Burroughs

PRICED ITEM

9

B 6900 SYSTEM

REFERENCE MANUAL

Printed in U.S.America

July 1981

Form 5010986

f Burroughs @

B 6900 SYSTEM

REFERENCE MANUAL

Copyright © 1981 , Burroughs Corporation, Detroit, Michigan 48232

\ PRICED ITEM

Printed in U.S.America July 1981

Form 5010986

Burroughs believes that the information described in
this publication is accurate and reliable. and much care
has been taken in its preparation. However. no respon-
sibility, financial or otherwise. is accepted for any con-
sequences arising out of use of this information.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Warning: This equipment generates. uses. and can radiate radio frequency
energy and if not installed and used in accordance with the instructions
manual, may cause interference to radio communications. As temporarily per-
mitted by regulation. it has not been tested for compliance with the limits for
Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules.
which are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause interference
in which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Correspondence regarding this publication should be forwarded using the

Remarks form at the back of the manual. or may be addressed directly to

TIO West Documentation. Burroughs Corporation. P.O. Box 4040. El
Monte, California 91734. U.S.A.

B 6900 System Reference Manual

LIST OF EFFECTIVE PAGES
Page Issue Page Issue
Title Original 545 thru 5-53 Original
il Original 5-54 Blank
i Original 5-55 Original
iv Blank 5-56 Blank
v thru xxi Original 5-57 thru 5-71 Original
Xxii Blank 5-72 Blank
xxiii thru xxiv Original 5-73 thru 5-88 Original
1-1 thru 1-5 Original 6-1 thru 6-7 Original
1-6 Blank 6-8 Blank
1-7 thru 1-26 Original 7-1 thru 7-33 Original
2-1 thru 2-34 Original 7-34 Blank
3-1 thru 3-18 Original 8-1 thru 8-12] Original
4.1 Original 9-1 thru 94 Original
42 Blank 10-1 thru 10-8 Original
4.3 Original 11-1 thru 1142 Original
44 Blank A-1 thru A-S Original
4-5 thru 494 Original A6 Blank
5-1 thru 5-3 Original B-1 thru B-6 Original
54 Blank C-1 thru C-2 Original
5-5 thru 543 Original D-1 thru D-2 Original
544 Blank _ Index-1 thru Index-7 Original

Index-8 Blank

5010986 i

Section

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS
Page
INTRODUCTION o o o o e o o e o s s xxidii

SYSTEM DESCRIPTION o o o o 1-1
General . . . e e e e e e e e e e e e e e e s e e 1-1
Scope of This Manual e e S |
B 6900 Hardware System Organxzatlon R e e e e e e e e e 1-1
B 6900 System Hardware Module Orgaruzatlon e e e e e e e 14

B 6900 Module Interfaces. . . e e e e e e e e e s 14

B 6900 Central Processing Unit Cabmet C e e e e e e e e e e 14
Data Processor Module e e e e e e e e e e 14
Message Level Interface Processor (MLIP) e e e e e e e e e e e 18
Memory Control Module e e e e e e e e e 19

B 6900 Maintenance Processor and System Dlsplay e e e e e e 1-9°
Display Control Logic e B

B 6900 Central Power Supply Cablnet e O B
Input Qutput Data Communication (I0DC) Cabmet S S 4

B 6900 Memory Cabinets .. L8

B 6900 Operators Display Console . 123

DATA REPRESENTATION « .« o v o o o .. 2-1
General L L oo oo s e e e e e e e e e e 2-1
uucuxal bhd,fdf. e e e e e e s e s e e e e e e e e e e . e e e e 2-3
NumberBases. oo 24
NumberConversion e 25
Decimal to Nondecimal ... 26
Nondecimal toDecimal 2-6
Nondecimal to Nondecimal . . e e e e e e e e e e e e e e 27
Word Types and Physical Word I.ayouts S 1)
Character TypeWords ... 210
Operands 2 |
Single-Precision Operand S § |
Double-PrecisionOperand .. 212
LogicalOperands ... 214
DataDescriptors o . . e e e e e e e e e e .. 2415
Step IndexWords00 e e e e s 217
ftweue "Gldb .. e 2-18
Indirect Reference Words O [
Program ControlWords o . .. L 000222
Mark Stack ControlWords .. 223
Interrupt ParameterWords .. 225
PlParameter ¢o .o e .. 226
P3Parameter o e e e e e e 226
P2Parameter e e e e e e e e e e oo . 2926
Return ControlWords L231
Program Words (Code Words) ¢ X
Program Segments and the Segment Descnptor 2 9
Top-Of-Stack Control Words X |

C
w

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page

3 STACK AND REVERSEPOLISHNOTATION 31
The Stack e e e e e e s e s e s e e 3-1
Base and Limit of Stack .. e e e e e e e e e e e e e e 32
Bi-Directional Data Flow in the Stack e e e e e e e e e e e 32
Stack PushDown 00000 32
Stack PushUp . . . e e e e e e e e e e e e e e e 32
Double-Precision Stack Operatlon C e e e e e e e e e e e e e e 33
Top-Of-Stack Register Conditions .. 3-3
Stack Adjustments L L L L L L L L L L 33
Data Addressing oo e e 35
Data Descriptor e e e e e e e e e 35
Presence Bito L. 35
IndexBit Lo . o000 35
InvalidIndex o L .. L. 35
ValidIndex L 0o L0 35
ReadOnlyBit. 36
CopyBit L oo s s e e e e e 36
Reverse Polish Notation . . . e e e e e e e e e e s 36
Simplified Rules for Generation of Pohsh Stnng e e e e e e e 36
Polish String . . . e e e e s 38
Rules for Evaluating a Pohsh Stnng e e e e e e e e e e e e e 3-8
Simple Stack Operation o0 38
Program Structure in Memory .. 31
Local Memory Area Allocation . . . O 25 1
Stack-History and Addressing- Envuonment L;sts < &
Mark Stack Control Word Linkage .. 313
Stack Deletion 313
Relative-Addressing . . . e N ke
Base of Address Level Segment e S 1!
Absolute Address Conversion. . . < S
Multiple Variables With Common Address Couples < A 1)
Address Environment Defined 315
Mark Stack Control Word Linkage 315
Stack History Summary . . e S
Multiple Stacks and Reentrant Code e S 4
Level Definition 317
Reentrance .00 ... 317
Job-Splitting L L . oL L Lo o .37
Stack Descriptor L . L . 0.0 o e e e e 37
Stack Vector Descriptor .. 318
Presence Bit Interrupt 318

4 SYSTEM DISPLAY ANDCONTROL« 4-1
General Information . . . e e 4-1

Display and Control With MDP Cabmet Installeu e e e e e e 4-1

MDP Status Display Panel. o000 L. 4-1

MDFP Display Panel One Signals L L. a7

MDP Display Panel Two Signals. .. 4.7

MDP Display Signal Definitions o ... 4.7

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page

4 SYSTEM DISPLAY AND CONTROL (Cont)
B 6900 System Control Panel . . . R .S |
B 6900 Maintenance Control Panel . 457
B 6900 Maintenance Processor Control Panel 460
B 6900 Soft Display . . . - ¥ 9]
6500 Soft Display Program Conttol L. L. 2
ODT Screen Format . . - ¥ 993
ODT Screen Command Structure and Operanon - I %)
Syntax Diagram Rules . . . Y W7
Soft Display Command Categones . 7 Y. |
Soft Display Program General Commands 465
<SET> and <RESET>Commands . 465
<REGISTER> Commands . 465
System Control Commands 472
<PULSE>Command ... 473
<STEP>Command 473
<ARCS>Command. L. 473
<HALT> Command ... 4T3
<STOP> Command O R &}
Maintenance and Event Control Commands Y &y &
<AAIF>Command. 474
<ALTF>Command ... 474
<CHLT>Command < 474
<CPTF>Command. 474
<CS8TP>Command 474
<EVNT>Command 474
<LOCL>Command. 474
<OCTAL>Command 474
<SAFE>Command. 474
<SECL>Command. 475
Families Control Commands 476
Functions Commands .. 478
<ADP> Command L . L. L. 478
<BRIGHT> Command. .. 478
<CAPTUR> Command . 479
<CLRIC> Command 479
<CLRMM>Command 480
 Command . 480
<DIFF>Command o o oo 4-81
<DO-UNTIL> Command .. 48]
<DUMP> Command. 48
<END>Command . 483
<EXEC> Command. 483
<FAMILY> Command. .. 484
<HELP> Command D T T . |
<INFO>Command. 485
<INSERT> Command« 4-85
<NOSTEP> Command. 485
<NZDATA>Command« 486
<PROGRM> Command .. . 487

5010986 | vii

Section

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM DISPLAY AND CONTROL (Cont)

<RDHDP> Command .
<RDIC> Command .
<RDMM> Command
<RESTOR > Command

<RETURN> and <SAVE> Commands .

<REVERS> Command
<SAVE> Command

<SMEAR > Command .
<STATUS> Command .

<USERFAM> Command .

<WAIT > Command
<WRIC> Command
<WRMM> Command .
<**> Command .
<--> and <++> Comm:.

SYSTEM CONCEPT.
General .
Data Processor

ands .

Operator Families
Program Controller .
Look Ahead Logic .
integrated Circuit (iC) Memory . .
Address Adder and Residue Test Logic
Transfer Controller . .o
Stack Registers
Internal Data Transfer Sectlon
Mask and Steering
Mask and Steering Example
Stack Controller . .
Arithmetic Controlier .
Exponent and Mantissa Adders .
Interrupt Controller .
Interrupt Parameter Words
ATARM Interrupts . . .
ALARM Interrupt Descnptrons .
LOOP Interrupt . .
Memory Address Panty Interrupt .
Invalid Address Local Interrupt .
Stack-Underflow Interrupt
Invalid Program Word Interrupt .
Memory Address Residue Interrupt
Read Data Multiple-bit Interrupt
Invalid Address-Global Interrupt
Global Memory Not-ready Interrupt
HARDWARE Interrupts . .
HARDWARE Interrupt Descrlptrons .
PROM Card Parity Interrupt .
RAM Card Parity Error Interrupt .

Page

487
4-88
4-88
4-89
490
490
490
491
491
492
493
493
494
494
494

51
51
51
51
52
55
55

57

57

59

59

59
5-10
5-11
5-11
5-11
5-13
5-15
5-15
5-17
5-17
5-17
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-19
5-20
5-20

B 6900 System Reference Manual

TABLE OF CONTENTS (Coni)
Section

5 SYSTEM CONCEPT (Cont)
Bus Residue Interrupt .
Adder Residue Interrupt .
Compare Residue Interrupt
GENERAL CONTROL Interrupts .
GENERAL CONTROL Interrupt Descnptlons
Read Data Single Bit Interrupt .
Read Data Retry Interrupt
Read Data Check Bit Interrupt .
Address Retry Interrupt
EXTERNAL Interrupts
1/0 Finished Interrupt . .
SYLLABLE DEPENDENT Interrupts
SYLLABLE DEPENDENT Interrupt Classes
SYLLABLE DEPENDENT Presence-Bit Interrupts
SYLLABLE DEPENDENT Interrupt Descriptions .
Programmed Operator Interrupt . .
Memory Protect Interrupt .
Invalid Operand Interrupt .
Divide-By-Zero Interrupt .
Exponent Overflow Interrupt
Exponent Underflow Interrupt .
Invalid Index Interrupt.
Integer Overflow Interrupt
Bottom Of Stack Interrupt
Presence Bit Interrupt . .o
Data-Dependent PRESENCE BIT Interrupts
Procedure-Dependent PRESENCE BIT Interrupts .
Sequence Error Interrupt . ..
Segmented Array Interrupt
Interval Timer Interrupt
Stack Overflow Interrupt .
Confidence Error Interrupt
String Operators .
Memory Controller .
Control State/Normal State .
Message Level Interface Processor .
MLIP Control Operations .
I/O Device Control Operations .
MLIP Simplified Logic Circuits .
MLIP Interfaces .
MLIP To Data Processor Interfaces
MLIP To Micro-Module Interfaces .
MLIP To Peripheral Device Interfaces .
MLIP General Operating Characteristics .
Processor Timer Operation.
Time-of-Day Operation
Running Timer Operation .
Other MLIP Timer Operations
LOOP Timer . .o

5010986

Page

5-20
520
5-20
520
520
5-22
5-22
523
523
523
524
524
524
524
528
528
5-28
5-29
529
5-29
529
529
5-29
§.29

A

5-30
5-30
5-30
5-31
5-31
5-31
5-31
5-31
5-32
5-32
5-33
5-33
5-33
5-33
5-34
5-34
5-37
5-37
5-38
5-38
5-39
5-39
540
540
540

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page
5 SYSTEM CONCEPT (Cont)
INTERVAL Timer« v v v v v v ... 54
BASEBUSY Timer 54
READY Timer « . «o, 5
Peripheral Device Operation . - £ 2
Priority Sequencer Operations In The MLIP - - ¥4
I/O Operation Initiation Processes In The MLIP - -
MLIP Initiation of The COMMAND QUEUE Structure In Memory - T3
MLIP RAM Memory Operations P) |
Micro-stack Section of RAM Memory . ¥, ¥]
Data-storage Section of RAMMemory 5§35
RAM Memory Addressing. 55
RAM Memory Functions . . . - =]
1/0 Device Interface Processes in the MLIP . .32
MLIP CONNECT/DISCONNECT Sequences J « . « 553
MLIP Polling Operations . . . O
POLL-REQUEST DESCRIPTOR LINK Usage e X
RESULT-STATUS for POLL TEST Operation. 553
Polling Operation Status Reporting. 5587
Polling Operation BURST Data Sequence 557
MLIP Memory Operations. . . e v
MLIP 51-Bit Memory Cycle Operatlons . .
MLIP BURST Memory Operations. 558
Memory Operation Logic . 558
MLIP Memory Cycle Priority .. . 558
MLIP Peripheral Data Format . 558
MLIP Memory Word Format. 560
MLIP Barrelshifting I X
1/0O Device Operation Termination Process e v x|
IOCB RESULT AND STATEWord Usage 5463
MLIP Error Handling 563
Memory Organization 564
Memory Addressing 7.7 |
Global Memory and Global System Control . 7
Global System Organization e ¥
Physical Structure . . . C e e e o e oo 586
Elementary Global System Requlrements . 3
Logical Structure. . . T ¥
Processor Addressing in a Globa.l Svstem N T 3
Port Identification Addressing . 568
Logical Naming Identification . 568
System Memory Interface. 568
Memory Requestor e e e e e o oo 568
Memory Error Detection and Correctlon e
Memory Retry 574
Global Memory . . B Ry 2}
Global Systemn Control (Scan) Operatlons O W [3
Global SCAN-CUT ". |, e A 1S
Global SCAN-IN B
Typical Global System Control Operatlon . e i

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM CONCEPT (Cont)
Memory Storage Unit Port Interface .
Local Memory Port Interface Control Loglc
Global Memory Port Interface Control Logic

Global Memory Port Processor Status and Control Loglc .

Memory Tester Logic

PROGRAM OPERATORS
General . .
Syllable Addressmg and Syllable Idennﬁcatlon .
P and T Registers . e e
Operation Types .
Name Call .
Value Call .
Operators .

PRIMARY MODE OPERATORS
General .
Arithmetic Operators
Add (ADD) 80
Subtract (SUBT) 81 .
Multiply (MULT) 82 .
Extended Muttiply (MULX) 8F .
Divide (DIVD) 83
Integer Divide (IDIV) 84 .
Remainder Divide (RDIV) 85
Integerize, Truncated (NTIA) 86
Integerize, Rounded (NTGR) 87
Type-Transfer Operators .
Set to Single-Precision, Truncated (SNGT) CC .
Set to Single-Precision, Rounded (SNGL) CD
Set to Double-Precision (XTND) CE
Logical Operators
Logical AND (LANDY9O .
Logical OR (LOR) 91
Logical NEGATE (LNOT) 92
Logical Equivalence (LEQV) 93 .
Logical Equal (SAME) 94 .
Relational Operators
Greater Than (GRTR)8A
Greater Than or Equal (GREQ) 89 .
Equal (EQUL)8C
Less Than or Equal (LSEQ) 8B .
Less Than (LESS) 88
Not Equal (NEQL) 8D . .
Branch Operators
Branch False (BRFL) AO
Branch True (BRTR) Al .
Branch Unconditional (BRUN) A2 .
Dynamic Branch False (DBFL) A8.
Dynamic Branch True (DBTR) A9 .

Page

5-80
583
5-84
586
588

6-1
6-1
61
6-1
6-3
64
64
6-7

7-1
7-1
7-1
72
72
72

7-3

7-5
75
7-5
75
75
7-5
7-6
77
7-7
77
77
77
77
7-7
78
7-8
78
78

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)
Secticn Page

7 PRIMARY MODE OPERATORS (Cont)
Dynamic Branch Unconditional DBUN)AA 18
StepandBranch(STBR)A4 18
Universal Operators . . e X
No Operation (NOOP) FE O X
Conditional Halt (HALT)DF. 19
Invalid Operator (NVLD)FF 19
Store Operators . . . o X
Store Destructive (STOD) B8 e X
Store Non-Destructive(STON)B9 19
Overwrite Destructive (OVRD)BA 19
Overwrite Non-Destructive (OVRN)BB .70
StackOperators 0 c s e e e s s 110
Exchange (EXCH)B6 710
Delete Top-of-Stack(DLET)B5S v « « o« .« . . 710
Duplicate Top-of-Stack(DUPL)B7 .. 710
Push Down Stack Registers (PUSH) B4 110
Literal Call Operators . . . e A (1)
LitCallZero(ZERO)BO 1710
LitCallOne(ONE)B1 1710
LitCall8Bits(LT8)B2 v v v v v o110
LitCall 16-Bits(LT16)B3
LitCall48Bits(LT48)BE ™
Make Program Control Word (MPCW) BF. T
Index and Load Operators. . . . Y 5 1
Index (INDX) A6 . . . R 2 |
Index and Load Name (NXLN) A5 N A § |
Index and Load Value (NXLV)AD. 712
Load (LOAD)BD v i e 112
ScaleOperators e e e e e e e e e e e e e e T2
Scale Left (SCLF)CO 112
Dynamic Scale Left (DSLF)C1 712
Scale Right Save (SCRS)C4 0. 0 oo T12
Dynamic Scale Right Save(DSRS)C5 1713
Scale Right Truncate (SCRT)C2 . . Y 5
Dynamic Scale Right Truncate (DSRT) C1 N S k.
Scale Right Final (SCRF)C6 113
Dynamic Scale Right Final (DSRF)C7 . 1713
Scale Right Rounded (SCRR)C8113
Dynamic Scale Right Round (DSRR) 0, 3
Bit Operators Y 8
BitSet(BSET)96 e i e e e e LT3
DynamicBit Set (DBST)97«« . v113
BitReset(BRST)9E114
Dynamic Bit Reset (DBRS)SF .. .114

ChangeSignBit(CHSN)SE........................7-14
Transfer Operators . R 25 O

e ialOls

Field Transfer (FLTR) 98 O 5 U
Dynamic Field Transfer (DFTR)99 .114
Field Isolate (ISOL)9A « . . .« . .«114

Section

7

5010986

B 6900 System Reference Manual

PRIMARY MODE OPERATORS (Cont)

Dynamic Field Isolate (DISO) 9B
Field Insert (INSR) 9C . ;
Dynamic Field Insert (DINS) 9D

String Transfer Operators .

Transfer Words, Destructive (TWSD) D3 .

Transfer Words, Update (TWSU) DB .
Transfer Words, Overwrite Destructive (TWOD) D4
Transfer Words, Overwrite Update (TWOU) DC .

Transfer While Greater, Destructive (TGTD) E2
Transfer While Greater Update (TGTU) EA . .
Transfer While Greater or Equal, Destructive (TGED) El
Transfer While Greater or Equal, Update (TGEU) E9 .
Transfer While Equal, Destructive (TEQD) E4

Transfer While Equal, Update (TEQU) EC .
Transfer While Less or Equal, Destructive (TLED) E3 .
Transfer While Less or Equal, Update (TLEU) EB .
Transfer While Less, Destructive (TLSD) EO .

Transfer While Less, Update (TLSU) E8 .
Transfer While Not Equal, Destructive (TNED) E5 .
Transfer While Not Equal, Update (TNEU) ED .
Transfer Unconditional, Destructive (TUND) E6
Transfer Unconditional, Update (TUNU) EE

String Isolate (SISO) D5 coe

Compare Operators .

Compare Characters Greater Destructlve (CGTD) F2
Compare Characters Greater, Update (CGTU) FA .

Compare Characters Greater or Equal, Destructive (CGED) Fl
Compare Characters Greater or Equal, Update (CGEU) F9 .
Compare Characters Equal, Destructive (CEQD) F4
Compare Characters Equal, Update (CEQU) FC -

Compare Characters Less or Equal, Destructive (CLED) F3
Compare Characters Less or Equal, Update (CLEU) F

Compare Characters Less, Destructive (CLSD) FO .
Compare Characters Less, Update (CLSU) F8 .
Compare Characters Not Equal, Destructive (CNED) F5 .
Compare Characters Not Equal, Update (CNEU) FD .

Edit Operators

Table Enter Edit, DCStIUCthe (TEED) DO

Table Enter Edit, Update (TEEU) D8 . .

Execute Single Micro, Destructive (EXSD) D2 .

Execute Single Micro, Update (EXSU) DA .
Execute Single Micro, Single Pointer Update (EXPU) DD

Pack Operators

Pack, Destructive (PACD) Dl
Pack, Update (PACU) D9 .

Input Convert Operators

Input Convert, Destructive (ICVD) CA
Input Convert, Update (ICVU) CB .
Read True False Flip-Flop (RTFF) DE

Page

7-15
7-15
7-15
715
7-15
7.16
7-16
7.16
7-16
7-16
717
717
717
717
717
717
717
7-17
717
717
717
7.18
718

718

7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-20
7-20
720
720
720
7-21
7-21
7-21
7-21
7-21
7-21
7-21
722
7-22
7-22

xiii

Section

7

Xiv

B 6900 System Reference Manual
TABLE OF CONTENTS (Cont)

PRIMARY MODE OPERATORS (Cont)
Set External Sign (SXSN) D6 .
Read and Clear Overflow Flip- Flop (ROFF) D7
Subroutine Operators R
Value Call (VALC) 00 = 3F .
Name Call (NAMC) 40 =7F .
Exit Operator (EXIT) A3 .
Return Operator (RETN) A7 .
Enter Operator (ENTR) AB -.
Evaluate (EVAL) AC
Mark Stack Operator (MKST) AE
Stuff Environment (STFF) AF
Insert Mark Stack Operator (IMKS) CF
Enter Vector Mode Operators .
Vector Mode Enter Multiple (VMOM) E7
Vector Mode Enter Single (VMOS) EF

VARIANT MODE OPERATION AND OPERATORS
Escape to 16-Bit Instruction (VARI) 95 .
Variant Mode Operators
Read Central Processor Counter (RCPC) 9540
Running Timer Initialize (RUNI) 9541
Set Two Singies to Double (JOIN) 9542 .
Set Doubie to Two Singles (SPLT) 9543 .
Idle Until Interrupt.(IDLE) 9544 . .
Set Interval Timer (SINT) 9545 (Control State Operator)
Enable External Interrupts (EEXI) 9546 . .
Disable External Interrupts (DEXI) 9547
Write Time of Day (WT OD) 9549 .
Scan Operators .o .
SCAN-IN (SCNI) 954A
SCAN-OUT (SCNOQ) 954B
Control Universal Input Output (CUIO) 9S4C
Read Processor Identification (WHOI) 954E
Occurs Index (OCRX) 9585 . .
Integerize, Rounded, Double-Precision (NTGD) 9587.
Leading One Test (LOG2) 958B ...
Normalize (NORM) 958E .
Read Time of Day (RTOD) 95A7 .
Move to Stack (MVST) 95AF
Read Compare Flip-Flop (RCMP) 95B3
Set TAG Field (STAG) 95B4 .
Read TAG Field (RTAG) 95B5 .
Rotate Stack Up (RSUP) 95B6 .
Rotate Stack Down (RSDN) 95B7 .
Read Processor Register (RPRR) 95B8
Set Processor Register (SPRR) 95B9
Read With Lock (RDLK) 9SBA .
Count Binary Ones (CBON) 95BB .
Load Transparent (LODT) 95BC

Page

7-22
7-22
7-23
7-23
723
7-23
7-21
7-27
7-27
727
727
7-27
7-32
7-32
7-32

8-1
81
8-1
8-1
8-1
8-1
82
82
82
82
82
82
82
83
83
83
83
84
84
8-5
8-5
85
8-5
8-6
8-6
86 -
86
87
87
87
87
88
88

Section

8

9

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

VARIANT MODE OPERATION AND OPERATORS (Cont)

Linked List Lookup (LLLU) 95BD .

Masked Search for Equal (SRCH) 95BE

Unpack Absolute, Destructive (UABD) 95D1

Unpack Absolute, Update (UABU) 95D9 .

Unpack Signed, Destructive (USND) 95DO .

Unpack Signed, Update (USNU) 95D8

Transfer While True, Destructive (TWTD) 95D3
Transfer While True, Update (TWTU) 95DB .
Transfer While False, Destructive (TWFD) 95D2
Transfer While False, Update (TWFU) 95DA

Translate (TRNS) 95D7 .

Scan While Greater, Destructive (SGTD) 95F2 .

Scan While Greater, Update (SGTU) 95FA .
Scan While Greater or Equal, Destructive (SGED) 95F1 .
Scan While Greater or Equal, Update (SGEU) 95F9
Scan While Equal, Destructive (SEQD) 95F4

Scan While Equal, Update (SEQU) 95FC . .
Scan While Less or Equal, Destructive (SLED) 95F3 .
Scan While Less or Equal, Update (SLEU) 95FB

Scan While Less, Destructive (SLSD) 95FO .

Scan While Less, Update (SLSU) 95F8 .
Scan While Not Equal, Destructive (SNED) 95F5 .
Scan While Not Equal, Update (SNEU) 95FD

Scan While True, Destructive (SWTD) 95D5 |

Scan While True, Update (SWTU) 95DD .

Scan While False, Destructive (SWFD) 95D4 .

Scan While False, Update (SWFU) 95DC .

EDIT MODE OPERATION AND OPERATORS
General .
Edit Mode Operators

Move Characters (MCI‘IR) DF'

Move Numeric Unconditional (MVNU) D6

Move With Insert (MINS) DO

Move With Float (MFLT) D1

Skip Forward Source Characters (SFSC) D2

Skip Reverse Source Characters (SRSC) D3 . .
Skip Forward Destination Characters (SFDC) DA .
Skip Reverse Destination Characters (SRDC) DB
Reset Float (RSTF) D4 e
End Float (ENDF) D5 .

Insert Unconditional (INSU) DC

Insert Conditional (INSC) DD

Insert Display Sign (INSG) D9

Insert Overpunch (INOP) D8 .

End Edit (ENDE) DE

Page

88
88
89
89
89
89
89
8-10
8-10
810
810
8-10
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-12
8-12

Q19
o114

812
8-12
812

9-1
9-1
9-1
9-1
9-1

92
92
92
92
9-3
9-3
9-3
9-3
9-3
9-3
9-3
94

Xv

Section

10

11

xvi

B 6900 System Reference Manual
TABLE OF CONTENTS (Cont)

VECTOR MODE OPERATORS .

General . .

Limitations of Vector Mode .

Hardware Functions .
Primary Mode Enter Vector Mode Operators
Enter Vector Mode Operation .
Vector Stack Operators
Vector Mode Operator Codes .

Vector Operators .

Vector Branch and Vector Exrt Operators

B 6900 INPUT OUTPUT DEVICE OPERATIONS

MLIP General Information ..

UIO Subsystem General Information .

B 6900 1/0 Device Operation Processes .
MLIP-To-IODC Connection Sequence Address Word
MLIP-To-IODC Connection Sequence I/O Descriptor.
LPW Word For 1/O Descriptor .
MLIP-To-IODC Connection Sequence Descnptor Lmk Words
MLIP-To-IODC Connection Sequence IL.PW Word .
IODC-To-MLIP Connection Sequence .
IODC-To-MLIP Connection Sequence Global Prronty Word

IODC-To-MLIP POLL REQUEST Priority Resolution In The I0DC .
IODC-To-MLIP POLL REQUEST Global Pnonty Resoiution in The MLIP .

I0CB Organization and Word Layouts
I0CB Control Word
MLIP Control-Field Bit Deﬁmtrons
Valid Control-Field Bit Configurations
IOCB DLP Address Word . . .
DLP Address Word Field and Bit Deﬁrutlons .
Command Queue Header Pointer Word
IOCB Self Pointer Word .
I0CB DLP Command Pointer Word
IOCB DLP Result Pointer Word
IOCB DLP Command/Result Length Word
10CB Result Mask Word .
I0CB Result Queue Head Pointer Word
IOCB Next IOCB Link Word. . .
I0CB Current Data Area Pointer Word
I0CB MLIP Current I/O Length Word
i0CB MLIP State and Result Word . .
State and Result Word Bit and Field Deﬁmtlons .
I0CB 1I/O Start Time Word .
IOCB 1/O Finish Time Word .
Command Queue Organization and Word Layouts
Command Queue Control Word .
Command nnPllP Control Word Bit Deﬁmtlons
Command Queue Head IOCB Link Word
Command Queue Tail IOCB Link Word . .
Command Queue Horizontal Queue Head Pointer Word
Command Queue Horizontal Queue Link Word

Page

10-1
10-1
10-1

10,1

1V=a

10-2
10-2
104
10-5
10-6
10-8

11-1
11-1
11-2
11-6
11-6
11-7
11-7
118
i1-8
119
119
11-10
11-10
11-10
11-12
11-12
11-14
11-16
11-16
11-17
11-17
11-18
11-18
11-19
1120
11-20
11-21
11-22
11-22
11.23
11-23

- 1125
. 11-25
. 1126
- 1126
- 1127
- 11-28
- 1128
- 11-29
- 1129

Section

11

APPENDIX A.
APPENDIX B.
APPENDIX C.
APPENDIX D.

INDEX .

Figure

1-1
12
13
14
1-5
1-6
1-7
1-8
19
1-10
1-11
1-12
1-13
1-14
2-1
2-2

5010986

B 6900 System Reference Manual

B 6900 INPUT OUTPUT DEVICE OPERATIONS (Cont)
Horizontal Queue Organization and Word Layouts
Horizontal Queue Array Header Word .
Horizontal Queue Header Word Field and Bit Deﬁmtlon
Horizontal Queue Head Word
MLIP Commands .
Result Queue Organization and Word Layouts
Result Queue Header Word .
Result Queue Head Word .
Error-IOCB Word Formats and Structures
Error-IOCB Word Zero Layout .
Error-IOCB Word One Layout .
Error-IOCB Word Two Layout .
Error-IOCB Word Three Layout.
Error-IOCB Word Four Layout .
Error-IOCB Word Six Layout
Error-I0CB Word-8 Through Word-11 Layout
Error-IOCB Word-13 Through Word-28 Layout
Error-IOCB Word-29 Layout . . .
Glossary of MLIP/UIO Operating Terms .

OPERATORS, ALPHABETICAL LIST
OPERATORS, NUMERICAL LIST.

DATA REPRESENTATION
B 6900 EBCDIC/HEX CARD CODE .

LIST OF ILLUSTRATIONS

B 6900 Cabinet Sizes .

B 6900 System Layout

B 6900 System Module Block Dlagra.m ..

B 6900 System Module Block Diagram Without MDP Cabmet
Maintenance Display Processor Cabinet e
Central Power Cabinet . .

B 6900 Power Subsystem Dlstrlbutlon Dlagram

IODC Cabinet (3/4 Size) .

IODC Cabinet (A Size) . .

B 6900 Planar Core (Optional) Memory Cabmet .

B 6900 IC Memory (Optional) Cabinet

Memory Port n Module Interfaces .

Left-Hand System Operators Keyboard

B 6900 Operators Console Video Screen .

B 6900 Word Structure

Character and Digit Formats .

Page

- 11-30
- 11-30
- 11-31
- 1131
- 11-32
- 11-34
- 11-34
- 11-35
- 11-35
- 11-37
- 11-38
- 11-38
- 11-39
- 11-39
- 1140
- 1140
. 1141
. 1141
. 1142

A-l
B-1
C-1
D-1

Index-1

xvii

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Figure Page
2-3 B 6900 Word Formats . . . D X
24 EBCDIC Character Word Format e S 1)
2-5 Hexadecimal Character Word Format . 211
2-6 Single-Precision Operand Format 212
2-7 Double-Precision Operand Format .. 213
2-8 Data Descriptor Format 215
29 Step Index Word Format 217
2-10 Software Control (LINKA)Word 218
2-11 Software Control (MASK)Word ... 219
2-12 IRWand SIRW Formats 2%
2-13 Program ControlWord 2
2-14 Mark Stack Control Word L ... L. 224
2-15 B 6900 Interrupt Stack Organization . 235
2-16 P3 Parameter Configuration .. 230
2-17 Return Control Word L. oL L L L L. L. oL 231
2-18 Segment Descriptor Word L. 232
2-19 Program Word Format .. 233
2-20 TOSCW Word Layout N V.
3-1 Top-of-Stack and Stack Bounds Regrsters < S |
32 Reverse Polish Notation Flow Chart . 37
33 Stack Operation . . . B 1]
34 Object Program in Memory .o e & 3
3-5 Stack History and Addressing Envuonment LlSt A S
36 Stack Cut-Back Operation on Procedure Exit 314
37 ALGOL Program With Lexicographical Structure Indicated 315
3-8 D Registers Indicating Current Addressing Environment. 3.16
39 Addressing Environment Tree of ALGOL Program e 3 [
3-10 Multiple Linked Stacks. O 8 -
4-1 B 6900 MDP Display and Control Panels Y I
4-2 B 6900 Status Display Register I
4.3 LED Indicator-Chip Circuit Display Dev1ce Y 7 S
44 Maintenance Control Panels in an IODC Cabinet 452
4-5 System Control Panel Y R X |
4-6 System Maintenance Control Panel C e e e e e o ..o 458
47 Maintenance Processor Control Panel . 46l
5-1 B 6900 CPU Organization. 82
5-2 B 6900 CPU Block Diagram 53
5-3 Internal Data Transfer Section &8
54 Mask and Steering . . . o 1]
5-5 Hardware Stack Ad]ustment . 8]
5-6 Arthmetic Control e 8]
57 Interrupt Controller Stack Parameters . 3 P |
5-8 Alarm Interrupt P-1 Parameter Word Layout 515
59 Alarm Interrupt P-2 Parameter Word Layout 516
5-10 Alarm Interrupt Stack Underflow P-2 Parameter Layout 516
5-11 Alarm Interrupt P-3 Parameter Word Layout 516
5-12 Hardware Interrupt P-1 Parameter Word Layout 518
5-13 Hardware Interrupt P-2 Parameter Word Layout 519
5-14 Hardware Interrupt P-3 Parameter Word Layout 519
5-15 General Control Interrupt P-1 Parameter Word Layout 521

xviii

Figure

5-16
5-17
5-18
5-19
520
521
522
523
5-24
5-25
5-26
527
528
529
530
531
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
540
5-41
542
543
5-44
545
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
6-1

6-2

6-3

64

6-5

7-1

7-2

73

74

7-5

5010986

B 6900 System Reference Manual

General Control Interrupt P-2 Parameter Word Layout .
General Control Interrupt P-3 Parameter Word Layout .
External Interrupt P-1 Parameter Word Layout

External Interrupt P-2 Parameter Word Layout

External Interrupt P-3 Parameter Word Layout .
Syllable Dependent Interrupt P-1 Parameter Word Layout .
Syllable Dependent Interrupt P-2 Parameter Word Layout .
Syllable Dependent Sequence Error P-2 Parameter Word .
Syllable Dependent SPLT (9543) Operator P-2 Parameter .
Syllable Dependent JOIN (9542) Operator P-2 Parameter .
Syllable Dependent Segmented Array Interrupt P-2 Parameter
Syllable Dependent Interrupt P-3 Parameter Word Layout .
MLIP Simplified Schematic . e
Interface Between MLIP and Top-of- Stack

MLIP to Micro-Module Interfaces .

MLIP to Peripheral Subsystem Interface .

Priority Sequencer Sequences .

B 6900 I0CB Memory Word Layout .

MLIP Command Queue Structures .

MLIP System Control Function Diagram .

MLIP Register-2 Function Control Logic .

MLIP Port Control Function Diagram . .

MLIP RAM Data Storage Section Word Layout .
MLIP Connection Function Between the MLIP and an IODC .
51-Bit Memory Paths Between the MLIP and Memory Control

Burst Data Memory Paths Between the MLIP and Memory Control .

MLIP Peripheral Qutput Data Path from Top-of-Stack .
MLIP Peripheral Input Data Path to Top-of-Stack

Input Peripheral Data and MLIP Control Logic

Output Peripheral Data and MLIP Control Logic .

Memory Address Decoding . ..

Global Memory Module (GMM) Orgamzatlon .

Global System Interfaces .

Memory Control Block Diagram. .

Data Processor to M@mory Control Exchange Transfer Path
Memory Exchange Functional Block Diagram . .o
Error Detection Correction Logic . .

Global Scan Function and Data Word Format .
Global Scan Operation Response Word (No Transmission Errors)
Global Scan Operation Response Word (Transmission Error) .
Program Word . .

Program Word, Syllable Addressmg

Primary Mode Operator Decode Table.

Name Call Operator Function

Value Call Operator Function

Flow of Value Call Operator .

Value Call (Descriptor) Operator

Flow of Exit Operator .

Flow of Return Operator .

Flow of Enter Operator

Page

5-21
522
5-23
5-23
5-24
525
5-26
526
526
527
527
527
5-35
5-37
5-37
5-39
543
545
547
548
549
5-50
5-51
5-55
5-57
5-58
5-59
5-60
5-61
5-62
5-65
5-66
5-67
5-69
570
5711
575
5-76
5-78
5-79

6-1

6-2

6-3

64

6-5
7-24
7-25
7-26
728
7-29

Figure

7-6
7-7
8-1
82
8-3
8-4
10-1
102
10-3
104
10-5
11-1
112
113
114
11-5
116
11-7
118
119
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
11-31
1132
11-33
11-34
1135
1136
1137
11-38
11-39

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Flow of Evaluate Operator .

Flow of Stuff Environment Operator .

WHOI Operator Returned Word .

Index Control Word (ICW) and Index Word

Top-of-Stack Control Word (TSCW)

Rotate Stack Operations . ..

Vector Mode Stack Configuration .

Vector Mode Operator Format .

Vector Mode Operators

Load/Store Vector Mode Operators . .
Fortran/ALGOL Compiler Vector Mode Operator Mnemomcs.
B 6900 System MLIP Module Environment . .
10DC Base Module with One DLP .

B 6900 I0DC Base Module Organization .

B 6900 IODC Base Module Cabinets .

Multiple IODC Cable Connections .

B 6900 Connection Sequence Address Word Layout .
B 6900 Connection Sequence Descriptor Link Word Layouts .
B 6900 I10DC Poll Request Global Priority Word Layout .
I0CB Word Format and Layout.

IOCB Control Word Layout .

Valid Commands in CW Control- Freld

IOCB DLP Address Word Layout .

I0CB Command Queue Header Pointer Word Layout

IOCB Self Pointer Word Layout. AN

IOCB DLP Command Pointer Word Layout

I0CB DLP Result Pointer Word Layout .

I0CB DLP Command/Result Length Word Layout

IOCB Result Mask Word Layout . .

IOCB Resuit Queue Head Pointer Word Layout

IOCB Next IOCB Link Word Layout .

1I0CB MLIP Current Data Area Pointer Word Layout

10CB MLIP Current 1/O Length Word Layout .

10CB MLIP State and Result Word Layout .

IOCB 1/0O Start Time Word Layout

10CB Finish Time Word Layout .

Command Queue Word Format and Layout

Command Queue Control Word Layout .

Command Queue Head 10CB Link Word Layout

Command Queue Tail IOCB Link Word Layout

Command Queue Horizontal Queue Head Pointer Word Layout .

Command Queue Horizontal Queue Link Word Layout .
Horizontal Queue Array Word Format and Layout

Horizontal Queue Array Header Word Layout .

Horizontal Queue Array Horizontal Queue Head Word Layout
MLIP Command Word Layout . e
MLIP Status Word Layout

Result Queue Word Format and Layout

Result Queue Header Word Layout

Resuit Queue Head Word Layout .

Page

7-30
7-31

83

84

85

86
10-2
104
105
10-5
10-6
11-1
11-2
11-3
114
115
117
118
119

. 11-11
. 11-12
. 11-15
. 11-16
. 11-17
. 1117
. 1118
. 11-19
. 11-19
. 1120
. 1120
. 1121
. 1122
. 1122
. 1123
. 112§

1128

v Aited

. 1126
. 1126
- 1128
- 1128

11.29

- 1129
- 11-30
- 11-31
<1131
- 11-32
. 11-33
. 11-34
. 11-34
. 11.35

Figure

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

Table

2-1
22
23
24
3-1
32
4-1
4.2
43
44
4.5
4-6
5-1
52
53
54
7-1
72

5010986

B 6900 System Reference Manual
LIST OF ILLUSTRATIONS (Cont)

Error-IOCB Organization and Layout .
Error-IOCB Word Zero Layout .

Error-IOCB Word One Layout

Error-IOCB Word Two Layout .

Error-IOCB Word Three Layout .

Error-1I0CB Word Four Layout .

Error-IOCB Word Six Layout .
Error-IOCB Word-8 through Word-11 Layout .
Error-IOCB Word-13 through Word-28 Layout
Error-IOCB Word-29 Layout . .

LIST OF TABLES

Decimal Place Values of Digits in Various Number Bases
Address Couple Value Fields . .

P1 Parameter Words. .

interrupt Procedure Stack Par ameter Contents

Evaluation of Polish String A7BC +x :

Description of Stack Operation .

B 6900 MDP Cabinet Status Display .

B 6900 MDP Panel One Signal Display

B 6900 MDP Panel Two Signal Display .

B 6900 Display Signals. . .

B 6900 Soft Display Command Llst

Soft Display Register Names .

ALARM Interrupt P-3 Parameter Flelds Usage

HARDWARE Interrupt P-3 Parameter Fields Usage . .
GENERAL CONTROL Interrupt P-3 Parameter Field Usage .

SYLLABLE DEPENDENT Interrupt P-3 Parameter Fields Usage.

Relational Operator Indications .
Compare Type Operator Results

Page

11-36
11-37
11-38
11-38
11-39
11-39
1140
1140
1141
1141

Page -

28
221
2-27
2-29

39
3-11

4-6

Q
-0

" 417

429

4-67
5-17
5-19
5-22
528

7-6
7-19

B 6900 System Reference Manual

INTRODUCTION

The B 6900 is a large scale, modular, high-speed data processing system. The B 6900 system consists of four or more
cabinets, which are joined together to form a single mainframe organization. The leading features of the B 6900 system
are:

a. Monolithic circuits.

b. System memory expandable in increments of 131,072 words, to a maximum of 1,048,576 words.
c. Either local or GLOBAL™ memory to the B 6900 system.

d. Automatic memory error detection and correction.

e. Peripheral units expandable to 512 DLP control units.

f. Multiple MLI paths for I/O operation.

g. Data communications processing through the use of optional standard equipment.

h. Reader/sorter subsystem capability through the use of optional standard equipment.

i. Centralized power supplies, with solid metallic bus-bar organization.

A unique design concept, developed from years of experience with the B 6700 and B 6800 Information Processing Sys-
tems has resulted in the B 6900 hardware and software design. The hardware and the software were simultancously
designed in a parallel and coordinated process, such that these two parts of the system act to augment and to complement
each other. This method assures that the hardware will contain the logic circuits necessary to implement the concepts of

the software, and also that the software construcis will utilize the hardware circuits in an efficient manner.

The B 6900 system is designed to use the hardware stack concept which was successful in former systems. However, the
hardware used in the B 6900 system also represents recent state-of-the-arts improvements in data processing circuit com-
ponents. This blending of proven design with modern material results in a more efficient, and powerful data processing
system.

The B 6900 system utilizes the same dynamic storage allocation concept that was utilized in former Information Process-
ing Systems. This concept utilizes a descriptor method of segmentation which allows variable length segments of data to
be used. This method is more efficient than “fixed-size” paging concepts.

A “look-ahead” logical circuit is used in the B 6900 system data processer to fetch program code words from memory.
This circuit virtually eliminates the need to halt the flow of a user program to obtain the next word of program code.
Use of this circuit represents an improvement in the way user programs are executed, and results in more efficient opera-
tion of the hardware system resources.

The use of new, and more compact logical circuit components has allowed the B 6900 system to have a greater degree of
packaging density than was available in system design. The central processing unit, which is a single system cabinet, takes
the place of 4 cabinets that were required in the B 6700 system. This improvement in packaging saves space and reduces
operating costs in the B 6900 system, without requiring a loss in data processing capability.

GLOBAL@ is a trademark of Burroughs Corporation.
5010986 xxiii

B 6900 System Reference Manual
Introduction

The B 6900 system utilizes a centralized power supply cabinet. This centralized power supply eliminates the need to
mount an inverter module in each mainframe cabinet. It collects most power supplies for the B 6900 system within a
single cabinet and, thus, makes the power supply subsystem easier to maintain.

The B 6900 system cabinets have a fixed relative location within the mainframe cabinet layout. This fixed location
scheme reduces the complexity of the system installation process, reduces interface cabling requirements, and allows more

B ¥
efficiency in site planning.

The B 6900 system contains the capability to be interfaced with, and to operate from GLOBAI™ memory applications.

GLOBAL is a trademark of Burroughs Corporation.

xxiv

B 6900 System Reference Manual

"SECTION 1
SYSTEM DESCRIPTION

GENERAL

This manual explains how the B 6900 Information Processing System achieves flexibility and efficiency through a
comprehensive system approach to problem solving without considering the areas of computer logic or circuit design.
The program-independent modular system design efficiently uses available units to process programs and also permits
system configuration changes without the need to reprogram or recompile. This approach also offers the user the advan-
tages of simplified programming, ease of operation, and a complete freedom of system expansion. The B 6900 is a com-
piler oriented system, designed to accept the high level problem-solving language compilers such as ALGOL, COBOL,
FORTRAN, and PL/L

The B 6900 system software operates under the control of a Master Control Program (MCP), which automatically handles
memory assignments, program segmentation, and subroutine linkages. The use of the MCP eliminates many arduous pro-
gramming tasks which are likely to produce errors. The compilers are operated under the control of the MCP, as are the
object-programs that result from the use of the compilers. The programs are debugged and corrected in the source
language.

SCOPE OF THIS MANUAL

This manual will describe the major hardware characteristics of the B 6900 system. Because of the strong interdepend-
ence of the system software and system hardware this manual will discuss both parts of the system design at times.
Wherever a choice is available, to discuss a part of the system in terms of either the hardware or the software, the hard-
ware discussion will be used. Both discussions will be used where insight can be developed by the use of this method.

B 6500 HARDWARE SYSTEM ORGANIZATION *

The B 6900 system consists of a series of cabinet types arranged in a specific order. The ordering of the cabinets within
the system is classed as a minimum configuration B 6900 system, or as an expanded configuration B 6900 system. The
arrangement of the cabinets within a B 6900 system is such that a minimum configuration B 6900 may be upgraded to an
expanded configuration by adding additional cabinets. However, no reorganization of the cabinets within a B 6900 system
is required to upgrade an existing system to the expanded configuration class.

5010986 1-1

B 6900 System Reference Manual
System Description

There are four standard-size cabinets used in the organization of a B 6900 system. Figure 1-1 shows these four cabinet
sizes, and indicates the various dimensions of the cabinets. The cabinets in a B 6900 system are joined together to form
a continuous mainframe appearance. This appearance is enhanced by the use of outer panels that give the illusion of a
single mainframe structure.

S

/
A SIZE CABINETS: / '
CENTRAL PROCESSING UNIT \
%ESTRAL POWER g
c
|
3/4 SIZE CABINETS: —
10DC \J/
B SIZE CABINETS: /
MAINTENANCE DISPLAY PROCESSOR - =
MEMORY STORAGE /
1/0 EXCHANGES
/ JUNCTION CABINETS
MV4500
CABINET 19 x 19 JUNCTION

Figure 1-1. B 6900 Cabinets Sizes

Figure 1-2 shows the cabinets in a minimum configuration B 6900 system. The layout of the various cabinets within the
B 6900 system mainframe structure is invariable; therefore, the minimum area for the mainframe of a B 6900 system also
is invariable. The minimum area required for a B 6900 system mainframe is 21 feet, thiee inches wide, by 25 feet in
length. This area allows for the expansion of a minimum configuration B 6900 system into a fully expanded configura-
tion B 6900 system. But the area given in this paragraph does not include the area required to contain the peripheral
devices that are connected to the B 6900 system.

B 6900 System Reference Manual
System Description

CENTRAL

CENTRAL PROCESSOR POWER
CABINET CABINET

MAINTENANCE DISPLAY
CABINET

\/ ‘ o o _nooAc

CABINET

\— OPERATOR

MV4601 CONSOLE

Figure 1-2. B 6900 System (Minimum Cabinets) Layout

5010986

B 6900 System Reference Manual
System Description

B 6900 SYSTEM HARDWARE MODULE ORGANIZATION

The following paragraphs discuss the B 6900 system modules that are located within the system cabinets. A module in
the B 6900 system is defined as a unit of hardware equipment that performs a specific function, or a set of specific
functions. A module of hardware equipment in the B 6900 system is limited to a single system cabinet. Modules in
separate cabinets that perform similar functions are separate modules.

A B 6900 system cabinet is not limited to a single module. The use of new types of logic circuit devices in the B 6900
have made it possible to mount within a cabinet more modules than was possible previously. Figure 1-3 is a block-
diagram of the B 6900 system that shows the relationship of the modules in the B 6900 system.

B 6900 MODULE INTERFACES

Cabinets within the B 6900 system are connected together through a series of interface buses (see Figure 1-3). These
buses provide a method for the transfer of information and control data between system modules.

B 6900 CENTRAL PROCESSING UNIT CABINET

The Central Processing Unit (CPU) is the heart of the B 6900 system. The CPU (see Figure 1-3) contains the data
processor module, the Message Level Interface Port (MLIP) module, the memory exchange, internal local memory modules
and the memory tester. The CPU generates system clock pulses that are distributed to other modules in the system. The
CPU contains logic circuits that operate with the maintenance processor to perform memory testing.

The master clock frequency of the B 6900 system is 6.67 megahertz. This clock frequency produces clock pulses that
occur every 150 nanoseconds. These clock pulses, distributed throughout the logic circuits of the system, are used to
synchronize circuits contained in various modules of the system. In this manner, each circuit operates in concert with
other circuits in the system, in an efficient and harmonious manner.

DATA PROCESSOR MODULE

The Data Processor (DP) is the key module through which the B 6900 software operating system directs and controls the
resources of the B 6900 system. The DP (see Figure 1-3) initiates all operations performed by the other system modules,
including the operation of all peripheral devices. The DP also performs data arithmetic operations, and manipulates data
within the system. The DP contains logic circuits to sense interrupts from other modules, and also within itself. 'When-
ever the DP senses an interrupt, the software operating system also becomes aware of the interrupt and handles the cause
of it. The DP performs comparisons and other logical operations that allow the software operating system to evaluate
conditions represented as data, and to make decisions based on the results of the evaluation. Because the software makes
decisions, it provides the capability for altering the future course of programmed operations not only within the operating
user programs, but also within the MCP itself. ’

The B 6900 system uses look-ahead logic in the DP. This feature fetches words of program code before the DP is ready
to execute the code. As a result, it virtually eliminates the need for halting a program to fetch words of program code.
The memory accesses that are performed by the look-ahead logic are independent of other memory cycles performed for
the DP, and do not cause delays in obtaining data for normal DP functions. When a new word of program code is
required, the first resource is the buffer circuit of the look-ahead logic. A memory cycle will be performed only if the
look-ahead logic has not already fetched the word of code that is needed, or if a branch operator causes a change in the
sequentia]l program code addressing. If the next word of program code is the proper program word, and is present in the
look-ahead logic buffer circuit, then circuit becomes the source from which the next word will be taken.

The DP of the B 6900 system contains an adder circuit for performing arithmetic functions. The mantissa adder circuit

is a double-precision, high-speed adder. The adder circuits use micro logic algorithms for double-precision arithmetic
operations.

14

B 6900 System Reference Manual
System Description

MV4502

CENTRAL PROCESSOR UNIT (CPU) CABINET
MEMORY INTERNAL
TESTER Ic
LOGIC LOCAL MEMORY
MEMORY MODULE
MAINTENANCE DIiSPLAY PORT EXTERNAL
PROCESSOR CABINET NO. O - 6-CABLE MEMORY
EXTERNAL MODULE
MEMORY CABINET
SYSTEM MODULE s
DISPLAY
LOOK AHEAD UNIT INTERFACE
. INTERNAL
— — - — - — — - IC
MEMORY
: LOCAL MEMORY
DATA PROCESSOR CONTROL
MAINTENANCE HCP gg:;nm. MEMORY MODULE
PROCESSOR INTER- PORT PORT
FACE TOP-OF-STACK REGS —_ NO. 1 3
FLEXABLE :
DISKETTE INTERNAL
DRIVE IC
CPU LOCAL MEMORY
MICRO- SYSTEM MEMORY MODULE 6-CABLE
MODULE MASTER-CLOCK PORT INTERFACES
GENERATION NO. 2 TO OTHER
AND > EXTERNAL
DISTRIBUTION MEMORY
LOGIC MODULE
CABINETS
INTERNAL
w (o]
< LOCAL MEMORY
T MESSAGE LEVEL INTERFACE MEMORY | moouLe
4 PROCESSOR PORT
E NO. 3
z . J
(2]
>
-]
w| &
g <
. ”
3| 8 1 1T 1 1T T T] o
wi GLOBAL INTERFACE TO
El 2 MLI MLI MLI MLI MLI MLI ML ML} MEMORY GLOBAL MEMORY
3l 3 PORT PORT PORT PORT PORT PORT PORT PORT PORT MODULE CONTROL
s| = NO. 0 NO.1 NO. 2 NO.3 NO. 4 NO.5 NO.6 NO. 7 (GMM) CABINET
’ | I T 1 !
| | | | |
|
MLI J I ! | [J
INTERFACE v
MLI INTERFACES
TO OTHER 10DC*S
INPUT OUTPUT
DATA COMMUNICATION
CABINET (10DC) L o :
[—— — ~— ~— | PERIPHERAL INTERFACE- DISK OR PACK MAGNETIC-TAPE ooT TRAIN-PRINTER
b— —— — —— — [TO OTHER DEVICES PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
b— — ——— — DEVICE DEVICE DEVICE DEVICE

5010986

Figure 1-3. B 6900 System Module Block Diagram

1-5

B 6900 System Reference Manual
System Description

The B 6900 DF contains logic circuits that provide for a retry of a DP operator that fails during its execution. This retry
of failed operators is applicable only up to a predetermined point in the flow of an operator. If an operator fails and a
retry is possible, then a flag is set to indicate that the retry can occur. If an operator fails and a retry is not possible,
then the failure will result in the execution of the interrupt procedure for failed DP operators.

A failed operator retry operation is controlled by the system software. The system hardware indicates whether or not a
retry may be attempted, but the decision. to retry a particular operation is made by the software.

The B 6900 DP makes extensive use of RAM, and PROM memory integrated circuit components. Parity testing is per-
formed on these component parts in the DP. When a failure of one of these component parts is detected, an entry is
made in the Error register. The error register is decoded and written in the system log. The log entry will provide such
pertinent data as

a. The location of the card package that failed.

b. The J-count sequence number and the OP code of the DP operator that was being executed when the card
package failed.

The B 6900 system DP performs recursive confidence testing when the DP is in an IDLE condition. The confidence tests
check circuits such as

a. The top of stack registers.

b. The shift paths for data that is placed in the top of stack registers.
c. The barrel shifter logic.

d. The mantissa adder logic.

e. The exponent adder logic.

f. The address adder logic.

g. The arithmetic operation algorithms.

h. The DP control buses.

If an interrupt occurs while the DP is performing a confidence test, the DP immediately exits from the IDLE state. If
the exit is caused by an error exit, the error will be reported in the SYSTEM SUM LOG disk file.

The DP performs residue testing of the contents of the integrated circuit memory address registers. Residue testing is
also performed on literal values that are used as indices to the addresses tliat are contained in the integrated circuit

address registers. The purpose of residue testing is to increase the integrity of the address adder circuits. Residue testing
is an automatic function that detects addressing errors, and cause the software operating system to make log entries that

identify the nature of the error.

5010986 1-7

B 6900 System Reference Manual
System Description

MESSAGE LEVEL INTERFACE PROCESSOR (MLIP)

The Message Level Interface Processor (MLIP) of the CPU cabinet (see Figure 1-3) functions to control all peripheral
devices that are connected to the B 6900 system. The types of peripheral devices that may be connected to the MLIP
are Universal Input/Output Data Link Processor (UIO-DLP) controlled devices. The DLPs that control B 6900 system
peripheral devices are located in Input Output Data Communications (IODC) cabinets, and are connected to the MLIP
module of the CPU cabinet by means of a Message Level Interface (MLI). The MLIP logic also performs various timing
functions, such as Time-Of-Day and Processor Timer operations for the B 6900 system.

The IODC Module cabinet is defined in the IODC Base Module FETM, Number 1115565. Each DLP located in an I0DC
is a separate moduie. Each DLP device is documented in a separate technical manual, according to the type of peripheral
device controlled by the DLP logic. The various DLP technical manuals are referenced in the IODC Base Module FETM.
The MLIP module contains provisions for as many as eight MLI interface connections to IODC modules (see Figure 1-3).
Each MLI interface can connect to eight IODC modules through the use of Line Expansion Modules or LEMS. Each
1I0DC module can contain up to eight UIO-DLP peripheral device controls; consequently, an MLIP module in a B 6900
system CPU cabinet can communicate with and control up to 512 UIO-DLP devices. The MLIP can communicate over
only one of its MLI interfaces at a time. Simultaneous DLP operations by more than one of 64 possible UIO-DLPs
connected to an MLI cause communication interlacing on the MLI. In the same way, communications to and from the
MLIP are interlaced for simultaneous DLP operations over two different MLI interfaces.

The following list names the types of peripheral devices that may be connected to a B 6900 CPU MLIP module, by means
of DLPs located in a B 6900 system I0ODC cabinet.

a. 300/600/800 CPM Card Reader
b. 1100/1500 LPM Train Printer

c. 300 CPM Card Punch

d. Operator Display Terminal (ODT)
e. 235 Disk Pack

f. SN Disk File

g. 4A/5A PE Magnetic Tape

h. 206/207 Disk (Interlaced Mode)
i. SE NRZ Magnetic Tape

j- 206/207 Disk (Sequential Mode)
k. 5G GCR/PE Magnetic Tape

1. OEM GCR/PE Magnetic Tape

m. 2000 LPM Printer (CDC Drum)

n. 225 Disk Pack

18

B 6900 System Reference Manual
System Description

ICMD mini-disk

.C)

p. 750 LPM Train Printer
q. Data Communications Processor
MEMORY CONTROL MODULE

The memory control module (see Figure 1-3) operates a memory interface exchange that allows two system requestors to
access one of five memory modules. The two requestors are as follows:

a. The look-ahead logic.

b. The data processor module or the MLIP module. These modules share a common requestor path to the
memory control exchange, as was defined in the subsection on the MLIP.

The five memory storage module ports that may operate as respondents to the two memory control requestors are
defined as follows:

a. Each of the first four modules is either a 128K or a 256K local memory module (1K = 1024 words).
b. The fifth module is an interface to the Global Memory of the B 6900 system.

In addition to controlling the interface paths through the memory exchange, the memory control module also performs
memory retries, and memory read data error corrections. A read memory reiry consists of detecting an error in the data
fetched from memory, and causing a second memory read strobe pulse to be generated. A read memory retry is not a

second memory cycle.
A memory retry is also performed when a memory module detects a parity error on the address data lines. The memory
address error retry will repeat the complete memory cycle operation.

An error correction memory cycle will be performed for a read memory cycle that detects a single-bit error in the data
that was stored. If a memory cycle still produces an error in the data after a read memory cycle retry has been per-
formed then the memory control module will perform an error correction cycle. An error correction cycle can only
correct single bit errors.

B 6900 MAINTENANCE PROCESSOR AND SYSTEM DISPLAY

All B 6900 systems contain provisions for control of system operations and for display of system status. B 6900 systems
with low serial numbers include the Maintenance Display Processor cabinet (MDP) that provides for system centrol and
displays system status. B 6900 systems with high serial numbers do not contain an MDP cabinet, and the functions of
the MDP cabinet logic circuits are distributed to other cabinets and modules.

Figures 1-2 and 1-3 show a B 6900 system organization Laving an MDP cabinet present in the mainframe cabinet

organization. Figure 1-4 shows how system control and status display functions are distributed in a B 6900 system
mainframe organization that does not contain an MDP cabinet.

5010986 19

B 6900 System Reference Manual
System Description

LOCAL N
MEMORY
LOOK AHEAD UNIT [———} oRT
0
HOST DATA PROCESSOR
M
CONTROL ggN?:gL LOCAL
PORT r———-- - MEMORY
| PORT
1
LOCAL 6-CABLE
MEMORY INTERFACES
CPU CABINET — PoRT — > TO EXTERNAL
2 MEMORY MODULE
CABINETS
LOCAL
|| memoRY
MLIP PORT
3
GLOBAL
—] MeMoRY [—)
PORT
w
Q
<
>
&
b= MU | ML MLI ML MLI MLI MLI MLI
z PORT | PORT | PORT | PORT | PORT | PORT | PORT | PORT
8) 1 2 3 a 5 6 7
I
o T 1 1 1T |
< \ /
[P
« N
5| ML! INTERFACES TO OTHER 10DC’S
=|2
oDT
PERIPHERAL
L\ DEVICE
| —— OTHER
. PERIPHERAL
UNIT
ioDC — INTERFACES
CABINET A TO/FROM
(1-T0-4 U10-BASE MODULES) U10-DLP
e CONTROL
- MODULES
/
MLI INTERFACE
NOTE
MAINT BUS IN THIS SYSTEM MODULE
MAINTENANCE ORGANIZATION, ALL SYSTEM
PROCESSOR AND CONTROL AND STATUS DISPLAY
FLEXABLE FUNCTIONS ARE ACCOMPLISHED
DISKETTE BY MEANS OF THE ODT PERIPHERAL
DEVICE
MV4503

1-10

Figure 14. B 6900 System Module Block Diagram Without MDP Cabinet

B 6900 System Reference Manual
System Description

The leading features and functions of the B 6300 Maintenance Display Processor are described below:
a. The MDP displays the states of as many as 4096 logic devices.
b. The MDP can write into and verify the code of a PROM device.
¢. The MDP contains logic card package testing capability which exercise test cases for all non-discrete logic cards.
d. The MDP can operate DLP controlled I/O devices.

e. The MDP can be programmed to beam test (at single clock level) and to compare all flip-flops within the
system, as well as any flip-flop that is under test.

f. The MDP can be programmed to allow a system operator to test the logic circuits of the system at the single
clock level.

g. The MDP can be programmed to dynamically isolate most failures that occur in the hardware elements of the
system.

The MDP cabinet can be divided into two parts:
a. The upper half of the cabinet, which contains the displays.

b. The lower half of the cabinet, which contains the maintenance processor, the display control logic, the flex-
disk device, and a power supply for the cabinet.
The MDP contains a flex-diskette drive device, which is used to load initial system

maintenance processor RAM memory.

The upper half of the cabinet consists of a display panel and several control panels. The display is on the left-hand side
of the MDP cabinet. The display panel is not always visible. To view the panels, swing-out covers must be extended.
Four display registers, and various control panels are exposed to view when the swing-out covers are extended.

Two switch panels are located at the bottom of the display panel. These switch panels are used to control operation of
the MDP maintenance processor and CPU cabinet logic circuits.

The maintenance processor is the principal operating unit in the MDP cabinet. The maintenance processor operates in
either of two modes, which are Maintenance Test Routine mode (MTR) or normal mode. These two modes are discussed
in the following paragraphs.

The PROC ENABLE switch (on the MDP switch panel) is used to place the maintenance processor in the MTR mode.
The MTR mede provides a way of testing the maintenance processor through, the use of test-routines that are stored in

PROM memory. The PROM memory is an integral part of the maintenance processor. This PROM memory contains
firmware that is used

a. To test the maintenance processor circuits.

b. Test the memory interface logic between the maintenance processor and the RAM memory, which is an
integral part of the maintenance processor.

c. Test the RAM memory up to a checkerboard test.

d. Test the micro-logic controllers of the maintenance processor.

5010986 1-11

B 6900 System Reference Manual
System Description

e. Perform an extensive (Galpat) test on the RAM memory.

f. Load an MTR test-routine program from the flexible-diskette unit to the RAM memory of the MDP.

g. Perform a program branch to the start of the MTR test-routine that was loaded into the RAM memory.

h. Handle Interrupts that occur during the operation of the maintenance processor in MTR mode.
The same switch that was used to place the maintenance processor in MTR mode (the PROC ENABLE switch) is also
used to select normal mode. The normal mode of operation provides a way to test the B 6900 system through the use
of the MTR test routines that are loaded to the RAM memory. The maintenance processor uses the PROM memory to
initiate the loading of MTR test routines into the RAM memory as follows:

a. Uses switches on the MDP System Control Panel to select a DLP controlled peripheral unit.

b. Provides a quick confidence check for the peripheral unit to be used.

c. Initializes the RAM memory to receive the data from the I/O device.

d. Purges the RAM memory of all parity errors.

e. Communicates with the system operator to determine which part or parts of the system MTR test program
are to be loaded into maintenance processor RAM memory.

e

Loads the selected system MTR program parts into the RAM memory.

g. Performs a program branch to the start of the system MTR test routine residing in the RAM memory.

L. Handles interrupt procedures during system operation.
The maintenance processor logic contains the Keyboard/Switch/Indicator (KSI) controller, the purpose of which is to
interface the maintenance processor to the control panels of the MDP. The control panels are used manually as source
input devices, to direct that various functions of the maintenance processor be performed. The KSI controller coordi-
nates and synchronizes these manual control demands with the normal logical operations of the maintenance processor.
The orderly responses of the maintenance processor to a control panel demand are returned to the maintenance processor

control panel for display by the KSI controller.

The PROM Write I/O controller provides a method of creating a selected bit pattern in a PROM device. In addition, a
PROM device can be verified to have the correct pattern inserted.

The MDP contains three other controllers, as follows:
a. The Mainframe Input Output (MFIO) controller.
b. The Message Level Interface Input Output (MLIO) controller.
c. The UIO Maintenance Input Output (UMIO) controller.

The purpose and use of each of these three controllers is defined in the following paragraphs.

B 6900 System Reference Manual
System Description

The purpose of the Mainframe 1/0 (MFIO) controller is to allow either the maintenance processor or the display logic to
set and to sample the state of mainframe flip-flops. In addition, the maintenance processor can monitor various condi-
tions within the controller through use of status and data transfers. The MFIO controller interfaces the logic of the MDP
with one of two connectors that are identified as normal, and as alternate interfaces. The PROC ENABLE switch selects
either the maintenance processor or the display logic to control the data lines between the MDP and the CPU cabinet.

The maintenance processor uses a set of command words and fixed format status reports to control the operation of the
MFIO controller. These controller directing commands and status reports are passed between the maintenance processor
and the MFIO logic over the DIN and DOUT lines of the MFIO interface bus.

When the PROC ENABLE switch is in the ENABLED position (UP), the maintenance processor is permitted to control
data that is sent to the CPU cabinet and, therefore, to control the setting of mainframe flip-flops. When the PROC
ENABLE switch is in the DOWN position, the display logic controls the data sent to the CPU cabinet and, consequently,
the setting of mainframe flip-flops.

The purpose of the Message Level Interface Controller (MLIO) is to provide the maintenance processor with a way to
communicate with the peripheral units that are attached to the system. The MLIO controls an MLI interface bus between
the IODC cabinet and the MDP. The MLIO controller contains a 1024 byte IC memory buffer that is used to hold data
received from an I/O device. The MLIO controller can initiate different I/O devices, but only one I/O operation can be

in process at any one time. MDP cabinet system control panel switches are used to select those I/O devices the MLIO
controller can initiate. The maintenance processor uses a set of command words and status reports to control the MLIO
controller, and the MLIO interface bus to the IODC cabinet. '

The purpose of the Universal Maintenance Input Output (UMIO) controller is to connect the maintenance processor to
system IODC Base-module maintenance card-packages. This interface provides for FIRMWARE programs executed by the
maintenance processor to initiate and control maintenance tests on system peripheral devices.

DISPLAY CONTROL LOGIC
The display control logic (see Figures 1-5 and 1-6) is controlled by the maintenance processor.

If an MDP cabinet is installed in a B 6900 system the maintenance display indicates circuit device status, and causes the
circuit devices to SET or to RESET.

f an MDP cabinet is not installed in a B 6900 system the status of system circuit devices is displayed on an Operator
Display Terminal (ODT) peripheral device screen. Tlie maintenance processor executes a FIRMWARE “SOFT-DISPLAY”
program which controls the display of system status on the ODT screen. The SOFT-DISPLAY program is executed in
response to an input message which is written on the ODT screen. Other input messages on the ODT screen are used to
cause circuit devices in the system to be SET or RESET.

B 6900 CENTRAL POWER SUPPLY CABINET

The Central Power Supply Cabinet (PSC) of the B 6900 system is an A size cabinet (see Figure 1-6), which provides
centralized power to all cabinets within the B 6900 system except for independently powered cabinets. Power buses
route the power generated in the PSC to other cabinets in the B 6900 system. The source power to the B 6900 system
PSC is discussed in the B 6900 System Installation Planning Manual, number 5011364.

The power supplies in the B 6900 system PSC are capable of supplying electrical power to the mainframe cabinets of the
system. The power supplies in the PSC use constant voltage.transformers, that provide sufficient pre-regulation conditions
to ensure constant voltage outputs with a loss of input power of up to 30 percent of normal line supply. These design
characteristics in the PSC provide for continuous system operation during “brown-out™ operations. A “brown-out” is
defined as a reduction by as much as 15 percent of normal operating line voltage, and for an unspecified period of time.

5010986 1-13

vI-l

™N

Y

— 7
oA

.

MV4504/SHT 1 OF 2

oot

MAINTENANCE
PROCESSOR
MODULE

B

\

SYSTEM STATUS

DISPLAY PANE LS7

B6900
SYSTEM
CONTROL
PANEL

MAINTENANCE——/

PROCESSOR
CONTROL PANEL

MV4604/8HT 2 OF 2

N

/A

Figure 1-5. Maintenance Display Processor Cabinet

86900
MAINTENANCE
CONTROL PANEL

P

/ FLEX DISK DRIVE

MDP CABINET
POWER SUPPLY

uonduoseq wolsAg
[enueyy 90uUIIoJOY wIISAS 0069 €

B 6900 System Reference Manual
System Description

Figure 1-6 shows the major parts of the PSC, and the relative location of these parts within the cabinet. Figure 1-7 shows
. the power bus distribution between the PSC, and other cabinets within the B 6900 system mainframe.

+12VOLT
| SuePLY
\ /
INPUT POWER
POWER " CKT BRKR
CONTROL AND AND FILTER
SEQUENCING
’
& L/ 300VDC CONVERTER
|- />
300VDC BUS /
1600 A
< INVERTER
+4,75V/-2V g?f’s""c
BUS BARS
v 300VDC
Q CONVERTER
INPUT POWER
CKT BRKR
AND FILTER
MV 1561

Figure 1-6. Central Power Cabinet

5010986 1-15

911

D

208 VAC
INPUT
3 PHASE

MVA505

o o

CENTRAL POWER CABINET

L J
208 VAC 3
AC 3 PHASE AC/DC 1600A I
INPUT j' I——Q— cvT CONV INV - +4.75V.
MOD MOD MOD -2V
[OUTPUT
cvT '
AC 12V I
CONTROL |- cvT SUPPLY b—® 110V
MOD MOD ' OUTPUT J
-a5v I
¢ cvT r20v > 45V
MANUA L SUPPLY +20V
v POWER MOD
ON/OFF SEQ OUTPUT TO
CONTROL MOD \ PC CAB NO. 1
3-PHASE AC DISTRIBUTION l & PC CAB NO. 2
DISTRIBUTION

— 7T

L2

- TO B OWER MOTORS

——

CcvT

+5V/+ 15V
MEMORY
SUPPLY

PT MEM CAB 1

———_——

— T T

CvT

+5V/115V
MEMORY
SUPPLY

P M CA
J ._OTME CAB 2

rF——{——"

|

l cvT I

' |

| |

| |
MDP CAB

L

Figure 1-7. B 6900 Power Subsystem Distribution Diagram

POWER
SUPPLY
OUTPUTS

POWER
SUPPLY
BUSES

uonduosa(walsAg
[ENUBY 30USI0JaY WaIsAS 0069 g

B 6900 System Reference Manual
System Description

INPUT OUTPUT DATA COMMUNICATION (IODC) CABINET

In low serial-numbered B 6900 systems an IODC cabinet is a 3-quarter size cabinet (see Figure 1-8) that contains from
1-to4 Universal Input Output Base (UIO-Base) modules. In high serial-numbered B 6900 systems an IODC cabinet may
be an A-size cabinet (see Figure 1-9) which contains a maintenance processor module as well as 1-to4 UIO Base modules.

There are two kinds of IODC cabinets, system-powered cabinets, and independently-powered cabinets. A B 6900 system
must contain one system-powered IODC cabinet. If a B 6900 system contains multiple IODC cabinets, the first IODC
cabinet is system-powered, and all other IODC cabinets are independently-powered. If a B 6900 system does not contain
an MDP cabinet, the first IODC cabinet is A sized, system-powered, and contains a maintenance processor module.

A B 6900 CPU can interface to 8 UIO-Base modules by means of the MLI ports in the MLIP module. Each UIO-Base
module can be inter-connected to 7 other UIO-Base modules by means of UIO Line Expansion Modules (LEMS)s. There-
fore, a B 6900 CPU can interface to a maximum of 64 UIO-Base modules, located in up to 64 IODC cabinets.

UIO BASE
MODULES - 24 CARD

INTERFACE PANEL

A

CABLE TROUGH

\

U
BLOWERS

Figure 1-8. IODC Cabinet (3/4 Size)

/

MV4506

5010986 1-17

B 6900 System Reference Manual
System Description

UI0 BASE

MODULES - 24 CARD
{ N,

A SIZE 10DC
CABINET

MAINTENANCE
" PROCESSOR

AND CONTROL
PANELS

>~ CABLE TROUGH

| ____—— MAINTENANCE
PROCESSOR
POWER SUPPLY *

|
|
l
INTERFACE
PANEL
|

10DC 20KHZ, 5KwW AC

\—— BLOWERS

MVA4507 10DC 20KHZ, 5V SUPPLY - 300A

Figure 1-9. 10DC Cabinet (A Size)

B 6900 Memory Cabinets

The B 6900 system CPU cabinet contains provisions for installing 1-to4 Integrated Circuit (IC) local memory modules.
Memory modules mounted in a CPU cabinet contain 128K words of storage capacity. The use of internal IC memory
modules is optional.

From 1-to-4 external memory modules (in independently powered cabinets) can be connected to a B 6900 CPU cabinet
by external cable interface connections. Externally connected memory modules may be IC memory of PLANAR CORE

memory modules which contain 128K words of storage capacity. The use of external memory modules is optional.

Global Memory (TM) is optional in a B 6900 system. If Global memory is installed, it is interfaced to the CPU cabinet
by an external cable interface; therefore, it must be independently powered.

1-18

B 6900 System Reference Manual
System Description

A B 6900 system must have a minimum of 128K words of memory available to the CPU, and may access 2 maximum of
1000K words of memory. The memory resources of a B 6900 system may be any combined mixture of local/global
memory, from the minimum to the maximum number of words.

The B 6900 Planar Memory Cabinet (refer to Figure 1-10) is an optional independently powered B size cabinet that can
contain a maximum of 256K words of local memory. With a maximum of two Planar memory cabinets in a B 6900
system, a maximum of 512K words of local Planar memory is available to the system. Local Planar memory is expand-
able from 128K words to 512K words, in increments of 128K words. In the common context, one K of memory is
actually 1024 words in length.

A B 6900 I/C Memory Cabinet (see Figure 1-11) is an optional B size independently powered cabinet that can contain up
to 512K words of memory. The I/C memory is installed in modules of 128K words, up to a maximum of four such
modules. If only I/C memory is installed in a B 6900 system, then the system contains a single optional memory cabinet.

Each word of memory consists of 60 bits. These 60 bits are divided to provide 51 bits of data, one parity bit, and eight
bits which are utilized for error detection and correction.

A B 6900 memory interface consists of six cables. Figure 1-12 shows these six cables, and how they operate to provide
the interface between the memory control module of the CPU cabinet, and B 6900 memory modules.

The B 6900 memory modules are capable of performing one of three types of operations as follows:
a. Read/Restore operation
b. Clear/Write operation
¢. Read/Modify/Write operation

A memory Read cycle is the minimum time that must occur between two consecutive Initiate Memory Cycle {IMC) pulses.
A Read/Restore memory operation, or a Clear/Write memory operation may be performed in the time given for a memory
Read cycle. A Read/Modify/Write memory cycle requires a longer memory cycle time because this operation requires that
both a memory Read, and a memory Write function must be performed (two IMC pulses are required) to complete a
memory cycle.

A Read/Modify/Write memory cycle accepts input data, and a memory address from the memory requestor. A memory
cycle is performed on the address specified, and the data present at the address is made available to the memory requestor.

A Read/Modify/Write operation in the memory control may be changed into a Read/Restore operation under either of the
following conditions:

a. A protected memory operation is in progress, and the data in the word addressed by the Read part of the
Read/Modify/Write operation determines that the memory protect bit (bit 48) is true. If this condition exists,
the data Readout of the memory address is rewritten into the same address, and the Memory Protect Interrupt
is detected by the memory control.

b. A parity error occurs during the read part of the Read/Modify/Write operation. If this condition exists after
a Memory Retry has been attempted, then the data with the parity error is rewritten into the same address,
and the Memory Parity Error Interrupt is detected by the requesting function.

If the memory control does not detect a memory protect interrupt, or a parity error interrupt during the read part of a
Read/Modify/Write operation, then the operation continues as follows.

5010986 1-19

B 6900 System Reference Manual
System Description

B SIZE MEMORY CABINET

R
/

~— /r/

¥

k&
SINGLE PORT 128K x 60 MEMORY MODULES E > MEMORY REGULATGRS
OR DUAL PORT 64K x 60 MEMORY MODULES "\ | — E/ |

/
s

"
AC POWER
BLOWER —T
\ / MEMORY SUPPLY
CARD SIDE VIEW

SEQUENCE CONTROL PANEL

7/
\

/

SINGLE PORT
] 7— 128K x 60 MEMORY MODULES

OR
DUAL PORT

]
/,/ 64K x 60 MEMORY MODUL.ES

AC POWER —— ﬁ \
~
J/u/ | BLOWER
MEMORY SUPPLY / PIN SIDE VI

Figure 1-10. B 6900 Planar Core (Optional) Memory Cabinet

&

7

'
MEMORY REGULATORS <

N

MV 2565

1-20

128K MEMORY
STORAGE UNIT
{MSU)
MODULES

COOLING AIR
PLENUM

MV4508

5010986

68"
(173cm)

/,

A

B 6900 System Reference Manual
System Description

38~ /‘“""1
L@— (96.53cm)

J—
<—_ —
~Jd —T I [' INDIVIDUAL
| = POWER SUPPLY
g B REGULATORS, AND
_/,/\\— R _ CONTROLS, FOR EACH
7 -\ [1//./ MEMORY MODULE

AN

\

A EA

/

/.

N
INDIVIDUAL MODULE

POWER CONTROLS

/\

/

VAP L
)

yz
/

{46cm)

CABINET BLOWERS

-
[+:]

CABINET AC INPUT ASSEMBLY
AND CIRCUIT BREAKER

)

CARD SIiDE

Figure 1-11. B 6900 IC Memory (Optional) Cabinet

1-21

(444!

PORT ACKNOWLEDGE SIGNAL

% (TO GLOBAL PORT)

«
a—
o

 EXTERNAL MOD

PORTn ADAPTER

—

)\ MODULE ADDRESS
77

LJ%

| INTERNAL MOD >—
"‘)/
§ CONTROL DATA
) »-
\ ACCESS REQUEST >“
——)/ EXTERNAL
WORD ADDRESS . WORD ADDRESS LOCAL
b ¢ - MEMORY
_ _)\mr-‘onMA'non » DATA MODULE
- T ¢ DAT.
INFORMATION \TA
? »
N\ INFORMATION § DATA
S 4 - »
_)\‘NFORMATION s DATA
—» »
)\ CONTROL DATA
4
9\ WORD ADDRESS
‘d
W\ DATA INTERNAL
rZ 4 1C LOCAL
\ DATA MEMORY
»- MODULE
\ DATA
»-
DATA

MV4508

Figure 1-12. Memory Port n Module Interfaces

>

uonduosa(] woiss
[ENUBRY 30USIOJOY WSISAS 0069 g

B 6900 System Reference Manual
System Description

The data that was accepted by the memory module is written into the same address from which the memory read
operation was performed and thus, the original data is destroyed. The B 6900 system uses the Read/Modify/Write mode
of operation to perform normal memory write functions.

A Read/Restore memory cycle accepts an address from the memory requestor, a read memory cycle is performed on the
address specified, and the data that is present at the address is made available to the memory requestor. The same data
that was present in the specified address is written back into the specified address. The B 6900 system uses the Read/
Restore mode of operation to perform normal memory read functions.

A Clear/Write memory cycle accepts an address from the memory requestor, and writes a requestor supplied data word
into the address. Changing the Clear/Write operation into a Read/Restore operation (for a parity error), is analogous to
that change previously defined for the Read/Modify/Write operation.

B 6900 OPERATORS DISPLAY CONSOLE

The purpose of this console (see Figure 1-2) is to provide a position where all necessary system operating controls are
collected in one physical place. Collecting the normal operating controls into a single central location is efficient, and
provides a logical place for the system operational staff to function.

There are two parts to the operators display console (see Figure 1-13), in addition to the tabletop work area. The two
parts of the console are the video display and the keyboard for the video display. The video display terminal sets on the
tabletop. The system control panel is part of the keyboard for the terminal, and is mounted in front of the display
screen.

The operators display console contains two separate operator stations. Full control of the system is possible from only the
left-hand station of the console because the right-hand station does not include a system control panel. A locking device
is installed for each operators station. The locking device is a security feature used for system integrity. When the device
is locked, the keyboard is disconnected, and the operators station cannot communicate with the software operating system.
The locking device is activated by the use of a hand key that must be turned to open or lock the operator’s console
station keyboard. The locking device has no effect on the system control panel, and the controls on the panel may be
operated regardless of whether the keyboard is locked.

The controls for the video display (see Figure 1-14) consist of a thumbwheel type adjustment, and an ON-OFF switch for
the video display. The purpose and use of the video display controls are as follows:

a. The ON-OFF switch. This switch controls the power utilized by the video display.
b. The BRIGHTNESS thumbwheel controls the lighting intensity of the video display.

The controls for the B 6900 system control panel consist of eight indicator/switch pushbutton controls shown in
Figure 1-13. The purpose and use of the B 6900 system controls are as follows:

a. The ENABLE pushbutton switch allows the use of the HALT, POWER ON, and POWER OFF pushbutton
switches. If the ENABLE pushbutton is not depressed then the three other pushbuttons listed are inoperative,
and have no effect on System operation. If the ENABLE pushbutton is depressed then the other three push-
buttons listed are enabled, and depressing any one of the pushbuttons will cause the circuit corresponding to
the switch to be activated. The purpose of the ENABLE pushbutton is to prevent accidental system operation
caused by inadvertently depressing one of the pushbutton controls listed.

b. The POWER OFF pushbutton is used to remove source power from the circuits of the system that are sup-

plied power from the central power supply cabinet. The POWER OFF pushbutton does not remove power
from circuits that receive their source power from some other source.

5010986 1-23

vl

=] [[=] b
ERCSRES

POWER
FAIL

LTAL ENO FORMS CTRL SPCFY (| LOCAL RCV xMT
o O
CLEAR ! " $ % & DEL = \
HOME 1 2 [} 1 [§ [] - ~
N {
RTAB a w E R T 0 4 RETURN
e {
SKIP SHIFT + *
AR LOCK A 0 F e L ; :
i < ? H
6SA >
SHIFT 1 SHIFT
ETX z X ¢ v , . / OEL
eor DEL
CHAR CHAR
CLR — — LINE
EOL INS ' ‘ OEL NS

MVA§10

Figure 1-13. Left-Hand System Operators Keyboard

uondusse(q urdlsAg
[eNUBY 20ULIROY WRISAS 0069 g

5010986

B 6900 System Reference Manual
System Description

ON/OFF
SWITCH
BRIGHTNESS
CONTROL
MV4511

Figure 1-14. B 6900 Operators Console Video Screen

The POWER ON pushbutton is used to apply source power to the B 6900 system cabinets that derive their
power input from the central power supply cabinet. The POWER ON pushbutton does not provide a method
for applying source power to cabinets and peripheral units that do not derive their source power from the
central power supply cabinet.

The HALT pushbutton is used to stop the B 6900 system at the end of the current machine language operator
that is in process.

The LOAD pushbutton is used to cause the B 6900 system to initiate a Halt/Load sequence of operations.

When the LOAD pushbutton is depressed the B 6900 system logic is general cleared (Set to the binary zero
condition). When the pushbutton is released the Load operation is initiated. The Halt/Load sequence is a

predetermined set of operations that results in the software operating system being placed in control of the
system hardware.

The LOAD MODE pushbutton is used in conjunction with the LOAD pushbutton, to control the Halt/Load
sequence of operations. If the LOAD MODE pushbutton is illuminated, and a system Halt/Load sequence is
initiated (by depressing the LOAD pushbutton), then a Load operation proceeds from a predetermined periph-
eral device. If the LOAD MODE pushbutton is not illuminated when the LOAD pushbutton is depressed, then
the Load sequence proceeds to perform a load operation from an alternate peripheral device. The selection of
either device from which to perform a system Load operation depends on whether the pushbutton is illumi-
nated or extinguished.

1-25

B 6900 System Reference Manual
System Description

g. The RUNNING/CHECK indicator lamp illuminates dimly when the system is operating. The purpose of the
RUNNING indicator is to provide an indication of whether or not the system is capable of responding to
certain stimuli during system operations. A RUNNING indication is necessary because under certain condi-
tions there is no other visible way to determine whether the system is trapped in a perpetual operating loop.

The RUNNING/CHECK lamp illuminates brightly if a CHECK condition (FAULT) is detected by the
maintenance processor. ’

If the RUNNING/CHECK lamp is extinguished, the system is not RUNNING and a CHECK condition has
not been detected by the maintenance processor logic.

The operators keyboard (Figure 1-13) is used by a system operator to input commands and data to the operating system.
The operators display console and keyboard are commonly referred to as an Operators Display Terminal (ODT), or alter-
nately as a Supervisory Printer Output (SPO).

When the security lock mechanism for system integrity is engaged, the keyboard is disabled, and has no effect on system
operations. However, if the keyboard is disabled, but the video display switch (Figure 1-14) is in the ON position, the
video screen will display status messages and other pertinent data about current system oeprations.

The operators display video screen (Figure 1-14) is used to pass communications between the B 6900 operating software
system and one who operates the system manually. The display screen is similar to a home television receiver, except that
the display screen can display only characters and numbers, not pictures. The only sound that the display is capable of
making is the bleep tone used to gain the operators attention when the software operating system needs a response from
the operator.

When the operator needs to communicate with the operating system, the keyboard is used to write data which is displayed
on the screen. The screen is capable of displaying 1920 characters, arranged in a matrix that consists of 24 rows of char-
acters. Each row contains 80 character positions. A cursor blinks at the position that the next character will occupy. If
the next character position contains a valid character then the valid character blinks, but if the next character position is
not occupied then the cursor illuminates the character position, and causes the illuminated position to blink. The cursor
moves from left to right, and from top to bottom on the screen. The display screen has automatic line-feed, and carriage-
return features so that the operator is not required to control these functions. When the operator writes data on the
screen, the last character written is the End-Of-Text (Y) special character. This special character is used to indicate where
an input message terminates.

1-26

B 6900 System Reference Manual

SECTION 2

DATA REPRESENTATION

GENERAL

All data in the B 6900 system is in binary form. The basic unit of data is the memory word (see Figure 2-1), which
consists of 60 consecutive binary bits. All words of data in the B 6900 system have four distinct parts: the check-bit
field, a parity bit, a tag field, and the information field. The 60 bits in a word are numbered for identification.

o N
w0 »
~
o

\—W—J Ly_lk ~ J

I BIT-ZERO (LEAST SIGNIFICANT)
THROUGH BIT47 (MOST SIGNIFICANT)
IS THE INFORMATION-FIELD.

BITS-80, 49, AND 48 ARE THE
TAG-FIELD. BIT50 1S THE MOST
SIGNIFICANT BIT IN THE TAG-FIELD.

BIT-51 IS THE ODDPARITY
BIT FOR ALL LESS SIGNIFICANT
BITS IN THE WORD.,

BITS-59 THROUGH 62 ARE THE
ERROR DETECTION/CORRECTION
CHECK-BIT CODE VALUE.

MV4512

Figure 2-1. B 6900 Word Structure

Bits 52 through 59 are the Error Detection/Error Correction field. These bits are not available to a system user; they are
intended for internal system use only. The purpose of these check-bits is to provide a method for detecting single-bit
errors in a memory word, and for correcting single-bit errors. Multiple-bit errors may be detected by the system Memory
Controller, but cannot be corrected.

The B 6900 Memory Controller inserts check-bits into a word as it is written into memory. When a memory word is
read. its check-bits are used to detect bit-errors and to correct any single-bit error that is detected. A check-bit code is
part of a data word only while the word is present in system memory and in the Memory Controller logic. Data words
not present in system memory or Memory Controller logic circuits are tested for errors by means other than check-bit
codes.

Bit number 51 (the most significant bit in a word) is the parity bit. The parity bit is used to represent the odd parity
of the word. If the number of binary ONES present in the tag field and in the information field is an even number
then the parity bit is a binary one value. 1f the number of binary ONES present in the tag field, and the information
field is an odd number, then the parity bit is a binary ZERO value. The B 6900 system uses the parity bit to monitor
the quality of data in a word. Logic circuits in the B 6900 system count the number of bits in a word, and compare
the count against the parity bit state. If the result of the comparison is not equal, then the B 6900 system recognizes

5010986 21

B 6900 System Reference Manual
Data Representation

that a parity error has occurred. The process of parity checking is an automatic feature of the B 6900 system. The
parity bit for a word is not directly available to the user of the system because it is only used when words are transferred
from one module to another. Data that is internal to a module has already been tested for parity.

Bits 50, 49, and 48 are the tag field. The tag field is used to identify the type of interpretation that is to be applied to
the data that is present in the information field of the word. There are eight different values that may be present in the
tag field, and each value specifies a different interpretation to be used. The meaning of the tag field vaiues are as

MEANING

A tag field of ZERO indicates that single-precision data is present in the information
field of the word.

A tag field of ONE indicates that the information field contains an indirect address,
not data.

A tag field of TWO indicates that double-precision data is present in the information

field of the word.

A tag field of THREE indicates that a control word is present in the information
field of the word. There are several different types of control words used in the
B 6900 system. These types of control words are discussed individually, later in
this section of this manual.

A tag field of FOUR normally indicates that a step index word is present. The

meaning and use of a step index word is discussed later in this section of this
manual.

NOTE

A special use for a word that has a tag of FOUR may be invoked by the MCP when a fault condition is

The compiler will place a word with a tag of FOUR in the stack as a flag word. This flag is used to
indicate that the program using the stack is responsible for handling one or more of the interrupts that
may occur when the program is executed.

This special use for a word with a tag field of FOUR is only invoked when the programmer of the
user program specifies that the user program is responsible for interrupt handling. The compilers
that utilize this special case are the ALGOL, FORTRAN, ESPOL, and the PL/I compilers.

A tag field of FIVE indicates that a descriptor word is present. The meaning and
use of a descriptor word is discussed later in this section of this manual.

A tag of SIX indicates that a software control word is present. The meaning and
use of a software contro! word is discussed later in this section of this manual.

follows:

TAG FIELD BITS
(50) (49) (48)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

to be handled by a user program.
1 0 1
1 1 0
1 1 1

A tag of SEVEN indicates that a program control word is present. The meaning
and use of a program control word is discussed later in this section.

B 6900 System Reference Manual
Data Representation

This manual uses a convention to refer to data bits in a word. The rules of this convention follow:

a. A data field within a word is represented by two numbers separated by a colon character and enclosed in
brackets.

b. The meaning of the two numbers enclosed in the brackets is as follows:
1. The first (left-most) number identifies the most significant bit in the field of data bits.

2. The second (right-most) number identifies the number of bits that are contained in the field of data
" bits (including the most significant bit, which was identified in rule b.1 above).

c. Bits in the tag field are not included in the field uniess the most significant bit (rule b.1., above) is one of
the tag field bits.

d. All bits in the information field are considered to “wrap-around” the word in such a way that the next least
significant bit after bit ZERO is bit 47.

Examples of this convention are as follows:

Bits [50:3] (the tag field) — Beginning with bit 50 for three bits, or bits 50, 49,
and 48.

Bits [06:9] (a data field) - Beginning with bit 06 for 9 bits, or bits 06, 05, 04, 03,
02. 01, 00, 47, 46.

Bits [47:48] (a data field) - Beginning with bit 47 for 48 bits, or all of the informa-
tion field.

The convention that was stated in the previous paragraph is used to further define the bits that make up the information

field of the B 6900 system words. There are 48 bits in this field: bit 47 is the most significant bit, and bit ZERO is the
least significant bit.

INTERNAL CHARACTER CODES

The only internal code that is used in a B 6900 system is Extended Binary Coded Decimal Interchange Code (EBCDIC).
EBCDIC is an 8-bit alphanumeric code containing four zone bits, followed by four numeric bits. The character code
used for Data Communications Subsystems (external character code) is the American Standard Code for Information
Interchange (ASCII). ASCII may be a 6-bit, 7-bit, or 8-bit alphanumeric code. Within the B 6900 system, EBCDIC
codes may be compacted by deleting the zone bits, and by retaining the numeric portion of the character. When data in
the B 6900 system is compacted it is said to be packed.

Appendix C of this manual lists the character codes of the character sets that are used in the B 6900 system.
Appendix D gives the card codes that are required to produce an EBCDIC, or hexadecimal coded character representation.

5010986 23

B 6900 System Reference Manual
Data Representation

NUMBER BASES

Number bases used in the B 6900 system are base 10 (decimal), base 16 (hexadecimal), base 2 (binary), and base 8
(octal) (see Figure 2-2). Because the system utilizes various of these number bases in performing its functions, it is
necessary that the user of the system be familiar with the number bases, and know how to convert a value from one
number base to any of the other number bases. A brief discussion of the number systems used follows.

CHARACTER FORMATS

MSD | 28 | N8

Z4 | N4

22 | N2

Z1 | M LSD

EBCDIC
CHARACTER

NUMBER BASE FORMATS

[
4 wo[]
0
e e D

HEXADECIMAL OCTAL BINARY
DIGIT DIGIT DIGIT

Mv4513
Figure 2-2. Character and Digit Formats

The decimal numbering system is based on the numeric digits zero through nine, and on the powers of ten. Similarly,
the binary numbering system is based on the numeric digits zero and one, and on the powers of two. In the case of
the numbering systems described above, it is apparent that a decimal digit may have any value from zero through nine,
and that a binary digit may have a value of either zero, or one.

The octal numbering system is based on the numeric digits zero through seven, and on the powers of eight. An octal
digit may have any value from zero through seven. Further, two raised to the third power is eight, the base of the octal
numbering system. Therefore, because the octal numbering base is a multiple of the binary number base, an octal
number can be conveniently converted to a binary number, and vice versa.

The hexadecimal numbering system is based on the numeric digits zero through nine, and A through F: where A equals
decimal 10, B equals decimal 11, C equals decimal 12, D equals decimal 13, E equals decimal 14, and F equals decimal
15. Hexadecimal numbering is also based on the powers of sixteen. Two raised to the fourth power is sixteen, the base
of the hexadecimal numbering system. Therefore, because the hexadecimal numbering base is a multiple of the binary
numbering base, a hexadecimal number can be conveniently converted to a binary number, and vice versa.

A B 6900 word contains 48 bits in the value field of the word (see Figure 2-3). These 48 bits can be converted into

hexadecimal, octal, BCL, or EBCDIC values by arrangement of the 48 bits in the proper order. A hexadecimai digit is
equivalent to four binary digits because 1111 binary is equal to hexadecimal F. Since a hexadecimal digit contains four

24

B 6900 System Reference Manual
Data Representation

binary digits, the value field of a B 6900 word contains 12 complete hexadecimal digits (48/4 =12). The same value
field can also be considered to contain 16 octal digits {48/3 = 16), or 6 EBCDIC characters {48/8 = 6).

From the foregoing discussion it is clear that the choice of 48 bits for the value field of a B 6900 word was not a random
choice, but rather was chosen because that number is a multiple of the common character codes and number bases used

in the B 6900 System.

OCTAL FORMAT

MSD
50 ‘a7 |44 a1 {3835 |32 |290| 26| 23{ 20| 17 | 14| 11| 8 5 2
49 46 | 43 | 40 [37| 34 |31 | 28| 25| 2219 {16 |13 | 10| 7 4 1
51 48 45 | 42 | 3913633 |30 {2724 21|18 158 |12} 9} 6 3 1]
LSD
PARITY TAG — e J
INFORMATION
HEXADECIMAL FORMAT
MSD
47 14313935 31 (27| 23] 19|15 11] 7 3
50 46 | 42) 38| 34 30| 26| 22| 18|14 10] 6 2
49 45 | 41137133} 29| 26| 21|17 13| 9 | 5 1
51 48 44 140|361 32] 281 24t 20l 161121 81| 4 0 {iso
PARITY TAG “ J
Y
INFORMATION
EBCDIC FORMAT
MSD
47 | 43 39 | 35 31| 27 23| 19 15 | 11 7 3
50 46 | 42 38 | 34 30 | 26 22 | 18 14 | 10 6 2
49 45 | 41 37 | 33 29 | 25 21 {17 131 9 5 1
El 48 44 | 40 36 | 32 28 | 24 20 | 16 12| 8 4 0 |LsD
PARITY TAG \~ - J/

~"
INFORMATION
MV45i4

Figure 2-3. B 6900 Word Formats

NUMBER CONVERSION

The B 6900 system normally converts decimal data that is input to the system from decimal notation to EBCDIC codes.
An exception to this normal mode of operation may occur in the case of the data communications subsystem, where
external input data may be in ASCII code. It is also possible to find that the input data has been packed, is in hexadeci-
mal notation in the system. The user of the system must be familiar with the forms in which the data can be stored. The
user must be able to perform manual conversion of numeric data from one form to another so that the internal data
conversion processes can be assessed for proper operation. The following paragraphs present methods for performing
manual conversion of numeric data from one form to other forms.

5010986 2.5

B 6900 System Reference Manual
Data Representation

DECIMAL TO NONDECIMAL

Decimal numeric data is converted from base 10 to some other number base by repeatedly dividing the decimal value by
the base number for the numbering system to which it is to be converted. Each time a division is performed, the
remainder becomes the next most significant digit or bit in the new number base. When no more whole numbers occur
during the division, the conversion is complete.

EXAMPLES:

a. Convert the decimal number 1776 to octal (base 10 converted to base 8).

1776/8 = 222 with a remainder of 0,
222/8 = 27 with a remainder of . 6;

27/8 = 3 with a remainder of 3;

3/8 = 0 with a remainder of 3.

1776 decimal = 3360 octal.

b. Convert the decimal number 1776 to hexadecimal (base 10 converted to base 16).

1776/16 = 111 with a remainder of 0;
111/16 = 6 with a remainder of 15 F (15 decimal = F hex);
6/16 = 0 with a remainder of 6.

1776 decimal value = 6F0 hexadecimal.
NONDECIMAL TO DECIMAL

Nondecimal numeric data is converted to decimal data by multiplying each digit of the numeric value by the value of
the digit position in decimal values. For example, in the preceding subsection of this manual the decimal number 1776
was converted to octal and hexadecimal notation. The successively more significant digits of the octal notation are as
follows:

times times - times
512 — 64 8 decimal
decimal decimal decimal value
3 3 6 0
| | L
6 X 8§ =——— 48
3 X 64 = 192
3 X 512 = 1536
The decimal equivalent value is 1776

26

B 6900 System Reference Manual
Data Representation

By the same logic, a hexadecimal number is converted to decimal as follows:

times times equivalent
256 ' 16 decimal
decimal decimal ’ value
6 F 0
| | :
F X 16 = 240 (F hex equals 15 decimal)
6 X 256= 1536
The decimal equivalent value is 1776

Table 2-1 gives the value of each succeeding digit in a number. These values are provided for binary, octal, and hexadeci-

mal digit positions. The values in this table are expressed in decimal equivalents for the corresponding digit positions.

There are 16 octal digits in a B 6900 word (see Figure 2-3) and, therefore, Table 2-1 gives the place values for 16 octal
digits.” A B 6900 word contains 12 hexadecimal digits, and, therefore, Table 2-1 gives the place values for 12 hexadeci-

mal places.

Observing Table 2-1 while again reading the examples of converting a nondecimal value to a decimal value shows the

origin of the place values used to perform the multiplication portions of the examples. The sum of the multiplications

provides the decimal values of the nondecimal numbers used in the examples.
NONDECIMAL TO NONDECIMAL

It is occasionally necessary to convert a hexadecimal number to an octal number or vice versa. The east

QIAa20Y 1eCe Y Q L d RCAIUSLLL Wi L 18 iV YOULIOG. 2ix

g
g
=]
[=3
=5
@
[«]
=}
=
<
o
-
Z.
Q
=
5
-
o
e}
=
2]
p<%
o
=]
=]
<
@
=3
-
=
=
=
=
-\
<
<
B
=1
o
-
=}
-+
=
o
=]
=}
[
—_
:

EXAMPLE:
Convert the hexadecimal value ABCDE to octal notation.
a. Convert hexadecimal ABCDE to binary form as follows:
An A in the fifth position is 1010 in binary form
A B in the fourth position is 1011 in binary form
A C in the third position is 1100 in binary form
A D in the second position is 1101 in binary form
An E in the first position is 1110 in binary form
The binary representation for the hexadecimal value is
1010 1011 1100 1101 1110.
b. Convert the binary value from step a to octal notation as follows:

10 101 011 110 011 011 110

2 5 3 6 3 3 6

Thus, the octal equivalent for the hexadecimal value ABCDE is 2536336. Reversing the procedure of the preceding

example converts the octal value to hexadecimal notation.
5010986

28

Digit
Place

\O 00~ O\ L B W KN =

B 6900 System Reference Manual
Data Representation

Table 2-1. Decimal Place Values of Digits in Various Number Bases

Binary Number
Place Value

00 H N =

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296
8589934592
17179869184
34359738368
68719476736
137438953472
274877906944
549755813888
1099511827776
2199023655552
4398047311104
8796094622208
17592189244416
35184378488832
70368756977664
140737513955328

Octal Number
Place Value

1

8

64

512

4096

32768

262144
2097152
16777216
134217728
1073741824
8589934592
68719476736
549755813888
4398047311104
35184378488832

Hexadecimal Number
Place Value

1

16

256

4096

65536

1048576
16777216
268435456
4294967296
68719476736
1099511827776
17592189244416

B 6900 System Reference Manual
Data Representation

The example shown works well when the present form of the value to be converted to another form is relatively small.
However, it can be seen that a five digit hexadecimal number converts into a twenty digit binary number (as in the preceding

example), and from this it is evident that larger hexadecimal numbers become long strings of binary digits. Extremely

.lpﬁg strings of binary digits are cumbersome, and become awkward in performing the conversion. Another method that may

be used to perform conversions in this case is as follows:
EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Using the values in Table 2-1, convert the hexadecimal number to its equivalent decimal value, as follows:

(1) The value of the fifth position in a hexadecimal number (from Table 2-1) is 65,536. The fifth

position of the value to be converted is hexadecimal A (A hexadecimal is equal to 10 decimal). There-

fore, the hexadecimal A in the fifth position is equal to 10 times 65,536, or 655,360 decimal.

(2) The fourth position of a hexadecimal number has a value of 4,096 (from Table 2-1). The fourth
position of the hexadecimal number to be converted is B (hexadecimal B is equal to 11 decimal).

Decimal 11 times 4,096 is equal to 45,056.
(3) Hexadecimai C times 256 decimal is equal to 3,072.
(4) Hexadecimal D times 16 decimal is equal to 208.

(5) Hexadecimal E is equal to 14 decimal.

655,360 hexadecimal Annnn
45,056 hexadecimal nBnnn
3,072 hexadecimal nnCnn
208 hexadecimal nnnDn

14 hexadecimal nnnnE

703,710 hexadecimal ABCDE equals 703,710 decimal

b. Convert the decimal number 703,710 (from step a. above) to the equivalent octal value, as follows:

703,710/8 = 87,963 with a remainder of 6;

\

87,963/8 = 10,995 with a remainder of 3;

\

10,995/8 = 1,374 with a remainder of 3;

1,374/8 = 171 with a remainder of 6;
171/8 = 21 with a remainder of 3;
21/8 =2 with a remainder of 5;

2/8 = 0 with a remainder of 2;
|

Hexadecimal ABCDE equals 2 5 3 6 3 3 6 octal

5010986

B 6900 System Reference Manual
Data Representation

The procedure for converting nondecimal numbers to nondecimal numbers shown in the preceding example can also be
used to convert an bctal number to a hexadecimal equivalent. The only difference is that the place values from

Table 2-1 (used in step a. of the procedure) must be taken from the octal column instead of from the hexadecimal
column. :

WORD TYPES AND PHYSICAL WORD LAYOUTS

As explained in the beginning paragraphs of this section, a B 6900 system word consists of a parity bit, a tag field, and
an information field. The tag field defines an interpretation that is to be applied to the contents of the information field.
This subsection of this manual will define the interpretations that are to be used for the data in the B 6900 system, and
will present the format of the data in the information field of each type of word used in the B 6900 system.

The two types of data used in the B 6900 system are character strings and operands. The following paragraphs define
character strings and operands.

CHARACTER TYPE WORDS

Character type words are used to contain character strings. A character type word has a tag field of ZERO (a single
precision word) and contains EBCDIC, or hexadecimal coded data. A string may occupy more than a single word of
character data. However, a string must have at least one character type word. ‘

The most significant character in a character string occupies the left-most character position in the field character word

of the string. Each word in a character string will contain 6 EBCDIC character positions or 12 hexadecimal character
positions. The final word in a character string may contain less than a full word of characters if the number of characters
in the string is not a multiple of the number of characters in a full word. Figures 2-4 through 2-5 show the various
formats that are used for character type words.

o
©
»
p -]
w
(o
(]
0
L=}
=)
m
m
mn
m

P WORD PARITY VALUE

0 = BINARY ZERO VALUES (TAG FIELD)
A >F 6 EBCDIC CHARACTER FIELDS

A IS THE MOST SIGNIFICANT CHARACTER

MV 2573

Figure 2-4. EBCDIC Character Word Format

2-10

OPERANDS

B 6900 System Reference Manual
Data Representation

P = WORD PARITY VALUE
0 = BINARY ZERO VALUES (TAG FIELD)

A>M 12 HEXADECIMAL CHARACTERS
A IS THE MOST SIGNIFICANT CHARACTER

MV 2575

Figure 2-5. Hexadecimal Character Word Format

Operands are words of data that are used to contain numeric values or logical information. An operand may be either

a single precision word (tag field of ZERO), or a double precision word (tag field of TWO). Single, and double precision
words are used for mathematical operations. Logical information is used for decision-making processes, and operations.
The following paragraphs discuss the uses. of operands in the B 6900 system.

Single-Precision Operand

A single-precision operand is a numeric vaiue that has an exponent part and a mantissa part. Figure 2-6 shows the
format for a single-precision operand. The fields in a single-precision operand are as follows:

bits [50:3]
bit 47

bit 46

bit 45

cr

I

©ur
——
—

5010986

are the tag field, and are always equal to zero for a single-precision operand.
bit 47 is not used in a single-precision operand.

bit 46 is used as the sign of the mantissa field. If the sign bit is a binary one then the mantissa field
contains a negative value, and if bit 46 is a binary zero then the mantissa contains a positive value.

bit 45 is used as the sign of the exponent field. If the sign bit is a binary one then the exponent
field contains a negative value, and if bit 45 is a binary zero then the exponent contains a positive
value.

are the exponent field. Bit 44 is the most significant bit in the exponent value. The value of the
bits in this field are as follows:

bit 39 value is decimal one
bit 40 value is decimal two
bit 41 value is decimal four

bit 42 value is decimal eight
bit 43 value is decimal sixteen
bit 44 value is decimal thirty-two

2-11

B 6900 System Reference Manual
Data Representation

The maximum value that the exponent field can contain is decimal 63. When the exponent is used
in conjunction with the exponent sign bit (45), the range of the exponent value is from +63 to
-63 decimal.

bits [38:39] are the mantissa field. Bit 38 is the most significant bit in the mantissa value. The mantissa is
divided into thirteen octal fields, of which bits [38:3] are the most significant octal digit, and bits
[2:3] are the least significant digit.

An octal point (similar to a decimal point) is always located to the right of bit zero in the mantissa
field. This point is not displayed in any way and must be assumed to exist.

44 Lo 36 32 28 24 20 16 12 8 [0 [J
OCTAL
POINT
P = WORD PARITY VALUE
0 = BINARY ZERO VALUES

SM = SiGN OF THE MANTISSA BIT

SE = SIGN OF THE EXPONENT BIT

E = EXPONENT BITS

M = MANTISSA BITS

SHADED BIT IS NOT USED IN A SINGLE PRECISION OPERAND
MV 2576

Figure 2-6. Single-Precision Operand Format

The software of the B 6900 system classes numeric data into two classes: INTEGER, and REAL. An INTEGER
number is a single-precision or double-precision numeric value with an exponent value of zero. The maximum value that
an INTEGER may have in the B 6900 system is +7777777777777 octal, or 549,755,813,887 decimal. The minimum
integer value is -7777777777777 octal. A REAL numeric value is any value that has an exponent that is not equal to zero, or
any value that contains a part value (contains a decimal, or octal point prior to the least significant digit of the value). From
the format given for a single-precision operand it is evident that REAL numbers may not qualify to be expressed as single-
precision values.

Double-Precision Operand

A double-precision value is two consecutive words, with a tag field of TWO (010 binary). The two words are con-
catenated in such a way that they form a single numeric value, with an octal point located between the two words. The
most significant part of the mantissa in a double-precision operand is commonly referred to as the most significant part
(MSP) and the least significant part of the mantissa is commonly referréd to as the least significant part (LSP). The
octal point that separates the MSP from the LSP is used to separate whole values from partial values, with whole values
present in the MSP, and partial values present in the LSP. The format for the MSP of a double-precision operand is

2-12

B 6900 System Reference Manual
Data Representation

identical with the format for a single-precision operand, except for the tag field. The LSP of a double-precision operand
is an extension of the exponent field and of the mantissa field contained in the MSP of the word. Figure 2-7 shows the
word format for a double-precision operand.

The largest double precision value (type REAL) that can be contained in a B 6900 is 1.94882938205028079124469,

with an exponent value of +29603. The smallest double-precision value (type REAL) that can be contained in a B 6900
is 1.9385458571375858335564, with an exponent value of -29581. The value zero and the positive or negative values
between the largest and smallest values given above may be represented in double-precision numbers in the B 6900 system.

When a double-precision value is used the exponent extension field (in the LSP), it is an extension to the high order end of
the exponent field in the MSP. Bit 39 in the LSP word is the next bit in sequence after bit 44 of the upper-half, and
has a binary value of 64. Bit 40 in the LSP word is the next bit in sequence after bit 39 of the word, and has a binary
value of 128. This same order is used for all of the bits in the LSP exponent extension field, so that bit 47 of the LSP
becomes the most significant bit in the exponent value. The whole exponent field in a double-precision operand is as
follows:

MSP bit 39 is the least significant bit of the exponent, and has a value of 1, decimal.
LSP bit 39 is the next most significant bit in the exponent, and has a value of 64, decimal.

bit 47 is the most significant bit in the exponent, and has a value of 16384, decimal.

4] SM| E M M M M MMM MMM
MSP
1 SE | E M MMM MM MM M
P 0 E E M M M MMM M M MM
by {40 (36 |32 |28 |24 |20 |16 |12 8 4 0 °
OCTAL
POINT
EE | EE | EE | ME| ME | ME | ME | ME | ME | ME | ME | ME
0 EE| EE | ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
LSP
1 EE | EE | ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
P 0 EE| EE | ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
by |ho |36 32 (28 |24 |20 16 |12 8 4 0
010 = TAG FIELD = DOUBLE PRECISION M = MANTISSA FIELD
SM = SIGN OF THE MANTISSA BIT EE = EXPONENT EXTENSION FIELD
SE = SIGN OF THE EXPONENT BIT ME = MANTISSA EXTENSION FIEILD
E = EXPONENT FIELD P = WORD PARITY VALUE
MV 2577 SHADED BIT = NOT USED

Figure 2-7. Double-Precision Operand Format

5010986 2-13

B 6900 System Reference Manual
Data Representation

The maximum value of an exponent in the B 6900 system is 32,767 decimal, and the range of the exponent field is
from +32,767, to -32,767 decimal.

The mantissa extension field (in the LSP of the double precision operand) contains that portion of the mantissa that is
less than unity. The mantissa extension fieid is divided into 13 octades, in the same manner as the mantissa field in the
MSP of the double precision operand. These octal digits are arranged in the same way as the octal digits in the MSP of
the word. The least significant octade of the mantissa extension field is bits [2:3], and the most significant octade is
bits [38:3].

The B 6900 system, in performing mathematicai operations, utilizes two processes known as integerization and normaliza-
tion. Normalization is a process that removes leading zeroes from a single-precision or double-precision word. This
process is used to make the operation of the adder logic circuits more efficient. Integerization is a process that alters
the value of a number such that it meets the requirements of an integer, as was defined previously in this section.

Normalization is accomplished by adjusting the value of the exponent field of a number in a positive direction until it is
at the maximum value for an exponent, or until there are no leading zeroes in the mantissa of the number. Each time
the exponent is incremented, the mantissa is shifted one octade to the left. There are no more leading zeroes in a
mantissa when the most significant octade of the mantissa is located in bits [38:3] (of the LSP word).

The process of integerization is a two-step process. The first step is to adjust the exponent in either a positive or a
negative direction until the exponent field is equal to zero. Each time the exponent is incremented or decremented,
the mantissa is shifted one octade in the corresponding direction. Octades that fall out of the low order digit of the
mantissa during the adjustment of the exponent are saved uniil the exponent is equal to zero. After the exponent has
been adjusted to zero, that part of the mantissa that is less than unity (located to the right of the octal point) is either
rounded upward to the next whole number, or it is truncated (deleted from the number). The process of rounding or
truncating is selective in the B 6900 system, and is the second step of the integerization process.

The mathematical operations that are performed in the B 6900 system can be completed regardless of the format of the
operands used. If an arithmetic operation is performed using two single precision operands, then the result of the opera-
tion will be in the single-precision format. If, however, either operand is in the double-precision format then the result
of the operation will be in the double-precision format.

Logical Operands

Logical operands are words that result from the performance of either a relational operation, or a logical (Boolean) opera-
tion. A relational operation is one that determines the relative merits of two values by means of a comparison process.

A logical operation is one that constructs a result based on the relative merit of each bit in a word when compared to the
corresponding bits in another word.

A relational operation results in either a true or a false answer. The answer is true if the result of an algebraic compari-
son of two arithmetic values is valid. The answer is false if the result of the algebraic comparison of the two arithmetic
values is not valid. The B 6900 constructs a single precision logical operand (tag field equal to binary zero) each time
that a relational operation is performed. If the answer is valid, bit zero is a one in the logical operand; and if the answer
is not valid then bit zero is a zero. All other bits in the answer word logical operand are not used, and are zeroes.

A logical (Boolean) operation results in the construction of a different type of logical operand. The constructed logical
operand may contain a number of bits. The reason is that a logical operation looks at each bit in two different words,

and places a corresponding bit in the result operand if the conditions of the iogical operation are satisfied.

Logical operands are discussed later in this manual.

2-14

B 6900 System Reference Manual
Data Representation

DATA DESCRIPTORS

Data descriptor words refer to data areas, including input/output buffer areas. The data descriptor defines an area of
memory starting at the base address contained in the descriptor. The size of the memory area in words is contained in
the length field of the descriptor. Data descriptors may directly reference any memory word address from word number
zero through word number 1, 048, 576. The structure of the data descriptor word is illustrated in Figure 2-8.

P R L L L L L A A A A A

LY 40 36 32 25 24 20 16 12 8 4 0

[50:3] = THE TAG FIELD.
THE TAG FIELD FOR A DATA DESCRIPTOR IS
ALWAYS 101 BINARY
47 = PRESENCE BIT
46 = COPY BIT
45 = INDEXED BIT
44 = SEGMENTED BIT
43 = READ ONLY BIT
142:3] = THE SIZE FIELD
[39:20] = THE LENGTH FIELD
[19:201 = THE ADDRESS FIELD

MV 2578
Figure 2-8. Data Descriptor Format
The fields in the data descriptor are as follows:
bits 50:3 Bits 50. 49, and 48 are the tag field. and are always equal to a binary value of 101.

bit 47 Bit 47 is the presence bit. The presence bit is used to indicate whether or not the information
described by the data descriptor is present in main memory. If the presence bit is equal to a
binary one then the data is present in main memory. If the presence bit is equal to a binary zero
then the data is not in main memory. Attempting to access data with a data descriptor that has
its presence bit equal to a binary zero causes a presence bit interrupt. The B 6900 system uses
the occurrence of a presence bit interrupt ds the preliminary siep to start an MCP process which
will move the data described by the data descriptor from system disk, or system pack storage
into the main memory.

bit 46 Bit 46 is the copy bit. The copy bit indicates whether the data descriptor is the original descriptor
for the data, or is a copy of the original descriptor. If the copy bit is equal to a binary zero then
the data descriptor is the original. If the copy bit is a binary one then the data descriptor is a
copy of the original descriptor. An original data descriptor is commonly referred to as a mother
(or MOM) descriptor and a copy of a mother descriptor is commonly referred to as a copy
descriptor.

5010986 215

2-16

bit 45

bit 44

bit 43

bits 42:3

B 6300 System Reference Manual
Data Representation

Bit 45 is the indexed bit. The indexed bit is used to indicate whether or not an indexing operation
has been performed on the data descriptor. If the index bit is equal to a binary one then the
descriptor has been indexed previously, and the value of the previous index is located in the length
field 39:20. If the index bit is equal to binary zero, the data descriptor has neven been indexed
before; and such an indexing operation must be performed before accessing the data described by
the descriptor. The process that causes the indexing operation to be performed also sets the
indexed bit and stores the value of the index in the field 39:20.

Bit 44 is the segmented bit. The segmented bit is used to identify whether or not the data
described by the data descriptor is segmented. If the segmented bit is equal to a binary zero then
the data is not in segments, and this descriptor describes the entire field.

Bit 43 is the read only bit. The read only bit is used to show whether the memory area
described by the data descriptor can be written into or not. If the read only bit is equal to a
binary one then the data descriptor describes a memory area that may be read, but may not be
written into. If the read only bit is a binary zero then the data descriptor describes a memory
area that may be written into, or read from. It is possible for a single area in memory to be
described by two different data descriptors: one where the Read Only bit is a binary one, and
another descriptor where the Read Only bit equals a binary zero. The memory area may be
written into by use of the data descriptor that has the Read Only bit equal to a binary zero, but
may not be written into by use of the data descriptor that has the Read Only bit equal to a
binary one.

Bits 42, 41, and 40 are used to define the type of data contained in the memory area that is
described by the data descriptor. If bits 42 and 41 are both equal to binary zeroes, then the
data descriptor defines an area in memory in words. A data descriptor that describes 2 string of
character data is commonly called a string descriptor. If either bit 42 or bit 41 is equal to a
binary one then the descriptor is a string descriptor. Bits 42:3 may contain several different
binary values, and the meaning of the different values that are used have the following meanings:

bit 42 bit 41 bit 40
0 0 0 Bits 42 and 41 being equal to zero indicates that the data
descriptor is a word descriptor. Bit 40 being equal to
binary zero indicates that the data described by the
descriptor is in single precision operands.

0 0 1 Bits 42 and 41 being equal to zero indicates that the
data descriptor is a word descriptor. Bit 40 being equal
to binary one indicates that the data described by the
descriptor is in double precision operands.

0 1 0 Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor, and bit 41 being a
binary one indicates that the data described contains
hexadecimal (4-bit) data.

0 1 1 Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bits 41 and 40 both
being equal to binary ones is an illegal code in a

B 6900 system.

1 0 0 Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bit 42 equal to
binary one indicates that the data described contains
EBCDIC (8-bit) data.

bits 39:20

bits 19:20

STEP INDEX WORDS

B 6900 System Reference Manual
Data Representation

Bits 39:20 contain either the length of the memory area (if bit 45 is a binary zero) or an index
value (if bit 45 is a binary one). If bit 45 is equal to binary zero the descriptor has not been
indexed. This field is used for size checking during the indexing operation. If bit 45 is equal to

a binary one the descriptor has been indexed. If the data descriptor is a word descriptor, and

also if bit 40 is a binary one (the word area contains double precision operands) then the index

is doubled after the indexing operation and the size checking operation have been completed. The
doubled index is stored in the index field.

Bits 19:20 contain either a main memory or a disk file address. If the presence bit is equal to

a binary one, and the copy bit is also equal to a binary one, then the address field contains the
main memory address of the MOM descriptor. If the presence bit is equal to a binary one and
the copy bit is equal to a binary zero then the address field contains theé main memory address
of the first word of data described by the descriptor. If the presence bit is equal to a binary
zero, and the copy bit is also equal to a binary zero, then the address field contains a 6-bit
binary coded decimal disk file address where the data described by the data descriptor is located.
If the presence bit is a binary zero and the copy bit is a binary one, the address field contains
the memory address of the original program segment descriptor.

Step index words are words that are used in conjunction with the step and branch operator in the B 6900 system. The
purpose of the step and branch operator in the B 6900 system is to perform a series of other machine language operators
in a recursive manner, but with control over the number of times the series of operators are executed. The step index
word is used to provide the control part of the function of the step and branch operator.

The step index word (see Figure 2-9) contains a TAG of four (100-binary), and four other fields, as follows:

47:12

35:16

19:04

15:16

5010986

the increment vaiue
the final value
an unused, but value-specified, field which must be equal to zero

the current value

1ol flelFlFE|lolc|c]|c]c
ol 1|11 |F|FE|FE|F]o]c|c|c]c
0 l.hl kOI 36| 32F ZSF ZQF ZOF 160 IZC 8C bc OC

TAG = 100 — STEP INDEX WORD

1 = INCREMENT FIELD [47:12]

F = FINAL VALUE FIELD [35:16]

c = CURRENT VALUE FIELD [15:16]

FIELD [19:4] MUST CONTAIN BINARY ZEROES

MV 2579

Figure 2-9. Step Index Word Format
2-17

B 6900 System Reference Manual
Data Representation

Each time the series of machine language operators is performed the value of the increment is added to the value of the
current value field. The step and branch operator then compares the current value field to the final value field. If the
current value field is greater than the final value field a branch is taken out of the recursive series of operators. If the
current value field is not greater than the final value field then the recursive series of operators are executed.

The increment value, the final value, and the current value are binary values. To determine the number of times a
recursive series of operations will occur, binary mathematics and not decimal mathematics, must be used; and the unused
but value-specified field (19:04) must be equal to zero in the step index word.

SOFTWARE WORDS

A software word is a word with a tag field of six (110 binary) that is used by the MCP of the B 6900 system for soft-
ware purposes. The MCP uses the software word for several different purposes, and the format of the word is different
for each purpose. The software word is utilized as a linking word for memory allocation, as a software control word, as
an un-initialized pointer word, and to contain system intrinsics data. Each of these uses for software words causes a
different format to be used for the fields of data that are contained in the word.

The format of the software word when it is used for uninitialized pointers or for. intrinsics information are not defined
in this manual. These formats are specialized applications that are properly documented in manuals that discuss the
specific application subjects.

The format of the software word when it is used for a memory link word and for a software control word is given in the
following -paragraphs. The specific use of the software word in either of these formats is not covered in this manual.
Like the uninitialized pointer word and the intrinsics information word, these specific uses are specialized applications,
and are more properly documented in manuals that deal with the software system as a specific subject.

The MCP maintains linking words in main memory to show which portions of the memory are in use, and which portions
are not currently in use. A software word is used as the first link word for a portion of memory that is in use. This
word is defined in the memory link system as the LINKA word, and each part of the main memory that is in use

begins with a LINKA word. Memory link words are a mechanism for dynamic storage allocation which will be covered
in more detail later in this manual. Figure 2-10 shows the format of a LINKA word.

CF| S S S S S A A |A |A |A

1 |CF| S |S|S|S |S |CS|A A A |A A

1 S S S S S AS|A |A |A A A

0 S S S S S 1 A A |A A [A
' 40 36 32 25 24 20 16 12 8] 0

TAG = 6 (110 BINARY) = SOFTWARE CONTROL WORD.

CF [47:2] = CONTROL FIELD FOR AREA DURING THE
OVERLAY AREA MCP PROCESS.

S {43:20] = SIZE OF THE IN-USE AREA IN WORDS.

CS (BIT22) = CONTROL SAVE FIELD — IF AREA IS TEMPORARILY
SAVED CS=1.

AS (BIT 21) = AREASAVED FIELD — IF AREA IS NON-
OVERLAYABLE (SAVED) AS=1.

BIT 20 = ISBINARY 1 FOR A LiNKA WORD.

A [19:20] = THE CORE MEMORY ADDRESS FOR THE MOM DATA
DESCRIPTOR OF THE AREA CONTENTS

MV 2880

igure 2-10. Software Control (LINKA) Word
2-18

B 6900 System Reference Manual
Data Representation

Software control words are used by the software operating system to indicate the existance of memory areas that are
related to the operating stack, but are physicaily iocated outside of the operating stack. When the memory area of an
operating stack is deallocated (the stack is cut back), related memory areas also must be deallecated. The software
control word is a mask word that indicates the presence or absence of such related memory areas by the state of the bits
in the mask word. At the time that the stack area is to be deallocated, a related memory area is present for each bit
that is a binary one value in the mask field of the software control word. Figure 2-11 shows the format of the software
control word.

1 T S AT [oc
3k T oo [
P P AL A0 o [[
0 L4 4o 36 32 28 ZFBQFZC?R'# I?kylgky 8PC :,C OPC

(560:3] = TAG FIELD =110 =SOFTWARE CONTROL WORD

[47:2] = 2 = SOFTWARE CONTROL WORD (MASK WORD)
45 = 1 = GO TO ABORTE
24 = 1 = NOCPBIT

[23:4] = PL/I COMPILER BLOCKEXIT AND FAULT FIELD
{19:9] = MASK FIELD

19 = NOT USED

18 = FMT PSEUDO BUFFER FIB-LOCKED

17 = NON-LOCAL GOTO

16 = DIRECT ARRAY DECLARATION IN BLOCK

15 = FAULT iN BLOCK DECLARATION

14 = INTERRUPT IN BLOCK DECLARATION

13 = FILE IN BLOCK DECLARATION

12 = MULT!(-DIMENSION ARRAY IN BLOCK DECLARATION
1M = SINGLE-DIMENSION ARRAY IN BLOCK DECLARATION

[9:10] = PROCESS COUNT

MV 2581

Figure 2-11. Software Control (MASK) Word
INDIRECT REFERENCE WORDS
Indirect reference words (IRW) are used in the B 6900 system to reference data that is located within the addressing
environment of the current procedure. The addressing environment of the current procedure includes the current oper-
ating stack, and all stacks that are a part of the current procedure at a lower lexicographical level than the current

operating stack level.

Stuffed indirect reference words (SIRW) are used in the B 6900 system to reference data that is located outside of the
addressing environment of the current operating procedure.

5010986 2-19

B 6900 System Reference Manual
Data Representation

The fields of an indirect reference word or a stuffed indirect reference word do not contain data. Instead, the fields of
an indirect reference word or a stuffed indirect reference word contain addressing information that is used to point to the
location of data. The fields of an IRW or a SIRW are both displayed in Figure 2-12. The fields within the IRW and

the SIRW are as follows:

bits 50:3

bit 46

bits 45:10

bits 35:16

bits 12:13

bits 13:14

2-20

Bits 50:3 are the tag field. The tag field for an IRW is always 001 binary, regardless of whether
the IRW is stuffed or normal.

Bit 46 is the environment bit. If bit 46 is a binary one the IRW is stuffed. If bit 46 is a binary
zero the IRW is a normal IRW.

Bits 45:10 are the stack number field. The stack number is not used in a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the value of the stack number field is the
identification number of the stack that is to be referenced.

Bits 35:16 are the displacement field. The displacement field is not used for a normal IRW and is
equal to binary zero. If bit 46 is a binary one then theé displacement field is added to the address
of the base of the stack being referenced to locate a mark stack control word within the referenced
stack area.

Bits 12:13 are the index field. The index field is not used in a normal IRW; however, the same
bits are used for a different purpose. If bit 46 is a binary one then the index field is added to

the address of the mark stack control word in the referenced stack. The sum of these values is
the address of the data that is being addressed.

Bits 13:14 are the address couple field. The address couple field is not used in the SIRW;
however, the same bits are used for a different purpose. The address couple field is used in an
IRW to locate data in the addressing environment of the current procedure. The address couple
consists of two separate values, each of which are of variable bit length. The most significant
part of the address couple contains the lexicographical level value. The least significant part of
the address couple contains an index value which is added to the address of the mark stack con-
trol word that corresponds to the lexicographical control level. The sum of the address of the
mark stack control word, and the index value is the address of the data referenced by the IRW.

A A
Al A
A A
A

4 0

IRW WORD FORMAT

D|D | l
D| D l 1
0 [SNR|SNR|SNR] D | D | D | i
1 “S“E‘JH H%N.. 3?.6.‘.'5-329 28D 2“0 . } 0 !

SIRW WORD FORMAT
MV2725

Figure 2-12. IRW and SIRW Formats

B 6900 System Reference Manual
Data Representation

The lexicographical level (program level) of a current procedure may have any value from zero, through thirty-one. The
lexicographical level (LL)} part of an address couple is represented by the most significant bits of the address couple. The
LL requires five bits of the address couple to represent the binary value of thirty-one which is the highest LL value
possible. When the LL contains a value of zero or one, only one bit is required to represent the binary LL value. The
actual number of binary bits that are used to contain the LL value in an address couple is defined by the level of the cur-
rent operating procedure. Thus, if the current procedure is at lexicographical level seven, the number of bits in the address
couple that are used to indicate LL is three; because three binary bits are required to represent the value of seven decimal.

The index part of an address couple consists of the bits that are not required to represent the LL value. Thus, if the
lexicographical level of the current procedure is seven, three binary bits (bits 13, 12, and 11) are required to represent the
LL value; and the remaining bits (bits zero through ten) are used to represent the index part of the address couple.

The B 6900 system derives the absolute memory address referred to by an IRW in the following manner:

a. The LL part of the address couple defines the IC memory display register that contains the address of a mark
stack control word in main memory.

b. The index part of the address couple is added to the address of the mark stack control address. This sum is
the absolute address of the data referred to by the IRW.

Since the number of bits in the address couple that are required to contain the LL value is a variable number, the size of
the index value is limited by the number of bits that comprise the index value. Thus, if three bits are required to contain
the LL value, then the size of the index part is limited to an eleven bit binary value (or a maximum index value of

2047 decimal memory words). Table 2-2 shows the maximum number of memory words that may be contained in the
index part of an address couple for any given LL value part of the address couple.

Table 2-2. Address Couple Value Fields

Lexicographical Number of Bits Bits Available for Maximum Index
Level Value Required Index Value Value
0 1 13 8191
1 1 13 8191
2 2 12 4095
3 2 12 4095
4 3 11 2047
5 3 11 2047
6 3 11 2047
7 3 11 2047
8 4 10 1023
9 4 10 1023
10 4 10 1023
11 4 10 1023
12 4 10 1023
13 4 10 1023
14 4 10 1023
15 4 10 1023
16 through 31 5 9 511

5010986 2-21

The B 6900 system determines the absolute address referred to by the SIRW in a way that is different from the one
used for determining the absolute address referred to by an IRW. The method used to determine the absolute address

referred to by a SIRW is as follows:

a. The stack number field in the SIRW is an index into the segment dictionary, which is maintained by the
MCP. The segment dictionary contains a list of data descriptors that give the absolute memory addresses
of all stacks in main memory. The stack number field of the SIRW identifies the descriptor containing
the base address of the stack to be referenced.

b. The displacement field value of the SIRW is an index on the base address of the stack being referenced.
The value of the base address of the stack, plus the value of the displacement field is the absolute memory
address of a mark stack control word in the stack that is being referenced.

c. The index field value of the SIRW is an index on the address of the mark stack control word in the stack
that is being referenced. The sum of the address of the mark stack control word plus the value of the index
field is the address of the value that is being addressed by the SIRW.

PROGRAM CONTROL WORDS

The program control word (PCW) is used by the B 6900 system to point to the program code for a procedure or segrnent
of a program. The PCW also contains program information about the system environment that is to be used during the

execution of the segment or program.

The use of PCW’s provides the flexibility that the software requires to utilize reentrant code techniques, and also dynamic
storage allocation principals. The reentrant code techniques are used in the B 6900 system to provide the software

B 6900 System Reference Manual
Data Representation

capability to execute more than one job at a time while using the same machine language code.

Figure 2-13 shows the fields of data that are contained in a PCW.

SNR| SNR| PSR | PIR | PIR |PIR | N LL |SDI |SDiI |SDI
1 SNR| SNR| PSR | PIR PIR'PIR_ LL | LL |SDI |SDI |SDi
1 SNR| SNR| SNR| PSR PIR | PIR | PIR | LL |SD! |SD! {SDI {SDI
1 SNR: SNR|{ SNR{ PIR | PIR [PIR { PIR | LL | SDI |SDi ;SDI |SDI
Ly 4o 36 32 28 24 20 16 12 8 4 0
50:3 = THE TAG FIELD.
7 ISAPCWTAG
45:10 = THE STACK NUMBER FIELD
35:3 = THE PROGRAM SYLLABLE REGISTER VALUE
32:13 = THE PROGRAM INDEX REGISTER VALUE
19 = THE NORMAL/CONTROL STATE BIT
18:5 = THE LEXICOGRAPHICAL LEVEL VALUE
13:14 = THE SEGMENT DESCRIPTOR INDEX VALUE
MV 1583

2-22

Figure 2-13. Program Conirol Word

B 6900 System Reference Manual
Data Representation

The fields of data in a PCW are used as follows:

bits 50:3

bits 45:10

bits 35:3

bits 32:13

bit 19

bits 18:5

© bit 13:1

bits 12:13

The tag field. The tag field for a PCW is seven decimal (111 binary).

The stack number. The stack number field is used to identify the stack that contains the PCW
(not always the stack associated with the program code that is to be executed).

The MCP uses stack numbers to identify jobs that are currently being executed or that are
scheduled to be executed. The MCP assigns stack numbers for program stacks on a first-come,
first-served basis. Therefore the stack number for a program stack is a dynamic variable that is
assigned to a program at execution time.

The program syliable register (PSR) field. The PSR field is used to indicate the first machine
language operator in the first memory word of a machine language code string. A program code
string is not required to begin at the first machine language operator in a memory word. There
are 6 syllables in a machine language code word, and the PSR value indicates which of the

6 syllables the current string of code starts in.

The program index register (PIR) value. The PIR field is used to indicate the first word of the
program machine language code string. The combination of the PIR field and the PSR field com-
bine to identify the specific first machine language operator in the program code string. The

PIR value defines the first word address of the string, and the PSR value defines the first syllable
within the first word of the string.

The normal state/control state bit. The B 6900 system may operate in either of two states, and
the proper state for the current code segment is defined by the normal state/control state bit. If
the normal state/control state bit is a binary one, control state is specified and normal state is
specified otherwise.

The lexicographical level (LL) field. The LL field is used to specify the lex level at which the
program string is to be executed. The LL value defines one of the 32 IC memory display
registers. The value in the selected IC memory display register is the base address in core memory
of the program stack with which the program code segment is associated.

This bit is used to indicate that the DO stack contains the program code segment descriptor
(>if 0), or the D1 stack (if 1).

The segment descriptor index (SDI) field. The SDI is used to indicate the location of the segment
descriptor for the program code in core memory.

The 13 bits of the SDI field are a binary index value which are added to the base address from
the display register (either DO or Di) to define the absolute core memory address of the segment

descriptor for the machine language code.

MARK STACK CONTROL WORDS

The mark stack control word (MSCW) is used to define an area within the stack in main memory. The MSCW and the

return control word (RCW) together provide a history of the stack linkage, and a record of the stack operating environ-
ment. The historical links of a stack, and the operating environment record of the stack are key data in the reconstruc-
tion and analysis of program operations.

5010986

223

B 6900 System Reference Manual
Data Representation

Figure 2-14 shows the fields of data that are contained in the MSCW.

2 &
DS | SNR SNR[DIS DIS |DIS DIS | V LL | DF | DF | DF

+
0 | E | SNR SNRIDIS DiS {DIS (DIS | LL | LL | DF | DF | DF

1 JSNR| SNR| SNRfDIS | DIS | DIS DIS | LL | DF | DF | DF | DF

1 NR| SNR 36SNR Iz)IS

4 4o

Dis | Dis | DIS 6LL]DF BDF DF | DF
S

2 24 20

50:3 = TAG FIELD. MARK STACK TAG IS ALWAYS 3
47 = DIFFERENT STACK BIT
46 = ENVIRONMENT BIT

45:10 = STACK NUMBER FIELD
35:16 = DISPLACEMENT FIELD

19 = VALUEBIT
18:5 = LEXICOGRAPHICAL LEVEL FIELD
13:14 = DIFFERENCE FIELD

MV 1584

Figure 2-14. Mark Stack Control Word

The meaning of the fields of data in the MSCW are as follows:

bits 50:3

bit 47

bit 46

bits 45:10

bits 35:16

2-24

The tag field. The tag for a MSCW is three (011 binary).

The different stack bit. The different stack bit indicates whether the stack number field refers
to the same stack, or to a different stack. If the different stack bit is a binary zero then the
stack number field refers to the same stack. If the different stack bit is a binary one then the
stack number refers to a different stack.

The entered bit. The entered bit is used to indicate whether the stack is active or not. If the
stack is currently in use (is active) then the bit will be set to a binary one. If the stack is not
currently in use then the bit will be reset to a binary zero. If the entered bit is a binary one
then it indicates that the MSCW is active and was entered into the stack by a procedure entry.
If the entered bit is a binary zero it shows that the MSCW was entered into the stack by the
mark stack machine language operator, and no procedure entry has been made in the stack.
When a procedure entry is made into the stack the environment fields of the MSCW are
completed from the PCW that caused entry, and the entered bit is set to a binary one.

The stack number. The stack number field is completed at procedure entry time, and contains
the stack number value from the PCW that was entered. The stack number is the designation of
the stack that contains the PCW, not the number of the current stack.

The displacement field. The displacement field is used to link a program together by its lexi-
cographical levels. The value of the displacement field defines the MSCW that represents the

last previous lexicographical level of the procedure. The location of the MSCW that corresponds
to the preceding lexicographical level is determined by adding the value of the displacement field
to the value of BOSR for the stack.

bit 19

bits 18:5

bits 13:14

B 6900 System Reference Manual
Data Representation

The value bit. The value bit is used to indicate whether or not the operator that caused entry
to the current operator is to be restarted at the beginning of the operator in the procedure that
caused entry. If the value bit is a binary zero then the previous operator must be restarted from
the beginning. If the value bit is a binary one then the previous operator must be continued at
the next operator in sequence.

The lexicographical level field. The value of the lexicographical level field defines the
lexicographical level at which the program will run when the procedure is entered.

The difference field. The difference field is used to store the stack history. The value of the
difference field is the number of words between the current MSCW and the previous MSCW

in the stack. Subtracting the value of the difference field from the address of the current MSCW
gives the address of the previous MSCW.

INTERRUPT PARAMETER WORDS

The interrupt controller of the B 6900 data processor recognizes certain types of system interrupts. The DP interrupt
controller interrupts the program that is running, and causes an entry into the MCP interrupt handling procedures when a
system interrupt is sensed. The interrupt handling procedures of the MCP initiate system actions that are required
because of the interrupt condition that exists. At the conclusion of the interrupt handling function, the MCP returns
control of the DP to the program or process that was interrupted.

The interrupt controller collects and formats data about the type of interrupt that occurred. This data is placed in a

special stack (see Figure

2-15) which the interrupt controller creates for the interrupt handling procedures of the MCP.

After the interrupt controller has created and filled the interrupt handling stack, a program entry is made into the
interrupt handling procedures of the MCP.

THE
Mmcp
STACK

MV 1585

5010986

TAS \

FIELD P2 PARAMETER

=0

TAG 3

FIELD P3 PARAMETER THIS INTERRUPT STACK IS CON-

=2 STRUCTED BY THE INTERRUPT

TAG CONTROLLER OF THE B6800 DATA
ELD

£y P1 PARAMETER PROCESSOR. THE INTERRUPT PRO-

TAGI (RCW POINTING TO CEDURE USES THIS STACK TO ANA-

FIECD IRWDO*30R "yyreppupTED STACKY | LYZE INTERRUPTS IN THE SYSTEM.

TAG

FIELD MSCW

=3

PROGRAM STACK AREA
FOR THE PROGRAM THAT
INITIATED THE INTERRUPT
T CONTROLLER FUNCTION T

o TaG | THIS PCW POINTS TO THE MACHINE
23 ol FiELD PCW 1 LANGUAGE CODE STREAM FOR THE
7 86900 INTERRUPT PROCEDURES,

TAG
FIELD RCW
=3

DO [TAG

—®1 FIELD MSCW

=3

Figure 2-15. B 6900 Interrupt Stack Organization

2-25

B 6900 System Reference Manual
Data Representation

P1 Parameter

The format and content of the data that is placed in the interrupt handling stack depends on the type of interrupt that
occurred. There are five types of interrupts that are recognized by the interrupt controller of the DP, which are: Alarm
type, Hardware type, General Control type, External type, and Syllable Dependent type. The first word of data in the
interrupt stack is the P1 parameter. The P1 parameter defines the type of interrupt that was sensed, and indicates the
cause of the interrupt. Table 2-3 shows the types of interrupts that are defined in the P1 parameter, and also shows the
various causes of each type of interrupt. The P1 parameter is the first half (upper half) of a double-precision word. The
last half (lower half) of the double precision word is the P3 parameter. Table 2-4 shows what information about an
interrupt is to be present in the P2, and P3 parameters of the interrupt handling procedure stack.

P3 Parameter
The P3 parameter is the second half of a double precision word in the interrupt handling procedure stack.

The purpose of the P3 parameter is to provide a place to record the hardware operating environment conditions when
an interrupt occurs. The B 6900 system uses the information contained in the P3 parameter to help analyze the cause
of the interrupt.

The information contained in the P3 parameter is also valuable in determining the cause of a hardware failure which
results in an operating system interrupt. The information that is present in the P3 parameter is recorded in the SYSTEM
SUMLOG file, and thus is available to help maintenance personnel in determining the cause of hardware failures.

The P3 parameter has a variable format that depends on the type of interrupt that has occurred. There are five different
formats, but only one format is used for each type of interrupt. Figure 2-16 shows the formats that are used for Alarm
type, Hardware type, Syiiabie Dependent type, and General Control type interrupts. Table 2-4 shows what data is
present in the P3 parameter for the specific cause of each of the five types of interrupts.

P2 Parameter
The P2 parameter for the B 6900 typically contains the contents of the top-of-stack register at the time the interrupt
occurred. This context is true for alarm type interrupts with the single exception of the stack underflow interrupt. In

the case of the stack underflow interrupt the value of the S-register will be placed in the P2 parameter word.

The B 6900 system P2 parameter for syllable dependent interrupts contains additional information. The additional
information that is contained in the P2 parameter follows:

a. For a sequence error that occurs during a family C operation the P2 parameter wiil contain the value of the
word that caused the sequence error .

b. For an invalid operation interrupt that occurs during a SPLT (9543) operator the word that caused the
interrupt will be reported in the P2 parameter .

c. For an invalid operation interrupt that occurs during a JOIN (9542) operator function the word that caused
the interrupt will be reported in the P2 parameter. If the information in both the A and B registers is bad

then the word in the A register becomes the P2 parameter data.

The B 6900 system external type interrupts are used for /O finished interrupts.

2-26

9860105

Lt

Table 2-3. P1 Parameter Words (Sheet 1 of .2)

Parameter Bits

Type _Ca_&e_ 46 4544 3927 262524232221201918171514131211109 8 7 6 5 4 3 2 1 0
Alarm Loop Timer 1 1 ("] '] 1
Alarm Memory Addr Parity 1 1 o 00 1
Alarm Scan Bus Parity 1 1 [1] (1] 1
Alarm Inv Address-Local 1 1 (1] ') 1
Alarm Stack Underflow 1 1 1] (1] 1
Alarm Inv Program Word 1 1 (1] [!] 1
Alarm Memory Address Residue 1 1 [/ 1
Alarm Read Data Mult. Error 1 1 [) 1
Alarm Inv Address Global 1 1 o 90 1
Alarm Global Memory Not Ready 1 1 o090 1
Hardware PROM Card Parity 11 1] (1] 1
Hardware RAM Card Parity 11 (1] 1] 1
Hardware Bus Residue 11 1] 1] 1
Hardware Adder Residue 11 1) 1] 1
Hardware Compare Residue 11 (1} (1] 1
Gen. Control Read Data Single Error 1] (1] 1 1 X 0
Gen. Control Read Data Retry (1] [} 1 1 X 0 1
Gen. Control Read Data Check Bit (1] 1] 1 1 X d 1
Gen. Control Address Retry 1] 1] 1 1 X 9 1 1
NOTES: 1. BIT is a binary one. 3. If bit 17 is a binary one it indicates that the data in the P3

BIT is a binary zero. parameter is inconsistent.

1
0 .
[1] BIT may be either a binary one or a binary zero. 4. Bit 27 is the B 6900 bit. This bit is true for B 6900 systems.
X State of bit is immaterial.
2. Bit 18 indicates whether the operation is a memory

operation to the Global Memory:

If bit 18 = 0 it was a memory operation.

= 1 it was a scan operation

nounonon

uoneyussarday iR
[eNUE 20UI8JaY WIISAS 0069 9

87T

Table 2-3. P1 Parameter Words (Sheet 2 of 2)

Parameter Bits

Type Cause 46 45 44 3927 262524232221201918171514131211109 8 7 6 S 4 3 2 1 0
External 1/O Finished 1 1 X 1 1 1
$DI Programmed Operator @ 1 1 1]
$DI Memory Protected 1] 1 1 (1] 1
$DI1 Invalid OP (1] 1 1 ") 1
SDI Divide by Zero 1] 1 1 [} 1
SDI Exp. Overflow 1) 1 1 1] 1
5DI Exp. Underflow (] 1 1 (1] 1
SDI Invalid Index @ 1 1 @ 1
SDI Integer Overflow (4] 1 1 ('] 1
SDI Bottom of Stack ('] 1 1 (1] 1
SDI Presence Bit RTRT @ VS 1 1 ('] 1
SDI Seq. Error (1} 1 o0 [} 1
SDI Segrn. Array ('] 1 1 @ 1
SDI Interval Timer ['] 1 1 ('] 1

8DI Stack Overflow) 1 1 0 1
SDI Confidence Error ('] 1 1 X 1
NOTES: 1. 1 = BIT is a binary one.

0 = BIT is a binary zero.
@ = BIT may be either a binary one or a binary zero.
X = State of the bit is immaterial.

2. ‘Bit 17 is the B 6900 bit. This bit is 1 for B 6900 systems.

uopeyuesardoy eiR(]
[enuUBR 20uUs1djeYy We)SAS 0069 9

1. Loop Timer Alarm
2. Memory Address Parity Alarm
© 3. Inv. Address, Local Alarm
4. Stack Underflow Alarm
5. Inv. Progr. Word Alarm
6. Memory Address Residue Alarm
7. Read Data Multiple Error Alarm
8. Inv. Addr, Global Alarm
9. Global Memory Not Ready Alarm
1. Prom Card Parity Hardware
2. RAM Card Parity Hardware
3. BusResidue Hardware
4. Adder Residue Hardware
5. Compare Residue Hardware
1. Read Data Single Error Gen. Cntr.
2. Read Data Retry Gen. Cntr.
3. Read Data Check Bit Gen. Cntr.
4. Address Retry Gen. Cntr.
1. I/O Finished External
1. Programmed Operator - SDI
2. Memory Protected SDI
3. Invalid Op SDI
4. Divide by zero SDI
5. Exponent Overflow SDI
6. Exponent Underflow SDI
7. Invalid Index SDI
8. Integer Overflow SDI
9. Bottom of Stack SDI
10. Presence Bit SDI
11. Seq. Error SDI
12. Segm. Array SDI
13. Interval Timer SDI
14. Stack Overflow SDI
15. Confidence Error SDI
Footnotes: Addr is the Memory or Scan address
Strb is the family strobe]
JC is the family seq. counter count

5010986

B 6900 System Reference Manual
Data Representation

Table 2-4. Interrupt Procedure Stack Parameter Contents

Kind of Error

Interrupt Type

P1 Parameter

Contents of the
P2 Parameter

S Register
Word

Word

Empty

See the text under the
subheading titled P2
Parameter

opP is the Op code

Contents of the
P3 Parameter

Strb, JC,Op

Addr, JC, Strb, Op
Addr, JC, Strb, Op
Addr, JC, Strb, Op
JC, Strb, Op

Addr, JC, Strb, Op
Addr, JC, Strb, Op
Addr, Strb, JIC, Op
Addr, Strb, JC, Op

JC, Strb, Op, Card #
JC, Strb, Op, Card #
JC, Strb, Op
JC, Strb, Op
IC, Strb, Op

Addr, Bit #
Addr
Addr, Bit #
Addr

Empty

JC, Str,Op
JC, Str,Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str,Op
JC, Str, Op
JC, Str,Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str,Op
JC, Str,Op
JC, Str, Op

Card # is the number of the failing card
Bit # is the number of the failing bit

2-29

0€-C

| 47| 46| 45] 4] 43| 42 41] 40| 39 38| 37| 38| 35| 34| 3332 31| 30| 29| 2827 | 26|25 |24 |23 | 22| 21| 20 |19 18 17|16 |15 | 14] 1312 11] 10| |8 7| 6] 5 4] 3| 2| 1 |

MEMORY ADDRESS RES SUM vEl'rE elv| opcooe STROBE |M| J.COUNT/uADDRESS
CARD NUMBER Ve[Tel E| v | opcope STROBE |M| J-COUNT/u ADDRESS
MEMORY ADDRESS Velre| € | v| op cooe STROBE |M| JCOUNT/u ADDRESS

MEMORY ADDRESS

]nes m[aE

RES SUM = RESIDUE OF ADDRESS
Vg = VECTOR

T

MV 1586

g = TABLE
E=EDIT
V = VARIANT
M = MODED
M = MODE 0 MEANS J-COUNT IS ACTIVE.
1 MEANS [ADDRESS IS ACTIVE

Figure 2-16. P3 Parameter Configurations

ALARM

HARDWARE

SDI

GEN CNTRL

uopnejussarday eieq
[enuey 9ousIajey WISAS 0069 g

B 6900 System Reference Manual
Data Representation

RETURN CONTROL WORDS

A return control word is used in the B 6900 system to provide a method for controlling a return to a previous procedure.
The second entry in an active job stack is always a return control word. The hardware of the B 6900 system automati-
ically creates the return control word (RCW) for a previous procedure or program when an entry to a new procedure is
made. Prior to the hardware inserting the return control word into the stack, the second word in the stack is either a
PCW or an IRW. The return control word is substituted for whichever type of word is the second word in the new
procedure stack.

Figure 2-17 shows the fields of data that are present in the RCW, and defines the meaning of the data in each field. The
combination of data fields that are stored in the RCW indicates what the hardware environment will be after the return
to the previous procedure has been made.

ES| 1 PSR} PIR| PIR| PIR}J N | LL I SDi | SDi | SDt

0 | OF [TFOF PSR} PIR| PIR| PIRY LL | LL] SDI | SDI | SDI

1 T |C PSR} PIR| PIR| PIR] LL § SDI | SD! | SDI | SDI

1 F . PIR| PIR{ PIR| PIRJ LL § SDI | SDI | SDI | SDI
Ly [40 36 132 28 24 20 16 Q2 8 4 0

50:3 = TAGFIELD.
(ALWAYS A VALUE OF 3 FOR AN RCW)
BIT 47 = EXTERNAL SIGN BIT FLIP-FLOP STATE
BIT46 = OVERFLOW FLIP-FLOP STATE
BIT45 = TRUE/FALSE FLIP-FLOP STATE
BIT 44 = FLOAT FLIP-FLOP STATE
BiT42 = TRUE/FALSE FLIP-FLOP OCCUPIED FLIP-FLOP STATE
BIT 41 = COMPARE FLIP-FLOP
35:3 = VALUE OF PROGRAM SYLLABLE REGISTER FIELD
32:13 = VALUE OF PROGRAM INDEX REGISTER FIELD
BIT19 = NORMAL/CONTROL STATE FLIP-FLOP STATE;
BINARY ZERO = NORMAL STATE
BINARY ONE = CONTROL STATE

18:5 = VALUE OF LEXICOGRAPHICAL LEVEL REGISTER
13:14 = SEGMENT DESCRIPTOR INDEX VALUE
MV 1591

Figure 2-17. Return Control Word
PROGRAM WORDS (CODE WORDS)

Program words are B 6900 words that contain the machine language instructions which the data processor executes.
Program code words are grouped into units of words called segments. A segment consists of all the machine language
code for a program or a segment of a program. A program segment may consist of from one program code word, to a
maximum of 16,384 words. It is unusual for a program segment to exceed several hundred words. Each segment of
program code in a program is referenced (and located) through the segment descriptor index field in the PCW that calls
the segment to be executed by the data processor. A segment of code may call upon the system to execute another
segment of code. At the conclusion of such a called segment, the system will return to the calling segment. The loca-
tion of the code for the calling segment is not lost during the execution of the called segment code because the RCW of
the called segment contains the SDI value for the code of the calling procedure. Thus when returning to the calling
procedure the code segment location is known.

5010986 2-31

B 6900 System Reference Manual
Data Representation

PROGRAM SEGMENTS AND THE SEGMENT DESCRIPTOR

The program code that is executed when a program job or task is performed is contained in words of machine language
operator codes. All of the operator codes that comprise the task are grouped together in groups called segments. A
segment may contain all of the machine language operators, or a major group of the operator codes in a program task.

When a program task is to be executed, an ENTER operator causes the PCW for the task to be brought into the stack,
and distributed to the various parts of the operating system. The SDI field of the PCW word (see Figure 2-13) locates
a segment descriptor (SD) for the program task. A description of the SD (Figure 2-18) is as follows:

bits 50:3

bit 47:1

bit 46:1

bits 45:6

bits 39:20

bits 19:20

232

The tag field. The tag for a SD is always three (011 binary).
The presence bit. If this bit is binary one then the program code segment is present in local memory.

The copy bit. If this bit is a binary zero then the segment descriptor is the original segment descriptor.
If this bit is a binary one then this descriptor is a cepy of an original segment descriptor.

An unused field. These bits may be either binary ones or zeroes because they have no effect
upon the use of the word as a segment descriptor.

The length field. This field specifies the length of the code segment, in words, in binary
notation.

The address field. If the presence bit is a binary one then this field contains the absolute
address of the first word in the segment. If the presence bit is a binary zero and the copy bit is
also 2 binary zero then this field contains a five digit binary coded decimal disk address for the
code segment. If the presence bit is a binary zero and the copy bit is a binary one then this
field contains the absolute memory address of the original segment descriptor.

-

-

-

p

>

>

» | »
>|P> || P

28 (26 20 he iz j8 v o

50:3 = TAG FIELD.

(ALWAYS A VALUE OF 3 FOR A SEGMENT DESCRIPTOR)

47:1 = PRESENCE BIT, 1 = PRESENT IN MEMORY
0=PRESENT IN LIBRARY
46:1 = COPY BIT. 1 = COPY OF ORIGINAL SEGMENT DESCRIPTOR
0 = ORIGINAL SEGMENT DESCRIPTOR
39:20 = LENGTH FIELD - THE NUMBER OF WORDS IN THE SEGMENT
19:20 = /[\DDI?ESS FIELD - THE BEGINNING MEMORY ADDRESS IF
47:1] = 1.
- THE DISK OR PACK ADDRESS IF [47:1] =0,
AND [46:1] =0.
- THE MEMORY ADDRESS OF THE ORIGINAL
SEGMENT DESCRIFTOR IF [46:1] =1, AND
[47:1] =0.
MV1689

Figure 2-18. Segment Descriptor Word

B 6900 System Reference Manual .
Data Representation

A program code segment may call another program segment to be executed. Each of these program code segments (the
cailing segment, and the called segment) has a separate segment descriptor. The address (SDI) for the current code segment
is saved in the data processor IC memory registers. The value of the called SDI is saved when the called segment is executed.
However, the SDI for the calling segment is not lost, because this address is saved in the RCW (zefer to Figure 2-17). Thus.
when a called segment is executed, and a return (or EXIT) to the calling segment is performed, the SDI is always available
for the currently executing program segment.

The use of copy segment descriptors, and the mechanism for saving the SDI values for segments of program code are basic
components used to provide for the concepts of reentrant code. Reentrant code techniques are defined in Section 3 of
this manual.

A program code word is tomposed of six syllables, and a tag field (see Figure 2-19). The tag field for a program code
word is always a value of three. The remaining 48 bits of the program word are divided into six 8-bit syllable fields. A
machine language instruction consists of from one to seven syllables. An instruction is not limited to a single code word
but may extend across the boundary of a code word, and into the next word of program code in.sequence. For this
reason the contents of a word of machine language code may be portions of two operators, plus from one to four com-
plete operator codes.

47 3 % |35 31 |27 23 |19 15 | 7 3
Po as |42 38 [ae 30 |26 22 s 14 |10 8 2
oo |0 37 a3 2 |25 21 17 13 |9 5 1
. 4e 40 e 122 2 e 2 he 12 18 4)

TAG SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE
FIELD 0 1 2 3 4 5

MV 1892
Figure 2-19. Program Word Format

TOP-OF-STACK CONTROL WORDS

A top of stack control word (see Figure 2-20) is originated when the data processor executes the move to stack operator.
This word occupies the address in memory of the lower word boundary for a job or task area. A TOSCW contains the
relative addressing and environment record for the program or task. The address of a TOSCW for an operating program or
task is the same as the value of the BOSR address regisier. A TOSCW therefore also corresponds to the address of ihe first
MSCW for a job or task.

The addressing environment for a program or task consists of the values of the BOSR, F, S, and lexicographical level
registers. The values of these registers are stored in the TOSCW when another program or task is to be executed. Upon
re-entry into the program or task procedures, the proper values from the TOSCW are used to restore the proper addressing
environment for the program or task, in the memory address registers.

The operating environment of a job or task consists of the state of seven flip-flops. These flip-flops are the external sign,
overflow, true/false, float, true/false occupied, compare, and normal/control state flip-flops. The state of these flip-flops
is stored in the TOSCW when another job or task is to be executed. Upon re-entry into the original job or task, the proper
values for operating environment flip-flops are restored from the TOSCW.

5010986 2-33

B 6900 System Reference Manual
Data Representation

DSF |DSF DSF| N | LL |DFF DFF DFF

DSF | DSF [DSF] LL | LL JOFF|DFF|DFF

DSF |DSF |DSF] LL | DFF|DFF |DFF |DFF

DSF |DSF |DSF] LL JDFF|DFF|DFF|DFF
28 24 20 16 12 8

50:3 = TAG FIELD.
(ALWAYS A VALUE OF 3 FOR A TOSCW)
47:1 = EXTERNAL SIGN FLIP-FLOP
46:1 = OVERFLOW FLIP-FLOP
45:1 = TRUE FALSE FLIP-FLOP
4.1 = FLOAT FLIP-FLOP
42:1 = TRUE FALSE OCCUPIED FLIP-FLOP
41:1 = COMPARE FLIP-FLOP
55:16 = DELTA S-REGISTER FIELD (VALUE OF THE

S-REGISTER DISPLACEMENT ABOVE BOSR)

19:1 = NORMAL/CONTROL STATE OF FLIP-FLOP;

0=NORMAL STATE

1 =CONTROL STATE
LEXICOGRAPHICAL LEVEL
DELTA F REGISTER FIELD (VALUE OF THE
F-REGISTER DISPLACEMENT, BELOW THE
VALUE OF THE S-REGISTER)
THE CPU PROCESSOR ID VALUE (001)
WHEN THE TOSCW IS FOR AN ACTIVE
PROCESS PROGRAM OR TAST

18:5
13:14

2:3

MV1680

Figure 2-20. TOSCW Word Layout -

The TOSCW for the currently operating program or task does not contain the operating and addressing environment.
Instead, the CPU data processor identity (001 for a B 6900 system) is stored in bits 2:3, and the rest of the bits
(except the tag field) are zeroes. The presence of a TOSCW which onlyv contains the data processor identity field
indicates the address of the lowest word in the current job or task stack. This word is addressed by the value of the
BOSR register.

2-34

THE STACK

B 6900 System Reference Manual

SECTION 3

STACK AND REVERSE POLISH NOTATION

The stack is the memory storage area assigned to a job. The stack provides storage for the basic program and data
references for the job. It also provides for temporary storage of data and job history. When a job is activated, four
high-speed hardware registers (A, X, B, Y) are linked to the memory portion of the job’s stack (see Figure 3-1). This
linkage is established by the stack pointer register (the S register), which contains the memory address of the last word
placed in the stack. The four hardware top-of-stack registers (A, X, B, Y) extend the stack to provide quick access for
data manipulation. Another stack pointer value (the F register) always points to the most recent MSCW in the stack.

r
HARDWARE
REGISTERS

r
STACK
MEMORY
BUFFER
AREA

.

MV 1593
5010986

TOP-OF-STACK REGISTER

JL_x

.

oo o
PATH OF DATA A
TO STACK I

— et—

I I

]

I

N
L

T

T

WORDntx

g

T

STACK AREA
ASSIGNED

TOS WORD

TO PROGRAM T .

STACK AREA ""_m—'

CURRENTLY |—m ————

IN USE

i

MOST RECENT MSCw

|| STACK LIMIT REGISTER]

l

WORDn

4 wos || - l

Figure 3-1. Top-of-Stack and Stack Bounds Registers

3-1

B 6900 System Reference Manual
Stack and Reverse Polish Notation

The number of words in the memory portion of the stack is equal to the difference between the values of the BOS
register, and the S register (S minus BOS). Data are brought into the stack through the top-of-stack registers in a manner
that the last word placed in the stack (as indicated by the value of the S register) is the first word to be extracted from
the stack (last in first out method). The total capacity of the top-of-stack registers is two words or two operands. Load-
ing a third word or operand into the top-of-stack registers causes the third word or operand to be pushed from the top-
of-stack registers into the memory portion of the stack. The stack pointer value in the S register is incrementéd by one
as a word or operand is pushed into the memory portion of the stack, and is decremented by one when a word or

operand is withdrawn from the stack area and placed in the hardware top-of-stack registers. As a result, the S register
continually points to the last word or operand placed into the memory portion of the job stack.

BASE AND LIMIT OF STACK

A job’s stack is bounded, for memory protection, by two registers: the base-of-stack register (BOSR) and the limit-of-
stack register (LOSR). The contents of BOSR define the base of the memory portion of the stack, and the contents of
LOSR define the upper limit of the memory portion of the stack. The job is interrupted if the S register is set to a
value that is present in either the BOSR, or the LOSR register. If the S register equals or exceeds the value of the
LOSR register value a stack overflow interrupt occurs.

BI-DIRECTIONAL DATA FLOW IN THE STACK

The contents of the top-of-stack registers are maintained automatically by the data processor to meet the requirements of
the current machine language operator. If the current operator requires data transfer into the memory portion of the
stack, the top-of-stack registers receive the incoming data, and surplus contents in the top-of-stack registers are pushed
down into the memory portion of the stack. Pushing data into the memory portion of the stack means that the bottom
word or operand in the top-of-stack register is transferred to the next word or operand in sequence, in the memory
portion of the stack. Pushing data down into the memory portion of the stack makes room in the top-of-stack registers
to contain the incoming data that is required by the current machine language operator.

Data are also automatically brought from the memory portion of the stack and placed in the top-of-stack registers when
the machine language operator requires that the top-of-stack registers be filled. This automatic function is the opposite
of the push function described in the previous paragraph, and is commonly called a push up function. A push up
transfers the last operand or word in the memory portion of the stack into the second word position in the top-of-stack
registers. The word or operand in the memory portion of the stack is then deleted by decrementing the S register. The
automatic maintenance of the top-of-stack registers takes the form of “push down”, and “push up” functions which are
described in the following paragraphs.

Stack Push Down

A stack push down occurs when a third word or operand is loaded into the top-of-stack registers, and both the

A register and B register already contain stack words or operands. A push down consists of moving data from the top-
of-stack registers to the local memory portion of the stack. Moving data to the local memory portion of the stack makes
room in the top-of-stack registers so that a third operand may be loaded into the top-of-stack registers.

Stack Push Up

A stack push up occurs when an operand or word is moved from the local memory portion of the stack, to the
top-of-stack register portion of the stack. A push up can only occur when a machine language operator is executed by
the data processor. The data processor operator that is to be performed must require that words or operands be present
in the top-of-stack registers, and such words or operands must not be present in the proper top-of-stack registers.

32

B 6900 System Reference Manual
Stack and Reverse Polish Notation

DOUBLE-PRECISION STACK OPERATION

The top-of-stack registers are operand oriented rather than word oriented. Calling a double-precision operand into the
top-of-stack registers causes two memory words to be loaded into the top-of-stack regisiers. The first word is ioaded into
the A register, where TAG bits are checked. If the value indicates double-precision, the second word is loaded into the

X register. The A and X registers are concatenated, or linked together, to form the double-precision operand. A double-
precision operand located in the B and Y registers reverts to two words when pushed down into the memory portion of
the stack. A double-precision operand is concatenated in the B and Y registers when pushed up from the memory portion
of the stack into the hardware register portion of the stack.

TOP-OF-STACK REGISTER CONDITIONS

Two logical indicators are used to indicate the condition of the top-of-stack register portion of the stack. These two
indicators are AROF (A register is occupied flip-flop), and BROF (B register is occupied flip-flop). The meaning of
these two logical indicators is as follows:

AROF BROF MEANING
0 0 Neither the A, or the B register contains valid data. The top word in the stack is

presently located in the memory address specified by the contents of the S register.

0 1 The B register contains the top word in the stack, and the contents of the A register
are not valid data. The second word in the stack is presently located in the memory
address specified by the contents of the S register.

0 The A register contains the top word in the stack, and the conienis of the B register
are not valid data. The second word in the stack is presently located inethe memory
address specified by the contents of the S register.

[

1 1 The A register contains the top word in the stack, and the second word in the stack
is presently in the B register. The third word in the stack is in the memory address
specified by the contents of the S register.

STACK ADJUSTMENTS

Each machine language operator that is executed by the data processor contains the requirement to adjust the top-of-
stack registers so that their contents provide accommodation for the operation that is to be performed. A convention is
used to show what stack adjustment is required, as follows:

5010986 33

CONVENTION NOTATION

(ADJ 0,0)

(ADJ 0,1)

(ADJ 1,0)

(ADJ 1,1)

(ADJ 0,2)

(ADJ 1,2)

(ADJ 13)

B 6900 System Reference Manual
Stack and Reverse Polish Notation

MEANING

Both the A and B registers are to be adjusted so that their contents are not

valid. The top word in the stack is to be located in the memory address
pO:nfed t by the contents of the S register

y the contents of the S register.
The data processor will use the state of the AROF and BROF flip-flops to
determine if the stack must be pushed down to achieve the required adjust-
ment. The 0,0 portion of the convention notation shows what the logical
states of AROF and BROF must be to satisfy the requirements of the
adjustment. The first O in the expression of the notation defines what the
logical state of the AROF flip-flop must be at the conclusion of the stack
adjustment. The second O in the expression defines what the logical state of
the BROF flip-flop must be at the conclusion of the adjustment. The ADJ
portion of the convention notation reads “adjust the stack until AROF and
BROF meet the logical states™.

The A register is to be adjusted so that its contents are not valid. The top
word or operand in the stack is to be present in the B register, and the
second word or operand in the stack is to be located in the memory address
pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are the top word or
operand in the stack. The B register must not contain valid data. The
second word or operand in the stack is to be located in the memory address
pointed at by the contents of the S register.

The A register is to be adjusted so that it contains the top word or operand
in the stack. The B register is to be adjusted so that it contains the second
word or operand in the stack. The third word or operand in the stack is to
be in the memory address pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are not valid. The B register
condition is immaterial to the operation. The top word in the stack is present
in the B register if BROF is set.

The A register is to be adjusted so that it contains the top word in the stack.
The B register condition is immaterial to the operation. The second word in
the stack is located in the B register if BROF is set.

The A register is adjusted so that it contains the top word in the stack if and
only if the originai stack condition is AROF/ and BROF/ (0,0). If any other
condition than (0,0) is the original condition, then no stack adjustment occurs.

Some machine language operations require that several stack adjustments must be performed during the course of the
operation. Such operations merely pause at the appropriate place until the adjustment is completed, and then continue

the sequence.

Stack push down and/or stack push up (which were defined previously in this section) are intrinsic functions of the stack
adjustments. That is, a push-up or a push-down may be implied because of the current state of the top of stack registers,
and the required stack adjustment. Where a stack push-up or push-down is implied, such operation will be performed as an
integral and automatic function of the stack adjustment procedure.

34

B 6900 System Reference Manual
Stack and Reverse Polish Notation

DATA ADDRESSING

The B 6900 data processor provides three methods for addressing data or program code:
a. Data descriptor-(DD)/segment descriptor (SD)
b. Indirect reference word (IRW)
c. Stuffed indirect reference word (SIRW)

The data descriptor (DD) and segment descriptor (SD) provide for the add essing of data or program segments located
outside of the job’s stack area. Data descriptors and segment descriptors utilize absolute memory addresses. The indirect
reference word (IRW) and the stuffed indirect reference word (SIRW) address data located within (IRW), or outside
(SIRW) the job’s stack. The IRW and SIRW address components are both relative. The IRW addresses within the
immediate environment of the job relative to a display register (described later in Non-local Addressing). The SIRW
addresses beyond the immediate environment of the current procedure, the addressing being relative to the base of the
job’s stack. Addressing across stacks is accomplished with an SIRW.

Data Descriptor

In general, the descriptor describes and locates data associated with a given job. The data descriptor (DD) is used to
fetch data to the stack or to store data from the stack into an array located outside the job’s stack area. The formats of
the data and segment descriptors were illustrated in Section 2. The address field in each of these descriptors is 20 bits in
length; this field contains the absolute address of an array in memory or in the disk file, as indicated by setting of the
presence bit (Pj. The referenced data is in main memory when the presence bit is set.

Presence Bit

A presence bit interrupt occurs when the job references data by means of a descriptor in which the P-bit is equal to zero:
that is, the data is located in a disk file, rather than in memory. The Master Control Program (MCP) recognizes the
presence bit interrupt and transfers data from disk file storage to memory. After the data transfer to memory is com-
pleted, the MCP marks the descriptor present by setting the P-bit to one, and places the new memory address into the
address field of the descriptor. The interrupted job is then reactivated.

Index Bit

A data descriptor describes either an entire array of data words, or a particular element within an array of data words.
If the descriptor describes the entire array, the index bit (I-bit) in the descriptor is zero, indicating that the descriptor has
not yet been indexed. The length field of the descriptor defines the length of the data array.

Invalid Index

A particular element of an array is described by indexing an array descriptor. Memory protection is ensured during
indexing operations by performing a comparison between the length field of the descriptor and the index value. An
invalid index interrupt results if the index value exceeds the length of the local memory area defined by the descriptor,
or if the index is less than zero.

Valid Index

If the index value is valid, the length field of the descriptor is replaced by the index value, and the I-bit in the descriptor
is set to one to indicate that indexing has taken place. The address and index fields are added together to generate the
absolute machine address whenever an indexed data descriptor in which the P-bit is set is used to fetch or store data.

5010986 35

B 6900 System Reference Manual
Stack and Reverse Polish Notation

The double-precision bit (D) is used to identify the referenced data as single- or double-precision and directly affects the
indexing operation. The D-bit equal to one signifies double-precision and causes the index value to be doubled before
indexing.

Read-Only Bit

The read-only bit (R) specifies that the local memory area described by the data descriptor is read-only area. If the R-bit
of a descriptor is set to one, and the area referenced by that descriptor is used for storage purposes, an interrupt results.

Copy Bit

The copy bit (C) identifies a descriptor as a copy of a master descriptor and is related to the presence-bit action. The
copy bit links multiple copies of an absent descriptor (that is, the presence bit is off) to the one master descriptor. The
copy bit mechanism is invoked when a copy is made in the stack. If it is a copy of the original, absent descriptor, the
processor sets the copy bit to one and inserts the address of the master descriptor into the address field. Thus, multiple
copies of absent data descriptors are all linked back to the master descriptor.

REVERSE POLISH NOTATION

Reverse Polish notation is an arithmetical or logical notational system using only operands and operators arranged in
sequence or strings, thus eliminating the necessity for defining the boundaries of any terms. Figure 3-2 presents a flow
chart for conversion to reverse Polish notation.

SIMPLIFIED RULES FOR GENERATION OF POLISH STRING

The source of expression is as follows:

Name Action

Variable or constant Place variable or constant in string being built and
examine next symbol.

Operator-separator “(* or “[* Place in delimiter list and examine next symbol.
Arithmetic or Boolean operator and last-entered Place operator in the delimiter list and examine next
delimiter list symbol were as follows: source symbol.

2y11DOL,

1. An operator of lower priority.
2. A left bracket “[* or parenthesis “("“.
3. A separator.

4. Nothing (delimiter list empty).

Arithmetic or Boolean operator and last-entered Remove the operator from the delimiter list and
delimiter list symbol were as follows: an operator place it in the string being built. Then compare
of priority equal to or greater than the symbol in the next symbol in the delimiter list against the
the source. source expression symbol.

36

B 6900 System Reference Manual
Stack and Reverse Polish Notation

PRIORITIES | OPERATORS
3 X, /
2 .-
1 >, <, = (BOOLEAN)
0 : = (REPLACEMENT)
D.L = DELIMITER LIST
P. N. S. = POLISH NOTATION STRING
EXAMINE FIRST
ITEM OF SOURCE
STATEMENT
STRING
: SOURCE
LEFT PARENTHESIS RIGHT PARENTHESIS |Cr o e i <) EMPTY
OR BAACKET OR BRACKET e
l“l‘ o.. l.(.l u,“ m .l ”
PLACE
SYMBOL
INP.NS.
PLACE
ll(ll OR "” [ll LAsT
INTOD.L ENTERED
R MOVE LAST
ENTERED D.L
SYMBOL FROM
D.L. TOP.NS.
DELETE MOVE LAST
“(" OR “[" ENTERED D.L
FROM THE SYMBOL FROM
D.L D.L TOPNS.
b K |
LAST ENTERED
INSERT
D.L SYMBOL IS
| >t Y A YES{ 2) LOWER PRIORITY |
it D-, .-;(.—: OR * i'::
y INDiL- \ c) D.L. IS EMPTY
i
SCAN NEXT .
SOURCE ITEM
MOVE LAST
ENTERED D.L.
SYMBOL FROM
D.L. TOPNS.
MV 1594

Figure 3-2. Reverse Polish Notation Flow Chart

5010986 37

B 6900 System Reference Manual
Stack and Reverse Polish Notation

Name Action

A right bracket “]” or parenthesis “)”. Pull from delimiter list until corresponding left
bracket or parenthesis.

End of expression. Move last-entered delimiter list symbols to Polish
notation string until empty.

POLISH STRING
The essential difference between reverse Polish and conventional notation is that operators are written to the right of the
operands instead of between them. For example, the conventional B + C is written B C + in reverse Polish notation:

A=7x(B+C)becomes A7BC +x :=

Any expression written in reverse Polish notation is called a polish string. In order to fully understand this concept, the
user should know the rules for evaluating a polish string.

RULES FOR EVALUATING A POLISH STRING
The following is the procedure for evaluating a polish string:
a. Scan the string from left to right.
b. Remember the operands and the order in which they occur.
¢. When an operator is encountered perform the following:
1. Record the last two operands encountered.
2. Execute the required operation.
3. Disregard the two operands.
4. ‘ Consider the result of (b) as a single operand, the first of the next pair to be operated upon.
Following this rule, the reverse polish string A 7 B C + x := results in A assuming the value 7 x (B+C) (Table 3-1).
NOTE

Because replacement operators vary depending upon the language
used, <, =, and := are equivalent for this discussion.

SIMPLE STACK OPERATION

All program information must be in the system before it can be used. Input areas are allocated for information entering
the system, and output areas are set aside for information exiting the system; array and table areas are also allocated to
store certain types of data. Thus data is stored in several different areas: the input/output areas, data tables (arrays),
and the stack. Since aii work is done in the arithmetic registers, all information or data is transferred to the arithmetic
registers and the stack.

B 6900 System Reference Manual
Stack and Reverse Polish Notation

Table 3-1. Evaluation of Polish String A7BC+x:=

Operands Being

Symbol Remembered Order of
Step Being Symbol Occurrence (1 or 2) Occurring Operation
No. Examined Type Before Operation Operation Results
1 B Operand
2 C Operand 1B
3 + Add 2C B+C B+0)
Operator 1B
4 7 Operand 1(B +C)
5 X Multiply 27 7x (B+C) 7x (B +C)
Operator 1x(B+C)
6 A Name 17x(B+0)
7 = Replace 2A
Operator 17x(B+C) A =7x(B + C) A=7x(B + C)

Stavias

concept of operation. The example is Z:=Y + 2x(W+V), where := means “is replaced by.” In terms of a computer pro-
gram, this assignment statement indicates that the value resulting from the evaluation of the arithmetic expression is to
be stored in the location represented by the variable Z.

At this point, an ALGOL assignment statement and the reverse Polish notation equivalent will be related to the stack

When Z:=Y + 2x(W+V) is translated to reverse Polish notation, the result is ZY2WV+ x +:=. Each element of the exam-
ple expression causes a certain type of syllable to be included in the machine language program when the source problem
is compiled. The following is a detailed description of each element of the example, the type of syllable compiled, and
the resulting operation (see Figure 3-3 and Table 3-2).

In the example statement, Z is to be the recipient of a value, the address of Z must be placed into the stack just prior to
the store command. This is accomplished by a name call syllable which places an indirect reference word (IRW) in the
stack. The IRW contains the address of Z in the form of an “address couple” that references the memory location
reserved in the stack for the variable Z.

Since Y is to be added to a quantity, Y is brought into the top of the stack as an operand. This is accomplished with a
value call (VALC) syllable that references Y. The value 2 is then brought to the stack, with an eight-bit literal syllable
(LT8). Since W and V are to be added, the respective variables are brought to the stack with value call syllables. The
ADD operator adds the two top operands and places the sum in the top of stack. This example assumes, for simplicity,
single-precision operands not requiring use of the X and Y registers which are used in double-precision operations.

The multiply operator is the next symbol encountered in the reverse polish string; when executed, it places the product

“2x(W+V)” in the top of the stack. The next symbol, ADD, when executed, leaves the final result “Y+2x(W+V)” in the
top of the stack.

5010986 39

oi-¢

ALGOL STATEMENT - X

Figure 3-3. Stack Operation

POLISH STRING NOTATION + + -
NAMC VALC VALC VALC ADD MULT ADD STOD
z Y 2 w v
“A" REGISTER | INV IRW Z v }= 2 w = VA o INV INV INV INV
“B” REGISTER | INV INV iRW Z Y 2 w W+V) 2% (W+V) Y42(W4V) INV
CORE STACK
AREA
- 2 -1 2 2 2 2
CBIL N+5 - v Y Y Y Y Y
CBIL N+4 ~—lIRW 2 IRW 2 IRW Z IRW.2 IRW Z -1 IRwz IRW Z
CBIL N+3 z|s=z [~ 2 z z z z z z -—v+2(w+vﬂ
CBIL N+2 Y Y vy Y Y Y Y Y Y Y
CBIL N+1 w w w w w — w w w w w
CBILN v v v v v v v v v v
SYLLABLE TYPES
CURRENT BASE INDEX LEVEL {(CBIL) REPRESENTS VALC VALUE CALL
RELATIVE MEMORY &Donsssme WITHIN THE STACK E_ﬁ;wc Eﬁgg flf“?lé o)
REA (D + S),
MEMORY AREA (D [) STOD STORE DESTRUCTIVE
MV1595

UONBION USI[O4 9SI0ASY PUE yo8IS
[enUERY 90ULIaJY WRISAS 0069 g

B 6900 System Reference Manual
Stack and Reverse Polish Notation

Table 3-2. Description of Stack Operation

Reverse
Polish Syllable
Execution Notation Type Function of Syllable During
Sequence Element Compiled Running of the Program
0 Stack location of program variables illustrated
1 Z Name call for Z Build an indirect reference word that contains the address
of Z and place it in the top of the stack
2 Y Value call for Y Place the value of Y in the top of the stack
3 2 Literal 2 Place a 2 in the top of the stack
4 w Value call for W Place the value of W in the top of the stack
) \" Value call for V Place the value of V in the top of the stack
6 + Operator add Add the two top words in the stack and place the resuit
in B register as the top of the stack
7 X Operator Multiply the two top-of-the-stack operands. The product
multiply is left in the B register as the top of the stack
8 + Operator add Add the two top words in the stack and leave the resuit
in the B register as the top of the stack
9 = Operator store Store an item into memory. The address in which to
destructive store is indicated by an indirect reference word or a data
descriptor; the address can be above or below the item
stored

The store syllable completes the execution of the statement Z:=Y + 2x(W+V). The store operation examines the two
top-of-stack operands looking for an IRW or data descriptor. In this example, the IRW addresses the location where the
computed value of Z is to be stored. The stack is empty at the completion of this statement.

PROGRAM STRUCTURE IN MEMORY

When a problem is expressed in a source language, portions of the source language fall into one of two categories. One
describes the constants and variables that will be used in the program, and the other the computations that will be exe-
cuted (see Figure 3-4). When the source program is compiled, variables are assigned locations within the stack, whereas

the constants are embedded within the code stream that forms the computational part. A program residing in memory occupied
separately allocated areas. “Separately allocated” means that each part of the program may reside anywhere in memory, and
the actual address is determined by the MCP. In particular, the various areas are not assigned to contiguous memory areas.
Registers within the processor indicate the bases of the various areas during the execution of a program.

5010986 3-11

B 6900 System Reference Manual
Stack and Reverse Polish Notation

OBJECT
D(4] =] PROGRAM OBJECT
STACK PROGRAM
D{3] =] CONTAINING ——p»1 CODE
.| VARIABLES SEGMENT
: AND DYNAMIC o+ 1)
D211 sTaTUS '
OBJECT
PROGRAM
SEGMENT OBJECT
DICTIONARY PROGRAM
——» CcoDE
SEGMENT
S. D. PROG. (n)
S. D. PROG
SEG. DES. O. B.
OBJECT
D[1] — PROGRAM
CODE
»1 OUTER
BLOCK
MCP STACK CODE
AND SEGMENT
SEGMENT
DICTIONARY
—
mv 15964 OO

Figure 34. Object Program in Memory

MEMORY AREA ALLOCATION
The separately allocated areas of a program are as follows:

a. Program Segments. These are sequences of instructions (syllables) that are performed by the processor
in executing the program. Note that there is a distinction between program segments and data areas.
The program segments contain no data, and are not modified by the processor as it executes the program.

b. Segment Dictionary. This is a table containing one word for each program segment. This word tells whether
the program segment is in memory or on the disk, and gives the corresponding memory or disk address of the
- program segment.

c. Stack Area. This is the pushdown stack storage, which contains all the variables and data descriptors associ-
ated with the program, including control words which indicate the dynamic status of the job as it is being
executed.

STACK-HISTORY AND ADDRESSING-ENVIRONMENT LISTS

One very importamt aspect of the B 6900 is the retention of the dynamic history for the program being processed. Two
lists of program history are maintained in the B 6900 stack: the stack-history list and the addressing-environment list. The
stack-history list is dynamic, varying as the job proceeds along different program paths with changing sets of data. Both
lists are generated and maintained by B 6900 hardware.

3-12

B 6900 System Reference Manual
Stack and Reverse Polish Notation

MARK STACK CONTROL WORD LINKAGE

The stack history is a list of Mark Stack Control Words (MSCW), linked together by their displacement fields (DF)
(Figure 3-5). An MSCW is inserted into the stack as a procedure is entered and is removed as that procedure is exited.
Therefore, the stack history list grows and contracts with the procedura! depth of the program. Mark stack control
words identify the portion of the stack related to each procedure. When the procedure is entered, its parameters and
local variables are entered in the stack following the MSCW. When the procedure is executed its parameters and local
variables are referenced by addressing relative to the MSCW.

ADDRESS STACK
ENVIRONMENT HISTORY
| S | TOS WORD] LIST LIST

PROCEDURE B
~

~

MSCW | DISP]

PROCEDURE A 7

MSCW DISP

PROCEDURED ¢

MSCW | DISP]

PROCEDURE C ¥’

MscwW | | DISP

I
OUTER PROG BLOCK 7 ~
(mscw)] | bisp

A ~

MV 1597

Figure 3-5. Stack History and Addressing Environment List

STACK DELETION

Each MSCW is linked to the prior MSCW through the contents of its DF field in order to identify the point in the stack
where the prior procedure began. When a procedure is exited, its portion of the stack is discarded. This action is
achieved by setting the stack-pointer register (S) to address the memory cell preceding the most recent MSCW (Figure 3-6).

This topmost MSCW, addressed by another register (F), is deleted from the stack-history list by changing F'te address the
prior MSCW, placing this MSCW at the head of the stack history.

This is an efficient and convenient means of subroutine entry and -exit.
RELATIVE-ADDRESSING

Analyzing the structure of an ALGOL program results in a better understanding of the relative-addressing procedures used
in the B 6900 stack. The addressing environment of an ALGOL procedure is established when the program is structured

5010986 313

B 6900 System Reference Manual
Stack and Reverse Polish Notation

TOS WORD T DIscaRDED sTack
PORTION HISTORY
3 OF STACK LIST
MSCW

~

T PROCEDURE “A”

L e = — s y

iy T PROCEDURE “D*

MJ_—

Figure 3-6. Stack Cut-Back Operation on Procedure Exit

-
&=
pu
<

MV 1598

by the programmer and is referred to as the lexicographical ordering of the procedural blocks (Figure 3-7). At compile
time, the lexicographical ordering is used to form address couples. An address couple consists of the following two items:

a. The addressing level (22) of the variable.
b. An index value (S) used to locate the specific variable within its addressing level.

The lexicographical ordering of the program remains static as the program is executed, thereby allowing variables to be
referenced by means of address couples as the program is executed.

Base of Address Level Segment

The B 6900 processor contains an array of D registers (DO through D31). These registers address the base of each
addressing-level segment (Figure 3-8). The local variables of all procedures are addressed relative to the D registers.

Absolute Address Conversion

The address couple is converted into an absolute memory address when the variable is referenced. The addressing level
portion of the address couple selects the D register which contains the absolute memory address of the MSCW for the
environment (addressing level) in which the variable is located. The index value of the address couple is added to the
contents of the D register to generate the absolute memory address.

Multiple Variables With Common Address Couples

The address couples assigned to the variables in a program are not unique. This is true because of the ALGOL scope-of-
definition rules, which imply that if there is no procedure which can address both of any two quantities, then these two
quantities may unambiguously have the same address couple. This addressing system works because, whereas two vari-
ables may have the same address couples, there is never any doubt as to which variable is being referenced within any
particular procedure.

3-14

B 6900 System Reference Manual
Stack and Reverse Polish Notation

— BEGIN LEXICOGRAPHICAL LEVEL 2
REAL V1; 0=285=2
REAL V2; W=28=3
PROCEDURE A; W=25=4
BEGIN ——————————— LEXICOGRAPI HICAL LEVEL 3
REAL V3; &gf § =
PROCEDURE B: =3, 8= 3
BEGIN LEXICOGRAPHICAL LEVEL 4
V3 :=3;
V1 = V3;
END
L- B;
END;
PROCEDURE C; =2, 8=5
p— BEGIN e——————— | EXICOGRAPHICAL LEVEL 3
REAL V4; =3, s=2
PROCEDURE D; =3, s=3
— BEGIN LEXICOGRAPHICAL LEVEL 4
REAL V5; W=4, s=2
V4 =4;
V5 :=5;
A;
V2 = V4,
— END;
D; -
— END;
c;
L— END;
MV1599

Figure 3-7. ALGOL Program With Lexicographical Structure Indicated

Address Environment Defined

There is 2 unique MSCW which each D register must address during the execution of any particular procedure. The
D registers must be changed, upon procedure entry or exit, to address the correct MSCWs. The list of MSCWs which the
D registers address is the-addressing environment of the procedure.

Mark Stack Control Word Linkage

The addressing environment of the program is maintained automatically by linking the MSCWs together in accordance
with the lexicographical structure of the program. This linkage is the stack number (Stack No.) and displacement (DISP)
fields of the MSCW, and is inserted into the MSCW whenever the procedure is entered. The addressing environment list
is formed by linking each MSCW to the MSCW immediately below the declaration for the procedure being entered. This
forms a tree-structured list which indicates the addressing environment of each procedure (Figures 3-8 and 3-9). This list
is used to update the D registers whenever a procedure entry or exit occurs.

5010986 _ 3-15

3-16

B 6900 System Reference Manual
Stack and Reverse Polish Notation

STACK ADDRESS
MEMORY ENVIRONMENT
AREA LIST
TOS WORD . |
S 1
~ ~ PROCEDURE B
F
— 1 mscw DISP }—)
Pcw-8 i ¥ PROCEDUREA
V3
MSCW i mspT; P
D REGISTERS I
D31 i
3 ! ¥ PROCEDURED
~ ~ Vs
D6 MSCW DISP_J— P
D5 N
D4 | ’
D3 PCW-D ! Y PROCEDURE C
D2 |- V4
D1 K
DO MSCW I Disp i P
X 1 B S
PCW-C
OUTER PROG
PCW-A ! Y * BLOCK
V2
Vi
L MSCW [osr] P
ﬁL b [

MV 1600

Figure 3-8. D Registers Indicating Current Addressing Environment

PROCEDURE D"’ LEXICOGRAPHICAL

PROCEDURE B LEVEL 4

LEXICOGRAPHICAL

PROCEDURE ’C"
LEVEL 3

PROCEDURE A

LEXICOGRAPHICAL
MV 1601 OUTER PROGRAM BLOCK LEVEL 2

Figure 3-9. Addressing Environment Tree of ALGOL Program

1 B 6900 System Reference Manual
Stack and Reverse Polish Notation

STACK HISTORY SUMMARY

The entry and exit mechanism of the processor hardware automatically maintains both the stack history and address-
environment lists to reflect the current status of the program. Interrupt response is a procedure entry. Therefore, the
system is able to conveniently respond to, and return from, interrupts. Upon recognition of an interrupt condition, the
processor creates a MSCW, inserts an indirect reference word into the stack to address the interrupt-handling procedure,
inserts a literal constant to identify the interrupt condition and two other parameters, and initiates an MCP interrupt-
handling procedure. The D registers are updated upon entry into the interrupt-handling procedure, to display all legiti-
mate variables. Upon return from this procedure, the D registers are updated to display variables of the former
procedure.

MULTIPLE STACKS AND REENTRANT CODE

The B 6900 stack mechanism provides a facility for handling several active stacks, which are organized in a tree structure.
The trunk of this tree structure is a stack containing MCP global quantities.

LEVEL DEFINITION

A program is a set of executable instructions, and a job is a single execution of a program for a particular set of data. As
the MCP is requested to run a job, a level-1 branch of the basic stack is created. This level-1 branch contains the descrip-
tors pointing to the executable code and read-only data segments for the program. Emerging from this level-1 branch is

a level-2 branch, containing the variables and data for this job. Starting from the job’s stack and tracing downward
through the tree structure, one finds first the stack containing the variables and data for the job (at level 2), the segment
descriptor to be executed (at level 1), and the MCP’s stack at the trunk (level 0).

REENTRANCE

A subsequent request to run another execution of an aiready-running program requires that only a level-2 branch be
established. This level-2 stack branch emerges from the level-1 stack of the already-running program. Thus, two jobs
which are different executions of the same program have a common node, at level-1, describing the executable code. It
is in this way that program code is re-entrant and shared. This results simply from the proper tree-structured organiza-
tion of the various stacks within the machine. All programs within the system are re-entrant, including all user programs
as well as the compilers and the MCP.

JOB-SPLITTING

The B 6900 stack mechanism also provides the facility for a single job to split itself into two independent jobs. A com-
mon use of this facility occurs when there is a point in a job where two relatively large independent processes must be
performed. This splitting can be used to make full use of a multiprocessor configuration, or to reduce elapsed time by
multiprogramming the independent processes.

A split of this type establishes a new limb of the tree-structured stack, with the two independent jobs sharing that part of
the stack which was created before the split was requested. The process is recursively defined and can happen repeatedly
at any level.

STACK DESCRIPTOR

Stack branches are located by an array of descriptors, the stack vector array (Figure 3-10). There is a data descriptor in

this array for every stack branch. This data descriptor, the stack descriptor, describes the length of the memory area
assigned to a stack branch and its location in either memory or disk.

5010986 3-17

B 6900 System Reference Manual
Stack and Reverse Polish Notation

STACK STACK STACK STACK STACK
_VECTOR _ Non o _ No.4 _ _ NO.3 _ NO2
MSCW MSCW gy
DDn-1 gt TOSCW MSCW MSCW fatt—
~ ~ ~ ~ MSCW - ~
DD5 -1 TOSCW i iy MSCW
DD4 ,N TOscw ~ ~
DD3 —p1 PROC.ID

DD2 SEGMENT
P STACK DESCRIPTORS
TRUNK v »
DDO T T DISPLAY
sD REGISTERS
[} DD | STACK
VECTOR A 5 o
1) Y DescripTOR
sD
MSCW f—
MSCW — ~ %
~ L. Dﬁ
! TOSCW L ps
I e
D2
D1
DO
MV 1602

Figure 3-10. Multiple Linked Stacks

A stack number is assigned to each stack branch. The stack number is the index value of the stack descriptor in the
stack vector array.

STACK VECTOR DESCRIFTOR

The array size of the stack vector and its location in memory is described by the stack vector descriptor, located in a
reserved position of the trunk of the stack (DO+2, see Figure 3-10). All references to stack branches are made through
the stack vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT
A presence bit interrupt results when an addressed stack is not present in memory. This presence bit interrupt facility
permits stack overlays and recalls under dynamic conditions. Idle or inactive stacks may be moved from main memory

to disk as the need arises and, when a stack is subsequently referenced, a presence bit interrupt is generated to cause the
MCP to recall the non-present stack from disk.

3-18

B 6900 System Reference Manual

SECTION 4
SYSTEM DISPLAY AND CONTROL

GENERAL INFORMATION

A B 6900 system provides 2 ways to control system logical circuits. If an MDP is installed in a B 6900 system, there are
also 2 ways to display system status. If an MDP cabinet is not installed, there is only 1 way to display system status.

If an MDP cabinet is not installed in a B 6900 system, the Soft Display program must operate to display system status.
The Soft Display program methods of operation are defined later in this section in the B 6900 Soft Display paragraphs.

DISPLAY AND CONTROL WITH MDP CABINET INSTALLED

The upper-half of the outer-panels (skins) of the B 6900 MDP cabinet are swing-out covers for the system maintenance
display and control panels. The maintenance display and control panels are normally covered and, therefore, not visible.
The panel covers are opened to perform maintenance operations, or to exercise control of B 6900 system FIRMWARE
programs. Figure 4-1 shows the system control panels and displays when the swing-out covers are opened.

MDP Status Display Panel

The left-hand side of Figure 4-1 shows the MDP system status display panels. There are 2 adjacent status display panels:
the left-most panel is panel 1, and the right-most panel is panel 2. Each display panel contains 2 display registers. Each
register has a PAGE selector device located immediately above the display register, and a flip-chart device located imme-
diately below the display register. Figure 4-2 shows one complete display register, and there are four such display
registers in the entire system status display.

Each display register is capable of displaying the status of 128 logic signals or flip-flops. The PAGE selector is capable of
selecting any of 16 different sets of 128 logic signals and/or flip-flops (PAGES) to be displayed in the register. Push-
buttons provide a method for SETting or RESETing the state of the flip-flop or logic signals that are currently displayed
in the register.

The 2 display registers on a display panel both display the same 16 PAGEs. Thus, a certain PAGE can be selected for
display in the upper display register on a panel, and a different PAGE from the same set of PAGEs can be selected for
display in the lower display register. It is also possible to display the same PAGE on a display panel in both display
registers.

A display register consists of 33 display circuit devices, and is divided into an upper-display and a lower-display. Each
display uses 16 display circuit devices. One display circuit device is used as a PAGE-selector for the display register.

The upper and lower displays each indicate the status of 64 signals or flip-flops. Selecting the flip-chart that corresponds
to the value of the PAGE-selector display device shows which logical status is currently displayed.

A display device (see Figure 4-3) indicates the status of 4 logic signals or flip-flops. Each display device consists of

4 Light Emitting Diodes (LEDs), and 5 push-button switches. One push-button switch is associated with each LED, and
is used to change the state of the circuit displayed (SET/RESET the flip-flop displayed by the LED). One register push-
button (beneath the LED number 64 pushbutton) is used to select the RESET-function for all LED push-buttons in the
register. Another register push-button (beneath the LED number O pushbutton) is used for Lamp-Test/Register-Clear
operations. When this push-button is depressed, all LED lamps illuminate for a Lamp-Test. When this push-button is
released, all circuits displayed by the register are CLEARed (RESET). The bottom push-button on all other register dis-
play circuit devices is unused, and has no effect on the status display.

5010986 4-1

B 6900 System Reference Manual
System Display and Control

cee
00000
Iy
000 s
see e
00000

3y

00000

eeee

0000a

. seve
0u0o0
eess
0c000
sees
LouoU 00000
.

000

..

o

aee

0000

se0e
00000
esee
00000
e ne
00000
sene
00000
see e
00000
eese 96
00000 00000

= o M 5 m
i i o i
3 3 H 5
SYSTEM CONTROL POWER
| CHLT SECL BRI 1
& a\ & N) rwon[S
=)) I J =) HALT RUNSIS OFF
& & © R
GCLR ADJO READ
MNT
© @ @ -
LOAD ADJ1 WRITE
[[To] I Tl Ts] [e] G o] (o] Tof Toof Tf ool Tl sl Tie] (1] T2J TJ L] [s] TeJ G o] [oJ Trof Taf Toef o] o] [re] [rel NML
R LOAD (D DISPLAY CONTROL
E { l | PNL FF l
: POINTER POINTER
]2 sanfo |
o] f[eo oo z zn SA10{O
ﬂ 5 g&g PAGE g:ggg
o Le M — | ofitst
oo o0 B -
::E] % sao7fo |
= = - —fos [3YTE sace|o
3 E=los sags|o |
[K] s sa04ic
—or |air | o|RSTR
| [=loo
© | MEMLD sacsfo)
° sa02|o
&\ (CN (e % ° sao1|o
: sa00|o
?‘ é‘ > "a[& — 9 __o|rcro
STEP
NI EEE W i W E
MAINT PROC CONTROL MAINT CONTROL
T T r———- DISPLAY —-————-”—— »Mm‘reumcs—jl CLOCK 1
* s < ° E pi rss; CMPR i o sTOP EVENT | I ";ut‘s\eﬁ
o O O O o O o O o O 0 1 2 3 LO@L S;Jé'ggﬂ @ DISPLAY ENABLE STOP
' 3 7 3 7 3 7 3 7 3 . OF¢ @ @ . @ @ @ O
© 0|0 0|0 O|O O|O © REMOTE cnecx NORMAL AUN
6 2 6 2 SA 2 6 2 6 2 () 4 5 6 7
O 0|0 O{O O|O0 OlO O MTR
5 1 5 1 S 7 5 T 5 3
PRW ON :
o 9lo ole 9jo olo 0 slofa]s
SENSE SWITCHES
@0 ® ® o000 |lclo]:]r
3 2 1 o LOOP D1a STEP ERR
LOOP DIAG STEP CYCLE SHIFT

Figure 4-1. B 6900 MDP Cabinet Display and Control Panels
43

9860108

15 4

UPPER
REGISTER
DISPLAY

LOWER
REGISTER
DISPLAY

UPPER
DISPLAY

|
LOWER {

DISPLAY

PAGE/BIT ID

FLIP-CHART

MV4429

THIS PUSHBUTTON SELECTS
RESET-FUNCTION FOR ALL

LED PUSHBUTTON SWITCHES

REGISTER

~—

THIS PUSH-
BUTTON
SELECTS
REGISTER
LAMP-TEST
(DEPRESS),
AND CLEAR-
REGISTER
(RELEASE).

'Y}
PAGE SELECT 2
(0 THROUGH 15 HEX) |93
P—
IN THE REGISTER.
= el e RE R ORE R ORE Rl REORE R ORE REl R R
[X3 ®0 X X} ®o ®0 [X [X 0 ®0 ®0 [X} 0 [X [X J [X3
I R R H R R B R R B R R B R R RS R H
o [s] (2] 2] [es] (3] [L3 1%ef 1%2) 23] 1%8) [os) 1°s) 18 [0S
_ — . _ __
o] [ed] Fe] [l Tes] Fes) [es] ool ool fe3] oo [e2] [sc] fee] [ee] [e3
® o0 X} [X-2 [X oo ®o0 [X3 [X3 [X-} [X-J [X2 [X-] [X- LX) [X e0
0 ®0 [X1 eC ®o ® 0 [X-1 [X<} [X1 [X4 X-] [X-J [X-] ®0 ®0 0
Cof o) o) Do) Lo Lol o) o) Lol Lol Ceof Lol o o) Lef Lol
1]
128 124 19 115 111 107 103 99 95 91 87 83 79 75 71 67
127 123 118 114 110 106 102 98 94 90 86 82 78 74 70 66
126 122 117 113 109 1056 101 97 93 89 85 81 77 73 69 65
125 121 116 112 108 104 100 96 92 88 84 80 76 72 68 64
63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 3
62 58 54 50 46 42 38 34 30 26 22 18 14 10 6 2
61 57 63 49 45 41 37 33 29 25 21 17 13 9 5 1
56 52 43 44 40 36 32 28 24 20 16 12 8 4 0
gi ﬂ;\ —)
PANELn PAGE 1

o[T Tl o Tl T e o Tl ol o ol ol ol T

1.
2.

NUMBERS ON FLIP-CHART SHOW LOCATIONS OF BITS IN A WORD.

NOTES
TABS ON FLIP-CHART INDICATE PAGE IDENTITY.

Figure 4-2. B 6900 Status Display Register

[o13u0) pue Aejdsyq uralsAg
[ENUEBRY 90UdIa)ey WaIsAS 0069 g

LIGHT EMITTING
DiODE iNDICATORS

MV4430

If an LED is illuminated, the corresponding flip-flop is SET (or the logic signal is TRUE). If the LED is extinguished, the

B 6900 System Reference Manual
System Display and Control

LED CIRCUIT SET/RESET
FUNCTION PUSHBUTTONS
(1 FOR EACH LED INDICATOR)

RESET-FUNCTION SELECT,OR
LAMP-TEST/REGISTER-CLEAR
FUNCTION SELECT

Figure 4-3. LED Indicator — Chip Circuit Display Device

corresponding flip-flop is RESET (or the logic signal is FALSE).

Table 4-1 gives the general B 6900 system status displayed on each MDP display panel and display register. The major
circuits displayed for each PAGE selection, both the upper and lower displays, are listed.

Panel Page

1 0
1
2
3
4
5
6
4
5

1
1

N A hAWLWUN-=O

(e <]

bt
- O \D

4-6

Table 4-1. B 6900 MDP Cabinet Status Display

Upper DisElax

Top-Of-Stack A Register

Top-Of-Stack C Register

Top-Of-Stack X Register

Top-Of-Stack Z Register

A Register In Octal Notation

B Register In Octal Notation
Card-Tester Logic

Look-Ahead and Address Save Registers
System Status Display

MLIP Logic

MLIP Logic

Memory Control Logic

Global Memory Logic

Event Logic

Interrupt Controller Logic

Not Used

MLIP Logic (Time-Of-Day and Processor-
Timer Logic)

Arithmetic Controller (Family A) Logic

Families C and D Logic
Family U Logic (Families F, G, and H)
Families B and E Logic

Lower Disglay_

Top-Of-Stack B Register

Program (P) Register

Top-Of-Stack Y Register

Program Look-Ahead L Register

X Register In Octal Notation

Y Register In Octal Notation

Card-Tester Logic

Not Used

Memory Address and Address Adder Sum
Reg.

MLIP Logic

MLIP Logic

Memory Control Logic

Memory-Tester Logic

Event Logic

Memory and Interrupt Controllers Logic
Program Controller Logic

Stack and Transfer Controllers Logic

Arithmetic Controller (Families A and E)
Logic

Memory Controller Logic

Not Used

Not Used

B 6900 System Reference Manual
System Display and Control

MDP DISPLAY PANEL ONE SIGNALS

Table 4-2 identifies the flip-flops and logic signals displayed on panel number 1 of the B 6900 MDP cabinet. If a signal
mnemonic or flip-flop name is not listed in a particular bit of a PAGE, the bit-position is unused. Each PAGE display is
provided as an upper-display (bits.64 through 127) and a lower-display (bits O through 63).

MDP DISPLAY PANEL TWO SIGNALS

Table 4-3 identifies the flip-flops and logic signals displayed on panel number 2 of the B 6900 MDP cabinet. If a signal
mnemonic or flip-flop name is not listed in a particular bit of a PAGE, the bit-position is unused. Each PAGE display is
provided as an upper-display (bits 64 through 127) and a lower-display (bits O through 63).

MDP DISPLAY SIGNAL DEFINITIONS

Table 44 lists in alpha-numeric sequence every B 6900 system status flip-flop and logic signal displayed by the MDP. A
cross-reference to the display PANEL, PAGE, and BIT is given; and a definition of the Meaning or usage of each
mnemonic signal is included.

The conventions used to define and describe the display logic signals in Table 4-4 are as follows.

[m:n] This symbol defines a set of mnemonic-terms displayed in a single MDP display register.
Mnemonic terms are grouped in sets only when sharing common logical-characteristics or per-
forming a common function. The m character in this symbol identifies the most-significant bit
of a set. The n character identifies the number of mnemonics in the set, including the most-
significant bit.

Signal or flip-flop mnemonics consist of alphanumeric characters. Variation of any alpha-
numeric character in a mnemonic identifies a unique signal or flip-flop. In a mnemonic set
symbol, the character to the left of the colon may be any alphanumeric character, but the
length character to the right of the colon is a numeric integer. Thus, signals or flip-flops in a
set are represented by any mnemonic character difference, and the number of flip-flops or
signals in a set is a numeric quantity.

n, or nn This symbol is imbedded in or appended to a mnemonic term rather than a bit-designator.
Each value of i {or nn) constitutes a separate mnemonic term. Mnemonics are grouped to
show common logic functions.

Multiple Line Some bit-sets are displayed at more than a single MDP Display location. Where this condition

Entries exists, multiple line-entries for the same set of bits are given.

Split Line Some bit-sets are not in consecutive-bit order in an MDP Display register; they are in random-bit
order. Multiple line-entries are used to show where all bits in a bit-set are located in the display
register.

5010986 47

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 1 of 9)

PAGE Zero Upper-display
127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67
AROF AR47 AR43 AR39 AR35 AR31 AR27 AR23 ARI19 ARIS AR11 ARO7 ARO3

ARS0 AR46 AR42 AR38 AR34 AR30 AR26 AR22 AR18 AR14 ARIO ARO06 ARO2
AR49 AR4S AR41 AR37 AR33 AR29 AR25 AR21 AR17 AR13 AR09 AROS ARO!
AR48 AR44 ARA40 AR36 AR32 AR28 AR24 AR20 AR16 AR12 AR08 ARO4 ARO00
124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64

PAGE Zero Lower-display

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
BR47 BR43 BR39 BR35 BR31 BR27 BR23 BR19 BR15 BR11 BRO7 BRO3

BRSO BR46 BR42 BR38 BR34 BR30 BR26 BR22 BR18 BR14 BR10 BRO6 BRO2

BR49 BR45 BR41 BR37 BR33 BR29 BR25 BR21 BR17 BR13 BRO9 BROS BRO1

BROF BR48 BR44 BR40 BR36 BR32 BR28 BR24 BR20 BR16 BR12 BRO8 BRO4 BR0OO
60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

[onyuo) pue Aerdsiq waisAg
[enuep dousIa)ey WaIsAS 0069 g

986010¢

127

124

63

PROF
60

123

120

59

PSR2
PSRI
PSRO

56

119

116

55

52

115

CRS50
CR49
CR48

112

51

PRS0
PR49
PR48

48

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 2 of 9)

S8
CR47
CR46
CR45
CR44

108

47
PR47
PR46
PR45
PR44

107
CR43
CR42
CR41
CR40

104

43
PR43
PR41
PR41
PR40

40

PAGE One Upper-display

103
CR39
CR38
CR37
CR36

100

PAGE One Lower-display

99
CR35
CR34
CR33
CR32

96

95
CR31
CR30
CR29
CR28

92

39
PR39
PR38
PR37
PR36

36

35
PR35
PR34
PR33
PR32

32

31
PR31
PR30
PR29
PR28

28

91
CR27
CR26
CR25
CR24

88

27
PR27
PR26
PR25
PR24

24

87
CR23
CR22
CR21
CR20

84

23
PR23
PR22
PR21
PR20

20

83
CR19
CR18
CR17
CR16

80

19
PR19
PR18
PR17
PR16

16

79
CRI15
CR14
CRI13
CR12

76

15
PRI15
PR14
PR13
PRI2

12

75
CRI11
CR10
CRO9
CRO8

72

PR11
PRIO
PRO9
PRO8

08

!
CRO7
CR0O6
CROS5
CRO4

68

07
PRO7
PRO6
PROS
PR04

67
CRO3
CRO2
CRO1
CROO

64

03
PRO3
PRO2
PRO1
PROO

Tonyuo) pue Aedsiq woisAS
[enuepy soustorey weisAS 0069 €

or¢

Table 4-2. B 6900 MDP Panel Onc Signal Display (Sheet 3 of 9)

PAGE Two Upper-display
127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67
XROF XR47 XR43 XR39 XR35 XR31 XR27 XR23 XR19 XR15 XR11 XRO7 XRO03
XR50 XR46 XR42 XR38 XR34 XR30 XR26 XR22 XR18 XR14 XR10 XR06 XR02
XR49 XR45 XR41 XR37 XR33 XR29 XR25 XR21 XR17 XR13 XR09 XROS XRO1
XR48 XR44 XR40 XR36 XR32 XR28 XR24 XR20 XR16 XR12 XR08 XR04 XROO
124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64
PAGE Two Lower-display
63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
YR47 YR43 YR39 YR35 YR31 YR27 YR23 YR19 YR15 YRI11 YRO? YRO3
YRS50 YR46 YR42 YR38 YR34 YR30 YR26 YR22 YR18 YR14 YRI0 YRO6 YRO2
YR49 YR45 YR41 YR37 YR33 YR29 YR25 YR21 YR17 YR13 YRO9 YRO5 YRO1
YR48 YR44 YR40 YR36 YR32 YR28 YR24 YR20 YR16 YRI12 YRO8 YRO4 YROO
60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

.

[onjuc) pue Aejdsiq waisAg
[enuely 30UaIa}aYy WASAS 0069 I

986010$

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 4 of 9)

PAGE Three Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 1 67
ZR47 ZR43 ZR39 . ZR35 ZR31 ZR27 ZR23 ZR19 ZR15 ZR11 ZRO7 ZRO3

ZR50 ZR46 ZR42 ZR38 ZR34 ZR30 ZR26 ZR22 ZR18 ZR14 ZR10 ZR06 ZR02

ZR49 ZR45 ZR41 ZR37 ZR33 ZR29 ZR25 ZR21 ZR17 ZR13 ZR0O9 ZROS ZRO1

ZR48 ZR44 ZR40 ZR36 ZR32 ZR28 ZR24 ZR20 ZR16 ZR12 ZRO8 ZR04 ZR00

124 120 116 112 108 104 100 96 KR 88 84 80 76 - 72 68 64

PAGE Three Lower-display

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
LR47 LR43 LR39 LR35 LR31 LR27 LR23 LR19 LRI5 LRI LRO7 LRO3

LR50 LR46 LR42 Lk38 LR34 LR30 LR26 LR22 LR18 LR14 LR10 LRO6 LRO2

LR49 LR45 LR41 LR37 LR33 LR29 LR2S LR21 LR17 LRI3 LRO09 LROS LRO1

LROF LR48 LR44 LR40 LR36 LR32 LR28 LR24 LR20 LR16 LRI12 LRO8 LRO4 LR0OO
60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

I

[onuo) pue Aedsiq weisAg
[ERUBJY 9ouaIajey WeIsAS 0069 g

(A% 4

63

XR47
XR46
XR45

123

AR44
AR43
AR42

120

59

XR44
XR43
XR42

56

119

AR41
AR40
AR39

116

55

XR41
XR40
XR39

52

115

AR38
AR37
AR36

112

51

XR38
XR37
XR36

48

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 5 of 9)

111

AR34
AR34
AR33

108

47

XR35
XR34
XR33

107

AR32
AR31
AR30

43

XR32
XR31
XR30

40

" PAGE Four Upper-display
103 99 95
AR29 AR26 AR23
AR28 AR2S AR22
AR27 AR24 AR21
100 96 92

PAGE Four Lower-display

39

XR29
XR28
XR27

36

35

XR26
XR2S
XR24

32

31

XR23
XR22
XR21

XR20
XR1Y
XR18

24

87

AR17
ARI16
ARIS

84

XR17
XR16
XR1S

20

83

AR14
AR13
AR12

80

19

XR14
XR13
XR12

79

ARI1!
ARI10
ARO9

76

XR11
XR10
XR09

12

75

AR08
ARO7
ARO6

72

XR08
XRO7
XR06

08

71

ARO5
ARO4
ARO3

07

XROS
XR04
XRO3

67

ARO2
ARO1
AROO

03

XRO2
XRO1
XR0O0

jonuo) pue Aepdsiq waisAg
[BNUEBY 0UIJY WasAS 0069 4

9860105

127
BROF
BR47
BR46
BR45
124

63

YR47
YR46
YR45

60

4

59

YR44
YR43
YR42

56

119

BR41
BR40
BR39

116

55

YR41
YR40
YR39

52

1S

BR38
BR37
BR36

112

51

YR38
YR37
YR36

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 6 of 9)

11

BR35
BR34
BR33

108

47

YR35
YR34
YR33

44

107

BR32
BR31
BR30

43

YR32
YR31
YR30

40

PAGE Five Upper-display

103

BR29
BR28
BR27

100

PAGE Five Lower-display

99

BR26
BR2S
BR24

96

95

BR23
BR22
BR21I

39

YR29
YR28
YR27

36

35

YR26
YR2S
YR24

32

31

YR23
YR22
YR21

28

91

BR20
BR19
BRI

88

YR20
YR19
YR18

24

87

BR17
BR16
BRIS

84

YRI17
YR16
YRI5

20

83

BR14
BR13
BR12

80

YRI14
YR13
YRI12

16

79

BR1!
BR10
BR0O9

76

YRI1
YRI0
YRO9

75

BRO8
BRO7
BRO6

72

YRO8
YRO7
YRO6

08

71

BROS
BRO4
BRO3

68

07

YROS
YRO4
YRO3

04

67

BRO2
BROI
BROO

64

03

YRO2
YRO!
YRO0

[onuo) pue Aeidsiq woaisAg
[BnUBY 90UAIRJOY WIISAS 0069 G

1404

127
P26F
P25F
P24F
P23F

124

63
P52F
PS1F
P50F
P49F

60

123
P22F
P21F
P20F
P19F

120

59
P48F
P47F
P46F
P45F

56

119
P18F
P17F
P16F
P15F

116

55
P44F
P43F
P42F
P41F

115
P14F
PI13F
P12F
P11F

51
P40F
P39F
P38F
P37F

48

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 7 of 9)

11
P10OF
PO9F
PO8F
PO7F

108

47
P36F
P35F
P34F
P33F

44

107
PO6F
POSF
PO4F
PO3F

43
P32F
P3IF
P30F
P29F

40

PAGE Six Upper-display

103
PO2F
POIF

99
P38C
P37C
P36C
P35C

96

PAGE Six Lower-display

39
P28F
P27F

P39S
36

35
P38S
P37S
P36S
P358

31
P345
P33S
P328
P31S

28

91
P30C
P29C
P28C
P27C

88

P30S
P29S
P28s
P27S

87
P26C
P25C

P23C
84

P26S
P258
P24s
P38

83
P22C
P21C
P20C
P19C

80

P22S
P21S
P20S
P19S

79
P18C

P16C
P15C
76

P18S
P17S
P16S
P15S

75
P14C
P13C
pP12C
PlIC

P14S
P13S
P12S
P11S

08

71

P09C
P0O8C
PQO7C

68

07
P10S
P0O9S
PO8S
PO7S

04

67
P0O6C
POSC
P04C

64

03
P06S
POSS
P04S
P0O2S

[o13uo) pue Kejdsiq waisg
[BNUB 20U1JoY WaISAS 0069 9

986010¢

SI¥

127
LAI9
LA18
LA17
LAl6

124

63

60

123
LA15
LA14
LAI3
LA12

120

59

56

119
LAIll
LA10
LAOS
LAO8

116

55

52

115
LAO7
LAO6
LAOS
LAO4

112

51

48

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 8 of 9)

111
LAO3
LAO2
LAO!
LAOO

47

44

107

43

40

PAGE Fourteen Upper-display

103

PAGE Fourteen Lower-display

99

96

95

92

39

36

35

32

31

91

88

27

24

87

84

23

20

83
ADD19
ADDIS8
ADD17
ADD16

80

79
ADDI15
ADD14
ADDI13
ADDI12

76

15

75
ADDI1
ADDI0
ADDO9
ADDO8

72

08

71
ADDO7
ADDO06
ADDOS
ADDO4

68

07

67
ADDO3
ADDO2
ADDO1
ADDOO

64

03

[oruo) pue Aepdsiq wolsAg
[enuely 20uaIjey WSS 0069 9

91

127

124

63
MAL9
MAI18
MA17
MAl6

60

123

120

59
MALS
MAl4
MA13
MAI2

56

119

116

MAII
MAI0
MA0Y
MAO8

52

115

51
MAO7
MAO06
MAOS
MA04

48

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 9 of 9)

111

108

47
MAO3
MAQ2
MAOQI
MAQO

44

107

104

43

PAGE Fifteen Upper-display
103 99 95
AROF
BROF
PROF
100 96 92

PAGE Fifteen Lower-display

39 35 31

36 32 28

91

PSR2
PSR1
PSRO

88

27

87

STRA
STRF

VARF
84

23
MSM19
MSM18
MSM17
MEMI16

83

STRB
STRG
EDIT
80

19
MSM15
MSM14
MSM13
MEM12

16

79

STRC
STRH
TEEF

76

MSM11
MSM10
MSM09
MEMO08

12

75

STRD
STR}
VECF
72

MSMO07
MSMO06
MSMO0S
MEMu4

08

71

STRE
STRK
IIHF

07
MSMO03
MSMO02
MSMO1
MEMO0O

67

SHLT

ICFF
LROF

03

[onuo) pue Aepdsiqg waisAg
[BNUBPY 20UaIaJoYy WSISAS 0069 9

986010S

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 1 of 12)

L1

PAGE Zero Upper-display)

127 123 119 115 11 107 103 99 95 91 87 83 79 75 n 67
HASL MLIE FLG3 MSWR MRA3 SPTS1 MSP7 MSP3 RIEN3 R119 R115 Rill R107 Ri103
STCH STMX R3NG FLG2 MRA2 SPTSO MSP6 MSP2 RIEN2 R118 R114 Ri10 R106 R102
SCWE FLGE1 MAHF FLGI MRAE MRA! MSP9 MSPS MSP1 RIEN} R117 RI113 R109 R105 R101
SCCE FLGEO FLG4 FLGO MRA4 MRAO MSP8 MSP4 MSPO RIENO R116 R112 R108 R104 R100

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64

PAGE Zero Lower-display
63 59 55 S1 47 43 39 35 31 27 23 19 is 11 07 03
PENF BRQF PSC3 FST3 DST3 AGNT STEN R2EN3 R219 R215 R211 R207 R203
GSP2 PAS2 PAD2 PSCE1 PSC2 FST2 DST2 CSEL OUTF R2EN2. R218 R214 R210 R206 R202
GSP1 PASI PADI PSCEO PSC1 FST1 DST! INRQ ASEL R2ENI R217 R213 R209 R205 R201
GSPO PASO PADO PSC4 PSCo FSTC DSTO EMRQ TERM R2ENO R216 R212 R208 R204 R200
60 56 52 48 4 40 36 32 28 24 20 16 12 08 04 00

jonjuo) pue Aepdsyq woysig
[enueyy souaIajey WasAS 0069 4

8Iv

127
SPAR3
BRST
SPAR1
SPAR2

124

63
MMEN
MMPD

DBIT
MAIM

123
SPAR7?
SPAR6
SPARS
SPAR4

120

59
MMBF
MMAF
MM9F
MMSF

56

119

HDPH/

SPAR9Y

SPARS
116

55
MM7F
MMG6F
MMSF
MM4F

52

115
LPMX3
LPMX2
LPMXI1
LPMXO0

112

51
MM3F
MM2F
MMIF
MMOF

48

111
STS3
STS2
STS1
STSO

108

47

107
LP15
LPi4
LP13
LP]12

104

43

PAGE One Upper-display

103 94 95
LP11 LPO7 LP03
LP10 LPO6 LP02
LPO9 LPOS LPO1
LPO8 LPO4 LPOO

100 96 92

PAGE One Lower-display

39 35 31
MRDY
36 32 28

91
MINH
BI2
BI1
BIO
88

27
MDS3
MDS2
MDS!
MDSO0

24

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 2 of 12)

87
R3MX3
R3MX2
R3MX1
R3MX0

84

23
MFS3
MFS2
MFS1
MFS0

20

83
R319
R318
R317
R316

80

19
MOVR
MERQ

MIRQ
MRI16

79
R315
R314
R313
R312

76

15
MRI15
MR14
MR13
MRI12

12

75
R311
R310
R309
R308

72

11
MR11
MRI10
MR09
MRO08

71
R307
R306

R305-

R304

07
MRO7
MR06
MRO5
MR04

67
R303
R302
R301
R300

03
MRO3
MRO02
MRO1
MROO

[onuo) pue Aeydsyq walsAs
[ENUB 20UAIAJIY WLISAS 0069 4

986010S

61

127
RQTB
RQTA
RQT9
RQT8

124

63
IMCF3
PS2F3
PS1F3
PSOF3

60

123
RQT7
RQT6
RQTS
RQT4

120

59

CIOF3

CAOF3

WCCF3

PEDF3
56

119
RQT3
RQT2
RQT1
RQTO

116

55
IMCF2
PS2F2
PS1F2
PSOF2

52

115
RQRB
RQRA
RQR9
RQRS

112

51
CIOF2
CAOF2
WCCF2
PEDF2
48

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 3 of 12)

111
RQR7
RQR6
RQRS
RQR4

47
IMCF1
PS2F1
PSIF1
PSOF1

44

107
RQR3
RQR2
RQRI1
RQRO

104

43
CIOF1
CAOF1
WCCF1
PEDF1
40

PAGE Two Upper-display
103 99 95
CsC4 CAPFE CAFFD
CSC3 SPM2 SRL2
CSC2 SPM1 SRLI
CSC1 SPMO SRLO
100 96 92

PAGE Two Lower-display

39
IMCFO
PS2F0
PS1FO
PSOFOQ

36

35
CIOFO
CAOF0
WCCFO
PEDFOQ
32

31
WSTF3
WSTF2
WSTF1
WSTFO

28

91
CAPFC
ATEF
TRYF

CHGO

88

27
MRSF3
MRSF2
MRSF!
MRSFO

24

87

CAPFB
MAOF
RDFF
CINF
84

23
ICW3
ICW2
(8]
ICWO

20

83
CAPFA
WAIT
LOG2
LOG1

80

MSW3
MSW2
MSW1
MSWO0

16

79 75
ABRF
CARQ

MI5SIR

Mi48 PTGO

76 72

15 11

GS2F ICNF

GSIF GRDF

GSOF GABF

CRFF

12 08

I
HAR3
HAR2
HARI
HARO

07
GT2F
GTIF
GTOF

67
LACF
SNAP

IHCP
IVAF

03
GOAF
GOBF
GAOF
EGTM

fonjuo) pue Aepdsiq woysAg
[eNUBY 20USIAJIY WASAS 0069 g

oz

127
GAINA
GAINB
GEINA
GEINB

124

63
BYR19
BYRI18
BYR17
BYRI6
60

123
IGUEB
IGWEB
IGREB

120

59
BYRIS
BYR14
BYRI3
BYRI2

56

119
IGUEA
IGWEA
IGREA

GARCS

116

55
BYRI11
BYR10:
BYRO9
BYRO8

52

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 4 of 12)

PAGE Three Upper-display

115 111 107 103 99 95. 91 87 83
GCLER ABRG GSTRT GUEX GINV = GCHB GSCX
GBC2 IGXF GLOAD GWEX GAEX GCHA GBS2

GBC1 GAINT GHALT GREX GAOX TOUT GBS1
GBCO GEINT GAOR IHGT GABX TRIG GBSO

112 108 104 100 96 92 88 84 80

PAGE Three Lower-display

51 47 43 39 35 31 27 23 19
BYR0O7 BYR03 MTST V1 CMPE CBPW CB4aw CBPR CB4R
BYR06 BYRO2 TV2 Vo TABT WEFW CF3wW WEFR CB3R
BYRO5 BYROI TV1 OMCK ALTWC CB6W CcB2W CB6R CB2R
BYR04 BYROO TVO CMTR MISIW CB5SW CBIW CBSR- CBIR

48 44 40 36 32 28 24 20 16

79

76

15
IT10
IT0Y
iTO8
IT07

12

75

ITO6
ITOS5
ITO4
ITO3

n
SPMA3
SPMA2
SPMA1L
SPMAO

07
1102
1TO1
IT00

04

67
SPMB3
SPMB2
SPMBI1
SPMBO

64

03
ECSF
EXTI
INTV
INTE

[onuo) pue Aedsi welsAg
[EnUBy 20ULISJY WAISAS 0069 €

9860105

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 5 of 12)

PAGE Four Upper-display

1zv

127 123 119 115 1 107 103 99 95 91 87 83 79 75 71 67
EV21 EICMP EVI3 EV09 EV05 EVO01 ECT7 ECT3 ICOR EJCI11 EJCO7 EJC03 HLTD EST7 EOP3 EVCT
EV20 EVié6 EV12 EV08 EV04 CCSF ECT6 ECT2 MPBI EJC10 EJC06 EJCO2 ILHD EST6 EOP2 ETED
EV19 EV15 EVii EVO07 EV03 MEVF ECTS ECTI MIAI EJC0O9 EJCO5 EJCO1 LODS ESTS EOP} EEDT
EV18 EVi4 EV10 EV06 EV02 HOEF ECT4 ECTO ESTP EJCO08 EJC04 EJCO0 LAVF EST4 EOPQ EVAR

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64

PAGE Four Lower-display
63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
WMMF AMMF JCs11 JCS07 JCS03 SRS$3 OSR3 VCTS
PLKI RMMF AIMF JCs10 JCS06 JCS02 SRS2 OSR2 TEDS
PLKO WIMF MEXI HALT JCS09 JC805 JCSo1 SRS OSR|1 EDTS
PSOP RIMF ARPT JCS08 JCS04 JCS00 SRSO OSRO. VARS
60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

jonuo) pue Aedsiq waisAg
[ENUBH 20uRIdJeY WASAS 0069 G

wy

127
RDCBA
ADREA
STOF

STIS

124

63
LRAP
LRIL
LRAR
LRDM
60

123
RDREA
ADSEA
CKB6A
CKBSA

120

59
LRIG
LRGN
LAER
OPTF
56

119
CKB4A
CKB3A
CKB2A
CKBI1A

116

55
IML2
IML1
IMLO

52

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 6 of 12)

PAGE Five Upper-display
115 111 107 103 99 95 91 87 83 79
CKB4B STAR SCNR SCAN STB2
CKB3B GNTR INPW STAP RUNI STB1
CKB6B CKB2B CAM3 INAGA STUF LOPE STBO
CKB5B CKBIB RDMEA INALA CMPR
112 108 104 100 96 92 88 84 80 76
PAGE Five Lower-display
51 47 43 39 35 31 27 23 19 15
ABRI INCT INF+1 INFF MPXI DR31 DR27 DR23 DR19 DRI1S
ABEI MEWT SEC+2 ALSB MPXB DR30 DR26 DR22 DR18 DR 14
ILDM BDST SEC+1 MPXG DR29 DR25 DR21 DR17 DR13
SEIN ABIT AYER RTRY DR28 DR24 DR20 DR16 DRI12
48 44 40 36 32 28 24 20 16 12

75
ADDR
BURE
RCPE
PCPE
72

DR11
DR10
DRO09
DRO8

n
EREN7
EREN6
ERENS
EREN4

68

07
DRO7
DRO6
DROS
DRO4

67
EREN3
EREN2
EREN1
ERENO

03
DRO3
DR02
DRO1
DROO:

[onuo) pue Aejdsiq waisAg
[EnUBW 30UAIJY WASAS 0069 9

986010¢

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 7 of 12)

€

PAGE Six Upper-display
127 123 119 115 111 107 103 99 95 91 87 83 79 75
124 120 116 12 108 104 100 96 92 88 84 80 76 72
PAGE Six Lower-display
63 59 55 51 47 43 39 35 31 27 23 19 15 11
CPAS ICRF CPIR1 CTIR SSR2 WPIR QP8F QP4F STMC EDDT
CPA4 ICCF CPIRO CSR2 SSR1 SECF QP7F QP3F JPO2
CPA2 FWFF WPTF CSR1 SSRO QP6F QP2F JPO1
CPAl PRVA WBCF CSRO VSIK QPSF QPIF JPOO
60 56 52 48 44 40 36 32 28 24 20 16 12 08

68

07

64

03

[onuo) pue Aepdsiq woisAg
[ENUERY 20UAISJY WNSAS 0069 €

1%

127
CP23
CP22
CP21
CP20

124

63
BZ62
AZ63
AZ62
AZ6l

60

123
CP19
CP18
CP17
CP16

120

59
BZ61
CZ63
CZ62
CZ61

56

119
CP15
CP14
CP13
CP12

116

55
YZ62
XZ63
XZ62
XZ61

52

115
CP11
CP10
CPQ9
CPO8

112

51
YZ6!
7763
2262
2761

48

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 8 of 12)

111
CPO7
CPO6
CPOS
CP04

108

47

TOAS
TOA4

107
CPO3
CP02
CPO1
CPOO

104

43
TOA3
TOA2
TOAI
TOAO

40

PAGE Seven Upper-display
103 99 95
TD3S TD31 TD27
TD34 TD30 TD26
TD33 TD29 TD25
TD32 TD28 TD24
100 96 92

PAGE Seven Lower-display

39

TOMS
TOM4
36

35
TOM3
TOM2
TOMI
TOMO

32

31

DIS5
DIS4
28

91
TD23
TD22
TD21
TD20

88

27
DIS3
DIS2
DIS1
DISO

24

87
TDI9
TD18
TD17
TD16

84

23

20

83
TDI1S
TD14
TDI13
TD12

80

JS4F
JS3F
JS2F
JSIF

79
TDI11
TD10
TD09
TDO8

76

SOIF
QS3F
QS2F
QSIF

75
TDO7
TDO6
TDOS
TDO04

72

08

!
TDO3
TDO2
TDO1
TD0O

68

07

67
TOD3
TOD2
TOD!
TODO

03

[onuo) pue Aejdsig wasAg
[enuepy 20UIRJeY WSAS 0069 g

986010¢

sT¥

127
TA3F
TA2F
TAIF
TAOF

124

63
BETB
YETB
AETA
XETA

60

123
SA3F
SA2F
SAIF
SAOF

120

59
NZTB
ZDTB
NZTA
ZDTA

56

119
JATF
JAGF
JASF
JA4F

116

55
HRTB1
HRTB2
HRTA1
HRTA2

52

115
JA3F
JA2F
JAIF
JAOF

112

51
EXSB
ECRI
AITA
XITA
48

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 9 of 12)

111
EXAI
KA2F
KAIF
KAOF
108

47
BITB
YITB
A2TA
X2TA

44

107
QA7F
QAGF
QASF
QA4F

43
BSTB
Y8TB
A4TA
X4TA

40

PAGE Eight Upper-display
103 99 95 91
QA3F SMO03 SMo04
QA2F SM02

QAIF SMO1 PSCF
QAOF SMO00 CMPF
100 96 92 88

PAGE Eight Lower-display

39 35 31 27
ADSB SPC1 BX02 AX02
CCNS DPCI BX01 AXO01

CCR3 C175 BX00 AX00
CCL3 DPOV YX00 XX00
36 32 28 24

87

NLZF
84

23
YR-3
YR-2
YR-1
XR-1

20

83
NLZ3
NLZ2
NLZ1
NLZO

80

SC3F
SC2F
SCIF
SCOF

16

9
HR15
HR14
HR13
HR12

76

15
SCEF
ICRE
BXSE
DISX

75
HR11
HR10
HRO9
HRO8

72

ICR7
ICR6
ICR3
ICR4

08

71
HRO7
HRO6
HROS
HRO04

68

07
ICR3
ICR2
ICR1
ICRO

67
HRO3
HRO2
HRO]
HROO

64

03
B46D
A46D
BDPD
ADFD

00

[onuo) pue Aeydsiq wasAg
[enuepy 20ua1a}ey WasAS 0069 €

9Ty

127
TC3F
TC2F
TCIF
TCOF

124

63
ERZ9
CRFO03
CRFO02
CRFO01

60

123
JCTF
JC6F
JCSF
ICaF

120

59
ERZS8
DRF13
DRF12
DRF11
56

119
JC3F
JC2F
JCIF
JCOF

116

55
DRSS
DRF4
DRF3
DRF2

52

115
QCS8F
QC7F
QC6F
QCSF

112

51
812
811
Z810
2809

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 10 of 12)

QC4F
QC3F
QC2F
QCIF
108.

47
DFSX
MSOR2
MSOR1
MSORO

PAGE Nine Upper-display

107 103 99 95 91
CRNCF ACL7 ACL3
SASG ACL6 ACL2

QCZ2 ACMS5 ACLS ACL1
QCZ1 ACM4 ACL4 ACLO
104 100 96 92 88

PAGE Nine Lower-display

43 39 35 31 27
ACTS BRS?7 BRS3 IRS7 IRS3
CPTR BRS6 BRS2 IRS6 IRS2
ECMF BRS5 BRSI IRSS IRS1
CRIC BRSS BRSO IRS4 IRSO

40 36 32 28 24

87
TD3F
TD2F
TDIF
TDOF

84

cout
CZIN
SUBT
Z6L9
20

83
ID7F
JD6F
JDSF
JD4F

80

Z6T8
Z6L8
Z6T9
LLO4

i6

79
JD3F
JD2F
JDIF
JDOF

76

LLO3
LLO2
LLO1
LLOO

12

QDBF
QDAF
QD9F

72

08

71
QD8F
QD7F
QD6F
QDSF

07

67
QD4F
QD3F
QD2F
QDIF

[onuo) pue Aedsiq weysAs
[enuey 20Uy WASAS 0069 g

986010¢

Ly

127
TUSF
TU4F
TU2F
TUIF

124

63

60

123
EEND
FINI
EXSF
EXPF
120

59

56

119
RETF
RTNF
NVLF
MPOP

116

55

115

JU6F

JUSF

JU4F
112

51

48

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 11 of 12)

111
JU3F
JU2F
JUIF
JUOF

108

47

107
SSZ2
SSZ1
DSZ2
DSZ1

43

40

PAGE Ten Upper-display
103 99 95
S108 DI03 QU4F
Slo4 D104 QU3F
S102 D102 QU2F
slot DIol QUIF
100 96 92

PAGE Ten Lower-display

39

36

35

32

31

91
DGSF
LHFF
RPZF

XROF

88

87
SOPF
UPDF
SRRF
DPRF

84

23

83

80

79

76

75
TFFF
TFOF
OFFF
FLTF
72

11

08

7
EQVF

EXTF
68

07

67
QUDF
QUCF
QUBF
QUAF

64

03

00

fonuo) pue Aeydsiq weisAg

[eNUBRY 9OUIJSY WASAS 0069 1

8Tt

127
TE3F
TE2F
TEIF
TECF

124

60

123
JBCF
JEGF
JESF
JE4F

120

59

56

119
JE3F
JE2F
JEIF
JEOF

116

55

52

115
QE3F
QE2F
QEIF
QEOF

112

51

48

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 12 of 12)

11
SMVF
MPYF

SUBF
LC3F

47

107
LC2F
LCIF
LCOF
DPFF

43

PAGE Eleven Upper-display

103 99 95 91
SF3F MP35 TB3F
SF2F DBZF TB2F
SFIF FNWF TBIF
SFOF QE4F TBOF

100 96 92 88

PAGE Eleven Lower-display
39 35 31 27
36 32 28 24

87
JB3F
JB2F
JBIF
JBOF

84

23

20

83
QB4F
QB3F
QB2F
QBIF

80

19

16

79

76

15

12

75

72

11

08

71

68

07

67

64

03

00

[onuo) pue Aejdsyq woisAg
[enuEl 2OUAIRY WASAS 0069 €

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signais (Sheet 1 of 23)

MDP Display Location

Flip-Flop
or Signal
Mnemonic Panel
ABEI 2
ABIT 2
ABRF 2
ABR1 2
ACLn [7:8] 2
ACMn [5:2] 2
ACTS8 2
ADDnn [19:20] 1
ADDR 2
ADPD 2
ADREA 2
ADSB 2
ADSEA 2
AETA 2
AIMF 2
ALSB 2
ALTWC 2
AMMF 2
AROF 1
1
1
ARPT 2
5010986

5 50
5 44
2 79
5 51
9 [99:8]
9 [101:2]
9 43
14 [83:20]
5 75
8 0
5 126
8 39
5 122
8 61
4 54
5 28
3 33
4 55
0 27
4 127
14 94
4 44

Meaning or Usage
An Abort Interrupt Controller Logic Signal

The Abort Interrupt Logic Signal
The Abort Memory Cycle Flip-flop
The Abort Clock Save Logic Signal

Least-significant 8-bits of Address Couple For NAMC
Operators

Most-significant 2-bits of Address Couple For NAMC
Operators

Address Couple To Z8-Bus Logic Signal

The Memory Controller Save Address Register
Address-Adder Residue Error Flip-flop

Double Precision Operand In A Register Logic Signal
The Memory Controller Address Retry Logic Signal
The Mantissa Adder Subtract Mode Signal

The Memory Controller Read Data Single-Bit Signal

The A Register Exponent To A Side Of Exponent Adder
Signal

The Access IC Memory Flip-flop
The Allow Family Strobe Logic Signal
The Memory Tester Alternate Worst Case Signal

The Access Main Memory Flip-flop
The A Register Is Occupied Flip-flop

The Anti-Repeat Flip-flop

429

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals (Sheet 2 of 23)

MDP Display Location

Flip-Flop
or Signal
Mnemonic Panel
ARnn [50:51] 1
1
ASEL 2
AXnn [02:3] 2
AYER 2
AZ6n [3:3] 2
AlTA 2
A2TA 2
A4TA 2
A46D 2
BDPD 2
BDST 2
BETB 2
Bin [2:3] 2
BROF 1
1
!
BRQF 2
BRST 2

430

Page

0
4

0

—
wn W O

o

[114:51]
[126:51]

25
[27:3]
40

[62:3]

49

45

41

45

63

[90:3]
60
127
93
47

126

Meani; Js

.
[
3
Q
=1
(
173
ki
w

The Top-Of-Stack A Register

MLIP Address Select Flip-flop

The A Mantissa 1-Octade Extension Register

The EVENT Logic Any Memory Error Signal

The Bit-field Transfer (From A-Register) To Z6-Bus Signals
AZ61 Transfers Bits [50:11]
AZ62 Transfers Bits [39:20]
AZ63 Transfers Bits [19:20]

The A Register Mantissa To A Input Of Mantissa Adder Logic
Signal

2 Times A-Register Mantissa To A Side Of Mantissa Adder
4 Times A-Register Mantissa To A Side Of Mantissa Adder
The A-Register Sign-Bit Change Delay Logic Signal

The B-Register Contains A Double Precision Operand Logic
Signal

The Maintenance Processor Test Logic Signal

The B-Register Exponent To B Side Of Exponent Adder
Logic Signal

The MLIP Byte Index Register

The Top-Of-Stack B-Register Occupied Flip-flop

The MLIP BURST Request Flip-flop

The MLIP BURST Flip-flop

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 3 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
BRSn [7:8] 2 9 [39:8] The Memory Address Base Register Select Logic
BRSO Selects PBR Register
BRS1 Selects SBR
BRS2 Selects DBR
BRS3 Selects TBR
BRS4 Selects S Register
BRSS Selects SNR
BRS6 Selects PDR
BRS7 Selects TEMP
BRnn [50:51] 1 0 [50:51] The Top-Of-Stack B Register
1 5 [126:51]
BURE 2 5 74 The Bus Residue Error Flip-flop
BXSE 2 8 13 The B Side Of Mantissa Adder Logic Signal
BXnn [02:3] 2 8 [31:3] The B Mantissa 1-Octade Extension Register
BYRnn [19:20] 2 3 [63:20] The Memory Tester BYPASS Register Logic
BZ61 2 7 59 The Transfer From B-Register To Z6-Bus (Bits [50:11])
Logic Signal
BZ62 2 7 63 The Transfer From B-Register To Z6-Bus (Bits [39:20])
Logic Signal
BiTB 2 8 47 The B-Register Mantissa To B Input Of Mantissa Adder Logic
Signal
B46D 2 8 3 The B-Register Change Sign-Bit Delay Logic Signal
B8T8 2 8 43 8 Times The B-Register Mantissa To B Input Of The Mantissa
Adder Logic Signal
CAM3 2 5 98 Memory Controller Error Bit
CAOF0 2 2 34 Memory Controller Priority Occupying Port Number Zero
Logic
CAOF1 2 2 43 Memory Controller Priority Occupying Port Number One
Logic
CAOF2 2 2 50 Memory Controller Priority Occupying Port Number Two
Logic

5010986 431

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 4 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
CAOF3 2 2 58 Memory Controller Priority Occupying Port Number Three
Logic
~ CBrR [P:8] 2 32 [23:8] Memory-Tester READ Data Check-Bit Field
CBnW [P:8] 2 3 [31:8] Memory-Tester WRITE Data Check-Bit Field
CKBnA [6:6] 2 5 [121:6] Memory Controller Data Check-Bit Register
CKBnB [6:6] 2 5 [113:6] Memory Controller Data Check-Bit Register
CMPE 2 3 35 The Memory Tester Compare Error Flip-flop
CMPF 2 8 92 The Arithmetic Controller Relational Operator Compare
Flip-flop
CMPR 2 5 76 The Compare Residue Flip-flop
couTt 2 9 23 The Address Adder Cary-out Flip-flop
CPAn [8:4] 2 6 [63:4] The CPU Clock-Counter Low-Order Flip-flops
CPIRn [1:2] 2 6 [55:2] The PIR Word-Boundary Crossed Register
CPTR 2 3 36 Comparator Mode Enable Refresh Signal (Factory Use Only)
CPnn [23:24] 2 7 [127:24] The High-order 24-Bits Of The MLIP CPU-Timer Register
CRFOn [3:3] 2 9 [62:3] IC Memory Address Display Register Group-Card Select Logic

CRFOL1 Selects Group A Card
CRFOZ Seiects Group B Card
CRFO3 Selects Group C Card

CRIC 2 9 40 Clear IC Memory Address Register Flip-flop

CRNCF 2 9 107 Interrupt Controller PIR And PBR Register Values Not
Consistent Flip-flop

CRnn [50:51] 1 1 [114:51] The Top-Of-Stack C Register
CSC [4:4] 2 2 [103:4] Memory Controller Logic Requestor Sequence Counter
CSEL 2 0 30 The MLIP Channel Select Flip-flop

[38)
N

CSRn [2:3] [50:31 The Count Syllable Register

4-32

Flip-Flop
or Signal
Mnemonic
CTIR
CZIN

CZ6n [3:3]

C175
DBZF
DFSX
DGSF
DISX
DISn [5:6]
DInn [8:4]

DPCI

DPFF
DPOV
DPRF

DRFnn [13:3]

DRFn [4:3]

DRnn [31:32]

DSTn [3:4]

DSZn [2:2]

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 5 of 23)

MDP Display Location

Panel

2

2

Page
6

9

11

10

10

11

10

10

51
22

[58:3]

33
98
47
91
12
[29:6]
[99:4]

34
104

32

[58:3]

[54:3]

[31:32]

[35:4]

[105:2]

Meaning or Usage
TIR Register Word-Boundary Crossed Flip-flop
Address Adder Carry-in Signal
Transfer Gate Signals To The Z6-Bus (From the C-Register)
CZ61 Transfers [50:11]
CZ62 Transfers [39:20]
CZ63 Transfers [19:20]
The Carry-in Signal To Bit-75 Of The Mantissa Adder
The Destination Bit Zero Flip-flop
Bit-8 Index Portion Of Address Couple Value
A Logicat Flip-flop Used By Family U For String Operators
Disable Extensions Flip-flop (Force To Zero)
Transfer Controller Dispiacement Register

The Family U Destination Index Byte Register

The Double Precision Carry-in/Borrow-bit To The Mantissa
Adder Logic

The Double Precision Scale Right Multiplier Flip-flop
The Double Precision Gating Override Logic Signal
The Family U Destination Read Only Control Flip-flop
The Display Address Card Group Select Logic Signals
DRF11 Seiects Group A Cards
DRF12 Selects Group B Cards
DRF13 Selects Group C Cards
The Display Address Register Select Signals

The Memory Address Display Register (D-Register) Select
Logic Levels

The MLIP Delayed Status Register

The Family U Destination Byte Size Register

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 6 of 23)

Flip-Flop MDP Display Location

or Signal

Mnemonic Panel Page Bits Meaning or Usage
ECMF 2 9 41 The Enable Comparator Mode Refresh Flip-flop (For Factory

Use Only) '
ECSF 2 3 3 The EVENT Logic Freeze Parameters Flip-flop
ECTn [7:8] 2 4 [103:8] The EVENT Logic Counter
EDDT 2 6 27 The EVENT Detected Flip-flop
EDIT 1 15 80 The EDIT Mode Flip-flop
EDTS 2 4 2 The EDIT Mode Save Flip-flop
EEDT 2 4 65 The EVENT Logic EDIT Mode Signal
EEND 2 10 123 The End Of Enter EDIT Mode Cycle Control Flip-flop
EGMT 2 2 0 Global Memory Contro! Logic Flip-flop
EICMP 2 4 123 The EVENT Logic Micro-module J-Count Select Signal
EJCnn [11:12] 2 4 [91:12] The EVENT Logic Micro-module J-Count Register
EMRQ 2 0 29 The MLIP I/O Emergency BURST Request Flip-flop
EOPn [3:4] 2 4 [71:4] The EVENT Logic Operator-Code Register
EQVF 2 10 71 The Family U Equivalent Control (Sum Equal To Zero)
Flip-flop

ERENn [7:8] 2 5 171:8] The PROM-Card-Error (CPU Card Location) Register
ERZS8 2 9 59 The Residue-Error On Z8-Bus Signal
ER79 2 9 63 The Residue-Error On Z9-Bus Signal
ESTn [7:4] 2 4 [75:4] The EVENT Logic Strobe Register
ETED 2 4 66 The EVENT Logic Table EDIT Mode Logic Signal
EVAR 2 4 64 The EVENT Logic VARIANT-Mode Logic Signal
EVCT 2 4 67 The EVENT Logic VECTOR-Mode Logic Signal
EVnn [21:20] 2 4 [127:4] The EVENT Logic EVENT Register

[122:16]
4-34

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals (Sheet 7 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
EXAI 2 8 111 The Exponent Add Initiate Flip-flop
EXSB 2 8 51 The Exponent Adder Subtract Function Flip-flop
EXTF 2 10 68 The Family U External Sign Bit Flag Control Flip-flop
EXTI 2 3 2 The Interrupt Controller External Interrupt Signal
FINI 2 10 122 The Family U End-Of-Edit Cycle Control Flip-flop
FLGEn [1:2] 2 0 [118:2] The MLIP Flag-Enable Signal Register
FLGn 2 0 [111:4] The MLIP Flag Register
FLTF 2 10 72 The Family U Float Control Flip-flop
FNWF 2 11 97 The FinalWord Flip-flop
FSTn [3:4] 2 0 [39:4] The MLIP Fast Status Signal Register
FWFF 2 6 57 The First-Word Fetch Flip-flop
GABF 2 2 9 A Global Memory (MC III) Control Flip-flop
GABX 2 3 96 The Global Memory Access Begin Logic Signal
GAEX 2 3 98 The Global Memory Address Error Signal
GAINA 2 3 127 The Global Alarm Interrupt Flip-flop
GAINB 2 3 126 Not Used In B 6900
GAINT 2 3 109 The Global Alarm Interrupt Signal
GAOF 2 2 3 A Global Memory (MC III) Control Signal
GAOR 2 3 104 The Global Access Obtained Return Flip-flop
GARCS 2 3 116 The Global Memory All Rows And Columns Clear Signal
GBCn [2:3] 2 3 [114:3] The Global Sequence Control Register
GBSn [2:3] 2 3 [90:3] The Global Clear Sequence Control Register
GCHA 2 3 94 The Global Memory Cycle Control Signal
GCHB 2 3 95 Not Used In B 6500
GCLER 2 3 115 The Global Clear Signal

5010986 4-35

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals (Sheet 8 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
GEINA 2 3 125 The Global External Interrupt Flip-flop
GEINB 2 3 124 Not Used In B 6900
~ GEINT 2 3 108 The Global External Interrupt Signal
GHALT 2 3 105 The Global HALT Function Signal
GINV 2 3 99 The Global Invalid Request Signal
GLOAD 2 3 106 The Global LOAD Function Signal
GNTR 2 S 94 The Global Memory Not Ready Flip-flop
GOAF 2 2 3 A Global Memory (MC III) Control Flip-flop
GOBF 2 2 2 A Global Memory (MC III) Control Flip-flop
GRDF 2 2 10 A Global Memory (MC III) Control Signal
GREX 2 3 101 The Global Memory Read-error Signal
GSCX 2 3 91 The Global Scan-Control Signal
GSPn [2:3] 2 0 [58:3] The MLIP Global-Priority Save Register
GSnF [2:3] 2 2 [15:3] A Global Memory (MC III) Control Regisier
GSTRT 2 3 107 The Global START Function Signal
GTnF [2:3] 2 2 [7:3] A Global Memory (MC III) Control Register
GUEX 2 3 103 The Giobal Memory Data Uncorrectable-Error Signal
GWEX 2 3 102 The Global Memory Write-Error Signal
HALT 2 4 45 The CPU HALT Function Logic Signal
HARn [3:4] 2 2 {71:4]) The Memory Controller Hold Address For Return Signal
Register
HASL - 2 0 127 The MLIP RAM Memory Is Initialized -Signal Flip-flop
HDPH/ 2 1 118 The MLIP Micro-Module Not Held Logic Signal

4-36

Flip-Flop
or Signal
Mnemonic
HLTD
HOEF
HRTAn [2:2]
HRTBn [2:2]
HRnn [15:16]

ICCF

ICFF
ICOR
ICRE

ICRF

ICRn [7:8]

ICWn [3:4]

IGHT
IGREA
IGREB
IGUEA
IGUEB
IGXF
IHCP

ITHF

ILDM

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 9 of 23)

MDP Display Location

Panel

2

2

N

N

Page
4

4

8

15

Bits
79
104
[53:2]
[54:2]
[79:16]

58 °

65
95
14

59

[11:8]

[23:4]

100
117
121
119
123
110

65

68

49

Meaning or Usage
The CPU Is Halted Flip-flop

The EVENT Logic HALT-ON-EVENT Signal

The Exponent Adder A-Side Input Holding Register
The Exponent Adder B-Side Input Holding Register
The Arithmetic Controller Holding Register

The Program Controller Increment CPIR And CTIR Normal
Control Flip-flop

The Interrupt Controller Running Flip-flop
T_he EVENT Logic Inhibit Memory-Correction-Cycle Signal
The Input-Convert Register Enable Flip-flop

The Program Controller Increment CPIR And CTIR
(Remember) Control Flip-flop

The Input-Convert-Operation Register

The Memory Controller IC Memory Refresh Function Delay
(For MSU Signal) Register

The Global Memory Inhibit Global-Timer Signal

The Global Memory Read-Error Flip-flop

Not Used In B 6900

The Globai Memory Uncorrectabie-Error Interrupt Signai
Not Used In B 6900

The Inhibit Global Crosspoint Flip-flop

The Inhibit Setfing CHGO And PTGO Flip-flop

The Interrupt Controller Inhibit Interrupts (Control State)
Flip-flop

The Interrupt Load Micro Program Logic Signal

4-37

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 10 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
ILHD 2 4 78 The Inhibit Look-Ahead Logic Flip-flop
IMCn [3:4] 2 2 39
2 2 47 The Initiate Memory Cycle Control Signals To Memory
2 2 52 Ports 0, 1, 2, And 3
2 2 63
IMLn [2:3] 2 5 [55:3] The Consecutive Interrupt Counter For Detecting
. SUPERHALT Conditions
INAGA 2 5 93 Global Memory Invalid Address-Bit Error Signal
INALA 2 5 88 Local Memory Invalid Address Signal
INCF 2 2 11 A Global Memory (MC III) Control Logic Signal
INCT 2 5 47 The Inconsistent P3 Parameter Signal
INFF 2 5 39 The Inhibit Fetch Flip-flop
INF+1 2 5 43 The Inhibit Fetch Flip-flop Delayed 1 Clock-pulse Logic
Signal
INPW 2 5 90 The Invalid Program-Word Flip-flop
INRQ 2 0 29 The MLIP Interrupt Request Flip-flop
INTE 2 3 0 The Interval-Timer Enable Signal
INTV 2 3 1 The Interval-Timer Error Flip-flop
IRSn [7:8] 2 9 [31:8] The Memory Address Read Index Register Select Signals

IRSO Selects PIR
IRS1 Selects SIR
IRS2 Selects DIR
IRS3 Selects TIR
IRS4 Selects LOSR
IRS5 Selects BOSR
IRS6 Selects F
IRS7 Selects BUF

ITnn [10:11] 2 3 [15:11] The Interval-Timer Register

IVAF 2 2 64 The Invalid Memory Address Flip-flop

4-38

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 11 of 23)

Flip-Flop MDP Display Location

or Signal

Mnemonic Panel Page Bits Meaning or Usage
JAnF [7:8] 2 8 [119:8] The Family A Sequence Count (J-Count) Register
JBCF 2 11 123 The Family E J-Count Bus Control Flip-flop)
JBnF [3:4] 2 11 [87:4] The Family B Sequence Count (J-Count) Register
JCSn [11:12] 2 4 [31:12] The EVENT Logic J-Count Save Register
JCaoF [7:8] 2 9 [123:8] The Family C Sequence Count (J-Count) Register
JDnF [7:8] 2 9 [83:8] The Family D Sequence Count (J-Count) Register
JEnF [6:7] 2 11 [122:7] The Family E Sequence Count (J-Count) Register
JPnF [02:3] 2 6 [30:3] The Program Controller Sequence Count Register
JSnF [4:4] 2 7 [19:4] The Stack Controller Sequence Count Register
JUnF {6:7] p/ 10 [114:7] The Family U Sequence Count (J-Count) Register
Jvn [1:2] 2 3 [39:2] The Memory-Tester Logic Sequence Counter
KAnF [2:3] 2 8 [110:3] The Family A K-Counter Logic
LACF 2 2 67 This Flip-flop Not Used On The B 6900 System
LAER 2 5 57 The Look-Ahead Logic Memory Error Signal
LAVF 2 4 76 The Look-Ahead Valid Flip-flop
LAnn [19:20] 1 14 [127:20] The Look-Ahead Logic Memory Address Register
LCnF [3:4] 2 11 [108:4] The Loop-Count Register
LHFF 2 10 90 A Family U Logical Flip-flop
LLnn [04:5] 2 9 [16:5] The Lexicographical Level Register
LODS 2 4 77 The Load (Source) Select Flip-flop
LOGn [2:2] 2 2 [81:2] The Memory Controller Error Control Register
LOPE 2 5 85 The Loop-Timer Error Flip-flop
LPMXn [3:4] 2 1 [115:4] The MLIP Longitudinal Parity Register To MX-Bus Gating

Signal Register
5010986 4-39

Flip-Flop

or Signal

Mnemonic
LPnn [7:8]
LRAP
LRAR
LRDM
LRGN
LRIG
LRIL
LROF

LRnn [50:51]

MAIM

MAOF

MAnn [19:20]
MDSn [3:4]

MERQ

MEVF
MEWT
MEXI
MF$Sn [3:4]

MIAI

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 12 of 23)

MDP Display Location

Panel

2

2

Page
1

p—

[y

Bits

[99:8]
63
61
60
58
59
62
60

[50:51]

60
86
[63:20]

[27:4)

18

105
46
53

[23:4]

Meaning or Usage
The MLIP Longitudinal Parity Register

The Look-Ahead Logic Address Parity Signal

The Look-Ahead Logic Address Residue Signal

The Look-Ahead Logic Read Data Timer Signal

The Global Memory Not Ready For Look-Ahead Logic

The Global Memory Invalid- Address For Look-Ahead Signal
The Local Memory Invalid Address For Look-Ahead Signal
The Look-Ahead Registel: (L Register) Occupied Flip-flop

The Look-Ahead Register (The Next Sequential Program
Code Word in The Current Segment)

The Micro-module Address To Input Multiplexor Flip-flop
The Memory Access Obtained Flip-flop

The Memory Address Register

The MLIP Maintenance Display Status Register

The MLIP Emergency Request (POLL-REQUEST From MLI)
Signal

The EVENT Logic Multiple EVENT Flip-flop

The Families Memory Cycle Wait Time Signal

The Mask External Interrupt Signal

The MLIP Maintenance Fast Status Register

The EVENT Logic Mask Invalid Address Interrupt Signal
The MLIP Memory Inhibit Logic Signal

The MLIP Maintenance Interrupt Request Flip-flop

The Memory Controller Memory Protect Bit

Flip-Flop

or Signal

Mnemonic
MISIR
MISIW
MMEN
MMPD
MMnF [B:12]
MOVR
MPBI
MPOP
MPXB

MPXG

MPXI

MPYF

MP35
MRAE
MRAn [4:5]
MRDY

MRSn [3:4]

MRnn [16:17]

MSORn [2:3]

MSMnn [19:20]

MSPnn [9:10]
5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 13 of 23)

MDP Display Location

Panel
2

2

—

Page
2

3

15

Bits
77
32
63
62

[59:12]
19
94

116
34

33

35

110

99
105

[104:5]
28

[27:4]
[16:17]

[46:3]

[23:20]

[97:10]

Meaning or Usage
The Memory Controller Read Data Word-Parity Bit (Odd)

The Memory Controller Write Data Word-Parity Bit (Odd)
The Micro-Module Enable Signal

The Micro-Module Parity Disable For First Clock-pulse Signal
The Micro-Module Address (MLIP Entry-Vector) Signals

The MLIP Maintenance Override Signal

The EVENT Logic Mask Presence Bit Interrupt Signal

The Micro Program Control Flip-flop

The MLIP BURST Logic Signal

The MLIP Access Granted (To CPU Memory Bus For A
BURST Memory Cycle) Signal

The MLIP Initiate BURST Request Signal (Remembered)

The Scale-Right Multiply (Times Ten) Raised To The Value
Of The Scale-Factor Enable Signal

The Scale-Right Multiplied By Third/Fifth Octade Signal
The MLIP Memory Address Register Enable Flip-flop
The MLIP Memory Register Address

The MLIP Maintenance Ready Flip-flop

The Local Memory Refresh Control Signal Register (For
Ports 0, 1, 2, And 3)

The MLIP Maintenance Data Register
The Address Adder Sum Of Residue Bits
MOSORO Is Residue Bit-1
MOSOR! Is Residue Bit-2
The Address Adder Sum Register

The MLIP Micro-Stack Pointer Register

Flip-Flop
or Signal
Mnemonic

MSWR

MSWn [3:4]

MTST
NLZF
NLZn [3:4]
NVLF

NZTA

NZTB

OFFF
ONCK
OPTF
OSRn [3:4]
OUTF
PADn [2:3]
PASn [2:3]
PCPE

PEDFn [3:4]

e X

PLKn [1:2]

442

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 14 of 23)

MDP Display Location

(SN S I SR S]

[S8}

10

o

[oI S I S 3 8 (=]

=]

Bits

107

[19:4]

43

84
[83:4]

117

57

59

73
37
56
[7:4]
26
[50:3]
[54:3]
72
32

40
51

W
[y

[62:2]

Meaning or Usage

The MLIP Micro-Stack Write (From MLIP Register Number 1)
Control Signal

The Memory Controiler Seiect Write Signal Register For
Ports 0, 1, 2, And 3

The Memory-Tester Test-Mode Control Flip-flop

The Number Of Leading Zeroes Register Control Flip-flop
The Number Of Leading Zeroes Register

The Family U Not Valid Control Flip-flop

The Add NLZ (Number Of Leading Zeroes) To A-Input Of
Exponent Adder Control Signal

The Add NLZ (Number Of Leading Zeroes) To B-Side Of
Exponent Adder Control Signal

The Family U Overflow Control Flip-flop

The CPU One-Clock Control Signal

The Optional Adapter Test Flip-flop (Maintenance-Mode)
The EVENT Logic OP-CODE Save Register

The MLIP Output Flip-flop

The MLIP Port Address Register

The MLIP Port Address Save Register

The CPU PROM-Card Parity Error (Card-Location) Register

The Memory Controller Parity Error Disable Control Signals
Register (TO Local Memory Ports 0, 1, 2, And 3)

™

The MLIP Pori Enable Flip-flop

The Clock-Control Phase-Lock Register

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 15 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits
PROF 1 1 60
1 15 92
PRVA 2 6 55
PRnn [50:51] 1 1 [50:51]
PSCF 2 8 93
PSCn [3:4] 2 0 [43:4]
PSRn [2:3] 1 1 [58:3]
1 15 [90:3]
PSOFn [2:3] 2 2 [38:3]
PS1Fn [2:3] 2 2 [46:3]
PS2Fn [2:3] 2 2 [54:3]
PS3Fn [2:3] 2 2 [62:3]
PTGO 2 2 72
PanC [38:7] 1 6 [99:7]
(30:6] 1 6 [91:6]
[23:6] 1 6 [84:6]
[16:6] 1 6 [77:6]
105:6} i 6 {70:6]
PnnF [26:26] 1 6 [127:26]
[52:26] 1 6 [63:26]
PnnS [39:36] 1 6 [36:36]
P02S 1 6 0
QArF [7:8] 2 8 [107:8]
QBnF [4:3] 2 11 [83:4]
5010986

Meaning or Usage

The Program Controller Program-Register (P-Register)
Occupied Flip-flop

The PROF And VARF Flip-flops Are Valid Logic Signals
The Program Controller Program-Word (P-Register)

The Pseudo-Call On Family A Flip-flop

The MLIP Priority-Sequencer Count Register

The Program Controller Program Syllable Register

The Memory Controller Port Sequence Count Register For
Local Memory Port Zero

The Memory Controller Port Sequence Count Register For
Local Memory Port One

The Memory Controller Port Sequence Count Register For
Local Memory Port Two

The Memory Controller Port Sequence Count Register For
Local Memory Port Three

The Memory Controller Port Go (To Complete A Memory
Cycle) Signal

The Card-Tester Pin Clear Register

The Card-Tester Pin Register

The Card-Tester Pin-SET Register
The Card-Tester Pin-SET Signal For Pin Number 2
Family A Logical Control Flip-flops

Family B Logical Control Flip-flops

Flip-Flop
ot Signal
Mnemonic

QCZn [2:2]

QCnF [8:8]
QDnF [B:12]

QEnF [4:5]

QPnF [8:8]
QSnF [3:3]
QUAF
QUBF
QUCF
QUDF
QUnE [4:4]
RCPE
RDCBA
RDFF
RDMEA
RDREA
RETF
RIENR [3:4]
RIMF
RMMF

RPZF

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 16 of 23)

MDP Display Location

Panel

2

(8]

Page
9

11
11

10
10
10
10

10

10

[106:2]

[115:8]
[74:12]

[115:4]
[96:1]

[39:8]
[14:3]
64
65
66
67
[95:4]
73
127
85
92
123
119
[87:4]
56
58

89

Meaning or Usage

The Family C Size-Save Register

QCZ1 Saves Size-1

QCZ2 Saves Size-2
The Family C Logical Control Flip-flops
The Family D Logical Control Flip-flops

The Family E Logical Control Flip-flops

The Program Controller Logical Control Flip-flops

The Stack Controller Logical Control Flip-flops

The Family U Invalid Operation Control (QF01) Flip-flop
The Family U Presence-Bit Control (QF02) Flip-flop

The Family U Memory-Protect Control (QF03) Flip-flop
The Family U Segmented-Array Control (QF04) Flip-flop
The Family U Logical Control Flip-flops

The RAM-Card Parity-Error Flip-flop

The Memory Controller Read-Data Check-Bit Signal

The Memory Controller Read Phase Flip-flop

The Memory Controller Multiple-Bit Error Signal

The Memory Controller Address-Retry Signal

The Family U Return To Using Operation Contro!l Flip-flop
The MLIP Enable Bit Signals For Register Number 1

The EVENT Logic Read IC Memory Flip-flop

The EVENT Logic Read Main Memory Flip-flop

A Family U Logical Flip-flop

Flip-Flop
or Signal
Mnemonic
RQRn [B:12]
RQTn [B:12]

RTNF

RTRY

RUNI

Rlnn [19:20]
R2En [3:4]
R2nn [19:20]

R3MXn [3:4]

R3nn [19:20]
SASG
SAnF [3:4]
SCAN
SCCE
SCEF
SCNR
SCWE
SCnF [3:4]
SDIS
SECF

SEC+1

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 17 of 23)

MDP Display Location

Panel

2

2

2

Page

2

2

10

Bits
[115:12]
[127:12]

118

36
82
[83:20]

[23:4]
[19:20]

[87:4]

[83:20]

106

[123:4]
83
124
15
87
125

[19:4]
124
42

41

Meaning or Usage
The Memory Controller Request Address Register

The Memory Controller Request Address Trap Register

The EVENT Logic Re-entrant From Interrupt Controller
Flip-flop

The Memory Controller Retry Flip-flop

The Running Indicator Signal

The MLIP R-1 Register

The MLIP Register-2 Bit-Enable Signal Register
The MLIP R-2 Register

The MLIP R-3 Register Gated To The MX-Bus Control Signal
Register

The MLIP R-3 Register

" The Save Segmented-Bit Flip-flop

The Family A T-Register Save Register

The Global Memory SCAN Command Signal

The MLIP Status-Change Command Enable Signal

The Scale Count-Enable Flip-flop

Not Used In B 6900

The MLIP Status-Change Write Enable Signal

The Scale Count Register

The Interrupt Controller Syllable Dependent Interrupt Signal
The Syllable Execute Complete Level Save Flip-flop

The Syllable Execute Complete Level Delayed 1 Clock-pulse
Signal

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 18 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
SEC+2 2 5 42 The Syllable Execute Complete Level Delayed 2 Clock-Pulses
Signal
SEIN 2 5 48 The Syllable Execute Complete Interrupts Enable Signal
SFnF [3:4] 2 11 [103:4] The Scale-Factor Register
SHLT 1 15 67 The SUPERHALT Flip-flop
SInn [08:4] 2 10 [103:4] The Family U Source-Byte Index Register
SMVF 2 11 111 The Enable Scale-Right PROM (generates TOA, TOM, And
DIS Values)
SMnn [04:5] 2 8 [99:5] The Steering And Mask Register (Generates Family A TOA,
TOM, And DIS Values)
SNAP 2 2 66 The SNAP Mode Flip-flop {(Used During Maintenance Testing)
SOIF 2 7 15 The Stack Overflow Interrupt Flip-flop
SOPF 2 i0 87 The Family U Source-Pointer Equals An Operand Control
Flip-flop
SPARn [9:9] 2 2 127
2 2 [126:6] MLIP Spare Flip-flops
2 2 [117:2]
SPCI 2 8 35 The Single Precision Carry-in (Or Borrow) Signal To The

Mantissa Adder Logic

SPMAn (3:4] 2 3 [71:4] The Single-Pulse Mode A For Memory Port n Register
SPMAOQ Selects Port 0
SPMAL Selects Port 1
SPMAZ2 Selects Port 2
SPMA3 Selects Port 3
SPMBn [3:4] 2 3 [67:4] The Single-Pulse Mode B For Memory Port n Register (see
SPMAn Signals For Port IDs)
SPMn [2:3] 2 2 [98:3] Spare Flip-flops (Not Used)
SRLn [2:3] 2 2 [94:3] The Sum-Of-Residue Of The Address In The LAR Register
SRRF 2 10 85 The Family U Source Pointer Read Only Flip-flop

446

Flip-Flop

or Signal

Mnemonic
SRSn [3:4]

SSRn [2:3]

SSZFn [2:2]
STAP
STAR

STBn [2:3]

STCH
STEN

STMC

STMX

STOF
STRA
STRB
STRC
STRD
STRE
STRF
STRG
STRH
STRJ

STRK
5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 19 of 23)

MDP Display Location

Panel

2

[\e]

Page
4

6

10

15
15
15
15
15
15
15
15
15

15

Bits
[11:4]

[47:3]

[107:2]
86.
91

[79:3]

126
27

31

118

125
87
82
78
74
70
85
81
77
73

69

Meaning or Usage
The EVENT Logic Strobe Save Register

The Syllable Save Register (Of The Syllable That Initiated
A Table-EDIT-Mode Operation)

The Family U Source Size Register
The Memory Controller Address Parity Error Signal
The Memory Controller Store Address Residue Signal

The Stack Register (Indicates Where A Read-Data Word Was
Placed In The Stack)

The MLIP Status-Change Signal

The MLIP Strobe-Enable Flip-flop

The Program Controller Is Cycling Signal (A SECL Signal
Occurred, Or A Program-Branch To A Non-Present Program-
Word Is To Be Executed)

The MLIP Status (MINH And BIn Gated To The MX-Bus)
Signal

The Stack Overflow Signal

The Family A Strobe Flip-flop

The Family B Strobe Flip-flop

The Family C Strobe Flip-flop

The Family D Strobe Flip-flop

The Family E Strobe Flip-flop

A Family U (Family F) Strobe Flip-flop
A Family U (Family G) Strobe Flip-flop
A Family U (Family H) Strobe Flip-flop
A Family C (Family J) Strobe Flip-flop

A Family C (Family K) Strobe Flip-flop
447

Flip-Flop
or Signal

Mnemonic

STSn [3:4]
STUF

SUBF

SUBT
TABT
TAnF [3:4]
TBnF [3:4]
TCnF [3:4]
TDnF [3:4]
TEDS
TEEF
TERM
TlénF [3:4]

TFFF
TFOF

TOAn [5:6]
TODn [3:4]
TOMn [5:6]
TOUT
TRIG

TRYF

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 20 of 23)

MDP Display Location

Panel

2

2

[5]

Page
1

5

11

11

O

15

11

10

10

(35

Bits
[111:4]
89

109

21

34
[127:4]
[91:4]
[127:4]
187:4]

2

76

24
[127:4]

75

74

[45:6)

[67:4]

[37:6)
93

92

Meaning or Usage
The MLIP Status Save Register

The Stack Underflow Flip-flop

The Family E Last-Octade (Of Shift-Register Multiplication)

Was A Subtract Logic Signal

The Address Adder Subtract Function Flip-flop
The Memory-Tester Test All Bits Signal
The Family A T-Register

The Family B T-Register

The Family C T-Register

The Family D T-Register

The Table-Save Flip-flop

The Table-EDIT Mode Flip-flop

The MLIP Terminate Flip-flop

The Family E T-Register

The Family U String-Operation True/False Comparison
Flip-flop

The Family U True/False Flip-flop (TFFF) Occupied
Flip-flop

The Transfer Controller Top-Of-Aperture Register

The MLIP Time-Of-Day Register (The 4 Low-Order Bits)
The Transfer Controller Top-Of-Mask Register

The Global Memory Timeout Signal

The Global Memory Trigger (Start) Global Timer Signal

The Memory Controller Address Retry Flip-flop

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 21 of 23)

Flip-Flop MDP Display Location
or Signal
Mnemonic Panel Page Bits Meaning or Usage
TUnF [8:4] 2 10 [127:4] The Family U T-Register
TVn [2:3] 2 3 [42:3] The Memory-Tester Test Vector Register
UPDF 2 10 86 The Family U Update Control Flip-flop
VARF 1 15 84 The VARIANT Mode Flip-flop
VARS 2 4 0 The Variant Save-Bit Flip-flop
VCTS 2 4 3 The Vector Save-Bit Flip-flop
VECF 1 15 72 The VECTOR Mode Flip-flop
VSIK 2 6 40 The Vector Strobe Save/Store Flip-flop
WAIT 2 2 82 The CPU General-Purpose Delay Flip-flop
WBCF 2 6 52 The Program Controller Word Boundary Crossed Flip-flop
WCCFn [3:4] 2 2 33
2 2 41 The Memory Controller Clear/Write Function Control Signals
2 2 49 To Ports 0, 1, 2, And 3
2 2 57
WIMF 2 4 57 The Write IC Memory Flip-flop
WPIR 2 6 43 The Write PIR (On Return From Table Mode) Flip-flop
WPTF 2 6 53 The Write PIR Or TIR Flip-flop
WSTn [3:4] 2 2 [31:4] The Memory Controller Write Control Signals To Memory
Ports 0, 1,2, And 3
XETA 2 8 60 The X-Register Exponent To The A-Side Input Of The
Exponent Adder Gating Signal
XROF 2 10 88 The X-Register Occupied Flip-flop
XR-1 2 8 20 The X Register Low-order Bit (Input Conversion)
XRnn [50:51} 1 2 [114:51] The Top-Of-Stack X Register
1 4 [62:51]
XX00 2 8 24 The X-Register Exponent 1-Bit Extension Signal

5010986 449

Flip-Flop
or Signal
Mnemonic

XZé6n [3:3]

XITA

X2TA

X4TA

YETB

YR-1 [3:3]

YRnn [50:51]

YX00

YZ6n [2:2]

YITB

Y8TB

ZDTA

ZDTB

ZRnn [50:51]

ZZ6n [3:3]

450

B 6900 System Reference Manual
System Display and .Control

Table 44. B 6900 Display Signals (Sheet 22 of 23)

MDP Display Location

Panel Page Bits
2 7 [54:3]
2 8 48
2 8 44
2 8 40
2 8 62
2 8 123:3]
2 [50:51]
1 5 [62:51]
2 8 28
2 7 51
2 7 55
2 8 46
2 8 42
2 8 56
2 8 58
1 3 [114:51]
2 7 [50:3]

Meaning or Usage

The X-Register Gating Signals To The Z6-Bus
XZ61 Gates [50:11]
XZ62 Gates {39:20]
XZ63 Gates [19:20]

The X-Register Mantissa To A-Side Input Of Mantissa Adder
Gating Signal

2-Times The X-Register Mantissa To A-Side Input Of Mantissa
Adder Gating Signal

4-Times The X-Register Mantissa To A-Side Input Of Mantissa
Adder Gating Signal

The Y-Register Exponent Gated To The B-Side Input Of The
Exponent Adder Gating Signal

The Y-Register Mantissa 1-Octade Exiension Register

The Top-Of-Stack Y Register

The Y Exponent 1-Bit Extension Signal

The Y-Register Mantissa Gated To The Z6-Bus Signals
YZ61 Gates Bits [50:11]
YZ62 Gates Bits [19:20]

The Y-Register Mantissa To The B-Side Input Of The Mantissa
Adder Gating Signal

8-Times The Y-Register Mantissa To The B-Side Input Of The
Mantissa Adder Gating Signal

Literal 1310 Gated To The A-Side Input Of The Mantissa
Adder Signal

Literal 1310 Gated To The B-Side Input Of The Mantissa
Adder Signal

The Top-Of-Stack Z Register

The Z-Register Mantissa Gated To The Z6-Bus Gating Signals
Z7Z61 Gates Bits [50:11]
Z762 Gates Bits [39:20]
Z763 Gates Bits [19:20]

Flip-Flop
or Signal

Mnemonic

Z618

Z619

Z6T8

Z6T9

Z8nn [12:4]

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 23 of 23)

MDP Display Location

Panel

2

Page Bits Meaning or Usage
9 18 A 20-Bit Index Field On The Z6-Bus Gated To The Z8-Bus

(Index Field From The Top-Of-Stack Gated To Address Adder)

9 20 A 20-Bit Index Field On The Z6-Bus Gated To The Z9-Bus
(Index Field From The Top-Of-Stack Gated To Address Adder)

9 19 A 20-Bit Base Address On The Z6-Bus Gated To The Z8-Bus
(A 20-Bit Base Address From A Top-Of-Stack Register Gated
To The Address Adder)

9 17 A 20-Bit Base Address On The Z6-Bus Gated To The Z9-Bus
(A 20-Bit Base Address From A Top-Of-Stack Register Gated
To The Address Adder)

9 [51:4] 1-Bit Of The INDEX Portion Of An Address Couple
Z809 Is Index Bit-9
Z810 Is Index Bit-10
Z811 Is Index Bit-11
Z812 Is Index Bit-12

B 6900 SYSTEM CONTROL PANEL

Figures 4-1 and 44 show the location of the B 6900 System Control Panel. This control panel (refer to Figure 4-5)
contains switches, indicators, and controls used for the entire B 6900 system. The following paragraphs define the
function of each control or indicator on the panel, and briefly describe the system actions performed as a result of

operating a control.

HALT

CHLT

5010986

This pushbutton switch is used to cause the CPU data processor to halt, if it is
executing machine language operator codes. The data processor completes the
currently executing operator code and stops before the next operator code in
sequence is executed. The direct result of depressing and releasing this pushbutton
is to SET the HALT flip-flop. When the HALT f{lip-flop is SET, the SECL signai
ending the current operator SETs the HALTED f{lip-flop, which prevents the Program
Controller from setting the Strobe flip-flop for the next operator in sequence.
Nothing happens if the data processor is already halted and the HALT pushbutton

is depressed and released.

Conditional Halt (CHLT) is selected when the CHLT toggle-switch is in the CHLT
(UP) position, and is disabled when the CHLT toggle-switch is in the DOWN position.

CHLT functions in 2 manner similar to the HALT pushbutton. However, it stops the

system only when a HALT (DF) operator code is executed. If the CHLT switch is in
the CHLT (UP) position and a DF operator code executes, the HALT flip-flop SETs

4-51

B 6900 System Reference Manual
System Display and Control

SYSTEM CONTROL POWER
I WaLT CHLT SECL. LI |
© won[o | Ok
@ RUNG| O
HLTD]O
@ FRZN|O o ©o~
‘ L=
LOAD
GCLR
MAINT PROC CONTROL
INIT
OAO OBO OCO ODO OEO 5 g g % E
00/I00/00iI00|00 . [7]
oolooloo|ooloo| "
l0oo|oo|0o0|00]|00]| .9, (] (2 [&)
SENSE SWITCHES @ E
@0 ®® oocd I, -
I.JOP DIAG SVEP CYCLE LOOP DIA STEP ERA

MAINT CONTROL CLOCK

MMLD ALT | INITIATE]
MPR
mt. MMLD 7=\ co _ DISPLAY EVENT STOP

F—~N 72\ /'\}1{ /m\ PuLse
gow@ @ O @ © O

CHECK NORMA|L RUN

MVasis

Figure 44. Maintenance Control Panels in an IODC Cabinet
4.52

5010986

B 6900 System Reference Manual
System Display and Control

()
O
-
D

©)

ADJO READ

© © &

SYSTEM CONTROL POWER
! CHLT SECL 1PN
%) rwoN[o
HALT RUNG|O OFF

| HLTD|O
FRZNIO

Lov |

MNT

()

NML

DISPLAY CONTROL

MEMLD

c000

PNL

LOAD ADJ1 WRITE
LOAD ID
| j | ,PNL
POINTER
=]15 | ~]DYON
o~ 14 ~ SD
z—3112 | z—2{10
gl el wlos |PAGE
©110 ©108
~19 ~107
o8)
=17 | =106 |
o~l 6 (] [11]
.l [olos BYTE
E «<| 4 w <«j03
ol __wl3 s w
33 o1 leiT
o | =loo

FF

POINTER

SA11
SA10
SA09

SAQS

SAQ7
SA06
SA05
SA04

SA03
SA02
SA01
SA00

0000

0000

0000

LTST

RSTR

RCRD

MV4434

Figure 4-5. System Control Panel

453

4-54

SECL

GCLR

LOAD and MEMLD

B 6900 System Reference Manual
System Display and Control

and the system stops as though the HALT pushbutton had been depressed and
released. If any other CPU operator is executed with the CHLT switch in position,
the HALT flip-flop does not SET and the system does not stop. The CHLT logic is
independent of any other system halt logic, and functions regardless of the position
of the HALT pushbutton or any other system halt control.

The SECL toggle-switch is a HALT function selector, the same as the CHLT toggle-
switch (see CHLT above). When the switch is in the SECL (UP) position, the SECL
control circuit is enabled; when the switch is in the DOWN position, the SECL circuit
is disabled.

If the SECL circuit is enabled the data processor halts at the end of each machine
language operator sequence, when the SECL signal is TRUE. If the SECL circuit is
disabled the data processor does not halt because the SECL signal went TRUE; how-
ever, it may halt at SECL signal time because another halt logic circuit is enabled. The
SECL halt logic circuit is independent of all other halt logic circuits.

The General Clear pushbutton is used to cause the logic circuits of the B 6900 system
to be initialized. Generally, clearing a logic circuit causes it to be RESET (go to the
ZERQ or FALSE condition). However, some logic circuits such as the HDPH/ logic
signal of the MLIP are initialized or cleared to the SET (or TRUE) condition.

The LOAD pushbutton switch is used in conjunction with the MEMLD status display
selector to cause a LOAD sequence of operations by the Maintenance Processor. A
LOAD sequence is a firmware program routine from a flexible diskette that is present
in the Maintenance Processor RAM memory. When the LOAD pushbutton is depressed
and released, a system main memory LOAD operation or a Maintenance Processor
RAM memory sequence is performed, depending on the state of the MEMLD status
display. If MEMLD is SET, a system main memory LOAD sequence is performed. If
MEMLD is RESET, a Maintenance Processor RAM memory LOAD sequence is

performed.

If MEMLD is SET (status indicator illuminated) and the LOAD pushbutton is
depressed, the B 6900 system is general cleared as when the GCLR pushbutton (see
GCLR above) is depressed and released. When the LOAD pushbutton is released, the
Maintenance Processor executes the LOAD routine sequence present in its RAM
memory. The LOAD sequence causes a program file to be loaded into system main
memory from a predefined system peripheral device. After a program file is loaded
into memory, the data processor can fetch and execute code from the program file.

The program code loaded into memory may be the system software Master Control
Program (MCP) or another system executive program. The LOAD pushbutton sequence
is thus capable of initializing various B 6900 executive programs into operation. A
choice between loading the MCP or some other executive program is made by proper
selection of the predefined system peripheral device from which the program file is
loaded. The LOAD ID switches, defined in a subsequent paragraph of this section,
are used to select the peripheral device.

If the B 6900 system is operating and a LOAD sequence is to be performed, the
system must be halted before the LOAD pushbutton is depressed and released. The
HALT pushbutton (see HALT above) is used to halt the system in preparation for a
LOAD operation.

ADJO and ADJ1

READ

WRITE

PNL

5010986

B 6900 System Reference Manual
System Display and Control

If MEMLD is RESET (status indicator extinguished) and the LOAD pushbutton is
depressed and released, a data file from a known peripheral device is loaded into the
Maintenance Processor RAM memory. At the conclusion of the LOAD operation, the
logic of the Maintenance Processor branches to the beginning address in RAM memory
and halts. A subsequent initialization of the Maintenance Processor control logic
causes the program in the RAM memory to be executed.

The ADJO and ADJ1 pushbuttons are used to cause stack adjustments by the CPU
Stack Controller logic. The ADJO pushbutton, when depressed and released, causes
valid data words present in the Top-of-Stack A(X) and B(Y) registers to be pushed
down into the memory portion of the stack. The ADJ1 pushbutton, when depressed
and released, causes the stack to be adjusted until the top word in the stack is present
in the Top-of-Stack A(X) register.

The READ pushbutton, when depressed and released, causes the Memory Controller
logic of the CPU to perform a READ memory cycle. If the MMIC switch is in the
MM (UP) position, the READ operation is performed in system main-memory. If the
MMIC switch is in the IC (DOWN) position, the READ operation is performed on a
CPU IC Memory Address register.

The WRITE pushbutton, when depressed and released, causes the Memory Controller
logic of the CPU to perform a WRITE memory cycle. If the MMIC switch is in the
MM (UP) position, the WRITE operation is performed to system mainmemory. If the
MMIC switch is in the IC (DOWN) position, the WRITE operation is performed on a
CPU IC Memory Address register.

The POWER ON and. POWER OFF pushbuttons initiate power sequences in the

B 6900 Central Power Supply cabinet. If the B 6900 system is not powered up
(source input-power is present at the input to the System Power Supply cabinet) and
the POWER ON pushbutton is depressed and released, then the Central Power Supply
cabinet logic performs a power-up sequence. .f the B 6900 system is already powered
up when the POWER ON pushbutton is depressed and released, nothing happens.

If a B 6900 system is powered up and the POWER OFF pushbutton is depressed and
released, then the Central Power Supply cabinet logic performs a power-off sequence.
If the B 6900 system is already powered down when the POWER OFF pushbutton is
depressed and released, nothing happens.

The Panel toggle switch (PNL) selects the B 6900 units to which the System Control
Panel interfaces. If the PNL switch is in the Normal (NML, DOWN) position, the
System Comntrol Pancl interfaces to the CPU cabinet and also to the Maintenance
Processor module. If the PNL switch is in the Maintenance (MNT, UP) position, the
System Control Panel only interfaces to the Maintenance Processor.

The Maintenance Processor is interfaced to the CPU cabinet by a Host Control Port
interface cable. System Control Panel switches use the Host Control Port interface to
initiate and control functions in the CPU cabinet. When the PNL switch is in the
MNT (UP) position, System Control Panel signals are prevented from using the Host

- Control Port interface cable; consequently, CPU function control switches on the

System Control Panel are inoperative. Maintenance Processor control functions of
the System Control Panel are operational when the PNL switch is in either position.
Central Power Control functions are also functional when the PNL switch is in either
position.

4-55

CONTROL STATUS

PWON STATUS

' RUNG STATUS
HLTD STATUS

FRZN STATUS

MEMLD STATUS

LTST

RCRD and RSTR

DISPLAY CONTROL

4-56

B 6900 System Reference Manual
System Display and Control

Control Status display devices indicate the status of control logic signals, as follows.

The PWON indicator is illuminated when the cabinets of the B 6900 are receiving
source power from the CPS cabinet. The PWON indicator is extinguished when the
CPS is not supplying source power to the B 6900 cabinets.

The RUNG indicator is illuminated when the Running-timer circuit is timing. If the
Running-timer times-out, the RUNG indicator extinguishes.

The HLTD indicator is illuminated when the CPU Halted flip-flop is SET. If the
Haited flip-flop is RESET, the HLTD indicator is extinguished.

The Frozen (FRZN) indicator is illuminated when the CPU clock is stopped, an
EVENT Mode or Maintenance Mode condition. If the CPU clock is running the FRZN
indicator is extinguished.

The MEMLD status indicator is used in conjunction with the LOAD control push-
button (see LOAD above). MEMLD is SET by depressing and releasing the push-
button corresponding to the MEMLD indicator LED. The LED illuminates when
MEMLD is SET. If the LED is already illuminated and the pushbutton is depressed
and released, nothing happens.

The MEMLD indicator is RESET by simultaneously depressing the pushbutton corre-
sponding to the LED indicator and the bottom pushbutton on the LED indicator
circuit device. When MEMLD is RESET the LED extinguishes. If MEMLD is already
RESET and both pushbuttons are depressed and released, nothing happens.

The Lamp Test (LTST) pushbutton is used to test for faulty LED indicator circuits

in the MDP display registers. When the LTST pushbutton is depressed, all LEDs in the
MDP display registers are illuminated. When the LTST pushbutton is released, the
MDP display register LEDs return to indicating system status conditions.

The RCRD pushbutton is used to cause the current displayed status of the B 6900
system to be recorded in the MDP display RAM memory. Recording the status in the
RAM occurs when the RCRD pushbutton is depressed and released.

Depressing and releasing the RSTR pushbutton causes the B 6900 system status stored
1in the MDP display RAM to be restored as the current state of all displayed logic
circuits.

The RCRD/RSTR pushbuttons are typically utilized to perform a maintenance opera-
tion on the B 6900 system. Before the maintenance operation is performed, the
normal system operational state is recorded by means of the RCRD pushbutton.
Before resuming normal system operations, the state of the system is restored by
means of the RSTR pushbutton.

The Panel Pointer (PNL POINTER) logic contains 2 rocker-switch control devices.
These rocker-switches are used to cause a particular flip-flop in the CPU cabinet to
SET, similar to the way the MDP dispiay register SET logic works. However, the FNL
POINTER logic ¢an only SET (not RESET) one CPU flip-flop at a time. In addition,
the PNL POINTER Logic can be used to translate a hex CPU flip-flop address value to
its corresponding MFIU address line value. When the PNL POINTER switches are
used, the address value of the switches is translated to MFIO address line signals,

which are displayed by the SAnn LED display devices.

LOAD ID

B 6900 System Reference Manual
System Display and Control

Two ROCKER switches are used as control logic signals for the DISPLAY CONTROL
logic. Rocker switch DYON must be ON to enable the MDP display panel logic.
When DYON rocker switch is OFF the MDP display panel logic is disabled. The
WRSD rocker switch connects the DISPLAY CONTROL logic to the Host Control
Port interface logic. When WRSD is in the OFF position, the display control logic is
disconnected from the CPU HCP interface logic; and the MDP display logic cannot
SET or RESET CPU f{lip-flops.

If the WRSD rocker switch is OFF, a CPU flip-flop address can be translated from the
PAGE, BYTE, and BIT notation used by the MDP logic to the equivalent CPU cabinet
backplane address value. This equivalent address value is displayed in the SAnn LED
circuits. The DYON switch is OFF for translation operations.

The LOAD ID rocker switches are used to identify a peripheral unit through which a
LOAD function can be performed (see LOAD, above). There are 2 rocker switch
devices, each of which contains 8 switches. The switches are numbered from 0
through 15, and the value of a switch number denotes the binary significance of the
switch in determining the LOAD peripheral unit identity number. The switches have
significance as follows:

Switch Number Binary Weight
15 32768
14 16384
: 2
ROCKER 1] 2048
SWITCH 10 1024
09 512
08 256
7 128
6 64
BOTTOM : 2
ROCKER 3 3
SWITCH 5 4
1 2
0 1

The peripheral device identified by the LOAD ID rocker switches must be s proper
1/O device type (magnetic tape, head-per-track disk, disk pack, or card reader) con-
trolled by a DLP device present in IODC zero. The IODC base module must be
properly configured to include the I/O device number represented by the LOAD ID
rocker switches. _ -

B 6900 MAINTENANCE CONTROL PANEL

Figures 4-1 and 44 show the location of the Maintenance Control Panel. This panel (Refer to Figure 4-6) contains
switches and indicators used for maintenance operations on the B 6900 system. The following paragraphs define the
function of each switch and indicator on the panel, and briefly describe the system actions performed as a result of

operating a control.

5010986

457

8S¥

MAINT CONTROL

CPU
LOCAL SWITCH

@ TE)ST

REMOTE CHECK

@-@ @ O @ @

NORMAL RUN

DISPLAY ' f MAINTENANCE CLOCK
LAMP '] I INlTlATE~|
TEST CMPR DlgPliLY Em\%ﬁe sTOP EVENT STOP PULSE

® O

MVA4435

Figure 4-6. System Maintenance Control Panel

fonuo) pue Aedsyq wlsAg
[ENUBY 30ULIAJoY WaIsAS 0069 g

CPU LOCAL/REMOTE

SWITCH TEST

CHECK

LAMP TEST

CMPR

DISPLAY

PROC ENABLE

5010986

B 6900 System Reference Manual
System Display and Control

The CPU LOCAL/REMOTE switch is used to select on-line system operation or
local-unit system operation. In the REMOTE (DOWN) switch position, on-line opera-
tion is selected. In the LOCAL (UP) position, local-unit operation is selected.

During local-unit operations the CPU Memory Controller cannot perform Global
memory accesses. Peripheral subsystems such as Reader/Sorters and/or Data Communi-
cations that use Global memory resources cannot function when the switch is in the
LOCAL (UP) position. When the switch is in the REMOTE .(DOWN) position Global
memory accesses are performed; therefore, subsystems that utilize Global memory
resources are fully functional.

The SWITCH TEST indicator illuminates when any pushbutton switch for an MDP
display register is depressed. The indicator is extinguished when no pushbutton switch
for an MDP display register is depressed. This indicator detects shorted pushbutton
switch circuits that remain closed when the pushbutton is released.

The CHECK indicator illuminates when a fault is present in the CPU during a mainte-
nance operation. The CHECK indicator extinguishes when a system genera-clear
operation is performed.

The CHECK indicator is also used as a Maintenance Processor flag that illuminates
when a Confidence Test detects a fault condition. The system may perform in a
normal manner after the CHECK indicator flag is illuminated. However, the fact that
a CHECK condition occurred is significant for subsequent maintenance operations.
Therefore, the indicator remains illuminated until a system general-clear operation is
performed.

The LAMP TEST pushbutton, when depressed, causes all lamps and LEDs in the MDP.
to illuminate. This pushbutton is used as a test, for burned-out lamps or LEDs. The
pushbutton is spring-loaded and returns to the OFF position when released.

This toggle switch has three positions. When the switch is in Center/DOWN position,
Normal display mode is selected. When the switch is in the CMPR (UP) position,
Comparator display mode is selected.

Comparator mode operations, reserved for factory-use only, are not used for normal
system operations. The CMPR switch is placed in the OFF (DOWN) position and
remains in that position.

This toggle switch has three positions. In the NORMAL (DOWN) position the MDP
display logic i$ enabled and the status of the CPU is displayed in the MDP display
registers. In the Alternate (ALT, UP) position, the status of another CPU is displayed
in the MDP display registers. The ALT position is normally used for factory tests with
a comparator to display the alternate CPU status, and is not used otherwise. The OFF
(MIDDLE) position disables the MDP display logic, and no status is displayed in the
display registers.

The Processor Enable (PROC ENABLE) toggle-switch is used to select maintenance
mode (in which the MP controls the HDP interface bus to the €PU) or to select normal
mode (in which the CPU controls the HDP interface bus to the MDP). When the
switch is in the PROC ENABLE (UP) position the MP logic controls the HDP interface
bus, and maintenance mode is selected. When the switch is in the OFF (DOWN) posi-
tion the CPU controls the HDP interface bus, and normal mode operations are selected.

4-59

STOP

EVENT

CLOCK STOP/RUN

INITIATE PULSE

B 6900 System Reference Manual
System Display and Control

H

The STOP pushbutton, when depressed, unconditionally stops the CPU in EVENT
mode (refer to EVENT, below). The pushbutton is spring-loaded to the OFF position.

The EVENT toggle-switch selects EVENT mode operations or normal mode operations.
When the switch is in the EVENT (UP) position the CPU EVENT logic is enabled.
When the switch is in the OFF (DOWN) position normal system operations are enabled,
and EVENT logic is disabled.

The Clock STOP/RUN toggle switch selects whether clock pulses are continuous or
stopped. When the switch is in the RUN (DOWN) position, CPU clock-pulses are free-
running; but are subject to stoppage by maintenance mode or EVENT mode FROZEN
logic. When the switch is in the STOP (UP) position clock-pulses are prevented from
being distributed to the CPU cabinet logic circuits.

The INITIATE PULSE pushbutton is used to cause a single clock pulse to be emitted
when the STOP/RUN switch is in the STOP (UP) position. Each time the pushbutton
is depressed and released, one clock pulse is emitted to the CPU logic circuits. The
pushbutton is spring-loaded to the OFF position.

The undefined switch located between the STOP/RUN switch and the INITIATE
PULSE pushbutton is unused in a B 6900 system.

B 6900 MAINTENANCE PROCESSOR CONTROL PANEL

Figures 4-1 and 44 show the iocation of the Maintenance Processor Control Panel. This panel {refer to Figure 4-7)
contains switches and indicators used to control the operation of the B 6900 Maintenance Processor. The following para-
graphs define the function of each control or indicator and briefly describes the system actions performed as a result of

operating a control.

BANK LAMPS

INIT

MTR

The BANK LAMPS consist of 5 sets of indicators labeled A, B, C, D, and E. Each set
contains 8 indicator lamps, numbered O through 7. The BANK LAMPS are connected
programatically to logic circuits of the Maintenance Processor, and are used to display
the status or value of the circuit to which they are presently connected.

The instantaneous indication of the BANK LAMPS depends on the current operating
sequence and status of the Maintenance Processor, and is therefore too varied to define
here. For precise technical data on various BANK LAMP indications consult the

B 6900 Maintenance Processor FETM, Form No. 5011307.

The Initialize (INIT) pushbutton is used to clear and initialize the Maintenance
Processor logic circuits. When the pushbutton is depressed and released, the Mainte-
nance Processor begins to execute MP microcode instructions present in its ROM
memory. The MP ROM memory contains a set of primitive MP instructions used to
initiate all subsequent MP operations. If a fault condition occurs during the initializa-
tion processes the MP logic stops and displays its status in the BANK LAMPS. The
interpretation of the BANK LAMP indications during the initialization is defined in the
B 6900 Maintenance Processor FETM, Form No. 5011307.

The Maintenance Test Routine indicator lamp is used to indicate that the MP is per-
forming a self-diagnostic test. The MTR signal level is used to select 1-of-2 areas of
MP PROM memory. The other area of PROM memory contains the MP initialization
microcode.

986010$

MAINT PROC CONTROL

A B C D E Al
° 9/0 9/o 9lo 00 ¢ JEEE
SN N N OE
0 9|2 Q|2 9|2 09 Of wn .
o olo oloele oo "8 s |als
l-—-——SE CH -
@

NSE SWITCHES
@@ @ ocoo00 c D“s“F
S3 S2 St SO 7

3 2 1 LOOP DIA STEP ERR

[o1u0) pue Aejdsyg woisAg
[ERUB] 90ULIaJAY WIAISAS 0069 d

0
LOOP DIAG STEP CYCLE SHIFT

MV4436

Figuré 4-7. Maintenance Processor Control Panel

19%

B 6900 System Reference Manual
System Display and Control

PWR ON The PWR ON indicator lamp is used to indicate that source input power is applied to
the input of the Maintenance Processor.

SHIFT .The SHIFT pushbutton is used to expand the number of key positions for the
keyboard, from 16 to 32 positions. If the SHIFT key is not depressed, the value of
the keyboard selects the corresponding position from among the first set of 16 posi-
tions. If the SHIFT key is depressed, the value of the keyboard selects the correspond-
ing position from among the second set of 16 positions.

KEYS 0 THROUGH F The 16 key (0, 1,2,3,4,5,6,7,8,9, A, B,C, D, E, and F) keyboard is used to
enter data into the MP memory.

LOOP, DIAG, STEP, These 4 toggle switches are used to exercise control over the major functional processes
and CYCLE SENSE of the MP. The logic flow of the MP senses the positioning of these switches and
SWITCHES alters MP processes accordingly.

The meaning and use of these switches is defined in the B 6900 Maintenance Processor
FETM, Form No. 5011307.

S0, S1, S2, and S3 These 4 indicators that occur during the execution of test routine programs indicate
errors (ERR), and other MP operating conditions (LOOP, DIA, and STEP).

B 6900 SOFT DISPLAY

An Operator Display Terminal (ODT) device may be used for system status display. A firmware executive program (Soft
Display) is activated during B 6900 system initialization, and this program causes system status to be formatted and dis-
played on the ODT peripheral device screen.

The Soft Display firmware executive program may be utilized in B 6900 systems that have an MDP cabinet installed.
Such systems have 2 methods of displaying system status. Systems that do not have an MDP cabinet have only the Soft
Display method for system status display.

B 6900 Soft Display Program Control

The Soft Display program is selected for execution by entering and transmitting a “Y” input message on the ODT screen,
when the initialization program displays the “AWAITING A/T” output message. This output message indicates that the
firmware Executive program is at the Command level, and that it is ready to receive an input Command message. The
“Y” input message is a Command input which specifies that the Soft Display program is to be executed. In response to
the “Y” input message, a “Soft Display” output message flashes, and a list of current Soft Display Command names are
displayed on the ODT screen.

The Soft Display program is a control mechanism through which various system display and control functions are
initiated. The following paragraphs describe and define the input messages used to cause a Soft Display Command to be
executed.

ODT SCREEN FORMAT

A B 6900 system Operator Display Terminal (ODT) screen can display up to 25 lines of data, and each line contains

80 alphanumeric character columns. The character display lines of the ODT screen are numbered from top-to-bottom,
with line-1 the upper-most line on the screen, and line-25 the bottom-most line. Line-1 through line-24 are usable lines
on which data can be displayed. Line-25 is reserved for ODT subsystem status report and command displays, and is not
used for normal data display. The left-most character position on a line of the screen is column-i, and the right-most
character position is column 80.

4-62

B 6900 System Reference Manual
System Display and Control

The Soft Dispiay program controis the ODT screen format during a Soft Display program function. Line-i and line-2
contain Soft Display program commands. Line-3 is reserved for Soft Display program error displays. Line<4 and line-5
are used as a buffer for additional Soft Display commands. Additional commands in the command buffer execute only
when called by specific commands present on line-1 or line-2.

Soft Display commands on lines 1, 2, 4, and 5 of the ODT screen are used to specify B 6900 system control functions
to be performed by the Soft Display program, and also to specify various B 6900 system status tc be displayed on the
ODT screen.

The Soft Display control program takes advantage of the ODT screen programmable intensity feature, when displaying

B 6900 system status. This screen feature allows data to be displayed at 2 different levels of intensification, or brilliance.
Display status data is brilliantly intensified if it is TRUE or HIGH (the binary-1 condition), and is moderatley intensified
if it is FALSE or LOW (the binary-0 condition).

ODT SCREEN COMMAND STRUCTURE AND OPERATION

The Soft Display program displays a list of valid Soft Display command names on the ODT screen in response to a “Y”
input at the executive level (see B 6900 SOFT DISPLAY above). The user of the Soft Display program must construct a
string of syntactically correct Soft Display commands on line-1 and line-2 (plus optional commands on line<4 and line-5).

After a string of Commands is constructed, depressing and releasing the <XMIT > key of the ODT keyboard causes the
Soft Display program to execute the commands present in the Command string.

The Soft Display program executes commands present on line-1 and line-2 in the order of occurrence. The order of
occurrence is from the left-most command to the right-most command on line-1, followed by the left-most command
through the right-most command on line-2. Soft Display comniands on line4 and line-5 are executed in the same order
na lina 1l and 1ina) kit ava nat avansntad nnlace enanifia anmmands nracant an lina l andiar 1ina D dirant thaot anmmandas
A0 LIvTL ailv LIV L, VUL alv 11uUL eAeUUI—cU ullleﬂ-} oyc\duv vulinnaliue ylcbclll Uil LUICTE alivj Ul Lt Ulle\vl Lildl SULLIIGIIUOS

in the command buffer be executed.

The Soft Display program checks each command for proper syntax before the command is executed. If no syntax error
is found the command is executed, and this sequence is repeated for the next command in the command string. If a
syntax error is found, error data is displayed on line-3 of the ODT screen and the Soft Display program immediately
terminates without executing the command that contained the syntax error or subsequent commands in the command
string.

The Soft Display program continues executing commands until a syntax error occurs, until all commands in the command
string have been executed, or until an <END> command is executed. When any (one) of these events occurs the Soft
Display program completes by returning control of the Maintenance Processor to the executive level of operation. A
subsequent operation of the Soft Display program must be initiated by means of another “Y” input message on the ODT
screen.

The B 6900 Maintenance Processor saves a copy of all Soft Display command strings, so that they can easily be repeated
as often as the program user desires. The syntax of the Soft Display program commands provides a method for recovering
the former contents of a command string for subsequent Soft Display program operations (see <SAVE> and <RETURN>
syntax diagrams).

SYNTAX DIAGRAM RULES

The syntax for constructing valid Soft Display commands are presented in the following “Railroad diagrams.” These
diagrams yield valid Soft Display command formats when they are followed along the forward direction indicated by
arrowhead symbols. The optional characteristics of a valid command statement are given in semantic discussions of

the diagrams.

5010986 463

B 6900 System Reference Manual
System Display and Control

Soft Display program commands are entered on line-1 or line-2 of the ODT screen in the order that they are to be
executed. A blank space separates consecutive commands on a line, and commands are not split across line-boundaries.

SOFT DISPLAY COMMAND CATEGORIES

Table 4-5 lists the 4 general categories of Soft Display commands that are used. The following paragraphs describe these

4 categories.

SYSTEM System commands provide a method for activating system control logic circuits, in
the same way that MAINT/EVENT commands invoke the maintenance or event
control logic (see MAINT/EVENT command).

MAINT/EVENT Maintenance logic or EVENT logic commands cause circuit control devices to SET or
RESET. By setting or resetting a circuit control device, the corresponding maintenance
circuit or EVENT logic circuit is activated or deactivated. These commands allow the
Soft Display program to invoke programmatic maintenance or event logic activation
as if manual control switches had been positioned by the system user.

FAMILIES Family commands are used to activate CPU function status display signals and levels.
A Soft Display Family command mnemonic implies the collection and formatting of
status display signals for a particular CPU function. Activation of 2 Family CPU status
display causes the collected and formatted CPU status to be displayed on the ODT
screen.

FUNCTIONS unction commands provide programmatic methods to activate CPU or MDP circuits
that handle data. The syntax for a Function command provides a mechanism for
supplying required input and/or handling any resulting output data.

Table 4-5. B 6900 Soft Display Command List
System MAINT/EVENT Families
Commands Commands Commands Functions Commands
ARCS AAJF A MEMCON ADD FAMILY REVERS
HALT ALTF ARICON MEMPRT BRIGHT HELP SAVE
PULSE CHLT B MEMTST CAPTUR INFO SMEAR
STEP CPTF C MMOD CLRIC INSERT STATUS
STOP CSTP CPU PROGCL CLRMM NZDATA USRFAM
EVNT D U DEL PROGRM WAIT
LOCL E UFAM DIFF RDHDP WRIC
NOSTEP ERRORS XREFCL DO-UNTIL RDIC WRMM
OCTAL EVENT DUMP RDMM **
SAFE GLOBAL END RESTOR -—
SECL INTCON EXEC RETURN ++
I/0

B 6900 System Reference Manual
System Display and Control

SOFT DISPLAY PROGRAM GENERAL COMMANDS

The Soft Display program command structure includes General Commands which do not conform to any one of the
previously defined command categories. These general commands are used basically to change the state of particular
system flip-flops or the contents of registers, without disturbing the state of other circuit devices. These commands add
a dimension of choice and selectivity .to the power of the Soft Display program. The General Commands of the Soft
Display program are defined in the following paragraphs.

<SET> and <RESET> COMMANDS

The Soft Display program logic executes SET or RESET instructions present in a command string. A SET/RESET instruc-
tion causes the CPU flip-flops identified by the SET/RESET instruction to go to the SET or RESET state.

SET MFI0 <OCTADD > 1'
RESET - < Flip-flop Mnemonic >
<
< Other Statements >
MV4517
SEMANTICS

The SET option of this Command causes the flip-flop devices named to SET. The RESET option of this Command causes
the flip-flop devices named to RESET. '

The “MFIO <OCTADD>" option allows CPU flip-flops that are not defined as a Soft Display register flip-flop to be
SET/RESET. Octal addresses for CPU flip-flops are obtained from the MDP Display Fauit Lists. MDP Display Fault Lists
are part of Test and Field documentation delivered from the factory with the hardware.

The SET/RESET <Flip-flop Mnemonic> option allows multiple flip-flops to be SET or RESET by a single Command.
This option is used to control MAINT/EVENT and System Command flip-flops.

<REGISTER> COMMANDS

The Soft Display program contains a list of register names that are frequently used for displaying system status or for
control functions. A REGISTER Command is used to replace the contents of a register.

—— <register name > <hex data >

L

—— <two or more hex data Chrs > ——{
<hex TAG > <hex data > -

MV4518

5010986 4-65

B 6900 System Reference Manual
System Display and Control

SEMANTICS

A <register name> must be register listed in the Soft Display program register name list. If the contents of a register not
present in the Soft Display name list is to be replaced, then the SET/RESET Command must be used (see <SET> Or
<RESET> above). Table 4-6 is a list of the Command register names defined in the Soft Display program.

The <register name> <hex TAG> <hex data> Command option is used to replace the contents of Top-of-Stack registers
and their TAG fields. These registers each contain 1 hex TAG character and 12 hex data characters. If <hex data> con-
tains more than 12 hex characters, the right-most hex characters (in excess of 12} are truncated and lost. If <hex data>
contains fewer than 12 hex characters, the hex data is placed in the register, right-justified; and register bits not filled
from <hex data> are SET to leading zeroes. The register TAG is filled from the <hex TAG> character. One blank
character space separates <register name>, <hex TAG>, and <hex data> in this Command format.

The <register name> <hex data> Command option is used to replace the contents of all Soft Display program defined
registers other than Top-of-Stack registers. If the significant binary bits in <hex data> exceeds the binary bit capacity of
the <register name > register, an error condition is detected and reported on line-3 of the ODT screen. When an error
condition is detected the Soft Display program immediately terminates. If the number of significant binary bits present
in <hex data> is less than the binary bit capacity of <register name>, the register is filled by binary bits from <hex
data>, right justified. Binary bits of the register not filled from <hex data> are RESET to leading zeroes.

If the <register name> <2 or more hex data Chrs> Command option is used, the TAG-field of <register name > is zeroed.
This option allows a TAG-field for a Top-of-Stack register to be RESET to zero without altering the <hex data> contents
of the register.

Soft Display
Register Name

A
ACL
ACM

ADSV

CA
CBR
CBW

Cl

CKBA
CKBB
cp
CPA
CSC

CSR

5010986

B 6900 System Reference Manual
System Display and Control

Tabie 4-6. Soft Dispiay Regisier Names (Sheet 1 of 6)

Circuit

Displayed
AR[50:51]
ACL[7:8]
ACM[5:2]
ADD[19:20]
AX[02:3]

AZ[63:3]

BR[50:51]
BI[2:3]
BRS[7:8]
BX[2:3]
BYR[19:20]
CR[50:51]
CAOF[2:3]
CB[6:6]R
CB[6:6]W

CIOF[3:4]

CKB[6:6] A
CKB[6:6]B
CP[23:24]
CPA[8:4]
CSC[4:4]

CSR[2:3]

Display Meaning or Usﬁgg

Displays the HEX value of the Top-of-Stack A register

Displays the least significant 8-Bits of a NAMC operator address value
Displays the most significant 2-Bits of a NAMC operator address value
Displays the value of the Address-Save register

Displays the value of the A mantissa extension register

Displays the value of the AZ6n signals, which are used to transfer a specific
field from a transmitter register into a receiver register, by means of the
Stack Controller Z6 bus

Displays the HEX value of the Top-of-Stack B register

Displays the value of the MLIP byte index register

Displays the contents of the CPU IC memory base read select register signals
Displays the contents of th
Displays the memory-tester logic BYPASS register contents

Displays the contents of the Top-of-Stack C register

Displays the Memory Controller Port priority occupying status signals
Displays the Memory Controller READ-data check-bit code value
Displays the Memory Controller WRITE data check-bit code value

Displays the Memory Controller Port priority occupying signals for channel B
memory requestor

Displays the Memory Controller data check-bit code value for requestor A
Displays the Memory Controller data check-bit code value for requestor B
Displays the value of the high-order 24 bits in the processor timer register

Displays the value of the CPU clock counter circuit

" Displays the sequence count value for the Memory Controller requestor logic

Displays the value of the Program Controller count syllable register

4-67

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 2 of 6)

Soft Display Circuit

Register Name Displayed
DI DI[8:4]
DIS DIS[5:6]
DRF DRF[4:3]
DST DST[3:4]
DSZ DSZ[2:2]
ECT ECT[7:8]
EJC EJC[11:12]
EOP EOP[3:4]
EREN EREN[7:8]
EST EST(7:4]
FST FST[3:4]
GBC GBC[2:3]
GBS GBS[2:3]
GPS GSP[2:3]
GS GS{2:3]F
GT GT[2:3]F
HAR HAR([3:4]
HR HR[15:16]
HRTA HRTA[2:2]
HRTB HRTB[2:2]
ICR ICR[7:8]

Display Meaning or Usage

Displays the value of the string operator destination index byte register
Displays the value of the Transfer Controller displacement register
Displays the value of the IC memory display register address seiect bits
Displays the value of the MLIP delayed status register

Displays the value of the string operation destination byte size register
Displays the value of the EVENT logic counter

Displays the value of the EVENT logic micro-module J<ount (sequence)
register

Displays the EVENT logic operator code register value
Displays the value of the CPU PROM Card location register
Displays the value of the EVENT logic strobe register

Displays the value of the MLIP fast status signal register
Displays the value of the Global sequence-control register
Displays the value of the Global clear sequence-control register
Displays the value of the MLIP Global priority save register
Displays the value of the Global memory control signal register
Displays the value of the Global memory control signal register

Displays the value of the Memory Controller hiold address for return
register

Displays the value of the Arithmetic Controller holding register

Displays the value of the Arithmetic Controller exponent adder A-side input
holding register

Displays the value of the Arithmetic Controller exponent adder B-side input
holding register

Displays the value of the Input-Convert operation register

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names {Sheet 3 of 6)

Soft Display Circuit

Register Name Displayed
Icw ICW[3:4]
IMCF IMC[3:4]
IML IML[2:3]

IRS[7:8]
IT IT[10:11]
JA JA[7:8]F
JB JB[3:4]F
[JC[7:8]F
Jcs JCS[11:12]
D JD[7:8]F
JE[6:7]

Jp JPO[2:3]
JS JS[4:4]F
Ju JU[6:7]F
v JV[1:2]
KA KA[2:3]F
L LR[50:51]
LAR LA[19:20]
1C LC[3:4]F
LL LLO[4:5]
Lp LP[15:16]
MAR MA[19:20]

5010986

Display Meaning or Usage

Displays the value of the Memory Controller IC memory REFRESH function
delay (for MSU signal) register

Displays the value of the initiate cycle control signals to the 4 CPU local
memory port adapters

Displays the value of the Interrupt Controller counter used for detecting
SUPERHALT conditions

Displays the value of the CPU IC memory index register READ select signals
Displays the value of the interval-timer register

Displays the value of the Family A sequence-count (J-count) register
Displays the value of the Family B sequence-count (J-count) register
Displays the value of the Family C sequence-count (J-count) register
Displays the value of the EVENT logic J-count save register

Displays the value of the Family D sequence-count (J-count) register
Displays the value of the Family E sequence-count (J-count) register
Displays the value of the Program Controller sequence-count register
Displays the value Qf the Stack Controller sequence-count register
Displays the value of the Family U sequence-count (J-count) register
Displays the value of the Memory-tester logic sequence counter

Displays the value of the Family A K-counter

Displays the value of the Program Controller look-ahead register

Displays the value of the Program Controller look-ahead address register
Displays the value of the Family E loop-count register

Displays the value of the Program Controller lexicographical level register
Displays the value of the MLIP longitudinal parity register

Displays the value of the Memory Controller memory address register

4-69

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 4 of 6)

Soft Display Circuit
Register Name Displayed

MDS MDS{3:4]
MFS MFS[3:4]
MM MM|B:12]
MR MR[16:17]
MRA MRA[4:5]
MSM MSM[19:20]
MSOR MSOR[2:3]
MSP MSP[9:10]
MSW MSW([3:4]
NLZ NLZ[3:4]
OSR OSR([3:4]
P PR[50:51)
PAD PAD[2:3]
PAS PAS[2:3]
PEDF PEDF[3:4]
PSC PSC[4:5]
PSR PSR[2:3]
RQR RQR[9:10]
RQT RQT[9:10]
Ri R1[19:20]
R2 R2{19:20]

4-70

Display Meaning or Usage

Displays the value of the MLIP maintenance display status register
Displays the value of the MLIP maintenance fast status register
Displays the value of the micro-module address register {entry-vectors)
Displays the value of the MLIP maintenance data register

Displays the value of the MLIP memory register address (for MLIP RAM
memory)

Displays the value of the Memory Controller address-adder sum-register
Displays the value of the address adder sum-of-residue register

Displays the value of the MLIP micro-stack (MLIP RAM memory) pointer
register

Displays the value of the Memory Controller select-WRITE control signals
to the local memory port adapters

Displays the value of the Arithmetic Controller number of leading zeroes
register

Displays the value of the EVENT logic operator code save register
Displays the contents of the Program Controller program-code register
Displays the value of the MLIP port address register

Displays the value of the MLIP port address save register

Displays the value of the Memory Controller parity-error-disable control
signals to the local memory port adapters

Displays the value of the MLIP priority sequencer count register

Displays the value of the Program Controller program syllable register

» Displays the value of the Memory Controller request address register

Displays the value of the Memory Controller request address trap register
Displays the value of the MLIP R1 register

Displays ihe value of the MLIP R2 register

B 6900 System Reference Manual
System Display and Control

Table 46. Soft Display Register Names (Sheet 5 of 6)

Soft Display Circuit
Register Name Displayed Display Meaning or Usage

R3 R3[19:20] Displays the value of the MLIP R3 register

SA SA[3:4]F Displays the contents of the Family A T-register

SC SC[3:4]F Displays the contents of the Fainily E scale count register

SF SF{3:4]F Displays the value of the Family E scale factor register

SI S1{08:4] Displays the value of the Family U source byte index register

SM SM[04:4] Displays the contents of the Faﬁﬂy A steering-and-mask register (regenerates
‘TOA, TOM, and DIS values)

SPMB SPMB|[3:4] Displays the value of the Memory Controller single-pulse mode control
signals for local memory port adapters

SRL SRL[2:3] Displays the value of the Memory Controller sum-of-residues register (for
the address present in the LAR register)

SRM SPM[2:3] Displays the value of spare flip-flops (unused) in the Memory Controlter
logic

SRS SRS([3:4] Displays the value of the EVENT logic strobe save register

SSR SSR[2:3] Displays the value of the EVENT logic syllable save register

SSZ SSZF[2:2] Displays the value of the Family U source size register

STB STB{2:3] Displays the value of the Stack Controller stack register (shows where a
READ-data word was placed in the stack)

STS STS[3:4] Displays the value of the MLIP status-save register

TA TA[3:4]F Displays the value of the Family A T-register

B TB[3:4]F Displays the value of the Family B T-register

TC TC[3:4]F Displays the value of the Family C T-register

TD TD[3:4]1F Displays the value of the Family D T-register

TE TE[3:4]F Displays the value of the Family E T-register

TOA TOA[5:6] Displays the value of the Transfer Controller Top-of-Apertufe register

TOD TD([35:36] Displays the value of the Time-of-Day register

5010986 4-71

B 6900 System Reference Manual
System Display and Control

Tabie 4-6. Soft Display Register Names (Sheet 6 of 6)

Soft Display Circuit
Register Name Displayed
TODC TOD(3:4]
TOM TOM[5:6]
TU TU[8:4]F
TV TV[2:3]
WCCF WCCF{3:4]
WSTF WST[3:4]
X XR[50:51]
Y YR[50:51]
YRM YR-[3:3]
Z ZR[50:51]
"
SYSTEM CONTROL COMMANDS

Display Meaning or Usage

Displays the value of the low-order 4-bits of the Time-of-Day' register
Displays the value of the Transfer Controller Top-of-Mask register
Displays the value of the Family U T-register

Displays the value of the Memory-tester test vector register

Displays the value of the Memory Controller CLEAR/WRITE function
control signals to local memory port adapters

Displays the value of the Memory Controller WRITE function control signals
to local memory port adapters

Displays the contents of the Top-of-Stack X register
Displays the contents of the Top-of-Stack Y register
Displays the value of the Arithmetic Controller 1-octade extension register

Displays the contents of the Top-of-Stack Z register

System Control Commands are used to initiate system control functions. A B 6900 system MDP cabinet contains manual
switches that can be used to initiate system control functions. If a B 6900 system does not have an MDP cabinet, the
corresponding Soft Display program Commands must be used to initiate these system control functions.

—PULSE

—STEP ——
——ARCS

L <decimal number > —]

— HALT —

— STOP —

MVA519

472

[

B 6900 System Reference Manual
System Display and Control

SEMANTICS
The semantics for System Control Commands are given in the following paragraphs.
<PULSE> COMMAND

A PULSE Command is used to specify the number of clock pulses to be issued to system logic circuits. If an optional
<decimal number> is included in the Command, <decimal number> clock pulses are issued. If <decimal number> is not
included a single clock pulse is issued. A PULSE Command implies that normally free-running system clock pulses are
controlled. Before a PULSE Command is used, the control of System clock pulses is implemented by use of MAINT/
EVENT Commands. '

<STEP> COMMAND

A STEP Command is used to specify the number of steps (operations or functions) the CPU is to perform. If the
<decimal number> option is included as part of the Command, <decimal number> steps are performed. If a <decimal
number> is not included, a single step is performed. One STEP is counted each time the CPU Program Controller SECL
signal goes to a TRUE level. The CPU Program Controller responds to MAINT/EVENT Conditional Halt logic and STEP
Commands simultaneously. If a Conditional Halt occurs while a STEP <decimal number> Command is in process, the
CPU does not halt; instead, the STEP Command causes-steps beyond the Conditional Halt to be performed.

<ARCS> COMMAND

The ARCS (All Rows and Columns Signal) Command is used to cause the system logic circuits to be initialized. Most

B 6900 circuit devices are initialized to the cleared (binary zero) state; however, some circuit devices are initialized to the
SET (binary one) state. IODC bases are not initialized when an ARCS Command executes unless the MAINT/EVENT
SAFE condition is RESET (see SAFE). If SAFE is SET and an ARCS Command executes, the MLIP logic HASL flip-flop
is SET and the PSC register is initialized to a value of 9. If SAFE is RESET and an ARCS Command executes, the MLIP
logic HASL flip-flop is RESET and the PSC register is cleared to binary zero.

<HALT> COMMAND

The HALT Command is used to cause the HALT and HALTED f{lip-flops in the CPU to be SET. When the HALTED
flip-flop is SET, a STEP Command is required to resume system operations.

<STOP> COMMAND

The STOP Command is used to cause the STOP logic signal of the Host Control Bus (HCB) interface to be TRUE. When
the STOP signal is TRUE the system status display of the CPU logic is not updated by the Maintenance Processor. This
Command effectively disables the HCB interface between the Maintenance Processor and the CPU cabinet.

MAINTENANCE AND EVENT CONTROL COMMANDS

EVENT/MAINT Commands are used to SET/RESET control flip-flops for B 6900 system EVENT Mode operation and
Maintenance Mode operation. The syntax for these Commands is presented in the <SET> and <RESET> COMMANDS
subsection. This subsection describes system actions that result when these Commands are executed by the Soft Display
program.

A STATUS Command (see FUNCTIONS COMMANDS) can be used to cause the current state of EVENT/MAINT control
flip-flops to be displayed on the ODT screen.

5010986 473

B 6900 System Reference Manual
System Display and Control

<AAIF> COMMAND

This Maintenance Control Command invokes the Address Analyze feature of the Maintenance Processor (MP) logic. When
invoked, Address Analyze monitors main-frame addresses (PANEL PAGE and BYTE) on the HCP interface bus (that con-
nects the MP to the CPU). If a CPU adapter module is addressed on the HCP bus address lines, the DOUT (data out used
to SET 2 CPU flip-flop) line is forced to zerc. In this way, the Address Analyze feature prevents the MP from setting/
resetting CPU adapter flip-flops.

<ALTF> COMMAND

This Maintenance Control Command invokes the Alternate Display control (see B 6900 MDP CABINET MAINTENANCE
CONTROL PANEL). This Command is used only for factory maintenance operations.

<CHLT> COMMAND
This Maintenance Control Command invokes the Conditional Halt logic (see B 6900 SYSTEM CONTROL PANEL).
<CPTF> COMMAND

This Maintenance Control Command invokes the Comparator Display mode logic (see B 6900 MDP CABINET MAINTE-
NANCE CONTROL PANEL). This Command is used only for factory maintenance operations.

<CSTP> COMMAND
This Maintenance Control Command invokes the Clock STOP logic (see B 6900 MAINTENANCE CONTROL PANEL).
<EVNT> COMMAND

This Maintenance Control Command invokes the Maintenance EVENT logic (see B 6900 MDP CABINET MAINTE-
NANCE CONTROL PANEL).

<LOCL> COMMAND

This Maintenance Control Command invokes the CPU LOCAL/REMOTE logic (see B 6900 MAINTENANCE CONTROL
PANEL).

This Command invokes a Soft Display program toggle control, which replaces a STEP sequence with a Soft Display
program halt sequence. (See FUNCTIONS COMMANDS, <NOSTEP> COMMAND description.)

<OCTAL> COMMAND

The Displéy Control Command invokes octal display format for all registers, main memory, and CPU IC memory.
Memory addresses display in hexadecimal regardiess of whether octal format is invoked.

<SAFE> COMMAND

This Maintenance Control Command invokes a Protected CPU operating mode for operations of the Soft Display control
program. SAFE mode is the default mode of the Soft Display program and must be RESET to operate in a CPU mode

that is not protected. SAFE mode prevents the Soft Display program from performing Commands that destroy the oper-

ating system environment or require subsequent system initialization.

474

B 6900 System Reference Manual
System Display and Control

If SAFE is SET (TRUE), and the HLTD flip-flop is RESET, the following MAINT/EVENT Commands are not allowed to

execute. Attempting to execute one of these Commands results in a Soft Display program error being detected.

1. SET EVNT
2. SET LOCL
3. SET CSTP

If SAFE and RUNI are SET and HLTD is RESET, the following Functions Commands and System Control Commands

are not allowed to executé. Attempting to execute one of these Commands results in a Soft Display program error being

detected.
I. ARCS
2. CAPTUR
3. CLRIC
4. CLRMM
5. DUMP
6. EXEC
7. PROGRM
8. RDIC
9. RDMM
10. RESTOR
11. SMEAR
12. WRIC
13. WRMM

<SECL> COMMAND

(System Control Command)

(Functions Command)
{(Functions Command)
(Functions Command)
(Functions Command)
(Functions Command)
(Functions Command)
(Functions Command)
(Functions Command)
(Functions Command)

(Functions Command)

" (Functions Command)

(Functions Command)

This Command invokes the Syllable Execute Complete Level (SECL) HALT logic of the CPU (see the B 6900 SYSTEM

CONTROL PANEL).

5010986

4-75

B 6900 System Reference Manual
System Display and Control

FAMILIES CONTROL COMMANDS

Famuilies Commands are Soft Display program Commands that cause B 6900 circuit status to be displayed on the ODT
screen. The status displayed by use of a Family Command is presented in fixed format. Multiple family circuits status

can be displayed by use of a single Family Command.

€———<, orspece >_—_T
—— FAMILY ——— <family name > , 1l
ALTF
MV4g20
SEMANTICS

The word FAMILY is required as the first word of a Families Command. Multiple <family name> and ALTF phrases

may be used in a Families Command. If multiple phrases are included, they must be separated from each other by means

of a blank space or a comma. Families Commands are terminated by a semicolon character.

The <family name> phrase defines a particular set of circuit status to be displayed. The format of a particular <family
name> status display is fixed by the logic of the Soft Display program and cannot be varied by the program user. The
following are the only Families Command <family name> phrases that can be used in a proper Command.

A This <family name> causes the CPU Program Controller Family A logic status to be
displayed on the ODT screen. Family A logic circuits control arithmetic operations in
the CPU.

ARICON This <family name> causes the status of the CPU Arithmetic Controller circuits to be

formatted and displayed on the ODT screen.

B This <family name> causes the CPU Program Controller Family B logic status to be dis-
played on the ODT screen. Family B logic circuits control logical, and field/bit manipula-

tion operations in the CPU.

C This <family name> causes the CPU Program Controller Family C logic status to be
displayed on the ODT screen. Family C logic circuits control program subroutine and

branching operations in the CPU.

CPU This <family name> causes the operating system and addressing environment status of the

current program segment to be displayed on the MDP screen.

D This <family name> causes the CPU Program Controller Family D logic status to be
displayed on the ODT screen. Family D logic circuits control program literal values,
memory operations, and Top-of-Stack register operations in the CPU.

E This <family name> causes the CPU Program Controller Family E logic status to be
displayed on the ODT screen. Family E logic circuits control scaling and input data

conversion operations in the CPU.

476

ERRORS

EVENT

CLOBAL
INTCON
I/0
MEMCON
MEMPRT
MEMTST
MMOD

PROGCL

UFAM

XFERCL

B 6900 System Reference Manual
System Display and Control

This <family name> causes most {not all} CPU error status flip-flops and registers to be
formatted and displayed on the ODT screen.

This <family name> causes the CPU EVENT logic status to be displayed on the ODT screen.

This <family name> causes the Global memory port control logic status of the CPU to be
displayed on the ODT screen.

This <family name> causes the CPU Interrupt Controller logic status to be displayed on the
ODT screen.

This <family name> causes the CPU MLIP control logic status to be formatted and
displayed on the ODT screen.

This <family name> causes the CPU Memory Controller logic status to be displayed on the
ODT screen. '

This <family name> causes the Memory Controller port control logic status to be displayed
on the ODT screen. ’

This <family name> causes the Memory Tester control logic status to be displayed on the
ODT scteen._

This <family name> causes the CPU micro module control logic status to be displayed on
the ODT screen.

This <family name> causes the CPU Program Controller logic status to be displayed on the
ODT screen.

This <family name> causes the CPU family U control logic (subfamilies F, G, and H) status
to be displayed on the ODT screen.

This <family name> causes the User Family set of logic signals and levels to be formatted
and displayed on the ODT screen. The User Family consists of as many as 150 flip-flops
and/or registers, that have been defined by Soft Display program Commands (see FUNC-
TIONS COMMANDS USERFAM, ADD, DEL, FAMILY, and INSERT).

This <family name> causes the CPU Transfer Controller logic status to be displayed on the
ODT screen.

The <ALTF> option of a FAMILIES Command is used only in the factory, for system comparator station operations.
Use of this <family name> causes the ALT DISPLAY control flip-flop to toggle (see B 6900 MDP CABINET MAINTE-
NANCE CONTROL PANEL).

5010986

477

B 6900 System Reference Manual
System Display and Control

FUNCTIONS COMMANDS

FUNCTIONS Commands provide for the use of Soft Display macro-commands. A macro-command is a series of
micro-commands, such as FAMILIES, EVENT/MAINT Commands and other macro-commands that are executed in a
predetermined command sequence. Macro-commands add power to the Soft Display program because complex system
operations can be performed by use of a single FUNCTIONS Command. A complex operation example is writing into
system memory where both an Address-value and data must be present in the CPU logic circuits before the operation is
initiated.

FUNCTIONS Commands include instructions used to control the ODT screen display during Soft Display program opera-
- tions. FUNCTIONS Commands are also used to initialize and control the display of FAMILIES Command logic, to
injtiate Interrupt Controller memory-dump procedures, and to write user-devised machine language codes or user-defined
data words into system memory.

The Soft Display program FUNCTIONS Commands are as follows:

<ADD> COMMAND

ADD (see USERFAM FUNCTIONS Command syntax)

MVas21

<BRIGHT> COMMAND

L

BRIGHT
MV4522

SEMANTICS

The BRIGHT FUNCTIONS Command causes the ODT screen to be brilliantly illuminated for non-ZERO register and
flip-flop status displays. This Command enables the highlighting feature of the ODT video screen. If this feature is not
enabled, all status displays are of the same intensity, regardless of whether the state of the device is HIGH (TRUE) or
LOW (FALSE). When this feature is enabled, non-ZERO (TRUE) states are displayed briliiantly and ZERO (FALSE)
states are displayed with normal intensity. The contrast between normal intensity and brilliant intensity makes it easier
to distinguish the current state condition of a logic signal.

4-78

B 6900 System Reference Manual
System ‘Display and Control

<CAPTUR> COMMAND

«——— CAPTUR
MV4523

~4

SEMANTICS

The CAPTUR FUNCTIONS Command causes the Maintenance Processor (MP) to capture the current CPU logic display
state in the MP RAM memory. The CPU must be halted to capture its current state in MP RAM memory. The CAPTUR
Command provides the first part of a method for interrupting the CPU to execute a Soft Display Command sequence.
The second part of this method is provided by use of a RESTOR Command, which is defined later in this section.

CAUTION

Care must be taken when halting a CPU to execute Soft Display
CAPTUR and RESTOR Commands. Halting the CPU by stop-
ping the emission of CPU clock pulses may cause a Data Proces-
sor operator code to be captured in mid-sequence. Executing
Soft Display STEP or PULSE Commands while an operator-code
is captured results in stepping the CPU micro module address,
causing a mismatch between the logical state and sequence count
of the captured operator-code. This condition results in unpre-
dictable CPU behavior upon resuming ihe execution of the cap-
tured CPU operator-code.

A CPU operation must not be restored and resumed unless the
CPU is halted with the CPU Program Controller SECL signal at
a TRUE level. This prevents unpredictable CPU behavior upon
resuming the execution of a restored CPU function, regardless
of the Soft Display Commands used while the CPU logic state
was captured.

The current logical state of a CPU can be compared to a captured CPU logical state by means of a Soft Display
FUNCTIONS DIFF Command.

<CLRIC> COMMAND

———CLRIC
MVA4524

SEMANTICS

AL

The CLRIC is a macro-command that writes zeroes in all Data Processor IC memory address registers. The process flow
for this Command is as follows:

a. CAPTUR the CPU logical state
b. ARCS (clear) the CPU
¢. Write zeroes in each IC memory address Display register DO through D31

d. ARCS (clear) the CPU

5010986 479

B 6900 System Reference Manual
System Display and Control

e. Write zeroes in each IC memory address Base and Index register, by means of the control signal CRIC logic
f. ARCS (clear) the CPU
g. RESTOR the CPU logical state

The CRRIC Command uses CPU EVENT logic signals EV1, EV6, EV8, and EV11 to control the various processes of this
macro-command.

<CLRMM> COMMAND

" —— CLRMM
MV4528

L

SEMANTICS
The CLRMM Command is a macro-command that writes zeroes into system memory word addresses. If the Soft Display
program is operating in SAFE mode (the default mode), the first main memory address written is word 1FF hex (511
decimal). If the Soft Display program is not operating in SAFE mode, the first main memory address written is word
ZERO. The first 511 memory word addresses are not written when SAFE mode is in effect because these word addresses
contain code needed for system HALT/LOAD operations.
A CLRMM Command writes all zeroes in successive ascending memory addresses, until an invalid memory address inter-
rupt occurs. An invalid memory address occurs for an interrupt condition, or after the last memory address is written.
The CLRMM Command terminates by displaying the last memory address value on the ODT screen.
The process flow for this macro-command is as follows:

a. CAPTUR the current CPU state

b. If SAFE mode SET memory address to 1FF hex; otherwise, RESET memory address to zero

c. RESET Top-of-Stack X register (and TAG) to all zeroes

d. Use CPU EVENT logic to detect an invalid memory address condition (EV19, and EV20)

e. Use CPU Memory Tester logic (TVN = 3) to overwrite data from the X register into successive memory
addresses

f. Upon detec.ion of an invalid memory address, wait one second, and then display the last address value on
the ODT screen.

g- RESTOR the prior CPU state

 COMMAND

DEL (see USERFAM FUNCTIONS Command syntax)
MV4526

480

B 6900 System Reference Manual
System Display and Control

<DIFF> COMMAND

DIFF - » _}
Mvas2?

SEMANTICS

The DIFF Command compares the current CPU logical state to a prior CPU logical state. The prior iogical state of the
CPU was saved in the Maintenance Processor RAM memory by executing a Soft Display CAPTUR Command before
executing the DIFF Command. The names of all CPU logic signals that are not equal are displayed on the ODT screen.

<DO-UNTIL> COMMAND

Do <any Soft Display Command except WAIT > UNTIL—————>
|<— SPACE
> <register name > <HEX VALUE > |
L_. <flipflop name > .
< — : /2 _spacE—
Mvas2s :
SEMANTICS

The DO-UNTIL FUNCTIONS Command allows a Soft Display program user to specify a number of Soft Display Com-
mands that are to be repeated until a specified logical condition is satisfied. A DO-UNTIL Command must be entirely
present on line-1 and/or line-2 of the ODT screen; that is, no part of this command syntax may be present on line4 or
line-5 (the Command Buffer).

Soft Display Commands (except WAIT FUNCTIONS Commands) are listed between the required DO and UNTIL words
of this Command syntax. The Commands listed are separated by spaces, and the entire Command group is essentially a
user-devised Soft Display macro-command. The Soft Display program executes the command parts of this macro in the
order of occurrence, from left-to-right. Each Command in the macro is executed at least one time. Each time the entire
macro is completed, the Soft Display program evaluates the conditions for terminating the macro-command. If no termi-
nation condition is TRUE, the macro-command is repeated from the beginning. If a termination condition is TRUE, the
macro-command is terminated. ‘

The Soft Display program user must specify 1, Z, or 3 conditions for terminating execution of this macro-command. A
condition is a particular value in a Soft Display register, or it is a flip-flop being in a particular state (1 or 0). A condi-
tion is specified by means of a <register name> <hex value> or <flip-flop name > <hex value> phrase, following the
UNTIL word entry. If 2 or 3 conditions are specified, they are separated by commas. The railroad diagram shows that
the line containing the comma may be traversed only 2 times. Thus, a maximum of three termination conditions may be
specified.

5010986 481

B 6900 System Reference Manual
System Display and Control

<DUMP> COMMAND

DUMP

n_av“zo
SEMANTICS

The DUMP FUNCTIONS Command forces a software memory-dump procedure to be executed as a Soft Display program
sequence. This Command assumes that the software operating system was initialized before the start of Soft Display
program operations, and that system main-memory has not been cleared by a Soft Display program Command. If any
part of this assumption is false, execution of the DUMP Command results in a Soft Display program error condition and
no memory-dump operation is performed.

The DUMP Command is a macro-command. The process flow of this macro is as follows:
a. STOP the CPU
b. Save the values in the CPU Top-of-Stack A and B registers, and the states of AROF and BROF flip-flops
c. Save the value in the CPU Lexacographical Level register
d. CAPTUR the logical state of the CPU
e. General Clear (ARCS) the CPU circuits
f. SET a word of program-code in the CPU P register, as follows: “3 AE4014BOBOAB”

g. Restore the saved values of the A register, B register, Lexacographical Level register, and AROF and BROF
flip-flop states

h. STEP the CPU

When the CPU is stepped (see h above), a memory-dump procedure located in memory-address DO +14 (réferenced in the
program-code word) is entered and executed. Logical conditions of the CPU that might prevent the memory-dump proce-
dure operation (such as a CPU SUPERHALT, which stops system clocks distribution) are removed by General Clearing
the CPU. The CAPTUR function saves the CPU state conditions present at the beginning of the DUMP Command. Thus,
CPU state conditions at the time of the memory-dump are still available after the memory-dump, they are saved in the
Maintenance Processor RAM memory.

B 6900 System Reference Manual
System Display and Control

<END> COMMAND

—— END
MV4830

e

SEMANTICS

The END FUNCTIONS Command is used to terminate operation of the Soft Display program, and return control of
B 6900 system operations to the Maintenance Processor Executive program. If a maintenance test routine was in process
when the Soft Display program was initiated, the test routine is resumed at the point where it was interrupted.

NOTE

Care must be exercised when a test routine is resumed by
executing a Soft Display END Command. If the Soft Display
program executed any of the following Commands, the test
routine may no longer be valid.

1. CLRMM 5. PULSE
2. WRMM 6. STEP
3. CLRIC 7. ARCS
4. WRIC

Any macro-command that exercises one of these Commands
may also cause a resumed test routine to be invalid.

<EXEC> COMMAND

—— EXEC <PBR ><PSR and PIR ><LEX LEVEL> %
MV4531
SEMANTICS

The EXEC FUNCTIONS Command initiates the CPU to execute a program-code sequence in system memory. The data
value parts of the EXEC Command syntax are hexadecimal values used to establish the operating system addressing
environment.

The PBR data part of this Command establishes the initial value of the CPU IC memory Program Base Register (PBR).
The PBR hexadecimal value must not exceed S hexadecimal characters in length. If PBR is less than 5 hex characters in
length, the value is placed in the PBR register, right-justified, and unspecified high-order bits are filled with leading zeroes.

The Program Syllable Register (PSR) and Program Index Register (PIR) part of this Command establishes the initial
values of the CPU IC memory Program Index Register, and the CPU hardware Program Syllable Register. These two
values are concatenated to form a single Command syntax 4-character hexadecimal value part. The 3 high-order bits of
the hexadecimal value are the initial value for the PSR register, and the low-order 9-bits are the initial value for the IC
memory PIR register. The PIR bits are placed in the PIR IC memory register, right-justified, and the unspecified high-
order bits are filled with leading zeroes.

The Lexacographical Level (Lex Level) part of this Command establishes the initial value of the Lexacographical Level
register. The Lex Level part contains 2 hexadecimal characters, and the least-significant 5-bits of the 2 characters are
used to fill the Lex Level register.

5010986 4383

B 6900 System Reference Manual
System Display and Control

The EXEC Command is a macro-command that performs the following listed functions.
a. CAPTUR the CPU logic signal state
b. General clear (ARCS) the CPU logic
¢. Place the <Lex Level> part value in the Lexacographical Level hardware register of the CPU

d. SET the following hexadecimal program-code word in the CPU P register; “3 A2****DFDFDF”, where
“*¥*%> s the <PSR and PIR> part value

e. Place the <PBR> part value in the Program Base Register of the CPU

f. Initialize the EVENT logic to execute one pass through the program-code or stop on a SECL signal (and
INFF)/), Syllable Dependent Interrupt, or Alarm interrupt

g. Prepare the CPU to accept a STEP Command signal, but emit the STEP signal
NOTE

The EXEC Command performs a BRANCH UNCONDITIONAL
operator to begin executing the program code. The EXEC
Command establishes all of the prerequisite functions to execute
the BRANCH UNCONDITIONAL operator, but does not
actually perform the branching operation. A STEP Command
subsequent to the EXEC Command is required to execute the
program code.

<FAMILY > COMMAND

The FAMILY Command is defined in previous paragraphs entitled Families Control Commands, Section 4, of this manual.

<HELP> COMMAND

HELP
MV4532
SEMANTICS

This FUNCTIONS Command causes the list of Commands and FAMILY names to be displayed on the ODT screen.

.

B 6900 System Reference Mam:lal
System Display and Control

<INFO> COMMAND

&——— <comma, or blank > —————m
INFO : < register name > ; i

< flip-flop name > —————
MFI0 <OCT ADD >

SEMANTICS

This FUNCTIONS Command provides a method of displaying data about a <register name>, <flip-flop>, or MFIO <OCT
ADD> on the ODT screen. Multiple <register name >, <flip-flop name> and MFIO <OCT ADD> items may be included
in a single <INFO> Command; however, a comma or blank character must separate an item from other items in the same
Command. A semicolon character must be used to terminate an <INFO> Command.

The data displayed on the ODT screen about each register, flip-flop, or MFIO octal address in an INFO Command is as
follows:

a. The type (either register or flip-flop)

b. The current value/state of the register, or flip-flop

c. The number of bits {in <register name>, or the number of flip-flops present at MFIO <OCT ADD>
The MFIO <OCT ADD> option of an INFO Command allows the Soft Display program user to select a specified CPU
card package to be displayed on the ODT screen. A maximum of 8 flip-flops of a selected CPU card-package are dis-
played on the ODT screen. This Command can be used to display the status of CPU flip-flops that do not have Soft
Display program names associated with their physical location within the CPU logic.
<INSERT> COMMAND

—— INSERT ('see USERFAM FUNCTIONS Command syntax)
MV4534

<NOSTEP> COMMAND

Y

~———— SET NOSTEP
MV4535

SEMANTICS

A NOSTEP Command controls the execution of a consequent Soft Display program macro-command. A NOSTEP Com-
mand causes a NOSTEP POINT to be present in the sequence of the macro-command, where a STEP sequence normally
occurs. When the macro-command is executed, a “WAITING FOR STEP” output message is displayed on the ODT
screen, and the Soft Display program stops. The macro-command waits at its NOSTEP POINT until a STEP Command
is entered at the ODT keyboard.

5010986 485

B 6900 System Reference Manual
System Display and Control

When a SET NOSTEP Command is executed, program toggle “NOSTEP” is SET. When the macro-command containing
the NOSTEP POINT is executed, the “NOSTEP” toggle is RESET. Commands following the macro-command in the com-
mand buffer are not executed. A STEP.Command ODT input at a NOSTEP POINT causes the waiting macro-command
to be executed, after which the Soft Display program returns to its initialization point and waits for new commands to be
inserted into the command buffer.

The macro-commands that respond to the use of a SET NOSTEP Command are as follows:

1. CLRIC
2. CLRMM
3. DUMP
4. EXEC
5. RDHDP
6. RDIC

7. RDMM
8. WRIC

9. WRMM

<NZDATA> COMMAND

—— NZDATA !
MV4536

SEMANTICS

The NZDATA FUNCTIONS Command causes the Soft Display program to scan all CPU register and flip-flop display
status data. All registers that contain non-ZERO data (in the TAG-field or data fields) are listed on the ODT screen. All
flip-flops that are SET (TRUE) are also listed on the ODT screen.

NOTE

There are more than 1800 registers and flip-flops in a B 6900
CPU cabinet to be scanned for listing on the ODT screen by

this Command. Therefore, it takes a significant time interval
for this Command to complete its sequences.

B 6900 System Reference Manual
System Display and Control

<PROGRM> COMMAND

A

PROGRM <start >

<data> ; —
MV4537

SEMANTICS

This FUNCTIONS Command writes <data> words of program code into memory beginning at memory address <start>.
Each program-code wore written into memory contains a Command-supplied TAG-Field = 3 value. The use of this Com-
mand allows a Soft Display program user to write a machine-language program in memory. A subsequent EXEC Com-
mand is used to initiate execution of the user-supplied program-code words in memory.

The <start> beginning memory address is a 1-to-5 character hexadecimal number, that defines the absolute memory
address of the first word of program code. This hexadecimal address value is right-justified. If it contains fewer than
5 hex characters, unspecified high-order memory address bits are filled with leading zeroes.

The <data> field is a string of hexadecimal program code. The PROGRM Command automatically segments the hex
string into program-code words of 12 hexadecimal characters (6 program-code syllables), and inserts a TAG-field value
of 3, hexadecimal. The address is incremented +1 each time a program-code word is written into memory, Thus, a
PROGRM Command writes multiple successive code words into memory, until all program-code syllables are present in
a contiguous memory area.

A PROGRM Command is a macro-command. The sequences of this macro save the state of the CPU logic as the
beginning sequence of the Command, and restore the CPU logical condition as the terminating sequence of the Command.

<RDHDP> COMMAND

RDHDP < start address > <end address >

b

Mv4s38
SEMANTICS

The RDHDP FUNCTIONS Command is used to cause the contents of the MLIP RAM memory to be dispiayed on the
ODT screen. This Command can cause a maximum of 21 words of MLIP RAM memory data to be read for display on
the ODT screen. The first RAM memory address to be read by a RDHDP Command is specified by the <start address>
part. The final RAM memory address to be read is specified by the <end address> part. If the difference between the
start address and the end address is greater than 21 decimal, only the 21 addresses that begin in <start address> are read
and displayed. If <end address> is less than <start address>, a Soft Display program error is detected, and no RAM
addresses are read or displayed. If <start address> and <end address> are equal, 1 RAM address is read and displayed.

The B 6900 MLIP RAM memory contains 3FF hexadecimal (1024 decimal) addresses. The RDHDP Command utilizes
the MLIP micro-stack pointer for addressing RAM, thus, all MLIP RAM addresses can be accessed. The MLIP RAM data
is read into the MLIP R1 register; and from the R1 register status display update, it is displayed on the ODT screen.

If either the <start address> or <end address> values in a RDHDP Command are greater than 3FF hexadecimal, a Soft
Display program error is detected and the RDHDP Command is not executed.

5010986 4-87

B 6900 System Reference Manual
System Display and Control

<RDIC> COMMAND

There are 2 different formats for the RDIC Soft Display Command. One format is used when a NOSTEP Command
precedes the RDIC Command in the command buffer. The second format is used without a preceding NOSTEP Command
in the command buffer. The syntax for both are given, and then the SEMANTIC discussion defines the differences
between the 2 formats.

RDIC : (without NOSTEP Command)
————RDIC <IC address > (with NOSTEP Command)
MV4539

SEMANTICS

The RDIC FUNCTIONS Command causes the contents of the CPU IC memory address registers to be displayed on the
ODT screen. The display on the ODT screen contains the IC memory address register mnemonic, the hexadecimal
address of the IC memory register, the address value detected while the register is being read.

If the RDIC Command is used with the NOSTEP toggle RESET, a beginning IC memory address is not used. This RDIC
Command syntax format causes all 48 IC memory address registers to be read and displayed. The sequences of the RDIC
macro-command read the 8 INDEX IC memory address registers, the 8 BASE IC memory address registers, and the

32 DISPLAY IC memory address registers in hexadecimal register address order.

If the RDIC is used with the NOSTEP toggle SET, an <IC address> entry is required by the RDIC Command syntax.
The <IC address> contains a 2-character hexadecimal value which defines the register address of the first IC memory
address register to be read and displayed. All IC memory address registers with a register address value higher than
<IC address> are also read and displayed.

An error flag is indicated by an “*ERR*” message, which is displayed adjacent to the corresponding IC memory address
register data on the ODT screen. This error flag is present if an IC memory address register has not been written into
since system power was applied to the CPU cabinet circuits. It is also displayed if a read data error or residue error is
detected during the read sequence of the RDIC Command.

<RDMM> COMMAND

B

RDMM <start address > <end address >

<count> ———J

.

MV4540

SEMANTICS

The RDMM FUNCTIONS Command causes the contents of system memory to be read and displayed on the ODT screen.
An RDMM Command requires at least one <start address> and <end address> or <count> address-range. There may be
3 address ranges present in an RDMM Command, with ranges separated from each other by commas. An RDMM Com-
mand can cause up to 63 memory words, from 1 to 3 different address-ranges in memory, to be read and displayed on
the ODT screen.

488

B 6900 System Reference Manual
System Display and Control

If a single address-range is present in an RDMM Comimand, a maximum of 21 memory words and their TAG-Fields are
read and displayed on the ODT screen, in a single column ODT display format.

If 2 address ranges are present in an RDMM Command, the first range can display from 1-to-21 memory address words
and their TAG-Fields, in the left-hand column of the ODT screen display. The second range can display up to 42 mem-
ory address words and their TAG-Fields in the middle and right-hand columns of the ODT screen display.

If 3 address ranges are present in an RDMM Command, each range can display up to 21 memory words and their TAG-
Fields, in 3 columns of display on the ODT screen. The left most column displays the words from the first range; the
center column displays the words from the second range; and the left most column displays the words from the last
range.

An address range consists of a <start address> and <end address> pair, or a <start address> and <count> pair. A
<start address> field contains 1-to-5 hexadecimal characters, which define the first absolute memory address word to be
displayed on the ODT screen. The value of <start address> is placed in the CPU memory address register, right justified.
If there are fewer than 20-bits in a <start address> value, the unspecified high-order address register bits are filled with
leading zeroes. If there are more than 20-bits present in <start address> a Soft Display program error is detected, and
the RDMM Command and any subsequent Commands in the command buffer are not executed.

An <end address> is similar to a <start address>. It contains 1-to-5 hexadecimal characters which are handled in the
manner described in the preceding paragraph for a <start address> value. The value of an <end address>, relative to its
paired <start address>, determines the number -of memory words displayed on the ODT screen. If <end address> is
equal to <start address>, 1 memory -word is displayed. If <end address> is greater than <start address>, then as many
as 21 memory words are displayed for address-range 1 or 3, and as many as 42 memory words are displayed for
address-range 2.

A <count> value contains 2 hexadecimal characters, and determines how many memory words, including the paired
<start address> word, are to be displayed on the ODT screen. A <count> value must be less than the value of its paired
<start address>; otherwise, the Soft Display program treats the <count> value as an <end address>. If a <start
address> value is less than 16 hexadecimal (22 decimal), an <end address> value is used instead of a <count> value.

The sequences of a RDMM macro-command, which save the status of the CPU logic at the start of the RDMM Command,
also restore the CPU to the saved status condition at the end of the Command flow.

<RESTOR> COMMAND

———— RESTOR

MV4541

.

SEMANTICS

The RESTOR FUNCTIONS Command is used to restore a CPU logical state condition that was captured before restora-
tion. A prior CPU state condition is present in the Maintenance Processor RAM memory, and a RESTOR Command
causes the CPU to assume the same state as that in MP RAM memory. A CPU operation cannot be resumed by means
of a RESTOR Command if CPU clock pulses are emitted in the CPU while a CPU logical state condition is saved in

MP RAM memory. A clock pulse in the CPU causes the micro module address count logic to be incremented, thus a
saved CPU logical state condition is no longer synchronized with the current CPU micro module address.

5010986 489

B 6900 System Reference Manual
System Display and Control

<RETURN> and <SAVE> COMMANDS

RETURN <1> i
SAVE <2>

MV4542

SEMANTICS

SAVE/RETURN FUNCTIONS Commands are used to preserve the contents of the Soft Display program command buffer,
and to recall the preserved contents to the command buffer for subsequent command executions.

A SAVE <1> Command causes line-1 of the ODT command buffer to be copied on line4 of the ODT screen. A SAVE
<2> Command causes line-2 of the ODT command buffer to be copied on line-5 of the ODT screen.

A RETURN <1> Command causes line4 of the ODT screen to be copied on line-1 of the ODT screen, which is the top-
line of the command buffer. A RETURN <2> Command causes line-5 of the ODT screen to be copied on line-2 of the
ODT screen, which is the bottom line of the command buffer.

SAVE/RETURN Commands may be executed when they are located on either line-1 or line-2 of the ODT screen.
Saved buffers of Commands can be reused in either of 2 ways. The ODT cursor can be positioned at line-4 and the
XMIT key depressed to execute Commands in the saved buffers. The ODT line-delete feature can be used to rotate

lines 4 and S5 to the line 1 and 2 positions, and then depressing the XMIT key from the homed position.

<REVERS> COMMAND

REVERS]I

MV4543

SEMANTICS

The REVERS FUNCTIONS Command causes the ODT screen video display mode to go to the default video mode setting.
The default video mode is typical display mode, where the ODT screen brilliant display feature is not used. In this
default display mode all flip-flop states and all register values are displayed with normal video intensity, regardiess of the
non-ZERO or ZERO state.

<SAVE> COMMAND

SAVE (see RETURN FUNCTIONS Command syntax)

490

B 6900 System Reference Manual
System Display and Control

<SMEAR> COMMAND

————SMEAR <start > <bypass > <tag > <data >
MV4S45
SEMANTICS

. -

The SMEAR FUNCTIONS Command is a macro-command which uiilizes the CPU Memory Tester logic tc smear a2
user-supplied data word in memory. The values of the <tag> and <data> items define the user-supplied data word. The
value of the <start> and <bypass> items define the memory address-range into which the user-supplied data word is
written. The Command cycles through all inclusive memory addresses until an invalid memory address interrupt is sensed,
or until the Memory Tester logic completes the test. Upon completing, the SMEAR Command causes the last memory
address written to be displayed on the ODT screen.

This macro-command saves the current logical state of the CPU at the beginning of its operation sequences, and restores
the CPU state as the last sequence of the Command.

<STATUS> COMMAND

STATUS

ade

MV4546

SEMANTICS

The STATUS FUNCTIONS Command causes the state of 10 system control circuits to be displayed on the ODT screen.
The 10 system control circuits are as follows:

i. AAIF — Maintenance Processor Address Analyze Feature
2. ALTF — Alternate/Normal System Display Select

3. CHLT - Conditional Halt Status

4. CPTF - Comparator Select Status

5. CSTP - Clock Stop Logic Status

6. EVNT — EVENT Mode Flip-flop State

7. LOCL — CPU Local/Remote Status

8. OCTAL — Octal Data Dispiay Select Status

9. SAFE — Safe Mode Status

10. SECL - Syliable Execute Complete Level Status

5010986 491

B 6900 System Reference Manual
System Display and Control

<USERFAM> COMMAND

< /145\

———USRFAM ;]
ADD —— < flip-flop name > ——
DEL L——<register name >

~———INSERT < family name >

MV4547

SEMANTICS

The USRFAM FUNCTIONS Commands provide a method for creating and updating a user-defined display Family.
System state conditions are parts of user-defined Families, and are displayed on the ODT screen when a UFAM FAMILIES
Command is executed.

A USRFAM Command causes a user family array to be created and to be initialized. The user family array is a buffer
area that contains space for up to 145 flip-flop and register names. When a USRFAM Command is executed the array is
created, and any <flip-flop name> or <register name> items specified are placed in the array, in the order of their
appearance in the USRFAM Command syntax. If there are no <flip-flop name> or <register name> items specified by a
USRFAM Command syntax, the array is initialized to a cleared state.

The ADD Command is used to put additional <flip-flop name> and <register name> items in a previously initialized
array. Items added to the array are placed at the end of the array list, in the order of appearance in the ADD Command
syntax. If an ADD Command is used but the user family array was never initialized by a USRFAM Command, a Soft
Display program error is detected and the ADD Command and all subsequent Commands in the command buffer will not
be executed.

The DEL (Delete) Command is used to remove <flip-flop name> and <register name > items from the user family array.
If a DEL Command is used but the user family array was never initialized by a USRFAM Command, a Soft Display
program error is detected and the DEL Command and all subsequent Commands in the command buffer are not executed.

An INSERT <family name> Command is used to add a Family display to the user defined family array list. If an
INSERT Command is used but the user family array was never initialized by a USRFAM Command, a Soft Display pro-
gram error is detected and the INSERT Command and all subsequent Commands in the command buffer will not be
executed.

If a <flip-flop name> or a <register name> is not a valid Soft Display program recognized name, an error condition is

detected. Moreover, the Command syntax that contains the name and all subsequent Commands in the command buffer
are not executed.

492

B 6900 System Reference Manual
System Display and Control

<WAIT> COMMAND

et 2\

WAIT < register name > ——— <hex value > %
< fiip-flop name >
< ODT input message >
MV4548
SEMANTICS

A WAIT FUNCTIONS Command provides a method for temporarily stopping the execution of Soft Display Commands
until a preselected condition is present. From 1 to 3 conditions are specified as the basis for resuming the execution of
subsequent Commands in the command buffer. If more than 1 condition is listed, commas are used to separate the
conditions. e

A condition consists of the name of a logic circuit and a selected hexadecimal value for the selected circuit, or of an ODT
input message. If a selected condition. is. a <register name>, the condition is present when the current value of <register
name> exactly matches the <hex value> specified for that condition. When a <flip-flop name> is used as a condition,
the <hex value> is <1> for the TRUE condition and <0> for the FALSE condition. If <ODT input message> is used
as a condition, depressing the keyboard XMIT pushbutton causes the condition to be present, and any data transmitted
by depressing the XMIT pushbutton is discarded.

<WRIC> COMMAND

e—=<, orblank >—

——— WRIC < address ><data > ;

Mv4s49

4

SEMANTICS

The WRIC FUNCTIONS Command is used to establish the value of a CPU IC memory address register. Multiple IC
memory address register values can be established by use of a single WRIC Command. The <address> item identifies the
particular IC memory address register into which the corresponding <data> item is to be written. Both the <address>
and <data> items are S-character hexadecimal values.

5010586 493

B 6900 System Reference Manual
System Display and Control

<WRMM> COMMAND

p€&—————<, orblank >
——— WRMM< address >———<tag > <data > N

MV4550

SEMANTICS

The WRMM FUNCTIONS Command is used to write user-supplied memory words into successive main memory addresses.
The <address> item specifies the beginning main memory address into which the first word of data is written. Each
memory word contains a 1-character hexadecimal <tag> field value, followed by a blank space, followed by a
12-character hexadecimal <data> field value. Multiple, successively addressed memory words may be written into main
memory by use of a single WRMM Command. Memory word tag and data-field pairs are separated from other word tag
and data-field pairs by commas or blank characters.

<**5 COMMAND

A

<alpha letter > 1

*e

MV4561

SEMANTICS

An “**” FUNCTIONS Command causes the state of all flip-flops and registers whose names begin with <alpha letter> to
be displayed on the ODT screen. Multiple <alpha letter> items may be used in a single “**” Command.

<~--> and <++> COMMANDS

-- < hex value 1> <hex value 2> : {

MV4567

SEMANTICS

The “--" FUNCTIONS Command causes the CPU arithmetic logic to perform a subtraction function, and displays the
difference value on the ODT screen. The <hex value 2> is subtracted from <hex value 1>.

The ODT displays “<hex value 2> ~-- <hex value 1> = difference”.

The “++” FUNCTIONS Command causes the CPU arithmetic logic to perform an addition function, and displays the sum
value on the ODT screen.

The ODT displays “<hex value 1> ++ <hex value 2> = sum”.

494

B 6900 System Reference Manual

SECTION $§
SYSTEM CONCEPT

GENERAL
The B 6900 system consists of a central processing unit, a central power cabinet, a maintenance display processor cabinet,
Input/Output Data Communications (IODC) cabinets and the associated peripheral equipment for inputfoutput. This
section generally defines the overall system hardware operation.
The central processing unit (CPU) is the heart of system operations in the B 6900 system; therefore, while other umits of
the system are discussed in this section, the main thrust is to describe the units that are parts of the CPU cabinet. The
three main parts of the CPU cabinet are as follows:

a. The data processor (DP)

b. The Message Level Interface Processor (MLIP)

¢. The memory control (MC)

DATA PROCESSOR

The data processor part of the CPU produces the objective results of a program by performing the necessary arithmetic
and logical functions of the program flow.

The data processor contains two major divisions: the functional resources and operator algorithms (Figure 5-1). The
functional resources are referred to as the “hardcore™ of the processor.

The functional rescurces are the event logic, the micro-program module, the top of stack registers, the address adder, the
MLIP, and six controllers. The operator algorithms are a group of six families of operators. The operator algorithms
provide the logic required to control the functional flow of the program.

OPERATOR FAMILIES

The operator families and functional controllers are linked by 11 busses (bus Z1 through Z6, and Z8 through Z12).
These busses provide for data movement and signal routing within the processor (see Figure 5-2).

A bus is a group of wires used to transmit signals from one place to another. The busses within the transfer controller
are etched on a single card connecting the same bit of all “hard registers” together; that is, bit 1 of registers A, B, C,
X, Y and Z are all on the same physical card.
The operators are grouped into six groups called the operator families (Figure 5-1). The grouping of related operators
into families minimizes the logic required in the processor. The six families of operators with a brief purpose for each
are:

a. Family A OPS (Arithmetic Operators).

b. Family B OPS (Logical Operators).

¢. Family C OPS (Subroutine Operators).

d. Family D OPS (B 6900 Word Oriented Operators).

5010986 5.1

B 6900 System Reference Manual
System Concept

FUNCTIONAL RESOURCES OPERATOR ALGORITHMS
PROCESSOR ADDRESS FAMILY A OPERATORS
MODULE

ARITHMETIC

CONTROLLER [STROBE A |

[960 BIT IC MEMORY |
[EXPONENT ACDER 16 BiTS |

20 BIT ADDRESS

ADDER, AND 3BIT
[MANTISSA ADDER 81 BITS | RESIDUE ADDER FAMILY B OPERATORS
[STROBE B |
EVENT LOGIC
PROGRAM SEQUENCE
CONTROLLER FAMILY C OPERATORS
{ LOOK AHEAD LOGIC | [STROBESC, J,K]

[P, AND L REGISTERS |

MICRO-PROGRAM MODULE

FAMILY D OPERATORS

STACK ADJUST [STROBED |
CONTROLLER
MEMORY CONTROLLER
INTERRUPT
[MEMORY EXCHANGE | CONTROLLER FAMILY E OPERATORS
[MEMORY TESTER | [STROBE E |
[EXTERNAL SCAN BUS |
[GLOBAL MEMORY INTERFACE |
TRANSFER

CONTROLLER FAMILY U OPERATORS
TOP OF STACK REGISTERS .

[STROBESF, G, H |
{A B C X, Y ZREGISTERS |

| STRING OPERATORS |

[EDIT MODE OPERATORS |

MESSAGE LEVEL INTERFACE PROCESSOR | [VECTOR MODE OPERATORS |
LOGIC MODULE

MV4552
Figure 5-1. B 6900 CPU Organization
e. Family E OPS (Scaling Operators).
f. Families F, G, H OPS (String Operators).
PROGRAM CONTROLLER

The program controller (see Figure 5-2) controls the program flow in the data processor. The program controller deter-
mines when the P register contains machine language operators to be executed, which syllable of code is to be executed
next, when to replace the contents of the P register and L register, and the source location of the data used to replace
the contents of the P register and L register. The P register is considered to contain valid program code only if the
Program Register Occupied Flip-Flop (PROF) is set.

The Program Syllable Register {PSR) serves as a pointer to the next syilable to be executed from the P register.

52

B 6900 System Reference Manual

System Concept

TOA /om DIS READ DATA
FROM MLIP TO Z3 BUS ~————
'K !
21 ‘
MASK STEER pa—22 o] 2670 29
| f CONTROL
l 2PN —» TO MLIP LOCAL
22 | z6T8 z8 ~*1 MEMORY
i DIRECT - *1 conTrOL | INTERFACE |
z TRANSFERS . ERROR MOD 1
OGICAL . L ™1 Fence Resioue [T ¢
LOGICA z ERROR
] ft———¢ 210 LOGI [
TRANSFERS ¢ CHECK -9 DETECTION AND
CORRECTION LocAL
%1 MEMORY
A DRS pmed N ' ‘ ‘ _»| INTERFACE
— ERROR ERROR o] MoD2
e e
ADDER
X L IRS
I INDEX INDEX
v \ / SELECT "'. IC MEM W RESIDUE PARITY LOCAL
! &= WS > CHECK CHECK ?—" MEMORY
I »| INTERFACE
‘ ¢ 10 <« MICRO-MODULE |<—o~ MOD 3
MLIP :
z ARITH / \ oase > BRS >
CONTRO BASE
B | L SELECT =1 cmem ¢
L TO MEMORY INTERFACE ? | BWS — —— .
[LroF] &> L LOCAL
¢ ‘MEMORY
' LOOKAHEAD _» INTERFACE
UNIT e MOD 4
- 2l o Lo
* ADDER |q
\
FROM C REG MAR
FROM MEMORY SYLLABLE DECODE psp | PROGRAM | *
INTERFACE , CONTROLLER
'R ! ¢ 1 += Glosa
(VARIANT)
STROBES 220 Z10 (OP) FROM Z5 — | o! MEMORY
MP.ADD LAR INTERFACE
T T’ T T) 4 ‘ COUNTER ———— —
AERER vy -
é STACK INTERRUPT MG LEVEL
MEMORY
FAMILIES A B CJK D E FGH | | antroL SoNTRO: INTERFACE | | ME 0_9_';
(o fior - PROCESSOR 113
} I
1
TO SCAN CONTROL
212 21 | MEMORY
CONTROL MEMORY CONTROL
Z10 PSEUDO OPS i
J COUNT BUS MLI INTERFACE
WRITE DATA
' e
MAINTENANCE DISPLAY SYSTEM 10DC DERIPHER AL DEVICES FROM z4 BUS
PROCESSOR INTERFACE CLOCK = PERI 1c
: CABINET] (INCLUDES DATA COMM)
MV4141

5010986

Figure 5-2. B 6900 CPU Block Diagram

B 6900 System Reference Manual
System Concept

Look Ahead Logic

A look ahead function is implemented by provision of the L register and the associated L Register Occupied Flip-flop
(LROF). The function of the look ahead logic is to overlap as far as possible the fetching of code from main memory.
In look ahead mode, L acts as a buffer against the P register, such that code is executed from P while L gets the next
code word. Code addresses are initially formed by adding the value of the Program Base Register (PBR) to the value of
the Program Index Register (PIR). Code addresses are maintained in the look ahead logic in the Look Ahead Address
Register (LAR). a

In certain modes, the normal sequential code execution, as affected by the look ahead logic, is undesirable and there-
fore inhibited. Such cases are branch instructions, subroutine entries and exits (or returns), and table edit mode opera-
tions. In the first two cases, new values of PBR and PIR are presented to the program controller, and are used as
described. In table edit mode, look ahead logic is totally inhibited, and the program controller uses the Table Base
Register (TBR) and the Table Index Register (TIR) to form the table mode edit operator code address. Only the P
register is used to contain edit mode table operator code (and not the L register). In table edit mode operations, the
TIR address register is updated by the program controller, as required.

Integrated Circuit (IC) Memory

The B 6900 system data processor maintains the procedure addresses of the program currently being executed in the
data processor. These procedure addresses are maintained in a group of address registers commonly identified as IC
memory address registers (see Figure 5-2). The IC memory address registers are classified as display address, base address,
and index registers.

There are 32 display address registers (labeled DO through D 31) in the data processor. A display register number corre-

sponds to a lexicographical programming level, and locates the absolute local memory base address of the process stack
{the MSCW of the stack) for all current programming levels. The maximum number of programming levels (lexicographi-
cal levels) in a procedure is fixed by the number of display address registers available in the data processor. The number
of programming levels in a procedure is limited to 30, because programming level zero is required for the MCP, and
programming level one is required for the segment descriptor index. The bottom of a stack is identified by the address
located in the BOSR register, which was identified earlier in this manual. The top of a stack is identified by the address

located in the S register, which was also identified earlier in this manual (refer to Section 3).

The following eight base address registers are in the data processor:

Base Register Base Register Register
Number _ Name __Usage
0 PBR The base address of the program code segment.
1 SBR The base address of string source data.
2 DBR The base address of string destination data.

AN

~

5010986 55

B 6900 System Reference M nual
System Concept

Base Register Base Register
Number Name Register Usage

3 TBR/BUF2 The base address of table program code, or alternatively a temporary
buffer for storing an address value.

4 S The address of the top word in the current stack.

5 SNR The stack number register. The stack number is used to contain a vec-
tor value for locating the current stack descriptor. The vector value is
an index on the address of the stack vector descriptor for locating the
stack descriptor. :

6 PDR The program dictionary register. This register is used to contain the
address of the base of the current program code segment descriptor in
memory.

7 TEMP The temporary register. This register is a general purpose register used

to store addresses temporarily
The following eight index address registers are in the data processor:

Index Register Index Register
Number Name Register Usage

0 PIR The program index register. The program index value is an index on
the base address contained in the PBR register. The sum of PBR and
PIR is the absolute address of the word of program code that is
presently in the P register.

1 SIR The source index register. The source index value is an index on the
base address that is contained in the SBR register. The sum of SBR
plus SIR defines the address of a word of source data for string
operations.

2 DIR The destination index register. The destination index value is an index
on the base destination register. The sum of DBR plus DIR defines
the address of a word of destination data for string operations.

3 TIR/BUF3 The table index register. The table index value is an index on the address
that is contained in the TBR register. The sum of TBR and TIR defines
the address of the word containing the micrc-operators in the table code.
When this address register is not being used for table type operations, it is
alternatively used (as BUF3) for temporary storage of other address values.

4 LOSR The limit of stack register. This register contains the upper stack

boundary address for the current procedure. This register limits the
size of the stack.

56

B 6900 System Reference Manual
System Concept

Index Register Index Register
Number Name Register Usage

5 BOSR The bottom of stack register. This register contains the lower boundary
address for the current stack.

6 F The F register. This register contains the address of the last MSCW for
the current process stack in memory. The F register and the display
register that corresponds to the present lexicographical level contain the
identical address value.

7 BUF The buffer address register. The buffer is used to temporarily store
addresses.

Address Adder and Residue Test Logic

The address adder is a shared mechanism through which all addresses used within the B 6900 system are manipulated.
Figure 5-2 shows this mechanism, with associated data paths and data integrity residue generation and check blocks.

All traffic to and from the IC memory is conducted through the address adder (or the Z8 and Z9 busses) to the address
adder. Data integrity within all of these blocks is maintained by modulo three residue checking. This guarantees to
detect any single bit error, and some muitiple bit errors that occur in IC memory, or the address adder. An error in the
modulo three residue generation circuit or in the residue check circuit is also detected.

Any addressing error in the address adder or in the residue check circuit is a fatal condition, and results in an “abort” '
type interrupt condition.

TRANSFER CONTROLLER

The transfer controller (see Figure 5-2) has two major sections: a hard register section referred to as stack registers for
data and program information, and an internal data transfer section. Six busses, Z1 through Z6, are used for the normal
data movement to and from the hard registers. Z1, Z2, and Z3 are input busses to these register contents are never

are output busses. The capacity of each bus is 51 bits.

Three special busses are used for arithmetic operations (see Figures 5-3 and 5-6).

Stack Registers

&
Each information register has 51 bit positions (see Figure 5-3). Registers A, B, C, X, Y, and Z are for information hand
ling during program flow. Registers P and L contain B 6900 program words. The P and L registers contents are never
written into memory.

The Z3 and Z4 busses provide for bi-directional data flow between the hard registers and memory or the multiplexor.
The A and B registers are the top of stack registers, and X and Y are normally second-word information registers for

double-precision operands. Registers C and Z are general purpose registers which provide temporary storage during
operator execution.

5010986 57

B 6900 System Reference Manual
System Concept

4 :
o] e] mme e &+
NN — A |
JNN ———— AA~
LUANAN N - 1 A1
NDANN ——————— AAAAA
NN . AAAAA
NN N ————— AAAS -
N 7
A - ‘

INTERFACE

)
il

—————————
ADDRESS

ADDER
— AND
RESIDUE
CIRCUITS

EXPONENT

o AND MANTISSA 1
C MEMORY
ADDERS > REGISTERS

MV 1612

Figure 5-3. Internal Data Transfer Section

58

B 6900 System Reference Manual
System Concept

Internal Data Transfer Section
3
The internal transfer section (see Figure 5-3) permits the following data transfers between stack registers:

a. A direct, full-word transfer path using the Z5 and Z2 busses.

b. A logical transfer path to create the results of the family B (logical) operators, using the Z4 and Z3 busses.
The logical transfer path also provides one additional full word transfer path between registers.

¢. A steering and mask network providing a field displacement between stack registers using the Z6 and
Z1 busses.

d. A transfer path to the address adder by means of the Z6 to Z8 or Z9 busses. This path extracts one of four
fields, [39:20], [36:16], [19:20] or [13:14], from a stack register during execution of operator syllables.

e. A data movement path to and from the high speed adder by means of the AA, BB, and SL busses.

Mask and Steering

The mask and steering network moves bit fields from register to register by means of the Z6 and Z1 busses. All bits are
transferred to and from the busses in paraflel. Two pointers (TOA/TOM) set up a “window” defining the upper and
lower limit of the bits being transferred to the accepting data register. A displacement register (DIS) shifts the bits to the
right, 0 to 47 bits from the position previously held in the sending data register. The three controls used to steer and
mask are as follows:

1. TOA. The highest bit position of the accepting field (highest bit of the window).

2. TOM. The highest bit position to be inhibited on the transfer (lowest bit of the window).

3. DIS. A right shift of the bits through the steering matrix.
Registers TOA, TOM, and DIS are set by the operator families or other controllers.

Mask and Steering Example

Assume the C register contains a stuffed indirect reference word (SIRW) and it is necessary to extract the STKNR (stack
number) field (bits 45:10), and place these bits into the index field of the C register. The logic sets the window

.TOA := 29, TOM := 19, as shown in Figure 5-4. The displacement register is set to 16: DIS := 16. The actual starting
bit of the field is calculated as: TOA + DIS =29 + 16 = 45.

All Bits in the C register are gated to the Z6 bus. The bits (except TAG) are then shifted 16 places to the right with only
the bits that align with the window appearing on the Z1 bus. The Z1 bus is then gated to the C register, with the
masked field destroyed or retained; if the masked field is to be retained, the C register must be gated onto the Z5 bus

as “prior content”.

If no register is gated on the Z5 bus during a Z1 bus to Z6 bus transfer, the masked field is cleared.

5010986 59

B 6900 System Reference Manual
System Concept

In the example shown in Figure 54, a field of ten bits is transferred from one field location in the C register, to another
field location in this same register. Because the STKNR field of the C register lies outside of the receiving field range,
bits 45:10 are cleared, and bits 29:10 will contain the STKNR value at the conclusion of the example operation. Bit
fields 47:18, and 19:20 of the C register are cleared and only 50:03 remain unchanged.

SEEEEREE
EEEEEER
45\ “: STEERING (DIS = 16)
NN
EEEEEER!

Figure 54. Mask and Steering

Stack Controller

The B 6900 provides automatic stack adjustment as required by the operators. These requirements are supplied to the
stack controller on the Z11 bus from the operator families and other functional controllers.

5-10

B 6900 System Reference Manual
System Concept

The stack controller manipulates data between main memory and the A and B registers during both the pop-up and
push-down cycles. The X and Y registers are included in the adjustment cycles when double-precision operands are
involved.

" A typical program stack is shown in Figure 5-5. The stack controller determines whether a push-up or push-down cycle
will be initiated. All other Controilers remain idle until an adjust complete signal is sent to the controller that initiated
the adjustment.

ARITHMETIC CONTROLLER
The arithmetic controller (see Figure 5-6) is a functional controller between the stack registers (A, B, C, X, Y and Z) and
the exponent and mantissa adders. - This controller is enabled by the family A operators and other operator families that

require the use of these facilities.

Exponent and Mantissa Adders

Figure 5-6 shows the logical path of data flow to and from the exponent and mantissa adders. The exponent adder is
composed of a 16-bit full adder/subtractor circuit, and the mantissa adder is composed of an 81-bit full adder/subtractor
circuit. The inputs to the two adder circuits, and the outputs from the adder circuits, are directed from and to the stack
hardware registers by the arithmetic controller.

The arithmetic controller and the two adder circuits are capable of performing complete double precision mathematics in
one continuous synchronized operation. The arithmetic controller gates both the exponent and mantissa portions of both
halves of a double precision operand to the two adder circuits in a single operational step. Exponent adder operations are
only performed during multiply or divide functions and for mantissa alignments.

Each of the two adder circuits consist of an A input (AA), a B input (BB), and a C (SL) resultant output. During a
double precision ADD (80) operation, the A input to the mantissa adder consists of the 78-bits of the mantissa fieid
from the double precision operand in the A and X registers. The B inputs to the two adders for a double.precision ADD
operation are the same as the A inputs, but are derived from the B and Y registers. After the inputs to the two adders
have been routed to the adder inputs by the arithmetic controller, the ADD operation is performed in one step. After
the ADD algorithm is completed, the resultant sum of the two numbers is routed by the arithmetic controller back to

the proper stack register(s).
INTERRUPT CONTROLLER

The Interrupt Controller of the B 6900 CPU recognizes certain types. of system interrupts, automatically causes the
currently running program to halt, and ENTERs into the Interrupt Handling Procedure of the Master Control Program
(MCP). The Interrupt Handling Procedure takes actions required because of the interrupt, and then automatically
RETURNS to the program that was halted when the interrupt was sensed. Thus, interrupt handling in a B 6900 system
is a dynamic process that is initiated automatically when an interrupt occurs, and terminates by resuming program
processing at the point wheie the interrupt was sensed.

The actions of the Interrupt Controller Logic include collecting and formatting information about the nature of the
interrupt that occurred. Before the MCP Interrupt Handling Procedure is ENTERed this information is placed in the
Top-of-Stack. The MCP Interrupt Handling Procedure uses the information collected by the Interrupt Controller, to
analyze the nature and cause of the interrupt that occurred, and to determine what action is to be taken because of
the interrupt.

5010986 5-11

B 6900 System Reference Manual
System Concept

sl C] ARes r] x reG
T
: |
IEEE ~1YReG
PUSH —>|
ve |
|
| Losr N
|
s 1» ‘
, ALLOCATED
MEMORY
AREA
LFf > MSCN STACK CONTROLLER FUNCTIONS
ADJFLOW) T
NOTATION {COMMAND| OPERATION REsUL
-~ ~ m“ mw
©.0 Z110 |EMPTYAANDB| O 0
10.1) Z11 |emery A Frs| o | 1
1,0} z12 |emerye Fital 1 | ©
.1 Z113 | oOTH * 1 |
©.2) Zia |EmPrY A o -
.2 Z115 [FHLA 1 | -
*(1.3) zi1e |FmLA 1] -
NOTE:
0= UNOCCUPIED
1= OCCUMED
- = STATUS WILL NOT BE USED BY
A L THE OPERATOR CAUSING THE
ADJUSTMENT
* THIS ADJUSTMENT WILL BE
{_eosr TSCW J MADE IF AROF AND BROF ARE
. BOTH FALSE, OTHERWISE NO
MV1613 ADJUSTMENT WILL BE MADE.

Figure 5-5. Hardware Stack Adjustment

5-12

B 6900 System Reference Manual
System Concept

r -1

STACK REGISTERS

16
AABUS _ | BIT SL BUS
> c —— @1 expONENT [
ADDER
z
r—1—> A ’J
ARITHMETIC
——> a CONTROLLER
BB BUS H
BIT
¢ > X > 51 MANTISSA
ADDER
—t v >
—
MV 1615

Figure 5-6. Arithmetic Control

INTERRUPT PARAMETER WORDS

Figure 5-7 shows three interrupt stack parameter words, an Indirect Reference Word (IRW) that points to the relative
memory location of the MCP Interrupt Handling Procedure, and a Mark Stack Control Word (MSCW). These five words
constitute an Interrupt Procedure Stack to be used by the Interrupt Handling Procedure. They are formed, after the
interrupt condition is sensed and the currently running program is halted, by action of the Interrupt Controller in the
Top-of-Stack registers. Note that the Interrupt Handler Procedure of the MCP has not yet been ENTERed. The words
beneath the Interrupt Stack shown in the Figure are the Stack for the program that was halted when the interrupt was
sensed.

The Interrupt Controller Logic pseudo-calls the ENTER operator flow, to initiate the Interrupt Handler of the MCP

into operation. The ENTER operator flow uses the IRW in the interrupt stack, to find the PCW for the Interrupt
Handler procedure. The ENTER operator flow also generates the Return Control Word (RCW), that points back to the
procedure that was interrupted. This RCW is written in the interrupt stack, in the same memory word address that holds
the IRW. At the conclusion of the Interrupt Handler procedure, the RCW is used to return control of the system to the
procedure that was interrupted.

The Interrupt Controller logic causes a branch into the Interrupt Handler Procedure of the MCP by referencing the
location of the IRW. This IRW points to the Program Control Word (PCW), which is always present in the MCP stack,
at location DO +3. Because the location of the PCW in the MCP stack is a fixed memory location, the Interrupt
Controller logic can use an IRW to reference the PCW, no matter where a current program is in memory when an
interrupt occurs.

5010986 : 5-13

B 6900 System Reference Manual
System Concept

TAG
FIELD P2 PARAMETER
TAG
FIELD P3 PARAMETER THIS INTERRUPT STACK IS CON-
;:G STRUCTED BY THE INTERRUPT
CONTROLLER OF THE B 6900 CPU.
FIELD :
-2 P1 PARAMETER THE INTERRUPT PRO-
TAG (RCW POINTING TO CEDURE USES THIS STACK TO ANA-
FIELD JRWDO+30R ',NTERRUPTED STACKN | LYZE INTERRUPTS IN THE SYSTEM.
TAG
Fl?‘ELD MSCW
1 PROGRAM STACK AREA
FOR THE PROGRAM THAT i
INITIATED THE INTERRUPT ‘
" CONTROLLER FUNCTION T
0o+3 | TAG THIS PCW POINTS TO THE MACHINE
——] FIELD PCW LANGUAGE CODE STREAM FOR THE
=7 B 6900 INTERRUPT PROCEDURES.
wee <
TAG
STACK s §LD RCW
DO TAG
\ — FIELD MSCW
MV4171

Figure 5-7. Interrupt Controller Stack Parameters

The three interrupt parameters in the Interrupt Stack are the data about the interrupt, that was collected by the
Interrupt Controller. The P1 parameter word is formatted to identify the type of interrupt that occurred, the class
of the interrupt, and the specific interrupt within the type and class that occurred. The P2 and P3 parameters contain
specific information about the interrupt identified by the P1 parameter. The values of the three parameter words change
with each particular interrupt type and class sensed by the Interrupt Controller.
The formats for various interrupt types and classes are given in the following order:

1. ALARM Interrupts.

2. HARDWARE Interrupts.

3. GENERAL CONTROL Interrupts.

4. EXTERNAL Interrupts.

5. SYLLABLE DEPENDENT Interrupts.
5-14

B 6900 System Reference Manual
System Concept

ALARM INTERRUPTS

Figures 5-8 through 5-11 define the Interrupt Stack parameter word layouts for ALARM Interrupts. Figure 5-8 shows
the word layout of the Pl parameter for an ALARM Interrupt. Figures 5-9 and 5-10 show the variations in the P2
parameter for an ALARM Interrupt. Figure 5-11 shows the word layout for an ALARM Interrupt P3 parameter.
Table 5-1 lists the fields in the P3 parameter that are used for each type of ALARM Interrupt.

ALARM INTERRUPT DESCRIPTIONS

A description of each ALARM interrupt that can be detected by the B 6900 Interrupt Controller follows. These
descriptions define the most likely reason for the occurrence of the interrupt and also describe the condition of the
Top-of-Stack at the end of the Interrupt Controller logic operation. This ending condition is the state of the Top-of-
Stack when the Interrupt Handling Procedure of the MCP is ENTERed. It also represents the condition present if the
EVENT logic of the CPU is used to freeze the CPU on the occurrence of an ALARM interrupt.

E READ [INV,
» DATA | ADDR.
-0 0 {wur. |Locat
ol 14|8I1T ERAJ MEM. 3
i MEM, .
. " a]ADDR.
0 ‘_»o o . §RESI- . 0_
e $)___ 10{DVE 6 2
D [-TH MEM
i INV, -
1 B |MEM. | o006, | ADDR.
: NOT WORD _ | PARITY
iIIREADYg 5 1
INV.
STACK
0 | &00R- | unpER | Tooen
P FLOW
MEM. g 4 0

25 = 1 = ALARM INTERRUPT TYPE INTERRUPT
19 = RETRY FLIP-FLOP STATE
= 1 = RETRY FF ISSET
= 0 = RETRY FF IS RESET
i8 = TYPE OF GLOBAL MEMORY ERROR (ONLY USED
FOR GLOBAL MEMORY ERRORS)
= 1 = GLOBAL SCAN OPERATION ERROR
= 0 = GLOBAL MEMORY OPERATION ERROR
17 = P3PARAMETER CONSISTENCY FLAG
= 1 = P3PARAMETERS ARE INCONSISTENT
= 0 = P3PARAMETERS ARE CONSISTENT
X =10R0

MV4172

Figure 5-8. ALARM Interrupt P1 Parameter Word Layout

5010986 : 5-15

B 6900 System Reference Manual

System Concept

0 = J COUNT VALUE IS PRESENT

47 43 3 35 31 27 23] 19 1_§l 11 7 3
[THE TOP-OF-STACK WORD
s B AT THE TIME THE INTERRUPT—¥4——4—¢& 2
o OCCURRED
v
_4s] a“ 37, 33 2 2% Fi] 17, 13 9 5 1
0
“ 40 38 32 2 24 20 18] 12 8 4 [
NOTE
A STACK UNDERFLOW ALARM
INTERRUPT P2 PARAMETER IS A
SEPARATE CONDITION FROM ALL
OTHER ALARM INTERRUPTS. SEE
THE SPECIAL P2 WORD FORMAT,
WHICH IS DIFFERENT.
MV4173
Figure 59. ALARM Interrupt P2 Parameter Word Layout
0 0 0 0 0 0 0
47 43 k) 35 31 27 23 19 15 11 7 3
o|lo|o|o0|O0|]0o|0]| o0 " | VALUE OF
46 2 38 34 30 251 pr. | 18| THE PROCESSOR 2
i S REGISTER
o|o|o|o|o]|o]|a _J 0 (IC MEMORY)
45| 41 37, 33 2 -] 21 17 13 g 5 1
0 0 0 0 0 0 0 0
44 40 36 32 28| 24 20 16 12 8 4 0
MV4174
Figure 5-10. ALARM Interrupt Stack Underflow P2 Parameter Layout
VE M
a1 a3 3 35 3 27 Z'J‘L'?ﬂ‘iﬁ 1 ? 3
0 . RIte|c|r J COUNT
% MEMORY 5l ol Exsl m) Sl 01 1/ORs|
ADDRESS S D%_B | MICROMODULE
1 E E E ADDRESS
45 « 37 33 g_ﬁ . 21 17] 13 9 5 1
0 M \"/
44 40 2§ 32 28 24 20 16 12 i 8 4 0
RESSUM = RESIDUE OF ADDRESS
VE = VECTOR MODE
TE = TABLE EDIT MODE
E = EDIT MODE
A" = VARIANT MODE
M = MODED

MV4175

5-16

1= MICROMODULE ADDRESS IS PRESENT

Figure 5-11. ALARM Interrupt P3 Parameter Word Layout

B 6900 System Reference Manual
System Concept

Table 5-1. ALARM Interrupt P3 Parameter Fields Usage

Interrupt Type Fields Present in the P3 Parameter Word

Loop Timer Op Code, Strobe, J Count

Memory Address Parity Address, OP Code, Strobe, J Count
Invalid Address Local Address, OP Code, Strobe, J Count
Stack Underflow Address, OP Code, Strobe, J Count
Invalid Program Word OP Code, Strobe, J Count

Memory Address Residue Address, OP Code, Strobe, J Count
Read Data Multiple-Bit Address, OP Code, Strobe, J Count
Invalid Address Global Address, OP Code, Strobe, J Count
Global Memory Not-Ready Address, OP Code, Strobe, J Count

LOOP Interrupt

This interrupt is invoked if the Data Processor fails to provide a SECL signal within 2 seconds. This interrupt could
occur if an attempt is made to execute an invalid operator code. If the interrupt occurs, the P1 parameter is left in the
B register, the A register is cleared, and the Program controller PIR register is backed up.

Memory Address Parity Interrupt

This interrupt is invoked if the Memory Controller detects an even number of ADDRESS and CONTROL bits being
transmitted between the Data Processor/MLIP and a system memory module. Should this interrupt occur, the P1 para-
meter is left in the B register, the A register is cleared, and the Program Controller PIR register backed up.

Invalid Address Local Interrupt

This interrupt is invoked by the Memory Controller if within 8 clock-periods it does not receive acknowledgement of a
local memory request. Failure to acknowledge indicates an attempt to access a non-existent local memory module.
Consequently, the P1 parameter is left in the B register, the A register is cleared, and the Program Controller PIR register
is backed up.

Stack-Underflow Interrupt

This interrupt is invoked if during a stack adjustment operation the Stack Controller detects an attempt to change the
value of the IC memory S register to a value that is less than that of the F register. If this interrupt occurs, the P1 para-
meter is left in the B register, the A register is cleared, and the Program Controller PIR register is backed up.

Invalid Program Word Interrupt

This interrupt is invoked if any of the following condiditionsboccur:
1. A word with a TAG not equal to 3 is placed in the P register for execution (except in TABLE EDIT Mode).
2. The VARIANT operator syllable (95) is followed immediately by another VARIANT operator syllable (95).

3. The Data Processor is in EDIT MODE and a family strobe for a family other than an EDIT MODE operator
family is emitted.

If this interrupt occurs the P1 parameter is left in the B register, the A register is cleared, and the Program Controller
PIR register is backed up.

5010986 5-17

B 6900 System Reference Manual
System Concept

Memory Address Residue Interrupt

This interrupt is invoked when the Memory Controller detects that an error is present in the MAR/LAR address
registers. Residue checking is a method of detecting abnormalities in the Address Adder and/or the IC memory address
registers. Any activity of the Address adder that results in the setting of a Residue Interrupt prevents a memory access
cycle from being initiated by the Memory Controller.

Read Data Multiple-bit Interrupt

This interrupt is invoked when the Memory Controller detects more than a single bit in error during the ERROR
DETECTION/ERROR CORRECTION part of a memory READ cycle operation. Multiple bits in error are not correctable;
thus, when such an error is detected the Memory Controlier causes an ALARM interrupt to occur.

Invalid Address-Global Interrupt

This interrupt is identical to the INVALID ADDRESS-LOCAL interrupt previously defined, except that the invalid
address is for a Global memory module instead of a local memory module. Refer to the description of an INVALID
ADDRESS-LOCAL interrupt.

Global Memory Not-ready Interrupt

This interrupt is invoked when a memory access is initiated on a Global memory module, and when the Global inemory
madule does not properly respond to the control of the Memory Controller logic.

HARDWARE INTERRUPTS

Figures 5-12 through 5-14 define the Interrupt Stack parameter word layouts for HARDWARE Interrupts. Figure 5-12
shows the word layout of the P1 parameter, Figure 5-13 shows the word layout of the P2 parameter, and Figure 5-14
shows the word layout of the P3 parameter for a HARDWARE Interrupt. Table 5-2 lists the fields in the P3 parameter
that are used for each type of HARDWARE Interrupt.

5-18

ADDER

0 0 0 1 0 X 0 0 (/] RESI,
» s » ozl gl sl e w 7| 5"
ol olof 1|0 o) o] o] o]eam
2 w v ol o E°R

. | ram

° 0| 9 o ° X o |G
Bl Al a3) 8| ERR.1

~ PROM

o] ojo]|o}|o}]o | Gesi. | caro
j}”\ ; . S ERm. | PAR.
ul 2 3w ol emnio

MV4176

26 = 1 = HARDWARE INTERRUPT TYPE INTERRUPT
19 = RETRY FLIP-FLOP STATE
= 1 = RETRY FF ISSET
= 0 = RETRY FF IS RESET
17 = P3PARAMETER CONSISTENCY FLAG
= 1 = PSPARAMETERS ARE INCONSISTENT
= 0 = P3PARAMETERS ARE CONSISTENT
X = 10RO

Figure 5-12. HARDWARE Interrupt P1 Parameter Word Layout

B 6900 System Reference Manual
System Concept

0 = J COUNT VALUE IS PRESENT

47 43 39, 35 3 27 23 19 15, 11 7 3
Y THE TOP-OF STACK WORD
8 42 3L AT THE TIME THE INTERRUPT—4—10 & 2
0 OCCURRED
45 L] 37 33 2 2 21 17 13 9 5 1
0
4 40| 36 32 2 2 2 16l 12 8| 4 0
MVa177
Figure 5-13. HARDWARE Interrupt P2 Parameter Word Layout
oo oo VE | o M
& 43 3 3s) 3 27 2] p _1%? Jéf 1 7 3
0 0 0 0 0 TE R J COUNT |
4%] 38 ﬂ-ﬁﬁ?ﬁ%ERﬁ nh 814 0 14 ml OR sl 2
D B MICROMODULE |
1 0 o.|0 0 E E E#ADDRESS
45 41 37 33 2 25) 21 17 13, 9 5 !
0 0 0 0 o v
sl a0l 36l sl | o 2] v w2 8 4 0
VE = VECTOR MODE
TE = TABLE EDIT MODE
E = EDIT MODE
\' = VARIANT MODE
M = MODED

Mv4178

Figure 5-14. HARDWARE Interrupt P3 Parameter Word Layout

Table 5-2. HARDWARE Interrupt P3 Parameter Fields Usage

Interrupt Type

PROM Card Parity
RAM Card Parity
Bus Residue
Compare Residue

HARDWARE INTERRUPT DESCRIPTIONS

1 = MICRO MODULE ADDRESS IS PRESENT

Fields Present in the P3 Parameter Word

Card Number, OP Code, Strobe, J Count
Card Number, OP Code, Strobe, J Count

OP Code, Strobe, J Count
OP Code, Strobe, J Count

A description of each HARDWARE interrupt that can be detected by the Interrupt Controller follows. These descriptions
define the most likely reason for the occurrence of the interrupt. The Interrupt Stack parameter conditions are the same
for a HARDWARE interrupt as those described previously for an ALARM interrupt (refer to the ALARM INTERRUPT
DESCRIPTIONS subsection in this section).

5010986

5-19

B 6900 System Reference Manual
System Concept

PROM Card Parity Interrupt

The CPU contains many PROM component devices which are used to hold preselected microcodes and addresses. Each
time a PROM device is addressed, the output of the PROM is tested for parity. If a PROM device parity error condition
is detected by the test, a PROM Card Parity Interrupt is invoked. The parameters for the interrupt contain the address
of the CPU card package on which the PROM parity condition was detected.

RAM Card Parity Error Interrupt

The CPU contains RAM memory devices. Each time a RAM memory device is accessed, the output of the device is
tested for a parity error condition. If a RAM parity error condition is detected during the test, a RAM Card Parity

" Error interrupt is invoked. The interrupt parameters contain the CPU card package location of the RAM device that
caused the parity error condition.

Bus Residue Interrupt

The Residue Generator card packages of the CPU test the residue bits from the Z8 and Z9 busses. These busses are
inputs to the ADDRESS ADDER logic of the CPU. If an error condition is detected in the Bus Residue value(s), a
Bus Residue interrupt is invoked, and the residue bit-value that causes the interrupt to be detected is placed in the
Interrupt Stack parameters.

Adder Residue Interrupt

The CPU RESIDUE ADDER operates in conjunction with the CPCU ADDRESS ADDER logic. The residues of the
address inputs to the ADDRESS ADDER circuit, present at the RESIDUE ADDER inputs, are tested for residue value
errors. If a residue value on the Z8 or Z9 contains a value error, an Adder Residue interrupt is invoked. The residue
value that caused the value error to be detected is remembered by storing it in the Interrupt Stack parameters.

Compare Residue Interrupt

Residue values present at the input to the RESIDUE ADDER in the CPU are added, and a sum of residues is produced.
At the same time that the RESIDUE ADDER is adding two residue values, the ADDRESS ADDER is adding the address
values that correspond to the residue values in the RESIDUE ADDER. The output of the ADDRESS ADDER includes a
new residue sum, which is the sume as the sum of residues from the RESIDUE ADDER. The two new residue sums, one
from the RESIDUE ADDER and the other from the ADDRESS ADDER, are compared. If the two new residues are not
the same, a Compare Residue Interrupt is invoked. The residue comparator output is saved by placing its value in the
Interrupt Stack parameters.

GENERAL CONTROL INTERRUPTS

Figures 5-15 through 5-17 define the Interrupt Stack parameter word layouts for GENERAL CONTROL interrupts.
Figure 5-15 shows the P1 parameter, Figure 5-16 shows the P2 parameter, and Figure 5-17 shows the P3 parameter.
Table 5-3 shows the fields that are present in the P3 parameter for each type of GENERAL CONTROL interrupt.
GENERAL CONTROL INTERRUPT DESCRIPTIONS

A description of each GENERAL CONTROL interrupt detected by the B 6900 Interrupt Controller follows. These
descriptions define the most likely reason for the occurrence of the interrupts. The Interrupt Stack parameter conditions

are the same for a GENERAL CONTROL interrupt as those described previously for an ALARM interrupt (refer to the
ALARM INTERRUPT DESCRIPTIONS subsection in this section).

5-20

B 6900 System Reference Manual
System Concept

READ
0 0 0 0 0 0 0 X 0 0 0 | ReTA,
a7 a3 £ 35 3 27 23 19 15 1 7 3
0 X 1] 0 0 0 o 1 X 0 0 0 0
46 2 3 34 30 26 2 18 14 10 6 2
ADDR,

1 0 0 0 0 0 0 0 0 0 o |RreRY| @
45 4 37 33 2 P 7 17 13 9 5 1

READ READ
o | x| o o[o | o o | o 0 0 | 0 |33tk |Scie
44 20 36 32| 28 2a 20 1 RY) /BT 4|¥T o

22 =1 = GENERAL CONTROL TYPE INTERRUPT
46 = PRESENCE BIT DURING VALUE CALL OPERATION FLAG
= 1 = VALUE CALL SYLLABLE EVALUATION IN PROCESS
= 0 = NO VALUE CALL SYLLABLE EVALUATION IN PROCESS
44 = VECTOR MODE OPERATION FLAG
= 1 = VECTOR MODE OPERATION IN PROCESS
= 0 = NO VECTOR MODE OPERATION IN PROCESS
19 = RETRY FLIP-FLOP STATE
= 1 = RETRY FF SET
= 0 = RETRY FF RESET .
18 = TYPE OF GLOBAL MEMORY ERROR (ONLY USED FOR
GLOBAL MEMORY ERRORS)
= 1 = GLOBAL SCAN OPERATION ERROR
= 0 = GLOBAL MEMORY OPERATION ERROR
X =10RO0

MVa179

Figure 5-15. GENERAL CONTROL Interrupt P1 Parameter Word Layout

A7) 43 39, 35 31 27 23 19 15, 1 7 3

0 THE VALUE OF THE
“® 2 | TOP-OF-STACK WORD 18 14 10 6 2
[AT THE TIME THE

0 INTERRUPT OCCURRED
45 41 37 33 2 | 21 17 13 9 5 1
0
44 40 36 32 28 24 20 16 12 8 4 0
MV4180

Figure 5-16. GENERAL CONTROL Interrupt P2 Parameter Word Layout

5010986 5-21

B 6900 System Reference Manual
System Concept

0 0 0 0
a7 43 39 35 31 27 23| 19 15} 1 7 3
R CHANGE
0 v E IN 0 0 0 0
4! __MEMOR 34 k) 26} CHECK & 14 10 [2
ADDRESS ST miT
! vatue ¢ 12 0}¢
3 4 1) 33 2] S | 21 17 13 9 5 1
U
0 M 0 0 0 0 0
“ 40 3 32 2] 24_J 20] 12 8 4 0
RESSUM = RESIDUE OF ADDRESS
MV4181

Figure 5-17. GENERAL CONTROL Interrupt P3 Parameter Word Layout

Table 5-3. GENERAL CONTROL Interrupt P3 Parameter Field Usage

Interrupt Type Fields Present in the P3 Parameter Word
Read Data Single-bit Address, RES SUM, Change In Check Bits
Read Data Retry ' Address, RES SUM
Read Data Check-bit Address, RES SUM, Change In Check Bits
Address Retry . Address, RES SUM

Read Data Single Bit Interrupt

The Read Data Single Bit interrupt is invoked when the Memory Controller ERROR DETECTION/ERROR
CORRECTION circuit detects and corrects a single-bit error in memory READ data. The bit-in-error is corrected and

the program in progress continues as if no error had been detected. As a result of the Interrupt Controller operation, data
about the single-bit error is recorded in the SYSTEM/SUMLOG file. This information is used by maintenance personnel
to anticipate and analyze potentially serious memory data failures (refer to multiple-bit error ALARM Interrupt sub-
section in this section).

Read Data Retry Interrupt

A Read Data Retry interrupt is invoked when the Memory Controller causes READ data to be restrobed onto the CPU/
Memory Module interface bus. Restrobing of READ data onto the bus is caused by the Memory Port Control logic sens-
ing a parity error on the interface bus. If restrobing the data on the bus corrects the parity error, a retry interrupt is
invoked; otherwise, an ALARM Interrupt is invoked. Retry interrupts are used for system maintenance analysis, as
described for single-bit errors above.

522

B 6900 System Reference Manual
System Concept

Read Data Check Bit Interrupt

A memory READ word contains eight bits that are used for an ERROR DETECTION/ERROR CORRECTION check
code. If an error is detected in the check code during a memory READ operation and if no error is present in the READ
data, then the Read Data Check Bit Interrupt is invoked. This error is written into the SYSTEM/SUMLOG the same as
the Read Data Single Bit Interrupt, and the program in progress is continued as if no error had occurred (refer to Read
Data Single Bit Interrupt above). If a READ data bit is also in error, then a muliiple-bit error exists (see the ALARM
Interrupt subsection of this section), and the ALARM Interrupt is invoked instead of the GENERAL CONTROL
Interrupt.

The ERROR DETECTION/ERROR CORRECTION check codes of the B 6900 system are internal codes of the operating
system. They are not available to a system user, except through use of the Memory Tester logic of the CPU.

Address Retry Interrupt

An Address Retry Interrupt is essentially the same as a READ Data RETKY Interrupt, except that it is invoked if a
memory address is in error instead of a data bit in error (refer to Read Data Single Bit Interrupt subsection of this
section). If the address retry is successful, the program in process is continued the same as though no error existed. If
the address retry is not successful, then an ALARM Interrupt is invoked instead of the GENERAL CONTROL Interrupt.

EXTERNAL INTERRUPTS

Figures 5-18 through 5-20 define the Interrupt Stack parameter word layouts for EXTERNAL Interrupts. Figure 5-18
shows the P1 parameter, Figure 5-19 shows the P2 parameter, and Figure 5-20 shows the P3 parameter. The B 6900
system only utilizes one EXTERNAL Interrupt, which is the I/O Finished Interrupt.

S I ¥ 33 » P 2 17, 13 9 5 1
v} 0 0 0 0 0 0 1 o 0 I 0 1 1

“ L) 36 32| 28] 24 20 16l 2l 8 4 0

MV4182

Figure 5-18. EXTERNAL Interrupt P1 Parameter Word Layout

T

oooooooooJooo
150 11

47 43 3 35, 3 27 23 19

0 0 0 0 0 0 0 0 0 0 0| 0 0
46 Py 38 34) 2 2 18 14 10 6 2

445+ 4 37 33 2 P 21 17 13)] 5 1
0 0 0 0 0 0 Oﬁ] 0 o 0 0 0 0
24

Mv4183

Figure 5-19. EXTERNAL Interrupt P2 Parameter Word Layout

5010986 5-23

B 6900 System Reference Manual
System Concept

4 4) 3s 3 7 23 19 15} 1 7 3
0 0 0 0 0 0 0 0 0 0 0 0 0
46 4 38 34) V.3 22 18 14 10 6 2

Mv4184
Figure 5-20. EXTERNAL Interrupt P3 Parameter Word Layout

1/O Finished Interrupt

An I/O Finished Interrupt is invoked at the conclusion of a peripheral device operation, when the IOCB for the I/O device
operation specifies that such an interrupt is required. Word zero of the IOCB (the Control Word, CW) contains two bits
which may specify that an I/O Finish Interrupt is required.

If bit-3 of the Control word in an IOCB is a binary 1, an I/O Finish Interrupt is ;equired at the conclusion of the
peripheral device operation. '

If bit-2 of the Control Word in an IOCB is a binary 1, an I/O Finish Interrupt is requiréd at the conclusion of the
peripheral device operation.

SYLLABLE DEPENDENT Interrupts

Figures 5-21 through 5-27 define the Interrupt Stack parameter word layouts for SYLLABLE DEPENDENT Interrupts.
Figure 5-21 shows the word layout of the P1 parameter. Figures 5-22 through 5-26 show the variations in the word
layout of the P2 parameter. Figure 5-27 shows the word layout of the P3 parameter. Table 54 lists the fields in the
P3 parameter that are used for each type of SYLLABLE DEPENDENT Interrupt.

SYLLABLE DEPENDENT Interrupt Classes

There are 2 classes of SYLLABLE DEPENDENT Interrupts. One class consists of interrupts where the Program Control-
ler register values are consistent, after the interrupt is invoked by the Interrupt Controller. The other class consists of
those interrupts where the Program Controller register values are not consistent after the interrupt is invoked. The
Program Controller register values in question are the PBR, PIR, and PSR registers.

Consistent Program Controller register values are backed up to point at the beginning of the program operator code in
process when the interrupt was detected by the Interrupt Controller. Inconsistent register values may or may not have
been backed up in a consistent manner.

The P1 parameter word (Figure 5-21) indicates the class of a SYLLABLE DEPENDENT Interrupt.

SYLLABLE DEPENDENT Presence-Bit Interrupts

Presence Bit Interrupts are a special class of SYLLABLE DEPENDENT Interrupts. To make the B 6900 a “Virtual”
system presence-bit interrupts are used in conjunction with Descriptor. The P1 parameter for a SYLLABLE DEPENDENT

Interrupt (Figure 5-21) contains bits that identify the nature of a possible Presence-bit operation that was in process when
the SYLLABLE DEPENDENT Interrupt was invoked.

5.24

B 6900 System Reference Manual
System Concept

s 0 INT. | BASE | EXP.
E
0 0 v ¢ | 0 X X 0 |mmer | _OF OVER

41 43 39 35 31 27 23 19 15 1 7 3
» SEG. | INT. DIV.
0 RT 0 0 0 0 0 0 0 0 ARRAY | OVER | gy
FLOW | ZzERmO
46 42 38 34 30 26{ 22 8 14 10 [2
CONF. | SsEQ. INV. INV.
1 RT 0 0 0 0 0 0 0 | ERROR | ERROR | INDEX | OPND
45 41 37 33 2 25 27 17, 13 9 5 1
i STACK | PRES. | Exp. | mEM.
0 X 0 0 0 0 X 0 0 OVER BIT | UNDER | PROT.
FLOW FLOW
44 40 36 32 28 24 20 16 12} - 8 4 0
BIT BIT
24 23 = SYLLABLE DEPENDENT TYPE INTERRUPT
0 1 = PIR,PSR, & PBR VALUES ARE INCONSISTENT
1 0 = PIR,PSR, & PBR VALUES ARE CONSISTENT
BIT 'BIT BIT
46 45 39 = PRESENCE BIT INTERRUPT PARAMETERS
0 0 1 = VECTOR STACK CAUSED INTERRUPT, (PROCEDURE
DEPENDENT) THE EXIT OPERATOR FLOW WAS
USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.
e 1 1 = VECTOR STACK CAUSED INTERRUPT, (PROCEDURE
DEPENDENT) THE RETURN OPERATOR FLOW WAS
USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.
1 0 0 = VALUE CALL OPERATOR CAUSED INTERRUPT,
(DATA DEPENDENT) THE EXIT OPERATOR FLOW
WAS USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.
1 1 0 = VALUE CALL OPERATOR CAUSED INTERRUPT
{DATA DEPENDENT) THE RETURN OPERATOR
FLOW WAS USED TO ESCAPE FROM THE PRESENCE
BIT INTERRUPT.
BIT
44 = VECTOR MODE OPERATION FLAG BIT
= 0 = VECTOR MODE OPERATION NOT IN PROCESS
= 1 = VECTOR MODE OPERATION IN PROCESS
BIT
19 = RETRY FLIP-FLOP STATE
= 0 = RETRY FF RESET
= 1 = RETRY FFSET
X = 10RO

MV4185

Figure 5-21. SYLLABLE DEPENDENT Interrupt P1 Parameter Word Layout

5010986 525

B 6900 System Reference Manual
System Concept

a| a) m x| s oz 2l a6l a8l on 7
0 THE VALUE OF THE

. a2 8 34| TOP-OF-STACK WORD 14 10 5

AT THE TIME THE

0 INTERRUPT OCCURRED

o w| 3| 3| o 2 2 ul w3l e 5
0

“ 0 3 32 P 24 20 18] 12 8 4

NOTE

THE FOLLOWING SYLLABLE DEPENDENT
INTERRUPTS USE A DIFFERENT P2 PARAM-
ETER FORMAT:

e SEQUENCE ERROR INTERRUPT
DURING FAMILY C OPERATIONS.

e SPLT OPERATOR (FAMILY K
VARIANT 9543} INTERRUPT.

e JOIN OPERATOR (FAMILY K
VARIANT 9542} INTERRUPT.

e SEQUENCE ERROR INTERRUPT FOR |
STRING OPERATIONS.

SEE SPECIAL P2 PARAMETER WORD LAYQUTS
FOR THESE TYPES OF SYLLABLE DEPENDENT

INTERRUPTS, WHICH FOLLOW.
MV4186

Figure 5-22. SYLLABLE DEPENDENT Interrupt P2 Parameter Word Layout

47 43 39 35 ki) 27 23] 19| lg* 1 7
FOR FAMILY C OPERATIONS

0 THIS PARAMETER CONTAINS

) 2, 3 THE VALUE OF THE WORD 14 10)
0 THAT CAUSED THE SEQUENCE

&5 41 37 ERB.OR e o <1 1/ i3 g 5
0

“ 4 3% 32 28 24 20 16 12 8 4

MV4187

Figure 5-23. SYLLABLE DEPENDENT Sequence Error P2 Parameter Word

&7 43 3B 35, 31 27 23 i9 ié& il 7 3
0

o ol o THEVALUEOFTHEWORD | 1 |

T THAT CAUSED THE INTERRUPT

0

o o w| w| w s oal | a3 9 5
0

aa] aol 36| 32| o8| 2a] 20 e 2 8 4

Mva188

Figure 5-24. SYLLABLE DEPENDENT SPLT ($543) Operator P2 Parameter

5-26

5010986

B 6900 System Reference Manual

System Concept

47 43 39 35 31 27 23] lé 41_51 11 7 3
0 THE INTEGER VALUE OF THE

‘%l 42 38| NUMBER OF STRING WORDS 14 10 [2

THAT MUST BE LEFT IN THE

0 STACK FOR OPERATOR RESTART

as} 4 37 33 2| 2% 2 17 13 9 5 1
0

44 40/ 36 32 28 24 20| 16 12 8 4 0

MV4189 X=1or 0

Figure 5-25. SYLLABLE DEPENDENT JOIN (9542) Operator P2 Parameter

47 43) 35 3 27 23 19 15| 11 7 3
0
@l «| 3| THE VALUE OF THE WORD w6l e 2
— | THAT CAUSED THE INTERRUPT
0
4% L] 37 33 2 P P 17 13] 9 5 1
0
a“) 36 32 p:) I L) 20 16 12 8 4 [
MV4190
Figure 5:26. SYLLABLE DEPENDENT Segmented Array Interrupt P2 Parameter
0 VE o M
&1 a » 35 3 27 23] p a9 ?_ 15 1 7 3
0 o |TE]c | R J ¢°UNT{
€ MEMORY _ . 3 26 228 ~i3f O s 10| OR & 2
I~ ADDRESS 1 O [& [MicROMODULE
1 0]l E] g | E | ADDRESS
45) 41 37 33 2 . 21 17] !3J 9 5 1
0 0 lv
a“ 0 36 32| 28] 2e 20] 12 8 4 0
VE = VECTOR MODE
TE = TABLE EDIT MODE
E = EDIT MODE
Vv = VARIANT MODE
M = MODED :

MV4191

Figure 5-27. SYLLABLE DEPENDENT Interrupt P3 Parameter Word Layout

0 = J COUNT VALUE IS PRESENT.
1 = MICRO MODULE ADDRESS IS PRESENT

B 6900 System Reference Manual
System Concept

Table 54. SYLLABLE DEPENDENT Interrupt P3 Parameter Fields Usage

Interrupt Type Fields Present in the P3 Parameter Word

Programmed Operator
Memory Protecied
Invalid Operand
Divide By Zero
Exponent Overflow
Exponent Underflow
Invalid Index
Integer Overflow
Base of Stack
Presence Bit
Sequence Error
Segmented Array
Interval Timer

Stack Overflow
Confidence Error

OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP-Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count

SYLLABLE DEPENDENT INTERRUPT DESCRIPTIONS

A description of each type of SYLLABLE DEPENDENT Interrupt that can be detected by the B 6900 Interrupt Control-
ler follows. These descriptions define the most likely reason for the occurrence of the interrupt, and also describe the
condition of the Top-of-Stack at the end of the Interrupt Coniroiler iogic operation.

Programmed Operator Interrupt

A Programmed Operator Interrupt is invoked when the Program Controller executes an invalid operator code (see
Primary Mode Operator NVLD, Code = FF). This Interrupt is used as a “communicate with system” instruction by a
user program.

Memory Protect Interrupt
The memory Protect Interrupt is invoked by the Memory Controller logic, under the following conditions:

1. A STORE, OVERWRITE, READ/LOCK, or STRING TRANSFER operation is attempted using 2 Data
Descriptor that has the READ ONLY bit (Bit-43) set. The operation is terminated prior to the memory
access operation, leaving the Data Descriptor (the addressing word) in the A register.

2. A STORE operation is attempted into a memory word address that has the PROTECT-BIT (Bit-48) set.
The PROTECT-BIT is detected in the “flashback word” in the C register and, when set, the WRITE
operation is not performed. Instead, the original contents of the memory address (the flashback data) is
restored in the memory address. The memory address word that was used to access the protected memory
word is left in the A register.

B 6900 System Reference Manual
System Concept

Invalid Operand Interrupt

The Invalid Operand Interrupt is invoked when an operator tries to use the wrong type of CONTROL WORD or data
word. B 6900 Operators test the TAG fields of all operands used, to insure that the words meet the necessary require-
ments for the particular type of operation performed. If an operand TAG does not meet the requirements, the FAMILY
Control logic invokes the Invalid Operand Interrupt.

Divide-By-Zero Interrupt

The Divide-By-Zero Interrupt is invoked by the Arithmetic Controller, when a Divide operation is attempted with the
Divisor equal to zero. The Divide operation is terminated prematurely, leaving the A register cleared and the P1 para-
meter in the B register. The Program Controller PSR and PIR registers are backed up to point at the Divide Operator
code syllable.

Exponent Overflow Interrupt

The Exponent Overflow Interrupt is invoked by the Arithmetic Controller when the positive capacity of an EXPONENT
field in an arithmetic operand is exceeded (refer to Exponent Underflow, below). The arithmetic operation in process
when the interrupt is invoked is prematurely terminated. The A register is left cleared, and the P1 parameter is left in
the B register.

Exponent Underflow Interrupt

The Exponent Underflow Interrupt is similar to an Exponent Overflow Interrupt, except for the value of the Exponent
SIGN-BIT. The SIGN-BIT for an Exponent Underflow Interrupt is SET and, consequently, an Exponent Underflow
Interrupt indicates that the negative capacity of an operand EXPONENT field has been exceeded (refer to the Exponent
Overflow Interrupt subsection of this section).

Invalid Index Interrupt

The Invalid Index Interrupt is invoked when an attempt is made to index a memory address by less-than-zero, or by a
value that is equal-to/greater-than the upper-bound (LENGTH) of a Descriptor. Invalid Index Interrupts can be invoked
by various operator codes in Families A, B, or C.

Integer Overflow Interrupt

The Integer Overflow Interrupt is invoked when an attempt is made to integerize an operand, and when the integerized
value would be greater than the maximum value for an integer. In general, this interrupt occurs during the exponent
adjustment part of the Integerize algorithm.

The Family A Integerize operator is frequently pseudo-called by other Family operators. If another family pseudo-calls

the Intergerize operator and the Integerize operator fails because of an Integer Overflow condition, the operator that
pseudo-called the Integerize operation is terminated and the Integer Overflow Interrupt is invoked.

Bottom Of Stack Interrupt
A Bottom Of Stack Interrupt is invoked when a Family C EXIT or RETURN operator causes the operating program

stack pointers to point at the base of the program stack area in memory. If this interrupt is invoked, the Return
Control Word (RCW) used during the EXIT or RETURN operation is left in the A register.

5010986 529

B 6900 System Reference Manual
System Concept

Presence Bi: Interrupt

A Presence Bit Interrupt is invoked when an attempt is made to access control information or data, and the information
or data is not present in local or Global memory. All operator codes that use Data or String Descriptors to address
memory have the ability to invoke this interrupt.

Special consideration is given to the class of a Presence Bit Interrupt, to determine whether it is Procedure Dependent
or Data Dependent. The two classes of Presence Bit Interrupts require different handling for the Program Controller
PIR and PSR register values. Therefore, there are essentially two ways to handle a Presence Bit Interrupt, depending on
its class.

DATA-DEPENDENT PRESENCE BIT INTERRUPTS

A data-dependent Presence Bit Interrupt is invoked when the Data Processor is seeking to access data in the currently
operating programs’ procedure environment. The Presence Bit Interrupt procedure makes the absent data present in sys-
tem memory, and then the interrupted program procedure is resumed. The Program Controller PIR and PSR register
values are backed up by the interrupt procedure to point at the operator that invoked the Presence Bit Interrupt. When
the interrupted program procedure is resumed, the operator that invoked the Presence Bit Interrupt is executed again;
and this time, the data that was missing is present. Therefore, no Presence Bit Interrupt is invoked.

PROCEDURE-DEPENDENT PRESENCE BIT INTERRUPTS

A procedure-dependent Presence Bit Interrupt is invoked, (1) if the Data Processor is ENTERing into a new operating
program procedure, or (2) is EXITing/RETURNing from/to an old operating program procedure and the program proce-
dure is not present in system memory. A procedure-dependent interrupt is also invoked if the Data Processor attempts
to access a non-present Segment Descriptor during a display update sequence.

The Presence Bit Interrupt procedure makes the absent segment code present in memory, and terminates by pseudo-
calling the EXIT operator flow into operation. The EXIT operator sequences allow the Presence Bit Interrupt procedure
to return control of CPU operations to the interrupted procedure with the segment code present in memory.

The selection of an EXIT or RETURN operator to escape from the interrupt handler procedure depends on whether or
not a parameter (IRW or Data Descriptor) is left on top of the interrupted program procedure stack. Some types of
operators require such a parameter if interrupted for a Presence Bit Interrupt, while others do not. If a parameter is
to be left on the stack, then the RETURN operator is used to escape from the interrupt handler procedure; otherwise,
the EXIT operator is used.

When a procedure-dependent Presence Bit Interrupt occurs during an ENTER, EXIT, or RETURN operator flow, the
first operator of the absent code segment has not yet been fetched from memory. The initial PIR and PSR values from
the control word that invoked the procedure (a PCW if the interrupt occurred during an ENTER operator, or an RCW if
the interrupt occurred during an EXIT or RETURN operator) are saved in the RCW of the Presence Bit Interrupt stack.
The EXIT operator (pseudo-called at the end of the interrupt procedure) references the RCW in the Presence Bit
Interrupt stack. Therefore, initial PIR and PSR values of a procedure which is Presence Bit interrupted are saved across
the intervening operation of the interrupt handling procedure, and are used when the interrupted procedure is resumed.

5-30

B 6900 System Reference Manual
System Concept

Sequence Error Interrupt

A Sequence Error Interrupt is invoked during an attempt to access a Mark Stack Control Word (MSCW), if the word
accessed does not have a TAG value of 3 (hex). A Sequence Error implies that the stack linkage mechanism, or the
stack history of the stack being accessed is in error. A Sequence Error may occur at various places in the flow of an
operation, and may therefore occur before or after the place where the Program Controller register values of PBR, PIR,
and PSR are adjusted. If the interrupt is invoked before the Program Controller values are adjusted, bit-24 of the

P1 parameter is SET. If the interrupt occurs after the adjustments have been made, then bit-23 is SET in the P1 para-
meter, and bit-24 is RESET. Bit-23 and bit-24 are never SET at the same time in the P1 parameter word for a
Sequence Error Interrupt.

Segmented Array Interrupt

A Segmented Array Interrupt is invoked by a string operator when the upper-limit boundary of an array vector is
detected. Array vectors for string operations are divisions of data into groups (segments) of up to 256 data words,
bounded by Memory Link words. A Memory Link word is a control word that has the Memory Protect, Bit48, SET. A
segment of string data is accessed by means of a Data Descriptor.

Each word read from memory during a string operation is checked to see whether bit48 (Memory Protect bit) is SET.
If bit-48 is SET, it implies that an upper-limit boundary memory link was accessed, and a Segmented Array Interrupt is
invoked.

String operator interrupts leave a special value in the P2 parameter word of the interrupt stack. This P2 value is an
integer number that defines how many data words (below the interrupt stack) must be left in memory to restart the
string operation.

Restarting a string operation after a Segmented Array Interrupt has occurred implies a new segment of data words has
been brought into memory. A data string upon which a string operation is performed may not conform to the 256 word
limit for segmented array vectors. This condition, when present, requires that data from the previous segment be present
in memory to restart the string operation.

Interval Timer Interrupt

An Interval Timer Interrupt is invoked when the Interval Timer times out. The Interval Timer circuit is located in the
MLIP logic, and is initiated into operation by the execution of a Set Interval Timer (SINT, $545) operator. This timer
is used by the system software for time slicing operations. The interrupt from the Interval Timer allows the MCP to
detect the end of one time slice, and to begin a new time slice. The SINT operator allows the MCP to control the
length of a time slice, by presetting a time counter to a predetermined time increment count. The timer counts from
the preset count to a maximum count, and then invokes the Interval Timer Interrupt.

Stack Overflow Interrupt

A Stack Overflow Interrupt is invoked when the IC Memory Address S register value is equal to the IC Memory Address
LOSR register value. This interrupt is invoked because the currently operating procedure attempted to utilize more
memory space for its program stack than was allocated for the program by setting the value of LOSR.

Confidence Error Interrupt

A Confidence Error Interrupt is invoked when the Confidence test routine is being executed, and a test failure or an error
condition is detected by the Confidence test. The Confidence test is automatically initiated into execution when the Data
Processor is in an IDLE state, and when a software procedure is not being processed. The occurrence of a Confidence
Error Interrupt causes data about the test failure or error condition to be written into the SYSTEM/SUMLOG disk file.

B 6900 maintenance personnel utilize the SUMLOG data to analyze system failures and repair system defects.

5010986 5-31

B 6900 System Reference Manual
System Concept

The Interrupt Controller formats the data for a Confidence-test failure or error into the interrupt stack parameters, and
the Interrupt Handling procedure of the MCP writes the parameters into the SYSTEM/SUMLOG disk file.

String Operators

String operators control the character accessing, formatting, and editing capability of the B 6900 system. The string
operators are comprised of the operators in strobes F, G, and H, which are grouped in a “super-family” designated
family U. Family U operators share a common “T” register (operator code register), a common logical sequence counter,
and a common group of logical flip-flops.

The most significant advantage from collecting all string operators into a single super-family is that the common logical
functions that all string operators share are not duplicated in each family controiler. For instance, all string operators
require a method for accessing local memory and for addressing the characters of data within a memory word. A typical
string operator must be capable of addressing a number of different words in memory in order to perform an editing
operation on a string of data characters. Moreover, once the editing has been performed, the word must be stored in
memory so that the same editing can be performed on other words of data. The logic circuits and operator functions
required to perform this type of operation are common, and are thus collected into the single super-family U in the

B 6900 system.

Memory Controller

The memory controller in the CPU (refer to Figure 5-2) services requests for access to memory resources of the system
from the data processor, the look ahead logic, and the MLIP. These three modules are all located within the CPU
cabinet, and share a common path to/from memory. Internal logic circuits of the memory controller establish when each
of these three modules has priority for accessing system memory resources.

When the MLIP is processing an I/O operator and a need for a burst cycle exists, the MLIP has first priority for a mem-
ory access request. This condition causes the data processor to suspend its operation while the MLIP obtains access to
memory. The data processor will suspend its operation until the MLIP completes its memory access. At the conclusion
of the MLIP memory access operation, the data processor will continue its operations at the place where the suspension
occurred.

The order of priority in accessing memory is MLIP, processor, and look ahead logic, in that order.

The memory controller logic has the capability to store two requests for access to memory. The storing of access requests
consists of remembering which requests were received over the Z12 memory control bus. The memory controller exam-
ines the contents of the two request registers (RQR and RQT) to determine which request has the higher priority for the
next access to memory.

The logic mechanism used by the memory controller to remember what memory requestor units require an access to
memory consists of two request registers located in the A input logic to the memory control. When a request for a
memory access is transmitted to the memory control, the request (bits D:14 on the Z12 bus) is stored in the RQT
register (13:14). If RQT contains a request but RQR does not, the request in RQT is placed in RQR. This frees RQT
to accept the next memory request in sequence. Each time a memory request is to be processed the memory controller
will examine both the RQT and the RQR registers to determine which of two possible requests for access to memory has
the higher priority. As one of the two possible memory requests are performed, the stored request information in the
RQT register (or alternatively the RQR register) is reset to binary zeroes. This removes a request presently being
executed from further contention for an access to memory, and frees the register that was reset to accept a new access
request.

5-32

B 6900 System Reference Manual
System Concept

The memory controller monitors al! memory requests for errors. If an error condition is detected during a memory bus

operation, the memory controller will cause an interrupt to be present in the data processor interrupt controller. The
memory controller passes parameters that describe the type of interrupt that occurred to the interrupt controller. The
interrupt handling procedure of the MCP causes the interrupt parameters from the memory controller to be written in
the SYSTEM/SUMLOG, thus preserving a record of memory errors.

Control State/Normal State

A B 6900 data processor has the ability to perform in either normal or control state. In control state, all external inter-
rupts are injibited, and a few privileged operators are enabled. The Inhibit Interrupt Flip-Flop (ITHF) must be set for
processing to occur in control state.

The data processor switches to control state upon entering a procedure by means of a control state program control
word (PCW). ’

MESSAGE LEVEL INTERFACE PROCESSOR

The Message Level Interface Processor MLIP module (see Figure 5-2) is essentially a peripheral device path control
mechanism. The MLIP is semi-independent, and can initiate an I/O device path control function only in response to
execution of a Communicate Universal I/O (CUIO) operator by the Program Controller. The MLIP logic proceeds in an
independent manner after it is initiated by a CUIO operator, until the 1/O device operation is terminated. The MLIP
logic, if specified, causes an external interrupt in the Interrupt Controller logic upon termination of an I/O device
operation.

The MLIP performs additional system functions, such as establishing the general environment for I/O path control, and
system-timing functions. The I/O path control environment is established by use of path control logic circuits that can
be SET/RESET by specific MLIP control logic. System-timing functions such as Time-of-Day and Interval-Timer logic
are controlled by execution of specific system Program Controller operator codes. The MLIP also contains timer circuits
which are automatic features of the I/O path control logic.

MLIP CONTROL OPERATIONS

MLIP operations are controlled by micro-code sequences contained in the micro-module. When an MLIP operator code
is executed by the Program Controller, logic circuits in the MLIP generate a micro-module address, called an Entry
Vector. Entry Vectors are sent to the address logic of the micro-module, where they seiect the first sequence address for
a particular MLIP micro-code function.

The microcode sequences for MLIP functions are subroutines arid may or may not be executed, depending on current
logical conditions present in the MLIP. Logic signals representing current logic conditions in the MLIP are present at the
input addressing logic of the micro-module. The state of these logic signals is used to alter the sequential addressing of
the micro-module. By altering the sequential addressing of the micro-module, various subroutines of MLIP control
programs are entered into or returned from. The execution of an MLIP directing operator code by the Program Control-
ler selects the particular MLIP function to be performed. Subsequently, MLIP logic conditions specify which subroutines
of the MLIP function micro-code are performed.

I/0 DEVICE CONTROL OPERATIONS

The MLIP is not the final control mechanism for the operation of a peripheral device; it is an intermediate control
mechanism. System control of peripheral device operations is shared by the MLIP and a UIO Data Link Processor
(UIO-DLP). The UIO-DLP device is the final control mechanism for operation of an I/O device. Once a UIO-DLP
device is initiated into operation, the MLIP becomes transparent to the flow of peripheral data between the B 6900
system and the UIO-DLP device. However, the MLIP continues to control the interfaces between the UIO-DLP device
and B 6900 system memory.

5010986 5-33

B 6900 System Reference Manual
System Concept

UIO-DLPs are semi-independent peripheral control devices. A UIO-DLP can only control a single type of I/O device
and can only initiate a device into operation when the operation is specified by signal inputs from the MLIP. Once a
UIO-DLP begins operation of a peripheral device, it proceeds under the control of its own internal logic. The UIO-DLP
only communicates with the MLIP to send/receive peripheral device data and to report the status of the UIO subsystem
when the UIO-DLP operation is terminated.

A MLIP communicates with UIO-DLP devices by means of a Message Level Interface (MLI) cable connection. The MLIP
contains eight MLI ports which are used as channels for interfacing various organizations of IODC modules to the

B 6900 CPU. The MLIP also contains extensive logic circuits to control communications over the MLI ports, and to
establish priorities for use of the MLI interfaces between the IODC modules and UIO-DLP devices that are currently in
use.

A communication between the MLIP and a UIO-DLP device must be initiated by the MLIP. Such a communication is

interrupted while the UIO-DLP is performing its independent processes and is reestablished when it is necessary to pass
data or result status between the MLIP and UIO-DLP. Either the MLIP or the UIO-DLP can initiate the resumption of
an interrupted communication over the MLI interface.

MLIP SIMPLIFIED LOGIC CIRCUITS
Figure 5-28 is a simplified schematic of the MLIP module. The schematic shows the major circuits of the MLIP and,
in'general implies some of the relationships between these major circuits. The circuits and relationships of MLIP
circuits defined in the following paragraphs of this manual can be better understood by referring to this figure.
MLIP INTERFACES
The MLIP has three interfaces to other modules of the B 6900 system. These interfaces connect the MLIP:

1. To the Data Processor.

2. To the micro-module.

3. To the IODC module(s).
The interface between the Data Processor and the MLIP includes the path between the MLIP and system memory. The
Data Processor utilizes this path to communicate instructions and control data to the MLIP. The MLIP utilizes this path
to access system memory (through the logic of the Transfer and Memory Controllers).
The interface between the micro-module and the MLIP module is used to send control signals, data, and micro-medule
addresses from the micro-module to the MLIP logic. The MLIP uses this interface to transmit Entry Vector addresses
to the micro-module. Various MLIP logic signal levels are present at the address inputs to the micro-module, in addition
to the standard interface connections.
The interface(s) between the MLIP and the IODC modules are Message Level Interface (MLI) interfaces. There are as

many as eight separate MLI interfaces, which are used to provide communication paths between the MLIP module and
the IODC modules of the system.

5.34

B 6900 System Reference Manual
System Concept

25 BUS (36 LINES FROM CPU)

- . TOD
] [11:12] b——
Z5BUS I l——
bl § STACK MICRO MEM Y REG 3 ¢ REG3 |y XBKND cPC
msp _ | POINTER STACK ADDRESS ADD 000 INC/ C3 [9:10] [9:10] REG
" INC/DEC ———®= POINTER —1 POINTER #1 DATA STORAGE DEC (11:12]
‘ ADD 1F XBKJG
il B3 L S I XB I
L XBHLD XBKKN XBKKK wss | Ao 20 KJD XBKNK
P TOD
S MICRO STACK I— 7 REG (L’
r—> [23:12] —.
RIMA RIMX XBKLA —
'—‘ r— ADD 3FF XBKLD €3 [19:10] (19.90) XBKPA
e H
s MSWR/ A DATA cPC
R/ REG 1 — out > —? REG
¢—{ INPUT o REG 1 PCLE XBKJK {23:12]
oMl EVEN (9:101 | R1/ {CLOCK) TOD XBKPN
z5 : REG
. A" p— A1 ol [35:12])
= —®1 xBKKD '
AD I DATA IN {20 LINES) , XBKPG
T - XBKJN
) DO §19:20) DATA OUT (20 LINES)
R1S0 [.
— MX BUS (36 LINES) :
R1S1
R1S2 TO SHT 2 OF 2
; CR [50:19]) VUWD VCOP REG 2 MX BUS
AD ———— micro [— »{ micro — [9:10] [3.;»_ 301
WXML/ INPUT WD INPUT TOP >
75 INPUT [19:10] —_— - ° |} XBKHK [35:10)
MSP’ oDD BRST vUSD - cuIo0 v
- /" R1/ R204/ FOO CR [38:7] ENTRY VECTORS| 2zsR2 XAKKG
+—_’Mx XBKKG Mi48 10CB LUST MPME
XBKKA locc TB [3:4] | HOPH/ REG 2 MX BUS
] XEQD HAD [3:4] {19:10] [25:13]
: — —e TO
— lmmx CLR./ LIST 181 [2:3] 21 BUS
LAST XBKHN {25:13]
XBHMG XBHMA NG (9:10]
MICRO 11
CFB BUS FROM MICRO MOD P mgu-r | V2 (910 XAKKD
| FA BUS FROM MICRO MOD S R2 [19:20] A R
CFA
~ < : R3/ [2:3] BOTG/
CFA STEN -—-a | MX BUS
STATE —l FLAGS |[——— sTa | | BOTG [12:13]
| crs FLAGS |mX[2:4] - OUTF "OUTE! STCH | | DE0S8 ‘ z;'r gus 4
81/ [2:3] ASEL - ASEL/ TERM/ STCH/ =
MINH/ HASL LP [15:16] LDMH
181 [2:3] FLG/ [4:5] BRST : 81 (2:3] LPEZ XAKKA
PN — b] .
LAST FLGS/ R3EZ
XBHLG XBHLK
t , XBHMD
STMX FLE FLE3 TO Z1 BUS [36:36]
-

MV4143/SHEET 1 OF 2

Figure 5-28. MLIP Simplified Schematic (1 of 2)
5010986 5-35

B 6900 System Reference Manual
System Concept

MLI OUTPUT (MO) BUS

INRQ
ML
SONTL) poRT | EROO
4INRO SCAN _LAGNT/ TERM/ 0 RDYO
ERQn CONTROL| grar losey MLI
| RDYn PACO MI BUS
MU e
cutc lcontrorl pacs ? ™ XBKMK
MPXG SCAN PAC2 ’ L ADPO
PACO REG | pace
PAC TERM/ AGNT/| MU | inRa AGNT/| MU |inRa
P) S— PORT t———
_Pacz | sasc rerm/| "0 [Eros TERM/ 1 ERO1
TTMH PACE —
_TACE | XBKMN | CSEL/ CSEL/ RDY5 CSEL RDY1
XBKMG | INRQ/ s]
PRSC EMRQ
_¥ r DST [3:4] | XBKMD MI BUS Mi BUS
, —— L = xBKPK - 1 XBKNA
SELECT 1
UPPER Q ADPS {
M [15:8 BYTE MO [15:8] +-—- ADP1
[15:8] [15:8] — ¢ LPW l
CR [47:8] MOP2/ [5:6] PENF
CR [50:3] MOP3/ 4 L .,———— . TN AGNT/ P IO
) XBKLG Gps | GpGEQGPs P"(';'F-"T LINRQ] AGhY P“S';T INRQ |
MX [15:8] 9 f | TERM/ ; ER06 TERM/ > ERO2
LPMX LLPB CSEL/ RDY6 CSEL/ RDY2
>
XBKMD MLl MLI
Mi BUS Mi BUS
- —r—{ xBKQA > ¢ XBKNG
} Raoes t
ADP2
PAS
SELECT 2 LPW
LOWER (15:10] AGNT/[1, INRQ ‘ AGNT/ ML INRQ
M —"[M] ?EJE Mo el e TERM/| PORT |gRro7 TERM/ | PORT | Ero3
‘ . [16:1) CSEL, 7 RDY7 CSEL/ 3 RDY3
(7:8] " MO [7:8] = | V'S * MLI
MI [7: : - MLI
CR [39:8] MLIE XBKLK L——— t MI BUS 4 M! BUS
: x PENO >
g J { XBKQG > 1 xBkNN
MOP2/ XBKLN LPMX LLPB PEN1
PEN2 } *_ADP‘I T 1
9 ADP
PEN3 | 3
CcTML MTML PAD —
L rrme
PEN
5 J AGNT/ MU ‘ INRQ
. PENG TERM/ | PORT | ERO4
pes— | = | PEN7 I CSEL/: 4 RDY"..
PAD+1
XBKMD xBkmp fESC MLI
9 . MI BUS
IC?AD ———®1 XBKPD
MLI INPUT (M} BUS) *
MV4143/SHEET 2 OF 2 ADP4

5-36

Figure 5-28. MLIP Simplified Schematic (2 of 2)

B 6900 System Reference Manual
System Concept

MLIP To Data Processor Interfaces

Figure 5-29 shows the interface between the MLIP and the Top-of-Stack registers of the CPU. The MLIP sends data to
the Top-of-Stack over the 52-bit Z1 bus, and receives data from the Top-of-Stack over the 52-bit Z5 bus. A special
19-bit bus is used to transfer the TAG Field and the high-order 16-bits of data from the Top-of-Stack C register to the
MLIP. The MLIP also has a control signal interface to the Interrupt Controller through which it can initiate an External
Interrupt when an 1/O operation is terminated. In addition, various logic signals from the Program, Memory, and Trans-
fer Controilers, and signais from C and K Families are routed to the logic of the MLIP.

The Z1 and Z5 busses are shared by the Data Processor and the MLIP modules. The special 19-bit C register bus is not
shared, and only transfers information in one direction, from the C register to the MLIP.

The logic of the Transfer Controller and the Memory Controller cause a connection between the Z1/Z5 busses and the
Z3/Z4 busses for MLIP module memory operations. This connection is explained in greater detail later in this section.

C REGISTER INTERRUPT INTERRUPT
H p——————
[50:19] BUS CONTROLLER
TOP-OFSTACK p——————p SIGNAL
REGISTERS MLIP
. MODULE
S —
51-BIT 25 BUS
51-BIT Z1 BUS

MV4144
Figure 5-29. Interface Between MLIP and Top-of-Stack

MLIP To Micro-Module Interfaces

Figure 5-30 shows the interfaces between the micro-module and the MLIP. The interface between the MLIP and the
micro-module includes an 8-bit Control Field A (CFAn) bus, a 5-bit Control Field B (CFBn) bus, and a special 12-bit
micro-code address bus. The CFAn and CFBn busses only transfer data in a single direction, from the micro-module

MICRO-ADDRESS (STATUS VECTOR) BUS

I Mi
CRO ADDRESS BUS >

8-BIT CFAn BUS MLIP
MICRO-MODULE CFAnBU ! MODULE
5-81T CFBn BUS
——
VARIOUS LOGIC LEVELS FROM MLIP LOGIC CIRCUITS
MV4145

Figure 5-30. MLIP to Micro-Module Interfaces
5010986 5-37

B 6900 System Reference Manual
System Concept

logic to the MLIP. The 12-bit micro-code address bus is used to transfer Entry Vector data from the MLIP logic to the
micro-module, and also to transfer micro-code sequence counts from the micro-module to the MLIP. These busses are
internal logic circuits of the CPU cabinet and do not use external bus cable connections.

The CPU micro-module code contains the process flows for all MLIP functions. An MLIP function is a single complete
MLIP operation that includes all the options, variations, and error-handling processes for the function. A program flow
for an MLIP function varies dynamically; that is, the micro-code program takes branches within a process flow based
upon the value of various logic signals which the micro-module receives from the MLIP module and/or the data
processor module.

The MLIP receives the sequence flow address from the-micro-module for the current MLIP operation sequence. The
MLIP must know its sequence flow address in the micro-module so that in the event of an interrupt (caused by an
error condition in the MLIP logic), the interrupt parameters contain the micro-code address of the point in the MLIP
sequence flow at which the interrupt occurred.

In addition to the listed interfaces between the micro-module and the MLIP, various logic levels of the MLIP are also
present at the address inputs to the micro-module. These levels are used to modify the next micro-module sequence
address, thereby implementing the subroutine calling procedures of MLIP control micro-code.

An entry vector is the starting address in the micro-module for an MLIP operation sequence. Entry vectors are trans-
mitted to the micro-module to select and start the operation of an MLIP control sequence. The value of the 12-bit

entry vector determines which sequence is selected, and the occurrence of the entry vector on the bus determines when
the operation sequence starts to execute.

MLIP To Peripheral Device Interfaces
The MLIP logic contains from 1-to-8 external cable interface port connections to the Universal I/ Base (I0DC) modules
(refer to Figure 5-31). At least one of the interface (MLI) ports must connect the MLIP module to an IODC module.
Each MLI interface consists of a 25-signal cable connection.
Each MLI interface connection can conduct communications between the MLIP module and up to eight IODC modules.
If multiple IODC Base modules are connected to an MLI interface, then the IODC modules are interconnected by
extensions (Line Expansion Modules or LEMs) to the MLI interface bus.
Each I0DC module can contain up to eight Data Link Processor (DLP) devices.
MLIP GENERAL OPERATING CHARACTERISTICS
The MLIP module receives STRC, STRK, VARF, and Family T-register value signals from the Data Processor module.
The MLIP logic interprets the T-register values for each Variant Mode Family C and K operator, and detects operator
codes that initiate MLIP microcode functions. ;
The Variant operators that initiate MLIP micro logic are:

a. Family C 95A7 RTOD Read Time-of-Day

b. Family K 9540 RCPC Read Central Processor Count

c. Family K 9541 RUNI Set Running Timer

d. Family K 9549 WTOD Write Time-of-Day

e. Family K 954C CUIO Control Universal Input Output

5-38

B 6900 System Reference Manual
System Concept

INTERFACE TO/FROM MLI INTERFACE
MICRO-MODULE - — 10DC
- -l MODULE
~N
————————
MLIP ——— >
> > MODULE
INTERFACE FROM - MLI
PROGRAM CONTROLLER INTERFACES
————— | — T0 70THER
10DC
>
MODULES
——————
- > -
INTERFACE TO/FROM A
TOP-OF-STACK TO INTERRUPT CONTROLLER
TO MEMORY CONTROLLER

MV4146

Figure 5-31. MLIP to Peripheral Subsystem Interface

When an operator code that initiates the MLIP logic is detected, the MLIP generates an Entry Vector into the micro-
module. An Entry Vector is essentially a beginning address in the micro-module of the micro-code for the detected
MLIP function. As the micro-module proceeds through the MLIP function code flow, it returns control information for
the operation to the MLIP, in the proper sequence. Thus, the MLIP detects the requirements for its own functions and
initiates the micro-module to the proper address (Entry Vector) for each of its functions.

Processor Timer Operation

Figure 5-28 shows that the MLIP contains Processor Timer logic circuits. When an RCPC operator is detected by the
MLIP, the value of the Processor Timer logic is returned over the Z1 bus to.a Top-of-Stack register. The value returned
to the Data Processor is a 24-bit binary field that represents elapsed time in 2.4 microsecond increments up to about

40 seconds maximum. The count does not contain time that is expended by the Data Processor or the MLIP for accessing
system memory. The system software uses this count value in computing billing costs for various users of the B 6900
system resources.

When an RCPC operator is detected, the 24-bit Processor Timer counter is RESET to a count of zero, and begins to
count up to 2.4 microsecond increménts. The counter is inhibited from counting up when signal RCPI is TRUE (while
a CPU memory cycle is in process). If the counter is full (all bits contain binary 1’s), it steps through the count of zero
and continues counting. ’

Time-of-Day Operation
Figure 5-28 shows that the MLIP module contains Time-of-Day (TOD) logic. The TOD logic consists of a 36-bit
counter that counts time in 2.4 microsecond increments. The counter can be initialized to any selected count value,

after which it proceeds to increment the count value. The TOD counter cycles, so that counting does not stop when the
counter is full. Instead, it counts through zero and continues.

5010986 5-39

B 6900 System Reference Manual
System Concept

When the MLIP module detects a Family K RTOD operator, the current value of the TOD counter is returned to a Data
Processor Top-of-Stack register through the Z1 bus logic. When a WTOD operator is detected, a 36-bit value on the Z5
bus initializes the counter value of the TOD logic, after which counting continues at the new value.

Running Timer Operation

The Running Timer causes the Running Indicator to illuminate when the timer is counting (has not timed-cut). The
Running Indicator is used to show that the B 6900 system CPU is functioning.

This timer counts clock periods for 2.04 14/- 0.16 seconds and then times-out, unless it is RESET. The System Running
(SRUN) signal, from the micro-module to the MLIP, RESETs the timer. When SRUN goes TRUE, the Running Timer is
RESET, thus beginning a new timing sequence. Under normal system operating conditions, the timer never times out;
thus, the Running Indicator is continuously illuminated.
The Running Indicator is important for B 6900 system operations because during certain previleged types of operation,
the system operator has no other way of knowing whether or not the system has halted. The CPU micro-module is
functioning during previleged operations, and by use of the Running Indicator shows the true processing state of the
system.
Other MLIP Timer Operations
The MLIP logic contains and operates'other timing devices for the B 6900 system. These other timing circuits are
defined and discussed separately because they are not triggered into operation directly, as a result of the MLIP decoding
a Data Processor operator. These other timer functions of the MLIP logic are:

1. The LOOP timer.

2. The Interval Timer.

3. The Base Busy Timer.

4. The Ready Timer.

LOOP TIMER

The LOOP Timer is used to cause an ALARM type interrupt when the Data Processor operating program is detected to be
trapped in a program operator flow. The operating program is trapped if a selected system condition does not occur
before the LOOP Timer times-out.

"The LOOP Timer counts clock pulses and times-out in 2.04 14/- 0.16 seconds, unless it is RESET. The timer is RESET
by any one of eight different conditions being present. When the timer is RESET, counting starts and continues until
either the timer times-out or until another RESET occurs.

The system conditions that cause the timer to RESET are:

1. A family operator completes, and there are more family operators present in the P register waiting to be
executed.

2. The MLIP logic receives control of the memory interface to access system memory.
3. The LOOP Timer RESET signal from the Data Processor is TRUE.

4. The Conditional Halt logic detects a Conditional Halt state to be TRUE.

5-40

B 6900 System Reference Manual
System Concept

5. The Data Processor is HALTed.
6. The Data Processor is performing an IDLE operator.

7. The Maintenance Display Processor (MDP) is scanning the state of CPU flip-flops to update the display or
control of CPU logic signals.

8. A CPU LOAD function is in process.
INTERVAL TIMER

The Interval Timer circuit is used by the system software to cause a Syllable Dependent Interrupt condition after a
given time interval has passed. The software operating system uses the interrupt from the Interval Timer as a key for
interlacing software programs that are operating in a multi-processing environment.

The Interval Timer counts system clock pulses and times-out 500 1+/- 38.4 microseconds after the Start Interval Timer
(STIT) signal triggers the timer into operation. When the timer times-out, the Interval Timer Interrupt (ITIN) signal is
generated and returned to the Interrupt Controller logic.

BASE BUSY TIMER

The MLIP accounts for the fact that a IODC module may go “Busy” during an MLIP I/O comrél sequence over its
MLI interface. If this condition occurs, it hangs the MLIP and suspends further system 1/O operations until the MLIP
is disengaged from the IODC module MLI interface.

The Base Busy Timer circuit provides the method for disconnecting the MLIP from an MLI with which it is hung. The
Base Busy Timer limits the length of time such a condition can exist to 2.04 1+/- 0.6 seconds.

When the MLIP connects to one of its MLI ports, the Base Busy Timer is triggered into timing operation by signal BBTR.
If the timer circuit times-out before another BBTR signal occurs (while the MLIP is still connected to the MLI) the Base
Busy Time-Out (BBTO) signal is generated to cause an MLIP fault interrupt condition in the Interrupt Controller logic.
The resultant Interrupt Controller operation disconnects the MLIP from the MLI to which it is connected.

READY TIMER

An MLIP accounts for the fact that a UIO-DLP module may be connected to another MLI and unable to respond to a
POLL-TEST operation. Such a condition results in the IODC module returning a NOT READY Result Descriptor in
response to the HDPs POLL-TEST operation sequence. When this condition occurs, the MLIP waits for the UIO-DLP

to finish its current operation and respond to the POLL-TEST. If the UIO-DLP becomes READY, the MLIP proceeds

to complete the POLL-TEST operation sequence and to initialize the UIO-DLP for a subsequent I/O operation.

The Ready Timer circuit is used to limit how long an MLIP waits for a UIC-DLP to respond to a PCLL-TEST request.
When the MLIP first attempts to execute the POLL-TEST request, the Ready Timer circuit is triggered into operation.

If the timer circuit times out before the UIO-DLP responds to the POLL-TEST request, the MLIP aborts the POLL-TEST
request, generates a NOT READY Result Descriptor for the UIO-DLP, and sends an I/O finished interrupt to the
Interrupt Controller.

The Ready Timer circuit counts clock pulses from the time that the MLIP initiates the POLL-TEST request (triggered by

signal RYTR), until the MLIP receives the READY (signal RDY..OK) response from the IODC, or times-out. The timer
times-out 8.0 1+/- 0.6 milliseconds after it is triggered, unless the RDY..OK response is received.

5010986 541

B 6900 System Reference Manual
System Concept

Peripheral Device Operation

When the MLIP detects a family K CUIO operator, the logic circuits of the MLIP generate an entry vector to the micro-
module, to start the operation of an MLIP Universal I/O device operation sequence. This type of MLIP operating
sequence is defined in the following text.

During normal B 6900 system operations, the MLIP module operates to relieve the Master Control Program of the
responsibility for controlling the operations of system I/O devices and controls. The MCP specifies by certain data in
system memory:

a. The particular I/O device that is to be operated.

b. The particular type of operation that the device is to perform.

c. The expected result status that the I/O device is to return to the system.

d. The location of the data buffer in system memory that is to be used for the 1/O device operation.
e. The maximum length of data records to be handled by the I/O device.

f. How many I/O operations are to be performed without an interruption to the system (providing that the
1/0 device or the MLIP does not encounter an error condition).

g- Where the I/O device result descriptor is to be stored in system memory.
h. The point in a series of I/O operations at which the attention of the MCP is to be obtained.

i. The particular path to be used to interface to the 1/0 device.

PRIORITY SEQUENCER OPERATIONS IN THE MLIP

The MLIP module contains Priority Sequencing logic circuits that act as the overall operational control for normal
MLIP I/O operations. The Priority Sequencer logic (see Figure 5-32) controls the ordering of MLIP functions that
originate from requests by the B 6900 software system, or requests that originate in the UIO peripheral subsystem.

The Priority Sequencer logic consists of a 5-bit counter which steps through the sequences that are conditioned by logic
signals from various circuits in the MLIP." The Priority Sequences determine when the MLIP is to respond to a CUIO
operation by the CPU, or when it responds to an input POLL-REQUEST operation by a IODC module. The Priority
logic resolves the priority between a CUIO operaior and a POLL-REQUEST that are present at the MLIP ai the same
time. In addition, the Priority Sequencer resolves priorities between simultaneous POLL-REQUESTs originating from
two or more I0ODC modules, or between two or more UIO-DLPs within the same I0DC module.

A POLL-REQUEST sequence for a IQDC is required when a UIO-DLP in the IODC executes certain sequence counts of
its control logic. 10DC moduies monitor the sequence counts of the UIO-DLPs located in the module, and strobe onto
the MLI interface the sequence count of the highest priority UIO-DLP needing a POLL-REQUEST sequence. In addition
to the sequence count, the IODC strobes the Global-priority value for the DLP onto the MLI interface. The MLIP logic
monitors the sequence counts and Global-priorities present at its MLI ports, and generates an Entry Vector to the micro-

module for a POLL REQUEST sequence to the highest priority UIO-DLP needing a POLL REQUEST sequence.

542

SYSTEM
GENERAL CLEAR

SEND BASE CLEAR TO ALL PORTS

SC =00

PENF + 7 [PAC=E]
TERM.D=1
TERM.M=1

' [sc=01-07 !

DELAY STATES

-

SC=08 1

PADR+1 [PAC=2]

FROM SC=08

B 6900 System Reference Manual

SC=0A

Y

BRQF < 1
AGNT €1

H sc=08 1

sc=09_ Y

IDLE

PENF € 0 [PAC=6]
TERM.M=1

System Concept

SC=GA Wili SEND ACCESS GRANTED TO AiLi MLI PORTS.
EACH PORT WILL RESPOND WITH ITS GLOBAL PRIORITY WORD OR
EMERGENCY REQUEST IF THAT PORT 1S-REQUESTING ACCESS

SC-0D

|

PADR € PASR [PAC=3] 1

- - —_—

LOADS HIGHEST GLOBAL
PRIORITY PORT INTO
PORT ADDRESS REG.

FROM SC=11/OD/SELF

P
WAITS FOR HDP
TO TAKE SYSTEM

~ :
LOADS MICRO MOD
ENTRY VECTOR

w

L NO
RESET PORT ENABLE INRQ/
RESET TERM. #
1 .
| l Y ves |
| _ J
ves | sc-0a —» -
INTERRUPT REQUEST _
v [sc=0C ‘]
H PADR+1 [PAC=2]

MV4147

SC=0C SCANS ALL

PORTS AND LOADS

HIGHEST GLOBAL
PRIORITY WORD
INTO GPS/PAS

L

SC=10—>

3

S$C=00 ~

rsc=oe Y !
YES -
EMRO 1 SC=11 > \
PAC=1
MEXG NO
NO | .
STARTS ALL
PRIORITY SCANS YES
PADR < 0 [CPAD] |AT PORTO
_ I
! sc-oF ‘
) MM < ENTRY VECTOR
. MMEN < 1 !
PENF < 1 [PAC=5)
1 ' >l
YES sc=10]
NO l
YRDY >
\AN o $Qsc=1
! ! BROF <0

< RETURN TO IDLE

NO

MPXD

1

SEQ SCAN COMPLETE.
WAIT HERE UNTIL
HDP iS DONE WiTH

BURST OR CUIO.
»

{(iIGPS]

SC=11

PENF < 1 [PAC=5]

F} :

~
HIGHEST NUMBER
PORT WITH
ENRQ WAS LOADED
INTO PADR IN SC=0A

RDY & INRQ

YES

« SC=09

5010986

Figure 5-32. Priority Sequencer Sequences

543

B 6900 System Reference Manual
System Concept

1/0 OPERATION INITIATION PROCESSES IN THE MLIP

The specifications for an I/O operation are located in system memory in fixed queues of information called I/O Control
Blocks (IOCBs). An IOCB contains at least 15 consecutive words of memory and may contain more words for MCP
software purposes. The first fifteen words in an IOCB contain I/O control data in fixed word/field formats (refer to
Figure 5-33). The data in an IOCB is used by the MLIP to initiate and control a particular I/O operation. The MCP
forms an IOCB and places the required data for an 1/O operation in the word fields of the IOCB, before the MLIP is
initiated by the CUIO operator. :

10CB MEMORY WORD LAYOUT

~ ~ WORD CONTENTS
THE CUIO OPERATOR - MLIP CONTROL DATA
el —> 10CB CONTROL WORD -
ADDRESS POINTS HERE DLP AND MLI PORT ADDRESS
DLP ADDRESS WORD
COMMAND Q ADDRESS
COMMAND Q HEADER POINTER -
ADDRESS OF 10CB CONTROL WORD
1OCB SELF POINTER
ADDRESS OF 10 DESCRIPTOR
L’.’&"&L&oe DLP 10 COMMAND POINTER
PROGRAM CAN ADDRESS OF RESULT DESCRIPTOR
ACCESS ANY DL TR LENGTH OF COMMAND Q AND RESULT Q
m‘:‘v“&’:: - DLP COMMAND/RESULT LENGTH
THE RELATIVE RESULT DESCRIPTOR MASK
il DLP RESULT MASK
AS AN INDEX ADDRESS OF RESULT Q
e RESULT Q HEAD POINTER -
: ADDRESS OF NEXT 10CB
ADDRESS. NEXT 10CB LINK
10 DATA BUFFER ADDRESS
HDP CURRENT DATA AREA POINTER
WORDS REMAINING IN 10 DATA BUFFER
HDP CURRENT 10 LENGTH -
MLIP STATE, DLP STATUS, MLIP/MLI ERRORS
HDP STATE AND RESULT :
TIME-OF-DAY AT BEGIN N
S START T BEGINNING OF 10 OPERATIO
TIME-OF-DAY AT END OF 10 OPERATION
10 FINISH TIME -
MV4148

Figure 5-33. B 6900 I0CB Memory Word Layout

The IOCB area in system memory is used jointly by the MCP and the MLIP. After the MCP has created an IOCB and
placed 1/O control data in it, the MCP causes the Data Processor to execute a CUIO operator. The execution of the
CUIO operator causes the MLIP to access the data in the IOCB and to begin the I/O device operation that is specified
there. Once the MLIP is initiated into operation of an I/O device from data in an IOCB, that IOCB is controlled by the
MLIP and not by the MCP.

A CUIO operator serves two purposes. It initiates the MLIP 1/O control logic into operation. It also provides the address
of the first word in the IOCB, where the MLIP finds control data for the I/O operation.

The MLIP, when directed, informs the MCP that an I/O operation is terminated by causing an I/O Finished External
Interrupt to occur. This interrupt subsequently causes the MCP to examine the State And Result Word for the I/O
operation, which is located in the IOCB. The MLIP writes a State And Result Word in the IOCB before a possible 1/0
Finished Interrupt is generated as part of the normal process for terminating peripheral device operations.

5010986 545

B 6900 System Reference Manual
System Concept

MLIP INITIATION OF THE COMMAND QUEUE STRUCTURE IN MEMORY

An 1/O operation is initiated when the logic of the MLIP causes the IOCB to be linked into 2 Command Queue
structure in system memory. A Command Queue (see Figure 5-34) is an organization of IOCBs that are scheduled to be
initiated by the MLIP. The MLIP maintains the Command Queue structure for controlling the ordering of multiple I/O
device operations in a dynamic system operating environment.

Linking an IOCB into a Command Queue structure is accomplished by inserting Next IOCB Links (memory address
pointers) in all queue IOCBs. The Next IOCB Link of an IOCB points to the address of the Next IOCB in sequence in
the Command Queue. If no other IOCB is present in the queue or if this is the last/only IOCB in the queue, then the
Next IOCB Link word contains an operand with a value of zero.

The control logic of the MLIP scans the contents of all Command Queues periodically and attempts to initiate I/O devices
for which IOCBs are present in the Command Queue. When an IfO device DLP is successfully initiated, the MLIP delinks
the IOCB from the Command Queue by altering the NEXT LINK words of other IOCBs in the Queue. The NEXT LINK
word of an IOCB that has been successfully initiated is replaced by an operand with an integer value of 1.

Horizontal Command Queue operations are an automatic subroutine of the MLIP INITIATE-DLP function. The MLIP
logic automatically attempts to initiate the UIO-DLP device at the conclusion of the ENQUEUE-IOCB function. If a
UIO-DLP is BUSY when the MLIP attempts to initiate it and if the Command Queue can be horizontally queued, then

the MLIP ENQUEUE-HORIZONTAL sequence subroutine is invoked. If a UIO-DLP is not BUSY when the MLIP attempts
to initiate it and if a successful connection to the UIO-DLP is completed, then the IOCB is delinked from the Command
Queue by the INITIATE-DLP function as described previously.

Figure 5-35 shows how control-information inputs to the MLIP logic initiate an MLIP operation. The MICRO INPUT 0
block detects an MLIP function command from Program Controller input signals and causes an Entry Vector input to
the micro-module. The memory address of an IOCB is present at the Z5-bus input to REGISTER 1 when the control
signals from the Program Controller are present at MICRO INPUT O.

The micro-module subsequently causes the MICRO OUTPUT block to access the IOCB in system memory, and obtain
control information about the MLIP operation to be performed. The IOCB memory information appears on the Z5-bus
inputs to REGISTERs 1, 2, and 3. IOCB memory data is fetched into REGISTER 1 and stored in the MLIP RAM
memory where it is available for subsequent use by the MLIP logic. Memory information present in REGISTER 2 comes
from the IOCB Command Word shown in Figure 5-36. The contents of REGISTER 2 are passed to the micro-module
through the combined logic of MICRO INPUTs 0, 1, and 2. REGISTER 3 receives I/O LENGTH data from the
LENGTH-Field of word 10 in the IOCB.

546

9860105

LS

i ot V

MARK
0|10c8 CONTROL WORD | (10CB)

1| DLP ADDRESS WORD

CUI0 COMMAND
PROCESSOR .
T) 10CB ADDRESS PLACED 1 T
PASSED TO IN TOP-OF-STACK, BY W-—.— MARK
MLIP MODULE O Toaa'© 0] conTRoL HEADER | (1occ)
EXECUTED 1] HEAD IOCB LINK
2| TAIL10CB LINK
3 OIS
a~ 41/ a A T
| - MARK HORIZONTAL G LINK |
o
o [loceconTroL woro| A L)
1|pLP ADDRESS WORD
2 [COMMAN> G HEADER w ~
| ____POINTER |
L—— 3] 10CB SELF POINTER MARK
o | DLF 10 COMMAND 0] RESULT QHEADER | (10cF)
o[DRI RESULY e RESULT Q HEAD
T g' T - n| RESULT QHEAD
7 RESULT MASK | o ~
o[FESULTOHEAD ||
| POINTER | ! p Y
o] NEXT IDCB LINK |
o[MUTPCURRERTDATA] } |+ o[PTPTO OIS
" ﬁw D;E. Ru!EM; NG 1 i n ‘
DEFINES
12 | MLIP STATE & RESULT f-&gsm n
13[10sTART TIME i orio " | o
CR.
14] 10 FINISH TIME |
n I V. /r’
d 1 : Lo o[OLFIOTESILT |
| DESCRIPTOR ___ 1}
| n
|DEFINES
LENGTH OF
REsch, &
' r
[RO INTC |
NOTE 2 EE B
THE CURRENT 10 LENGTH il
PARAMETER (WORD 11 IN .
THE I0CB) DEFINES HOW {SEE NOTE)
MANY WORDS OR BYTES ARE = n |[CURRENT DATA WORD
TO BE TRANSFERRED TO/FROM
THE DATA BUFFER FOR THE .
CURRENT OPERATION, CAST DATAWORD
MV4149 . NA .4

POINTER
10CB SELF POINTER

DLP 10 COMMAND

RESULT MASK
RESULT GFEA
POINTER

NEXT 10CB LINK
n
A ~
T 1 marx

(10CB)

-——= 0 | 10CB CONTROL WORD

2

3

4

5 DLg i2',"mnssu:‘ TN -
o R

7

8

9

I'd W

O‘me— MARK 17 T
| HEADER |

| (10CE)
MARK

» 1| HORIZONTAL Q HEAD }———= 0| COMMAND Q HEADER (10cc)
HORIZONTAL Q HEAD HEAD 10CB LINK
TAIL 10CB LINK

-

A ~

2

3 PO
INTER

4| HORIZONTAL @ LINK |-

Vo ,J)

Ld . e

MARK
01 COMMAND Q HEADER (10cc)

HEAD 10CB LINK
TAIL 10CB LINK

HORIZONTAL Q LINK

1

2

3m
POINTER

4

Figure 5-34. MLIP Contmand Queue Structures

1d3ouo)) urdisAg
[enuUB 20UIJAY WSISAS 0069 4

8-S

MICRO MODULE ADDRESS

i
MICRO MODULE OUTPUT DATA |) 1p "l BUS 0 MLIP PORT LOGIC
Z5 BUS DATA REGISTER
- 1 -
.r—’
Mi BUS MO BUS
MLIP
RAM g | RAM
MEMORY ADDRESS
———]
LOGIC
MLIP
Il olrecisTer - ENTRY VECTOR)
2 MLIP LOGIC SIGNALS
-*=1 MICRO
C REGISTER DATA (50:19) J o 0 CuI0
PROGRAM CONTROLLER DATA I
"™ MICRO MLIP LOGIC SIGNALS — TO MICRO MODULE
MLIP | NPT ADDRESS INPUTS
REGISTER 1
3 i
——
— MICRO MLIP LOGIC SIGNALS
INCR/ mr;u*r j
DECR
LOGIC -
MLIP PORT | LOGIC SIGNALS
— :gg& MEMORY REQUEST _ 1\ e
— CONTROLLER
MEMORY CONTROLLER DATA)

MV4150

Figure 5-35. MLIP System Control Function Diagram

1deouo)) waysAg
[BNUBIY 90ULIAJY LiiSAS Be §

B 6900 System Reference Manual
System Concept

1oce
CONTROL MLIP CONTROL
WORD (CW) INPUT REGISTER SIGNAL
BITS TERMS 2BITS MEANING
CwW .17 Z516 IMMEDIATE
mm—]200
CW.01 2517
—_— R201
CW.03 2518 NOT USED
E—— R202
CW.04 2519 CAUSE 1/O FINISH
E— R203
CW .05 2520 MEM. OVERRIDE
— R204
CW .06 2521 1/0 DEVICE INPUT
E— R205
CwW.07 2522 1/C DEVICE OUTPUT
—— R206
cw.o8 2523 OUTPUT ZEROES
I R207
CW.09 2525 TAG CONTROL 0
— R208
CW.10 2526 TAG CONTROL 1
EEe—— R209
cw.on 2527 TAG CONTROL 2
EEEEE— R210
Cw.12 2528 211 CHAR/WORD ORIENTATION
Eana— | R21
Cw.13 2529 MEMORY DIRECTION
E— R212
cw.14 Z530 R213 CONTINUE COUNT AT END
E— 1
2531 IGNORE COUNT ERROR
— R214
RESERVED
R215
NOT USED
R216
NOT USED
R217
NOT USED
R218
NOT USED
1 R219

Z5R2

MV4151

Figure 5-36. MLIP Register 2 Function Control Logic
Figure 5-37 shows how control information and data pass through the MLIP logic to/from the UIO-DLP subsystem. The
CUIO signal comes from the MICRO INPUT 0 logic shown in Figure 5-35. The IOCB DLP ADDRESS comes from bits
[10:3] of the DLP Address Word in the IOCB and is used to select 1 of 8 MLI Port Adapters. The MLIP initiates an
I/O Command by passing control signals and data through the MLI SELECT logic to the selected MLI Port adapter.
UIO-DLP Commands and output data are passed to the Port Adapters by means of the MX-bus and MO-bus. Input
data and Result Status data are received from the UIO-DLP by means of the MI-bus and MX-bus. The MLIP logic
creates interfaces between its MX-bus and the Z1/Z5 busses, and between the MX-bus and the special 19-bit C REGISTER
bus.

5010986 549

B 6900 System Reference Manual
System Concept

MI BUS (PERIPHERAL INPUT DATA)

PORT ENABLE SIG
NAL

(MLIP CONT. DATA) mLI MLI 25WIRE MLI
MX BUS SELECT ;‘E’:; INTERFACE TO
LOGIC MC BUS = 10DC CABINET
P
C REGISTER (PERIPHERAL OUTPUT DATA)
[50:19]
—
ML
MX BUS (TO Z1 BUS) ?ﬁg ML
PRIORITY
lseauence| psc a:5]
COUNTER MLIP SEQUENCER |
LOGIC COUNTS ML
PORT ML)
T™WO
¥ PRIORITY
ACCESS PENO *~——
CONTROL ML
SIGNALS PEN1 PORT MLl
THREE
cuio PACE - PEN2
fIoRITY
P s'gsz PACO CONTROL| PEN3
L -
LOGIC
EEmm .
LOGIC MLI
PAC2 PENS PORT
PENG FOUR ML
PEN7
o
ML
FROM PORT Z5BUS [10:3] ‘;‘,’\‘,‘g ML
FIELD OF {MX 10, MX 09, MX 08)
10CB DLP
ADDRESS
WORD (DLPAW)
ML
P‘S)&T ML
—1 mu
PORT
SEVEN MLI

MV4152

5-50

Figure 5-37. MLIP Port Control Function Diagram

B 6900 System Reference Manual

MLIP RAM MEMORY OPERATIONS

System Concept

The MLIP contains a Random Access Memory (RAM), used to store data that is pertinent to the current I/O device
operation (see Figure 5-38). This RAM contains 1024 20-bit memory words which are divided into a Data Storage
section of 32 words (in addresses 0-31), and a micro-stack section of 992 words (in addresses 32-1023).

ADDRESS
0

10

1

12-16

17

18

19

MV4153

5010986

MLIP RAM MEMORY LAYOUT

iO PARAMETER WORDS

WORD CONTENTS

HDP STATUS REGISTER

ERROR I0CB PRESENT FLAG, SUSPEND ALL QUEUES FLAG
i

ERROR 10CB ADDRESS

ADDRESS OF ERROR IOCB WHEN FLAG (WORD 0) IS SET

]

ADDRESS TO STORE ERROR RESULT DESCRIPTOR

ERROR RESULT ADDRESS

WHEN PRESENT BIT (WORD 0) IS SET
(USED PRIOR TO CONNECTION)

WORKING DLP ADDRESS

MLI, IODC, AND DLP ADDRESS PARAMETERS
s

(USED AFTER CONNECTION)

CONNECTED DLP ADDRESS

MLI, I0DC, AND DLP ADDRESS PARAMETERS

d

HORIZONTAL Q ADDRESS

ADDRESS OF HORIZONTAL Q HEADER (IF REQUIRED)

!

ADDRESS OF CCMMAND Q HEADER

[}

COMMAND Q ADDRESS
ADDRESS OF THE CURRENT 10CB
10CB ADDRESS gt
MAN T g
COMMAND @ CONTROL WORD (PART 1) CONTENTS OF COMMAND Q CONTROL WORD
COMMAND Q CONTROL WORD (PART 2) jag—eed

VALUE IS ESTABLISHED AT MLIP CLEAR, IS CONSTANT THEREAFTER

HOST RETURN FIELD

| HOST RETURN FIELD VALUE (PROCESSOR ID)

BURST STATUS REGISTER

CONTAINS 8 FLAGS THAT ARE USED DURING BURST OPS
ot
0=STOPBURST 2=LOOPEXIT 4=NOTUSED 6=TIME OUT

(RESULT WORDS}
WORDS NOT USED

1 = STOP MEMORY 3 =BACKUPOR 5= STATUS 7 = LPW ERROR
CTSAVE ERROR

ERROR CODE

STORES ERRORS TO BE LOGGED IN ERROR 10CB

GLOBAL TEMPORARY STORAGE

MLIP MICRO CODE TEMPORARY STORAGE AREA

STACK MARK

< MICRO STACK POINTER COMPLEMENT STORAGE

{UNDEFINED)
WORDS NOT USED

Figure 5-38. MLIP RAM Data Storage Section Word Layout

551

B 6900 System Reference Manual
System Concept

Micro-Stack Section of RAM Memory

The micro-stack section of the MLIP RAM is controlled by the micro-module unit and is used to store dynamic data that
is needed during the execution of a micro-code function. The data in the micro-stack section of the RAM at any given
instant depends on the requirements of the particular MLIP function in progress.

Data-storage Section of RAM Memory

The Data Storage Section of the MLIP RAM contains data needed for any current 1/O operation that is in process. This
section of the RAM is commonly called the “Register Section™ because its information is in fixed format and is used in
much the same way as if the RAM was a series of registers. Figure 5-38 shows the layout of the Data Storage section of

the RAM.
RAM Memory Addressing

The MLIP contains two separate addressing circuits for the RAM memory. The Memory Storage Address (MSAn, see
Figure 5-28) logic is used to address the first 32 RAM addresses (the Data Storage section of the RAM). The MSAn logic
contains a 5-bit binary address field and can address only the first 32 addresses (0-31) of the RAM. This prevents the
MSAn from being able to address the micro-stack section of the RAM.

The micro-stack Pointer logic (MSPn, see Figure 5-28) has a 10-bit binary address field and can access all addresses in
the RAM. This address logic is used for accessing the micro-stack section of the RAM and can also access the Memory

Storage section.
RAM Memory Functions

The MLIP contains only a single RAM memory that must be used for all 1/O device operations. The MLIP logic
establishes the contents of the RAM when a new I/O device operation is initiated, and must restore the data in the RAM
before each subsequent sequence of an I/O operation.

The data in the RAM comes from the IOCB for an I/O device operation. The MLIP logic uses the mermory address of the
IOCB to access data which is loaded into the RAM. At the conclusion of an I/O device operating sequence, current
operating data is written into the IOCB. Thus, for sibsequent I/O device sequences, current data is restored in the RAM.

The MPC provides the MLIP with the IOCB memory address which is part of the CUID operator sequence, an.. which is
used to initiate an 1/O device. The IOCB memory address used to initiate an I/O device is provided to the MLIP by the
MCP as part of the CUIO operator sequence. After an I/O device has been initiated, the IODC provides the MLIP with
the IOCB address, as part of the POLL REQUEST sequence.

1/0 DEVICE INTERFACE PROCESSES IN THE MLIP

Communications between the MLIP module and the IODC modules are separated into two types, depending on whether
the MLIP initiates the interface, or a UIO-DLP module initiates the interface. An interface that is initiated by the MLIP
module is a POLL-TEST operaticn, and an interface that is initiated by a UIO-DLP module is a POLL-REQUEST opera-
tion. The difference between a POLL-TEST and a POLL-REQUEST communication is the direction that information
travels on the MLI interface. Extensive logic circuits are required, both in the MLIP module and the IODC modules, to
control and discipline the communications conducted over the MLI interfaces.

552

B 6900 System Reference Manual
System Concept

An MLI is a disciplined communication path over which multiple two-way communications between the MLIP and the

64 possible UIO-DLP modules occur. Line-discipline {z built-in feature of the MLIP path control logic) is used to
identify the particular MLI path used for a communication between the MLIP and a UIO-DLP device. This path
identification is required because an MLI is a logic fan-out gate, with the MLIP at one end and as many as 64 UIO-DLP
devices at the other end. This is the only way the MLIP has to associate the address of a UIQO-DLP with an MLI interface
port while determining the priority of simultaneous POLL-REQUESTSs (inputs from more than one MLI).

MLIP CONNECT/DISCONNECT Sequence§

When an MLIP is actively communicating with a UIO-DLP over an MLI interface, the two units are connected. An MLIP
can only be connected to one UIO-DLP at any one time. Thus, all DLPs that are not connected, are disconnected. An
MLIP must connect to a UIO-DLP to initiate a peripheral device operation, and must disconnect from that DLP, while the
DLP controls the peripheral unit. A complete I/Q device, operating sequence consists of a series of connect/disconnect
sequences, some of which are initiated by the MLIP, and other that are initiated by the UIO-DLP module.

MLIP Polling Operations

The first communication between an MLIP and a IODC module must be a POLL-TEST sequence (proceed from the
MLIP to the IODC module). A POLL-TEST must be executed first because an IODC module cannot address the MLIP
until it contains DESCRIPTOR LINK data. During a POLL-TEST sequence, the MLIP passes DESCRIPTOR LINK data
to the IODC Base module logic. Thereafter, the UIO-DLP can initiate a POLL-REQUEST sequence over the MLI inter-
face. Until the POLL-TEST sequence has been performed, the IODC module does not contain valid DESCRIPTOR LINK
data and, consequently, cannot initiate a POLL-REQUEST sequence over the MLI interface path to the MLIP.

POLL-REQUEST DESCRIPTOR LINK Usage

Figure 5-39 shows how data from an IOCB is used by the MLIP to initiate a POLL-TEST communication over the MLI
interface. It also shows the DESCRIPTOR LINK data that is transmitted by the MLIP to the IODC during the POLL-
TEST sequence. The HOST RETURN field of the data in the DESCRIPTOR LINK is the CPU PROCESSOR ID number,
and identifies the MLI over which the MLIP communicates with the particular IODC module. The IOCB ADDRESS field
of the DESCRIPTOR LINK is used by the MLIP to associate a POLL-REQUEST operation from a UIO-DLP with the
peripheral device control data in an IOCB. The IOCB ADDRESS is the same address that the MLIP received from the
Data Processor during the CUIO operator and subsequently used to acquire the I/O control data from the IOCB.

RESULT-STATUS For POLL TEST Operation

A POLL-TEST operation by the MLIP serves to establish that the particular I/O device to be initiated is present in the
IODC Base, and that the device is available to perform the operation {is not already engaged performing some function).
The availability of the UIQ-DLP device is determined by the normal response of the IODC Base module to ¢ POLL-TEST
operation, which is to return the Result Status of the UIO-DLP device to the MLIP.

During a POLL-TEST operation sequence, the MLIP receives Result Status information from the UIG-DLP and 10DC
module. This Result Status is part of the normal MLI connection sequence and is used by the MLIP to verify that the
UIO-DLP device addressed by the POLL-TEST operation is present in the IODC module. is not busy. and responds to
the POLL-TEST communication in a satistactory manner.

In order to receive POLL-TEST sequence Result Status over the MLI, the direction of communication over the MLI must
be reversed: that is, data must pass from the IODC module to the MLIP. Line reversal of an MLI interface direction is
called a LINE-TURNAROUND. A LINE-TURNAROUND may occur during any type of connection between the MLIP
and a UIO-DLP, whenever the direction of data passing over the MLI must be reversed.

5010986 5-53

B 6900 System Reference Manual
System Concept

—# TO PERIPHERALS

g 10CB+1 [LCPAW] .
j@—————— DLP ADDRESSWORD —————
19 18 17 16|15 14 13 12 11 10 98 76 5 4 3210
8t OPERATION:
PORT c|E NOT USED DCA/BASE | DLP POLL TEST
clm
A A c c
8 | 4 8 1
\ /
]
IF THE A4 BIT IS ON AND
NO LEM IS PRESENT, A
R — “NOT PRESENT” (STATUS 0}
WILL BE RETURNED. IF THERE
IS A LEM, IDLE (STATUS 3)
! WILL BE RETURNED.
MLI
' PORT "—_1
H MLI - - - - |
1 BUS / H
. i !
0TO? T
PORTS . T - >
T DC OLP |@—n '
i M - .
‘ 1
4
MLI TO OTHER DC) '
PORT [T - >
i BCC DLP [
1 L
]
| HOP T ’
- I -]
cMmi]
LCl
T » BUS BUS H
! ' T 0TO7
oLPS
o e
MLIO |e— T
| 1
] [] H
' H
MLl .
BUS » >
T N DLP |¢—»
UMIO 1 > -
l — '
MDP) '
i TE >
ST BUS i MC DLP ja—>
MAINT. BUS - ‘
' CLOCK
) UIO BASE)
MV4154
5010986

GLOBAL PRIORITY WORD

DCA/ OPERATION:
Base | DvP G.P. | poLL REQUEST

B ccC DD D
4 8 * 8 4

-t

THIS WORD IS GENERATED FROM
PLUGGABLE PROMS (D2°N5) ON THE
DISTRIBUTION CARD. LCPRQN AD-
DRESSES THE PROM WHICH DECODES
TO ITS OWN ADDRESS (DLP FIELD)
AND THE GLOBAL PRIORITY FIELD.
THIS WORD IS SENT TO THE HOST
DURING A POLL REQUEST. IF MORE
THAN ONE BASE IS REQUESTING THE
REQUEST WITH THE HIGHEST GLOBAL
PRIORITY WILL BE SERVICED FIRST.

DESCRIPTOR LINK WORD 1
23 22 212019181716

OPERATION:

HOST INDEX POLL REQUEST

HOST RETURN

A A
8 1

- o
® O
- O

B D
8 8

THERE ARE TWO DESCRIPTOR LINK WORDS
SENT TO THE DLPS, THE 1ST WORD SHOWN
ABOVE HAS THE HOST RETURN FIELD IN
THE UPPER 8 BITS. THIS IS THE PROCESSOR
1.0. THE LOWER 8 BITS OF WORD 1 AND ALL
OF WORD 2 ARE A HOST INDEX OR ABSOLUTE
MEMORY ADDRESS POINTING TO A VALID
10CB IN LOCAL MEMORY. THE HOST RETURN
FIELD IS USED WHEN THE BASE IS SHARED
BETWEEN MULTIPLE HOSTS AND THE PATH
SELECTION MODULE MUST SELECT THE
CORRECT D.C. DURING A POLL REQUEST
FROM A DLP. THE TWO WORDS WITH THE
LPN ARE STORED IN RAM IN THE DLP

WHEN THE DLP IS INITIATED AND
RETURNED WITHOUT GENERATING
VERTICAL OR AN LPW,

Figure 5-39. MLI Connection Function Between
the MLIP and an I0DC

5-55

B 6900 System Reference Manual
System Concept

Polling Operation Status Reporting

If the MLIP determines (from the DLP Result Status) that a requested I/O device operation cannot proceed, it causes an
interrupt to the MCP. If the initiation of an I/O device operation is continued after the MLIP receives the Result Status
from the UIO-DLP, then the MLIP saves and updates the status data for subsequent status reporting to the software
operating system.

Regardless of how an I/O device operation is terminated, the MLIP reports status about the 1/0 operation to the software
operating system. To transfer this information to the software operating system, the MLIP causes an MLIP STATE

AND RESULT word to be written into the IOCB. The data in the STATE AND RESULT word is derived, in part,

from the UIO-DLP Result Status data and, in part, from the MLIP Result Status logic circuits. In this way, when the
system software examines the STATE AND RESULT word in the IOCB (after an interrupt from the MLIP), it is able to
determine the status of the I/O device, UIO-DLP, MLI interface and the MLIP module.

Polling Operation BURST Data Sequence

When a UIO-DLP control is ready to transfer data between the peripheral device and the B 6900 system, the IODC
module executes a POLL-REQUEST connection sequence of operations. This sequence recalls the attention of the MLIP
module to the requested IfO device operation. To execute its POLL-REQUEST connection sequence or Polling Operation
Line-Reversal on the MLI interface, the IODC module uses the DESCRIPTOR LINK data received from the MLIP

module during the POLL-TEST sequence. The DESCRIPTOR LINK data contains the proper CPU MLI address, and also
the address of the IOCB in system memory (the same address that the MLIP provided during the execution of the MLIP
POLL-TEST connection sequence). Consequently, when the MLIP responds to a POLL-REQUEST sequence by an

10DC module, it is able to reacquire ail of the data about the I/O operation from the IOCB in memory.

MLIP MEMORY OPERATIONS
The MLIP module logic initiates two different types of memory request operations. The first type is to read control

data from or to write control data into the IOCB. The second type is to transfer data between system memory and a
peripheral device.

MLIP 51-Bit Memory Cycle Operations

The first type of memory operation (refer to Figure 540) is used during the initial part of an MLIP I/O device
operation function, to ENQUEUE the IOCB, and to copy I/O control data from the IOCB into the MLIP RAM. This

~ TOP-OF-STACK REGISTERS
N
Z3 BUS FROM MEMORY r 24 BUS TO MEMORY
— A REGISTER
[50:51] (50:51]
B REGISTER
C REGISTER
X REGISTER
z Y REGISTER)
1 BUS FROM MLIP
: - . Z REGISTER 25 BUS TO MLIP
[50:51]
J f [50:51]
.

MV4155

Figure 540. 51-Bit Memory Paths Between the MLIP and Memory Control

5010986 557

B 6900 System Reference Manual
System Concept

type of memory operation is also used to update the Command Queue IOCBs, during and after the operation of a
peripheral device. Transfer Controller barrelshifting operations are not performed for this type of MLIP memory cycle
operations.

MLIP BURST Memory Operations

The second type of memory operation, commonly called a BURST cycle, (refer to Figure 541), is used to transfer data
to/from memory only during a peripheral device operation. BURST memory operations are more involved than other
memory operations because the data to/from a peripheral device (on an MLI) is present in two-character increments,
while a memory word contains six characters plus a word TAG field. This means that from one to four transfers of data
over an MLI interface must be performed for each BURST memory operation performed.

PERIPHERAL OUTPUT DATA
TO MLIP N ON C REGISTER

BARREL SHIFTING 50:19] BUS
r———l—_—_——_———
|]
[|

I 1
|
|C REGISTER|
1 |
| |
PERIPHERAL INPUT DATA
FROM MLIP
Z18US PERIPHERAL OUTPUT DATA
PERIPHERAL INPUT DATA

—
PARITY CHECKING]
MEMORY CONTROL - TO SYSTEM
23 BUS MEMORY-CONTROL

Z4 BUS
MV4156

Figure 541. BURST Data Memory Paths Between the MLIP and Memory Control
Memory Operation Logic

All memory operations initiated by the logic of the MLIP use the hardware circuits of the Memory and Transfer
Controllers. The MLIP shares a single path to system memory with the Data Processor, and the use of these two
controller logic circuits is efficient because the Data Processor cannot use the controller logic when an MLIP memory
request is being performed.

MLIP Memory Cycle Priority

Priority logic for the use of the memory access path is required. The Memory Controller logic establishes the priorities
for the use of the memory path. Briefly stated, the MLIP has first priority for the use of the path to memory while it
is performing BURST memory cycle operations. The Data Processor has priority for the use of the path at all other times.

MLIP Peripheral Data Format

Peripheral device data on an MLI interface to the MLIP module is in the form of two Extended Binary Coded Decimal
Interchange Code (EBCDIC) characters only. No other character or byte format is used for peripheral data in the B 6900
system. Figures 5-42 and 5-43 show the formats of peripheral data and memory data words.

5-58

B 6900 System Reference Manual

System Concept

C-REGISTER IS BARREL SHIFTED TO MOVE OTHER
BYTES INTO POSITION FOR TRANSFER TO MLI

27 231 19 15 1 7
HIGH LOW
BYTE BYTE 26 22 18 14 10 6
TAG 147:8] [39:8]
FIELD
[50:3) 1 {— 25 21 17 13 g 5
40 32 28 24 20 16 12 8 4
I\ J
W'JLW Y
CTML [
— \ MO [7:8)
CTMH
‘ \ MO [15:8]
TTML
—_— MO [2:3])
TTMH
LAL L \ MO [10:3)
BYTES ARE TRANSFERRED MO [15:16] = MLI DATA
IN ORDER: OUTPUT FROM
FIRST TAG-FIELD. MLIP TO
THEN BITS (47:16]. uIo
THEN BITS [31:16].
THEN BITS [15:16].
MV4157

5010986

Figure 5-42. MLIP Peripheral Qutput Data Path From Top-of-Stack

5-59

B 6900 System Reference Manual
System Concept

C-REGISTER IS BARREL SHIFTED TO MOVE BYTES TO SUCCESSIVELY
HIGHER WORD BIT POSITIONS IN 16-BIT INCREMENTS

41 43 39 35 3 27 23" 19
HIGH LoW
46 42 38 34 | 2 2 18 BYTE | BYIE
TAG (15:8) (15:8]
FIELD
150:3] a5 £ 37 33 2 2 21 17
a4 40 36 32 Py 24 20 16)

217C
\ 21BUS
MX BUS [15:16]
(M1 [15:16]) L/ [15:16)
MITL ‘
M1 [2:3]) J
{OR A FORCED TAG VALUE)
BYTES ARE TRANSFERRED ' Mi [15:16} = MLI DATA
IN ORDER: INPUT FROM
FIRST TAG-FIELD. UIO TO MLIP
THEN BITS [47:16].
THEN BITS [31:16].
THEN BITS [15:16].
MV4158

Figure 5-43. MLIP Peripheral Input Data Path to Top-of-Stack

The 16-bits of I/O data on an MLI interface are divided into two characters, (1) a high-order and (2) a low-order
character. If only one character of I/O data is present on an MLI interface, it occupies the high-order character position.

MLIP Memory Weord Format

B 6900 memory words contain from 1 to 6 EBCDIC characters with the most significant character of the word located
in the 8 high-order bit positions. This means that peripheral data from an MLI interface must be barrelshifted so that a
BURST memory word represents the same significance as that of the peripheral device data. The first (most significant)
peripheral data character is located in the 8 high-order bits of the first BURST data memory word, and so forth.

Figures 544 and 545 show the logic circuits of the MLIP used to transfer data between peripheral devices and
system memory.)

5-60

986010¢

INRQn, ERONn, RDYn

MPME, MPAS

L
(POLL REQUEST
——1 SCAN MLI INPUT TO
CONTROL PAC(2:3) CONTROL PENN M{CRO-MODULE)
PENN"
XBKMN XBKMG
SCAN CSEL/
REGISTER AGNT/
RDYn e
TERM/.
PSC [4:5) CONE
e
XBKMG MLI
PORTn
MLI
FROM “MLI CABLE MI [15:16] SELECT MX BUS
uio |
SUBSYSTEM DATA DATA DATA TO
XBKLN TOP-OF-STACK
XBKMA C REGISTER
[15:16]
VIA 21 BUS
OUTF 0 — XBKMK
e
FROM } CAFAn o] FLAGS 1 — XBKNA
ASEL 2 — XBKNG
MICRO |
MODULE CAFBn 3 — XBKNN
=1 ek |——STEN .1 4-xBKPD UIO MIBUSTOS UIO Mi BUS TOS
5 — XBKPK INA8 = MI15 = C015 INC8 = MI07 = CO07
6 — XBKQA INA4 = MI114 = CO14 INC4 = MI06 = C006
7 — XBKQG INA2 = MI13 = CO13 INC2 = MIO5 = CO05
INA1 = MI12 = CO12 INC1 = MI04 = C004
INBS8 = MI11 = CO11 IND8 = MI03 = CO03
MNT/ INB4 = MI10 = CO10 IND4 = MI02 = CO02
INB2 = MI09 = C009 IND2 = MIO1 = COO1
CLK INB1 = MIO8 = C008 IND1 = MI0O = CO00
MV4159

19-§

Figure 5-44. Input Peripheral Data and MLIP Control Logic

1desuo) waisAg
[ENUBR 30UaIajey WISAS 0069 4

79§

INRQn, EROn, RDYn

., TOuUIO

Figure 5-45. Qutput Peripheral Data and MLIP Control Logic

— PAC [2:3)
SCAN | PAC [2:3 mLI
yeuo CONTROL | cuio CONTROL PENn
‘ PENn
nsl_()_" 24 RDYn XBKMG
» XBKMN
| CSEL/
SCAN AGNT/
REGISTER TERM/
e e i
CONE
PSC [4:5]
> XBKMG MLI
PORTn
FROM
TOP-OF-STACK MLI
\ C[50:19] SELECT MO [15:16] MLI CABLE
) DATA > DATA > DATA
/ v
XBKLN
XBKMA
OUTF 0 - XBKMK
FROM \ CAFAn BUS o FLAGS 1 — XBKNA
MICRO /7 ASEL 2 — XBKNG
3 — XBKNN
MODULE CAFBnBUS _ STEN 4 — KBKP
: 7 XBHLK ™ x:§m£<) TOS MO BUS UIO TOS MO BUS UIO
6 _ XBKQA €032 = M0OO = IND1 €040 = MOOS = INB1
7 — XBKQG €033 = M0O1 = IND2 €041 = MOO9 = INB2
€034 = M002 = IND4 C042 = MO10 = INB4
€035 = M0O3 = INDS €043 = M011 = INBS
€036 = M004 = INC1 C044 = MO12 = INA1
MNT/ C037 = M0O5 = INC2 €045 = M0O13 = INA2
€038 = M0O6 = INC4 C046 = MO14 = INA4
CLK €039 = M0O7 = INC8 C047 = MO15 = INAS
MV4160

SUBSYSTEM

1dasuo) wsysAg
[eNUEB 20UI0}Y WISAS 0069 4

B 6900 System Reference Manual
System Concept

MLIP Barrelshifting

Barrelshifting is a Transfer Controller function performed by the Memory Controller, in conjunction with an MLIP
BURST memory cycle. Barrelshifting consists of rotating a BURST data word around in the Top-of-Stack register,

while selectively transferring 16-bit increments of the BURST data word to/from the MLIP logic. Barrelshifting allows

a BURST memory word to be reformatted into the 16-bit increments (bytes) required for the MLI interface. Conversely,
barrelshifting also allows 6-character B 6900 system memory word formats to be constructed from standard 16-bit
peripheral device data formats.

The MLIP does not contain a buffer for peripheral device data. Instead, it uses the Top-of-Stack C and Z registers as a
data buffer. These two registers are used as an 1/O data buffer only during BURST memory cycle (and barrelshifting)
operations. Each UIO-DLP contains a data buffer that is used for the peripheral devices connected to that particular
UIO-DLP.

1/0 DEVICE OPERATION TERMINATION PROCESS

Every 1/O device operation terminates with the UIO-DLP returning result status data about the I/O operation to the MLIP
module, over the MLI. The MLIP micro-code control program utilizes the information contained in the DLP result status
to formulate a Result Descriptor. The MLIP causes the Result Descriptor to be written into the memory location
specified by the I/O Result Pointer (word five of the IOCB). The result status returned to the MLIP from a UIO-DLP

is variable length (in bytes) depending on the type of peripheral device controlled by the UIO-DLP. A Result Descriptor
is also variable length, and the MCP specifies the number of bytes contained in a particular 1/O device Result Descriptor
(word six of the I0CB). :

I0CB RESULT AND STATE Word Usage

The MLIP forms an MLIP RESULT AND STATE word which it writes into word Twelve of the IOCR. The RESULT
AND STATE word contains the general status of an I/O operation including the result status from the UIO-DLP, the
status of the MLI, the status of the MLIP logic, the status of memory operations initiated by the MLIP, and the STATE
of the MLIP micro-code program sequence. The RESULT AND STATE word describes the entire I/O operation status
and identifies the location of any fault or error that occurred during the operation sequences.

After the MLIP logic has completed the Result Descriptor and MLIP RESULT AND STATE words, the I/O operation is
complete. The MLIP then proceeds to link the IOCB into a Result Queue. The memory address of the Result Queue
into which the IOCB is linked is specified by word five of the IOCB. The current IOCB is always linked into the tail of
the Result Queue.

The software operating system specifies when the normal completion of an I/O operation is to cause an IO Finish
Interrupt (in word zero of the IOCB). It also specifies whether or not software attention is required at the conclusion of
the I/O operation. If either of these conditions are specified, the MLIP causes an I/O Finish Interrupt in the Interrupt
Controller at the termination of the I/O operation.

MLIP Error Handling

If a hardware failure or program error is detected during an I/O device operation, the MLIP causes an appropriate
HARDWARE or ALARM Interrupt to be initiated by the Interrupt Controller logic. Hardware failures or program errors
are detected by the MLIP, MLI interface, IODC module, or Memory Controller logic {(during BURST memory cycles). All
of these circuits report any error conditions sensed to the MLIP, and the MLIP logic initiates the Interrupt Controller
logic into operation.

5010986 5-63

B 6900 System Reference Manual
System Concept

The software operating system handles I/O error interrupts the same as 1/O Finish Interrupts. However, while a normal
" 1/O finish interrupt is performed only if the IOCB requests such an interrupt, an interrupt caused by an error condition
is performed unconditionally.

If a HARDWARE or ALARM Interrupt condition is detected by the logic of the MLIP, an Error-IOCB is completed.
The completion of an Error-IOCB by the MLIP logic is a subroutine function of the micro-module. This micro-code
subroutine is executed as part of the procedure for terminating the I/O device operation.

MEMORY ORGANIZATION

The memory resources of the B 6900 system (see Figure 5-2) are organized so that only one storage module of memory

may be accessed at any one time. The memory resources of the system consist from 128K to 1024K words of memory.
" Local memory may contain all 1024K words. Global memory may consist of that portion of 1024K words that are not

local to the CPU.

Memory Addressing

A memory word consists of 60 parallel bits of data that are present at one of the memory module interfaces to the
memory exchange. These 60 bits are further divided into a parity bit, 51 data bits, and eight error detection/error
correction bits.

Associated with a local memory word are 17 memory address bits and 12 memory function control bits. These bits
define a local memory operation to be performed, such a§ a READ operation or a WRITE operation, and specify the
proper word address in the memory module at which the memory operation is to be performed.

The memory exchange iogic utilizes the three high-order bits of the memory address field to select a memory module.
The low-order 17-bits of the memory address are used to identify a specific word address within the memory module.

Global memory is selected when local memory is not addressed for a valid memory function, or for a global system con-
trol function. Local memory is selected for a memory operation when a valid memory function is defined, and one of
the four local memory ports is configured with an identical module selection code as that contained in the high-order
3-bits of the memory address. If none of the four local memory ports is configured identically to the high-order 3-bits
of the memory address code, then global memory is defined, and the global memory port responds to the memory
request. A global system control operation is defined by a special configuration of control bits in the memory requestor
logic and is executed only as a result of a scan command operator execution in the CPU processor logic. Global scan
operations are defined later in this section.

A memory storage module contains 128K words of continuous memory storage addresses (see Figure 546). A 20-bit
binary address field is used to select a memory module and a specific word address within the module (see Figure 5-46).
The low order 17-bits of the 20-bit address field select one word of the 128K words within a memory module. The
high-order 3-bits of the 20-bit memory address field are used to select one of four local memory modules or global
memory. A local memory storage module is synonomous to one of the local memory ports of the memory exchange.

In addition to address and information data, the memory interface bus also transmits control information between the

memory control and the memory module or Global memory. This control information directs the memory operation
that will be performed by the memory module, such as WRITE or READ functions.

5-64

B 6900 System Reference Manual
System Concept

MODULE| WORD
SELECT | SELECT

i/ 13 G 5 !

MV4553

Figure 5-46. Memory Address Decoding

For local memory modules, the control signals include the Initiate Memory Cycle (IMC) timing signal, and a 3-bit
memory function code that is comprised of the Read Modify Write (RMW), Write Cycle Conditional (WCC), and the
Parity Error Disable (PED) control signals. The significance of these control signals is discussed in the portion of this
section entitled Local Memory Port Interface Control Logic. The control signals present at the global memory interface
port are discussed in the portion of this section entitled Global Memory Port Interface Control Logic.

Global Memory and Global System Control

A B 6900 system can be interfaced to a global system through the global memory port of the CPU memory controller.
When a B 6900 system is connected to a global system, it is part of the global system to which it is connected, and is
subject to the rules for global system operation.

A global system may contain a single B 6000 system, in which case the global system is only an extension of the memory
resources of the B 6000 system, and no global control is utilized. A global system may contain several B 6000 systems
in which case, global system control is utilized.

Global system control is utilized to organize and control the application of the processor elements (B 6000 systems) in
the global system. It is also utilized to control the dedication of the globali memory resources among the various pro-
cessor elements of the global system.

Global system control is dynamic in nature. Reorganization and reallocation are functions of the Master Control
Program(s) that are operational at any given instant in time. The hardware cabinets of the global sysiem are the Global
Memory Module (GMM), which contains the logic circuits for both global system control and global memory control, and
memory module cabinets. Figure 547 shows the hardware logical organization of a GMM, including the system control
interfaces and the memory control interfaces and modules.

GLOBAL SYSTEM ORGANIZATION

Global systems (see Figure 5-47) provide for multiple processors (systems) and multiple memory modules to be coupled
together in global networks. Such multiple systems are dynamically controlled by the software operating system.
Dynamic control consists of defining and controlling the paths of communication between the processors that are present,
and between the processor organizations and the memory module resources. Because the global system is dynamic, its

~ structure is subject to change based upon the instantaneous requirements of the software operating system.

Two distinct types of architecture are involved in a global system: the physical organization of the various processors

and memory modules (GMMs), and the logical organization of the global system. To understand the global system, the
physical and logical structure of the system must be thought of as separate dimensions of the same entity.

5010986 565

B 6900 System Reference Manual
System Concept

e I s I
MEMORY | MEMORY | i MEMORY : : MEMORY |
MODULE I moouLe :) MoDuLE | | mooute |
1 []
oy et YTy

\\\\\\ \:.‘,\\‘\,'\ ’ :

\\\\

i
\\\\\\ ‘

AWMLY

——— —_

— — o
- ——

WAL I !
\\L\ Vil L
HUB HUB HUB HUB
L M N P
e L INTERFACE | | INTERFACE || INTERFACE || INTERFACE
SYSTEM T
contrROL J_"T} GsC
INTERFACE ONTR
T0 OTHER | CONTROL GLOBAL GLOBAL
GMM'S ———|INTERFACE MEMORY SYST1EM
CONTROL CONTROL.
LOGIC LOGIC
REQUESTOR REQUESTOR REQUESTOR REQUESTOR
A B c D
(PORT 1) {PORT 2) (PORT 4) (PORT 8)
WIH NN A AR T MR NN
! Vo, AN ANANAIRN
i) .\ 1\ \ ~\ . \ v \\ -\ \ NS \
L ‘1 AR NN AN
; v o -\-,‘.\\\\ AN
I v . -\\\‘.‘\. NN
i : I \ ' \\ .\\) \,‘. \ \ ~'\\\ N
b T NN N\ NN N
i ; 1 l v \‘\ ~\ Vo N \ \ \'\\\\.\\
Ll rJJJ44¢.1 rk.k _\.A..'a._.' r.\.;.‘.;.;_.-_‘
B8 6000 : Beooo | | Beoco | | 86000 :
CPU | cPU : : CPU : 1 cPU I
MODULE | MODULE | | wmoouie | | mobue
MVA4554 I 5 I SO R SRR
Figure 547. Global Memory Module (GMM) Organization
Physical Structure

The physical structure of global system components includes the number of type of cabinets (processors, GMM, and
memory modules) and also the manner and order in which the system components are interfaced with each other. This
structure defines the constraints and limits under which the software operating system can act to dynamically control the
global system. It dictates which global units may be coupled, and also how the memory resources can be utilized within
a subsystem. Figure 548 shows a global system that contains all of the cabinet types required of a global system in its
most elementary form, plus those global system components that may be added to the elementary global system without
adding cabinets that are used solely for expanding the global system capabilities.

Elementary Global System Requirements

A global system must contain at least one processor, one GMM, and one memory module. If a global system contains
one GMM cabinet, it may also contain up to four processors and up to four memory moduies. Figure 548 shows a

5-66

B 6900 System Reference Manual
System Concept

single GMM cabinet, which is connected to four processors and four memory modules. If a global system only contains
one GMM cabinet, then a global system control bus {multi-cabinet adapter) is no required because all of the logic for
global system control is present in the GMM cabinet. A separate interface is required for each processor and each mem-
ory module that is connected to a GMM cabinet.

256K 256K
GLOBAL VQ—] r—. GLOBAL
MEMORY MEMORY

1

L M N 4
r._.__._ —_——————
.. | GLOBAL SYSTEM GLOBAL MEMORY GLOBAL SYSTEM |
—| OTHER GMM'S | — — " — — -{C CH—-— = — — | OTHER GMM'S L>
] s CONTROL BUS MODULE CONTROL BUS]]
| S | e d
! 2 4 8
4 4 3 3
LOCAL LtOCAL
68000] & B 8000
MEMORY 8 SYSTE 8 SYSTEM MEMORY
Y]
LOCAL LOCAL
8 6000 SYSTEM 6000 SY 1
MEMORY 8 SYSTEN MEMORY

Figure 5-48. Globai System Interfaces

Logical Structure

Logical structure is that organization of communication paths within a global network that defines the global system(s)
present at any given instant. “Communication paths” do not pertain to the memory resources of the global network, but
rather, to the processor resources of the network only.

Each processor within a global network may be named; each processor that is part of a global system must have a name.
The name consists of two parts: system name and processor mask field. The combination of the two parts of a proces-

sor name identifies a global system and a specific processor within the global system.

Processors within a globai system are organized in a masier/siave reiationship. A masier processor is iogically above its -
slave processor(s), and for each slave processor there can only be one master processor. A processor that is slave to
another processor may also have a processor which is slave to it.

Processor Addressing in a Global System

A processor within a global network may be identified by two different types of identification. The first type of identi-
fication is the physical port location of a GMM to which the processor is interfaced.

The second type of processor identification is a naming convention controlled by the software operating system(s). This
type of organization is used to associate a processor with other processors in a global system. This type of organization
allows the software operating system to dynamically couple processors into groupings, without regard to the physical
organization of the GMM cabinet that is part of the global network.

5010986 567

B 6900 System Reference Manual
System Concept

Port Identification Addressing

A processor port identification is comprised of up to four 4-bit numeric digits. The actual number of 4-bit digits used
for processor port identification depends on the number of GMM cabinets that are part of the global network. The most
significant digit of the port identification number represents the port connection to the GMM cabinet.

Logical Naming Identification

The naming convention used by the software operating system to identify the processors in a global system is the logical
structure of the system, and bears no required resemblance to-the physical port identities of the processors that are part

of the global network. This organization allows the software operating system to determine what types of global systems
‘the global network contains, and which processors are members of global systems.

A system logical name consists of 12 binary bits which form three hexadecimal digits. The most significant digit in a
system name is the left-most digit of the name, and identifies the upper-most level of the global system. The middle
digit of the system name identifies the middle level of the global system. The least significant digit identifies the lowest
or bottom level of the global system. '

The processors present at each level of a global system are identified by a 12-bit mask field, which is appended to the
system name. Each of the 12-bits in the mask field (bits zero through eleven) identifies one of the 12 processors that
may be present at any one level of the global system. A mask field for a particular processor may contain only one bit.
The proper addressing for a processor in the global system or subsystem includes the name of that system or subsystem
and also a mask in which 1-bit is set.

It is impossible to have a third (bottom) level global subsystem without also having a corresponding second (middle) level
subsystem. A global system that only contains one level is the top level. A global system that contains two, levels
includes the top and middle levels. Only three levels of global system name are permitted.

System Memory Interface

The system memory interface consists of a-one-by-five exchange that is used to interface the B 6900 CPU to the mem-
ory resources of the B 6900 system. The five memory storage module interfaces are designated as ports number zero
through three (local memory) and the global memory port. Figure 5-49 shows the organization of the requestor inter-
faces and the port interfaces to the system memory control.

MEMORY REQUESTOR

Figure 5-50 shows the path used in the data processor to access the system memory control. This path is controlled by
the memory controller, through use of the Z12 bus. All data written into memory from the data processor or MLIP is
routed to the system memory interface exchange by means of the Z4 bus. All data read into the data processor,
MLIP, or look ahead logic is routed from the system memory port interface to the Z3 bus. Address information is
routed from the memory address register or look ahead address register by means of an internal memory address bus.

Figure 5-51 shows how information, address, and control data are routed internally within the requester logic of the
memory exchange. This figure also shows how port selection is made within the exchange module, by means of the port
select logic. »

Figure 5-51 shows the PACK (port acknowledge) control bus. This bus has a true level if a local memory port interface
is seiecied by the port select iogic. If a iocal memory port is not seiecied {FACK/is true) and a vaiid request is present
in the requestor logic, then the global memory port is selected by default.

568

986010¢

69§

O

O~

o

LOOK
AHEAD
- L REGISTER LOGIC
-t P REGISTER
PROGRAM
CONTROLLER
- Z REGISTER
'A C REGISTER
> A REGISTER MEMORY Z12 CONTROL BUS
CONTROLLER
- B REGISTER
- X REGISTER
Z4 BUS WRITE DATA 50:51
o Y REGISTER
23 BUS READ DATA 50:51
LOOK
AHEAD
Rl ADDRESS «
‘ REGISTER MEMORY
PROCESSOR ADDRESS
1C A “9220]
vemory | ASRESS
ADDRESS
REGISTERS
—~ MEMORY
ADDRESS
REGISTER
MV4556

Figure 5-49. Memory Control Block Diagram

MEMORY
CONTROL
EXCHANGE
REQUESTOR

-]

GLOBAL
PORT

LOCAL
PORT

LOCAL
PORT

LOCAL
PORT

LOCAL
PORT

1deouo) wasAg
[BNUBYY 9oUSI9JeY WaISAS 0069 9

oLS

MEMORY

GLOBAL
PORT

GLOBAL
MEMORY
CONTROL

CONTROL

FROM/TO
PERIFHERAL
DEVICES
== MLIP
SYSTEM MEMORY
DATA CONTROL INTERFACE
PROCESSOR
L OOK
AHEAD
L OGIC
MV45E7

1 REQUESTOR

PORT 3

LOCAL
MEMORY
STORAGE
UNIT

PORT 2

LOCAL
MEMORY
STORAGE
UNIT

PORT 1

L.OCAL
MEMORY
STORAGE
UNIT

PORT 0

LOCAL
MEMORY
STORAGE
UNIT

MEMORY
CONTROL

Figure 5-50. Data Processor to Memory Control Exchange Transfer Path

1doouo)) waysAg
[enuey 20usIdjay WAISAS 0069 d

B 6900 System Reference Manual
System Concept

/212 BUS [13:14} : BIT € {LOCAL SCAN CONTROL) : GLOBA GLOBAL SCAN
MEMORY CONTROLLER MEMORY —~ BAL BUS INTERFACE
~] CONTROL SCAN BUS L
LOGIC CONTROL DATA g — INTERFACE
BIT D (GLOBAL SCAN CONTROL) - B
—
WRITE DATA [50:51] L
24 BUS WRITE GLOBAL MEMORY
DATA [50:61] CHECK BIT WRITE DATA [58:9] 1 —8 GLOBAL INTERFACE
GENERATOR i i < — >
LOGIC MEMORY
PORT
-
P
LOCAL MEMORY
cPU PORT . b%in%m STORAGE MODULE 3
ADDRESS [18: INTERF ACE
. INTERFACES (19:20] > SELECT S PORT 5 >
) LOGIC NUMBER
3 LOCAL MEMORY
STORAGE MODULE -
MEMORY READ DATA [50:51] {EXTERNAL
INTERFACE)
—
MEMORY READ DATA {59:60] LOCAL MEMORY
23 BUS READ —e > STORAGE MODULE 2
. ERROR LOCAL
- DATA (50:51] CORRECTION MEMORY INTERFACE
LOGIC . PORT * >
N
- 5 UMBER LOCAL MEMORY
' = STORAGE MODULE’
T > (EXTERNAL
INTERFACE)
LOCAL PACK BUS
| ——
MEMORY BUS MEMORY
ERRORS TO — : LOCAL MEMORY
INTERRUPT LOCAL STORAGE MODULE 1
CONTROL.LER ERROR — MEMORY INTERFACE
g DETECTION - PORT - —
LOGIC NUMBER
NG GLOBAL MEMORY ERRORS 1 LOCAL MEMORY
. : - STORAGE
MODULE 1
(EXTERNAL
INTERFACE)
] LOCAL MEMORY
— LOCAL STORAGE MODULE 0
RETRY MEMORY RETRY CONTROL MEMORY INTERFACE
LOGIC - PORT = —
NUMBER
0 LOCAL MEMORY
— STORAGE MODULE
MV4558 {1 {(EXTERNAL
INTERFACE)

Figure 5-51. Memory Exchange Interface
Functional Block Diagram

5010986 571

B 6900 System Reference Manual
System Concept

The 14-biis of the memory control Z12 bus are identified as follows:

Bit Field Meaning and Usage

S:6 The register select field. This field identifies the data processor register that is to receive the data
for a memory READ operation, or the data processor register from which data is to be written into
memery for 2 memory WRITE operation.

Bit zero is used to select register Z
Bit one is used to select register Y
Bit two is used to select register X
Bit three is used to select register C
Bit four is used to select register B

Bit five is used to select register A

9:4 The request field. This field identifies the type of memory operation to be performed.
Bit: 9 8 7 6 Operation to be Performed -
6 0 o0 1 Protected WRITE with flashback to C register
[V 1 0 Clear WRITE
1 0 1 0 Overwrite with flashback to C register

0 1 ¢ 0 READ
0 0 1 1 Protected WRITE with no flashback

AB The look ahead request field. When bit A is true, the request originates in the look ahead log1c
If bitA is false, the request originates in the data processor/MLIP.

Bit B is used to specify which register in the data processor is to receive the data input from
memory when a look ahead memory cycle is completed. If bit B is true, the data is to be placed
in the L register of the data processor. If bit B is false, the data is to be placed in the P register

of the data processor.
C Bit C is not used by a B 6900 system.
D The global scan bit. If bit D is true, the operation to be performed through the global memory

port is a global scan operation instead of a global memory operation. If bit D is false, the
operation to be performed is a memory operation instead of a global scan operation.

5010986 5-73

B 6900 System Reference Manual
System Concept

Memory Error Detection and Correction

The memory requestor logic contains error detection/correction logic circuits (refer to Figure 5-52). Each time a memory
WRITE operation is performed, 8-bits of error detection check code are generated by the error detection circuits and
appended to the memory write data. The total number of bits written in memory during a WRITE operation is 60-bits,
of which 52 data bits are write data from the CPU, and the other 8-bits are the error detection check code.

During memory READ operations, the error detection check bits (which were written into memory during the memory
WRITE operation) are tested for bit errors in the data word received from the memory storage unit. If a single bit of a
memory read data word is in error, the error correction circuit corrects the bit in error. If more than a single bit in the
memory read data word is in error, the error is not correctable, but the error detection circuit detects a multiple bit data
error. All single bit and multiple bit data errors are reported to the data processor interrupt handling procedure, and are
logged in the SYSTEM/SUMLOG.

Memory Retry
The memory control performs memory RETRY operations under certain conditions.

The memory control performs a memory RETRY operation if the memory module detects a parity error in the address and
control data that is transmitted from the CPU cabinet to the memory module cabinet over the port interface. This RETR
consists of performing the entire memory cycle over again. If the retry of the memory cycle is successful, then the
memory controller causes the interrupt controller to make an eniry in the SYSTEM/SUMLOG that indicates a RETRY
operation occurred, and the memory operation proceeds in a normal manner. If the RETRY operation is not successful (a
second parity error is detected in the memory address and control data), then the memory cycle is aborted, and the
memory controller causes an alarm interrupt to be recorded in the SYSTEM/SUMLOG. The procedure that catsed the
memory cycle which was aborted is terminated because of the memory parity error.

The memory control also performs a RETRY operation if the memory control senses a parity error in the read data that

is transmitted from the memory module cabinet to the CPU cabinet. This RETRY operation consists of causing the read
data in the storage module read latches to be transmitted to the CPU cabinet a second time. A second memory cycle is
not performed by the storage module. The results of successful RETRY operations are reported in the same way that a suc:
cessful address and control retry is reported.

If the RETRY operation for a parity error in the read data is not successful, then an error correction memory cycle is
initiated. The entries made in the SYSTEM/SUMLOG as a result of an error correction memory cycle were described
previously in this section.

The memory coniroi does not perform RETRY operations for parity errors in the write data transmitted from the CPU
cabinet to the memory module cabinet.

Only one RETRY operation will be attempted for each memory operation.
Globai Memory

Global memory provides a path through which one B 6900 system may control the operations of another B 6900 system
(global system control operations), and also provides a path up to 512K words of global memory. The system control
functions of the global scan bus and the global memory functions share a common interface path through the channel
A global memory port of the B 6900 system. A global memory request from the B 6900 system and a global scan opera-

tion cannot be processed simultaneously,

A global memory request is identical to a local memory request. The method used to distinguish between local and
global memory operations was defined previously in this section (Memory Organization), and is a function of
module addressing.

5-74

9860105

SLS

ADDRESS
{19:20]

MEMORY READ
DATA [51:52]

MEMORY WRITE
DATA [51:562]

MEMORY CONTROL

DATA

MV46569

—-
-
> GLOBAL
PORT 3 SELECTED MEMORY
PORT 2 SELECTED
—a FORT PORT 1 SELECTED
SELECT SELECTE >
LOGIC PORT 0 SELECTED
ADDRESS 19:20 .
. -
READ DATA [51:52] > LOCAL
MEMORY
™1 PORT3
ERROR p—
CORRECTION @ READ DATA [59:60]
LOGIC I
l SINGLE B!T ERROR ERROR
s & DETECTION -1
LOGIC - LOCAL
- MEMORY
& PORT 2
RETRY
LOGIC >
I L
LOCAL
> MEMORY
- PORT 1
MEMORY >
CHECK BIT MEMORY WRITE DATA |59 60}
—®1 GENERATOR
CIRCUIT
-
—
SINGLE BIT ERROR
emory | kAo
MEMORY
. CONTROL ¢ CONTROL DATA (UNIT ERRORS) MEMOF
LOGIC >
- MULTIPLE BIT ERROR

Figure 5-52. Error Detection Correction Logic

1doouo) waisAg
[enUBY 20UsIeJeYy WRISAS 0069 g

B 6900 System Reference Manual
System Concept

Global System Control (Scan) Operations

Global scan operations are common with global memory operations only in that they both use the global memory path
to communicate with the global system. The global scan operations are of two types, SCAN-IN and SCAN-QUT.

Global SCAN-OUT

A giobai SCAN-OUT operation is performed when a SCNO operator is executed from the data processor P register. The
distinction between a global SCAN-OUT operation and other SCAN-OUT operations is the contents of the scan function
word present in the A register when the SCNO operator is executed. If the SCNO function word contains hexadecimal B

in bits 19:4, then a global scan function is defined. The destination of a global SCAN-OUT data word (in the global memory
module cabinet) is the response buffer. The SCAN-OUT data word is located in the B register of the data processor at the
start of the global SCAN-OUT operation, and defines the function to be performed by the global memory control module.
The format of the SCAN-OUT function word and of the SCAN-OUT data word is shown in Figure 5-53.

FUNCTION WORD
A REGISTER

DATA WORD
B REGISTER
1
or
CODE
0 SCAN RECEIVER
DATA ADDRESS
0 v
\'
OJ“ o Bs |32 (28 [2s f0o pe h2 s fu o
MV2729

Figure 5-53. Global Scan Function And Data Word Format

5-76

B 6900 System Reference Manual
System Concept

Global SCAN-IN

A global SCAN-IN function is similar to a global SCAN-OUT function. The difference between the two types of global
scan functions is that the global SCAN-IN function is performed when a SCNI operator is executed from the data proc-
cessor P register, and a SCAN-OUT function is performed when a SCNO operator is executed from the data processor P
register. If bit 15 of the function word (for a global SCAN-IN function) is a binary zero, then the source of the SCAN-
IN word is ‘the response buffer in the global memory control logic. If bit 15 is a binary one, then the source of the
SCAN-IN word is the message buffer in the global memory control logic. Bit 15 is not used for a global SCAN-OUT type
operation, because the destination of the data word is always to the response buffer in the global memory control logic.

Typical Global System Control Operation

If two B 6900 systems communicate with each other by means of the global scan bus, the system that transmits a mes-
sage executes a global SCAN-OUT operation, and thus places a global scan data word in the response buffer of its global
memory control. The receiver B 6900 system receives an interrupt from its memory controller, and executes a SCAN-IN
of the contents of the global memory control message buffer. The contents of the global memory message buffer is
partially the data word that was scanned out by the transmitter B 6900 system. The global memory control of the
receiver B 6900 system returns a word of data that describes the results of the global scan function to the response buf-
fer of the transmitter global memory control. The transmitter B 6900 system may then SCAN-IN the contents of its
response buffer, and thus know the status of the completed global scan operation.

The response word received by a transmitter B 6900 system at the conclusion of a global scan operation has two formats,
depending on whether or not an error occurred during the global scan operation. Figure 5-54 shows the format of the
word present in the transmitter response buffer when no errors were encountered during the global scan operation.

Figure 5-55 shows the word in the response buffer when an error was encountered during the global scan operation.

Global system control functions are specified by the contents of the scan-data word that is present in the B register at
the start of a global system control operation. There are 32 different global system control functions that may be
specified by the contents of the OP CODE field in the data word. These functions are divided into five classes as foliows:-

OP CODE Field

Value [47:6] Class Global System Control Function
000001 1 HEYU
0600010 1 HEYALL
000011 1 ARE YOU THERE-(PN)
000100 1 WHERE ARE YOU
000101 1 TRANSFER i
000110 1 SHARE WRITE i
000111 1 SHARE READ i
111000 2 HALT
111001 2 CLEAR
111010 2 LOAD
111100 2 START
111101 2 ZAP
010000 3 I AM
010001 3 WHAT IS MY NAME
010010 3 WHAT IS MY NUMBER
010011 3

RESET MY LR

5010986 5-77

5-78

B 6900 System Reference Manual
System Concept

L
.OP
CODE REGISTER
READ
\Y INFORMATION !
\
uy o po_ 132 [28 au |20 16

47:6
41:2
39:24
15:1
14:1
13:1
12:1

10:1
9:1
8:1
7:1
6:1
5:1
4:1
3:1
2:1
1:1
0:1

MV2730

THE OPERATION CODE FOR THE OPERATION TO BE PERFORMED.
THE VARIANT FIELD FOR THE OPERATION CODE.
THE GLOBAL SCAN OPERATION DATA FIELD.
THE INTERRUPT PENDING BIT.
THE WACR SET BY TEST AND SET BIT.
THE TIME-OUT WAITING TO RECEIVE BIT.
THE MODULE i INVISIBLE BIT (NOT IN MAINTENANCE MODE
FOR WRITE ACR).
TWO MEANINGS:
IF ON, RACR(i) =1 AND WACRIi) =0.
IF OFF, WACR{i) =1.
THE RECEIVERS PORT LOCK-OUT SWITCH IS ON BIT.
THE RECEIVERS DEPENDENT BIT IS SET BIT.
THE RECEIVERS LOCK REGISTER IS SET BIT.
THE RECEIVER 1S SUPERHALTED BIT.
THE RECEIVER IS HALTED BIT,
THE RECEIVER RUNNING BIT,
THE RECEIVER ENGAGED BIT.
THE RESPONSE RECEIVED BIT.
THE TRANSMISSION PARITY PROBLEM BiT.

THE INVALID COMMAND, ILLEGAL PATH, OR LOCK REGISTER # 1 BIT.

THE UNSUCCESSFUL COMMUNICATION BIT.

Figure 5-54. Global Scan Operation Response Word (No Transmission Errors)

Op CODE Field

Value [47:6] Class Global System Control Function
010100 3 TEST AND SET i
010101 3 SET MY DSR
010110 3 RESET BY DSR
010111 3 RESET BY RACR
001001 4 READ ACR i
001010 - 4 READ FWAR
001011 4 ARE YOU THERE (PID)
001100 4 WHO ARE YOU

B 6900 System Reference Manual
System Concept

!
oP
o | COUE REGISTER
READ
0 v INFORMATION

\'
44 Jho 6 32 |28 |24 J20

47:6
41:2
39:24
15:1
14:1
13:1
12:1

11:3
8:1
7:1
6:1
5:1
4:1
3:1
2:1
1:1
0:1

MV2731

THE OPERATION CODE FOR THE OPERATION TO BE PERFORMED.
THE VARIANT FIELD FOR THE OPERATION CODE.

THE GLOBAL SCAN OPERATION DATA FIELD.

THE INTERRUPT PENDING BIT.

THE WACR SET BY TEST AND SET BIT.

THE TIME-OUT WAITING TO RECEIVE BIT.

THE MODULE i INVISIBLE BIT (NOT IN MAINTENANCE MODE

FOR WRITE ACR).

NOT USED. :

THE SENDER PARITY ERROR IN RESPONSE BIT.

THE MULTIPLE RECEIVER PARITY ERROR IN RESPONSE BIT.

THE RECEIVER PARITY ERROR IN RESPONSE BIT.

THE MULTIPLE RECEIVER PARITY ERROR IN MESSAGE BIT.

THE RECEIVER PARITY ERROR IN MESSAGE BIT.

THE RESPONSE RECEIVED BIT.

THE TRANSMISSION PARITY PROBLEM BIT.

THE INVALID COMMAND, ILLEGAL PATH, OR LOCK REGISTER #1BIT.
THE UNSUCCESSFUL COMMUNICATION BIT.

Figure 5-55. Global Scan Operation Response Word (Transmission Errors)

OP CODE Field

Value [47:6] Class Global System Control Function
001101 4 YOU ARE
001110 4 READ SINGLE BIT ERROR REG
110000 5 MANUAL HALT
110001 5 MANUAL CLEAR
110010 5 NOT RUNNING
110011 5 SUPER HALTED
110110 5 WRITE ACR i
110111 5 GENERAL CLEAR

Global functional descriptions are not given in this manual. They are specific subjects of the global system décumenta-
tion and are covered in detail in the B 6800 System Global Memory FETM, Form Number 5010218.

. 5010986

B 6900 System Reference Manual
System Concept

The VV field of the data word is used to specify the direction the GMM is to use (within the global system) in
performing the operation specified by the OP CODE. The VV field codes are as follows:

BITS 41 12_ Direction of Global Communication Path

0 0 Within
1 1 Across

The SCAN DATA field (bits [39:24]) is used to pass data relevant to the global function specified by the OP CODE
field.

The RECEIVER ADDRESS field (bits [15:16]) is used to specify the particular GMM port to which this global system
operation is directed. The transmitting port places the address code of the receiver in this field. This address may be
either the Port Identification (PID) of the receiver or the logical name of the receiver system or subsystem. After the
transmitter port has transmitted a system control message to another processor unit in the global system, it retains con-
trol of the system control bus interface, and waits for a response from the receiver.

The receiver accepts the transmitted data from the transmitter, and then proceeds to perform the function indicated by
the OP CODE field. Before beginning to do what the OP CODE directed, a parity test of the transmitted data is per-
formed. If a parity error is detected in the transmitted data, the OP CODE is disregarded, and a response word is con-
structed in the sender’s response register (see Figure 5-55). If no parity error is detected in the transmitted data, the
receiver executes the instruction contained in the OP CODE field. '

When a receiver has completed the instruction contained in the transmitted word, it forms a response word in the
sender’s response register. This word indicates that the required operation was performed, and gives information or status
that is required because of the nature of the performed operation.

While the required operation is being performed by the receiver, the sender retains control of the system control interface
bus. Consequently, when the operation is completed, the receiver GMM has access to the sender GMM response register.
The sender GMM is responsible for maintaining control over the system control interface bus until the receiver has com-
pleted the response. The format of a normal receiver response is shown in Figure 5-54.

After the transmitter has received back the response word, control of the system control interface bus is passed to
another processor port for possible control bus transmission. If the next processor needs to use the system control bus,
it holds control of the bus until the needs are completed; otherwise, it passes control of the bus to the next processor
port. In this manner, control of the system control interface bus is passed from processor port to processor port.

MEMORY STORAGE UNIT PORT INTERFACE

External port interfaces are used to connect the memory control to the units that are remote from the CPU cabinet. The
units that are remote from the CPU cabinet and the information that is transmitted on each cable of the interface are
as follows:

Unit(s) Type of Interface Cables and Signals
External Local Memory Six cables are used to interface each of four possible memory
Local Memory 264 wire, six cable. storage units to the memory exchange. Each cable contains
Unit 44 wires which may be used to pass information, control, and

address data between the storage unit and the memory
control port. All signal lines of the local memory interface
bus are single direction lines, and no cable lines are used to
pass data in both directions.

580

B 6900 System Reference Manual
System Concept

Unit(s Type of Interface Cables and Signals
Cable Name Signals on the Cable
1 This cable is used to pass a 16-bit address to the memory

storage unit, and is also used to pass a 3-bit address check
value from the storage unit back to the memory control. The
other lines on this cable are not used.

2 This cable is used to pass 12 control signals from the storage
unit to the exchange port, or vice versa. The other wires of
this cable are not used.

3 This cable is used to pass 15 write data signals (14:15) and
15 read data signals (14:15) between the storage module and
the exchange port. The other wires of this cable are not used.

4 This cable is the same as cable 3, except that it
passes write data bits (29:15) and read data bits (29:15).

S This cable is the same as cable 3, except that it
passes write data bits (44:15) and read data bits (44:15).

6 This cable is the same as cable 3, except that it
passes write data bits (59:15) and read data bits (59:15).

Unit(s) Type of Interface " Cables and Signals
Global Memory Global Memory Six cables are used to interface a GMM cabinet to the B 6900
Module 120 wires, six cables system memory exchange. Each cable contains 20 wires

which can be used to pass information, control, and address
data between the GMM cabinet and the global memory port.
Signal lines of the global memory interface bus are either
uni-directional or bi-directional, depending on the individual
signal circuit usage.

Cable Name Signals on the Cable
1 This cable is used to pass a 20-bit (GAOO through GA19)

address field to the GMM from the B 6900 memory
exchange interface. The address field circuits are uni-directional
(from the B 6900 to the GMM).

2 This cable is used to pass the low-order 20-bits of the 60-bit
information word (GI0O through GI19) between the B 6900
memory exchange and the GMM. These 20 lines are used

bi-directionally for both READ and WRITE type global memory
(or system control) operations.

3 This cable is identical to cable 2, except that it
passes information bits GI20 through GI39.

5010986 581

5-82

Unit(s

B 6900 System Reference Manual

Type of Interface
Cable Name

4

Control Signal
Mnemonic

INVA
GREQ

Control Signal
Mnemonic

GWRC
GABX
GAOX
SHARE
GPRC 1
GREX (CABLE
LINE

\ SHARE |

GAPL 1
GUEX (CABLE
LINE

GSCX
Cable Name

5

Contro! Signal

Mnemonic

GAOR
GCWC
GAEX
GWEX
GMMA

System Concept

Cables and Signals

Signals on_the Cable

This cable passes 12 information bits (GI40 through GI51)
in the sume way that cables 2 and 3 operate. In addition,
this cable is used to pass 10 uni-directional control signals,

as follows:

Control Signal Name From To
Invalid Address GMM B 6900
Global Request B 6900 GMM
Control Signal Name From To
Global Write Control (RMW) B 6900 GMM
Global Access Begun GMM B 6900
Global Access Obtained GMM B 6900
Global Write Protect Control B 6900 GMM
Global Read Error GMM B 6900
Global Address Parity Level B 6900 GMM
Global Uncorrectable Error GMM B 6900
Global Scan Control B 6900 GMM

Signals on the Cable

This cable passes 8 check-bit information signals (G152 through
G159) in the same way that cables 2 and 3 operate. In addition,
this cable is used to pass 5 uni-directional control signals as follows:

Control Signal Name From To
Global Access Obtained Return B 69006 GMM
Global Clear Writc Control B 6900 GMM
Global Address Error GMM B 6900
Global Write Error GMM B 6900
Global Memory Module

Available GMM GMM B 6900

This cable also contains 7 spare unused signal lines.

B 6900 System Reference Manual
System Concept

Type of Interface Cables and Signals
Cable Name Signals on the Cable
6 This cable is used to pass 12 uni-directional system control

signals as follows:

Control Signal

Mnemonic Control Signal Name From To
HALT Halt GMM B 6900
HLTD Halted B 6900 GMM
CLER Clear GMM B 6900
CLRD Cleared B 6900 GMM
LOAD . Load GMM B 6900
STRT Global Start GMM B 6900
SHLT Super Halted B 6900 GMM
IDLE Idle B 6900 GMM
RUNG Running B 6900 GMM
SAVL System Available B 6900 GMM
EINT ‘ External Intcrrupt GMM B 6900
AINT Alarm Interrupt GMM B 6900

This cable also contains 8 spare unused signal lines.

Local Memory Port Interface Control Logic

The logical control signals of the port interface (cable 2) are as follows:

Signal Name
RMW, WCC, PED

IMC

5010986

Signal Usage

Signals RMW (READ/MODIFY/WRITE), WCC (Write Cycle Control), and PED
(Parity Error Disable) form a 3-bit code that is used to define the type of
operation to be performed by the memory storage unit. The types of
operations performed by the storage unit are as follows:

RMW WCC PED Function
0 Clear WRITE operation
0 0 1 Memory READ restore operation
1 0 READ/MODIFY/WRITE

The Initiate Memory Cycle signal. Two IMC signals are required to perform READ/
MODIFY/WRITE memory operations. The memory control generates both IMC signals
(one for the READ portion of the operation, followed by another one for the WRITE
portion of the operation), and transmits them on the interface IMC wire. The

timing of these two IMC signals is a function of the memory control.

5-83

B 6900 System Reference Manual
System Concept

Signal Name Signal Usage
Signal Name Slignat Usage
PAR The Memory Address Parity bit. This signal is sent from the memory control to

the memory storage unit to cause the 17-bit address field plus the RMW, WCC,
and PED signals to have odd parity. If the number of binary one bits in the
address field is even, the PAR signal will be true, thus making an odd number.

If the number of binary one bits in the address field is odd, the PAR signal will
be false, thus maintaining the odd parity. This signal is only transmitted during
the clear WRITE operation. For all other types of memory operations, this signal
is forced false.

MPE ‘ The Memory Parity Even signal. This signal is returned from the memory storage
unit to the memory control, to indicate whether or not memory address even
parity error was detected at the storage unit interface.

WST The Write Strobe signal. This signal is the write strobe signal for a memory WRITE
operation. The memory control generates this signal and transmits it to the
memory storage unit which is to perform the WRITE portion of a memory cycle.
The system memory control must generate this signal instead of the memory
storage unit, because the WRITE portion of a memory cycle is performed after a
possible retry of the READ portion is completed.

MSW The Memory Select Write signal. This signal is used to define whether the read
register or the write register is to be used as the source of data for the WRITE
portion of a READ/MODIFY/WRITE operation. If the MSW signal is a true level,
the write register is the source; otherwise, the read register is the source.

PCS (general clear) The Memory Storage Unit Clear signal. This signal is generated in the memory
control and is used to clear the logic circuits of the memory storage unit.

HAR The Hold Address for return control signal. This signal is generated in the memory
control, and transmitted to the memory storage unit to cause the storage unit to
hold the memory address by using its address latch circuits. This signal is required
in order to make it possible to single pulse a memory storage unit operation.

MAV. . The Memory Available control level. This signal is generated in the memory
storage unit, and a true level is transmitted to the memory control when the

storage unit is powered-up.

Global Memory Port Interface Control Logic

A global system control access requires that a special bit (bit D) on the Z12 bus be true. When bit D of the Z12 mem-
ory bus is true during the initiation of an access to the global memory interface, signal GSCX also is true, indicating that
a global system control (global scan) operation has been requested.

The control logic signals for a global memory or global system control request are as follows:

Signal Name Signal Usage
GMMA Global Memory Module Available. This signal is present at the global memory

interface of the CPU cabinet if global memory is available as a resource of the
B 6900 system. If this signal is not present, then no global memory is connected
to the system, or the giobal memory is not available for the use of the system.

584

Signal Name
GREQ

GSCX

GAPL

GWRC

GPRC

GCWC

GABX

GAOX

5010986

B 6900 System Reference Manual
System Concept

Signal Usage

Global Request. This signal is sent from the B 6900 system to the global memory
to indicate that the system requests a global memory operation.

Global Scan Control. This signal is sent from the B 6900 system to the global
memory to indicate that the request present on the global memory interface is for
a scan cycle rather than for a memory cycle.

Global Address Parity Level. This signal is an odd parity bit for the 19-bit global
address (scan function word) plus the GREQ, GWRC, GPRC, GCWC, and GSCX
control signals. This signal is sent from the B 6900 system to the global memory
subsystem.

Global WRITE Request. This signal is sent from the B 6900 system to the global
memory to indicate that a READ/MODIFY/WRITE memory cycle is requested on the
word specified by the memory address lines. The information present at the speci-
fied address is returned to the B 6900 system, and the information present on the
global interface is written into the specified address. The WRITE request may be
aborted if this is a protected memory WRITE operation (GPRC is TRUE) and the
memory word is protested, or if an address or control error is detected on the
global interface bus. If the WRITE request is aborted, the memory, accessed
information in the address is restored to the same memory address.

Global Write Protect Control. This signal is sent to the global memory from the
B 6900 system, and requires that the WRITE portion of a READ/MODIFY/
WRITE memory operation be aborted if the memory protect bit is true in the data
read from memory. The memory word is protected if bit GI48 is TRUE in the
READ information. If the WRITE portion is aborted, the READ information is
restored to the same memory address, and the WRITE information is not written
into memory. The B 6900 must monitor the READ information returned to
determine if the WRITE portion of the memory cycle was aborted.

Global Clear Write Control. This signal is sent from the B 6900 system to the .-
global memory for both a CLEAR/WRITE memory operation: and a global scan
operation. If a CLEAR/WRITE memory function is specified, no READ informa-
tion is returned to the B 6900 system, and the WRITE data is written into the
memory address specified. If the memory WRITE function is aborted, the GUEX
signal is returned to the B 6900 system. If a scan operation function is specified
and GCWC is present, then a SCAN-OUT type function is to be performed.
Otherwise, a SCAN-IN function is to be performed.

Global Access Begun. This signal is returned to the B 6900 system from global
memory to indicate that the requested global memory function has been started.
When the B 6900 system receives this returned signal, the GREQ signal line is
turned off, and the GAPL and GPRC signals are turned off. The GABX signal
remains present throughout the remainder of the global memory cycle.

Global Access Obtained. This signal is returned to the B 6900 system from global
memory to indicate that memory READ data is present on the global memory
interface bus. Any error signal associated with the current global memory request
(GAEX, GREX, or GUEX) is returned to the B 6900 system at the same time that
GAOX is returned.

585

GAEX

GREX

B 6900 System Reference Manual
System Concept

Signal Usage

Global Access Obtained Return. This signal is returned to the global memory to
acknowledge the presence of the GAOX signal. This signal, when true, implies that
the B 6900 system has captured the memory READ data (or SCAN-IN word) in the
logic circuits of the memory controller. When this signal is present at the global
memory, the GAOX signal is removed from the global memory interface bus. When
the GAOR signal is removed from the global memory interface bus, any error signals
present on the bus, plus the GABX signal, will be removed from the global memory
interface, thereby indicating the completion of the global request.

Global Address Error. This signal is returned to the B 6900 system to indicate
that an address parity error was detected on the global memory bus, or that an
address error occurred on the module interface (between the global memory con-
trol and the global memory storage module).

Global READ Error. This signal is returned to the B 6900 system to indicate that
the information read from the memory module contained an error. The READ
information error may be either a single bit error or a multiple bit error (see the
GUEX signal description).

Global WRITE Error. This signal is returned to the B 6900 system to indicate an
error in the WRITE information SCAN-OUT data word. The error present is either
a single bit error or a multiple bit error (see the GUEX signal description).

Global Uncorrectable Error. This signal is sent to the B 6900 system to indicate

an uncorrectable error detected by the global memory. If this signal is TRUE and

a WRITE into memory type of operation is in process, the WRITE memory operation
will be aborted and the information read from memory during the READ portion of
the memory cycle will be restored into the same memory address.

GUEX is returned to the B 6900 system to indicate multiple bit errors, and/or
memory address errors, and/or memory control signal errors.

If GUEX and GREX are present, a multiple bit READ data error is indicated.

If GUEX and GWEX are present, a multiple bit WRITE data error is indicated.

Global Memory Port Processor Status and Control Logic

Cable 6 of the global memory port interface is used to pass system status and control information between a B 6900
system and a GMM. The logic signals passed through cable 6 of the global memory interface are as follows:

Signal

Mnemonic

HALT

HLTD

586

Signal
Name

Hait

Halted

Siggal Usage

This signal is passed from the GMM to the B 6900 system. When TRUE,
this causes the B 6900 system processor to HALT at the end of the current
operator in process of execution. ‘

This signal is passed from the B 6900 system processor to the GMM. When
TRUE, this signal indicates to the GMM that the B 6900 processor is halted.

Signal

Mnemonic

CLER

CLRD

LOAD

STRT

SHLT

IDLE

RUNG

EINT

AINT

SAVL

5010986

H 1
Signal

Name

Clear

Cleared

Load

Start Global

Super Halted

Idie

< Running

External
Interrupt

Interrupt

System
Available

B 6900 System Reference Manual
System Concept

Signal Usage

This signal is passed from the GMM to the B 6900 system. When TRUE,
this signal causes the B 6900 system to be general cleared.

This signal is passed from the B 6900 system processor to the GMM. When
TRUE, this signal indicates to the GMM that the B 6900 processor has
raised the internal clear signal line of the B 6900 system.

This signal is passed from the GMM to the B 6900 system. When TRUE, the
signal causes the B 6900 system to perform a HALT/LOAD sequence from the
HALT/LOAD unit. The B 6900 system only accepts this signal input after
the B 6900 system is halted.

This signal is passed from the GMM to the B 6900 system. When TRUE, this
signal indicates that the GMM has a message in its message buffer for the
B 6900 system.

This signal is passed from the B 6900 system to the GMM. When TRUE, this
signal indicates that the B 6900 processor is in an abnormal state.

This signal is passed from the B 6900 system to the GMM. When TRUE, this
signal indicates that the B 6900 system is in an IDLE loop.

This signal is passed from the B 6900 system to the GMM. When TRUE, this
signal indicates tht the running flip-flop is set in the processor logic.

This signal is passed from the GMM to the B 6900 system. When TRUE, this
signal causes an external interrupt to be sensed in the B 6900 processor
interrupt controller. This signal is only effective when the B 6900 processor
is operating in normal state, and has no effect when the processor is operating
in control state.

This signal is passed from the GMM to the B 6900 system. When TRUE, this
signal operates in a manner similar to that of the EINT signal, except that the
processor of the B 6900 system is interrupted even if it is operating in control
state.

This signal is passed from the B 6900 system to the GMM. When TRUE, this

signal indicates that the B 6900 system is present and is powered-up.

587

B 6900 System Reference Manual
System Concept

MEMORY TESTER LOGIC

The B 6900 has memory test logic designed into the hardware circuits of the CPU cabinet. A separate memory tester
with access to local memory is not provided. Therefore, when memory tests are to be performed, their execution
preempts any other system operation.

The memory tester logic is designed to be used with memory test routines that are resident in the MDP logic circuits.
Memory tests are executed on the B 6900 system through messages on the system operators console (ODT) under control
of the MDP Executive routine. Thus, memory testing is only performed by system operators who must direct the system
to perform memory tests.

588

B 6900 System Reference Manual

SECTION 6

PROGRAM OPERATORS

"GENERAL

The machine language operators are composed of syllables in a program string. The operators are divided into four
major classes: primary mode, variant mode, edit mode, and vector mode operators.

SYLLABLE ADDRESSING AND SYLLABLE IDENTIFICATION

A machine language program is a string of syllables which are normally executed sequentially. Each program word in
memory contains six 8-bit syllables. The first syllable of a program word is labeled zero and is formed by bits 47
through 40 (see Figure 6-1).

SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE

0 1 2 3 4 5
a7 | 43 3 |3 3 | 27 23 |19 15 | 1 7] 3
46 | 42 38 | % 30| 2 22 | 18 14 | 10 6 | 2
4 | 4 37 | 33 2 | 25 21 | 17 1309 5 | 1
4 | 40 3 | 32 28 | 24 20 | 16 12| 8 alo
MV 1640

Figure 6-1. Program Word

P AND T REGISTERS

The P register contains the currently active program word. The T registers are the control (instruction) registers. There

is one 4-bit T register for each operator family. The T register contains the code for the specific type of operator to be
executed by the family, and is usually derived from the four low-order bits of the operator syllable code. The four
high-order bits of the operator syllable code are used to select a family strobe. This family strobe is used to define
which family is to receive the strobe pulse (execute pulse). Figure 6-2 shows how a program operator code in the P
register is decoded to select a family strobe and a T register value. In the example shown in Figure 6-2, a divide operator
(OP code 83 hexadecimal) is in the process of being executed, and this operator caused the family A strobe (STRA) to
be selected. The family A T register contains a value of three (hexadecimal) which is derived from the four low-order
bits of the operator code.

Figure 6-2 also shows an example of how a word of program code is selected to be executed. The addressing mechanism
for program code words and ihe way the controiiers of the B 6900 data processor function to provide automatic
program code handling operation is also shown in this example.

In the program code handling example shown in Figure 6-2, the Program Base Register (PBR) points at the first word of
program code in the current program code segment. The value of the PBR is initially established from the segment
descriptor for the current program segment when the procedure is initiated.

The current word of program code in a program segment presently being executed is indicated by the value of the Pro-
gram Index Register (PIR). The initial value of the PIR for a program segment is established from the PCW word that
caused the segment to be executed. The initial value of PIR may also be established from an RCW, if the program seg-
ment is executed as the result of an exit or return from another code segment in the same program.

5010986 6-1

B 6900 System Reference Manual
Program Operators

PROGRAM SEGMENT »
IN MEMORY
PROGRAM WORD ...78 4—5—— PROGRAM
X 1 B INDEX REGISTER
ADDRESS
PROGRAM WORD 3 _|a————1 ADDER - | Py
M PROGRAM WORD 2 | e REGISTER
4 PROGRAM WORD 1 | !
i i PROGRAM WORD 0 et i i i
| | | I LAR +1 | |
| | | l’" LOGIC] | |
| | P | {
| ' MEMORY é LAR lg ¢ |
| — CONTROLLER | | |
| Losie - + waR | | PIR +1
| | T - | LOGIC
| | | I
| | i
| | R
LOOK PSR CLEAR
I | t—>1 LRecisTER AHEAD | Losie
L ——> I
| —|— (PROGRAM WORD 2} LOGIC
' - T MODULE | J..____‘
PROGRAM i -
; CONTROLLER I A
LOGIC < |
| 1 { Y
| . Y
I_ VoReGISTER | | - —— — SvLLABLE
o , [PROGRAM WORD 1) EMPrreLL
syifsviL]sve [syifsvifsve
|0 | 1 | 2] 3 (4 5 _] |
/ \L______ ______________ _l
/ \
®0
TO OTHER FAMILY
O!O 9—— T REGISTER SELECTION
oRE ? AND GATING LOGIC
l ole
FAMILY A
————o —_— —_— T REGISTER TA3F
LYARE) L JEEE g L STRE & GATING.
For) T e) RN B
FAMILY — ——d b ®
STROBE * TAIF
DECODING
LOGIC STRA ®
TAOF
T 2 TR

. ﬂ . L[] . L]
L-STRC SEE- STRJ STRK

MV 1641 3 b I———.'

Figure 6-2. Program Word, Syllable Addressing
6-2

B 6900 System Reference Manual
Program Operators

The first syllable to be executed in a program code segment is derived from the PCW (or alternatively the RCW) that
caused entry into the current program segment. In the exampie shown in Figure 6-2, the Program Syliabie Register (PSR)
is pointing at syllable four of the P register because the divide operator (in syllable three) is being executed, and the
PSR plus one logic has advanced the value of the PSR to point at the next syllable that will be executed.

Program code words in the B 6900 system are normally fetched from system memory by the look ahead logic. The
look ahead logic fetches the next word of program code while the current word of program code is being executed, and
places it in the L register. When the PSR indicates by its content value that all syllables of program code in the P
register have been executed, the program controller causes the next word of program code to be transferred from the

L register to the P register. The PSR points at the first syllable in the new program word.

When the next word of program code is transferred from the look ahead logic L register to the P register, the look
ahead module causes. the next word of program code to be fetched from memory and placed in the emptied L register.
The program controller causes the value of the PIR to be incremented by one, as the operators are strobed from the P
register. Thus, the PIR always points at the code word the present operator started in. The look ahead logic uses the
Look Ahead Address Register (LAR) to address the next word of program code. The LAR has an automatic plus one
incrementation feature that causes the LAR to always point at the memory address of the next program word (follow-

ing the program word that is present in the L register).

The dotted lines in Figure 6-2 show the origin of a word of program code in the P and L registers, and also what word
of the program segment is pointed at by an address register. A dotted line is also used to show that the value of the
PSR temporarily points at syllable four when syllable three is being executed by the data processor.

OPERATION TYPES

Operations are grouped into three classes: name call, value call, and operators. The two high-order bits (bits 7 and 6)

eat

determine whether a syllable begins a value call, name call, or operator (Figure 6-3).

(BITS 7
AND 6) SYLLABLE NO. OF
IDENT TYPE SYLLABLES FUNCTION
00 VALUE CALL 2 BRINGS AN
OPERAND INTO
THE STACK
01 NAME CALL 2 BUILDS AN IRW
IN THE STACK
OTHER OTHER 1—»7 PERFORMS THE
THAN OPERATORS SPECIFIED
ABOVE OPERATION
MV 1642

Figure 6-3. Primary Mode Operator Syllable Decode Table

5010986 ‘ 63

B 6900 System Reference Manual
Program Operators

Name Call

Name call builds an indirect reference word in the stack (see Figure 6-4). Stack adjustment takes place so that the A
register is empty. The six low-order bits of the first syllable of this operator are concatenated with the 8-bits of

the following syllable to form a 14-bit address couple. The address couple is placed, right-justified, into the A register,
with the remainder of the A register filled with zeroes. The TAG field of the A register is set to 001, and the register is
marked full.

oo o |1
. TYPICAL
0 | 1 (o]0 |1 ' NAME
b % CALL
S T - OPERATOR
1 oot : : CODE
INTHE P
1 o 1o REGISTER
4 j%0 136 {32 J28 jau |20 i 1z 1B 5 o
|
] |
] |
N
ocjo o | 1]\ THE
\ ADDRESS
COUPLE
tjojol \\ PART OF
THE
0|10 |1 \ NAME
\ CALL
0|1]0 |1 \\ OPERATOR
T~
\\\\ \
RESULTING
olo|o|ololo|lolojo}Jo] o1 IRW THAT
IS FORMED
ololo|o|ojo0o|o{o0o|o0o|ofjo |01 IN THE
, A REGISTER
ofojoj{ojo0|0|0|O0|OfO|1 0] AS THE
RESULT
1ol olo|lo|o|o|lo|o]Jo|1]|o0]n1 OF THE
by {40 36 32 28 24 20 16 12 8 4 0 NAME CALL
OPERATOR

MV 1643

Figure 6-4. Name Call Operator Function
Value Call

Value call loads into the top of the stack the operand referenced by the address couple. The operator is formed in the
same manner as the name call operator. If the referenced memory location is an indirect reference word or a data
descriptor, additional memory accesses are made until the operand is located. The operand is then placed in the top of
stack registers. The operand may be either single- or double-precision, causing either one or two words to be loaded
into the top of the stack.

Figure 6-5 is an example of how a value call operator (VALC) is used to cause a word of data located at memory
address D2 plus 4 to be fetched and placed in the top of the D3 stack. The current stack is known to begin at the
MSCW pointed at by the D3 display IC memory register, because the lexicographical level register contains a value of 3
(LLOO, LLO1, LLO02/, LLO3/, LLO4)).

64

B 6900 System Reference Manual
Program Operators

o 00 O TYPICAL
VALUE
0 olo !0 1 CALL
+— OPERATOR
1 ojJoi oo IN THE
P REGISTER
i 1 0 0 0
44 40 36 32 28 24 20 16 12 8 4 0
' \ AN
. ‘ AN \
\ AN \
LEXICOGRAPHICAL \ \ AN \
REGISTER, Y I\ \
VALUE =3 et . | \ N
1 ~ o - \\ \ I \ \ W
[o | 1 o | 000
‘ - —
-~ Pl | 00 |1 INDEX
~~L VALUE =4
— o 0o [T————— 7
! | I
D2 REGISTER SELECTED || | 000 :
__________ _ | 4
:_ 1 |
i FENCE |
l DO LOGIC |
Ic
| MEMORY |
| REGISTER l
| I
| ——————_———— == =
| o1 I INDEX VALUE VIA Z10 & 298 BUSSES
| IC |
MEMORY ——-—?
! REGISTER i
i |
| L
| Z8 BUS
| 02 ————®] ADDRESS -
e - - i ADDER MAR
S I —-* SUMOFD2+4
MEMORY _ ADDRESS TO
REGISTER EMORY
ADDRESS
REGISTER
D3
Ic
MEMORY
REGISTER
MV 1644
Figure 6-5. Value Call Operator Function
5010986

65

B 6900 System Reference Manual
Program Operators

The fence decoding logic defines the number of bits in the address couple that select a display register to provide the base
address portion of the value call operation. The fence decoding logic uses the current programming level of the program
segment to determine which IC memory display register is selected. The highest order bit of the lexicographical level
register that is true in the example is bit LLO1, which has a value of two. The fence decoding logic therefore uses the
two high-order bits of the address couple to select an IC memory display register as the source of the base address. The
bits that are not used by the fence decoding logic to select a display register form the index portion of the value call
operation,

Bits 29:5 are used by the fence decoding logic to select a display register. The value of the bits in this field are opposite
to the word bit number order; that is, bit 29 of the address couple in the example has a binary value of one, and bit
25 has a binary value of 16. The following equates bits 29:5 to a decimal value and to the display registers which

they will select.

, Display
Bit Number Decimal Value . Register Selected
29 1 1
28 2 2
27 4 4
26 8 8
25 16 16

Thirty two IC memory.display registers may be selected by the fence decoding logic.

In the example in Figure 6-5, it is possible to see how bit 28 is used to select display register two and thus to provide the
base portion of the value call address.

The index portion of the address couple is treated in the conventional manner as a binary value. In the example shown
in Figure 6-5, bits 16, 17, and 18 have a binary value of 100, which is four decimal.

The absolute memory address placed in the memory address register in the example in Figure 6-5 is the sum of the
address from display register two and the index, which has a value of four (that is, D2+4). The word of data in
memory at the absolute memory address is fetched and placed in the top of stack register. If the word at D2+4 is an
IRW or a data descriptor, then additional fetches from memory will be made. This process continues until an operand
or a data word is placed in the top of stack register. Placing an operand or a data word in the top of stack register
completes the value call operation.

The value call operator detects an invalid operand error condition if a word with a TAG code of three, four, or six is
referenced. If a word with a TAG of seven is referenced by a value call operator, an accidental program entry into the
procedure described by the PCW is performed. The final value placed in the stack by a value call operator must have a
TAG field of zero or two. '

An accidental program entry caused by a value call operator being executed is treated like a subroutine of the procedure
that executed the value call operator. The stack of the procedure is marked by an MSCW and an RCW. Then the subrou-
tine referenced by the PCW is executed; it terminates by means of a return operator. The return operator passes a
parameter from the subroutine to the procedure that executed the original value call operator. The program flow of the
procedure is resumed at the next operator in sequence following the original value call operator.

B 6900 System Reference Manual
Program Operators

Operators

Operators vary from one to seven syllables in length. The first syllable of each operator determines the number of
additional syllables forming the operator. Upon completion of each operator, the PSR addresses the first syllable beyond
all of the syllables comprising the operator.

Operators work on data either as full words (48 data bits plus TAG bits) or as strings of data characters. Word operators
work with operands (single or double-precision) in the top of the stack.

String operators are used for transferring, comparing, scanning, and translating strings of digits, characters, or bytes. In
addition, a set of micro-operators provides a means of formatting data for input or output.

The string operators use source and destination pointers located in the stack. These pointers are set into the following
hardware registers:

1. Source Base Register — (SBR).
2. Source Index Register — (SIR).
3. Source Index Byte Register — (SIB).
4. Source Size Register — (SSZ).
5. Destination Base Register — (DBR).
6. Destination Index Register — (DIR).

7. Destination Index Byte Register— (DIB).
8. Desiination Size Register — (DSZ).

In some of the string operators, the source pointer may not be used. In this case, an operand may be in the stack; its
characters are circulated as the operand is being used.

String operators have an optional update function; that is, producing updated source and destination pointers and count.
At compietion of an operation, the source and destination pointers are updated as follows:

1. If the source is an operand, it remains in the stack.

2. If the pointer is a descriptor, the word index fields and byte index fields are updated from SIR/DIR and
SIB/DIB. The string size fields are updated from SSZ/DSZ.

3. If the pointer is a data descriptor or a non-indexed string descriptor, it is converted to an indexed string
descriptor and updated.

If both the source and destination descriptors have size fields equal to zero, the size registers indicate 8-bit character
size. When both a source and destination are required and the size field of one is equal to zero and the other is not,

then the size field of the non-zero descriptor is used.

If neither size field is equal to zero and the size fields are not equal and the operator is not translate, the invalid operand
interrupt is set and the operator is terminated. The size ficld is considered equal to zero when the source is an operand.

5010986 6-7

B 6900 System Reference Manual

SECTION 7

PRIMARY MODE OPERATORS

GENERAL

This section defines the functions of the primary operators. In each case, the name of the operator, corresponding
mnemonic, and hexadecimal code are shown. Appendix A of this manual lists the operators in alphabetic order, and
appendix B lists the operators in numeric order, by mode.

The universal operators are also included in this section.

ARITHMETIC OPERATORS

The arithmetic operators usually require two operands in the top of stack registers. These operands are combined by the
arithmetic process specified with the result placed in the top-of-stack. The operands may be either single-precision,
double-precision, or intermixed. The specified arithmetic process adapts automatically to the data environment, with the
single-precision process invoked if both operands are of the single-precision type, and the double-precision process invoked
if either operand is of the double-precision type.

Each double-precision operand occupies two words. The second word of the operand is an extension of the first word

of the operand. The mantissa of the first word of the operand contains unit vaiues, and the mantissa of the second

word contains a fractional unit value. An implied octal point separates the mantissa of the first word from the mantissa
of the second word. When the top-of-stack registers are full, the first word of the first operand is in the A register;

the second word of the first operand occupies the X register. The first word of the second operand resides in the B regis-
ter; the second word of the second operand occupies the Y register. Therefore, doubie-precision arithmetic processes
operate on four words in the stack, instead of two as in single-precision operations. Double-precision arithmetic leaves a

two-word result in the top-of-stack.

Add, subtract, and multiply operations which use two integer operands yield an integer result if no overflow occurs. If
one or both operands are non-integer, or if the result generates an overflow, the result is non-integer.

When an operator has been entered, the hardware stack-adjust function fills or empties the top-of-stack register as
required by the operator. If either register contains an incorrect word, the operator is terminated by an invalid operand
interrupt.

ADD (ADD) 80

The operands in the A register and the B register are added algebraically, with the sum left in the B register. At the end
of the operation, the A register is marked empty, and the B register is marked full.

If only one of the operands is double-precision, the register (X or Y) associated with the register that contains the single-
precision operand is set to all zeroes. The B register is marked as a double-precision operand at completion of the operation.

If the mantissa signs and the exponents are equal, the mantissas are added and the sum placed in the B register. If the
sum exceeds 13 single precision (26 double precision) octal digits, the mantissa of the sum is shifted right one octade,
rounded, and the exponent is algebraically increased by one. The meaning of exponents and mantissas were given in
section 2 of this manual.

If the exponents are equal but the mantissa signs are unequal, the difference of the mantissas plus the appropriate sign
is placed in the B register.

5010986

B 6900 System Reference Manual
Primary Mode Operators

If the exponents are unequal, the operands are first aligned. If the alignment causes the smaller operand to be shifted
right 14 single precision (27 double precision) octal places, the larger operand is the result.

If the alignment causes the smaller operand to be shifted right, but less than 14 single precision (27 double precision)
octal places, the digits of the smaller operand shifted out of the register are saved and used to obtain the rounded result.

If the signs of the operands are equal, the mantissas are added and the sum placed in the B register. If the sum does not
exceed 13 single precision (26 double precision) octal digits, the last digit shifted out of the register is used to round the
result. If the sum is 14 single precision (27 double precision) octades, the mantissa in B (Y) is rounded to 13 single
precision (26 double precision) digits.

If the signs of the operands are unequal, an internal subtraction takes place, with the rounded result placed in the
B register.

If the result has an exponent greater than +63 (+32,767), the exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32,767), the exponent underflow interrupt is set.

SUBTRACT (SUBT) 81

The operand in the A register is algebraically subtracted from the operand in the B register, with the difference left in the
B register. The operation is the same as for the Add operator, except for initial sign comparisons.

MULTIPLY (MULT) 82

The operand in the A register is algebraically multiplied by the operand in the B register. The rounded product is left in
the B register.

If the mantissa of either operand is zero, the B register is set to all zeroes.
If both mantissas are non-zero, the product of the mantissa is computed. If the product contains more than 13 single-
precision (or 26 double-precision) digits, it is normalized and rounded to 13 single-precision (or 26 double-precision)

digits. A mantissa of all sevens is not rounded. Normalization was explained in section 2 of this manual.

If the result has an exponent greater than +63 (+32,767), an exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32,767), an exponent underflow interrupt is set.

EXTENDED MULTIPLY (MULX) 8F

The operands in the A and B registers are algebraically multiplied, and a double-precision product is placed in the B and
Y registers. The A register is marked empty, and the B register marked full.

The actions outlined for multiply operations also apply to this operator.
If either or both operands are double-precision, then a normal double-precision operation occurs.
DIVIDE (DIVD) 83

The operand in the B register is algebraically divided by the operand in the A register, with the quotient left in the B
register. After the operation, the A register is marked empty, and the B register is marked full.

B 6900 System Reference Manual
Primary Mode Operators

If the mantissa of the B register is zero, the B regisier is set to aii zeroes. if the A register mantissa is equal to zero, the
divide by zero interrupt is set. In either case, the operation is terminated.

If the mantissas of both operands are non-zero, they are normalized, and the operand in the B register is divided by the
operand in the A register. The quotient is developed to 14 single-precision (or 27 double-precision) digits, rounded to
13 single-precision (or 26 double-precision) digits, and remains in the B register.

If the result has an exponent greater than +63 (32,767), the exponent overflow interrupt is set. If the result has an expo-
nent less than -63 (-32,767), the exponent underflow interrupt is set.

INTEGER DIVIDE (IDIV) 84

The operand in the B register is algebraically divided by the operand in the A register, and the integer part of the quo-
tient is left in the B register. After the operation, the A register is marked empty, and the B register is marked full.

If the mantissa of the B register is zero, the B register is sct to all zeroes. If the mantissa of the A register is zero, the
divide-by-zero interrupt is set. The operation is terminated in either case.

If the mantissas of both operands are non-zero, they are normalized. If the exponent of the B register is algebraically
less than the exponent of the A register after both operands have been normalized, the B register is set to all zeroes. If
the exponent of the B register is algebraically equal to or greater than the exponent of the A register, the divide opera-
tion proceeds until an integer quotient or a quotient of 13 single-precision {or 26 double-precision) significant digits is
calculated.

If an integer quotient is developed, the quotient is left in the B register with a zero exponent for single-precision, and
the exponent set to 13 for double-precision. If a non-integer quotient is developed, the integer overflow interrupt is set.

REMAINDER DIVIDE (RDIV) 85

The operand in the B register is algebraically divided by the operand in the A register to develop an integer quotient.
The remainder of this division stays in the B register.

If the mantissa of the B register is zero, the B register is set to all zeroes. If the mantissa of the A register is zero, the
divide-by-zero interrupt is set. In either case, the operation is terminated.

If both mantissas are non-zero, both operands are normalized. If the exponent of the B register is algebraically less
than the exponent of the A register after both operands have been normalized, the operand in the B register is the
result. If the exponent of the B register is algebraically equal to or greater than the exponent in the A register, the
DIVIDE operation proceeds until an integer quotient is developed; the remainder is then placed in the B register.

If a non-integer quotient is developed, the integer overflow interrupt is set and the operation is terminated.
INTEGERIZE, TRUNCATED (NTIA) 86

The operand in the B register is converted to integer form without rounding, and remains in the B register.

If the operand in the B register cannot be integerized (that is, the exponent is greater than the number of leading zeroes
in the operand), the integer overflow interrupt is set and the operation is terminated.

INTEGERIZE, ROUNDED (NTGR) 87

The operand in the B register is converted to integer form. Rounding takes place if the absolute value of the fraction is
greater than four. The rounded result is left in the B register.

5010986 73

B 6900 System Reference Manual
Primary Mode Operators

If the operand in the B register cannot be integerized (that is, the exponent is greater than the number of the leading
zeros in the operand), the integer overflow interrupt is set and the operation is terminated.

The operand is rounded, if necessary, by adding one to the mantissa. If a non-integer results from this operation, the
integer overflow interrupt is set.

TYPE-TRANSFER OPERATORS

The three type transfer operators are discussed in the following paragraphs.
- SET TQ SINGLE-PRECISION, TRUNCATED (SNGT) CC

The operand in the top-of-stack register is normalized and set to a single-precision operand; or in the case of a data
descriptor, the double-precision bit is set to zero.

If the word in the top-of-stack register is a non-indexed, double-precision data descriptor, the double-precision bit is
cleared to zero and the length field muitiplied by two.

If the double-precision operand in the top-of-stack register has an exponent greater than +63 after normalization, the
exponent overflow interrupt is set. If the exponent is less than —-63 after normalization, the exponent underflow inter-

rupt is set, and the operation is terminated.

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than
-63, the operand is normalized and the TAG field in the top-of-stack register is set to single-precision.

If the word in the top-of-stack register is neither an operand nor a data descriptor, the invalid operand interrupt is set, and
the operation terminated.

If the operand is single-precision, it is normalized and the operation is terminated.

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD

The operand in the top-of-stack register is changed to a rounded, single-precision operand.

If the double-precision operand in the top-of-stack register has an exponent greater than +63, the exponent overflow
interrupt is set. If the exponent is less than -63, the exponent underflow interrupt is set. In either case, the operation is
terminated.

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than
-63, the operand is normalized, the TAG field in the top-of-stack register is set to single-precision, the operand in the top-

of-stack register is rounded from the Y register, and the Y register is set to all zeroes.

If a carry is developed during the rounding operation, the operand is adjusted and the new exponent is checked in the
manner discussed in the preceding paragraph.

If the operand is a single-precision operand, it is normalized and no rounding occurs.
SET TO DOUBLE-PRECISION (XTND) CE

The word in the top-of-stack register is set to a double-precision operand, and the Y register is set to all zeroes. If a
single-precision data descriptor is present in the top-of-stack register, the double-precision bit is set to one.

74

B 6900 System Reference Manual
Primary Mode Operators

If the word in the top-of-stack register is a data descriptor with both the index bit and double-precision bit zero, the
double-precision bit is set to one and the length field is divided by two.

If the operand in the top-of-stack register is a double-precision operand, the operation is complete. If it is a single-
precision operand, the TAG field in the top-of-stack register is set to double-precision, and the Y is set to all zeroes.

If the word in the top-of-stack register is neither an operand nor a data descriptor, the invalid operand interrupt is set
and the operation terminated.

LOGICAL OPERATORS

For LAND, LOR, or LEQV, if only one of the operands is in double-precision form, the other operand is treated as
double-precision, with the least significant 13 octades equal to all zeroes.

LOGICAL AND (LAND) 90

Each bit of the B operand result, except for the TAG bits, is set to one where a one appears in the corresponding bit posi-
tions in both the A operand and the B operand. The other information bits of the B operand result are set to zero. If
the TAGs of the two operands are identical, the TAG in the result is that of the B register. If the TAGs are different, the

resultant TAG is double-precision.

LOGICAL OR (LOR) 91

Each bit position of the B operand (except for the TAG bits) is set to one if the corresponding bit position in either the
A operand or the B operand is one; otherwise, the bit is set to zero. The TAG bits are set to the value of the second item
in the stack except when the A operand is double-precision, in which case the B register TAG is set to double-precision.

LOGICAL NEGATE (LNOT) 92

Each bit in the top word in the stack is complemented except for the TAG bits, which remain unchanged. The result is
always stored in the A register.

LOGICAL EQUIVALENCE (LEQV) 93

Each bit of the B operand is set to one, except for the TAG bits, when the corresponding bits of the A operand and the
B operand are equal. Each bit of the B operand is set to zero (except for the TAG bits) when the corresponding bits of
the A and B operands are not equal. The TAG field is normally set to the value of the second item in the stack except
when the A operand is double-precision; in that case, the. B-register TAG is set to double-precision.

LOGICAL EQUAL (SAME) 94

All bits, including TAG bits of the A operand and the B operand, are compared. If all bits are equal, a single-precision
operand with bit zero set and all other bits reset is stored in the B register. Otherwise, a single-precision operand with all
bits reset is stored in the B register. AROF is reset, and BROF is set.

RELATIONAL OPERATORS
The relational operators perform an algebraic comparison on the operands in the A register and the B register. The single-
precision result is left in the B register, and the B register is marked full. The result is an operand in integer form with

the value one if the relationship has been met, or an operand with all information bits set to zero if the relationship was
not met. All relational operations compare the B operand to the A operand.

5010986 | 75

B 6900 System Reference Manual
Primary Mode Operators

For all relational operators except equal (EQUL) and not equal (NEQL), the compare flip-flop is set when the relation
is equal. For the equal or not equal operators, the compare flip-flop is set when the relationship is greater than equal.

The CMPF flip-flop is used in conjunction with the low order bit of the B register (BR[0:1]) to analyze the result of a
relational operation. Table 7-1 shows the states of the CMPF flip-flop and BR[0:1] for various relational operations and

- possible results of relational operations.

Table 7-1. Relational Operator Indications

Relational BR[0:1] CMPF Comparison Result
EQUAL 0 0 Less than

(8C) (EQUL) 0 1 Greater than

1 0 Equal

1 1 Not applicable
GREATER THAN 0 0 Less than
(8A) (GRTR) 0 1 Equal

1 0 Greater than

1 1 Not applicable
GREATER THAN 0 0 Less than
OR EQUAL 0 1 Not applicable
(89) (GREQ) 1 0 Greater than

1 1 Equal
LESS THAN 0 0 Greater than
(88) (LESS) 0 1 Equal

1 0 Less than

1 1 Not applicable
LESS THAN 0 0 Greater than
OR EQUAL 0 1 Not applicable
(8B) (LESQ) 1 0 Less than

1 1 Equal
NOT EQUAL 0 0 Equal
(8D) (NEQL) 0 i Not applicable

1 0 Less than

1 1 Greater than

GREATER THAN (GRTR) 8A

If the B operand is algebraically greater than the A operand, the B register is set to one; otherwise, the B register is set
to zero. AROF is reset, and BROF is set.

76

B 6900 System Reference Manual
Primary Mode Operators .

if the resuit of the aigebraic comparison is “equai”, the CMPF flip-fiop is set.
GREATER THAN OR EQUAL (GREQ) 89

If the B operand is algebraically greater than or equal to the A operand, the B register is set to one; otherwise, the B
register is set to zero.

If the result of the algebraic comparison is “equal”, the CMPF flip-flop is set. AROF is reset, and BROF is set.
EQUAL (EQUL) 8C

If the operands in the B and A registers are algebraically equal, the B register is set to one; otherwise, the B register is set
to zero.

If the result of the algebraic comparison is “greater”, the CMPF flip-flop is set. AROF is reset, and BROF is set.
LESS THAN OR EQUAL (LSEQ) 8B

If the B operand is algebraically less than or equal to the operénd in the A register, the B register is set to one; other-
wise, the B register is set to zero. .

If the result of the algebraic comparison is “equal”, the CMPF flip-flop is set. AROF is reset, and BROF s set.
LESS THAN (LESS) 88

If the operand in the B register is algebraically less than the operand in the A register, the B register is set to one;
otherwise, the B register is set to zero.

If the result of the algebraic comparison is “equal”, the CMPF flip-flop is set. AROF is reset, and BROF is set.
NOT EQUAL (NEQL) 8D

If the operand in the B register is not algebraically equal to the operand in the A register, the B regxster is set to one;
otherwise, the B register is cleared.

If the result of the algebraic comparison is ‘“‘greater than”, the CMPF flip-flop is set. AROF is reset, and BROF is set.

BRANCH OPERATORS

Branch instructions break the normal sequence of serial instruction fetches. Branching may be either relative to the base
address of the currént program segment of o a iocation in another program segment. Branch operators can be condi-
tional or unconditional.

BRANCH FALSE (BRFL) AO

If the low-order bit of the A register is zero, the Program Index Register (PIR) and Program Syllable Register (PSR) are
set from the next two syllables in the program string. Otherwise, PSR is advanced two syllable positions, and PIR is
incremented if necessary.

The two syllables following the actual operator syllable form the new PIR and PSR settings, as follows. The three high-

order bits are placed into PSR, and the next 13 low-order bits are placed in the PIR. The Program Register (P) is marked
empty to cause an access to the new program word.

5010986 77

B 6900 System Reference Manual
Primary Mode Operators

BRANCH TRUE (BRTR) Al
If the low-order bit of the A register is one, the PIR and PSR are set from the next two syllables in the program string.

Otherwise, PSR is advanced two syllable positions, and PIR is incremented if necessary. The Branch True operator uses
the two syllables as previously described for the Branch False operator (BRFL).

BRANCH UNCONDITIONAL (BRUN) A2

The PIR and PSR are set from the next two syllables of the program string. The Branch Unconditional operator uses the
two syllables as described for the Branch False operator (BRFL).

'DYNAMIC BRANCH FALSE (DBFL) A8

If the low-order bit of the B register is zero and the word in the A register is a Program Control Word (PCW) or an
indirect reference to one, a branch is made to the specified syllable of that program segment.

If the low-order bit of the B register is zero and the word in the A register is an operand, PIR and PSR are set from this
operand.

If the word in the A register is an operand, it is used in the following manner. The operand is made into an integer. If
it is negative or greater than 16,384, the invalid index interrupt is set and the operation is terminated. If bit zero of the

operand is zero, PSR is set to zero; otherwise, PSR is set to 011. The next higher-order 20 bits are placed in the PIR.
The Program Register is then marked empty to cause access to the new program word.

DYNAMIC BRANCH TRUE (DBTR) A9

If the low-order bit of the B register is one and the word in the A register is a PCW (or an indirect reference to one), a
branch is made to the specified syllable of the program segment.

If the low-order bit of the B register is one and the word in the A register is an operand, PIR and PSR are set from this -
operand.

The operand in the A register is used in this operator in the manner described for the Dynamic Branch False operator
(DBFL).

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA

if the word in the A regisier is a PCW or an indirect reference to one, a branch is made to the specified syllable of the
program segment.

If the word in the A register is an operand, PIR and PSR are set from this operand.

The operand in the A register is used in this operator in the same manner described for the Dynamic Branch False
operator (DBFL).

STEP AND BRANCH (STBR) A4

The increment field of the step-index word (SIW) addressed by the contents of the A register is added to its current-value
field. If the curreni-value field is then greater than the final-value field, the PIR and PSR are set from the next two

syllables in the program string. Otherwise, the PIR and the PSR are advanced three syllables. The SIW is replaced in
memory.

78

B 6900 System Reference Manual
Primary Mode Operators

If no SIW is in memory and if an operand is found, it is left in the stack. The A register is set to all zeroes, the PIR and
PSR are advanced and the next operator is executed. If no operand is encountered, the invalid operand interrupt is set.

UNIVERSAL OPERATORS

The three universal operators are discussed in the following paragraphs.
NO OPERATION (NOOP) FE

No operation takes place when this operator is encountered. PIR AND PSR are advanced to the next operator. This oper-
ator is also valid in the variant and edit modes.

CONDITIONAL HALT (HALT) DF

This operator "halts the processor if the CHLT pushbutton on the MDP keyboard is illuminated. If the CHLT pushbutton
is extinguished, the operator is treated as a NOOP. This operator is also valid in the variant and edit modes.

INVALID OPERATOR (NVLD) FF
This operator sets the invalid operand interrupt. This operator is also valid in variant and edit modes.

STORE OPERATORS

The store operators use the words in the A register and B register. The operand in the B register is stored in memory at
the location addressed by an Indirect Reference Word (IRW) or a data descriptor. If the A register contains an operand,
a hardware interchange takes place so that the operand is transferred to the B register.

STORE DESTRUCTIVE (STOD) B8
If the word in the A register is an operand, the A and B operands are interchanged. The data descriptor or IRW in the
A register is the address in memory where the operand in the B register (B, Y registers for double-precision) is stored.

After the operand is stored, the A register and B register are marked empty and the operation is complete.

If the word addressed by the IRW is a program control word, accidental procedure entry occurs. The spontaneously
created Return Controi Word {(RCW) causes the Store Destructive (STOD) operator to be re-executed upon return from
the procedure.

If the word addressed by the data descriptor has the memory protect bit on (bit 48), the memory protect interrupt is
set and the operation is terminated.

If the presence bit in the data descriptor is zero, the presence bit interrupt is set. After the information has been made
present, the operation is restarted.

STORE NON-DESTRUCTIVE (STON) B9

This operator functions in virtually the same way as the STOD operator. However, at the completion of this operator,
the BROF remains set, and the operand is retained in the B register.

OVERWRITE DESTRUCTIVE (OVRD) BA

This operator functions in a manner similar to the STOD operator, except that the OVRD operator overrides memory pro-
tection checks. The OVRD operator only writes a single data word into memory. If a double-precision data operand is to be

5010986 : 79

B 6900 System Reference Manual
Primary Mode Operators

written into memory, the most significant half is written into memory, and the least significant half of the operand is
truncated (not written into memory).

OVERWRITE NON-DESTRUCTIVE (OVRN) BB

This operator functions in the manner similar to the STON operator, except that the OVRN operator overrides memory
protection checks. This operator also operates in the same manner as the OVRD operator, with regard to double-precision
memory data words.

STACK OPERATORS

The four stack operators are discussed in the following paragraphs.
EXCHANGE (EXCH) B6

The operands in the A register and the B register are exchanged. The A and B registers may contain either operands or
control words. The control words are treated as operands by this operator.

DELETE TOP-OF-STACK (DLET) B5
This operator marks the top-of-stack register empty.
DUPLICATE TOP-OF-STACK (DUPL) B7

The operand in the B register is copied into the A register, or the operand in the A register is copied into the B register.
At the conclusion of the operation, the register that received the copy is marked full.

PUSH DOWN STACK REGISTERS (PUSH) B4

This operator stores the valid word(s) from the A register and/or B register into the memory portion of the stack. The A
and B registers are marked empty.

LITERAL CALL OPERATORS

The five literal call operators are discussed in the following paragraphs.

LIT CALL ZERO (ZERO) B0

This operator sets the A register to all zeroes and marks the register full. The result is a single-precision bperand.
LIT CALL ONE (ONE) B1

This operator sets the A register low-order bit (bit 0) to one, leaving all other bits set to zero. The A register is marked
full. The result is a single-precision operand.

LIT CALL 8-BITS (LT8) B2

The syllable following the operator is the literal value to be placed in bits 7:8 of the A register. The rest of the A register
is sei to all zeroes. The A register is marked as fuil, and the PSR is set to the syliabie foliowing the literai. :

7-10

B 6900 System Reference Manual
Primary Mode Operators

LIT CALL 16-BITS(LT16) B3

The next two syllables following the operator are a 16-bit literal value placed in bits 15:16 of the A register. The rest of
the register is set to all zeroes. The A register is marked full, and PSR is advanced past the 16-bit literal.

LIT CALL 48-BITS (LT48) BE
The next program word is placed in the A register, and the A register TAG is set to all zeroes. The A register is marked
full, and the PIR and PSR are advanced to the program syllable following the 48-bit literal value. This operator requires

that the 48-bit literal in the program string be word synchronized. If the operator syllable is in any syllable position
other than syllable five, the intervening syllables are not executed.

The 48-bit literal word must contain a TAG field value of three (program word); otherwise, an invalid program word
interrupt will be sensed when the literal word is present in the P (program) register.

MAKE PROGRAM CONTROL WORD (MPCW) BF

This operator performs a “Lit Call 48-Bits” (LT48) as previously described; however, the TAG is set to a PCW (111), and
the stack number register is placed in bits 45:10. The A register is marked full.

INDEX AND LOAD OPERATORS

The four index and load operators are discussed in the following paragraphs.

INDEX (INDX) A6

The Index operator places the m’reoenzpd value of the B register into the 20-bit length,’ird ex field of the descriptor in
s set

(bit 46 is set to one).

If the word in the A register is an operand, the A operand is exchanged with the B operand. If the word in the A reg-
ister is neither a descriptor nor an IRW pointing to a descriptor, the invalid operand interrupt is set and the operation

is terminated. If the indexing value is negative or greater than or equal to the length field of the descriptor, the invalid
index interrupt is set and the operation is terminated.

If the descriptor represents an array which is segmented, the index is partitioned into two portions by an approximation
algorithm which is determined by the type of data referenced by the descriptor, double-precision word 128, single-
precision word 256, four-bit digit-3072, six-bit character-2048, or eight-bit byte-1536. The product of the approximator
algorithm is used as an index to the given descriptor to fetch the array-row descriptor. The remainder is used to index
the row descriptor.

If the double-precision bit (bit 40) in the descriptor is one, the index value in the B register is doubled. The balance of
the operation is as described in the first paragraph of the description of this operator (INDX).

INDEX AND LOAD NAME (NXLN) A5

This operator performs an index operation; after the word in the A register has been indexed, the data descriptor pointed
to by this word is brought into the A register. The copy bit (bit 46) of the data descriptor is set to one, and the A reg-
ister is marked full. If the presence bit (bit 47) is off, the address of the original descriptor is placed in the address field
of the stack copy. If the word accessed by the indexed word in the A register is not a data descriptor, the invalid

operand interrupt is set and the operation is terminated.

If the data descriptor accessed by the indexed word in the A register has the index bit (bit 45) set to one, the invalid
operand interrupt is set and the operation is terminated.

5010986 7-11

B 6900 System Reference Manual
Primary Mode Operators

INDEX AND LOAD VALUE (NXLV) AD

This operator performs an index operation. After the word in the A register has been indexed, the operand pointed to by
this descriptor is brought to the A register. The A register is marked full.

If the word accessed is other than an operand, the invalid operand interrupt is set and the operator is terminated.
LOAD (LOAD) BD
The Load operator places the word addressed by an IRW or indexed data descriptor in the A register.

If at the start of this operator the A register contains other than a data descriptor or an IRW, the invalid operand
interrupt is set and the operation is terminated.

If the word pointed at by the data descriptor is another data descriptor, the latter is marked as a copy (copy bit
[bit 46] is set to one), and if the presence bit (bit 47) is off, the address of the original is placed in bits 19:20 of the
copy in the stack.

SCALE OPERATORS

Higher-level languages such as COBOL require decimal arithmetic. The Scale Operators provide the means of aligning
decimal points prior to the time that the arithmetic operations are performed. In addition, the Scale Right operators
provide for binary-to-decimal conversions.

SCALE LEFT (SCLF) CO

This operator uses the second syllable as the scale factor. The operand to be scaled is placed in the B register and integer-
ized. The resulting integer is then multiplied by 10 raised to the power specified by the scale factor.

If scaling of a single-precision operand results in overflow, the single-precision operand is converted to a double-precision
integer. A double-precision integer is defined as a double-precision operand with an exponent equal to 13.

If scaling of the operand results in an exponent greater than 13, (double-precision operand), the overflow flip-flop is
set to one.

DYNAMIC SCALE LEFT (DSLF) C1

This operator peiforms virtually the same operation as the Scale Left (SCLF) operator; however, the scale factor is taken
from the A register rather than from the program syllable following the operation syllable. The operand in the A register
is integerized before scaling takes place.

SCALE RIGHT SAVE (SCRS) C4

This operator uses its second syllable as the scale factor. The operand to be scaled is placed in the B register and is then
integerized. The resultant integer is divided by 10 raised to the power specified by the scale factor.

The quotient resuiting from the division is ieft in the A register. The operand in the B register is the remainder which is
converted to decimal (4-bit digits) and is left-justified. The A and B registers are both marked full. -

If the scale factor is greater than 12, the invalid operand interrupt is set and the operation is terminated.

7-12

B 6900 System Reference Manual
Primary Mode Operators

DYNAMIC SCALE RIGHT SAVE (DSRS) C5

This operator performs virtually the same operation as the Scale Right Save (SCRS) operator; however, the scale factor is
obtained from the A register rather than from the program syllable following the operation syllable. The operand in the
A register is integerized before being used.

SCALE RIGHT TRUNCATE (SCRT) C2

This operator performs a Scale Right function using its second syllable as the scale factor. The B register is marked as
empty at the conclusion of this operator.

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) C3

This operator performs the same operation as the Scale Right Truncate, except that the scale factor is found in the A
register and is first integerized by the operator.

SCALE RIGHT FINAL (SCRF) C6

This operator performs a Scale Right operation, except that the quotient in the A register is deleted by marking the A
register empty. The sign of the quotient is placed in the external sign flip-flop.

If the quotient was non-zero at the conclusion of the operation, the overflow flip-flop is set.
DYNAMIC SCALE RIGHT FINAL (DSRF) C7

This operator performs a Scale Right Final operation with the scale factor (integerized by the operator before use) found
in the A register.

SCALE RIGHT ROUNDED (SCRR) C8

This operator performs a Scale Right operation, and the quotient is rounded by adding one to it if the most-significant
digit of the remainder is equal to or greater than five. The remainder is deleted from the stack by marking the B
register empty.

DYNAMIC SCALE RIGHT ROUND (DSRR) C%

This operator performs a Scale Right Rounded operation using the scale factor found in the A register.

BIT OPERATORS

The bit operators are concerned with a specified bit in the A register and/or B register.

BIT SET (BSET) 96

This operator sets a bit in the top of stack register. The bit that is set is specified by the program syllable following the
operation syllable. If the program syllable defining the bit to be set has a value greater than 47, the invalid-operand
interrupt is set and the operation is terminated.

DYNAMIC BIT SET (DBST) 97

This operator performs a Bit Set Operation upon the bit specified by the operand in the top-of-stack register. This word
is integerized before it is used as a bit number.

5010986 : 7-13

B 6900 System Reference Manual
Primary Mode Operators

If the word in the top-of-stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated. If, after being integerized, the operand is less than zero or greater than 47, an invalid operand interrupt is
set and the operation is terminated.

BIT RESET (BRST) 9E

This operator resets a bit in the top-of-stack register. The bit that is reset is specified by the syliabie foliowing the
operation syllable. If the program syllable defining the bit to be reset has a value greater than 47, an invalid-operand
interrupt is set and the operation is terminated.

DYNAMIC BIT RESET (DBRS) 9F

This operator performs a Bit Reset operation upon the bit specified by the operand in the top-of-stack register.

If the word in the top-of-the-stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated. If, after being integerized, the operand is less than zero or greater than 47, an invalid operand interrupt is
set and the operand is terminated.

CHANGE SIGN BIT (CHSN) 8E

The sign bit (bit 46) of the top-of-stack operand is complemented; that is, if it is a one, it is set to zero; if it is a zero
the bit is set to one.

TRANSFER OPERATORS

The Transfer Operators transfer any field of bits from one word in the stack to any field of another word in the stack.
FIELD TRANSFER (FLTR) 98

This operator uses the following three syllables to establish the pointers used in the field transfer. This is done in the
following manner. The second syllable of the operator is K, the third syllable of the operator is G, and the fourth
syllable of the operator is L.

The field in the A register, starting at the bit position addressed by G, is transferred into the B register, starting at the
bit position addressed by K. The length of the field in the A and B registers is defined by L. When the specified number
of bits have been transferred, the A register is set to empty, the B register is marked full, and the operation is complete.

If the second or third syllables of the operator are found to be greater than 47, or the fourth syllable is greater than 48,
the invalid operand interrupt is set and the operation is terminated.

DYNAMIC FIELD TRANSFER (DFTR) 99

This operator performs a Field Transfer operation, except the B register operand is L. The B register is then reloaded
from the stack and this operand is G. The B register is again loaded from the stack, and this operand is K.

If any of the three operands is a non-integer, it is first integerized. Each is checked for a value less than equal to zero
or greater than equal to 48, or less than 48, as specified in Field Transfer. If either of these conditions exists in any one
of the three operands, an invalid operand interrupt is set and the operation is terminated.

FIELD ISOLATE (ISOL) 9A

This operator isolates a field of the word in the A register, placing it right-justified in the top-of-stack register. The
balance of the top-of-stack register is cleared to zeroes. The top-of-stack register is marked fuil.

7-14

B 6900 System Reference Manual
Primary Mode Operators

This operator uses its second and third syliables as the BIT pointers. The second syliable of the operator addresses the
starting bit of the field in the A register. The third syllable of the operator specifies the length of the field to be isolated.

If the value of the second syllable is greater than 47 or the value of the third syllable is greater than 48, as invalid oper-
and interrupt is set and the operation is terminated.

DYNAMIC FIELD ISOLATE (DISQ) 9B

This operator performs a Field Isolate operation, except the first item in the stack specifies the length of the field to
be isolated: The second operand in the stack addresses the bit in the word of the third item in the stack that is to be
isolated.

If, after being integerized, the value of the first item in the stack is less than zero or greater than 47, an invalid operand
interrupt is set and the operation is terminated. If, after being integerized, the value of the second item in the stack is
less than zero or greater than 48, an invalid interrupt is set and the operation is terminated.

FIELD INSERT (INSR) 9C

This operator inserts a field from the A register into the B register word. The field in the A register is right-justified,
with the length of the field specified by the third syllable of the operator. The second syllable of the operand addresses
the starting bit of the field in the B register. At completion the A register is marked empty and the B register is marked
full,

If the value of the second syllable of the operator is greater than 47, an invaiid operand interrupt is set and the operation
is terminated.
If the value of the third syllable of the operator is gr

is terminated.
DYNAMIC FIELD INSERT (DINS) 9D

This operator performs a Field Insert operation, except the first item in the stack is used as the insert field data. The
second item in the stack is used to specify the length of the field. The third item in the stack is used to address the
starting bit in the receiving field in the B register. When the operation is complete, the A reglster is marked empty and
the B register is marked full.

If, after being integerized, the value of the second item in the stack is less than zero or greater than 48, an invalid
operand interrupt is set and the operation is terminated. If, after being integerized, the value of the third item in the
stack is less than zero or greater than 47, an invalid operand interrupt is set and the operation is terminated.

STRING TRANSFER OPERATORS

String Transfer operators give the system the ability to transfer characters or words from one location in memory to
another location in memory. The source and destination pointers are set from string descriptors in the stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) D3

This operator requires three items in the top-of-stack: an operand, a string descriptor or operand, and a string descriptor.
The first operand is integerized and used as the count or repeat field. The second item is either the source data or a descrip-
tor which points at the source string, and the third item is used to address the destination string. The number of words
specified by the repeat field is transferred from the source to the destination. At completion of the operation, the A and
the B registers are marked empty.

5010986 7.15

B 6900 System Reference Manual
Primary Mode Operators

If the memory protect bit is found on during the execution of the Transfer Words operator, the segmented array interrupt
is set and the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) DB

This operator performs the Transfer Words operator, except that at the completion of the transfer of data, the source and
destination pointers are updated to point to the location in memory where the transfer ended. The A and B registers
are both marked full.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE (TWOD) D4

This operator performs a Transfer Words, Destructive operation, except that it overrides the memory protection checks.
TRANSFER WORDS, OVERWRITE UPDATE (TWOU) DC

This operator performs a Transfer Words, Update operation, except that it overrides the memory protection checks.
TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E2

This operator transfers characters from a location in memory pointed to by the source pointer, to a location in memory
pointed to by the destination pointer, until the number of characters specified has been transferred or the comparison
fails. The TFFF flip-flop is used to indicate the results of the comparison. TFFF is set at the beginning of the operator.

The first item in the stack is used as the delimiter. The second item in the stack, bits 19:20, is the maximum number of
characters to be transferred. The third item in the stack is the source data or a source pointer, and the fourth item in
the stack is the destination pointer.

The source and destination strings are checked for memory protection. The source character is compared to the
delimiter. After each comparison, a decision is made whether the condition has been met. If the condition is met,
TFFF remains set to one; if it is not met, it is set to zero. If the resuit of the comparison is equal, then the CMPF
flip-flop is set; otherwise, CMPF is reset.

If the number of characters transferred was equal to the repeat field, the TFFF flip-flop is set to one. The A and B
registers are marked empty and the operation is complete.

If the first operand in the stack is not a single-precision operand, an invalid operand interrupt is set and the operation
is terminated.

If either the source or destination word has a memory protect bit on (bit 48=1), the segmented array interrupt is set and
the operation is terminated.

If the second item in the stack is a descriptor, it is used as the source pointer, and the length field or repeat field is set
to 1,048,575. All comparisons are binary {(EBCDIC collating scquence).

TRANSFER WHILE GREATER UPDATE (TGTU) EA

This operator performs a Transfer While Greater operation and updates the source pointer and destination pointer tc
point at the next characters in the source and destination strings. The repeat count is updated to give the number of
characiers riot transferred. If the operation is terminated because the relationship is not met, the source pointer points

at the character that failed the comparison. If the result of the comparison is equal, then the CMPF flip-flop is set;
otherwise, CMPF is reset.

7-16

B 6900 System Reference Manual
Primary Mode Operators

TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) E1l
This operator performs a Transfer While operation using the relation greater than or equal to for comparison.
TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEU) E9

This operator performs a Transfer While Greater or Equal operation. The source pointer, destination pointers, and count
are updated at the conclusion of the operation.

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEQD) E4

This operator performs a Transfer While operation with the relation used in the comparison being equal. If the result of
the comparison is greater, then the CMPF flip-flop is set; otherwise, CMPF is reset.

TRANSFER WHILE EQUAL, UPDATE (TEQU) EC

This operator performs a Transfer While Equal operation. The source pointer, the destination pointer, and count arc
updated at the conclusion of the operation. CMPF is set if the result of the comparison is greater; otherwise, CMPF is reset.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) E3
This operator performs a Transfer While operation, using the less than or equal comparison.
TRANSFER WHILE LESS OR EQUAL, UPDATE (T LEU) EB

This operator performs a Transfer While Less or Equal operation. The source pointer, destination pointer, and count are
updated at the conclusion of the operation.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO

This operator performs a Transfer While operation using the less than comparison. If the result of the comparison is
equal, then the CMPF flip-flop is set; otherwise, CMPF is reset.

TRANSFER WHILE LESS, UPDATE (TLSU) E8

This operator performs a Transfer While Less operation. The source pointer, destination pointer, and count are updated
at the conclusion of the operation.

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE (TNED) ES
This operator performs a Transfer While operation, using the not equal comparison. CMPF is not used.
TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED

This operator performs a Transfer While Not Equal operation. The source pointer, destination pointer, and count are
updated at the conclusion of the operation.

TRANSFER UNCONDITIONAL, DESTRUCTIVE (TUND) E6

This operator performs a Transfer Characters until the length is equal to zero. No comparisons are made.

5010986 7-17

B 6900 System Reference Manual
Primary Mode Operators

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE

This operator performs a Transfer Unconditional operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

STRING ISCLATE (SISO) DS

This operator places in the top-of-the-stack, right justified, the number of source characters specified by the repeat field.
The first item in the stack is the number of characters in the repeat field. The second item in the stack is either an
operand or a descriptor used as the source pointer.

If the number of bits to be transferred is greater than 48, the item is double-precision.

If the number of bits is greater than 96, an invalid operand interrupt is set and the operation is terminated.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

COMPARE OPERATORS

The compare operators perform the specified comparison of two strings of data. The True False Flip-Flop (TFFF) and
the Compare Flip-Flop (CMPF) are used to indicate the result of the comparison at the conclusion of the operation.
Table 7-2 shows the significance of the state of TFFF and CMPF at the conclusion of a compare type operator.

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2

This operator compares the value of two character strings, one character at a time. The operator compares characters
until it encounters a pair which are unequal. If the B string character is greater than the A string character, the TFFF
is set; otherwise, it is reset. If the length is depleted and the character strings are equal, the CMPF flip-flop is set. If
the characters in the B string are greater than the characters in the A string, the TFFF is set to one. If not, the TFFF
is set to zero.

The first item in the stack is an operand which contains the length of the fields being compared. The second item in
the stack is an operand or a descriptor pointing at the character string to be compared against. The third item in the
stack is a descriptor pointing at the character string to be compared.

If the repeat count is depleted, the TFFF is reset.

If either of the data strings has the memory protect bit on (bit 48=1), the segmented array interrupt is set and the oper-
ation is terminated.

All comparisons are by the binary character position in the collating sequence.
COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA

This operator performs a Compare Characters Greater operation. The source pointer and destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) F1

This operator performs the Compare Characters operation with the comparison being greater than or equal. If the repeat
count < 0, the TFFF is set to one.

7-18

B 6900 System Reference Manual
Primary Mode Operators

Table 7-2. Compare Type Operator Results

Compare TFFF CMPF Comparison Result
= 0 0 Less than equal
0 1 Greater than equal
i 0 Equal
1 1 Not applicable
0 0 Equal
0 1 Not applicable
1 0 Less than equal
1 1 Greater than equal
> 0 0 Less than equal
0 1 Equal
1 0 Greater than equal
1 1 Not applicable
< 0 0 Greater than equal
0 i Equal
i 0 Less than equal
1 1 Not applicable
> 0 0 Less than equal
0 1 Not applicable
1 0 Greater than equal
1 1 Equal
< 0 0 Greater than equal
e 1 Not applicable
1 0 Less than equal
1 1 Equal

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9

This operator performs a Compare Character Greater or Equal operation. The source pomter and destination pointer are
updated at the conclusion of the operation.

COMPARE CHARACTERS EQUAL, DESTRUCTIVE {CEQD) F4

This operator performs the Compare Characters operation using the equal comparison. If the repeat count <0, then
TFFF is set to one.

COMPARE CHARACTERS EQUAL, UPDATE (CEQU) FC

This operator performs a Compare Characters Equal operation. The source pointer and destination pointer are updated
at the conclusion of the operation.

5010986 7-19

B 6900 System Reference Manual
Primary Mode Operators

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLED) F3

This operator performs the Compare Characters operation with the less than or equal comparison. If the repeat
count < 0, then TFFF is set to one.

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB

This operator performs a Compare Characters Less or Equal operation. The source pointer and destination pointers are
updated at the conclusion of the operation.

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO

This operator performs the Compare Characters operation using the less than comparison. If the repeat count <0, the
TFFF is set to zero.

COMPARE CHARACTERS LESS, UPDATE (CLSU) F8

This operator performs a Compare Characters Less operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) F5

This operator performs the Compare Characters operation using the not equal relation. If the repeat count << 0, then
TFFF is set to 0.

COMPARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD

This operator performs a Compare Characters Not Equal operation. The source pointer and the destination pointer are
updated at the conclusion of the operation.

EDIT OPERATORS

The Edit Mode Operators are discussed in the following paragraphs.
TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO

This operator is used to prepare for edit micro-instructions. These edit micro-instructions are contained in memory as a
table and not as part of the normal program string. When this operator is entered, program execution is transferred o a
table of micro-instructions. The last micro-instruction in this table must be the End Edit operator (see section 9). The

table contains Edit Mode operators.

The first item in the stack is a descriptor pointing to the table of exit micro-instructions. The second item in the stack
is a single-precision operand or a descriptor pointing at the source string. The third item in the stack is descriptor
pointing at the destination.

If the first item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated.
If the second item in the stack is a single-precision operand, it is the source string. If the third item in the stack is not
a descriptor, the invalid operand interrupt is set and the operation is terminated.

TABLE ENTER EDIT, UPDATE (TEEU) D8

This operator performs a Table Enter Edit operation and updates the source pointer and destination pointer at the com-
pletion of the operation.

7-20

B 6900 System Reference Manual
Primary Mode Operators

EXECUTE SINGLE MICRQ, DESTRUCTIVE (EXSD) D2

This operator performs the same function as the Table Enter Edit operator, except (a) there is only one micro-operator
and it follows this syllable, and (b) the first item in the stack is a single-precision operand that defines the length field.

An end edit operation is performed as an implicit part of the EXSD operator, thus, an explicit END EDIT operator (in
program line code) is not required.

EXECUTE SINGLE MICRO, UPDATE (EXSU) DA

This operator performs the same functions as an Execute Single Micro-operator, except that it updates the source pointer
and destination pointer at the completion of the edit operator operation.

EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE (EXPU) DD

This operator performs the same functions as an Execute Single Micro-Update operator, except that one pointer is used
as both source and destination pointer. The destination pointer is updated at the completion of the operation.

PACK OPERATORS

The two pack operators are discussed in the following paragraphs.

PACK, DESTRUCTIVE (PACD) D1

This operator packs data addressed by the source pointer into the top-of-stack in 4-bit (digit) format. The TFFF is
set to one if the source data is negative. A negative number for an 8-bit (byte) format has a zone bit configuration of

1101 in the least significant byte. Data is right-justified as it is placed in the top-of-stack.

The operand in the top-of-stack (TOS) is used as the length field. The second item is the source pointer. The operation then
continues until the number of digits specified by the length or repeat field have been packed.

If the length is less than 13, the operand in the top-of-stack is a single-precision operand. If the operand is 13 or
greater, the result is a double-precision operand. If the length is not less than 25, an invalid operand interrupt is set and
the operation terminated. If initial length is zero, the TOS is filled with zeroes.

If the second item in the stack is an operand, it is the source string and is comprised of 8-bit bytes.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

PACK, UPDATE (PACU) D9
This operator performs a Pack operation, updating the source pointer at the completion of the operation.

INPUT CONVERT OPERATORS

The five input convert operators are discussed in the following paragraphs.

5010986 721

B 6900 System Reference Manual
Primary Mode Operators

INPUT CONVERT, DESTRUCTIVE (ICVD) CA

This operator converts either 8-bit EBCDIC, or 4-bit digit code to an operand for internal arithmetic operations. The
first item in the stack is an operand integerized to form the repeat field. The second item in the stack is a descriptor
used as a source pointer.

The input convert operator converts a string of input EBCDIC character data into a numeric operand. The resultant
operand may be either single-precision or double-precision. The manner in which the conversion of character data
into numeric data is performed is discussed in the following paragraphs.

The four high-order zone bits of the input EBCDIC character are discarded. The remaining four low-order digit bits
from the input character form a hexadecimal character, which is placed in the top-of-stack register receiving field.

Each time a source input character is converted, the repeat field is decremented by one. When the repeat field is equal
to zero, all input characters have been converted.

If the repeat field value is 13 (decimal) or less, the resultant operand in the TOS register is a single-precision operand. If
the repeat field value is between 13 and 24 (decimal), the resultant operand in the TOS register is a double-precision
operand. If the repeat field is greater than 24, an invalid operator interrupt is set and the operation is terminated.

The sign of the converted resultant operand is determined from the zone bits of the least significant character in the
input character string. For EBCDIC input characters, the sign is positive except when the least significant character
zone bits are equal to 1101 binary; then, it is negative. The detected sign bit for the resultant operand is saved in
the TFFF flip-flop. :

The sign of the converted operand is then set from the TFFF. If the converted operand is a single-precision operand, the
TFFF is then set to one. If the converted operand is a double-precision operand, the TFFF is set to zero.

At the completion of the operation, the B register is marked full. The TAG field is set to indicate either a single- or a
double-precision operand.

If, after being integerized, the item in the top-of-stack is greater than 23, the invalid operand interrupt is set and the
operation is terminated.

INPUT CONVERT, UPDATE (ICVU) CB
This operator performs an Input Convert operation. The source pointer is updated at the completion of the operation.
READ TRUE FALSE FLIP-FLOP (RTFF) DE

This operator places the status of the TFFF into the low-order bit position of the A register. The rest of the A register
is set to all zeroes. The A register is marked full at completion of this operation.

SET EXTERNAL SIGN (SXSN) D6

This operator places the mantissa sign of the top word of the stack in the external sign flip-flop. This operand is not
deleted from the stack at the end of the operation.

AT
READ AND CLEAR OVERFLOW FLIP-FLOP (ROFF) D7

This operation places the status of the overflow flip-flop in the least-significant bit of the A register, sets the rest of the
A register to all zeroes, marks the register full, and sets the overflow flip-flop to zero.

7-22

B 6900 System Reference Manual
Primary Mode Operators

SUBROUTINE OPERATORS

The subroutine operators are discussed in the following paragraphs.
VALUE CALL (VALC) 00 = 3F

This operator loads the operand addressed by the address couple formed by the concatenation of the six low-order bits of

the first syllable and the 8-bits of the following syllable into the A register. The A register is marked full. Figures 7-1
and 7-2 are simplified flow charts of the Value Call operator.

This operator makes multiple memory accesses if the word accessed is either an indexed descriptor, Program Control
Word (PCW), or an Indirect Reference Word (IRW).

If the word accessed is an indexed data descriptor, the word addressed by the data descriptor is brought to the top-of-
stack. If the double-precision bit (bit 50) in the data descriptor is equal to one, the other half of the double-precision
operand is brought to the X register.

If the word accessed is 2 non-indexed word data descriptor, the word is indexed using the second word in the stack for
the index value. The word addressed by the non-indexed data descriptor is brought to the top-of-stack. If the double-
precision bit (40) in the data descriptor is equal to one, the other half of the double-processor operand is brought to the

X register.

If the word accessed by the data descriptor is another indexed data descriptor, the word addressed by the data descriptor
is brought to the top-of-stack, and one of the two preceding paragraphs-is repeated.

If a data descriptor does not address an operand, SIRW, word descriptor, or indexed string descriptor, an invalid operand
interrupt is set and the operation is terminated.

If the word accessed by the value call is an IRW, the word addressed by the IRW is accessed and evaluated. If the word
is an operand, it is placed in the top-of-stack.

If the word accessed by the IRW is another IRW, the operation continues as previously described.

If the word accessed by the IRW is an indexed or non-indexed data descriptor, the operator proceeds as previously described
for data descriptors.

If the word accessed by the IRW is a PCW, an accidental entry into the subroutine addressed by the PCW is initiated. A Mark
Stack Control Word (MSCW) and a Return Control Word (RCW) are placed in the stack, and an entry is made into the
program. Upon completion of the program, a return operator re-enters the flow value call at the label IRW (Figure 7-1).

NAME CALL (NAMC) 46 = 7F

This operator builds an IRW in the A register. The address couple is formed by concatenating the six low-order bits of
the first syllable and the 8-bits of the following syllable. The A register is marked full and the operation is complete.

EXIT OPERATOR (EXIT) A3
This operator returns to a calling procedure from a called procedure resetting all control registers from the RCW and the

MSCW. The Exit operator does not return a value to the calling routine. Figure 7-3 shows a simplified flow chart of the
Exit operator. '

5010986 723

B 6900 System Reference Manual
Primary Mode Operators

STUFFED
REMEMBER v
ALL VALUE i
CALL DATA oS TAL
OR
STUFFED
IRW
?
] NORMAL
YES 1
STACK
ADJ ADJUSTMENT
(0,2) NEEDED OBTAIN
? WORD
ADDRESSED
BY IRW
IS
YES
WORD
EIEGSC DESC AN IRW, IRW .
7.2 OPERAND OR
DESC
?
 “ACCIDENTAL
ENTRY"
g‘;’é\gi {CALL ON A
OPERAND N ,,A,,ND PROCEDURE)
REGISTER
IS AN
OPERAND OPEF;AND
SINGLE 2
PRECISION
?
OBTAIN OTHER
HALF OF
OPERAND IN
“X* REGISTER
op
COMPLETE
MV 1645

Figure 7-1. Flow of Value Call Operator

7-24

B 6900 System Reference Manual
Primary Mode Operators

NVALID
OPERAND
INTERRUPT]

IS
THIS
DESCRIPTOR
INDEXED
?

1 Y

DIFFERENT
N, STACK

OBTAIN WORD

ADDRESSED

BY DESC

ADJ. 0,1
OBTAIN
STACK VECTOR
DESC
INVALID ;\

COPERAND
STACK

NUMBER

INTERRUPT
[
\ OPERAND VALID
FIG, ?
7-1

s
THIS
A WORD
_DESCRIPTOR

, : .

OBTAIN WORD
ADDRESSED

YES

INDEX
DESCRIPTOR

INVALID
OPERAND
INTERRUPT

A NORMAL
IRW
?

L

MV 1646

Figure 7-2. Value Call (Descriptor) Operator
7-25

5010986

B 6900 System Reference Manual
Primary Mode Operators

IS
NEW
ADDRESS

LESS THAN

BOSR
?

YES

OBTAIN PREVIOUS
ADJ (0, 0 MSCW AND

SAVE ADDRESS

1S

OBTAIN s
RCW A MSCW AND NO
AT (F +1)

HAS IT BEEN
ENTERED
?

Y

SET UP REGISTERS
TO RETURN TO
PRIOR PROCEDURE,

SAVE BOSR AND 7S
CUT BACK THE s
STACK FOR A YES OBTAIN NEW
STACK
DIFFERENT ADDRESS
STACK
7
DOES UPDATE [££]
D[] AND
REQUIRE OBTAIN NEW
UPDATING MSCW
OBTAIN WORD ?
ADDRESSED
BY (F)
OBTAIN SEG DESC YES
ADDRESSED BY
PDR SET PBR TO
ADDRESS IN S.D. &
CAUSE A FETCH
* NO
OPER. SEQ. ERROR
COMPLETE INTERRUPT,
YES
COMPUTE
ADDRESS OF
PREVIOUS
MSCW

MV 1647 >

Figure 7-3. Flow of Exit Operator
7-26

B 6900 System Reference Manual
Primary Mode Operators

RETURN OPERATOR (RETN) A7

This operator performs the same functions as an Exit operator, except an operand or name in the B register is returned
to the calling procedure. If a name is returned and the V bit (bit 19) in the MSCW is on, the name is evaluated to
yield an operand as described in the VALC operator. Figure 74 shows a simplified flow chart of the Return operator.
ENTER OPERATOR (ENTR) AB

This operator is used to cause an entry into a procedure from a calling procedure. Entry is to the program segment and
syllable addressed by the PCW. Figure 7-5 shows a simplified flow chart of the Enter operator.

The Enter operator accesses the IRW at F + 1, which points to the PCW (or to the PCW directly, without the use of an
IRW). The operator then builds a RCW into the stack at F + 1.

EVALUATE (EVAL) AC

This operator loads the A register with an indexed data descriptor or an IRW that addresses A “target,” which may be

an SIW, an un-indexed data descriptor, a string descriptor, or an operand. The target can be referenced through a chain of
accidental entries or IRW. In any case, memory accesses continue to be made until the target is located. The A register is
left containing the data descriptor or the IRW which addresses the target. Figure 7-6 is a simplified flow chart of the

Evaluate operator.

An indexed data descriptor is left in the A register when the target is referenced by an indexed data descriptor. A
stuffed IRW is left in the A register when the target is referenced by IRW(s).

If the A register does not contain a data descriptor or an IRW at the start of this operator, an invalid operand interrupt
is set and the operation is terminated.

MARK STACK OPERATOR (MKST) AE

This operator places a Mark Stack Control Word in the B register which contains a pointer to the previous MSCW in the
stack. The F register is updated to point at the address of the MSCW.

This operator is used to mark the stack when entry into a procedure is anticipated.

STUFF ENVIRONMENT (STFF) AF

This operator changes a normal IRW to a stuffed IRW so that a quantity may be referenced from a different addressing
environment. The displacement field locates the MSCW below the quantity, and the index field locates the quantity

relative to the MSCW. Figure 7-7 shows a simplified flow chart of the Stuff Environment operator.

If the word in the A register at the start of the operation is not an IRW, an invalid operand interrupt is set and the
operation is terminated.

If, when creating this stuffed IRW, other than an MSCW is accessed, a sequence error interrupt is set and the operation
is terminated.

INSERT MARK STACK OPERATOR (IMKS) CF

This operator builds an MSCW and places it below the two top-of-stack quantities.

5010986 727

B 6900 System Reference Manual
Primary Mode Operators

1S
NEW
ADDRESS

LESS THAN

BOSR
?

YES STACK
— | UNDERFLOW
INTERRUPT

AV OBTAIN PREVIOUS
(SAVE

RETURNED MSCW AND
VALUE) SAVE ADDRESS

1S
OBTAIN RCW THISA
AT (F+1) MSCW AND HAS NO

IT BEEN
ENTERED
) ? .

1

SET-UP REGISTERS

TO RETURN TO
PRIOR PROCEDURE,
SAVE BOSR AND
CUT BACK THE IS
STACK : THIS FOR OBTAIN NEW
A DIFFERENT STACK
STACK ADDRESS
?
1S .
THIS THE NO |
BOTTOM
OF STACK
?
NO DOES
D{gg UPDATE D [#]
REQUIRE AND OBTAIN
UPDATING NEW MSCW
OBTAIN WORD ?
ADDRESS
BY (F) NO
OBTAIN SEQ DESC
ADDRESSED BY YES
PDR SET PBR TO

ADDRESS IN S.D.
& CAUSE FETCH

WAS

VALUE

BIT EQUAL

TO ONE
?

NO
YES , O

NO
COMPUTE ADDRESS
OF PREVIOUS
MSCW AND . .
SAVE VALUE BIT GO TO EVAL
OPER OPERATOR &
: COMPLETE SET “1" REG
| TO VALC OP
MV 1648

Figure 74. Flow of Return Operator
7-28

ADJ {0, 0) AND
OBTAIN WORD
ADDRESSED BY
(F+1})

B 6900 System Reference Manual
Primary Mode Operators

OBTAIN WORD
ADDRESSED
BY IRW

MV 1649

5010986

Figure 7-5. Flow of Enter Operator

SAVE PRESENT
REGISTER
SETTINGS (RCW)

y

DISTRIBUTE
PCW REGISTER
SETTINGS

'

STORE RCW
AT (F +1)

Y

OBTAIN MSCW
AT (F)

INVALID
OPERAND
INTERRUPT,

I |

COMPLETE THE
MSCW AND
STORE IT
BACK AT (F)

y

OBTAIN WORD
ADDRESSED
BY NEW PDR

IS
THIS A
SEGMENT
DESCRIPTOR
?

PLACE PROGRAM
ADDRESS IN

PBR AND FORCE
A FETCH

Y

L

OPER
COMPLETE

SEQ
ERROR
INTERRUPT

7-29

B 6900 System Reference Manual
Primary Mode Operators

ADJ (1,2}

THIS
A
NORMAL
IRW

NO

SAVE THE
IRW IN A"

ADDRESSED
BY IRW

OBTAIN WORD

REGISTER

'

OPER
COMPLETE

OBTAIN WORD
OBTAIN
AYDg:RRE\SSED STACK VECTOR
B DESCRIPTOR
. AT DO +2
OBTAIN WORD
ADDRESSED
BY SiRW
Y '

Ll
MV 1650

7-30

Figure 7-6. Flow of Evaluate Operator

INVALID™S
OPERAND
INTERRUPT

ITA

STRING

DESCRIPTOR
?

LEAVE THE
DESCRIPTOR IN
THE A"
REGISTER

Y

OPERATION
COMPLETE

B 6900 System Reference Manual
Primary Mode Operators

INVALID . N
INDEX

COMPUTE DISP

ADJ (1, 2) FIELD SET LL
FIELD TO ZERO

AND MARK

AS STUFFED

Y

OPERATION
COMPLETE

OBTAIN WORD
ADDRESSED BY
D" REGISTER

OBTAIN WORD
ADDRESSED BY
ADDRESS OF THIS
MSCW-MSCW.DF

IS
THE STACK
NUMBER OF THE
MSCW EQUAL
TO SNR AND THE
E BIT OF THE MSCW
EQU?L TOO

' YES
SAVE STACK OBTAIN STACK
NUMBER VECTOR AT
OF MSCW [DO +2]

L .

MV 1651

Figure 7-7. Flow of Stuff Environment Operator
5010986 7.31

B 6900 System Reference Manual
Primary Mode Operators

ENTER VECTOR MODE OPERATORS

Two different operators are used to cause the B 6900 system to enter into the vector mode of operation. The Vector
Mode Enter Single (VMOS) operator is used to enter the vector mode of operation when a single word of program code
contains all the vector mode operators to be executed. The Vector Mode Enter Multiple (VMOM) operator is used to
enter into the vector mode of operation when the number of vector mode operators to be executed uses more than a
single word of program code.

The two methods for entering the vector mode of operation are described in the following paragraphs.

VECTOR MODE ENTER MULTIPLE (VMOM) E7

This operator is used to cause entry into the vector mode of operation in the same way that the VMOS operator performs.
The only difference between the operation of the VMOS and the VMOM operators is the number of words of vector mode
machine language code that can be used.

If an interrupt occurs while entry into vector mode is in process, the entry process is terminated, and processing resumes
with the next normal mode machine language operator in sequence. Since multiple words of vector mode machine lan-
guage operators are used when the VMOM operator causes entry to vector mode, the first word of normal mode operators
may be greatly removed from the VMOM operator code word.

The use of the VMOM operator causes the data processor to retain the address of the next normal mode operator word.
This address is required in the event that the entry into vector mode is terminated. The retention of the next normal
mode operator word address (in IC memory) is the only difference between the VMOS and VMOM operators.

VECTOR MODE ENTER SINGLE (VMOS) EF

This operator is used to cause entry into the vector mode of operation. Vector mode operations are performed in con-
trol state (HHF flip-flop is set). The VMOS operator uses a subset of the table enter edit logic to distribute vector mode
parameters in the IC memory address registers of the data processor. The vector mode operator parameters must be on
the top of the data processor stack at the beginning of the VMOS operator.

The VMOS operator expects to find three data descriptors and three incrementation parameters present on the top of

the data processor stack. The VMOS operator optionally expects that a LENGTH parameter may be present on the top

of the data processor stack. If the VMOS operator does not find the three data descriptors on the top of the data processor
stack, an invalid operand interrupt is detected, and the VMOS operator releases control to the interrupt controller.

The VMOS operator expects to find that bit 47 (the presence bit) is true in each of the three data descriptors. If any of

the three data descriptors do not have the presence bit true, a presence bit interrupt is detected, and the VMOS operator
releases control to the interrupt controller.

7-32

B 6900 System Reference Manual
Primary Mode Operators

The order of occurrence of the three data descriptors and the three increment parameters {and optionally, the LENGTH
parameter) is as follows:

Parameter Word Type Word Usage
Pointer C Data descriptor The top word in the data processor stack.
LENGTH SP operand When a LENGTH parameter is present, it is the second word in

the data processor stack, and its presence is indicated by bit 44 of
pointer C being set. If a LENGTH parameter is not present in the
stack, a default length value of FFFFF — 1 (HEX) is used.

Pointer A Data descriptor If a LENGTH parameter is not present in the data processor
stack, pointer A is the second word in the data processor stack.
If a LENGTH parameter is present in the stack, then pointer A
is the third word in the stack.

Pointer B Data descriptor If a LENGTH parameter is not present in the stack, pointer B is
the third word in the stack. If a LENGTH parameter is present
in the stack, then pointer B is the fourth word in the stack.

Increment C SP operand The incrementation value that will be used as the incrementation
unit to access data elements of the array pointed at by pointer C.

i
Increment A SP operand The incrementation value used for accessing data elements in the
array pointed at by pointer A.

Increment B SP operand The incrementation value used for accessing data elements in the
array pointed at by pointer B.

If bit 44 (the segmented bit) is true in pointer A or B, an invalid operator interrupt is detected, and the VMOS operator
releases control to the interrupt controller.

If pointer A has the read only bit (bit 43) true, a memory protect interrupt is detected, and the VMOS operator releases
control to the interrupt controller.

If any of the three types of interrupts described in the preceding paragraphs are detected, the entry into vector mode is
terminated, and the program is resumed (in normal state) at the next code word following the vector operator code
word. The use of the VMOS operator implies that only one word of vector mode operators is to be used, and the first
vector mode operator to be executed is present in syllable zero of the next program code word in sequence. Therefore,
the next word of program code (the vector mode code word) is fetched by the program controller and placed in the

P register. If an interrupt occurs during the VMOS operator, the interrupt controller fetches another new word of
program code (the word following the vector mode code word). Thus, the VMOS operator releases control to the inter-
rupt controller, and the interrupt controller fetches the next word of normal state program code to be executed.

5010986 7-33

B 6900 System Reference Manual

SECTION 8
VARIANT MODE OPERATION AND OPERATORS

ESCAPE TO 16-BIT INSTRUCTION (VARI) 95

The variant mode of operation extends the number of operation codes. These operators are not used as often and require
two syllables; the first is the “Escape to 16-Bit Instruction” (VARI) operator. When the VARI operator is encountered,
the following syllable is the actual operation and the syllable pointer is positioned beyond the two syllables. The VARI
operator is valid only for the syllables covered in this section.

Variant codes EO through EF are detected and cause a programmed operator interrupt. All other unassigned variant codes
cause no action and result in a loop timer interrupt.

Variant mode operations are both word- and string-oriented operators.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order
by mode.

VARIANT MODE OPERATORS

The variant mode operators are discussed in the following paragraphs.
READ CENTRAL PROCESSOR COUNTER (RCPC) 9540

The RCPC operator returns the current value of the MLIP Processor Timer to the Top-of-Stack register. The 24-bit
value returned to the Top-of-Stack represents the time in 2.4 microsecond intervals since the Processor Timer value

was last transferred to the Top-of-Stack. The time increment obtained from this circuit is used to provide a method of
time-sharing and user-billing by software utility programs. Each time the incrementation of the counter circuit is
returned to the Top-of-Stack registers the counter circuit is RESET. Thus, the value returned is either the lapsed time
since the timer value was returned, or the lapsed time since a System HALT/LOAD or GENERAL CLEAR function was
performed.

RUNNING TIMER INITIALIZE (RUNI) 9541

The RUNI operator causes the MLIP Running Timer circuit to initialize and begin timing. The Running Timer circuit
causes the system STATUS RUNI indicator to illuminate while the timer is timing, and to extinguish when the :timer
circuit times-out (2.041 +/- 0.16 seconds after the timer circuit is initialized). The B 6900 system uses the RUNI
indicator logic to show when the CPU is performing a useful function and is not stopped. Under certain privileged-
operation conditions the B 6900 system does not exhibit any other visibie sign that the CPU is active.

In addition to the RUNI operator code, the CPU micro-module can also initialize the MLIP Running Timer. Thus,
certain micro-module operator flows initialize the Running Timer, and under normal system operations the RUNI
indicator is never extinguished.

SET TWO SINGLES TO DOUBLE (JOIN) 9542

The operands in the A and B registers are combined to form a double-precision operand that is left in the B and Y
registers.

The operand in the A register is placed in the Y register. The A register is marked empty, and the B register TAG field is
set to double-precision.

5010986 | 8-1

B 6900 System Reference Manual
Variant Mode Operation and Operators

SET DOUBLE TO TWO SINGLES (SPLIT) 9543

The SP(DP) operand in the B register is changed to two single-precision operands whlch are placed in the A and the B
registers; both registers are marked full.

If the operand in the B register is a single-precision operand, the A register is set to all zeroes and the A and B registers
are marked full. Both the A and the B register TAG fields are set to single-precision.

If the operand in the B register is a double-precision operand, the Y register operand is placed in the A register and the
TAG fields of both the A and B registers are set to single-precision.

IDLE UNTIL INTERRUPT (IDLE) 9544

This operator suspends processor program execution until the program is restarted by an external interrupt. Inhibit
Interrupt Flip-Flop (IIFF) is unconditionally reset to allow external interrupts.

SET INTERVAL TIMER (SINT) 9545 (CONTROL STATE OPERATOR)

This operator places the 11 low-order bits of the B register into the interval timer register, and arms the timer. The interval
timer decrements each 512 microseconds. The processor is interrupted when the timer reaches zero and is still armed. The
interval timer is disarmed when the processor is interrupted by an external interrupt.

The operand used to set the interval timer is integerized before the 11 low-order bits are used. If the operand cannot
be integerized, an integer overflow interrupt is set and the operation is terminated.

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546

This operator causes the processor to enter normal state, allowing it to respond to external interrupts. This is accom-
plished by setting the IIHF flip-flop to zero.

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547

This operator causes the processor to ignore external interrupts. This is accomplished by setting the IIHF to one and
entering control state.

WRITE TIME OF DAY (WTOD) 9549

The Write Time Of Day operator causes a right-justified 36-bit value in the Top-of-Stack registér to initialize the value
of the MLIP Time-of-Day counter circuit. The counter assumes the same value as the Top-of-Stack register, and then
proceeds to increment the initial value at a 2.4 microsecond rate. The value of the Time-of-Day counter represents the
current time for all B 6900 system operations. The WTOD operator is the method used to SET the system clock to
the desired time value.

SCAN OPERATORS
The SCAN-IN functions read information from the Global subsystem to the top-of-stack registers in the data processor.
The SCAN-OUT functions write information from the top-of-stack registers in the data processor to the Global memory

subsystem.

Parity is checked during transmission of both addresses and information.

8-2

B 6900 System Reference Manuai
Variant Mode Operation and Operators

SCAN-IN (SCNI) 954A

SCAN-IN uses the A register to specify the type of input required. The input data is placed in the B register. The
A register is empty and the B register is full at the completion of the operation. Refer to section 5 for the format of
the function and data words for SCAN-IN operations.

SCAN-OUT (SCNO) 954B

The SCAN-GUT operation causes the memory control to sense a function code in the top-of-stack register of the data
processor. At the conclusion of the SCAN-OUT operator, the top two words of the stack are deleted from the stack.

CONTROL UNIVERSAL INPUT OUTPUT (CUIO) 954C

The CUIO operator is executed by the CPU Data Processor to start an MLIP I/O operation sequence. At the beginning
of this operator flow a Data Descriptor which points to the first word of an Input Output Command Buffer (IOCB area
in system memory) must be present in the CPU Top-of-Stack register.

The CUIO operator causes the JOCB beginning memory address present in the Top-of-Stack register to be strobed into

the MLIP R1 register. The MLIP logic generates an Entry Vector to the micro-module (to initiate an MLIP 1/O sequence).
When the MLIP sequences acknowledge the presence of the IOCB address in the MLIP R1 register, the Data Processor
CUIO operation is completed.

READ PROCESSOR IDENTIFICATION (WHOI) 954E

This operator places a word containing the value of the processor ID register in the A register of the data processor.

The format of the word placed in the A register of the data processor is shown in Figure 8-1. At the conclusion of the
WHOI operator, the A register is marked full.

UL! UL SN SN SN

0 UL| UL ULf SN | SN] ID

0 : UL UL UL] SN | SN} ID

0. UL! ULE SN SN ! SN2 1D
B s 136 (32 28 jau feo s 2 8 4 0

50:3 TAG FIELD

47:25 = NOT USED

22:10 = THE UNIT DESIGN (ERL) LEVEL OF THE CPU.
THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM
A FOREPLANE CONFIGURATICN PLUG-ON JUMPER.
ADAPTER OF THE CPU

12:10 = THE SERIAL NUMBER OF THE CPU.
THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER
OF THE CPU

2:3 = THE PROCESSOR ID NUMBER OF THE CPU.

THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER

OF THE CPU.
MV 1652

Figure 8-1. WHOI Operator Returned Word

5010986 83

B 6900 System Reference Manual
Variant Mode Operation and Operators

OCCURS INDEX (OCRX) 9585

This operator places the following in the B register: a new index value calculated from the Index Control Word (ICW)
in the A register, and the operand in the B register (Figure 8-2).

The index word in the B register is integerized. If the index is greater than the maximum integer value (549, 755, 813,
887), the integer overflow interrupt is set and the operation terminated. If either the ICW or the operand has a value of
0, the invalid index interrupt is set and the operation is terminated. If the index value is less than O or greater than

the SIZE field [31:16] of the ICW, the invalid index interrupt is set and the operation is terminated.

The LENGTH field of the ICW [47:16] is multiplied by the index value [15:16] minus 1, and that value is added to
the OFFSET field of the ICW. This result is the new index. The A register is marked empty and the B register is
" marked full.

INDEX CONTROL WORD (ICX)

LENGTH SIZE OFFSET
aa] 40| 3s] 32 28] 24 20| e 120 8 4 0
INDEX WORD
INDEX
a4 40 36 32 28 24 20 16 12 8 4 0
MV 1653

Figure 8-2. Index Control Word (ICW) and Index Word

INTEGERIZE, ROUNDED, DOUBLE-PRECISION (NTGD) 9587
This operator creates (from the operand in the B register) a double-precision, rounded integer in the B register. The
B register is marked full. If the word in the B register at the start of this operator is not an operand, the invalid operand

interrupt is set and the operation is terminated.

If the operand in the B register is larger than 8 1 26-1 in absolute value, the integer overflow interrupt is set and the
operation is terminated.

The B register is marked as a double-precision operand (TAG bits set to 010), and the exponent is set to 13.

B 6900 System Reference Manual
Variant Mode Operation and Operators

LEADING ONE TEST (LOG2) 958B

This operator locates the most significant 1-bit of the word in the B register and places the location of that bit into
the B register (bit number + 1). If a 1-bit is not sensed, the B register is set to all zeroes.

The B register is marked full.
NORMALIZE (NORM) 958E

This operator performs normalization of the operand in the top of stack. The normalized operand is left in the
B register at the conclusion of the NORM operator, and the B register is marked full. Normalization is defined in
Section 2 of this manual.

READ TIME OF DAY (RTOD) 95A7

The RTOD operator is used to strobe the current value of the MLIP Time-of-Day register into the CPU Top-of-Stack
register, right justified. The current value of the Time-of-Day register is a 36-bit binary value that represents the current
count of 2.4 microsecond clock-pulses.

The current count of the Time-of-Day register represents the sum value strobed into the register by a WIOD operator, and
a +1 increment for each clock-pulse occurring thereafter. If the B 6900 was GENERAL CLEARED after a WTOD operator
was executed, the value in the register represents the number of 2.4 microsecond periods occurring after the GENERAL
CLEAR operation. The Time-of-Day counter cycles through a full-count to 0, and continues counting up.

MOVE TO STACK (MVST) 95AF

This operator causes the environment of the processor {or addressing space) to be moved from the current stack to the

program stack specified by the operand in the B register.

The‘operator builds a Top-of-Stack Control Word (TSCW; Figure 8-3) and places it at the base of the current stack as
addressed by the base-of-stack register.

=T — — T
47 : 19}
Sof L8 DSF

1 T DFF

49 45

1 ' F

48 44
ES — EXTERNAL SIGN FLIP FLOP DSF — DELTA S-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR
O —OVERFLOW FLIP FLOP N — NORMAL-CONTROL STATE FLIP FLOP
T —TOGGLE, TRUE-FALSE FLIP FLOP L — ADDRESSING LEVEL
F —FLOAT FLIP FLOP DFF — DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TOrS

MV 1654
Figure 8-3. Top-of-Stack Control Word (TSCW)
" The operand in the B register is integerized and checked against the stack vector for invalid index. The value in the

B register is added to the address field of the stack vector descriptor (at D[0] +2) to address the descriptor for the new
stack.

5010986 85

B 6900 System Reference Manual
Variant Mode Operation and Operators

The data descriptor for the requested stack is accessed. If the presence bit is “on,” the address field is placed into the
base-of -siack register. The TSCW is brought up, and the stack is marked “active” by storing the processor ID at the
base-of-stack. The TSCW is distributed and the D registers are updated.

If during the integerization the operand in the B register is too large, the integer overflow interrupt is set and the opera-
tion is terminated.

If the index value is less than zero or greater than the LENGTH field of the data descriptor for the stack vector array, an
invalid index interrupt is set and the operation is terminated.

READ COMPARE FLIP-FLOP (RCMP) 95B3

This operator reads the state of the CMPF flip-flop, and creates a single-precision word in the data processor A register.
If the CMPF flip-flop is in the binary one state, the low-order bit (bit zero) of the single-precision word in the A register
is set. If the CMPF flip-flop is in the binary zero state, the low-order bit of the A register is reset. The A register is
marked full at the conclusion of the operation.

SET TAG FIELD (STAG) 95B4

This operator sets the TAG field (bits 50:3) in the B register to the value of bits2:3 of the operand in the A register.
At the completion of the operation, the A register is marked empty and the B register is left full.

READ TAG FIELD (RTAG) 95B5

This operator replaces the word in the A register with a single-precision operand equal to the TAG field of that word. The
TAG bits are placed in bits 2:3. The A register is marked full.

ROTATE STACK UP (RSUP) 95B6

This operator permutes the top three operands of the stack so that the first operand has become the second, the second
has become the third, and the third has become the first (see Figure 8-4).

BEFORE ROTATION BEFORE ROTATION
rA WORD ONE rA WORD ONE
B WORD TWO rB WORD TWO
S - WORD THREE S - WORD THREE
AFTER ROTATION AFTER ROTATION
rA WORD THREE rA WORD TWO
rB WORD ONE rB WORD THREE
S = WORD TWO s - WORD ONE
STACK ROTATION UP STACK ROTATION DOWN
MV1655

Figure 8-4. Rotate Stack Operations

86

B 6900 System Reference Manual
Variant Mode Operation and Operators

ROTATE STACK DOWN (RSDN) 95B7

This operator permutes the top three operands of the stack so that the first has become the third, the second has
become the first, and the third has become the second (see Figure 8-4).

READ PROCESSOR REGISTER (RPRR) 95B8

This operator reads the contenis of one of tlie eight base registers, eight index registers, or one of the 32 D registers into the
A register.

The six low-order bits of the A register selects the processor register to be read.

The decoding of these six bits is as follows:

Bits 5:2 =10 = Index register
Bits 2:3 =0, = PIR

=1, = SIR

=2, = DIR

=3, = TIR, BUF 3

=4, = LOSR

=5, = BOSR

=6, =F

=17, = BUF
Bits 5:2 =11 = Base register
Bits 2:3 =0, = PBR

=1, = IBR

=2 = DBR

=3, = TBR, BUF 2

= 4’ =

=35, = SNR

=6, =PDR

=17, = TEMP

If bit 5 is zero, bits 4:5 select the D register equal to the binary value of the bits; that is, bits 4:5 = 00101 select D
register 5.

At the completion of this operation, the A register contains the contents of the selected register, and is marked full.
SET PROCESSOR REGISTER (SPRR) 95B9

This operator places the contents of the ADDRESS field of the A register into one of the eight base registers, cight index
registers, or 32 D registers selected by the six low-order bits of the word in the B register.

The decoding of the six low-order bits is the same as in the Read Processor Register operator (RPRR) discussed under
the previous heading.

The A and B registers are marked empty.
READ WITH LOCK (RDLK) 95BA

This operator performs in a manner similar to the Overwrite operator (see section 7), except the word which was in
memory before the overwriting is left in the A register.

5010986 87

B 6900 System Reference Manual
Variant Mode Operation and Operators

COUNT BINARY ONES (CBON) 95BB

This operator counts the number of 1-bit in the single-precision (double-precision) operand in the A register. At the
completion of the operation, the total count is left in the A register with the register marked full.

LOAD TRANSPARENT (LODT) 95BC

This operator performs a Load operator (see Section 7) if the word in the A register is a data descriptor or an Indirect
Reference Word. If it is neither of these, bits 19:20 of the A register are used as the address to bring an operand to the
A register. Copy bit action does not occur. ’

LINKED LIST LOOKUP (LLLU) 95BD
This operator searches a linked list of words.

The operator starts with an operand in the top-of-stack as the index pointer. The second word in the stack is a
non-indexed data descriptor to the array containing the linked list. The third word in the stack is an operand that is
the argument.

The base address of the linked list, the length of the list, and the argument value are saved throughout the entire operator
process.

The word addressed by the base address plus the index value are read and checked for a value of zero in the address (link)
portion of the word (zero denotes the end of the linked list). If the link is non-zero, bits 47:28 are compared to the
argument value. If the argument of the linked-list word is less than the argument value, the actions described in this
paragraph are repeated, using the link as the new index.

When the value of the argument field of the linked-list word is equal to or greater than the argument value, the operation
is complete. The index pointing to the word whose link points to the argument which satisfies the test is left in the
A register and is marked full.

If the value of the link portion of the linked-list word is equal to zero, the A register is set to minus one (-1), and marked
full as the operation is completed.

If the index value in the linked list word is greater than the length value from the descriptor, an invalid index interrupt
is set and the operation is terminated.

When the first word in the stack at the start of this operator is not an operand, an invalid-operand interrupt is set and the
operation is terminated. ' '

If the data descriptor has been indexed, the invalid-operand interrupt is set and the operation is terminated.

MASKED SEARCH FOR EQUAL (SRCH) 95BE

At the start of this operator, the word in the A register must be 3 data descriptor. The operand in the B register is a 51-bit
mask. The data descriptor in the A register and the mask in the B register are saved, and the 51-bit argument word is placed
into the B register. If the descriptor is indexable (bit 45 equal to zero) one is subtracted from the LENGTH ficld. If bit 45
is equal to one, the data descriptor is already indexed; therefore, that index is the starting value.

The word addressed by the descriptor is placed in the A register and ANDed with the mask word. The result of this
AND function is tested to determine if it is identical to the argument word.

88

B 6900 System Reference Manual
Variant Mode Operation and Operators

If the comparison is not equal, the INDEX field of the descriptor is decreased by 1 and the operation is repeated. If the
INDEX field is equal to O, the A register is set to a -1 value and marked full. The B register is marked empty.

If an equal comparison is made, the A register contains the index pointing at the last word compared and is marked full.
The B register is marked empty.

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 95D1
This operator unpacks a string of 4-bit digits into 8-bit bytes. At the start of the operator, the word in the A register
defines the length of the operand in the B register, that is, the string of digits to be unpacked. The third word in the
stack is a string descriptor addressing the destination of the string.
As the specified number of digits are transferred to the destination {most significant bit first), zone fill is as follows:
1. The 8-bit (EBCDIC) format bytes are transferred to the destination string with the four zone-bits to 1111.
2. If the destination size is ZERO, it is set to 8-bit format and handled as in the preceding item (1).

UNPACK ABSOLUTE, UPDATE (UABU) 95D9

This operator performs an Unpack Absolute operation. At the completion of the operation, the destination pointer is
updated and left in the stack.

UNPACK SIGNED, DESTRUCTIVE (USND) 95DO

This operator performs an Unpack Absolute operation plus an added function if the External Sign flip-flop is set. Then
a zone of 1101 is set in the last byte for 8-bit.

If the destination size is 4-bit, the first digit position of the destinaticn siring is set to 1101 provided the
ilip-flop is set. If the External Sign flip-flop is O, the first digit is set to 1100.

Detoraal Qi
External Sign

UNPACK SIGNED, UPDATE (USNU) 95D8

This operator performs an Unpack Signed operation. At the completion of the operation, the destination pointer is
updated.

TRANSFER WHILE TRUE, DESTRUCTIVE (TWTD) 95D3

This operator transfers characters from the source string to the destination string for the number of characters specified
by the length -operand while the stated relationship is met. If the relationship is not met, the transfer is terminated at
that point. The relationship is determined by using the source character to index a table. If the bit indexed isa 1, the
relationship is TRUE.

The operator uses the top four words in the stack as follows. The top word addresses the table; the second word is the
length of the string to be transferred. The third word in the stack is an operand or a descriptor addressing the source
string or a single-precision operand which is the source string; and the fourth word in the stack is a descriptor pointing at
the destination string.

The table is indexed as follows to obtain the decision bit. The source character is expanded to 8-bits, if necessary, by

appending four leading 0-bits. The three high-order of these eight select a word from the table, thus indexing the table
pointer. The remaining five bits of the expanded source character select a bit from this word by their value.

5010986

B 6900 System Reference Manual
Variant Mode Operation and Operators

TRANSFER WHILE TRUE, UPDATE (TWTU) 95DB

This operator performs a Transfer While True operation, but updates the source pointer, the destination pointer, and
repeat count.

If all the characters specified by the LENGTH field are transferred, the True/False Flip-Flop (TFFF) is set to one (true);
otherwise it is set to zero (faise).

TRANSFER WHILE FALSE, DESTRUCTIVE (TWFD) 95D2
This operator performs a Transfer While operation and tests for a zero bit in the table.

TRANSFER WHILE FALSE, UPDATE (TWFU) 95DA

This operator performs a Transfer While False operation, but updates the source pointer, the destination pointer, and
the repeat count.

If all the characters specified by the LENGTH field are transferred, the True/False Flip-Flop (TFFF) is set to one (true);
otherwise it is set to zero (false).

TRANSLATE (TRNS) 95D7

This operator translates the number of characters specified as they are transferred from the source string to the
destination string.

The translation uses a table containing the translated characters. The word in the top-of-the stack is a descriptor that
addresses the translation table. The second operand in the stack specifies the length of the string. The third word in

the stack is a descriptor addressing the source string (or an operand which is the source string), and the fourth word in

the stack is a descriptor addressing the destination string. The source and destination are updated at the end of the
operation.

The translation occurs as follows. The specified string character is used as an index into the table to locate a character.
The located character is transferred to the destination string.

The least significant 32 bits of each table word provide four 8-bit characters. The table sizes are as follows:
1. 4-bit digits provide a 4-word table length.
2. 8-bit bytes provide a 64-word table lepgth.

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) 95F2

This operator scans a string while the characters in the source string are greater than a delimiter character or until the
number of characters specified have been scanned.

If all the characters have been scanned at the completion of this operation, TFFF is set to one. If the scan was stopped
by the delimiter test before the end of the string, the TFFF is set to zero.

If the delimiter against which the string is compared is equal to the character from the string, then the compare flip-flop
(CMPF) is set. If the character in the string is less than the delimiter, then CMPF flip-flop is reset.

At the start of this operator, the delimiter character is right-justified in the top word of the stack. The length of the
string to be scanned is the second word of the stack. The source pointer is the third word in the stack.

8-10

B 6900 System Reference Manual
Variant Mode Operation and Operators

If the second word in the stack is a descriptor, it is the source pointer, and the length of the character string is set
to 1,048 575 {LENGTH field is all ones).

SCAN WHILE GREATER, UPDATE (SGTU) 95FA

This operator performs a Scan While Greater operation and also updates the count and the source pointer. The updated
source pointer locates the character that stopped the scan. The number of characters not scanned is placed in the
A register, and the register is marked full.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95F1
The operator performs a Scan While operation while the characters in the source string are equal to or greater than the

delimiter character. If all the characters have been scanned at the completion of the operation, then the TFFF flip-flop
is set.

SCAN WHILE GREATER OR EQUAL, UPDATE (SENU) 95F9
This operator performs a Scan While Greater or Equal operation, but also updates the count and the source pointer.
SCAN WHILE EQUAL, DESCTRUCTIVE (SEQD) 95F4

This operator performs a Scan While operation while the characters in the source string are equal to the delimiter
character. If all characters are compared, then the TFFF flip-flop is set.

If the delimiter against which the string is compared is less than tiie character from the string, then the compare flip-flop
(CMPF) is set.

SCAN WHILE EQUAL, UPDATE (SEQU) 95FC
This operator performs a Scan While Equal operation, but aiso updates the count and the source pointer.
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE (SLED) 95F3

This operator performs a Scan While operation while the characters in the source string are equal to or less than the
delimiter character. If all characters are compared, then the TFFF flip-flop is set.

SCAN WHILE LESS OR EQUAL, UPDATE (SLEU) 95FB
This operator performs a Scan While Less or Equal operation, but also updates the count and source pointer.
SCAN WHILE LESS, DESTRUCTIVE (SLSD) 95FO

This operator performs a Scan While operation while the characters in the source string are less than the delimiter
character.

SCAN WHILE LESS, UPDATE (SLSU) 95F8
This operator performs a Scan While Less operation, but also updates the count and the source pointer.

If the character from the table (against which the string is compared) is equal to the character from the string, then the
compare flip-flop (CMPF) is set.

5010986 8-11

B 6900 System Reference Manual
Variant Mode Operation and Operators

SCAN WHILE NOT EQUAL, DESTRUCTIVE (SNED) 95F5

This operator performs a Scan While operation while the characters in the source string are not equal to the delimiter
character. If all characters are compared, then the TFFF flip-flop is set.

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 95FD
This Operator performs a Scan While not Equal operation, but also updates the count and the source pointer.
SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 95D$

This operator uses each source character as an index into a table to locate a bit in the same fashion as the transfer while
True operators. If the bit located contains the value of one, the relationship is true and the scan continues.

The first word in the stack is a descriptor addressing the table. The second and third words in the stack are the same
as for all Scan While operators.

SCAN WHILE TRUE, UPDATE (SWTU) 95DD

This operator performs a Scan While True operation, but also updates the count and the source pointer. The number of
characters not scanned is placed in the A register.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 95D4

This operator performs a Scan While False operation, except the relation is true if the bit found by indexing into the
table contains the value of zero.

SCAN WHILE FALSE, UPDATE (SWFU) 95DC

This operator performs a Scan While Faise operation, but also updates the count and the source pointer.

812

B 6900 System Reference Manual

SECTION 9

EDIT MODE OPERATION AND OPERATORS

GENERAL

The purpose of the edit mode operators is to perform editing functions on strings of data. The editing functiens are those
which are normally involved in preparing information for output. They include such operators as move, insert, and skip,
in the form of micro-operators in either the program string or in a separate table. In the program string, they are single
micro-operators, and are entered by use of the execute single micro or single pointer operators (see section 7). If the
micro-operators are in a table, the table becomes the program string to be executed. This table is entered by means

of the Table Enter Edit operators (see section 7), and is exited through the end edit micro-operator, as defined later in

this section. :

If the source or destination data has the memory protect bit (bit 48) equal to one, the segmented-array interrupt is set
and the current micro-operator is terminated.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order
by mode.

EDIT MODE OPERATORS

The edit mode operators are described in the following paragraphs of this section.
MOVE CHARACTERS (MCHR) D7
This micro-operator transfers characters from the source string to the destination string.

If this micro-operator is entered by the table enter edit operator (see Section 7), the number of characters to be trans-
ferred is specified by the syllable following the operator syllable.

If this micro-operator is entered by the execute single micro-operator (see Section 7), the number of characters to be
transferred is specified by the operand in the top-of-the stack.

MOVE NUMERIC UNCONDITIONAL (MVNU) D6

This micro-operator transfers the four low-order bits of the characters of the source string to the desgination string.
If the destination string character size is 8 bits (EBCDIC), the zone bits are set to 1111.

If this micro-operator was entered by use of the table enter edit operator (see Section 7), the number of characters to be
transferred is specified by the syllable following the micro-operator syllable.

If this micro-operator is entered by executing the execute single micro-operator (see Section 7), the number of characters
to be transferred is specified by the operand in the top-of-the stack.

MOVE WITH INSERT (MINS) DO
This micro-operator performs a move numeric unconditional or an insert operation under the control of the Float flip-flop.

In table edit mode, the second syllable is the repeat value and the third syllable is the character to be inserted under
control of the Float flip-flop.

5010986 91

B 6900 System Reference Manual
Edit Mode Operation and Operators

In execute single micro-mode, the repeat field value is the top word-of-stack and the insert character is in the syllable
following the micro-operator syllable.

If the Float flip-flop equals zero and the numeric portion of the source tharacters equals zero, the insert character is
moved to the destination string.

If the Float flip-flop is reset and the numeric portion of the source character is not equal to zero, then set the Float
flip-flop and perform a Move Numeric Unconditional operation.

The number of characters transferred from the source string to the destination string is defined by the repeat value.
MOVE WITH FLOAT (MFLT) D1

In table edit mode, the second syllable is the repeat value (the number of characters to transfer). The third, fourth, and
fifth syllables are the three insert characters. In single-micro mode, the three insert characters are in the second, third,
and fourth syllables.

If the Float flip-flop equals zero and the numeric portion of the character in the source string equals zero, the first-insert
character is transferred to the destination string.

If the Float flip-flop equals zero and the numeric portion of the character in the source string is not zero, the Float flip-
flop is set. If the External Sign flip-flop equals one, the second insert character is transferred to the destination string.
If the External Sign flip-flop equals zero, the third insert character is transferred to the destination string. The numeric
version of the source character is then transferred.

If the Float flip-flop equals one, the numeric equivalent of the source character is transferred to the destination.

This operation continues for the number of characters defined by the REPEAT field value. This operator can be entered
by the Execute Single Micro-operator, with the REPEAT field value in the top word-of-stack.

SKIP FORWARD SOURCE CHARACTERS (SFSC) D2

This micro-operator increments the source pointer registers.

If this micro-operator or any of the following skip micro-operators is entered by the execution of the Execute Single
Micro-operator, the number of characters to be skipped is specified by the operand in the top-of-stack. If entry is by
the execution of the Table Enter Edit operators, the number of characters to be skipped is specified by the syllable
following the micro-operator syllable.

SKIP REVERSE SOURCE CHARACTERS (SRSC) D3

This micro-operator decrements the source pointer registers (also see Skip Forward Source Characters micro-operator,
second paragraph).

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA

This micro-operator increments the destination pointer registers.

B 6900 System Reference Manual
Edit Mode Operation and Operators

SKIP REVERSE DESTINATION CHARACTERS (SRDC) DB
This micro-operator decrements the destination pointer registers.
RESET FLOAT (RSTF) D4

This micro-operator sets the Float flip-flop to zero.

END FLOAT (ENDF) D5

This micro-operator transfers the character in the second syllable of this operator to the destination string if the Float
flip-flop contains a zero and the External Sign flip-flop is one.

If the Float flip-flop contains a zero and the External Sign flip-flop also equals zero, then the character in the third syllable
of this operator is transferred.

If the Float flip-flop contains one, then it is reset and no characters are transferred.

INSERT UNCONDITIONAL (INSU) DC

This micro-operator places an insert character into the destination string for the number of times specified by the repeat
value. When entered by a Table Enter Edit operator, the repeat value is in the syllable following the micro-operator

syllable, and the insert character is in the next syllable.

If this micro-operator is entered by an Execute Single Micro-operator, the character to be inserted is in the second
syllable, and the repeat value is specified by the operand in the top-of-stack.

INSERT CONDITIONAL (INSC) DD

This micro-operator inserts a string consisting of one or two characters into the destination string. The length of the
string is given by the repeat value from the table or the stack.

If the Float flip-flop contains a zero, the first insert character is inserted into the destination string.
If the Float flip-flop contains a one, the second insert character is inserted into the destination string.

The insert characters follow the repeat value syllable in Table Enter Edit operation or the micro-operator syilable in
Execute Single Micro-operations.

INSERT DISPLAY SIGN (INSG) D9

This micro-operator places in the destination string the character defined by the syllable following the micro-operator
syllable, if the External Sign flip-flop is equal to one.

If the External Sign flip-flop is equal to zero, this operator places in the destination string the character defined by the
third syllable of this operator.

INSERT OVERPUNCH (INOP) D8
If the External Sign flip-flop is equal to one, this micro-operator places a sign overpunch in the destination string character

of 1101 for EBCDIC.

5010986 9.3

B 6900 System Reference Manual
Edit Mode Operation and Operators

If the External Sign flip-flop is equal to zero, the operator leaves the destination string character unaltered.

END EDIT (ENDE) DE

- This operator terminates a string of Edit micro-operators in Table Enter Edit operation mode.

The microprogram string in the table must end with the End Edit operator.

9-4

B 6800 System Reference Manual

SECTION 10
VECTOR MODE OPERATORS

GENERAL
The use of Vector Mode provides for an increase in efficiency in the manipulation of arrays. The increase in efficiency

is not an automatic feature that applies to all data processor operations. Vector Mode makes it possible for certain soft-
ware compilers, such as ALGOL or FORTRAN, to specify that Vector Mode rules apply under controlled conditions.

LIMITATIONS OF VECTOR MODE

Vector Mode operations require that the system be operated in control state. This requirement means that a processor
performing Vector Mode operations cannot be interrupted to service external interrupts.

Vector Mode operations do not permit segmentation of the arrays. This occurs because presence bit interrupts are dis-
allowed. This limitation requires that the entire extent of the array/arrays must be present in memory while performing
vector operations.

Vector Mode operation allows the use of other modes and operators in the B 6900 operator set, subject to the following
limitations: .

a. String operators and Edit Mode operators are not allowed.

b. No family C operators, except the branching operators (BRTR, BRFL, and so forth) are allowed while
operating in Vector Mode.

[¢]
.

No operator that pseudo-calls a family C operator is allowed while operating in Vector Mode.

d. The LIT 48 and branch operators are not used while performing in Single Program Word Vector Mode
(VMES) because of the size of the operator codes, in syllables.

Appendix A lists the operators in alphabetic order, and appendix B lists the operators in numeric order
by mode.

HARDWARE FUNCTIONS

The Vector Mode hardware does the following:
a. Utilizes registers to hold the actual addresses of array elements that are referenced.

b. Uses additional registers to contain the increment values used for altering the addresses (indexing) to refer-
ence successive array elements.

¢. Uses one register to contain a “count” or length that controls the number of iterations.

d. Provides for cycling through one (single-word mode) or more (multiple-word mode) words of code for each
iteration.

e. Introduces new operators for use while in Vector Mode to load and store the top-of-stack, and to control
iterating and exiting from Vector Mode.

f. Provides two primary mode operators used to enter Vector Mode.

5010986 10-1

B 6900 System Reference Manual
Vector Mode Operators

Seven IC memory locations are used as the registers previously mentioned to hold the three absolute addresses, the three
corresponding increment values, and the length.

The three addresses are referred to as A, B, and C, respectively.
These registers are loaded automatically from the stack upon execution of either of two Enter Vector Mode operators.

PRIMARY MODE ENTER VECTOR MODE OPERATORS

Two primary mode operators are used for Vector operations in the B 6800 Data Processor. These operators are as
follows:

Family Mnemonic Hexadecimal Code Operator Description
G VMOS EF Vector Mode Enter Single
G VMOM E7 Vector Mode Enter Multiple

ENTER VECTOR MODE OPERATION
An entry into Vector Mode opcrations occurs when the VMOS (EF) or VMOM (E7) operator is executed from the
processor P register. Prior to entering Vector Mode, the processor stack must be properly configured to perform

Vector operators (Figure 10-1).

The processor registers and the operating stack must have the following format:

A REGISTER | oaTa DEscripTOR (POINTERC) |
; DATA PROCESSOR
B REGISTER | LENGTH OPERAND (OPTIONAL) | TOP-OF-STACK REGISTERS
MEMORY (S REG) [oaTapescriptoR (POINTERA) |]
MEMORY (S-1) | DATA DESCRIPTOR (POINTER B) |
MEMORY (5-2) | PoINTER CINCREMENT OPERAND | 3~ MEMORY PART OF
PROCESSOR STACK,
MEMORY ($-3) [POINTER A INCREMENT OPERAND |
MEMORY (S4) | POINTER B INCREMENT OPERAND |
NOTE

If the optional LENGTH operand is not present in the stack,

all subsequent required parameters are moved one word closer

to the top-of-stack. There are no vacant spaces in the format.

MV4568

Figure 10-1. Vector Mode Stack Configuration

Before entering Vector Mode, the values to be stored in IC memory must be placed in the stack. LENGTH specifies the
number of iterations through the code to be executed while in Vector Mode, usually the number of elements in the -
arrays being manipulated. The presence of a LENGTH value in the stack is indicated by bit 44=1 in Pointer C. Should
bit 44=0, a default LENGTH of 220-! is stored in the LENGTH register. Bit 44 (segmented bit) must be OFF in
Pointer A and Pointer B. The software ascertains that bit 44 is ON in Pointer C before using it to indicatc the presence
of a LENGTH value.

102

B 6800 System Reference Manual
Vector Mode Operators

The seven parameters are inserted in IC memory as follows:

Register Vector Mode Contents of Register

BRS3 Pointer C [19:20] (or Pointer C [39:20] plus [19:20] if I* = 1)
BRS7 LENGTH [19:20] (or 2291)

BRS1 Pointer A [19:20] (or Pointer A [39:20] plus [19:20] if I* = 1)
BRS2 Pointer B [19:20] (or Pointer B [39:20] ** plus [19:20] if I* = 1)
IRS3 Pointer C increment [19:20]

IRS1 Pointer A increment [19:20]

IRS2 Pointer B increment [19:20]

*I is the indexed bit, bit 45 in the descriptor.
**Use [35:16] if the size field is not equal to zero.

The Enter Vector Mode operator can be terminated by one of the following interrupts:

Type of Interrupt Cause of the Interrupt
a. Invalid OP: Pointer A, B or C not tagged as a data descriptor or Pointer A or B has
bit 44=1.
b. Memory Protect: Pointer A is read only (bit 43=1).
c. Presence Bit: Pointer A, B or C has bit 47=0.

At the conclusion of the enter Vector Mode flow, the IC memory is configured as follows:

Register Name Contents of the Register .
SIR The value of the “A” increment
DIR The value of the “B” increment
TIR The value of the “C” increment
SBR A The base address of pointer “A”
DBR The base address of pointer “B”
TBR The base address of pointer “C”
TEMP The value of the LENGTH operand

The word in the P register at the end of the Enter Vector Mode flow contains the Vector operators to be executed. The
PSR register is equal to zero, and thus specifies that the first Vector Mode operator commences in syllable zero.

5010986 10-3

B 6900 System Reference Manual
Vector Mode Operators

If the entry to Vector Mode is the single-word mode entry VMES operator, the single word of code following that entry
is held in the P Register (program word fetching is inhibited) and executed a number of times equal to the LENGTH
parameter. Each time the word is executed, LENGTH is decremented by one until it becomes zero. Then Vector Mode
is exited and normal operation continues with the next word of code in sequence.

VECTOR STACK OPERATORS

Vector Stack operators are a group of twenty-eight operators with a common syllable format (Figure 10-2). Variations of
this syllable provide the capabilities of storing or loading the top-of-stack with a single- or double-precision operand and
choosing whether or not to increment the pointer.

P REGISTER 2
1 Ira!| A0 ADDRESS COUPLE JOPERATOR MMWMTW

L[| D I

0 JLs | A1

14-BIT VECTOR | VECTOR] VECTOR

1 JRB| 1|
Jus w0 6 32 |28 |24 J20 |16 |2 8 L 0

0 1 2 3 4 5

L | D A VECTOR OPERATOR OCCUPIES ONE THROUGH
THREE SYLLABLES OF THE P REGISTER. THE VECTOR
s | A1 BRANCH OPERATOR (VEBR, HEX CODE EE) USES THREE
SYLLABLES. THE STOR/FTCH OPERATORS USE TWO
RA | AO SYLLABLES. ALL OTHER VECTOR OPERATORS USE A
SINGLE SYLLABLE.
RB| I
4 J40

MV2732

Figure 10-2. Vector Mode Operator Format

The format of the Vector Operator syllable is as follows:

Bit

L

%

104

Description

The most significant bit in the Vector operator equals one if a LENGTH factor is passed to the vector
stack upon entering Vector Mode; otherwise, L equals zero.

Bit is OFF (0) for a Top-of-Stack Load operator and ON (1) for a Top-of-Stack Store operator.

If a memory protect interrupt is sensed and no LENGTH is passed to the Vector Mode and RA=0,
the top-of-stack word is deleted. If RA=1, the top-of-stack word is not deleted.

Same as the RA bit,except that it governs the action taken on ihe second word of the siack.

Double-precision bit. If D=0, load or store single-precision operand (Fam G). If D=1, load or store
double-precision operand (Fam H).

B 6900 System Reference Manual
Vector Mode Operators

Bit Description
Al, A0 Selects the IC Memory Address register.
Al AQ

0 o Load from Pointer A (BRS1)
0 1 Load from Pointer B (BRS2)
1 0 Load from Pointer C (BRS3)

I When I equals one, the pointer used for the memory address is increased by its corresponding pointer
increment following the Load or Store operator. When I equals zero, the pointer increment is inhibited. .

VECTOR MODE OPERATOR CODES

The twenty-seven Vector Mode operators are identified in Figure 10-3.

FAMILY 0 1 2 3 4 5 6 7 8 9 A B Cc D E F
G € | oA |ioal| toB |Losi| Loc |tocilvmex] | DLA | DLAl| DL8 | ouBi | DLC | bLei |vEBR
H F STA |STAI | STB | STBI | STC | STCI | DSA | DSAI DS8! | DSC | DSCI |NOOP NVLDJ
MV4560

Figure 10-3. Vector Mode Operators

Two other operators are used to load/store the top-of-stack from/to an address couple. They are enabled only. when a
LENGTH is passed by the Vector Mode entry. Their format is shown in Figure 10-4.

0 |LS L [l NEXTSYLLABLE]

[VECTOR OPERATOR |
- —

ADDRESS COUPLE

MV4573

Figure 10-4. Load/Store Vector Mode Operators

The address couple is formed from the low-order 6-bits of the Vector operator, and the next operator syllable, which are
concatenated to form a 14-bit address couple.

Where: LS=0 then load (FTCH operator), or when
LS=1 then store (STOR operator).

The A register is loaded from (or stored into) the memory location determined by the normal address couple decoding
convention (same as Value Call). ‘

The previously listed operator mnemonic codes for Vector Mode are consistent with the mnemonic codes used for the B 6700
System Hardware operator flow charts in the Test and Field Documentation Release Package. Certain software compilers
(ALGOL and FORTRAN) have the capability to emit program code mnemonics for Vector Mode operators in a program code

5010986 10-5

B 6900 System Reference Manual
Vector Mode Operators

stream when the LIST CODE option is used at compile time. The operator mnemonics emitted by these compilers do not
follow the code mnemonics used by the B 6900 System flow charts (see Figure 10-5).

The operator mnemonics emitted by the compilers are subject to review with each revision of the compilers, and may
change because of a change in the level of the Master Control Program (MCP) release. The following operator mnemonics
are taken from the current release level of the ALGOL and FORTRAN compilers. Subsequent revisions to the compilers
may cause these mnemonics to be in error; therefore, care must be taken in using them without recourse to specify MCP
release level documentation.

F

A

M

I

L

Y

0 1 2 3 4 5 6 7 8 9 A B C D E F

G E |L1AX]| L1AI [L1BX | L1BI jJLICX] L1CI | VXIT 1LAX| 1LAI J1LBX | 1LBI J1LCX | 1LCI |VEBR

H F | S1AX] S1Al | s1BX | S1BI | S1CX] S1CI 1SAX | 1SAl 1SBI | 1SCX | 1SCI |NOOPINVLD
MV2733

Figure 10-5. FORTRAN/ALGOL Compiler Vector Mode Operator Mnemonics
VECTOR OPERATORS

The following is a list of Vector Stack operators.
Operator Hex OP-Code Description

Load A EO The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRS1) is loaded into the top-of-stack.

Load B E2 The stack is adjusted (0,2) and the single-precision word selected by
Pointer B (BRS2) is loaded into the top-of-stack.

Load C E4 The stack is adjusted (0,2) and the single-precision word selected by
Pointer C (BRS3) is loaded into the top-of-stack.

Load A — Increment El The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRS1) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRS1) following the transfer.

Load B — Increment E3 The stack is adjusted (0,2) and the singie-precision word selected by
Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is
increased by its increment (IRS2) following the transfer.

Load C — Increment ES The stack is adjusted (0,2) and the single-precision word selected by
Pointer C (BRS3) is loaded into the top-ofstack. Pointer C is
increased by its increment {IRS3) following the transfer.

Store A FO The stack is adjusted (1,2) and the single-precision word in the top-

of-stack is stored in the location given by Pointer A (BRS1).

10-6

B 6900 System Reference Manual
Vector Mode Operators

Operator Hex OP-Code Description
Store B F2 The stack is adjusted (1,2) and the single-precision word in the top-

of-stack is stored in the location given by Pointer B (BRS2).

Store C F4 The stack is adjusted (1,2) and the single-precision word in the top-
- of-stack is stored in the location given by Pointer C (BRS3).

Store A — Increment F1 The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer A (BRS1).
Pointer A is increased by its increment (IRS1) following the transfer.

Store B — Increment F3 The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

Store C — Increment FS The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

Double Load A E8 The stack is adjusted (0,2) and the double-precision word selected
by Pointer A (BRS1) is loaded into the top-of-stack.

Double Load B EA * The stack is adjusted (0,2) and the double-precision word selected
by Pointer B (BRS2) is loaded into the top-of-stack.

Double Load C EC The stack is adjusted (0,2) and the double-precision word selected
by Peinter C {(BRS3) is loaded into the top-of-stack.

Double Load A — E9 The stack is adjusted (0,2) and the double-precision word selected

Increment by Pointer A (BRS1) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRS1) following the transfer.

Double Load B — EB The stack is adjusted (0,2) and the double-precision word selected .

Increment by Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is

increased by its increment (IRS2) following the transfer.

Double Load C — ED The stack is adjusted (0,2) and the double-precision word selected
Increment by Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is
increased by its increment (IRS3) following the transfer.

Double Store A F8 The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer A (BRS1).

Double Store B FA The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer B (BRS2).
Double Store C FC The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer C (BRS3).
Doubie Store A — F9 The stack is adjusted (1,2) and the double-precision word in the
Increment top-of-stack is stored in the location given by Pointer A (BRS1).

Pointer A is increased by its increment (IRS1) following the transfer.

5010986 ' 10-7

Operator
Double Store B —

Increment

Double Store C —
Increment

Vector Branch

Vector Mode Exit

B 6900 System Reference Manual

Hex OP-Code

FB

FD

EE

E6

Vector Mode Operators

Description

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

A three-syllable operator where the two syllables following the
operator contain a branch address. If the length count is > 0, the
LENGTH count is decremented by one, and the program continues at
the next syllable following the address. If the LENGTH is equal to
zero, Vector Mode is exited by fetching the program word specified
by the branch address.

Allows the program to exit from Vector Mode to Primary Mode.

VECTOR BRANCH AND VECTOR EXIT OPERATORS

When the entry to Vector Mode is the multiple-word type (VMOM operator), whatever code that follows it is executed
under Vector Mode rules. The two Vector Mode operators explained as follows are used only in conjunction with the

VMOM operator.

a. Vector Mode Exit operator (VMEX) causes the program to exit from Vector Mode and return to normal

mode operations.

b. Vector Branch (VEBR) is a three-syllable operator. The two syllables following the operator code contain
the branch address. The Vector Branch operator examines LENGTH. If it is greater than zero, LENGTH is
decremented by one, the next two program syllables containing the branch address are skipped, and the
program is resumed at the following syllable. If the examined LENGTH is zero, Vector Mode is exited, and
normal mode operation commences with the program word located by the branch address.

10-8

B 6900 System Reference Manual

SECTION 11
INPUT OUTPUT DEVICE OPERATIONS

MLIP GENERAL INFORMATION

Figure 11-1 shows the relationships and operating environment of the Message Level Interface Processor (MLIP) Module
in a B 6900 system. The MLIP is a semi-autonomous control device, which is used to create and control interfaces
between the software Master Control Program (MCP) and the Universal Input/Qutput (UIO) device subsystem. Semi-
autonomous means that the MLIP must be initiated into operation by the MCP, through execution of a CUIO operator
code. Once the MLIP is initialized into operation, the micro-module control logic takes command; and subsequent MLIP
operations are determined by the micro-module logic, not by the MCP.

In addition to creating and controlling UIO interfaces, the MLIP also performs other system functions that basically
involve the use of timers or time-counting circuits. Some of these timing functions are controlled by inputs to the MLIP
from the software operating system, and others are automatic functions of the MLIP logic circuits.

g
24 Z3 e~
BUS SYSTEM BUS
— e f——————————
MEMORY
———————
MESSAGE LEVEL |ug .
INTERFACE - UNIVERSAL
PROCESSOR 10
————————————
MODULE ML! INTERFACE SUBSYSTEM
TOP OF - z5
STACK Bus" .{ ENTRY VECTOR PATH
‘ . REGISTERS -
' CREGISTER |
[50:19]
MICROCODE
—1o INTERRUPT
DATA MICRO ADDRESS
PROCESSOR cPU
MICROCODE MICRO -
MODULE
Z18US
MV4192

5010986

Figure 11-1. B 6900 System MLIP Module Environment

11-1

B 6900 System Reference Manual
Input Output Device Operations

UIO SUBSYSTEM GENERAL INFORMATION

Peripheral 1/O devices in a B 6900 system (see Figures 11-2 and 11-3) are controlled by data Link Processor (DLP)
adapters. A unique DLP adapter is used for each type of peripheral device connected to a B 6900 system. A DLP
adapter contains micro-coded control programs which are unique to the type of I/O device the DLP controls.

DLP adapters are card-package modules which plug into a UIO-Base module backplane of an Input Output Data Com-
munications (IODC) cabinet (see Figure 11-4). The IODC cabinets in a B 6900 system are connected to the MLIP
module of the CPU by means of external 25-wire MLI cables. From 1 to 8 MLI cables are connected to the MLIP
module, and each MLI cable interfaces up to 8 intraconnected UIO-Base modules to the MLIP module (see Figure 11-5).

MAINTENANCE CARD

BASE CONTROL CARD (BCC) DATA LINK PROCESSOR (DLP)
PATH SELECTION MODULE (PSM)
DISTRIBUTION CARDS (DC) N \
MR
Ot -1 [oh
FOREP
I0DC BASE : : |£,RE LANE é
MODULE ™~ ol 1 lo CONNECTOR =1
ol | : RIBBON-CABLES
| | Q Q
|
INTERFACE el B ! 8 L - -
PANEL
(. COMMON /
I I FRONT-END
| CARD (CFE)
TO/FROM 1 MLI CABLE |
cPUMLIPMODULE —— ¥ ¥ — — — — = ——— I PERIPHERAL
<4 DEPENDENT
| - | CARD (PDC)
TO/FROM P—— —— MLICABLE |
MAINT PROC il 3
TO/FROM RIBBON CABLE
PERIPHERAL
DEVICE

TO/FROM] RIBBON CABLE-MAINT
MAINT
PROCESSOR -

TERM OR TO/

NEXT MAINT
BUS CABLE

MV4560

Figure 11-2. 10DC Base Module With One DLP

....

T
T

N

986010S

MAINTENANCE CARD

DLP MODULE

JODC BASE MODULE |\'

PERIPHERAL DEPENDENT BOARD

. COMMON FRONT END CARD

m FOREPLANE JUMPERS
N>
|
RIBBON CABLE
S~
/ -y
DISTRIBUTION CARD //‘\/

MLI CABLE —~ > /
/)/ ¥ TO PERIPHERAL UNIT
=7

MLI INTERFACE
TO/FROM MLIP

~

O

\

OPTIONAL JUMPER

AN

INTERFACE PANEL /

INTERCONNECT CARD
MV4561

Figure 11-3. B 6900 IODC Base Module Organization

&I

suoneradQ so1asq ndinQ 1ndyg
[BNUBJY 90UAIJY WSAS 0069 9

114

INDEPENDENT POWER
(OPTIONAL) CONTROL PANEL\

INTERFACE PANEL =

B 6900 System Reference Manual
Input Output Device Operations

-

INDEPENDENT POWER
(OPTIONAL} CONTROL PANEL ~.

INTERFACE PANEL ~ |

=
Vi

S
\

MVA4562

==

ST
=

5V POWER SUPPLY

L4

SMALL 10DC BASE
7' MODULES (24 CARDS)

| CABLETROUGH
i

I___————= SMALL IODC BASE

MODULES

20 KHz 5 KW
POWER INPUT
MODULE

12V POWER SUPPLY

5V POWER SUPPLY

LARGE 10DC BASE
| _— mobuLE (38 caRoDs)

/CABLE TROUGH

T LARGE 10DC BASE

MODULE

CABLE TROUGH

BLOWERS

I\NKHZSKW

POWER INPUT
MODULE

12V POWER SUPPLY

Figure 11-4. B 6900 10DC Base Module Cabinets

9860105

TO/FROM P BASE MLI CABLE
MLIP ““ﬂllH"_—_——_—_—
3
INTRA ra BASE MLI CABLE
panel) H- — — —Sasemucane
ML} Ty 3
JUMPER I
!]
BASE MLI CABLE
B
][BASE MLI CABLE
-——————_—

TO/FROM
MAINT —[——{I
PROC

w . l—r-u

- 2

d z

I

5| =

]

5 5lm

-]

2l i3

O = <

1o Z (3]

MAINT - _ﬂ
TERMINATOR
MV4563

SI1

INTERFACE

s~ PANEL

LINE EXPANSION MODULE \

/ LEM EXCHANGE

—

|] BASE MLI CABLE

1
-

——
—C r(. gxsgguaunou ~
- o{-to1--o! o 2
]) 17 l -
[--tot--tol E
| || | :
_, I oy 104- - | o
I l_ — +O ? . IO-'—-' : I
I I |
| ——H—
L___J{ | |
-+ — —— Jd
_______ .
RIBBON CABLE
o DISTRIBUTION 3
/CARD ?_
o b
=
(o)

RIBBON CABLE

— — — —— — — — — — — a—r ———

e e e e e e —-I

Figure 11-5. Multiple IODC Cable Connections

suoneiadQ 9o1a3q nding nduj
[enuejy soudiajey waIshs 0069 9

B 6900 System Reference Manual
Input Output Device Operations

A separate MLI cable connects the B 6900 Maintenance Processor module to a UIO-Base module. A different external
cable interfaces the B 6900 Maintenance Processor to the maintenance logic circuits in the various B 6900 system 10DC
cabinets.

The 25-line MLI cable contains 17 lines used to transfer a word of data (16-bits of data plus an odd-parity bit) between
the MLIP and the UIO subsystem. This cabie also contains 4 lines used to send DLP sequence counts and result status
to the MLIP module. One line of the MLI interface is a system strobe-signal line used by the MLIP to initiate actions
in the UIO subsystem logic. Another line is a strobe signal line used by the UIO subsystem to initiate actions in the
MLIP logic. The remaining 2 lines are used for various synchronizing logic levels and signals, during an MLI line
communication process.

B 6900 1/0 DEVICE OPERATION PROCESSES

1/0 peripheral device operations begin when the CPU MLIP module uses one of its MLI Port interface cables to com-
municate with the UIO subsystem. This interface communication must follow an established MLI interface protocol.
The protocol requires that at least 6 MLI data words of UIO control information, in fixed wérd formats, be passed
from the MLIP module to the UIO-Base and DLP logic. The entire process of meeting the requirements of the MLI
protocol is commonly referred to as a connection sequence.

The 6 required data-words transferred during a connection sequence are:
1. An MLI Address word that identifies the Base module and DLP addressed.

2. An [/O Descriptor that identifies not only the particular function the I/O peripheral device is to execute,
but also the specifications for optional characteristics of the I/O device that apply during the execution.

3. A Longitudinal Parity Word used to verify that the 1/O Descriptor word/words are valid MLI connection
sequence words.

4. Two Descriptor-Link words that identify the MLI (Host system) making the connection, and contain the
memory address of the IOCB that initiated the connection sequence.

5. A Longitudinal Parity Word used to verify that the preceding 3-words are valid connection sequence words.

An MLIP module I/O device initiation process begins when the Data Processor module executes a CUIO operator code,
and transfers the starting memory address of an IOCB to the MLIP logic. The MLIP subsequently accesses words of
the IOCB, and writes fields from the various IOCB words into the MLIP RAM memory. The MLIP then causes a

connection sequence to be performed.

MLIP-To-10DC Connection Sequence Address Word

The first information required by the MLIP to perform a connection sequence is the particular MLI interface port
through which the connection sequence is to take place. This information is present in word-4 [19:4] of the MLIP

RAM memory, and was originally obtained from word-1 [19:4] of the IOCB. Bits [15:16] of MLIP RAM word-4
(also from IOCB word-1) contain the data required for the first MLI protocol connection sequence.

11-6

B 6900 System Reference Manual
Input Output Device Operations

The data required for an MLI connection are:
1. Base Control Card bit (MLIP RAM word-4, bit-15).
2. Line Expansion Module bit (MLIP RAM word-4, bit-14).
3. Base Module IO bits (MLIP RAM word-4, bits [7:4]).
4. DLP IO (MLIP RAM word-4, bits [3:4]).
The MLIP micro-logic (MAKE.CON sequence) utilizes data from MLIP RAM word-4 to implement a connection between

the MLIP and a particular DLP module, over the proper MLI Port and interface cable. The MLIP logic formats and
transmits the DLP address to the IODC logic, as shown in Figure 11-6.

A A A A B B
P 8 4 2 1 8 4

N
=]
(]
(o]

N O
(w)

&0

N O
o

P |BCC|LEM| U U U U U U B 8 B B | DLP | DLP | DLP | DLP

Where:
P = 0Odd-Parity bit for other word-bits.
BCC = Base Control Card ID bit.
LEM = Line Expansion Module 1D bit.
U = Unused bit-positions in the word. .
B = 10DC Ul0-Base module ID code.
DLP = DLP ID code.
.. NOTE
The 8 control-signal lines of the MLI
interface cable are not shown.
MV4564

Figure 11-6. B 6900 Connection Sequence Address Word Layout
MLIP-To-IODC Connection Sequence 1/O Descriptor

The MLIP micro-logic (INIT.IOCB sequence) formats I/O Descriptors from a list of I/O Descriptor data present in system
memory. The MLIP accesses the I/O Descriptor list in system memory by means of an address which is contained in the
I/O Command Pointer (word 4 of the IOCB), The MLIP logic formats the 1/O Descriptor found in system memory into
i6-bit data words, and transmits them to the DLP device over the MLI interface. 1fO Descriptors may consist of several
consecutive 16-bit words on the MLI interface bus.

LPW Word For I/O Descriptor
A Longitudinal Parity Word is formatted and transmitted from the MLIP to the IODC and DLP device. This word

represents a block-check of the data transmitted in the I/O Descriptor. The format of an LPW word is defined later
in this section.

5010986 11-7

B 6900 System Reference Manual
Input Output Device Operations

MLIP-To-IODC Connection Sequence Descriptor Link Words

The MLIP micro-logic (INIT.IOCB sequence) utilizes data from the MLIP RAM memory, word-7 and word-A, to create
2 Descriptor Link words. The 2 words are transmitted to the IODC logic during the MLI interface connection process,
and are used subsequently by the IODC to reconnect to the MLIP during other sequences of the I0 device operation
process.

The format of the 2 Descriptor Link data words on the MLI interface are shown in Figure 11-7.

Descriptor Link Word-1 Layout

A A A A B B B B Cc Cc o Cc D D D D
P 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
P H H H H H H H H l I 1 l l 1 I 1

Descriptor Link Word-2 Layout

A A A A B B 8 8 Cc (o Cc C D D D D
P 8 4 2 1 8 4 2 4 2 2

Where:
P = Word Parity-bit

H = Host Return Field {the B 6900 Processor ID value,
from word-A of the MLIP RAM memory). This
field identifies which of 6 possible Distribution
Cards (DC) in the 10DC the MLI connection came.
This field defines which DC {MLI cable) of the
10DC to use to reconnect (POLL REQUEST func-
tion) to the same host system.

I = I0CB memory address field (from word-7 of the
MLI RAM memory). This field is used to refresh
the contents of the MLIP RAM memory during
subsequent connections between the 1I0DC DLP

MVA5SES control device, and the MLIP module.

Figure 11-7. B 6900 Connection Sequence Descriptor Link Word Layouts

MLIP-To-IODC Connection Sequence LPW Word

The MLIP micro-logic generates and formats a Longitudinal Parity Word (LPW) for all serial data transmitted over an
MLI interface. The LPW word is automatically transmitted to the IODC after the last serial dataword has been)
transmitted.

An LPW-word represents the combined longitudinal parity (Block-check value) for the datawords transmitted over the
MLI interface during the present connection sequence. An LPW accounts over the MLI cable for only longitudinal
parity of words transmitted in a single transmission burst, in a single direction. If line-turnarounds are performed during
a connection sequence, an LPW-word is generated and transmitted each time a new burst of date is transmitted in either
direction over the MLI interface cable.

11-8

B 6900 System Reference Manual
Input Output Device Operations

The I0DC logic contains circuits that generate and format an LPW-word as serial data-words are received over the MLI
interface cable. When the LPW-word from the MLIP is received by the IODC logic, it is compared to the LPW-word
generated by the 10DC logic from preceding MLI serial datawords. If the 2 LPW-words do not compare equal an MLI
interface data parity-error is detected by the IODC logic.

Both the MLIP logic and the IODC logic generate and transmit LPW-words as part of their normal data transmission
operations over an MLI interface. Both also generate an LPW-word for serial data received, and compare that LPW-word
against the LPW-word received over the MLI interface cable. Thus, either the MLIP or the IODC can detect an MLI
interface data parity-error condition.

IODC-To-MLIP Connection Sequence

After a POLL TEST connection sequence has been completed by the MLIP module, the MLI connection protocol
provides for a disconnect to occur. A disconnect is necessary because the DLP device to which the MLIP is connected
needs to execute one or more of its internal micro-code procedures at this point.

Whatever the cause of an MLI disconnect, once a connection has been completed the DLP can initiate the next connec-
tion sequence, because the IODC logic now contains Descriptor Link data. The Descriptor Link data identifies the proper
DC (MLI cable) to be used for the second or subsequent connection sequence.

IODC-To-MLIP Connection Sequence Global Priority Word
During a POLL REQUEST operation connection sequence, the requesting DLP device must return a Global Priority word

of data to the MLIP logic. This word is required because an IODC can contain 1-to-8 DLP devices, and the MLIP must
know which DLP is initiating the connection sequence. The Global Priority word has the format shown in Figure 11-8.

A A A A 8 B B
p 8 4 2 1 8 4 2 1

o& 0O
N O
@ Q

]
4

®
N Q
Q

P U ulwu U U B 8 B B |pLP| DLP| DLP| DLP| GP | GP | GP

Where:
= Word Parity Bit

= Unused, a field filled with zeroes

= 10ODC Base module identity code

= DLP identity code (relative location of the DLP
device within the IODC Base module

The Global Priority of the DLP that initiated
the POLL REQUEST operation

v C o
|

DL

GP

MV4566

Figure 11-8. B 6900 IODC POLL REQUEST Global Priority Word Layout

5010986 119

B 6900 System Reference Manual
Input Output Device Operations

IODC-To-MLIP POLL REQUEST Priority Resolution In The 10DC

The Global Priority field contains the Global Priority of the DLP that initiated the POLL REQUEST. It is possible
that more than one DLP device in an IODC Base module will require a POLL REQUEST operation at the same time.
If such a condition occurs, the IODC module logic will resolve POLL REQUEST sequence conflicts between its DLP

REQUEST operation first, and other DLPs must wait until they have the highest Global Priority in their Base before
they can initiate a POLL REQUEST operation.

I0DC-To-MLIP POLL REQUEST Global Priority Resolution In The MLIP

The MLIP Priority Sequencer Logic samples the Global Priority values from POLL REQUESTs, over all 8 possible MLI
interface ports, and in port number order. If two or more MLI interface ports contain simultaneious POLL REQUESTs,
the Priority Sequencer logic selects the MLI port that has the highest Global Priority to initiate the next POLL
REQUEST. If two or more MLI port POLL REQUESTsS share the highest Global Priority request present, then the
Priority Sequencer logic selects the MLI with the highest port number as the one for which the next POLL REQUEST
operation is performed. Other MLI ports that are trying to initiate a POLL REQUEST operation must wait until they
have the highest current priority before they are granted a POLL REQUEST sequence.

IOCB ORGANIZATION AND WORD LAYOUTS
The 1/O device specifications placed in memory by the MCP are in a fixed-word format called an Input/Output Control
Block (IOCB). An IOCB occupies 15 consecutive memory addresses to which other word addresses may be appended

for software control purposes. Figure 11-9 shows the layout and identification of the first 15 words in an IOCB.

The first 15 words of an IOCB are defined in the following subsections. The order of definition in an IOCB is the same
as the order of the words in system memory.

11-10

B 6900 System Reference Manual
Input Output Device Operations

Word
Number Mnemonic Word Contents
0 [CW] | Control Word
0 [LCPAW | | DLP Address Word
2 [CQHP =] | Command Queue Header Pointer
3 [SELFP] | IOCB Self Pointer
4 [LCPCP] | DLP /10 Command Pointer
5 [LCPRP] | DLP /O Result Pointer
6 [LCPCRL] | DLP Command/Result Lengths
7 [RM] | Result Mask
8 [RQHP] | Result Queue Head Pointer
9 [NL] | Next IOCB Link
A [CDP] | MLIP Current Data Area Pointer
B [CL] | MLIP Current /O Length
C [HRSLT] | MLIP State and Result
(D [STIME } | YO Start Time
E [FTIME | | i/O Finish Time
F | F
l | 10
! 11
12 10CW (67/68 IOCW)
113
14
15
16
17
MV4193
Figure 11-9. IOCB Word Format and Layout

5010986

11-11

I0CB Control Word

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-10 shows an IOCB (word ZERO) Control Word. The IOCB Control Word (CW) is a formatted operand
containing the 16-bit “IOCB” mark in bits [47:16], and the 20-bit MLIP control-field in bits [19:20]. The control-
field defines the type of operation the MLIP is to perform.

(0°S REQD)

4" 10CB™ MLIP CONTROL FIELD -2

MARK

41

MV4194

NOTE
THE 4”10CB” MARK IS DEFINED AS FOLLOWS:
‘79 o | 1 1
o | o0 |1 0
0 oo 1
1 o | o 13
VALUE=| | o|c B |(HEXADECIMAL)

Figure 11-10. IOCB Control Word Layout

MLIP CONTROL-FIELD BIT DEFINITIONS

The meaning of each bit in the MLIP control-field is described below:

Bit 0=

Bit 1=

Bit 2=

11-12

Queue-at-Head. If this bit is SET during the execution of a CUIO operator, the IOCB (or the
chain of IOCB’s) will be inserted at the front of the Command Queue. The IOCB is inserted
at the end of the Command Queue if bit 0 is RESET.

MLIP/DLP-Command. If this bit is SET, the IOCB contains a command to be interpreted and
executed by the logic of the MLIP (not by a UIO-DLP). If this bit is RESET, the MLIP
directs the command to a UIO-DLP and utilizes information from other words in the IOCB to
determine which UIO-DLP is to be addressed, and what kind of operation it has to perform.

Attention. If this bit is SET, the MLIP will construct an MLIP Result Word which has both
the Attention-bit and the Exception-bit SET at the conclusion of the I/O operation.

B 6900 System Reference Manual
Input Output Device Operations

Cause 1/O Finish Interrupt. If this bit is SET, the MLIP unconditionally causes an /O finish

CPU interrupt (External Interrupt-I/O Finish) at the completion of the I/O operation. If this
bit is RESET, the MLIP only causes the I/O Finish interrupt to occur when an I/O error-
condition such as a I/O data-parity error is detected.

w

&

w
]

Bit 4 = Memory Override/Memory Protect. If this bit is SET, the MLIP ignores the tag of memory
words during memory operations (Override). If this bit is RESET, the MLIP terminates
data transfer to memory if it READS (or attempts to WRITE into) a memory address that
has an odd-numbered TAG-FIELD value (Memory Protect).

Bit 5= Input. If this bit is RESET and DLP goes to Read-Status (STC=4) the MLIP flags a DLP
Status-Error and disallows I/O input-data transfers. This bit must be SET for all input
operations (data transfers from the peripheral device to system memory). See definition of
[6:2], below.

Bit 6 = Output. If this bit is RESET and DLP goes to Write-Status (STC=8) and this bit is RESET,
the MLI flags a DLP Status-Error. See definition of [6:2], below.

If bits 5 and 6 are both SET, an Echo Command is performed by the DLP. If bits 5 and 6
are both RESET, any attempt to transfer data as input or output will cause a DLP Status-
Error to be flagged and no data will be transferred.

Bit 7= Output Zeros. If this bit is SET and the Outéut-bit also is SET, the MLIP sends to the DLP
bytes of binary zeroes for the specified record-length. This type of data transfer has one valid ,
function to perform a magnetic-tape erase.

.--.
[
(=)
w

e

1]
w3
£

o2
(@]
Q
]
.
Yoy
(o]
e

-3
5
b
<
0,
o
«Q
=
N
ol
2
w
o
@,
o
.
@
t]
3
®
w
=
Qe
&
-
£

)
w
™

2
@
o g

operations.

[10:3] = 001: Transfer Single Byte Tag. Tags are treated as one additional byte of data. During output the
3-bits of TAG are placed in the 3 least significant bit positions of the additional byte, and the
most significant bit is RESET. During input the 3 least significant bits of the additional byte
are transferred to the TAG-FIELD of the memory word, and the other bits of the additional

byte are ignored.

[10:3] = 010: Transfer Double Byte Tag. Tags are treated as two additional bytes of data. During output
thé 3-bits of the word TAG are placed in the 3 least significant bits of the most significant
byte, and the remaining 13 bits of the byte are RESET to ZERO. During input, the 3 least
significant bits of the most significant byte are placed in the TAG-FIELD of the memory
word, and the other 13 bits of the byte are ignored.

[10:3] = 100: Force Tags to Single (0). Memory word TAG-FIELDS are not treated as part of data, and
are not transferred. During input, the TAG-FIELD of each memory word is unconditionally
RESET. During output, memory TAG-FIELD:s are skipped.

[10:3] = 110: Force Tags to Double (2). This value is valid only during input. It performs the same as
Force Tags to Single (above) except the TAG of each word is SET to double (2). *skip 1
[10:3] = 111:

Force Tag to Code (3). This value is valid only during input. It performs the same as
Force Tags to Single (above) except the TAG of each word is SET to Code (3).

5010986 11-13

B 6900 System Reference Manual
Input Output Device Operations

Bit 11: Word/Character Oriented Transfer. If this bit is SET, the amount of data to be transferred
is counted in words, which must be accessed by means of a word Data-Descriptor. If this bit
is RESET, the data to be transferred is counted in characters, which must be accessed by
means of a string Data-Descriptor.

Bit 12: Memory Direction. If this bit is SET, the MLIP transfers data into memory in a reverse
direction. If this bit is RESET, data is transferred into memory in a forward direction. If
this bit and the Output-bit are both SET, an Invalid MLIP Control Field error is returned and
no data is transferred.

Bit 13: Continue Count at End of Length. When this bit is SET and the Input-bit also is SET, the
MLIP does not terminate the transfer of data between the DLP and MLIP when the LENGTH
count reaches ZERO. Instead, the DLP continues transferring data to the MLIP; but the
MLIP does not store the additional data in memory. The I/O length continues to be counted
and the value used to determine the actual record length. If this bit and the Output-bit are
both SET, an Invalid MLIP Control Field error is returned and no data is transferred.

Bit 14: Ignore Count Error. If this bit is SET, the MLIP will SET the Count-Error bit when the
LENGTH Count at the end of the I/O operation is equal to zero. If this bit is RESET the
MLIP will not SET the Count-Error bit because of LENGTH being equal to zero at the end
of the I/O operation.

Bit 15: Dont Count. If this bit is SET when this IOCB is initiated/completed, the MLIP logic will
not increment or decremeént the ACTIVE-count field in the Command Queue CW word.
This bit is used during CANCEL type i/0 command operations. The purpose of an I/O
CNACEL operation is to terminate a currently executing I/O operation. An I/O operation
that is CANCELed decrements the ACTIVE-count field in its Command Queue CW word,
when its IOCB completes.

Bit 16: Ignore Suspend All Queues. If this bit is SET, the MLIP will not suspend the Command Queue
IOCBs when adding an IOCB to the Result Queue, regardless of the setting of the Suspend-
All-Queues flag.

17: Immediate. If this bit is SET and the MLIP is pointing at the first IOCB in a queue, the
MLIP attempts to initiate the IOCB regardless of the ACTIVE-COUNT and LIMIT field
values in the Command Queue CW word. Initiating an IOCB which has its Immediate-bit
SET does not increment the ACTIVE-COUNT value of the Command Queue CW word. If
the UIO-DLP is BUSY, then the MLIP attempts to add this IOCB to a Horizontal Queue.

[19:2] : This field is not used and must contain ZEROES.
VALID CONTROL-FIELD BIT CONFIGURATIONS

Figure 11-11 identifies valid Control-Field bit configurations in an IOCB (CW) word. A valid CW Control-Field bit
configuration is used to cause a particular type of /O Command to be initiated by a UIQ-DLP. The CW control-field
is also used to cause the MLIP to perform a function that is internal to the MLIP, and does not involve the use of an
MLI interface or a UIO-DLP device. A UIO-DLP (Data Link Processor) is the final control for a B 6900 system

n; v T -A
"E"Phe'a' I"""f/n"f“"f device, Control-Field bit CCHFg‘JTﬂﬂCﬂa \.unslnntv in an IOCB in systcm memory and are

passed through the MLIP module and an MLI interface cable to a UIO-DLP that is located in a B 6900 system IODC
module cabinet.

11-14

B 6900 System Reference Manual
Input Qutput Device Operations

BITNO. 17 16 15 14 13 12 11 10 9 2 1 0
/ J] / /]
&
3 &
g &/ o
S Q
5 5/ 3 & ~ % 5
a ~/ </ 9 2 o Qo w
w /@ P) [¢] > < '3 $ T
s 3 S/8/yv/S5/¢& £ N L
I /uel 8/ w S/ o 3 A S/ <
S/g4/ S/ /8] 6/ 9 8 2 9/
o o T & & /g
S /3w < > < [/ @ 0. O <)
§/55/8/8/8/ 5/ = & 3 /5
muwpor | X | x | x ool o | x| 1 o o] o 1 X
TEST x| x| x|lof|lofo | x]1 o ol o]o}lo]lo|x|x|ol] x
INPUT x| x o | x| x|o 1 o o 1 o] o 1 1 x| x{o X
x| x]o | x| x.]o 1) 1 o| o] o 1 1 x| x| o] x
x| xlo | x| x| x| x |1 o o| o] o 1 x | x| x{o] x
x| xlo ! x| x| x|x /| 1 o| ol o 1 x | x| x|o X
x| x o x| x| x|x|n1 11 ol o 1 x | x| x 1o X
X
outPUT [x | X {0 | x| o | o 1 o o 1 0 1 0 1 X | x | o | x
X | x (0o | x]olo 1 0 1 o| o 1 0 1 x | x |o X
x | xlol!x!olo | x]1 o o} o 1 ol xIxIx1lo X
x | xlolxl|lolo X |1 0o o 1 1 0 X | x 1 x|o X
X
ECHO x| xlolxlolo X |1 o ol o 1 1 X | x| x {o | x
NOTE
1 = THE BiT MUST BE SET TO A BINARY 1.
0 = THE BIT MUST BE RESET TO A BINARY 0.
X = THE BIT MAY BE EITHER SET OR RESET.
MV4195

Figure 11-11. Valid Commands in CW Control-Field

The MLIP OP operation specified in Figure 11-11 identifies a function of the MLIP logic that does not use an MLI
interface or address a UIO-DLP. The MLIP OP functions performed by an MLIP are specified in detail within the
paragraphs entitled MLIP Commands. The difference between an MLIP OP function and a UIO-DLP function. is the
code contained in the Command specification, which is pointed at by DLPCP (word 4) of the IOCB. Bit-1 of the CW
Control-Field is the key value used to select an MLIP operation or a UIQ-DLP operation.

5010986 11-15

B 6900 System Reference Manual
Input Output Device Operations

IOCB DLP Address Word
Figure 11-12 shows an IOCB (word one) DLP Address word. The DLP Address word (DLPAW) is a formatted operand

which contains the address environment of a UIQ-DLP. The MLIP utilizes the DLP address data to connect to the DLP
specified over an MLI interface.

(0'S REQUIRED) (DLP ADDRESS)

0 0 0 0 0 0 0 IPORT BCC| 0 |LEMP|DLP
) 43 39 35 3 1l 23 o o 11] 3

0 0 0 0 0 0 0 (1] |PORT LEM 0 |[LEMP] DLP
% 2 38 34 30 2 2 1 14 1qr 6 2
0 0 0 0 0 0 0 0 |PORT|] O 0 |[LEMP] DLP
4 4 37 33 2 25 21 1 13 9 5 1
1] 0 0 0 0 0 0 0 [PORT] O 0 |LEMP| DLP
a“ 40 36 32 2 24 20 1 12 gl 4 .0

MV4196

Figure 11-12. I0CB DLP Address Word Layout

DLP ADDRESS WORD FIELD AND BIT DEFINITIONS

The definition of the fields in an IOCB DLP Address are as follows:

Field Bits Meaning or Usage

Port . [19:4] Selects the MLI port (0-7, HEX) to be used by the MLIP for this command.

BCC [15:1] If SET, the command is directed to the Base Control Card (BCC) of the IODC.

LEM [14:1] If SET, the command is directed to the Line Expansion Module (LEM) of the IODC
selected by LEMP [07:4].

LEMP [07:4] Selects the IODC module (0-7 HEX), if LEM, [14:1], is SET

DLP [03:4] If BCC and LEM are RESET, this field selects the DLP location (0-7,HEX) in the IODC

module addressed by [19:4].

11-16

B 6900 System Reference Manual
Input Output Device Operations

Command Queue Header Pointer Word

Figure 1i-13 shows an IOCB {word 2) Command Queue Header Pointer. A Command Queue Header Pointer (CQHP) is
an unsegmented, unindexed word Data Descriptor that points at the Command Queue Header. The MCP initializes this
word, and its values are not changed during the operation of the 1/O device.

T !
1 0 I !
as a3 E 3 27 23 9] 1 nE o)
|
1 X | o |
%, 423 ¥ (LENGTH) 2 —-—"%— (ADDRESS) —°
0 o 0 IN WORDS COMMAND QUEUE HEADER
45 41 3/ 33 Bl R] 21 1/ 13} 9] 5 1
1 0 0
44 40 36 321 28 24 20 16 12 gl 4 0
X=10r0

Mv4197

Figure 11-13. 10CB Command Queue Header Pointer Word Layout

I0CB Self Pointer Word

Figure 11-14 shows an IOCB (word 3) IOCB Self Pointer word layout. A Self Pointer (SELFP) is a present, unsegmented,
unindexed word Data Descriptor. The Self Pointer points at the first word (word zero) of the IOCB in which the Self
Pointer is located. Self Pointers are used to link the IOCB (of which they are part) into a Command Queue or intc a
Result Queue in system memory. The use of Seif Pointers aliows an IOCB to remain in a fixed memory address, and to
be associated with other IOCBs by means of a series of Next Link Pointers to all IOCBs that are linked together. Linking
an IOCB into a queue involves copying the Self Pointer into the Next IOCB Link (word 9) of the previous IOCB in the
queue. The value fields of a Self Pointer are never changed, because the address of the IOCB in memory remains con-

stant throughout an 1/O operation.

T T

1| ¢

47 43 39 35 3 27 23 19 15 11 7 3
1] x| o0

46 42 38 (LENGTH) 26 22 18 (ADDRESS) 6 2
ol o o IN WORDS OF 10CB [CW]

45 41 37 33 22 28 21 17 i3 S 5 !
1o o

44 40 36 321 28 24 20 16 12 8 4 0

NOTE

If operand:0=NULL Link
1=I0CB Initiated
X=10R0
Mva198 _
Figure 11-14. IOCB Self Pointer Word Layout

5010986 ' - 11-17

B 6900 System Reference Manual
Input Output Device Operations

IOCB DLP Command Pointer Word

Figure 11-15 shows an IOCB (word 4) DLP Command Pointer word. A DLP Command Pointer (DLPCP) is an unseg-
mented word Data Descriptor that is present. The Descriptor points at the actual DLP Command Descriptor address in
system memory. The values of the DLP Command Pointer are established by the MCP before the I/O operation is
initiated, and they remain unchanged during the entire I/O operation sequence. Refer to the description of the IOCB
Control Word (IOCB word ZERO) defined in the previous paragraph.

NOTE

The layout of I/O Command Descriptors for various
types of DLP devices are given in the B 6900 Pocket

Reference, Form No. 5011497.
21 19 15 111 . 7 JI

22 ADDRESS OF _2|
DLP COMMAND WORDS
7 17 13 9 5 1

44 40 36 32 28 4 20 16 12] 4 ﬂh

X=1o0r0

MV4199

Figure 11-15. I0CB DLP Command Pointer Word Layout

I0CB DLP Result Pointer Word

Figure 11-16 shows an IOCB (word 5) DLP Result Pointer word. The DLP Result Pointer (DLPRP) word is an unseg-
mented word Data Descriptor which is present and which points to the address in memory where the MLIP is to store
the DLP Result Descriptor at the conclusion of the I/O device operation. This pointer is initiated by the MCP before
the start of the I/O device operation, and remains unchanged during the operation sequence.

NOTE

The layout of I/O Resuit Descriptors for various
types of DLP devices are given in the B 6900 Pocket
Reference, Form Number 5011497.

11-18

B 6900 System Reference Manual
Input Output Device Operations

31

31

27 2

]

"

Bl

H! 7

LENGTH

ol x|o]

45 41 37 33§ 29|

IN WORDS

26

25 2

l7|

13

ADDRESS WHERE
DLP RESULT DESCRIPTOR 2
WILL BE STORED

of o]

X=10r0

MV4200

Figure 11-16. I0CB DLP Result Pointer Word Layout

I0CB DLP Command/Result Length Word

Figure 11-17 shows an I0CB (word 6) DLP Command/Result Length word. The DLP Command/Result Length word
(DLPCRL) is a formatted operand that contains the length of the DLP Command and I/O result status, in 16-bit bytes.
Both length values in the DLP Command/Result Length word must be an even number of 16-bit byte increments. The
values of this word are used to determine the maximum number of bytes to be transferred between the MLIP and the
IODC module, over the MLI interface. If the maximum number of bytes for transfer is exceeded, an Unexpected DLP

Status error is reported to the Interrupt Controller. This word is initialized by the MCP before the I/O operation is
started, and remains unchanged during the execution of the I/O operation.

0 0 0 0

w——

27 23

-

47 43 39 35 31

| a2 3 3§ COMMAND LENGTH:8 RESULT LENGTH
olol ol oo (IN BYTES) (iN BYTES)
45 a1 37 33 29 25 il 17 13) 5
oJo|o!lo]o
44 40 36 32 28 4 0 1 12
MV420i

Figure 11-17. 10CB DLP Command/Result Length Word Layout

5010986

11-19

B 6900 System Reference Manual
Input Output Device Operations

IOCB Result Mask Word

Figure 11-18 shows an IOCB (word 7) Result Mask word. The Result Mask word (RM) is a formatted operand that is
used to limit the conditions of I/O device operation that can cause an exception or error to be sensed by the Interrupt
Controller Logic. Bits [47:48] of the Mask word are ANDed with corresponding bits from the MLIP State And Result
word (IOCB word C). An interrupt is sensed if corresponding bits in the Mask and the MLIP State And Result word are
both SET. An interrupt is not sensed if either or both corresponding bits are RESET. When the MCP generates the
contents of the IOCB, it determines which bits are SET in the Result Mask word and which of the exceptions present in
the MLIP Result And Status word can cause an interrupt to be sensed.

[—W R
a7 43 39 35 31 27 23 19 15 1 7 3
0
46 42 38 34 RESULT MASK 18 14 10 6 2
0
45 41 37 33 29 25 21 17 13] 5 1
0
‘ 44 40 36 32 8 24 20 16 12 g 4 0
MvV4202

Figure 11-18. 10CB Result Mask Word Layout

10CB Resuit Queue Head Pointer Word

Figure 11-19 shows the IOCB (word 8) Result Queue Head Pointer. The Result Queue Head Pointer (RQHP) is an
unsegmented, indexed word data descriptor which is present and which points at a Result Queue Head word in

the Result Queue array of system memory. When an I/O operation sequence is completed, the IOCB for that /O opera-
tion is de-linked from the Command Queue and linked into a Result Queue. The IOCB is always linked at the tail of the
Result Queue. The Result Queue Head Pointer points at the head of the Result Queue, and from this reference address
the IOCB is linked into the Result Queue at the tail of the queue.

g

1 0 0
A7 43 39 35 31 27 231 19 15 1 7 3

1 X| 0 0
18 sy 8 LENGTH —% 22 %t ADDRESS OF -2 2
0 0 0 0 IN WORDS RESULT QUEUE HEAD WORD
a5 41 37 33] ps) P 2i i7 i3 5 5 !

1 0 oo
44 40 36 32 28 4 20 16 12 8 4 %

X=10r0
MV4203

Figure 11-19. IOCB Result Queue Head Pointer Word Layout

11-20

B 6900 System Reference Manual
Input Output Device Operations

10CB Next IOCB Link Word

Figare 11-20 shows the Next iOCB Link Word {word §). The Next Link word (NL) is a present, unsegmented, unindexed
word Data Descriptor that points at the first word of the next IOCB in squence (following the IOCB of which this Next
Link word is a part) in the queue. The MCP initializes the Next Link word before the I/O operation sequence is started.

The MLIP changes the value of a Next IOCB Link word during various parts of the I/O device sequences. When a con-
nection is made over the MLI, to initialize the operation of the UIO-DLP, the MLIP replaces the Next Link word with -
an integer operand of one (1). This operand is used to show that the I/O operation is in process.

If an IOCB is the last IOCB in the queue of IOCBs, the MLIP replaces the Next IOCB Link word with an integer operand
value of zero (0). There is no next IOCB to be linked in, thus the zero operand shows that this is the last IOCB in the
queue. If a subsequent IOCB is linked into the queue at the tail, it becomes the last IOCB. The Self Pointer of this
subsequent IOCB is written in the Next Link word of the previous IOCB, overwriting the integer operand of zero, thus
extending the IOCB linkage to include the new tail IOCB. The Next Link word of the new tail IOCB is replaced by
integer value zero, to mark it as the last IOCB in the queue.

If an IOCB is ENQUEUEJ at the head of the queue, the MLIP replaces the value of the Next IOCB Link word with the
IOCB Self Pointer (word 3) of the original queue head IOCB. Consequently, the newly enqueued IOCB is at the head of
the queue, and its Next IOCB Link word points at the IOCB originally at the head of the queue. The MLIP

must also adjust the address of the Head IOCB Link word in the Command Queue (word 1) if a new IOCB is
ENQUEUEC(at the head of the queue.

R
1[0 I ' l

47 43 39 35 31 27 2 19 15 1!‘ 7 3
1 X | o ! !

sf s} 8 () ENGTH) 28— & ADDRESS OF —& 2

ol ol o IN WORDS NEXT 10CB OR

45 a1 37 33 29 2 21 .OPERAND=00R 1 .
1 0| o0 l

44 4 36 32 28 24 j‘l 16 i2 8 4 ﬁ

X=10r0
MV4204

Figure 11-20. IOCB Next IOCB Link Word Layout

5010986 11-21

B 6900 System Reference Manual
Input Output Device Operations

IOCB Current Data Area Pointer Word

Figure 11-21 shows the Current Data Area Pointer (word 10). The Current Data Area Pointer (CDP) is a present,
unsegmented, string or word Data Descriptor which points to where data transfer begins or resumes. If CDP is a string
Data Descriptor, then the SIZE FIELD must indicate 8-bit character format (the only data format used in the B 6900
system). The type of Data Descriptor used for CDP must agree with the word/character oriented transfer-bit (bit-11 of
word zero) field of the IOCB CW word. The CDP word of the IQCB is initialized by the MCP before the CUIO operator
is executed, and is updated by the MLIP as each block of data is transferred between the UIO-DLP and system memory.
For reverse data transfer operations, the CDP must be set to indicate the last word or character of the data, plus 1.

1 0

47 43 39 35‘ 31 27 23 19 15 11 7 3
1 X | X LENGTH ADDRESS OF ,

46 424 % IN WORDS OR —23 '8t DATA BUFFER 2
0 1 0 CHARACTERS IN MEMORY

45 41 3? 33I 29 25 Pl 117 nsl 9 5 !
e |

ﬂ k! 4 16 12 8 4 0
X=10r0

MV4205
Figure 11-21. 10CB MLIP Current Data Area Pointer Word Layout

IOCB MLIP Current I/O Length Word

Figure 11-22 shows the MLIP Current I/O Length word (word 11). The MLIP Current I/O Length word (CL) is a
formatted operand that contains an integer length count value in bits [19:20]. The state of bit-46 (Sign Of Mantissa)
is also significant in the CL word. The value of the length count represents the amount of I/O data yet to be trans-
ferred during this I/O operation.

0 0 0 0 0 0 0
&7 43 35 35 kil 27 2Tﬁ 138 15, 11 7 3
o|x| o |00 |00 O LENGTH IN
46 42 38 34 30 26 22 18 MLI WORDS OR 6 2
45 41 37 33 29 b 21 17 13 9 5 1
0 0 0 0 0 0 0 0
a4 40 36 32 28 24 2(4 16 12 8 4 0
X=1o0r0

N

)
]

ViV

Figure 11-22. IOCB MLIP Current 1/O Length Word Layout

11222

B 6900 System Reference Manual
Input OQutput Device Operations

If this I/O operation is a word-oriented data transfer, then the integer value in the CL werd represents the number of
16-bit bytes of data yet to be transferred over the MLI interface. If this I/O operation is a character-oriented data
transfer, then the integer value in the CL word represents the number of 8-bit bytes yet to be transferred over the MLI

interface.

The integer value in the CL word can be a negative value (bit-46 = 1) if the Continue-Count-At-End-Of-Length bit in
the CW word is SET (see the definition of bit-13 for word ZERO of the IOCB).

IOCB MLIP State and Result Word

Figure 11-23 shows the MLIP State And Result Word (word 11). The MLIP State And Result word (HRSLT) is a
formatted operand that contains the micro-module state and MLIP status report for an I/O operation. The MCP
initializes the HRSLT word in the IOCB to all-zeroes. The MLIP logic of the micro-module causes the fields of the
HRSLT word to be initialized at the beginning of an I/O operation and updates the fields of the HRSLT word each
time the IOCB is accessed. At the conclusion of an I/O operation, the values of the fields in the HRSLT word repre-
sent the accumulated status information from all of the hardware circuits and modules used during the entire I/O

operation.
0 0
47 43 39 35 31 27 2. 19 15, 11 7 3
0 S| 0| o MLIP AND /OR MLI
MLIP MICROMODULED 71 a6l 2 18| 1o 1of | MLIP
STATE COUNT ERROR - FIELD
0 P Il o RESULT
sl a 7 3 S 2} 21 17 13 st FIELD
0 0
44 40 36 32 28H 24# 20 16 12 8 4 0
MV4207

Figure 11-23. IOCB MLIP State and Result Word Layout

STATE AND RESULT WORD BIT AND FIELD DEFINITIONS

Following are the field/bit definitions for the IOCB State and Result word:

Bits [47:16]:

Bits [31:32]:

Bits [31:4]:

Bits [27:6]:

5010986

MLIP State. This field contains the current micro-module address value. The MLIP must
remember the micro-module address in case an error occurs in the micro-module while it is
performing an MLIF sequence. The micro-moduie address is reported in the P-3 Interrupt
Parameter for all interrupts originating in the MLIP module.

The micro-module logic for the MLIP updates the State Count field in the State And Result
word of the IOCB each time the IOCB is accessed during an I/O operation.

MLIP Result. This field contains result status from the DLP, MLIP/MLI, and MLIP opera-
tions. The following is a list of all bits in this field and their usage:

DLP Status Field. If bit-16 is SET, this field contains the DLP status returned at the time of
the error.

This field must be zero.

11-23

Bits [21:16]:

Bit 21:

Bit 20:

Bit 19:

Bit 18:

Bit 17:

Bit 16:

Bit 15:

Bit 14:

Bit 13:

Bit 12:

Bits [11:4]:

Bit 7:

Bit 6:

Bits [5:6]:

Bit 5:

Bit 4:

B 6900 System Reference Manual
Input Output Device Operations

MLIP/MLI Error Field. The meaning or usage of each bit in this field is described below.

Invalid MLIP Command. If this bit is SET, it indicates a wrong combination of bits SET in
the MLIP Command field of the IOCB Control Word.

MLI Time-out. If this bit is SET, it means the MLIP timed-out during an operation using the
MLI interface. Either a DLP strobe was not returned to the MLIP within 8-milliseconds, or
the UIO-DLP was busy for more than 2-seconds.

MLIP hung the DLP. If this bit is SET, it means the MLIP attempted to hang the DLP in
response to a DLP-error.

‘'DLP Busy. If this bit is SET, it means the MLIP, while attempting to connect to this DLP,

has found the DLP busy and cannot place the IOCB in a horizontal queue.

Non-present DLP. If this bit is SET, it means the MLIP attempted to connect to a DLP that
is not present.

Unexpected DLP Status. If this bit is SET, it means the DLP presented the MLIP with a
status other than the one expected. In this condition the MLIP disconnects and leaves the
DLP hung.

MLI LPW Error. If this bit is SET, it indicates the MLIP has detected incorrect longitudinal
parity on the MLI interface.

MLI Vertical Parity Error. If this bit is SET, it indicates a parity-error detected on a word
being transferred over the MLI interface.

Invalid MLIP Control Field. If this bit is SET, it indicates a wrong combination of bits in the
MLIP Control field; that is, TAG-TRANSFER with character-oriented I/O.

Improper IOCB Word. If this bit is SET, it indicates an error in the format of an IOCB word.

I0CB Index. The bits on in this field point to the incorrect word in the IOCB, when Bit-12
is SET. For example, Bits [11:4] = 9 indicates the next IOCB Link word (word number nine)
containing an error.

Count Error. If this bit is SET, it means the Input or Output bit in the MLIP Control field
was SET and the Current Length bit was not equal to ZERO at the end of the I/O. This bit
will not be SET if the Ignore Count Error bit is SET in the MLIP Control field.

Memory Protect. If this bit is SET, it indicates an attempt to transfer a word to the DLP with
an odd TAG, or to Overwrite a word with an odd TAG on input when the Memory Override
bit is RESET in the MLIP Control field.

MLIP Result Field. This field contains the overall results of an MLIP operation. The definition
of each bit follows.

Completed After Queue Suspended. If this bit is SET, it means the I/O finished while the
Command Queue was marked as suspended.

MLIP/Hardware Error. If this bit is SET, it means the MLIP detected an error and the param-
eters and error information will be reported through the Error I0CB.

B 6900 System Reference Manual
Input Output Device Operations

Bit 3: MLIP/MLI Error. If this bit is SET, it indicates a bit SET in the MLIP/MLI Error field [21:16].

Bit 2: DLP error. If this bit is SET, it means a bit in the first 48 bits of the DLP result descriptor is
on after ANDing the DLP result descriptor with the Result Mask.

Bit 1: Attention. If this bit is SET, it means the Software Attention was SET in the MLIP Control
field.

Bit 0: Exception. If this bit is SET, it means that another bit in the MLIP Result field [5:5] is SET.

IOCB I/O Start Time Word

Figure 11-24 shows the I/O Start Time word (word 13). The I/O Start Time word (STIME) is a formatted integer value
word that contains a Time-Of-Day value. The MLIP logic causes the Time-Of-Day to be SET in this word when the I/O
device is initiated into operation. The Time-Of-Day value indicates the 24-hour clock time at the beginning of the I/O
operation, in 2.4 microseconds increments.

P r __ F
0
35 N 27 23 19 15 11 7 3
TIME-OF-DAY VALUE IN 24 6 2
MICROSECOND INCREMENTS
0 1] 0 o
a5 4 3? 33 29 25 21 17 13 9 5 1
] 0] 0 '
e 40 36 32 28 4 200 . 12 4 9
MV4208

Figure 11-24. IOCB I/O Start Time Word Layout

I0CB 1/0 Finish Time Word

Figure 11-25 shows the I/O Finish Time word (word i4). The I/O Finish Time word (FTIME) is similar to I/O Start
Time word (STIME), except that where I/O Start clocks the initialization of an I/O operation, I/O Finish Time clocks the
termination of an I/O operation. The Time-Of-Day value for FTIME has the same accuracy as that for STIME.

I (] 0 0 0 [
] 47 43 X9 35 31 27 23{ 19 15 11 7 3
0 0 « 0 “ 0 w 1/0 FINISH TIME
—IN 2.5 MICROSECOND . E—
0 0 0 0 INCREMENTS
45 a“ 37 33 29 25 2111 17 13 9 5)
|
0 o| 0O '
44 40 36 32 28 4 20 16 12 8 4 4
MV4209

Figure 11-25. IOCB Finish Time Word Layout

5010986 11-25

B 6900 System Reference Manual
Input Output Device Operations

COMMAND QUEUE ORGANIZATION AND WORD LAYOUTS

A Command Queue is an organization of IOCBs that are scheduled to be executed, but have not yet been initiated. The
location of a Command Queue in system memory is an MCP software control function that is specified in CQHP (word 2)
of the IOCB when control of the IOCB is passed to the MLIP by execution of the CUIO operator.

Manipulation of the contents of a Command Queue is a function of the logic for the MLIP. While an IOCB is
ENQUEUEd in a Command Queue, the B 6900 system software does not touch the IOCB. When the I/O operation
specified by an IOCB is terminated, the MLIP links the IOCB into the Result Queue specified in RQHP (word 8) of the
IOCB. Manipulation of the contents of a Result Queue is a function of the system software. While an I/O operation
is in process, the IOCB for the operation is not part of a queue in memorys; it is an independent area that is referenced
by an address in the UIO-DLP.

Figure 11-26 shows the word organization of a Command Queue. Each of the words that are present in the Command
Queue are defined in subsequent paragraphs.

Word Mnemonic Word Contents
0 [cw] Control Word
1 [HEAD] HEAD I0OCB LINK
2 [TAIL] TAIL i0OCB LINK
3 [HQHP] HORIZONTAL QUEUE HEAD POINTER
4 (HaL] HORIZONTAL QUEUE LINK

Figure 11-26. Command Queue Word Format and Layout

Command Queue Control Word
The Command Queue Control Word (CW) is a formatted operand that is used to identify the first word in a Command

Queue. The CW contains data used by the MLIP logic to monitor and control its activity with the IOCBs that are
linked into this particular Command Queue. Figure 11-27 shows the Command Queue Control Word (word zero).

Fu—gip gy ._._P_
0 0 1 1 I
35 N

a1 43 39 27 23 19 15 11 7 3

q
0 0 0 1 1
48 42 38 348 INACTIVEsS ACTIVE:81 ACTIVE1 91 CONTROL |
COUNT COUNT LIMIT FIELD
0 0 0 0 0
a5 41 37 .33 29 25 21 17 13 9 5 1

0 1 0 0 0
a4 40 36 3 28 24 20 o2 8 4 0

MV4210

Figure 11-27. Command Queue Control Word Layout

-
e
[
N

B 6900 System Reference Manual
Input Output Device Operations

The B 6900 system software control program (MCP) initializes the monitor and control values of the Control Word,
when it establishes the Command Queue in system memory. The logic of the MLIP normally updates the values of the
Control Word when an IOCB is linked into the queue, and when an IOCB is delinked from the queue (see exceptions
specified by bits-15/16 of IOCB word zero, CW).

COMMAND QUEUE CONTROL WORD BIT DEFINITIONS

The meaning of the fields in a Command Queue Control Word are as follows:

Bits [47:16] :

Bits [31:8]:

Bits [24:8]:

Bits [16:8]:

Bit 1:

Bit O:

5010986

Command Queue Header Mark. This field contains 4“10CC”, and is used by the MLIP to
identify this word as the first word of a Command Queue (see the Mark explanation NOTE
for word zero [CW] of the IOCB word layout, in Figure 11-10).

Inactive Count. This field contains the number of IOCB’s that are currently linked into this
Command Queue, but have not yet been activated by the MLIP.

Active Count. This field contains the number of I0OCB’s that are linked into this Command
Queue, and are currently being processed by the MLIP.

Active Limit. This field contains a non-zero value (initialized by the MCP, and not changed
by the MLIP) which is the maximum number of IOCB’s that can be normally active in this

Command Queue at any given time. The Immediate-bit of an IOCB (word zero) CW is the

basis for an exception to the normal Command Queue Limiting procedures.

Control Field Bits
These bits must be ZERO

Horizontal Queue Present. If this bit is Set, it means this Command Queue can be linked as
a Horizontal Queue. This bit is used in a manner consistent with the definition of a Horizontal
Queue Head Pointer (word 3, HQHP, below).

Waiting. If this bit is SET, it means this Command Queue has been dynamically linked into a
Horizontal Queue.

Suspended. If this bit is SET, the MLIP only initiates an IOCB linked into this Command
Queue if its Immediate-bit is SET. The Suspended-bit is SET by the MLIP logic when an I/O
in this Command Queue finishes with an error, or when the Global MLIP Suspend-All-Queues
flag is SET and the Ignore-Suspend-All-Queues flag of an IOCB in this Command Queue is
RESET.

1127

B 6900 System Reference Manual
Input Output Device Operations

Command Queue Head IOCB Link Word

Figure 11-28 shows the Command Queue Head IOCB Link word (word 1). The Command Queue Head Link word
(HEAD) is initialized by the MCP when the Command Queue is formed, as a formatted operand with all bits equal to
ZERO.

When an IOCB is linked into this Command Queue, the logic of the MLIP causes the initial formatted operand (left by
the MCP) to be replaced by a present, unsegmented, unindexed word Data Descriptor pointing to the first IOCB in the
Command Queue. The Head Link word always points at the first IOCB in the Command Queue; therefore, if a subse-

quent IOCB is ENQUEUEQ at the head of this Command Queue, the Head Link word is replaced by a new Head IOCB
Link word which points at the new first IOCB in the Command Queue.

! R

1 0 ? ! : |
al el owp ,i_"}{_-___ﬂ} SUELINITT' B A S
1] x| o I | o
s, Mp ¥ (LENGTH) -~ “} |- (ADDRESS) - *+——

ol ol o IN WORDS OF FIRST 10CB

o wl sl s sl s nl 2 INTHISQUEUE:, |

A .
ui [} 4! ¢

MV4211

Figure 11-28. Command Queue Head IOCB Link Word Layout

Command Queue Tail IOCB Link Word

Figure 11-29 shows the Command Queue Tail IOCB Link word (word 2). The Tail IOCB Link word (TAIL) is initialized
by the MCP as a formatted 6perand with all bits SET to zeroes. When an IOCB is ENQUEUEd in this Command Queue,
the logic of the MLIP replaces the formatted operand word (left by the MCP) with a present, unsegmented, unindexed
word Data Descriptor that points at the last IOCB in the Command Queue. If a subsequent IOCB is ENQUEUEA at the
tail of the Command Queue, the MLIP replaces the Tail IOCB Link word with a new link word that points at the last
I0CB, newly ENQUEUEGA in the Command Queue.

n— p

1| o |
‘ a1 a3 » 3 3 27 23 19 15 wo 3
1 X 0 I
oy 2% B (LENGTH) —2—3—'%— (ADDRESS) —° -
0 0 0 IN WORDS OF LAST IOCB IN
45 4 37 331 o 2 1) TH||S QUE[l_JE 1
1ol o | | |
44 40 36l 32 24 24 20 16 12 8l al 0
Mv4212 X=10r0

Figure 11-29. Command Queue Tail IOCB Link Word Layout

11-.28

B 6900 System Reference Manual
Input Output Device Operations

Command Queue Horizontal Queue Head Pointer Word

Figure 11-30 shows the Command Queue Horizontal Queue Head Pointer (word 3) word. The Horizontal Queue Head
Pointer (HQHP) word is initialized by the MCP as either a formatted operand (with all bits zeroes), or as a present,
unsegmented, indexed word Data Descriptor.

If the Horizontal Queue Head Pointer word is a formatted operand then this Command Queue cannot be horizontally
queued. A Horizontal Queue Head Pointer word is never changed after initiaiization. This status is estabiished by the
MCP and is never changed, regardless of any capability of the Command Queue to be horizontally queued.

If the Horizontal Queue Head Pointer is a word Data Descriptor, it points to a Horizontal Queue Head in the Horizontal
Queue Array. This status marks this Command Queue with the capability of being horizontally queued.

! ! | ' -
1 0 a ,1 . |
al ay Ml }:; «!i SN | 1l 7 o, ‘]
| ' { |
1 X | 0 1 | i ! ! . _
~—t oMb (LENGTH) Y}) (ADDRESS) b+ - —
0 0 0 ; IN WORDS ! OF NEXT HORIZONTAL
SR R T »y 2} :HEAD IN SEQUENCE __|
a i , | '
wi '.‘ o RN

MV4213

Figure 11-30. Command Queue Horizontal Queue Head Pointer Word Layout

Command Queue Horizontal Queue Link Word

Figure 11-31 shows the Command Queue Horizontal Queue Link word (word 4). The Horizontal Queue Link word
(HQL) is initialized by the MCP, as a formatted operand (with all bits equal to zeroes). The MLIP subsequently replaces
the formatted operand with a present, unsegmented, unindexed word Data Descriptor, to dynamically link Command
Queues into the Horizontal Queue. The MLIP updates the Horizontal Queue Link word, so that it always points to the
first Head word in the horizontal queue.

r T ! . =T
1 0 !
arl a3 3 ¢ K o - . .
) -t i ' T 1 : v
1 X | o : \ ! ! i o
— t—* 4" (eneTH) *f f i (ADDRESS) -+ - —4
0 0. 0 . INWORDS | OF FIRST HEAD WORD
) »1 .JIN THE HORIZONTAL QUEUE
; | ‘, !
1]o o] |

X=1o0r0

Mv4214

Figure 11-31. Command Queue Horizontal Queue Link Word Layout

5010986 11-29

B 6900 System Reference Manual
Input Output Device Operations

HORIZONTAL QUEUE ORGANIZATION AND WORD LAYOUTS

Figure 11-32 shows the organization of a Horizontal Queue array. A Horizontal Queue array is a dynamic control
linkage used to associate Command Queues for a common UIO-DLP device. Dynamic control means that the number of
Command Queues associated in a Horizontal Queue array depends on the number of I/O operations in process, or waiting
to be processed by the common UIO-DLP.

Word Mnemonic Word Contents
0 [HOQH] HORIZONTAL QUEUE HEADER
1 [HQ1] HORIZONTAL QUEUE HEAD
n-1 [HQn-1] HORIZONTAL QUEUE HEAD
n [HOn] HORIZONTAL QUEUE HEAD

Figure 11-32. Horizontal Queue Array Word Format and Layout

The B 6900 system MCP determines whether or not a Command Queue can be horizontally queued (see HQHP, word 3
of Command Queue). If the MLIP ENQUEUEs an IOCB into a Command Queue that contains an HQHP, and if the
UIO-DLP is BUSY when the MLIP subsequently attempts to initiate the I/O operation specified by the IOCB, then the
MLIP logic links the Command Queue into the Horizontal Queue for the UIO-DLP. Command Queues are linked into
a Horizontal Queue on a First-In-First-Out basis. That is, the oldest Command Queue in a Horizontal Queue is linked
by the first Horizontal Queue Head word in the array, and the latest Command Queue is linked by the last Head word
in the array. -

When the MLIP links a Command Queue into a Horizontal Queue, it also completes the Command Queue Horizontal
Link word (HQL, word 4 of the Command Queue). An HQL word always points to the first Horizontal Queue Head
word in the Horizontal Queue array, and thus associates all Command Queues in the Horizontal Queue. The Command
Queue Horizontal Link word preserves the First-In-First-Out principal for Horizontal Queuing, because the reference
address into the Horizontal Queue always points at the oldest Command Queue Head word in the Horizontal Queue
array.

When a Command Queue linked in a Horizontal Queue is completed, the logic of the MLIP dynamically deletes its
Horizontal Queue Head word from the Horizontal Queue array and moves subsequent Head words in the array up in
priority, to fill the space created by the deletion.

Horizontal Queue Array Header Word

Figure 11-33 shows the Horizontal Queue Header word (word ZERO). The Horizontal Queue Header word (HQH) is a
formatted operand that marks the beginning of a Horizontal Queue array in system memory. The MCP places the
Header word in memory, and the MLIP never accesses this word. The fields of the HQH word are used only for software
purposes.

[
[
'
(78)
(=]

B 6900 System Reference Manual
Input Output Device Operations

0
2 18 15
0 HORIZONTAL 0olo]| o
46l 42l SSJ 34 30 26 22| (QUEUE ARRAY
HEADER MARK
0 | 0 0 0
45 4"|OCE" 37 33 29 25 21 17 13
0 | oo o
| 44 ‘0] 36 32 SA 20 16 12
MV4215

Figure 11-33. Horizontal Queue Array Header Word Layout

" HORIZONTAL QUEUE HEADER WORD FIELD AND BIT DEFINITION
The fields of the Horizontal Queue Header word are as follow:

Bits [47:16]: Horizontal Queue Header Mark. This field contains 4“10CE” and is set up by the MCP to
identify this word as a Horizontal Queue Header Word.

Bits [19:20]: Queue Length. This field contains the length of the horizontal queue in words.

Horizontal Queue Head Word

Ly |

Figure 11-34 shows the Horizontal Queue Head word (words 1 through nj. The Horizontal Queue Head word (FHQn) is
initialized by the MCP as a formatted operand with all bits zeroed. The MLIP logic replaces the HQn word with a
present, unsegmented, unindexed word Data Descriptor that points at the memory address of the Command Queue
Header (word zero), when a Command Queue is linked into the Horizontal Queue array.

When a horizontally queued Command Queue is completed, the MLIP deletes the HQn word from the Horizontal Queue
array. .

1 0
‘ a7 43 39 3% 3N 21 23] 19 1% 11 ! 3
1 X | o
% 28 ¥ (LENGTH) ~= 24 % (ADDRESS) —2
0 0 0 IN WORDS COMMAND QUEUE HEADER
45 a 3! 33] Y <) pal 17 13 9 5 !
1 1ol o |
44 40 36 32 28 24 20 16, 12 8 4 [4)

MV4216 X=10r0

Figure 11-34. Horizontal Queue Array Horizontal Queue Head Word Layout

5010986 11-31

MLIP COMMANDS

B 6900 System Reference Manual
Input Output Device Operations

The MCP generates IOCBs for MLIP path control logic commands. These commands are not sent to the UIO subsystem;
instead, they are executed by internal logic circuits of the MLIP. Basically, MLIP commands establish values of control
logic parameters that are used by the micro-module while performing other MLIP sequences. By exercising control over
the path selection criteria of the MLIP, the MCP controls the overall operation of the I/O device subsystem.

The format of an IOCB for an MLIP Command is similar to that for an I/O device operation, except that bit-1 of the
IOCB Control Word (the MLIP/DLP-Command bit) is SET. For an I/O Command, bit-1 is RESET. When the logic of
the MLIP INITIATE sequence references the DLP Command Descriptor (through the reference provided in word-4 of
the IOCB) it finds an MLIP Command Word instead of an I/O device Command Descriptor. Figure 11-35 shows the
layout of an MLIP Command Word.

MARK 4" F0” —
0 0 0 0 0 0 0 0 0 I
4 39 35 3 27 23 19 15 i 7 3
0 0 0 0 0 0 0 0 0
42 MLIP _34 30 26 0 18 14 10 6 2
COMMAND
ro 0 0 0 0 0 0 0 0
45 41 37 33 29 2 21 17 13 9 5 !
0 0 0 0 0 0 0 0 0 0
MV4a217

Figure 11-35. MLIP Command Word Layout

The fields in an MLIP Command Word are as follows:

11-32

Bits [47:8]

Bits [39:8]

4’6‘0193

4“02”

4“03”

MLIP Command Word Flag Field. This field must contain the value 4“F0”, to indicate that
this is indeed an MLIP Command Word. If the MLIP/DLP-Command bit of the IOCB Control
Word is SET, the INITIATE sequence logic expects to find the Flag-field equal to 4“F0”, to
mark this word as an MLIP Command Word. If this field is not equal to 4“F0”, then an
ALARM interrupt is generated by the Interrupt Controller, and the MLIP Command is aborted.
If this field is equal to 4“F0”, then the INITIATE sequence causes the MLIP Command
(indicated by the value of [39:8]) to be executed.

MLIP Command Descriptor Code

Wait For Error (Error-IOCB). The IOCB is identified by this code as an Error-IOCB, and the
MLIP logic writes its absolute memory address in the MLIP RAM memory. The MLIP uses
this address whenever its logic requires an Error-IOCB. (To report an error that is not other- -
wise reported in another IOCB, refer to MLIP Error-IOCB paragraphs.)

Clear DLP. The MLIP Selectively Clears the UIQ-DLP device specified in the DLP Address

Word (word-1 of the IOCB). After the DLP has been Seiectively Cieared, the I0CB is linked
into the Result Queue specified in word-8 of the IOCB.

General Clear. The MLIP initiates a Master Clear of all MLI-Ports. The IGCB is then linked
into the Result Queue specified in word-8 of the IOCB.

5010986

46404’?

466 0599

4“06”

407’

4“08”

4“09’1

B 6900 System Reference Manual
Input Output Device Operations

SET Suspend-Aii-Queues flag. The MLIP causes the flag-bit to be SET, and then links the
IOCB into the Result Queue specified in word-8 of the IOCB. The MCP executes this MLIP
Command just before executing a MEMORY-DUMP procedure, to prevent MLIP data in mem-
ory from being changed while the dump procedure is in process.

RESET Suspend-All-Queues Flag. The MLIP causes the flag-bit to be RESET, and then links
the IOCB into the Result Queue that is specified in word-8 of the IOCB. The MCP executes
this MLIP Command just after a MEMORY-DUMP procedure. The execution of this MLIP
Command allows the MLIP to resume I/Q0 Commands that were interrupted while a dump
procedure was being performed.

Read DLP-Status. The MLIP logic causes a CONNECT-sequence to be performed to the DLP
specified in the DLP Address Word (word-1) of the IOCB. The Result-status that is returned

by the UIO-DLP is written into the MLIP State And Result Word (word-12 of the IOCB), and
then the IOCB is linked into the Result Queue specified in word-8 of the IOCB.

Activate Queue. The MLIP RESETS the Suspended-bit in the Command Queue Header Word
referenced by word-2 of the IOCB. If appropriate the MLIP also initiates the first IOCB in
the Command Queue that is activated. The IOCB that caused the Command Queue to be
activated is then linked into the Result Queue specified by word-8 of the IOCB.

Return Queue. The MLIP accesses the Command Queue referenced by word-2 of the I0CB.
The Head IOCB Link (word-1 of the Command Queue) and the Tail IOCB Link (word-2 of
the Command Queue) are RESET to all zeroes. The original Head IOCB Link word value is
placed in the first word referenced by the DLP I/O Result Pointer (word-5 of the IOCB). The
IOCR that caused the Command Queue to be returned is then linked into the Result Queue
specified by word-8 of the IOCB. A returned Command Queue is not delinked from a possibie
Horizontal Queue into which it may be linked. The Inactive-Count field of the returned
Command Queue Control Word (word ZERO) is RESET to zero.

Read MLIP Status. The MLIP formats a word of MLIP Status as shown in Figure 11-36. The
formatted MLIP Status word is written into system memory. The memory address of the
status word is referenced by the DLP I/O Result Pointer (IOCB, word-5). The IOCB is then
linked into the Result Queue specified by word-8 of the IOCB.

0
a7| 4 39 27 23 194 15 11 7 3
HOST l
0 I SYSTEM MLIP HOST 0 0 ML
TYPE “3FIRMWARER- RETURN 3 22 8 PORTS PRESENT —3
CODE REV FIELD 4
0 (] 0
45 MA 37 33 29] 5 1
0
| 44 ﬂ 36 32 28 8 4 o]
MV4218

Figure 11-36. MLIP Status Word Layout

11-33

B 6900 System Reference Manual
Input Output Device Operations

RESULT QUEUE ORGANIZATION AND WORD LAYOUTS

Figure 11-37 shows the organization of a Result Queue structure. A Result Queue is the final structure into which the
MLIP links a Command Queue, after the I/O operation specified by the Command Queue has terminated. Linking a
Command Queue into a Result Queue returns control of the I/O operation to the B 6900 system software, and deletes
all records of the I/O operation from the logic of the MLIP module.

Word Mnemonic Word Meaning
0 [RQH] RESULT QUEUE HEADER
1 [RO1] RESULT QUEUE HEAD
’
n-1 [RQn-11] RESULT QUEUE HEAD
n [RQn] RESULT QUEUE HEAD i

Figure 11-37. Result Queue Word Format and Layout

Result Queue Header Word

Figure 11-38 shows the Result Queue Header Word (word ZERO). The Result Queue Header Word (RQH) is a formatted
operand, used to mark the beginning of a Result Queue in system memory. The MCP initializes the RQH Word, and the
MLIP never accesses this word.

The fields of the Result Queue Header Word are as follow:

Bits [47:16]: Result Queue Header Mark. This field contains 4“10CF” and is set up by the MCP identify
this word as a Result Queue Header Word.
Bits [19:20]: Queue Length. This field contains the length of the result queue.
l | 0 0 0
47; 43| 39I 35 3 27 2 19 15 1] 3
0 RESULT QUEUE 0o o 0

46 42| 38| 34 30 26 228 (QUEUE ARRAY LENGTH)-
HEADER MARK :

0 e oo o
45 4"lQCF’ 37 33 29 25 21 17 13 9 5 1
0 | l o|lo | o
!
44 40 36 32 8 4 20. 16 12 8 4 0
MV4219

Figure 11-38. Result Queue Header Word Layout

11-34

Result Queue Head Word

Figure 11-39 shows the Result Queue Head Word (1 through n). This word (RQn) is initialized in system memory by the
MCP as a formatted operand with all bits equal to zeroes. The MLIP delinks a Command Queue at the termination of
the I/O operation, and links the Command Queue into the Result Queue. The procedure the MLIP used to link the
Command Queue into the Result Queue is to replace the formatted operand in the Result Queue with a Result Queue
Head pointer that points at the Command Queue Header word.

11 7 3|

ADDRESS OF
Y :ﬁl\\flv%w)s 26 '8 COMMAND QUEUE—2
HEADER
0 0 0 .
45 a1 » 33 2 13 9 5 !
1 0 0
“ © 36# 12 8 3 HO
X=10r0
MV4220

Figure 11-39. Result Queue Head Word Layout

ERROR-IOCBE WORD FORMATS AND STRUCTURES

There are three categories of I/Q operation errors that can be detected by the logic of the MLIP and reported to the

B 6900 software operating system. Two of these error categories have been defined and described previously. They are
(1) hardware errors that affect a single DLP (reported to the software by means of a Result Descriptor), and (2) logical
errors that affect the MLIP (reported to the software by means of the IOCB State And Result Word). The third category
consists of errors that may affect the entire I/O subsystem of the B 6900 and, therefore, have no proper place to be
reported in the formats of Result Descriptors and/or IOCB State And Result Words.

An Error-IOCB is a mechanism for reporting errors of the third category. Such errors consist of, but are not limited to,
Invalid Descriptor Link Words and Invalid Queue Words. Third-category type errors are detected by the logic of the
MLIP micro-module sequences, and cause automatic micro-code error-handling subroutines to be executed by the
micro-module.

Figure 11-40 shows the word layout of an Error-IOCB in system memory. An Error-IOCB must be initialized by the

system software before a third-category error-condition can be reported. When an Error-iOCB is present, the absolute
memory address of the first word in the IOCB is stored in the Data Storage section {word 1) of the MLIP RAM memory.

5010986 11-35

Word Mnemonic

© 00 N OO A W N = O

- b e = e
H W NN = O

W N N N NN NN N - et m -

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

w —
- o
— e e e e e ey e Pem e e e e e PR e e e e e e e o e PR e ey e e e

11-36

B 6900 System Reference Manual
Input Output Device Operations

Word Meaning

SYSTEM TYPE, FIRMWARE REV, ERROR-CODE, DLP

ERROR-TYPE {(ALARM/HARDWARE INTERRUPT)

MEM. ADDR., GLOBAL PAR., PROM-CARD, MICRO-ADDR.

iC MEM. ADDR. VALUES FOR iRS7 (BUF}, BRS7 (TEMP)

TOP-OF-STACK Z REGISTER VALUE

UNDEFINED

TOP-OF-STACK C REGISTER VALUE

UNDEFINED

WORD IN MICRO-STACK AT MICRO-STACK POINTER ADDR.

WORD IN MICRO-STACK AT MS POINTER +1

WORD IN MICRO-STACK AT MS POINTER +2

WORD IN MICRO-STACK AT MS POINTER +3

UNDEFINED

WORD 0 OF MLIP RAM (MLIP.STAT.REG)

WORD 1 OF MLIP RAM (ERR.IOCB.ADR)

WORD 2 OF MLIP RAM (ERR.RSLT.ADR)

WORD 3 OF MLIP RAM (WOLP.ADR)

WORD 4 OF MLIP RAM (COLP.ADR)

WORD 5 OF MLIP RAM (HQH.ADR)

WORD 6 OF MLIP RAM (CQ.ADR)

WORD 7 OF MLIP RAM (IOCB.ADR)

WORD 8 OF MLIP RAM (CQ.OW.1)

WORD 9 OF MLIP RAM (CQ.CW.2)

WORD A OF MLIP RAM (HST.RET.FLD)

WORD B OF MLIP RAM (BR.STAT.REG)

WORD C OF MLIP RAM (NOT USED)

WORD D OF MLIP RAM (NOT USED)

WORD E OF MLIP RAM (NOT USED)

WORD F OF MLIP RAM (NOT USED)

CONTENTS OF MLIP REGISTER 3

UNDEFINED

UNDEFINED

Figure 11-40. Error-I0CB Organization And Layout

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word Zero Layout

Figure 11-41 shows the bit-field layout of the first word in an Error-IOCB. This word defines a B 6900 system MLIP,
the current Firmware Revision of the MLIP micro-module logic, the type of error being reported in the Error-IOCB,
and the UIO-DLP Address of the peripheral device operating when the error occurred.

The usage or meaning of the bit-fields in word ZERO of an Error-IOCB is as follows:

[47:8]

[39:8]

[31:8]

4017
402"
4037
4404”
405”
44107
420"
440"
[23:4]

[19:20j

System Type. This field always contains the value 401, which identifies the system type as
a B 6900 system.

Firmware Revision. This field contains a literal value from the micro-module, which identifies
the current level of the CPU Micro-code.

Error Code. This field contains a code that identifies the kind of error that is being reported
in this Error-IOCB:

An Invalid Descriptor Link was detected.

An Invalid Global Parameter was detected.

A Descriptor Link LPW error was detected.

A DLP Address mismatch error was detected.

A Host Return Field mismatch error was detected.
A Queueing error was detected.

A Memory/Hardware error was detected.

An Error-10CB was discontinued.

This field must contain all zeroes.

DLP Address. This field contains the address-vector through the MLI interface Ports to the
peripheral device UIO-DLP that was operating when the error was detected.

MVv4221

5010986

7 3
6 2
5 1
-

Figure 11-41. Error-IOCB Word Zero Layout

1137

Error-IOCB Word One Layout

B 6900 System Reference Manual

Input Output Device Operations

Figure 11-42 shows the layout of an Error-IOCB, word-1. Word-1 of an Error-IOCB contains a field that specifies the
type of interrupt that caused the Error-IOCB to be completed. There are two conditions that can cause an Error-IOCB
to be completed. The first is a hardware failure in the MLIP logic, a PROM card module error, and the second is a
Link-Word or Pointer-error that causes an addressing failure within the I/O device control parameters of system memory.

0 0 0 0 0 0 0 0
a7 3] . 3 s = 23] 19 15 1 7 3
0 0 0 0 0 0 0 0 0
ERROR] 381 34 30| 2 2| 18] 14 10 6 2
TYPE
0 0 0 0 0 0 0 0 0
s o o I | 2 1] 3 9 5 1
) o 0 oo 0 o0 | o
MV4e222 44 40 36 32 28 24 20 16 12 8 4 0

Error-IOCB Word Two Layout

Figure 11-42. Error-IOCB Word One Layout

Figure 11-43 shows the layout of word-2 in an Error-IOCB. This word contains key information that is useful in
reconstructing the MLIP conditions at the time in which the Error occurred. The data contained in this word is as

follows:
[47:20] Last Memory Address. This field contains the absolute memory address value of the last
memory access request originated by the logic of the MLIP.
[27:1] This bit contains a zero.
[26:3] Global Parameter. This field contains the Global Parameter value for the last POLL REQUEST
sequence performed by the logic of the MLIP.
[23:4] PROM Card Error Code. This field contains a code-value that identifies the MLIP plug-in
PROM card-module that detected a parity-error condition. '
[19:8] This field contains zeroes.
[11:12] Micro-module Address. This field contains the micro-module address of the MLIP sequence
in which the Error-IOCB was completed.
1] 0
47 43 33 35 313 271 2 19 15 11 7 3
0 PROM 0
G P [CARD
46 LAST 0L _A- ERR. 18 14 M|CRO—MODULE_
MEMORY ADDRESS oR ADDRESS
A [CODE
0 B M 0
45 41 37 33 29 b 21 17 13 9 5 1
0 0
MV4223 44 40 36 32 28 24) 20} 16 12 8 4 0

11-38

Figure 11-43. Error-IOCB Word-Two Layout

Error-IOCB Word Three Layout

Figure 11-44 shows the layout of word-3 in an Error-IOCB. This word contains the contents of 2 JC Memory

B 6900 System Reference Manual

Input Output Device Operations

Registers, which are used by the logic of the MLIP to process memory request addresses and to perform the mathematics
for incrementing/decrementing I/O device data length counts. Figure 11-44 shows the layout of this Error-IOCB word.

0 | |
a7 43 39 J%;Jt 51! 27 2)1 19 1_3%_ n 1
0 0 CONTENTS OF CONTENTS OF
26 a2 | 1C MEMORY 22 18| 1C MEMORY
REGISTER REGISTER
0 0 BUF (IRS7) TEMP (BRS7)
45 a1 37 33] 29 b 21 17 13] 9| 5
o | o | |
G WSNPY) N S S — T MV LA TR—

MV4224

Error-IOCB Word Four Layout

Figure 11-44. Error-IOCB Word Three Layout

Figure 11-45 shows the layout of word-4 in an Error-IOCB. This word of the Error-IOCB contains the contents of the
Top-of-Stack Z Register at the time when the Error-IOCB was completed. The logic of the MLIP utilizes the Z Register
to process data between the MLIP and system memory.

47 a3 39 3% 3 27 23 19 15 "
0
%8 CONTENTS OF THE TOP-OF-STACK Z REGISTER
0
45 41 37 33 29 25 il 17 13 9
0
L 44 40! 36 32 28 24 20 16 12 8
MV4225

5010986

Figure 11-45. Error-IOCB Word Four Layout

11-39

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word Six Layout

Figure 11-46 shows the layout of word-6 of an Error-IOCB. This word of the Error-IOCB contains the contents of the
Top-of-Stack C Register when the Error-IOCB was completed. The logic of the MLIP utilizes the C Register to process
data between the MLIP and system memory.

4] 43 39 3% 31 27 23 19 15 11 ! 3
0 -

8 CONTENTS OF THE TOP-OF-STACK C REGISTER ° £ 2
0 |

45 41 37 33 2 25 21 17 13 9 5 1
0

a4 40! 36 32 28 24 20 16 12 8 4 0

MV4226

Figure 11-46. Error-JOCB Word Six Layout

Error-IOCB Word-8 Through Word-11 Layout

Figure 11-47 shows the layout of word-8 through word-11 of an Error-IOCB. These Error-IOCB words, containing the
4 most recent words written in the MLIP RAM Micro-stack section represent data used by the micro-module to manage
the MLIP micro-code sequence subroutines. They are valuable for error analysis because they indicate the MLIP
sequences that preceded the error IOCB condition. Word-8 of the Error-IOCB contains the most-recent micro-code
word that was written into the Micro-stack section of the MLIP RAM. Word-9 of the Error-IOCB contains the next-
most-recent word written into the Micro-stack section; word-10 holds the second-from-most-recent word in the Micro-
stack section; and word-11 contains the third-from-most/ word in the Micro-stack section.

0 0 0 0 0 0 0 0 0
Y] 43 3 35 31 77 23 19 15 1 7 3

0 0 0 0 0 0 0 0 0 o | ONE OF 4 MOST
46 2 38 34 . 2 2 18 1a] RECENT WORDS
IN MLIP RAM
] 0 0 0 0 0 0 0 0 0 | MICRO-STACK
45 @ a3 w 2 17 13 9 5 1
0 0 [1] 0 o C 0 0 0 0 _
4 s 3 320 28] 24 2] 1§ 12 8 4 0
MV4227

Figure 11-47. Error-IOCB Word-8 Through Word-11 Layout

1140

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word-13 Through Word-28 Layout

Figure 11-48 shows the layout of word-13 through word-28 of an Error-IOCB. These words contain the first 16-words
from the MLIP RAM, which are the Data-Register section. These words contain the specificaitons from the IOCB, for
the I/O device operation in process when the Error-IOCB was completed.

A7 43 39 35 3t 27 2 19 15 n 7 3

. o | o | o | WORDOTHROUGH 16 FROM
SECTION OF THE MLIP RAM 7|
0 0 0 0 0 0 0 0 (10CB SPECIFICATIONS)

45 41 37 33 29 25 21 17 13 9 5 1

0 0 0 6| O 0 0 0

MV4228
Figure 11-48. Error-IOCB Word-13 Through Word-28 Layout

Error-IOCB Word-29 Layout

Figure 11-49 shows the layout of word-29 in an Error-IOCB. This word contains the value of MLIP hardware
Register-3. Register-3 of the MLIP contains the initial and remaining I/O operation LENGTH count. Each time 16-bits
of peripheral data are transferred between the MLIP and system memory, the value of Register-3 is incremented/
decremented so that it contains the instantaneous value of remaining 16-bit bytes to be transferred. The value of
word-29 in the Error-IOCB is therefore the number of 16-bit bytes of data not yet transferred when the MLIP com-
pleted the Error-IOCB.

0 0 0 0 0 0 0
47 43 39 35 31 27 23] 19 15 11 7 3
0| o (] 0 0 0 o 0 VALUE
46| 4| 38 34 300 26/ 23 FMLIP HARDWARE —2
0 0 0 0 0 0 0 0 REGISTER-THREE
45 a3 27 22 22 25 2% 17 i3] 5 1
0 0 0 0 0 0 0 0
44 40 36 32 28 24 20§ 16 12 8 4 0

MV4229
Figure 11-49. Error-IOCB Word Layout

5010986 1141

B 6900 System Reference Manual
Input Output Device Operations

GLOSSARY OF MLIP/UIO OPERATING TERMS

The following are some miscellaneous terms and mnemonics useful in understanding MLIP/IODC concepts:

1142

MLIP

10DC

I0CB

CuIO

I0CB MARK

ERROR IOCB

MLI

MLIP/CPU

'INTERFACE

MLIP/UIO
INTERFACE

DLP

POLL TEST

POLL
REQUEST

GLOBAL
PRIORITY
WORD

COMMAND
QUEUE

RESULT QUEUE

COMMAND

QUEUE HEADER

RESULT QUEUE

HEADER

Message Level Interface Processor — protion of CPU logic which controls operations between
the Data Processor and the I0DC and its associated DLP’s

Input Output Data Communication — subsystem utilized for I/O and Datacomm operations,
common to the MLI interface specifications.

Input Output Control Block — a contiguous area of memory containing the necessary
information for the performance of an I/O or MLIP operation.

Communicate with Universal /O — a variant mode operator (954C) which starts an operation
to the MLIP or IODC using a data descriptor found in the top of the stack pointing to the
first word of the IOCB.

A value of 4“10CB” found in [47:16] of the first word in an IOCB used by the logic to
verify this is actually the first word of an I0OCB.

An IOCB set aside by the MCP to be used by the MLIP to terminate an I/O operation when
normal error termination is not possible.

Message Level Interface — a 25 line bidirectional interface between the MLIP and the IODC
containing data and control information.

4
Connection between CPU and MLIP, primarily Z1 bus, Z5 bus, C register, and micro-module
address lines.

Connection between IODC and MLIP called MLI.

Data Link Processor — a specialized micro-processor used to transfer information to and from
a peripheral device.

Process of MLIP connecting to I0DC.

Process of IODC reconnecting to MLIP following operation initiated by MLIP.

A word returned to MLIP during POLL REQUEST indicating priority of each DLP requesting
connection to the MLIP.

A linking together of IOCB’s in the order in which they will be performed.

A linking together of IOCB’s as the I/O operation is completed.

A structure used to maintain the current state of a command queue.

A structure used to maintain the current state of the completed /0 operations.

B 6900 System Reference Manual

APPENDIX A

OPERATORS, ALPHABETICAL LiIST

Name

ADD
BIT RESET

BIT SET

BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL

CHANGE SIGN BIT

COMPARE CHARACTERS EQUAL DESTRUCTIVE
COMPARE CHARACTERS EQUAL, UPDATE
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE

COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS GREATER, UPDATE
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARE CHARACTERS LESS, DESTRUCTIVE
COMPARE CHARACTERS LESS, UPDATE
COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE
CONTROL UNIVERSAL INPUT OUTPUT
COMPARE CHARACTERS NOT EQUAL, UPDATE
CONDITIONAL HALT (all modes)

COUNT BINARY ONES

DELETE TOP-OF-STACK

DISABLE EXTERNAL INTERRUPT

DIVIDE

DOUBLE LOAD A

DOUBLE LOAD A INCREMENT

DOUBLE LOAD B

DOUBLE LOAD B INCREMENT

DOUBLE LOAD C

DOUBLE LOAD C INCREMENT

DOUBLE STORE A

DOUBLE STORE A INCREMENT

DOUBLE STORE B

DOUBLE STORE B INCREMENT

DOUBLE STORE C

DOUBLE STORE C INCREMENT

DUPLICATE TOP-OF-STACK

DYNAMIC BIT RESET

DYNAMIC BIT SET

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

5010986

Mnemonic

ADD

BRST
BSET

BRFL
BRTR
BURN
CHSN
CEQD
CEQU

CGED

CGEU
CGTD
CGTU

CLED
CLEU
CLSD
CLSU
CNED
CUIO
CNEU
HALT
CBON
DLET
DEXI
DIVD
DLA
DLAI
DLB
DLBI
DLC
DLCI
DSA
DSAI
DSB
DSBI
DSC
DSCI
DUPL
DBRS
DBST
DBFL
DBTR

Hexa-
Decimal
Code

80
9E
96
A0
Al
A2
8E
F4
FC

F1

F2
FA

F3
FB
FO
F8
F5
95C4
FD
DF
95BB
B5
9547
83
EO
E9
E2
EB

ED
F8

FA
FB
FC
FD
B7
9F
97
A8
A9

B 6900 System Reference Manual
Operators, Alphabetical List

Name

DYNAMIC BRANCH UNCONDITIONAL
DYNAMIC FiELD INSERT

DYNAMIC FIELD ISCLATE

DYNAMIC FIELD TRANSFER
DYNAMICT SCALE LEFT

DYNAMIC SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT ROUND
DYNAMIC SCALE RIGHT SAVE
DYNAMIC SCALE RIGHT TRUNCATE
ENABLE EXTERNAL INTERRUPTS
END EDIT (edit mode)

END FLOAT (edit mode)

ENTER

EQUAL

ESCAPE TO 16-BIT INSTRUCTION
EVALUATE

EXCHANGE

EXECUTE SINGLE MICRO, SINGLE POINTER
UPDATE

EXECUTE SINGLE MICRO, DESTRUCTIVE
EXECUTE SINGLE MICRO, UPDATE
EXIT

EXTENDED MULTIPLY

FIELD INSERT

FIELD ISOLATE

FIELD TRANSFER

GREATER THAN

GREATER THAN OR EQUAL

IDLE UNTIL INTERRUPT

INDEX

INDEX AND LOAD NAME

INDEX AND LOAD VALUE

INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT UPDATE

INSERT CONDITIONAL (edit mode)
INSERT DISPLAY SIGN (edit mode)
INSERT MARK STACK

INSERT OVERPUNCH (edit mode)
INSERT UNCONDITIONAL (edit mode)
INTEGER DIVIDE

INTEGERIZE, ROUNDED
INTEGERIZE, TRUNCATED
INTEGERIZE, ROUNDED DOUBLE-PRECISION
INVALID OPERATOR (all modes)
LEADING ONE TEST

LINKED LIST LOOKUP

LESS THAN

LESS THAN OR EQUAL

LIT CALL ONE

A2

Mnemonic

DBUN
DINS

DISO

DFTR
DSLF
DSRF
DSRR
DSRS
DSRT
EEXI

ENDE
ENDF
ENTR
EQUL
VARI
EVAL
EXCH

EXPU
EXSD
EXSU
EXIT
MULX
INSR
ISOL
FLTR
GRTR
GREQ
IDLE
INDX
NXLN
NXLV
ICVD
ICVU
INSC
INSG
IMKS
INOP
INSU
IDIV
NTGR
NTIA
NTGD
NVLD
LOG2
LLLU
LESS
LSEQ
ONE

Hexa-
Decimal
Code

9D
9B
99
Cl1
C7
¢
Cs
C3
9546
DE
DS

8C
95

AC
B6

DD
D2
DA
A3
8F
9C
S5A
98
8A
89
9544
A6
AS

CA
CB
DD

CF
D8
DC
84
87
86
9587
FF
958B

arnT

95BD
88
8B
Bl

B 6900 System Reference Manual

Operators, Alphabetical List

Name Mnemonic
LIT CALL ZERO ZERO
LIT CALL 8-BITS LT8
LIT CALL 16-BITS LT16
LIT CALL 48-BITS LT48
LOAD LOAD
LOAD A LDA
LOAD A INCREMENT LDAI
LOADB LDB
LOAD B INCREMENT LDBI
LOADC LDC
LOAD C INCREMENT LDCI
LOAD TRANSPARENT LODT
LOGICAL AND LAND
LOGICAL EQUAL SAME
LOGICAL EQUIVALENCE LEQV
LOGICAL NEGATE LNOT
LOGICAL OR LOR
MAKE PROGRAM CONTROL WORD MPCW
MARK STACK MKST
MASKED SEARCH FOR EQUAL SRCH
MOVE CHARACTERS (edit mode) MCHR
MOVE NUMERIC UNCONDITIONAL (edit mode)) MVNU
MOVE TO STACK MVST
MOVE WITH FLOAT (edit mode) MFLT
MOVE WITH INSERT {edit mode) MINS
MULTIPLY MULT
NAME CALL NAMC
NO OPERATION {all modes) NGOOP
NORMALIZE NORM
NOT EQUAL NEQL
OCCURS INDEX OCRX
OVERWRITE DESTRUCTIVE OVRD
OVERWRITE NON-DESTRUCTIVE OVRN
PACK DESTRUCTIVE PACD
PACK UPDATE ' PACU
PUSH DOWN STACK REGISTERS PUSH
READ AND CLEAR OVERFLOW FLIP-FLOP ROFF
READ CENTRAL PROCESSOR COUNTER RCPC
READ COMPARE FLIP-FLOP RCMP
READ PROCESSOR IDENTIFICATION WHOI
READ PROCESSOR REGISTER RPRR
READ TAG FIELD RTAG
READ TIME OF DAY RTOD
READ TRUE/FALSE FLIP-FLOP RTFF
READ WITH LOCK RDLK
REMAINDER DIVIDE RDIV
RESET FLOAT (edit mode) RSTF
RETURN RETN
ROTATE STACK DOWN RSDN

5010986

Hexa-
Decimal
Code

B2
B3
BE
BD
EO
El
E2
E3
E4
ES
95BC
90
94
93
92
91
BF

95BE
D7

95AF
D1

82
40=7F
FE
958E
8D
9585
BA

BB

Di

D7
9540
95B3
954E
95B8
95B5
95A7
DE
95BA
85

A7

~ 95B7

A3

B 6900 System Reference Manual
Operators, Alphabetical List

Name

ROTATE STACK UP
RUNNING INDICATOR

COATD TEDT
OUALL Ly 1

SCALE RIGHT FINAL

SCALE RIGHT ROUNDED

SCALE RIGHT SAVE

SCALE RIGHT TRUNCATE

SCAN-IN

SCAN-OUT

SCAN WHILE EQUAL, DESTRUCTIVE

SCAN WHILE EQUAL, UPDATE

SCAN WHILE FALSE, DESTRUCTIVE

SCAN WHILE FALSE, UPDATE

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE
SCAN WHILE GREATER OR EQUAL, UPDATE
SCAN WHILE GREATER, DESTRUCTIVE
SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE LESS, UPDATE

SCAN WHILE NOT EQUAL, DESTRUCTIVE
SCAN WHILE NOT EQUAL, UPDATE

SCAN WHILE TRUE, DESTRUCTIVE

SCAN WHILE TRUE, UPDATE

SET DOUBLE TO TWO SINGLES

SET EXTERNAL SIGN

SET INTERVAL TIMER

SET PROCESSOR REGISTER

SET TAG FIELD

SET TO DOUBLE-PRECISION

SET TO SINGLE-PRECISION, ROUNDED

SET TO SINGLE-PRECISION, TRUNCATED
SET TWO SINGLES TO DOUBLE

SKIP FORWARD DESTINATION
CHARACTERS (edit mode)

SKIP FORWARD SOURCE CHARACTERS (edit mode)
SKIP REVERSE DESTINATION
CHARACTERS (edit mode)

SKIP REVERSE SOURCE CHARACTERS (edit mode)
STEP AND BRANCH

STORE A

STORE A INCREMENT

STORE B

STORE B INCREMENT

STORE C INCREMENT

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE

A4

Mnemonic

RSUP
RUNI
SCLF
SCRF
SCRR
SCRS
SCRT
SCNI
SCNO
SEQD
SEQU
SWFD
SWFU
SGED
SGEU
SGTD
SGTU
SLED
SLEU
SLSD
SLSU
SNED
SNEU
SWTD
SWTU
SPLT
SXSN
SINT
SPRR
STAG
XTND
SNGL
SNGT
JOIN

SFDC
SFSC

SRDC
SRSC
STBR
STA
STAI
STB
STBI
STC
STCI
STOD

TN
1LUEN

Hexa-
Decimal
_Code

95B6

9541
Cco

C6
C8
C4
C2
954A
954B
95F4
95FC
95D4
95DC
95F1
95F9
95F2
95FA
95F3
95FB
95F0
95F8
95F5
95FD
95D5
95DD
9543
D6
9545
95B9
95B4
CE
CD
CcC
9542

DA
D2

DB
D3
A4
FO
F1
F2
F3
F4
F5
B8
B%

B 6900 System Reference Manual
Operators, Alphabetical List

Name

STRING ISOLATE

STUFF ENVIRONMENT

SUBTRACT

TABLE ENTER EDIT, DESTRUCTIVE
TABLE ENTER EDIT, UPDATE

TRANSFER UNCONDITIONAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, UPDATE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, UPDATE
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE GREATER OR EQUAL, UPDATE

TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE GREATER, UPDATE

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE

TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, DESTRUCTIVE
TRANSFER WHILE TRUE, UPDATE
TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE LESS, UPDATE
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER WORDS OVERWRITE DESTRUCTIVE
TRANSFER WORDS OVERWRITE UPDATE
TRANSFER WORDS, DESTRUCTIVE
TRANSFER WORDS, UPDATE

TRANSLATE

UNPACK ABSOLUTE, DESTRUCTIVE
UNPACK ABSOLUTE, UPDATE

UNPACK SIGNED, DESTRUCTIVE

UNPACK SIGNED, UPDATE

VALUE CALL

VECTOR BRANCH

VECTOR MODE ENTER MULTIPLE

VECTOR MODE ENTER SINGLE

VECTOR MODE EXIiT

WRITE TIME OF DAY

5010986

Mnemonic

SISO
STFF
SUBT
TEED
TEEU
TUND
TUNU
TEQD
TEQU

TGED
TGEU
TGTD
TGTU
TLED
TWFD
TWFU
TWTD
TWTU
TLEU
TLSD

TLSU

TNED

TATTITT

INEU
TWOD
TWOU
TWSD
TWSU
TRNS
UABD
UABU
USND
USNU
VALC
VEBR
VMEM
VMES
VMEX
WTOD

Hexa-
Decimai
Code

D5
AF
81

D8
E6
EE
E4
EC

E1l

E9
E2
EA
E3
95D2
95DA
95D3
95DB
EB
EO
E8
E5

nr

oy

DC
D3
DB
95D7
95D1
95D9
95D0
95D8
00 = 3F
EE
EF
E7
E6
9549

A-5

Hexa-
Decimal

Code
PRIMARY MODE

00=3F
40=7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
Ad
AS
A6
A7
A8

5010986

B 6900 System Reference Manual

.

APPENDIX B
OPERATORS, NUMERICAL LIST

Name

VALUE CALL

NAME CALL

ADD

SUBTRACT

MULTIPLY

DIVIDE

INTEGER DIVIDE
REMAINDER DIVIDE
INTEGERIZE, TRUNCATED
INTEGERIZE, ROUNDED
LESS THAN

GREATER THAN OR EQUAL
GREATER THAN

LESS THAN OR EQUAL
EQUAL

NOT EQUAL

CHANGE SIGN BIT
EXTENDED MULTIPLY
LOGICAL AND

LOGICAL OR

LOGICAL NEGATE
LOGICAL EQUIVALENCE
LOGICAL EQUAL

ESCAPE TO 16-BIT INSTRUCTION
BIT SET

DYNAMIC BIT SET

FIELD TRANSFER
DYNAMIC FIELD TRANSFER
FIELD ISOLATE

DYNAMIC FIELD ISOLATE

CIEI D INSERT

LA AINDX

DYNAMIC FIELD INSERT
BIT RESET

DYNAMIC BIT RESET
BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL
EXIT

STEP AND BRANCH
INDEX AND LOAD NAME
INDEX

RETURN

DYNAMIC BRANCH FALSE

Mnemonic

VALC
NAMC
ADD
SUBT
MULT
DIVD
IDIV
RDIV
NTIA
NTGR
LESS
GREQ
GRTR
LSEQ
EQUL
NEQL
CHSN
MULX
LAND
LOR
LNOT
LEQV
SAME
VARI
BSET
DBST
FLTR
DFTR
ISOL
DISO
INSR
DINS
BRST
DBRS
BRFL
BRTR
BRUN
EXIT
STBR
NXLN
INDX
RETN
DBFL

Hexa-
Decimal
Code

B2

B 6900 System Reference Manual
Operators, Numerical List

Name

DYNAMIC BRANCH TRUE
DYNAMIC BRANCH UNCONDITIONAL
ENTER

EVALUATE DESCRIPTOR

INDEX AND LOAD VALUE

MARK STACK

STUFF ENVIRONMENT

LIT CALL ZERO

LIT CALL ONE

LIT CALL 8-BITS

LIT CALL 16-BITS

PUSH DOWN STACK REGISTERS
DELETE TOP-OF-STACK
EXCHANGE

DUPLICATE TOP-OF-STACK

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE
OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
LOAD

LIT CALL 48-BITS

MAKE PROGRAM CONTROL WORD
SCALE LEFT

DYNAMIC SCALE LEFT

SCALE RIGHT TRUNCATE
DYNAMIC SCALE RIGHT RUNCATE
SCALE RIGHT SAVE

DYNAMIC SCALE RIGHT SAVE
SCALE RIGHT FINAL

DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUNDED

DYNAMIC SCALE RIGHT ROUND
INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT, UPDATE

SET TO SINGLE-PRECISION, TRUNCATED
SET TO SINGLE-PRECISION, ROUNDED
SET TO DOUBLE-PRECISION
INSERT MARK STACK

TABLE ENTER EDIT, DESTRUCTIVE
PACK DESTRUCTIVE

EXECUTE SINGLE MICRO, DESTRUCTIVE
TRANSFER WORDS, DESTRUCTIVE

- TRANSFER WORDS OVERWRITE DESTRUCTIVE

STRING ISOLATE

SET EXTERNAL SIGN

READ AND CLEAR OVERFLOW FLIP-FLOP
TABLE ENTER EDIT, UPDATE

PACK UPDATE

Mnemonic

DBTR
DBUN
ENTR
EVAL
NXLV
MKST
STFF
ZERO
ONE
LT8
LT16
PUSH
DLET
EXCH
DUPL
STOD
STON
OVRD
OVRN
LOAD
LT48
MPCW
SCLF
DSLF
SCRT
DSRT
SCRS
DSRS
SCRF
DSRF
SCRR
DSRR
ICVD
ICVU
SNGT
SNGL
XTND
IMKS
TEED
PACD
EXSD
TWSD
TWOD
SISO
SXSN
ROFF
TEEU
PACU

Hexa-
Decimal
Code

F4
F5

F8
F9
FA
FB
FC
FD
FE
FF

VARIANT MODE

9540
9541
9542
9543
9544

5010986

B 6900 System Reference Manual
Operators, Numerical List

Name

EXECUTE SINGLE MICRO, UPDATE

TRANSFER WORDS, UPDATE

TRANSFER WORDS OVERWRITE UPDATE
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE
READ TRUE/FALSE FLIP-FLOP

CONDITIONAL HALT ‘
TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, DESTRUCTIVE
VECTOR MODE ENTER SINGLE

TRANSFER WHILE LESS, UPDATE

TRANSFER WHILE GREATER OR EQUAL, UPDATE
TRANSFER WHILE GREATER, UPDATE
TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE EQUAL, UPDATE

TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER UNCONDITIONAL, UPDATE

VECTOR MODE ENTER MULTIPLE

COMPARE CHARACTERS LESS, DESTRUCTIVE
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS EQUAL, DESTRUCTIVE
COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS LESS, UPDATE

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE

COMPARE CHARACTERS GREATER, UPDATE
COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARE CHARACTERS EQUAL, UPDATE
COMPARE CHARACTERS NOT EQUAL, UPDATE

NO OPERATION

INVALID OPERATOR

READ CENTRAL PROCESSOR COUNTER
RUNNING TIMER

SET TWO SINGLES TO DOUBLE

SET DOUBLE TO TWO SINGLES

IDLE UNTIL INTERRUPT

Mnemonic

EXSU
TWSU
TWOU
EXPU
TRFF
HALT
TLSD

TGED
TGTD
TLED
TEQD
TNED
TUND
VMES
TLSU
TGEU
TGTU
TLEU
TEQU
TNEU
TUNU
VMEM
CLSD

CGED
CGTD

CLED
CEQD

CNED
CLSU
CGEU
CGTU
CLEU
CEQU
CNEU
NOOP

- NVLD

RCPC
RUNI
JOIN
SPLT
IDLE

B 6900 System Reference Manual
Operators, Numerical List

Hexa-

Decimal
Code Name Mnemonic
9545 SET INTERVAL TIMER SINT
9546 ENABLE EXTERNAL INTERRUPTS EEXI
9547 DISABLE EXTERNAL INTERRUPTS DEXI
9549 WRITE TIME OF DAY WTOD
954A SCAN-IN SCNI
954B SCAN-OUT SCNO
954C CONTROL UNIVERSAL INPUT OUTPUT CuIo
954E READ PROCESSOR IDENTIFICATION WHOI
9585 OCCURS INDEX OCRX
9587 INTEGERIZE, ROUNDED, DOUBLE-PRECISION NTGD
958B LEADING ONE TEST LOG2
958E NORMALIZE NORM
95A7 READ TIME OF DAY RTOD
95AF MOVE TO STACK MVST
95B3 READ COMPARE FLIP-FLOP RCMP
95B4 SET TAG FIELD STAG
95BS5 READ TAG FIELD RTAG
95B6 ROTATE STACK UP RSUP
95B7 ROTATE STACK DOWN RSDN
95B8 READ PROCESSOR REGISTER RPRR
95B9 SET PROCESSOR REGISTER SPRR
95BA READ WITH LOCK RDLK
95BB COUNT BINARY ONES CBON
95BC LOAD TRANSPARENT LODT
95BD LINKED LIST LOOKUP LLLU
95BE MASKED SEARCH FOR EQUAL SRCH
95D0 UNPACK SIGNED, DESTRUCTIVE USND
95D1 UNPACK ABSOLUTE, DESTRUCTIVE UABD
95D2 TRANSFER WHILE FALSE, DESTRUCTIVE TWFD
95D3 TRANSFER WHILE TRUE, DESTRUCTIVE TWTD
95D4 SCAN WHILE FALSE, DESTRUCTIVE SWFD
95D5 SCAN WHILE TRUE, DESTRUCTIVE SWTD
95D7 TRANSLATE TRNS
95D8 UNPACK SIGNED, UPDATE USNU
95D9 TUNPACK ABSOLUTE, UPDATE UABU
95DA TRANSFER WHILE FALSE, UPDATE TWFU
95DB TRANSFER WHILE TRUE, UPDATE TWTU
95DC SCAN WHILE FALSE, UPDATE SWFU
95DD SCAN WHILE TRUE, UPDATE SWTU
95DF CONDITIONAL HALT HALT
95F0 SCAN WHILE LESS, DESTRUCTIVE SLSD
95F1 SCAN WHILE GREATER OR EQUAL,

DESTRUCTIVE SGED
95F2 SCAN WHILE GREATER, DESTRUCTIVE SGTD
95F3 SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED
95F4 SCAN WHILE EQUAL, DESTRUCTIVE SEQD
95F5 SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED
95F8 SCAN WHILE LESS, UPDATE SLSU
95F9 SCAN WHILE GREATER OR EQUAL, UPDATE SGEU

Hexa-
Decimal
Code

9SFA
95FB
9SFC
95FD
95FE
95FF

EDIT MODE

DO
Di
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
FE
FF

VECTOR MODE

EO
El
E2
E3
E4
ES
E6
E8
E9
EA
EB
EC
ED
EE
FO
Fl1
F2
F3
F4

5010986

B 6900 System Reference Manual
Operators, Numerical List

Name

SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE EQUAL, UPDATE

SCAN WHILE NOT EQUAL, UPDATE

NO OPERATION

INVALID

MOVE WITH INSERT

MOVE WITH FLOAT

SKIP FORWARD SOURCE CHARACTERS
SKIP REVERSE SOURCE CHARACTERS
RESET FLOAT

END FLOAT

MOVE NUMERIC UNCONDITIONAL

MOVE CHARACTERS

INSERT OVERPUNCH

INSERT DISPLAY SIGN

SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL

INSERT CONDITIONAL
END EDIT

ioarza

CONDITIONAL HALT
NO OPERATION
INVALID

LOAD A

LOAD A INCREMENT

LOADB

LOAD B INCREMENT

LOADC

LOAD C INCREMENT
VECTOR MODE EXIT

DOUBLE LOAD A

DOUBLE LOAD A INCREMENT
DOUBLE LOAD B

DOUBLE LOAD B INCREMENT
DOUBLE LOAD C

DOUBLE LOAD C INCREMENT
VECTOR BRANCH

STORE A

STORE A INCREMENT

STORE B

STORE B INCREMENT
STOREC

Mnemonic

SGTU
SLEU
SEQU
SNEU
NOOP
NVLD

MINS
MFLT
SFSC
SRSC
RSTF
ENDF
MVNU
MCHR
INOP
INSG
SFDC
SRDC
INSU
INSC
ENDE
HALT
NOOP
NVLD

LDA
LDAI
LDB
LDBI
LDC
LDCI
VMEX
DLA
DLAI
DLB
DLBI
DLC
DLCI
VEBR
STA
STAI
STB
STBI
STC

B 6900 System Reference Manual
Operators, Numerical List

Hexa-
Decimal

Code _ Name Mnemonic
FS STORE C INCREMENT STCI
F8 DOUBLE STORE A DSA
F9 DOUBLE STORE A INCREMENT DSAI
FA DOUBLE STORE B DSB
FB DOUBLE STORE B INCREMENT DSBI
FC DOUBLE STORE C DSC
FD DOUBLE STORE C INCREMENT DSCI

B 6900 System Reference Manual

APPENDIX C
DATA REPRESENTATION

EBCDIC Decimal EBCDIC Hex. EBCDIC

Graphic Value Internal Graphic Card Code Octal

BLANK 64 0100 0000 40 No Punches 60
[74 0100 1010 4A 12 8 2 33
. 75 0100 1011 4B 1283 32
< 76 0100 1100 4C 128 4 36
(77 01001101 4D 1285 35
+ 78 01001110 4E 12 86
| 79 01001111 4F 1287 37
& 80 0101 0000 50 _ 12 34
] 90 0101 1010 SA 1182 76
$ 91 0101 1011 5B 11 8 3 52
* 92 0101 1100 5C 11 8 4 - 53
) 93 0101 1101 sD 1185 55
; 94 0101 1110 SE 11 8 6 56

95 0101 1111 SF 11 8 7 57
. 96 0110 0000 60 11 54
/ 97 0110 0001 61 01 61
s 107 01101011 6B 083 72
% 108 01101100 6C 084 73
- 109 01101101 6D 085 74
> ii0 01101110 6E 086 i6
? 111 01101111 6F 087 14
122 0111 1010 7A 82 15

123 0111 1011 7B 83 12
@ 124 01111100 7C 8 4 13
i 125 01111101 7D 85 17
= 126 01111110 7E 86 75
” 127 01111111 7F 8 7 77

#PZ L 192 1100 0000 co 120 20
A 193 1100 0001 Cl 12 1 21
B 194 1100 0010 C2 12 2 22
C i95 1100 6011 C3 iz 3 23
D 196 1100 0100 Cc4 12 4 24
E 197 1100 0101 C5 125 25
F 198 11000110 Cé6 12 6 26
G 199 11000111 Cc7 12 7 C 27
H 200 1100 1000 Cc8 12 8 30
I 201 1100 1001 Cc9 129 31

(OMZ 208 1101 0000 DO 110 40
J ' 209 1101 0001 DI 111 41

*All other codes

5010986

C2

EBCDIC
Graphic

Decimal
Value

210
211
212
213
214
215
216
217

224
226
227
228
229
230
231
232
233

240
241
242
243
244
245
246
247
248
249

B 6900 System Reference Manual

Data Representation

EBCDIC
Internal

1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001

1110 0000
11100010
11100011
11100100
11100101
11100110
11100111
1110 1000
1110 1001

1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
11110110
11110111
1111 1000
1111 1001

Hex.
Graphic

D2
D3
D4
Ds
D6
D7
D8
D9

EO
E2
E3
E4
ES
E6
E7
E8
E9

FO
F1
F2
F3
F4
FS
F6
F7
F8
F9

EBCDIC
Card Code

11
11
11
11
11
11
11
11

OO~V Hh W —=O COO0OO0O0O0OO0CCOOO0O

O 001\ L b Wt oo O 001N A WN

Octal

42
43

45

47
S0
51

62
63

65
66
67
70
71

01
02
03

05
06
07
10
11

B 6900 System Reference Manual

APPENDIX D

B 6900 EBCDIC/HEX CARD CODE

Slel-lalm]s|w]|e|~n]|o oo wlol|~ =
Sie I L3835 S
4 z
x X
wlo|l~|njo|jes|v]jo|n|olo|<d|lajOo|0w | W
X I
Ljo]l-|N|o|gd|vw|jOo(~Nlo]|l® A Liloo I+
o wl ./ wlF|D]>I2IX|>|N wi oo |
[DA}.OJKLMNOPQR ol o I+
+ o <{mjOojojwiwio|T| ol e o +
H-O|
+ | o o) o] o I+
I o < { lwle|s| s3] x|>|n~ < o |
+ | o —jx|~=|Ejcjo|a|o|~ o |+
+ O] © | Q0D w|lw]| .~ o o +
p——————————
+ oo~ MESICIRETE S (S
lool|eo] | |~ - 2 _ Ale lo o
+ RIS R K]]$*)1—-5
N
+ ocoj<|a —le |V]—i+ =1l +
Z = < | ¥ @
alle, > o) o1 < Sile|le
[7,] w [a R4 Wy
LI
oo Q| !g
C N LikFlo ZiQlwljallo o
S |w|w wiC|m
——
Wil |NI®™ p=4
| o~ %) g| S wlalw|lel~—|lo
olalo|a @ Olw wlolae|S]
g = o b4 |
+ 90U0_v|AT = L wleclol(_]lo| o +
Zln|wn|w I [a] LjOjwvn|n
j W“[j
x x
NOZulwfjoj—~|d|mstlwioNlo|lo|dnjol0jw e wWii{NOZwW
I I
3 3
- |~ N ~ — NI M [To N I~ 20 M
Z| o N I e g @ w|co|md M V|| 2

5010986

D-1

B 6900 System Reference Manual
B 6900 EBCDIC/HEX Card Code

Use of the B 6900 EBCDIC/HEX Card Code Chart.
a. Locate the desired EBCDIC graphic code within the table.
b. The two-part hexadecimal code is read as follows:
1. The first part is found in the vertical column above or below the desired EBCDIC code.

2. The second part is found in the horizontal row either to the right or left of the desired EBCDIC code.

(a) Examples:
SYN
F

32
Cé6

[

c. The two-part card code is found in the same manner as HEX (2) except the zone and numeric bits are
read from the very outer portion of the table.

1. Examples:

2. The card code exceptions to the above procedures are enclosed in heavy lines on the chart and are
defined below:

(1) 00 =+ 0981 (NUL)
(2) 10 =+ -981 (DLE)
(3) 20 =-0981

(4) 30 =+-0981

(5) 40 = BLANK

6) 50=+(&)
(1) 60=-()
® 70=+-0

© co=+0({)@)
(10) DO=-0(})@®)
(11) EO=.082()
(12) FO=0(0)
(13) 61=01()
(14) El1=-091
(15) 6A=+-(})

B 6900 System Reference Manual

INDEX

AAITF Command (Soft Display), 4-74
Absolute Address Conversion, 2-22, 3-14
ADD Command (Soft Display), 4-78
Address Couple, 2-20

Add, 7-1

Adder, Address, 5-7

Adder, Exponent, 5-11

Adder, Mantissa, 5-11

Adder, Residue Interrupt, 5-18
Address Adder, 5-11

Address Environment Defined, 3-12
Address Retry Interrupt, 5-23

Alarm Interrupts, 5-15

ALTF Command (Soft Display), 4-74
American Standard Code for Information Interchange, 2-3
ARCS Command (Soft Display), 4-72
A Register, 4-6

ASCII, 2-3

Arithmetic Controller, 5-11
Arithmetic Operators, 7-1

AROF, 3-3,4-29

Base and Limit of Stack, 3-2

Base of Address Level Segment, 3-14
Base Module, 1-17

Bit Operators, 7-13

Bit Reset, 7-14

Bit Reset Dynamic, 7-14

Bit Set, 7-13

Bit Set Dynamic, 7-13

Bit Sign Change, 7-14

Bottom of Stack Interrupt, 5-29
Branch False, 7-7

Branch False Dynamic, 7-8

Branch Operators, 7-7

Branch True, 7-8 '

Branch True Dynamic, 7-8

Branch Unconditional, 7-8

Branch Unconditional Dynamic, 7-8
B Register, 4-6

BRIGHT Command (Soft Display), 4-78
BROF, 3-3,4-30

Brownout, 1-13

Bus Residue Interrupts, 5-20

Cabinets, 1-2

CAPTUR Command (Soft Display), 4-79
Central Power Cabinet, 1-13

Central Processor Unit Cabinet, 1-4
Change Sign, 7-14

Character Codes, Internal, 2-3

5010986

Character Type Data, 2-10

CHLT Command (Soft Display), 4-74

Clocks, 14

CLRIC Command (Soft Display), 4-79

CLRMM Command (Soft Display), 4-80

Command Queue, 11-26

Command Queue Control Word, 11-26

Command Queue Head IOCB Link, 11-26, 11-28

Command Queue Horizontal Queue Head Pointer,
11-26, 1129

Command Queue Horizontal Queue Link, 11-26, 11-29

Command Queue Tail IOCB Link, 11-26,11-28

Compare Characters Equal Destructive, 7-19

Compare Characters Equal Update, 7-19

Compare Characters Greater, Destructive, 7-18

Compare Characters Greater or Equal, Destructive, 7-18

Compare Characters Greater or Equal Update, 7-19

Compare Characters Greater, Update, 7-18

Compare Characters Less Destructive, 7-20

Compare Characters Less or Equal Destructive, 7-20

Compare Characters Less or Equal Update, 7-20

Compare Characters Less Update, 7-20

Compare Characters Not Equal Destructive, 7-20

Compare Characters Not Equal Update, 7-20

Compare Operators, 7-18

Compare Residue Interrupt, 5-20

Conditional Halt, 4-51

Confidence Error Interrupt, 5-31

Control Universal Input Qutput Operator, 5-38, 8-3

Controller, Arithmetic, 5-11

Controller, Interrupt, 5-11

Controller, Memory, 5-32

Controller, Program, 5-2

Controller, Stack, 5-10

Controller, Transfer, 5-7

Control State/Normal State, 5-33

Copy Bit, 3-6

Count Binary Ones, 8-8

CPTF Command (Soft Display), 4-74

C Register, 4-6

CSTP Command (Soft Display), 4-74

Data Addressing, 3-5

Data-Dependent Presence Bit, 5-30

Data Descriptor, 2-15

Data Field Convention, 2-3

Data Link Processor (DLP) Devices, 11-2
Data Processor, 14

Data Representation, 2-1

Data Types and Physical Layout, 2-1
Decimal to Coded Number Conversion, 2-6

Index-1

B 6900 System Reference Manual

INDEX (Cont)

Decimal and Hexadecimal Table Conversion, 2-8 Execute Single Micro Single Pointer Update, 7-21

DEL Command (Soft Display), 4-80
Delete Top-of-Stack, 7-10
Descriptor Link Words, 11-8

DIFF Command (Soft Display), 4-81
Disable External Interrupts, 8-2
Display Panels, 4-1

Display Register, 4-1

Display Registers, 4-1

Display Signal, 4-7

Divide, 7-2

Divide by Zero Interrupt, 5-29

DLP Device, 11-2

Double Load A, 10-7

Double Load A Increment, 10-7
Double Load B, 10-7

Double Load B Increment, 10-7
Double Load C, 10-7

Double Load C, Increment, 10-7
Double Store A, 10-7

Double Store A Increment, 10-7
Double Store B, 10-7

Double Store B Increment, 10-8
Double Store C, 10-7

Double Store C Increment, 10-8
Double-Precision Operands, 2-12
Double-Precision Stack OP, 3-3
DO-UNTIL Command (Soft Display), 4-81
DUMP Command (Soft Display), 4-82
Duplicate Top-of-Stack, 7-10
Dynamic Branch False, 7-8
Dynamic Branch True, 7-8

Dynamic Branch Unconditional, 7-8

EBCDIC, 2-3

Edit Mode Operation, 9-1

Edit Mode Operators, 9-1

Enable External Interrupts, 8-2

END Command (Soft Display), 4-83
End Edit, 94

End Float, 9-3

Enter Operators, 7-20, 7-27, 7-32
Enter Vector Mode, 7-32

Equal, 7-7

Error IOCB, 11-35

Escape to 16-bit Instruction, 8-1
Evaluate, 7-27

EVNT Command (Soft Display), 4-74
Exchange, 7-10

EXEC Command (Soft Display), 4-83
Execute Single Micro Destructive, 7-21

Index-2

Execute Single Micro Update, 7-21

Exit Operator, 7-23

Exponent Adder, 5-11

Exponent Overflow and Underflow Interrupt, 5-29
Extended Binary Coded Decimal Interchange Code, 2-3
External Interrupts, 5-23

Family A, 5-1

Family B, 5-1

Family C, 5-1

FAMILY Command (Soft Display), 4-76,4-84
Family D, 5-1

Family E, 5-1

Family U (F, G, H), 5-1

Field Insert, 7-15

Field Insert Dynamic, 7-15
Field Isolate, 7-14

Field Isolate Dynamic, 7-15
Field Transfer, 7-14

Field Transfer Dynamic, 7-14

Global Memory, 5-65

Global Memory Addressing, 5-64

Global Memory Module (GMM), 5-65

Global Memory Not Ready Interrupt, 5-18

Global Memory Port, 5-69

Global Priority Word, 119

Global System Control, 5-74

Global System Control Operations, 5-76
Global SCAN-OUT, 5-76
Global SCAN-IN, 5-77
Global Scan Operation Function Word, 5-76
Global Scan Operation Data Word, 5-76
Global Scan Operation Response Word, 5-78
Giobal Scan Operation OP Code Field, 5-78
Global Scan Operation Variant (VV) Field, 5-78
Global Scan Operation Receiver Address Field, 5-77

Global System Organization, 5-65

Global Physical Structure, 5-66
Eilementary Global System Requirements, 5-66

Global Memory Module Interface, 5-84

Global Memory Port Interface Control Logic, 5-84

Global Memory Port Processor Status and Control Logic,
5-86

Global Logical Structure, 5-68

Global Processor Name, 568

Global Master-Slave Relationship, 5-68

Global Logical Levels, 5-69

Global Port Identification Addressing, 5-68

Global Logical Name Addressing, 5-68

B 6900 System Reference Manual

Global Logical Name Addressing, 5-68
Global Mask, 5-68

Greater Than, 7-6

Greater Than or Equal, 7-7

HALT Command (Soft Display), 4-72
Hardware Interrupts, 5-18

HELP Command (Soft Display), 4-84
Hexadecimal and Octal Notation, 24
Hexadecimal to Decimal Table Conversion, 2-8
Horizontal Queue, 11-30

Horizontal Queue Header Array Header, 11-30
Horizontal Queue Head Word, 11-30, 11-31

Idle Confidence Testing, 1-7

Idle Until Interrupt, 8-2

Index, 7-11

Index and Load Name, 7-11

Index and Load Operators, 7-11

Index and Load Value, 7-12

Index Bit, 3-5

Index, Invalid, 3-5

Index, Valid, 3-5

Indirect Reference Word, 2-19

INFO Command {Soft Display), 4-85
Initialize Running Timer Operator, 5-38, 8-1
Input Convert Destructive, 7-22

Input Convert Operators, 7-21

Input Convert Update, 7-22
Input/Output Control Block (IOCB), 545
Input/Output Device Operation, 1-8, 11-1,11-6
INSERT Command (Soft Display), 4-85
Insert Conditional, 9-3

Insert Display Sign, 9-3

Insert Mark Stack Operator, 7-27

Insert Overpunch, 9-3

Insert Unconditional, 9-3

Integer Divide, 7-3

Integerized Rounded, D P., 7-3

Integerize Rounded, 7-3

Integerize Truncated, 7-3

Integer Overflow Interrupt, 5-29
Integrated Circuit (IC) Memory, 5-5
Integrated Circuit (IC) Memory Cabinet, 1-19
Internal Character Codes, 2-3

Internal Data Transfer Section, 5-9
Interrupt Controller, 5-11

Interrupt Handling, 5-11

Interrupt Parameters, 2-25, 5-13

Interrupt System, 2-25

Interrupts, Alarm, 5-15

5010986

INDEX (Cont)

Interrupts, External, 5-23

Interrupts, Operator Dependent, 5-24

Interval Timer Interrupt, 5-31

Invalid Address Interrupt, 5-17

Invalid Address Residue Interrupt, 5-18

Invalid Address Local Interrupt, 5-17

Invalid Address Global Interrupt, 5-18

Invalid Index Interrupt, 5-29

Invalid Operand Interrupt, 5-29

Invalid Operator, 7-9

Invalid Program Word Interrupt, 5-17

I0OCB Command Queue Head Pointer, 11-10, 11-17
T10CB Control Word, 11-10, 11-12

IOCB DLP Address Word, 11-10, 11-16

I0CB BLP Command/Result Lengths Word, 11-10, 11-19
IOCB DLP I/O Command Pointer, 11-10, 11-18
TOCB I/O Finish Time Word, 11-10, 11-26

IOCB DLP I/O Result Pointer, 11-10, 11-18
IOCB1/O Start Time Word, 11-10, 11-25

I0CB MLIP Current Data Area Pointer, 11-10,11-22
IOCB MLIP Current 1/O Length Word, 11-10, 11-22
I0CB MLIP State and Result Word, 11-10, 11-23
IOCB Next IOCB Link Word, 11-10, 11-21

IOCB Organization, 11-10

iOCB Resuit Mask Word, 11-i0, 11-20

10CB Result Queue Head Pointer, 11-10, 11-20
IOCB Self Pointer, 11-10, 11-17

IOCB Valid Control-Field Bit Configurations, 11-14
IOCB Word Layout, 545

IODC to MLIP Connection Sequence, 11-9

1/O Descriptor, 11-7

Job Splitting, 3-17
Keyboard Control Keys, 1-23

Leading One Test, 8-5

Less Than, 7-7

Less Than or Equal, 7-7
Level Definition, 2-21, 3-14
Lexicographical Level, 3-14
Light Emitting Diode, 4-1
Linked List Lookup, 8-8
Lit Call Zero, 7-10

Lit Call One, 7-10

Lit Call 8-Bits, 7-10

Lit Call 16-Bits, 7-11

Lit Call 48-Bits, 7-11
Literal Call Operators, 7-10
Load, 7-12

Load A, 10-6

Index-3

B 6900 System Reference Manual

Load A Increment, 10-6

Load B, 10-6

Load B Increment, 10-6

Load C, 10-6

Load C Increment, 10-6

Load Transparent, 8-8

Local Memory Allocation, 3-12
Local Memory Interface, 5-80
LOCL Command (Soft Display), 4-74
Logical AND, 7-5

Logical Equal, 7-5

Logical Equivalence, 7-5
Logical Negate, 7-5

Logical Operands, 2-14

Logical Operators, 7-5

Logical OR, 7-5

Logic Card Testing, 1-7
Longitudinal Parity Word (LPW), 11-7
Look Ahead Logic, 14, 5-5
Loop Interrupt, 5-17

LPW Word, 11-8

Mainienance Conirol Panel, 4-57
Maintenance Display Processor, 1-9, 4-1
Maintenance Processor, 1-9, 4-1
Maintenance Processor Control Panel, 4-60
Make PCW, 7-11

Mantissa Field, 2-11

Mark Stack Control Word, 2-23

Mark Stack Control Word Linkage, 3-13
Mark Stack Operator, 7-27

Mask and Steering, 5-9

Mask and Steering Example, 5-9
Masked Search for Equal, 8-8

Master Control Program, 1-1

Memory Address, 5-64

Memory Address Interrupt, 5-17, 5-23
Memory Addressing, 5-64

Memory Area Allocation, 3-12

Memory Bus, 5-80

Memory Cabinet Configuration, 1-18
Memory Control, 19

Memory Controller, 5-64

Memory Error Detection/Correction, 1-9, 5-74
Memory Interface, 1-19, 5-64

Memory Module, 1-18

Memory Organization, 5-64 '

Memory Parity Interrupt, 5-18

Memory Port Interface, 5-80

Memory Ports, 1-19

Memory Priority, 5-58

Index-4

INDEX (Cont)

Memory Protect Interrupt, 5-28

Memory Protection, 5-28

Memory Retry, 5-22,5-74

Memory Stack Controller, 5-10

Memory Tester, 5-88

Memory Testing, 5-88

Memory Words, 2-1

Message Level Interface Processor (MLIP), 1-8, 5-33
MLIP, 1-8,5-33

MLIP Barrel Shift Operations, 5-57, 5-63
MLIP Base Busy Timer, 541

MLIP Burst Data Memory Operation, 5-57
MLIP Command Queue, 546

MLIP Commands, 11-32

MLIP Connect/Disconnect Sequence, 5-53
MLIP Error Handling, 5-63

MLIP Interfaces, 5-34

MLIP Interval Timer, 541

MLIP Loop Timer, 540

MLIP Memory Operation, 5-57

MLIP Polling Operation, 5-53

MLIP Poll Request Operation, 5-53

MLIP Poll Test Operation, 5-53

MLIP Priority Sequencer, 542

MLIP Processor Timer, 5-39

MLIP RAM Memory, 5-51

MLIP RAM Memory Addressing, 5-52
MLIP Ready Timer, 541

MLIP Time-Of-Day Operation, 5-39

MLIP Running Timer, 540

MLIP To I0ODC Connection Sequence, 11-7
MLIP to Data Processor Interface, 5-37
MLIP to Micro-Module Interface, 5-37
MLIP to Peripheral Device Interface, 5-38
Module Definition, 5-64

Move Characters, 9-1

Move Numeric Unconditional, 9-1

Move to Stack, 8-5

Move With Float, 9-2

Move With Insert, 9-1

Multiple Stacks and Re-Entrant Code, 3-17
Multiple Variables (Common Address Couples), 3-14
Multiply, 7-2 :

Multiply (Extended), 7-2

Name Call, 6-4, 7-23

No Operation, 7-9

Normalize, 8-5

Normal State, 5-33

NOSTEP Command (Soft Display), 4-85
Not Equal, 7-7

B 6900 System Reference Manual

INDEX (Cont)

Number Bases, 24
Number Conversion, 2-5
NZDATA Command (Soft Display), 4-86

Occurs Index, 84

OCTAL Command (Soft Display), 4-74
Octal Notation, 24

ODT, 1-23,4-62

Operands, 2-11

Operation Types, 6-3

Operator Display Terminal, 1-13, 1-23, 4-62
Operators Control Console, 1-23
Operator Dependent Interrupts, 5-24
Operator Families, 5-1

Operator Panel, 1-23

Operators, 6-3

Overflow FF, Read and Clear, 7-22-
Overwrite Destructive, 7-9

Overwrite Non-Destructive, 7-10

Pack Destructive, 7-21

Pack Operators, 7-21

Pack Update, 7-21

Peripheral Device(s), 1-8, 5-33, 5-38, 542,545, 5-52,

563,116

Planar Core Memory Cabinet, 1-19
Polish Notation, 3-6

Polish String, 3-8

Polish String, Rules for Evaluating, 3-8
Polish String, Rules for Generating, 3-6
Poll Request Priority Resolution, 11-10
Power Busses, 1-16

Power Cabinet, 1-13

Power, System, 1-13

P Register, 6-1 _

P1 Parameter, 2-26, 5-13

P2 Parameter, 2-26, 5-13

P3 Parameter, 2-26, 5-13

Presence Bit, 3.5

Presence Bit Interrupt, 5-30

Primary Mode Operators, 7-1

Priority Sequencer, 542
Procedure-Dependent Presence Bit, 5-30
Processor, 14

Processor States, 5-33

Processor System Concept, 5-1
Program Control, 5-2

Program Controller, 5-2

Program Control Word, 2-22

Program Index Register, 2-23, 56
Programmed Operator, 5-2, 6-1

5010986

Program Operators, 5-2

Program (P) Register, 6-1

Program Structure, 3-11

Program Structure in Memory, 3-11
Program Segment, 3-12

Program Words, 6-1

PROGRM Command (Soft Display), 4-87
PROM Card Parity Interrupts, 5-20
PULSE Command (Soft Display), 4-72
Push Down Stack Registers, 3-2,7-10

RAM Card Parity Interrupts, 5-20

RD HDP Command (Soft Display), 4-87
RDIC Command (Soft Display), 4-88
RDMM Command (Soft Display), 4-88
Read and Clear Overflow FF, 7-22

Read Compare Flip-Flop, 8-6

Read Data Check Bit Interrupt, 5-23
Read Data Multiple Interrupt, 5-18

Read Data Retry Interrupt, 5-22

Read Data Single Error, Interrupt, 5-22
Read Only Bit, 3-6

Read Processor Identification, 8-3

Read Processor Register, 8-7

Read Processor Time Counter, 5-38, 8-1
Read TAG Field, 8-6

Read Time-of-Day Operator, 5-38, 8-5
Read True False FF, 7-22

Read With Lock, 8-7

Reentrance, 3-17

REGISTER Command (Soft Display), 4-65
Register, P, 6-1

Relational Operators, 7-5
Relative-Addressing, 3-13

Remainder Divide, 7-3

RESET Command (Soft Display), 4-65
Reset Float, 9-3

Residue Adder Testing, 5-7

Residue Testing, 5-7

RESTOR Command (Soft Display), 4-89
Result Queue, 11-34

Result Queue Header Word, 11-34
Result Queue Head Word, 11-35
RETURN Command (Soft Display), 4-90
Return Control Word, 2-31

Return Operator, 7-27

REVERS Command (Soft Display), 490
Reverse Polish Notation, 3-6

Rotate Stack Down, 8-7

Rotate Stack Up, 8-6

Rules for Generating Polish FString, Simplified, 3-6

Index-5

B 6900 System Reference Manual

SAFE Command (Soft Display), 4-74
SAVE Command (Soft Display), 4-90
Scale Left, 7-12

Scale Left Dynamic, 7-12

Scale Operators, 7-12

Scale Right Dynamic Final, 7-13

Scale Right Dynamic Save, 7-13

Scale Right Dynamic Truncate, 7-13
Scale Right Final, 7-13

Scale Right Round Dynamic, 7-13

Scale Right Rounded, 7-13

Scale Right Save, 7-12

Scale Right Truncate, 7-13

SCAN-IN, 8-3

SCAN-OUT, 8-3

Scan While Equal, Destructive, 8-11
Scan While Equal, Update, 8-11

Scan While False, Destructive, 8-12
Scan While False, Update, 8-12

Scan While Greater, Destructive, 8-10
Scan While Greater, Update, 8-11

Scan While Greater or Equal, Destructive, 8-11
Scan While Greater or Equai, Update, 8-11
Scan While Less, Destructive, 8-11

Scan While Less or Equal, Destructive, 8-11
Scan While Less or Equal, Update, 8-11
Scan While Less, Update, 8-11

Scan While Not Equal, Destructive, 8-12
Scan While Not Equal, Update, 8-12
Scan While True, Destructive, 8-12

Scan While True, Update, 8-12

SECL Command (Soft Display), 4-75
Segment Descriptor, 2-32

Segment Dictionary, 3-12

SET Command (Soft Display), 4-65

Set Double to Two Singles, 8-2

Set External Sign, 7-22

Set Interval Timer, 8-2 -

Set Processor Register, 8-7

Set TAG Field, 86

Set to Double-Precision, 7-4

Set to Single-Precision Rounded, 7-4
Set to Single-Precision Truncated, 74
Set Two Singles to Double, 8-1

Single Precision Operands, 2-11

Skip Forward Destination Characters, 9-2
Skip Forward Source Characters, 9-2
Skip Reverse Destination Characters, 9-3
Skip Reverse Source Characters, 9-2
SMEAR Command (Soft Display), 4-91
Software Words, 2-18

Index-6

INDEX (Cont)

Soft Display, 4-1,4-62

Soft Display Command Categories, 4-64

Soft Display Command Structure, 4-63

Soft Display Command Syntax, 4-65

Soft Display Commands, 4-64

Soft Display Families Control Commands, 4-76
Soft Display Functions Commands, 4-78

Soft Display General Commands, 4-65

Soft Display Maintenance and Event Control Commands,

4.73
Soft Display Program, 1-13, 4-62
Software Words, 2-18
Stack, 3-1
Stack Adjustment, 3-3
Stack Area, 3-1
Stack, Base and Limit, 3-2
Stack, Bi-Directional Data Flow, 3-2
Stack Boundries, 3-2
Stack Controller, 5-10
Stack Deletion, 3-13
Stack Descriptor, 3-17
Stack, Double-Precision Operation, 3-3
Stack-History and Addressing-Environment Lists, 2-12
Stack History, Summary, 3-17
Stack Operation, 3-8
Stack Operators, 7-10
Stack Pushdown, 3-2
Stack Pushup, 3-2
Stack Registers, 5-7
Stack, Simple Operation, 3-8
Stack Vector Descriptor, 3-18
States, Processor, 5-33
STATUS Command (Soft Display), 491
Status Display, 4-1
Step and Branch, 7:8
STEP Command (Soft Display), 4-72
Step Index Word, 2-17
STOP Command (Soft Display), 4-72
Store A, 10-6
Store A Increment, 10-7
Store B, 10-7
Store B Increment, 10-7
Store C, 10-7
Store C Increment, 10-7
Store Destructive, 7-9
Store, Non-Destructive, 7-9
Store Operators, 7-9
String Descriptor, 2-15
String Isolate, 7-18
String Operators, 5-32, 6-7
String Transfer Operators, 7-15

B 6900 System Reference Manual

Stuff Environment, 7-27

Stuffed Indirect Reference Word, 2-19
Subroutine Operators, 7-23

Subtract, 7-2

Syllable Addressing, 2-33, 6-1

Syllable Dependent Interrupts, 5-24
Syllable Format, 2-33, 6-1

Syllable Identification, 2-33, 6-1
System Clock, 14

System Concept, 5-1

System Controls, 1-23,4-51

System Control Commands, 4-72
System Control Panel, 4-51

System Description, 1-1

System Expansion, 1-1

System Maintenance Control Panel, 4-57
System Memory Interface, 1-19
System Options and Requirements, 1-1
System Organization, 1-1

System Power, 1-13

Table Enter Edit Destructive, 7-20

Table Enter Edit Update, 7-20

Terminal Device, 1-23

Top-of-Stack Control Word, 2-33
Top-of-Stack Register, 3-1, 3-3, 5-7
Transfer Controller, 5-7

Transfer Operators, 7-14

Transfer Unconditional Destructive, 7-17
Transfer Unconditional, Update, 7-18
Transfer While Equal, Destructive, 7-17
Transfer While Equal, Update, 7-17
Transfer While False, Destructive, 8-10
Transfer While False, Update, 8-10

Transfer While Greater Destructive, 7-16
Transfer While Greater or Equal, Update, 7-17
Transfer While Greater Update, 7-16
Transfer While Less, Destructive, 7-17
Transfer While Less, Update, 7-17

Transfer While Less or Equal, Destructive, 7-17
Transfer While Less or Equal, Update, 7-17
Transfer While Not Equal, Destructive, 7-17
Transfer While Not Equal, Update, 7-17
Transfer While True, Destructive, 89
Transfer While True, Update, 8-10

Transfer Words Destructive, 7-15

Transfer Words, Overwrite Destructive, 7-16
Transfer Words, Overwrite Update, 7-16
Transfer Words, Update, 7-16

Translate, 8-10

T Register, 6-1

5010986

INDEX (Cont)

True False FF, Read, 7-22
Type Transfer Operators, 7-4

Universal Operators, 7-9

Unpack Absolute Destructive, 8-9

Unpack Absolute Update, 8-9

Unpack Signed Destructive, 8-9
USERFAM Command (Soft Display), 4-92

Valid Index, 3-5

Value Bit, 2-25

Value Call, 64, 7-23

Variant Mode Operation and Operators, 8-1
Vector Mode Branch, 10-8

Vector Mode Exit, 10-8

Vector Mode Hardware Functions, 10-1
Vector Mode Limitations, 10-1

Vector Mode Enter Multiple, 10-2
Vector Mode Enter Single, 10-2

Vecter Mede Operator Codes, 10-5

WAIT Command (Soft Display), 4-93
Word Data Descriptor, 2-15

Word Definition, 2-1

Word Parity, 2-1

Word TAG Field, 2-1

Word Wraparound, 2-3

Word Data Formats, 2-1

Wrap Around, 2-3

WRIC Command (Soft Display), 493
Write Time-of-Day Operator, 5-38, 8-2
WRMM Command (Soft Display), 4-94

X Register, 3-1, 5-7

Y Register, 3-1,5-7

Z Register, 3-1,5-7

++ Command (Soft Display), 494
- - Command (Soft Display), 4-94

** Command (Soft Display), 4-94

Index-7

Title: B 6900 Svstem Reference Manqg_l‘

Documentation Evaluation Form

Please check type of Suggestion:

0O Addition

Comments:

O Deletion

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util-
ized in ensuing revisions to improve this manual.

Form No: 2010986

Date:.

O Revision

O Error

From:

Name

Title

Company

Address

Phone Number

Date

Remove form and mail to:

Burroughs Corporation
Documentation Dept., TIO - West
"P.0. Box 4040
El Monte, CA 91734

USA.

Printed in U.S.America July 1981 Form 5010086

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	01-01
	01-02
	01-03
	01-04
	01-05
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-20
	04-01
	04-03
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	04-87
	04-88
	04-89
	04-90
	04-91
	04-92
	04-93
	04-94
	05-01
	05-02
	05-03
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	05-83
	05-84
	05-85
	05-86
	05-87
	05-88
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-10
	reply
	xBack

