach has the benefit that inter-network ,.
communication becomes more reliable when the packets take an unusual or circuitous route to their
destinations. The drawback to this approach is that there is a published standard in RFC-894 which
requires gateways to accept full-length packets, and fragment them if neccessary. In a very
herogeneous environment such as the Cronus Ethernet, there will be (and are) hosts for which the
maximum transmission unit for the Ethernet cannot be conveniently made smaller. These are hosts
that use vendor-supplied network implementations for which we have no source code, and which ":
are not dynamically configurable. These hosts are for the must part unable to communicate off of -.-

the local network. In addition, since the per-packet obverhead of TCP/IP on most hosts seems fairly -.

constant over a range of packet sizes, actual throughput between hosts is almost linearly related to
the packet size in use. Further benchmarking is needed to verify this conclusion, however.

Ultimately, the only solution to these problems is enhanced inter-network protocols that deal
directly with them. In the meantime, it has been our experience that the communication problems '

caused by use of full-sized packets on the Cronus Ethernet are not severe enough to justify
administratively reducing the packet size on the network, with consequent problems for some hosts,
and reduced performance in intra-network communication.

A discussion of these and other related issues may be found in [15]. Though there is currently no " 0
evidence that the Cronus gateway is under an unduly heavy load, or is dropping a disporportionate
number of packets, continued care has been necessary to insure that patterns of usage do not cause ', "

the gateway performance to degrade.

C.10. Network Applications and Ethernet Broadcasts

The broadcast facility of the Ethernet has proven to be very useful in a number of applications,
ranging from simple statistics and 'whos on the machine' daemons, to object location mechanisms for
the Cronus Distributed Operating System.

Several characteristics of broadcasts limit their usefulness. These are their unreliable transmission,
overhead on all hosts on the net, and their limitation to hosts co-located on a single Ethernet. All of
these problems have been solved by Cronus, or at least minimized.
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Unreliable transmission of broadcast packets, usually via UDP, has not been a problem, for the most
part. The Ethernet is a surprising'y reliable transmission medium, and even with no end-to-end
acknowledgements and retransmissions available, broadcasts are ordinarily received correctly by all
hosts on the net. Broadcasts are lost usually from overloaded Ethernet interfaces on individual
hosts, rather than from garbling of the message itself on the Ethernet. Our current approach to
managing the unreliability of broadcasts has been to design our applications to be tolerant of some
loss of broadcasts, rather than to implement a costly and complicated simulation of reliable
broadcast using other reliable transmission techniques.

The overhead of broadcast packets on hosts that are not interested in them (ie. no program waiting
on the UDP socket) is a problem that has not been fully solved on the Cronus Ethernet. The
incorrect broadcast address used by some SUN workstations causing a flood of broadcasted ARP
requests results in a substantial increase in the number of broadcasts on the Cronus Ethernet. Once
this problem has been resolved, it will be time to do some performance benchmarks to determine
exactly the penalty for too many broadcast packets on the net. "

The limitation of using broadcasts only within the boundaries of a single local network has been
eliminated using a Cronus component called the broadcast repeater. This component is described in
[16]. Briefly, the broadcast repeater consists of a pair of processes on hosts residing on different
networks. These processes are linked by a TCP connection, and broadcast packets are relayed over
the TCP connection for rebroadcast on the non-originating network. Packet filters insure that only
the packets that are truly important get rebroadcast.

C.11. Telnet and Ethernet Terminal Concentrators

In the course of bringing up TCP/IP on standalone servers based on the 68000 CPU, called GCEs, the

Cronus project produced a very effective Ethernet terminal concentrator as a test of the protocol
implementation. This terminal concentrator provides telnet access to any host on the Internet,
provides up to 4 active connections pei aser, and services 8 users simultaneously. It has excellent
performance, with no discernable delay imposed by the implementation, or the network
communication. In daily use for nearly a year, this terminal concentrator has become the preferred
network access mechanism for a iumber of Cronus project members.

One important lesson learned f7 )m use of this terminal concentrator is that multiple connections per
user is such a useful feature hat it should be a required feature for any terminal concentrator
supplied by an outside vendor

C.12. Network Administration

A forum for the users of a network to find out about changes and hold technical discussions seems
to be desirable in administering an Ethernet. Coordinating the installation of new hosts, changes to
the network backbone, and testing of new network implementations has been greatly facilitated by
a mailing list, on whicn interested parties can find out about administrative schedules.

-48-

-.. " "-
%

- ~ ~~ ~ v'~ 'N ~i '



BBN Laboratories Inc. Report No. 6183

C.13. Network Monitoring and Control

The different host types in use on the Cronus Ethernet offer varying amounts of monitoring and

control over their use of the Ethernet. Unix systems offer the netstat command, which details the

higher-level protocol connections currently established with other systems. C/70 systems have in

addition the etherstat command. which presents Ethernet usage statistics such as the collision rate,
the transmit and receive rates for both specifically addressed and broadcast packets, and the rates of
various detectable transmission errors such as frame misalignment and CRC errors. Many statistics

that might prove useful for tuning performance are not available, however, such as the IP fragment

receive rate. The gateway fragmentation rate may be had from gateway statistics collected by the

gateway maintainers. Many other useful statistics are available from this source as well. Address (. ,..

translation tables may be displayed on a number of systems, revealing the causes of certain problems ...

with ARP.

When debugging network communication problems, packet printers are quite useful. A packet 0

printer is a prog.,tm that eavesdrops on the network, and prints the protocol fields and data from
packets selected by user-specified filters in an easy to read, formatted style. Such programs often
reveal the causes of network failures when no other technique exists for tracking down the
problem. Care must be taken in allowing people to run packet printers however, since data in

Ethernet pockets is not encrypted, and peoples' passwords and the like are transmitted in the clear

over the network constantly. The Cronus project has two packet printers, one that runs on the

C/70 and is able to display most packets, with the exception of ARP requests and replies. Another

packet printer runs standalone on the GCE, and can print any packet on the net.

The various hosts on the Cronus Ethernet provide different degrees of control over the address
translation tables used by ARP. Control over these tables is a useful feature, since it can eliminate 0
the need to reboot a system to clear bad translations, and cin make the choice of broadcast address

dynamic. In addition, the C/70s and GCEs have the ability to register multicast addresses, which in

conjunction with the table manipulation commands available, make Ethernet multicast possible on
these hosts.

C.14. Broadcast Networks and Misbehaved Hosts

On a broadcast network such as the Ethernet, misbehaved hosts can cause substantial problems for

other hosts on the network, and even cause complete communication failures or host crashes. An 0

example of this type of dramatic network failure occurred when a faulty Unix kernel was installed
on a SUN workstation during a Cronus demo. The faulty kernel had been modified to map the
standard Internet broadcast address to the Ethernet broadcast address, but had not been modified to

recognize incoming packets addressed to the standard Internet broadcast address as broadcast packets.
Both modifications are neccessary for the kernel to use the correct broadcast address. This partial
modification caused the SUN workstation to assume that received broadcast packets using the -

standard broadcast address were in fact not meant to be received locally. The 4.2 BSD network

implementation will act as a gateway for packets it receives that were not destined for the local
host. Because the kernel had been modified to know the address translation for the standard

broadcast address, the system did not attempt to get the address translation using ARP, and fail.

Instead. it successfully rebroadcast the packet back onto the Cronus Ethernet, heard its own
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rebroadcast, and rebroadcast again, etc. This caused a continuous stream of identical broadcast

packets to be emitted from the SUN, nearly bringing down many hosts on the network, and at any

rate, fouling Cronus communication up completely.

New network implementations, or changes made to existing implementations may often have bugs

in them that can directly affect the other hosts on the network. Some controlled means for
introducing such new implementations must be used, if unfortunate failures at inopportune times
are to be avoided. On a full service network, such considerations would be even more important.

C.15. Performance

There has been a lack of significant benchmarking on the Cronus Ethernet to back up claims such as
that IP fragmentation at the gateway is acceptable, if the alternative is decreased performance and

trouble for unconfigurable hosts. Some performance information is available in the form of day to
day experience with the network, however. In general, the 10 megabit/sec. bandwidth of the
Ethernet has barely been scratched by the collection of 30-some hosts, including some quite
powerful systems, on the Cronus Ethernet. We have found that an Ethernet collision is quite a rare

event, indicating that the fears people have of severe deterioration of performance under current
loads are unfounded. It would be impractical to actually have as many hosts on a single Ethernet
segment as it would take to significantly overload it, because of the 500 meter length limit on a
segment, and the realities of building design, computer sizes and costs, etc. using current technology.

Even though the Ethernet cannot be easily overloaded, there are two important performance
characteristics that should be considered; transmission delay, and end-to-end throughput. Because of
the high bandwidth of the network, most delay is incurred in the host operating system software,

both transmitting and receiving the packet. Most systems are able to transmit or receive a packet
somewhat slower than they would be able to transfer a similar amount of data to or from a disk.

Thus, the end to end delay is small, but still not negligable. Throughput is likewise limited by the
operating systems' ability to quickly move data through the network protocol software. Thus, most
systems have not reached the performance level necessary for them to be primarily bound by disk

bandwidth.

C.16. Conclusion: The Importance of Standards

With the number and variet T of hosts on the Cronus Ethernet, it is surprising that for the most
part, intercommunication am ng all the systems is quite effective and reliable. To a large extent this
compatability is a direct result of the close adherance to published standards that most
implementations have followed. In retrospect, nearly all of the problems we have had in the course
of building and maintaining this network have been the result of some violation of a published
standard that other hosts on the network have followed. Though at times, standards have not been
far-reaching enough, or have proven ineffective at solving real-world problems, or have even
introduced problems that did not exist before the standard was adopted, interoperability among
diverse host types would not be possible without them.
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No matter how distasteful some standards may be to implement, or what problems they might cause,
the anarchy that non-standard implementations cause cannot be tolerated. When a standard is too
onerous to implement, consumes too many resources, or causes problems not foreseen when the
standard was designed, the correct approach to solving the problems is to revise the standard, and

implement the revisions. This process can take a long time, and may not always provide an optimal
solution, but special modifications or ad-hoc changes to standards will almost certainly insure that
interoperability cannot be achieved.

Overall, our experience with the Ethernet has been a positive one. When the Ethernet was chosen as
the local-area network technology on which Cronus would be implemented, it had not yet evolved
into the de-facto industry standard that it is today. In retrospect, it is fortunate that the Cronus
project chose the 'winner' of the local-area network competition, since the wide range of available
products and implementations make the task of porting Cronus to other architectures and systems
much easier.
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Of
Rome Air Development Center

RADC plans and executes risearch, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C31) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagn-etics, and propagation, and electronic
reliability/maintainability and compatibility.
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