
~. Burroughs~

PRICED ITEM

Printed in U.S.America July 1981 Form 5010986

Burroughs m

B 6900 SYSTEM

REFERENCE MANUAL

Copyright © 1981, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Printed in U.S.America July 1981 Form 5010986

Burroughs believes that the information described in
this publication is accurate and reliable. and much care
has been taken in its preparation. However. no respon­
sibility, financial or otherwise. is accepted for any con­
sequences arising out of use of this information.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Warning: This equipment generates. uses. and can radiate radio frequency
energy and if not installed and used in accordance with the instructions
manual, may cause interference to radio communications. As temporarily per­
mitted by regulation. it has not been tested for compliance with the limits for
Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules.
which are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause interference
in which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Correspondence regarding this publication should be forwarded usmg the
Remarks form at the back of the manual. or may be addressed directly to
TIO West Documentation. Burroughs Corporation. P.O. Box 4040. El
Monte. California 91734. U.S.A.

B 6900 System Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue Page Issue

Title Original 545 thru 5-53 Original
ii Original 5-54 Blank
iii Original 5-55 Original
iv Blank 5-56 Blank
v thru xxi Original 5-57 thru 5-71 Original
xxii Blank 5-72 Blank
xxiii thru xxiv Original 5-73 thru 5-88 Original
1-1 thru 1-5 Original 6-1 thru 6-7 Original
i'-6 Blank 6-8 Blank
1-7 thru 1-26 Original 7-1 thru 7-33 Original
2-1 thru 2-34 Original 7-34 Blank
3-1 thru 3-18 Original 8-1thru8-12 Original
4-1 Original 9-1thru94 Original
4-2 Blank 10-1 thru I 0-8 Original
4-3 Original 11-1 thru 1142 Original
44 Blank A-1 thru A-5 Original
4-5 thru 4-94 Original A-6 Blank
5-1 thru 5-3 Original B-1 thru B-6 Original
54 Blank C-1 thru C-2 Original
5-5 thru 543 Original D-1 thru D-2 Original
544 Blank Index-I thru Index-7 Original

Index-8 Blank

5010986 iii

Section

2

5010986

B 6900 System Ref ere nee Manual

INTRODUCTION

SYSTEM DESCRIPTION
General
Scope of This Manual .

TABLE OF CONTENTS

B 6900 Hardware System Organization
B 6900 System Hardware Module Organization
B 6900 Module Interfaces.
B 6900 Central Processing Unit Cabinet .
Data Processor Module
Message Level Interface Processor (MLIP)
Memory Control Module
B 6900 Maintenance Processor and System Display .
Display Control Logic
B 6900 Central Power Supply Cabinet
Input Output Data Communication (IODC) Cabinet .

B 6900 Memory Cabinets . . .
B 6900 Operators Display Console .

DATA REPRESENTATION
General
Internal Character Codes
Number Bases
Number Conversion . .

Decimal to Nondecimal
Nondecimal to Decimal
Nondecimal to Nondecimal

Word Types and Physical Word Layouts
Character Type Words . .
Operands

~ngle-Precision Operand .
Double-Precision Operand .
Logical Operands .

Data Descriptors .
Step Index Words
SJftwaie W mds .
Indirect Reference Words
Program Control Words
Mark Stack Control Words
Interrupt Parameter Words

Pl Parameter
P3 Parameter . .
P2 Parameter . .

Return Control Words
Program Words (Code Words)
Program Segments and the Segment Descriptor .
Top-Of-Stack Control Words

xx iii

1-1
1-1
1-1
1-1
1-4
1-4
1-4
1-4
1-8
1-9
1~9.

1-13
1-13
1-17
1-18
1-23

2-1
2-1
2-3
2-4
2-5
2-6
2..6
2-7

2-10
2-10
2-11
2-11
2-12
2-14
2-15
2-17
2-18
2-19
2-22
2-23
2-25
2-26
2-26
2-26
2-31
2-31
2-32
2-33

v

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

Sec tin Page

3 STACK AND REVERSE POLISH NOTATION. 3-1
The Stack 3-1

Base and Limit of Stack 3-2
Bi-Directional Data Flow in the Stack 3-2

Stack Push Down 3-2
Stack Push Up 3-2

Double-Precision Stack Operation 3-3
Top-Of-Stack Register Conditions 3-3
Stack Adjustments 3-3
Data Addressing 3-5

Data Descriptor 3-S
Presence Bit 3-5
Index Bit 3-5

Invalid Index 3-5
Valid Index 3-5
Read-Only Bit . 3-6
Copy Bit 3-6

Reverse Polish Notation 3-6
Simplified Rules for Generation of Polish String 3-6
Polish String 3-8
Rules for Evaluating a Polish String . 3-8
Simple Stack Operation 3-8
Program Structure in Memory 3-11
Local Memory Area Allocation 3-12
Stack-History and Addressing-Environment Lists 3-12
Mark Stack Control Word Linkage 3-13
Stack Deletion 3-13
Relative-Addressing . 3-13

Base of Address Level Segment 3-14
Absolute Address Conversion . 3-14
Multiple Variables With Common Address Couples 3-14
Address Environment Defined 3-15
Mark Stack Control Word Linkage 3-15

Stack History &immary 3-17
Multiple Stacks and Reentrant Code 3-17

Level Definition 3-17
Reentrance . 3-17
Job-Splitting 3-17
Stack Descriptor 3-17
Stack Vector Descriptor 3-18
Presence Bit Interrupt 3-18

4 SYSTEM DISPLAY AND CONTROL . 4~1

General Information 4-1
Display and Control With MDP Cabinet Instalied . 4-1

MDP Status Display Panel. 4-1
MDP Display Panel One Signals . 4-7
MDP Display Panel Two Signals . 4-7
MDP Display Signal Definitions . 4-7

vi

Section

4

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM DISPLAY AND CONTROL {Cont)
B 6900 System Control Panel
B 6900 Maintenance Control Panel
B 6900 Maintenance Processor Control Panel
B 6900 Soft Display

B 6900 Soft Display Program Controi
ODT Screen Format
ODT Screen Command Structure and Operation
Syntax Diagram Rules
Soft Display Command Categories
Soft Display Program General Commands

<SET> and <RESET> Commands
<REGISTER> Commands

System Control Commands
<PULSE> Command
<STEP> Command.
<ARCS> Command.
<HALT> Command
<STOP> Command.

Maintenance and Event Control Commands .
~ < AAIF > Command .

<ALTF > Command
<CHLT> Command
<CPTF> Command.
<CSTP> Command .
<EVNT> Command
<LOCL> Command.
<OCTAL> Command .
<SAFE> Command .
<SECL> Command .

Families Control Commands .
Functions Commands . .

<ADD> Command .. .
<BRIGHT> Command.
<CAPTUR> Command
<CLRIC> Command .
<CLRMM> Command.
 Command . .
<DIFF> Command. .
<DO-UNTIL> Command .
<DUMP> Command
<END> Command . .
<EXEC> Command. .
<FAMILY> Command.
<HELP> Command
<INFO> Command . .
<INSERT> Command .
< NOSTEP> Command .
<NZDATA> Command
<PROGRM> Command

Page

4-51
4-57
4-60
4-62
4-62
4-62
4-63
4-63
4-64
4-65
4-65
4-65
4-72
4-73
4-73
4-73
4-73
4-73
4-73
4-74
4-74
4-74
4-74
4-74
4-74
4-74
4-74
4-74
4-75
4-76
4-78
4-78
4-78
4-79
4-79
4-80
4..SO
4-81
4-81
4-82
4-83
4-83
4-84
4-84
4-85
4-85
4-85
4-86
4-87

vii

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

4 SYSTEM DISPLAY AND CONTROL (Cont)
<RDHDP> Command 4-87
<RDIC> Command. 4-88
<RDMM> Command 4..S8
<RESTOR> Command 4-89
<RETURN> and <SA VE> Commands 4-90
<REVERS> Command 4-90
<SAVE> Command 4-90
<SMEAR> Command . 4-91
<STATUS> Command. 4-91
< USERF AM> Command . 4-92
<WAIT> Command 4-93
<WRIC> Command 4-93
<WRMM> Command 4-94
<**> Command . 4-94
<--> and <++>Commands. 4-94

s SYSTEM CONCEPT. 5-1
General . 5-1
Data Processor 5-1

Operator Families 5-1
Program Controller 5-2

Look Ahead Logic 5-5
Integrated Circuit (IC) Memory 5-5
Address Adder and Residue Test Logic 5-7

Transfer Controller 5-7
Stack Registers 5-7
Internal Data Transfer Section S-9
Mask and Steering 5-9
Mask and Steering Example 5-9
Stack Controller . 5-10

Arithmetic Controller 5-11
Exponent and Mantissa Adders 5-11

Interrupt Controller . 5-11
Interrupt Parameter Words 5-13
A.LAR ... '1 Interrupts . 5-15
ALARM Interrupt Descriptions . 5-15

LOOP Interrupt 5-17
Memory Address Parity Interrupt 5-17
Invalid Address Local Interrupt . S-17
Stack-Underflow Interrupt 5-17
Invalid Program Word Interrupt . 5-17
Memory Address Residue Interrupt 5-18
Read Data Multiple-bit Interrupt 5-18
Invalid Address-Global Interrupt 5-18
Global Memory Not-ready Interrupt 5-18

HARDWARE Interrupts 5-18
HARDWARE Interrupt Descriptions 5-19

PROM Card Parity Interrupt . 5-20
RAM Card Parity Error Interrupt 5-20

viii

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

5 SYSTEM CONCEPT (Cont)
Bus Residue Interrupt 5-20
Adder Residue Interrupt 5-20
Compare Residue Interrupt 5-20

GENERAL CONTROL Interrupts 5~20
GENERAL CONTROL Interrupt Descriptions . 5-20

Read Data Single Bit Interrupt 5-22
Read Data Retry Interrupt 5-22
Read Data Check Bit Interrupt 5-23
Address Retry Interrupt 5-23

EXTERNAL Interrupts 5-23
I/O Finished Interrupt . 5-24
SYLLABLE DEPENDENT Interrupts . 5-24
SYLLABLE DEPENDENT Interrupt Classes 5-24
SYLLABLE DEPENDENT Presence-Bit Interrupts 5-24

SYLLABLE DEPENDENT Interrupt Descriptions . 5-28
Programmed Operator Interrupt . S-28
Memory Protect Interrupt . 5-28
Invalid Operand Interrupt. 5-29
Divide-By-Zero Interrupt 5-29
Exponent Overflow Interrupt 5-29
Exponent Underflow Interrupt 5-29
Invalid Index Interrupt . 5-29
Integer Overflow Interrupt 5-29
Bottom Of Stack Interrupt 5-29
Presence Bit Interrupt . 5-30
Data-Dependent PRESENCE BIT Interrupts 5-30
Procedure-Dependent PRESENCE BIT Interrupts . 5-30

Sequence Error Interrupt . 5-31
Segmented Array Interrupt 5-31
Interval Timer Interrupt 5-31
Stack Overflow Interrupt . 5-31
Confidence Error Interrupt 5-~1

String Operators . 5-32
Memory Controller . 5-32
Control State/Normal State 5-33

Message Level Interface Processor 5-33
MLIP Control Operations . 5-33
I/O Device Control Operations 5-33
MLIP Simplified Logic Circuits 5-34
MLIP Interfaces . 5-34

MLIP To Data Processor Interfaces 5-37
MLIP To Micro-Module Interfaces . 5-37
MLIP To Peripheral Device Interfaces. 5-38

MLIP General Operating Characteristics 5-38
Processor Timer Operation. 5-39
Time-of-Day Operation 5-39
Running Timer Operation . 5-40
Other MLIP Timer Operations 5-40

LOOP Timer 5-40

5010986 ix

Section

5

x

SYSTEM CONCEPT (Cont)
INTERVAL Timer
BASE BUSY Timer .
READY Timer . .

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

·Peripheral Device Operation
Priority Sequencer Operations In The MLIP
1/0 Operation Initiation Processes In The MLIP
MLIP Initiation of The COMMAND QUEUE Structure In Memory .
MLIP RAM Memory Operations

Micro-stack Section of RA.i\1 Memory .
Data-storage Section of RAM Memory
RAM Memory Addressing
RAM Memory Functions

1/0 Device Interface Processes in the MLIP .
MLIP CONNECT /DISCONNECT Sequences
MLIP Polling Operations
POLL-REQUEST DESCRIPTOR LINK Usage
RESULT-STATUS for POLL TEST Operation .
Polling Operation Status Reporting. . .
Polling Operation BURST Data Sequence

MLIP Memory Operations
MLIP 51-Bit Memory Cycle Operations
MLIP BURST Memory Operations .
Memory Operation Logic . .
MLIP Memory Cycle Priority
MLIP Peripheral Data Format
MLIP Memory Word Format.
MLIP Barrelshifting

1/0 Device Operation Termination Process
IOCB RESULT AND STATE Word Usage
MLIP Error Handling

Memory Organization
Memory Addressing
Global Memory and Global System Control

Global System Organization
Physical Structure

Elementary Globai System Requirements
Logical Structure.
Processor Addressing in a Global System .

Port Identification Addressing
Logical Naming Identification

System Memory interface . . .
Memory Requestor

Memory Error Detection· and Correction .
Memory Retry
Global Memory
Global System Control (Scan) Operations

Global SCAN-OUT
Global SCAN-IN

Typical Global System Control Operation

Page

541
541
,41
542
542
545
546
5-51
j.52
5-52
5-52
5-52
5-52
5-53
5-53
5-53
5-53
5-51
5-51
5-51
5-51
5-58
5-58
5-58
5-58
5-60
5-63
5-63
5-63
5-63
5-64
5-64
5-65
S-65
5-66
5-66
5-67
5-67
S-68
S-68
5-68
5-68
S-74
5-74
5-74
5-76
5-76
5-77
5-77

Section

5

6

7

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM CONCEPT (Cont)
Memory Storage Unit Port Interface

Local Memory Port Interface Control Logic.
Global Memory Port Interface Control Logic
Global Memory Port Processor Status and Control Logic .

Memory Tester Logic .

PROGRAM OPERATORS
General
Syllable Addressing and Syllable Identification .

P and T Registers
Operatio• Types .

Name Call
Value Call .
Operators

PRIMARY MODE OPERATORS
General
Arithmetic Operators .

Add (ADD) 80 . .
Subtract (SUBT) 81 .
Multiply (MULT) 82
Extended Multiply (MULX) 8F
Divide (DIVD) 83
Integer Divide (IDIV) 84 . .
Remainder Divide (RDIV) 85
Integerize, Truncated (NTIA) 86
Integerize, Rounded (NTGR) 87

Type-Transfer Operators . · . . .
Set to Single-Precision, Truncated (SNGT) CC .
Set to Single-Precision, Rounded (SNGL) CD
Set to Double-Precision (XTND) CE

Logical Operators
Logical AND (LAND) 90
Logical OR (LOR) 91 . . .
Logical NEGATE (LNOT) 92
Logical Equivalence (LEQV) 9 3 .
Logical Equal (SAME) 94 . . .
Relational Operators
Greater Than (GRTR) 8A . . .
Greater Than or Equal (GREQ) 89 .
Equal (EQUL) 8C
Less Than or Equal (LSEQ) 8B
Less Than (LESS) 88 . .
Not Equal (NEQL) 8D .

Branch Operators
Branch False (BRFL) AO
Branch True (BRTR) Al
Branch Unconditional (BRUN) A2 .
Dynamic Branch False (DBFL) A8 .
Dynamic Branch True {DBTR) A9. .

Page

5-80
S-83
5-84
5-86
5-88

6-1
6-1
6-1
6-1
6-3
64
64
6-7

7~1

7-1
7-1
7-1
7-2
7-2
7-2
7m2
7-3
7-3
7-3
7-3
14
14
14
74
1-5
7-5
7-5
7-5
7-5
7-5
7-5
7-6
7-7
7-7
7-7
7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-8

xi

Section

7

xii

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

PRIMARY MODE OPERATORS (Cont)
Dynamic Branch Unconditional (DBUN) AA
Step and Branch (STBR) A4 . .

Universal Operators
No Operation (NOOP) FE . .
Conditional Halt (HALT) DF .
Invalid Operator (NVLD) FF .

Store Operators
Store Destructive (STOD) B8 .
Store Non-Destructive (STON) B9
Overwrite Destructive (OVRD) BA .
Overwrite Non-Destructive (OVRN) BB

Stack Operators
Exchange (EXCH) B6
Delete Top-of-Stack (DLET) BS . . .
Duplicate Top-of-Stack (DUPL) B7 . .
Push Down Stack Registers (PUSH) B4

Literal Call Operators . .
Lit Call Zero (ZERO) BO .
Lit Call One (ONE) Bl . .
Lit Call S-Bits (LTS) B2
Lit Call 16-Bits (LT16) B3
Lit Call 48-Bits (LT4S) BE

Make Program Control Word (MPCW) BF .
Index and Load Operators

Index (INDX) A6
Index and Load Name (NXLN) AS .
Index and Load Value (NXLV) AD.
Load (LOAD) BD

Scale Operators . . ·
Scale Left (SCLF) CO . . .
Dynamic Scale Left (DSLF) Cl
Scale Right Save (SCRS) C4 .
Dynamic Scale Right Save (DSRS) CS .
Scale Right Truncate (SCRT) C2
Dynamic Scale Right Truncate (DSRT) C3
Scale Right Final (SCRF) C6
Dynamic Scale Right Final (DSRF) C7
Scale Right Rounded (SCRR) CS . .
Dynamic Scale Right Round (DSRR) C9

Bit Operators
Bit Set (BSET) 96 . . .
Dynamic Bit Set (DBST) 97
Bit Reset (BRST) 9E . .
Dynamic Bit Reset (DBRS) 9F
Change Sign Bit (CHSN) SE .

T1".in~f1>r OnPr!ltnr~ "" ... ""'"' -r-·- ... -·...
Field Transfer (FLTR) 98 . .
Dynamic Field Transfer (DFTR) 99
Field Isolate (ISOL) 9A

Page

7-8
7-8
7.9
7.9
7.9
7.9
7.9
7-9
7.9
7.9

. . . .7-10
7-10
7-10
7-10

. .7-10
7-10
7-10
7-10
7-10
'1-10
7-11
7-ll
7-11

. 7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-13
7-13

. 7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-14

Section

7

5010986

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

PRIMARY MODE OPERATORS (Cont)
Dynamic Field Isolate (DISO) 9B
Field Insert (INSR) 9C
Dynamic Field Insert (DINS) 9D

String Transfer Operators
Transfer Words, Destructive (TWSD) D3
Transfer Words, Update (TWSU) DB .
Transfer Words, Overwrite Destructive (TWOD) D4
Transfer Words, Overwrite Update (TWOU) DC. .
Transfer While Greater, Destructive (TGTD) E2
Transfer While Greater Update (TGTU) EA . . .
Transfer While Greater or Equal, Destructive (TGED) El
Transfer While Greater or Equal, Update (TGEU) E9
Transfer While Equal, Destructive (TEQD) E4 . . .
Transfer While Equal, Update (TEQU) EC
Transfer While Less or Equal, Destructive (TLED) E3 . .
Transfer While Less or Equal, Update (TLEU) EB
Transfer While Less, Destructive (TLSD) EO. . .
Transfer While Less, Update (TLSU) E8
Transfer While Not Equal, Destructive (TNED) ES.
Transfer While Not Equal, Update (TNEU) ED .
Transfer Unconditional, Destructive (TUND) E6
Transfer Unconditional, Update (TUNU) EE
String Isolate (SISO) DS

Compare Operators
Compare Characters Greater, Destructive (CGTD) F2 . .
Compare Characters Greater, Update (CGTU) FA . . .
Compare Characters Greater or Equal, Destructive (CGED) Fl .
Compare Characters Greater or Equal, Update (CGEU) F9
Compare Characters Equal, Destructive (CEQD) F4 . . .
Compare Characters Equal, Update (CEQU) FC
Compare Characters Less or Equal, Destructive (CLED) F3 .
Compare Characters Less or Equal, Update (CLEU) FB .
Compare Characters Less, Destructive (CLSD) FO . . .
Compare Characters Less, Update (CLSU) F8
Compare Characters Not Equal, Destructive (CNED) FS . .
Compare Characters Not Equal, Update (CNEU) FD

Edit Operators
Table Enter Edit: Destructive (TEED) DO
Table Enter Edit, Update (TEEU) D8 . .
Execute Single Micro, Destructive (EXSD) D2
Execute Single Micro, Update (EXSU) DA .
Execute Single Micro, Single Pointer Update (EXPU) DD

Pack Operators
Pack, Destructive (PACD) Dl
Pack, Update (P ACU) D9 . .

Input Convert Operators . . .
Input Convert, Destructive (ICVD) CA
Input Convert, Update (ICVU) CB . .
Read True False Flip-Flop (RTFF) DE

Page

7-15
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-18
7-18

7-18
7-18
7-18
7-19
7-19
7-19
7~20

7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-21
7-21
7-21
7-21
7-21
7-21
7-21
7-22
7-22
7-22

xiii

Section

7

8

xiv

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

PRIMARY MODE OPERATORS (Cont)
Set External Sign (SXSN) D6 . . .
Read and Clear Overflow Flip-Flop (ROFF) D7

Subroutine Operators
Value Call (V ALC) 00 => 3F .
Name Call (NAMC) 40 => 7F .
Exit Operator (EXIT) A3 . .
Return Operator (RETN) A 7 .
Enter Operator (ENTR) AB -.
Evaluate (EV AL) AC . . .
Mark Stack Operator (MKST) AE
Stuff Environment (STFF) AF .
Insert Mark Stack Operator (IMKS) CF

Enter Vector Mode Operators
Vector Mode Enter Multiple (VMOM) E7 .
Vector Mode Enter Single (VMOS) EF

VARIANT MODE OPERATION AND OPERATORS
Escape to 16-Bit Instruction (VARI) 9 5
Variant Mode Operators

Read Central Processor Counter (RCPC) 9540 .
Running Timer Initialize (RUNI) 9541 .
Set Two Singles to Double (JOIN) 9542 .
Set Double to Two Singles (SPLT) 9543.
Idle Until Interrupt.(IDLE) 9544 . . .
Set Interval Timer (SINT) 9545 (Control State Operator) .
Enable External Interrupts (EEXI) 9546 .
Disable External Interrupts (DEXI) 954 7
Write Time of Day (WfOD) 9549
Scan Operators
SCAN-IN (SCNI) 954A
SCAN-OUT (SCNO) 954B
Control Universal Input Output (CUIO) 954C .
Read Processor Identification (WHOI) 954E
Occurs Index (OCRX) 9585
Integerize; Rounded; Double-Precision (NTGD) 9587.
Leading One Test (LOG2) 958B
Normalize (NORM) 958E . . .
Read Time of Day (RTOD) 9SA7
Move to Stack (MYST) 9SAF .
Read Compare Flip-Flop (RCMP) 95B3
Set TAG Field (STAG) 9SB4 .
Read TAG Field (RT AG) 95BS .
Rotate Sta.ck Up (RSUP) 95B6 .
Rotate Stack Down (RSDN) 95B7
Read Processor Register (RPRR}95B8
Set Processor Register (SPRR) 95B9
Read With Lock (RDLK) 95BA .
Count Binary Ones (CBON) 95BB
load Transparent (LODt) 95BC

Page

7.22
7.22
7-23
7-23
7-23
7-23
7-27
7-27
7-27
7-27
7-27
7-27
7-32
7-32
7-32

8-1
8-1
8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-7
8-8
8-8

Section

8

9

5010986

B 6900 System Reference Manual

TABLE OF CONTEf'l!S (Cont)

VARIANT MODE OPERATION AND OPERATORS (Cont)
Linked List Lookup (LLLU) 95BD
Masked Search for Equal (SRCH) 95BE . .
Unpack Absolute, Destructive (UABD) 95Dl
Unpack Absolute, Update (UABU) 95D9 .
Unpack Signed, Destructive (USND) 9500 . .
Unpack Signed, Update (USNU) 95D8
Transfer While True, Destructive (TWTD) 95D3
Transfer While True, Update (TWTU) 95DB
Transfer While False, Destructive (TWFD) 95D2
Transfer While False, Update (TWFU) 95DA
Translate (TRNS) 95D7
Scan While Greater, Destructive (SGTD) 95F2
Scan While Greater, Update (SGTU) 95FA .
Scan While Greater or Equal, Destructive (SGED) 95Fl
Scan While Greater or Equal, Update (SGEU) 95F9
Scan While Equal, Destructive (SEQD) 95F4
Scan While Equal, Update (SEQU) 95FC
Scan While Less or Equal, Destructive (SLED) 95F3
Scan While Less or Equal, Update (SLEU) 95FB
Scan While Less, Destructive (SLSD) 95FO . .
Scan While Less, Update (SLSU) 95F8
Scan While Not Equal, Destructive (SNED) 95FS
Scan While Not Equal, Update (SNEU) 95FD
Scan While True, Destructive (SWTD) 9SD5 .
Scan While True, Update (SWTU) 95DD . .
Scan While False, Destructive (SWFD) 95D4.
Scan While False, Update (SWFU) 95DC . .

EDIT MODE OPERATION AND OPERA TORS
General ·.
Edit Mode Operators

Move Characters {MCHR) D7.
Move Numeric Unconditional (MVNU) D6
Move With Insert (MINS) DO
Move With Float (MFLT) DI
Skip Forward Source Characters (SFSC) D2 .
Skip Reverse Source Characters (SRSC) D3 .
Skip Forward Destination Characters (SFDC) DA
Skip Reverse Destination Characters (SRDC) DB
Reset Float (RSTF) D4
End Float (ENDF) DS
Insert Unconditional (INSU) DC
Insert Conditional (INSC) DD
Insert Display Sign (INSG) D9
Insert Overpunch (INOP) D8 .
End Edit (ENDE) DE . . .

Page

8-8
8-8
8-9
8~9

8-9
8-9
8-9

8-10
8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-12
8-12
8-12
8-12
8-12
8-12

9-1
9-1
9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-4

xv

Section

10

11

xvi

B 6900 System Reference Manual

TABLE OF CONTENTS (Cont)

VECTOR MODE OPERATORS.
General
Limitations of Vector Mode . .
Hardware Functions.

Primary Mode Enter Vector Mode Operators
Enter Vector Mode Operation
Vector Stack Operators
Vector Mode Operator Codes .

Vector Operators.
Vector Branch and Vector Exit Operators

B 6900 INPUT OUTPUT DEVICE OPERATIONS
MLIP General Information
UIO Subsystem General Information
B 6900 I/O Device Operation Processes

MLIP-To-IODC Connection Sequence Address Word .
MLIP-To-IODC Connection Sequence 1/0 Descriptor.
LPW Word For 1/0 Descriptor
MLIP-To-IODC Connection Sequence Descriptor Link Words .
MLIP-To-IODC Connection Sequence LPW Word
IODC-To-MLIP Connection Sequence
IODC-To-MLIP Connection Sequence Global Priority Word .
IODC-To-MLIP POLL REQUEST Priority Resolution In The IODC
IODC-To-MLIP POLL REQUEST Global Priority Resoiution In The MLIP

IOCB Organization and Word Layouts
IOCB Control Word

MLIP Control-Field Bit Definitions
Valid Control-Field Bit Configurations

IOCB OLP Address Word
OLP Address Word Field and Bit Definitions

Command Queue Header Pointer Word
IOCB Self Pointer Word
IOCB OLP Command Pointer Word .
IOCB OLP Result Pointer Word
IOCB OLP Command/Result Length Word
iOCB Result Mask Word
IOCB Result Queue Head Pointer Word
IOCB Next IOCB Link Word. . . .
IOCB Current Data Area Pointer Word
IOCB MLIP Current 1/0 Length Word
iOCB MLIP State and Result Word

State and Result Word Bit and Field Definitions
IOCB 1/0 Start Time Word
IOCB I/O Finish Time Word

Command Queue Organization and Word Layouts
Command Queue Control Word.

Command Queue Control Word Bit Definitions
Command Queue Head IOCB Link Word
Command Queue Tail IOCB Link Word
Command Queue Horizontal Queue Head Pointer Word.
Command Queue Horizontal Queue Llnk Word . . .

Page

10-1

10-1
10-1

10-2
10-2
10-4
10-5
1().,6
10-8

11-1
11-1
11-2
11-6
11-6
11-7
11-7
11-8
11-8
11-9
11-9

11-10
11-10
11-10
11-12
11-12
11-14
11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-20
11-20
11-21
11-22
11-22
11-23
11-23
11-25
11-25
11-26
11-26
11-27
11-28
11-28
11-29
11-29

Section

11

APPENDIX A.
APPENDIX B.
APPENDIX C.
APPENDIX D.

B 6900 System Reference Manual

TABLE OF CO!"ITE1'TTS (Cont)

B 6900 INPUT OUTPUT DEVICE OPERATIONS (Cont)
Horizontal Queue Organization and Word Layouts . . .

Horizontal Queue Array Header Word
Horizontal Queue Header Word Field and Bit Definition .

Horizontal Queue Head Word
MLIP Commands
Result Queue Organization and Word Layouts .

Result Queue Header Word
Result Queue Head Word

Error-IOCB Word Formats and Structures
Error-IOCB Word Zero Layout
Error-IOCB Word One Layout .
Error-IOCB Word Two Layout .
Error-IOCB Word Three Layout.
Error-IOCB Word Four Layout .
Error-IOCB Word Six Layout
Error-IOCB Word-8 Through Word-I I Layout .
Error-IOCB Word-13 Through Word-28 Layout
Error-IOCB Word-29 Layout

Glossary of MLIP/UIO Operating Terms . .

OPERATORS, ALPHABETICAL LIST
OPERATORS, NUMERICAL LIST.
DATA REPRESENTATION . . .
B 6900 EBCDIC/HEX CARD CODE

INDEX ...

Figure

I-I
I-2
I-3
I-4
I-5
I-6
I-7
I-8
I-9
I-10
I-11
I-I2
I-I3
I-I4
2-I
2-2

50I0986

LIST OF ILLUSTRATIONS

B 6900 Cabinet Sizes
B 6900 System Layout
B 6900 System Module Block Diagram
B 6900 System Module Block Diagram Without MDP Cabinet
Maintenance Display Processor Cabinet . . .
Central Power Cabinet
B 6900 Power Subsystem Distribution Diagram
IODC Cabinet (3/4 Size)
IODC Cabinet (A Size)
B 6900 Planar Core (Optional) Memory Cabinet
B 6900 IC Memory (Optional) Cabinet
Memory Port n Module Interfaces . . .
Left-Hand System Operators Keyboard .
B 6900 Operators Console Video Screen .
B 6900 Word Structure
Character and Digit Formats

Page

lI-30
11-30
11-31
11-31
11-32
Il-34
11-34
11-35
11-35
11-37
11-38
11-38
Il-39
11-39
1140·
1140
11-41
11-41
1142

A-I
B-I
C-1
D-I

lrtdex-I

Page

1-2
1-3
1-5

1-IO
1-14
1-15
1-I6
1-17
1-18
1-20
1-21
1-22
1-24
1-25
2-1
2-4

xvii

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Figure Page

2-3 B 6900 Word Formats . 2-5
2-4 EBCDIC Character Word Format 2-10
2-5 Hexadecimal Character Word Format . 2-11
2-6 Single-Precision Operand Format 2-12
2-7 Double-Precision Operand Format 2-13
2-8 Data Descriptor Format 2-15
2-9 Step Index Word Format . 2-17
2-10 Software Control (LINKA) Word 2-18
2-11 Software Control (MASK) Word 2-19
2-12 IRW and SIRW Formats 2-20
2-13 Program Control Word . 2-22
2-14 Mark Stack Control Word. 2-24
2-15 B 6900 Interrupt Stack Organization 2-25
2-16 P3 Parameter Configuration 2-30
2-17 Return Control Word 2-31
2-18 Segment Descriptor Word . 2-32
2-19 Program Word Format . 2-33
2-20 TOSCW Word Layout 2-34
3-1 Top-of-Stack and Stack Bounds Registers 3-1
3-2 Reverse Polish Notation Flow Chart 3-7
3-3 Stack Operation . 3-10
3-4 Object Program in Memory 3-12
3-5 Stack History and Addressing Environment List 3-13
3-6 Stack Cut-Back Operation on Procedure Exit 3-14
3-7 ALGOL Program With Lexicographical Structure Indicated 3-15
3-8 D Registers Indicating Current Addressing Environment. 3-16
3-9 Addressing Environment Tree of ALGOL Program 3-16
3-10 Multiple Linked Stacks. 3-18
4-1 B 6900 MDP Display and Control Panels 4-3
4-2 B 6900 Status Display Register . 4-5
4-3 LED Indicator-Chip Circuit Display Device 4-6
4-4 Maintenance Control Panels in an IODC Cabinet 4-52
4-5 System Control Panel 4-53
4-6 System Maintenance Control Panel . 4-58
4-7 Maintenance Processor Control Panel 4-61
5-1 B 6900 CPU Organization . 5-2
5-2 B 6900 CPU Block Diagram . 5-3
5-3 Internal Data Transfer Section 5-8
5-4 Mask and Steering 5-10
5-5 Hardware Stack Adjustment . 5-12
5-6 Arithmetic Control . 5-13
5-7 Interrupt Controller Stack Parameters . 5-14
5-8 Alarm Interrupt P-1 Parameter Word Layout 5-15.
5-9 Alarm Interrupt P-2 Parameter Word Layout 5-16
5-10 Alarm Interrupt Stack Underflow P-2 Parameter Layout S-16
5-11 Alarm Interrupt P-3 Parameter Word Layout 5-16
L" 1"' .)-1 Hardware Intermpt P-1 Para.111eter Word Layout 5-18
5-13 Hardware Interrupt P-2 Parameter Word Layout 5-19

5-14 Hardware Interrupt P-3 Parameter Word Layout 5-19
5-15 General Control Interrupt P-1 Parameter Word Layout 5-21

xviii

Figure

5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
6-1
6-2
6-3
6-4
6-5
7-1
7-2
7-3
7-4
7-5

5010986

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

General Control Interrupt P-2 Parameter Word Layout . .
General Control Interrupt P-3 Parameter Word Layout .
External Interrupt P-1 Parameter Word Layout
External Interrupt P-2 Parameter Word Layout
External Interrupt P-3 Parameter Word Layout
Syllable Dependent Interrupt P-1 Parameter Word Layout .
Syllable Dependent Interrupt P-2 Parameter Word Layout .
Syllable Dependent Sequence Error P-2 Parameter Word .
Syllable Dependent SPLT (9543) Operator P-2 Parameter .
Syllable Dependent JOIN (9542) Operator P-2 Parameter .
Syllable Dependent Segmented Array Interrupt P-2 Parameter
Syllable Dependent Interrupt P-3 Parameter Word Layout . .
MLIP Simplified Schematic
Interface Between MLIP and Top-of-Stack .
MLIP to Micro-Module Interfaces . . .
MLIP to Peripheral Subsystem Interface .
Priority Sequencer Sequences
B 6900 IOCB Memory Word Layout . . .
MLIP Command Queue Structures . . .
MLIP System Control Function Diagram .
MLIP Register-2 Function Control Logic.
MLIP Port Control Function Diagram . .
MLIP RAM Data Storage Section Word Layout
MLIP Connection Function Between the MLIP and an IODC .
51-Bit Memory Paths Between the MLIP and Memory Control
Burst Data Memory Paths Between the MLIP and Memory Control .
MLIP Peripheral Output Data Path from Top-of-Stack
MLIP Peripheral Input Data Path to Top-of-Stack
Input Peripheral Data and MLIP Control Logic
Output Peripheral Data and MLIP Control Logic
Memory Address Decoding
Global Memory Module {GMM) Organization .
Global System Interfaces
Memory Control Block Diagram.
Data Processor to Manory Control Exchange Transfer Path
Memory Exchange Functional Block Diagram .
Error Detection Correction Logic
Global Scan Function and Data Word Format
Global Scan Operation Response Word (No Transmission Errors)
Global Scan Operation Response Word (Transmission Error)
Program Word
Program Word, Syllable Addressing
Primary Mode Operator Decode Table.
Name Call Operator Function
Value Call Operator Function .
Flow of Value Call Operator. .
Value Call (Descriptor) Operator
Flow of Exit Operator . .
Flow of Return Operator .
Flow of Enter Operator .

Page

5-21
S-22
5-23
5-23
5-24
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-35
5-37
5-37
5-39
5-43
5-45
5-47
5-48
5-49
5-50
5-51
5-55
5-51
5-58
5-59
5.()()
5-61
5-62
S-65
5-66
5-67
5-69
5-70
S-71
5-75
5-76
5-78
5-79

6-1
6-2
6-3
6-4
6-5

7-24
7-25
7-26
7-28
7-29

xix

Figure

7-6
7-7
8-1
8-2
8-3
8-4
10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3
114
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39

xx

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Flow of Evaluate Operator
Flow of Stuff Environment Operator .
WHOI Operator Returned Word. . .
Index Control Word (ICW) and Index Word.
Top-of-Stack Control Word (TSCW)
Rotate Stack Operations . . .
Vector Mode Stack Configuration
Vector Mode Operator Format .
Vector Mode Operators
Load/Store Vector Mode Operators
Fortran/ALGOL Compiler Vector Mode Operator Mnemonics.
B 6900 System MLIP Module Environment.
IODC Base Module with One DLP . . .
B 6900 IODC Base Module Organization .
B 6900 IODC Base Module Cabinets . .
Multiple IODC Cable Connections . . .
B 6900 Connection Sequence Address Word Layout .
B 6900 Connection Sequence Descriptor Link Word Layouts .
B 6900 IODC Poll Request Global Priority Word Layout
IOCB Word Format and Layout. . .
IOCB Control Word Layout
Valid Commands in CW Control-Field.
IOCB DLP Address Word Layout . .
IOCB Command Queue Header Pointer Word Layout
IOCB Self Pointer Word Layout.
IOCB DLP Command Pointer Word Layout. . .
IOCB DLP Result Pointer Word Layout
IOCB DLP Command/Result Length Word Layout
IOCB Result Mask Word Layout
IOCB Result Queue Head Pointer Word Layout .
IOCB Next IOCB Link Word Layout
IOCB MLIP Current Data Area Pointer Word Layout
IOCB MLIP Current 1/0 Length Word Layout .
IOCB MLIP State and Result Word Layout .
IOCB 1/0 Start Time Word Layout
IOCB Finish Time Word Layout
Command Queue Word Format and Layout.
Command Queue Control Word Layout . .
Command Queue Head IOCB Link Word Layout .
Command Queue Tail IOCB Link Word Layout .
Command Queue Horizontal Queue Head Pointer Word Layout .
Command Queue Horizontal Queue Link Word Layout.
Horizontal Queue Array Word Format and Layout
Horizontal Queue Array Header Word Layout
Horizontal Queue Array Horizontal Queue Head Word Layout
MLIP Command Word Layout
MLIP Status Word Layout
Result Queue Word Format and Layout .
Result Queue Header Word Layout
Resuit Queue Head Word Layout . . .

Page

7-30
7-31
8-3
84
8-5
8-6

10-2
10-4
10-5
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-7
11-8
11-9

11-11
11-12
11-15
11-16
11-17
11-17
11-18
l 1-19
I 1-19
11-20
11-20
11-21
11-22
11-22
11-23
11-25

11-26
11-26
11-28
11-28

. 11-29

. 11-29

. 11-30

. 11-31

. 11-31

. 11-32

. 11-33

. 11-34

. 11-34

. 11·35

Figure

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

Table

2-1
2-2
2-3
2-4
3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3
5-4
7-1
7-2

5010986

B 6900 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Error-IOCB Organization and Layout .
Error-IOCB Word Zero Layout
Error-IOCB Word One Layout .
Error-IOCB Word Two Layout .
Error-IOCB Word Three Layout.
Error-IOCB Word Four Layout .
Error-IOCB Word Six Layout
Error-IOCB Word-8 through Word-11 Layout
Error-IOCB Word-13 through Word-28 Layout.
Error-IOCB Word-29 Layout

LIST OF TABLES

Decimal Place Values of Digits in Various Number Bases
Address Couple Value Fields .
Pl Parameter Words.
interrupt Procedure Stack Parnmeter Contents .
Evaluation of Polish String A 7 B C + x : =
Description of Stack Operation .
B 6900 MDP Cabinet Status Display
B 6900 MDP Panel One Signal Display
B 6900 MDP Panel Two Signai Dispiay
B 6900 Display Signals .
B 6900 Soft Display Command List
Soft Display Register Names .
ALAR.\f Interrupt P-3 Parameter Fields Usage .
HARDWARE Interrupt P-3 Parameter Fields Usage
GENERAL CONTROL Interrupt P-3 Parameter Field Usage
SYLLABLE DEPENDENT Interrupt P-3 Parameter Fields Usage.
Relational Operator Indications .
Compare Type Operator Results

Page

11-36
11-37
11-38
11-38
11-39
11-39
1140
1140
1141
1141

Page·

2-8
2-21
2-27
2-29

3-9
3-11

4-6
4-8

4-17
4-29
4-64
4-67
5-17
5-19
5-22
5-28

7-6
7-19

xxi

B 6900 System Reference Manual

INTRODUCTION

The B 6900 is a large scale, modular, high-speed data processing system. The B 6900 system consists of four or more
cabinets, which are joined together to fonn a single mainframe organization. The leading features of the B 6900 system
are:

a. Monolithic circuits.

b. System memory expandable in increments of 131,072 words, to a maximum of 1,048,576 words.

c. Either local or GLOBAL@) memory to the B 6900 system.

d. Automatic memory error detection and correction.

e. Peripheral units expandable to 512 DLP control units.

f. Multiple MLI paths for I/O operation.

g. Data communications processing through the use of optional standard equipment.

h. Reader/sorter subsystem capability through the use of optional standard equipment.

i. Centralized power supplies, with solid metallic bus-bar organization.

A unique design concept, developed from years of experience with the B 6700 and B 6800 Information Processing Sys­
tems has resulted in the B 6900 hardware and software design. The hardware and the softwarn were simultaneously
designed in a parallel and coordinated process, such that these two parts of the system act to augment and to complement
each other. This method assures that the hardware will contain the logic circuits necessary to implement the concepts of
the software, and also that the software constructs will utilize the hardware circuits in an efficient manner.

The B 6900 system is designed to use the hardware stack concept which was successful in former systems. However, the
hardware used in the B 6900 system also represents recent state-of-the-arts improvements in data processing circuit com­
ponents. This blending of proven design with modern material results in a more efficient, and powerful data processing
system.

The B 6900 system utilizes the same dynamic storage allocation concept that was utilized in former Information Process­
ing Systems. This concept utilizes a descriptor method of segmentation which allows variable length segments of data to
be used. This method is more efficient than "fixed-size" paging concepts.

A "look-ahead" logical circuit is used in the B 6900 system data processcr to fetch program code words from memory.
This circuit virtually eliminates the need to halt the flow of a user program to obtain the next word of program code.
Use of this circuit represents an improvement in the way user programs are executed, and results in more efficient opera­
tion of the hardware system resources.

The use of new, and more compact logical circuit components has allowed the B 6900 system to have a greater degree of
packaging density than was available in system design. The central processing unit, which is a single system cabinet, takes
the place of 4 cabinets that were required in the B 6700 system. This improvement in packaging saves space and reduces
operating costs in the B 6900 system, without requiring a loss in data processing capability.

GLOBAL~ is a trademark of Burroughs Corporation.

5010986 xxiii

B 6900 System Reference Manual
Introduction

The B 6900 system utilizes a centralized power supply cabinet. This centralized power supply eliminates the need to
mount an inverter module in each mainframe cabinet. It collects most power supplies for the B 6900 system within a
single cabinet and, thus, makes the power supply subsystem easier to maintain.

The B 6900 system cabinets have a fixed relative location within the mainframe cabinet layout. This fixed location
scheme reduces the complexity of the system installation process, reduces h1terface cabling requirements; and allows more
efficiency in site planning.

The B 6900 system contains the capability to be interfaced with, and to operate from GLOBAL@ memory applications.

GLOBAL@) is a trademark of Burroughs Corporation.

xxiv

B 6900 System Reference Manual

. SECTION 1

SYSTEM DESCRIPTION

GENERAL

This manual explains how the B 6900 Information Processing System achieves flexibility and efficiency through a
comprehensive system approach to problem solving without considering the areas of computer logic or circuit design.
The program-independent modular system design efficiently uses available units to process programs and also permits
system configuration changes without the need to reprogram or recompile. This approach also offers the user the advan­
tages of simplified programming, ease of operation, and a complete freedom of system expansion. The B 6900 is a com­
piler oriented system, designed to accept the high level problem-solving language compilers such as ALGOL, COBOL,
FORTRAN, and PL/I.

The B 6900 system software operates under the control of a Master Control Program (MCP), which automatically handles
memory assignments, program segmentation, and subroutine linkages. The use of the MCP eliminates many arduous pro­
gramming tasks which are likely to produce errors. The compilers are operated under the control of the MCP, as are the
object-programs that result from the use of the compilers. The programs are debugged and corrected in the source
language.

SCOPE OF THIS MANUAL

This manual will describe the major hardware characteristics of the B 6900 system. Because of the strong interdepend­
ence of the system software and system hardware this manual will discuss both parts of the system design at times.
Wherever a choice is available, to discuss a part of the system in terms of either the hardware or the software, the hard­
ware discussion will be used. Both discussions will be used where insight can be developed by the use of d1is met.lied.

B 6900 HARDWARE SYSTEM ORGANIZATION

The B 6900 system consists of a series of cabinet types arranged in a specific order. The ordering of the cabinets within
the system is classed as a minimum configuration B 6900 system, or as an expanded configuration B 6900 system. The
arrangement of the cabinets within a B 6900 system is such that a minimum configuration B 6900 may be upgraded to an
expanded configuration by adding additional cabinets. However, no reorganization of the cabinets within a B 6900 system
is required to upgrade an existin.g system to t.lie expanded configuration class.

5010986 1-1

B 6900 System Reference Manual
System Description

There are four standard-size cabinets used in the organization of a B 6900 system. Figure 1-1 shows these four cabinet
sizes, and indicates the various dimensions of the cabinets. The cabinets in a B 6900 system are joined together to form
a continuous mainframe appearance. This appearance is enhanced by the use of outer panels that give the illusion of a
single mainframe structure.

A SIZE CABINETS:
CENTRAL PROCESSING UNIT
CENTRAL POWER
IODC

3/4 SIZE CABINETS:
IODC

MV4&00

68''

I

l f.--- 38"" --1~.
I

B SIZE CABINETS:

MAINTENANCE DISPLAY PROCESSOR
MEMORY STORAGE
1/0 EXCHANGES

Figure 1-1. B 6900 Cabinets Sizes

I_, ·g· 1_
I I I

I JUNCTION CABINFTS

CA Bl NET 19 x 19 JUNCTION

Figure 1-2 shows the cabinets in a minimum configuration B 6900 system. The layout of the various cabinets within the
B 6900 system mainframe structure is invariable; therefore, the minimum area for the mainframe of a B 6900 system also
is invariable. The minimum area required for a B 6900 system mainframe is 21 feet, three inches wide, by 25 feet in
length. This area allows for the expansion of a minimum configuration B 6900 system into a fully expanded configura­
tion B 6900 system. But the area given in this paragraph does not include the area required to contain the peripheral
devices that are com1ected to the B 6900 system.

1-2

5010986

MAINTENANCE DISPLAY
CAllNET

MV4i01

B 6900 System Reference Manual
System Description

CENTRAL PROCESSOR
CA.81NET

CENTRAL
r-POWER I CABINET

__OPERATOR
CONSOLE

CABINET

Figure 1-2. B 6900 System (Minirnwn Cabinets) Layout

1-3

B 6900 System Reference Manual
System Description

B 6900 SYSTEM HARDWARE MODULE ORGANIZATION

The following paragraphs discuss the B 6900 system modules that are located within the system cabinets. A module in
the B 6900 system is defined as a unit of hardware equipment that performs a specific function, or a set of specific
functions. A module of hardware equipment in the B 6900 system is limited to a single system cabinet. Modules in
separate cabinets that perform similar functions are separate modules.

AB 6900 system cabinet is not limited to a single module. The use of new types of logic circuit devices in the B 6900
have made it possible to mount within a cabinet more modules than was possible previously. Figure 1-3 is a block­
diagram of the B 6900 system that shows the relationship of the modules in the B 6900 system.

B 6900 MODULE INTERFACES

Cabinets within the B 6900 system are connected together through a series of interface buses (see Figure 1-3). These
buses provide a method for the transfer of information and control data between system modul~s.

B 6900 CENTRAL PROCESSING UNIT CABINET

The Central Processing Unit (CPU) is the heart of the B 6900 system. The CPU (see Figure 1-3) contains the data
processor module, the Message Level Interface Port (MLIP) module, the memory exchange, internal local memory modules
and the memory tester. The CPU generates system clock pulses that are distributed to other modules in the system. The
CPU contains logic circuits that operate with the maintenance processor to perform memory testing.

The master clock frequency of the B 6900 system is 6.67 megahertz. This _clock frequency produces clock pulses that
occur every 150 nanoseconds. These clock pulses, distributed throughout the logic circuits of the system, are used to
synchronize circuits contained in various modules of the system. In this manner, each circuit operates in concert with
other circuits in the system, in an efficient and harmonious manner.

DATA PROCESSOR MODULE

The Data Processor (DP) is the key module through which the B 6900 software operating system directs and controls the
resources of the B 6900 system. The DP (see Figure 1-3) initiates all operations performed by the other system modules,
including the operation of all peripheral devices. The DP also performs data arithmetic operations, and manipulates data
within the system. The DP contains logic circuits to sense interrupts from other modules, and also within itself. When­
ever the DP senses an interrupt, the software operating system also becomes aware of the interrupt and handles the cause
of it. The DP performs comparisons and other logical operations that allow the software operating system to evaluate
conditions represented as data, and to make decisions based on the results of the evaluation. Because the software makes
decisions, it provides the capability for altering the future course of programmed operations not only within the operating
user programs, but also within the MCP itself. -

The B 6900 system uses look-ahead logic in the DP. This feature fetches words of program code before the DP is ready
to execute the code. As a result, it virtually eliminates the need for halting a program to fetch words of program code.
The memory accesses that are performed by the look-ahead logic are independent of other memory cycles performed for
the DP, and do not cause delays in obtaining data for normal DP functions. When a new word of program code is
required, the first resource is the buffer circuit of the look-ahead logic. A memory cycle will be performed only if the
look-ahead logic has not already fetched the word of code that is needed, or if a branch operator causes a change in the
sequenti<.l program code addressing. If the next word of program code is the proper program word, and is present in the
look-ahead logic buffer circuit, then circuit becomes the source from which the next word will be taken.

The DP of the B 6900 system contains an adder circuit for performing arithmetic functions. The mantissa adder circuit
is a double-precision, high-speed adder. The adder circuits use micro logic algorithms for double-precision arithmetic
operations.

14

MV4502

MAINTENANCE DISPL.A Y
PROCESSOR CABINET

SYSTEM
DISPLAY

l
MAINTENANCE
PROCESSOR

I
FLEXABLE
DISKETTE
DRIVE

w
(J

<
IL.
a:
w
I-
!:
Cl)

:::>
ID

w
(J
z
< z
w
I-

I I

w
(J

<
IL.
a:
w
I-
!:

HCP

INTER·
FACE

I

...

MLI

CENTRAL PROCESSOR UNIT CatUt CAatHET

r1-~-~~~-~~~~-~~~~~~~~~~~---t1~~Y1

HOST
CONTROL
PORT

l
MLI

LOOK AHEAD UNIT

~-------
DATA PROCESSOR

MEMORY
CONTROL

I TOP.OF-STACK REGS ~ - .-.---------1

I
MLI

CPU
MICRO.
MODULE

MESSAGE LEVEL INTERFACE
PROCESSOR

l l
MLI MLI

l
MLI

SYSTEM
MASTER.CLOCK
GENERATION
ANO
DISTRIBUTION
LOGIC

I 1
MLI MLI z

< :::; PORT PORT PORT PORT PORT PORT PORT PORT
~ ~ NO.O N0.1

INPUT OUTPUT

MU
INTERFACE

DATA COMMUNICATION
CABINET (IODC)

l
"'I

~--
t-- - -

~-­
t--- -

N0.2 N0.3 N0.4

T r l I

I I I
.....

MLI INTERFACES
TO OTHER IODC"S

=1 PERIPHERAL INTERFACE·
- TO OTHER DEVICES

N0.5

T
I

N0.6 NO. 7

1 T

I

1
DISKOR PACK
PERIPHERAL
DEVICE

5010986

I

I
~

l
MAGNETIC.TAPE
PERIPHERAL
DEVICE

B 6900 System Reference Manual
System Description

LOCAL
MEMORY

i-=--=-j PORT
NO.O

LOCAL
MEMORY
PORT
N0.1

LOCAL
MEMORY

~
PORT
N0.2

I

LOCAL

t-----1 MEMORY
PORT
N0.3

GLOBAL
~ MEMORY

POAT

ODT
PERIPHERAL
DEVICE

INTERNAL

t-----1
IC
MEMORY
MODULE

INTERNAL

~
IC
MEMORY
MODULE

INTERNAL

r------ IC
MEMORY
MODULE

I INTERNAL I
i---

IC
MEMORY
MODULE

TRAIN.PRINTER
PERIPHERAL
DEVICE

EXTERNAL
· 6-CABLE MEMORY

EXTERNAL MODULE
MEMORY CABINET
MODULE
INTERFACE

....

6-CABLE
INTERFACES
TO OTHER

> EXTERNAL
MEMORY
MODULE
CABINETS

I

J

~BLE

} INTERFACE TO
GLOBAL MEMORY
MODULE CONTROL
{GMM) CABINET

Figure 1-3. B 6900 System Module Block Diagram

1-5

B 6900 System Reference Manual
System Description

The B 6900 DP contains iogic circuits that provide for a retry of a DP operator that fails during its execution. This retry
of failed operators is applicable oiily up to a predetermined point in the flow of an operator. If an operator fails and a
retry is possible, then a flag is set to indicate that the retry can occur. If an operator fails and a retry is not possible,
then the failure will result in the execution of the interrupt procedure for failed DP operators.

A failed operator retry operation is controlled by the system software. The system hardware indicates whether or not a
retry may be attempted, but the decision. to retry a particular operation is made by the software.

The B 6900 DP makes extensive use of RAM, and PROM memory integrated circuit components. Parity testing is per­
formed on these component parts in the DP. When a failure of one of these component parts is detected, an entry is
made in the Error register. The error register is decoded and written in the system log. The log entry will provide such
pertinent data as

a. The location of the card package that failed.

b. The J-count sequence number and the OP code of the DP operator that was being executed when the card
package failed.

The B 6900 system DP performs recursive confidence testing when the DP is in an IDLE condition. The confidence tests
check circuits such as

a. The top of stack registers.

b. The shift paths for data that is placed in the top of stack registers.

c. The barrel shifter logic.

d. The mantissa adder logic.

e. The exponent adder logic.

f. The address adder logic.

g. The arithmetic operation algorithms.

h. The DP control buses.

If an interrupt occurs while the DP is performing a confidence test, the DP immediately exits from the IDLE state. If
the exit is caused by an error exit, the error will be reported in the SYSTEM SUM LOG disk file.

The DP performs residue testing of the contents of the integrated circuit memory address registers. Residue testing is
also performed on literal values that are used as indices to the addresses that are contained in the integrated circuit
address registers. The purpose of residue testing is to increase the integrity of the address adder circuits. Residue testing
is an automatic function that detects addressing errors, and cause the software operating system to make log entries that
identify the nature of the error. ·

5010986 1-7

B 6900 System Reference Manual
System Description

MESSAGE LEVEL INTERFACE PROCESSOR (MLIP)

The Message Level Interface Processor (MLIP) of the CPU cabinet (see Figure 1-3) functions to control all peripheral
devices that are connected to the B 6900 system. The types of peripheral devices that may be connected to the MLIP
are Universal Input/Output Data Link Processor (UIO-DLP) controlled devices. The DLPs that control B 6900 system
peripheral devices are located in input Output Data Communications {iODC) cabinets, and are connected to the MLIP
module of the CPU cabinet by means of a Message Level Interface (MLI). The MLIP logic also performs various timing
functions, such as Time-Of-Day and Processor Timer operations for the B 6900 system.

The IODC Module cabinet is defined in the IODC Base Module FETM, Number 1l1SS6S. Each DLP located in an IODC
is a separate module. Each DLP device is documented in a separate technical manual, according to the type of peripheral
device controlled by the DLP logic. The various DLP technical manuals are referenced in the IODC Base Module FETM.

The MLIP module contains provisions for as many as eight MLI interface connections to IODC modules (see Figure 1-3).
Each MLI interface can connect to eight IODC modules through the use of Line Expansion Modules or LEMS. Each
IODC module can contain up to eight UIO-DLP peripheral device controls; consequently, an MLIP module in a B 6900
system CPU cabinet can communicate with and control up to S 12 UIO-DLP devices. The MLIP can communicate over
only one of its MLI interfaces at a time. Simultaneous DLP operations by more than one of 64 possible UIO-DLPs
connected to an MLI cause communication interlacing on the MLI. In the same way, communications to and from the
MLIP are interlaced for simultaneous DLP operations over two different MLI interfaces.

The following list names the types of peripheral devices that may be connected to a B 6900 CPU MLIP module, by means
of DLPs located in a B 6900 system IODC cabinet.

a. 300/600/800 CPM Card Reader

b. 1100/ISOO LPM Train Printer

c. 300 CPM Card Punch

d. Operator Display Terminal (ODT)

e. 23S Disk Pack

f. SN Disk File

g. 4A/SA PE Magnetic Tape

h. 206/207 Disk (Interlaced Mode)

i. SE NRZ Magnetic Tape

j. 206/207 Disk (Sequential Mode)

k. SG GCR/PE Magnetic Tape

1. OEM GCR/PE Magnetic Tape

m. 2000 LPM Printer (COC Drum)

n. 22S Disk Pack

1-8

o. ICMD mini-disk

p. 750 LPM Train Printer

q. Data Communications Processor

MEMORY CONTROL MODULE

B 6900 System Reference Manual
System Description

The memory control module (see Figure 1-3) operates a memory interface exchange that allows two system requestors to
access one of five memory modules. The two requestors are as follows:

a. The look-ahead logic.

b. The data processor module or the MLIP module. These modules share a common requestor path to the
memory control exchange, as was defined in the subsection on the MLIP.

The five memory storage module ports that may operate as respondents to the two memory control requestors are
defined as follows:

a. Each of the first four modules is either a 128K or a 256K local memory module (IK = 1024 words).

b. The fifth module is an interface to the Global Memory of the B 6900 system.

In addition to controlling the interface paths through the memory exchange, the memory control module also performs
memory retries, and memory read data error corrections. A read memory retry consists of detecting an error in the data
fetched from memory, and causing a second memory read strobe pulse to be generated. A read memory retry is not a
second memory cycle.

A memory retry is also performed when a memory module detects a parity error on the address data lines. The memory
address error retry will repeat the complete memory cycle operation.

An error correction memory cycle will be performed for a read memory cycle that detects a single-bit error in the data
that was stored. If a memory cycle still produces an error in the data after a read memory cycle retry has been per­
formed then the memory control module will perform an error correction cycle. An error correction cycle can only
correct single bit errors.

B 6900 MAINTENANCE PROCESSOR AND SYSTEM DISPLAY

All B 6900 systems contain provisions for control of system operations and for display of system status. B 6900 systems
with low serial numbers include the Maintenance Display Processor cabinet (MDP) that provides for system control and
displays system status. B 6900 systems with high serial numbers do not contain an MDP cabinet, and the functions of
the MDP cabinet logic circuits are distributed to other cabinets and modules.

Figures 1-2 and 1-3 show a B 6900 system organization having an MDP cabinet present in the mainframe cabinet
organization. Figure 14 shows how system control and status display functions are distributed in a B 6900 system
mainframe organization that does not contain an MDP cabinet.

5010986 1-9

HOST --~ CONTROL
PORT

w
(J

l < u.
a: w
t- MLI MLI

LOOK AHEAD UNIT

OAT A PROCESSOR

.----·
I

B 6900 System Reference Manual
System Description

LOCAL

~
MEMORY

1 PORT
0

MEMORY
i--- LOCAL

t----1
CONTROL MEMORY

~
PORT

1

LOCAL

CPU CABINET_ MEMORY
PORT

2

D
LOCAL

1-- MEMORY

MLIP
PORT

3

GLOBAL
"-- MEMORY

PORT

I I I I
MLI MLI MLI MLI MLI MLI

! PORT PORT PORT PORT PORT PORT PORT PORT
CL 0 (J
:c

~
< u.
a:

-~ i!

MV4603

1 J 2 3 4
J

5 6 7

,I I l l
v

l l 1/
MU INTERFACES TO OTHER 1ooc·s

IOOC
CABINET
(1·T0-4 U10-BASE MODULES)

MAINTENANCE
PROCESSOR ANO
FLEXABLE
DISKETTE

OTHER
PERIPHERAL
UNIT
INTERFACES
TO/FROM
U10.0LP
CONTROL
MODULES

MU INTERFACE

MAINT BUS

to--

~

6-CABLE
INTERFACES

~ TO EXTERNAL
MEMORY MODULE
CABINETS

.,...__

to--

OOT
PERIPHERAL
DEVICE

~
IN THIS SYSTEM MODULE
ORGANIZATION. ALL SYSTEM
CONTftOL AND STATUS DISPLAY
FUNCTIONS ARE ACCOMPLISHED
BY MIANS OF THE OOT PERIPHERAL
DE Vi CE

Figure 14. B 6900 System Module Block Diagram Without MDP Cabinet

1-10

B 6900 System Reference Manual
System Description

Tne ieading features and functions of the B 6900 Maintenance Display Processor are described below:

a.

b.

d.

e.

f.

g.

The MDP displays the states of as many as 4096 logic devices.

The MDP can write into and verify the code of a PROM device.

The MDP contai'ls logic card package testing capability which exercise test cases for all non~discrete logic cards.

The MDP can operate DLP controlled 1/0 devices.

The MDP can be programmed to beam test (at single clock level) and to compare all flip-flops within the
system, as well as any flip-flop that is under test.

The MDP can be programmed to allow a system operator to test the logic circuits of the system at the single
clock level.

The MDP can be programmed to dynamically isolate most failures that occur in the hardware elements of the
system.

The MDP cabinet can be divided into two parts:

a. The upper half of the cabinet, which contains the displays.

b. The lower half of the cabinet, which contains the maintenance processor, the display control logic, the flex­
disk device, and a power supply for the cabinet.

The MDP contains a flex~diskette drive device, wrJch is used to load initial system operating F!F-M:WARE into the
maintenance processor RAM memory.

The upper half of the cabinet consists of a display panel and several control panels. The display is on the left-hand side
of the MDP cabinet. The display panel is not always visible. To view the panels, swing-out covers must be extended.
Four display registers, and various control panels are exposed to view when the swing-out covers are extended.
Two switch panels are located at the bottom of the display panel. These switch panels are used to control operation of
the MDP maintenance processor and CPU cabinet logic circuits.

The maintenance processor is the principal operating unit in the MDP cabinet. The maintenance processor operates in
either of two modes, which are Maintenance Test Routine mode (MTR) or normal mode. These two modes are discussed
in the following paragraphs.

The PROC ENABLE switch (on the MDP switch panel) is used to place the maintenance processor in the MTR mode.
The MTR mode prcvides a way of !esting the maintenance processor through_ the use of test-routines that are stored in
PROM memory. The PROM memory is an integral part of the maintenance processor. This PROM memory contains
firmware that is used

a. To test the maintenance processor circuits.

b. Test the memory interface logic between the maintenance processor and the RAM memory, which is an
integral part of the maintenance processor.

c. Test the RAM memory up to a checkerboard test.

d. Test the micro-logic controllers of the maintenance processor.

5010986 1-11

B 6900 System Reference Manual
System Description

e. Perform an extensive (Galpat) test on the RAM memory.

f. Load an MTR test-routine program from the flexible-diskette unit to the RAM memory of the MDP.

g. Perform a program branch to the start of the MTR test-routine that was loaded into the RAM memory.

h. Handle Interrupts that occur during the operation of the maintenance processor in MTR mode.

The same switch that was used to place the maintenance processor in MTR mode (the PROC ENABLE switch) is also
used to select normal mode. The normal mode of operation provides a way to test the B 6900 system through the use
of the MTR test routines that are loaded to the RAM memory. The maintenance processor uses the PROM memory to
initiate the loading of MTR test routines into the RAM memory as follows:

a. Uses switches on the MDP System Control Panel to select a DLP controlled peripheral unit.

b. Provides a quick confidence check for the peripheral unit to be used.

c. Initializes the RAM memory to receive the data from the I/O device.

d. Purges the RAM memory of all parity errors.

e. Communicates with the system operator to determine which part or parts of the system MTR test program
are to be loaded into maintenance processor RAM memory.

f, Loads the selected system MTR program parts into the RAM memory.

g. Performs a program branch to the start of the system MTR test routine residing in the RAM memory.

h. Handles interrupt procedures during system operation.

The maintenance processor logic contains the. Keyboard/Switch/Indicator (KSI) controller, the purpose of which is to
interface the maintenance processor to the control panels of the MDP. The control panels are used manually as source
input devices, to direct that various functions of the maintenance processor be performed. The KSI controller coordi­
nates and synchronizes these manual control demands with the normal logical operations of the maintenance processor.
The orderly responses of the maintenance processor to a control panel demand are returned to the maintenance processor
control panel for display by the KSI controller.

The PROM Write I/O controller provides a method of creating a selected bit pattern in a PROM device. In addition, a
PROM device can be verified to have the correct pattern inserted.

The MDP contains three other controllers, as follows:

a. The Mainframe Input Output (MFIO) controller.

b. The Message Level Interface Input Output (MLIO) controller.

c. The UIO Maintenance Input Output (UMIO) controller.

The purpose and use of each of these three controllers is defined in the following paragraphs.

1-12

B 6900 System Reference Manual
System Description

The purpose of the Mainframe I/O (MFIO) controller is to allow either the maintenance processor or the display logic to
set and to sample the state of mainframe flip-flops. In addition, the maintenance processor can monitor various condi­
tions within the controller through use of status and data transfers. The MFIO controller interfaces the logic of the MDP
with one of two connectors that are identified as normal, and as alternate interfaces. The PROC ENABLE switch selects
either the maintenance processor or the display logic to control the data lines between the MDP and the CPU cabinet.

The maintenance processor uses a set of command words and fixed format status reports to control the operation of the
MFIO controller. These controller directing commands and status reports are passed between the maintenance processor
and the MFIO logic over the DIN and DOUT lines of the MFIO interface bus.

When the PROC ENABLE switch is in the ENABLED position (UP), the maintenance processor is permitted to control
data that is sent to the CPU cabinet and, therefore, to control the setting of mainframe flip-flops. When the PROC
ENABLE switch is in the DOWN position, the display logic controls the data sent to the CPU cabinet and, consequently,
the setting of mainframe flip-flops.

The purpose of the Message Level Interface Controller (MLIO) is to provide the maintenance processor with a way to
communicate with the peripheral units that are attached to the system. The MLIO controls .an MLI interface bus between
the IODC cabinet and the MDP. The MLIO controller contains a 1024 byte IC memory buffer that is used to hold data·
received from an I/O device. The MLIO controller can initiate different I/O devices, but only one I/O operation can be
in process at any one time. MDP cabinet system control panel switches are used to select those I/O devices the MLIO
controller can initiate. The maintenance processor uses a set of command words and status reports to control the MLIO
controller, and the MLIO interface bus to the IODC cabinet.

The purpose of the Universal Maintenance Input Output (UMIO) controller is to connect the maintenance processor to
system IODC Base-module maintenance card-packages. This interface provides for FIRMWARE programs executed by the
maintenance processor to initiate and control maintenance tests on system peripheral devices.

DISPLAY CONTROL LOGIC

The display control logic (see Figures 1-5 and 1-6) is controlled by the maintenance processor.

If an MDP cabinet is installed in a B 6900 system the maintenance display indicates circuit device status, and causes the
circuit devices to SET or to RESET.

If an MDP cabinet is not installed in a B 6900 system the status of system circuit devices is displayed on an. Operator
Display Terminal (ODT) peripheral device screen. The maintenance processor executes a FIRMWARE "SOFT-DISPLAY"
program which controls the display of system status on the ODT screen. The SOFT-DISPLAY program is executed in
response to an input message which is written on the ODT screen. Other input messages on the ODT screen are used to
cause circuit devices in the system to be SET or RESET.

B 6900 CENTRAL POWER SUPPLY CABINET

The Central Power Supply Cabinet (PSC) of the B 6900 system is an A size cabinet (see Figure 1-6), which provides
centralized power to all cabinets within the B 6900 system except for independently powered cabinets. Power buses
route the power generated in the PSC to other cabinets in the B 6900 system. The source power to the B 6900 system
PSC is discussed in the B 6900 System Installation Planning Manual, number 5011364.

The power supplies in the B 6900 system PSC are capable of supplying electrical power to the mainframe cabinets of the
system. The power supplies in the PSC use constant voltage .transformers, that provide sufficient pre-regulation conditions
to ensure constant voltage outputs with a loss of input power of up to 30 percent of normal line supply. These design
characteristics in the PSC provide for continuous system operation during "brown-out" operations. A "brown-out" is
defined as a reduction by as much as 15 percent of normal operating line voltage, and for an unspecified period of time.

5010986 1-13

I -.Slio

MV4604/SHT 1 OF 2

MAINTENANCE
PROCESSOR
MODULE

_/
MAINTENANCE
PROCESSOR
CONTROL PANEL

MV4li04/SHT 2 OF 2

Figure - · . 1 5 Maintenance Display Processor Cabinet

SYSTEM STATUS
c-- DISPLAY PANELS/

\ I

I I c=J

6~3
[] . . .

86900
SYSTEM
CONTROL
PANEL

86900
MAINTENANCE

CONTROL PANEL

I / FLEX DISK DRIVE

I MOP CABINET
L_ POWER SUPPLY

B 6900 System Reference Manual
System Description

Figure 1-6 shows the major parts of the PSC, and the relative location of these parts within the cabinet. Figure 1-7 shows
. the power bus distribution between the PSC, and other cabineis within the B 6900 system mainframe.

5010986

POWER
CONTROL ANO
SEQUENCING ---+-----'t-t"-

MV 1561

300VOC BUS

+4.75V/·2V
BUS BARS

INPUT POWER
CKT BAKR
ANO FILTER

Figure 1-6. Central Power Cabinet

+12 VOLT
SUPPLY

INPUT POWER
CKT BRKR
ANO FILTER

1600 A
INVERTER

1-15

:{)-'
208VAC I
INPUT
3 PHASE

MV4fi05

I
I
I
I
I
I
I
L

---· - - - - - - - -- ___,

AC
INPUT
MOD

MANUAL
ON/OFF
CONTROL

CENTRAL POWER CABINET

ACtDC
CONV
MOD

AC
CONTROL CVT
MOD

POWER
SEO
MOD

CVT

'3-PHASE AC DISTRIBUTION
DISTRIBUTION

-------··TO Bl OWER MOTORS

.-
1

CVT

-...,
I
I

r-
1
I CVT

-,
I
I
I
I

I
I
I
I

+5V/.±15V
MEMORY
SUPPLY

I
I
I
I

+5V/±15V
MEMORY
SUPPLY

I
L !;!T ~M ~B !J

1600A
INV
MOD

±12V
SUPPLY
MOD

-4.5V
+20V
SUPPLY
MOD

I
I
I
I
I

I
I

_J

+4. 75V ·
-2V
OUTPUT

_i 12V
OUTPUT

-4.5V/
+20V
OUTPUT TO
PC CAB NO. 1
& PC CAB NO. 2

r-- ----.
I CVT :

I I
I MAINT I
I SUPPLY I
I I
L-~c~-'

Figure 1-7. B 6900 Power Subsystem Distribution Diagram

POWER
SUPPLY
OUTPUTS
TO
POWER
SUPPLY
BUSES

B 6900 System Reference Manual
System Description

INPUT OUTPlJT DATA COMMUNICATION (IODC) CABINET

In low serial-numbered B 6900 systems an IODC cabinet is a 3-quarter size cabinet (see Figure 1-8) that contains from
1-to-4 Universal Input Output Base (UIO-Base) modules. In high serial-numbered B 6900 systems an IODC cabinet may
be an A-size cabinet (see Figure 1-9) which contains a maintenance processor module as well as 1-to-4 UIO Base modules.

There are two kinds of IO.DC cabinets, system-powered cabinets, arid independently-powered cabinets. A B 6900 system
must contain one system-powered IODC cabinet. If a B 6900 system contains multiple IODC cabinets, the first IODC
cabinet is system-powered, and all other IODC cabinets are independently-powered. If a B 6900 system does not contain
an MOP cabinet, the first IODC cabinet is A sized, system-powered, and contains a maintenance processor module.

A B 6900 CPU can interface to 8 UIO-Base modules by means of the MLI ports in the MLIP module. Each UIO-Base
module can be inter-connected to 7 other UIO-Base modules by means of UIO Line Expansion Modules (LEMS)s. There­
fore, a B 6900 CPU can interface to a maximum of 64 UIO-Base modules, located in up to 64 IOOC cabinets.

UIO BASE
MODULES - 24 CARD

INTERFACE PANEL

/

CABLE TROUGH

' \

~BLOWERS
MV4506

Figure 1-8. IODC Cabinet (3/4 Size)

5010986 1-17

UIO BASE

B 6900 System Reference Manual
System Description

MODULES-24CARD ~\

INTERFACE --,C:.~--t--tfr_­
PANEL

MV4507

B 6900 Memory Cabinets

\

"'\.___BLOWERS

MAINTENANCE
PROCESSOR
AND CONTROL
PANELS

- CABLE TROUGH

MAINTENANCE
PROCESSOR
POWER SUPPLY "'

IODC 20KHZ, 5KW AC

IOOC 20KHZ, 5V SUPPLY - 300A

Figure 1-9. IODC Cabinet (A Size)

The B 6900 system CPU cabinet contains provisions for installing 1-to-4 Integrated Circuit (IC) local memory modules.
Memory modules mounted in a CPU cabinet contain 128K words of storage capacity. The use of internal IC memory
modules is optional.

From 1-to-4 external memory modules (in independently powered cabinets) can be connected to a B 6900 CPU cabinet
by external cable interface connections. Externally connected memory modules may be IC memory of PLANAR CORE
memory modules which contain 128K words of storage capacity. The use of external memory modules is optional.

Global Memory (TM) is optional in a B 6900 system. If Global memory is installed, it is interfaced to the CPU cabinet
by an external cable interface; therefore, it must be independently powered.

1-18

B 6900 System Reference Manual
System Description

A B 6900 system must have a minimum of l 28K words of memory available to the CPU, and may access a maximum of
IOOOK words of memory. The memory resources of a B 6900 system may be any combined mixture of local/ global
memory, from the minimum to the maximum number of words.

The B 6900 Pianar Memory Cabinet (refer to Figure 1-10) is an optional independently powered B size cabinet that can
contain a maximum of 256K words of local memory. With a maximum of two Planar memory cabinets in a B 6900
system, a maximum of 512K words of local Planar memory is available to the system. Local Planar memory is expand­
able from l 28K words to 5 l 2K words, in increments of l 28K words. In the common context, one K of memory is
actually 1024 words in length.

AB 6900 I/C Memory Cabinet (see Figure 1-11) is an optional B size independently powered cabinet that can contain up
to 512K words of memory. The I/C memory is installed in modules of 128K words, up to a maximum of four such
modules. If only I/C memory is installed in a B 6900 system, then the system contains a single optional memory cabinet.

Each word of memory consists of 60 bits. These 60 bits are divided to provide 51 bits of data, one parity bit, and eight
bits which are utilized for error detection and correction.

AB 6900 memory interface consists of six cables. Figure 1-12 shows these six cables, and how they operate to provide
the interface between the memory control module of the CPU cabinet, and B 6900 memory modules.

The B 6900 memory modules are capable of performing one of three types of operations as follows:

a. Read/Restore operation

b. Clear/Write operation

c. Read/Modify/Write operation

A memory Read cycle is the minimum time that must occur between two consecutive Initiate Memory Cycle (IMC) pulses.
A Read/Restore memory operation, or a Clear/Write memory operation may be performed in the time given for a memory
Read cycle. A Read/Modify/Write memory cycle requires a longer memory cycle time because this operation requires that
both a memory Read, and a memory Write function must be performed (two IMC pulses are required) to complete a
memory cycle.

A Read/Modify/Write memory cycle accepts input data, and a mem01y address from the memory requestor. A memory
cycle is performed on the address specified, and the data present at the address is made available to the memory requestor.

A Read/Modify/Write operation in the memory control may be changed into a Read/Restore operation under either of the
following conditions:

a. A protected memory operation is in progress, and the data in the word addressed by the Read part of the
Read/Modify/Write operation determines that the memory protect bit (bit 48) is true. If this condition exists,
the data Readout of the memory address is rewritten into the same address, and the Memory Protect Interrupt
is detected by the memory control.

b. A parity error occurs during the read part of the Read/Modify/Write operation. If this condition exists after
a Memory Retry has been attempted, then the data with the parity error is rewritten into the same address,
and the Memory Parity Error Interrupt is detected by the requesting function.

If the memory control does not detect a memory protect interrupt, or a parity error interrupt during the read part of a
Read/Modify/Write operation, then the operation continues as follows.

5010986 1-19

SINGLE PORT 128K x 60 MEMORY MODULES
OR DUAL PORT 64K x 60 MEMORY MODULES

BLOWER

CARD SIDE VIEW

MEMORY REGULATORS

AC POWER

B 6900 System Reference Manual
System Description

MEMORY SUPPLY

MV 2565

MEMORY REGULATORS

MEMORY SUPPLY

SINGLE PORT
128K x 60 MEMORY MODULES

OR
DUAL PORT

64K x 60 MEMORY MODULES

BLOWER

P!N S!DE V!EW

Figure 1-10. B 6900 Planar Core (Optional) Memory Cabinet

1-20

128K MEMORY
STORAGE UNIT
(MSU)
MODULES

COOLING AIR
PLENUM

MV4608

5010986

68"
(173cm)

(46cmi

~

B 6900 System Reference Manual
System Description

INDIVIDUAL
_____ POWER SUPPLY

T REGULATORS. AND

-~ CONTROLS. FOR EACH
,- _,.- MEMORY MODULE

/;
/

------INDIVIDUAL MODULE
POWER CONTROLS

CABINET BLOWERS

CABINET AC INPUT ASSEMBLY
AND CIRCUIT BREAKER

CARD SIDE

Figure 1-11. B 6900 IC Memory (Optional) Cabinet

1-21

PORT ACKNOWLIEDGE SIGNAL
~~) (TO GLOBAL PORT)

-).) EXTERNAL MOD

-~ MODULE ADDRESS

-~ INTERNAL MOD

-~) ACCESS REQUEST

-~) WORD ADDRESS

-~>INFORMATION

--» INFORMATION

~~)INFORMATION

-~) INFORMATION

PORT71 ADAPTER

CONTROL DATA

WORD ADDRESS

DATA

DATA

DATA

DATA

CONTROL DATA

WOAD ADDRESS

DATA

DATA

DATA

DATA

Figure 1-12~ Memory Port fl Module Interfaces

EXTERNAL
LOCAL
MEMORY
MODULE

INTERNAL
IC LOCAL
MEMORY
MODULE

B 6900 System Reference Manual
System Description

The data d1at was accepted by the memory module is written in.to the same address from which the memory read
operation was performed and thus, the original data is destroyed. The B 6900 system uses the Read/Modify/Write mode
of operation to perform normal memory write functions.

A Read/Restore memory cycle accepts an address from the memory requestor, a read memory cycle is performed on the
address specified, and the data that is present at the address is made available to the memory requestor. The same data
that was present in the specified address is written back into the specified address. The B 6900 system uses the Read/
Restore mode of operation to perform normal memory read functions.

A Clear/Write memory cycle accepts an address from the memory requestor, and writes a requestor supplied data word
into the address. Changing the Clear/Write operation into a Read/Restore operation (for a parity error), is analogous to
that change previously defined for the Read/Modify/Write operation.

B 6900 OPERA TORS DISPLAY CONSOLE

The purpose of this console (see Figure 1-2) is to provide a position where all necessary system operating controls are
collected in one physical place. Collecting the normal operating controls into a single central location is efficient, and
provides a logical place for the system operational staff to function.

There are two parts to the operators display console (see Figure 1-13), in addition to the tabletop work area. The two
parts of the console are the video display and the keyboard for the video display. The video display terminal sets on the
tabletop. The system control panel is part of the keyboard for the terminal, and is mounted in front of the display
screen.

The operators display console contains two se_parate operator stations. Full control of the system is possible from only the
left-hand station of the console because the right-hand station does not include a system control panel. A locking device
is installed for each operators station. The locking device is a security feature used for system integrity. When the device
is locked, the keyboard is disconnected, and the operators station cannot communicate with the software operating system.
The locking device is activated by the use of a hand key that must be turned to open or lock the operator's console
station keyboard. The locking device has no effect on the system control panel, and the controls on the panel may be
operated regardless of whether the keyboard is locked.

The controls for the video display (see Figure 1-14) consist of a thumbwheel type adjustment, and an ON-OFF switch for
the video display. The purpose and use of the video display controls are as follows:

a. The ON-OFF switch. This switch controls the power utilized by the video display.

b. The BRIGHTNESS thumbwheel controls the lighting intensity of the video display.

The controls for the B 6900 system control panel consist of eight indicator/switch pushbutton controls shown in
Figure 1-13. The purpose and use of the B 6900 system controls are as follows:

a. The ENABLE pushbutton switch allows the use of the HALT, POWER ON, and POWER OFF pushbutton
switches. If the ENABLE pushbutton is not depressed then the three other pushbuttons listed are inoperative,
and have no effect on System operation. If the ENABLE pushbutton is depressed then the other three push­
buttons listed are enabled, and depressing any one of the pushbuttons will cause the circuit corresponding to
the switch to be activated. The purpose of the ENABLE pushbutton is to prevent accidental system operation
caused by inadvertently depressing one of the pushbutton controls listed.

b. The POWER OFF pushbutton is used to remove source power from the circuits of the system that are sup­
plied power from the central power supply cabinet. The POWER OFF pushbutton does not remove power
from circuits that receive their source power from some other source.

5010986 1-23

----------------------------,

~;;i ~ ~]
~'...J ~~ ~ i 'O' 'O 'O '~' 0 'O B i "'" 11 '"" [:I:J

MV4610

Figure 1-13. Left-Hand System Operators Keyboard

B 6900 System Reference Manual
System Description

~~~------ ONIOFF 
SWITCH 

BRIGHTNESS-----..:..,,....---;...~~~~ 

CONTROL 

MV4611 

Figure 1-14. B 6900 Operators Console Video Screen 

c. The POWER ON pushbutton is used to apply source power to the B 6900 system cabinets that derive their 
power input from the central power supply cabinet. The POWER ON pushbutton does not provide a method 
for applying source power to cabinets and peripheral units that do not derive their source power from the 
central power supply cabinet. 

d. The f-J..ALT pushbutton is used to stop the B 6900 system at the end of the current machine language operator 
that is in process. 

e. The LOAD pushbutton is used to cause the B 6900 system to initiate a Halt/Load sequence of operations. 
When the LOAD pushbutton is depressed the B 6900 system logic is general cleared (Set to the binary zero 
condition). When the pushbutton is released the Load operation is initiated. The Halt/Load sequence is a 
predetermined set of operations that results in the software operating system being placed in control of the 
system hardware. 

f. The LOAD MODE pushbutton is used in conjunction with the LOAD pushbutton, to control the Halt/Load 
sequence of operations. If the LOAD MODE pushbutton is illuminated, and a system Halt/Load sequence is 
initiated (by depressing the LOAD pushbutton), then a Load operation proceeds from a predetermined periph­
eral device. If the LOAD MODE pushbutton is not illuminated when the LOAD pushbutton is depressed, then 
the Load sequence proceeds to perform a load operation from an alternate peripheral device. The selection of 
either device from which to perform a system Load operation depends on whether the pushbutton is illumi­
nated or extinguished. 

5010986 1-25 



B 6900 System Reference Manual 
System Description 

g. The RUNNING/CHECK indicator lamp illuminates dimly when the system is operating. The purpose of the 
RUNNING indicator is to provide an indication of whether or not the system is capable of responding to 
certain stimuli during system operations. A RUNNING indication is necessary because under certain condi­
tions there is no other visible way to determine whether the system is trapped in a perpetual operating loop. 

The RUNNING/CHECK lamp illuminates brightly if a CHECK condition (FAULT) is detected by the 
maintenance processor. 

If the RUNNING/CHECK lamp is extinguished, the system is not RUNNING and a CHECK condition has 
not been detected by the maintenance processor logic. 

The operators keyboard (Figure 1-13) is used by a system operator to input commands and data to the operating system. 
The operators display console and keyboard are commonly referred to as an Operators Display Terminal (ODT), or alter­
nately as a Supervisory Printer Output (SPO). 

When the security lock mechanism for system integrity is engaged, the keyboard is disabled, and has no effect on system 
operations. However, if the keyboard is disabled, but the video display switch (Figure 1-14) is in the ON position, the 
video screen will display status messages and other pertinent data about current system oeprations. 

The operators display video screen (Figure 1-14) is used to pass communications between the B 6900 operating software 
system and one who operates the system manually. The display screen is similar to a home television receiver, except that 
the display screen can display only characters and numbers, not pictures. The only sound that the display is capable of 
making is the bleep tone used to gain the operators attention when the software operating system needs a response from 
the operator. 

When the operator needs to communicate with the operating system, the keyboard is used to write data which is displayed 
on the screen. The screen is capable of displaying 1920 characters, arranged in a matrix that consists of 24 rows of char­
acters. Each row contains 80 character positions. A cursor blinks at the position that the next character will occupy. If 
the next character position contains a valid character then the valid character blinks, but if the next characte: position is 
not occupied then the cursor illuminates the character position, and causes the illuminated position to blink. The cursor 
moves from left to right, and from top to bottom on the screen. The display screen has automatic line-feed, and carriage­
return features so that the operator is not required to control these functions. When the operator writes data on the 
screen, the last character written is the End-Of-Text (1) special character. This special character is used to indicate where 
an input message terminates. 

1-26 



B 6900 System Reference Manual 

SECTION 2 

DATA REPRESENTATION 

GENERAL 

All data in the B 6900 system is in binary form. The basic unit of data is the memory word (see Figure 2-1), which 
consists of 60 consecutive binary bits. All words of data in the B 6900 system have four distinct parts: the check-bit 
field, a parity bit, a tag field, and the information field. The 60 bits in a word are numbered for identification. 

I 

L 
MV4512 

L 
BITS-80, 49, AND 48 ARE THE 
TAG-FIELD. BIT-50 IS THE MOST 
SIGNIFICANT BIT IN THE TAG-FIELD. 

BIT-61 IS THE ODD-PARITY 
BIT FOR ALL LESS SIGNIFICANT 
BITS IN THE WORD. 

BITS-59 THROUGH 52 ARE THE 
ERROR DETECTION/CORRECTION 
CHECK-BIT CODE VALUE. 

BIT-ZERO (LEAST SIGNIFICANT) 
THROUGH BIT~7 (MOST SIGNIFICANT) 
IS THE INFORMATION-FIELD. 

Figure 2-1. B 6900 Word Structure 

~ I 

Bits 52 through 59 are the Error Detection/Error Correction field. These bits are not available to a system user; they are 
intended for internal system use only. The purpose of these check-bits is to provide a method for detecting single-bit 
errors in a memory word, and for correcting single-bit errors. Multiple-bit errors may be detected by the system Memory 
Controller. but cannot be corrected. 

The B 6900 Memory Controller inserts check-bits into a word as it is writte·n into memory. When a memory word is 
read. its check-bits are used to detect bit-errors and to correct any single-bit error that is detected. A check-bit code is 
part of a data word only while the word is present in system memory and in the Memory Controller logic. Data words 
not present in system memory or Memory Controller logic circuits are tested for errors by means other than check-bit 
codes. 

Bit number 5 I (the most significant bit in a word) is the parity bit. The parity bit is used to represent the odd parity 
of the word. If the number of binary ONES present in the tag field and in the information field is an even number 
then the parity bit is a binary one value. If the number of binary ONES present in the tag field, and the information 
field is an odd number, then the parity bit is a binary ZERO value. The B 6900 system uses the parity bit to monitor 
the quality of data in a word. Logic circuits in the B 6900 system count the number of bits in a word, and compare 
the count against the parity bit state. If the· result of the comparison is not equal, then the B 6900 system recognizes 

5010986 2-1 



B 6900 System Reference Manual 
Data Representation 

that a parity error has occurred. The process of parity checking is an automatic feature of the B 6900 system. The 
parity bit for a word is not directly available to the user of the system because it is only used when words are transferred 
from one module to another. Data that is internal to a module has already been tested for parity. 

Bits 50, 49, and 48 are the tag field. The tag field is used to identify the type of interpretation that is to be applied to 
the data that is present in the information field of the word. There are eight different values that may be present in the 
tag fieid, and each vaiue specifies a different interpretation to be used. The meaning of the tag field values are as 
follows: 

2-2 

TAG 
(50) 

0 

0 

0 

0 

FIELD 
(49) 

0 

0 

0 

BITS 
(48) 

0 

0 

0 

MEANING 

A tag field of ZERO indicates that single-precision data is present in the information 
field of the word. 

A tag field of ONE indicates that the information field contains an indirect address, 
not data. 

A tag field of TWO indicates that double-precision data is present in the information 
field of the word. 

A tag field of THREE indicates that a control word is present in the information 
field of the word. There are several different types of control words used in the 
B 6900 system. These types of control words are discussed individually, later in 
this section of this manual. 

A tag field of FOUR normally indicates that a step index word is present. The 
meaning and use of a step index word is discussed later in this section of this 
manual. 

NOTE 

A special use for a word that has a tag of FOUR may be invoked by the MCP when a fault condition is 
to be handled by a user program. 

The compiler will place a word with a tag of FOUR in the stack as a flag word. This flag is used to 
indicate that the program using the stack is responsible for handling one or more of the interrupts that 
may occur when the program is executed. 

This special use for a word with a tag field of FOUR is only invoked when the programmer of the 
user program specifies that the user program is responsible for interrupt handling. The compilers 
that utilize this special case are the ALGOL, FORTRAN, ESPOL, and the PL/I compilers. 

0 

0 

A tag field of FIVE indicates that a descriptor word is present. The meaning and 
use of a descriptor word is discussed later in this section of this manual. 

A tag of SIX indicates that a software control word is present. The meaning and 
use of a software control word is discussed later in this section of this manual. 

A tag of SEVEN indicates ihai a program control word is present. The meaning 
and use of a program control word is discussed later in this section. 



B 6900 System Reference Manual 
Data Representation 

This manual uses a convention to refer to data bits in a word. The rules of this convention follow: 

a. A data field within a word is represented by two numbers separated by a colon character and enclosed in 
brackets. 

b. The meaning of the two numbers enclosed in the brackets is as follows: 

1. The first (left-most) number identifies the most significant bit in the field of data bits. 

2. The second (right-most) number identifies the number of bits that are contained in the field of data 
bits (including the most significant bit, which was identified in rule b.l above). 

c. Bits in the tag field are not included in the field unless the most significant bit (rule b .1., above) is one of 
the tag field bits. 

d. All bits in the information field are considered to "wrap-around" the word in such a way that the next least 
significant bit after bit ZERO is bit 47. 

Examples of this convention are as follows: 

Bits [SO: 3] (the tag field) - Beginning with bit SO for three bits, or bi ts 50, 49, 
and 48. 

Bits [06:9] (a data field) Beginning with bit 06 for 9 bits, or bits 06, 05, 04, 03, 
02. 01, 00. 47, 46. 

Bits (47:48] (a data field) -- Beginning with bit 47 for 48 bits, or all of the informa­
tion field. 

The convention that was stated in the previous paragraph is used to further define the bits that make up the information 
field of the B 6900 system words. There are 48 bits in this field: bit 47 is the most significant bit, and bit ZERO is the 
least significant bit. 

INTERNAL CHAR....\CTER CODES 

The only internal code that is used in a B 6900 system is Extended Binary Coded Decimal Interchange Code (EBCDIC). 
EBCDIC is an 8-bit alphanumeric code containing four zone bits. followed by four numeric bits. The character code 
used for Data Communications Subsystems (external character code) is the American Standard Code for Information 
Interchange (ASCII}. ASCII may be a 6-bit, 7-bit, or 8-bit alphanumeric code. Within the B 6900 system, EBCDIC 
codes may be compacted by deleting the zone bits, and by retaining the numeric portion of the character. When data in 
the B 6900 system is compacted it is said to be packed. 

Appendix C of this manual lists the character codes of ihe character sets that are used in the B 6900 system. 
Appendix D gives the card codes that are required to produce an EBCDIC. or hexadecimal coded character representation. 

5010986 2-3 



NUMBER BASES 

B 6900 System Reference Manual 
Data Representation 

Number bases used in the B 6900 system are base 10 (decimal), base 16 (hexadecimal), base 2 (binary), and base 8 
(octal) (see Figure 2-2). Because the system utilizes various of these number bases in performing its functions, it is 
necessary that the user of the system be familiar with the number bases, and know how to convert a value from one 
number base to any of the other number bases. A brief discussion of the number systems used follows. 

CHARACTER FORMATS 

MSD ZS NS 

Z4 N4 

Z2 N2 

Z1 N1 

EBCDIC 
CHARACTER 

NUMBER BASE FORMATS 

MSD s 

4 

2 

LSD 

HEXADECIMAL 
DIGIT 

MV4613 

MSD8 
DLSD 

OCTAL 
DIGIT 

LSD 

Figure 2-2. Character and Digit Formats 

BINARY 
DIGIT 

The decimal numbering system is based on the numeric digits zero through nine, and on the powers of ten. Similarly, 
the binary numbering system is based on the numeric digits zero and one, and on the powers of two. In the case of 
the numbering systems described above, it is apparent that a decimal digit may have any value from zero through nine, 
and that a binary digit may have a value of either zero, or one. 

The octal numbering system is based on the numeric digits zero through seven, and on the powers of eight. An octal 
digit may have any value from zero through seven. Further, two raised to the third power is eight, the base of the octal 
numbering system. Therefore, because the octal numbering base is a multiple of the binary number base, an octal 
number can be conveniently converted to a binary number, and vice versa. 

The hexadecimal numbering system is based on the numeric digits zero through nine, and A through F: where A equals 
decimal IO, B equals decimal 11, C equals decimal 12, D equals decimal 13, E equals decimal 14, and F equals decimal 
15. Hexadecimal numbering is also based on the powers of sixteen. Two raised to the fourth power is sixteen, the base 
of the hexadecimal numbering system. Therefore, because the hexadecimal numbering base is a multiple of the binary 
numbering base, a hexadecimal number can be conveniently converted to a binary number, and vice versa. 

A B 6900 word contains 48 bits in the value field of the word (see Figure 2-3). These 48 bits can be converted into 
hexadecimal, octal, BCL, or EBCDIC values by arrangement of the 48 bits in the proper order. A hexadecimai digit is 
equivalent to four binary digits because 1111 binary is equal to hexadecimal F. Since a hexadecimal digit contains four 

24 

I 



B 6900 System Reference Manual 
Data Representation 

binary digits, the value field of a B 6900 word contains 12 complete hexadecimal digits (48/4 =12 ). The same value 
field can also be considered to contain 16 octal digits (48/3 = 16), or 6 EBCDIC characters (48/8 = 6). 

From the foregoing discussion it is clear that the choice of 48 bits for the value field of a B 6900 word was not a random 
choice, but rather was chosen because that number is a multiple of the common character codes and number bases used 
i...11 the B 6900 System. 

OCT AL FORMAT 
MSD 

47 44 41 38 35 32 29 26 23 20 17 14 11 8 5 2 

46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1 

45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0 
LSD 

PARITY TAG 
INFORMATION 

HEXADECIMAL FORMAT 
MSD 

47 43 39 35 31 27 23 19 15 11 7 3 
I- - __, ~--· 

46 42 38 34 30 26 22 18 14 10 6 2 

45 41 37 33 29 251 21 17 13 9 5 1 

44 40 36 32 28 24 20 16 12 8 4 0 LSD 

PARITY TAG 

INFORMATION 

EBCDIC FORMAT 
MSD 

47 43 39 35 31 27 23 19 15 11 7 3 

46 42 38 34 30 26 22 18 14 10 6 2 

45 41 37 33 29 25 21 17 13 9 5 1 

44 40 36 32 28 24 20 16 12 8 4 0 LSD 

PARITY TAG 

INFORMATION 
MV4514 

Figure 2-3. B 6900 Word Formats 

·NUMBER CONVERSION 

The B 6900 system normally converts decimal data that is input to the system from decimal notation to EBCDIC codes. 
An exception to this normal mode of operation may occur in the case of the data communications subsystem, where 
external input data may be in ASCII code. It is also possible to find that the input data has been packed, is in. hexadeci­
mal notation in the system. The user of the system must be familiar with the forms in which the data can be stored. The 
user must be able to perform manual conversion of numeric data from one form to another so that the internal data 
conversion processes can be assessed for proper operation. The following paragraphs present methods for performing 
manual conversion of numeric data from one form to other forms. 

5010986 2-5 



DECIMAL TO NONDECIMAL 

B 6900 System Reference Manual 
Data Representation 

Decimal numeric data is converted from base 10 to some other number base by repeatedly dividing the decimal value by 
the base number for the numbering system to which it is to be converted. Each time a division is performed, the 
remainder becomes the next most significant digit or bit in the new number base. When no more whole numbers occur 
during the division, the conversion is complete. 

EXAMPLES: 

a. Convert the decimal number 1776 to octal (base 10 converted to base 8). 

1776/8 = 222 with a remainder of O· 
' 

222/8 = 27 with a remainder of 6-. ' 

27 /8 = 3 with a remainder of 3· 
' 

3/8 = 0 with a remainder of 3. 

1776 decimal= 3360 octal. 

b. Convert the decimal number 1776 to hexadecimal (base 10 converted to base 16). 

1776/ 16 = 111 with a remainder of O; 

111/16 = 6 with a remainder of 15 F (IS decimal= F hex); 

6/16 = 0 with a remainder of 6. 

1776 decimal value = 6FO hexadecimal. 

NONDECIMAL TO DECIMAL 

Nondecimal numeric data is converted to decimal data by multiplying each digit of the numeric value by the value of 
the digit position in decimal values. For example, in the preceding subsection of this manual the decimal number 1776 
was converted to octal and hexadecimal notation. The successively more significant digits of the octal notation are as 
follows: 

2-6 

times 

512~ 
decimal I 

3 

I 
I 
3 x 512 

times times 

de:m~ dec~m~ 
3 6 

I 
6 x 8 

decimal 
value 

0 

I 
3 x 64 = ----------

0 
48 

192 
~~~~~~~~~~~~~~~~-i536 

The decimal equivalent value is

B 6900 System Reference Manual
Data Representation

By the same logic, a hexadecimal number is converted to decimal as follows:

times

256~
decimal I

6

times

de:!~
F

equivalent
decimal

value

0

I o
1 F X 16 = ---------- 240 (F hex equals 15 decimal)

6 x 256=--------------1536

The decimal equivalent value is 1776

Table 2-1 gives the value of each succeeding digit in a number. These values are provided for binary, octal, and hexadeci­
mal digit positions. The values in this table are expressed in decimal equivalents for the corresponding digit positions.
There are 16 octal digits in a B 6900 word (see Figure 2-3) and, therefore, Table 2-1 gives the place values for 16 octal
digits.· A B 6900 word contains 12 hexadecimal digits, and, therefore, Table 2-1 gives the place values for 12 hexadeci­
mal places.

Observing Table 2-1 while again reading the examples of converting a nondecimal value to a decimal value shows the
origin of the place values used to perform the multiplication portions of the examples. The sum of the multiplications
provides the decimal values of the nondecimal numbers used in the examples.

NONDECIMAL TO NONDECIMAL

It is occasionally necessary to convert a hexadecin1al number to an octal number or vice versa. The easiest way to
perform this conversion is to first convert this binary value to the final form.

EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Convert hexadecimal ABCDE to binary form as follows:

An A in the fifth position is 1010 in binary form
A B in the fourth position is 1011 in binary form
A C in the third position is 1100 in binary form
A D in the second position is 1101 in binary form
An E in the first position is 1110 in binary form

The binary representation for the hexadecimal value is

1010 1011 1100 1101 1110.

b. Convert the binary value from step a to octal notation as follows:

10 101 011 1 IO 011 01 I 110

2 5 3 6 3 3 6

Thus, the octal equivalent for the hexadecimal value ABCDE is 2536336. Reversing the procedure of the preceding
example converts the octal value to hexadecimal notation.

5010986 2-7

B 6900 System Reference Manual
Data Representation

Table 2-1. Decimal Place Values of Digits in Various Number Bases

B 6900 System Reference Manual
Data Representation

The example shown works well when the present form of the value to be converted to another form is relatively small.
However, it can be seen that a five digit hexadecimal number converts into a twenty digit binary number (as in the preceding
example), and from this it is evident that larger hexadecimal numbers become long strings of binary digits. Extremely
J~rig strings of binary digits are cumbersome, and become awkward in performing the conversion. Another method that may
be used to perform conversions in this case is as follows:

EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Using the values in Table 2-1, convert the hexadecimal number to its equivalent decimal value, as follows:

(1) The value of the fifth. position in a hexadecimal number (from Table 2-1) is 65,536. The fifth
position of the value to be converted is hexadecimal A (A hexadecimal is equal to 10 decimal). There­
fore, the hexadecimal A in the fifth position is equal to 10 times 65,536, or 655,360 decimal.

(2) The fourth position of a hexadecimal number has a value of 4,096 (from Table 2-1). The fourth
position of the hexadecimal number to be converted is B (hexadecimal B is equal to 11 decimal).
Decimal 11 times 4,096 is equal to 45,056.

(3) Hexadecimal C times 256 decimal is equal to 3,072.

(4) Hexadecimal D times 16 decimal is equal to 208.

(5) Hexadecimal E is equal to 14 decimal.

655,360 hexadecimal Annnn
45,056 hexadecimal nBnnn

3 ,072 hexadecimal nnCnn
208 hexadecimal nnnDn

14 hexadecimal nnnnE

7039710 hexadecimal ABCDE equals 703,710 decimal

b. Convert the decimal number 703,710 (from step a. above) to the equivalent octal value, as follows:

5010986

703,7~,963 with a remainder of 6\;

87 ,963/8 = 10,995 with a remainder of 3;
~ .

10,995/8 = 1,374 with a remainder of 3;

~
1,374/8 = 171 with a remainder of 6;

//
171/8 = 21 with a remainder of 3;

2~ with a remainder of 5\; \

2/8 = 0 with a remainder of r
Hexadecimal ABCDE equals 2 5 3 6 3 3 6 octal.

2-9

B 6900 System Reference Manual
Data Representation

The procedure for converting nail.decimal numbers to nondecimal numbers shown in the preceding example can also be
used to convert an 'Octal number to a hexadecimal equivalent. The only difference is that the place values from
Table 2-1 (used in step a. of the procedure) must be taken from the octal column instead of from the hexadecimal
coiumn.

WORD TYPES AND PHYSICAL WORD LAYOUTS

As explained in the beginning paragraphs of this section, a B 6900 system word consists of a parity bit, a tag field, and
an information fieJd. The tag field defines an interpretation that is to be applied to the contents of the information field.
This subsection of this manual will define the interpretations that are to be used for the data in the B 6900 system, and
will present the format of the data in the information field of each type of word used in the B 6900 system.

The two types of data used in the B 6900 system are character strings and operands. The following paragraphs define
character strings and operands.

CHARACTER TYPE WORDS

Character type words are used to contain character strings. A character type word has a tag field of ZERO (a single
precision word) and contains EBCDIC, or hexadecimal coded data. A string may occupy more than a single word of
character data. However, a string must have at least one character type word.

The most significant character in a character string occupies the left-most character position in the field character word
of the string. Each word in a character string will contain 6 EBCDIC character positions or 12 hexadecimal character
positions. The final word in a character string may contain less than a full word of characters if the number of characters
in the string is not a multiple of the number of characters in a full word. Figures 24 through 2-5 show the various
formats that are used for character type words.

A A B I B c c D D E E F F

T

B I I 0 A A\ B I c c D D E E F I F
l : !

l 1 1 0 A A B l B I c c D D E E l F F

1 p 0 A A B I B 1 c T c T D I D E E 1 F F

P WORD PARITY VALUE
0 BINARY ZERO VALUES (TAG FIELD)
A ~F 6 EBCDIC CHARACTER FIELDS
A IS THE MOST SIGNIFtCANT CHARACTER

MV 2573

Figure 24. EBCDIC Character Word Format

2-10

0

0

r ~ 0

MV 2575

OPERANDS

A I
I

A

Al
l

- T
A

T
B

I

B

B l

B 6900 System Reference Manual
Data Representation

T T T
c I

D E F G H I

c 0 E F G H

c 1 D 1 E F G H

I I I
B I G I D I E I F I u I H

P WORD PARITY VALUE

J i

J

J

J

0 BINARY ZERO VALUES (TAG FIELD)

A~ M 12 HEXADECIMAL CHARACTERS
A IS THE MOST SIGNIFICANT CHARACTER

K

K

K

K

Figure 2-5. Hexadecimal Character Word Format

i i l L M I I
I

L M

l L M

T
L M

Operands are words of data that are used to contain numeric values or logical.information. An operand may be either
a single precision word (tag field of ZERO), or a double precision word (tag field of TWO). Single, and double precision
words are used for mathematical operations. Logical information is used for decision-making processes, and operations.
The following paragraphs discuss the uses of operands in the B 6900 system.

Single-Precision Operand

A singie-precision operand is a numeric value that has an exponent part and a mantissa part. Figure 2-6 shows the
format for a single-precision operand. The fields in a single-precision operand are as follows:

bits [50:3] are the tag field, and are always equal to zero for a single-precision operand.

bit 47 bit 47 is not used in a single-precision operand.

bit 46 bit 46 is used as the sign of the mantissa field. If the sign bit is a binary one then the mantissa field
contains a negative value, and if bit 46 is a binary zero then the mantissa contains a positive value.

bit 45 bit 45 is used as the sign of the exponent field. If the sign bit is a binary one then the exponent
field contains a negative value, and if bit 45 is a binary zero then the exponent contains a positive
value.

bits [44:6] are the exponent field. Bit 44 is the most significant bit in the exponent value. The value of the
bits in this field are as follows:

bit 39 value is decimal one

bit 40 value is decimal two

bit 41 value is decimal four

bit 42 value is decimal eight

bit 43 value is decimal sixteen

bit 44 value is decimal thirty-two

5010986 2-11

B 6900 System Reference Manual
Data Representation

The maximum value that the exponent field can contain is decimal 63. When the exponent is used
in conjunction with the exponent sign bit (45), the range of the exponent value is from +63 to
-63 decimal.

bits [38:39] are the mantissa field. Bit 38 is the most significant bit in the mantissa value. The mantissa is
divided into thirteen octal fields, of which bits [38:3] are the most significant octal digit, and bits
"[2:3] are the least significant digit.

An octal point (similar to a decimal point) is always located to the right of bit zero in the mantissa
field. This point is not displayed in any way and must be assumed to exist.

E E M M M M M M M M

0 SM E M M M M M M M M M

0 SE E M M M M M M M M M

[p 0 E E M M M M M M M M M
44 40 36 32 28 24 20 16 12 8 4

P WORD PARITY VALUE
0 BINARY ZERO VALUES
SM = SIGN OF THE MANTISSA BIT
SE SIGN OF THE EXPONENT BIT
E -= EXPONENT BITS
M MANTISSA BITS
SHADED BIT IS NOT USED IN A SINGLE PRECISION OPERAND

MV 2576

Figure 2-6. Single-Precision Operand Format

M

M

M

M
0 •

OCTAL
POINT

The software of the B 6900 system classes numeric data into two classes: INTEGER, and REAL. An INTEGER
number is a single-precision or double-precision numeric value with an exponent value of zero. The maximum value that
an INTEGER may have in the B 6900 system is +7777777777777 octal, or 549,755,813,887 decimal. The minimum
integer value is -7777777777777 octal. A REAL numeric value is any value that has an exponent that is not equal to zero, or
any value that contains a part value (contains a decimal, or octal point prior to the least significant digit of the value). From
the format given for a single-precision operand it is evident that REAL numbers may not qualify to be expressed as single­
precision values.

Double-Precision Operand

A double-precision value is two consecutive words, with a tag field of TWO (010 binary)< The two words are con­
catenated in such a way that they form a single numeric value, with an octal point located between the two words. The
most significant part of the mantissa in a double-precision operand is commonly referred to as the most significant part
(MSP) and the least significant part of the mantissa is commonly referred to as the least significant part (LSP). The
octal point that separates the MSP from the LSP is used to separate whole values from partial values, with whole values
present in the MSP, and partial values present in the LSP. The format for the MSP of a double-precision operand is

2-12

B 6900 System Reference Manual
Data Representation

identical with the format for a single-precision operand, except for the tag field. The LSP of a double-precision operand
is an extension of the exponent field and of the mantissa field contained in the MSP of the word. Figure 2-7 shows the
word format for a double-precision operand.

The largest double precision value (type REAL) that can be contained in a B 6900 is 1.94882938205028079124469,
with an exponent value of +29603. The smallest double-precision value (type REAL) that can be contained in a B 6900
is 1.9385458571375858335564, with an exponent value of -29581. The value zero and the positive or negative values
between the largest and smallest values given above may be represented in double-precision numbers in the B 6900 system.

When a double-precision value is used the exponent extension field (in the LSP), it is an extension to the high order end of
the exponent field in the MSP. Bit 39 in the LSP word is the next bit in sequence after bit 44 of the upper-half, and
has a binary value of 64. Bit 40 in the LSP word is the next bit in sequence after bit 39 of the word, and has a binary
value of 128. This same order is used for all of the bits in the LSP exponent extension field, so that bit 47 of the LSP
becomes the most significant bit in the exponent value. The whole exponent field in a double-precision operand is as
follows:

MSP bit 39 is the least significant bit of the exponent, and has a value of 1, decimal.

LSP bit 39 is the next most significant bit in the exponent, and has a value of 64, decimal.

5010986

bit 47 is the most significant bit in the exponent, and has a value of 16384, decimal.

MSP

[p

LSP

[p

010
SM
SE
E

MV 2577

E E M
I I

M IM I
j i

0 I SM I E M 'M 'M IM 'M

1 SE E M M M M M

0 E E M M M M M
44 40 36 32 28 24 20

EE EE EE ME ME ME 1 ME

0 EE EE ME ME ME ME ME

1 EE EE ME ME ME ME ME

0 EE EE ME ME ME ME ME
44 40 36 32 28 24 20

TAG FIELD= DOUBLE PRECISION M
SIGN OF THE MANTISSA BIT EE
SIGN OF THE EXPONENT BIT ME
EXPONENT FIELD p

SHADED BIT = NOT USED

'M

M

M
16

ME

ME

ME

ME
16

=

I I I I I
M 'M M 'M

M M M M

M M M M
12 8 4 0

ME 1ME1 ME ME

ME ME ME ME

ME ME I ME ME
i

ME ME l ME ME
12 8 4 0

MANTISSA FIELD

•
OCTAL
POINT

EXPONENT EXTENSION FIELD
MANTISSA EXTENSION FIELD
WORD PARITY VALUE

Figure 2-7. Double-Precision Operand Format

2-13

B 6900 System Reference Manual
Data Representation

The maximum value of an exponent in the B 6900 system is 32,767 decimal, and the range of the exponent field is
from +32,767, to -32,767 decimal.

The mantissa extension field (in the LSP of the double precision operand) contains that portion of the mantissa that is
less than unity. The mantissa extension fieid is divided into i 3 octades, in the same manner as the mantissa field in die
MSP of the double precision operand. These octal digits are arranged in the same way as the octal digits in the MSP of
the word. The least significant octade of the mantissa extension field is bits (2:3], and the most significant octade is
bits [38:3].

The B 6900 system, in performing mathematical operations, utilizes two processes known as integerization and normaliza­
tion. Normalization is a process that removes leading zeroes from a single-precision or double-precision word. This
process is used to make the operation of the adder logic circuits more efficient. lntegerization is a process that alters
the value of a number such that it meets the requirements of an integer, as was defined previously in this section.

Normalization is accomplished by adjusting the value of the exponent field of a number in a positive direction until it is
at the maximum value for an exponent, or until there are no leading zeroes in the mantissa of the number. Each time
the exponent is incremented, the mantissa is shifted one octade to the left. There are no more leading zeroes in a
mantissa when the most significant octade of the mantissa is located in bits (38:3] (of the LSP word).

The process of integerization is a two-step process. The first step is to adjust the exponent in either a positive or a
negative direction until the exponent field is equal to zero. Each time the exponent is incremented or decremented,
the mantissa is shifted one octade in the corresponding direction. Octades that fall out of the low order digit of the
mantissa during the adjustment of the exponent are saved um:il the exponent is equal to zero. After the exponent has
been adjusted to zero, that part of the mantissa that is less than unity (located to the right of the octal point) is either
rounded upward to the next whole number, or it is truncated (deleted from the number). The process of rounding or
truncating is selective in the B 6900 system, and is the second step of the integerization process.

The mathematical operations that are performed in the B 6900 system can be completed regardless of the format of the
operands used. If an arithmetic operation is performed using two single precision operands, then the result of the opera­
tion will be in the single-precision format. If, however, either operand is in the double-precision format then the result
of the operation will be in the double-precision format.

Logical Operands

Logical operands are words that result from the performance of either a relational operation, or a logical (Boolean) opera­
tion. A relational operation is one that determines the relative merits of two values by means of a comparison process.
A logical operation is one that constructs a result based on the relative merit of each bit in a word when compared to the
corresponding bits in another word.

A relational operation results in either a true or a false answer. The answer is true if the result of an algebraic compari­
son of two arithmetic values is valid. The answer is false if the result of the algebraic comparison of the two arithmetic
values is not valid. The B 6900 constructs a single precision logical operand (tag field equal to binary zero) each time
that a relational operation is performed. If the answer is valid, bit zero is a one in the logical operand; and if the answer
is not valid then bit zero is a zero. All other bits in the answer word logical operand are not used, and are zeroes.

A logical (Boolean) operation results in the construction of a different type of logical operand. The constructed logical
operand may contain a number of bits. The reason is that a logical operation looks at each bit in two different words,
~d places a corresponding bit in the result operand if the conditions of the iogicai operation are satisfied.

Logical operands are discussed later in this manual.

2-14

DATA DESCRIPTORS

B 6900 System Reference Manual
Data Representation

Data descriptor words refer to data areas, including input/ output buffer areas. The data descriptor defines an area of
memory starting at the base address contained in the descriptor. The size of the memory area in words is contained in
the length field of the descriptor. Data descriptors may directly reference any memory word address from word number
zero throug.h word number 1, 048, 576. The structure of the data descriptor _word is illustrated in Figure 2-8.

p R L L L L L A A A I A A

1 c sz L L L L L A A A A A

0 I sz L L L L L A A A A A

1 s sz L L L L L A A A A A
44 40 36 32 2S 24 20 16 12 8 4 0

[50:3] THE TAG FIELD.
THE TAG FIELD FOR A DATA DESCRIPTOR IS
ALWAYS 101 BINARY

47 PRESENCE BIT
46 COPY BIT
45 INDEXED BIT
44 SEGMENTED BIT
43 READ ONLY BIT

[42:3] THE SIZE FIELD
[39:20] THE LENGTH FIELD
[19:201 THE ADDRESS FIELD

MV 2578

Figure 2-8. Data Descriptor Format

The fields in the data descriptor are as follows:

bits 50:3

bit 47

bit 46

5010986

Bits 50. 49, and 48 are the tag field. and are always equal to a binary value of 101.

Bit 47 is the presence bit. The presence bit is used to indicate whether or not the information
described by the data descriptor is present in main memory. If the presence bit is equal to a
binary one then the data is present in main memory. If the presence bit is equal to a binary zero
then the data is not in main memory. Attempting to access data with a data d;escriptor that has
its presence bit equal to a binary zero causes a presence bit interrupt. The B 6900 system uses
the occurrence of a presence bit interrupt as the preliminary step to start an MCP process which
will move the data described by the data descriptor from system disk, or system pack storage
into the main memory.

Bit 46 is the copy bit. The copy bit indicates whether the data descriptor is the original descriptor
for the data, or is a copy of the original descriptor. If the copy bit is equal to a binary zero then
the data descriptor is the original. If the copy bit is a binary one then the data descriptor is a
copy of the Clriginal descriptor. An original data descriptor is commonly referred to as a mother
(or MOM) descriptor and a copy of a mother descriptor is commonly referred to as a copy
descriptor.

2-15

bit 45

bit 44

bit 43

bits 42:3

2-16

B 6900· System Reference Manual
Data Representation

Bit 45 is the indexed bit. The indexed bit is used to indicate whether or not an indexing operation
has been perfonned on the data descriptor. If the index bit is equal to a binary one then the
descriptor has been indexed previously, and the value of the previous index is located in the length
field 39:20. If the index bit is equal to binary zero, the data descriptor has neven been indexed
before; and such an indexing operation must be performed before accessing the data described by
the descriptor. The process that causes the indexing operation to be performed also sets the
indexed bit and stores the value of the index in the field 39:20.

Bit 44 is the segmented bit. The segmented bit is used to identify whether or not the data
described by the data descriptor is segmented. If the segmented bit is equal to a binary zero then
the data is not in segments, and this descriptor describes the entire field.

Bit 43 is the read only bit. The read only bit is used to show whether the memory area
described by the data descriptor can be written into or not. If the read only bit is equal to a
binary one then the data descriptor describes a memory area that may be read, but may not be
written into. If the read only bit is a binary zero then the data descriptor describes a memory
area that may be written into, or read from. It is possible for a single area in memory to be
described by two different data descriptors: one where the Read Only bit is a binary one, and
another descriptor where the Read Only bit equals a binary zero. The memory area may be
written into by use of the data descriptor that has the Read Only bit equal to a binary zero, but
may not be written into by use of the data descriptor that has the Read Only bit equal to a
binary one.

Bits 42, 41, and 40 are used to define the type of data contained in the memory area that is
described by the data descriptor. If bits 42 and 41 are both equal to binary zeroes, then the
data descriptor defmes an area in memory in words. A data descriptor that describes a string of
character data is commonly called a string descriptor. If either bit 42 or bit 41 is equal to a
binary one then the descriptor is a string descriptor. Bits 42:3 may contain several different
binary values, and the meaning of the different values that are used have the following meanings:

bit 42
0

0

0

0

bit 41
0

0

0

bit 40
0

0

0

Bits 42 and 41 being equal to zero indicates that the data
descriptor is a word descriptor. Bit 40 being equal to
binary zero indicates that the data described by the
descriptor is in single precision operands.

Bits 42 and 41 being equal to zero indicates that the
data descriptor is a word descriptor. Bit 40 being equal
to binary one indicates that the data described by the
descriptor is in double precision operands.

Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor, and bit 41 being a
binary one indicates that the data described contains
hexadecimal (4-bit) data.

Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bits 41 and 40 both
being equal to binary ones is an illegal code in a
B 6900 system.

Bits 42 and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bit 42 equal to
binary one indicates that the data described contains
EBCDIC (8-bit) data.

bits 39:20

bits 19:20

B 6900 System Reference Manual
Data Representation

Bits 39:20 contain either the length of the memory area (if bit 45 is a binary zero) or an index
value (if bit 45 is a binary one). If bit 45 is equal to binary zero the descriptor has not been
indexed. This field is used for size checking during the indexing operation. If bit 45 is equal to
a binary one the descriptor has been indexed. If the data descriptor is a word descriptor. and
also if bit 40 is a binary one (the word area contains double precision operands) then the index
is doubled after the indexing operation and the size checking operation have been completed. The
doubled index is stored in the index field.

Bits 19:20 contain either a main memory or a disk file address. If the presence bit is equal to
a binary one, and the copy bit is also equal to a binary one, then the address field contains the
main memory address of the MOM descriptor. If the presence bit is equal to a binary one and
the copy bit is equal to a binary zero then the address field contains the main memory address
of the first word of data described by the descriptor. If the presence bit is equal to a binary
zero, and the copy bit is also equal to a binary zero, then the address field contains a 6-bit
binary coded decimal disk file address where the data described by the data descriptor is located.
If the presence bit is a binary zero and the copy bit is a binary one, the address field contains
the memory address of the original program segment descriptor.

STEP INDEX WORDS

Step index words are words that are used in conjunction with the step and branch operator in the B 6900 system. The
purpose of the step and branch operator in the B 6900 system is to perform a series of other machine language operators
in a recursive manner, but with control over the number of times the series of operators are executed. The step index
word is used to provide the control part of the function of the step and branch operator.

The step index word (see Figure 2-9) contains a TAG of four {100-binary), and four other fields, as follows:

47:12 the increment vaiue

35:16 the final value

19:04 an unused, but value-specified, field which must be equal to zero

15:16 the current value

I I I F F F F 0 c c c c

1 I I I F F F F 0 c c c c

0 I I I I F F F F I 0 c I c c I c

0 44 1 4o 1
36

1
3/ 2l 2t F

16° 12c BC 4c c 20 0

TAG 100 - STEP INDEX WORD
I INCREMENT FIELD [47:12]
F FINAL VALUE FIELD [35:16]
C CURRENT VALUE FIELD [15:16]
FIELD [19:4] MUST CONTAIN BINARY ZEROES

MV 2579

Figure 2-9. Step Index Word Format

5010986 2-17

B 6900 System Reference Manual
Data Representation

Each time the series of machine language operators is performed the value of the increment is added to the value of the
current value field. The step and branch operator then compares the current value field to the final value field. If the
current value field is greater than the final value field a branch is taken out of the recursive series of operatbrs. If the
current value field is not greater than the final value field then the recursive series of operators are executed.

The increment value, the final value, and the current value are binary values. To determine the number of times a
recursive series of operations will occur, binary mathematics and not decimal mathematics, must be used; and the unused
but value-specified field (19:04) must be equal to zero in the step index word.

SOFTWARE WORDS

A software word is a word with a tag field of six (110 binary) that is used by the MCP of the B 6900 system for soft­
ware purposes. The MCP uses the software word for several different purposes, and the format of the word is different
for each purpose. The software word is utilized as a linking word for memory allocation, as a software control word, as
an un-initialized pointer word, and to contain system intrinsics data. Each of these uses for software words causes a
different format to be used for the fields of data that are contained in the word.

The format of the software word when it is used for uninitialized pointers or for. intrinsics information are not defined
in this manual. These formats are specialized applications that are properly documented in manuals that discuss the
specific application subjects.

The format of the software word when it is used for a memory link word and for a software control word is given in the
following -paragraphs. The specific use of the software word in either of these formats is not covered in this manual.
Like the uninitialized pointer word and the intrinsics information word, these specific uses are specialized applications,
and are more properly documented in manuals that deal with the software system as a specific subject.

The MCP maintains linking words in main memory to show which portions of the memory are in use, and which portions
are not currently in use. A software word is used as the first link word for a portion of memory that is in use. This
word is defined in the memory link system as the LINKA word, and each part of the main memory that is in use
begins with a LINKA word. Memory link words are a mechanism for dynamic storage allocation which will be covered
in more detail later in this manual. Figure 2-10 shows the format of a LINKA word.

2-18

CF s

1 CF s

1 s

0 s
4lt 40

TAG
CF [47:2]

s [43:20]
CS (BIT 22)

AS (BIT 21)

BIT 20
A [19:20]

MV 2580

I s s s I s A !A A A A
I l l l : I I s T

I s s cs I A A A A A s I
I

l I I

s
I

s i s 1 s AS A A A A
I

L,s -+

I"s s J~ss 1 A A A A
36 20 16 12 8 4

6 (110 BINARY)= SOFTWARE CONTROL WORD.
CONTROL FIELD FOR AREA DURING THE

OVERLAY AREA MCP PROCESS.
SIZE OF THE IN-USE AREA IN WORDS.

A

A
0

CONTROL SAVE FIELD - IF AREA IS TEMPORARILY

SAVED CS=1.
AREA SAVED FIELD - IF AREA IS NON­
OVERLAYABLE (SAVED) AS=1.

IS BINARY i FOR A LiNKA \NORD.
THE CORE MEMORY ADDRESS FOR THE MOM DATA

DESCRIPTOR OF THE AREA CONTENTS

Figure 2-10. Software Control (LINKA) Word

B 6900 System Reference Manual
Data Representation

Software control words are used by the software operating system to indicate the existance of memory areas that are
related to the operating stack, but are physically located outside of the operating stack. When the memory area of an
operating stack is deallocated (the stack is cut back), related memory areas also must be deall0cated. The software

control word is a mask word that indicates the presence or absence of such related memory areas by the state of the bits
in the mask word. At the time that the stack area is to be deallocated, a related memory area is present for each bit
that is a binary one value in the mask field of the software control word. Figure 2-11 shows the format of the software
control word.

1

1

0

[50:3]
[47:2]
45
24

[23:4]
[19:9]

1
PLM ALM ALM ALM
SKF SKF SKF SKF

0
PLM ALM ALM
SKF SKF SKF

GOTO PLM ALM ALM
t:tR SKF SKF SKF PC

44

NOC PLM ALM ALM PC PBT SKF 1 ~KF SKF
40 36 32 28 24 20 12 8

TAG FIELD= 110 =SOFTWARE CONTROL WORD
2 SOFTWARE CONTROL WORD (MASK WORD)
1 = GO TO ABORTE
1 = NOCPBIT
PL/I COMPILER BLOCKEXIT AND FAULT FIELD
MASK FIELD
19 NOT USED
18 FMT PSEUDO BUFFER FIB-LOCKED
17 NON-LOCAL GOTO

PC

j PC
I

PC

PC
4

16 DIRECT ARRAY DECLARATION IN BLOCK
15 FAULT IN BLOCK DECLARATION
14 INTERRUPT IN BLOCK DECLARATION
13 FILE IN BLOCK DECLARATION

PC

PC

PC

PC
0

12 MULTI-DIMENSION ARRAY IN BLOCK DECLARATION
11 SINGLE-DIMENSION ARRAY IN BLOCK DECLARATION

[9:10] = PROCESS COUNT

MV 2581

Figure 2-11. Software Control (MASK) Word

INDIRECT REFERENCE WORDS

Indirect reference words (IRW) are used in the B 6900 system to reference data that is located within the addressing
environment of the current procedure. The addressing environment of the current procedure includes the current oper­
ating stack, and all stacks that are a part of the current procedure at a lower lexicographical level than the current
operating stack level.

Stuffed indirect reference words (SIRW) are used in the B 6900 system to reference data that is located outside of the
addressing environment of the current operating procedure.

5010986 2-19

B 6900 System Reference Manual
Data Representation

The fields of an indirect reference word or a stuffed indirect reference word do not contain data. Instead, the fields of
an indirect reference word or a stuffed indirect reference word contain addressing information that is used to point to the
location of data. The fields of an IRW or a SIRW are both displayed in Figure 2-12. The fields within the IRW and
the SIRW are as follows:

bits 50:3

bit 46

bits 45:10

bits 35:16

bits 12: 13

bits 13:14

2-20

Bits 50:3 are the tag field. The tag field for an IRW is always 001 binary, regardless of whether
d1e IRW is stuffed or normal.

Bit 46 is the environment bit. If bit 46 is a binary one the IRW is stuffed. If bit 46 is a binary
zero the IRW is a normal IRW.

Bits 45: 10 are the stack number field. The stack number is not used in a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the value of the stack number field is the
identification number of the stack that is to be referenced.

Bits 35: 16 are the displacement field. The displacement field is not used for a normal IRW and is
equal to binary zero. If bit 46 is a binary one then th~ displacement field is added to the address
of the base of the stack being referenced to locate a mark stack control word within the refereneed
stack area.

Bits 12: 13 are the index field. The index field is not used in a normal IRW; however, the same
bits are used for a different purpose. If bit 46 is a binary one then the index field is added to
the address of the mark stack control word in the referenced stack. The sum of these values is
the address of the data that is being addressed.

Bits 13:14 are the address couple field. The address couple field is not used in the SIRW;
however, the same bits are used for a different purpose. The address couple field is used in an
IRW to locate data in the addressing environment of the current procedure. The address couple
consists of two separate values, each of which are of variable bit length. The most significant
part of the address couple contains the lexicographical level value. The least significant part of
the address couple contains an index value which is added to the address of the mark stack con­
trol word that corresponds to the lexicographical control level. The sum of the address of the
mark stack control word, and the index value is the address of the data referenced by the IRW.

A A A

A A A

A A A

A A A
8 0

IRW WORD FORMAT

SNR SNR D D D .D

0 INR SNR D D D D

I

0 SNR SNR SNR D D D D

.. ~a.ID ~IUD SNR D D D D I ;.·· .. i.a···· 36 32 28 24 20

SIRW WORD FORMAT
MV272&

Figure 2-12. IRW and SIRW Formats

B 6900 System Reference Manual
Data Representation

The lexicographical level (program level) of a current procedure may have any value from zero, through thirty-one. The
lexicographical level (LL) part of a.'1 address couple is represented by the most significa.11t bits of th.e address couple. The
LL requires five bits of the address couple to represent the binary value of thirty-one which is the highest LL value
possible. When the LL contains a value of zero or one, only one bit is required to represent the binary LL value. The
actual number of binary bits that are used to contain the IL value in· an address c·ouple is defined by the level of the cur­
rent operating procedure. Thus~ if the current procedure is at lexicographical level seven, the number of bits in the address
couple that are used to indicate LL is three; because three binary bits are required to represent the value of seven decimal.

The index part of an address couple consists of the bits that are not required to represent the LL value. Thus, if the
lexicographical level of the current procedure is seven, three binary bits (bits 13, 12, and 11) are required to represent the
LL value; and the remaining bits (bits zero through ten) are used to represent the index part of the address couple.

The B 6900 system derives the absolute memory address referred to by an IRW in the following manner:

a. The LL part of the address c.ouple defines the IC memory display register that contains the address of a mark
stack control word in main memory.

b. The index part of the address couple is added to the address of the mark stack control address. This sum is
the absolute address of the data referred to by the IRW.

Since the number of bits in the address couple that are required to contain the LL value is a variable number, the size of
the index value is limited by the number of bits that comprise the index value. Thus, if three bits are required to contain
the LL value, then the size of the index part is limited to an eleven bit binary value (or a maximum index value of
2047 decimal memory word.s). Table 2-2 shows the maximum number of memory words that may be contained in the
index part of an address couple for any given LL value part of the address couple.

Table 2-2. Address Couple Value Fields

Lexicographical Number of Bits Bits Available for Maximum Index
Level Value Required Index Value Value

0 1 13 8191
1 1 13 8191
2 2 12 4095
3 2 12 4095
4 3 11 2047
5 3 11 2047
6 3 11 2047
7 3 11 2047
8 4 10 1023
9 4 10 1023

10 4 10 1023
11 4 10 1023
12 4 10 1023
13 4 10 1023
14 4 10 1023
15 4 10 1023

16 through 31 5 9 511

5010986 2-21

B 6900 System. Reference Manual
Data Representation

The B 6900 system determines the absolute address referred to by the SIRW in a way that is different from the one
used for determining the absolute address referred to by an IRW. The method used to determine the absolute address
referred to by a SIRW is as follows:

a. The stack number field in the SIRW is an index into the segment dictionary, which is maintained by the
MCP. The segment dictionary contains a list of data descriptors that give the absolute memory addresses
of all stacks in main memory. The stack number field of the SIRW identifies the descriptor containing
the base address of the stack to be referenced.

b. The displacement field value of ~he SIRW is an index on the base address of the stack being referenced.
The value of the base address of the stack, plus the value of the displacement field is the absolute memory
address of a mark stack control word in the stack that is being referenced.

c. The index field value of the SIRW is an index on the address of the mark stack control word in the stack
that is being referenced. The sum of the address of the mark stack control word plus the value of the index
field is the address of the value that is being addressed by the SIRW.

PROGRAM CONTROL WORDS

The program control word (PCW) is used by the B 6900 system to point to the program code for a procedure or segment
of a program. The PCW also contains program information about the system environment that is to be used during the
execution of the segment or program.

The use of PCW's provides the flexibility that the software requires to utilize reentrant code techniques, and also dynamic
storage allocation principals. The reentrant code techniques are used in the B 6900 system to provide the software
capability to execute more than one job at a time while using the same machine language code.

Figure 2-13 shows the fields of data that are contained in a PCW.

1

1

1

MV 1583

2-22

SNA

SNA

SNA SNA

SNA SNA
44 40

50:3

45:10
35:3
32:13

19
18:5
13: 14

!

SNA PSA PIA PIA

SNA PSA PIA PIA.

SNR PSR I PIA PIA

SNA PIR PIA PIA
36 32 28 24

THE TAG FIELD.
7 IS A PCW TAG

PIA N

PIA LL

PIA LL

PIR LL
20 16

THE STACK NUMBER FIELD

LL SDI SOI

LL SDI SDI

SOI SDI SDI

SOI SOI SOI
12 8 4

THE PROGRAM SYLLABLE REGISTER VALUE
THE PROGRAM INDEX REGISTER VALUE
THE NORMAL/CONTROL STATE BIT
THE LEXICOGRAPHICAL LEVEL VALUE
THE SEGMENT DESCRIPTOR INDEX VALUE

Figure 2-13. Program Control Word

SDI

SDI

SDI

SDI
0

B 6900 System Reference Manual
Data Representation

The fields of data in a PCW are used as follows:

bits 50:3

bits 45:10

bits 35:3

bits 32: 13

bit 19

bits 18:5

bit 13: 1

bits 12: 13

The tag field. The tag field for a PCW is seven decimal (111 binary).

The stack number. The stack number field is used to identify the stack that contains the PCW
(not always ihe stack associated with the program code that is to be executed).

The MCP uses stack numbers to identify jobs that are currently being executed or that are
scheduled to be executed. The MCP assigns stack numbers for program stacks on a first-come,
first-served basis. Therefore the stack number for a program stack is a dynamic variable ihat is
assigned to a program at execution time.

The program syllable register (PSR) field. The PSR field is used to indicate the first machine
language operator in the first memory word of a machine language code string. A program code
string is not required to begin at the first machine language operator in a memory word. There
are 6 syllables in a machine language code word, and the PSR value indicates which of the
6 syllables the current string of code starts in.

The program index register (PIR) value. The PIR field is used to indicate the first word of the
program machine language code string. The combination of the PIR field and the PSR field com­
bine to identify the specific first machine language operator in the program code string. The
PIR value defines the first word address of the string, and the PSR value defines the first syllable
within the first word of the string.

The normal state/control state bit. The B 6900 system may operate in either of two states, and
the proper state for the current code segment is defined by the normal state/control state bit. If
the normal state/ control state bit is a binary one, control state is specified and normal state is
specified otherwise.

The lexicographical level (LL) field. The LL field is used to specify the lex level at which the
program string is to be executed. The LL value defines one of the 32 IC memory display
registers. The value in the selected IC memory display register is the base address in core memory
of the program stack with which the program code segment is associated.

This bit is used to indicate that the DO stack contains the program code segment descriptor
(if 0), or the DI stack (if 1).

The segment descriptor index (SDI) field. The SDI is used to indicate the location of the segment
descriptor for the program code in core memory.

The 13 bits of the SDI field are a binary index value which are added to the base address from
the display register (either DO or D l) to define the absolute cOie memory add;ess of the segrr!ent
descriptor for the machine language code.

MARK STACK CONTROL WORDS

The mark stack control word (MSCW) is used to define an area within the stack in main memory. The MSCW and the
return control word (RCW) together provide a history of the stack linkage, and a record of the stack operating environ­
ment. The historical links of a stack, and the operating environment record of the stack are key data in the reconstruc­
tion and analysis of program operations.

5010986 2-23

B 6900 System Reference Manual
Data Representation

Figure 2-14 shows the fields of data that are contained in the MSCW.

DS SNR1 SNR DIS DIS I DIS I DIS v LL OF Df OF

0

1

1

E SNR

SNR SNR

4~NR 40
SNR

50:3
47
46

45:10
35:16

19
18:5
13: 14

MV1584

T
SNR DIS

1

DIS DIS DIS LL LL OF DF I OF

I

SNR DIS I DIS DIS DIS LL OF OF OF

3~NR ~pis 2~s DIS DIS ~ 6LL OF OF DF
24 20 12 8 4

TAG FIELD. MARK STACK TAG IS ALWAYS 3
DIFFERENT STACK BIT
ENVIRONMENT a1T
STACK NUMBER FIELD
DISPLACEMENT FIELD
VALUE BIT

LEXICOGRAPHICAL LEVEL FIELD
DIFFERENCE FIELD

Figure 2-14. Mark Stack Control Word

DF

DF
0

The meaning of the fields of data in the MSCW are as follows:

bits 50:3

bit 47

bit 46

bits 45: 10

bits35:16

The tag field. The tag for a MSC'W is three (011 binary).

The different stack bit. The different stack bit indicates whether the stack number field refers
to the same stack, or to a different stack. If the different stack bit is a binary zero then the
stack number field refers to the same stack. If the· different stack bit is a binary one then the
stack number refers to a different stack.

The entered bit. The entered bit is used to indicate whether the stack is active or not. If the
stack is currently in use (is active) then the bit will be set to a binary one. If the stack is not
currently in use then the bit will be reset to a binary zero. If the entered bit is a binary one
then it indicates that the MSCW is active and was entered into the stack by a procedure entry.
If the entered bit is a binary zero it shows that the MSCW was entered into the stack by the
mark stack machine language operator, and no procedure entry has been made in the stack.
When a procedure entry is made into the stack the environment fields of the MSCW are
completed from the PCW that caused entry, and the entered bit is set to a binary one.

The stack number. The stack number field is completed at procedure entry time, and contains
the stack number value from the PCW that was entered. The stack number is the designation of
the stack that contains the PCW, not the number of the current stack.

The displacement field. The displacement field is used to link a program together by its lexi·
cographical levels. The value of the displacement field defines the MSCW that represents the
last previous lexicographical level of the procedure. The location of the MSCW that corresponds
to the preceding lexicographical level is determined by adding the value of the displacement field
to the value of BOSR for the stack.

bit 19

bits 18:5

bits 13: 14

B 6900 System Reference Manual
Data Representation

The value bit. The value bit is used to indicate whether or not the operator that caused entry
to the current operator is tu be restarted at the beginning of the operator in the procedure that
caused entry. If the value bit is a binary zero then the previous operator must be restarted from
the beginning. If the value bit is a binary one then the previous operator must be continued at
the next operator in sequence.

The lexicographical level field. The value of the lexicographical level field defines the
lexicographical level at which the program will run when the procedure is entered.

The difference field. The difference field is used to store the stack history. The value of the
difference field is the number of words between the current MSCW and the previous MSCW
in the stack. Subtracting the value of the difference field from the address of the current MSCW
gives the address of the previous MSCW.

INTERRUPT PARAMETER WORDS

The interrupt controller of the B 6900 data processor recognizes certain types of system interrupts. The DP interrupt
controller interrupts the program that is running, and causes an entry into the MCP interrupt handling procedures when a
system interrupt is sensed. The interrupt handling procedures of the MCP initiate system actions that are required
because of the interrupt condition that exists. At the conclusion of the interrupt handling function, the MCP returns
control of the DP to the program or process that was interrupted.

The interrupt controller collects and formats data about the type of interrupt that occurred. This data is placed in a
special stack (see Figure 2-15) which the interrupt controller creates for the interrupt handling procedures of the MCP.
After the interrupt controller has created and filled the interrupt handling stack, a program entry is made into the
interrupt handling procedures of the MCP.

5010986

1TAG

-

I

,...,,

~ (DO

THE }

MCP)

SlACK l D

~

MV 1585

FIELD P2 PARAMETER
= 0

TAG
FIELD P3 PARAMETER
= 2

TAG
F IEt.D Pl PARAMETER
=2

TAG (RCW POINTING TO
~~~~3ilRW DO+J OR INTERRUPTED STACK~ 
TAG 
FIELD 
= 3 

TAG 
FIELD 
= 7 

TAG 
FIELD 
= 3 

TAG 
FIELD 
= 3 

MSCW 

PROGRAM STACK AREA 
FOR THE PROGRAM THAT 
INITIATED THE INTERRUPT 
CONTROLLER FUNCTION 

PCW 

RCW 

MSCW 

....... 

T 

THIS INTERRUPT STACK IS CON· 
STRUCTED BY THE INTERRUPT 
CONTROLLER OF THE 86900 DATA 
PROCESSOR. THE INTERRUPT PAO· 
CEDUAE USES THIS STACK TO ANA· 
L YZE INTERRUPTS IN THE SYSTEM. 

~ THIS PCW POINTS TO THE MACHINE 
'j LANGUAGE CODE STREAM FOR THE 
~ 86900 INTERRUPT PROCEDURES, 

Figure 2-15. B 6900 Interrupt Stack Organization 

2-25 



B 6900 System Reference Manual 
Data Representation 

Pl Parameter 

The format and content of the data that is placed in the interrupt handling stack depends on the type of interrupt that 
occurred. There are five types of interrupts that are recognized by the interrupt controller of the DP, which are: Alarm 
type, Hardware type, General Control type, External type, and Syllable Dependent type. The first word of data in the 
interrupt stack is the Pl parameter. The Pl parameter defines the type of interrupt that was sensed, and indicates the 
cause of the interrupt. Table 2-3 shows the types of interrupts that are defined in the Pl parameter, and also shows the 
various causes of each type of interrupt. The Pl parameter is the first half (upper half) of a double-precision word. The 
last half (lower half) of the double precision word is the P3 parameter. Table 24 shows what information about an 
interrupt is to be present in the P2, and P3 parameters of the interrupt handling procedure stack. 

P3 Parameter 

The P3 parameter is the second half of a double precision word in the interrupt handling procedure stack. 

The purpose of the P3 parameter is to provide a place to record the hardware operating environment conditions when 
an interrupt occurs. The B 6900 system uses the information contained in the P3 parameter to help analyze the cause 
of the interrupt. 

The information contained in the P3 parameter is also valuable in determining the cause of a hardware failure which 
results in an operating system interrupt. The information that is present in the P3 parameter is recorded in the SYSTEM 
SUMLOG file, and thus is available to help maintenance personnel in determining the cause of hardware failures. 

The P3 parameter has a variable format that depends on the type of interrupt that has occurred. There are five different 
formats, but only one format is used for each type of interrupt. Figure 2-16 shows the formats that are used for Alarm 
type, Hardware type, Syliabie Dependent type, and Generai Controi type interrupts. Table 2-4 shows what data is 
present in the P3 parameter for the specific cause of each of the five types of interrupts. 

P2 Parameter 

The P2 parameter for the B 6900 typically contains the contents of the top-of-stack register at the time the interrupt 
occurred. This context is true for alarm type interrupts with the single exception of the stack underflow interrupt. In 
the case of the stack underflow interrupt the value of the S-register will be placed in the P2 parameter word. 

The B 6900 system P2 parameter for syllable dependent interrupts contains additional information. The additional 
information that is contained in the P2 parameter follows: 

a. For a sequence error that occurs during a famiiy C operation the P2 parameter wiil contain the value of the 
word that caused the sequence error . 

b. For an invalid operation interrupt that occurs during a SPLT (9543) operator the word that caused the 
interrupt will be reported in the P2 parameter . 

c. For an invalid operation interrupt that occurs during a JOIN (9542) operator function the word that caused 
the interrupt will be reported in the P2 parameter. If the information in both the A and B registers is bad 
then the word in the A register becomes the P2 parameter data. 

The B 6900 system external type interrupts are used for 1/0 finished interrupts. 

2-26 



VI 
0 

~ 
00 

°' 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Alarm 

Hardware 

Hardware 

Hardware 

Hardware 

Hardware 

Gen. Control 

Gen. Control 

lJen. Control 

Gen. Control 

NOTES: 1. 

2. 

Table 2-3. Pl Parameter Words (Sheet 1 oL2) 

Parameter Bits 

Cause 46 45 44 39 21 26 25 24 23 22 21 20 19 18 11 15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 o_ 

Loop Timer 

Memory Addr Parity 

Scan Bus Parity 

Inv Address-Local 

Stack Underflow 

Inv Program Word 

Memory Address Residue 

Read Data Mult. Error 

Inv Address Global 

Global Memory Not Ready 

PROM Card Parity 

RAM Card Parity 

Bus Residue 

Adder Residue 

Compare Residue 

Read Data Single Error 0 0 
Read Data Retry 0 0 
Read Data Check Bit 0 0 
Address Re try 0 0 

1 BIT is a binary one. 
0 BIT is a binary zero. 
0 BIT may be either a binary one or a binary zero. 
X State of bit is immaterial. 
Bit 18 indicates whether the operation is a memory 
operation to the Global Memory: 

If bit 18 0 it was a memory operation. 
= 1 it was a scan operation 

0 0 
0 0 0 
0 0 
0 0 
0 0 
0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 

x 0 
x 0 
x 0 
x 0 

3. If bit 17 is a binary one it indicates that the data in the P3 
parameter is inconsistent. 

4. Bit 27 is the B 6900 bit. This bit is true for B 6900 systems. 

t:x:i 

°' "° 0 0 
0 

~ 00 
i;.:> '< 
~~ 
(1) (1) 

'-g s 
(1) 
~ ~ (1) 

a~ 
~ (1) .... ~ g g 

s= 
§ 
i:::: 
~ 



Type 

Externa1 
SDI 
SDI 
SDI 

SDI 

SDI 

SDI 

SDI 

SDI 
SDI 

SDI 

SDI 

SDI 

:SDI 
:SDI 
:SDI 

NOTES: 

Table 2-3. Pl Parameter Words (Sheet 2 of 2) 

Parameter Bits 

Cause 46 45 44 39 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1. 

I/O Finished 
Programmed Operator 
Memory Protected 
Invalid OP 
Divide by Zero 
Exp. Overflow 
Exp .. Underflow 
Invalid Index 
Integer Overflow 
Bottom of Stack 
Presience Bit 
Seq. Error 
Segm. Array 
Interval Timer 
Stack Overflow 
Confidence Error 

1 BIT is a binar)' one. 
0 BIT is a binary zero. 

0 
0 
0 
0 
0 
0 
0 
0 
0 1 

RTRT 0 VS 1 

0 
0 
0 
0 
0 

1 

1 

1 

0 0 

0 BIT may be either a binary one or a binary zero. 
X State of the bit is immaterial. 

2. . Bit 17 is the B 6900 bit. This bit is 1 for B 6900 systems. 

x 
0 
0 
0 
0 
0 
0 
0 
0 1 

0 
0 
0 
0 
0 
0 
x 

°' °' 08 
~ l:ll 
SI)~ 
::ici-
.g a 
a ::ici 
~ (I) 

::s (;" 
E:a ..... ::s 
g s 

a:: 
~ e e. 



1. 
2~ 

3. 
4. 
s. 
6. 
7. 
8. 
9. 

1. 
2. 
3. 
4. 
s. 

1. 
2. 
3. 
4. 

1. 

1. 
2. 
3. 
A 
"T. 

s. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

B 6900 System Reference Manual 
Data Representation 

Table 2-4. Interrupt Procedure Stack Parameter Contents 

Interrupt Type Contents of the 
Kind of Error Pl. Parameter P2 Parameter 

Loop Timer Alarm 
Memory Address J>arity Alarm 
Iiiv. Address, Local Alarm 
Stack Underflow Alarm S Register 
Inv. Progr. Word Alarm Word 
Memory Address Residue Alarm 
Read Data Multiple Error Alarm Word 
Inv. Addr, Global Alarm 
Global Memory Not Ready Alarm 

Prom Card Parity Hardware 
RAM Card Parity Hardware 
Bus Residue Hardware 
Adder Residue Hardware 
Compare Residue Hardware 

Read Data Single Error Gen. Cntr. 
Read Data Retry Gen. Cntr. 
Read Data Check Bit Gen. Cntr. 
Address Retry Gen. Cntr. 

1/0 Finished External Empty 

Programmed Operator SDI See the text under the 
Memory Protected SDI subheading titled P2 
Invalid Op SDI Parameter 
Divide by zero SDI 
Exponent Overflow SDI 
Exponent Underflow SDI 
Invalid Index SDI 
Integer Overflow SDI 
Bottom of Stack SDI 
Presence Bit SDI 
Seq. Error SDI 
Segm. Array SDI 
Interval Timer SDI 
Stack Overflow SDI 
Confidence Error SDI 

Contents of the 
P3 Parameter 

Strb,JC,Op 
Addr, JC, Strb, Op 
Addr, JC, Strb, Op 
Addr, JC, Strb, Op 
JC, Strb, Op 
Addr, JC, Strb, Op 
Addr, JC, Strb, Op 
Addr, Strb, JC, Op 
Addr, Strb, JC, Op 

JC, Strb, Op, Card # 
JC, Strb, Op, Card # 
JC, Strb,Op 
JC, Strb, Op 
JC, Strb, Op 

Addr, Bit# 
Addr 
Addr, Bit# 
Addr 

Empty 

JC, Str,Op 
JC, Str, Op 
JC, Str, Op 
JC, Str, Op 
JC, Str, Op 
JC, Str,Op 
JC,Str,Op 
JC, Str,Op 
JC, Str, Op 
JC, Str,Op 
JC, Str, Op 
JC,Str,Op 
JC, Str,Op 
JC, Str, Op 
JC, Str,Op 

Footnotes: Addr is the Memory or Scan address OP is the Op code 
Strb is the family strobe Card# is the number of the failing card 
JC is the family seq. counter count Bit# is the number of the failing bit 

5010986 2-29 



I 4114&14sl~~l 4Jj42 l41I40I JBi 3!8IJ11361351341 JJ IJ2 f J1IJOI29128121 l2&j2s l24 l23 J22l 21I20j1sl1el 11 l1& jls j 14I1JI12 11f10l s lel 11 sl sl 41JI2l ·1 ~o 

c=::RYADDRESS IRES -H+H OPCODE I STROBE Ml 

·-1 ------------------CA--R-D_N_U_M_B_ER--+-l-E-F~ CODE I STROBE MI 

J-COUNT /I' ADORE~ ALARM 

I 
J-COUNT I U ADDA E~ HARDWARE 

I I 
[ 

MEMORY ADDRESS 

·------ ·-------
J COUNT/µ ADORE;] SDI 

I 
~RY ADDRESS 

I 
·---------------~'"-1_1_1UM_~1----~-HE-C_K __ :fTl_IN-------------------------==iGENCNTRL 

MV 1586 

RES SUM = RESIDUE OF ADDRESS 
Ve= VECTOR 
TE =TABLE 

E =EDIT 
V=VARIANT 
M=MODED 
M = MODE 0 MEANS J-COUNT IS ACTIVE. 

1 MEANS µ ADDRESS IS ACTIVE 

Figure 2-16. P3 Parameter Configurations 



RETURN CONTROL WORDS 

B 6900 System Reference Manual 
Data Representation 

A return control word is used in the B 6900 system to provide a method for controlling a return to a previous procedure. 
The second entry in an active job stack is always a return control word. The hardware of the B 6900 system automati­
ically creates the return control word (RCW) for a previous procedure or program when an entry to a new procedure is 
made. Prior to the hardware inserting the return control word into the stack, the second word in the stack is either a 
PCW or an IRW. The return control word is substituted for whichever type of word is the second word in the new 
procedure stack. 

Figure 2-17 shows the fields of data that are present in the RCW, and defines the meaning of the data in each field. The 
combination of data fields that are stored in the RCW indicates what the hardware environment will be after the return 
to the previous procedure has been made. 

0 

1 

1 

ES 

OF 

T 

F 
44 

50:3 

BIT 47 
BIT46 
BIT 45 
BIT 44 
BiT 42 
BIT 41 
35:3 
32:13 
BIT 19 

PSR PIR PIR PIR N LL SDI SDI SDI 
.... ,.,.• .. ·. 

~'" 

TFOF PSR PIR PIR PIR LL LL SDI SDI SDI 

c 

,;o 

PSR PIR PIR PIR LL SDI 

PIR PIR PIR PIR LL SDI 
36 32 28 24 20 16 12 

TAG FIELD. 
(ALWAYS A VALUE OF 3 FOR AN RCW) 
EXTERNAL SIGN BIT FLIP-FLOP STATE 
OVERFLOW FLIP-FLOP STATE 
TRUE/FALSE FLIP-FLOP STATE 
FLOAT FLIP-FLOP STATE 

SDI SDI SDI 

SDI SDI SDI 
8 4 0 

TRUE/FALSE FLIP-FLOP OCCUPIED FLIP-FLOP STATE 
COMPARE FLIP-FLOP 
VALUE OF PROGRAM SYLLABLE REGISTER FIELD 
VALUE OF PROGRAM INDEX REGISTER FIELD 
NORMAL/CONTROL STATE FLIP-FLOP STATE; 
BINARY ZERO = NORMAL STATE 
BINARY ONE = CONTROL STATE 

18:5 VALUE OF LEXICOGRAPHICAL LEVEL REGISTER 

13:14 SEGMENT DESCRIPTOR INDEX VALUE 

MV 1591 

Figure 2-17. Return Control Word 

PROGRAM WORDS (CODE WORDS) 

Program words are B 6900 words that contain the machine language instructions which the data processor executes. 
Program code words are grouped into units of words called segments. A segment consists of all the machine language 
code for a program or a segment of a program. A program segment may consist of from one program code word, to a 
maximum of 16,384 words. It is unusual for a program segment to exceed several hundred words. Each segment of 
program code in a program is referenced (and located) through the segment descriptor index field in the PCW that calls 
the segment to be executed by the data processor. A segment of code may call upon the system to execute another 
segment of code. At the conclusion of such a called segment, the system will return to the calling segment. The loca­
tion of the code for the calling segment is not lost during the execution of the called segment code because the RCW of 
the called segment contains the SDI value for the code of the calling procedure. Thus when returning to the calling 
procedure the code segment location is known. 

5010986 2-31 



B 6900 System Reference Manual 
Data Representation 

PROGRAM SEGMENTS AND THE SEGMENT DESCRIPTOR 

The program code that is executed when a program job or task is performed is contained in words of machine language 
operator codes. All of the operator codes that comprise the task are grouped together in groups called segments. A 
segment may contain all of the machine language operators, or a major group of the operator codes in a program task. 

When a program task is to be executed, an ENTER operator causes the PCW for the task to be brought into the stack, 
and distributed to the various parts of the operating system. The SDI field of the PCW word (see Figure 2-13) locates 
a segment descriptor (SD) for the program task. A description of the SD (Figure 2-18) is as follows: 

bits 50:3 

bit 47: 1 

bit 46:1 

bits 45:6 

bits 39:20 

bits 19:20 

The tag field. The tag for a SD is always three (011 binary). 

The presence bit. If this bit is binary one then the program code segment is present in local memory. 

The copy bit. If this bit is a binary zero then the segment descriptor is the original segment descriptor. 
If this bit is a binary one then this descriptor is a copy of an original segment descriptor. 

An unused field. These bits may be either binary ones or zeroes because they have no effect 
upon the use of the word as a segment descriptor. 

The length field. This field specifies the length of the code segment, in words, in binary 
notation. 

The address field. If the presence bit is a binary one then this field contains the absolute 
address of the first word in the segment. If the presence bit is a binary zero and the copy bit is 
also a binary zero then this field contains a five digit liinary coded decimal disk address for the 
code segment. If the presence bit is a binary zero and the copy bit is a binary one then this 
field contains the absolute memory address of the original segment descriptor. 

p !illll!!l!!~illl L L L L L A A A A A 

0 c 
1111111111111:. 

L L L L L A A A A A.. 

1 '~11/llll!lllillilillll 1/l/1/ll/l///!//111111 
L L L L L A A A A A 

1 
111111111111111 111111111111; 

L L L L L A A A A A 
36 32 28 24 20 I 6 1 2 8 4 0 

50:3 TAG FIELD. 
(ALWAYS A VALUE OF 3 FOR A SEGMENT DESCRIPTOR) 

47: 1 PRESENCE BIT, 1 =PRESENT IN MEMORY 
0 =PRESENT IN LIBRARY 

46:1 COPY BIT, 1 =COPY OF ORIGINAL SEGMENT DESCRIPTOR 
0 =ORIGINAL SEGMENT DESCRIPTOR 

39:20 LENGTH FIELD - THE NUMBER OF WORDS IN THE SEGMENT 
19:20 ADDRESS FIELD -THE BEGINNING MEMORY ADDRESS IF 

[47:1) = 1. 

MV1689 

·THE DISK OR PACK ADDRESS IF [47:1) = 0, 
AND [46:1] = 0. 

- THE MEMORY ADDRESS OF THE ORIGINAL 
SEGiYiENT DESCRiFTOR iF [46:1] == 1, AND 
[47:1) - 0. 

Figure 2-18. Segment Descriptor Word 



B 6900 System Reference Manual 
Data Representation 

A program code segment may call another program segment to be executed. Each of these program code segments (the 
calling segment, and the called segment) has a separate segment descriptor. The address (SDI) for the current code segment 
is saved in the data processor IC memory registers. The value of the called SDI is saved when the called segment is executed. 
However, the SDI for the calling segment is not lost, because this address is saved in the RCW (lefer to Figure 2-17). Thus. 
when a called segment is executed, and a return (or EXIT) to the calling segment is performed, the SDI is always available 
for the currently executing program segment. 

The use of copy segment descriptors, and the mechanism for saving the SDI values for segments of program code are basic 
components used to provide for the concepts of reentrant code. Reentrant code techniques are defined in Section 3 of 
this manual. 

A program code word is -composed of six syllables, and a tag field (see Figure 2-19). The tag field for a program code 
word is always a value of three. The remaining 48 bits of the program word are divided into six 8-bit syllable fields. A 
machine language instruction consists of from one to seven syllables. An instruction is not limited to a single coae word 
but may extend across the boundary of a code word, and into the next word of program code in.sequence. For this 
reason the contents of a word of machine language code may be portions of two operators, plus from one to four com­
plete operator codes. 

MY 11182 

TAG 
FIELD 

SYLLABLE 
0 

TOP-OF-STACK CONTROL WORDS 

31 35 

131 34 

37 33 

31 32 

SYLLABLE 

31 27 

30 :ze 

29 25 

28 24 

SYLLABLE 
2 

23 19 

22 11 

21 17 

20 111 

SYLLABLE 
3 

Figure 2-19. Program Word Format 

15 11 

14 10 

13 9 

12 8 

SYLLABLE 
4 

7 3 

8 2 

5 1 

4 Io 

SYLLABLE 
5 

I 

A top of stack control word (see Figure 2-20) is originated when the data processor executes the move to stack operator. 
This word occupies the address in memory of the lower word boundary for a job or task area. A TOSCW contains the 
relative addressing and environment record for the program or task. The address of a TOSCW for an operating program or 
task i3 the same as the value of the BOSR address register. A TOSCW therefore also corresponds to the address of the first 
MSCW for a job or task. 

The addressing environment for a program or task consists of the values of the BOSR, F, S, and lexicographical level 
registers. The values of these registers are stored in the TOSCW when another program or task is to be executed. Upon 
re-entry into the program or task procedures, the proper values from the TOSCW are used to restore the proper addressing 
environment for the program or task, in the memory address registers. 

The operating environment of a job or task consists of the state of seven flip-flops. These flip-flops are the external sign, 
overflow, true/false, float, true/false occupied, compare, and normal/control state flip-flops. The state of these flip-flops 
is stored in the TOSCW when another job or task is to be executed. Upon re-entry into the original job or task, the proper 
values for operating environment flip-flops are restored from the TOSCW. 

5010986 2-33 



0 

1 

1 

MV1690 

B 6900 System Reference Manual 
Data Representation 

DSF OSF OSF OSF N LL OFF OFF OFF 

OSF OSF OSF OSF LL LL OFF OFF OFF 

DSF DSF DSF DSF LL OFF OFF OFF OFF 

OSF OSF LL OFF OFF OFF OFF 
28 24 20 16 12 8 4 0 

50:3 TAG FIELD. 
(ALWAYS A VALUE OF 3 FOR A TOSCW) 

47:1 EXTERNAL SIGN FLIP-FLOI' 
46:1 OVERFLOW FLIP-FLOP 
45:1 TRUE FALSE FLIP-FLOP 
44:1 FLOAT FLIP-FLOP 
42:1 TRUE FALSE OCCUPIED FLIP-FLOP 
41:1 COMPARE FLIP-FLOP 
55:16 DELTAS-REGISTER FIELD (VALUE OF THE 

$-REGISTER DISPLACEMENT ABOVE BOSR) 
19:1 NORMAL/CONTROL STATE OF FLIP-FLOP; 

0 =NORMAL STATE 
1 •CONTROL STATE 

18:5 LEXICOGRAPHICAL LEVEL 
13:14 DELTA F REGISTER FIELD (VALUE OF THE 

F-REGISTER DISPLACEMENT, BELOW THE 
VALUE OF THE $-REGISTER) 

2:3 THE CPU PROCESSOR ID VALUE (001) 
WHEN THE TOSCW IS FOR AN ACTIVE 
PROCESS PROGRAM OR TAST 

Figure 2-20. TOSCW Word Layout 

The TOSCW for the currently operating program or task does not contain the operating and addressing environment. 
Instead, the CPU data processor identity (001 for a B 6900 system) is stored in bits 2:3, and the rest of the bits 
(except the tag field) are zeroes. The presence of a TOSCW which only contains the data processor identity field 
indicates the address of the lowest word in the current job or task stack. This word is addressed by the value of the 
BOSR register. 

2-34 



B 6900 System Reference Manual 

SECTION 3 

STACK AND REVERSE POLISH NOTATION 

THE STACK 

The stack is the memory storage area assigned to a job. The stack provides storage for the basic program and data 
references for the job. It also provides for temporary storage of data and job history. When a job is activated, four 
high-speed hardware registers (A, X, B, Y) are linked to the memory portion of the job's stack (see Figure 3-1). This 
linkage is established by the stack pointer register (the S register), which contains the memory address of the last word 
placed in the stack. The four hardware top-of-stack registers (A, X, B, Y) extend the stack to provide quick access for 
data manipulation. Another stack pointer value (the F register) always points to the most recent MSCW in the stack. 

HARDWARE 
REGISTERS 

STACK 
MEMORY 
BUFFER 
AREA 

MV 1593 

5010CJ86 

( 

INPUT/ 
OUTPUT 
PATH OF DATA 
TO STACK 

t 
STACK AREA 
ASSIGNED 
TO PROGRAM 

STACK AREA 
CURRENTLY 
IN USE 

WORDntx 

TOSWORD 

MOST RECENT MSCW 

STACK LIMIT REGISTER I 
LOS F 

~-W-O_R_D_n _ _..._._..;.l-1 BOS I 
L ____ _J 

Figure 3-1. Top-of-Stack and Stack Bounds Registers 

3-1 



B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

The number of words in the memory portion of the stack is equal to the difference between the values of the BOS 
register, and the S register (S minus BOS). Data are brought into the stack through the top-of-stack registers in a manner 
that the last word placed in the stack {as indicated by the value of the S register) is the first word to be extracted from 
the stack (last in first out method). The total capacity of the top-of-stack registers is two words or two operands. Load­
ing a third word or operand into the top-of-stack registers causes the third word or operand to be pushed from the top­
of-stack registers into the memory portion of the stack. The stack pointer value in the S register is incremented by one 
as a word or operand is pushed into the memory portion of the stack, and is decremented by one when a word or 
operand is withdrawn from the stack area and placed in the hardware top-of-stack registers. As a result, the S register 
continually points to the last word or operand placed into the memory portion of the job stack. 

BASE AND LIMIT OF ST ACK 

A job's stack is bounded, for memory protection, by two registers: the base-of-stack register {BOSR) and the limit-of­
stack register (LOSR). The contents of BOSR define the base of the memory portion of the stack, and the contents of 
LOSR define the upper limit of the memory portion of the stack. The job is interrupted if the S register is set to a 
value that is present in either the BOSR, or the LOSR register. If the S register equals or exceeds the value of the 
LOSR register value a stack overflow interrupt occurs. 

BI-DIRECTIONAL DATA FLOW IN THE STACK 

The contents of the top-of-stack registers are maintained automatically by the data processor to meet the requirements of 
the current machine language operator. If the current operator requires data transfer into the memory portion of the 
stack, the top-of-stack registers receive the incoming data, and surplus contents in the top-of-stack registers are pushed 
down into the 1nemory portion of the stack. Pushing data into the memory portion of the stack means that the bottom 
word or operand in the top-of-stack register is transferred to the next word or operand in sequence, in the memory 
portion of the stack. Pushing data down into the memory portion of the stack makes room in the top-of-stack registers 
to contain the incoming data that is required by the current machine language operator. 

Data are also automatically brought from the memory portion of the stack and placed in the top-of-stack registers when 
the machine language operator requires that the top-of-stack registers be filled. This automatic function is the opposite 
of the push function described in the previous paragraph, and is commonly called a push up function. A push up 
transfers the last operand or word in the memory portion of the stack into the second word position in the top-of-stack 
registers. The word or operand in the memory portion of the stack is then deleted by decrementing the S register. The 
automatic maintenance of the top-of-stack registers takes the form of "push down", and "push up" functions which are 
described in the following paragraphs. 

Stack Push Down 

A stack push down occurs when a third word or operand is loaded into the top-of-stack registers, and both the 
A register and B register already contain stack words or operands. A push down consists of moving data from the top­
of-stack registers to the local memory portion of the stack. Moving data to the local memory portion of the stack makes 
room in the top-of-stack registers so that a third operand may be loaded into the top-of-stack registers. 

Stack Push Up 

A stack push up occurs when an operand or word is moved from the local memory portion of the stack, to the 
top-of-stack register portion of the stack. A push up can only occur when a machine language operator is executed by 
the data processor. The data processor operator that is to be performed must require that words or operands be present 
in the top-of-stack registers, and such words or operands must not be present in the proper top-of-stack registers. 

3-2 



B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

DOUBLE-PRECISION STACK OPERATION 

The top-of-stack registers are operand oriented rather than word oriented. Calling a double-precision operand into the 
top-of-stack registers cause~ two memory words to be loaded into the top-of-stack registers. The first word is ioaded into 
the A register, where TAG bits are checked. If the value indicates double-precision, the second word is loaded into the 
X register. The A and X registers are concatenated, or linked together, to form the double-precision operand. A double­
precision operand located in the B and Y registers reverts to two words when pushed down into the memory portion of 
the stack. A double-precision operand is concatenated in foe B and Y registers when pushed up from the memory portion 
of the stack into the hardware register portion of the stack. 

TOP-OF-STACK REGISTER CONDITIONS 

Two logical indicators are used to indicate the condition of the top-of-stack register portion of the stack. These two 
indicators are AROF (A register is occupied flip-flop), and BROF (B register is occupied flip-flop). The meaning of 
these two logical indicators is as follows: 

AROF BROF 

0 0 

0 

0 

STACK ADJUSTMENTS 

MEANING 

Neither the A, or the B register contains valid data. The top word in the stack is 
presently located in the memory address specified by the contents of the S register. 

The B register contains the top word in the stack, and the contents of the A register 
are not valid data. The second word in the stack is presently located in the memory 
address specified by the contents of the S register. 

The A register contains the top word in the stack, and the contents of the B register 
are not valid data. The second word in the stack is presently located in•the memory 
address specified by the contents of the S register. 

The A register cont~ins the top word in the stack, and the second word in the stack 
is presently in the B register. The third word in the stack is in the memory address 
specified by the contents of the S register. 

Each machine language operator that is executed by the data processor contains the requirement to adjust the top-of­
stack registers so that their contents provide accommodation for the operation that is to be performed. A convention is 
used to show what stack adjustment is required, as follows: 

5010986 3-3 



CONVENTION NOTATION 

(ADJ 0,0) 

(ADJ.0,1) 

(ADJ 1,0) 

(ADJ 1,1) 

(ADJ 0,2) 

(ADJ 1,2) 

(ADJ 1,3) 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

MEANING 

Both the A and B registers are to be adjusted so that their contents are not 
valid. The top word in the stack is to be located in the memory address 
pointed at by the contents of the S register. 

The data processor will use the state of the AROF and BROF flip-flops to 
determine if the stack must be pushed down to achieve the required adjust­
ment. The 0,0 portion of the convention notation shows what the logical 
states of AROF and BROF must be to satisfy the requirements of the 
adjustment. The first 0 in the express.ion of the notation defines what the 
logical state of the AROF flip-flop must be at the conclusion of the stack 
adjustment. The second 0 in the expression defines what the logical state of 
the· BROF flip-flop must be at the conclusion of the adjustment. The ADJ 
portion of the convention notation reads "adjust the stack until AROF and 
BROF meet the logical states". 

The A register is to be adjusted so that its contents are not valid. The top 
word or operand in the stack is to be present in the B register, and the 
second word or operand in the stack is to be located in the memory address 
pointed at by the contents of the S register. 

The A register is to be adjusted so that its contents are the top word or 
operand in the stack. The B register must not contain valid data. The 
second word or operand in the stack is to be located in the memory address 
pointed at by the contents of the S register. 

The A register is to be adjusted so that it contains the top word or operand 
in the stack. The B register is to be adjusted so that it contains the second 
word or operand in the stack. The third word or operand in the stack is to 
be in the memory address pointed at by the contents of the S register. 

The A register is to be adjusted so that its contents are not valid. The B register 
condition is immaterial to the operation. The top word in the stack is present 
in the B register if BROF is set. 

The A register is to be adjusted so that it contains the top word in the stack. 
The B register condition is immaterial to the operation. The second word in 
the stack is located in the B register if BROF is set. 

The A register is adjusted so that it contains the top word in the stack if and 
only if the originai stack condition is AROF/ and BROF/ (0,0). If any other 
condition than (0,0) is the original condition, then no stack adjustment occurs. 

Some machine language operations require that several stack adjustments must be performed during the course of the 
operation. Such operations mereiy pause at the appropriate place until the adjustment is completed, and then continue 
the sequence. 

Stack push down and/or stack push up (which were defined previously in this section) are intrinsic functions of the stack 
adjustments. That is, a push-up or a push-down may be implied because of the current state of the top of stack registers, 
and the required stack adjustment. Where a stack push-up or push-down is implied, such operation will be performed as an 
integral and automatic function of the stack adjustment procedure. 

34 



DATA ADDRESSING 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

The B 6900 data processor provides three methods for addressing data or program code: 

a. Data descriptor (DD)/segment des~riptor (SD) 

b. Indirect reference word (IRW) 

c. Stuffed indirect reference word (SIRW) 

The data descriptor (DD) and segment descriptor (SD) provide for the add essing of data or program segments located 
outside of the job's stack area. Data descriptors and segment descriptors utilize absolute memory addresses. The indirect 
reference word (IRW J and the stuffed indirect reference word (SIRW) address data located within (IRW), or outside 
(SIRW) the job's stack. The IRW and SIRW address components are both relative. The IRW addresses within the 
immediate environment of the job relative to a display register (described later in Non-local Addr~ssing). The SIRW 
addresses beyond the immediate environment Of the current procedure, the addressing being relative to the base of the 
job's stack. Addressing across stacks is accomplished with an SIRW. 

Data Descriptor 

In general, the descriptor describes and locates data associated with a given job. The data descriptor (DD) is used to 
fetch data to the stack or to store data from the stack into an array located outside the job's stack area. The formats of 
the data and segment descriptors were illustrated in Section 2. The address field in each of these descriptors is 20 bits in 
_length; this field contains the absolute address of an array in memory or in the disk file, as indicated by setting of the 
presence bit (P). The referenced data is in main memory when the presence bit is set. 

Presence Bit 

A presence bit interrupt occurs when the job references data by means of a descriptor in which the P-bit is equal to zerp: 
that is, the data is located in a disk file, rather than in memory. The Master Control Program (MCP) recognizes the 
presence bit interrupt and transfers data from disk file storage to memory. After the data transfer to memory is com­
pleted, the MCP marks the descriptor present by setting the P-bit to one, and places the new memory address into the 
address field of the descriptor. The interrupted job is then reactivated. 

Index Bit 

A data descriptor describes either an entire array of data words, or a particular element within an array of data words. 
If the descriptor describes the entire array, the index bit (I-bit) in the descriptor is zero, indicating that the descriptor has 
not yet been indexed. The length field of the descriptor defines the length of the data array. 

Invalid Index 

A particular element of an array is described by indexing an array descriptor. Memory protection is ensured during 
indexing operations by performing a comparison between the length field of the descriptor and the index value. An 
invalid index interrupt results if the index value exceeds the length of the local memory area defined by the descriptor, 
or if the index is less than zero. 

Valid Index 

If the index value is valid, the length field of the descriptor is replaced by the index value, and the I-bit in the descriptor 
is set to one to indicate that indexing has taken place. The address and index fields are added together to generate the 
absolute machine address whenever an indexed data descriptor in which the P-bit is set is used to fetch or store data. 

5010986 3-5 



B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

The double-precision bit (D) is used to identify the referenced data as single- or double-precision and directly affects the 
indexing operation. The D-bit equal to one signifies double-precision and causes the index value to be doubled before 
indexing. 

Read-Oniy Bit 

The read-only bit (R) specifies that the local memory area described by the data descriptor is read-only area. If the R-bit 
of a descriptor is set to one, and the area referenced by that descriptor is use.d for storage purposes, an interrupt results. 

Copy Bit 

The copy bit (C) identifies a descriptor as a copy of a master descriptor and is related to the presence-bit action. The 
copy bit links multiple copies of an absent descriptor (that is, the presence bit is off) to the one master descriptor. The 
copy bit mechanism is invoked when a copy is made in the stack. If it is a copy of the original, absent descriptor, the 
processor sets the copy bit to one and inserts the address of the master descriptor into the address field. Thus, multiple 
copies of absent data descriptors are all linked back to the master descriptor. 

REVERSE POLISH NOTATION 

Reverse Polish notation is an arithmetical or logical notational system using only operands and operators arranged in 
sequence or strings, thus eliminating the necessity for defining the boundaries of any terms. Figure 3-2 presents a flow 
chart for conversion to reverse Polish notation. 

SIMPLIFIED RULES FOR GENERATION OF POLISH STRING 

The source of expression is as follows: 

3-6 

Name 

Variable or constant 

Operator-separator "("or "r" 
Arithmetic or Boolean operator and last-entered 
delimiter list symbol were as follows: 

1. An operator of lower priority. 

2. A left bracket "(" or parenthesis "(". 

3. A separator. 

4. Nothing (delimiter list empty). 

Arithmetic or Boolean operator and last-entered 
delimiter list symbol were as follows: an operator 
of priority equal to or greater than the symbol in 
the source. 

Action 

Place variable or constant in string being built and 
examine next symbol. 

Place in delimiter list and examine next symbol. 

Place operator in the delimiter list and examine next 
source symboL 

Remove the operator from the delimiter list and 
place it in the string being built. Then compare 
the next symbol in the delimiter list against the 
source expression symbol. 



D. L = DELIMITER LIST 
P. N. S. =POLISH NOTATION STRING 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

EXAMINE FIRsT 
ITEM OF SOURCE 
ITATEM£NT 
STRING 

LIFT PARENTHESIS 
OR IRACKIT 

RIGHT PARENTHElll 
OR BRACKET 

PLACE 
SYMBOL 
INP.N.S. 

MV1594 

.. , .. °"· "[" 

PLACE 
"("OR"[" 
INTOD.L 

SCAN NEXT 
SOURCE ITEM 

DELETE 
"("OR"(" 
FROM THE 
D.L 

.. , .. OR •J•• 

MOVE LAST 
ENTERED D.L 
SYMBOL FROM 
D. L TO P.N.S. 

INSERT 
SOURCE 
SYMBOL 
IN D;L. 

PRIORITIES I 
3 

2 

1 

0 

OPERATOR 

OPERATORS 

X, I 

+,-

>.<."'(BOOLEAN) 

: =(REPLACEMENT) 

SOURCE 
EMPTY 

( +, -. x, /, =, >:. <) 

YES 

MOVE LAST 
ENTERED D.L 
SYMBOL FROM 
D. L TO P.N.S. 

LAST ENTERED 
D.L SYMBOL IS 
a) LOWER PRIOR ITV 
bi"i" OR"[" 
c) D. L. IS EMPTY 

NO 

MOVE LAST 
ENTERED D.L. 
SYMBOL FROM 
D.L. TO P.N.S. 

Figure 3-2. Reverse Polish Notation Flow Chart 

5010986 3-7 



Name 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

Action 

A right bracket "] " or parenthesis ")". Pull from delimiter list until corresponding left 
bracket or parenthesis. 

End of expression. Move last-entered delimiter list symbols to Polish 
notation string until empty. 

POLISH STRING 

The essential difference between reverse Polish and conventional notation is that operators are written to the right of the 
operands instead of between them. For example, the conventional B + C is written B C +in reverse Polish notation: 
A = 7 x (B + C) becomes A 7 B C + x :=. 

Any expression written in reverse Polish notation is called a polish string. In order to fully understand this concept, the 
user should know the rules for evaluating a polish string. 

RULES FOR EVALUATING A POLISH STRING 

The following is the procedure for evaluating a polish string: 

a. Scan the string from left to right. 

b. Remember the operands and the order in which they occur. 

c. When an operator is encountered perform the following: 

I. Record the last two operands encountered. 

2. Execute the required operation. 

3. Disregard the two operands. 

4. Consider the result of {b) as a single operand, the first of the next pair to be operated upon. 

Following this rule, the reverse polish string A 7 BC + x := results in A assuming the value 7 x (B+c) {Table 3-1). 

NOTE 

Because replacement operators vary depending upon the language 
used, ~, =, and :=are equivalent for this discussion. 

SIMPLE STACK OPERATION 

All program information must be in the system before it can be used. Input areas are allocated for information entering 
the system, and output areas are set aside for information exiting the system; array and table areas are also allocated to 
store certain types of data. Thus data is stored in several different areas: the input/output areas, data tables (arrays), 
and the siack. Since aii work is done in the arithmetic registers, all information or data is transferred to the arithmetic 
registers and the stack. 

3-8 



Step 
No. 

2 

3 

4 

s 

6 

7 

Symbol 
Being 

Examined 

B 

c 

+ 

7 

x 

A 

·= 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

Table 3"1. Evaluation of Polish String A 7 B C + x : = 

Symbol 
Type 

Operand 

Operand 

Add 
Operator 

Operand 

Multiply 
Operator 

Name 

Replace 
Operator 

Operands Being 
Remembered Order of 

Occurrence (I or 2) 
Before Operation 

I B 

2C 
I B 

I(B + C) 

2 7 
I x (B + C) 

1 7 x (B + C) 

2A 
1 7 x (B + C) 

Occurring 
Operation 

B+C 

7 x (B + C) 

A :=7x(B + C) 

Operation 
Results 

(B + C) 

7 x (B + C) 

A=7x(B + C) 

At this point, an ALGOL assignment statement and the reverse PoHsh notation equivalent will be related to the stack 
concept of operation. The example is Z:=Y + 2x(W+V), where := means "is replaced by." In terms of a computer pro­
gram, this assignment statement indicates that the value resulting from the evaluation of the arithmetic expression is to 
be stored in the location represented by the variable Z. 

When Z:=Y + 2x(W+V) is translated to reverse Polish notation, the result is ZY2WV+ x +:=. Each element of the exam·­
ple expression causes a certain type of syllable to be included in the machine language program when the source problem 
is compiled. The following is a detailed description of each element of the example, the type of syllable compiled, and 
the resulting operation (see Figure 3-3 and Table 3-2). 

In the example statement, Z is to be the recipient of a value, the address of Z must be placed into the stack just prior to 
the store command. This is accomplished by a name call syllable which places an indirect reference word (IRW) in the 
stack. The IRW contains the address of Z in the form of an "address couple" that references the memory location 
reserved in the stack for the variable Z. 

Since Y is to be added to a quantity, Y is brought into the top of the stack as an operand. This is accomplished with a 
value call (V ALC) syllable that references Y. The value 2 is then brought to the stack, with an eight-bit literal syllable 
(LT8). Since Wand V are to be added, the respective variables are brought to the stack with value call syllables. The 
ADD operator adds the two top operands and places the sum in the top of stack. This example assumes, for simplicity, 
single-precision operands not requiring use of the X and Y registers which are used in double-precision operations. 

The multiply operator is the next symbol encountered in the reverse polish string; when executed, it places the product 
"2x(W+V)" in the top of the stack. The ne~t symbol, ADD, when executed, leaves the final result "Y+2x(W+V)" in the 
top of the stack. 

5010086 3-9 



'f -0 

"A" REGISTER 

"B" REGISTER 

CORIE STACK 
AREA 

CBIL N+5 

CBIL N+4 

CBIL N+J 

CBIL N+2 

CBIL N+1 

CBILN 

MV1595 

z s 

y 

w 

v 

NAMC 

z 

IRWZ 

INV 

y 

w 

v 

ALGOL STATEMENT 

VALC 

y 

l"RWZ 

z 

y 

w 

v 

LT8 

2 

B 

IRWZ 

z 

y 

w 

v 

.• y + 2 

2 w v 

// 
VALC VALC 

w v 

w 

2 w 

y y 

IRWZ IRWZ 

z z 

y y 

w w 

v v 

CURRENT BASE INDEX LEVEL (CBIL) REPRESENTS 
RELATIVE MEMORY ADDRESSING WITHIN THE STACK 
MEMORY AREA ([) [~ + S). 

x 
+ 

ADD 

2 

y 

IRWZ 

z 

y 

w 

v 

Figure 3-3. Stack Operation 

(W+V) ; 
:• 

MULT 

INV 

2x(W+v) 

2 

- y 

IRWZ 

z 

y 

w 

v 

-

VALC 
NAMC 
LTS 
STOD 

INV 

Y+2(W+V) 

2 2 

y y 

IRWZ IRWZ 

z J _, IV+ 2(W + Vl 

y y 

w w 

v v 

SYLLABLE TYPES 

VALUE CALL 
NAME CALL 
LITERAL (8 BIT) 
STORE DESTRUCTIVE 



Execution 
Sequence 

0 

2 

3 

4 

5 

6 

7 

8 

9 

Reverse 
Polish 

Notation 
Element 

z 

y 

2 

w 

v 

+ 

x 

+ 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

Table 3-2. Description of Stack Operation 

Syllable 
Type 

Compiled 

Name call for Z 

Value call for Y 

Literal 2 

Value call for W 

Value call for V 

Operator add 

Operator 
multiply 

Operator add 

Operator store 
destructive 

Function of Syllable During 
Running of the Program 

Stack location of program variables illustrated 

Build an indirect reference word that contains the address 
of Z and place it in the top of the stack 

Place the value of Y in the top of the stack 

Place a 2 in the top of the stack 

Place the value of W in the top of the stack 

Place the value of V in the top of the stack 

Add the two top words in the stack and place the result 
in B register as the top of the stack 

Multiply the two top-of-the-stack operands. The product 
is left in the B register as the top of the stack 

Add the two top words in the stack and leave the result 
in the B register as the top of the stack 

Store an item into memory. The address in which to 
store is indicated by an indirect reference word or a data 
descriptor; the address can be above or below the item 
stored 

The store syllable completes the execution of the statement Z:=Y + 2x(W+V). The store operation examines the two 
top-of-stack operands looking for an IRW or data descriptor. In this example, the IRW addresses the location where the 
computed value of Z is to be stored. The stack is empty at the completion of this statement. 

PROGRAM STRUCTURE IN MEMORY 

When a problem is expressed in a source language, portions of the source language fall into one of two categories. One 
describes the constants and variables that will be used in the program, and the other the computations that will be exe­
cuted (see Figure 3-4). When the source program is compiled, variables are assigned locations within the stack, whereas 
the constants are embedded within the code stream that forms the computational part. A program residing in memory occupied 
separately allocated areas. "Separately allocated" means that each part of the program may reside anywhere in memory, and 
the actual address is determined by the MCP. In particular, the various areas are not assigned to contiguous memory areas. 
Registers within the processor indicate the bases of the various areas during the execution of a program. 

5010986 3-11 



MV 1596A 

D[4) 

0(3) 

0[2i 

Dl1 I 

D[O] 

__. 
__. ... 

__. 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

OBJECT 
PROGRAM OBJECT 
STACK PROGRAM 
CONTAINING -- CODE -VARIABLES SEGMENT 
AND DYNAMIC (n + 1) 
STATUS 

OBJECT 
PROGRAM 
SEGMENT OBJECT 
DICTIONARY PROGRAM .. CODE - SEGMENT 
S. D. PROG. 1-- (n) 

S. D. PROG 

SEG. DES. 0. B. 

OBJECT 
PROGRAM 
CODE - OUTER - BLOCK 

MCPSTACK CODE 
AND SEGMENT 
SEGMENT 
DICTIONARY 

Figure 34. Object Program in Memory 

MEMORY AREA ALLOCATION 

The separately allocated areas of a program are as follows: 

a. Program Segments. These are sequences of instructions (syllables) that are performed by the processor 
in executing the program. Note that there is a distinction between program segments and data areas. 
The program segments contain no data, and are not modified by the processor as it executes the program. 

b. Segment Dictionary. This is a table containing one word for each program segment. This word tells whether 
the program segment is in memory or on the disk, and gives the corresponding memory or disk address of the 

. program segment. 

c. Stack Area. This is the pushdown stack storage, which contains all the variables and data descriptors associ­
ated with the program, including control words which indicate the dynamic status of the job as it is beh1g 
executed. 

STACK-HISTORY AND ADDRESSII"~G-ENVIRONMENT LiSTS 

One very importamt aspect of the B 6900 is the retention of the dynamic history for the program being processed. Two 
lists of program history are maintained in the B 6900 stack: the stack-history list and the addressing-environment list. The 
stack-history list is dynamic, varying as· the job proceeds along different program paths with changing sets of data. Both 
lists are generated and maintained by B 6900 hardware. 
3-12 



B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

MARK STACK CONTROL WORD LINKAGE 

The stack history is a list of Mark Stack Control Words (MSCW), linked together by their displacement fields (DF) 
(Figure 3-5). An MSCW is .inserted into the stack as a procedure is entered and is removed as that procedure is exited. 
Therefore, the stack history list grows and contracts with the procedural depth of the program. Mark stack control 
words identify the portion of the stack related to each procedure. When the procedure is entered, its parameters and 
local variables are entered in the stack following the MSCW. When the procedure is executed its parameters and local 
variables are referenced by addressing relative to the MSCW. 

STACK DELETION 

ADDRESS 
ENVIRONMENT 

__ s_.:-----~TOS WORD LIST 

STACK 
HISTORY 
LIST 

F t:lEDUR9. MSCW I- DISP - -

PROCEDUR~-

~ .............. ~=~- ... ...-....J".=~ 

PROCEDUR~- -

PROCEDURE c NI MSCW -I ~ -.--.~-=;;;..; > MSCW --~ _o_F_.=-:'1 

I 1 'mJl~I OUTER PROG BLO~K......, -- -

(MSCW DISP OF - -- -

MV 1597 

Figure 3-5. Stack History and Addressing Environment List 

Each MSCW is linked to the prior MSCW through the contents of its DF field in order to identify the point in the stack 
where the prior procedure began. When a procedure is exited, its portion of the stack is discarded. This action is 
achieved by setting the stack-pointer register (S) to address the memory cell preceding the most recent MS\;W (Figure 3-6). 
This topmost MSCW, addressed by another register (F), is deleted from the stack-history list by changing F"t-0 address the 
prior MSCW, placing this MSCW at the head of the stack history. 

This is an efficient and convenient means of subroutine entry and-exit. 

RELATIVE-ADDRESSING 

Analyzing the structure of an ALGOL program results in a better understanding of the relative-addressing procedures used 
in the B 6900 stack. The addressing environment of an ALGOL procedure is established when the program is structured 

5010986 3-13 



MV 1598 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

TOS WORD* l DISCARDED _ PORTION 

s fHSSSSSST .. -'--... OF rACK 

STACK 
HISTORY 
LIST 

F 

Figure 3-6. Stack Cut-Back Operation on Procedure Exit 

by the programmer and is referred to as the lexicographical ordering of the procedural blocks (Figure 3-7). At compile 
time, the lexicographical ordering is used to form address couples. An address couple consists of the following two items: 

a. The addressing level (2Q) of the variable. 

b. An index value (S) used to locate the specific variable within its addressing level. 

The lexicographical ordering of the program remains static as the program is executed, thereby allowing variables to be 
referenced by means of address couples as the program is executed. 

Base of Address Level Segment 

The B 6900 processor contains an array of D registers (DO through 031 ). These registers address the base of each 
addressing-level segment (Figure 3-8). The local variables of all procedures are addressed relative to the D registers. 

Absolute Address Conversion 

The address couple is converted into an absolute memory address when the variable is referenced. The addressing level 
portion of the address couple selects the D register which contains the absolute memory address of the MSCW for the 
environment (addressing level) in which the variable is located. The index value of the address couple is added to the 
contents of the D register to generate the absolute memory address. 

Multiple Variables With Common Address Couples 

The address couples assigned to the variables in a program are not unique. This is true because of the ALGOL scope-of­
definition rules, which imply that if there is no procedure which can address both of any two quantities, then these two 
quantities may unambiguously have the same address couple. This addressing system works because, whereas two vari­
ables may have the same address couples, there is never any doubt as to which variable is being referenced within any 
particular procedure. 

3-14 



B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

BEGIN -------- LEXICOGRAPHICAL LEVEL 2 

REAL V1; 22 = 2, S = 2 
REALV2; . 22=2, S=3 
PROCEDURE A; QQ = 2, S = 4 

r BEGIN ------ LEXICOGRAPHICAL LEVEL 3 

REALV3; 
PROCEDURE B; 

QQ"' 3, 5.,, 2 
22= 3, s = 3 

[ 

BE~: :-;- LEXICOGRAPHICAL LEVEL 4 

V1 := V3; 

END 

B; 
END; 

PROCEDURE C; 22= 2, S = 5 

BEGIN ------LEXICOGRAPHICAL LEVEL3 

REAL V4; 22= 3, S = 2 
PROCEDURE D; 22= 3, S = 3 

I 
BEGIN --- LEXICOGRAPHICAL LEVEL 4 

REAL VS; 22= 4, S = 2 
V4 := 4; 
vs := 5; 
A; 

L 
DL EN:~ ;• V4; 

END; 

·c: 
END; 

MV1599 

Figure 3-7 o ALGOL Program With Lexicographical Structure Indicated 

Address Environment Defined 

There is a !!~ique MSCW w1'ich each D !egister must address during the execution of any particular procedure. The 
D registers must be changed, upon procedure entry or exit, to address the correct MSCWs. The list of MSCWs which the 
D registers address is the· addressing environment of the procedure. 

Mark Stack Control Word Linkage 

The addressing environment of the program is maintained automatically by linking the MSCWs together in accordance 
with the lexicographical structure of the program. Th.is linkage is the stack number (Stack No.) and displacement (DISP) 
fields of the MSCW, and is inserted into the MSCW whenever the procedure is entered. The addressing environment list 
is formed by linking each MSCW to the MSCW immediately below the declaration for the procedure being entered. Th.is 
forms a tree-structured list which indicates the addressing environment of each procedure {Figures 3-8 and 3-9). This list 
is used to update the D registers whenever a procedure entry or exit occurs. 

SOHJCJ86 3-15 



3-16 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

STACK 
MEMORY 
AREA 

TOS WORD ::=r.-
S ' r .... I 
F - ( J 

__... MSCW 

! l 
PCW-B 

V3 

~ MSCW 

ADDRESS 
ENVIRONMENT 
LIST 

-~---1-
-·---I-

PROCEDURE B -=f 
PROCEDURE A 

D REGISTERS ~=f 
I 031 l PROCEDURE D 

=f 

MV1600 

06 
D5 
D4 ~ 

D3 ~ 
D2 l­

D1 

DO 

..... 

PCW-C 
PCW-A 

V2 

V1 

PROCEDURE C 

~DISP =+ 
OUTER PAOG 
BLOCK 

DISP _± 
Figure 3-8. D Registers Indicating Current Addressing Environment 

MV 1601 

PROCEDURE A 

__ '::J_ __ 
OUTER PROGRAM BLOCK 

LEXICOGRAPHICAL 
LEVEL 3 

LEXICOGRAPHICAL 
LEVEL 2 

Figure 3-9. Addressing Environment Tree of ALGOL Program 



STACK HISTORY SUMMARY 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

The entry and eXit mechanism of the processor hardware automatically maintains both the stack history and address­
environment lists to reflect the current status of the program. Interrupt response is a procedure entry. Therefore, the 
system is able to conveniently respond to, and return from, interrupts. Upon recognition of an interrupt condition, the 
processor creates a MSCW, inserts an indirect reference word into the stack to address the interrupt-handling procedure, 
inserts a literal constant to identify the interrupt condition and two other parameters, and initiates an MCP interrupt­
handling procedure. The D registers are updated upon entry into the interrupt-handling procedure, to display all legiti­
mate variables. Upon return from this procedure, the D registers are updated to display variables of the former 
procedure. 

MULTIPLE STACKS AND REENTRANT CODE 

The B 6900 stack mechanism provides a facility for handling several active stacks, which are organized in a tree structure. 
The trunk of this tree structure is a stack containing MCP global quantities. 

LEVEL DEFINITION 

A program is a set of executable instructions, and a job is a single execution of a program for a particular set of data. As 
the MCP is requested to run a job, a level-I branch of the basic stack is created. This level-I branch contains the descrip­
tors pointing to the executable code and read-only data segments for the program. Emerging from this level-I branch is 
a level-2 branch, containing the variables and data for this job. Starting from the job's stack and tracing downward 
through the tree structure, one finds first the stack containing the variables and data for the job (at level 2), the segment 
descriptor to be executed (at level I), and the MCP's stack at the trunk (level O). 

REENTRANCE 

A subsequent request to run another execution of an already-running program requires that only a level-2 branch be 
established. This level-2 stack branch emerges from the level-I stack of the already-running program. Thus, two jobs 
which are different executions of the same program have a common node, at level-I, describing the executable code. It 
is in this way that program code is re-entrant and shared. This results simply from the proper tree-structured organiza­
tion of the various stacks within the machine. All programs within the system are re-entrant, including all user programs 
as well as the compilers and the MCP. 

JOB-SPLITTING 

The B 6900 stack mechanism also provides the facility for a single job to split itself into two independent jobs. A com­
mon use of this facility occurs when there is a point in a job where two relatively large independent processes must be 
performed. This splitting can be used to make full use of a multiprocessor configuration, or to reduce elapsed time by 
multiprogramming the independent processes. 

A split of this type establishes a new limb of the tree-structured stack, with the two independent jobs sharing that part of 
the stack which was created before the split was requested. The process is recursively defined and can happen repeatedly 
at any level. 

STACK DESCRIPTOR 

Stack branches are located by an array of descriptors, the stack vector array (Figure 3-10). There is a data descriptor in 
this array for every stack branch. This data descriptor, the stack descriptor, describes the length of the memory area 
assigned to a stack branch and its location in either memory or disk. 

5010986 3-17 



STACK T VECTOR 

DDn-1 

B 6900 System Reference Manual 
Stack and Reverse Polish Notation 

STACK STACK 
NO. 4 NO. 3 

T T T T 

~bd TOSCW 

005 1----------1_.. TOSCW - -

004 

003 

002 

001 

ODO 

MV 1602 

STACK 
TRUNK 

DD 

MSCW 

TOSCW 

SEGMENT 
DESCRIPTORS 

~ DISPLAY 
~ REGISTERS 

IM:h ~ 
LI TOSCW I 04 

03 

02 

01 

DO 

Figure 3-10. Multiple Linked Stacks 

A stack number is assigned to each stack branch. The stack number is the index value of the stack descriptor in the 
stack vector array. 

STACK VECTOR DESCRIPTOR 

The array size of the stack vector and its location in memory is described by the stack vector descriptor, located in a 
reserved position of the trunk of the stack {00+2, see Figure 3-10). All references to stack branches are made through 
the stack vector descriptor, indexed by the stack number. 

PRESENCE BIT INTERRUPT 

A presence bit interrupt results when an addressed stack is not present in memory. This presence bit interrupt facility 
permits stack overlays and recalls under dynamic conditions. Idle or inactive stacks may be moved from main memory 
to disk as the need arises and, when a stack is subsequently referenced, a presence bit interrupt is generated to cause the 
MCP to recall the non-present stack from disk. 

3-18 





B 6900 System Reference Manual 

SECTION 4 

SYSTEM DISPLAY AND CONTROL 

GENERAL INFORMATION 

AB 6900 system provides 2 ways to control system logical circuits. If an MDP is installed in a B 6900 system, there are 
also 2 ways to display system status. If an MDP cabinet is not installed, there is only 1 way to display system status. 

If an MDP cabinet is not installed in a B 6900 system, the Soft Display program must operate to display system status. 
The Soft Display program methods of operation are defined later in this section in the B 6900 Soft Display paragraphs. 

DISPLAY AND CONTROL WITH MDP CABINET INSTALLED 

The upper-half of the outer-panels (skins) of the B 6900 MDP cabinet are swing-out covers for the system maintenance 
display and control panels. The maintenance display and control panels are normally covered and, therefore, not visible. 
The panel covers are opened to perform maintenance operations, or to exercise control of B 6900 system FIRMWARE 
programs. Figure 4-1 shows the system control panels and displays when the swing-out covers are opened. 

MDP Status Display Panel 

The left-hand side of Figure 4-1 shows the MDP system status display panels. There are 2 adjacent status display panels: 
the left-most panel is panel 1, and the right-most panel is panel 2. Each display panel contains 2 display registers. Each 
register has a PAGE selector device located immediately above the display register, and a flip-chart device located imme­
diately below the display register. Figure 4-2 shows one complete display register, and there are four such display 
registers in the entire system status display. 

Each display register is capable of displaying the status of 128 logic signals or flip-flops. The PAGE selector is capable of 
selecting any of 16 different sets of 128 logic signals and/or flip-flops (PAGES) to be displayed in the register. Push­
buttons provide a method for SETting or RESETing the state of the flip-flop or logic signals that are currently displayed 
in the register. 

The 2 display registers on a display panel both display the same 16 PAGEs. Thus, a certain PAGE can be selected for 
display in the upper display register on a panel, and a different PAGE from the same set of PAGEs can be selected for 
display in the lower display register. It is also possible to display the same PAGE on a display panel in both display 
registers. 

A display register consists of 33 display circuit devices, and is divided into an upper-display and a lower-display. Each 
display uses 16 display circuit devices. One display circuit device is used as a PAGE-selector for the display register. 
The upper and lower displays each indicate the status of 64 signals or flip-flops. Selecting the flip-chart that corresponds 
to the value of the PAGE-selector display device shows which logical status is currently displayed. 

A display device (see Figure 4-3) indicates the status of 4 logic signals or flip-flops. Each display device consists of 
4 Light Emitting Diodes (LEDs), and S push-button switches. One push-button switch is associated with each LED, and 
is used to change the state of the circuit displayed (SET/RESET the flip-flop displayed by the LED). One register push­
button (beneath the LED number 64 pushbutton) is used to select the RESET -function for all LED push-buttons in the 
register. Another register push-button (beneath the LED number 0 pushbutton) is used for Lamp-Test/Register.Clear 
operations. When this push-button is depressed, all LED lamps illuminate for a Lamp-Test. When this push-button is 
released, all circuits displayed by the register are CLEARed (RESET). The bottom push-button on all other register dis­
play circuit devices is unused, and has no effect on the status display. 

5010986 4-1 



B 6900 System Reference Manual 
System Display and Control 

~ 
HALT 

~ 
GCLR 

~ 
LOAD 

SYSTEM CONTROL 

CHLT SECL 

~ ~PWOU RUNG 0 

~ 
HLTD 0 

~ FRZN 0 O 

ADJO READ 

~ ~ 
MM 

Ci) ADJl WRITE 

IC 

POWER 

II~ I 
OFF 

0 
~ 

MNT 

~ PNL 

NML 

~ ~
o LOAD ID DISPLAY CONTROL 

eo .. . ~ I POPINNTLER FF I POINTER 

eo e·:> eo eo eo eo e::i eo eo eo •.o •o •o •c eo 90 •o eo ea eo oo so •o e-:i on oo tic •o ._, •o ee ~~o~•~•~o~o~o~o~p~o~o~o~o~o~o~o ~-~·~·~·~·~·~·~··~·~·~•~o~c~c~•~• eo •o •o eo •o eo eo eo eo eo eo eo eo •O eo eo •o eo eo eo eo eo eo eo eo eo eo ec. eo •o eo 
eo eo eo oo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo •o eo eo eO' eo eo eo ec eo eo eo •'"~ 

0 0 0 I) 0 0 0 0 0 0 0 0 0 0 g 0 0 0 0 0 0 ·0 0 0 0 0 0 0 c. 0 0 

~~·~-~-~-~-~-~·~-~-~-~-~-~-~-~- ~-~·~·~-~-~-~-~·fill·~·~·~·~·~·~·~· eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo ec eo eo eo eo eo ev •" eo eY eo 
eo eo eo eo eo eo e;, eo eo eo eo eo eo •o eo eo eo eo eo eo . eo eo •o eo eo eo •·:i eo e::'I l•o eo 
eo eo eo eo eo eo eo e.;, eo eo eo eo e,o eo eo ea eo eo eo eo eo eo eo e:.o eo eo eo:i eo 90 eo eo 

o o o o o o o o o o v o o o. o 0 0 o o o. o o p o o "' c o o o o 

STEP 

MAINT PROC CONTROL MAINT CONTROL 

DISPLAY r- MAINTENANCE --, r-- CLOCK -., 

~~~~ CMPR Dl~~~y. I E~~~~E STOP EVENT 11 STOP ·~~~~EI 
INIT

0 ... - o-olo
~ c

0 0 0 0 0 0 0
I J ' J

~ ~1~
3 7 3

0 0 0 0 0 0 0
6 2 6 2 6 2 6 2 6 ?

0 0 0 9 o" 010 0 0 0
' 1 ' • 1 ' I 5 1

0 0 0 0 11€) 0 0 0 0 0
4 0 4 0 4 0 4 0 4 0

~SENSE SWITCHES

Cf) Cf) cf) til o o o o I
S3 S2 51 so

3 2 I 0
LOOP DIAG STEP CYCLE

LOOP DIA STEP ERR

MV4515

rnrn
G~

D
0

MTR

G 9 A B

[c D E F

PRWON

0

D
SHIFT

CPU il
REMOTE

SWITCH
TEST

0
CHECK

0 ~OFF~ ~ 0 ~ ~ " 0
NORMAL RUN

~:;lg I SA09 0
SA08 0

0 LTST

SA07rl SA06 0
SA05 0 I
SA04 0

~RsTRI

SAOO~ SA02 0
SAOl 0
SAOO 0

0 RCRD

Figure 4-1. B 6900 MDP Gabinet Display and Control Panels

4-3

Vi
0 -~
00

°'

UPPER
REGISTER
DISPLAY

LOWER
REGISTER
DISPLAY

{ UPPER
DISPLAY

{ LOWER
DISPLAY

PAGE/BIT ID
FLIP-CHART

MV4429

•o
eo
eo
eo

0

•o
•o
eo
eo

0

128
127
126
125
63
62
61

r· THIS PUSHBUTTON SELECTS
PAGE SELECT eo

RESET-FUNCTION FOR ALL eo
(OTHROUGH 15 HEX) eo LED PUSHBUTTON SWITCHES 11)

IN THE REGISTEIR.

··1
eo eo llO eo •o . ·1 eo eo eo eo eo •o eo •o

eo eo eo eo eo •o eo eo eo eo eo eo •o •• eo
eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo
eo eo eo eo eo eo eo eo eo eo eo eo eo eo eo

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~
eo eo •O eo •o . ·1 eo eo eo eo eo eo eo
eo eo eo eo •o eo eo eo eo •o eo eo eo
eo •o eo eo eo eo eo eo eo eo eo eo eo
eo eo •O eo eo eo eo eo eo eo eo eo eo tx1

0 0 0 0 0 0 0 0 0 0 0 0 0

=i C'll °' '< \0
~ 0
~o

124 119 115 111 107 103 99 95 91 87 83 79 75 71 67 THIS PUSH- 3 C'll
'<

12:• 118 114 110 106 102 98 94 90 86 82 78 74 70 66 BUTTON ~~
-·(I)

122 117 113 109 105 101 97 93 89 85 81 77 73 69 65 SELECTS ~ 3
1211 116 112 108 104 100 96 92 88 84 80 76 72 68 64

REGISTER S' ::::ic
59 55 51 47 43 39 35 31 27 23 19 15 11 1 3 '< (I)

58 54 50 46 42 38 34 30 26 22 18 14 10 6 2 LAMP-TEST § ~
0. ~ 57' 53 49 45 41 37 33 29 25 21 17 13 9 5 1 (DEPRESS), ('") ~

56 52 48 44 40 36

n~
24 20 16 12 8 4 0

AND CLEAR-
0 (I)

a =::
REGISTER §. §
(RELEASE). c::

e.

PANELn PAGE 1

2J liJ W Lil W liJ L~J 9 10 11 12 13 14 15 16

NOTES
1. TABS ONI FLIP-CHART INDICATE PAGE IDENTITY.
2. NUMBERtS ON FLIP-CHART SHOW LOCATIONS OF BITS IN A WORD.

Figure 4-2. B 6900 Status Display Register

LIGHT EMITTING
DIODE iNDICATORS

MV4430

B 6900 System Reference Manual
System Display and Control

eo
eo
eo
eo

0

LED CIRCUIT SET/RESET
FUNCTION PUSHBUTTONS
(1 FOR EACH LED INDICATOR)

RESET-FUNCTION SELECT, OR
LAMP-TEST/REGISTER-CLEAR
FUNCTION SELECT

Figure 4-3. LED Indicator - Chip Circuit Display Device

If an LED is illuminated, the corresponding flip-flop is SET (or the logic signal is TRUE). If the LED is extinguished, the
corresponding flip-flop is RESET (or the logic signal is FALSE).

Table 4-1 gives the general B 6900 system status displayed on each MDP display panel and display register. The major
circuits displayed for each PAGE selection, both the upper and lower displays, are listed.

iable 4-i. B 6900 MOP Cabinet Status Display

Panel Page Upper Display Lower Display

0 Top-Of-Stack A Register Top-Of-Stack B Register
1 Top-Of-Stack C Register Program (P) Register
2 Top-Of-Stack X Register Top-Of-Stack Y Register
3 Top-Of-Stack Z Register Program Look-Ahead L Register
4 A Register In Octal Notation X Register In Octal Notation
5 B Register In Octal Notation Y Register In Octal Notation
6 Card-Tester Logic Card-Tester Logic

14 Look-Ahead and Address Save Registers Not Used
15 System Status Display Memory Address and Address Adder Sum

Reg.

2 0 MLIP Logic MLIP Logic
1 MLIP Logic MLIP Logic
2 Memory Control Logic Memory Control Logic
3 Global Memory Logic Memory-Tester Logic
4 Event Logic Event Logic
5 Interrupt Controller Logic Memory and Interrupt Controllers Logic
6 Not Used Program Controller Logic
7 MLIP Logic (Time-Of-Day and Processor- Stack and Transfer Controllers Logic

Timer Logic)
8 Arithmetic Controller (Family A) Logic Arithmetic Controller (Families A and E)

Logic
9 Families C and D Logic Memory Controller Logic

10 Family U Logic (Families F, G, and H) Not Used
11 Families B and E Logic Not Used

4-6

B 6900 System Reference Manual
System Display and Control

~mp DISPLAY P A..l\lEL ONE SIGNALS

Table 4-2 identifies the flip-flops and logic signals displayed on panel number 1 of the B 6900 MOP cabinet. If a signal
mnemonic or flip-flop name is not listed in a particular bit of a PAGE, the bit-position is unused. Each PAGE display is
provided as an 1:Jpper-display (bits.64 through 127) and a lower-display (bits 0 through 63).

MDP DISPLAY PANEL TWO SIGNALS

Table 4-3 identifies the flip-flops and logic signals displayed on panel number 2 of the B 6900 MDP cabinet. If a signal
mnemonic or flip-flop name is not listed in a particular bit of a PAGE, the bit-position is unused. Each PAGE display is
provided as an upper-display (bits 64 through 127) and a lower-display (bits 0 through 63).

MDP DISPLAY SIGNAL DEFINITIONS

Table 4-4 lists in alpha-numeric sequence every B 6900 system status flip-flop and logic signal displayed by the MDP. A
cross-reference to the display PANEL, PAGE, and BIT is given; and a definition of the Meaning or usage of each
mnemonic signal is included.

The conventions used to define and describe the display logic signals in Table 4-4 are as follows.

[m:n]

n, or nn

Multiple Line
Entries

Split Line

5010986

This symbol defines a set of mnemonic-terms displayed in a single MOP display register.
Mnemonic terms are grouped in sets only when sharing common logical-characteristics or per­
forming a common function. The m character in this symbol identifies the most-significant bit
of a set. The n character identifies the number of mnemonics in the set, including the most­
significant bit.

Signal or flip-flop mnemonics consist of alphan.umeric characters. Variation of any alpha­
numeric character in a mnemonic identifies a unique signal or flip-flop. In a mnemonic set
symbol, the character to the left of the colon may be any alphanumeric character, but the
length character to the right of the colon is a numeric integer. Thus, signals or flip-flops in a
set are represented by any mnemonic character difference, and the number of flip-flops or
signals in a set is a numeric quantity.

This symbol is imbedded in or appended to a mnemonic term rather than a bit-designator.
Each value of n (or nn) constitutes a separate mnemonic term. Mnemonics are grouped to
show common logic functions.

Some bit-sets are displayed at more than a single MOP Display location. Where this condition
exists, multiple line-entries for the same set of bits are given.

Some bit-sets are not in consecutive-bit order in an MOP Display register; they are in ra.TJ.dom-bit
order. Multiple line-entries are used to show where all bits in a bit-set are located in the display
register.

4-7

t

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 1 of 9)

PAGE Zero Upper-di~a

127 123 119 IIS 111 107 103 99 9S 91 87 83 79 7S 71 67

AROF AR47 AR43 AR39 AR3S AR31 AR27 AR23 ARI9 ARIS ARll AR07 AR03

AR50 AR46 AR42 AR38 AR34 AR30 AR26 AR22 ARI8 ARI4 ARIO AR06 AR02

AR49 AR45 AR41 AR37 AR33 AR29 AR2S AR2I ARl7 AR13 AR09 AROS AROl
t:tl

(/l °'
AR48 AR44 AR40 AR36 AR32 AR28 AR24 AR20 ARI6 ARI2 AR08 AR04 AROO '< \0

U> 0
(;" 0

124 120 II6 Il2 I08 104 IOO 96 92 88 84 80 76 72 68 64 3 (/l
'<

~~
-· CD ~ 9
.f ~

PAGE Zero Lower-di~ § ~
°"a
("")~
0 CD

63 59 SS 5I 47 43 39 3S 31 27 23 I9 IS II 07 03 a s::
BR47 BR43 BR39 BR35 BR3I BR27 BR23 BRI9 BRIS BRII HR07 BR03 g_ §

i::::

BRSO BR46 BR42 BR38 BR34 BR30 BR26 BR22 BRI8 BRI4 BRIO HR06 BR02 e.

BR49 BR45 BR41 BR37 BR33 BR29 BR25 BR2I BRI7 BRI3 BR09 BROS BROI

BROF BR48 BR44 BR40 BR36 BR32 BR28 BR24 BR20 BRI6 BRI2 BROS BR04 BROO

60 S6 S2 48 44 40 36 32 28 24 20 I6 I2 08 04 00

Table 4-2. 8 6900 MDP P1J1el One Signal Display (Sheet 2 of 9)

PAGE One Upper-display

127 123 119 llS 111 107 103 99 9S 91 87 83 79 7S 71 67

CR47 CR43 CR39 CR35 CR31 CR27 CR23 CRl9 CRIS CRll CR07 CR03

CRSO CR46 CR42 CR38 CR34 CR30 CR26 CR22 CRIS CRl4 CRIO CR06 CR02

CR49 CR45 CR41 CR37 CR-33 CR29 CR2S CR21 CRl7 CRl3 CR09 OROS CROI
g:,

Cll °'
CR48 CR44 CR40 CR36 CR32 CR28 CR24 CR20 CRI6 CR12 CROS CR04 CROO '< '° c:n 0 S" 0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 a Cll
'S ~

..... ('O

-2. a
~~

PAGE One Lower-display § <i:'
Q. (il
n5

63 S9 SS SI
0 (1)

47 43 39 35 31 27 23 19 IS 11 07 03 ::ta::
PR47 PR43 PR39 PR.35 PR31 PR27 PR23 PRl9 PRIS PRll PR07 PR03 a§

c::
PSR2 PRSO PR46 PR41 PR38 PR34 PR30 PR26 PR22 PRIS PR14 PRllO PR06 PR02 e.
PSRI PR49 PR4S PR41 PR37 PR33 PR29 PR2S PR21 PR17 PRl3 PR09 PROS PRO!

PROF PSRO PR48 PR44 PR40 PR36 PR32 PR28 PR24 PR20 PR16 PR12 PROS PR04 PROO

60 S6 S2 48 44 40 36 32 28 24 20 16 12 ()8 04 00

.,.. -0

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 3 of 9)

PAGE Two Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67

XROF XR47 XR43 XR39 XR35 XR31 XR27 XR23 XRl9 XRl5 XRll XR07 XR03

XR50 XR46 XR42 XR38 XR34 XR30 XR26 XR22 XR18 XR14 XRIO XR06 XR02

XR49 XR45 XR41 XR37 XR33 XR29 XR25 XR21 XRl7 XRl3 XR09 XR05 XROI ~

tll °' XR48 XR44 XR40 XR36 XR32 XR28 XR24 XR20 XRl6 XR12 XR08 XR04 XROO '< \0 ..,, 0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64
S" 0 a tll

'<
\::1 ~
-·<ii

-E. a
~~

PAGE Two Lowe_r-display
<ii

§ ~
0. ~
(")~
0 CD

63 59 S5 SI 47 43 39 35 31 27 23 19 IS II 07 03 :a rs:
YR47 YR43 YR39 YR35 YR31 YR27 YR23 YRl9 YRIS YRll YR07 YR03 §.. §

i;::

YR50 YR46 YR42 YR38 YR34 YR30 YR26 YR22 YRl8 YRI4 YRIO YR06 YR02
e.

YR49 YR4S YR41 YR37 YR33 YR29 YR2S YR21 YRl7 YRl3 YR09 YROS YROI

YR48 YR44 YR40 YR36 YR32 YR28 YR24 YR20 YRl6 YRl2 YR08 YR04 YROO

60 S6 S2 48 44 40 36 32 28 24 20 16 12 08 04 00

Table 4-2. 8 6900 MDP Panel One Signal Display (Sheet 4 of 9)

PAGE Three Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 7,1 67

ZR47 ZR43 ZR39 ZR35 ZR31 ZR27 ZR23 ZRl9 ZRl5 ZRll ZR07 ZR03

ZRSO ZR46 ZR42 ZR38 ZR34 ZR30 ZR26 ZR22 ZR18 ZR14 ZRlO ZR06 ZR02

ZR49 ZR45 ZR41 ZR37 ZR33 ZR29 ZR25 ZR21 ZRl7 ZRl3 ZR09 ZROS ZROl =
tll °'

ZR48 ZR44 ZR40 ZR36 ZIR.32 ZR28 ZR24 ZR20 ZRl6 ZR12 ZR08 ZR04 ZROO
'< \0
~8

124 120 116 112 108 104 100 96 S\2 88 84 80 76 72 68 64 a~
o~
~· <11

"d 8
~~

PAGE Th1ree Lower-display § (;"
i:i. Ci (") = 0 Q

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03 aa::
LR47 LR43 LR39 LR35 LR31 LR27 LR23 LRl9 LRIS LRll LR07 LR03 e. ~

LR50 LR46 LR42 LR38 LR34 LR30 LR26 LR22 LRl8 LR14 LRlO LR06 LR02
e.

LR49 LR45 LR41 LR37 LIU3 LR29 LR25 LR21 LRl7 LR13 LR09 LROS LROI

LROF LR48 LR44 LR40 LR36 LR32 LR28 LR24 LR20 LRl6 LR12 LR08 LR04 LROO

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

~ --

Table 4-2. 8 6900 MDP Panel One Signal Display (Sheet S of 9)

PAGE Four Upper-display

127 123 119 115 Ill 107 103 99 95 91 87 83 79 75 71 67

AROF

AR47 AR44 AR41 AR38 AR34 AR32 AR29 AR26 AR23 AR20 AR17 AR14 ARll AR08 AROS AR02

AR46 AR43 AR40 AR37 AR34 AR31 AR28 AR25 AR22 AR19 AR16 AR13 ARIO AR07 AR04 ARO! txl

AR45 AR42 AR39 AR36 AR33 AR30 AR27 AR24 AR21 ARIS ARIS AR12 AR09 AR06 AR03 AROO tn °' '< \0
en 0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 (;' 0
8 tn

'<
t::I ~
-·(I)

PAGE Four Lower-display ~ 8
~~

(I)

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
~ (;"
c::i. ::a
(') 5
0 (I)

XR47 XR44 XR41 XR38 XR35 XR32 XR29 XR26 XR23 XR20 XR17 XR14 XRll XR08 XROS XR02 a a:
XR46 XR43 XR40 XR37 XR34 XR31 XR28 XR25 XR22 XR19 XR16 XRl3 XRIO XR07 XR04 XROI

g_ g
I!.

XR45 XR42 XR39 XR36 XR33 XR30 XR27 XR24 XR21 XR18 XRIS XR12 XR09 XR06 XR03 XROO

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 ()()

Table 4-2. B 6900 MDP Panel One Signal Display (Sheet 6 of 9)

PAGE £ive Upper-displax.

127 123 119 115 Ill 107 103 99 95 91 87 83 79 75 71 67

BROF

BR47 BR44 BR41 BR38 BR35 BR32 BR29 BR26 BR23 BR20 BRl7 BRl4 BRll BROS BROS BR02

BR46 BR43 BR40 BR37 BR34 BR31 BR28 BR25 BR22 BRl9 BR16 BRl3 BRIO BR.07 BR04 BROI to

en °'
BR45 BR42 BR39 BR36 BR33 BR30 BR27 BR24 BR21 BRl8 BRIS BRl2 BR09 BR06 BR03 BROO '< \0

fn 0

124 120 116 112 108 104 100 96 9"' 88 84 80 76 72 68 64
~o
S en

'<
o~ ~
'[a
~ ~

PAGE Five Lower-display ~

§ ~
i:l. ~
n:::s

63 59 55 51 47 43 39 35 31 27 23 19 IS II 07 03 0 ~
a~ e. §

YR47 YR44 YR41 YR38 YR35 YR32 YR29 YR26 YR23 YR20 YRl7 YRl4 YRll YR08 YROS YR02 c:: e.
YR46 YR43 YR40 YR37 YR34 YR31 YR28 YR25 YR22 YRl9 YRl6 YRl3 YRIO YR07 YR04 YROI

YR45 YR42 YR39 YR36 YR33 YR30 YR27 YR24 YR21 YRl8 YRIS YRl2 YR09 YR06 YR03 YROO

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

127

P26F

P25F

P24F

P23F

124

63

P52F

P51F

P50F

P49F

60

123

P22F

P21F

P20F

P19F

120

59

p4gf

P47F

P46F

P45F

56

119

Pl8F

Pl7F

Pl6F

P15F

116

55

P44F

P43F

P42F

P41F

52

115

Pl4F

Pl3F

P12F

Pl IF

112

51

P40F

P39F

P38F

P37F

48

Table 4-2. 8 6900 MDP Panel One Signal Display (Sheet 7 of 9)

111

PIOF

P09F

P08F

P07F

108

47

P36F

P35F

P34F

P33F

44

107

P06F

P05F

P04F

P03F

104

43

P32F

P31F

P30F

P29F

40

PAGE Six Upper-display

103

P02F

POIF

100

99

P38C

P37C

P36C

P35C

96

95

P34C

P33C

P32C

92

PAGE Six Lower-display

39

P28F

P27F

P39S

36

35

P38S

P37S

P36S

P35S

32

31

P34S

P33S

P32S

P31S

28

91

P30C

P29C

P28C

P27C

88

P30S

P29S

P28S

P27S

24

87

P26C

P25C

P23C

84

23

P26S

P25S

P24S

P23S

20

83

P22C

P21C

P20C

P19C

80

19

P.:!2S

P21S

P20S

P19S

16

79

P18C

Pl6C

Pl5C

76

15

Pl8S

Pl7S

P16S

PISS

12

75

Pl4C

Pl3C

Pl2C

Pl IC

72

II

P14S

PIJS

Pl2S

Pl IS

08

71

J,>09C

P08C

P07C

68

07

PIOS

P09S

P08S

P07S

04

67

P06C

POSC

P04C

64

03

P06S

POSS

P04S

P02S

00

Table 4-2. 8 6900 MDP Pane:I One Signal Display (Sheet 8 of 9)

PAGE Fourteen Upper-dis~lay

127 123 119 115 Ill 107 103 99 9S 91 S7 S3 79 7S 71 67

LA19 LAIS LAii LA07 LA03 ADD19 ADDIS ADDlll ADDO? ADD03

LAIS LA14 LAlO LA06 LA02 ADDIS ADDI4 ADDW ADD06 ADD02'

LA17 LAl3 LA09 LAOS LAO! ADDI? ADDI3 ADD09 AD DOS ADDO I c:1

LAI6 LA12 LAOS LA04 LAOO ADD16 ADD12 ADD08 ADD04 ADDOO tll °' '< \0
en 0

124 120 116 112 IOS 104 100 96 92 SS S4 so 76 n 6S 64 S" 0
8 tll

'<
t;j~
~· G
'a 8

PAGE Fomteen Lower-display ~ ~
G

~ ~
o.. a

63 S9 SS SI 47 43 39 3S 31 27 23 19 IS II 07 03 (') ~
0 G

as:: e. ~
E.

60 S6 S2 4S 44 40 36 32 28 24 20 16 12 OS 04 00

Table 4-2. 8 6900 MDP Panel One Signal Dilplay (Sheet 9 of 9)

PAGE Fifteen Upper-display

127 123 119 llS 111 107 103 99 95 91 87 83 79 75 71 67

AROF PSR2 STRA STRB STRC STRD STRE SHLT

BROF PSRI STRF STRG STRH STRJ STRK ICFF tD

PROF PSRO VARF EDIT TEEF VECF UHF LROF tfl °'
'< '° {I) 0

1124 120 116 112 108 104 100 96 92 SS S4 80 76 72 68 64 S' 0
9 tfl

'<
o~
-· c .{j 8

PAGE Fifteen Lower-display ~~
§ ~
Q. ~

63 59 55 51 47 43 39 35 31 27 23 19 15 II 07 03
(") ::s
0 g

MAl9 MAIS MAii MA07 MAOJ MSMl9 MSMIS MSMll MSM07 MSM03 aa:: e. §
MAIS MA14 MAIO MA06 MA02 MSMIS MSMl4 MSMIO MSM06 MSM02 s:::

f!.
MA17 MAl3 MA09 MAOS MAOI MSMl7 MSM13 MSM09 MSMOS MSMOI

MAl6 MA12 MA08 MA04 MAOO MEMl6 MEMl2 MEMOS MEM04 MEMOO

60 56 52 48 44 40 36 32 28 24 20 16 12 OS 04 00

Table 4-3. B 6900 MDP Paned Two Signal Display (Sheet 1 of 12)

PAGE Zero Upper-display

127 123 119 I IS Ill 107 103 99 95 91 87 83 79 7S 71 67

HASL MLIE FLGJ MSWR MRAJ SPTSI MSP7 MSP3 RIEN3 Rll9 RIIS RHI RI07 Rl03

STCH STMX R3NG FLG2 MRA2 SPTSO MSP6 MSP2 RIEN2 RIIS Rll4 RHO RI06 Rl02

SCWE FLGEI MAHF FLGJ MRAE MRAI MSP9 MSPS MSPI RIENI Rll7 Rll.1 RI09 RIOS RlOl txl

tll °' SCCE FLGEO FLG4 FLGO MRA4 MRAO MSP8 MSP4 MSPO RIENO Rll6 Rll2 RIOS Rl04 RIOO '< '° rn 8
124 120 116 112 108 104 100 96 9.:? 88 84 80 76 72 68 64 S' a en

o~
;;· S'

""S.. a
PAGE ze,ro Lower-display ~i:'

! ~
c:l. a

63 S9 SS SI 47 43 39 3S 31 27 23 19 IS II 07 03 b> Q
PENF BRQF PSC3 FST3 DST3 AGNT STEN R2EN3 R219 R21S R:l!ll R207 R203 a a= e. !

GSP2 PAS2 PAD2 PSCEI PSC2 FST2 DST2 CSEL OUTF R2EN2· R218 R214 R~~IO R206 R202 c::: e.
GSPI PASI PADI PSCEO PSCI FSTI DSTI INRQ ASEL R2ENI R217 R213 RW9 R20S R201

GSPO PASO PADO PSC4 PSCO FSTO DSTO EMRQ TERM R2ENO R216 R212 R208 R204 R200

60 S6 52 48 44 40 36 32 28 24 20 16 12 08 04 00

.,. -00

127

SPAR3

E:RST

SPARl

SPAR2

124

63

MMEN

MMPD

DBIT

~AIM

60

123

SPAR?

SPAR6

SPARS

SPAR4

120

S9

MMBF

MMAF

MM9F

MM8F

S6

119 llS

LPMX3

HDPH/ LPMX2

SPAR9 LPMXI

SPARS LPMXO

116 112

SS SI

MM7F MM3F

MM6F MM2F

MMSF MMlF

MM4F MMOF

52 48

Table 4-3. B 6900 MDPPanel Two Signal Display (Sheet 2of12)

PAGE One Upper-display

111 107 103 99 9S 91 87

STS3 LPlS LPll LP0/1 LP03 MINH RJMXJ

STS2 LP14 LPlO LP06 LP02 Bl2 R3MX2

STSI LP13 LP09 LPOS. LPOI Bil R3MXI

$TSO LP12 LPOS LP04 LPOO BIO R3MXO

108 104 100 96 92 88 84

PAGE One L.ower-dis2lal'.

41 43 39 3S 31 27 23

MDS3 MFS3

MDS2 MFS2

MDSl MFSl

MRDY MDSO MFSO

44 40 36 32 28 24 20

83 79 1S 71 67

R319 RJIS RJIJ R307 R303

R318 R314 R310 R306 R302

R317 R313 R309 R30S R301
to

rn$
R316 R312 R308 R304 R300 l8

80 76 72 68 64 a rn
tj~
;;· C'D

og. a
~~

C'D
§ ;>
c:lo 3
n=

19 lS 11 07 03 o R a s:
MOVR MRIS MRll MR07 MR03 a.§
MERQ MR14 MRIO MR06 MR02

c:: e.
MIRQ MRl3 MR09 MROS MROI

MR16 MRl2 MR08 MR04 MROO

16 12 08 04 00

Table 4-3. B 6900 MDP Panel Two Signal Dilplay (Sheet 3 of 12)

PAGE Two Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 15 71 67

RQTB RQT7 RQT3 RQRB RQR7 RQR3 CSC4 CAPFE CAPFD CAPFC CAPFB CAPFA ABRF HAR3 LACF

RQTA RQT6 RQT2 RQRA RQR6 RQR2 CSC3 SPM2 SRL2 ATEF MAOF WAIT CARQ HAR2 SNAP

RQT9 RQT5 RQTl RQR9 RQR5 RQRl CSC2 SP'Ml SRLl TRYF ROFF LOG2 MI51R HARi IHCP =
RQT8 RQT4 RQTO RQR8 RQR4 RQRO CSCl SPMO SRLO CHGO CINF LOGl MI48 PTGO HARO IVAF 00 °' '< \0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 ~·~
~~
ln' S'

"5!.. a
PAGE Two Lower-display ~~ c s ~

p,. d
(") ::s

63 59 55 51 47 43 39 35 31 27 23 19 15 u 07 03 0 s
IMCF3 CIOF3 IMCF2 CIOF2 IMCFl CIOFI IMCFO CIOFO WSTF3 MRSF3 ICW3 MSW3 GS2F ICNF GT2F GOAF a~ e. s
PS2F3 CAOF3 PS2F2 CAOF2 PS2FI CAOFI PS2FO CAOFO WSTF2 MRSF2 ICW2 MSW2 GSIF GRDF GTIF GOBF i
PS'JF3 WCCF3 PSJF2 WCCF2 PSIFI WCCFI PSIFO WCCFO WSTFI MRSFl ICWl MSWl GSOF GABF GTOF GAOF

PSOF3 PEDF3 PSOF2 PEDF2 PSOFI PEDFI PSOFO PEDFO WSTFO MRSFO ICWO MSWO CRF'F EGTM

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 4of12)

PAGE Three Upper-display

127 123 119 115 111 107 103 99 95. 91 87 83 79 75 71 67

GAlNA IGUEB lGUEA GCLER ABRG GSTRT GUEX GINV. GCHB GSCX SPMA3 SPMB3

GAINB IGWEB IGWEA GBC2 IGXF GLOAD GWEX GAEX GCHA GBS2 SPMA2 SPMB2

GEINA IGREB IGREA GBCI SPMAl SPMBI
OJ

GAINT GHALT GREX GAOX TOUT GBSI
Vl$

GEINB GA RCS GBCO GEINT GAOR IHGT GABX TRIG GBSO SPMAO SPMBO '< 0
~o

124 120 H6 112 108 104 100 96 92 88 84 80 76 72 68 64 3 tl.l
'<

o~
..... Ct>

~ 3
~~

PAGE Three Lower-display
CD

§ (Di
Po a
n5

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03 0 CD

a:::
BYR19 BYRI5 BYRI I BYRO? BYR03 MTST JVI CMPE CBPW CB4W CBPR CB4R ITIO 1106 IT02 ECSF e. §
BYR18

c
BYR14 BYRlO BYR06 BYR02 TV2 JVO TADT WEFW CF3W WEFR CB3R IT09 IT05 ITOI EXTI e.

BYR17 BYRI3 BYR09 BYR05 BYROI TVI OMCK ALTWC CB6W CB2W CB6R CB2R IT08 IT04 ITOO INTV

BYRl6 BYRl2 BYR08 BYR04 BYROO TVO CMTR Ml51W CB5W CBIW CB5R CBIR IT07 IT03 INTE

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet S of 12)

?AGf: Four Upper-display

127 123 119 i15 Ill 107 103 99 95 91 87 83 79 75 71 67

EV21 EJCMP EVI3 EV09 EV05 EVOI ECT7 ECT3 ICOR EJCI I EJC07 EJC03 HLTD ES1f'7 EOP3 EVCT

EV20 EV16 EVI2 EV08 EV04 CCSF ECT6 ECT2 MPBI EJCIO EJC06 EJC02 ILHD EST'6 EOP2 ETED

EV19 EV15 EVIi EV07 EV03 MEVF ECT5 ECTI MIAI EJC09 EJC05 EJCOI LODS EST5 EOPI EEDT =
EVAR

ti> 0\
EVI8 EVl4 EVlO EV06 EV02 HOEF ECT4 ECTO ESTP EJC08 EJC04 EJCOO LAVF EST4 EOPO '< \0

l:ll 0

124 120 116 112 108 104 100 96 92 88 84 80 76 n 68 64
;;- 0
!3 ti>

'<
o~
..... <Tl

~ !3

PAGE_ Four Lower-display ~ ~
~ ~
~a

63 59 55 51 47 43 39 35 31 27 23 19 15 ii 07 03
n=
0 8 =

WMMF AMMF JCS! I JCS07 JCS03 SRS3 OSR3 VCTS
..... s:: e. ~

PLKI RMMF AIMF JCSIO JCS06 JCS02 SRS2 OSR2 TEDS c::
a

PLKO WIMF MEXI HALT JCS09 JCS05 JCSOI SRSI OSRI EDTS

PSOP RIMF ARPT JCS08 JCS04 JCSOO SRSO OSRO. VAHS

60 56 52 48 44 40 36 32 28 24 20 16 12 Ol8 04 00

t -

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 6 of 12)

PAGE Five l!pper-display

Jl27 123 119 I IS Ill 107 103 99 9S 91 87 83 79 7S 71 67

RDCBA RD REA CK84A CK848 STAR SCNR SCAN STB2 ADDR EREN7 EREN3

ADREA ADS EA CK83A CKB3B GNTR INPW STAP RUNI STBI BURE EREN6 EREN2

STOF CKB6A CKB2A CKB6B CKB2B CAM3 INAGA STUF LOPE STBO RCPE ERENS ERENI tl:1

STIS CKBSA CKBIA CKBSB CKBIB RDMEA INALA CMPR PCPE EREN4 ERENO CJ'.)°'
'< \0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 =- 8 n

=~
0 =-~· n
"d a

PAGE Five Lower-display ~~
~ ~
p,. ~

63 S9 SS SI 47 43 39 3S 31 27 23 19 IS II 07 03 n=
0 g

LRAP LRIG IML2 ABRI INCT INF+I INFF MPXI DR31 DR27 DR23 DRI9 ORIS DRII DR07 DR03 a~ e. ~
LIUL LRGN IMLI ABEi MEWT SEC+2 A.LSD MPXB DR30 DR26 DR22 DR18 DRl4 ORIO DR06 DR02 s=

I!.
LRAR LAER IMLO ILDM BOST SEC+I MPXG DR29 DR2S DR21 DRI7 DRI3 DR09 OROS DROl

LRl)M OPTF SEIN ABIT AYER RTRY DR28 DR24 DR20 DR16 DR12 DR08 DR04 DROO·

60 S6 S2 48 44 40 36 32 28 24 20 16 12 08 04 00

Table 4 .. 3. 8 6900 MDP Panel 'Two Signal Display (Sheet 7 of 12)

PAGE Six Upper-display

127 123 119 HS Ill 107 103 919 9S 91 87 83 79 7S 71 67

=
fJ'l °' '< '°

124 120 116 112 108 104 100 96 9:! 88 84 80 76 T' 68 64 ri 8 ..
=~
'=' ""' ;;· S"
ia a

PAGE Six Lower-display ~ "' (D

§ ~
Q. 3

63 S9 SS SI 47 43 39 JS 31 27 H 19 IS II 07 03
n=
0 g

CPA8 ICRF CPIRI CTIR SSR2 WPIR QP8F QP4F STMC EDDT as:
2. §

CPA4 ICCF CPIRO CSR2 SSRI SECF QP7F QP3F JP02 c::
I!.

CPA2 FWFF WPTF CSRI SSRO QP6F QP2F JPOI

CPAI PRVA WBCF CSRO VSJK QPSF QPIF JPOO

60 .s6 S2 48 44 40 36 32 28 24 20 16 12 Oil: 04 00

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 8 of 12)

PAGE Seven UpP-!'.r-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67

CP23 CPl9 CPIS CPll CP07 CP03 TD35 TD31 TD27 TD23 TDl9 TDIS TOil TD07 TD03 TOD3

CP22 CPl8 CP.14 CPIO CP06 CP02 TD34 TD30 TD26 TD22 TDl8 TD14 TOJO TD06 TD02 TOD2

CP21 CP17 CP13 CP09 CPOS CPOI TD33 TD29 TD25 TD21 TDJ7 TD13 TD09 TDOS TDOI TODI ~

CP20 CPl6 CP12 CP08 CP04 CPOO TD32 TD28 TD24 TD20 TDl6 TD12 TD08 TD04 TDOO TODO f.ll °' '< \0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64
g8
a f.ll

o~
..... 0

~a

PAGE Seven Lower-display ~~
§ O'
c:i.. ~

63 59 55 51 47 43 39 35 31 27 23 19 15 ll 07 03
("') =
0 s

BZ62 BZ61 YZ62 YZ61 TOA3 TOM3 DIS3 JS4F SOIF a=:: e. §
AZ63 CZ63 XZ63 ZZ63 TOA2 TOM2 DIS2 JS3F QS3F = e?.
AZ62 CZ62 XZ62 ZZ62 TOAS TOAi TOMS TOMI DISS DIS! JS2F QS2F

AZ6l CZ6l XZ61 ZZ61 TOA4 TOAO TOM4 TOMO DIS4 DISO JSIF QSIF

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 ()()

Table 4-3. B 6900 MDP Panel 1rwo Signal Display (Sheet 9 of 12)

PAGE Eis:ht Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67

TA3F SA3F JA7F JA3F EXAl QA7F QA3F SM03 SM04 NLZ3 HR15 HRin HR07 HR03

TA2F SA2F JA6F JA2F KA2F QA6F QA2F SM02 NLZ2 HR14 HRW HR06 HR02

TAIF SAIF JA5F Jt\lF KAlF QA5F QAlF SMOl PSCF NLZl Hltl3 HR09 HR05 HROI tJ1

TAOF SAOF JA4F JAOF KAOF QA4F QAOF SMOO CMPF NLZF NLZO HR12 HR08 HR04 HROO tll °' '< \0
Ul 8

124 120 116 112 108 104 100 96 92 88 84 80 76 r' 68 64 ~ .!..

a~
0 =-~· 0 -a a

PAGE Ei1[!! Lower-display ~ ::0
0

~ ~
c:i. ca

63 59 55 51 47 43 39 35 31 27 23 19 15 Ill 07 03 n=
0 s

BETB NZTB HRTBI EXSB BITB B8TB ADSB SPC'I BX02 AX02 YR-3 SC3F SCEF 1CR7 ICR3 846[) :a s:: e. ~
YETB ZDTB HRTB2 ECRI YITB Y8TB CCNS DPCl BXOI AXOI YR-2 SC2F ICRE ICR6 ICR2 A46D c:: e.
AETA NZTA HRTAI AITA A2TA A4TA CCR3 (' 175 BXOO AXOO YR-I SCIF BXSE ICRS ICRI BDPD

XETA ZDTA HRTA2 XITA X2TA X4TA CCU DPOV YXOO xxoo XR--1 .SCOF DISX ICR4 ICRO ADPID

60 56 52 48 44 40 36 32 28 24 20 16 12 oa 04 00

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 10 of 12)

PAGE Nine Upper-display

127 123 119 115 Ill 107 103 99 9S 91 87 83 79 7S 71 67

TC3F JC7F JC3F QC8F QC4F CRNCF ACL7 ACL3 TD3F JD7F JD3F QDSF QD4F

TC2F JC6F JC2F QC7F QC3F SASG ACL6 ACL2 TD2F JD6F JD2F QDBF QD7F QD3F

TCIF JCSF JCIF QC6F QC2F QCZ2 ACMS ACL5 ACLI TDIF JDSF JDIF QDAF QD6F QD2F "'
TCOF JC4F JCOF QC5F QCIF QCZI ACM4 ACL4 ACLO TOOF JD4F JDOF QD9F QDSF QDIF tll $

'S 8
124 120 116 112 108 104 100 96 92 88 84 80 76 n 68 64 S'

8~
o~
~· (D

'E.. 8
PAGE Nine Lower-display ~ ::0

(D

rJ ~
Cl. (i

63 S9 SS 51 47 43 39 35 31 27 23 19 15 II 07 03
n=
o R

ERZ9 ERZ8 DRSS Z812 DFSX ACTS DRS? BRS3 IRS? IRS3 COUT Z6T8 LL03 aac:
e.. rJ

CRF03 DRFl3 DRF4 Z811 MSOR2 CPTR BRS6 BRS2 1RS6 IRS2 CZIN Z6L8 LL02 i
CRF02 DRFl2 DRF3 Z810 MSORI ECMF BRSS BRSI IRSS IRSI SUBT Z6T9 LLOI

CFl.FOI DRFll DRF2 Z809 MSORO CRIC BRSS BRSO IRS4 IRSO Z6L9 LL04 LLOO

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

Table 4-3. B 6900 MDP Panel T·wo Signal Display (Sheet 11 of 12)

PAGE Tt~n Upper-display

127 123 119 115 111 107 103 99 95 91 87 83 79 75 71 67

TU8F EEND RETF JU3F SSZ2 SI08 DI08 QU4F l>GSF SOPF TFFF EQVF QUDF'

TU4F FINI RTNF JU6F JU2F SSZI SI04 DI04 QU3F LHFF UPDF TFOF QUCF'

TU2F EXSF NVLF JU5F JUIF DSZ2 SI02 DI02 QU2F RPZF SRRF OFFF QUBf' ~

tn$
TUIF EXPF MPOP JU4F JUOF DSZl SIOl DIOI QUlF XROF DPRF FLTF EXTF QUAF ~8

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 S"
!3 ti.>

'< o= ~·(I>

'EL !3

PAGE Ten lower-display ~~
~ ~
c:l- ca .
n=

63 59 55 51 47 43 39 3S 31 27 23 19 15 11 07 03 o R
aa:: e. ~ = (!.

60 56 52 48 44 40 36 3., .. 28 24 20 16 12 08 04 00

t
00

Table 4-3. B 6900 MDP Panel Two Signal Display (Sheet 12 of 12)

PAGE Eleven Upper-display

127 123 119 115 111 107 103 99 95 91 87 .g3 79 75 71 67

TE3F JBCF JE3F QE3F SMVF LC2F SF3F MP35 TB3F JB3F QB4F

TE2F JE6F JE2F QE2F MPYF LClF SF2F DBZF TB2F JB2F QB3F

TElF JE5F JElF QElF SUBF LCOF SFlF FNWF TBlF JBlF QB2F tD

TE(JIF JE4F JEOF QEOF LC3F DPFF SFOF QE4F TBOF JBOF QBlF fJ') °' '< \0
flJ 0

124 120 116 112 108 104 100 96 92 88 84 80 76 72 68 64 so a fJ')
'<

o~ r;;· R
-g. a

PAGE Eleven Lower-display ~~
R

~ (;'
Q.. a

63 59 55 51 47 43 39 35 31 27 23 19 15 11 07 03
(") ::s
0 Q
a s:: e. ~

c::: e:

60 56 52 48 44 40 36 32 28 24 20 16 12 08 04 00

Flip-Flop
or Signal

Mnemonic

ABEi

ABIT

ABRF

ABRl

ACLn (7:8]

ACMn [5:2]

ACTS

ADDnn (19:20]

ADDR

ADPD

ADREA

ADSB

ADS EA

AETA

AIMF

Al.SB

ALTWC

AMMF

AROF

ARPT

S010'J86

B 6900 System Reference Manual
System Display and Control

Tabie 44. B 6900 Display Signals (Sheet 1 of 23)

MDP Dis21ay Location

Panel Page Bits Meaning or Usage

2 s so An Abort Interrupt Controller Logic Signal

2 s 44 The Abort Interrupt Logic Signal

2 2 79 The Abort Memory Cycle Flip-flop

2 s SI The Abort Clock Save Logic Signal

2 9 (99:8] Least-significant 8-bits of Address Couple For NAMC
Operators

2 9 [101 :2] Most-significant 2-bits of Address Couple For NAMC
Operators

2 9 43 Address Couple To Z8-Bus Logic Signal

14 (83:20] The Memory Controller Save Address Register

2 5 75 Address-Adder Residue Error Flip-flop

2 8 0 Double Precision Operand In A Register Logic Signal

2 s 126 The Memory Controller Address Retry Logic Signal

2 8 39 The Mantissa Adder Subtract Mode Signal

2 s 122 The Memory Controller Read Data Single-Bit Signal

2 8 61 The A Register Exponent To A Side Of Exponent Adder
Signal

2 4 S4 The Access IC Memory Flip-flop

..., c: 38 The .t\J!ow Fam.ily Strobe Logic Signal ~ J

2 3 33 The Memory Tester Alternate Worst Case Signal

2 4 SS The Access Main Memory Flip-flop

0 27
4 127 The A Register Is Occupied Flip-flop

14 94

2 4 44 The Anti-Repeat Flip-flop

4-29

Flip-Flop
or Signal

Mnemonic

ARnn [50:51]

ASEL

AXnn [02:3]

AYER

AZ6n [3:3]

AITA

A2TA

A4TA

A46D

BDPD

BDST

BETB

Bin [2:3]

BROF

BRQF

BRST

4-30

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 2 of 23)

MDP Disl?!ai: Location

Panel Page Bits Meaning or Usage

0 [114:51] The Top-Of-Stack A Register
4 [126:511

2 0 25 MLIP Address Select Flip-flop

2 8 [27:3] The A Mantissa 1-0ctade Extension Register

2 5 40 The EVENT Logic Any Memory Error Signal

2 7 (62:3] The Bit-field Transfer (From A-Register) To Z6-Bus Signals
AZ61 Transfers Bits [50:11]
AZ62 Transfers Bits [39:20]
AZ63 Transfers Bits [19 :20]

2 8 49 The A Register Mantissa To A Input Of Mantissa Adder Logic
Signal

2 8 45 2 Times A-Register Mantissa To A Side Of Mantissa Adder

2 8 41 4 Times A-Register Mantissa To A Side Of Mantissa Adder

2 8 2 The A-Register Sign-Bit Change Delay Logic Signal

2 8 The B-Register Contains A Double Precision Operand Logic
Signal

2 s 45 The Maintenance Processor Test Logic Signal

2 8 63 The B-Register Exponent To B Side Of Exponent Adder
Logic Signal

2 (90:3] The MLIP Byte Index Register

0 60
5 127 The Top-Of-Stack B-Register Occupied Flip-flop

15 93

2 0 47 The MLIP BURST Request Flip-flop

2 2 126 The MLIP BURST Fiip-flop

Flip-Flop
or Signal

Mnemonic

BRSn [7:8]

BRnn [50:51]

BURE

BXSE

BXnn [02:3]

BYRnn [19:20]

BZ61

BZ62

Bi TB

B46D

B8T8

CAM3

CAOFO

CAOFl

CAOF2

5010986

B 6900 System Reference Manual
System Display and Control

Tabie 4-4. B 6900 Display Signals (Sheet 3 of 23)

MDP DisElay Location

Panel Page Bits Meaning or Usage

2 .9 [39:8] The Memory Address Base Register Select Logic
BRSO Selects PBR Register
BRS 1 Selects SBR
BRS2 Selects DBR
BRS3 Selects TBR
BRS4 Selects S Register
BRS5 Selects SNR
BRS6 Selects PDR
BRS7 Selects TEMP

1 0 [50:51] The Top-Of-Stack B Register
1 5 [126:51]

2 5 74 The Bus Residue Error Flip-flop

2 8 13 The B Side Of Mantissa Adder Logic Signal

2 8 [31 :3] The B Mantissa 1-0ctade Extension Register

2 3 rh~ .,,n1
Lvv•"'VJ The Memorf Tester BYPASS Register Logic

2 7 59 The Transfer From B-Register To Z6-Bus (Bits [50:11])
Logic Signal

2 7 63 The Transfer From B-Register To Z6-Bus {Bits [39:20])
Logic Signal

2 8 47 The B-Register Mantissa To B Input Of Mantissa Adder Logic
Signal

2 8 3 The B-Register Change Sign-Bit Delay Logic Signal

2 8 43 8 Times The B-Register Mantissa To B Input Of The Mantissa
Arlrl~r T """" ~;""""'1
~ a.""""""'.s. .a..J\Jf>.L"" u.1.oi-.1.u..a.

2 5 98 Memory Controller Error Bit

2 2 34 Memory Controller Priority Occupying Port Number Zero
Logic

2 2 43 Memory Controller Priority Occupying Port Number One
Logic

2 2 50 Memory Controller Priority Occupying Port Number Two
Logic

4-31

Flip-Flop
or Signal

MnemoPic

CAOF3

CBnR [P:8]

CBnW [P:8]

CKBnA [6:6]

CKBnB [6:6]

CMPE

CMPF

CMPR

COUT

CPAn [8:4]

CPIRn [1 :2]

CPTR

CPnn [23 :24]

CRFOn [3:3]

CRIC

CRNCF

CRnn [50:51]

csc [4:4]

CSEL

CSRn [2:3]

4-32

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 4 of 23)

MOP Dis12la}:'. Location

Panel Page Bih Meaning or Usage

2 2 58 Memory Controller Priurity Occupying Port Number Three
Logic

2 3 [23:8] Memory-Tester READ Data Check-Bit Field

2 3 [31 :8] Memory-Tester WRITE Data Check-Bit Field

2 5 [121 :6] Memory Controller Data Check-Bit Register

2 5 [113:6] Memory Controller Data Check-Bit Register

2 3 35 The Memory Tester Compare Error Flip-flop

2 8 92 The Arithmetic Controller Relational Operator Compare
Flip-flop

2 5 76 The Compare Residue Flip-flop

2 9 23 The Address Adder Cary-out Flip-flop

2 6 [63:4] The CPU Clock-Counter Low-Order Flip-flops

2 6 [55:2] The PIR Word-Boundary Crossed Register

2 3 36 Comparator Mode Enable Refresh Signal (Factory Use Only)

2 7 [127:24] The High-order 24-Bits Of The MLIP CPU-Timer Register

2 9 [62:3] IC Memory Address Display Register Group-Card Select Logic
CRFOl Selects Group A Card
CRF02 Seiects Group B Card
CRF03 Selects Group C Card

2 9 40 Clear IC Memory Address Register Flip-flop

2 9 107 Interrupt Controller PIR And PBR Register Values Not
Consistent Flip-flop

[114:511 The Top-Of-Stack C Register

2 2 [103:41 Memory Controller Logic Requestor Sequence Counter

2 0 30 The MLIP Channel Select Flip-flop

2 6 [50:3] The Count Syllable Register

Flip-Flop
or Signal

Mnemonic

CTIR

CZIN

CZ6n [3:3]

Cl75

DBZF

DFSX

DGSF

DISX

DISn [5:6]

Dinn [8:4]

DPCI

DPFF

DPOV

DPRF

DRFnn [13 :3]

DRFn [4:3]

DRnn [31:32]

DSTn [3:4]

DSZn [2:2]

5010986

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals (Sheet 5 of 23)

MDP Dis:ela~ Location

Panel Page Bits Meaning or Usage

2 6 51 TIR Register Word-Boundary Crossed Flip-flop

2 9 22 Address Adder Carry-in Signal

2 7 [58:3] Transfer Gate Signals To The Z6-Bus (From the C-Register)
CZ6 l Transfers [50: 11]
CZ62 Transfers [39:20]
CZ63 Transfers [19:20]

2 8 33 The Carry-in Signal To Bit-75 Of The Mantissa Adder

2 11 98 The Destination Bit Zero Flip-flop

2 9 47 Bit-8 Index Portion Of Address Couple Value

2 10 91 A Logical Flip-flop Used By Family U For String Operators

2 8 12 Disable Extensions Flip-flop (Force To Zero)

2 7 [29:6] Transfer Controller Dispiacement Register

2 10 [99:4] The Family U Destination Index Byte Register

2 8 34 The Double Precision Carry-in/Borrow-bit To The Mantissa
Adder Logic

2 11 104 The Double Precision Scale Right Multiplier Flip-flop

2 8 32 The Double Precision Gating Override Logic Signal

2 10 84 The Family U Destination Read Only Control Flip-flop

2 9 [58:3] The Display Address Card Group Select Logic Signals
DRFi 1 Seiects Group A Cards
DRF12 Selects Group B Cards
DRF13 Selects Group C Cards

2 9 [54:3] The Display Address Register Select Signals

2 5 [31 :32] The Memory Address Display Register (D-Register) Select
Logic Levels

2 0 [35:4] The MLIP Delayed Status Register

2 10 [105:2] The Family U Destination Byte Size Register

4-33

Flip-Flop
or Signal

Mnemonic

ECMF

ECSF

ECTn [7:8]

EDDT

EDIT

EDTS

EEDT

BEND

EGMT

EJCMP

EJCIUl [11: 12]

EMRQ

EOPn [3:4]

EQVF

ERENn {7:8]

ERZ8

ERZ9

ESTn [7:4]

ETED

EVAR

EVCT

EVnn [21 :20]

4-34

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 6 of 23)

MDP Dis:ela~ Location

Panel Page Bits Meaning or Usage

2 9 41 The Enable Comparator Mode Refresh Flip-flop (For Factory
Use Only)

2 3 3 The EVENT Logic Freeze Parameters Flip-flop

2 4 [103:8] The EVENT Logic Counter

2 6 27 The EVENT Detected Flip-flop

15 80 The EDIT Mode Flip-flop

2 4 2 The EDIT Mode Save Flip-flop

2 4 65 The EVENT Logic EDIT Mode Signal

2 10 123 The End Of Enter EDIT Mode Cycle Control Flip-flop

2 2 0 Global Memory Control Logic Flip-flop

2 4 123 The EVENT Logic Micro-module J-Count Select Signal

2 4 [91 :12] The EVENT Logic Micro-module J-Count Register

2 0 29 The MLIP 1/0 Emergency BURST Request Flip-flop

2 4 [71:41 The EVENT Logic Operator-Code Register

2 10 71 The Family U Equivalent Control (Sum Equal To Zero)
Flip-flop

2 5]71:8] The PROM-Card-Error (CPU Card Location) Register

2 9 59 The Residue-Error On ZS-Bus Signal

2 9 63 The Residue-Error On Z9-Bus Signal

2 4 (75:4] The EVENT Logic Strobe Register

2 4 66 The EVENT Logic Table EDIT Mode Logic Signal

2 4 64 The EVENT Logic VARIANT-Mode Logic Signal

2 4 67 The EVENT Logic VECTOR-Mode Logic Signal

2 4 [127:4] The EVENT Logic EVENT Register
[122:16]

Flip-Flop
or Signal

Mnemonic

EXAI

EXSB

EXTF

EXTI

FINI

FLGEn [1:2]

FLGn

FLTF

FNWF

FSTn [3:4]

FWFF

GABF

GABX

GAEX

GAIN A

GAINB

GAINT

GAOF

GAOR

GARCS

GBCn [2:3]

GBSn [2:3]

GCHA

GCHB

GCLER

5010986

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals (Sheet 7 of 23)

MOP DisEla~ Location

Panel Page Bits Meaning or Usage

2 8 111 The Exponent Add Initiate Flip-flop

2 8 51 The Exponent Adder Subtract Function Flip-flop

2 10 68 The Family U External Sign Bit Flag Control Flip-flop

2 3 2 The Interrupt Controller External Interrupt Signal

2 10 122 The Family U End-Of-Edit Cycle Control Flip-flop

2 0 [118:2] The MLIP Flag-Enable Signal Register

2 () [111:4] The MLIP Flag Register

2 10 72 The Family U Float Control Flip-flop

2 11 97 The Final-Word Flip-flop

2 0 [39:4] The MLIP Fast Status Signal Register

2 6 57 The First-Word Fetch flip.;.flop

2 2 9 A Global Memory (MC III) Control Flip-flop

2 3 96 The Global Memory Access Begin Llgic Signal

2 3 98 The Global Memory Address Error Signal

2 3 127 The Global Alarm Interrupt Flip-flop

2 3 126 Not Used ht B 6900

2 3 109 The Global Alarm Interrupt Signal

2 2 3 A Global Memory (MC III) Control Signal

2 3 104 The Global Access Obtained Return Flip-flop

2 3 116 The Global Memory All Rows And Columns Clear Signal

2 3 [114:3] The Global Sequence Control Register

2 3 [90:3] The Global Clear Sequence Control Register

2 3 94 The Global Memory Cycle Control Signal

2 3 95 Not Used In B 6900

2 3 115 The Global Clear Signal

4-35

Flip-Flop
or Signal

Mnemonic

GE INA

GEINB

GEINT

GHALT

GINV

GLOAD

GNTR

GOAF

GOBF

GRDF

GREX

GSCX

GSPn [2:3]

GSnF [2:3]

GSTRT

GTnF [2:3]

GUEX

GWEX

HALT

HARn [3:4]

HASL

HDPH/

4-36

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 8 of 23)

MDP Dis:elax Location

Panel Page Bits Meaning or Usage

2 3 125 The Global External Interrupt Flip-flop

2 3 124 Not Used In B 6900

2 3 108 The Global External Interrupt Signal

2 3 105 The Global HALT Function Signal

2 3 99 The Global Invalid Request Signal

2 3 106 The Global LOAD Function Signal

2 5 94 The Global Memory Not Ready Flip-flop

2 2 3 A Global Memory (MC III) Control Flip-flop

2 2 2 A Global Memory (MC III) Control Flip-flop

2 2 10 A. Global Memory (MC III) Control Signal

2 3 101 The Global Memory Read-error Signal

2 3 91 The Global Scan-Control Signal

2 0 [58:3] The MLIP Global-Priority Save Register

2 2 [15 :3] A Global Memory (MC III) Control Register

2 3 107 The Global START Function Signal

2 2 [7:3] A Global Memory (MC III) Control Register

2 3 103 The Global Memory Data Uncorrectable-Error Signal

2 3 102 The Global Memory Write-Error Signal

2 4 45 The CPU HALT Function Logic Signal

2 2 [71 :4] The Memory Controller Hold Address For Return Signal
Register

2 0 127 The MLIP RAM Memory Is Initialized -Signal Flip-flop

2 118 The MLIP Micro-Module Not Held Logic Signal

Flip-Flop
or Signal

Mnemonic

HLTD

HOEF

HRTAn [2:2)

HRTBn [2:2)

HRnn [15:16]

ICCF

ICFF

ICOR

ICRE

ICRF

ICRn [7:8]

ICWn [3:4]

IGHT

IGREA

I GREB

IGUEA

IGUEB

IGXF

IHCP

IIHF

IIDM

S010CJ86

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 9 of 23)

MDP DisEla~ Location

Panel Page Bits Meaning or Usage

2 4 79 The CPU Is Halted Flip-flop

2 4 104 The EVENT Logic HALT-ON-EVENT Signal

2 8 [53:2) The Exponent Adder A-Side Input Holding Register

2 8 [54:2) The Exponent Adder B-Side Input Holding Register

2 8 [79:16] The Arithmetic Controller Holding Register

2 6 58 ' The Program Controller Increment CPIR And CTIR Normal
Control Flip-flop

15 65 The Interrupt Controller Running Flip-flop

2 4 95 The EVENT Logic Inhibit Memory-Correction-Cycle Signal

2 8 14 The Input-Convert Register Enable Flip-flop

2 6 59 The Program Controller Increment CPIR And CTIR
(Remember) Control Flip-flop

2 8 [11 :8] The Input-Convert-Operation Register

2 2 [23:41 The Memory Controller IC Memory Refresh Function Delay
(For MSU Signal) Register

2 3 100 The Global Memory Inhibit Global-Timer Signal

2 3 117 The Global Memory Read-Error Flip-flop

2 3 121 Not Used In B 6900

2 3 119 The Giobai Memory Uncorrectable-Err-or interrupt Signai

2 3 123" Not Used In B 6900

2 3 110 The Inhibit Global Crosspoint Flip-flop

2 2 65 The Inhibit Setting CHG9 And PTGO Flip-flop

15 68 The Interrupt Controller Inhibit Interrupts (Control State)
Flip-flop

2 5 49 The Interrupt Load Micro Program Logic Signal

4-37

Flip-Flop
or Signal

Mnemonic

ILHD

IMCn [3:4]

IMLn [2:3]

INAGA

INALA

INCF

INCT

INFF

INF+l

INPW

INRQ

INTE

INTV

IRSn [7:8]

ITnn [10:11]

NAF

4-38

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 10 of 23)

MOP DisEla~ Location

Panel Page Bits Meaning or Usage

2 4 78 The Inhibit Look-Ahead Logic Flip-flop

2 2 39
2 2 47 The Initiate Memory Cycle Control Signals To Memory
2 2 52 Ports 0, 1, 2, And 3
2 2 63

2 5 [55:3] The Consecutive Interrupt Counter For Detecting
SUPERHALT Conditions

2 5 93 Global Memory Invalid Address-Bit Error Signal

2 5 88 Local Memory Invalid Address Signal

2 2 11 A Global Memory (MC III) Control Logic Signal

2 5 47 The Inconsistent P3 Parameter Signal

i 5 39 The Inhibit Fetch Flip-flop

2 5 43 The Inhibit Fetch Flip-flop Delayed 1 Clock-pulse Logic
Signal

2 5 90 The Invalid Program-Word Flip-flop

2 0 29 The MLIP Interrupt Request Flip-flop

2 3 0 The Interval-Timer Enable Signal

2 3 The Interval-Timer Error Flip-flop

2 9 [31 :8] The Memory Address Read Index Register Select Signals
IRSO Selects PIR
IRS 1 Selects SIR
IRS2 Selects DIR
IRS3 Selects TIR
IRS4 Selects LOSR
IRSS Selects BOSR
IRS6 Selects F
IRS7 Selects BUF

2 3 [15:11] The Interval-Timer Register

2 2 64 The Invalid Memory Address Flip-flop

Flip-Flop
or Signal

Mnemonic

JAnF [7:8]

JBCF

JBnF [3:4]

J CSn [11 : 12]

JCnF [7:8)

JDnF [7:8]

JEnF [6:7]

JPnF [02:3]

JSnF (4:4]

mnF [6:7]

JVn [1 :2]

KAnF [2:3]

LACF

LAER

LAVF

LAnn [19:20]

LCnF [3:4]

LHFF

LLnn [04:5]

LODS

LOGn [2:2]

LOPE

LPMXn [3:4]

5010986

B 6900 System Reference Manual
System Display and. Control

Table 44. B 6900 Display Signals (Sheet 11 of 23)

MDP DisEla~ Location

Panel Page Bits Meanin2 or Usage

2 8 [119:8] The Family A Sequence Count (J-Count) Register

2 11 123 The Family E J-Count Bus Control Flip-flop

2 11 [87:4] The Family B Sequence Count (J-Count) Register

2 4 [31 :12] The EVENT Logic J-Count Save Register

2 9 [123:8] The Family C Sequence Count (J-Count) Register

2 9 [83:8] The Family D Sequence Count (J-Count) Register

2 11 [122:7] The Family E Sequence Count (J-Count) Register

2 6 [30:3) The Program Controller Sequence Count Register

2 7 [19:41 The Stack Controller Sequence Count Register

2 iO [U4:7] The Family U Sequence Count (J-Count) Register

2 3 [39:2] The Memory-Tester Logic Sequence Counter

2 8 [110:3] The Family AK-Counter Logic

2 2 67 This Flip-flop Not Used On The B 6900 System

2 5 57 The Look-.Ahead Logic Memory Error Signal

2 4 76 The Look-Ahead Valid Flip-flop

14 [127:20] The Look-Ahead Logic Memory Address Register

2 11 [108:41 The Loop-Count Register

2 10 90 A Family U Logical Flip-flop

2 9 [16:5] The Lexicographical Level Register

2 4 77 The Load (Source) Select Flip-flop

2 2 [81 :2] The Memory Controller Error Control Register

2 5 85 The Loop-Timer Error Flip-flop

2 [115:4] The MLIP Longitudinal Parity Register To MX-Bus Gating
Signal Register

4-39

Flip-Flop
or Signal

Mnemonic

LPnn (7:8]

LRAP

LRAR

LRDM

LRGN

LRIG

LRIL

LROF

LRnn [50:51]

MAIM

MAOF

MAnn [19:20]

MDSn [3:4]

MERQ

MEVF

MEWT

MEXI

MFSn [3:4]

MIAI

MINH

MIRQ

MI48

4-40

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 12 of 23)

MDP DisEla~ Location

Panel Page Bits Meaning or Usage

2 [99:8] The MLIP Longitudinal Parity Register

2 5 63 The Look-Ahead Logic Address Parity Signal

2 5 61 The Look-Ahead Logic Address Residue Signal

2 5 60 The Look-Ahead Logic Read Data Timer Signal

2 5 58 The Global Memory Not Ready For Look-Ahead Logic

2 5 59 The Global Memory Invalid Address For Look-Ahead Signal

2 5 62 The Local Memory Invalid Address For Look-Ahead Signal

3 60 The Look-Ahead Register (L Register) Occupied Flip-flop

1 3 [50:51] The Look-Ahead Register (The Next Sequential Program
Code Word in The Current Segment)

2 60 The Micro-module Address To Input Multiplexor Flip-flop

2 2 86 The Memory Access Obtained Flip-flop

15 [63:20] The Memory Address Register

2 [27:4] The MLIP Maintenance Display Status Register

2 18 The MLIP Emergency Request (POLL-REQUEST From MLI)
Signal

2 4 105 The EVENT Logic Multiple EVENT Flip-flop

2 5 46 The Families Memory Cycle Wait Time Signal

2 4 53 The Mask External Interrupt Signal

2 [23:4] The MLIP Maintenance Fast Status Register

2 4 93 The EVENT Logic Mask Invalid Address Interrupt Signal

2 91 The MLIP Memory Inhibit Logic Signal

2 1 17 The MLIP Maintenance Interrupt Request Flip-flop

2 2 76 The Memory Controller Memory Protect Bit

Flip-Flop
or Signal

Mnemonic

MI5IR

MISIW

MMEN

MMPD

MMnF [B:I2]

MOVR

MPBI

MPOP

MPXB

M_pXG

MPXI

MPYF

MP35

MRAE

MRAn (4:5]

MRDY

MRSn [3:4]

MRnn [I6:I7]

MSORn [2:3]

MSMnn [I9:20]

MSPnn [9:10]

50IOCJ86

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 13 of 23)

MDP Dis:elaz: Location

Panel Page Bits Meaning or Usage

2 2 77 The Memory Controller Read Data Word-Parity Bit (Odd)

2 3 32 The Memory Controller Write Data Word-Parity Bit (Odd)

2 63 The Micro-Module Enable Signal

62 The Micro-Module Parity Disable For First Clock-pulse Signal

2 [59:I2] The Micro-Module Address (MLIP Entry-Vector) Signals

2 I9 The MLIP Maintenance Override Signal

2 4 94 The EVENT Logic Mask Presence Bit Interrupt Signal

2 10 116 The Micro Program Control Flip-flop

"'I 5 34 The MLIP BURST Logic Signal .t..

2 5 33 The MLIP Access Granted (To CPU Memory Bus For A
BURST Memory Cycle) Signal

2 5 35 The MLIP Initiate BURST Request Signal (Remembered)

2 11 110 The Scale-Right Multiply (Times Ten) Raised To The Value
Of The Scale-Factor Enable Signal

2 11 99 The Scale-Right Multiplied By Third/Fifth Octade Signal

2 0 105 The MLIP Memory Address Register Enable Flip-flop

2 0 [104:5] The MLIP Memory Register Address

2 28 The MLIP Maintenance Ready Flip-flop

2 2 [27:4] The Local Memory Refresh Control Signal Register (For
Ports 0, I, 2, And 3)

2 [16:I7] The MLIP Maintenance Data Register

2 9 [46:3] The Address Adder Sum Of Residue Bits
MOSORO Is Residue Bit-I
MOSORI ls Residue Bit-2

IS [23:20] The Address Adder Sum Register

2 0 [97: IO] The MLIP Micro-Stack Pointer Register

441

Flip-Flop
or Signal

Mnemonic

MSWR

MSWn [3:4]

MTST

NIZF

NLZn [3:4]

NVLF

NZTA

NZTB

OFFF

ONCK

OPTF

OSRn [3:4]

OUTF

PADn [2:3]

PASn [2:3]

PCPE

PEDFn [3:4]

PENF

Pl.Kn [1 :2]

442

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 14 of 23)

MDP DisEla~ Location

~ Page Bits Meaning or Usage

2 0 107 The MLIP Micro-Stack Write (From MLIP Register Number 1)
Control Signal

2 2 [19:4] The Memory Controller Select Write Signal Register For
Ports 0, l, 2, And 3

2 3 43 The Memory-Tester Test-Mode Control Flip-flop

2 8 84 The Number Of Leading Zeroes Register Control Flip-flop

2 8 [83:4] The Number Of Leading Zeroes Register

2 10 117 The Family U Not Valid Control Flip-flop

2 8 57 The Add NLZ (Number Of Leading Zeroes) To A-Input Of
Exponent Adder Control Signal

2 8 59 The Add NLZ (Number Of Leading Zeroes) To B-Side Of
Exponent Aduer Control Signal

2 10 73 The Family U Overflow Control Flip-flop

2 3 37 The CPU One-Clock Control Signal

2 5 56 The Optional Adapter Test Flip-flop (Maintenance-Mode)

2 4 [7:4] The EVENT Logic OP-CODE Save Register

2 0 26 The MLIP Output Flip-flop

2 0 [50:3) The MLIP Port Address Register

2 0 [54:3] The MLIP Port Address Save Register

2 5 72 The CPU PROM-Card Parity Error (Card-Location) Register

2 2 32
2 2 40 The Memory Controller Parity Error Disable Control Signals
2 2 51 Register (TO Local Memory Ports 0, l, 2, And 3)
2 2 56

2 0 Si Tne MLiP Port Enable Flip-flop

2 4 [62:2] The Clock-Control Phase-Lock Register

Flip-Flop
or Signal

Mnemonic

PROF

PRVA

PRnn [50:51]

PSCF

PSCn [3:4]

PSRn [2:3]

PSOFn [2:3]

PSlFn [2:3]

PS2Fn [2:3]

PS3Fn [2:3]

PTGO

PnnC (38:7]
[30:6]
(23:6]
[16:6]
[09:6]

PnnF [26:26]
(52:26]

PnnS (39 :36]

P02S

QAnF [7:8]

QBnF [4:3]

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 15 of 23)

MDP DisElai: Location

Panel Page Bits Meaning or Usage

1 60 The Program Controller Program-Register (P-Register)
15 92 Occupied Flip-flop

2 6 SS The PROF And V ARF Flip-flops Are Valid Logic Signals

1 [50:51] The Program Controller Program-Word (P-Register)

2 8 93 The Pseudo-Call On Family A Flip-flop

2 0 [43:4] The MLIP Priority-Sequencer Count Register

1 1 [SS:3] The Program Controller Program Syllable Register
1 15 [90:3]

2 2 [38:3] The Memory Controller Port Sequence Count Register For
Local Memory Port Zero

2 2 [46:3] The Memory Controller Port Sequence Count Register For
Local Memory Port One

2 2 [54:3] The Memory Controller Port Sequence Count Register For
Local Memory Port Two

2 2 (62:3] The Memory Controller Port Sequence Count Register For
Local Memory Port Thre.e

2 2 72 The Memory Controller Port Go (To Complete A Memory
CyCle) Signal

1 6 (99:7]
1 6 (91 :6]
1 6 [84:6] The Card-Tester Pin Clear Register
1 6 [77:6]

6 [70:6]

6 [127:26] The Card-Tester Pin Register
6 [63:26]

6 [36:36] The Card-Tester Pin-SET Register

6 0 The Card-Tester Pin-SET Signal For Pin Number 2

2 8 [107:8] Family A Logical Control Flip-flops

2 11 [83:4] Family B Logical Control Flip-flops

443

Flip-Flop
or Signai

Mnemonic

QCZn (2:2)

QCnF [8:8]

QDnF [B:12]

QEnF [4:5]

QPnF (8:8)

QSnF [3:3]

QUAF

QUBF

QUCF

QUDF

QUnF [4:4]

RCPE

RDCBA

RDFF

RDMEA

RD REA

RETF

RIENn [3:4]

RIMF

RMMF

RPZF

4-44

B 6900 System Reference Manual
System Display and Control

Table 4-4. B 6900 Display Signals {Sheet 16 of 23)

MDP Dis2la~ Location

Panel Page Bits Meaning or Usage

2 9 [106:2] The Family C Size-Save Register
QCZl Saves Size-1
QCZ2 Saves Size-2

2 9 [115:8] The Family C Logical Control Flip-flops

2 9 [74: 12] The Family D Logical Control Flip:.flops

2 11 [115:4] The Family E Logical Control Flip-flops
2 11 (96: 1)

2 6 [39:8] The Program Controller Logical Control Flip-flops

2 7 [14:3] The Stack Controller Logical· Control Flip-flops

2 10 64 The Family U Invalid Operation Control (QFOl) Flip-flop

2 10 65 The Family U Presence-Bit Control (QF02) Flip-flop

2 10 66 The Family U Memory-Protect Control (QF03) Flip-flop

2 10 67 The Family U Segmented-Array Control (QF04) Flip-flop

2 10 [95:4] The Family U Logical Control Flip-flops

2 5 73 The RAM-Card Parity-Error Flip-flop

2 5 127 The Memory Controller Read-Data Check-Bit Signal

2 2 85 The Memory Controller Read Phase Flip-flop

2 5 92 The Memory Controller Multiple-Bit Error Signal

2 5 123 The Memory Controller Address-Retry Signal

2 10 119 The Family U Return To Using Operation Control Flip-flop

2 0 [87:4] The MLIP Enable Bit Signals For Register Number 1

2 4 56 The EVENT Logic Read IC Memory Flip-flop

2 4 58 The EVENT Logic Read Main Memory Flip-flop

2 10 89 A Family U Logical Flip-flop

Flip-Flop
or Signal

Mnemonic

RQRn [B:12]

RQTn [B:12]

RTNF

RTRY

RUNI

Rlnn [19:20]

R2En [3:4)

R2nn [19:20]

R3MXn [3:4)

R3nn [19:20]

SASG

SAnF [3:4]

SCft._N

SCCE

SCEF

SCNR

SCWE

SCnF [3:4]

SDIS

SECF

SEC+l

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 17 of 23)

MDP DisElal: Location

Panel Page Bits Meaning or Usage

2 2 [115:12] The Memory Controlle~ Request Address Register

2 2 [127:12] The Memory Controller Request Address Trap Register

2 10 118 The EVENT Logic Re-entrant From Interrupt Controller
Flip-flop

2 5 36 The Memory Controller Retry Flip-flop

2 5 82 The Running Indicator Signal

2 0 [83:20] The MLIP R-1 Register

2 0 [23:4) The MLIP Register-2 Bit-Enable Signal Register

2 0 [19:20) The MLIP R-2 Register

2 [87:41 The MLIP R-3 Register Gated To The MX-Bus Control Signal
Register

2 [83:20] The MLIP R-3 Register

2 9 106 · The Save Segmented-Bit Flip-flop

2 8 [123:4] The Family AT-Register Save Register

2 5 83 The Global Memory SCAN Command Signal

2 0 124 The MLIP Status-Change Command Enable Signal

2 8 15 The Scale Count-Enable Flip-flop

2 5 87 Not Used In B 6900

2 0 125 The MLIP Status-Change Write Enable Signal

2 8 [19:41 The Scale Count Register

2 5 124 The Interrupt Controller Syllable Dependent Interrupt Signal

2 6 42 The Syllable Execute Complete Level Save Flip-flop

2 5 41 The Syllable Execute Complete Level Delayed 1 Clock-pulse
Signal

4-45

Flip-Flop
or Signal

Mnemonic

SEC+2

SEIN

SFnF [3:4]

SHLT

Sinn [08:4]

SMVF

SMnn [04:5]

SNAP

SOIF

SOPF

SPARn [9:9]

SPCI

SPMAn [3:4]

SPMBn [3:4]

SPMn [2:3]

SRLn [2:3]

SRRF

4-46

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 18 of 23)

MDP DisElal'.: Location

Panel Page Bits Meaning or Usage

2 5 42 The Syllable Execute Complete Level Delayed 2 Clock-Pulses
Signal

2 5 48 The Syllable Execute Complete Interrupts Enable Signal

2 11 [103:4] The Scale-Factor Register

1 15 67 The SUPERHALT Flip-flop

2 10 [103:4] The Family U Source-Byte Index Register

2 11 111 The Enable Scale-Right PROM (generates TOA, TOM, And
DIS Values)

2 8 [99:5] The Steering And Mask Register (Generates Family A TOA,
TOM, And DIS Values)

2 2 66 The SNAP Mode Flip-flop (Used During Maintenance Testing)

2 7 15 The Stack Overflow Interrupt Flip-flop

2 10 87 The Family U Source-Pointer Equals An Operand Control
Flip-flop

2 2 127
2 2 [126:6] MLIP Spare Flip-flops
2 2 [117:2]

2 8 35 The Single Precision Carry-in (Or Borrow) Signal To The
Mantissa Adder Logic

2 3 [71 :4] The Single-Pulse Mode A For Memory Port n Register
SPMAO Selects Port 0
SPMAl Selects Port 1
SPMA2 Selects Port 2
SPMA3 Selects Port 3

2 3 [67:41 The Single-Pulse Mode B For Memory Port n Register (see
SPMAn Signals For Port IDs)

2 2 [98:3) Spare Flip-flops (Not Used)

2 2 [94:3] The Sum-Of-Residue Of The Address In The LAR Register

2 10 85 The Family U Source Pointer Read Only Flip-flop

Flip-Flop
or Signal

Mnemonic

SRSn [3:4]

SSRn [2:3]

SSZFn [2:2]

STAP

STAR

STBn [2:3]

STCH

STEN

STMC

STMX

STOF

STRA

STRB

STRC

STRD

STRE

STRF

STRG

STRH

STRJ

STRK

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 19 of 23)

MDP. Display Location

Panel Page Bits Meaning or Usage

2 4 [11 :4] The EVENT Logic Strobe Save Register

2 6 [47:3] The Syllable Save Register (Of The Syllable That Initiated
A Table-EDIT-Mode Operation)

2 10 [107:2] The Family U Source Size Register

2 5 86- The Memory Controller Address Parity Error Signal

2 5 91 The Memory Controller Store Address Residue Signal

2 5 [79:3] The Stack Register {Indicates Where A Read-Data Word Was
Placed In The Stack)

2 0 126 The MLIP Status-Change Signal

2 0 27 The MLIP Strobe-Enable Flip-flop

2 6 31 The Program Controller Is Cycling Signal (A SECL Signal
Occurred, Or A Program-Branch To A Non-Present Program-
Word Is To Be Executed)

2 0 118 The MLIP Status (MINH And Bin Gated To The MX-Bus)
Signal

2 5 125 The Stack Overflow Signal

15 87 The Family A Strobe Flip-flop

15 82 The Family B Strobe Flip-flop

15 78 The Family C Strobe Flip-flop

15 74 The Family D Strobe Flip-flop

15 70 The Family E Strobe Flip-flop

15 85 A Family U (Family F) Strobe Flip-flop

15 81 A Family U (Family G) Strobe Flip-flop

15 77 A Family U (Family H) Strobe Flip-flop

15 73 A Family C (Family J) Strobe Flip-flop

15 69 A Family C (Family K) Strobe Flip-flop

447

Flip-Flop
or Signal

Mnemonic

STSn (3:4]

STUF

SUBF

SUBT

TABT

TAnF (3:4]

TBnF (3:4]

TCnF (3:4-]

TDnF (3:4]

TEDS

TEEF

TERM

TEnF (3:4]

TFFF

TFOF

TOAn (5:6]

TODn [3:4]

TOMn [5:6]

TOUT

TRIG

TRYF

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 20 of 23)

MDP Dis:elal': Location

Panel Page Bits Meaning or Usage

2 [111:4] The MLIP Status Save Register

2 5 89 The Stack Underflow Flip-flop

2 11 109 The Family E Last-Octade (Of Shift-Register Multiplication)
Was A Subtract Logic Signal

2 9 21 The Address Adder Subtract Function Flip-flop

2 3 34 The Memory-Tester Test All Bits Signal

2 8 (127:4] The Family AT-Register

2 11 (91 :4] The Family B T-Register

2 9 (127:4] The Family C T-Register

2 9 [87:4) The Family D T-Register

2 4 2 The Table-Save Flip-flop

15 76 The Table-EDIT Mode Flip-flop

2 0 24 The MLIP Terminate Flip-flop

2 11 [127:4] The Family ET-Register

2 10 75 The Family U String-Operation True/False Comparison
Flip-flop

2 10 74 The Family U True/False Flip-flop (TFFF) Occupied
Flip-flop

2 7 (45:6] The Transfer Controller Top-Of-Aperture Register

2 7 [67:4] The MLIP Time-Of-Day Register (The 4 Low-Order Bits)

2 7 (37:6] The Transfer Controller Top-Of-Mask Register

2 3 93 The Global Memory Timeout Signal

2 3 92 The Global Memory Trigger (Start) Global Timer Signal

2 2 89 The Memory Controller Address Retry Flip-flop

Flip-Flop
or Signal

Mnemonic

TUnF [8:4]

TVn [2:3]

UPDF

VARF

VARS

VCTS

VECF

VSJK

WAIT

WBCF

WCCFn [3:4]

WIMF

WPIR

WPTF

WSTn [3:4]

XETA

XROF

XR-1

XRnn [50:51]

xxoo

5010986

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 21 of 23)

MDP DisEla}:'. Location

Panel Page Bits Meaning or Usage

2 10 [127:4] The Family U T-Register

2 3 [42:3] The Memory-Tester Test Vector Register

2 10 86 The Family U Update Control Flip-flop

15 84 The VARIANT Mode Flip-flop

2 4 0 The Variant Save-Bit Flip-flop

2 4 3 The Vector Save-Bit Flip-flop

15 72 The VECTOR Mode Flip-flop

2 6 40 The Vector Strobe Save/Store Flip-flop

2 2 82 The CPU General-Purpose Delay Flip-flop

2 6 52 The Program Controller Word Boundary Crossed Flip-flop ..
2 2 33
2 2 41 The Memory Controller Clear/Write Function Control Signals
2 2 49 To Ports 0, 1, 2, And 3
2 2 57

2 4 57 The Write IC Memory Flip-flop

2 6 43 The Write PIR (On Return From Table Mode) Flip-flop

2 6 53 The Write PIR Or TIR Flip-flop

2 2 [31 :4] The Memory Controller Write Control Signals To Memory
Ports 0, 1, 2, And 3

2 8 60 The X-Register Exponent To The A-Side Input Of The
Exponent Adder Gating Signal

2 10 88 The X-Register Occupied Flip-flop

2 8 20 The X Register Low-order Bit (Input Conversion)

2 [114:51] The Top-Of-Stack X Register
4 [62:51]

2 8 24 The X-Register Exponent I-Bit Extension Signal

4-49

Flip-Flop
or Signal

Mnemonic

XZ6n [3:3]

XlTA

X2TA

X4TA

YETB

YR-! [3:3]

YRnn [50:51]

YXOO

YZ6n [2:2]

YlTB

Y8TB

ZDTA

ZDTB

ZRnn [SO:Sl]

ZZ6n [3:3]

4-50

B 6900 System Reference Manual
System Display and .Control

Table 44. B 6900 Display Signals {Sheet 22 of 23)

MDP Dis21a~ Locatio!l

Panel ~ Bits Meaning or Usage

2 7 [54:3] The X-Register Gating Signals To The Z6-Bus
XZ61 Gates [50:11]
XZ62 Gates [39:20]
XZ63 Gates [19:20]

2 8 48 The X-Register Mantissa To A-Side Input Of Mantissa Adder
Gating Signal

2 8 44 2-Times The X-Register Mantissa To A-Side Input Of Mantissa
Adder Gating Signal

2 8 40 4-Times The X-Register Mantissa To A-Side Input Of Mantissa
Adder Gating Signal

2 8 62 The Y-Register Exponent Gated To The B-Side Input Of The
Exponent Adder Gating Signal

2 8 [23:3] The Y-Register Mantissa 1-0ctade Extension Register

2 [50:511 The Top-Of-Stack Y Register
5 [62:511

2 8 28 The Y Exponent 1-Bit Extension Signal

2 7 51 The Y-Register Mantissa Gated To The Z6-Bus Signals
2 7 55 YZ61 Gates Bits [SO: 11]

YZ62 Gates Bits [19 :20]

2 8 46 The Y-Register Mantissa To The B-Side Input Of The Mantissa
Adder Gating Signal

2 8 42 8-Times The Y-Register Mantissa To The B-Side Input Of The
Mantissa Adder Gating Signal

2 8 56 Literal 1310 Gated To The A-Side Input Of The Mantissa
Adder Signal

2 8 58 Literal 1310 Gated To The B-Side Input Of The Mantissa
Adder Signal

3 [114:Sl] The Top-Of-Stack Z Register

2 7 [50:3] The Z-Register Mantissa Gated To The Z6-Bus Gating Signals
ZZ61 Gates Bits [SO: 11]
ZZ62 Gates Bits [39:20]
ZZ63 Gates Bits [19:20]

Flip-Flop
or Signal

Mnemonic

Z6L8

Z6L9

Z6T8

Z6T9

Z8nn [12:4]

B 6900 System Reference Manual
System Display and Control

Table 44. B 6900 Display Signals (Sheet 23 of 23)

MDP Display Location

Panel Page Bits

2 9 18

2 9 20

2 9 19

2 9 17

2 9 [51 :4]

Meaning or Usage

A 20-Bit Index Field On The Z6-Bus Gated To The ZS-Bus
(Index Field From The Top-Of-Stack Gated To Address Adder)

A 20-Bit Index Field On The Z6-Bus Gated To The Z9-Bus
(Index Field From The Top-Of-Stack Gated To Address Adder)

A 20-Bit Base Address On The Z6-Bus Gated To The Z8-Bus
(A 20-Bit Base Address From A Top-Of-Stack Register Gated
To The Address Adder)

A 20-Bit Base Address On The Z6-Bus Gated To The Z9-Bus
(A 20-Bit Base Address From A Top-Of-Stack Register Gated
To The Address Adder)

1-Bit Of The INDEX Portion Of An Address Couple
Z809 Is Index Bit-9
Z810 Is Index Bit-10
Z811 Is Index Bit-11
Z812 Is Index Bit-12

B 6900 SYSTEM CONTROL PANEL

Figures 4-1 and 44 show the location of the B 6900 System Control Panel. This control panel (refer to Figure 4-5)
contains switches, indicators, and controls used for the entire B 6900 system. The following paragraphs define the
function of each control or indicator on the panel, and briefly describe the system actions performed as a result of
operating a control.

HALT

CHLT

SOIOCJ86

This pushbutton switch is used to cause the CPU data processor to halt, if it is
executing machine language operator codes. The data processor completes the
currently executing operator code and stops before· the next operator code in
sequence is executed. The direct result of depressing and releasing this pushbutton
is to SET the HALT flip-flop. wnen the HALT flip-flop is SET, the SECL signal
ending the current operator SETs the HALTED flip-flop, which prevents the Program
Controller from setting the Strobe flip-flop for the next operator in sequence.
Nothing happens if the data processor is already halted and the HALT pushbutton
is depressed and released.

Conditional Halt (CHLT) is selected when the CHLT toggle-switch is in the CHLT
(UP) position, and is disabled when the CHLT toggle-switch is in the DOWN position.

CHLT functions in a manner similar to the HALT pushbutton. However, it stops the
system only when a HALT (DF) operator code is executed. If the CHLT switch is in
the CHLT (UP) position and a DF operator code executes, the HALT flip-flop SETs

4-Sl

HALT

@

@
LOAD

B 6900 System Reference Manual
System Display and Control

SYSTEM CONTROL POWER

CHLT SECL @OFF
~ ~

PWON 0 on RUNG 0
HLTD 0 @oN D @
FRZN 0 0

GCLR

___ _.

MAINT PROC CONTROL

A B c 0 E INIT 0[!]0[]
00 00 00 00 00 0
00 00 00 00 00 0 0m0m
00 00 00 00 00

MTR

00 00 00 00 00 0 mm00 PWRON

r:::::: SENSE SWITCHES '8••• I 00001 D 0000
SHIFT

SJ S2 51 so
3 ' ' 0 LOOP DIA STEP ERA

L'JOP OIAG STEP CYCLE

MAINT CONTROL CLOCK

I L&18L 0 MMLD COMPR
XLT

STOP II INITIATE I
~

DISPLAY EVENT STOP

~
MMLD

@ OFF@ @ @ ~
PULSE

I ~
,,...,..,...._

0 'UI (Q)
SMOTE CHECK ~imtd6~ RUN

MY4111

Figure 44. Maintenance Control Panels in an IODC Cabinet

4-52

I
I

• HALT

• GCLR

• LOAD

LOAD ID

18 I MEMLD

1° ol

• STEP

MV4434

5010986

B 6900 System Reference Manual
System Display and Control

SYSTEM CONT-ROL

CHLT SECL

~ ~PWON 0
RUNG 0
HLTD 0 • • FRZN 0

0
ADJO READ

• • MM

~ ADJ1 WRITE

IC

POWER

II. I
OFF

• I ON

MNT

~PNL
NML

DISPLAY CONTROL

Figure 4-5. System Control Panel

FF
POINTER

SA11fl SA10 0
SA09 0
cAnalr. I
v,,v-ao ,- 0 I L TST

SA07 0
SA06 0
SA05 0
SA04 0

0 RSTR

SA03rfl SA02 0
SA01 0
SAOO 10 I

~RCRD

4-53

SECL

GCLR

LOAD and MEMLD

4-54

B 6900 System Reference Manual
System Display and Control

and the system stops as though the HALT pushbutton had been depressed and
released. If any other CPU operator is executed with the CHLT switch in position,
the HALT flip-flop does not SET and the system does not stop. The CHLT logic is
independent of any other system halt logic, and functions regardless of the position
of the HALT pushbutton or any other system halt control.

The SECL toggle-switch is a HALT function selector, the same as the CHLT toggle­
switch (see CHLT above).· When the switch is in the SECL (UP) position, the SECL
control circuit is enabled; when the switch is in the DOWN position, the SECL circuit
is disabled.

If the SECL circuit is enabled the data processor halts at the end of each machine
language operator sequence, when the SECL signal is TRUE. If the SECL circuit is
disabled the data processor does not halt because the SECL signal went TRUE; how­
ever, it may halt at SECL signal time because another halt logic circuit is enabled. The
SECL halt logic circuit is independent of all other halt logic circuits.

The General Clear pushbutton is used to cause the logic circuits of the B 6900 system
to be initialized. Generally, clearing a logic circuit causes it to be RESET (go to the
ZERO or FALSE condition). However, some logic circuits such as the HDPH/ logic
signal of the MLIP are initialized or cleared to the SET (or TRUE) condition.

The LOAD pushbutton switch is used m conjunction with the MEMLD status display
selector to cause a LOAD sequence of operations by the Maintenance Processor. A
LOAD sequence is a firmware program routine from a flexible diskette that is present
in the Maintenance Processor RAM memory. When the LOAD pushbutton is depressed
and released, a system main memory LOAD operation or a Maintenance Processor
RAM memory sequence is performed, depending on the state of the MEMLD status
display. If MEMLD is SET, a system main memory LOAD sequence is performed. If
MEMLD is RESET, a Maintenance Processor RAM memory LOAD sequence is
performed.

If MEMLD is SET (status indicator illuminated) and the LOAD pushbutton is
depressed, the B 6900 system is general cleared as when the GCLR pushbutton (see
GCLR above) is depressed and released. When the LOAD pushbutton is released, the
Maintenance Processor executes the LOAD routine sequence present in its RAM
memory. The LOAD sequence causes a program file to be loaded into system main
memory from a predefined system peripheral device. After a program file is loaded
into memory, the data processor can fetch and execute code from the program file.

The program code loaded into memory may be the system software Master Control
Program (MCP) or another system executive program. The LOAD pushbutton sequence
is thus capable of initializing various B 6900 executive programs into operation. A
choice between loading the MCP or some other executive program is made by proper
selection of the predefined system peripheral device from which the program file is
loaded. The LOAD ID switches, defined in a subsequent paragraph of this section,
are used to select the peripheral device.

If the B 6900 system is operating and a LOAD sequence is to be performed, the
system must be halted before the LOAD pushbutton is depressed and released. The
HALT pushbutton (see HALT above) is used to halt the system in preparation for a
LOAD operation.

ADJO and ADJl

READ

WRITE

POWER ONiOFF

PNL

5010986

B 6900 System Reference Manual
System Display and Control

If MEMLD is RESET (status indicator extinguished) and the LOAD pushbutton is
depressed and released, a data file from a known peripheral device is loaded into the
Maintenance Processor RAM memory. At the conclusion of the LOAD operation, the
logic of the Maintenance Processor branches to the beginning address in RAM memory
and halts. A subsequent initialization of the Maintenance Processor control logic
causes the program in the RAM memory to be executed.

The ADJO and ADJl pushbuttons are used to cause stack adjustments by the CPU
Stack Controller logic. The ADJO pushbutton, when depressed and released, causes
valid data words present in the Top-of-Stack A(X) and B(Y) registers to be pushed
down, into the memory portion of the stack. The ADJl pushbutton, when depressed
and released, causes the stack to be adjusted until the top word in the stack is present
in the Top-of-Stack A(X) register.

The READ pushbutton, when depressed and released, causes the Memory Controller
logic of the CPU to perform a READ memory cycle. If the MMIC switch is in the
MM (UP) position, the READ operation is performed in system main-memory. If the
MMIC switch is in the IC (DOWN) position, the READ operation is performed on a
CPU IC Memory Address register.

The WRITE pushbutton, when depressed and released, causes the Memory Controller
logic of t_he CPU to perform a WRITE memory cycle. If the MMIC switch is in the
MM (UP) position, the WRITE operation is performed to system mainmemory. If the
MMIC switch is in the IC (DOWN) position, the WRITE operation is performed on a
CPU IC Memory Address register.

The POWER ON and.POWER OFF pushbuttons initiate power sequences in the
B 6900 Central Power Supply cabinet. If the B 6900 system is not powered up
(source input-power is present at the input to the System Power Supply cabinet) and
the POWER ON pushbutton is depressed and released, then the Central Power Supply
cabinet logic performs a power-up sequence. ~f the B 6900 system is already powered
up when the POWER ON pushbutton is depressed and released, nothing happens.

If a B 6900 system is powered up and the POWER OFF pushbutton is depressed and
released, then the Central Power Suppiy cabinet logic performs a power-off sequence.
If the B 6900 system is already powered down when the POWER OFF pushbutton is
depressed and released, nothing happens.

The Panel toggle switch (PNL) selects the B 6900 units to which the System Control
Panel interfaces. If the PNL switch is in the Normal (NML, DOWN) position, the
System Control Panel interfaces to the CPU cabir1et and also to the Maintenance
Processor module. If the PNL switch is in the Maintenance (MNT, UP) position, the
System Control Panel only interfaces to the Maintenance Processor.

The Maintenance Processor is interfaced to the CPU cabinet by a Host Control Port
interface cable. System Control Panel switches use the Host Control Port interface to
initiate and control functions in the CPU cabinet. When the PNL switch is in the
MNT (UP) position, System Control Panel signals are prevented from using the Host
Control Port interface cable; consequently, CPU function control switches on the
System Control Panel are inoperative. Maintenance Processor control functions of
the System Control Panel are operational when the PNL switch is in either position.
Central Power Control functions are also functional when the PNL switch is in either
position.

4-55

C9NTROL STATUS

PWON STATUS

, RUNG STATUS

HLTD STATUS

FRZN STATUS

MEMLD STATUS

LTST

RCRD and RSTR

UISPLA Y CONTROL

4-56

B 6900 System Reference Manual
System Display and Control

Control Status display devices indicate the status of control logic signals, as follows.

The PWON indicator is illuminated when the cabinets of the B 6900 are receiving
source power from the CPS cabinet. The PWON indicator is extinguished when the
CPS is not supplying source power to the B 6900 cabinets.

The RUNG indicator is illuminated when the Running-timer circuit is timing. If the
Running-timer times-out, the RUNG indicator extinguishes.

The HLTD indicator is illuminated when the CPU Halted flip-flop is SET. If the
Halted flip-flop is RESET, the HLTD indicator is extinguished.

The Frozen (FRZN) indicator is illuminated when the CPU clock is stopped, an
EVENT Mode or Maintenance Mode condition. If the CPU clock is running the FRZN
indicator is extinguished.

The MEMLD status indicator is used in conjunction with the WAD control push­
button (see LOAD above). MEMLD is SET by depressing and releasing the push­
button corresponding to the MEMLD indicator LED. The LED illuminates when
MEMLD is SET. If the LED is already illuminated and the pushbutton is depressed
and released, nothing happens.

The MEMLD indicator is RESET by simultaneously depressing the pushbutton corre­
sponding to the LED indicator and the bottom pushbutton on the LED indicator
circuit device. When MEMLD is RESET the LED extinguishes. If MEMLD is already
RESET and both pushbuttons are depressed and released, nothing happens.

The Lamp Test (LTST) pushbutton is used to test for faulty LED indicator circuits
in the MDP display registers. When the LTST pushbutton is depressed, all LEDs in the
MDP display registers are illuminated. When the LTST pushbutton is released, the
MDP display register LEDs return to indicating system status conditions.

The RCRD pushbutton is used to cause the current displayed status of the B 6900
system to be recorded in the MDP display RAM memory. Recording the status in the
RAM occurs when the RCRD pushbutton is depressed and released.

Depressing and releasing the RSTR pushbutton causes the B 6900 system status stored
m the MDP display RAM to be restored as the current state of all dispiayed iogic
circuits.

The RCRD/RSTR pushbuttons are typically utilized to perform a maintenance opera­
tion on the B 6900 system. Before the maintenance operation is performed, the
normal system operational state is recorded by means of the RCRD pushbutton.
Before resuming normal system operations, the state of the system is restored by
means of the RSTR pushbutton.

The Panel Pointer (PNL POINTER) logic contains 2 rocker-switch control devices.
These rocker-switches are used to cause a particular flip-flop in the CPU cabinet to
SET, similar to the way the MDP d1spiay register SET iogic works. However, the PNL
POINTER logic can only SET (not RESET) one CPU flip-flop at a time. In addition,
the PNL POINTER Logic can be used to translate a hex CPU flip-flop address value to
its corresponding MFIU address line value. When the PNL POINTER switches are
used, the address value of the switches is translated to MFIO address line signals,
which are displayed by the SAnn LED display devices.

LOAD ID

B 6900 System Reference Manual
System Display and Control

Two ROCKER switches are used as control logic signals for the DISPLAY CONTROL
logic. Rocker switch DYON must be ON to enable the MDP display panel logic.
When DYON rocker switch is OFF the MDP display panel logic is disabled. The
WRSD rocker switch connects the DISPLAY CONTROL logic to the Host Control
Port interface logic. When WRSD is in the OFF position, the display control logic is
disconnected from the CPU HCP interface logic; and the MDP display logic cannot
SET or RESET CPU flip-flops.

If the WRSD rocker switch is OFF, a CPU flip-flop address can be translated from the
PAGE, BYTE, and BIT notation used by the MDP logic to the equivalent CPU cabinet
backplane address value. This equivalent address value is displayed in the SAnn LED
circuits. The DYON switch is OFF for translation operations.

The LOAD ID rocker switches are used to identify a peripheral unit through which a
LOAD function can be performed (see LOAD, above). There are 2 rocker switch
devices, each of which contains 8 switches. The switches are numbered from 0
through 15, and the value of a switch number denotes the binary significance of the
switch in determining the LOAD peripheral unit identity number. The switches have
significance as follows:

TOP
ROCKER
SWITCH

BOTTOM
ROCKER
SWITCH

Switch Number

15
14
13
12
ii
10
09
08

7
6
5
4
3
2
1
0

Binary Weight

32768
16384
8192
4096
2048
1024
512
256

128
64
32
16
8
4
2
1

The peripheral device identified by the LOAD ID rockei switches must be a proper
1/0 device type (magnetic tape, head-per-track disk, disk pack, or card reader) con­
trolled by a DLP device present in IODC zero. The IODC base module must be
properly configured to include the 1/0 device number represented by the LOAD ID
rocker switches.

B 6900 MAINTENANCE CONTROL PANEL

Figures 4-1 and 44 show the location of the Maintenance Control Panel. This panel (Refer to Figure 4-6) contains
switches and indicators used for maintenance operations on the B 6900 system. The following paragraphs define the
function of each switch and indicator on the panel, and briefly describe the system actions performed as a result of
operating a control.

50I()C)86 4-57

r
CPU 0 LAMP

LOCAIL SWITCH TEST

~
TEST 0 0

REMOTE CHECK

MV4435

MAINT CONTROL

DISPLAY

CMPR

(9)

Ir- MAINTENANCE -, .-

ALT l c~f!~~ .VENT 11 ~nP OF;iy EiE 0 EiT i
NORMAL RUN

Figure 4-6. System Maintenance Control Panel

CLOCK---
INITIATE·

PULSE

0

CPU LOCAL/REMOTE

SWITCH TEST

CHECK

LAMP TEST

CMPR

DISPLAY

PROC ENABLE

SOIO'J86

B 6900 System Reference Manual
System Display and Control

The CPU LOCAL/REMOTE switch is used to select on-line system operation or
local-unit system operation. In the REMOTE (DOWN) switch position, on-line opera­
tion is selected. In the LOCAL (UP) position, local-unit operation is selected.

During local-unit operations the CPU Memory Controller cannot perform Global
memory accesses. Peripheral subsystems such as Reader/Sorters and/or Data Communi­
cations that use Global memory resources cannot function when the switch is in the
LOCAL (UP) position. When the switch is in the REMOTE .(DOWN) position Global
memory accesses are performed; therefore, subsystems that utilize Global memory
resources are fully functional.

The SWITCH TEST indicator illuminates when any pushbutton switch for an MDP
display register is depressed. The indicator is extinguished when no pushbutton switch
for an MDP display register is depressed: This indicator detects shorted pushbutton
switch circuits that remain closed when the pushbutton is released.

The CHECK indicator illuminates when a fault is present in the CPU during a mainte­
nance operation. The CHECK indicator extinguishes when a system genera-clear
operation is performed.

The CHECK indicator is also used as a Maintenance Processor flag that illuminates
when a Confidence Test detects a fault condition. The system may perform in a
normal manner after the CHECK indicator flag is illuminated. However, the fact that
a CHECK condition occurred is significant for subsequent maintenance operations.
Therefore, the indicator remains illuminated until a system general-clear operation is
performed.

The LAMP TEST pushbutton, when depressed, causes all lamps and LEDs in the MDB
to illuminate. This pushbutton is used as a test for burned-out lamps or LEDs. The
pushbutton is spring-loaded and returns to the OFF position when released.

This toggle switch has three positions. When the switch is in Center/DOWN position,
Normal display mode is selected. When the switch is in the CMPR (UP) position,
Comparator display mode is selected.

Comparator mode operations, reserved for factory-use only, are not used for normal
system operations. The CMPR switch is placed in the OFF (DOWN) position and
remains in that position.

This toggle switch has three positions. In the NORMAL (DOWN) position the MDP
display logic iS enabled and the status of the CPU is displayed in the MDP display
registers. In the Alternate (ALT, UP) position, the status of another CPU is displayed
in the MDP display registers. The ALT position is normally used for factory tests with
a comparator to display the alternate CPU status, and is not used otherwise. The OFF
(MIDDLE) position disables the MDP display logic, and no status is displayed in the
display registers.

The Processor Enable (PROC ENABLE) toggle-switch is used to select maintenance
mode (in which the MP controls the HDP interface bus to the CPU) or to select normal
mode (in which the CPU controls the HDP interface bus to the MDP). When the
switch is in the PROC ENABLE (UP) position the MP logic controls the HDP interface
bus, and maintenance mode is selected. When the switch is in the OFF (DOWN) posi­
tion the CPU controls the HDP interface bus, and normal mode operations are selected.

4-59

STOP

EVENT

CLOCK STOP/RUN

INITIATE PULSE

B 6900 System Reference Manual
System Display and Control

The STOP pushbutton, when depressed, unconditionally stops the CPU in EVENT
mode (refer to EVENT, below). The pushbutton is spring-loaded to the OFF position.

The EVENT toggle-switch selects EVENT mode operations or normal mode operations.
When the switch is in the EVENT (UP) position the CPU EVENT logic is enabled.
When the switch is in the OFF (DOWN) position normal system operations are enabled,
and EVENT logic is disabled.

The Clock STOP/RUN toggle switch selects whether clock pulses are continuous or
stopped. When the switch is in the RUN (DOWN) position, CPU clock-pulses are free­
running; but are subject to stoppage by maintenance mode or EVENT mode FROZEN
logic. When the switch is in the STOP (UP) position clock-pulses are prevented from
being distributed to the CPU cabinet logic circuits.

The INITIATE PULSE pushbutton is used to cause a single clock pulse to be emitted
when the STOP/RUN switch is in the STOP (UP) position. Each time the pushbutton
is depressed and released, one clock pulse is emitted to the CPU logic circuits. The
pushbutton is spring-loaded to the OFF position.

The undefined switch located between the STOP/RUN switch and the INITIATE
PULSE pushbutton is unused in a B 6900 system.

B 6900 MAINTENANCE PROCESSOR CONTROL PANEL

Figures 4-1 and 44 show the iocation of the Maintenance Processor Control Panel. This panel (refer to Figure 4-7)
contains switches and indicators used to control the operation of the B 6900 Maintenance Processor. The following para­
graphs .define the function of each control or indicator and briefly describes the system actions performed as a result of
operating a control.

BANK LAMPS

INIT

MTR

The BANK LAMPS consist of 5 sets of indicators labeled A, B, C, D, and E. Each set
contains 8 indicator lamps, numbered 0 through 7. The BANK LAMPS are connected
programatically to logic circuits of the Maintenance Processor, and are used to display
the status or value of the circuit to which they are presently connected.

The instantaneous indication of the BANK LAMPS depends on the current operating
sequence and status of the Maintenance Processor, and .is therefore too varied to define
here. For precise technical data on various BANK L.A.i\1P indications consult the
B 6900 Maintenance Processor FETM, Form No. 5011307.

The Initialize (INIT) pushbutton is used to clear and initialize the Maintenance
Processor logic circuits. When the pushbutton is depressed and released, the Mainte­
nance Processor begins to execute MP microcode instructions present in its ROM
memory. The MP ROM memory contains a set of primitive MP instructions used to
initiate all subsequent MP operations. If a fault condition occurs during the initializa­
tion processes the MP logic stops and displays its status in the BANK LAMPS. The
interpretation of the BANK LAMP indications during the initialization is defined in the
B 6900 Maintenance Processor FETM, Form No. 5011307.

The Maintenance Test Routine indicator lamp is used to indicate that the MP is per­
forming a self-diagnostic test. The MTR signal level is used to select 1-of-2 areas of
MP PROM memory. The other area of PROM memory contains the MP initialization
microcode.

MAINT PFCOC CONTROL

A B: c D E:

0 0 0 0 0 0 0 0 0 0
7 3 7 3 7 3 7 3 7 3

0 0 0 0 0 0 0 0 0 0
6 2 6 2 6 2 6 2 6 2

0 0 0 0 0 0 0 0 0 0
5 1 5 1 5 1 5 1 5 1

0 0 0 0 0 0 0 0 0 0
4 0 4 0 4 0 4 0 4 0

--- SENSE SWITCHES ---..-------~

cG ~Cf) (OJ ~~~~
3 2 1 0 LOOP DIA STEP ERR

LOOP D IAG STEP CYCLE SHIFT

MV4436

Figure 4-7. Maintenance Processor Control Panel

PWRON

SHIFT

KEYS 0 THROUGH F

LOOP, DIAG, STEP,
and CYCLE SENSE
SWITCHES

SO, SI, S2, and S3

B 6900 SOFT DISPLAY

B 6900 System Reference Manual
System Display and Control

The PWR ON indicator lamp is used to indicate that source input power is applied to
the input of the Maintenance Processor .

. The SHIFT pushbutton is used to expand the number of key positions for the
keyboard, from 16 to 32 positions. If the SHIFT key is not depressed, the value of
the keyboard selects the corresponding position from among the first set of 16 posi- ·
tions. If the SHIFT key is depressed, the value of the keyboard selects the correspond­
ing position from among the second set of 16 positions.

The 16 key (0, l, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F) keyboard is used to
enter data into the MP memory.

These 4 toggle switches are used to exercise control over the major functional processes
of the MP. The logic flow of the MP senses the positioning of these switches and
alters MP processes accordingly.

The meaning and use of these switches is defined in the B 6900 Maintenance PrO(!essor
FETM, Form No. 5011307.

These 4 indicators that occur during the execution of test routine programs indicate
errors (ERR), and other MP operating conditions (LOOP, DIA, and STEP).

An Operator Display Terminal (ODT) device may be used for system status display. A firmware executive program (Soft
Display) is activated during B 6900 system initialization, and this program causes system status to be formatted and dis­
played on the ODT peripheral device screen.

The Soft Display firmware executive program may be utilized in B 6900 systems that have an MDP cabinet installed.
Such systems have 2 methods of displaying system status. Systems that do not have an MDP cabinet have only the Soft
Display method for system status display.

B 6900 Soft Display Program Control

The Soft Display program is selected for execution by entering and transmitting a "Y" input message on the ODT screen,
when the initialization program displays the "AWAITING A/T" output message. This output message indicates that the
firmware Executive program is at the Command level, and that it is ready to receive an input Command message. The
"Y'' input message is a Command input which specifies that the Soft Display program is to be executed. In response to
the "Y" input message, a "Soft Display" output message flashes, and a list of current Soft Display Command names are
displayed on the ODT screen.

The Soft Display program is a control mechanism through which various system display and control functions are
initiated. The following paragraphs describe and define the input messages used to cause a Soft Display Command to be
executed.

ODT SCREEN FORMAT

AB 6900 system Operator Display Terminal (ODT) screen can display up to 25 lines of data, and each line contains
80 alphanumeric character columns. The character display lines of the ODT screen are numbered from top·to-bottom,
with line-I the upper-most line on the screen, and line-25 the bottom-most line. Line-I through line-24 are usable lines
on which data can be displayed. Line-25 is reserved for ODT subsystem status report and command displays, and is not
used for normal data display. The left-most character position on a line of the screen is column~ i, and the right-most
character position is column 80.

4-62

B 6900 System Reference Manual
System Display and Control

Tne Soft Display program controls the ODT screen format during a Soft Display program function. Llne-i and line-2
contain Soft Display program commands. Line-3 is reserved for Soft Display program error displays. Line4 and line-5
are used as a buffer for additional Soft Display commands. Additional commands in the command buff er execute only
when called by specific commands present on line-I or line-2.

Soft Display commands on lines I, 2, 4, and 5 of the ODT screen are used to specify B 6900 system control functions
to be perf mmed by the Soft Display program, and also to specify various B 6900 system status to be displayed on the
ODT screen.

The Soft Display control program takes advantage of the ODT screen programmable intensity feature, when displaying
B 6900 system status. This screen feature allows data to be displayed at 2 different levels of intensification, or brilliance.
Display status data is brilliantly intensified if it is TRUE or HIGH (the binary-I condition), and is moderatley intensified
if it is FALSE or LOW (the binary-0 condition).

ODT SCREEN COMMAND STRUCTURE AND OPERATION

The Soft Display program displays a list of valid Soft Display command names on the ODT screen in response to a "Y"
input at the executive level (see B 6900 SOFT DISPLAY above). The user of the Soft Display program must construct a
string of syntactically correct Soft Display commands on line-I and line-2 (plus optional commands on line4 and line-5).

After a string of Commands is constructed, depressing and releasing the <XMIT > key of the ODT keyboard causes the
Soft Display program to execute the commands present in the Command string.

The Soft Display program executes commands present on line-1 and line-2 in the order of occurrence. The order of
occurrence is from the left-most command to the right-most command on line-I, followed by the left-most command
through the right-most command on line-2. Soft Display commands on line4 and line-5 are executed in the same order
as line-1 and line-2, but are not executed unless specific commands present on H. ... 1e-l a...1d/or line-2 direct that commands
in the command buffer be executed.

The Soft Display program checks each command for proper syntax before the command is executed. If no syntax error
is found the command is executed, and this sequence is repeated for the next command in the command string. If a
syntax error is found, error data is displayed on line-3 of the ODT screen and the Soft Display program immediately
terminates without executing the command that contained the syntax error or subsequent commands in the command
string.

The Soft Display program continues executing commands until a syntax error occurs, until all commands in the command
string have been executed, or until an <END> command is executed. When any (one) of these events occurs the Soft
Display program completes by returning control of the Maintenance Processor to the executive level of operation. A
subsequent operation of the Soft Display program must be initiated by means of another "Y" input message on the ODT
screen.

The B 6900 Maintenance Processor saves a copy of all Soft Display command strings, so that they can easily be repeated
as often as the program user desires. The syntax of the Soft Display program commands provides a method for recovering
the former contents of a command string for subsequent Soft Display program operations (see <SAVE> and <RETURN>
syntax diagrams).

SYNTAX DIAGRAM RULES

The syntax for constructing valid Soft Display commands are presented in the following "Railroad diagrams." These
diagrams yield valid Soft Display command formats when they are followed along the forward direction indicated by
arrowhead symbols. The optional characteristics of a valid command statement are given in semantic discussions of
the diagrams.

5010986 4-63

B 6900 System Reference Manual
System Display and Control

Soft Display program commands are entered on line-I or line-2 of the ODT screen in the order that they are to be
executed. A blank space separates consecutive commands on a line, and commands are not split across line-boundaries.

SOFT DISPLAY COMMAND CATEGORIES

Table 4-5 lists the 4 general categories of Soft Display commands that are used. The following paragraphs describe these
4 categories.

SYSTEM

MAINT/EVENT

FAMILIES

FUNCTIONS

System commands provide a method for activating system control logic circuits, in
the same way that MAINT /EVENT commands invoke the maintenance or event
control logic (see MAINT/EVENT command).

Maintenance logic or EVENT logic commands cause circuit control devices to SET or
RESET. By setting or resetting a circuit control device, the corresponding maintenance
circuit or EVENT logic circuit is activated or deactivated. These commands allow the
Soft Display program to invoke programmatic maintenance or event logic activation
as if manual control switches had been positioned by the system user.

Family commands are used to activate CPU function status display signals and levels.
A Soft Display Family command mnemonic implies the collection and formatting of
status display signals for a particular CPU function. Activation of a Family CPU status
display causes the collected and formatted CPU status to be displayed on the ODT
screen.

Function comma.11ds provide programmatic methods to activate CPU or MDP circuits
that handle data. The syntax for a Function command provides a mechanism for
supplying required input and/or handling any resulting output data.

Table 4-5. B 6900 Soft Display Command List

System MAINT /EVENT Families
Commands Commands Commands Functions Commands

ARCS AAIF A MEMCON ADD FAMILY REVERS
HALT ALTF ARI CON MEMPRT BRIGHT HELP SAVE
PULSE CHLT B MEMTST CAPTUR INFO SMEAR
STEP CPTF c MMOD CLRIC INSERT STATUS
STOP CSTP CPU PROGCL CLRMM NZDATA USRFAM

EVNT D u DEL PROGRM WAIT
LOCL E UFAM DIFF RDHDP WRIC
NOSTEP ERRORS XREFCL DO-UNTIL RDIC WRMM

OCTAL EVENT DUMP RDMM **
SAFE GLOBAL END RESTOR

SECL INTCON EXEC RETURN ++
I/O

B 6900 System Reference Manual
System Display and Control

SOFT DISPLAY PROGRAM GENERAL COMMANDS

The Soft Display program command structure includes General Commands which do not- conform to any one of the
previously defined command categories. These general commands are used basically to change the state of particular
system flip-flops or the contents of registers, without disturbing the state of other circuit devices. These commands add
a dimension of choice and selectivity .to the power of the Soft Display program. The General Commands of the Soft
Display program are defined in the following paragraphs.

<SET> and <RESET> COMMANDS

The Soft Display program logic executes SET or RESET instructions present in a command string. A SET/RESET instruc­
tion causes the CPU flip-flops identified by the SET/RESET instruction to go to the SET or RESET state.

--......--SET ---------MFIO <OCTADD > ------.----------------1
LRESET <Flip-flop Mnemonic> ----1

---<Other Statements> -----
MY4117

SEMANTICS

The SET option of this Command causes the flip-flop devices named to SET. The RESET option of this Command causes
the flip-flop devices named to RESET.

The "MFIO <OCTADD>" option allows CPU flip-flops that are not defined as a Soft Display register flip-flop to be
SET/RESET. Octal addresses for CPU flip-flops are obtained from the MDP Display Fault lists. MDP Display Fault Lists
are part of Test and Field documentation delivered from the factory with the hardware.

The SET/RESET <Flip-flop Mnemonic> option allows multiple flip-flops to be SET or RESET by a single Command.
This option is used to control MAINT /EVENT and System Command flip-flops.

<REGISTER> COMMANDS

The Soft Display program contains a list of register names that are frequently used for displaying system status or for
control functions. A REGISTER Command is used to replace the contents of a register.

-- <register name> -------<hex data >-----------------------1

L <twoormorehexdataDus> ~
L<hexTAG><hexdata> --:--

MY4518

5010986 4-65

SEMANTICS

B 6900 System Reference Manual
System Display and Control

A <register name> must be register listed in the Soft Display program register name list. If the contents of a register not
present in the Soft Display name list is to be replaced, then the SET/RESET Command must be used (see <SET> Or
<RESET> above). Table 4-6 is a list of the Command register names defined in the Soft Display program.

The <register name> <hex TAG> <hex data> Command option is used to replace the contents· of Top-of-Stack registers
and their TAG fields. These registers each contain 1 hex TAG character and 12 hex data characters. If <hex data> con­
tains more than 12 hex characters, the right-most hex characters (in excess of 12) are truncated and lost. If <hex data>
contahis fewer than 12 hex characters, the hex data is placed in the register, right-justified; and register bits not filled
from <hex data> are SET to leading zeroes. The register TAG is filled from the <hex TAG> character. One blank
character space separates <register name>, <hex TAG>, and <hex data> in this Command format.

The <register name> <hex data> Command option is used to replace the contents of all Soft Display program defined
registers other than Top-of-Stack registers. If the significant binary bits in <hex data> exceeds the binary bit capacity of
the <register name> register, an error condition is detected and reported on line-3 of the ODT screen. When an error
condition is detected the Soft Display program immediately terminates. If the number of significant binary bits present
in <hex data> is less than the binary bit capacity of <register name>, the register is filled by binary bits from <hex
data>, right justified. Binary bits of the register not filled from <hex data> are RESET to leading zeroes.

If the <register name> <2 or more hex data Chrs> Command option is used, the TAG-field of <register name> is zeroed.
This option allows a TAG-field for a Top-of-Stack register to be RESET to zero without altering the <hex data> contents
of the register.

Soft Display
Register Name

A

ACL

ACM

ADSV

AX

AZ

B

BI

BRS

BX

BYR

c

CA

CBR

CBW

CI

CKBA

CKBB

CP

CPA

csc

CSR

5010986

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Dispiay Register Names (Sheet i of 6)

Circuit
Displayed

AR[SO:Sl]

ACL[7:8]

ACM[5:2]

ADD[19:20]

AX(02:3)

AZ[63:3)

BR[SO:Sl]

BI[2:3]

BRS[7:8]

BX[2:3]

BYR[19:20]

CR[SO:Sl]

CAOF[2:3]

CB[6:6]R

CB[6:6]W

CIOF[3:4]

CKB[6:6]A

CKB[6:6]B

CP[23:24)

CPA[8:4]

CSC[4:4]

CSR[2:3]

Display Meaning or Usage

Displays the HEX value of the Top-of-Stack A register

Displays the least significant 8-Bits of a NAMC operator address value

Displays the most significant 2-Bits of a NAMC operator address value

Displays the value of the Address-Save register

Displays the value of the A mantissa extension register

Displays the value of the AZ6n signals, which are used to transfer a specific
field from a transmitter register into a receiver register, by means of the
Stack. Controller Z6 bus

Displays the HEX value of the Top-of-Stack B register

Displays the value of the MLIP byte index register

Displays the contents of the CPU IC memory base read select register signals

~A8plays the contents of L'le B mantissa 1-octade extension re~J.Ster

Displays the memory-tester logic BYPASS register contents

Displays the contents of the Top-of-Stack C register

Displays the Memory Controller Port priority occupying status signals

Displays the Memory Controller READ-data check-bit code_ value

Displays the Memory Controller WRITE data check-bit code value

Displays the Memory Controller Port priority occupying signals for channel B
memory requestor

Displays the Memory Controller data check-bit code value for requestor A

Displays the Memory Controller data check-bit code value for requestor B

Displays the value of the high-order 24 bits in the processor timer register

Displays the value of the CPU clock counter circuit

Displays the sequence count value for the Memory Controller requestor logic

Displays the value of the Program Controller count syllable register

4-67

Soft Display
Re£2ster Name

DI

DIS

DRF

DST

DSZ

ECT

EJC

EOP

EREN

EST

FST

GBC

GBS

GPS

GS

GT

HAR

HR

HRTA

HRTB

ICR

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 2 of 6)

Circuit
Dis2!axed

DI(8:4]

DIS[5:6]

DRF(4:3]

DST(3:4]

DSZ(2:2]

ECT[7:8]

EJC(ll :12]

EOP(3:4]

EREN[7:8]

EST(7:4]

FST[3:4]

GBC[2:3]

GBS(2:3)

GSP[2:3)

GS[2:3]F

GT[2:3]F

HAR(3:4]

HR[15:16]

HRTA[2:2]

HRTB(2:2l

ICR[7:8]

Display Meaning or Usage

Displays the value of the string operator destination index byte register

Displays the value of the Transfer Controller displacement register

Displays the value of the IC memory display register address select bits

Displays the value of the MLIP delayed status register

Displays the value of the string operation destination byte size register

Displays the value of the EVENT logic counter

Displays the value of the EVENT logic micro-module J-count (sequence)
register

Displays the EVENT logic operator code register value

Displays the value of the CPU PROM Card location register

Displays the value of the EVENT logic strobe register

Displays the value of the MLIP fast status signal register

Displays the value of the Global sequence-control register

Displays the value of the Global clear sequence-control register

Displays the value of the MLIP Global priority save register

Displays the value of the Global memory control signal register

Displays the value of the Global memory control signal register

Displays the value of the Memory Controller hold address for return
register

Displays the value of the Arithmetic Controller holding register

Displays the value of the Arithmetic Controller exponent adder A-side input
holding register

Displays the value of the Arithmetic Controller exponent adder B-side input
holding register

Displays the value of the Input-Convert operation register

Soft Display
Register Name

ICW

IMCF

IML

IRS

IT

JA

JB

JC

JCS

JD

JE

JP

JS

JU

N

KA

L

LAR

LC

LL

IP

MAR

501C)CJ86

B 6900 System Reference Manual
System Display and Control

Table 4"6. Soft Display Register Narnes (Sheet 3 of 6)

Circuit
Dis;ela;?:ed

ICW[3:4)

IMC[3:4)

IML[2:3)

IRS[7:8]

IT[l0.:11]

JA[7:8]F

JB[3:4)F

JC[7:8)F

JCS[ll :12]

JD[7:8)F

JE[6:7)

JP() [2:3)

JS[4:4] F

JU[6:7)F

N[l:2]

KA[2:3]F

LR[SO:Sl)

LA[19:20)

LC[3:4)F

Ll.0[4:5)

IP[15:16]

MA[19:20]

Display Meaning or Usage

Displays the value of the Memory Controller IC memory REFRESH function
delay (for MSU signal) register

Displays the value of the initiate cycle control signals to the 4 CPU local
memory port adapters

Displays the value of the Interrupt Controller counter used for detecting
SUPERHALT conditions

Displays the value of the CPU IC memory index register READ select signals

Displays the value of the interval-timer register

Displays the value of the Family A sequence-count (J-count) register

Displays the value of the Family B sequence-count (J-count) register

Displays the value of the Family C sequence-count (J-count) register

Displays the value of the EVENT logic J-count save register

Displays the value of the Family D sequence-count (J-count) register

Displays the value of the Family E sequence-count (J-count) register

Displays the value of the Program Controller sequence-count register

Displays the value of the Stack Controller sequence-count register

Displays the value of the Family U sequence-count (J-count) register

Displays the value of the Memory-tester logic sequence counter

Displays the value of the Family A K-counter

Displays the value of the Program Controller look-ahead register

Displays the value of the Program Controller look-ahead address register

Displays the value of the family E loop-count register

Displays the value of the Program Controller lexicographical level register

Displays the value of the MLIP longitudinal parity register

Displays the value of the Memory Controller memory address register

4-69

Soft Display
Reg!ster Name

MDS

MFS

MM

MR

MRA

MSM

MSOR

MSP

MSW

NLZ

OSR

p

PAD

PAS

PEDF

PSC

PSR

RQR

RQT

Rl

R2

4-70

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 4 of 6)

Circuit
Dis~laled Display Meaning or Usage

MDS(3:4] Displays the value of the MLIP maintenance display status register

MFS(3:4] Displays the value of the MLIP maintenance fast status register

MM[B:12] Displays the value of the micro-module address register (entry-vectors)

MR(l6:17] Displays the value of the MLIP maintenance data register

MRA[4::5] Displays the value of the MLIP memory register address (for MLIP RAM
memory)

MSM[l9:20] Displays the value of the Memory Controller address-adder sum-register

MSOR[2:3] Displays the value of the address adder sum-of-residue register

MSP[9:10] Displays the value of the MLIP micro-stack (MLIP RAM memory) pointer
register

MSW[3:4] Displays the value of the Memory Controller select-WRITE control signals
to the local memory port adapters

NLZ(3:4) Displays the value of the Arithmetic Controller number of leading zeroes
register

OSR[3:4] Displays the value of the EVENT logic operator code save register

PR[SO:Sl] Displays the contents of the Program Controller program-code register

PAD(2:3] Displays the value of the MLIP port address register

PAS[2:3] Displays the value of the MLIP port address save register

PEDF[3:4] Displays the value of the Memory Controller parity-error-disable control
signals to the local memory port adapters

PSC(4:5] Displays the value of the MLIP priority sequencer count register

PSR[2:3] Displays the value of the Program Controller program syllable register

RQR[9:10] Displays the value of the Memory Controller request address register

RQT[9:10] Displays the value of the Memory Controller request address trap register

Rl [19:20] Displays the value of the MLIP Rl register

R2[19:20j Displays ihe value of the MLIP R2 register

Soft Display
Reg!ster Name

R3

SA

SC

SF

SI

SM

SPMB

SRL

SRM

SRS

SSR

ssz

STB

STS

TA

TB

TC

TD

TE

TOA

TOD

5010986

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 5 of 6)

Circuit
Dis~laved Display Meaning or Usage

R3 [19:20] Displays the value of the MLIP R3 register

SA[3:4]F Displays the contents of the Family AT-register

SC[3:4] F Displays the contents of the Family E scale count register

SF[3:4]F Displays the value of the Family E scale factor register

SI[08:4] Displays the value of the Family U source byte index register

SM[04:4] Displays the contents of the Family A steering-and-mask register (regenerates
TOA, TOM, and DIS values)

SPMB[3:4] Displays the value of the Memory Controller single-pulse mode control
signals for local memory port adapters

SRL[2:3] Displays the value of the Memory Controller sum-of-residues register (for
the address present in the LAR register)

SPM[2:3] Displays the value of spare flip-flops (unused) in the Memory Controller
logic

SRS[3:4] Displays the value of the EVEN! logic strobe save register

SSR[2:3] Displays the value of the EVENT logic syllable save register

SSZF[2:2] Displays the value of the Family U source size register

STB[2:3] Displays the value of the Stack Controller stack register (shows where a
READ-data word was placed in the stack)

STS[3:4] Displays the value of the MLIP status-save register

TA[3:4]F Displays the value of the Family AT-register

TB[3:4] F Displays the value of the Family B T-register

TC[3:4] F Displays the value of the Family C T-register

TD[3:4]F Displays the value of the Family D T-register

TE[3:4] F Displays the value of the Family ET-register

TOA[5:6] Displays the value of the Transfer Controller Top-of-Aperture register

TD[35:36] Displays the value of the Time-of-Day register

4-71

Soft Display
Register Name

TODC

TOM

TU

TV

WCCF

WSTF

x
y

YRM

z

•

B 6900 System Reference Manual
System Display and Control

Table 4-6. Soft Display Register Names (Sheet 6 of 6)

Circuit
DisEla~ed

TOD(3:4]

TOM(5:6]

TU[8:4)F

TV(2:3)

WCCF(3:4)

WST(3:4)

XR(SO:Sl]

YR[SO:Sl]

YR-(3:3)

ZR[SO:Sl)

DisElay Meaning or Usage

Displays the value of the low-order 4-bits of the Time-of-Day register

Displays the value of the Transfer Controller Top-of-Mask register

Displays the value of the Family UT-register

Displays the value of the Memory-tester test vector register

Displays the value of the Memory Controller CLEAR/WRITE function
control signals to local memory port adapters

Displays the value of the Memory Controller WRITE function control signals
to local memory port adapters

Displays the contents of the Top-of-Stack X register

Displays the contents of the Top-of-Stack Y register

Displays the value of the Arithmetic Controller 1-octade extension register

Displays the contents of the Top-of-Stack Z register

SYSTEM CONTROL COMMANDS

System Control Commands are used to initiate system control functions. AB 6900 system MOP cabinet contains manual
switches that can be used to initiate system control functions. If a B 6900 system does not have an MDP cabinet, the
corresponding Soft Display ptogram Commands must be used to initiate these system control functions.

<decimal number> __,.

-ARCS ----r-------------....J
-HALT

-STOP__J

MV4118

4-72

SEMA..~!CS

B 6900 System Reference Manual
System Display and Control

The semantics for System Control Commands are given in the following paragraphs.

<PULSE> COMMAND

A PULSE Command is used to specify the number of clock pulses to be issued to system logic circuits. If an optional
<decimal number> is included in the Command, <decimal number> clock pulses are issued. If <decimal number> is not
included a single clock pulse is issued. A PULSE Command implies that normally free-running system clock pulses are
controlled. Before a PULSE Command is used, the control of System clock pulses is implemented by use of MAINT/
EVENT Commands.

<STEP> COMMAND

A STEP Command is used to specify the number of steps (operations or functions) the CPU is to perform. If the
<decimal number> option is included as part of the Command, <d.ecimal number> steps are performed. If a <decimal
number> is not included, a single step is performed. One STEP is counted each time the CPU Program Controller SECL
signal goes to a TRUE level. The CPU Program Controller responds to MAINT /EVENT Conditional Halt logic and STEP
Commands simultaneously. If a Conditional Halt occurs while a STEP <decimal number> Command is in process, the
cPU does not h.8lt; instead, the STEP Command causes· steps beyond the Conditional Halt to be performed.

<ARCS> COMMAND

The ARCS (All Rows and Columns Signal) Command is used to cause the system logic circuits to be initialized. Most
B 6900 circuit devices are initialized to the cleared (binary zero) state; however, some circuit devices are initialized to the
SET (binary one) state. IODC bases are not initialized when an ARCS Command executes unless the MAINT/EVENT
SAFE condition is RESET (see SAFE). ff SAFE is SET and an ARCS Command executes, the MLIP logic HASL flip-flop
is SET and the PSC register is initialized to a value of 9. If SAFE is RESET and an ARCS Command executes, the MLIP
logic HASL flip-flop is RESET and the PSC register is cleared to binary zero.

<HALT> COMMAND

The HALT Command is used to cause the HALT and HALTED flip-flops in the CPU to be SET. When the HALTED
flip-flop is SET, a STEP Command is required to resume system operations.

<STOP> COMMAND

The STOP Command is wed to cause the STOP logic signal of the Host Control Bus (HCB) interface to be TRUE. When
the STOP .signal is TRUE the system status display of the CPU logic is not updated by the Maintenance Processor. This
Command effectively disables the HCB interface between the Maintenance Processor and the CPU cabinet.

MAINTENANCE AND EVENT CONTROL COMMANDS

EVENT /MAINT Commands are used to SET /RESET control flip-flops for B 6900 system EVENT Mode operation and
Maintenance Mode operation. The syntax for these Commands is presented in the <SET> and <RESET> COMMANDS
subsection. This subsection describes system actions that result when these Commands are executed by the Soft Display
program.

A STATUS Command (see FUNCTIONS COMMANDS) can be used to cause the current state of EVENT/MAINT control
flip-flops to be displayed on the ODT screen.

5010986 4-73

<AAIF> COMMAND

B 6900 System Reference Manual
System Display and Control

This Maintenance Control Command invokes the Address Analyze feature of the Maintenance Processor (MP) logic. When
invoked, Address Analyze monitors main-frame addresses (PANEL PAGE and BYTE) on the HCP interface bus (that con.;
nects the MP to the CPU). If a CPU adapter module is addressed on the HCP bus address lines, the DOUT (data out used
to SET a CPU flip-flop) line is forced to zero. fa tl">Js way, the Address Analyze feature prevents the MP from setting/
resetting CPU adapter flip-flops.

<ALTF> COMMAND

This Maintenance Control Command invokes the Alternate Display control (see B 6900 MDP CABINET MAINTENANCE
CONTROL PANEL). This Command is used only for factory maintenance operations.

<CHLT> COMMAND

This Maintenance Control Cornman~ invokes the Conditional Halt logic (see B 6900 SYSTEM CONTROL PANEL).

<CPTF > COMMAND

This Maintenance Control Command invokes the Comparator Display mode logic (see B 6900 MDP CABINET MAINTE­
NANCE CONTROL PANEL). This Command is used only for factory maintenance operations.

<CSTP> COMMAND

This Maintenance Control Command invokes the Clock STOP logic (see B 6900 MAINTENANCE CONTROL PANEL).

<EVNT> COMMAND

This Maintenance Control Command invokes the Maintenance EVENT logic (see B 6900 MDP CABINET MAINTE­
NANCE CONTROL PANEL).

<LOCL> COMMAND

This Maintenance Control Command invokes the CPU LOCAL/REMOTE logic (see B 6900 MAINTENANCE CONTROL
PANEL).

This Command invokes a Soft Display program toggle control, which replaces a STEP sequence with a Soft Display
program halt sequence. (See FUNCTIONS COMMANDS, <NOSTEP> COMMAND description.)

<OC'TAL> COMMAND

The Display Control Command invokes octal display format for all registers, main memory, and CPU IC memory.
Memory addresses display in hexadecimal regardless of whether octal format is invoked.

<SAFE> COMMAND

This Maintenance Control Command invokes a Protected CPU operating mode for operations of the Soft Display control
program. SAFE mode is the default mode of the Soft Display program and must be RESET to operate in a CPU mode
+\..,...+ ~,.,.,..,. -~,..+ ... ,.+ ... A ~A C'C',.,..A.,-aua ... +., tl.o ~n.f't T"\i.,..,...1.,u-nn.-""' f,.,.,......, .-. .. .-fn.......,1nn f"nntn'l'3nrl~ th'3t rl<>~t.-n'1 th<> nn<>1".
U.lal. .l., J.lVL }'.lVl."''-"""'U.· U.£"1£. .l..J lllVU.V .t'l.'"'T'"'J.l.lo"' UJ." IJ'V.l&. .&JJ.'3.t'.1.U] t'l.VfrLw..&.1.& ·.1..1.v.a..1& yv.1..1.v.1..1..1.1 . .1..1..1.c '"'"' w.... .. -. _. w.ww•.a."'J ,.,. -r-·

ating system environment or require subsequent system initialization.

4-74

B 6900 System Reference Manual
System Display and Control

If SAFE is SET (TRUE), and the HLTD flip-flop is RESET, the following MAINT /EVENT Commands are not allowed to
execute. Attempting to execute one of these Commands results in a So(t Display program error being detected.

I. SET EVNT

2. SET LOCL

3. SET CSTP

If SAFE and RUNI are SET and HLTD is RESET, the following Functions Commands and System Control Commands
are not allowed to execute. Attempting to execute one of these Commands results in a Soft Display program error being
detected.

1. ARCS (System Control Command)

2. CAPTUR (Functions Command)

3. CLRIC (Functions Command)

4. CLRMM (Functions Command)

5. DUMP (Functions Command)

6. EXEC (Functions Command)

7. PROGRM (Functions Command)

8. RDIC (Functions Command)

9. ROMM (Functions Command)

10. RESTOR (Functions Command)

11. SMEAR (Functions Command)

12. WRIC (Functions Command)

13. WRMM (Functions Command)

<SECL> COMMAND

This Command invokes the Syllable Execute Complete Level (SECL) HALT logic of the CPU (see the B 6900 SYSTEM
CONTROL PANEL).

5010986 4-75

B 6900 System Reference Manual
System Display and Control

FAMILIES CONTROL COMMANDS

Families Commands are Soft Display program Commands that cause B 6900 circuit status to be displayed on the ODT
screen. The status displayed by use of a Family Command is presented in fixed format. Multiple family circuits status
can be displayed by use of a single Family Command.

r
~--<' or IPIC8 >--­

-FAMILY---~-- <tamilv Mme> ----+--------
--~~~--ALTF--~~~~--

MY4120

SEMANTICS

The word FAMILY is required as the first word of a Families Command. Multiple <family name> and ALTF phrases
may be used in a Families Command. If multiple phrases are included, they must be separated from each other by means
of a blank space or a comma. Families Commands are terminated by a semicolon character.

The <family name> phrase defines a particular set of circuit status to be displayed. The format of a particular <family
name> status display is fixed by the logic of the Soft Display program and cannot be varied by the program user. The
following are the only Families Command <family name> phrases that can be used in a proper Command.

A

ARI CON

B

c

CPU

D

E

4-76

This <family name> causes the CPU Program Controller Family A logic status to be
displayed on the ODT screen. Family A logic circuits control arithmetic operations in
the CPU.

This <family name> causes the status of the CPU Arithmetic Controller circuits to be
formatted and displayed on the ODT screen.

This <family name> causes the CPU Program Controller Family B logic status to be dis­
played on the ODT screen. Family B logic circuits control logical, and field/bit manipula­
tion operations in the CPU.

This <family name> causes the CPU Program Controller Family C logic status to be
displayed on the ODT screen. Family C logic circuits control program subroutine and
branching operations in the CPU.

This <family name> causes the operating system and addressing environment status of the
current program segment to be displayed on the MDP screen.

This <family name> causes the CPU Program Controller Family D logic status to be
displayed on the ODT screen. Family D logic circuits control program literal values,
memory operations, and Top-of-Stack register operations in the CPU.

This <family name> causes the CPU Program Controller Family E logic status to be
displayed on the ODT screen. Family E logic circuits control scaling and input data
conversion operations in the CPU.

ERRORS

EVENT

GLOBAL

INTCON

I/O

MEMCON

MEMPRT

MEMTST

MMOD

PROGCL

u

UFAM

XFERCL

B 6900 System Reference Manual
System Display and Control

This <family na.111e> causes most (not all) CPU error status flip~flops and registers to be
formatted and displayed on the ODT screen.

This <family name> causes the CPU EVENT logic status to be displayed on the ODT screen.

This <family name> causes the Global memory port control logic status of the CPU to be
displayed on the ODT screen.

This <family name> causes the CPU Interrupt Controller logic status to be displayed on the
ODT screen.

This <family name> causes the CPU MLIP control logic status to be formatted and
displayed on the ODT screen.

This <family name> causes the CPU Memory Controller logic status to be displayed on the
ODT screen.

This <family name> causes the Memory Controller port control logic status to be displayed
on the ODT screen.

This <family name> causes the Memory Tester control logic status to be displayed on the
ODT screen.

This <family name> causes the CPU micro module control logic status to be displayed on
the ODT screen.

This <family name> causes the CPU Program Controller logic status to be displayed on the
ODT screen.

This <family name> causes the CPU family U control logic (subfamilies F, G, and H) status
to be displayed on the ODT screen.

This <family name> causes the User Family set of logic signals and levels to be formatted
and displayed on the ODT screen. The User Family consists of as many as 150 flip-flops
and/or registers, that have been defined by Soft Display prograi-n Commands (see FUNC­
TIONS COMMANDS USERF AM, ADD, DEL, FAMILY, and INSERT).

This <family name> causes the CPU Transfer Controller logic status to be displayed on the
ODT screen.

The <ALTF > option of a FAMILIES Command is used only in the factory, for system comparator station operations.
Use of this <family name> causes the ALT DISPLAY control flip-flop to toggle (see B 6900 MDP CABINET MAINTE­
NANCE CONTROL PANEL).

5010986 4-77

FUNCTIONS COMMANDS

B 6900 System Reference Manual
System Display and Control

FUNCTIONS Commands provide for the use of Soft Display macro-commands. A macro-command is a series of
micro-commands, such as FAMILIES, EVENT /MAINT Commands and other macro-commands that are executed in a
predetermined command sequence. Macro-commands add power to the Soft Display program because complex system
operations can be performed by use of a single FUNCTIONS Command. A complex operation example is writing into
system memory where both an Address-value and data must be present in the CPU logic circuits before the operation is
initiated.

FUNCTIONS Commands include instructions used to control the ODT screen display during Soft Display program opera­
. tions. FUNCTIONS Commands are also used to initialize and control the display of FAMILIES Command logic, to
·initiate Interrupt Controller memory-dump procedures, and to write user-devised machine language codes or user-defined
data words into system memory.

The Soft Display program FUNCTIONS Commands are as follows:

<ADD> COMMAND

---··ADD ----------------- (.. USERFAM FUNCTIONS Comrnn:I synux)

MV4121

<BRIGHT> COMMAND

--- BRIGHT ----------------------------------t
MV4U2

SEMANTICS

The BRIGHT FUNCTIONS Command causes the ODT screen to be brilliantly illuminated for non-ZERO register and
flip-flop status displays. This Command enables the highlighting feature of the ODT video screen. If this feature is not
enabled, all status displays are of the same intensity, regardless of whether the state of the device is HIGH (TRUE) or
LOW (FALSE). When this feature is enabled, non-ZERO (TRUE) states are displayed brilliantly and ZERO (FALSE)
states are displayed with normal intensity. The contrast between normal intensity and brilliant intensity makes it easier
to distinguish the current state condition of a logic signal.

4-78

<CAPTUR> COMMAND

SEMANTICS

B 6900 System Reference Manual
System ·Display and Control

The CAPTUR FUNCTIONS Command causes the Maintenance Processor (MP) to capture the current CPU logic display
state in the MP RAM memory. The CPU must be halted to capture its current state in MP RAM memory. The CAPTUR
Command provides the first part of a method for interrupting the CPU to execute a Soft Display Command sequence.
The second part of this method is provided by use of a RESTOR Command, which is defined later in this section.

CAUTION

Care must be taken when halting a CPU to execute Soft Display
CAPTUR and RESTOR Commands. Halting the CPU by stop­
ping the emission of CPU clock pulses may cause a Data Proces­
sor operator code to be captured in mid-sequence. Executing
Soft Display STEP or PULSE Commands while an operator-code
is captured results in stepping the CPU micro module address,
causing a mismatch between the logical state and sequence count
of the captured operator-code. This condition results in unpre­
dictable CPU behavior upon resuming the execution of the cap­
tured CPU operator-code.

A CPU operation must not be restored and resumed unless the
CPU is halted with the CPU Program Controller SECL signal at
a TRUE level. This prevents unpredictable CPU behavior upon
resuming the execution of a restored CPU function, regardless
of the Soft Display Commands used while the CPU logic state
was captured.

The current logical state of a CPU can be compared to a captured CPU logical state by means of a Soft Display
FUNCTIONS DIFF Command.

<CLRIC> COMMAND

~----CLRIC--~----------------------~
MV4624

SEMANTICS

The CLRIC is a macro-command that writes zeroes in all Data Processor IC memory address registers. The process flow
for this Command is as follows:

a. CAPTUR the CPU logical state

b. ARCS (clear) the CPU

c. Write zeroes :Yi each IC memory address Display register DO through D3 l

d. ARCS (clear) the CPU

5010086 4-79

B 6900 System Reference Manual
System Display and Control

e. Write zeroes in each IC memory address Base and Index register, by means of the control signal CRIC logic

f. ARCS (clear) the CPU

g. RESTOR the CPU logical state

The CRRIC Command uses CPU EVENT logic signals EVl, EV6, EV8, and EVl 1 to control the various processes of this
macro-command.

<CLRMM> COMMAND

-CLRMM ---------------------------------.i
MV4121

SEMANTICS

The CLRMM Command is a macro-command that writes zeroes into system memory word addresses. If the Soft Display
program is operating in SAFE mode (the default mode), the first main memory address written is word lFF hex (511
decimal). If the Soft Display program is not operating in SAFE mode, the first main memory address written is word
ZERO. The first 511 memory word addresses are not written when SAFE mode is in effect because these word addresses
contain code needed for system HALT/LOAD operations.

A CLRMM Command writes all zeroes in successive ascending memory addresses, imtil an invalid memory address inter~
rupt occurs. An invalid memory address occurs for an interrupt condition, or after the last memory address is written.
The CLRMM Command terminates by displaying the last memory address value on the ODT screen.

The process flow for this macro-command is as follows:

a. CAPTUR the current CPU state

b. If SAFE mode SET memory address to 1 FF hex; otherwise, RESET memory address to zero

c. RESET Top-of-Stack X register (and TAQ) to all zeroes

d. Use CPU EVENT logic to detect an invalid memory address condition (EV19, and EV20)

e. Use CPU Memory Tester logic (TVN = 3) to overwrite data from the X register into successive memory
addresses

f. Upon detec.ion of an invalid memory address, wait one second, and then display the last address value on
the ODT screen.

g. RESTOR the prior CPU state

 COMMAND

DEL --------------------(see USER FAM FUNCTIONS Command syntax)

MV4126

4-80

<DIFF> COMMAND

B 6900 System Reference Manual
System Display and Control

---DIFF~----~~~~~~~~~~~--~~~~~~~~~~---~~~----4

MV4l27

SEMANTICS

The DIFF Command compares the current CPU iogical state to a prior CPU logical state. The prior logical state of the
CPU was saved in the Maintenance Processor RAM memory by executing a Soft Display CAPTUR Command before
executing the DIFF Command. The names of all CPU logic signals that are not equal are displayed on the ODT screen.

<DO-UNTIL> COMMAND

DO -----.---<any Soft Display Command except WAIT> -------UNTIL------>•

k~------------SPACE------------~

> L
<register name> ------<HEX VALUE >---.-----------c

l <flip-flop n11me >---
•----------------........ (2\.__;SPACE ---------

MV4UI

SEMANTICS

The DO-UNTIL FUNCTIONS Command allows a Soft Display program user to specify a number of Soft Display Com­
mands that are to be repeated until a specified logical condition is satisfied. A DO-UNTIL Command must be entirely
present on line-I and/or line-2 of the ODT screen; that is, no part of this command syntax may be present on line4 or
line-5 (the Command Buff er).

Soft Display Commands (except WAIT FUNCTIONS Commands) are listed between the required DO and UNTIL words
of this Command syntax. The Commands listed are separated by spaces, and the entire Command group is essentially a
user-devised Soft Display macro-command. The Soft Display program executes the command parts of this macro in the
order of occurrence, from left-to-right. Each Command in the macro is executed at least one time. Each time the entire
macro is completed, the Soft Display program evaluates the conditions for terminating the macro-command. If no termi­
nation condition is TRUE, the macro-command is repeated from the beginning. If a termination condition is TRUE, the
macro-command is terminated.

The Soft Display prograrn user must specify 1, 2, or 3 wnditions for terminating execution of this macro-command. A
condition is a particular value in a Soft Display register, or it is a flip-flop being in a particular state (I or 0). A condi­
tion is specified by means of a <register name> <hex value> or <flip-flop name> <hex value> phrase, following the
UNTIL word entry. If 2 or 3 conditions are specified, they are separated by commas. The railroad diagram shows that
the line containing the comma may be traversed only 2 times. Thus, a maximum of three termination conditions may be
specified.

5010986 4-81

B 6900 System Reference Manual
System Display and Control

<DUMP> COMMAND

~-DUMP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-4

MV4ia

SEMANTICS

The DUMP FUNCTIONS Command forces a software memory-dump procedure to be executed as a Soft Display program
sequence. This Command assumes that the software operating system was initialized before the start of Soft Display
program operations, and that system main-memory has not been cleared by a Soft Display program Command. If any
part of this assumption is false, execution of the DUMP Command results in a Soft Display program error condition and
no memory-dump operation is performed.

The DUMP Command is a macro-command. The process flow of this macro is as follows:

a. STOP the CPU

b. Save the values in the CPU Top-of-Stack A and B registers, and the states of AROF and BROF flip-flops

c. Save the value in the CPU Lexacographical Level register

d. CAPTUR the logical state of the CPU

e. General Clear (ARCS) the CPU circuits

f. SET a word of program-code in the CPU P register, as follows: "3 AE4014BOBOAB"

g. Restore the saved values of the A register, B register, Lexacographical Level register, and AROF and BROF
flip-flop states

h. STEP the CPU

When the CPU is stepped (see h above), a memory-dump procedure located in memory-address DO +14 (referenced in the
program-code word) is entered and executed. Logical conditions of the CPU that might prevent the memory-dump proce­
dure operation (such as a CPU SUPERHALT, which stops system clocks distribution) are removed by General Clearing
the CPU. The CAPTUR function saves the CPU state conditions present at the beginning of the DUMP Command. Thus,
CPU state conditions at the time of the memory-dump are still available after the memory-dump, they are saved in the
Maintenance Processor RAM memory. ·

4-82

<END> COMMAND

-END

MV4UO

SEMANTICS

B 6900 System Reference Manual
System Display and Control

The END FUNCTIONS Command is used to terminate operation of the Soft Display program, and return control of
B 6900 system operations to the Maintenance Processor Executive program. If a maintenance test routine was in process
when the Soft Display program was initiated, the test routine is resumed at the point where it was interrupted.

<EXEC> COMMAND

NOTE

Care must be exercised when a test routine is resumed by
executing a Soft Display END Command. If the Soft Display
program executed any of the following Commands, the test
routine may no longer be valid.

1. CLRMM 5. PULSE
2. WRMM 6. STEP
3. CLRIC 7. ARCS
4. WRIC

Any macro-command that exercises one of these Commands
may also cause a resumed test routine to be invalid.

--EXEC <PBR ><PSR and PIR ><LEX LEVEL~-----------------~

MV4631

SEMANTICS

The EXEC FUNCTIONS Command initiates the CPU to execute a program-code sequence in system memory. The data
value parts of the EXEC Command syntax are hexadecimal values used to establish the operating system addressing
environment.

The PBR data part of this Command establishes the initial value of the CPU IC memory Program Base Register (PBR).
The PBR hexadecimal value must not exceed 5 hexadecimal characters in length. If PBR is less than 5 hex characters in
length, the value is placed in the PBR register, right-justified, and unspecified high-order bits are filled with leading zeroes.

The Program Syllable Register (PSR) and Program Index Register (PIR) part of this Command establishes the initial
values of the CPU IC memory Program Index Register, and the CPU hardware Program Syllable Register. These two
values are concatenated to form a single Command syntax 4-character hexadecimal value part. The 3 high-order bits of
the hexadecimal value are the initial value for the PSR register, and the low-order 9-bits are the initial value for the IC
memory PIR register. The PIR bits are placed in the PIR IC memory register, right-justified, and the unspecified high­
order bits are filled with leading zeroes.

The Lexacographical Level (Lex Level) part of this Command establishes the initial value of the Lexacographical Level
register. The Lex Level part contains 2 hexadecimal characters, and the least-significant 5-bits of the 2 characters are
used to fill the Lex Level register.

5010986

B 6900 System Reference Manual
System Display and Control

The EXEC Command is a macro-command that performs the following listed functions.

a. CAPTUR the CPU logic signal state

b. General clear (ARCS) the CPU logic

c. Place the <Lex Level> part value in the Lexacographical Level hardware register of the CPU

d. SET the following hexadecimal program-code word in the CPU P register; "3 A2****DFDFDF", where
"****" is the <PSR and PIR> part value

e. Place the <PBR> part value in the Program Base Register of the CPU

f. Initialize the EVENT logic to execute one pass through the program-code or stop on a SECL signal (and
INFF/), Syllable Dependent Interrupt, or Alarm interrupt

g. Prepare the CPU to accept a STEP Command signal, but emit the STEP signal

<FAMILY> COMMAND

NOTE

The EXEC Command performs a BRANCH UNCONDITIONAL
operator to begin _executing the program code. The EXEC
Command establishes all of the prerequisite functions to execute
the BRANCH UNCONDITIONAL operator, but does not
actually perform the branching operation. A STEP Command
subsequent to the EXEC Command is required to execute the
program code.

The FAMILY Command is defined in previous paragraphs entitled Families Control Commands, Section 4, of this manual.

<HELP> COMMAND

~HELP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MV4532

SEMANTICS

This FUNCTIONS Com.tnand causes the list of Commands and FAMILY names to be displayed on the ODT screen.

<INFO> COMMAND

B 6900 System Reference Manual
System Display and Control

j"'<;,__ ___ <comma, or blank> ----

----INFO-------......__---..-___ <register name> -----------

1----< flip-flop name>----

----MF 10 <OCT ADD>--....

MV4533

SEMANTICS

This FUNCTIONS Command provides a method of displaying data about a <register name>, <flip-flop>, or MFIO <OCT
ADD> on the ODT screen. Multiple <register name>, <flip-flop name> and MFIO <OCT ADD> items may be included
in a single <INFO> Command; however, a comma or blank character must separate an item from other items in the same
Command. A semicolon character must be used to terminate an <INFO> Command.

The data displayed on the ODT screen about each register, flip-flop, or MFIO octal address in an INFO Command is as
follows:

a. The type (either register or flip-flop)

b. The current value/state of the register, or flip-flop

c. The number of bits (in <register name>, or the number of flip-flops present at MFIO <OCT ADD>

The MFIO <OCT ADD> option of an INFO Command allows the Soft Display program user to select a specified CPU
card package to be displayed on the ODT screen. A maximum of 8 flip-flops of a selected CPU card-package are dis­
played on the ODT screen. This Command can be used to display the status of CPU flip-flops that do not have Soft
Display program names associated with their physical location within the CPU logic.

<INSERT> COMMAND

- INSERT------------------(see USER FAM FUNCTIONS Command syntax)

MV4534

<NOSTEP> COMMAND

-----SETNOSTEP----------------~--o1

MV463&

SEMANTICS

A NOSTEP Command controls the execution of a consequent Soft Display program macro-command. A NOSTEP Com­
mand causes a NOSTEP POINT to be present in the sequence of the macro-command, where a STEP sequence normally
occurs. When the macro-command is executed, a "WAITING FOR STEP" output message is displayed on the ODT
screen, and the Soft Display program stops. The macro-command waits at its NOSTEP POINT until a STEP Command
is entered at the ODT keyboard.

5010986 4-85

B 6900 System Reference Manual
System Display and Control

When a SET NOSTEP Command is executed, prQgram toggle "NOSTEP" is SET. When the macro-command containing
the NOSTEP POINT is executed, the "NOSTEP" toggle is RESET. Commands following the macro-command in the com·
mand buffer are not executed. A STEP.Command ODT input at a NOSTEP POINT causes the waiting macro-command
to be executed, after which the Soft Display program returns to its initialization point and waits for new commands to be
inserted into the command buffer.

The macro-commands that respond to the use of a SET NOSTEP Command are as follows:

1. CLRIC

2. CLRMM

3. DUMP

4. EXEC

5. RDHDP

6. RDIC

7. RDMM

8. WRIC

9, WRMM

<NZDATA> COMMAND

NZDATA

MV4536

SEMANTICS

The NZDATA FUNCTIONS Command causes the Soft Display program to scan all CPU register and flip-flop display
status data. All registers that contain non-ZERO data (in the TAG-field or data fields) are listed on the ODT screen. All
flip-flops that are SET (TRUE) are also listed on the ODT screen.

4-86

NOTE

There are more than 1800 registers and flip-flops in a B 6900
CPU cabinet to be scanned for listing on the ODT screen by
this Command. Therefore, it takes a significant time interval
for this Command to complete its sequences.

<PROGR..'1 > COMMA..~D

B 6900 System Reference Manual
System Display and Control

r::
---PROGRM <start>------------ <data> -----------

MV4537

SEMANTICS

This FUNCTIONS Command writes <data> words of program code into memory beginning at memory address <start>.
Each program-code wore written into memory contains a Command=supplied TAG-Field= 3 value. The use of this Com­
mand allows a Soft Display program user to write a machine-language program in memory. A subsequent EXEC Com­
mand is used to initiate execution of the user-supplied program-code words in memory.

The <start> beginning memory address is a 1-to-5 character hexadecimal number, that defines the absolute memory
address of the first word of program code. This hexadecimal address value is right-justified. If it contains fewer than
5 hex characters, unspecified high-order memory address bits are filled with leading zeroes.

The <data> field is a string of hexadecimal program code. The PROGRM Command automatically segments the hex
string into program-code words of 12 hexadecimal characters (6 program-code syllables), and inserts a TAG-field value
of 3, hexadecimal. The address is incremented +1 each time a program-code word is written into memory, Thus, a
PROGRM Command writes multiple successive code words into memory, until all program-code syllables are present in
a contiguous memory area.

A PROGRM Command is a macro-command. The sequences of this macro save the state of the CPU logic as the
beginning sequence of the Command, and restore the CPU logical condition as the terminating sequence of the Command.

<RDHDP> COMMAND

---RDHDP <start address> <end address> ----------------------__..

MV4538

SEMANTICS

The RDHDP FUNCTIONS Command is used to cause the contents of the MLIP RAM memory to be displayed on the
ODT screen. This Command can cause a maximum of 21 words of MLIP RAM memory data to be read for display on
the ODT screen. The first RAM memory address to be read by a RDHDP Command is specified by the <start address>
part. The final RAM memory address to be read is specified by the <end address> part. If the difference between the
start address and the end address is greater than 21 decimal, only the 21 addresses that begin in <start address> are read
and displayed. If <end address> is less than <start address>, a Soft Display program error is detected, and no RAM
addresses are read or displayed. If <start address> and <end address> are equal, 1 RAM address is read and displayed.

The B 6900 MLIP RAM memory contains 3FF hexadecimal (1024 decimal) addresses. The .RDHDP Command utilizes
the MLIP micro-stack pointer for addressing RAM, thus, all MLIP RAM addresses can be accessed. The MLIP RAM data
is read into the MLIP Rl register; and from the Rl register status display update, it is displayed on the ODT screen.

If either the <start address> or <end address> values in a RDHDP Command are greater than 3FF hexadecimal, a Soft
Display program error is detected and the RDHDP Command is not executed.

5010086 4-87

<RDIC> COMMAND

B 6900 System Reference Manual
System Display and Control

There are 2 different formats for the RDIC Soft Display Command. One format is used when a NOSTEP Command
precedes the RDIC Command in the command buffer. The second format is used without a preceding NOS TEP Command
in the command buffer. The syntax for both are given, and then the SEMANTIC discussion defines the differences
between the 2 formats.

---RDIC <IC address>--------------------(with NOSTEP Command)

MV4539

SEMANTICS

The RDIC FUNCTIONS Command causes the contents of the CPU IC memory address registers to be displayed on the
ODT screen. The display on the ODT screen contains the IC memory address register mnemonic, the hexadecimal
address of the IC memory register, the address value detected while the register is being read.

If the RDIC Command is used with the NOSTEP toggle RESET, a beginning IC memory address is not used. This RDIC
Command syntax format causes all 48 IC memory address registers to be read and displayed. · The sequences of the RDIC
macro-command read the 8 INDEX IC memory address registers, the 8 BASE IC memory address registers, and the
32 DISPLAY IC memory address registers L'1 hexadecimal register address order.

If the RDIC is used with the NOSTEP toggle SET, an <IC address~ entry is required by the RDIC Command syntax.
The <IC address> contains a 2-character hexadecimal value which defines the register address of the first IC memory
address register to be read and displayed. All IC memory address registers with a register address value higher than
<IC address> are also read and displayed.

An error flag is indicated by an "*ERR*" message, which is displayed adjacent to the corresponding IC memory address
register data on the ODT screen. This error flag is present if an IC memory address register has not been written into
since system power was applied to the CPU cabinet circuits. It is also displayed if a read data error or residue error is
detected during the read sequence of the RDIC Command.

<RDMM > COMMA.ND

11///!--r __ , _ _1:;"-----
---RDMM---------'-----<startaddress>-....---<end address>---........--------­

L.<count>---"""'

MV4540

SEMANTICS

The RDMM FUNCTIONS Command causes the contents of system memory to be read and displayed on the ODT screen.
An RDMM Command requires at least one <start address> and <end address> or <count> address-range. There may be
3 address ranges present in an RDMM Command, with ranges separated from each other by commas. An RDMM Com­
mand can cause up to 63 memory words, from 1 to 3 different address-ranges in memory, to be read and displayed on
the ODT screen.

4-88

B 6900 System Reference Manual
System Display and Control

if a single address-range is present in an RDM1\i Command, a maximum of 21 memory words ai1d their TAG-Fields are
read and displayed on the ODT screen, in a single column ODT display format.

If 2 address ranges are present in an RDMM Command, the first range can display from 1-to-21 memory address words
and their TAG-Fields, in the left-hand column of the ODT screen display. The second range can display up to 42 mem­
ory address words and their TAG-Fields in the middle and right-hand columns of the ODT screen display.

If 3 address ranges are present in an RDMM Command, each range can display up to 21 memory words and their TAG­
Fields, in 3 columns of display on the ODT screen. The left most column displays the words from the first range; the
center column displays the words from the second range; and the left most column displays the words from the last
range.

An address range consists of a <start address> and <end address> pair, or a <start address> and <count> pair. A
<start address> field contains 1-to-5 hexadecimal characters, which define the first absolute memory address word to be
displayed on the ODT screen. The value of <start address> is placed in the CPU memory address register, right justified.
If there are fewer than 20-bits in a <start address> value, the unspecified high-order address register bits are filled with
leading zeroes. If there are more than 20-bits present in <start address> a Soft Display program error is detected, and
the RDMM Command and any subsequent Commands in the command buffer are not executed.

An <end address> is similar to a <start address>. It contains 1-to-5 hexadecimal characters which are handled in the
manner described in the preceding paragraph for a <start address> value. The value of an <end address>, relative to its
paired <start address>, determines the number-of memory words displayed on the ODT screen. If <end address> is
equal to <start address> , 1 memory -word is displayed. If <end address> is greater than <start address> , then as many
as 21 memory words are displayed for address-range 1or3, and as many as 42 memory words are displayed for
address-range 2.

A <count> value contains 2 hexadechnal characters, arid determi...'les how mfu11y memory words, including tl1e paired
<start address> word, are to be displayed on the ODT screen. A <count> value must be less than the value of its paired
<start address>; otherwise, the Soft Display program treats the <count> value as an <end address>. If a <start
address> value is less than 16 hexadecimal (22 decimal), an <end address> value is used instead of a <count> value.

The sequences of a RDMM macro-command, which save the status of the CPU logic at the start of the RDMM Command,
also restore the CPU to the saved status condition at the end of the Command flow.

<RESTOR> COMMAND

MV4541

SEMANTICS

The RESTOR FUNCTIONS Command is used to restore a CPU logical state condition that was captured before restora­
tion. A prior CPU state condition is present in the Maintenance Processor RAM memory, and a RESTOR Command
causes the CPU to assume the same state as that in MP RAM memory. A CPU operation cannot be resumed _by means
of a RESTOR Command if CPU clock pulses are emitted in the CPU while a CPU logical state condition is saved in
MP RAM memory. A clock pulse in the CPU causes the micro module address count logic to be incremented, thus a
saved CPU logical state condition is no longer synchronized with the current CPU micro module address.

5010986 4-89

<RETURN> and <SAVE> COMMANDS

B 6900 System Reference Manual
System Display and Control

---RETURN-------------<1 >------------------..,.

---SAVE <2>-----

MV4642

SEMANTICS

SAVE/RETURN FUNCTIONS Commands are used to preserve the contents of the Soft Display program command buffer,
and to recall the preserved contents to the command buffer for subsequent command executions.

A SAVE < 1 > Command causes line-1 of the ODT command buffer to be copied on line4 of the ODT screen. A SA VE
<2> Command causes line-2 of the ODT command buffer to be copied on line-5 of the ODT screen.

A RETURN < 1 > Command causes line4 of the ODT screen to be copied on line-1 of the ODT screen, which is the top­
line of the command buffer. A RETURN <2> Command causes line-5 of the ODT screen to be copied on line-2 of the
ODT screen, which is the bottom line of the command buffer.

SAVE/RETURN Commands may be executed when they are located on either line-I or line-2 of the ODT screen.

Saved buffers of Commands can be reused in either of 2 ways. The ODT cursor can be positioned at line4 and the
XMIT key depressed to execute Commands in the saved buffers. The ODT line-delete feature can be used to rotate
lines 4 and 5 to the line 1 and 2 positions, and then depressing the XMIT key from the homed position.

<REVERS> COMMAND

-----REVERS--1

MV4643

SEMANTICS

The REVERS FUNCTIONS Command causes the ODT screen video display mode to go to the default video mode setting.
The default video mode is typical display mode, where the ODT screen brilliant display feature is not used. In this
default display mode all flip-flop states and all register values are displayed with nonnal video intensity, regardless of the
non-ZERO or ZERO state.

<SAVE> COMMAND

---SAVE------------------(see RETURN FUNCTIONS Command syntax)

4-90

<SMEAR> COMMAND

B 6900 System Reference Manual
System Display and Control

---SMEAR <start> <bypass> <ug ><data>-----------------__.

SEMANTICS

The SMEAR FUNCTIONS Command is a macro-command which utilizes the CPU Memory Tester logic to smear a
user-supplied data word in memory. The values of the <tag> and <data> items define the user-supplied data word. The
value of the <start> and <bypass> items define the memory address-range into which the user-supplied data word is
written. The Command cycles through all inclusive memory addresses until an invalid memory address interrupt is sensed,
or until the Memory Tester logic completes the test. Upon completing, the SMEAR Command causes the last memory
address written to be displayed on the ODT screen.

This macro-command saves the current logical state of the CPU at the beginning of its operation sequences, and restores
the CPU state as the last sequence of the Command.

<STATUS> COMMAND

MV4546

SEMANTICS

The STATUS FUNCTIONS Command causes the state of 10 system control circuits to be displayed on the ODT screen.
The 10 system control circuits are as follows:

1. AAIF - Maintenance Processor Address Analyze Feature

2. ALTF - Alternate/Normal System Display Select

3. CHLT - Conditional Halt Status

4. CPTF - Comparator Select Status

5. CSTP - Clock Stop Logic Status

6. EVNT - EVENT Mode Flip-flop State

7. LOCL - CPU Local/Remote Status

8. OCTAL - Octal Data Dispiay Select Status

9. SAFE - Safe Mode Status

10. SECL - Syllable Execute Complete Level Status

5010086 4-91

<USERFAM> COMMAND

USRFAM I
ADD~

---DEL__j

B 6900 System Reference Manual
System Display and Control

I I
I--< flip-flop name> ~
L<register name> __J

---INSERT <family name>--------------------

MV4647

SEMANTICS

The USRFAM FUNCTIONS Commands provide a method for creating and updating a user-defined display Family.
System state conditions are parts of user-defined Families, and are displayed on the ODT screen when a UF AM FAMILIES
Command is executed.

A USRF AM Command causes a user family array to be created and to be initialized. The user family array is a buffer
area that contains space for up to 145 flip-flop and register names. When a USRFAM Command is executed the array is
created, and any <flip-flop name> or <register name> items specified are placed in the array, in the order of their
appearance in the USRFAM Command syntax. If there are no <flip-flop name> or <register name> items specified by a
USRF AM Command syntax, the array is initialized to a cleared state.

The ADD Command is used to put additional <flip-flop name> and <register name> items in a previously initialized
array. Items added to the array are placed at the end of the array list, in the order of appearance in the ADD Command
syntax. If an ADD Command is used but the user family array was never initialized by a USRFAM Command, a Soft
Display program error is detected and the ADD Command and all subsequent Commands in the command buffer will not
be executed.

The DEL (Delete) Command is used to remove <flip-flop name> and <register name> items from the user family array.
If a DEL Command is used but the user family array was never initialized by a USRF AM Command, a Soft Display
program error is detected and the DEL Command and all subsequent Commands in the command buffer are not executed.

An INSERT <family name> Command is used to add a Family display to the user defined family array list. If an
INSERT Command is used but the user family array was never initialized by a USRF AM Command, a Soft Display pro­
gram error is detected and the INSERT Command and all subsequent Commands in the command buffer will not be
executed.

If a <flip-flop name> or a <register name> is not a valid Soft Display program recognized name, an error condition is
detected. Moreover, the Command syntax that contains the name and all subsequent Commands in the command buffer
are not executed.

4-92

<WAIT> COMMAND

B 6900 System Reference Manual
System Display and Control

-re --, __0;\i----------4
--- WAIT -----------:<register name>·---.,....,,,.-- <hex value> -~~--------t

L <flip-flop name> _J
L<ooT input message>----------

MV4548

SEMANTICS

A WAIT FUNCTIONS Command provides a method for temporarily stopping the execution of Soft Display Commands
until a preselected condition is present. From 1 to 3 conditions are specified as the basis for resuming the execution of
subsequent Commands in the command buffer. If more than 1 condition is listed, commas are used to separate the
conditions.

A condition consists of the name of a logic circuit and a selected hexadecimal value for the selected circuit, or of an ODT
input message. If a selected condition.is. a <register name>, the condition is present when the current value of <register
name> exactly matches the <hex value:> specified for that condition. When a <flip-flop name> is used as a condition,
the <hex value> is <1 > for the TRUE condition and <0 > for the FALSE condition. If <ODT input message> is used
as a condition, depressing the keyboard XMIT pushbutton causes the condition to be present, and any data transmitted
by depressing the XMIT pushbutton is discarded.

<WRIC> COMMAND

-r-------< , or blank>------.

---WRIC-----.... ----<address ><data>----------

MV4649

SEMANTICS

The WRIC FUNCTIONS Command is used to establish the value of a CPU IC memory address register. Multiple IC
memory address register values can be established by use of a single WRIC Command. The <address> item identifies the
particular IC memory address register into which the corresponding <data> item is to be written. Both the <address>
and <data> items are 5-character hexadecimal values.

4-93

<WRMM> COMMAND

B 6900 System Reference Manual
System Display and Control

... ,<~---< , or blank>-----

---WRMM<eddress >--...___-<tag> <data>-----_.__ ___ _

MY4&60

SEMANTICS

The WRMM FUNCTIONS Command is used to write user-supplied memory words into successive main memory addresses.
The <address> item specifies the beginning main memory address into which the first word of data is written. Each
memory word contains a I-character hexadecimal <tag> field value, followed by a blank space, followed by a
12-character hexadecimal <data> field value. Multiple, successively addressed memory words may be written into main
memory by use of a single WRMM Command. Memory word tag and data-field pairs are separated from other word tag
and data-field pairs by commas or blank characters.

<**>COMMAND

---·· r::
-----------<alpha letter>----__._ ___ _

MY4561

SEMANTICS

An "**" FUNCTIONS Command causes the state of all flip-flops and registers whose names begin with <alpha letter> to
be displayed on the ODT screen. Multiple <alpha letter> items may be used in a single "**" Command.

<-->and<++> COMMANDS

---------<hex value 1 ><hex value 2>-----------------1

---++-----
MV4567

SEMANTICS

The "--" FUNCTIONS Command causes the CPU arithmetic logic to perform a subtraction function, and displays the
difference value on the ODT screen. The <hex value 2 > is subtracted from <hex value 1 >.

The ODT displays "<hex value 2> -- <hex value 1 > =difference".

The "++"FUNCTIONS Command causes the CPU arithmetic logic to perform an addition function, and displays the sum
value on the ODT screen.

The ODT displays "<hex value 1 > ++ <hex value 2> =sum".

4-94

B 6900 System Reference Manual

GENERAL

SECTIONS

SYSTEM CONCEPT

The B 6900 system consists of a central processing unit, a central power cabinet, a maintenance display processor cabinet,
Input/Output Data Communications (IODC) cabinets and the associated peripherai equipment for input/output. This
section generally defines the overall system hardware operation.

The central processing unit (CPU) is the heart of system operations in the B 6900 system; therefore, while other units of
the system are discussed in this section, the main thrust is to describe the units that are part$ of the CPU cabinet. The
three main parts of the CPU cabinet are as follows:

a. The data processor (DP)

b. The Message Level Interface Processor (MLIP)

c. The memory control (MC)

DATA PROCESSOR

The data processor part of the CPU produces the objective results of a program by performing the necessary arithmetic
and logical functions of the program flow.

The data processor contains two major divisions: the functional resources and operator algorithms (Figure 5-1). The
functional resources are referred to as the uhardcore" of the processor.

The functional resources are the event logic, the micro-program module, the top of stack registers, the address adder, the
MLIP, and six controllers. The operator algorithms are a group of six families of operators. The operator algorithms
provide the logic required to control the functional flow of the program.

OPERATOR FAMILIES

The operator families and functional controllers are linked by 11 busses (bus Zl through Z6, and ZS through Z12).
These busses provide for data movement and signal routing within the processor (see Figure 5-2).

A bus is a group of wires used to transmit signals from one place to another. The busses within the transfer controller
are etched on a single card connecting the same bit of all "hard registers" together; that is, bit 1 of registers A, B, C,
X, Y and Z are all on the same physical card.

The operators are grouped into six groups called the operator families (Figure S-1). The grouping of related operators
into families minimizes the logic required in the processor. The six families of operators with a brief purpose for each
are:

a. Family A OPS (Arithmetic Operators).

b. Family BOPS (Logical Operators).

c. Family COPS (Subroutine Operators).

d. Family D OPS (B 6900 Word Oriented Operators).

5010986 S-1

B 6900 System Reference Manual
System Concept

FUNCTIONAL RESOURCES OPERATOR ALGORITHMS

PROCESSOR ADDRESS FAMILY A OPERATORS

ARITHMETIC MODULE

CONTROLLER [STROBE A I
[960 BIT IC MEMORY I

(EXPONENT ADDER 16 BITS l
20 BIT ADDRESS

I MANTISSA ADDER 81 BITS I ADDER, AND 3 BIT
RESIDUE ADDER FAMILY B OPERATORS

I STROBE BI

EVENT LOGIC
PROGRAM SEQUENCE
CONTROLLER FAMILY COPERATORS

I LOOK AHEAD LOGIC I I STROBES C. J, K I

[P, AND L REGISTERS I

MICRO-PROGRAM MODULE
FAMILY D OPERATORS

STACK ADJUST I STROBED I
CONTROLLER

MEMORY CONTROLLER

I MEMORY EXCHANGE I INTERRUPT
CONTROLLER FAMIL y E-OPERATORS

[MEMORY TESTER I [STROBE EI

[EXTERNAL SCAN BUS I

(GLOBAL MEMORY INTERFACE l

TRANSFER
CONTROLLER FAMILY U OPERATORS

TOP OF STACK REGISTERS
I STROBES F, G. H I

(A, 8, C, X, V. Z REGISTERS l
I STRING OPERATORS I

[EDIT MODE OPERATORS I

MESSAGE LEVEL INTERFACE PROCESSOR
[VECTOR MODE OPERATORS I

LOGIC MODULE

MV4662

Figure 5-1. B 6900 CPU Organization

e. Fainily E OPS (Scaling Operators).

f. Families F, G, HOPS (String Operators).

PROGRAM CONTROLLER

The program controller (see Figure 5-2) controls the program flow in the data processor. The program controller deter­
mines when the P register contains machine language operators to be executed, which syllable of code is to be executed
next, when to replace the contents of the P register and L register, and the source location of the data used to replace
the contents of the P register and L register. Tne P register is considered to contain valid program code only if the
Program Register Occupied Flip-Flop (PROF) is set.

The Program Syllable Register (PSR) serves as a pointer to the next syllabie to be executed from the P register.

S-2

DIS
FROM MLIP

--1
Z1

1.---------z~s-e--+----___, TO MLIP

IAROFI__.,....._..____.~~

IBROFf .___.......___~___.~~

ILROFI

IPROFI

FROM MEMORY
INTERFACE

DIRECT
TRANSFERS

LOGICAL
TRANSFERS

A

B

x

y

c

z

L

p

SYLLABLE DECODE

µP.ADD
STROBES

FAMILIES~
{

Zll

Z12

ZlO

J COUNT BUS

MV4141

A B

MAINTENANCE DISPLAY

PROCESSOR INTERFACE

Z4

ADDER

~---<9--9-..... ~TO

SYSTEM
CLOCK

MLIP

ARITH

1 CONTROL 1

L.. TO MEMORY INTERFACE

LOOKAHEAD
UNIT

PROGRAM
CONTROLLER

PSEUDO OPS

MICRO-MODULE

Z6T9
CONTROL

Z6T8
CONTROL

FENCE
LOGIC

DISPLAY
SELECT

INDEX
SELECT

FROM C REG

I

zg

ZS

ERROR

RESIDUE
CHECK

DISPLAY
ICMEM

INDEX
ICMEM

ADDA.
ADDER

FROM Z5

INTERRUPT
MSG LEVEL
INTERFACE
PROCESSOR

TO
Z1 MEMORY

CONTROL

SCAN CONTROL

MEMORY CONTROL

MLI INTERFACE

... .---1~ PERIPHERAL DEVICES
(INCLUDES DATA COMMI

5010986

B 6900 System Reference Manual
System Concept

READ DATA WZ3BUS1

ERROR
DETECTION AND

CORRECTION

ERROR

RESIDUE

CHECK

ERROR

PARITY

CHECK

WRITE DATA

LOCAL
MEMORY

---+~~__.~~INTERFACE

MOO 1

LOCAL
MEMORY

._-+-+--+--~INTERFACE
M002

LOCAL
MEMORY

a--+~-+--+-4~1NTERFACE
MOD3

LOCAL
MEMORY

._-+--+--+---~INTERFACE
MOD4

GLOBAL
MEMORY

._~_.NINTERFACE

FROM Z4 BUS -----. ...

Figure 5-2. B 6900 CPU Block Diagram

5-3

Look Ahead Logic

B 6900 System Reference Manual
System Concept

A look ahead function is implemented by provision of the L register and the associated L Register Occupied Flip-flop
(LROF). The function of the look ahead logic is to overlap as far as possible the fetching of code from main memory.
In look ahead mode, L acts as a buffer against the P registerj such that code is executed from P while L gets the next
code word. Code addresses are initially formed by adding the value of the Program Base Register (PBR) to the value of
the Program Index Register (PIR). Code addresses are maintained in the look ahead logic in the Look Ahead Address
Register (LAR).

In certain modes, the normal sequential code execution, as affected by the look ahead logic, is undesirable and there­
fore inhibited. Such cases are branch instructions, subroutine entries and exits (or returns), and table edit mode opera­
tions. In the first two cases, new values of PBR and PIR are presented to the program controller, and are used as
described. In table edit mode, look ahead logic is totally inhibited-, and the program controller uses the Table Base
Register (TBR) and the Table Index Register (TIR) to form the table mode edit operator code address. Only the P
register is used to contain edit mode table operator code (and not the L register). In table edit mode operations, the
TIR address register is updated by the program controller, as required.

Integrated Circuit (IC) Memory

The B 6900 system data processor maintains the procedure addresses of the program currently being executed in the
data processor. These procedure addresses are maintained in a group of address registers commonly identified as IC
memory address registers (see Figure 5-2). The IC memory address registers are classified as display address, base address,
and index registers.

There are 32 display address registers (labeled DO through D 31) in the data processor. A display register number corre­
sponds to a lexicographical programming level, and locates the absolute local memory base address of the process stack
(the Y~CW of the stack) for all current progriurm1ing levels. The ma.yJmum number of programming levels (le-"JcographJ­
cal levels) in a procedure is fixed by the number of display address registers available in the data processor. The number
of programming levels in a procedure is limited to 30, because programming level zero is required for the MCP, and
programming level one is required for the segment descriptor index. The bottom of a stack is identified by the address
located in the BOSR register, which was identified earlier in this manual. The top of a stack is identified by the address
located in the S register, which was also identified earlier in this manual (refer to Section 3).

The following eight base address registers are in the data processor:

Base Register
Number

0

2

5010986

Base Register
Name

PBR

SBR

DBR

Register
Usage

The base address of the program code segment.

The base address of string source data.

The base address of string destination data.

5-5

Base Register
Number

3

4

5

6

7

Base Register
Name

TBR/BUF2

s

SNR

PDR

TEMP

B 6900 System Reference M nual
System Concept

Register Usage

The base address <;>f table program code, or alternatively a temporary
buffer for storing an address value.

The address of the top word in the current stack.

The stack number register. The stack number is used to contain a vec­
tor value for locating the current stack descriptor. The vector value is
an index on the address of the stack vector descriptor for locating the
stack descriptor.

The program dictionary register. This register is used to contain the
address of the base of the current program code segment descriptor in
memory.

The temporary register. This register is a general purpose register used
to store addresses temporarily

The following eight index address registers are in the data processor:

5-6

Index Register
Number

0

2

3

4

Index Register
Name

PIR

SIR

DIR

TIR/BUF3

LOSR

Register Usage

The program index register. The program index value is an index on
the base address contained in the PBR register. The sum of PBR and
PIR is the absolute address of the word of program code that is
presently in the P register.

The source index register. The source index value is an index on the
base address that is contained in the SBR register. The sum of SBR
plus SIR defines the address of a word of source data for string
operations.

The destination index register. The destination index value is an index
on the base destination register. The sum of DBR plus DIR defines
the address of a word of destination data for string operations.

The table index register. The table index value is an index on the address
that is contained in the TBR register. The sum of TBR and TIR defines
the address of the word containing the n1icro-operators in the table code.
When this address register is not being used for table type operations, it is
alternatively used (as BUF3) for temporary storage of other add_ress values.

The limit of stack register. This register contains the upper stack
boundary address for the current procedure. This register limits the
size of the stack.

Index Register
Number

5

6

7

Index Register
Name

BOSR

F

BUF

Address Adder and Residue Test Logic

B 6900 System Reference Manual
System Concept

Register Usage

The bottom of stack register. This register contains the lower boundary
address for the current stack.

The F register. This register contains the address of the last MSCW for
the current process stack in memory. The F register and the display
register that corresponds to the present lexicographical level contain the
identical address value.

The buffer address register. The buffer is used to temporarily store
addresses.

The address adder is a shared mechanism through which all addresses used within the B 6900 system are manipulated.
Figure 5-2 shows this mechanism, with associated data paths and data integrity residue generation and check blocks.

All traffic to and from the IC memory is conducted through the address adder (or the Z8 and Z9 busses) to the addre8s
adder. Data integrity within all of these blocks is maintained by modulo three residue checking. This guarantees to
detect any single bit error, and some multiple bit errors that occur in IC memory, or the address adder. An error in the
modulo three residue generation circuit or in the residue check circuit is also detected.

Any addressing error in the address adder or in the· residue check Circuit is a fatal condition, and results in an "abort"
type interrupt condition.

TRANSFER CONTROLLER

The transfer controller (see Figure 5-2) has two major sections: a hard register section referred to as stack registers for
data and program information, and an internal data transfer section. Six busses, Zl through Z6, are used for the normal
data movement to and from the hard registers. Zl, Z2, and Z3 are input busses to these register contents are never
are output busses. The capacity of each bus is 51 bits.

Three special busses are used for arithmetic operations (see Figures 5-3 and 5-6).

Stack Registers

Each information register has 51 bit positions (see Figure 5-3). Registers A, B, C, X, Y, and Z are for information hand­
ling during program flow. Registers P and L contain B 6900 program words. The P and L registers contents are never
written into memory.

The Z3 and Z4 busses provide for bi-directional data flow between the hard registers and memory or the multiplexor.

The A and B registers are the top of stack registers, and X and Y are normally second-word information registers for
double-precision operands. Registers C and Z are general purpose registers which provid~ temporary storage during
operator executio·n.

5010986 S-1

Z1

SL

MV 1612

S-8

Z2

MASK
NE1WORK

Z3

B 6900 System Reference Manual
System Concept

DIS

STEERING
NETWORK

DIRECT TRANSFER
NETWORK

LOGICAL TRANSFER
NETWORK

z

c

A

B

x

y

L

p

EXPONENT
AND MANTISSA
ADDERS I , ..

Figure 5-3. Internal Data Transfer Section

Z5

Z4

Z6

ADDRESS
ADDER
AND
RESIDUE
CIRCUITS

IC MEMORY
REGISTERS

Z6
TO
Z8
OR
Z9
CONTROL

} MEMORV
INTERFACE

Internal Data Transfer Section
\

B 6900 System Reference Manual
System Concept

Thl internal transfer section (see Figure S-3) permits the following data transfers between stack registers:

a. A direct, full-word transfer path using the ZS and Z2 busses.

b. A logical transfer path to create the results of the family B (logical) operators, using the Z4 and Z3 busses.
The logical transfer path also provides one additional full word transfer path between registers.

c. A steering and mask network providing a field displacement between stack registers using the Z6 and
Zl busses.

d. A transfer path to the address adder by means of the Z6 to Z8 or Z9 busses. This path extracts one of four
fields,. [39:20], [36:16], (19:20] or [13:14], from a stack register during execution of operator syllables.

e. A data movement path to and from the high speed adder by means of the AA, BB, and SL busses.

Mask and Steering

The mask and steering network moves bit fields from register to register by means of the Z6 and Zl busses. All bits are
transferred to and from the busses in parallel. Two pointers {TOA/TOM) set up a "window" defining the upper and
lower limit of the bits being transferred to the accepting data register. A displacement register (DIS) shifts the bits to the
right, 0 to 47 bits from the-position previously held in the sending data register. The three controls used to steer and
mask are as follows: ·

1. TOA. The highest bit position of the accepting field {highest bit of the window).

2. TOM. The highest bit position to be inhibited on the transfer {lowest bit of the window).

3. DIS. A right shift of the bits through the steering matrix.

Registers TOA, TOM, and DIS are set by the operator families or other controllers.

Mask and Steering Example

Assume the C register contains a stuffed indirect reference word (SIRW) and it is necessary to extract the STKNR (stack
number) field {bits 4S: 10), and place these bits into the index field of the C register. The logic sets the window

. TOA := 29, TOM := 19, as shown in Figure S-4. The displacement register is set to 16: DIS := 16. The actual starting
bit of the field is calculated as: TOA+ DIS= 29 + 16 = 4S.

All Bits in the C register are gated to the Z6 bus. The bits (except TAG) are then shifted 16 places to the right with only
the bits that align with the window appearing on the Zl bus. The Zl bus is then gated to the C register, with the
masked field destroyed or retained; if the masked field is to be retained, the C register must be gated onto the is bus
as "prior content".

If no register is gated on the ZS bus during a Zl bus to Z6 bus transfer, the masked field is cleared.

5010'J86 5-9

B 6900 System Reference Manual
System Concept

In the example shown in Figure 54, a field of ten bits is transferred from one field location in the C register, to another
field location in this same register. Because the STKNR field of the C register lies outside of the receiving field range,
bits 45: 10 are cleared, and bits 29: 10 will contain the STKNR value at the conclusion of the example operation. Bit
fields 47:18, and 19 :20 of the C register are cleared and only SO :03 remain unchanged.

T
A CREG
G 46

36 0

STKNR

+ + + + + + ,~ + +
Z6BUS

l l l l l l l l
46 STEERING (DIS• 16)

-~ 36 ..

T~ ~~ ~ ~
TOM• 19

~'\
19

MASK MASK

20
\: 7

WINOow ., t t t

Zl BUS

•• l l l l l l l l
T
A

29 CREG
G

20
\: 7 ,,

STKNR

MV1814

Figure 54. Mask and Steering

Stack Controller

The B 6900 provides automatic stack adjustment as required by the operators. These requirements are suppiied to the
stack controller on the Zl 1 bus from the operator families and other functional controllers.

5-10

B 6900 System Reference Manual
System Concept

The stack controller manipulates data between main memory and the A and B registers during both the pop-up and
push-down cycles. The X and Y registers are included in the adjustment cycles when double-precision operands are
involved.

A typical program stack is shown in Figure 5-5. The stack controller determines whether a push-up or push-down cycle
will be initiated. All other Controllers remain idle until an adjust complete signal is sent to the controller that initiated
the adjustment.

ARITHMETIC CONTROLLER

The arithmetic controller (see Figure 5-6) is a functional controller between the stack registers (A, B, C, X, Y and Z) and
the exponent and mantissa adders .. This controller is enabled by the family A operators and other operator families that
require the use of these facilities.

Exponent and Mantissa Adders

Figure 5-6 shows the logical path of data flow to and from the exponent and mantissa adders. The exponent adder is
composed of a 16-bit full adder/subtractor circuit, and the mantissa adder is composed of an 81-bit full adder/subtractor
circuit. The inputs to the two adder circuits, and the outputs from the adder circuits, are directed from and to the stack
hardware registers by the arithmetic controller.

The arithmetic controller and the two adder circuits are capable of performing complete double precision mathematics in
one continuous synchronized operation. The arithmetic controller gates both the exponent and mantissa portions of both
halves of a double precision operand to the two adder circuits in a single operational step. Exponent adder operations are
only performed during multiply or divide functions and for mantissa alignments.

Each of the two adder circuits consist of an A input (AA), a B L11put (BB), and a C (SL) resultant output. Duri.11g a
doubie precision ADD (80) operation, the A input to the mantissa adder consists of the 78-bits of the mantissa fieid
from the double precision operand in the A and X registers. The B inputs to the two adders for a double.precision ADD
operation are the same as the A inputs, but are derived from the B and Y registers. After the inputs to the two adders
have been routed to the adder inputs by the arithmetic controller, the ADD operation is performed in one step. After
the ADD algorithm is completed, the resultant sum of the two numbers is routed by the arithmetic controller back to
the proper stack register(s).

INTERRUPT CONTROLLER

The Interrupt Controller of the B 6900 CPU recognizes certain types. of system interrupts, automatically causes the
currently running program to halt, and ENTERs into the Interrupt Handling Procedure of the Master Control Program
{MCP). The Interrupt Handling Procedure takes actions required because of the interrupt, and then automatically
RETURNs to the program that was halted when the interrupt was sensed. Thus, interrupt handling in a B 6900 system
is a dynamic process that is initiated automatically when an interrupt occurs, and terminates by resuming program
processing at the point where the interrupt was sensed.

The actions of the Interrupt Controller Logic include collecting and formatting information about the nature of the
interrupt that occurred. Before the MCP Interrupt Handling Procedure is ENTERed this information is placed in the
Top-of-Stack. The MCP Interrupt Handling Procedure uses the information collected by the Interrupt Controller, to
analyze the nature and cause of the interrupt that occurred, and to determine what action is to be taken because of
the interrupt.

5010986 S-11

I AROF I

I MOF I
I

PUSH _.I
UP I

F

-

I

PUSH~'
DOWN I

MSCW

B 6900 System Reference Manual
System Concept

AREG

IREG

SOPTWARE
ALLOCATED
MEMORY
AREA

YREG

STACK CONTROLLER FUNCTIONS

- ADJCFLOW) RESUt.T
NOTATION COMMAND OPERATION

AAOF IROF

IO,OI Z110 EMPTY A AND 8 0 0
co.u Z111 EMPTY A, Plt.L I 0 1
(1,0) Z112 EMPTY I. F9'.LA 1 0
(1, 1) Z113 PILL IOTH • 1 1
C0,2) Z114 EMPTY A 0 -
(1.2) Z11& FILLA 1 -

•(1.3) Z111 FIU.A 1 -
NOTE:

O• UNOCCUPIED
1 •OCCUPIED
- •STATUS WILL NGT BE USED BY

I BOml J ... ___ TSCW ______ l THE OPERATOR CAUSING THE
ADJUSTMENT . THIS ADJUSTMENT WILL BE
MADE IF AROFAND IROFARE
IOTH FALSE, OTHERWISE NO

MV1113 ADJUSTMENT WILL BE MADE.

Figure 5-5. Hardware Stack Adjustment

S-12

r----,
I ST ACIC REGISTERS I
1 - I c
I -

I z I
1 - --1- A -

-- B ... --- -
- x --- . -

l - l __
y

I - T -
L_ - __J

MV 1615

B 6900 System Reference Manual
System Concept

AA BUS

ARITHMETIC
CONTROLLER

BB BUS

--
Figure 5-6. Arithmetic Control

INTERRUPT PARAMETER WORDS

16

--- BIT SL BUS - EXPONENT
ADDER

81

-- BIT
~ - MANTISSA

ADDER

Figure 5-7 shows three interrupt stack parameter words, an Indirect Reference Word (IRW) that points to the relative
memory location of the MCP Interrupt Handling Procedure, and a Mark Stack Control Word (MSCW). These five words
constitute an Interrupt Procedure Stack to be used by the Interrupt Handling Procedure. They are fonned, after the
interrupt condition is sensed and the currently running program is halted, by action of the Interrupt Controller in the
Top-of-Stack registers. Note that the lilterrupt Handler Procedure of the MCP has not yet been ENTERed. The words
beneath the Interrupt Stack shown in the Figure are the Stack for the program that was halted when the interrupt was
sensed.

The Interrupt Controller Logic pseudo-calls the ENTER operator flow, to initiate the Interrupt Handler of the MCP
into operation. The ENTER operator flow uses the IRW in the interrupt stack, to find the PCW for the Interrupt
Handler procedure. The ENTER operator flow also generates the Return Control Word (RCW), that points back to the
procedure that was interrupted. This RCW is written in the interrupt stack, in the same memory word add.ress that holds
the IRW. At the conclusion of the Interrupt Handler procedure, the RCW is used to return control of the system to the
procedure that was interrupted.

The Interrupt Controller logic causes a branch into the Interrupt Handler Procedure of the MCP by referencing the
location of the IRW. This IRW points to the Program Control Word (PCW), which is always present in the MCP stack,
at location DO +3. Because the location of the PCW in the MCP stack is a fixed memory location, the Interrupt
Controller logic can use an IRW to reference the PCW,_no matter where a current program is in memory when an
interrupt occurs.

5010986 5-13

THE
MCP
STACK

... ~

..,.,

DO +3 __

D 0 ---

TAG
FIELD
•2

TAG
FIELD
:s2

TAG
FIELD
•10R3

TAG
FIELD
,.. 3

TAG
FIELD
... 7

TAG
FIELD
"'3
TAG
FIELD
•3

8 6900 System Reference Manual
System Concept

P2 PARAMETER

P3 PARAMETER

P1 PARAMETER·

(RCW POINTING TO
~RW D0+ 3 OR INTERRUPTED STACK)

MSCW

PROGRAM STACK AREA
FOR THE PROGRAM THAT
INITIATED THE INTERRUPT

,.i.,

CONTROL ER F L UNCTION ,,,,

PCW

RCW

MSCW

THIS INTERRUPT STACK IS CON­
STRUCTED BY THE INTERRUPT
CONTROLLER OF THE B 6900 CPU.
THE INTERRUPT PRO·
CEDURE USES THIS STACK TO ANA­
LYZE INTERRUPTS IN THE SYSTEM.

{

THIS PCW POINTS·TO THE MACHINE
LANGUAGE CODE STREAM FOR THE

B 6900 INTERRUPT PROCEDURES.

MV4171

Figure 5-7. Interrupt Controller Stack Parameters

The three interrupt parameters in the Interrupt Stack are the data about the interrupt, that was collected by the
Interrupt Controller. The Pl parameter word is formatted to identify the type of interrupt that occurred, the class
of the interrupt, and the specific interrupt within the type and class that occurred. The P2 and P3 parameters contain
specific information about the interrupt identified by the Pl parameter. The values of the three parameter words change
with each particular interrupt type and class sensed by the Interrupt Controller.

The formats for various interrupt types and classes are given in the following order:

1. ALARM Interrupts.

2. HARDWARE Interrupts.

3. GENERAL CONTROL Interrupts.

4. EXTERNAL Interrupts.

5. SYLL.t\BLE DEPENDENT Interrupts.

S-14

ALARM INTERRUPI'S

B 6900 System Reference Manual
System Concept

Figures 5-& through 5-11 define the Interrupt Stack parameter word layouts for ALARM Interrupts. Figure 5-8 shows
the word layout of the Pl parameter for an ALARM Interrupt. Figures 5-9 and 5-10 show the variations in the P2
parameter for an ALARM Interrupt. Figure 5-11 shows the word layout for an ALARM Interrupt P3 parameter.
Table 5-1 lists the fields in the P3 parameter that are used for each type of ALARM Interrupt.

ALARM INTERRUPT DESCRIPI'IONS

A description of each ALARM interrupt that can be detected by the B 6900 Interrupt Controller follows. These
descriptions define the most likely reason for the occurrence of the interrupt and also describe the condition of the
Top-of-Stack at the end of the Interrupt Controller logic operation. This ending condition is the state of the Top-of­
Stack when the Interrupt Handling Procedure of the MCP is ENTERed. It also represents the condition present if the
EVENT logic of the CPU is used to freeze the CPU on the occurrence of an ALARM interrupt.

1

0

MV4172

5010986

25

19

·*'

1 = ALARM INTERRUPT TYPE INTERRUPT

RETRY FLIP-FLOP STATE
1 = RETRY FF IS SET

= 0 = RETRY FF IS· RESET

READ INV.
DATA ADDR.
MULT. LOCAL
BIT ERR MEM. 3

MEM.
ADDR. 0 RESI·

1 DUE 6 2
GL INV. MEM.
MEM. PROG ADDR.
NOT WORD PARITY
READYg 5 1

INV. STACK
ADDR. UNDER LOOP
GL. FLOW TIMER
MEM. 8 4 0

18 = TYPE OF GLOBAL MEMORY ERROR (ONLY USED
FOR GLOBAL MEMORY ERRORS)

= 1 = GLOBAL SCAN OPERATION ERROR
= 0 = GLOBAL MEMORY OPERATION ERROR

17 = P3 PARAMETER CONSISTENCY FLAG
= 1 = P3 PARAMETERS ARE INCONSISTENT
= 0 = P3 PARAMETERS ARE CONSISTENT

X = 1OR0

Figure 5-8. ALARM Interrupt Pl Parameter Word Layout

5-15

5-16

0

" u

0

MV4173

0

0 0

0 0

0 0

MV4174

47 '3

46 42

45 41

44 40

39

38

37

36

B 6900 System Reference Manual
System Concept

35 31 27 23 19

THE TOP-OF-ST ACK WORD
AT THE TIME THE INTERRUPT
OCCURRED

33 29 25 21 17

32 28 24 20 1&

NOTE

A STACK UNDERFLOW ALARM
INTERRUPT P2 PARAMETER IS A
SEPARATE CONDITION FROM A.LL
OTHER ALARM INTERRUPTS. SEE
THE SPECIAL P2 WORD FORMAT,
WHICH IS DIFFERENT.

15 11 7

14 10 8

13 9 5

12 8 4

Figure 5-9. ALARM Interrupt P2 Parameter Word Layout

0 0 0 0 0 0
47 . 43 39 35 31 27 2'.l 19 15 11 7

0 0 0 0 0 0 VALUE OF
46 42 38 34 30 26 ~ 11 THE PROCESSOR

- SREGISTER
0 0 0 0 0 0 (IC MEMORY)

45 41 37 33 29 25 ~ 17 13 9 5

0 0 0 0 0 0
44 40 36 32 28 24 20 16 12 8 4

3

2

1

0

3

i-----!

1

0

Figure 5-10. ALARM Interrupt Stack Underflow P2 Parameter Layout

47

0
46

1
45

0
44

MV4175

43 39

' MEMORY
ADDRESS

41 37

40 36

RES SUM
VE
TE
E
v
M

VE
35 31 27 23

R TE
34 JO E 26 22

s
s 25

E
33 29 21

u
M v

32 28 24 20

RESIDUE OF ADDRESS
VECTOR MODE
TABLE EDIT MODE
EDIT MODE
VARIANT MODE
MOOED

0
p~ s 15

t-T

c R

o~ t-0 14

D B

E u
E

13

1§ 12

0 = J COUNT VALUE !S PRESENT

M
_ll 1 3

JCOUNT
101 OR 61 2

MICROMODULE
ADDRESS

9 5 1

8 4 0

1 = MICROMODULE ADDRESS IS PRESENT

Figure 5-11. ALARM Interrupt P3 Parameter Word Layout

B 6900 System Reference Manual
System Concept

Table 5-1. ALARM Interrupt P3 Parameter Fields Usage

Interrupt Type

Loop Timer
Memory Address Parity
Invalid Address Local
Stack Underflow
Invalid Program Word
Memory Address Residue
Read Data Multiple-Bit
Invalid Address Global
Global Memory Not-Ready

LOOP Interrupt

Fields Present in the P3 Parameter Word

Op Code, Strobe, J Count
Address, OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count
OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count
Address, OP Code, Strobe, J Count

This interrupt is invoked if the Data Processor fails to provide a SECL signal within 2 seconds. This interrupt could
occur if an attempt is made to execute an invalid operator code. If the interrupt occurs, the Pl parameter is left in the
B register, the A register is cleared, and the Program controller PIR register is backed up.

Memory Address Parity Interrupt

This interrupt is invoked if the Memory Controller detects an even number of ADDRESS and CONTROL bits being
transmitted between the Data Processor/MLIP and a system memory module. Should this interrupt occur, the Pl para­
meter is left in the B register, the A register is cleared, and the Program Controller PIR register backed up.

Invilid Address Locai interrupt

This interrupt is invoked by the Memory Controller if within 8 clock-periods it does not receive acknowledgement of a
local memory request. Failure to acknowledge indicates an attempt to access a non-existent local memory module.
Consequently, the Pl parameter is left in the B register, the A register is cleared, and the Program Controller PIR register
is backed up.

Stack-Underflow Interrupt

This interrupt is invoked if during a stack adjustment operation the Stack Controller detects an attempt to change the
value of the IC memory S register to a value that is less than that of the F register. If this interrupt occurs, the Pl para­
meter is left in the B register, the A register is cleared, and the Program Controller PIR register is backed up.

Invalid Program Word Interrupt

This interrupt is invoked if any of the following condiditions occur:

1. A word with a TAG not equal to 3 is placed in the P register for execution (except in TABLE EDIT Mode).

2. The VARIANT operator syllable (95) is followed immediately by another VARIANT operator syllable (95).

3. The Data Processor is in EDIT MODE and a family strobe for a family other than an EDIT MODE operator
family is emitted.

If this interrupt occurs the Pl parameter is left in the B register, the A register is cleared, and the Program Controller
PIR register is backed up.

5010986 5-17

Memory Addrea Residue Interrupt

B 6900 System Reference Manual
System Concept

This interrupt is invoked when the Memory Controller detects that an error is present in the MAR/LAR address
registers. Residue checking is a method of detecting abnormalities in the Address Adder and/or the IC memory address
registers. Any activity of the Address adder that results in the setting of a Residue Interrupt prevents a memory access
cycle from being initiated by the Memory Controller.

Read Data Multiple-bit Interrupt

This interrupt is invoked when the Memory Controller detects more than a single ~it in error during the ERROR
DETECTION/ERROR CORRECTION part of a memory READ cycle operation. Multiple bits in error are not correctable;
thus, when such an error is detected the Memory Controller causes an ALARM interrupt to occur.

Invalid Address-Global Interrupt

This interrupt is identical to the INV AUD ADDRESS-LOCAL interrupt previously defined, except that the invalid
address is for a Global memory module instead of a local memory module. Refer to the description of an INV AUD
ADDRESS-LOCAL interrupt.

Global Memory Not-ready Interrupt

This interrupt is invoked when a memory access is initiated on a Global memory module, and when the Global memory
module does not properly respond to the control of the Memory Controller logic.

HARDWARE INTERRUPTS

Figures 5-12 through 5-14 define the Interrupt Stack parameter word layouts for HARDWARE Interrupts. Figure 5-12
shows the word layout of the Pl parameter, Figure 5-13 shows the word layout of the P2 parameter, and Figure 5-14
shows the word layout of the P3 parameter for a HARDWARE Interrupt. Table 5-2 lists the fields in the P3 parameter
that are used for each type of HARDWARE Interrupt.

0

0

1

0

MV4176

S-18

0 0 0 0 1 0 x 0
3t 27

26 = 1 = HARDWARE INTERRUPT TYPE INTERRUPT

19 = RETRY FLIP-FLOP STATE
= 1 = RETRY FF IS SET
= 0 = RETRY FF IS RESET

17 = P3 PARAMETER CONSISTENCY FLAG
= 1 = P3 PARAMETERS ARE INCONSISTENT
= 0 = P3 PARAMETERS ARE CONSiSTENT

X = 1OR0

0

Figure 5-12. HARDWARE Interrupt Pl Parameter Word Layout

ADDER
0 RESI.

7
ERR.

3

BUS
RESI.
ERR.2
RAM

CARD
PAR.

I ERR. 1

PROM
CARD
PAR.
ERR.O

0

0

0

MV4177

0

47 43

46 42

45 41

44 40

B 6900 System Reference Manual
System Concept

39 35i 3j 21l 2J 191
l T T T T

THE TOP-Of-sTACK WORD
38 AT THE TIME THE INTERRUPT

OCCURRED

37 33 29 25 21 17

36 32 28 24 20 16

15 11 7

14 10 6

13 9 5

121 8. 4

Figure 5-13. HARDWARE Interrupt P2 Parameter Word Layout

0 0 0 0 VE 0 M
47 43 39 35 31 1J. 23 p~ s 15 -" 7

t-T

0 0 0 0 TE c R JJOUNJ CARD
10 OR a 46 42 38 34 22

3

2

1

0

3

2 ~o 14 NUMBER~ o~
B MICROMODULE, ' D

1 0 0 0 0 E E ADDRESS
45 41 37 33 29 25 21 E uJ 13 9 5 1

0 0 0 I 0 0 v
44 401 36 32 28 ~ 20 !§] 12 8 4 0

VE VECTOR MODE
TE TABLE EDIT MODE
E EDIT MODE
V VARIANT MODE
M MOD ED

= 0 = J COUNT VALUE IS PRESENT
= 1 = MICRO MODULE ADDRESS IS PRESENT

MV4178

Figure 5-14. HARDWARE Interrupt P3 Parameter Word Layout

Table 5-2. HARDWARE Interrupt P3 Parameter Fields Usage

Interrupt Type

PROM Card Parity
RAM Card Parity
Bus Residue
Compare Residue

HARDWARE INTERRUPT DESCRIPTIONS

Fields Present in the P3 Parameter Word

Card Number~ OP Code~ Strobe, J Count
Card Number, OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count

A description of each HARDWARE interrupt that can be detected by the Interrupt Controller follows. These descriptions
define the most likely reason for the occurrence of the interrupt. The Interrupt Stack parameter conditions are the same
for a HARDWARE interrupt as those described previously for an ALARM interrupt (refer to the ALARM INTERRUPT
DESCRIPTIONS subsection in this section).

5010986 5-19

PROM Card Parity Interrupt

B 6900 System Reference Manual
System Concept

The CPU contains many PROM component devices which are used to hold preselected microcodes and addresses. Each
time a PROM device is addressed, the output of the PROM is tested for parity. If a PROM device parity error condition
is detected by the test, a PROM Card Parity Interrupt is invoked. The parameters for the interrupt contain the address
of the CPU card package on which the PROM parity condition was detected.

~M Card Parity Error Interrupt

The CPU contains RAM memory devices. Each time a RAM memory device is accessed, the output of the device is
tested for a parity error condition. If a RAM parity error condition is detected during the test, a RAM Card Parity

· Error interrupt is invoked. The interrupt parameters contain the CPU card package iocation of the RAM device that
caused the parity error condition.

Bus Residue Interrupt

The Residue Generator card packages of the CPU test the residue bits from the ZS and Z9 busses. These busses are
inputs to the ADDRESS ADDER logic of the CPU. If an error condition is detected in the Bus Residue value(s), a
Bus Residue interrupt is invoked, and the residue bit-value that causes the interrupt to be detected is placed in the
Interrupt Stack parameters.

Adder Residue Interrupt

The CPU RESIDUE ADDER operates in conjunction with the CPU ADDRESS ADDER logic. The residues of the
address inputs to the ADDRESS ADDER circuit; present at the RESIDUE ADDER inputs, are tested for residue value
errors. If a residue value on the Z8 or Z9 contains a value error, an Adder Residue interrupt is invoked. The residue
value that caused the value error to be detected is remembered by storing it in the Interrupt Stack parameters.

Compare Residue Interrupt

Residue values present at the input to the RESIDUE ADDER in the CPU are added, and a sum of residues is produced.
At the· same time that the RESIDUE ADDER is adding two residue values, the ADDRESS ADDER is adding the address
values that correspond to the residue values in the RESIDUE ADDER. The output of the ADDRESS ADDER includes a
new residue sum, which is the same as the sum of residues from the RESIDUE ADDER. The two new residue sums, one
from the RESIDUE ADDER and the other from the ADDRESS ADDER, are compared. If the two new residues are not
the same, a Compare Residue Interrupt is invoked. The residue comparator output is saved by placing its value in the
Interrupt Stack parameters.

GENERAL CONTROL INTERRUPTS

Figures 5-15 through 5-17 define the Interrupt Stack parameter word layouts for GENERAL CONTROL interrupts.
Figure 5-15 shows the Pl parameter, Figure 5-16 shows the P2 parameter, and Figure 5-17 shows the P3 parameter.
Table 5-3 shows the fields that are present in the P3 parameter for each type of GENERAL CONTROL interrupt.

GENERAL CONTROL INTERRUPT DESCRIPTIONS

A description of each GENERAL CONTROL interrupt detected by the B 6900 Interrupt Controller follows. These
descriptions define the most likely reason for the occurrence of the interrupts. The Interrupt Stack parameter conditions
are the same for a GENERAL CONTROL interrupt as those described previously for an ALARM interrupt (refer to the
ALARM INTERRUPT DESCRIPTIONS subsection in this section).

5-20

0

1

0

MV4179

5010986

T T T

0 0 0
47 43 39

x 0 0
46 42 38

0 0 0
45 41 37

x 0 0

B 6900 System Reference Manual
System Concept

1 T 1 1

0 0 0 0 x
35 31 27 23 19

0 0 0 1 x
34 30 26 22 18

0 0 0 0 0
33 29 25 21 17

0 0 0 0 0

T I l READ

0 0 I 0 DATA
RETRY

15 11 7 3

0 0 0 0
14 10 6 2

ADDR.
0 0 RETRY 0

13 9 5 1
READ READ

0 0 DATA DATA
CHECK SINGLE

44 40 36 32 28 24 20 16 12 S BIT 4
BIT

0

22 = 1 = GENERAL CONTROL TYPE INTERRUPT

46 = PRESENCE BIT DURING VALUE CALL OPERATION FLAG
= 1 = VALUE CALL SYLLABLE EVALUATION IN PROCESS
= Q = NO VALUE CALL SYLLABLE EVALUATION IN PROCESS

44 = VECTOR MODE OPERATION FLAG
= 1 = VECTOR MODE OPERATION IN PROCESS
= 0 = NO VECTOR MODE OPERATION IN PROCESS

19 = RETRY FUP-FLOP STATE
= 1 = RETRY FF SET
= 0 = RETRY FF RESET

18 = TYPE OF GLOBAL MEMORY ERROR (ONLY USED FOR
GLOBAL MEMORY ERRORS)

= 1 = GLOBAL SCAN OPERATION ERROR
= 0 = GLOBAL MEMORY OPERATION ERROR

X = 1OR0

Figure 5-15. GENERAL CONTROL Interrupt Pl Parameter Word Layout

I 47 43 39 35 31 27 ·23 19 15 11 7
I

0 THE VALUE OF THE

46 42 38 TOP-OF-STACK WORD 18 14 10 6
AT THE TIME THE

0 INTERRUPT OCCURRED
45 41 37 331 29J 251 2tl_ 17 13 9 5

I I I I

I 0 I 441

MV4180

Figure 5-16. GENERAL CONTROL Interrupt P2 Parameter Word Layout

3

2

1

5-21

B 6900 System Reference Manual
System Concept

0 0 0 0
47 43 39 35 31 27 23 19 15 11 7 3

R CHANGE
0 IN 0 0 0 0

-46 MEMORY 34 30 E 26 1-CHECK 8 14 10 6 2

ADDRESS s =
BIT

1 VALUE 0 0 0 0
45 41 37 33 29 s 25 21 17 13 9 5 1

u
0 M 0 0 0 0 0

44 40 36 32 28 24 20 16 12 8 4 0

RES SUM RESIDUE OF ADDRESS

MV4181

Figure 5-17. GENERAL CONTROL Interrupt P3 Parameter Word Layout

Table 5-3. GENERAL CONTROL Interrupt P3 Parameter Field Usage

Interrupt Type

Read Data Single-bit
Read Data Retry
Read Data Check-bit
Address Retry

Fields Present in the P3 Parameter Word

Address, RES SUM, Change In Check Bits
Address, RES SUM
Address, RES SUM, Change In Check Bits
Address, RES SUM

Read Data Single Bit Interrupt

The Read Data Single Bit interrupt is invoked when the Memory Controller ERROR DETECTION/ERROR
CORRECTION circuit detects and corrects a single-bit error in memory READ data. The bit-in-error is corrected and
the program in progress continues as if no error had been detected. As a result of the Interrupt Controller operation, data
about the single-bit error is recorded in the SYSTEM/SUMLOG file. This information is used by maintenance personnel
to anticipate and analyze potentially serious memory data failures (refer to multiple-bit error ALARM Interrupt sub­
section in this section).

Read Data Retry Interrupt

A Read Data Retry interrupt is invoked when the Memory Controller causes READ data to be restrobed onto the CPU/
Memory Module interface bus. Restrobing of READ data onto the bus is caused by the Memory Port Control logic sens­
ing a parity error on the interface bus. If restrobing the data on the bus corrects the parity error, a retry interrupt is
invoked; otherwise, an ALARM Interrupt is invoked. Retry interrupts are used for system maintenance analysis, as
described for single-bit errors above.

5-22

Read Data Check Bit Interrupt

B 6900 System Reference Manual
System Concept

A memory READ word contains eight bits that are used for an ERROR DETECTION/ERROR CORRECTION check
code. If an error is- detected in the check code during a memory READ operation and if no error is present in the READ
data, then the Read Data Check Bit Interrupt is invoked. This error is written into the SYSTEM/SUMLOG the same as
the Read Data Single Bit Interrupt, and the program in progress is continued as if no error had occurred (refer to Read
Data Single Bit Interrupt above). If a READ data bit is also in error, then a multiple-bit error exists (see the ALARM
Interrupt subsection of this section), and the ALARM Interrupt is invoked instead of the GENERAL CONTROL
Interrupt.

The ERROR DETECTION/ERROR CORRECTION check codes of the B 6900 system are internal codes of the operating
system. They are not available to a system user, except through use of the Memory Tester logic of the CPU.

Address Retry Interrupt

An Address Retry Interrupt is essentially the same as a READ Data RETRY Interrupt, except that it is invoked if a
memory address is in error instead of a data bit in error (refer to Read Data Single Bit Interrupt subsection of this
section). If the address retry is successful, the program in process is continued the same as though no error existed. If
the address retry is not successful, then an ALARM Interrupt is invoked instead of the GENERAL CONTROL Interrupt.

EXTERNAL INTERRUPTS

Figures 5-18 through 5-20 define the Interrupt Stack parameter word layouts for EXTERNAL Interrupts. Figure 5-18
shows the Pl parameter, Figure 5-19 shows the P2 parameter, and Figure 5-20 shows the P3 parameter. The B 6900
s.ystem only utilizes one EXTERNAL Interrupt, which is the I/O Finished Interrupt.

0 0 0 0 0 0 0 0 0 0 1 0
47 o'3 39 35 31 27 23 19 15 11 7 3

0 0 0 0 0 0 0 0 0 0 0 0 0
46 42 38 ~ 30 26 22 18 14 10 6 2

1 0 0 0 0 0 0 0 0 0 0 0 0
46 41 37 33 29 25 21 17 13 9 5 1

0 0 0 0
361

0 0 0 1 0 J 0 0 1 ,
.... 40 32 28 24 ~ 16 121 a 4 0

MV4182

Figure 5-18. EXTERNAL Interrupt Pl Parameter Word Layout

0 0 0 0 0 0 0 0 0 0 0 0
47 o'3 39 35 31 27 23 19 15 11 7 3

0 0 0 0 0 0 0 0 0 0 0 0 0
46 42 38 ~ 30 26 22 18 14 10 6 2

0 0 0 0 0 0 0 0 0 0 0 0 0
46 41 37 33 29 25 21 17 13 9 5 1

0 0 0 0 0 0 0 0 0 0 0 0 0
.... 40 36 32 28 24 20 16 12 a 4 0

MV4183

Figure 5-19. EXTERNAL Interrupt P2 Parameter Word Layout

5010086 5-23

0

1

0

MV4184

1/0 Finished Interrupt

0 0 0
47 43

0 0 0
46 42

0 0 0
45 41

0 0 0
44 40

B 6900 System Reference Manual
System Concept

0 0 0 0 0
39 35 31 27 23 19

0 0 0 0 0
38 34 30 26 22 18

0 0 0 0 0
37 33 29 25 21 17

0 0 0 0 0
36 32 28 24 20 16

0 0 0
15 11

0 0 0
14 10

0 0 0
13 9

0 0 0
12 8

Figure 5-20. EXTERNAL Interrupt P3 Parameter Word Layout

0
1 3

0
6 2

0
5 1

0
4 0

An I/O Finished Interrupt is invoked at the conclusion of a peripheral device operation, when the IOCB for the 1/0 device
operation specifies that such an interrupt is required. Word zero of the IOCB (the Control Word, CW) contains two bits
which may specify that an 1/0 Finish Interrupt is required.

If bit-3 of the Control word in an IOCB is a binary 1, an 1/0 Finish. Interrupt is required at the conclusion of the
peripheral device operation.

If bit-2 of the Control Word in an IOCB is a binary 1, an 1/0 Finish Interrupt is required at the conclusion of the
peripheral . device operation.

SYLLABLE DEPENDENT Interrupts

Figures 5-21 through 5-27 define the Interrupt Stack parameter word layouts for SYLLABLE DEPENDENT Interrupts.
Figure 5-21 shows the word layout of the Pl parameter. Figures 5-22 tlJ_rough 5-26 show the variations in the word
layout of the P2 paramete·r. Figure 5-27 shows the word layout of the P3 parameter. Trable 5-4 lists the fields in the
P3 parameter that are used for each type of SYLLABLE DEPENDENT Interrupt.

SYLLABLE DEPENDENT Interrupt Classes

There are 2 classes of SYLLABLE DEPENDENT Interrupts. One class consists of interrupts where the Program Control­
ler register values are consistent, after the interrupt is invoked by the Interrupt Controller .. The other class consists of
ti.ose interrupts where the Program Controller register values are not consistent after the interrupt is invoked. The
Program Controller register values in question are the PBR, PIR, and PSR registers.

Consistent Program Controller register values are backed up to point at the beginning of the program operator code in
process when the interrupt was detected by the Interrupt Controller. Inconsistent register values may or may not have
been backed up in a consistent manner.

The Pl parameter word (Figure 5-21) indicates the class of a SYLLABLE DEPENDENT Interrupt.

SYLLABLE DEPENDENT Presence-Bit Interrupts

Presence Bit Interrupts are a special class of SYLLABLE DEPENDENT Interrupts. To make the B 6900 a "Virtual"
system presence-bit interrupts are used in conjunction with Descriptor. The Pl parameter for a SYLLABLE DEPENDENT
Interrupt (Figure 5-21) contains bits that identify the nature of a possible Presence-bit operation that was in process when
the SYLLABLE DEPENDENT Interrupt was invoked.

5-24

r

0

1

0

MV4185

5010086

T
0

47

RT

~

RT

45

x
44

BIT

46

0

0

T
0

43

0
42

0
41

0
40

BIT
24
0

BIT

45
0

0

BIT
44

BIT
19

x

T
vs

39

0
38

0
37

0
36

BIT
23
1

0

BIT

39

0

0

B 6900 System Reference Manual
System Concept

T T T !
0 0

! ! INT. f BASE
TIMER OF 0 x x 0

STACK
35 31 27 23 19 15 11 7

SEG. + INT~

0 0 0 0 0 0 ARRAY OVER
FLOW

34 30 26 22 18 14 10 6

CONF. SEO. INV.
0 0 0 0 0 ERROR ERROR INDEX

33 29 25 21 17 13 9 5

STACK PRES. EXP.
0 0 x 0 0 OVER BIT UNDER

FLOW FLOW
32 28 24 20 16 12

SYLLABLE DEPENDENT TYPE INTERRUPT

PIR, PSR, & PBR VALUES ARE INCONSISTENT

PIR, PSR, & PBR VALUES ARE CONSISTENT

PRESENCE BIT INTERRUPT PARAMETERS

8

VECTOR STACK CAUSED INTERRUPT, (PROCEDURE
DEPENDENT) THE EXIT OPERATOR FLOW WAS
USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.

VECTOR STACK CAUSED INTERRUPT, (PROCEDURE
DEPENDENT) THE RETURN OPERATOR FLOW WAS
USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.

VALUE CALL OPERATOR CAUSED INTERRUPT,
(DATA DEPENDENT) THE EX!T OPERATOR FLOW
WAS USED TO ESCAPE FROM THE PRESENCE BIT
INTERRUPT.

VALUE CALL OPERATOR CAUSED INTERRUPT
(DATA DEPENDENT) THE RETURN OPERATOR
FLOW WAS USED TO ESCAPE FROM THE PRESENCE
BIT INTERRUPT.

VECTOR MODE OPERATION FLAG BIT
0 = VECTOR MODE OPERATION NOT IN PROCESS
1 = VECTOR MODE OPERATION IN PROCESS

RETRY FLIP-FLOP STATE
0 = RETRY FF RESET
1 = RETRY FF SET
1 OR 0

4

Figure 5-21. SYLLABLE DEPENDENT Interrupt Pl Parameter Word Layout

EXP. !
OVER
FLOW

3

DIV.
BY

ZEA0
2

INV.
OPND

1

MEM.
PROT.

0

5-25

S-26

47

0
48

0
46

0
44

MV4186

43

42

41

40

B 6900 System Reference Manual
System Concept

T
39 35 31 27 23 19

THE VALUE OF THE
38 34 TOP-OF-STACK WORD

AT THE TIME THE
INTERRUPT OCCURRED

37 33 29 25 21 17

36 32 28 24 20 16

NOTE

15

14

13

12

THE FOLLOWING SYLLABLE DEPENDENT
INTERRUPTS USE A DIFFERENT P2 PARAM­
ETER FORMAT:

• SEQUENCE ERROR INTERRUPT
DURING FAMILY C OPERATIONS.

e SPLT OPERATOR (FAMILY K
VARIANT 9543) INTERRUPT.

• JOIN OPERATOR (FAMILY K
VARIANT 9542) INTERRUPT.

e SEQUENCE ERROR INTERRUPT FOR
STRING OPERATIONS.

SEE SPECIAL P2 PARAMETER WORD LAYOUTS
FOR THESE TYPES OF SYLLABLE DEPENDENT
INTERRUPTS, WHICH FOLLOW.

11 7

10 6

9 5

8 4

Figure 5-22. SYLLABLE DEPENDENT Interrupt P2 Parameter Word Layout

47 43 39 35 31 27 23 19 15 11 7

FOR FAMILY C OPERATIONS
0 THIS PARAMETER CONTAINS

48 42 38 THE VALUE OF THE WORD 14 10 6

0 THAT CAUSED THE SEQUENCE
ERROR

46 41 37 ·~
.... "' 11 13 9 &

0
44 40 36 32 28 24 20 16 12 8 4

M\!4187

Figure 5-23. SYLLABLE DEPENDENT Se_quence Error P2 Parameter Word

47 43 39 35 31 27 23 19 i5 ii 7

0 THEVALUEOFTHEWORD
48 42 38 14 10 6

THAT CAUSED THE INTERRUPT

0 I I I I
46 41 37 33 291 25 2J nl 13 9 5

0 I I T I I
441 40! 36! 20! el

MV4188

Figure 5-24. SYLLABLE DEPENDENT SPLT (9543) Operator P2 Parameter

3

2

1

0

3

2

1

0

3

2

1

ol

5010986

T T

47 43

0
46 42

0
45· 41

0
44 40

MV4189

B 6900 System Reference Manual
System Concept

I

J ,,I ,,I ,,l .• 39

THE INTEG1R vALuE o~ THE
38 NUMBER OF STRING WORDS

THAT MUST BE LEFT IN THE
STACK FOR OPERATOR RESTART

37 33 29 25 21 17

36 32 28 24 20 16

X = 1or0

i
15 11 7

14 10 6

13 9 5

12 8 4

Figure 5-25. SYLLABLE DEPENDENT JOIN (9542) Operator P2 Parameter

1,1 43 39 35 31 27 23 19 15 11 7

0
THE VALUE OF THE WORD 46 42 38 14 10 6
THAT CAUSED THE INTERRUPT

0
46 41 37 33 29 2S 21 17 13 9 5

0
44 40 36 32 28 24 20 16 12 8 4

MV4190

x

x

x

Figure 5-26. SYLLABLE DEPENDENT Segmented Array Interrupt P2 Parameter

0 VE 0 M
47 43 39 35 31 27 23 p 12 ~s 1s __uj 7

T
0 0 TE c R JCOUNT

"6 MEMORY 34 30 26 22 10L OR sl

3

2

1

0

3

2

1

0

J

2 o~ t--0 14
ADDRESS D B MICROMODULE

1 0 E
E u

E ADDRESS
46 41 37 33 29 25 21 13 9 5 1

0 0 v
44 40 36 32 28 24 20 1_§ 12 8 4 0

VE VECTOR MODE
TE TABLE EDIT MODE
E EDIT MODE
V VARIANT MODE
M MOD ED

= 0 = J COUNT VALUE IS PRESENT.
= 1 = MICRO MODULE ADDRESS IS PRESENT

MV4191

Figure 5-27. SYLLABLE DEPENDENT Interrupt P3 Parameter Word Layout

.

5-27

B 6900 System Reference Manual
System Concept

Table 54. SYLLABLE DEPENDENT Interrupt P3 Parameter Fields Usage

Interrupt Type

Programmed Operator
lvtemory Protected
Invalid Operand
Divide By Zero
Exponent Overflow
Exponent Underflow
Invalid Index
Integer Overflow
Base of Stack
Presence Bit
Sequence Error
Segmented Array
Interval Timer
Stack Overflow
Confidence Error

Fields Present in the P3 Parameter Word

OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Cow1t
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count
OP·Code, Strobe, J Count
OP Code, Strobe, J Count
OP Code, Strobe, J Count

SYLLABLE DEPENDENT INTERRUPT DESCRIPTIONS

A description of each type of SYLLABLE DEPENDENT Interrupt that can be detected by the B 6900 Interrupt Control­
ler follows. These descriptions define the most likely reason for the occurrence of the interrupt, and also describe the
condition of the Top-of-Stack at the end of the Interrupt Controller iogic operation.

Programmed Operator Interrupt

A Programmed Operator Interrupt is invoked when the Program Controller executes an invalid operator code (see
Primary Mode Operator NVLD, Code= FF). This Interrupt is used as a "communicate with system" instruction by a
user program.

Memory Protect Interrupt

The memory Protect Interrupt is invoked by the Memory Controller logic, under the following conditions:

S-28

1. A STORE, OVERWRITE, READ/LOCK, or STRING TRANSFER operation is attempted using a Data
Descriptor that has the READ ONLY bit (Bit-43) set. The operation is terminated prior to the memory
access operation, leaving the Data Descriptor (the addressing word) in the A register.

2. A STORE operation is attempted into a memory word address that has the PROTECT-BIT (Bit-48) set.
The PROTECT-BIT is detected in the "flashback word" in the C register and, when set, ~lie WRITE
operation is not performed. Instead, the original contents of the memory address (the flashback data) is
restored in the memory address. The memory address word that was used to access the protected memory
word is left in the A register.

Invalid Operand Interrupt

B 6900 System Reference Manual
System Concept

The Invalid Operand Interrupt is invoked when an operator tries to use the wrong type of CONTROL WORD or data
word. B 6900 Operators test the TAG fields of all operands used, to insure that the words meet the necessary require­
ments for the particular type of operation performed. If an operand TAG does not meet the requirements, the FAMILY
Control logic invokes the Invalid Operand Interrupt.

Divide-By-Zero Interrupt

The Divide-By-Zero Interrupt is invoked by the Arithmetic Controller, when a Divide operation is attempted with the
Divisor equal to zero. The Divide operation is terminated prematurely, leaving the A register cleared and the Pl para­
meter in the B register. The Program Controller PSR and PIR registers are backed up to point at the Divide Operator
code syllable.

Exponent Overflow Interrupt

The Exponent Overflow Interrupt is invoked by the Arithmetic Controller when the positive capacity of an EXPONENT
field in an arithmetic operand is exceeded (refer to Exponent Underflow, below). The arithmetic operation in process
when the interrupt is invoked is prematurely terminated. The A register is left cleared, and the Pl parameter is left in
the B register.

Exponent Underflow Interrupt

The Exponent Underflow Interrupt is similar to an Exponent Overflow Interrupt, except for the value of the Exponent
SIGN-BIT. The SIGN-BIT for an Exponent Underflow Interrupt is SET and, consequently, an Exponent Underflow
Interrupt indicates that the negative capacity of an operand EXPONENT field has been exceeded (refer to the Exponent
Overflow Interrupt subsection of this section).

Invalid Index Interrupt

The Invalid Index Interrupt is invoked when an attempt is made to index a memory address by less-than-zero, or by a
value that is equal-t-0/greater-than the upper-bound (LENGTH) of a Descriptor. Invalid Index Interrupts can be invoked
by various operator codes in Families A, B, or C.

Integer Overflow Interrupt

The Integer Overflow Interrupt is invoked when an attempt is made to integerize an operand, and when the integerized
value would be greater than the maximum value for an integer. In general, this interrupt occurs during the exponent
adjustment part of the Integerize algorithm.

The Family A Integerize operator is frequently pseudo-called by other Family operators. If another family pseudo-calls
the Intergerize operator and the Integerize operator fails because of an Integer Overflow condition, the operator that
pseudo-called the Integerize operation is terminated and the Integer Overflow Interrupt is invoked.

Bottom Of Stack Interrupt

A Bottom Of Stack Interrupt is invoked when a Family C EXIT or RETURN operator causes the operating program
stack pointers to point at the base of the program stack area in memory. If this interrupt is invoked, the Return
Control Word (RCW) used during the EXIT or RETURN operation is left in the A register.

5010986 5-29

Presence Bh Interrupt

B 6900 System Reference Manual
System Concept

A Presence Bit Interrupt is invoked when an attempt is made to access control information or data, and the information
or data is not present in local or Global memory. All operator codes that use Data or String Descriptors to address
memory have the ability to invoke this interrupt.

Special consideration is given to the class of a Presence Bit Interrupt, to determine whether it is Procedure Dependent
or Data Dependent. The two classes of Presence Bit Interrupts require different handling for the Program Controller
PIR and PSR register values. Therefore, there are essentially two ways to handle a Presence Bit Interrupt, depending on
its class.

DATA-DEPENDENT PRESENCE BIT INTERRUPTS

A data-dependent Presence Bit Interrupt is invoked when the Data Processor is seeking to access data in the currently
operating programs' procedure environment. The Presence Bit Interrupt procedure makes the absent data present in sys­
tem memory, and then the interrupted program procedure is resumed. The Program Controller PIR and PSR register
values are backed up by the interrupt procedure to point at the operator that invoked the Presence Bit Interrupt. When
the interrupted program procedure is resumed, the operator that invoked the Presence Bit Interrupt is executed again;
and this time, the data that was missing is present. Therefore, no Presence Bit Interrupt is invoked.

PROCEDURE-DEPENDENT PRESENCE BIT INTERRUPTS

A procedure-dependent Presence Bit Interrupt is invoked, (1) if the Data Processor is ENTERing into a new operating
program procedure , or (2) is EXITing/RETURNing from/to an old operating program procedure and the program proce­
dure is not present in system memory. A procedure-dependent interrupt is also invoked if the Data Processor attempts
to access a non-present Segment Descriptor during a display update sequence.

The Presence Bit Interrupt procedure makes the absent segment code present in memory, and terminates by pseudo­
calling the EXIT operator flow into operation. The EXIT operator sequences allow the Presence Bit Interrupt procedure
to return control of CPU operations to the interrupted procedure with the segment code present in memory.

The selection of an EXIT or RETURN operator to escape from the interrupt handler procedure depends on whether or
not a parameter (IRW or Data Descriptor) is left on top of the interrupted program procedure stack. Some types of
operators require such a parameter if interrupted for a Presence Bit Interrupt, while others do not. If a parameter is
to be left on the stack, then the RETURN operator is used to escape from the interrupt handler procedure; otherwise,
the EXIT operator is used.

When a procedure-dependent Presence Bit Interrupt occurs during an ENTER, EXIT, or RETURN operator flow, the
first operator of the absent code segment has not yet been fetched from memory. The initial PIR and PSR values from
the control word that invoked the procedure (a PCW if the interrupt occurred during an ENTER operator, or an RCW if
the interrupt occurred during an EXIT or RETURN operator) are saved in the RCW of the Presence Bit Interrupt stack.
The EXIT operator (pseudo-called at the end of the interrupt procedure) references the RCW in the Presence Bit
Interrupt stack. Therefore, initial PIR and PSR values of a procedure which is Presence Bit interrupted are saved across
the intervening operation of the interrupt handling procedure, and are used when the interrupted procedure is resumed.

5-30

Sequence Error Interrupt

B 6900 System Reference Manual
System Concept

A Sequence Error Interrupt is invoked during an attempt to access a Mark Stack Control Word (MSCW), if the word
accessed does not have a TAG value of 3 {hex). A Sequence Error implies that the stack linkage mechanism, or the
stack history of the stack being accessed is in error. A Sequence Error may occur at various places in the flow of an
operation, and may therefore occur before or after the place where the Program Controller register values of PBR, PIR,
and PSR are adjusted. If the interrupt is invoked before the Program Controller values are adjusted, bit-24 of the
Pl parameter is SET. If the interrupt occurs after the adjustments have been made, then bit-23 is SET in the Pl para­
meter, and bit-24 is RESET. Bit-23 and bit-24 are never SET at the same time in the Pl parameter word for a
Sequence Error Interrupt.

Segmented Array Interrupt

A Segmented Array Interrupt is invoked by a string operator when the upper-limit boundary of an array vector is
detected. Array vectors for string operations are divisions of data into groups (segments) of up to 256 data words,
bounded by Memory Link words. A Memory Link word is a control word that has the Memory Protect, Bit48, SET. A
segment of string data is accessed by means of a Data Descriptor.

Each word read from memory during a string operation is checked to see whether bit48 (Memory Protect bit) is SET.
If bit48 is SET, it implies that an upper-limit boundary memory link was accessed, and a Segmented Array Interrupt is
invoked.

String operator interrupts leave a special value in the P2 parameter word of the interrupt stack. This P2 value is an
integer number that defines how many data words (below the interrupt stack) must be left in memory to restart the
string operation.

Restarting a string operation after a Segmented Array Interrupt has occurred implies a new segment of data words has
been brought into memory. A data string upon which a string operation is performed may not conform to the 256 word
limit for segmented array vectors. This condition, when present, requires that data from the previous segment be present
in memory to restart the string operation.

Interval Timer Interrupt

An Interval Timer Interrupt is invoked when the Interval Timer times out. The Interval Timer circuit is located in the
MLIP logic, <md is initiated into operation by the execution of a Set Interval Timer (SINT, 9545) operator. This timer
is used by the system software for time slicing operations. The interrupt from the Interval Timer allows the MCP to
detect the end of one time slice, and to begin a new time slice. The SINT operator allows the MCP to control the
length of a time slice, by presetting a time counter to a predetermined time increment count. The timer counts from
the preset count to a maximum count, and then invokes the Interval Timer Interrupt.

Stack Overflow Interrupt

A Stack Overflow Interrupt is invoked when the IC Memory Address S register value is equal to the IC Memory Address
LOSR register value. This interrupt is invoked because the currently operating procedure attempted to utilize more
memory space for its program stack than was allocated for the program by setting the value of LOSR.

Confidence Error Interrupt

A Confidence Error Interrupt is invoked when the Confidence test routine is being executed, and a test failure or an error
condition is detected by the Confidence test. The Confidence test is automatically initiated into execution when the Data
Processor is in an IDLE state, and when a software procedure is not being processed. The occurrence of a Confidence
Error Interrupt causes data about the test failure or error condition to be written into the SYSTEM/SUMLOG disk file.
B 6900 maintenance personnel utilize the SUMLOG data to analyze system failures and repair system defects.

5010986 5-31

B 6900 Sys tern Reference Manual
System Concept

The Interrupt Controller fonnats the data for a Confidence-test failure or error into the interrupt stack parameters, and
the Interrupt Handling procedure of the MCP writes the parameters into the SYSTEM/SUMLOG disk file.

String Operators

String operators control the character accessing, fonnatting, and editing capability of the B 6900 system. The string
operators are comprised of the operators in strobes F, G, and H, which are grouped in a Hsuper-family" designated
family U~ Family U operators share a common "T" register (operator code register), a common logical sequence counter,
and a common group of logical flip-flops.

The most significant advantage from collecting all string operators into a single super-family is that the common logical
functions that all string operators share are not duplicated in each family controller. For instance, all string operators
require a method for accessing local memory and for addressing the characters of data within a memory word. A typical
string operator must be capable of addressing a number of different words in memory in order to perform an editing
operation on a string of data characters. Moreover, once the editing has been performed, the word must be stored in
memory so that the same editing can be perfonned on other words of data. The logic circuits and operator functions
required to perform this type of operation are common, and are thus collected into the single super-family U in the
B 6900 system.

Memory Controller

The memory controller in the CPU {refer to Figure 5-2) services requests for access to memory resources of the system
from the data processor, the look ahead logic, and the MLIP. These three modules are all located within the CPU
cabinet, and share a common path to/from memory. Internal logic circuits of the memory controller establish when each
of these three modules has priority for accessing system memory resources.

When the MLIP is processing an 1/0 operator and a need for a burst cycle exists, the MLIP has first priority for a mem­
ory access request. This condition causes the data processor to suspend its operation while the MLIP obtains access to
memory. The data processor will suspend its operation until the MLIP completes its memory access. At the conclusion
of the MLIP memory access operation, the data processor will continue its operations at the place where the suspension
occurred.

The order of priority in accessing memory is MLIP, processor, and look ahead logic, in that order.

The memory controller logic has the capability to store two requests for access to memory. The storing of access requests
consists of remembering which requests were received over the Z12 memory control bus. The memory controller exam­
ines the contents of the two request registers (RQR and RQT) to determine which request has the higher priority for the
next access to memory.

The logic mechanism used by the memory controller to remember what memory requestor units require an access to
memory consists of two request registers located in the A input logic to the memory control. When a request for a
memory access is transmitted to the memory control, the request {bits D: 14 on the Zl 2 bus) is stored in the RQT
register {13: 14). If RQT contains a request but RQR does not, the request in RQT is placed in RQR. This frees RQT
to accept the next memory request in sequence. Each time a memory request is to be processed the memory controller
will examine both the RQT and the RQR registers to detennine which of two possible requests for access to memory has
the higher priority. As one of the two possible memory requests are perfonned, the stored request information in the
RQT register (or alternatively the RQR register) is reset to binary zeroes. This removes a request presently being
executed from further contention for an access to memory, and frees the register that was reset to accept a new access
request.

5-32

B 6900 System Reference Manual
System Concept

The memorf contrnller monitors all memory requests for errors. If an error condition is detected during a memory bus
operation, the memory controller will cause an interrupt to be present in the data processor interrupt controller. The
memory controller passes parameters that describe the type of interrupt that occurred to the interrupt controller. The
interrupt handling procedure of the MCP causes the interrupt parameters from the memory controller to be written in
the SYSTEM/SUMLOG, thus preserving a record of memory errors.

Control State/Normal State

A B 6900 data processor has the ability to perform in either normal or control state. In control state, all external inter­
rupts are inltibited, and a few privileged operators are enabled. The Inhibit Interrupt Flip-Flop (IIHF) must be set for
processing to occur in control state.

The data processor switches to control state upon entering a procedure by means of a control state program control
word (PCW).

MESSAGE LEVEL INTERFACE PROCESSOR

The Message Level Interface Processor MLIP module (see Figure 5-2) is essentially a peripheral device path control
mechanism. The MLIP is semi-independent, and can initiate an 1/0 device path control function only in response to
execution of a Communicate Universal 1/0 (CUIO) operator by the Program Controller. The MLIP logic proceeds in an
independent manner after it is initiated by a CUIO operator, until the 1/0 device operation is terminated. The MLIP
logic, if specified, causes an external interrupt in the Interrupt Controller logic upon termination of an 1/0 device
operation.

The MLIP performs additional system functions, such as establishing the general environment for 1/0 path control, and
system-timing functions. The 1/0 path control environment is established by use of path control logic circuits that can
be SET/RESET by specific MLIP control logic. System-timing functions such as Thne-of-Day and faterval=Timer logic
are controlled by execution of specific system Program Controller operator codes. The MLIP also contains timer circuits
which are automatic features of the 1/0 path control logic.

MLIP CONTROL OPERATIONS

MLIP operations are controlled by micro-code sequences contained in the micro-module. When an MLIP operator code
is executed by the Program Controller, logic circuits in the MLIP generate a micro-module address, called an Entry
Vector. Entry Vectors are sent to the address logic of the micro-module, where they select the first sequence address for
a particular MLIP micro-code function.

The micro-code sequences for MLIP functions are subroutines artd may or may not be executed, depending on current
logical conditions present in the MLIP. Logic signals representing current logic conditions in the MLIP are present at the
input addressing logic of the micro-module. The state of these logic signals is used to alter the sequential addressing of
the micro-module. By altering the sequential addressing of the micro-module; various subroutines of MLIP contrn!
programs are entered into or returned from. The execution of an MLIP directing operator code by the Program Control­
ler selects the particular MLIP function to be performed. Subsequently, MLIP logic conditions specify which subroutines
of the MLIP function micro-code are performed.

1/0 DEVICE CONTROL OPERATIONS

The MLIP is not the final control mechanism for the operation of a peripheral device; it is an intermediate control
mechanism. System control of peripheral device operations is shared by the MLIP and a UIO Data Link Processor
(UIO-DLP). The UIO-DLP device is the final control mechanism for operation of an 1jo device. Once a UIO-DLP
device is initiated into operation, the MLIP becomes transparent to the flow of peripheral data between the B 6900
system and the UIO-DLP device. However, the MLIP continues to control the interfaces between the UIO-DLP device
and B 6900 system memory.

5010986 5-33

B 6900 System Reference Manual
System Concept

UIO-DLPs are semi-independent peripheral control devices. A UIO-DLP can only control a single type of 1/0 device
and can only initiate a device into operation when the operation is specified by signal inputs from the MLIP. Once a
UIO-DLP begins operation of a peripheral device, it proceeds under the control of its own internal logic. The UIO-DLP
only communicates with the MLIP to send/receive peripheral device data and to report the status of the UIO subsystem
when the UIO-DLP operation is terminated.

A MLIP communicates with UIO-DLP devices by means of a Message Level Interface (MLI) cable connection. The MLIP
contains eight MLI ports which are used as channels for interfacing various organizations of IODC modules to the
B 6900 CPU. The MLIP also contains extensive logic circuits to control communications over the MLI ports, and to
establish priorities for use of the MLI interfaces between the IODC modules and UIO-DLP devices that are currently in
use.

A communication between the MLIP and a UIO-DLP device must be initiated by the MLIP. Such a communication is
interrupted while the UIO-DLP is performing its independent processes and is reestablished when it is necessary to pass
data or result status between the MLIP and UIO-DLP. Either the MLIP or the UIO-DLP can initiate the resumption of
an interrupted communication over the MU interface.

MLIP SIMPLIFIED LOGIC CIRCUITS

Figure 5-28 is a simplified schematic of the MLIP module. The schematic shows the major circuits of the MLIP and,
in general implies some of the relationships between these major circuits.. The circuits and relationships of MLIP
circuits defined in the following paragraphs of this manual can be better understood by referring to this figure.

MLIP INTERFACES

The MLIP has three interfaces to other modules of the B 6900 system. These interfaces connect the MLIP:

1. To the Data Processor.

2. To the micro-module.

3. To the IODC module(s).

The interface between the Data Processor and the MLIP includes the path between the MLIP and system memory. The
Data Processor utilizes this path to communicate instructions and control data to the MLIP. The MLIP utilizes this path
to access system memory (through the logic of the Transfer and Memory Controllers).

The interface between the micro-module and the MLIP module is used to send control signals, data, and rr1icro-module
addresses from the micro-module to the MLIP logic. The MLIP uses this interface to transmit Entry Vector addresses
to the micro-module. Various MLIP logic signal levels are present at the address inputs to the micro-module, in addition
to the standard interface connections.

Yne interface(s) between the MLIP and the IODC modules are Message Level hlterface (MLI) interfaces. There are as
many as eight separate MLI interfaces, which are used to provide communication paths between the MLIP module and
the IODC modules of the system.

5-34

Z5 BUS (36 LINES FROM CPU)

~
SP-1. .SP+1 LMRA .=J. DI (19:20]

STACK MICRO MEM REG 3
POINTER STACK ADDRESS ADDOOO INC/ MSP _
INC/DEC - POINTER 1--- ... POINTER DEC -... -- DATA STORAGE

I
-

I:.: ADD1F
XBHLD XBKKN XBKKK t-------·-1-- XBKJG

ADD20 - -
MICRO STACK

R1MA Fx XBKLA

M;]

ADD 3FF XBKLD MSWR/ DATA

R1/ REG 1 OUT

-: INPUT PCL6 REG 1 I---MSP_ EVEN (9:10) R1/ (CLOCK) --
Z5 --- R1 CFA_ -- ~ XBKKD t--
AD _

~ DATA IN (20 LINES)
-~

XBKJN

j I jJ _ DO (19:20) DATA OUT (20 LINES)

l
R1SO ,~

R1S1 - MX BUS (36 LINES)

--" h R1S2

,11 , t CR (50:19) VUWD
AD_ MICRO ----. MICRO
CFA-- I~

WXML/ INPUT VIWD - INPUT REG 1 I I -...
WXEL/ 22 \11~n

l Z5 -
INPUT 1 -[19,10]

••~u - 0 --...... ODD BRST VUSD
MSP_ -

CR (38:7] ---- -- R1/ R204/ FOO
R11_ XBKKG ~

Ml48 IOCB LUST
MX ,...... IOCC TB [3:4)

XBKKA
XEQO HAD [3:4}

CLR./ LIST

R1MA R1MX

XBHMG
.......... XBHMA

CFB BUS FROM MICRO MOD

"' -. CFA BUS FROM MICRO MOD
~ -.

E L "" STEN
STATE FLAGS

CFB_ .i=LAGS aav f?·Al OUTF 'OUTF! •••ni. l""·""l'J L--,.. -- Bl/ [2:3) ASEL 'ASEL/

MINH/ HASL

IBI (2:3] _ FLG/ [4:5) BAST
......

L~ FLGS/

XBHLG XBHLK

STMX FLE

~-

MV4143/SHEET 1 OF 2

5010986

C3 [9:10]

~

CJ (19:10)

VCOP

TOP
........
1m1n

CUIO

ENTRY VECTORS

MPME

HDPH/

IBI (2:3)

LAST
I-

~~ REG3
[9:10]

-
XBKJD

REG 3

--- [19:10] -
~~

XBKJK

REG 2
[9:10)

~

B 6900 System Reference Manual
System Concept

TOD
REG .. (11: 12] --

'l XBKND

~

[
TOD
REG

- [23:12)

XBKPA

'l t--

[TOD
REG

~ [35:121

XBKPG

t-i
XBKHK j

Z5R2 '
t

REG 2
[19:10]

i...... ,...._......

XBKHN

MICRO INQ [9:10]

CPC
REG

[11 :12]

XBKNK ~

CLR l

CPC
~ REG

(23:12)

XBKPN

CLR l

--TO SHT20F 2

MXBUS
(35:10)

TO
Z1 BUS 1--- [35:10]

XAKKG

MXBUS
(25:13)

TO - Z1 BUS
(25:13)

XAKKD
INPUT

R2 [19:20]
1

BITG/

R3/ [2:3)

ST'4

STCH

TERM/

LP [15:16)

Bl [2:3)

XBHMD

BOTG/

BOTG
MXBUS
(12:13)

AE~G TO - Z1 BUS ~ STCH/ - [12:13]
LDMH

LPEZ XAKKA

R3EZ

TO _!1 BUS (35:36)

--
Figure 5-28. MLIP Simplified Schematic (1 of 2)

S-35

Ml [1S:8]

CR [47:8]

1 CA (50:3]
I •

CTMH]

B 69QO System Reference Manual
System Concept

r--TTMH

• rMTMH

DST (3:4]

SELECT 1
UPPER
BYTE MO (15:8] -- [15:8)

MOP2/ ---
MOP3/ l ... ,-, I I

STS -
..,~-----+

LP'N
[5:6]

- I XBKLG I

LPMX3 LLLPB

MX [15:8]

XBKMA

I
I

..... -
SELECT 2

LOWER
MX (7:4] BYTE MO (16:1]
~ (7:8)

_.. [1~:1 I -
Ml [7:8] MO [7:8) --
CR [39:8] __.. MLIE

MOP2/ _.. - XBKLN

CTMLJ 1 LMTML

LTTML

MU INPUT (Mlj BUS

MV4143/SHEET 2 OF 2

Figure 5-28: MLIP Simplified Schematic (2 of 2)

5-36

LP'N
(15:10)

XBKLK

LPMX_j LLPB

MLIOUTPUTfMO)BUS

INRO _
SCAN AGNT/

EROn __ CONTROL BROF

RDYn _
MLI

PACO ..
cueo CONTROL PAC1

I MPXG SCAN PAC2

PACO REG PACE

PAC1 TERM/

PAC2 sasc
PACE XBKMN CSEL/

XBKMG INRQ/

PRSC ---- XBKMD EMRO

tENF .l I l - I GPS I GP GEQ GPS i I I -- ~

I XBKMD

j~

PAS

~

XBKMD

l '
PENO

PEN1

PEN2

PEN3
PAD -- PEN4 --

PENS
~ ~

PEN6

PEN7

PAD+1
PRSC r: XBKMD 1 XBKMD .-

ICPA~] I I •

MLI
INRO....,

AGN~ PORT EROO_:

TERM_l 0 RDYO __..

cs ELL MLI -_ --
I --- MIBUS ---- XBKMK

LADPO

AGNT/ MLI INRO __ AGNi:L MLI INRO_
PORT PORT -- -.... -TERMJ

5
ER05_ TERM.[1 ER01_....

--- cseil_ CSE LL ROY~ RDYl_.. --
MLI MLI _.... -.... Ml BUS MIBUS - -- -- ---- XBKPK -- XBKNA

J ~DPS
LADP1

I AGNT_l I I I or. I I iNRO .. j i I - MLI i I MU 11'911'\.L_.. I

I
-- PORT

-...
PORT -

TER~ ER06 __ TER~ ER02
6 2

csel{ r-' .. ~

RDY6_ CSELI .. ROY~ -
I MLI_ MU ~I

MIBUS MIBUS - - - --~ XBKClA .. XBKNG ..
j ~DP6

LADP2

AGNTJ MLI INRQ _ AGN~ MLI INAQ

TERM/ PORT
.. -- PORT ER03_. ER07 _ TERMl

CSE LL
7 -.... 3 -

RDY7 - CSEL!_ RDY3_.. - -
MLI MLI _.....

.-
~ - Ml BUS - --- Ml BUS

XBKQG XBKNN

J 6oP7 j'
LADP3

I AGN1L_ MLI
INRQ --TERML PORT ER04_:

CSELI_ 4 RDY4

MLI ...
Ml BUS I -

I -- XBKPD I 1 l l ______ . _ _____, LlPP4

MLIP To Data Proc~r Interfaces

B 6900 System Reference Manu31
System Concept

Figure 5-29 shows the interface between the MLIP and the Top-of-Stack registers of the CPU. The MLIP sends data to
the Top-of~Stack over the 52-bit Zl bus, and receives data from the Top-of-Stack over the 52-bit ZS bus. A special
19-bit bus is used to transfer the TAG Field and the high-order 16-bits of data from the Top-of-Stack C r~ter to the
MLIP. The MLIP also has a control signal interface to the Interrupt Controller through which it can initiate an External
Interrupt when an 1/0 operation is terminated. In addition, various logic signals from the Program, Memory, and Trans­
fer Controllers, and signals from C and K Families are routed to the logic of the MLIP.

The Zl and ZS busses are shared by the Data Processor and the MLIP modules. The special 19-bit C register bus is not
shared, and only transfers information in one direction, from the C register to the MLIP.

The logic of the Transfer Controller and the Memory Controller cause a connection between the Zl/ZS busses and the
13/lA busses for MLIP module memory operations. This connection is explained in greater detail later in this section.

-
C REGISTER INTERRUPT INTERRUPT
(50:19) BUS --- CONTROLLER TOP-OF-ST ACK --- SIGNAL

.--... REGISTERS MLIP
MODULE

-- ~ --
51-BIT Z5 BUS

! 51-IUT z1 BUS

MV4144

Figure 5-29. Interface Between MLIP and Top-of-Stack

MLIP To Micro-Module Interfaces

Figure 5-30 shows the interfaces between the micro-rriodule and the MLIP. The interface between the MLIP and the
micro-module includes an 8-bit Control Field A (CFAn) bus, a 5-bit Control Field B (CFBn) bus, and a special 12-bit
micro-code address bus. The CF An and CFBn busses only transfer data in a single direction, from the micro-module

MV4145

5010086

MICRO-ADDRESS (STATUS VECTOR) BUS

MICRO ADDRESS BUS

MICRO-MODULE
8-BIT CFAn Bus·

5-BIT CFBn BUS

MLIP
MODULE

VARIOUS LOGIC LEVELS FROM MLIP LOGIC CIRCUITS

Figure 5-30. MLIP to Micro-Module Interfaces

5-37

B 6900 System Reference Manual
System Concept

logic to the MLIP. The 12-bit micro-code address bus is used to transfer Entry Vector data from the MLIP logic to the
micro-module, and also to transfer micro-code sequence cot,mts from the micro-module to the MLIP. These busses are
internal logic circuits of the CPU cabinet and do not use external bus cable connections.

The CPU micro-module code contains the process flows for all MLIP functions. An MLIP function is a single complete
MLIP operation that includes all the options, variations, and error-handling processes for the function. A program flow
for an ML!P function varies dyna..rnically; that is; the micro-code program takes branches within a process flow based
upon the value of various logic signals which the micro-module receives from the MLIP module and/or the data
processor module.

The MLIP receives the sequence flow address from the ·micro-module for the current MLIP operation sequence. The
MLIP must know its sequence flow address in the micro-module so that in the event of an interrupt .(caused by an
error condition in the MLIP logic), the interrupt parameters· contain the micro-code address of the point in the MLIP
sequence flow at which the interrupt occurred.

In addition to the listed interfaces between the micro-module and the MLIP, various logic levels of the MLIP are also
present at the address inputs to the micro-module. These levels are used to modify the next micro-module sequence
address, thereby implementing the subroutine calling procedures of MLIP control micro-code.

An entry vector is the starting address in the micro-module for an MLIP operation sequence. Entry vectors are trans­
mitted to the micro-module to select and start the operation of an MLIP control sequence. The value of the 12-bit
entry vector determines which sequence is selected, and the occurrence of the entry vector on the bus determines when
the operation sequence starts to execute.

MLIP To Peripheral Device Interfaces

The MLIP logic contains from 1-to-8 extemai cabie interface port connections to the Universal I/O Base (IODC) modules
(refer to Figure 5-31). At least one of the interface (MU) ports must connect the MUP module to an IODC module.
Each MU interface consists of a 25-signal cable connection.

Each MU interface connection can conduct communications between the MLIP module and up to eight IODC modules.
If multiple IODC Base modules are connected to an MU interface, then the IODC modules are interconnected by
extensions (line Expansion Modules or LEMs) to the MU interface bus.

Each IODC module can contain up to eight Data link Processor (DLP) devices.

MLIP GENERAL OPERATING CHARACTERISTICS

The MLIP module receives STRC, STRK, VARF, and Family T=register value signals from the Data Processor module.
The MLIP logic interprets the T-register values for each Variant Mode Family C and K operator, and detects operator
codes that initiate MLIP micro-code functions.

The Variant operators that initiate MLIP micro logic are:

a. Family C 95A7 RTOD Read Time-of-Day

b. Family K 9540 RCPC Read Central Processor Count

c. Family K 9541 RUNI Set Running Timer

d. Family K 9549 WTOD Write Time-of-Day

e. Family K 954C CUIO Control Universal Input Output

5-38

INTERFACE TO/FROM
MICRO-MODULE -- --- -

----INTERFACE FROM
PROGRAM CONTROLLER

-- .. -- -
INTERFACE TO/FROM

TOP-OF-STACK

MV4146

B 6900 System Reference Manual
System Concept

l
MLI INTERFACE -- -- IODC - -

MODULE

..... -- -- --
MLIP -- --- -

MODULE -- - MLI -
INTERFACES -- -- t-- TO 7 OTHER -

IODC -- -- -- MODULES

--..-- ---
-- ---

TO INTERRUPT CONTROLLER

TO MEMORY CONTROLLER

Figure 5-31. MLIP to Peripheral Subsystem Interface

When an operator code that initiates the MLIP logic is detected, the MLIP generates an Entry Vector into the micro­
module. An Entry Vector is essentially a beginning address in the micro-module of the micro-code for the detected
MLIP function. As the micro-module proceeds through the MLIP function code flow, it returns control information for
the operation to the MLIP, in the proper sequence. Thus, the MLIP detects the requirements for its own functions and
initiates the micro-module to the proper address (Entry Vector) for each of its functions.

Processor Timer Operation

Figure 5-28 shows that the MLIP contains Processor Timer fogic circuits. When an RCPC operatm is detected by the
MLIP, the value of the Processor Timer logic is returned over the Z 1 bus to -a Top-of-Stack register. The value returned
to the Data Processor is a 24-bit binary field that represents elapsed time in 2.4 microsecond increments up to about
40 seconds maximum. The count does not contain time that is expended by the Data Processor or the MLIP for accessing
system memory. The system software uses this count value in computing billing costs for various users of the B 6900
system resources.

When an RCPC operator is detected, the 24-bit Processor Timer counter is RESET to a count of zero, and begins to
count up to 2.4 microsecond increments. The counter is inhibited from counting up when signal RCPI is TRUE (while
a CPU memory cycle is in process). If the counter is full (all bits contain binary 1 's), it steps through the count of zero
and continues counting. ·

Time-of-Day Operation

Figure 5-28 shows that the MLIP module contains Time-of-Day (TOD) logic. The TOD logic consists of a 36-bit
counter that counts time in 2.4 microsecond increments. The counter can be initialized to any selected count value,
after which it proceeds to increment the count value. The TOD counter cycles, so that counting does not stop when the
counter is full. Instead, it counts through zero and continues.

5010986 5-39

B 6900 System Reference Manual
System Concept

When the MLIP module detects a Family K RTOD operator, the current value of the TOD counter is returned to a Data
Processor Top-of-Stack register through the Zl bus logic. When a WTOD operator is detected, a 36-bit value on the ZS
bus initializes the counter value of the TOD logic, after which counting continues at the new value.

Running Timer Operation

The Running Ti..111er causes the Runni..11g Indicator to illuminate when the tL111er is counting (has not timed-out). The
Running Indicator is used to show that the B 6900 system CPU is functioning.

This timer counts clock periods for 2.04 I+/- 0.16 seconds and then times-out, unless it is RESET. The System Running
(SRUN) signal, from the micro-module to the MLIP, RESETs the timer. When SRUN goes TRUE, the Running Timer is
RESET, thus beginning a new timing sequence. Under normal system operating conditions, the timer never times out;
thus, the Running Indicator is continuously illuminated.

The Running Indicator is important for B· 6900 system operations because during certain previleged types of operation,
the system operator has no other way of knowing whether or not the system has halted. The CPU micro-module is
functioning during previleged operations, and by use of the Running Indicator shows the true processing state of the
system.

Other MLIP Timer Operations

The MLIP logic contains and operates other timing devices for the B 6900 system. These other timing circuits are
defined and discussed separately because they are not triggered into operation directly, as a result of the MLIP decoding
a Data Processor operator. These other timer functions of the MLIP logic are:

I . The LOOP timer.

2. The Interval Timer.

3. The Base Busy Timer.

4. The Ready Timer.

LOOP TIMER

The LOOP Timer is used to cause an ALARM type interrupt when the Data Processor operating program is detected to be
trapped in a program operator flow. The operating program is trapped if a selected system condition does not occur
before the WOP Timer times-out.

The WOP Timer counts clock pulses and times-out in 2.04 1 +/- 0.16 seconds, unless it is RESET. The timer is RESET
by any one of eight different conditions being present. When the timer is RESET, counting starts and continues until
either the timer times-out or until another RESET occurs.

The system conditions that cause the timer to RESET are:

540

I. A family operator completes, and there are more family operators present in the P register waiting to be
executed.

2. The MLIP logic receives control of the memory interface to access system memory.

3. The LOOP Timer RESET signal from the Data Processor is TRUE.

4. The Conditional Halt logic detects a Conditional Halt state to be TRUE.

5. The Data Processor is HALTed.

)) 6900 System Reference Manual
System Concept

6. The Data Processor is perfonning an IDLE operator.

7. The Maintenance Display Processor (MDP) is scanning the state of CPU flip;.ffops to update the display or
control of CPU logic signals.

8. A CPU LOAD function is in prncess.

INTERVAL TIMER

The Interval Timer circuit is used by the system software to cause a Syllable Dependent Interrupt condition after a
given time interval has passed. The software operating system uses the interrupt from the Interval Timer as a key for
interlacing software programs that are operating in a multi-processing environment.

The Interval Timer counts system clock pulses and times-out 500 1 +/- 38.4 microseconCls after the Start Interval Timer
(STIT) signal triggers the timer into operation. When the timer times-out, the Interval Timer Interrupt (ITIN) signal is
generated and returned to the Interrupt Controller logic.

BASE BUSY TIMER

The MLIP accounts for the fact that a IODC module may go "Busy" during an MLIP I/O control sequence over its
MLI interface. If this condition occurs, it hangs the MLIP and suspends further system I/O operations until the MLIP
is disengaged from the IODC module MLI interface.

The Base Busy Timer circuit provides the method for disconnecting the MLIP from an MLI with which it is hung. The
Base Busy Timer limits the length of time such a condition can exist to 2.04 l+/- 0.6 seconds.

When the MLIP connects to one of its MU ports, the Base Busy Timer is triggered into timing operation by signal BBTR.
If the timer circuit times-out before another BBTR signal occurs {while the MLIP is still connected to the MLI) the Base
Busy Time-Out (BBTO) signal is generated to cause an MLIP fault interrupt condition in the Interrupt Controller logic.
The resultant Interrupt Controller operation disconnects the MLIP from the MLI to which it is connected.

READY TIMER

An MLIP accounts for the fact that a UIO-DLP module may be connected to another MLI and unable to respond to a
POLL-TEST operation. Such a condition results in the IOOC module returning a NOT READY Result Descriptor in
response to the HDPs POLL. TEST operation sequence. When this condition occurs, the MLIP waits for the UIOaDLP
to finish its current operation and respond to the POLL-TEST. If the UIO-DLP becomes READY, the MLIP proceeds
to complete the POLL-TEST operation sequence and to initialize the UIO-DLP for a subsequent I/O operation.

The Ready Ti.11e1 cilcuit is used to li.uit how long an MUP vvfilts for a UIC-DLP to respond to & POLL-TEST request.
When the MLIP first attempts to execute the POLL-TEST request, the Ready Timer circuit is triggered into operation.
If the timer circuit times out before the UIO-DLP responds to the POLL-TEST request, the MLIP aborts the POLL-TEST
request, generates a NOT READY Result Descriptor for the UIO-DLP, and sends an 1/0 finished interrupt to the
Interrupt Controller.

The Ready Timer circuit counts clock pulses from the time that the MLIP initiates the POLL-TEST request {triggered by
signal RYTR), until the MLIP receives the READY (signal RDY .. OK) response from the IODC, or times-out. The timer
times-out 8.0 1 +/- 0.6 milliseconds after it is triggered, unless the RDY .. OK response is received.

5010986 541

B 6900 System Reference Manual
System Concept

Peripheral Device Operation

When the MLIP detects a family K CUIO operator, the logic circuits of the MLIP generate an entry vector to the micro­
module, to start the operation of an MLIP Universal 1/0 device operation sequence. This type of MLIP operating
sequence is defined in the following text.

During normal B 6900 system operatio11s, the MLIP module operates to relieve the Master Control Program of the
responsibility for controlling the operations of system 1/0 devices and controls. The MCP specifies by certain data in
system memory:

a. The particular 1/0 device that is to be operated.

b. The particular type of operation that the device is to perform.

c. The expected result status that the 1/0 device is to return to the system.

d. The location of the data buffer in system memory that is to be used for the 1/0 device operation.

e. The maximum length of data records to be handled by the 1/0 device.

f. How many 1/0 operations are to be performed without an interruption to the system (providing that the
1/0 device or the MLIP does not encounter an error condition).

g. Where the 1/0 device result descriptor is to be stored in system memory.

h. The point in a series of 1/0 operations at which the attention of the MCP is to be obtained.

i. The particular path to be used to interface to the 1/0 device.

PRIORITY SEQUENCER OPERATIONS IN THE MLIP

The MLIP module contains Priority Sequencing logic circuits that act as the overall operational control for normal
MLIP 1/0 operations. The Priority Sequencer logic (see Figure 5-32) controls the ordering of MLIP functions that
originate from requests by the B 6900 software system, or requests that originate in the UIO peripheral subsystem.

The Priority Sequencer logic consists of a 5-bit counter which steps through the sequences that are conditioned by logic
signals from various circuits in the MLIP. · The Priority Sequences determine when the MLIP is to respond to a CUIO
operation by the CPU, or when it responds to an input POLL-REQUEST operation by a IODC module. The Priority
iogi~ resoives the priority between a CUiO operator and a POLL-REQUEST that are present at the MLIP at the same
time. In addition, the Priority Sequencer resolves priorities between simultaneous POLL-REQUESTs originating from
two or more IODC modules, or between two or more UIO-DLPs within the same IODC module.

A POLI.rREQUEST sequence for a IODC is required when a UIO-DLP in the IODC executes certain sequence counts of
its controi logic. IODC moduies monitor the sequence counts of the UiO-DLPs located in the module, and strobe onto
the MLI interface the sequence count of the highest priority UIO-DLP needing a POLI.rREQUEST sequence. In addition
to the sequence count, the IODC strobes the Global-priority value for the OLP onto the MLI interface. The MLIP logic
monitors the sequence counts and Global-priorities present at its MLI ports, and generates an Entry Vector to the micro­
module for a POLL REQUEST sequence to the highest priority UIO-DLP needing a POLL REQUEST sequence.

542

B 6900 System Reference Manual
System Concept

I ;ASE CLEAR TO ALL PO~T~
SYSTEM

SC-OA. Will SEND ACCESS GRANTED TO ALL Mll PORTS.
EACH POAT WILL RESPOND WITH ITS GLOBAL PRIORITY WOAD OR

EMERGENCY REQUEST IF THAT PORT IS·REOUESTING ACCESS

GENERAL CLEAR
FROM SC=09

ii r;: .. ~11•~~ i
I TERM 0=1 I I

I ~T~RM:M•1 -~ '

Sc:o ___ A ~----i
BRQF+-1 I I I AGNT+-1 I

~o7 -,
I DELAY STATES 1 I L ___ =-J
~ ------,
I ~PADR+1 [PAC=2) i

. I
YES 1 SC=11-+

I PAC=1

I ST ARTS ALL I
I PRIORITY SCANSI
~ - PADR +-o [CPA:l~PORT o I

I

I
I

NO

NO

INTERRUPT REQUEST

I
l

I

L _____ vEs ___ _.

MV4147

SC=OC SCANS .A.LL
PORTS AND LOADS
HIGHEST GLOBAL
PRIORITY WORD

INTO GPS/PAS

PADR+1 [PAC=2]

NO

L_ --+--YES - _J
SC=10-+

sc=00-+

+-sc~

5010986

,_ ________ _
I SC=DD - - ----i LOADS HIGHEST GLOBAL

--, I PRIORITY PORT INTO

1
PADR +-PA.SR [PAC=3] t POAT ADDRESS REG.

I I
--+---- - ___j

FROM SC=11/0D/SELF

I SC=OE - ---i
I

I NO

I

L_ YES __J
! SC=OF - - ---i
I
I MM+- ENTRY VECTO;i I

MMEN +-1

1_· - _:J
rsc=w___.___-_.___-1
I lsasc=1

I BRQF +-(!

SC=OE

WAITS FOR HOP
TO TAKE SYSTEM

LOADS MICRO MOD
ENTRY VECTOR

SEQ SCAN COMPLETE.
WAIT HERE UNTIL
HOF iS DONE WiTH
BURST OR CUIO.

HIGHEST NUMBER
PORT WITH
ENRO WAS LOADED

INTO PADR IN SC=OA

Figure 5-32. Priority Sequencer Sequences

543

B 6900 System Reference Manual
System Concept

1/0 OPERATION INITIATION PROCESSES IN THE MLIP

The specifications for an 1/0 operation are located in system memory in fixed queues of information called 1/0 Control
Blocks (IOCBs). An IOCB contains at least 15 consecutive words of memory and may contain more words for MCP
software purposes. The first fifteen words in an IOCB contain 1/0 control data in fixed word/field formats (refer to
Figure 5-33). The data in an IOCB is used by the MLIP to initiate and control a particular 1/0 operation. The MCP
forms an IOCB and places the required data for an 1/0 operation in the word fields of the IOCB, before the MLIP is
initiated by the CUIO operator.

THE CUIO OPERATOR

ADDRESS POINTS HERE

THE MLIP
MICROCODE
PROGRAM CAN
ACCESS ANY
WORD INTHE
IOC8 BY USING
THE RELATIVE
WORD ADDRESS
ASAN INDEX
ONTHECUIO
ADDRESS.

MV4148

;.,.:;

,..i....,

IOCB MEMORY WORD LAYOUT
WORD CONTENTS ,.,...

MLIP CONTROL DATA
IOCB CONTROL WORD

OLP AND MLI PORT ADDRESS
OLP ADDRESS WORD

COMMAND Q ADDRESS
COMMAND Q HEADER POINTER -

ADDRESS OF IOCB CONTROL WORD
IOCB SELF POINTE.A

ADDRESS OF 10 DESCRIPTOR
OLP 10 COMMAND POINTER --
OLP 10 RESULT POINTER

ADDRESS OF RESULT DESCRIPTOR

OLP COMMAND/RESULT LENGTH
LENGTH OF COMMAND a AND RESULT a
RESULT DESCRIPTOR MASK

OLP RESULT MASK

ADDRESS OF RESULT Q
·RESULT Q HEAD POINTER -

ADDRESS OF NEXT IOCB
NEXT IOCB LINK --
HOP CURRENT DATA AREA POINTER

_10 DATA BUFFER ADDRESS

HDPCURRENTIOLENGTH
,!«)RDS REMA!N!NG !N !O DATA BUFFER

MLIP STATE, OLP STATUS, MLIP/MLI ERRORS
HOP STATE AND RESULT ---

TIME-OF-DAY AT BEGINNING OF 10 OPERATION
10 START TIME

10 FINISH TIME
TIME-OF-DAY AT END OF 10 OPERATION --

~

Figure 5-33. B 6900 IOCB Memory Word Layout

The IOCB area in system memory is used jointly by the MCP and the MLIP. After the MCP has created an IOCB arid
placed 1/0 control data in it, the MCP causes the Data Processor to execute a CUIO operator. The execution of the
CUIO operator causes the MLIP to access the data in the IOCB and to begin the 1/0 device operation that is specified
there. Once the MLIP is initiated into operation of an 1/0 device from data in an IOCB, that IOCB is controlled by the
MLIP and not by the MCP.

A CUIO operator serves two purposes. It initiates the MLIP 1/0 control logic into operation. It also provides the address
of the first word in the IOCB, where the MLIP finds control data for the 1/0 operation.

The MLIP, when directed, informs the MCP that an 1/0 operation is terminated by causing an 1/0 Finished External
Interrupt to occur. This interrupt subsequently causes the MCP to examine the State And Result Word for the 1/0
operation, which is located in the IOCB. The MLIP writes a State And Result Word in the IOCB before a possible 1/0
Finished Interrupt is generated as part of the normal process for terminating peripheral device operations.

5010986 S-45

B 6900 System Reference Manual
System Concept

MLIP INITIATION OF THE COMMAND QUEUE STRUCTURE IN MEMORY

An I/O operation is initiated when the logic of the MLIP causes the IOCB to be linked into a Command Queue
structure in system memory. A Command Queue (see Figure 5-34) is an organization of IOCBs that are scheduled to be
initiated by the MLIP. The MLIP maintains the Command Queue structure for controlling the ordering of multiple I/O
device operations in a dynamic system operating environment.

linking an IOCB into a Command Queue structure is accomplished by inserting Next IOCB Links (memory address
pointers) in all queue IOCBs. The Next IOCB Link of an IOCB points to the address of the Next IOCB in sequence in
the Command Queue. If no other IOCB is present in the queue or if this is the last/only IOCB in the queue, then the
Next IOCB Link word contains an operand with a value of zero.

The control logic of the MLIP scans the contents of all Command Queues periodically and attempts to initiate I/O devices
for which IOCBs are present in the Command Queue. When an I/O device OLP is successfully initiated, the MLIP delinks
the IOCB from the Command Queue by altering the NEXT LINK words of other IOCBs in the Queue. The NEXT LINK
word of an IOCB that has been successfully initiated is replaced by an operand with an integer value of 1.

-
Horizontal Command Queue operations are an automatic subroutine of the MLIP INITIATE-OLP function. The MLIP
logic automatically attempts to initiate the UIO-OLP device at the conclusion of the ENQUEUE-IOCB function. If a
UIO-DLP is BUSY when the MLIP attempts to initiate it and if the Command Queue can be horizontally queued, then
the MLIP ENQUEUE-HORIZONTAL sequence subroutine is invoked. If a UIO-OLP is not BUSY when the MLIP attempts
to initiate it and if a successful connection to the UIO-OLP is completed, then the IOCB is delinked from the Command
Queue by the INITIATE-OLP function as described previously.

Figure 5-35 shows how control-informa~ion inputs to the MLIP logic initiate an MLIP operation. The MI€RO INPUT 0
block detects an MLIP function command from Program Controller input signals and causes an Entry Vector input to
the micro-module. The memory address of an IOCB is present at the ZS-bus input to REGISTER 1 when the control
signals from the Program Controller are present at MICRO INPUT 0.

The micro-module subsequently causes the MICRO OUTPUT block to access the IOCB in system memory, and obtain
control information about the MLIP operation to be performed. The IOCB memory information appears on the ZS-bus
inputs to REGISTERs 1, 2, and 3. IOCB memory data is fetched into REGISTER 1 and stored in the MLIP RAM
memory where it is available for subsequent use by the MLIP logic. Memory information present in REGISTER 2 comes
from the IOCB Command Word shown in Figure 5-36. The contents of REGISTER 2 are passed to the micro-module
through the combined logic of MICRO INPUTs 0, I, and 2. REGISTER 3 receives I/O LENGTH data from the
LENGTH-Field of word 10 in the IOCB.

546

CUIO COMMAND
(DATA PROCESSOR)
20-BIT ADDRESS
PASSED TO

IOCB ADDRESS PLACED
IN TOP-OF-STACK, BY
MCP, PRIOR TO CUIO
OPERATOR BEING
EXECUTED

MLIP MODULE

MV4149

3
t-~,,,..,..~~-----~._,---c

4
.,_.....,.~~~~~~--i

5
t--=~~~~~--i

6

8

9

10

11

12

13 10 START TIME

14 10 FINISH TIME

n

NOTE

THE CURRENT 10 LENGTH
PARAMETER (WORD 11 IN
THE IOCB) DEFINES HOW
MANY WORDS OR BYTES ARE
TO BE TRANSFERRED TO/FROM
THE DATA BUFFER FOR THE
CURRENT OPERATION.

I

I
I
I
I
I

0

n

I "

RESULT Q HEADE:R

RESULT Q HEAil!

RESULT Q HEAD

~~~E~ n-------, 
LENGTH OF 
RESULT 
DESCR. 

(SEE NOTE) • 
__... n CURRENT DATA WOBD 

• 
LAST DATA WORD 

MARK 
(10CF) 

MARK 
0 t----------c (10CB) 

2 ~~~mlrm~~il-~~-
3 

...... ...,..,,...,.,,~~~~--c 
4 
1--_,,,.,~~~~ ...... --t 

5 

eh~~~ri 
7 
t---=-:i:r.-:~"r">....:~--t 

8 
t-~_.J,;.lOLWt.Uo.U...---1 

9 NEXT IOCB LINK 

n 

n 

0 
t---:.:.w;.;....,oi.:.----t MARK 

1 HORIZONTAL a HEAD---· 0 COMMAND a HEADER (10CC) 

2 HORIZONTAL Q HEAD HEAD IOCB LINK 

n 2 TAIL IOCB LINK 

3 
t---'-¥.1.LLl.ll"-1--~--I 

4 HORIZONT~ 

L MARK 
0 COMMAND 0 HEADER (10CC) 

HEAD IOCB LINK 

Figure 5-34. MLIP Contmand Queue Structures 



!ICRO MODULE ADDRESS M 

M -=-1ICRO MODULE OUTPUT DATA_ 

--z !5 BUS DATA 

~-----...... 
MIBUS 

----

MLIP 

REGISTER 
1 

MLIP 
RAM 

MEMORY 

MLIP 
REGISTER 

2 

C REGISTER DATA (50:19]1 

PROGRAM CONTROLLER DATA 

--- MLIP 
REGISTER 

3 ,__....... 

INCR/ 
......__ DECR 

LOGIC 

MLIP PORT LOGIC SIGNALS -
~. 

MEMORY CONTROLLER DATA 

MV4150 

~ 

MOBUS 

~ RAM 

- ADDRESS !-----' -- LOGIC 

-----~ MICRO 
- INPUT - 0 -r --
---

MICRO 
--- INPUT ---

1 -~ 
t-----, 

--- MICRO 
INPUT 

t-4--- -- 2 -
h 

--
.. ~ MICRO 

- OUTPUT 
---......... 

Figure 5-35. MLIP System Control Function Diagram 

MIBUS ------

ENTRY VECTOR 
...... 

MLIP LOGIC SIGNALS 

CUIO 

MLIP LOGIC SIGNALS ..-

MLIP LOGIC SIGNALS 

.,.. 

u 
MEMORY REQUEST _ -

TO MLIP PORT LOGIC 

TO M~CRO MODULE 
ADDHESS INPUTS 

TO MEMORY 
CONTROLLER 



B 6900 System Reference Manual 
System Concept 

!OCB 
CONTROL 

WORD (CW) INPUT 
BITS TERMS 

cw .17 Z516 

CW.01 Z517 

CW.03 Z518 

CW.04 Z519 

CW.06 Z520 

CW.06 Z521 

CW.07 Z522 

CW.08 Z523 

CW.09 Z525 

CW.10 Z526 

cw .11 Z527 

CW.12 Z528 

CW.13 Z529 

CW.14 Z530 

Z531 

Z5R2 

MV4151 

MLIP 
REGISTER 

2 BITS 

R200 

R201 

R202 

R203 

R204 

R205 

R206 

R207 

R208 

R209 

R210 

R211 

R212 

R213 

0.,14 

R215 

R216 

R217 

R218 

R219 

I 

J 

CONTROL 
SIGNAL 
MEANING 

IMMEDIATE 

NOT USED 

CAUSE 1/0 FINISH 

MEM. OVERRIDE 

1/0 DEVICE INPUT 

1/0 DEVICE OUTPUT 

OUTPUT ZEROES 

TAG CONTROL 0 

TAG CONTROL 1 

TAG CONTROL 2 

CHARNJORD ORIENTATION 

MEMORY DIRECTION 

CONTINUE COUNT AT END 

IGNORE COUNT ERROR 

RESERVED 

NOT USED 

NOT USED 

NOT USED 

NOT USED 

Figure 5-36. ML1P Register 2 Function Control Logic 

Figure 5-37 shows how control information and data pass through the MLIP logic to/from the UIO-DLP subsystem. The 
CUIO signal comes from the MICRO INPUT 0 logic shown in Figure 5-35. The IOCB DLP ADDRESS com~s from bits 
[10:3] of the DLP Address Word in the IOCB and is used to select 1 of 8 MLI Port Adapters. The MLIP initiates an 
1/0 Command by passing control signals and data through the MLI SELECT logic to the selected MLI Port adapter. 
UIO-DLP Commands and output data are passed to the Port Adapters by means of the MX-bus and MO-bus. Input 
data and Result Status data are received from the UIO-DLP by means of the MI-bus and MX-bus. The MLIP logic 
creates interfaces between its MX-bus and the Zl/Z5 busses, and between the MX-bus and the special 19-bit C REGISTER 
bus. 

5010986 549 



B 6900 System Reference Manual 
System Concept 

Ml BUS (PERIPHERAL INPUT DATA) 

L PORT ENABLE SIGNAL _ 

(MLIP CONT. DATA) MLI 
MXBUS SELECT ..... - LOGiC MOBUS --(PERIPHERAL OUTPUT DATA) -

C REGISTER ---(50:19) 

=1 
__.. -

MX BUS (TO Z1 BUS) - . -- -
PRIORITY 

ISEOUENCE PSC (4:5) 
~ COUNTER t--- MLIP SEQUENCER 

LOGIC COUNTS 

-

• PRIORITY 
ACCESS PENO 

.__..... 
CONTROL 
SIGN·ALS PEN1 --CUIO PACE ..... MLI 

PEN2 -- PRIORITY 
PACO CONTROL PEN3 SCAN _.. 

CONTROL 
- LOGIC 

PAC1 PEN4 
LOGIC 

.. -
PAC2 _. PENS 

-
PENS -~ 
PEN7 

~ 

ZS BUS (10:3) FROM PORT -FIELD OF --(MX 10, -MX 09, MX 08) 
IOCB OLP 

I 
ADDRESS 

WORD (DLPAW) 

+------

---
I 

~ 

.. -

MV4152 

Figure 5-37. MLIP Port Control Function Diagram 

S-SO 

r--+ 
MLI 25.WIRE MLI 

PORT 
INTERFACE TO 

ZERO 
IODC CABINET 

~ 
MLI 

PORT 
ONE MLI 

~ 
MLI 

PORT MLI 
TWO 

t----. 
MLI 

PORT .MLI 
THREE 

I 
MLI ~ 

PORT 
FOUR MLI 

MLI 
t--t 

PORT 
FIVE 

MLI 

~, 

MLI 
PORT 

SIX 
MLI 

I 

MLI ~ 

PORT 
SEVEN MLI 



B 6900 System Reference Manual 
System Concept 

MLIP RAM MEMORY OPERATIONS 

The MLIP contains a Random Access Memory (RAM), used to store data that is pertinent to the current I/O device 
operation (see Figure 5-38). This RAM contains I 024 20-bit memory words which are divided into a Data Storage 
section of 32 words (in address.es 0-31), and a micro-stack section of 992 words (in addresses 32-1023). 

ADDRESS 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12. 16 

17 

18 

19 

20-31 

MV4153 

MLIP RAM MEMORY LAYOUT 

iO PARAMETER WORDS WORD CONTENTS 

ERROR IOCB PRESENT FLAG, SUSPEND ALL QUEUES FLAG 
HOP STATUS REGISTER ---

ADDRESS OF ERROR IOCB WHEN FLAG (WORD 0) IS SET 
ERROR IOCB ADDRESS -

ADDRESS TO STORE ERROR RESULT DESCRIPTOR 
WHEN PRESENT BIT (WORD 0) IS SET 

ERROR RESULT ADDRESS --- (USED PRIOR TO CONNECTION) 
MLI, IODC, AND OLP ADDRESS PARAMETERS 

WORKING OLP ADDRESS -- (USED AFTER CONNECTION) 
MLI, IODC, AND OLP ADDRESS PARAMETERS 

CONNECTED OLP ADDRESS ---
ADDRESS OF HORIZONTAL Q HEADER OF.REQUIRED) 

HORIZONTAL Q ADDRESS ---
ADDRESS OF COMMAND Q HEADER 

COMMAND Q ADDRESS --
ADDRESS OF THE CURRENT IOCB 

IOCB ADDRESS ---
COMMAND 0 CONTROL WORD (PART 1) - 1_ CONTENTS OF COMMAND Q CONTROL WORD 

COMMAND Q CONTROL WORD (PART 2) - J --
VALUE IS ESTABLISHED AT MLIP CLEAR, IS CONSTANT THEREAFTE 

HOST RETURN FIELD - HOST RETURN FIELD VALUE (PROCESSOR ID) --
CONTAINSS FLAGS THAT ARE USED DURING BURST OPS 

BURST STATUS REGISTER ---0 = STOP BURST 2 =LOOP EXIT 4 =NOT USED 6 =TIME OUT 

(RESULT WORDS) 
1 =STOP MEMORY 3 = BACKUP OR 5 =STATUS 7 = LPW ERROR 

CTSAVE ERROR 
WORDS NOT USED 

STORES ERRORS TO BE LOGGED IN ERROR IOCB 
ERROR CODE -

MLIP MICRO CODE TEMPORARY STORAGE AREA --GLOBAL TEMPORARY STORAGE -
MICRO STACK POINTER COMPLEMENT STORAGE 

STACK MARK -
(UNDEFINED) 

WORDS NOT USED 

Figure 5-38. MLIP RAM Data Storage Section Word Layout 

R 

5010986 5-51 



Micro-Stack Section of RAM Memory 

B 6900 System Reference Manual 
System Concept 

The micro-stack section of the MLIP RAM is controlled by the micro-module unit and is used to store dynamic data that 
is needed during the execution of a micro-code function. The data in the micro-stack section of the RAM at any given 
instant depends on the requirements of the particular MLIP function in progress. 

Data~storage Section of RAM Memory 

The Data Storage Section of the MLIP RAM contains data needed for any current 1/0 operation that is in process. This 
section of the RAM is commonly called the "Register Section" because its information is in fixed format and is used in 
much the same way as if the RAM was a series of registers. Figure 5-38 shows the layout of the Data Storage section of 
the RAM. 

RAM Memory Addressing 

The MLIP contains two separate addressing circuits for the RAM memory. The Memory Storage Address (MSAn, see 
Figure 5-28) logic is used to address the first 32 RAM addresses (the Data Storage section of the RAM). The MSAn logic 
contains a 5-bit binary address field and can address only the first 32 addresses (0-31) of the RAM. This prevents the 
MSAn from being able to address the micro-stack section of the RAM. 

The micro-stack Pointer logic (MSPn, see Figure 5-28) has a 10-bit binary address field and can access all addresses in 
the RAM. This address logic is used for accessing the micro-stack section of the RAM and can also access the Memory 
Storage section. 

RAM Memory Functions 

The MLIP contains only a single RAM memory that must be used for all I/O device operations. The MLIP logic 
establishes the contents of the RAM when a new 1/0 device operation is initiated, and must restore the data in the RAM 
before each subst:quent sequence of an 1/0 operation. 

The data in the RAM comes from the IOCB for an 1/0 device operation. The MLIP logic uses the memory address of the 
IOCB to access data which is loaded into the RAM. At the conclusion of an 1/0 device operating sequence, current 
operating data is written into the IOCB. Thus, for subsequent 1/0 device sequences, current data is restored in the RAM. 

The MPC provides the MLIP with the IOCB memory address which is part of the CUID operator sequence, anl. which is 
used to initiate an 1/0 device. The IOCB memory address used to initiate an 1/0 device is provided to the MLIP by the 
MCP as part of the CUIO operator sequence. After an 1/0 device has been initiated, the IODC provides the MLIP with 
the IOCB address, as part of the POLL REQUEST sequence. 

1/0 DEVICE INTERFACE PROCESSES IN THE MLIP 

Communications between the MLIP module and the IODC modules are separated into two types, depending on whether 
the MLIP initiates the interface, or a UIO-DLP module initiates the interface. An interface that is initiated by the MLIP 
module is a POLL-TEST operation, and an interface that is initiated by a UIO-DLP module is a POLL-REQUEST opera­
tion. The difference between a POLL-TEST and a POLL-REQUEST communication is the direction that information 
travels on the MLI interface. Extensive logic circuits are required, both in the MLIP module and the IODC modules, to 
control and discipline the communications conducted over the MU interfaces. 

5-52 



B 6900 System Reference Manual 
System Concept 

An MLI is a disciplined communication path over which multiple two-way communications between the MLIP and the 
64 possible UIO-DLP n1odules occur. Line-discipline (a built-in feature of the !\1LIP path controi logic) is used to 

identify the particular MLI path used for a communication between the MLIP and a UIO-DLP device. This path 
identification is required because an MU is a logic fan-out gate, with the MLIP at one end and as many as 64 UIO-DLP 
devices at the other end. This is the only way the MLIP has to associate the address of a UIO-DLP with an MLI interface 
port while determining the priority of simultaneous POLL-REQUESTs (inputs from more than one MU). 

MLIP CONNECT /DISCONNECT Sequences 

When an MLIP is actively communicating with a UIO-DLP over an MLI interface, the two units are connected. An MLIP 
can only be connected to one UIO-DLP at any one time. Thus, all DLPs that are not connected. are disconnected. An 
MLIP must connect to a UIO-DLP to initiate a peripheral device operation, and must disconnect from that DLP, while the 
DLP controls the peripheral unit. A complete I/O device, operating sequence consists of a series of connect/disconnect 
sequences, some of which are initiated by the MLIP, and other that are initiated by the UIO-DLP module. 

MLIP Polling Operations 

The first communication between an MLIP and a IODC module must be a POLL-TEST sequence (proceed from the 
MLIP to the IODC module). A POLL-TEST must be executed first because an IODC module cannot address the MLIP 
until it contains DESCRIPTOR LINK data. During a POLL-TEST sequence, the MLIP passes DESCRIPTOR LINK data 
to the IOOC Base module logic. Thereafter, the UIO-DLP can initiate a POLL-REQUEST sequence over the MLI inter­
face. Until the POLL-TEST sequence has been performed, the IODC module does not contain valid DESCRIPTOR LINK 
data and, consequently, cannot initiate a POLL-REQUEST sequence over the MLI interface path to the MLIP. 

POLL-REQUEST DESCRIPTOR LINK Usage 

Figure 5-39 shows how data from an IOCB is used by the MLIP to initiate a POLL-TEST communication over the MLI 
interface. It also shows the DESCRIPTOR LINK data that is transmitted by the MLIP to the !ODC during the POLL­
TEST sequence. The HOST RETURN field of the data in the DESCRIPTOR LINK is the CPU PROCESSOR ID number, 
and identifies the MLI over which the MLIP communicates with the particular IODC module. The IOCB ADDRESS field 
of the DESCRIPTOR LINK is used by the MLIP to associate a POLL-REQUEST operation from a UIO-DLP with the 
peripheral device control data in an IOCB. The IOCB ADDRESS is the same address that the MLIP received from the 
Data Processor during the CUIO operator and subsequently used to acquire the 1/0 control data from the IOCB. 

RESULT-STATUS For POLL TEST Operation 

A POLL-TEST operation by the MLIP serves to establish that the particular I/O device to be initiated is present in the 
IODC Base, and that the device is available to perform the operation (is not already engaged performing some function). 
The availability of the UIO-DLP device is determined by the normal response of the IODC Base module to a POLL-TEST 
operation, which is to return the Result Status of the UIO-DLP device to the MLIP. 

During a POLL-TEST operation sequence, the MLIP re~eiYes Result Status information froffi the DrO-DLP and IODC 
module. This Result Status is part of the normal MLI connection sequence and is used by the MLIP to verify that the 
UIO-DLP device addressed by the POLL-TEST operation is present in the IODC module. is not busy. and responds to 
the POLL-TEST communication in a satisfactory manner. 

In order to receive POLL-TEST sequence Result Status over the MLI, the direction of communication over the MU must 
be reversed: that is, data must pass from the IODC module to the MLIP. Line reversal of an MLI interface direction is 
called a LINE-TURNAROUND. A LINF-TURNAROUND may occur during any type of connection between the MLIP 
and a UIO-DLP, whenever the direction of data passing over the MLI must be reversed. 

5010986 5-53 





!OCBH [ LCPAW] 

J4--- DLPAODRESSWORD ___J 
19 18 17 16 I 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I 

PORT 

; ,---, 
I Mll 

PORT 

I 
I 

..L 
OT07 
PORTS 

T 
I 
I 

MLI 
BUS 

B 
c 
c 

I ~ '.TOOTHERDC 

L___~ _ _J 

MLIO --------

MLI 
BUS 

T 
I 

L 
E 
M 

TEST BUS 

NOT USED DCAIBASE 

IF THEM BIT IS ON AND 
NO LEM IS PRESENT, A 
""NOT PRESENT" CSTATUS ot 
WILL BE RETURNED. IF THERE 
IS A LEM, IDLE (STATUS 3) 

WILL BE RETURNED. 

MC 
MAINT.BUS 

I CLOCK 

OLP 

UIO BASE 

D 

LCI 
BUS 

T 

OPERATION: 
POLL TEST 

I 
I 
I 

..L 
OT07 
DLPS 

'T 

I 

L __ ------
__ _J 

MV4154 

5010986 

B 6900 System Reference Manual 
System Concept 

TO PERIPHERALS 

GLOBAL PRIORITY WORD 

OPERATION: 
POLL REQUEST 

B CC DD D 
4 8 I' 8 4 

THIS WORD IS GENERATED FROM 
PLUGGABLE ~OMS (D2"N5) ON THE 
DISTRIBUTION CARD. LCPRQN AD­
DRESSES THE ~OM WHICH DECODES 
TO ITS OWN ADDRESS COLP FIELD) 
AND THE GLOBAL PRIORITY FIELD. 
THIS WORD IS SENT TO THE HOST 
DURING A POLL REQUEST. If MORE 
THAN ONE BASE IS REQUESTING THE 
REQUEST WITH THE HIGHEST GLOBAL 
PRIORITY WILL BE SERVICED FIRST. 

DESCRIPTOR LINK WORD 1 
23 22 212019181716 

HOST RETURN I HOST INDEX I OPERATION: 
POLL REQUEST 

A 
8 

AB 
1 8 

B C 
1 8 

CD 

1 8 
D 

THERE ARE TWO DESCRIPTOR LINK WORDS 
SENT TO THE DLPSr THE 1 ST WORD SHOWN 
ABOVE HAS THE HOST RETURN FIELD IN 
THE UPPER 8 BITS. THIS IS THE PROCESSOR 
l.D. THE LOWER 8 BITS OF WORD 1 AND ALL 
OF WORD 2 ARE A HOST INDEX OR ABSOLUTE 
MEMORY ADDRESS POINTING TO A VALID 
IOCB IN LOCAL MEMORY. THE HOST RETURN 
FIELD IS USED WHEN THE BASE IS SHARED 
BETWEEN MUL Tll'LE HOSTS AND THE PATH 
SELECTION MODULE MUST SELECT THE 
CORRECT D.C. DURING A POLL REQUEST 
FROM A OLP. THE lWO WORDS WITH THE 
LPN ARE STORED IN RAM IN THE OLP 
WHEN THE OLP IS INITIATED AND 
RETURNED WITHOUT GENERATING 
VERTICAL OR AN LPW. 

Figure 5-39. MU Connection Function Between 
the MLIP and an IODC 

5-55 



Polling Operation Status Reporting 

B 6900 System Reference Manual 
System Concept 

If the MLIP determines (from the DLP Result Status) that a requested 1/0 device operation cannot proceed, it causes an 
interrupt to the MCP. If the initiation of an 1/0 device operation is continued after the MLIP receives the Result Status 
from the UIO-DLP, then the MLIP saves and updates the status data for subsequent status reporting to the software 
operating system. 

Regardless of how an I/O device operation is terminated, the MLIP reports status about the 1/0 operation to the software 
operating system. To transfer this information to the software operating system, the MLIP causes an MLIP STATE 
AND RESULT word to be written into the IOCB. The data in the STATE AND RESULT word is derived, in part, 
from the UIO-DLP Result Status data and, in part, from the MLIP Result Status logic circuits. In this way, when the 
system software examines the STATE AND RESULT word in the IOCB (after an interrupt from the MLIP), it is able to 
determine the status of the I/O device, UIO-DLP, MLI interface and the MLIP module. 

Polling Operation BURST Data Sequence 

When a UIO-DLP control is ready to transfer data between the peripheral device and the B 6900 system, the IODC 
module executes a POLL-REQUEST connection sequence of operations. This sequence recalls the attention of the MLIP 
module to the requested I/O device operation. To execute its POLL-REQUEST connection sequence or Polling Operation 
Line-Reversal on the MLI interface, the IODC module uses the DESCRIPTOR LINK data received from the MLIP 
module during the POLL-TEST sequence. The DESCRIPTOR LINK data contains the proper CPU MLI address, and also 
the address of the IOCB in system memory (the same address that the MLIP provided during the execution of the MLIP 
POLL-TEST connection sequence). Consequently, when the MLIP responds to a POLL-REQUEST sequence by an 
IODC module, it is able to reacquire all of the data about the I/0 operation from the IOCB in memory. 

MLIP MEMORY OPERATIONS 

Tne MLIP moduie iogic initiates two different types of memory request operations. The first type is to read control 
data from or to write control data into the IOCB. The second type is to transfer data between system memory and a 
peripheral device. 

MLIP SI-Bit Memory Cycle Operations 

The first type of memory operation {refer to Figure 540) is used during the initial part of an MLIP I/O device 
operation function, to ENQUEUE the IOCB, and to copy I/O control data from the IOCB into the MLIP RAM. This 

Z3 BUS FROM MEMORY .. 
(50:51) -

{ 
r-OF~::~::ISTE\l 
I 8 REGISTER I 

Z4 BUS TO MEMORY --(50:51) -

C REGISTER 

X REGISTER 

Y REGISTER 
Z1 BUS FROM MLIP 

(50:511 
(50:51) -ZS BUS TO MLIP --

J 
Z REGISTER -

MV4155 

Figure 540. 51-Bit Memory Paths Between the MLIP and Memory Control 

5010986 5-51 



B 6900 System Reference Manual 
System Concept 

type of memory operation is also used to update the Command Queue IOCBs, during and after the operation of a 
peripheral device. Transfer Controller barrelshifting operations are not performed for this type of MLIP memory cycle 
operations. 

MLIP BURST Memory Operations 

The second type of memory operation, commonly called a BURST cycle, (refer to Figure 541), is used to transfer data 
to/from memory only during a peripheral device operation. BURST memory operations are more involved than other 
memory operations because the data to/from a peripheral device (on an MLI) is present in two-character increments, 
while a memory word contains six characters plus a word TAG field. This means that from one to four transfers of data 
over an MU interface must be performed for each BURST memory operation performed. 

r--
1 

I 
L 

PERIPHERAL INPUT DATA 
FROM MLIP 

Z1 BUS 

PERIPHERAL OUTPUT DATA 

r--------------T_O_M_L_IP_,.. ON C REGISTER 

BARREL SHIFTING 

I I 

l C REGISTER: 

I I 

PERIPHERAL OUTPUT DATA 

I 
I 
I 

- _J 

(50:19) BUS 

PERIPHERAL INPUT DATA 

FROM SYSTEM 
MEMORY CONTROL 

Z3 BUS 

MV4156 

Z REGISTER 
(PARITY CHECKING) 

TO SYSTEM 
MEMORY-CONTROL 

Z4BUS 

Figure 541. BURST Data Memory Paths Between the MLIP and Memory Control 

Memory Operation Logic 

All memory operations initiated by the logic of the MUP use the hardware circuits of the Memory an.d Transfer 
Controllers. The MLIP shares a single path to system memory with the Data Processor, and the use of these two 
controller logic circuits is efficient because the Data Processor cannot use the controller logic when an MUP memory 
request is being performed. 

MLIP Memory Cycle Priority 

Priority logic for the use of the memory access path is required. The Memory Controller logic establishes the priorities 
for the use of the memory path. Briefly stated, the MLIP has first priority for the use of the path to memory while it 
is performing BURST memory cycle operations. The Data Processor has priority for the use of the path at all other times. 

MLIP Periphernl Data Format 

Peripheral device data on an MU interface to the MLIP module is in the form of two Extended Binary Coded Decimal 
Interchange Code (EBCDIC) characters only. No other character or byte format is used for peripheral data in the B 6900 
system. Figures 542 and 543 show the formats of peripheral data and memory data words. 

5-58 



L 
HIGH 
BYTE 

TAG (47:81 

FIELD 
[50:3) 

40 

BYTES ARE TRANSFERRED 

IN ORDER: 

FIRST 
THEN 
THEN 
THEN 

MV4157 

TAG-FIELD. 
BITS (47: 16). 
BITS (31: 16). 
BITS (15:16). 

LOW 
BYTE 
(39:8) 

B 6900 System Reference Manual 
System Concept 

~REGISTER IS BARREL SHiFTED TO MOVE OTHER ---i 
BYTES INTO POSITION FOR TRANSFER TO MLI ~_J 

27 23 19 -

I I 26 22 18 --

25 21 17 -

32 28 24 20 16 

CTML 

D 
CTMH D 
TTML 

TTMH 

15 11 7 

14 10 6 

13 9 5 

12 8 4 

MO [7:8) 

MO [15:8] 

MO [2:3) 

MO [10:3) 

MO (15:16) = MLI DATA 

OUTPUT FROM 

MLIPTO 

UIO 

3 

2 

1 

0 

Figure 542. MLIP Peripheral Output Data Path From Top-of-Stack 

5010986 5-59 



B 6900 System Reference Manual 
System Concept 

L 
C-REGISTER IS BARREL SHIFTED TO MOVE BYTES TO SUCCESSIVE I. y I 
HIGHER WORD BIT POSITIONS IN 16-BIT INCREMENTS l __J 

46 42 38 34 30 
TAG 

FIELD 
[50:3] 45 41 37 33 29 

44 40 36 32 28 

Z1TC 

MX BUS (15: 16) 

(Ml (15:16]) 

MITL 

Ml (2:3] 

CORA FORCED TAG VALUE) 

BYTES ARE TRANSFERRED 
IN ORDER: 

FIRST 
THEN 
THEN 
THEN 

MV4158 

TAG-FIELD. 
BITS [47:16). 
BITS (31:16). 
BITS (15:16). 

26 22 

25 21 

24 20 

18 BYTE 
(15:8) 

17 

16 

\. y 

Z1 BUS 

(15:16] 

Ml (15:16) = MLI DATA 

INPUT FROM 

UIOTOMLIP 

Figure 543. MLIP Peripheral Input Data Path to Top-of-Stack 

BYTE 
(15:8) 

I 

The 16-bits ofl/O data on an MLI interface are divided into two characters, {1) a high-order and (2) a low-order 
character. If only one character of 1/0 data is present on an MLI interface, it occupies the high-order character position. 

ML!P Memory Word Format 

B 6900 memory words contain from I to 6 EBCDIC characters with the most significant character of the word located · 
in the 8 high-order bit positions. This means that peripheral data from an MLI interface must be barrelshifted so that a 
BURST memory word represents the same significance as that of the peripheral device data. The first (most significant) 
peripheral data character is located in the 8 high-order bits of the first BURST data memory word, and so forth. 

Figures 5-44 and 545 show the logic circuits of the MLIP used to transfer data between peripheral devices and 
system memory. 

5-60 



INRQn, EROn, RDYn 

SCAN! MLI 
CONTRIOL CONTROL PENn 

a---P-AC[2:3 :L. 
t>ENn· 

XBKMG ~-~ 

·~ 
'~ SCAN ~· 

CSEL/ --
REGISTER AGNT/ 

XBKMN 

[ 
_., 

~· -RDYn - TERM/ -- --1--· -] - CONE ---- XBKMG ~· -- MLI 

PSC [4:5 

PORTn 1---

MLI 
BLE Ml (15:16) SELECT --A DATA 

FROM \ ·MLI CA 

SUB~~~EM/~>--~-----------------0-A~T 
XBKLN 
XBKMA 

0-XBKMK 
FLAGS t---

OUTF .. 
··- -- 1 - XBKNA ,. 

2- XBKNG ASEL .. t---· -- 3- XBKNN - STEN 4-.XBKPD -- ... UIO Ml BUSTOS XBHLK t---· 
5 - XBKPK INAS = Ml15 = C015 

FROM )~-----------C_A __ f~A~n ________ ___ 

MICRO 
MODULE )~-----------C_A_F_B_n __________ _ 

6- XBKQA INA4 = Ml14 = C014 
7 - XBKQG INA2 = M113 = C013 

INA1 = Ml12 • C012 

j ~~ INB8 = M111 = C011 

MNT/ INB4 = M110 = C010 
INB2 = MI09 • C009 

CLK INB1 = MIOS =COOS 

MV4159 

Figure 5-44. Input Peripheral Data and MLIP Control Logic 

MPME, MPA5 

(P.OLL REQUEST 
INPUT TO 

MICRO-MODULE) 

MX BUS _._ 

DATA T 0 
-y 

TOP-OF-ST ACK 
ER C REGIST 

(15:16) 
VIA Z1 B LJS 

UIO Ml BUS TOS 
INCS = M107 = CO 07 

006 
005 
004 
003 

INC4 = MI06 = C 
INC2 = MI05 = C 
INC1 = MI04 = C 
IND8 = MI03 = C 
IND4 = MI02 = 
IND2 = MI01 = 

C002 
COO'I 

000 IND1 = MIOO = C 



INROn, EROn, RDYn 

[-~-
-- SCAN .__P_A_C_[_2_:3,_J __ -=~ MLI 

CONTROL CUIO _ CONTROL --~UIO --- PENn 

PENn 
RDYn ns 10·-+ 24 .. -

'---' L.1 SCAN 

XBKMN 
XBKMG ] 

CSEL/ .. 
AGNT/ ---

,, 

--REGISTER TERM/ _ ... -... 
CONE --PSC [4:5) --
~ ,__, 

XBKMG MLI 
PORTn i-----

FROM 
MLI TOP-OF=·ST ACK 

C[50:19) SELECT MO (15:16) MLI CABLE 

) DATA ~ -.....-
DATA 

: 

TO UIO 
~------------D_A_T_A ______________ ~ ..... =>suBSYSTEM 

XBKLN 
XBKMA 

F ROM ) 
M ICRO 

MO DULE > 

MV4160 

CAFAn BUS _ --
OUTF 0 - XBKMK 

FLAGS -- 1 - XBKNA ._ 

ASEL 2 - XBKNG --CAFBn BUS __ --
- 3- XBKNN 

STEN·~ 4-KBKPD 
TOS MO BUS UIO XBHLK 5 - XBKPK 

6-XBKOA C032 = MOOO = IND1 

7 - XBKOG 
C033 = M001 = IND2 
C034 = M002 = IND4 

f ·~ 
C035 = M003 = IND8 
C036 = M004 = INC1 

MNT/ C037 = MOOS = I NC2 
C038 = M006 = INC4 

CLK C039 = M007 = INC8 

Figure 5-45. Output Peripheral Data and MLIP Control Logic 

TOS MO BUS UIO 
C040 =MOOS= INB1 
C0411 = M009 = INB2 
C042 = M010 = INB4 
C043 = M011 = INB8 
C044 = M012 = INA1 
C04fi = M013 = INA2 
C046 = M014 = INA4 
C047 = M015 = INA8 



MLIP &...--relshifting 

B 6900 System Reference Manual 
System Concept 

Barrelshifting is a Transfer Controller function performed by the Memory Controller, in conjunction with an MLIP 
BURST memory cycle. Barrelshifting consists of rotating a BURST data word around in the Top-of-Stack register, 
while selectively transferring 16-bit increments of the BURST data word to/from the MLIP logic. Barrelshifting allows 
a BURST memory word to be reformatted into the 16-bit increments (bytes) required for the MLI interface. Conversely, 
barrelshifting also allows 6-character B 6900 system memory word formats to be constructed from standard 16-bit 
peripheral device data formats. 

The MLIP does not contain a buffer for peripheral device data. Instead, it uses the Top-of-Stack C and Z registers as a 
data buffer. These two registers are used as an 1/0 data buffer only during BURST memory cycle (and barrelshifting) 
operations. Each UIO-DLP contains a data buffer that is used for the peripheral devices connected to that particular 
UIO-DLP. 

1/0 DEVICE OPERATION TERMINATION PROCESS 

Every I/O device operation terminates with the UIO-DLP returning result status data about the I/O operation to the MLIP 
module, over the MLI. The MLIP micro-code control program utilizes the information contained in the DLP result status 
to formulate a Result Descriptor. The MLIP causes the Result Descriptor to be written into the memory location 
specified by the I/O Result Pointer (word five of the IOCB). The result status returned to the MLIP from a UIO-DLP 
is variable length (in bytes) depending on the type of peripheral device controlled by the UIO-DLP. A Result Descriptor 
is also variable length, and the MCP specifies the number of bytes contained in a particular I/O device Result Descriptor 
(word six of the IOCB). 

IOCB RESULT AND STATE Word Usage 

The MLIP forms an MLIP RESULT A_ND STATE word which it writes into word Twelve of the !OCB. The RESULT 
AND STATE word contains the general status of an I/O operation including the result status from the UIO-DLP, the 
status of the MLI, the status of the MLIP logic, the status of memory operations initiated by the MLIP, and the STATE 
of the MLIP micro-code program sequence. The RESULT AND STATE word describes the entire 1/0 operation status 
and identifies the location of any fault or error that occurred during the operation sequences. 

After the MLIP logic has completed the Result Descriptor and MLIP RESULT AND STATE words, the I/O operation is 
complete. The MLIP then proceeds to link the IOCB into a Result Queue. The memory address of the Result Queue 
into which the IOCB is linked is specified by word five of the IOCB. The current IOCB is always linked into the tail of 
the Result Queue. 

The software operating system specifies when the normal completion of an I/O operation is to cause an IO Finish 
Interrupt {in word zero of the IOCB). It also specifies whether or not software attention is required at the conclusion of 
the 1/0 operation. If either of these conditions are specified, the MLIP causes an 1/0 Finish Interrupt in the Interrupt 
Controller at the termination of the I/O operation, 

MLIP Error Handling 

If a hardware failure or program error is detected during an 1/0 device operation, the MLIP causes an appropriate 
HARDWARE or ALARM Interrupt to be initiated by the Interrupt Controller logic. Hardware failures or program errors 
are detected by the MLIP, MLI interface, IODC module, or Memory Controller logic (during BURST memory cycles). All 
of these circuits report any error conditions sensed to the MLIP, and the MLIP logic initiates the Interrupt Controller 
logic into operation. 

5010986 5-63 



B 6900 System Reference Manual 
System Concept 

The software operating system handles I/O error interrupts the same as I/O Finish Interrupts. However, while a normal 
I/O finish interrupt is performed only if the IOCB requests such an interrupt, an interrupt caused by an error condition 
is performed unconditionally. 

If a HARDWARE or ALARM Interrupt condition is detected by the logic of the MLIP, an Error-IOCB is completed. 
The completion of an Error-IOCB by the MLIP logic is a subroutine function of the micro-module. This micro-code 
subroutine is executed as part of the procedure for terminating the I/O device operation. 

MEMORY ORGANIZATION 

The memory resources of the B 6900 system (see Figure 5-2) are organized so that only one storage module of memory 
may be accessed at any one time. The memory resources of the system consist from 128K to I 024K words of memory. 
Local memory may contain all 1024K words. Global memory may consist of that portion of 1024K words that are not 
local to the CPU. 

Memory Add~g 

A memory word consists of 60 parallel bits of data that are present at one of the memory module interfaces to the 
memory exchange. These 60 bits are further divided into a parity bit, 51 data bits, and eight error detection/error 
correction bits. 

~ociated with a local memory word are 17 memory address bits and 12 memory function control bits. These bits 
define a local memory operation to be performed, such a! a READ operation or a WRITE operation, and specify the 
proper word address in the memory module at which the memory. operation is to be performed. 

Tne memory exchange logic utilizes the three high-order bits of the mem~ry address fieid to select a memory moduie. 
The low-order 17-bits of the memory address are used to identify a specific word address within the memory module. 

Global memory is selected when local memory is not addressed for a valid memory function, or for a global system con­
trol function. Local memory is selected for a memory operation when a valid memory function is defined, and one of 
the four local memory ports is configured with an identical module selection code as that contained in the high-order 
3-bits of the memory address. If none of the four local memory ports is configured identically to the high-order 3-bits 
of the memory address code, then global memory is defined, and the global memory port responds to the memory 
request. A global system control operation is defined by a special configuration of control bits in the memory requestor 
logic and is executed only as a result of a scan command operator execution in the CPU processor logic. Global scan 
operations are defined later in this section. 

A memory storage module contains 128K words of continuous memory storage addresses (see Figure 546). A 20-bit 
binary address field is used to select a memory module and a specific word address within the module (see Figure 546). 
The low order 17-bits of the 20-bit address field select one word of the 128K words within a memory module. The 
high-order 3-bits of the 20-bit memory address field are used to select one of four local memory modules or global 
memory. A local memory storage module is synonomous to one of the local memory ports of the memory exchange. 

In addition to address and information data, the memory interface bus also transmits control information between the 
memory control and the memory module or Global memory. This control information directs the memory operation 
that will be performed by the memory module, such as WRITE or READ functions. 

S-64 



B 6900 System Reference Manual 
System Concept 

MODLJLEI 
SELECT i 

19 

1 
18 ! 

i i I 

r-----i 

16 1 

MV4553 

15 

14 

i J 

1} 

I 
I 

l 
1 
l 

WORD 
SELECT 

11 7 

10 6 

~) ~ 

8 4 

3 

2 

l 1 

! 
I 

l 

Figure 546. Memory Address Decoding 

For local memory modules, the control signals incJude the Initiate Memory Cycle (IMC) timing signal, and a 3-bit 
memory function code that is comprised of the Read Modify Write (RMW), Write Cycle Conditional (WCC), and the 
Parity Error Disable (PED) control signals. The significance of these control signals is discussed in the portion of this 
section entitled Local Memory Port Interface Control Logic. The control signals present at the global memory interface 
port are discussed in the portion of this section entitled Global Memory Port Interface Control Logic. 

Global Memory and Global System Control 

AB 6900 system can be interfaced to a global system through the global memory port of the CPU memory controller. 
When a B 6900 system is connected to a global system, it is part of the global system to which it is connected, and is 
subject to the rules for global system operation. 

A global system may contain a single B 6000 system, in which case the global system is only an extension of the memory 
resources of the B 6000 system, and no global control is utilized. A global system may contain several B 6000 systems 
in which case, global system control is utilized. 

Global system control is utilized to organize and control the application of the processor elements (B 6000 systems) in 
the global system. It is also utilized to control the dedication of the global memory resources among the various pro­
cessor elements of the· global system. 

Global system control is dynamic in nature. Reorganization and reallocation are functions of the Master Control 
Program(s) that are operational at any given instant in time. The hardware cabinets of the global system are the Global 
Memory Module (GMM), which contains the logic circuits for both global system control and global memory control, and 
memory module cabinets. Figure 547 shows the hardware logical organization of a GMM, including the system control 
interfaces and the memory control interfaces and modules. 

GWBAL SYSTEM ORGANIZATION 

Global systems (see Figure 547) provide for multiple processors (systems) and multiple memory modules to ~e coupled 
together in global networks. Such multiple systems are dynamically controlled by the software operating system. 
Dynamic control consists of defining and controlling the paths of communication between the processors that are present, 
and between the processor organizations and the memory module resources. Because the global system is dynamic, its 
structure is subject to change based upon the instantaneous requirements of the software operating system. 

Two distinct types of architecture are involved in a global system: the physical organization of the various processors 
and memory modules (GMMs), and the logical organization of the global system. To understand the global system, the 
physical and logical structure of the system must be thought of as separate dimensions of the same entity. 

5010986 5-65 



GLOBAL ~ 
SYSTEM - --
CONTROL - --

11\JTE=~i:~t::E l == 
TO OTl-iER __ 
GMM"S 

MV4554 

Physical Structure 

MEMORY 

MODULE 

B 6900 System Reference Manual 
System Concept 

r-----, 
I I 
I MEMORY I 
I MODULE I 
I I 

~~\\\,\~ 
\\\\\'. 

\ \ I \ '. 

\ \ \ \ \ \ 

\\\\\\ 
\'\\\\ 

r-----, 
I I 
: MEMORY I 
I MODULE I 
I I 

~1"!11-~ 
? I ; I . I 
, r • I 1 I 
f ~ ~ I I • 

I I I I ; I 
j I I 

HUB HUB HUB HUB 
L 

INTERFACE 
M 

INTERFACE 
N p 

INTERFACE INTERFACE 

GSC 

CONTROL 

INTERFACE 

REOUESTOR 
A 

(PORT 11 

' I 

j I 
I 

B 6000 
CPU 

MODULE 

GLOBAL 
MEMORY 
CONTROL 

LOGIC 

GLOBAL 
SYSl EM 

CONTROL 
LOGIC 

REOUESTOR 
B 

(PORT 21 

RE QUESTOR 

c 
(PORT 4) 

REOUESTOR 

D 

(PORT 81 

. \ . 
\ \ \. \ \ 

\ \ .. 
\ \ ' '\ ·, ·, \ I 

\ ' 
I ' • I 

\ . ' ' . \ \ ' \ 
\ .. \ '\ \ \ . 

\ ' \ 

'. I \ ', ' \ \ ' '. " ·, '· ·, \ \ \ \ \ 

... ' \\\ \ I . I 
\ \ \ \ 

\ . ' 

\ I I 
1
· \_ , 

I 
\ 

1 \ I · I ' 
I \ ' 

rJ-J_..l~...i..l 

I B6000 I 
I CPU I 
I I 
I MODULE I 
L _______ .J 

. \ •_ '. I .\ \ 

. \ . ' \ \ . 
\ \ . \ 
. \ \ \ 

I \ 

\ \ .. \ \ 

r~~.i...l..~~1 
I B 6000 I 
I CPU I 
I I 
I MODULE I L _______ .J 

\ '\ . \ ' \ 

\ \ \ \ 

\ ', \ \ I\ 
. \ .\ . . ' 
'\\\\\ 

' ' ' . ' r ....... ~~--, 
I 86000 I 
: CPU I 
~ MODULE i 

L-------J 

Figure S-47. Global Memory Module (GMM) Organization 

The physical structure of global system components includes the number of type of cabinets (processors, GMM, and 
memory modules) and also the manner and order in which the system components are interfaced with each other. This 
structure defines the constraints and limits under which the software operating system can act to dynamically control the 
global system. It dictates which global units may be coupled, and also how the memory resources can be utilized within 
a subsystem. Figure 5-48 shows a global system that contains all of the cabinet types required of a global system in its 
most elementary form, plus those global system components that may be added to the elementary global system without 
adding cabinets that are used solely for expanding the global system capabilities. 

Elementary Global System Requirements 

A global system must contain at least one processor, one GMM, and one memory module. If a global system contains 
one GMM cabinet, it may also contain up to four processors and up to four memory moduies. Figure S-48 shows a 

5-66 



B 6900 System Reference Manual 
System Concept 

single GMM cabinet, which is connected to four processors and four memory modules. If a global system only contains 
one GMM cabinet, then a global system control bus (multi-cabinet adapter) is no required because all of the logic for 
global system control is present in the GMM cabinet. A separate interface is required for each processor and each mem­
ory module that is connected to a GMM cabinet. 

,------, 
~ OTHER GMM'S I G~~~S..!_ST_!~ 

I r-CONTROL BUS 

L-----...J 

256K 

GLOBAL 

MH.10RY 

c GLOBAi. MEMORY 

MODULE 

2 4 8 

256K 

GLOBAL 

MEMORY 

,------..., 
GLOBAL SYSTEM I I 

c CONTROL BUS ~ OTHER GMM'S ~ 
L., _____ J 

LOCAL 

MEMORY 
----B 6000 SYSTEM-----' ....__ __ B 6000 SYSTH.1 t-----t lOCAL 

~1EMORY 

Logical Structure 

LOCAL 

MEMORY 
8 6000 SYSTEM B 6000 SYSTE~1 

Figure 5-48. Global System Interfaces 

LOCAL 

MEMORY 

Logical structure is that organization of communication paths within a global network that defines the global system(s) 
present at any given instant. "Communication paths" do not pertain to the memory resources of the global network, but 
rather, to the processor resources of the network only. 

Each processor within a global network may be named; each processor that is part of a global system must have a name. 
The name consists of two parts: system name and processor mask field. The combination of the two parts of a proces­
sor name identifies a global system and a specific processor within the global system. 

Processors within a globai system are organized in a master/siave reiationship. A master processor is iogically above its . 
slave processor(s), and for each slave processor there can only be one master processor. A processor that is slave to 
another processor may also have a"' processor which is slave to it. 

Processor Addressing in a Global System 

A processor within a global network may be identified by two different types of identification. The first type of identi­
fication is the physical port location of a GMM to which the processor is interfaced. 

The second type of processor identification is a naming convention controlled by the software operating system(s). This 
type of organization is used to associate a processor with other processors in a global system. This type of organization 
allows the software operating system to dynamically couple processors into groupings, without regard to the physical 
organization of the GMM cabinet that is part of the global network. 

5010986 5-67 



Port Identification Addressing 

B 6900 System Reference Manual 
System Concept 

A processor port identification is comprised of up to four 4-bit numeric digits. The actual number of 4-bit digits used 
for processor port identification depends on the number of GMM cabinets that are part of the global network. The most 
significant digit of the port identification number represents the port connection to the GMM cabinet. 

Logicai Naming Identification 

The naming convention used by the software operating system to identify the processors in a global system is the logical 
structure of the system, and bears no required resemblance to the physical port identities of the processors that are part 
of the global network. This organization allows the software operating system to determine what types of global systems 
·the global network contains, and which processors are members of global systems. 

A system logical name consists of I 2 binary bits which form three hexadecimal digits. The most significant digit in a 
system name is the left-most digit of the name, and identifies the upper-most level of the global system. The middle 
digit of the system name identifies the middle level of the global system. The least significant digit identifies the lowest 
or bottom level of the global system. 

The processors present at each level of a global system are identified by a 12-bit mask field, which is appended to the 
system name. Each of the 12-bits in the mask field (bits zero through eleven) identifies one of the 12 processors that 
may be present at any one level of the global system. A mask field for a particular processor may contain only one bit. 
The proper addressing for a processor in the global system or subsystem includes the name of that system or subsystem 
and also a mask in which 1-bit is set. 

It is impossible to have a third (bottom) level global subsystem without also having a corresponding second (middle) level 
subsystem. A global system t.'1.at only contains one level is the top level. A global system that contains two. levels 
includes the top and middle levels. Only three levels of global system name are permitted. 

System Memory Interface 

The system memory interface consists of a- one-by-five exchange that is used to interface the B 6900 CPU to the mem­
ory resources of the B 6900 system. The five memory storage module interfaces are designated as ports number zero 
tluough three {local memory) and the global memory port. Figure 549 shows the organization of the requestor inter­
faces and the port interfaces to the system memory control. 

MEMORY REQUESTOR 

Figure 5-50 shows the path used iil the data processor to access the system memory control. This path is controlled by 
the memory controller, through use of the Z12 bus. All data written into memory from the data processor or MLIP is 
routed to the system memory interface exchange by means of the Z4 bus. All data read into the data processor, 
MLIP, or look ahead logic is routed from the system memory port interface to the Z3 bus. Address information is 
routed from the memory address register or look ahead address register by means of an internal memory address bus. 

Figure 5-51 shows how information, address, and control data are routed internally within the requester logic of the 
memory exchange. This figure also shows how port selection is made within the exchange module, by means of the port 
select logic. 

Figure 5-51 shows the PACK (port acknowledge) control bus. This bus has a true level if a local memory port interface 
is seiected'by the port seiect iogic. if a iocai memory port is not seiected (PACKjis true) and a valid request is present 
in the requestor logic, then the global memory port is selected by default. 

5-68 



] ·~ LOOK 
AHEAD ,...... 

=3· 
..... LOGIC 

L REGISTER ..... GLOBAL 
PORT 

~ P REGISTER ·~ 

J PROGRAM 

4 ...... 
CONTROLLEF~ . 

Z REGISTER ~ 4~ LOCAL 
PORT 

4~ C REGISTER I~ 

~~ ..... A REGISTER 
Z12 COf\!TROL BUS 

4~ MEMORY .. 
CONTROL LEH -..... B REGISTER ~~ 4~ 

LOCAL 
PORT 

.... X REGISTER ~· 
24 BUS WRITE DATA 50:51 -- MEMORY ...... Y REGISTER - CONTROL 

EXCHANGE 
~ LOCAL Z3 BUS REl~D DAT A . 50:51 REOUESTOR 

PORT 

·-
LOOK - AHEAU 

~ -- ADDRESS 

' 
4fGISTfH MEMORY LOCAl 

PROCESSOR ADDRESS - -- POHT - -IC ADDRESS (19:20) --MEMORY ADDER -ADDRESS 
REGISTERS --- MEMORY 

ADDRESS 1--
REGISTHI 

-.....,.j 

MV4556 

Figure 549. Memory Control Block Diagram 



FROM/TO 
PERIPHERAL 
DEVICES 

MV45Ei7 

- M LIP 

A~ 

1r 

DAfA -PROCESSOR --

~~ 

,------
--

GLOBAL SYSTEM MEMORY 
CONTROL INTERFACE PORT -- ME: MORY 

l -CONTROL --
r T -- RE QUESTOR 

----
I PORT 3 

LOOK 
AHEAD 
LOGIC 

I -..._ 

PORT 2 

I 
I ----

PORT 1 

I 
I 

--
PORTO 

ME MOH\ 

Figure 5-50. Data Processor to Memory Control Exchange Transfer Path 

l 
- I GLOBAL 

MEMORY -- T -~ CONTROL 

I LOCAL 
- I MEMORY 

~r STORAGE 
UNIT 

I_ LOCAL 

-- MEMORY -- I~ STORAGE 
UNIT 

-I lOCAL 
MEMORY 

- T__... STORAGE 

I 
UNIT 

-- I .. LOCAL 
MEMOctY 

--1 STORAGE: 
UNIT 



CPU 
INTERFACES 

MV4558 

I 

---

-

Z12 BUS [13:14] 
MEMORY CONTROLLER __ -

Z4 BUS WRITE 
DATA (50:51] -

ADDRESS [19:20] -

r 
Z3 BUS READ 
DATA (50:51] 

MEMORY BUS 
ERRORS TO 
INTERRUPT 
CONTROLLER 

BIT C {LOCAL SCAN CONTROL) 
MEMORY 
CONTROL 
LOGIC CONTROL DATA 

-~~ 
BIT D (GLOBAL SCAN CONTROL) 

WRITE DATA [50:51 I 

l 
CHECK BIT WRITE DATA (59~9) 
GENERATOR 
LOGIC 

PORT 
SELECT 
LOGIC 

MEMORY READ DATA(50:51] 

I I I I 
MEMORY READ DATA 159:60] -

ERROR 
CORRECTION 
LOGIC --

~~ 

PACK BUS 
LOCAL I 

- MEMORY j 

ERROR ---DETECTION 
LOGIC 

GLOBAL MEMORY ERRORS ---
11 

RETRY MEMORY RETRY CONTROL 
LOGIC 

5010986 

B ~900 System Reference Manual 
System Concept 

l. I I ! 

- GLOBAL 
GLOMLSCAN 
BUS INTERFACE 

SCAN BUS -- ---- - --- INTERFACE 

---- . - I I 

---_.... 
GLOBAL MEMORY .. 

GLOBAL INTERFACE -- -- .-. -- MEMORY - --- PORT --
~ 

~ " --- LOCAL MEMORY -- LOCAL STORAGE MODULE 3 - MEMORY INTERFACE .. PORT -- --- --NUMBER --- 3 LOCAL MEMORY 
· -- STORAGE MODULE ....... 

-- - &EXTERNAL -- INTERFACE) 

~ --- LOCAL MEMORY 
..... STORAGE MODULE 2 - LOCAL INTERFACE - MEMORY - ---- PORT ---

NUMBER 
LOCAL MEMORY 2 

--- STORAGE MODULE ---... -- (EXTERNAL ---- INTERFACE) 

--- LOCAL MEMORY 

- LOCAL STORAGE MODULE 1 
MEMORY INTERFACE -- PORT --- - -NUMBER 
1 LOCAL MEMORY , .. __ STORAGE --- MODULE 1 

~ .. - (EXTERNAL 
INTERFACE) 

- LOCAL MEMORY -- LOCAL STORAGE MODULE 0 - INTERFACE MEMORY -- -- --- PORT 
NUMBER 
0 -- LOCAL MEMORY --- ._STORAGE MODULE -

~ (EXTERNAL 
-INTERFACE) 

Figure 5-51. Memory Exchange Interface 
Functional Block Diagram 

5-71 



B 6900 System Reference Manual 
System Concept 

The 14-bits of the memory control Zi2 bus are identified as follows: 

Bit Field 

5:6 

9:4 

Meaning and Usage 

The register select field. This field identifies the data processor register that is to receive the data 
for a memory READ operation, or the data processor register from which data is to be written into 
memory for a memor; WRITE operation. 

Bit zero is used to select register Z 

Bit one is used to select register Y 

Bit two is used to select register X 

Bit three is used to select register C 

Bit four is used to select register B 

Bit five is used to select register A 

The request field. This field identifies the type of memory operation to be performed. 

Bit: 9 8 7 6 Operation to be Performed 

0 0 0 Protected WRITE with flashback to C register 

0 0 0 Clear WRITE 

0 0 Overwrite with flashback to C register 

0 0 0 READ 

0 0 Protected WRITE with no flashback 

A,B The look ahead request field. When bit A is true, the request originates in the look ahead logic. 

c 

D 

5010986 

If bit A is false, the request originates in the data processor/MLIP. 

Bit B is used to specify which register in the data processor is to receive the data input from 
memory when a look 3.head memory cycle is completed. If bit B is true, the data is to be placed 
in the L register of the data processor. If bit Bis false, the data is to be placed in the P register 
of tb.e data processor. 

Bit C is not used by a B 6900 system. 

The global scan bit. If bit D is true, the operation to be performed through the global memory 
port is a global scan· operation instead of a global memory operation. If bit D is false, the 
operation to be performed is a memory operation instead of a global scan operation. 

S-73 



Memory Error Detection and Correction 

B 6900 System Reference Manual 
System Concept 

The memory requestor logic contains error detection/correction logic circuits (refer to Figure 5-52). Each time a memory 
WRITE operation is performed, 8-bits of error detection check code are generated by the error detection circuits and 
appended to the memory write data. The total number of bits written in memory during a WRITE operation is 60-bits, 
of which 52 data bits are write data from the CPU, and the other 8-bits are the error detection check code. 

During memory READ operations, the error detection check bits (which were written into memory during the memory 
WRITE operation) are tested for bit errors in the data word received from the memory storage unit. If a single bit of a 
memory read data word is in error, the error correction circuit corrects the bit in error. If more than a single bit in the 
memory read data word is in error, the error is not correctable, but the error detection circuit detects a multiple bit data 
error. All single bit and multiple bit data errors are reported to the data processor interrupt handling procedure, and are 
logged in the SYSTEM/SUMLOG. 

Memory Retry 

The memory control performs memory RETRY operations under certain conditions. 

The memory control performs a memory RETRY operation if the memory module detects a parity error in the address and 
control data that is transmitted from the CPU cabinet to the memory module cabinet over the port interface. This RETR 
consists of performing the entire memory cycle over again. If the retry of the memory cycle is successful, then the 
memory controller causes the interrupt controller to make an entry in the SYSTEM/SUMLOG that indicates a RETRY 
operation occurred, and the memory operation proceeds in "a normal manner. If the RETRY operation is not successful (a 
second parity error is detected in the memory address and control da~a), then the memory cycle is aborted, and the 
memory controller causes an alarm interrupt to be recorded in the SYSTEM/SUMLOG. The procedure that cat.Ised the 
memory cycle which was aborted is terminated because of the memory parity error. 

The memory control also performs a RETRY operation if the memory control senses a parity error in the read data that 
is transmitted from the memory module cabinet to the CPU cabinet. This RETRY operation consists of causing the read 
data in the storage module read latches to be transmitted to the CPU cabinet a second time. A second memory cycle is 
not performed by the storage module. The results of successful RETRY operations are reported in the same way that a sue· 
cessful address and control retry is reported. 

If the RETRY operation for a parity error in the read data is not successful, then an error correction memory cycle is 
initiated. The entries made in the SYSTEM/SUMLOG as a result of an error correction memory cycle were described 
previously in this section. 

Tne memory control does not perform RETRY operations for parity errors in the wTite data transmitted from the CPU 
cabinet to the memory module cabinet. 

Only one RETRY operation will be attempted for each memory operation. 

Giobai Memory 

Global memory provides a path through which one B 6900 system may control the operations of another B 6900 system 
(global system control operations), and also provides a path \lP to 512K words of global memory. The system control 
functions of the global scan bus and the global memory functions share a common interface path through the channel 
A global memory port of the B 6900 system: A global memory request from the B 6900 system and a global scan opera­
tion caa"u~ot· be processed sbnu!t.aneously. 

A global memory request is identical to a local memory request. The method used to distinguish between local and 
global memory operations was defined previously in this section (Memory Organization), and is a function of 
module addressing. 

S-74 



-
·---------- GLOBAL 

PORT 3 SELECTED - MEMORY 
ADDRESS PORT 2 SELECTED .... [19:201 - ·PORT - SELECT PORT 1 SELECTED --LOGIC PORT 0 SELECTED 

I-·-·· 
'---. ADDRESS 19:20 

---READ DATA [51 :52] --- LOCAL --- MEMORY 

MEMORY READ - PORT 3 --- DATA [51 :521 - ERROR -- - CORRECTION - READ DAT A [59:601 

LOGIC -- I f -
ERROR --SINGLE Bn ERROR ~ 

DETECTION -LOGIC i-- -- LOCAL -- MEMORY 

I ---- PORT 2 -. .........., 

RETRY 
LOGIC -I .. -l --

- LOCAL 
--- MEMORY - PORT 1 --MEMORY WRITE MEMORY -

DATA [51:52] CHECK BIT MEMORY WRITE DATA 159 601 --- ..._ -- GENERATOR 
CIRCUIT 

-... ----- SINGLE BIT ERl!._OR .. - - LOCAL 
MEMORY CONTROL MEMORY CONTROL DATA (UNIT ERRORS) -- MEMOHY .-. - CONTROL -- -.... DATA - -- -- -= PORT 0 

LOGIC .. 
- MULTIPLE err IERROR - L---

-
MV4659 

Figure 5-52. Error Detection Correction Logic 



Global System Control (Scan) Operations 

B 6900 System Reference Manual 
System Concept 

Global scan operations are common with global memory operations only in that they both use the global memory path 
to communicate with the global system. The global scan operations are of two types, SCAN-IN and SCAN-OUT. 

Global SCAN-OUT 

A giobai SCAN-OUT operation is performed when a SCNO operator is executed from the data processor P register. The 
distinction hetween a global SCAN-OUT operation and other SCAN-OUT operations is the contents of the scan funct~on 
word present in the A register when the SCNO operator is executed. If the SCNO function word contains hexadecimal B 
in bits 19:4, then a global scan function is defined. The destination of a global SCAN-OUT data word (in the global memory 
module cabinet) is the response buffer. The SCAN-OUT data word is located in the B register of the data processor at the 
start of the global SCAN-OUT operation, and defines the function to be performed by the global memory control module. 
The format of the SCAN-OUT function word and of the SCAN-OUT data word is shown in Figure 5-53. 

5-76 

T 
OP 

0 
CODE 

0 v 

0 
~,. ~ov ~6 32 

MVZ729 

FUNCTION WORD 
A REGISTER 

DATA WORD 
B REGISTER 

SCAN 

DATA 

28 24 20 16 

RECEIVER 
ADDRESS-

12 8 ,. 0 

Figure 5-53. Global Scan Function And Data Word Format 



Global SCA.~-IN 

B 6900 System Reference Manual 
System Concept 

A global SCAN-IN function is similar to a global SCAN-OUT function. The difference between the two types of global 
scan functions is that the global SCAN~IN function is perfonned when a SCNI operator is executed from the data proc­
cessor P register, and a SCAN-OUT function is performed when a SCNO operator is executed from the data processor P 
register. If bit 15 of the function word (for a global SCAN-IN function) is a binary zero, then the source of the SCAN­
IN word is "the response buffer in the global memory control logic. If bit 15 is a binary one, then the source of the 
SCAN-IN word is the message buffer in the global memory control logic. Bit 15 is not used for a global SCAN-OUT type 
operation, because the destination of the data word is always to the response buffer in the global memory control logic. 

Typical Global System Control Operation _ 

If two B 6900 systems communicate with each other by means of the global scan bus, the system that transmits a mes­
sage executes a global SCAN-OUT operation, and thus places a global scan data word in the response buffer of its global 
memory control. The receiver B 6900 system receives an interrupt from its memory controller, and executes a SCAN-IN 
of the contents of the global memory control message buffer. The contents of the global memory message buffer is 
partially the data word that was scanned out by the transmitter B 6900 system. The global memory control of the 
receiver B 6900 system returns a word of data that describes the results of the global scan function to the response buf­
fer of the transmitter global memory control. The transmitter B 6900 system may then SCAN-IN the contents of its 
response buff er, and thus know the status of the completed global scan operation. 

The response word received by a transmitter B 6900 system at the conclusion of a global scan operation _has two formats, 
depending on whether or not an error occurred during the global scan operation. Figure 5-54 shows the format of the 
word present in the transmitter response buffer when no errors were encountered during the global scan operation. 
Figure 5-55 shows the word in the response buffer when an error was encountered during the global scan operation. 

Global system control functions are specified by the contents of the scan-data word that is present in the B register at 
the start of a global system control operation. There are 32 different global system control functions that may be 
specified by the contents of the OP CODE field in the data word. These functions are divided into five classes as follows: -

5010986 

OP CODE Field 
Value [47:6] 

000001 
000010 
000011 
000100 
000101 
000110 
000111 
111000 
111001 
111010 
111100 
111101 
010000 
010001 
010010 
010011 

Class 

1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 

Global System Control Function 

HEYU 
HEYALL 
ARE YOU THERE-(PN) 
WHERE ARE YOU 
TRANSFER i 
SHARE WRITE i 
SHARE READ i 
HALT 
CLEAR 
LOAD 
START 
ZAP 
I AM 
WHAT IS MY NAME 
WHAT IS MY NUMBER 
RESET MY LR 

5-77 



S-78 

B 6900 System Reference Manual 
System Concept 

.OP 

0 
CODE REGISTER 

READ 
0 v INFORMATION 

0 
44 6 32 28 24 20 16 

47:6 THE OPERATION CODE FOR THE OPERATION TO BE PERFORMED. 
41 :2 THE VARIANT FIELD FOR THE OPERATION CODE. 
39:24 THE GLOBAL SCAN OPERATION DATA FIELD. 
15:1 THE INTERRUPT PENDING B.IT. 
14: 1 THE WACR SET BY TEST AND SET BIT. 
13:1 THE TIME-OUT WAITING TO RECEIVE BIT. 
12:1 THE MODULE i INVISIBLE BIT (NOT IN MAINTENANCE MODE 

FOR WRITE ACR). 
11:1 TWO MEANINGS: 

IF ON, RACR(i) =1 AND WACR(i) =O. 
IF OFF, WACR(i) =1. 

10:1 THE RECEIVERS PORT LOCK-OUT SWITCH IS ON BIT. 
9:1 THE RECEIVERS DEPENDENT BIT IS SET BIT. 
8: 1 THE RECEIVERS LOCK REGISTER IS SET BIT. 
7: 1 THE RECEIVER IS SUPERHALTED BIT; 
6: 1 THE RECEIVER !S HAL TED BIT. 
5:1 THE RECEIVER RUNNING BIT. 
4: 1 THE RECEIVER ENGAGED BIT. 
3:1 THE RESPONSE RECEIVED BIT. 
2:1 THE TRANSMISSION PARITY PROBLEM BIT. 
1:1 THE INVALID COMMAND, ILLEGAL PATH, OR LOCK REGISTER :#:1 BIT. 
0:1 THE UNSUCCESSFUL COMMUNICATION BIT. 

MV2730 

Figure 5-54. Global Scan Operation Response Word (No Transmission Errors) 

Op CODE Field 
Value (47:6] 

010100 
010101 
010110 
010111 
001001 
001010 . 
001011 
001100 

3 
3 
3 
3 
4 
4 
4 
4 

Global System Control Function 

TEST AND SET i 
SET MY DSR 
RESET BYDSR 
RESET BY RACR 
READ ACR i 
READ FWAR 
ARE YOU THERE (PID) 
WHO ARE YOU 



0 

0 

0 

OP 

CODE 

v 

B 6900 System Reference Manual 
System Concept 

REGISTER 

READ 

INFORMATION 

6 32 28 24 20 16 

47:6 THE OPERATION CODE FOR THE OPERATION TO BE PERFORMED. 
41 :2 THE VARIANT FIELD FOR THE OPERATION CODE. 
39:24 THE GLOBAL SCAN OPERATION DATA FIELD. 
15:1 THE INTERRUPT PENDING BIT. 
14: 1 THE WACR SET BY TEST AND SET BIT. 
13:1 THE TIME-OUT WAITING TO RECEIVE BIT. 
12:1 THE MODULE i INVISIBLE BIT (NOT IN MAINTENANCE MODE 

FOR WRITE ACR). 

11 :3 NOT USED. 
8:1 THE SENDER PARITY ERROR IN RESPONSE BIT. 
7: 1 THE MULTIPLE RECEIVER PARITY ERROR IN RESPONSE BIT. 
6:1 THE RECEIVER PARITY ERROR IN RESPONSE BIT. 
5:1 THE MULTIPLE RECEIVER PARITY ERROR IN MESSAGE BIT. 
4:1 THE RECEIVER PARITY ERROR IN MESSAGE BIT. 

3: 1 THE RESPONSE RECEIVED BIT. 
2:1 THE TRANSMISSION PARITY PROBLEM BIT. 
1:1 THE INVALID COMMAND, ILLEGAL PATH, OR LOCK REGISTER #=1 BIT. 
0:1 THE UNSUCCESSFUL COMMUNICATION BIT. 

MV2731 

Figure 5-55. Global Scan Operation Response Word (Transmission Errors) 

OP CODE Field 
Value (47:6] 

001101 
001110 
110000 
110001 
110010 
110011 
110110 
110111 

Class 

4 
4 
5 
5 
5 
5 
5 
5 

Global System Contrnl Function 

YOU ARE 
READ SINGLE BIT ERROR REG 
MANUAL HALT 
MANUAL CLEAR 
NOT RUNNING 
SUPER HALTED 
WRITE ACR i 
GENERAL CLEAR 

Global functional descriptions are not given in this manual. They are specific subjects of the global system documenta­
tion and are covered in detail in the B 6800 System Global Memory FETM, Form Number 5010218 . 

. 5010986 S-19 



B 6900 System Reference Manual 
System Concept 

The VV field of the data word is used to specify the direction the GMM is to use (within the global system) in 
performing the operation specified by the OP CODE. The VV field codes are as follows: 

BITS 41 42 Direction of Global Communication Path 

0 0 Within 

Across 

The SCAN DATA field (bits [39:24]) is used to pass data relevant to the global function specified by the OP CODE 
field. 

The RECEIVER ADDRESS field (bits [15:16]) is used to specify the particular GMM port to which this g1oba1 system 
operation is directed. The transmitting port places the address code of the receiver in this field. This address may be 
either the Port Identification (PID) of the receiver or the logical name of the receiver system or subsystem. After the 
transmitter port has transmitted a system control message to another processor unit in the global system, it retains con­
trol of the system control bus interface, and waits for a response from the receiver. 

The receiver accepts the transmitted data from the transmitter, and then proceeds to perform the function indicated by 
the OP CODE field. Before beginning to do what the OP CODE directed, a parity test of the transmitted data is per­
formed. If a parity error is detected in the transmitted data, the OP CODE is disregarded, and a response word- is con­
structed in the sender's response register (see Figure 5-55). If no parity error is detected in the transmitted data, the 
receiver executes the instruction contained in the OP CODE field. 

When a receiver has completed the instruction contained in the transmitted word, it forms a response word in the 
sender's response register. This word indicates that the required operation was performed, and gives information or status 
that is required because of the nature of the performed operation. 

While the required operation ts being performed by the receiver, the sender retains control of the system control interface 
bus. Consequently, when the operation is completed, the receiver GMM has access to the sender GMM response register. 
The sender GMM is responsible for maintaining control over the system control interface bus until the receiver has com­
pleted the response. The format of a normal receiver response is shown in Figure 5-54. 

After the transmitter has received back the response word, control of the system control interface bus is passed to 
another processor port for possible control bus transmission. If the next processor needs to use the system control bus, 
it holds control of the bus until the needs are completed; otherwise, it passes control of the bus to the next processor 
port. In this manner, control of the system control interface bus is passed from processor port to processor port. 

MEMORY STORAGE UNIT PORT INTERFACE 

External port interfaces are used to connect the memory control to the units that are remote from the CPU cabinet. The 
units that are remote from the CPU cabinet and the information that is transmitted on each cable of the interface are 
as follows: 

5-80 

External 
Local Memory 
Unit 

Type of Interface 

Local Memory 
264 wire, six cable. 

Cables and Signals 

Six cables are used to interface each of four possible memory 
storage units to the memory exchange. Each cable contains 
44 wires which may be used to pass information, control, and 
address data between the storage unit and the memory 
control port. All signal lines of the local memory interface 
bus are single direction lines, and no cable lines are used to 
pass data in both directions. 



Unit(s) 

Global Memory 
Module 

5010986 

B 6900 System Reference Manual 
System Concept 

TW of Interface 

Cable Name 

2 

3 

4 

s 

6 

Type of Interface 

Global Memory 
120 wires, six cables 

Cable Name 

2 

3 

Cables and Signals 

Signals on the Cable 

Th.is cable is used to pass a 16-bit address to the memory 
storage unit, and is also used to pass a 3-bit address check 
value from the storage unit back to the memory control. The 
other lines on this cable are not used. 

Th.is cable is used to pass 12 control signals from the storage 
unit to the exchange port, or vice versa. The other wires of 
this cable are not used. 

Th.is cable is used to pass 15 write data signals (14: 15) and 
15 read data signals (14: 15) between the storage module and 
the exchange port. The other wires of this cable are not used. 

Th.is cable is the same as cable 3, except that it 
passes write data bits {29: 15) and read data bits (29: 15). 

Th.is cable is the same as cable 3, except that it 
passes write data bits ( 44: 15) and read data bits ( 44: 15). 

This cable is the same as cable 3, except that it 
passes write data bits (59: 15) and read data bits (59: 15). 

Cables and Signals 

Six cables are used to interface a GMM cabinet to the B 6900 
system memory exchange. Each cable contains 20 wires 
which can be used to pass information, control, and address 
data between the GMM cabinet and the global memory port. 
Signal lines of the global memory interface bus are either 
uni-directional or bi-directional, depending on the individual 
signal circuit usage. 

Signals on the Cable 

Th.is cable is used to pass a 20-bit (GAOO through GA! 9) 
address field to the GMM from the B 6900 memory 
exchange interface, The address field circuits are uni-directional 
(from the B 6900 to the GMM). 

Th.is cable is used to pass the low-order 20-bits of the 60-bit 
information word (GIOO through GI19) between the B 6900 
memory exchange and the GMM. These 20 lines are used 
bi-directionally for both READ and WRITE type global memory 
(or system control) operations. 

This cable is identical to cable 2, except that it 
passes information bits GI20 through Gl39. 

S-81 



Unit(s) 

5-82 

B 6900 System Reference Manual 
System Concept 

Type of Interface Cables and Signals 

Cable Name Signals on the Cable 

4 This cable passes 12 information bits (Gl40 through GISI) 
in the same way that cables 2 and 3 operate. In addition, 
this cable is used to pass 10 uni-directional control signals, 
as follows: 

Control Signal 
Mnemonic Control Signal Name From To 

INVA Invalid Address GMM B 6900 
GREQ Global Request B 6900 GMM 

Control Signal 
Mnemonic Control Signal Name From· To 

GWRC Global Write Control (RMW) B 6900 GMM 
GABX Global Access Begun GMM B 6900 
GAOX Global Access Obtained GMM B 6900 

}SHARE} GPRC 1 Global Write Protect Control I! ~900 GMM 
GREX CABLE Global Read Error GMM B 6900 

LINE 

GAPL }~} Global Address Parity Level B 6900 GMM 
GUEX CABLE Global Uncorrectable Error GMM B 6900 

LINE 

GSCX Global Scan Control B 6900 GMM 

Cable Name Signals on the Cable 

5 This cable passes 8 check-bit information signals (G 152 through 
G 159) in the same way that cables 2 and 3 operate. In addition, 
this cable is used to pass 5 uni-directional control signals as follows: 

Control Signal 
Mnemonic ~ontrol Signal Name From To 

GAOR Global Access Obtained Return B 6900 GMM 
GCWC Global Clear Write Control B 6900 GMM 
GAEX Global Address Error GMM B 6900 
GWEX Global Write Error GMM B 6900 
GMMA Global Memory Module 

Available GMM GMM B 6900 

This cable also contains 7 spare unused signal lines. 



B 6900 System Reference Manual 
System Concept 

Type of Interface 

Cable Name 

6 

Control Signal 
Mnemonic 

HALT 
HLTD 
CLER 
CLRD 
LOAD 
SfRT 
SHLT 
IDLE 
RUNG 
SAVL 
EINT 
AINT 

Cables and Signals 

Signals on the Cable 

This cable is used to pass 12 uni-directional system control 
signals as follows: 

Control Signal Name 

Halt 
Halted 
Clear 
Cleared 
Load 
Global Start 
Super Halted 
Idle 
Running 
System Available 
External Interrupt 
Alarm Interrupt 

From 

GMM 
B 6900 
GMM 
B6900 
GMM 
GMM 
B6900 
B6900 
B6900 
B6900 
GMM 
GMM 

This cable also contains 8 spare unused signal lines. 

To 

B 6900 
GMM 
B 6900 
GMM 
B 6900 
B6900 
GMM 
GMM 
GMM 
GMM 
B6900 
B 6900 

Local Memory Port Interface Control Logic 

The logical control signals of the port interface (cable 2) are as follows: 

Signal Name 

RMW, wee, PED 

JMC 

5010986 

Signal Usage 

Signals RMW (READ/MODIFY/WRITE), WCC (Write Cycle Control), and PED 
(Parity Error Disable) fonn a 3-bit code that is used to define the type of 
operation to be performed by the memory storage unit. The types of 
operations performed by the storage unit are as follows: 

RMW wee PED Function 

0 1 0 Oear WRITE operation 

0 0 Memory READ restore operation 

0 READ/MODIFY/WRITE 

The Initiate Memory Cycle signal. Two IMC signals are required to perform READ/ 
MODIFY /WRITE memory operations. The memory control generates both IMC signals 
(one for the READ portion of the operation, followed by another one for the WRITE 
portion of the operation), and transmits them on the interface IMC wire. The 
timing of these two IMC signals is a function of the memory control. 

S-83 



Signal Name 

PAR 

MPE 

WST 

MSW 

PCS (general clear) 

HAR 

MAV .. 

B 6900 System Reference Manual 
System Concept 

Signal Usage 

The Memory Address Parity bit. This signal is sent from the memory control to 
the memory storage unit to cause the 17 -bit address field plus the RMW, WCC, 
and PED signals to have odd parity. ff the number of binary one bits in the 
address field is even, the PAR signal will be true, thus making an odd number. 
If the number of binary one bits in the address field is odd, the PAR signal will 
be false, thus maintaining the odd parity. This signal is only transmitted during 
the clear WRITE operation. For all other types of memory operations, this signal 
is forced false. 

The Memory Parity Even signal. This signal is returned from the memory storage 
unit to the memory control, to indicate whether or not memory address even 
parity error was detected at the storage unit interface. 

The Write Strobe signal. lbis signal is the write strobe signal for a memory WRITE 
operation. The memory control generates this signal and transmits it to the 
memory storage unit which is to perform the WRITE portion of a memory cycle. 
The system memory control must generate this signal instead of the memory 
storage unit, because the WRITE portion of a memory cycle is performed after a 
possible retry of the READ portion is completed. 

The Memory Select Write signal. This signal is used to define whether the read 
register or the write register is to be used as the source of data for the WRITE 
portion of a READ/MODIFY /WRITE operation. If the MSW signal is a true level, 
the write register is the source; otherwise, the read register is the source. 

The Memory Storage Unit Clear signal. This signal is generated in the memory 
control and is used to clear the logic circuits of the memory storage unit. 

The Hold Address for return control signal. This signal is generated in the memory 
control, and transmitted to the memory storage unit to cause the storage unit to 
hold the memory address by using its address latch circuits. This signal is required 
in order to make it possible to single pulse a memory storage unit operation. 

The Memory Available control level. This signal is generated in the memory 
storage unit, and a true level is transmitted to the memory control when the 
storage unit is powered-up. 

Global Memory Port Interface Control Logic 

A global system control access requires that a special bit (bit D) on the Z12 bus be true. When bit D of the Z12 mem­
ory bus is true during the initiation of an access to the global memory interface, signal GSCX also is true, indicating that 
a global system control (global scan) operation has been requested. 

The control logic signals for a g1oba1 memory or g]obal system control request are as follows: 

Signal Name 

GMMA 

5-84 

Signal Usage 

Global Memory Module Available. This signal is present at the global memory 
interface of the CPU cabinet if global memory is available as a resource of the 
B 6900 system. If this signal is not present, then no global memory is connected 
to the system, or the global memory is not available for the use of the system. 



Signal Na.111e 

GREQ 

GSCX 

GAPL 

GWRC 

GPRC 

GCWC 

GABX 

GAOX 

5010986 

B 6900 System Reference Manual 
System Concept 

Signal Usage 

Global Request. This signal is sent from the B 6900 system to the global memory 
to indicate that the system requests a global memory operation. 

Global Scan Control. This signal is sent from the B 6900 system to the global 
memory to indicate that the request present on the global memory interface is for 
a scan cycle rather than for a memory cycle. 

Global Address Parity Level. This signal is an odd parity bit for the 19-bit global 
address (scan function word) plus the GREQ, GWRC, GPRC, GCWC, and GSCX 
control signals. This signal is sent from the B 6900 system to the global memory 
subsystem. 

Global WRITE Request. This signal is sent from the B 6900 system to the global 
memory to indicate that a READ/MODIFY /WRITE memory cycle is requested on the 
word specified by the memory address lines. The information present at the speci­
fied addres.~ is returned to the B 6900 system, and the information present on the 
global interface is written into the specified address. The WRITE request may be 

aborted if this is a protected memory WRITE operation (G~RC is TRUE) and the 
memory word is prote~ted, or if an address or control error is detected on the 
global interface bus. If the WRITE request is aborted, the memory accessed 
information in the address is restored to the same memory address. 

Global Write Protect Control. This signal is sent to the global memory from the 
B 6900 system, and requires that the WRITE portion of a READ/MODIFY/ 
WRITE memory operation be aborted if the memory protect bit is true in the data 
read from memory. The memory word is protected if bit GI48 is TRUE in the 
READ information. If the WRITE portion is aborted, the READ information is 
restored to the same memory address, and the WRITE information is not written 
into memory. The B 6900 must monitor the READ information returned to 
determine if the WRITE portion of the memory cycle was aborted. 

Global Clear Write Control. This signal is sent from the B 6900 system to the 
global memory for both a CLEAR/WRITE memory operation and a global scan 
operation. If a CLEAR/WRITE memory function is specified, no READ informa­
tion is returned to the B 6900 system, and the WRITE data is written into the 
memory address specified. If the memory WRITE function is aborted, the GUEX 
signal is returned to the B 6900 system. If a scan operation function is specified 
and GCWC is present, then a SCAN-OUT type function is to be performed. 
Otherwise! a SCAN-IN function is to be performed. 

Global Access Begun. This signal is returned to the B 6900 system from global 
memory to indicate that the requested global memory function has been started. 
When the B 6900 system receives this returned signal, the GREQ signal line is 
turned off, and the GAPL and GPRC signals are turned off. The GABX signal 
remains present throughout the remainder of the global memory cycle. 

Global Access Obtained. This signal is returned to the B 6900 system from global 
memory to indicate that memory READ data is present on the global memory 
interface bus. Any error signal associated with the current global memory request 
(GAEX, GREX, or GUEX) is returned to the B 6900 system at the same time that 
GAOX is returned. 

5-85 



Signal Name 

GAOR 

GAEX 

GREX 

GWEX 

GUEX 

B 6900 System Reference Manual 
System Concept 

Signal Usage 

Global Access Obtained Return. This signal is returned to the global memory to 
acknowledge the presence of the GAOX signal. This signal, when true, implies that 
the B 6900 system has captured the memory READ data (or SCAN-IN word) in the 
logic circuits of the memory controller. When this signal is present at the global 
memory, the GAOX signal is removed from the global memory interface bus. When 
the GAOR signal is removed from the global memory interface bus, any error signals 
present on the bus, plus the GABX signal, will be removed from the global memory 
interface, thereby indicating the completion of the global request. 

Global Address Error. This signal is returned to the B 6900 system to indicate 
that an address parity error was detected on the global memory bus, or that an 
address error occurred on the module interface (between the global memory con­
trol and the global memory storage module). 

Global READ Error. This signal is returned to the B 6900 system to indicate that 
the information read from the memory module contained an error. The READ 
information error may be either a single bit error or a multiple bit error (see the 
GUEX signal description). 

Global WRITE Error. This signal is returned to the B 6900 system to indicate a.Tl 

error in the WRITE information SCAN-OUT data word. The error present is either 
a single bit error or a multiple bit error (see the GUEX signal description). 

Global Uncorrectable Error. This signal is sent to t.11.e B 6900 system to indicate 
an uncorrectable error detected by the global memory. If this signal is TRUE and 
a WRITE into memory type of operation is in process, .the WRITE memory operation 
will be aborted and the information read from memory during the READ portion of 
the memory cycle will be restored into the same memory address. 

GUEX is returned to the B 6900 system to indicate multiple bit errors, and/or 
memory address errors, and/or memory control signal errors. 

If GUEX and GREX are present, a multiple bit READ data error is indicated. 

If GUEX and GWEX are present, a multiple bit WRITE data error is indicated. 

Global Mem'1' Port Pr~r Status and Conm>I Logic 

Cable 6 of the global memory port interface is used to pass system status and control information between a B 6900 
system and a GMM. The logic signals passed through cable 6 of the global memory interface are as follows: 

S-86 

Signal 
Mnemonic 

HALT 

HLTD 

Signal 
Name 

Halt 

Halted 

Signal Usage 

This signal is passed from the GMM to the B 6900 system. When TRUE, 
this causes the B 6900 system processor to HALT at the end of the current 
operator in process of execution. 

This signal is passed from the B 6900 system processor to the GMM. When 
TRUE, this signal indicates to the GMM that the B 6900 processor is halted. 



Signal 
Mnemonic 

CLER 

CL'IID 

LOAD 

STRT 

Slll.T 

IDLE 

RUNG 

EINT 

AINT 

SAVL 

S01o-J86 

Signal 
Name 

Clear 

Cleared 

Load 

Start Global 

Super Halted 

Idle 

··Running 

External 
Interrupt 

Alarm 
Interrupt 

System 
Available 

B 6900 System Reference Manual 
System Concept 

Signal Usage 

This signal is passed from the GMM to the B 6900 system. When TRUE, 
this signal causes the B 6900 system to be general cleared. 

This signal is passed from the B 6900 system processor to the GMM. When 
TRUE, this signal indicates to the GMM that the B 6900 processor has 
raised the internal clear signal line of the B 6900 system. 

This signal is passed from the GMM to the B 6900 system. When TRUE, the 
signal causes the B 6900 system to perform a HALT/LOAD sequence from the 
HALT/LOAD unit. The B 6900 system only accepts this signal input after 
the B 6900 system is halted. 

This signal is passed from the GMM to the B 6900 system. When TRUE, this 
signal indicates that the GMM has a message in its message buff er for the 
B 6900 system. 

This signal_ is passed from the B 6900 system to the GMM. When TRUE, this 
signal indicates that the B 6900 processor is in an abnormal state. 

This signal is passed from the B 6900 system to the GMM. When TRUE, this 
signal indicates that the B 6900 system is in an IDLE loop. 

This signal is passed from the B 6900 system to the .GMM. When TRUE, this 
signal indicates tht tJ1e runni...Tig flip~flop is set in tJ1e processor logic. 

This signal is p~ed from the GMM to the B 6900 system. When TRUE, this 
signal causes an external interrupt to be sensed in the B 6900 processor 
interrupt controller. This signal is only effective when the B 6900 processor 
is operating in normal state, and has no effect when the processor is operating 
in control state. 

This signal is passed from the GMM to the B 6900 system. When TRUE, this 
signal operates in a manner similar to that of the EINT signal, except that the 
processor of the B 6900 system is interrupted even if it is operating in control 
state. 

This signal is passed from the B 6900 system to the GMM. When TRUE, this 
signal fadicates that the B 6900 system fa present a.."td fa powered~up. 

5..S7 



MEMORY TESTER LOGIC 

B 6900 System Reference Manual 
System Concept 

The B 6900 has memory test logic designed into the hardware circuits of the CPU cabinet. A separate memory tester 
with access to local memory is not provided. Therefore, when memory tests are to be performed, their execution 
preempts any other system operation. 

The memory tester logic is designed to be used with memory test routines that are resident in the MDP logic circuits. 
Memory tests are executed on the B 6900 system through messages on the system operators console (ODT) under control 
of the MDP Executive routine. Thus, memory testing is only performed by system operators who must direct the system 
to perform memory tests. 

s.ss 



B 6900 System Reference Manual 

SECTION 6 

PROGRAM OPERATORS 

GENERAL 

The machine language operators are composed of syllables in a program string. The operators are divided into four 
major classes: primary mode, variant mode, edit mode, and vector mode operators. 

SYLLABLE ADDRESSING AND SYLLABLE IDENTIFICATION 

A machine language program is a string of syllables which are normally executed sequentially. Each program word in 
memory contains six 8-bit syllables. The first syllable of a program word is labeled zero and is formed by bits 47 
through 40 (see Figure 6-1). 

SYLLABLE 
0 

47 43 

46 42 

45 41 

44 40 

MV1640 

P AND T REGISTERS 

SYLLABLE 

39 35 

38 34 

37 33 

36 32 

SYLLABLE 
2 

31 27 

30 26 

29 25 

28 24 

SYLLABLE 
3 

23 19 

22 18 

21 17 

20 16 

Figure 6-1. Program Word 

SYLLABLE 
4 

15 11 

14 10 

13 9 

12 8 

SYLLABLE 
5 

7 3 

6 2 

5 1 

4 0 

The P register contains the currently active program word. The T registers are the control (instruction) registers. There 
is one 4-bit T register for each operator family. The T register contains the code for the specific type of operator to be 
executed by the family, and is usually derived from the four low-order bits of the operator syllable code. The four 
high-order bits of the operator syllable code are used to select a family strobe. This family strobe is used to define 
which family is to receive the strobe pulse (execute pulse). Figure 6-2 shows how a program operator code in the P 
register is decoded to select a family strobe and a T register value. In the example shown in Figure 6-2, a divide operator 
(OP code 83 hexadecimal) is in the process of being executed, and this operator caused the family A strobe (STRA) to 
be selected. The family A T register contains a value of three (hexadecimal) which is derived from the four low-order 
bits of the operator code. 

Figure 6-2 also shows an example of how a word of program code is selected to be executed. The addressing mechanism 
for program code words and the way the comrollers of the B 6900 data processor function to provide automatic 
program code handling operation is also shown in this example. 

In the program code handling example shown in Figure 6-2, the Program Base Register (PBR) points at the first word of 
program code in the current program code segment. The value of the PBR is initially established from the segment 
descriptor for the current program segment when the procedure is initiated. 

The current word of program code in a program segment presently being executed is indicated by the value of the Pro­
gram Index Register (PIR). The initial value of the PIR for a program segment is established from the PCW word that 
caused the segment to be executed. The initial value of PIR may also be established from an RCW, if the program seg­
ment is executed as the result of an exit or return from another code segment ir1 the same program. 

5010986 6-1 



.-
1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PROGRAM SEGMENT 
IN MEMORY 

PROGRAM WORD ... 78 

PROGRAM WORD 3 

PROGRAM WORD 2 

PROGRAM WORD 1 

PROGRAM WORD 0 

MEMORY 
CONTROLLER 
LOGIC 

B 6900 System Reference Manual 
Program Operators 

~__..-----I PROGRAM 
INDEX REGISTER 

---, 
I 
I 

ADDRESS 
ADDER PROGRAM BASE 

~-...... ---+---+--11 REGISTER 

-, 
I 
I 
I 
I 

i 
I 
I 
I 

LAA +1 
LOGIC 

LAR 

MAR 

I 
I 
I 
I 
I 
I 
I 
I L _________ _J PIR +1 

LOGIC 

L __ L REGISTER 
(PROGRAM WORD 2) 

LOOK 
AHEAD 
LOGIC 
MODULE 

PROGRAM 
CONTROLLER 
LOGIC 

I 
I 

PSR +1 
LOGIC 

L __ P REGISTER 
(PROGRAM WORD 1) 

________ _J PROGRAM 
SYLLABLE 
REGISTER 

1s;;- LI s;LI s; L J sr tr LI S~L I I I ,l __________________ ~ 
r 

"" 
•lo 
010 ..... -- TO OTHER FAMIL - T REGISTER SELE 

l 
ole l 

y 
CTION 
IC AND GATING LOG 

01• 
~ FAMILY A 0 

'7ARF', ,----, ·--., T REGISTER TA3F 
,~ SELECTION 0 L---.J L-l:~..J a....!!:~..J & GATING 

·~l;-1 r---., ,.---, LOGIC -- TA2F - • FAMILY L--...J L-~C::..J L-!:R~ .J 
STROBE j TA1F 
DECODING --.I STRA 1 • LOGIC -l J 

L---.J '----~ ._ __ _. 
r-si-R;-1 15-f'Ro, r-~R;-., 

TAOF 

---., ----. ...---.... P---... 
L~;..J LS,l!!~j i....:!.R.;!__j i,_S_!!~j MV 1641 

Figure 6-2. Program Word, Syllable Addressing 



B 6900 System Reference Manual 
Program Operators 

The first syllable to be executed in a program code segment is derived from the PCW (or alternatively the RCW) that 
caused entry into the current program segment. In the example shown in Figure 6-2, the Program Syllable Register {PSR) 
is pointing at syllable four of the P register because the divide operator (in syllable three) is being executed, and the 
PSR plus one logic has advanced the value of the PSR to point at the next syllable that will be executed. 

Program code words in the B 6900 system are normally fetched from system memory by the look ahead logic. The 
look ahead logic fetches the next word of program code while the current word of program code is being executed, and 
places it in the L register. When the PSR indicates by its content value that all syllables of program code in the P 
register have been executed, the program controller causes the next word of program code to be transferred from the 
L register to the P register. The PSR points at the first syllable in the new program word. 

When the next word of program code is transferred from the look ahead logic L register to the P register, the look 
ahead module causes. the next word of program code to be fetched from memory and placed in the emptied L register. 
The program controller causes the value of the PIR to be incremented by one, as the operators are strobed from the P 
register. Thus, the PIR always points at the code word the present operator started in. The look ahead logic uses the 
Look Ahead Address Register (LAR) to address the next word of program code. The LAR has an automatic plus one 
incrementation feature that causes the LAR to always point at the memory address of the next program word (follow­
ing the program word that is present in the L register). 

The dotted lines in Figure 6-2 show the origin of a word of p_rogram code in the P and L registers, and also what word 
of the program segment is pointed at by an address register. A dotted line is also used to show that the value of the 
PSR temporarily points at syllable four when syllable three is being executed by the data processor. 

OPERATION TYPES 

Operations are grouped into three classes: name call, value call, and operators. The two high-order bits (bits 7 and 6) 
determine whether a syllable begins a value call, mune call, or operator (Figure 6-3). 

(BITS 7 
AND6) SYLLABLE NO.OF 
IDENT TYPE SYLLABLES FUNCTION 

00 VALUE CALL 2 BRINGS AN 
OPERAND INTO 
THE STACK 

01 NAME CALL 2 BUILDS AN IRW 
IN THE STACK 

OTHER OTHER 1-.1 PERFORMS THE 
THAN OPERATORS SPECIFIED 
ABOVE OPERATION 

MV 1642 

Figure 6-3. Primary Mode Operator Syllable Decode Table 

5010986 6-3 



Name Call 

B 6900 System Reference Manual 
Program Operators 

Name call builds an indirect reference word in the stack (see Figure 6-4). Stack adjustment takes place so that the A 
register is empty. The six low-order bits of the first syllable of this operator are concatenated with the 8-bits of 
the following syllable to form a 14-bit address couple. The address couple is placed, right-justified, into the A register, 
with the remainder of the A register filled with zeroes. The TAG· field of the A register is set to 001, and the register is 
marked full. 

0 

1 

1 
44 40 36 32 

0 0 0 0 

0 0 0 0 0 

0 0 0 o+ 0 

1 0 0 0 0 
44 40 36 32 

MV 1643 

Value Call 

0 0 0 1 ,, 

1 0 0 1 

0 1 0 1 

0 1 0 1 
28 24 20 16 12 8 4 0 

' 0 0 0 1 ' I- ' 1 0 0 1 \ 
\ 

0 1 0 1 '\ 
'\ 

0 1 0 1 ' '\ ...._....._ 
....._....._ ...._...._ ____ 

-
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 1 0 
28 24 20 16 12 8 4 0 

Figure 6-4. Name Call Operator Function 

'\ 

' 1 

1 

1 

1 

TYPICAL 
NAME 
CALL 
OPERATOR 
CODE 
IN THE P 
REGISTER 

THE 
ADDRESS. 
COUPLE 
PART OF 
THE 
NAME 
CALL 
OPERATOR 

THE 
RESULTING 
IRWTHAT 
IS FORMED 
INTHE 
A REGISTER 
AS THE 
RESULT 
OF THE 
NAME CALL 
OPERATOR 

Value call loads into the top of the stack the operand referenced by the address couple. The operator is formed in the 
same manner as the name call operator. If the referenced memory location is an indirect reference word or a data 
descriptor, additional memory accesses are made until the operand is located. The operand is then placed in the top of 
stack registers. The operand may be either single- or double-precision, causing either one or two words to be loaded 
into the top of the stack. 

Figure 6-5 is an example of how a value call operator {V ALC) is used to cause a word of data located at memory 
address D2 plus 4 to be fetched and placed in the top of the D3 stack. The current stack is known to begin at the 
MSCW pointed at by the D3 display IC memory register, because the lexicographical level register contains a value of 3 
{LLOO, LLOl, LL02/, LL03/, Ll.04/). 

64 



r T T T 

B 6900 System Reference Manual 
Program Operators 

0 i 0 i 0 1 0 I I I 

I +------+---lf-----4-----f 
0 0 0 1 0' 1 

~--+--+---+__.........._~--t-' ~--+--~ 
.__1-4---+----l--+----A--o--fl---o-- ~ o i o 

l 144 40 h6 32 28l Z40 -120° l60 12 0 

0 0 0 

02 REGISTER SELECTED J I 
L l l 0 I ~o 

TYPICAL 
VALUE 
CALL 
OPERATOR 
IN THE 
P REGISTER 

INDEX 
VALUEx4 

------, 
I 
I 

,----------_j I "" 
I 

I I 
FENCE I 

DO LOGIC I IC 
MEMORY ~ I 
REGISTER 

I 
I 

,------- - -- -- -...:..--' 

01 I INDEX VALUE VIA Z10 & Z9 BUSSES 

IC ___.. I 
MEMORY 

I REGISTER 

I 
L~ 

I I ZS BUS - -! - D2 I"- - - - _;:_ 
ADDRESS 

----::;:. IC _. I ADDER 
SUM OF D2 + 4 -1 MAR - MEMORY w __ __, 
ADDRESS TO 

REGISTER MEMORY 
ADDRESS 
REGISTER 

D3 
IC 1-----J 
MEMORY 
REGISTER 

MV1644 

Figure 6-5. Value Call Operator Function 

5010086 

I 

1 

6-5 



B 6900 System Reference Manual 
Program Operators 

The fence decoding logic defines the number of bits in the address couple that select a display register to provide the base 
address portion of the value call operation. The fence decoding logic uses the current programming level of the program 
segment to determine which IC memory display register is selected. The highest order bit of the lexicographical level 
register that is true in the example is bit LLO 1, which has a value of two. The fence decoding logic therefore uses the 
two high-order bits of the address couple to select an IC memory display register as the source of the base address. The 
bits that are not used by the fence decoding logic to select a display register form the index portion of the value call 
operation. 

Bits 29: 5 are used by the fence decoding logic to select a display register. The value of the bits in this field are opposite 
to the word bit number order; that is, bit 29 of the address couple in the example has a binary value of one, and bit 
25 has a binary value of 16. The following equates bits 29: 5 to a decimal value and to the display registers which 
they will select. 

Display 
Bit Number Decimal Value Register Selected 

29 1 I 
28 2 2 
27 4 4 

26 8 8 
25 16 16 

Thirty two LC memory.display registers may be selected by the fence decoding logic. 

In the example in Figure 6-5, it is possible to see how bit 28 is used to select display register two and thus to provide the 
base portion of the value call address. 

The index portion of the address couple is treated in the conventional manner as a binary value. In the example shown 
in Figure 6-5, bits 16, 17, and 18 have a binary value of 100, which is four decimal. 

The absolute memory address placed in the memory address register in the example in Figure 6-5 is the sum of the 
address from display register two and the index, which has a value of four (that is, D2+4). The word of data in 
memory at the absolute memory address is fetched and placed in the top of stack register. If the word at 02+4 is an 
IRW or a data descriptor, then additional fetches from memory will be made. This process continues until an operand 
or a data word is placed in the top of stack register. Placing an operand or a data word in the top of stack register 
completes the value call operation. 

The value call operator detects an invalid operand error condition if a word with a TAG code of three, four' Of six is 
referenced. If a word with a TAG of seven is referenced by a value call operator, an accidental program entry into the 
procedure described by the PCW is performed. The final value placed in the stack by a value call operator must have a 
TAG field of zero or two. 

An accidental program entry caused by a value call operator being executed is treated like a subroutine of the procedure 
that executed the value call operator. The stack of the procedure is marked by an MSCW and an RCW. Then the subrou-. 
tine referenced by the PCW is executed; it terminates by means of a return operator. The return operator passes a 
parameter from the subroutine to the procedure that executed the original value call operator. The program flow of the 
procedure is resumed at the next operator in sequence following the original value call operator. 

6-6 



Operators 

B 6900 System Reference Manual 
Program Operators 

Operators vary from one to seven syllables in length. The first syllable of each operator determines the number of 
additional syllables forming the operator. Upon completion of each operator, the PSR addresses the first syllable beyond 
all of the syllables comprising the operator. 

Operators work on data either as full words (48 data bits plus TAG bits) or as strings of data characters. Word operators 
work with operands {single or double-precision) in the top of the stack. 

String operators are used for transferring, comparing, scanning, and translating strings of digits, characters, or bytes. ln 
addition, a set of micro-operators provides a means of formatting data for input or output. 

The string operators use source and destination pointers located in the stack. These pointers are set into the following 
hardware registers: 

I. Source Base Register - (SBR). 

2. Source Index Register - (SIR). 

3. Source Index Byte Register - (SIB). 

4. Source Size Register - (SSZ). 

5. Destination Base Register - (DBR). 

6. Destination Index Register - (DIR). 

7. Destination Index Byte Register - (DIB). 

8. Destination Size Register - (DSZ). 

In some of the string operators, the source pointer may not be used. In this case, an operand may be in the stack; its 
characters are circulated as t..he operand is being used. 

String operators have an optional update function; that is, producing updated source and destination pointers and count. 
At completion of an operation, the source and destination pointers are updated as follows: 

1. If the source is an operand, it remains in the stack. 

2. If the pointer is a descriptor, the word index fields and byte index fields are updated from SIR/DIR and 
SIB/DIB. The string size fields are updated from SSZ/DSZ. 

3. If the pointer is a data descriptor or a non-indexed string descriptor, it is converted to an indexed string 
descriptor and updated. 

If both the source and destination descriptors have size fields equal to zero, the size registers indicate 8-bit character 
size. When both a source and destination are required and the size field of one is equal to zero and the other is not, 
then the size field of the non-zero descriptor is used. 

If neither size field is equal to zero and the size fields are not equal and the operator is not translate, the invalid operand 
interrupt is set and the operator is terminated. The size field is considered equal to zero when the source is an operand. 

5010986 6-7 





B 6900 System Reference Manual 

SECTION 7 

PRIMARY MODE OPERATORS 

GENERAL 

This section defines the functions of the primary operators. In each case, the name of the operator, corresponding 
mnemonic, and hexadecimal code are shown. Appendix A of this manual lists the operators in alphabetic order, and 
appendix B lists the operators in numeric order, by mode. 

The universal operators are also included in this section. 

ARIIBMETIC OPERATORS 

The arithmetic operators usually require two operands in the top of stack registers. These operands are combined by the 
arithmetic process specified with the result placed in the top-of-stack. The operam;ls may be either single-precision, 
double-precision, or intermixed. The specified arithmetic process adapts automatically to the data environment, with the 
single-precision process invoked if both operands are of the single-precision type, and the double-precision process invoked 
if either operand is of the double-precision type. 

Each double-precision operand occupies two words. The second word of the operand is an extension of the first word 
of the operand. The mantissa of the first word of the operand contains unit values, and the mantissa of the second 
word contains a fractional unit value. An implied octal point. separates the mantissa of the first word from the mantissa 
of the second word. When the top-of-stack registers are full, the first word of the first operand is in the A register; 
the second word of the first operand occupies the X register. The first word of the second operand resides in the B regis­
ter; the second word of the second operand occupies the Y register. Therefore, doubie-precision arithmetic processes 
operate on four words in the stack, instead of two as in single-precision operations. Double-precision arithmetic leaves a 
two-word result in the top-of-stack. 

Add, subtract, and multiply operations which use two integer operands yield an integer result if no overflow occurs. If 
one or both operands are non-integer, or if the result generates an overflow, the result is non-integer. 

When an operator has been entered, the hardware stack-adjust function fills or empties the top-of-stack register as 
required by the operator. If either register contains an incorrect word, the operator is tenrJnated by an invalid operand 
interrupt. 

ADD (ADD) 80 

The operands in the A register and the B register are added algebraically, with the sum left in the B register. At the end 
of the operation, the A register is marked empty, and the B register is marked full. 

If only one of the operands is double-precision, the register (X or Y) associated with the register that contains the single­
preeision operand is set to all zeroes. The B register is marked as a double-precision operand at completion of the operation. 

If the mantissa signs and the exponents are equal, the mantissas are added and the sum placed in the B register. If the 
sum exceeds 13 single precision (26 double precision) octal digits, the mantissa of the sum is shifted right one octade, 
rounded, and the exponent is algebraically increased by one. The meaning of exponents and mantissas were given in 
section 2 of this manual. 

If the exponents are equal but the mantissa signs are unequal, the difference of the mantissas plus the appropriate sign 
is placed in the B register. 

5010986 7-1 



B 6900 System Reference Manual 
Primary Mode Operators 

If the exponents are unequal, the operands are first aligned. If the alignment causes the smaller operand to be shifted 
right 14 single precision (27 double precision) octal places, the larger operand is the result. 

If the alignment causes the smaller operand to be shifted right, but less than 14 single precision (27 double precision) 
octal places, the digits of the smaller operand shifted out of the register are saved and used to obtain the rounded result. 

If the signs of the operands are equal, the mantissas are added and the sum placed in the B register. If the sum does not 
exceed 13 single pn~cision (26 double precision) octal digits, the last digit shifted out of the register is used to round the 
result. If the sum is 14 single precision (27 double precision) octades, the mantissa in B (Y) is rounded to 13 single 
precision (26 double precision) digits. 

If the signs of the operands are unequal, an internal subtraction takes place, with the rounded result placed in the 
B register. 

If the result has an exponent greater than +63 (+32,767), the exponent overflow interrupt is set. If the result has an 
exponent less than -63 (-32,767), the exponent underflow interrupt is set. 

SUBTRACT (SUBT) 81 

The operand in the A register is algebraically subtracted from the operand in the B register, with the difference left in the 
B register. The operation is the same as for the Add operator, except for initial sign comparisons. 

MULTIPLY (MULT) 82 

The operand in the A register is algebraically multiplied by the operand in the B register. The rounded product is left in 
the B register. 

If the mantissa of either operand is zero, the B register is set to all zeroes. 

If both mantissas are non-zero, the product of the mantissa is computed. If the product contains more than 13 single­
precision (or 26 double-precision) digits, it is normalized and rounded to 13 single-precision (or 26 double-precision) 
digits. A mantissa of all sevens is not rounded. Normalization was explained in section 2 of this manual. 

If the result has an exponent greater than +63 (+32,767), an exponent overflow interrupt is set. If the result has an 
exponent less than -63 (-32,767), an exponent underflow interrupt is set. 

EXTENDED MULTIPLY (MULX) 8F 

The operands in the A and B registers are algebraically multiplied, and a double-precision product is placed in the B and 
Y registers. The A register is marked empty, and the B register marked full. 

The actions outlined for multiply operations also apply to this operator. 

If either or both operands are double-precision, then a normal double-precision operation occurs. 

DIVIDE (DIVD) 83 

The operand in the B register is algebraically divided by the operand in the A register, with the quotient left in the B 
register. After the operation, the A register is marked empty, and the B register is marked full. 

7-2 



B 6900 System Reference Manual 
Primary Mode Operators 

!f the mantissa of the B register is zero, the B register is set to ail zeroes. if the A register mantissa is equal to zero, the 
divide by zero interrupt is set. In either case, the operation is terminated. 

If the mantissas of both operands are non-zero, they are normalized, and the operand in the B register is divided by the 
operand in the A register. The quotient is developed to 14 single-precision (or 27 double-precision) digits, rounded to 
13 single-precision (or 26 double-precision) digits, and remains in the B register. 

If the result has an exponent greater than +63 (32,767), the exponent overflow interrupt is set. If the result has an expo­
nent less than -63 (-32,767), the exponent underflow interrupt is set. 

INTEGER DIVIDE (IDIV) 84 

The operand in the B register is algebraically divided by the operand in the A register, and the integer part of the quo­
tient is left in the B register. After the operation, the A register is marked empty, and the B register is marked full. 

If the mantissa of the B register is zero, the B register is set to all zeroes. If the mantissa of the A register is zero, the 
divide-by-zero interrupt is set. The operation is terminated in either case. 

If the mantissas of both operands are non-zero, they are normalized. If the exponent of the B register is algebraically 
less than the exponent of the A register after both operands have been normalized, the B register is- set to all zeroes. If 
the exponent of the B register is algebraically equal to or greater than the exponent of the A register, the divide opera­
tion proceeds until an integer quotient or a quotient of 13 single-precision (or 26 double-precision) significant digits is 
calculated. 

If an integer quotient is developed, the quotient is left in the B register with a zero exponent for single-precision, and 
the exponent set to 13 for double-precision. If a non-integer quotient is developed, the integer overflow interrupt is set. 

REMAINDER DIVIDE (RDIV) 85 

The operand in the B register is algebraically divided by the operand in the A register to develop an integer quotient. 
The remainder of this division stays in the B register. 

If the mantissa of the B register is zero, the B register is set to all zeroes. If the mantissa of the A register is zero, the 
divide-by-zero interrupt is set. In either case, the operation is terminated. 

If both mantissas are non-zero, both operands are normalized. If the exponent of the B register is algebraically less 
than the exponent of the A register after both operands have been normalized, the operand in the B register is the 
result. If the exponent of the B register is algebraically equal to or greater than the exponent in the A register, the 
DIVIDE operation proceeds until an integer quotient is developed; the remainder is then placed in the B register. 

If a non~integer quotien'l is developed. the integer overflow interrupt is set and the operation is terminated. 

INTEGERIZE, TRUNCATED (NTIA) 86 

The operand in the B register is converted to integer form without rounding, and remains in the B register. 

If the operand in the B register cannot be integerized (that is~ the exponent is greater than the number of leading zeroes 
in the operand), the integer overflow interrupt is set and the operation is terminated. 

INTEGERIZE, ROUNDED (NTGR) 87 

The operand in the B register is converted to integer form. Rounding takes place if the absolute value of the fraction is 
greater than four. The rounded result is left in the B register. 

5010986 1-3 



B 6900 System Reference Manual 
Primary Mode Operators 

If the operand in the B register cannot be integerized (that is, the exponent is greater than the number of the leading 
zeros in the operand), the integer overflow interrupt is set and the operation is terminated. 

The operand is rounded, if necessary, by adding one to the mantissa. If a non-integer results from this operation, the 
integer overflow interrupt is set. 

TYPE-TRANSFER OPERA TORS 

The three type transfer operators are discussed in the following paragraphs. 

SET TO SINGLE-PRECISION, TRUNCATED (SNGT) CC 

The operand in the top-of-stack register is normalized and set to a single-precision operand; or in the case of a data 
descriptor, the double-precision bit is set to zero. 

If the word in the top-of-stack register is a non-indexed, double-precision data descriptor, the double-precision bit is 
cleared to zero and the length field multiplied by two. 

If the double-precision operand in the top-of-stack register has an exponent greater than +63 after normalization, the 
exponent overflow interrupt is set. If the exponent is less than -63 after normalization, the exponent underflow inter­
rupt is set, and the operation is terminated. 

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than 
-63, the operand is normalized and the TAG field in the top-of-stack register is set to single-precision. 

If the word in the top-of-stack register is neither an operand nor a data descriptor, the invalid operand interrupt is set, and 
the operation terminated. 

If the operand is single-precision, it is normalized and the operation is terminated. 

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD 

The operand in the top-of-stack register is changed to a rounded, single-precision operand. 

If the double-precision operand in the top-of-stack register has an exponent greater than +63, the exponent overflow 
interrupt is set. If the exponent is less than -63, the exponent underflow interrupt is set. In either case, the operation is 
terminated. 

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than 
-63, the operand is normalized, th.e TAG field in the top-of-stack register is set to single-precision, the operand in the top­
of-stack register is rounded ·from the Y register, and the Y register is set to all zeroes. 

If a carry is developed during the rounding operation, the operand is adjusted and the new exponent is checked in the 
manner discussed in the preceding paragraph. 

If the operand is a single-precision operand, it is normalized and no rounding occurs. 

SET TO DOUBLE-PRECISION (XTND) CE 

The word in the top-of-stack register is set to a double-precision operand, and the Y register is set to all zeroes. If a 
single-precision data descriptor is present in the top-of-stack register, the double-precision bit is set to one. 

14 



B 6900 System Reference Manual 
Primary Mode Operators 

If the word iil the top-of-stack register is a data descriptor wit.l1 both the L'ldex bit and double-precision bit zero, the 
double-precision bit is set to one and the length field is divided by two. 

If the operand in the top-of~stack register is a double-precision operand, the operation is complete. If it is a single­
precision operand, the TAG field in the top-of-stack register is set to double-precision, and the Y is set to all zeroes. 

If the word in the top-of-stack register is neither an operand nor a data descriptor, the invalid operand interrupt is set 
and the operation terminated. 

LOGICAL OPERATORS 

For LAND, LOR, or LEQV, if only one of the operands is in double-precision form, the other operand is treated as 
double-precision, with the least significant 13 octades equal to all zeroes. 

LOGICAL AND (LAND) 90 

Each bit of the B operand result, except for the TAG bits, is set to one where a one appears in the corresponding bit posi­
tions in both the A operand and the B operand. The other information bits of the B operand result are set to zero. If 
the TA Gs of the two operands are identical, the TAG in the result is that of the B register. If the TA Gs are different, the 
resultant TAG is double-precision. 

LOGICAL OR (LOR) 91 

Each bit position of the B operand (except for the TAG bits) "is set to one if the corresponding bit position in either the 
A operand or the B operand is one; otherwise, the bit is set to zero. The TAG bits are set to the value of the second item 
in the stack except when the A operand is double-precision, in which case the B register TAG is set to double-precision. 

LOGICAL NEGATE (LNOT) 92 

Each bit in the top word in the stack is complemented except for the TAG bits, which remain unchanged. The result is 
always stored in the A register. 

LOGICAL EQUIV ALEN CE (LEQV) 93 

Each bit of the B operand is set to one, except for the TAG bits, when the corresponding bits of the A operand and the 
B operand are equal. Each bit of the B operand is set to zero (except for the TAG bits) when the corresponding bits of 
the A and B operands are not equal. The TAG field is normally set to the value of the second item in the stack except 
when the A operand is double-precision; in that case, the. B-register TAG is set to double-precision. 

LOGICAL EQUAL (SAME) 94 

All bits, including TAG bits of the A operand and the B operand, are compared. If all bits are equal, a single-precision 
operand with bit zero set and all other bits reset is stored in the B register. Otherwise, a single-precision operand with all 
bits reset is stored in the B register. AROF is reset, and BROF is set. 

RELATIONAL OPERA TORS 

The relational operators perform an algebraic comparison on the operands in the A register and the B register. The single­
precision result is left in the B register, and the B register is marked full. The result is an operand in integer form with 
the value one if the relationship has been met, or an operand with all information bits set to zero if the relationship was 
not met. All relational operations compare the B operand to the A operand. 

5010986 7-5 



B 6900 System Reference Manual 
Primary Mode Operators 

For all relational operators except equal (EQUL) and not equal (NEQL), the compare flip-flop is set when the relation 
is equal. For the equal or not equal operators, the compare flip-flop is set when the relationship is greater than equal. 

The CMPF flip-flop is used in conjunction with the low order bit of the B register (BR [O: 1]) to analyze the result of a 
relational operation. Table 7-1 shows the states of the CMPF flip-flop and BR[O: l] for various relational operations and 
possible results of relational operations. 

Table 7-1. Relational Operator Indications 

Relational BR[O:l] CMPF Comparison Result 

EQUAL 0 0 Less than 
(8C) (EQUL) 0 1 Greater than 

0 Equal 
1 Not applicable 

GREATER THAN 0 0 Less than 
(8A) (GRTR) 0 1 Equal 

0 Greater than 
1 Not applicable 

GREATER THAN 0 0 Less than 
OR EQUAL 0 I Not applicable 
(89) (GREQ) 0 Greater than 

1 Equal 

LESS THAN 0 0 Greater than 
(88) (LESS) 0 1 Equal 

0 Less than 
Not applicable 

LESS THAN 0 0 Greater than 
OR EQUAL 0 I Not applicable 
(8B) (LESQ) 1 0 Less than 

1 1 Equal 

NOT EQUAL 0 0 Equal 
(8D) (NEQL) 0 i Not applicable 

0 Less than 
Greater than 

GREATER mAN (GRTR) SA 

If the B operand is algebraically greater than the A operand, the B register is set to one; otherwise, the B register is set 
to zero. AROF is reset, and BROF is set. 

7-6 



B 6900 System Reference Manual 
Primary Mode Operators .. 

if the result of the algebraic comparison is ""equai", the CMPF flip-flop is set. 

GREATER THAN OR EQUAL (GREQ) 89 

If the B operand is algebraically greater than or equal to the A operand, the B register is set to one; otherwise, the B 
register is set to zero. 

If the result of the algebraic comparison is "equal", the CMPF flip-flop is set. AROF is reset, and BROF is set. 

EQUAL (EQUL) SC 

If the operands in the B and A registers are algebraically equal, the B register is set to one; otherwise, the B register is set 
to zero. 

If the result of the algebraic comparison is "greater", the CMPF flip-flop is set. AROF is reset, and BROF is set. 

LESS mAN OR EQUAL (l.SEQ) SB 

If the B operand is algebraically less than or equal to the operand in the A register, the B register is set to one; other-
wise, the B register is set to zero. · 

If the result of the algebraic comparison is "equal", the CMPF flip=flop is set. AROF is reset, and BROF ,is set. 

LESS THAN (LESS) 88 

If the operand in the B register is algebraically less than the operand L11 the A register, the B register is set to one; 
otherwise, the B register is set to zero. 

If the result of the algebraic comparison is "equal", the CMPF flip-flop is set. AROF is reset, and BROF is set. 

NOT EQUAL (NEQL) 8D 

If the operand in the B register is not algebraically equal to the operand in the A register, the B register is set to one; 
otherwise, the B register is cleared. 

If the result of the algebraic comparison is "greater than", the CMPF flip-flop is set. AROF is reset, and BROF is set. 

BRANCH OPERA TORS 

Branch instructions break the normal sequence of serial instruction fetches. Branching may be either relative to the base 
address of the current program segment or to a location in another program segment. Branch operators can be condi­
tional or unconditional. 

BRANCH F Al.SE (BRFL) AO 

If the low-order bit of the A register is zero, the Program Index Register (PIR) and Program Syllable Register (PSR) are 
set from the next two syllables in the program string. Otherwise, PSR is advanced two syllable positions, and PIR is 
incremented if necessary. 

The two syllables following the actual operator syllable form the new PIR and PSR settings, as follows. The three high­
order bits are placed into PSR, and the next 13 low-order bits are placed in the PIR. The Program Register (P) is marked 
empty to cause an access to the new program word. 

5010986 7-7 



BRANCH TRUE (BRTR) Al 

B 6900 System Reference Manual 
Primary Mode Operators 

If the low-order bit of the A register is one, the PIR and PSR are set from the next two syllables in the program string. 
Otherwise, PSR is advanced two syllable positions, and PIR is incremented _if necessary. The Branch True operator uses 
the two syllables as previously described for the Branch False operator (BRFL). 

BRANCH UNCONDITIONAL (BRUN) A2 

The PIR and PSR are set from the next two syllables of the program string. The Branch Unconditional operator uses the 
two syllables as described for the Branch False operator (BRFL). 

DYNAMIC BRANCH FALSE (DBFL) A8 

If the low-order bit of the B register is zero and the word in the A register is a Program Control Word (PCW) or an 
indirect reference to one, a branch is made to the specified syllable of that program segment. 

If the low-order bit of the B register is zero and the word in the A register is an operand, PIR and PSR are set from this 
operand. · 

If the word in the A register is an operand, it is used in the following manner. The operand is made into an integer. If 
it is negative or greater than 16,384, the invalid index interrupt is set and the operation is terminated. If bit zero of the 
operand is zero, PSR is set to zero; otherwise, PSR is set to 011. The next higher-order 20 bits are placed in the PIR. 
The Program Register is then marked empty to cause access to the new program word. 

DYNAMIC BRANCH TRUE (DBTR) A9 

If the low-order bit of the B register is one and the word in the A register is a PCW (or an indirect reference to one), a 
branch is made to the specified syllable of the program segment. 

If the low-order bit of the B register is one and the word in the A register is an operand, PIR and PSR are set from this 
operand. 

The operand in the A register is used in this operator in the manner described for the Dynamic Branch False operator 
(DBFL). 

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA 

If the word in the A register is a, PCW or an indirect reference to one, a branch is made to the specified syllable of the 
program segment. 

If the word in the A register is an operand, PIR and PSR are set from this operand. 

The operand in the A register is used in this operator in the same manner described for the Dynamic Branch False 
operator (DBFL). 

STEP AND BRANCH (STBR) A4 

The increment field of the step-index word (SIW) addressed by the contents of the A register is added to its current-value 
field. If the current-value field is .then grnater than the final-value field, the PIR a...'1d PSR are set from the next two 
syllables in the program string. Otherwise, the PIR and the PSR are advanced three syllables. The SIW is replaced in 
memory. 

7-8 



B 6900 System Reference Manual 
Primary Mode Operators 

!f no S!W is in memory and if an operand is found; it is left in the stack. The A register is set to all zeroes, the PIR and 
PSR are advanced and the next operator is executed. If no operand is encountered, the invalid operand interrupt is set. 

UNIVERSAL OPERATORS 

The three universal operators are discussed in the following paragraphs. 

NO OPERATION (NOOP) FE 

No operation takes place when this operator is encountered. PIR AND PSR are advanced to the next operator. This oper­
ator is also valid in the variant and edit modes. 

CONDITIONAL HALT (HALT) DF 

This operator 'halts the processor if the CHLT pushbutton on the MDP keyboard is illuminated. If the CHLT pushbutton 
is extinguished, the operator is treated as a NOOP. This operator is also valid in the variant and edit modes. 

INVALID OPERA TOR (NVLD) FF 

This operator sets the invalid operand interrupt. This operator is also valid in variant and edit modes. 

STORE OPERATORS 

The store operators use the words in the A register and B register. The operand in the B register is stored in memory at 
the location addressed. by an Indirect Reference Word (IRW) or a data descriptor. If the A register contains an operand, 
a hardware interchange takes place so that the operand is transferred to the B register. 

STORE DESTRUCTIVE (STOD) BS 

If the word in the A register is an operand, the A and B operands are interchanged. The data descriptor or IRW in the 
A register is the address in memory where the operand in the B register (B, Y registers for double-precision) is stored. 
After the operand is stored, the A register and B register are marked empty and the operation is complete. 

If the word addressed by the IRW is a program control word, accidental procedure entry occurs. The spontaneously 
created Return Control Word (RCW) causes the Store Destructive (STOD) operator to be re-executed upon return from 
the procedure. 

If the word addressed by the data descriptor has the memory protect bit on (bit 48), the memory protect interrupt is 
set and the operation is terminated. 

If the presence bit in the data descriptor is zero; the presence bit interrupt is set. After the information has been made 
present, the operation is restarted. 

STORE NON-DESTRUCTIVE (STON) B9 

This operator functions in virtually the same way as the STOD operator. However, at the completion of this operator, 
the BROF remains set, and the operand is retained in the B register. 

OVERWRITE DESTRUCTIVE (OVRD) BA 

This operator functions in a manner similar to the STOD operator, except that the OVRD operator overrides memory pro­
tection checks. The OVRD operator only writes a single data word into memory. If a double-precision data operand is to be 

5010986 7-9 



B 6900 System Reference Manual 
Primary Mode Operators 

written into memory, the most significant half is written into memory, and the least significant half of the operand is 
truncated (not written into memory). 

OVERWRITE NON-DESTRUCTIVE (OVRN) BB 

This operator functions in the manner similar to the STON operator, except that the OVRN operator overrides memory 
protection checks. This operator also operates in the same manner as the OVRD operator, with regard to double-precision 
memory data words. 

STACK OPERATORS 

The four stack operators are discussed in the following paragraphs. 

EXCHANGE(EXCH)B6 

The operands in the A register and the B register are exchanged. The A and B registers may contain either operands or 
control words. The control words are treated as operands by this operator. 

DELETE TOP-OF-STACK (DLET) BS 

This operator marks the top-of-stack register empty. 

DUPLICATE TOP-OF-STACK (DUPL) B7 

The operand in the B register is copied into the A register. or the operand in the A register is copied into the B register. 
At the conclusion of the operation, the register that received the copy is marked full. 

PUSH DOWN STACK REGISTERS (PUSH) B4 

This operator stores the valid word(s) from the A register and/or B register into the memory portion of the stack. The A 
and B registers are marked empty. 

LITERAL CALL OPERA TORS 

The five literal call operators are discussed in the following paragraphs. 

LIT CALL ZERO (ZERO) BO 

This operator sets the A register to all zeroes and marks the register full. The result is a single-precision operand. 

LIT CALL ONE (ONE) Bl 

This operator sets the A register low-order bit (bit 0) to one, leaving all other bits set to zero. The A register is marked 
full. The result is a single-precision operand. 

LIT CALL 8-BITS (LT8) B2 

The syllable following the operator is the literal value to be placed in bits 7: 8 of the A register. The rest of the A register 
is set tu ail zeroes. The A register is marked as full, and the PSR is set to the syliabie following the iiterai. 

7-10 



LIT CALL 16--BITS (LT16) B3 

B 6900 System Reference Manual 
Primary Mode Operators 

The next two syllables following the operator are a 16-bit literal value placed in bits 15: 16 of the A register. The rest of 
the register is set to all zeroes. The A register is marked full, and PSR is advanced past the 16-bit literal. 

LIT CALL 48-BITS (LT48) BE 

The next program word is placed in the A register, and the A register TAG is set to all zeroes. The A register is marked 
full, and the PIR and PSR are advanced to the program syllable following the 48-bit literal value. This operator requires 
that the 48-oit literal in the program string be word synchronized. If the operator syllable is in any syllable position 
other than syllable five, the intervening syllables are not executed. 

The 48-bit literal word must contain a TAG field value of three (program word); otherwise, an invalid program word 
interrupt will be sensed when the literal word is present in the P (program) register. 

MAKE PROGRAM CONTROL WORD (MPCW) BF 

This operator performs a "Lit Call 48-Bits" (LT48) as previously described; however, the TAG is set to a PCW (111 ), and 
the stack number register is placed in bits 45: 10. The A register is marked full. 

INDEX AND LOAD OPERATORS 

The four index and load operators are discussed in the following paragraphs. 

INDEX (INDX) A6 

The Index operator places the integerized value of the B register into the 20-bit length/in.dex field of the descriptor in 
the A register. The descriptor is marked indexed (bit 45 is set to one), and the copy bit is set (bit 46 is set to one). 

If the word in the A register is an operand, the A operand is exchanged with the B operand. If the word in the A reg­
ister is neither a descriptor nor an IRW pointing to a descriptor, the invalid operand interrupt is set and the operation 
is terminated. If the indexing value is negative or greater than or equal to the length field of the descriptor, the invalid 
index interrupt is set and the operation is terminated. 

If the descriptor represents an array which is segmented, the index is partitioned into two portions by an approximation 
algorithm which is determined by the type of data referenced by the descriptor, double-precision word 128, single­
precision word 256, four-bit digit-3072, six-bit character-2048, or eight-bit byte-1536. The product of the approximator 
algorithm is used as an index to the given descriptor to fetch the array-row descriptor. The remainder is used to index 
the row descriptor. 

If the double-precision bit (bit 40) in the descriptor is one, the i11dex value in the B register is doubled. The balance of 
the operation is as described in the first paragraph of the description of this operator (INDX). 

INDEX AND LOAD NAME (NXLN) AS 

This operator performs an index operation; after the word in the A register has been indexed, the data descriptor pointed 
to by this word is brought into the A register. The copy bit (bit 46) of the data descriptor is set to one, and the A reg-
ister is marked full. If the presence bit (bit 47) is off, the address of the original descriptor is placed in the address field 
of the stack copy. If the word accessed by the indexed word in the A register is not a data descriptor, the invalid 
operand interrupt is set and the operation is terminated. 

If the data descriptor accessed by the indexed word in the A register has the index bit (bit 45) set to one, the invalid 
operand interrupt is set and the operation is terminated. 

5010986 7-11 



INDEX AND LOAD VALUE (NXLV) AD 

B 6900 System Reference Manual 
Primary Mode Operators 

This operator performs an index operation. After the word in the A register has been indexed, the operand pointed to by 
this descriptor is brought to the A register. The A register is marked full. 

If the word accessed is other than an operand, the invalid operand interrupt is set and the operator is terminated. 

LOAD(LOAD)BD 

The Load. operator places the word addressed by an IRW or indexed data descriptor in the A register. 

If at the start of this operator the A register contains other than a data descriptor or an IRW, the invalid operand 
interrupt is set and the operation is terminated. 

If the word pointed at by the data descriptor is another data descriptor, the latter is marked as a copy (copy bit 
[bit 46] is set to one), and if the presence bit (bit 47) is off, the address of the original is placed in bits 19:20 of the 
copy in the stack. 

SCALE OPERATORS 

Higher-level languages such as COBOL require decimal arithmetic. The Scale Operators provide the means of aligning 
decimal points prior to the time that the arithmetic operations are performed. In addition, the Scale Right operators 
provide for binary-to-decimal conversions. 

SCALE LEFT (SCLF) CO 

This operator uses the second syllable as the scale factor. The operand to be scaled is placed in the B register and integer­
ized. The resulting integer is then multiplied by 10 raised to the power specified by the scale factor. 

If scaling of a single-precision operand results in overflow, the single-precision operand is converted to a double-precision 
integer. A double-precision integer is defined as a double-precision operand with an exponent equal to 13. 

If scaling of the operand results in an exponent greater than 13, (double-precision operand), the overflow flip-flop is 
set to one. 

DYNAMIC SCALE LEFT (DSLF) Cl 

This operator performs viitually the· same operation as the Scale Left (SCLF) operator; however, the scale factor is taken 
from the A register rather than from the program syllable following the operation syllable. The operand in the A register 
is integerized before scaling takes place. 

SCALE RIGHT SA VE (SCRS) C4 

This operator uses its second syllable as the scale factor. The operand to be scaled is placed in the B register and is then 
integerized. The resultant integer is divided by 10 raised to the power specified by the scale factor. 

The quotient resulting from the division is left in the A register. The operand in the B register is the remainder which is 
converted to decimal (4-bit digits) and is left-justified. The A and B registers are both marked full. · 

If the scale factor is greater than 12, the invalid operand interrupt is set and the operation is terminated. 

7-12 



B 6900 System Reference Manual 
Primary Mode Operators 

DYNAMIC SCALE RIGHT SA VE (DSRS) CS 

This operator performs virtually the same operation as the Scale Right Save (SCRS) operator; however, the scale factor is 
obtained from the A register rather than from the program syllable fo1lowing the operation syllable. The operand in the 
A register is integerized before being used. 

SCALE RIGHT TRUNCATE (SCRT) C2 

This operator performs a Scale Right function using its second syllable as the scale factor. The B register is marked as 
empty at the conclusion of this operator. 

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) C3 

This operator performs the same operation as the Scale Right Truncate, except that the scale factor is found in the A 
register and is first integerized by the operator. 

SCALE RIGHT FINAL (SCRF) C6 

This operator performs a Scale Right operation, except that the quotient in the A register is deleted by marking the A 
register empty. The sign of the quotient is placed in the external sign flip-flop. 

If the quotient was non-zero at the conclusion of the operation, the overflow flip-flop is set. 

DYNAMIC SCALE RIGHT FINAL (DSRF) C7 

This operator performs a Scale Right Final operation with the scaJe factor (integerized by the operator before use) found 
in the A register. 

SCALE RIGHT ROUNDED (SCRR) CS 

This operator performs a Scale Right operation, and the quotient is rounded by adding one to it if the most-significant 
digit of the remainder is equal to or greater than five. The remainder is deleted from the stack by marking the B 
register erripty. 

DYNAMIC SCALE RIGHT ROUND (DSRR) C9 

This operator performs a Scale Right Rounded operation using the scale factor found in the A register. 

BIT OPERATORS 

The bit operators are concerned with a specified bit in the A register and/or B register. 

BIT SET (BSET) 96 

This operator sets a bit in the top of stack register. Tge bit that is set is specified by the program syllable following the 
operation syllable. If the program syllable defining the bit t~ be set has a value greater than 47, the invaJid-operand 
interrupt is set and the operation is terminated. 

DYNAMIC BIT SET (DBST) 97 

This operator performs a Bit Set Operation upon the bit specified by the operand in the top-of-stack register. This word 
is integerized before it is used as a bit number. 

5010986 7-13 



B 6900 System Reference Manual 
Primary Mode Operators 

If the word in the top-of-stack register is not an operand, an invalid operand interrupt is set and the operation is 
terminated. If, after being integerized, the operand is less than zero or greater than 47, an invalid operand interrupt is 
set and the operation is terminated. 

BIT RESET (BRST) 9E 

This operator resets a bit in the top-of-stack register. The bit that is reset is specified by the syllabie foiiowing the 
operation syllable. If the program syllable defining the bit to be reset has a value greater than 47, an invalid-operand 
interrupt is set and the operation is terminated. 

DYNAMIC BIT RESET (DBRS) 9F 

This operator performs a Bit Reset operation upon the bit specified by the operand in the top-of-stack register. 

If the word in the top-of-the-stack register is not an operand, an invalid operand interrupt is set and the operation is 
terminated. If, after being integerized, the operand is less than zero or greater than 47, an invalid operand interrupt is 
set and the operand is terminated. 

CHANGE SIGN BIT (CHSN) SE 

The sign bit (bit 46) of the top-of-stack operand is complemented; that is, if it is a one, it is set to zero; if it is a zero 
the bit is set to one. 

TRANSFER OPERATORS 

The Tra.'1.sfer Operators transfer any field of bits from one word in the stack to any field of another word in the stack. 

FIELD TRANSFER (FLTR) 98 

This operator uses the following three syllables to establish the pointers used in the field transfer. This is done in the 
following manner. The second syllable of the operator is K, the third syllable of the operator is G, and the fourth 
syllable of the operator is L. 

The field in the A register, starting at the bit position addressed by G, is transferred into the B register, starting at the 
bit position addressed by K. The length of the field in the A and B registers is defined by L. When the specified number 
of bits have been transferred, the A register is set to empty, the B register is marked full, and the operation is complete. 

If the second or third syllables of the operator are found to be greater than 4 7, or the fourth syllable is greater than 48, 
the invalid operand interrupt is set and the operation is terminated. 

DYNAMIC FIELD TRANSFER (I;>FTR) 99 

This operator performs a Field Transfer operation, except the B register operand is L. The B register is then reloaded 
from the stack and this operand is G. The B register is again loaded from the stack, and this operand is K. 

If any of the three operands is a non-integer, it is first integerized. Each is checked for a value less than equal to zero 
or greater than equal to 48, or less than 48, as specified in Field Transfer. If either of these conditions exists in any one 
of the three operands, an invalid operand interrupt is set and the operation is terminated. 

FIELD ISOLATE (ISOL) 9A 

This operator isolates a field of the word in the A register, placing it right-justified in the top-of-stack register. The 
balance of the top-of-stack register is cleared to zeroes. The top-of-stack register is marked fuii. 

7-14 



B 6900 System Reference Manual 
Primary Mode Operators 

This operator uses its second ai.1.d third syllabies as the BIT pointers. T"ne second syllable of the operator addrnsses the 
starting bit of the field in the A register. The third syllable of the operator specifies the length of the field to be isolated. 

If the value of the second syllable is greater than 47 or the value of the third syllable is greater than 48, as invalid oper­
and interrupt is set and the operation is terminated. 

DYNAMIC FIELD ISOLATE (DISO) 98 

This operator performs a Field Isolate operation, except the first item in the stack specifies the length of the field to 
be isolated; The second operand in the stack addresses the bit in the word of the third item in the stack that is to be 
isolated. 

If, after being integerized, the value of the first item in the stack is less than zero or greater than 47, an invalid operand 
interrupt is set and the operation is terminated. If, after being integerized, the value of the second item in the stack is 
less than zero or greater than 48, an invalid interrupt is set and the operation is terminated. 

FIELD INSERT (INSR) 9C 

This operator inserts a field from the A register into the B register word. The field in the A register is right-justified, 
with the length of the field specified by the third syllable of the operator. The second syllable of the operand addresses 
the starting bit of the field in the B register. At completion the A register is marked empty and the B register is marked 
full. 

If the value of the second syllable of the operator is greater than 4 7-, an invalid operand interrupt is set and the operation 
is terminated. 

If the value of the third syllable of the operator is greater Lian 48, an invalid operand interrupt is set and L1ie operation 
is terminated. 

DYNAMIC FIELD INSERT (DINS) 9D 

This operator performs a Field Insert operation, except the first item in the stack is used as the insert field data. The 
second item in the stack is used to specify the length of the field. The third item in the stack is used to address the 
starting bit in the receiving field in the B register. When the operation is complete, the A register is marked empty and 
the B register is marked full. 

If, after being integerized, the value of the second item in the stack is less than zero or greater than 48, an invalid 
operand interrupt is set and the operation is terminated. If, after being integerized, the value of the third item in the 
stack is less than zero or greater than 4 7, an invalid operand interrupt is set and the operation is terminated. 

STRING TRANSFER OPERATORS 

String Transfer operators give the system the ability to transfer characters or words from one location in memory to 
another location in memory. The source and destination pointers are set from string descriptors in the stack. 

TRANSFER WORDS, DESTRUCTIVE (TWSD) D3 

This operator requires three items in the top-of-stack: an operand, a string descriptor or operand, and a string descriptor. 
The first operand is integerized and used as the count or repeat field. The second item is either the source data or a descrip­
tor which points at the source string, and the third item is used to address the destination string. The number of words 
specified by the repeat field is transferred from the source to the destination. At completion of the operation, the A and 
the B registers are marked empty. 

5010986 7-IS 



B 6900 System Reference Manual 
Primary Mode Operators 

If the memory protect bit is found on during the execution of the Transfer Words operator, the segmented array interrupt 
is set and the operation is terminated. 

TRANSFER WORDS, UPDATE ('IWSU) DB 

This operator performs the Transfer Words operator, except that at the completion of the transfer of data, the source and 
destination pointers are updated to point to the location in memory where the transfer ended. The A and B registers 
are both marked full. 

TRANSFER WORDS, OVERWRITE DESTRUCTIVE ('IWOD) D4 

This operator performs a Transfer Words, Destructive operation, except that it overrides the memory protection checks. 

TRANSFER WORDS, OVERWRITE UPDATE ('IWOU) DC 

This operator performs a Transfer Words, Update operation, except that it overrides the memory protection checks. 

TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E~ 

This operator transfers characters from a location in memory pointed to by the source pointer, to a location in memory 
pointed to by the destination pointer, until the number of characters specified has been transferred or the comparison 
fails. The TFFF flip-flop is used to indicate the results of the comparison. TFFF is set at the beginning of the operator. 

The first item in the stack is used as the delimiter. The second item in the stack, bits 19:20, is the maximum number of 
characters to be transferred. The third item in the stack is the source data or a source pointer, and the fourth item in 
the stack is the destination pointer. 

The source and destination strings are checked for memory protection. The source character is compared to the 
delimiter. After each comparison, a decision is made whether the condition has been met. If the condition is met, 
TFFF remains set to one; if it is not met, it is set to zero. If the resuit of the comparison is equal, then the CMPF 
flip-flop is set; otherwise, CMPF is reset. 

If the number of characters transferred was equal to the repeat field, the TFFF flip-flop is set to one. The A and B 
registers are marked emp~y and the operation is complete. 

If the first operand in the stack is not a single-precision operand, an invalid operand interrupt is set and the operation 
is terminated. 

If either the source or destination word has a memory protect bit on (bit 48=1), the segmented array interrupt is set and 
the operation is terminated. 

If the second item in the stack is a descriptor, it is used as the source pointer, and the length field or repeat field is set 
to i,048,575. AU comparisons are binary (EBCDIC collating sequence). 

TRANSFER WHILE GREATER UPDATE (TGTU) EA 

This operator performs a Transfer While Greater operation and updates the source pointer and destination pointer to 
point at the next characters in the source and destination strings. The repeat count is updated to give the number of 
characters rtot transferred. If t1ic operation is terminated because the relationship is not met, the source pointer points 
at the character that failed the comparison. If the result of the comparison is equal, then the CMPF flip-flop is set; 
otherwise, CMPF is reset. 

7-16 



B 6900 System Reference Manual 
Primary Mode Operators 

TRAJIJSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) El 

This operator performs a Transfer While operation using the relation greater than or equal to for comparison. 

TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEU) E9 

Th.is operator performs a Transfer While Greater or Equal operation. The source pointer, destination pointers, and count 
are updated at the conclusion of the operation. 

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEQD) E4 

This operator performs a Transfer While operation with the relation used in the comparison being equal. If the result of 
the comparison is greater, then the CMPF flip-flop is set; otherwise, CMPF is reset. 

TRANSFER WHILE EQUAL, UPDATE (TEQU) EC 

This operator performs a Transfer While Equal operation. The source pointer, the destination pointer, and count arc 
updated at the conclusion of the operation. CMPF is set if the result of the comparison is greater; otherwise, CMPF is reset. 

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) E3 

This operator performs a Transfer While operation, using the less than or equal comparison. 

TRANSFER WHILE LESS OR EQUAL, UPDATE (TLEU) EB 

Tids operator performs a Transfer While Less or Equal operation. The source pointer, destination pointer, and count are 
updated at the conclusion of the operation. 

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO 

This operator performs a Transfer While operation using the less than comparison. If the result of the comparison is 
equal, then the CMPF flip-flop is set; otherwise, CMPF is reset. 

TRANSFER WHILE LESS, UPDATE (TLSU) E8 

This operator performs a Transfer While Less operation. The source pointer, destination pointer, and count are updated 
at the conclusion of the operation. 

TRANSFER WIBLE NOT EQUAL, DESTRUCTIVE (TNED) ES 

This operator performs a Transfer While operation, using the not equal comparison. CMPF is not used. 

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED 

This operator performs a Transfer While Not Equal operation. The source pointer, destination pointer, and count are 
updated at the conclusion of the operation. 

TRANSFER UNCONDITIONAL, DESTRUCTIVE (TUND) E6 

This operator performs a Transfer Characters until the length is equal to zero. No comparisons are made. 

5010986 7-17 



B 6900 System Reference Manual 
Primary Mode Operators 

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE 

This operator performs a Transfer Unconditional operation. The source pointer and the destination pointer are updated 
at the conclusion of the operation. 

STRING ISOLATE (SISO) DS 

This operator places in the top-of-the-stack, right justified, the number of source characters specified by the repeat field. 
The first item in the stack is the number of characters in the repeat field. The second item in the stack is either an 
operand or a descriptor used as the source pointer. 

If the number of bits to be transferred is greater than 48, the item is double-precision. 

If the number of bits is greater than 96, an invalid operand interrupt is set and the operation is terminated. 

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation 
is terminated. 

COMPARE OPERA TORS 

The compare operators perform the specified comparison of two strings of data. The True False Flip-Flop (TFFF) and 
the Compare Flip-Flop (CMPF) are used to indicate the result of the comparison at the conclusion of the operation. 
Table 7-2 shows the significance of the state of TFFF and CMPF at the conclusion of a compare type operator. 

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2 

This operator compares the value of two character strings, one character at a time. The operator compares characters 
until it encounters a pair which are unequal. If the B string character is greater than the A string character, the TFFF 
is set; otherwise, it is reset. If the length is depleted and the character strings are equal, the CMPF flip-flop is set. If 
the characters in the B string are greater than the characters in the A stri~g, the TFFF is set to one. If not, the TFFF 
is set to zero. 

The first item in the stack is an operand which contains the length of the fields being compared. The second item in 
the stack is an operand or a descriptor pointing at the character string to be compared against. The third item in the 
stack is a descriptor pointing at the character string to be compared. 

If the repeat count is depleted, the TFFF is reset. 

If either of the data strings has the memory protect bit on (bit 48=1), the segmented array interrupt is set and the oper­
ation is terminated. 

All comparisons are by the binary character position in the collating sequence. 

COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA 

This operator perfonns a Compare Characters Greater operation. The source pointer and destination pointer are updated 
at the conclusion of the operation. 

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) Fl 

This operator performs the Compare Characters operation with the comparison being greater than or equal. If the repeat 
count ~ 0, the TFFF is set to one. 

i-1s 



Compare 

= 

> 

< 

;;;ii: 

8 6900 System Reference Manual 
Primary Mode Operators 

Table 7-2. Compare Type Operator Results 

TFFF CMPF 

0 0 
0 1 

0 

0 0 
0 1 
1 0 
1 1 

0 0 
0 1 
1 0 
1 

0 0 
0 l 

0 

0 0 
0 

0 
1 

0 0 
0 

0 

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9 

Comparison Result 

Less than equal 
Greater than equal 
Equal 
Not applicable 

Equal 
Not applicable 
Less than equal 
Greater than equal 

Less than equal 
Equal 
Greater than equal 
Not applicable 

Greater than equal 
Equal 
Less than equal 
Not applicable 

Less than equal 
Not applicable 
Greater than equal 
Equal 

Greater than equal 
Not applicable 
Less than equal 
Equal 

This operator performs a Compare Character Greater or Equal operation. The source pointer and destination pointer are 
updated at the conclusion of the operation. 

COMPARE CHARACTERS EQUAL, DESTRUCTIVE (CEQD) F4 

This operator performs the Compare Characters operation using the equal comparison. If the repeat count ~O, then 
TFFF is set to one. 

COMPARECHARACTERSEQUAL,UPDATE(CEQU)FC 

This operator performs a Compare Characters Equal operation. The source pointer and destination pointer are updated 
at the conclusion of the operation. 

5010986 
7-19 



B 6900 System Reference Manual 
Primary Mode Operators 

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLEO) F3 

This operator performs the Compare Characters operation with the less than or equal comparison. If the repeat 
count~ 0, then TFFF is set to one. 

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB 

This operator performs a Compare Characters Less or Equal operation. The source pointer and destination pointers are 
updated at the conclusion of the operation. 

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO 

This operator performs the Compare Characters operation using the less than comparison. If the repeat count ~O. the 
TFFF is set to zero. 

COMPARE CHARACTERS LESS, UPDATE (CLSU) F8 

This operator performs a Compare Characters Less operation. The source pointer and the destination pointer are updated 
at the conclusion of the operation. 

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) FS 

This operator performs the Compare Characters operation using the not equal relation. If the repeat count~ 0, then 
TFFF is set to 0. 

COMP ARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD 

This operator performs a Compare Characters Not Equal operation. The source pointer and the destination pointer are 
updated at the conclusion of the operation. 

EDIT OPERATORS 

The Edit Mode Operators are discussed in the following paragraphs. 

TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO 

This operator is used to prepare for edit micro-instructions. These edit micro-instructions are contained in memory as a 
table and not as part of the normal program string. When this operator is entered, progran1 execution is transferred to a 
table of micro-instructions. The last micro-instruction in this table must be the End Edit operator (see section 9). The 
table contains Edit Mode operators. 

The first item in the stack is a descriptor pointing to the table of exit micro-instructions. The second item in the stack 
is a single-precision operand or a descriptor pointing at the source string. The third item in the stack is descriptm 
pointing at the destination. 

If the first item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated. 
If the second item in the stack is a single-precision operand, it is the source string. If the third item in the stack is not 
a descriptor, the invalid operand interrupt is set and th.e operation is terminated. 

TABLE ENTER EDIT, UPDATE (TEEU) D8 

This operator performs a Table Enter Edit operation and updates the source pointer and destination pointer at the com­
pletion of the operation. 

7-20 



• 

B 6900 System Reference Manual 
Primary Mode Operators 

EXECUTE SINGLE MICRO, DESTRUCTIVE (EXSD) D2 

This operator performs the same function as the Table Enter Edit operator, except (a) there is only one micro-operator 
and it follows this syllable, and (b) the first item in the stack is a single-precision operand that defines the length field. 

An end edit operation is performed as an implicit part of the EXSD operator, thus, an explicit END EDIT operator (in 
program line code) is not required. 

EXECUTE SINGLE MICRO, UPDATE (EXSU) DA 

This operator performs the same functions as an Execute Single Micro-operator, except that it updates the source pointer 
and destination pointer at the completion of the edit operator operation. 

EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE (EXPU) DD 

This operator performs the same functions as an Execute Single Micro-Update operator, except that one pointer is used 
as both source and destination pointer. The destination pointer is updated at the completion of the operation. 

PACK OPERATORS 

The two pack operators are discussed in the following paragraphs. 

PACK, DESTRUCTIVE (PACD) D1 

This operator packs data addressed by the source pointer into the top-of-stack in 4-bit (digit) format. The TFFF is 
set to one if the source data is negative. A negative number for an 8-bit (byte) format has a zone bit configuration of 
1101 in the least significant byte. Data is right-justified as it is placed in the top-of-stack . 

The operand in the top-of-stack (TOS) is used as the length field. The second item is the source pointer. The operation then 
continues until the number of digits specified by the length or repeat field have been packed. 

If the length is less than 13, the operand in the top-of-stack is a single-precision operand. If the operand is 13 or 
greater, the result is a double-precision operand. If the length is not less than 25, an invalid operand interrupt is set and 
the operation terminated. If initial length is zero, the TOS is filled with zeroes. 

If the second item in the stack is an operand, it is the source string and is comprised of 8-bit bytes. 

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation 
is· terminated. 

PACK, UPDATE (P ACU) D9 

This operator performs a Pack operation, updating the source pointer at the completion of the operation. 

INPUT CONVERT OPERATORS 

The five input convert operators are discussed in the following paragraphs. 

5010986 7-21 



B 6900 System Reference Manual 
Primary Mode Operators 

INPUT CONVERT, DESTRUCTIVE (ICVD) CA 

This operator converts either 8-bit EBCDIC, or 4-bit digit code to an operand for internal arithmetic operations. The 
first item in the stack is an operand integerized to form the repeat field. The second item in the stack is a descriptor 
used as a source pointer. 

The input convert operator converts a string of input EBCDIC character data into a numeric operand. The resultant 
operand may be either single-precision or double-precision. The manner in which the conversion of character data 
into numeric data is performed is discussed in the following paragraphs. 

The four high-order zone bits of the input EBCDIC character are discarded. The remaining four low-order digit bits 
from the input character form a hexadecimal character, which is placed in the top-of-stack register receiving field. 

Each time a source input character is converted, the repeat field is decremented by one. When the repeat field is equal 
to zero, all input characters have been converted. 

If the repeat field value is 13 (decimal} or less, the resultant operand in the TOS register is a single-precision operand. If 
the repeat field value is between 13 and 24 (decimal}, the resultant operand in the TOS register is a double-precision 
operand. If the repeat field is greater than 24, an invalid operator interrupt is set and the operation is terminated. 

The sign of the converted resultant operand is determined from the zone bits of the least significant character in the 
input character string. For EBCDIC input characters, the sign is positive except when the least significant character 
zone bits are equal to 1101 binary; then, it is negative. The detected sign bit for the resultant operand is saved in 
the TFFF flip-flop. 

The sign of the converted operand is then set from the TFFF. If the converted operand is a single-precision operand, the 
TFFF is then set to one. If the converted operand is a double-precision operand, the TFFF is set to zero. 

At the completion of the operation, the B register is marked full. The TAG· field is set to indicate either a single- or a 
double-precision operand. 

If, after being integerized, the item in the top-of-stack is greater than 23, the invalid operand interrupt is set and the 
operation is terminated. 

INPUT CONVERT, UPDATE (ICVU) CB 

This operator performs an Input Convert operation. The source pointer is updated at the completion of the operation. 

READ TRUE FALSE FLIP-FLOP (RTFF) DE 

This operator places the status of the TFFF into the low-order bit position of the A register. The rest of the A register 
is set to all zeroes. The A register is marked full at completion of this operation. 

SET EXTERNAL SIGN (SXSN) D6 

This operator places the mantissa sign of the top word of the stack in the external sign flip-flop. This operand is not 
deleted from the stack at the end of the operation. 

READ Ail\lD CLEAR OVERFLOW FLIP=FLOP (ROFF) D7 

This operation places the status of the overflow flip-flop in the least-significant bit of the A register, sets the rest of the 
A register to all zeroes, marks the register full, and sets the overflow flip-flop to zero. 

7-22 



SUBROUTIN~ OPERATORS 

B 6900 System Reference Manual 
Primary Mode Operators 

The subroutine operators are discussed in the following paragraphs. 

VALUE CALL (V ALC) 00 ~ 3F 

This operator loads the operand addressed by the address couple formed by the concatenation of the six iow-order bits of 
the first syllable and the 8-bits of the following syllable into the A .register. The A register is marked full. Figures 7-1 
and 7-2 are simplified flow charts of the Value Call operator. 

This operator makes multiple memory accesses if the word accessed is either an indexed descriptor, Program Control 
Word {PCW), or an Indirect Reference Word {IRW). 

If the word accessed is an indexed data descriptor, the word addressed by the data descriptor is brought to the top-of­
stack. If the double-precision bit (bit 50) in the data descriptor is equal to one, the other half of the double-precision 
operand is brought to the X register. 

If the word accessed is a non-indexed word data descriptor, the word is indexed using the second word in the stack for 
the index value. The word addressed by the non-indexed data descriptor is brought to the top-of-stack. If the double­
precision bit ( 40) in the data descriptor is equal to one, the other half of the double-processor operand is brought to the 
X register. 

If the word accessed by the data descriptor is another indexed data descriptor, the word addressed by the data descriptor 
is brought to the top-of-stack, and one of the two preceding paragraphs -is repeated. 

If a data descriptor does not address an operand, SIRW, word descriptor, or L11dexed strL11g descriptor, an invalid operand 
interrupt is set and the operation is tenninated. 

If the word accessed by the value call is an IRW, the word addressed by the IRW is accessed and evaluated. If the word 
is an operand, it is placed in the top-of-stack. 

If the word accessed by the IRW is another IRW, the operation continues as previously described. 

If the word accessed by the IRW is an indexed or non-indexed data descriptor, the operator proceeds as previously described 
for data descriptors. 

If the word accessed by the IRW is a PCW, an accidental entry into the subroutine addressed by the PCW is initiated. A Mark 
Stack Control Word (MSCW) and a Return Control Word (RCW) are placed in the stack, and an entry is made into the 
program. Upon completion of the program, a return operator re-enters the flow value call at the label IRW {Figure 7-1). 

NAME CALL (NAi'\fC) 40 ~ 7F 

This operator builds an IRW in the A register. The address couple is formed by concatenating the six low-order bits of 
the first syllable and the 8-bits.9f the following syllable. The A register is marked full and the operation is co~plete. 

EXIT OPERATOR (EXIT) A3 

This operator returns to a calling procedure from a called procedure resetting all control registers from the RCW and the 
MSCW. The Exit operator does not return a value to the calling routine. Figure 7-3 shows a simplified flow chart of the 
Exit operator. 

5010986 7-23 



MV 1645 

7-24 

ADJ 
(0, 2) 

REMEMBER 
ALL VALUE 
CALL DATA 

PLACE 
OPERAND 
IN "A" 
REGISTER 

YES 

B 6900 System Reference Manual 
Primary Mode Operators 

NO 

"ACCIDENTAL 
ENTRY" 
(CALL ON A 
PROCEDURE) 

OBTAIN OTHER 
HALF OF 
OPERAND IN 
"X" REGISTER 

OP 
COMPLETE 

Figure 7-1. Flow of Value Call Operator 

OBTAIN 
WORD 
ADDRESSED 
BY IRW 

YES 



MV 1646 

5010986 

ADJ. 0, 1 

INDEX 
DESCRIPTOR 

I .. I 

B 6900 System Reference Manual 
Primary Mode Operators 

OBTAIN WORD 
ADDRESSED 
BY DESC 

Figure 7-2. Value Call (Descriptor) Operator 

OBTAIN 
STACK VECTOR 
DESC 

OBTAIN WORD 
ADDRESSED 
BY 
SIRW 

7-25 



MV 1647 

7-26 

B 6900 System Reference Manual 
Primary Mode Operators 

ADJ (0, 0) 

OBTAIN 
RCW 
AT(F+1) 

SET UP REGISTERS 
TO RETURN TO 
PRIOR PROCEDURE, 
SAVE BOSA AND 
CUT BACK THE 
STACK 

OBTAIN WORD 
ADDRESSED 
BY (F) 

COMPUTE 
ADDRESS OF 
PREVIOUS 'I 

MSCW I 

. I ... 

OBTAIN PREVIOUS 
MSCWAND 
SAVE ADDRESS 

OBTAIN SEG DESC 
ADDRESSED BY 
PDR SET PBR TO 
ADDRESS IN S.D. & 
CAUSE A FETCH 

OPER. 
COMPLETE 

YES 

Figure 7-3. Flow of Exit Operator 

OBTAIN NEW 
STACK 
ADDRESS 

UPDATE [HJ 
AND 
OBTAIN NEW 
MSCW 

NO 



RETURN OPERA. TOR (RETN) A7 

B 6900 System Reference Manual 
Primary Mode Operators 

This operator performs the same functions as an Exit operator, except an operand or name in the B register is returned 
to the calling procedure. If a name is returned and the V bit (bit J 9) in the MSCW is on, the name is evaluated to 
yield an operand as described in the VALC operator. Figure 14 shows a simplified flow chart of the Return operator. 

ENTER OPERATOR (ENTR) AB 

This operator is used to cause an entry into a procedure from a calling procedure. Entry is to the program segment and 
syllable addressed by the PCW. Figure 7-5 shows a simplified flow chart of the Enter operator. 

The Enter operator accesses the IRW at F + l, which points to the PCW (or to the PCW directly, without the use of an 
IRW). The operator then builds a RCW into the stack at F + 1. 

EVALUATE(EVAL)AC 

This operator loads the A register with an indexed data descriptor or an IRW that addresses A "target/' which may be 
an SIW, an un-indexed data descriptor, a string descriptor, or an operand. The target can be referenced through a chain of 
accidental entries or IRW. In any case, memory accesses continue to be made until the target is located. The A register is 
left containing the data descriptor or the IRW which addresses the target. Figure 7-6 is a simplified flow chart of the 
Evaluate operator. 

An indexed data descriptor is left in the A register when the target is referenced by an indexed data descriptor. A 
stuffed IRW is left in the A register when the target is referenced by IRW(s). 

If the A register does not contain a data descriptor or an IRW at the start of this operator, an invalid operand interrupt 
is set and the operation is terminated. 

MARK STACK OPERATOR (MKST) AE 

This operator places a Mark Stack Control Word in the B register which contains a pointer to the previous MSCW in the 
stack. The F register is updated to point at the address of the MSCW. 

This operator is used to mark the stack when entry into a procedure is anticipated. 

STUFF ENVIRONMENT (STFF) AF 

This operator changes a normal IRW to a stuffed IRW so that a quantity may be referenced from a different addressing 
environment. The displacement field locates the MSCW below the quantity, and the index field locates the quantity 
relative to the MSCW. Figure 7-7 shows a simplified flow chart of the Stuff Environment operator. 

If the word in the A register at the start of the operation is not an IRW, an invalid operand interrupt is set and the 
operation is terminated. 

If, when creating this stuffed IRW, other than an MSCW is accessed, a sequence error interrupt is set and the operation 
is terminated. 

INSERT MARK STACK OPERATOR (IMKS) CF 

This operator buiJds an MSCW and places it below the two top-of-stack quantities. 

5010986 7-27 



MV1648 

7-28 

ADJ (0, 1) 
(SAVE 
RETURNED 
VALUE) 

OBTAIN RCW 
AT(F+1) 

SET-UP REGISTERS 
TO RETURN TO 
PRIOR PROCEDURE, 
SAVE BOSR AND 
CUT BACK THE 
STACK 

OBTAIN WORD 
ADDRESS 
BY (Fl 

COMPUTE ADDRESS 
OF PREVIOUS 

MSCW AND I 
SAVE VALUE BIT 

.. 1 

B 6900 System Reference Manual 
Primary Mode Operators 

OBTAIN PREVIOUS 
MSCW AND 
SAVE ADDRESS 

OBTAIN SEO DESC 
ADDRESSED BY 
PDR SET PBR TO 
ADDRESS IN S.D. 
& CAUSE FETCH 

OPER 
COMPLETE 

YES 

YES 

OBTAIN NEW 
STACK 
ADDRESS 

UPDATED [ Hl 
AND OBTAIN 
NEW MSCW 

GO TO EVAL 
OPERATOR & 
SET "T" REG 

._ ____________ ... II ~--T_o __ v_A_L_c_o_P __ _... 

Figure 74. Flow of Return Operator 

NO 



NO 

MV1649 

5010986 

ADJ {0, Oi AND 
OBTAIN WORD 
ADDRESSED BY 
(F + 1) 

OBTAIN WORD 
ADDRESSED 
BY IRW 

B 6900 System Reference Manual 
Primary Mode Operators 

SAVE PR ES ENT 
REGISTER 
SETTINGS (RCW) 

DISTRIBUTE 
PCW REGISTER 
SETTINGS 

STORE RCW 
AT (F + 1) 

OBTAIN MSCW 
AT (F) 

Figure 7-5. Flow of Enter Operator 

COMPLETE THE 
MSCW AND 
STORE IT 
BACK AT (F) 

OBTAIN WORD 
ADDRESSED 
BY NEW PDR 

PLACE PROGRAM 
ADDRESS IN 
PBR AND FORCE 
A FETCH 

OPER 
COMPLETE 

7-29 



I 
I~ 

ADJ (1, 2) 

OBTAIN WORD 
ADDRESSED 
BY IRW 

OBTAIN WORD 
ADDRESSED 
BY SIRW 

l 
! 

MV 1650 

7-30 

NO 

B 6900 System Reference Manual 
Primary Mode Operators 

OBTAIN WORD 
ADDRESSED 
BY SIRW 

J 

SAVE THE 
IRWIN"A" 
REGISTER 

OPER 
COMPLETE 

OBTAIN 
STACK VECTOR 
DESCRIPTOR 
AT DO+ 2 

Figure 7-6. Fiow of Evaluate Operator 

NO 

LEAVE THE 
DESCRIPTOR IN 
THE "A" 
REGISTER 

OPERATION 
COMPLETE 



MV 1651 

5010986 

ADJ (1, 2) 

OBTAIN WORD 
ADDRESSED BY 
"D" REGISTER 

IS 
THE STACK 

NUMBER OF THE 
MSCW EQUAL 

TO SNR AND THE 
E BIT OF THE MSCW 

EQUAL TO 0 
? 

SAVE STACK 
NUMBER 
OF MSCW 

B 6900 System Reference Manual 
Primary Mode Operators 

OBTAIN WORD 
ADDRESSED BY 
ADDRESS OF THIS 
MSCW-MSCW. OF 

OBTAIN STACK 
VECTOR AT 
[D0+2] 

COMPUTE D ISP 
FIELD SET LL 
FIELD TO ZERO 
AND MARK 
AS STUFFED 

OPERATION 
COMPLETE 

Figure 7-7. Flow of Stuff Environment Operator 

7-31 



ENTER VECTOR MODE OPERATORS 

B 6900 System Reference Manual 
Primary Mode Operators 

Two different operators are used to cause the B 6900 system to enter into the vector mode of operation. The Vector 
Mode Enter Single (VMOS) operator is used to enter the vector mode of operation when a single word of program code 
contains all the vector mode operators to be executed. The Vector Mode Enter Multiple (VMOM) operator is used to 
enter into the vector mode of operation when the number of vector mode operators to be executed uses more than a 
single word of program code. 

The two methods for entering the vector mode of operation are described in the following paragraphs. 

VECTOR MODE ENTER MULTIPLE (VMOM) E7 

This operator is used to cause entry into the vector mode of operation in the same way that the VMOS operator performs. 
The only difference between the operation of the VMOS and the VMOM operators is the number of words of vector mode 
machine language code that can be used. 

If an interrupt occurs while entry into vector mode is in process, the entry process is terminated, and processing resumes 
with the next normal mode machine language operator in sequence. Since multiple words of vector mode machine lan­
guage operators are used when the VMOM operator causes entry to vector mode, the first word of normal mode operators 
may be greatly removed from the VMOM operator code word. 

The use of the VMOM operator causes the data processor to retain the address of the next normal mode operator word. 
This address is required in the event that the entry into vector mode is terminated. The retention of the next normal 
mode operator word address (in IC memory) is the only difference between the VMOS and VMOM operators. 

VECTOR MODE ENTER SINGLE (VMOS) EF 

This operator is used to cause entry into the vector mode of operation. Vector mode operations are performed in con­
trol state (HHF flip-flop is set). The VMOS operator uses a subset of the table enter edit logic to distribute vector mode 
parameters in the IC memory address registers of the data processor. The vector mode operator parameters must be on 
the top of the data processor stack at the beginning of the VMOS operator. 

The VMOS operator expects to find three data descriptors and three incrementation parameters present on the top of 
the data processor stack. The VMOS operator optionally expects that a LENGTH parameter may be present on the top 
of the data processor stack. If the VMOS operator does not find the three data descriptors on the top of the data processor 
stack, an invalid operand interrupt is detected, and the VMOS operator releases control to the interrupt controller. 

The VMOS operator expects to find that bit 47 (the presence bit) is true in each of the three data descriptors. If any of 
the three data descriptors do not have the presence bit true, a presence bit interrupt is detected, and the VMOS operator 
releases control to the interrupt controller. 

7-32 



B 6900 System Reference Manual 
Primary Mode Operators 

_... 1 r r ... ... t • 'I • • 1 ·" • 1 • ' • / 1 · • "" ·" .... 'T'""'N,....,..... ....... 1ne ora.er OI occurrence or tne tnree aata aescnptors aI1a tne tnree increment parameters \ana opnona11y, tne Lt1 1 li1 tt 
parameter) is as follows: 

Parameter 

Pointer C 

LENGTH 

Pointer A 

Pointer B 

Increment C 

' Increment A 

Increment B 

Word Type 

Data descriptor 

SP operand 

Data descriptor 

Data descriptor 

SP operand 

SP operand 

SP operand 

Word Usage 

The top word in the data processor stack. 

When a LENGTH parameter is present, it is the second word in 
the data processor stack, and its presence is indicated by bit 44 of 
pointer C being set. If a LENGTH parameter is not present in the 
stack, a default length value of FFFFF - I (HEX) is used. 

If a LENGTH parameter is not present in the data processor 
stack, pointer A is the second word in the data processor stack. 
If a LENGTH parameter is present in the stack, then pointer A 
is the third word in the stack. 

If a LENGTH parameter is not present in the stack, pointer B is 
the third word in the stack. If a LENGTH parameter is present 
in the stack, then pointer B is the fourth word in the stack. 

The incrementation value that will be used as the incrementation 
unit to access data elements of the array pointed at by pointer C. 

The incrementation value used for accessing data elements in the 
array pointed at by pointer A. 

The incrementation value used for accessing data elements in the 
array pointed at by pointer B. 

If bit 44 (the segmented bit) is true in pointer A or B, an invalid operator interrupt is detected, and the VMOS operator 
releases control to the interrupt controller. 

If pointer A has the read only bit (bit 43) true, a memory protect interrupt is detected, and the VMOS operator releases 
control to the interrupt controller. 

If any of the three types of interrupts described in the preceding paragraphs are detected, the entry into vector mode is 
terminated, and the program is resumed (in normal state) at the next code word following the vector operator code 
word. The use of the VMOS operator implies that only one word of vector mode operators is to be used, and the first 
vector mode operator to be executed is present in syllable zero of the next program code word in sequence. Therefore, 
the next word of program code (the vectar mode code wo!'d) is fetched by the program controller and placed in the 
P register. If an interrupt occurs during the VMOS operator, the interrupt controller fetches another new word of 
program code (the word following the vector mode code word). Thus, the VMOS operator releases control to the inter­
rupt controller, and the interrupt controller fetches the next word of normal state program code to be executed. 

5010986 7-33 





B 6900 System Reference Manual 

SECTION 8 

VARIANT MODE OPERATION AND OPERATORS 

ESCAPE TO 16-BIT INSTRUCTION (VARI) 95 

The varia.i"lt mode of operation extends the number of operation codes. These operators are not used as often and require 
two syllables; the first is the "Escape to 16-Bit Instruction" (VARI) operator. When the VARI operator is encountered, 
the following syllable is the actual operation and the syllable pointer is positioned beyond the two syllables. The VARI 
operator is valid only for the syllables covered in this section. 

Variant codes EO through EF are detected and cause a programmed operator interrupt. All other unassigned variant codes 
cause no action and result in a loop timer interrupt. 

Variant mode operations are both word- and string-oriented operators. 

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order 
by mode. 

VARIANT MODE OPERATORS 

The variant mode operators are discussed in the following paragraphs. 

READ CENTRAL PROCESSOR COUNTER (RCPC) 9540 

The RCPC operator returns the current value of the MLIP Processor Timer to the Top-of-Stack register. The 24-bit 
value returned to the Top-of-Stack represents the time in 2.4 microsecond intervals since the Processor Timer value 
was last transferred to the Top-of-Stack. The time increment obtained from this circuit is used to provide a method of 
time-sharing and user-billing by software utility programs. Each time the incrementation of the counter circuit is 
returned to the Top-of-Stack registers the counter circuit is RESET. Thus, the value returned is either the lapsed time 
since the timer value was returned, or the lapsed time since a System HALT/LOAD or GENERAL CLEAR function was 
performed. 

RUNNING TIMER INITIALIZE (RUNI) 9541 

The RUNI operator causes the MLIP Running Timer circuit to initialize and begin timing. The Running Timer circuit 
causes the system STATUS RUNI indicator to illuminate while the timer is timing~ and to extinguish when the timer 
circuit times-out (2.041 +/- 0.16 seconds after the timer circuit is initialized). The B 6900 system uses the RUNI 
indicator logic to show when the CPU is performing a useful function and is not stopped. Under certain privileged­
operation conditions the B 6900 system does not exhibit any other visible sign that the CPU is active. 

In addition to the RUNI operator code, the CPU micro-module can also initialize the MLIP Running Timer. Thus, 
certain micro-module operator flows initialize the Running Timer, and under normal system operations the RUNI 
indicator is never extinguished. 

SET TWO SINGLES TO DOUBLE (JOIN) 9542 

The operands in the A and B registers are combined to form a double-precision operand that is left in the B and Y 
registers. 

The operand in the A register is placed in the Y register. The A register is marked empty, and the B register TAG field is 
set to double-precision. 

5010986 8-1 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

SET DOUBLE TO TWO SINGLES (SPLIT) 9543 

The SP(DP) operand in the ,B register is changed to two single-precision operands which are placed in the A and the B 
registers; both registers are marked full. 

If the operand in the B register is a single-precision operand, the A register is set to all zeroes and the A and B registers 
are marked full. Both the A and the B register TAG fields are set to single-precision. 

If the operand in the B register is a double-precision operand, the Y register operand is placed in the A register and the 
TAG fields of both the A and B registers are set to single-precision. 

IDLE UNTIL INTERRUPT (IDLE) 9544 

This operator suspends processor program execution until the program is restarted by an external interrupt. Inhibit 
Interrupt Flip-Flop (IIFF) is unconditionally reset to allow external interrupts. 

SET INTERVAL TIMER (SINT) 9545 (CONTROL STATE OPERATOR) 

This operator places the 11 low-order bits of the B register into the interval timer register, and arms the timer. The interval 
timer decrements each 512 microseconds. The processor is interrupted when the timer reaches zero and is still armed. The 
interval timer is disarmed when the processor is interrupted by an external interrupt. 

The operand used to set the interval timer is integerized before the 11 low-order bits are used. If the operand cannot 
be integerized, an integer overflow interrupt is set and the operation is terminated. 

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546 

This operator causes the processor to enter normal state, allowing it to respond to external interrupts. This is accom­
plished by setting the IIHF flip-flop to zero. 

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547 

This operator causes the processor to ignore external interrupts. This is accomplished by setting the IIHF to one and 
entering control state. 

WRITE TIME OF DAY (WTOD) 9549 

The Write Time Of Day operator causes a right-justified 36-bit value in the Top-of=Stack register to initialize the value 
of the MLIP Time-of-Day counter circuit. The counter assumes the same value as the Top-of-Stack register, and then 
proceeds to increment the initial value at a 2.4 microsecond rate. The value of the Time-of-Day counter represents the 
current time for all B 6900 system operations. The WTOD operator is the method used to SET the system clock to 
the desired time value. 

SCAN OPERATORS 

The SCAN-IN functions read information from the Global subsystem to the top-of-stack registers in the data processor. 
The SCAN-OUT functions write information from the top-of-stack registers in the data processor to the Global memory 
subsystem. 

Parity is checked during transmission of both addresses and information. 

8-2 



SCAN-IN (SCNI) 954A 

B 6900 System Reference Manual 
Variant Mode Operation and Operators 

SCAN-IN uses the A register to specify the type of input required. The input data is placed in the B register. The 
A register is empty and the B register is full at the completion of the operation. Refer to section 5 for the format of 
the function and data words for SCAN-IN operations. 

SCAN-OUT (SCNO) 954B 

The SCAN-OlJT operation causes the memory control to sense a function code in the top-of-stack register of the data 
processor. At the conclusion of the SCAN-OUT operator, the top two words of the stack are deleted from the stack. 

CONTROL UNIVERSAL INPUT OUTPUT (CUIO) 954C 

The CUIO operator is executed by the CPU Data Processor to start an MLIP 1/0 operation sequence. At the beginning 
of this operator flow a Data Descriptor which points to the first word of an Input Output Command Buffer (IOCB -area 
in system memory) must be present in the CPU Top-of-Stack register. 

The CUIO operator causes the IOCB beginning memory address present in the Top-of-Stack register to be strobed into 
the MLIP Rl register. The MLIP logic generates an Entry Vector to the micro-module (to initiate an MLIP 1/0 sequence). 
When the MLIP sequences acknowledge the presence of the IOCB address in the MLIP Rl register, the Data Processor 
CUIO operation is completed. 

READ PROCESSOR IDENTIFICATION (WHOI) 954E 

This operator places a word containing the value of the processor ID register in the A register of the data processor. 

The format of the word placed in the A register of the data processor is shown in Figure 8-1. At the conclusion of the 
WHOI operator, the A register is marked full. 

5010986 

::'i 

UL UL SN SN SN 
·. 

0 UL UL UL SN SN ID 

0 UL UL UL SN SN ID 

-
Q. UL UL SN SN l SN ID 

~4 40 36 32 28 24 20 16 12 8 4 0 

50:3 TAG FIELD 
47:25 NOT USED 
22:10 THE UNIT DESIGN (ERL) LEVEL OF THE CPU. 

THIS FrELD IS A BINARY NUMBER WHICH IS DERIVED FROM 
A FOREPLANE CONF:GURAT:ON PLUG-ON JUMPER. 
ADAPTER OF THE CPU 

12:10 THE SERIAL NUMBER OF THE CPU. 
THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A 
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER 
OF THE CPU 

2:3 THE PROCESSOR ID NUMBER OF THE CPU. 

MV 1652 

THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A 
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER 
OF THE CPU. 

Figure 8-1. WHOI Operator Returned Word 

8-3 



OCCURS INDEX (OCRX) 9585 

B 6900 System Ref ere nee Manual 
Variant Mode Operation and Operators 

This operator places the following in the B register: a new index value calculated from the Index Control Word (ICW) 
in the A register, and the operand in the B register (Figure 8-2). 

The index word in the B register is integerized. If the index is greater than the maximum integer value (549, 755, 813, 
887), the integer overflow interrupt is set a..nd the operation terminated. If either the ICW or the operand has a value of 
o, the invalid index interrupt is set and the operation is terminated. If the index value is less than 0 or greater than 
the SIZE field [ 31: 16] of the ICW, the invalid index interrupt is set and the operation is terminated. 

The LENGTH field of the ICW [47: 16) is multiplied by the index value [15: 16) minus 1, and that value is added to 
the OFFSET field of the ICW. This result is the new index. The A register is marked empty and the B register is 
marked full. 

INDEX CONTROL WORD (ICX) 

,..___ 

~ 

LENGTH SIZE OFFSET 
t-- ..l. ..L .l 

44 40 36 32 28 24 20 16 12 8 4 0 

INDEX WORD 

r--

1--

INDEX 
t-- _l_ 

44 40 36 32 28 24 20 16 12 8 4 0 

MV 1663 

Figure 8-2. Index Control Word (ICW) and Index Word 

INTEGERIZE, ROUNDED, DOUBLE-PRECISION (NTGD) 9587 

This operator creates (from the operand in the B register) a double-precision, rounded integer in the B register. The 
8 register is marked full. If the word in the B register at the start of this operator is not an operand, the invalid operand 
interrupt is set and the operation is terminated. 

If the operand in the B register is larger than 8 t 26-1 in absolute value, the integer overflow interrupt is set and the 
operation is terminated. 

The B register is marked as a double-precision operand (TAG bits set to 010), and the exponent is set to 13. 



LEADING ONE TEST (LOG2) 958B 

B 6900 System Reference Manual 
Variant Mode Operation and Operators 

This operator locates the most significant 1-bit of the word in the B register and places the location of that bit into 
the B register (bit number + 1 ). If a 1-bit is not sensed, the B register is set to all zeroes. 

The B register is marked full. 

NORMALIZE (NORM) 958E 

This operator performs normalization of the operand in the top of stack. The normalized operand is left in the 
B register at the conclusion of the NORM operator, and the B register is marked full. Normalization is defined in 
Section 2 of this manual. 

READ TIME OF DAY (RTOD) 95A7 

The RTOD operator is used to strobe the current value of the MLIP Time-of-Day register into the CPU Top-of-Stack 
register, right justified. Tpe current value of the Time-of-Day register is a 36-bit binary value that represents the current 
count of 2.4 microsecond clock-pulses. 

The current count of the Time-of-Day register represents the sum value strobed into the register by a WTOD operator, and 
a + 1 increment for each clock-pulse occurring thereafter. If the B 6900 was GENERAL CLEARED after a WTOD operator 
was executed, the value in the register represents the number of 2.4 microsecond periods occurring after the GENERAL 
CLEAR operation. The Time-of-Day counter cycles through a full-count to o. and continues counting up. 

MOVE TO STACK (MVST) 9SAF 

This operator causes the environment of the processor (or addressing space) to be moved from the current stack to the 
program stack specified by the operand in the B register. 

The operator builds a Top-of-Stack Control Word {TSCW; Figure 8-3) and places it at the base of the current stack as 
addressed by the base-of-stack register. 

ES . l N 
. < 

47 19 
""' 

·,.:..: 

r ""1 

0 0 LL 50. 46 
~ DSF .,: 

1 T OFF 
49 45 
~ 

F44l 
1 
48 

ES 
0 
T 
F 

- EXTERNAL SIGN FLIP FLOP DSF - DELTA $-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR 
- OVERFLOW FLIP FLOP N - NORMAL-CONTROL STATE FLIP FLOP 
- TOGGLE, TRUE-FALSE FLIP FLOP LL - ADDRESSING LEVEL 
- FLOAT FLIP FLOP OFF - DEL TA F-REGISTER FIELD; VALUE OF rF RELATIVE TO rS 

MV1654 

Figure 8-3. Top-of-Stack Control Word (TSCW) 

The operand in the B .register is integerized and checked against the stack vector for invalid index. The value in the 
B register is added to the address field of the stack vector descriptor (at D[O] +2) to address the descriptor for the new 
stack. 

5010986 8-5 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

The data descriptor for the requested stack is accessed. If the presence bit is "on," the address field is placed into the 
base-of.srack register. The TSCW is brought up, and the stack is marked "active" by storing the processor ID at the 
base-of-stack. The TSCW is distributed and the D registers are updated. 

If during the integerization the operand in the B register is too large, the integer overflow interrupt is set and the opera­
tion is terminated. 

If the index value is less than zero or greater than the LENGTH field of the data descriptor for the stack vector array, an 
invalid index interrupt is set and the operation is terminated. 

READ COMP ARE FLIP-FLOP (RCMP) 9SB3 

This operator reads the state of the CMPF flip-flop, and creates a single-precision word in the data processor A register. 
If the CMPF flip-flop is in the binary one state, the low-order bit (bit zero) of the single-precision word in the A register 
is set. If the CMPF flip-flop is in the binary zero state, the low-order bit of the A register is reset. The A register is 
marked full at the conclusion of the operation. 

SET TAG FIELD (STAG) 9SB4 

This operator sets the TAG field (bits 50:3) in the B register to the value of bits"2:3 of the operand in the A register. 
At the completion of the operation, the A register is marked empty and the B register is left full. 

READ TAG FIELD (RTAG) 9SBS 

This operator replaces the word in the A register with a single-precision operand equal to the TAG field of that word. The 
TAG bits are placed in bits 2:3. The A register is marked full. 

ROTATE STACK UP (RSUP) 9SB6 

This operator permutes the top three operands of the stack so that the first operand has become the second, the second 
has become the third, and the third has become the first (see Figure 8-4). 

BEFORE ROTATION BEFORE ROTATION 

rA WORD ONE rA WORD ONE 

rB WORD TWO rB WORD TWO 

s --1 .... ____ w_o_R_o_T_H_R_E_E ___ _ s -1 ... ____ w_o_R_o_T_H_R_E_E ___ --' 

AFTER ROTATION AFTER ROTATION 

rA WORD THREE rA WORD TWO 

rB WORD ONE rB WORD THREE 

s -1 ... ___ w_o_R_o_T_w_o ___ _ 
s- WORD ONE 

STACK ROTATION UP STACK ROTATION DOWN 
MV1655 

Figure 8-4. Rotate Stack Operations 

8-6 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

ROTATE STACK DOWN (RSDN) 9SB7 

This operator permutes the top three operands of the stack so that the first has become the third, the second has 
become the first, and the third has become the second (see Figure 8-4). 

READ PROCESSOR REGISTER (RPRR) 9SB8 

Tnis operator reads the contents of one of the eight base registers, eight index registers, or one of the 32 D registers into tJ1e 
A register. 

The six low-order bits of the A register selects the processor register to be read. 

The decoding of these six bits is as follows: 

Bits 5:2 
Bits 2:3 

Bits 5:2 
Bits 2:3 

= 10 
= 0, 
=I, 
= 2, 
= 3, 
= 4, 
= 5, 
= 6, 
= 7, 
= 11 
= 0, 
=I, 
= 2, 
- .., 
- .:>, 

= 4, 
= 5, 
= 6, 
= 7, 

= Index register 
= PIR 
=SIR 
=DIR 
= TIR, BUF 3 
= LOSR 
= BOSR 
=F 
= BUF 
= Base register 
=PBR 
= IBR 
=DBR 
- "l"nn nTTr'.' "' 
- I .1:>1', J:>Ur ~ 

=S 
=SNR 
=PDR 
=TEMP 

If bit 5 is zero, bits 4:5 select the D register equal to the binary value of the bits; that is, bits 4:5 = 00101 select D 
register 5. 

At the completion of this operation, the A register contains the contents of the selected register, and is marked full. 

SET PROCESSOR REGISTER (SPRR) 9SB9 

This operator places the contents of the ADDRESS field of the A register into one of the eight base registers, eight index 
registers, or 32 D registers seiected by the six iow-order bits of the word in the B register. 

The decoding of the six low-order bits is the same as in the Read Processor Register operator (RPRR) discussed under 
the previous heading. 

The A and B registers are marked empty. 

READ WITH LOCK (RDLK) 9SBA 

This operator performs in a manner similar to the Overwrite operator (see section 7), except the word which was in 
memory before the overwriting is left in the A register. 

5010986 8-7 



COUNT BINARY ONES (CBON) 9588 

B 6900 System Reference Manual 
Variant Mode Operation and Operators 

This operator counts the number of 1-bit in the single-precision (double-precision) operand in the A register. At the 
completion of the operation, the total count is left in the A register with the register marked full. 

WAD TRANSPARENT (LODT) 95BC 

This operator performs a Load operator (see Section 7) if the word in the A register is a data descriptor or an Indirect 
Reference Word. If it is neither of these, bits 19:20 of the A register are used as the address to bring an operand to the 
A register. Copy bit action does not occur. 

LINKED LIST WOKUP (LLLU) 9SBD 

This operator searches a linked list of words. 

The operator starts with an operand in the top-of-stack as the index pointer. The second word in the stack is a 
non-indexed data descriptor to the array containing the linked list. The third word in the stack is an operand that is 
the argument. 

The base address of the linked list, the length of the list, and the argument value are saved throughout the entire operator 
process. 

The word addressed by the base address plus the index value are read and checked for a value of zero in the address (link) 
portion of the word (zero denotes the end of the linked list). If the link is non-zero, bits 47:28 are compared to the 
argument value. 1f the argument of the linked-list word is less than the argument value, the actions described in this 
paragraph are repeated, using the link as the new index. 

When the value of the argument field of the linked-list word is equal to or greater than the argument value, the operation 
is complete. The index pointing to the word whose link points to the argument which satisfies the test is left in the 
A register and is marked full. 

If the value of the link portion of the linked-list word is equal to zero, the A register is set to minus one (-1), and marked 
full as the operation is completed. 

If the index value in the linked list word is greater than the length value from the descriptor, an invalid index interrupt 
is set and the operation is terminated. · 

When the first word in the stack at the start of this operator is not an operand, an invalid-operand interrupt is set and the 
operation is terminated. · 

If the data descriptor has been indexed, the invalid-operand interrupt is set and the operation is terminated. 

MASKED SEARCH FOR EQUAL (SRCH) 9SBE 

At the start of this operator, the word in the A register must be a data descriptor. The operand in the B register is a 51-bit 
mask. The data descriptor in the A register and the mask in the B register are saved, and the 51-bit argument word is placed 
into the B register. If the descriptor is indexable (bit 45 equal to zero) one is subtracted from the LENGTH field. If bit 45 
is equal to one, the data descriptor is already indexed; therefore, that index is the starting value. 

The word addressed by the descriptor is placed in the A register and ANDed with the mask word. The result of this 
AND function is tested to determine if it is identical to the argument word. 

8-8 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

If the comparison is not equal, the INDEX field of the descriptor is decreased by 1 and the operation is repeated. If the 
INDEX field is equal to 0, the A register is set to a -1 value and marked full. The B register is marked empty. 

If an equal comparison is made, the A register contains the index pointing at the last word compared and is marked full. 
The B register is marked empty. 

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 9SD1 

This operator unpacks a string of 4-bit digits into 8-bit bytes. At the start of the operator, the word in the A register 
defines the length of the operand in the B register, that is, the string of digits to be unpacked. The third word in the 
stack is a string descriptor addressing the destination of the string. 

As the specified number of digits are transferred to the destination (most significant bit first), zone fill is as follows: 

1. The 8-bit (EBCDIC) format bytes are transferred to the destination string with the four zone-bits to 1111. 

2. If the destination size is ZERO, it is set to 8-bit format and handled as in the preceding item (1). 

UNPACK ABSOLUTE, UPDATE (UABU) 95D9 

This operator performs an Unpack Absolute operation. At the completion of the operation, the destination pointer is 
updated and left in the stack. 

UNPACK SIGNED, DESTRUCTIVE (USND) 9500 

This operator performs an Unpack Absolute operation plus an added function if the External Sign flip-flop is set. Then 
a zone of 1101 is set in the last byte for 8-bit. 

if the destination size is 4-bit, the first digit position of the destination string is set to 1101 provided the External Sign 
i1ip-flop is set. If the External Sign flip-flop is 0, the first digit is set to 1100. 

UNPACK SIGNED, UPDATE (USNU) 95D8 

This operator performs an Unpack Signed operation. At the completion of the operation, the destination pointer is 
updated. 

TRANSFER WHILE TRUE, DESTRUCTIVE (TWTD) 95D3 

This operator transfers characters from the source string to the destination string for the number of characters specified 
by the length ·operand while the stated relationship is met. If the relationship is not met, the transfer is terminated at 
that point. The relationship is determined by using the source character to index a table. If the bit indexed is a 1, the 
relationship is TRUE. 

The operator uses the top four words in the stack as follows. The top word addresses the table; the second word is the 
length of the string to be transferred. The third word in the stack is an operand or a descriptor addressing the source 
string or a single-precision operand which is the source string; and the fourth word in the stack is a descriptor pointing at 
the destination string. 

The table is indexed as follows to obtain the decision bit.. The source character is expanded to 8-bits, if necessary, by 
appending four leading '0-bits. The three high-order of these eight select a word from the table, thus indexing the table 
pointer. The remaining five bits of the expanded source character select a bit from this word by their value. 

5010986 8-9 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

TRANSFER WHILE TRUE, UPDATE (TWTU) 95DB 

This operator performs a Transfer While True operation, but updates the source pointer, the destination pointer, and 
repeat count. 

If all the characters specified by the LENGTH field are transferred, the True/False Flip-Flop (TFFF) is set to one (true); 
otherwise it is set to zero (false). 

TRANSFER WHIL~ FALSE, DESTRUCTIVE (TWFD) 95D2 

This operator performs a Transfer While operation and tests for a zero bit in the table. 

TRANSFER WHILE FALSE, UPDATE (TWFU) 95DA 

This operator performs a Transfer While False operation, but updates the source pointer, the destination pointer, and 
the repeat count. 

If all the characters specified by the LENGTH field are transferred, the True/False Flip-Flop (TFFF) is set to one (true); 
otherwise it is set to zero (false). 

TRANSLATE(TRNS)95D7 

This operator translates the number of characters specified as they are transferred from the source string to the 
destination string. 

The translation uses a table containing the translated characters. The word in the top-of-the stack is a descriptor that 
addresses the translation table. The second operand in the stack specifies the length of the string. The third word in 
the stack is a descriptor addressing the source string (or an operand which is the source string), and the fourth word in 
the stack is a descriptor addressing the destination string. The source and destination are updated at the end of the 
operation. 

The translation occurs as follows. The specified string character is used as an index into the table to locate a character. 
The located character is transferred to the destination string. 

The least significant 32 bits of each table word provide four 8-bit characters. The table sizes are as follows: 

I. 4-bit digits provide a 4-word table length. 

2. 8-bit bytes provide a 64-word table lepgth. 

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) 95F2 

This operator scans a string while the characters in the source string are greater than a delimiter character or until the 
number of characters specified have been scanned. 

If all the characters have been scanned at the completion of this operation, TFFF is set to one. If the scan was stopped 
by the delimiter test before the end of the string, the TFFF is set to zero. 

If the delimiter against which the string is compared is equal to the character from the string, then the compare flip-flop 
(CMPF) is set. If the character in the string is less than the delimiter, then CMPF flip-flop is reset. 

At the start of this operator, the delimiter character is right-justified in the top word of the stack. The length of the 
string to be scanned is the second word of the stack. The source pointer is the third word in the stack. 

8-10 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

If the second word in the stack is a descriptor, it is the source pointer, and the length of the character string is set 

to 1,048,575 {LENGTH field is all ones). 

SCAN WHILE GREATER, UPDATE (SGTU) 95F A 

This operator performs a Scan While Greater operation and also updates the count and the source pointer. The updated 
source pointer locates the character that stopped the scan. The number of characters not scanned is placed in the 
A register, and the register is marked full. 

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95F1 

The operator performs a Scan While operation while the characters in the source string are equal to or greater than the 
delimiter character. If all the characters have been scanned at the completion of the operation, then the TFFF flip-flop 
is set. 

SCAN WHILE GREATER OR EQUAL, UPDATE (SENU) 95F9 

This operator performs a Scan While Greater or Equal operation, but also updates the count and the source pointer. 

SCAN WHILE EQUAL, DESCTRUCTIVE (SEQD) 95F4 

This operator performs a Scan While operation while the characters in the source string are equal to the delimiter 
character. If all characters are compared, then the TFFF flip-flop is set. 

If the delimiter against which the string is compared is less than the character from the string, then the compare flip-flop 
(CMPF) is set. 

SCAN WHILE EQUAL, UPDATE (SEQU) 95FC 

This operator performs a Scan While Equal operation, but also updates the count and the source pointer. 

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE (SLED) 95F3 

This operator performs a Scan While operation while the characters in the source string are equal to or less than the 
delimiter character. If all characters are compared, then the TFFF flip-flop is set. 

SCAN WHILE LESS OR EQUAL, UPDATE (SLEU) 95FB 

This operator performs a Scan While Less or Equal operation, but also updates the count and source pointer. 

SCAN WHILE LESS, DESTRUCTIVE (SLSD) 95FO 

This operator performs a Scan While operation while the characters in the source string are less than the delimiter 
character. 

SCAN WHILE LESS, UPDATE (SLSU) 95F8 

This operator performs a Scan While Less operation, but also updates the count and the source pointer. 

If the character from the table (against which the string is compared) is equal to the character from the string, then the 
compare flip-flop (CMPF) is set. 

5010986 8-11 



B 6900 System Reference Manual 
Variant Mode Operation and Operators 

SCAN WHILE NOT EQUAL, DESTRUCTIVE (SNED) 9SFS 

This operator performs a Scan While operation while the characters in the source string are not equal to the delimiter 
character. If all characters are compared, then the TFFF flip-flop is set. 

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 9SFD 

This Operator performs a Scan While not Equal operation, but also updates the count and the source pointer. 

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 9SDS 

This operator uses each source character as an index into a table to locate a bit in the same fashion as the transfer while 
True operators. If the bit located contains the value of one, the relationship is true and the scan continues. 

The first word in the stack is a descriptor addressing the table. The second and third words in the stack are the same 
as for all Scan While operators. 

SCAN WHILE TRUE, UPDATE (SWTU) 9SDD 

This operator performs a Scan While True operation, but also updates the count and the source pointer. The number of 
characters not scanned is placed in the A register. 

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 9SD4 

This operator performs a Scan While False operation, except the relation is true if the bit found by indexing into the 
table contains the value of zero. 

SCAN WHILE FALSE, UPDATE (SWFU) 9SDC 

This operator performs a Scan While False operation, but also updates the count and the source pointer. 

8-12 



B 6900 System Reference Manual 

SECTION 9 

EDIT MODE OPERATION AND OPERATORS 

GENERAL 

The purpose of the edit mode operators is to perform editing functions on strings of data. The editing functions are those 
which are normally involved in preparing information for output. They include such operators as move, insert, and skip, 
in the form of micro-operators in either the program string or in a separate table. In the program string, they are single 
micro-operators, and are entered by use of the execute single micro or single pointer operators (see section 7). If the 
micro-operators are in a table, the table becomes the program string to be executed. This table is entered by means 
of the Table Enter Edit operators (see section 7), and is exited through the end edit micro-operator, as defined later in 
this section. 

If the source or destination data has the memory protect bit (bit 48) equal to one, the segmented-array interrupt is set 
and the current micro-operator is terminated. 

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order 
by mode. 

EDIT MODE OPERA TORS 

The edit mode operators are described in the following paragraphs of this section. 

MOVE CHARACTERS (MCHR) D7 

This micro-operator transfers characters from the source string to the destination string. 

If .this micro-operator is entered by the table enter edit operator (see Section 7), the number of characters to be trans­
ferred is specified by the syllable following the operator syllable. 

If this micro-operator is entered by the execute single micro-operator (see Section 7), the number of characters to be 
transferred is specified by the operand in the top-of-the stack. 

MOVE NUMERIC UNCONDITIONAL (MVNU) 06 

This micro-operator transfers the four low-order bits of the characters of the source string to the desgination string. 
If the destination string character size is 8 bits (EBCDIC), the zone bits are set to 1111. 

If this micro-operator was entered by use of the table enter edit operator (see Section 7), the number of characters to be 
transferred is specified by the syllable following the micro-operator syllable. 

If this micro-operator is entered by executing the execute single micro-operator (see Section 7), the number of characters 
to be transferred is specified by the operand in the top-of-the stack. 

MOVE WITH INSERT (MINS) DO 

This micro-operator performs a move numeric unconditional or an insert operation under the control of the Float flip-flop. 

In table edit mode, the second syllable is the repeat value and the third syllable is the character to be inserted under 
control of the Float flip-flop. 

5010986 9-1 



B 6900 System Reference Manual 
Edit Mode Operation and Operators 

In execute single micro-mode, the repeat field value is the top word-of-stack and the insert character is in the syllable 
following the micro-operator syllable. 

If the Float flip-flop equals zero and the numeric portion of the source characters equals zero, the insert character is 
moved to the destination string. 

If the Float flip-flop is reset and the numeric portion of the source character is not equal to zero, then set the Float 
flip-flop and perform a Move Numeric Unconditional operation. 

The number of characters transferred from the source string to the destination string is defined by the repeat value. 

MOVE WITH FLOAT (MFLT) DI 

In table edit mode, the second syllable is the repeat value (the number of characters to transfer). The third, fourth, and 
fifth syllables are the three insert characters. In single-micro mode, the three insert characters are in the second, third, 
and fourth syllables. 

If the Float flip-flop equals zero and the numeric portion of the character in the source string equals zero, the first-insert 
character is transferred to the destination string. 

If the Float flip-flop equals zero and the numeric portion of the character in the source string is not zero, the Float flip­
flop is set. If the External Sign flip-flop equals one, the second insert character is transferred to the destination string. 
If the External Sign flip-flop equals zero, the third insert character is transferred to the destination string. The numeric 
version of the source character is then transferred. 

If the Float flip-flop equals one, the numeric equivalent of the source character is transferred to the destination. 

This operation continues for the number of characters defined by the REPEAT field value. This operator can be entered 
by the Execute Single Micro-operator, with the REPEAT field value in the top word-of-stack. 

SKIP FORWARD SOURCE CHARACTERS (SFSC) D2 

This micro-operator increments the source pointer registers. 

If this micro-operator or any of the following skip micro-operators is entered by the execution of the Execute Single 
Micro-operator, the number of characters to be skipped is specified by the operand in the top-of-stack. If entry is by 
the execution of the Table Enter Edit operators, the number of characters to be skipped is specified by the syllable 
following the micro-operator syllable. 

SKIP REVERSE SOURCE CHARACTERS (SRSC) 03 

This micro-operator decrements the source pointer registers (also see Skip Forward Source Characters micro-operator; 
second paragraph). 

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA 

This micro-operator increments the destination pointer registers. 

9-2 



B 6900 System Reference Manual 
Edit Mode Operation and Operators 

SKIP REVERSE DESTINATION CHARACTERS (SRDC) DB 

This micro-operator decrements the destination pointer registers. 

RESET FLOAT (RSTF) D4 

Th.is micro-operator sets the Float flip-flop to zero. 

END FLOAT (ENDF) DS 

Th.is micro-operator transfers the character in the second syllable of this operator to the destination string if the Float 
flip-flop contains a zero and the External Sign flip-flop is one. 

If the Float flip-flop contains a zero and the External Sign flip-flop also equals zero, then the character in the third syllable 
of this operator is transferred. 

If the Float flip-flop contains one, then it is reset and no characters are transferred. 

INSERT UNCONDITIONAL (INSU) DC 

Th.is micro-operator places an insert character into the destination string for the number of times specified by the repeat 
value. When entered by a Table Enter Edit operator, the repeat value is in the syllable following the micro-operator 
syllable, and the insert' character is in the next syllable. 

If this micro-operator is entered by an Execute Single Micro-operator, the character to be inserted is in the second 
syllable, and the repeat value is specified by the operand in the top-of-stack. 

iNSERT CONDITIONAL (INSC) DD 

Th.is micro-operator inserts a string consisting of one or two characters into the destination string. The length of the 
string is given by the repeat value from the table or the stack. 

If the Float flip-flop contains a zero, the first insert character is inserted into the destination string. 

lf the Float flip-flop contains a one, the second insert character is inserted L11to the destL11ation string. 

The insert characters follow the repeat value syllable in Table Enter Edit operation or the micro-operator syllable in 
Execute Single Micro-operations. 

INSERT DISPLAY SIGN (INSG) D9 

This micro-operator places in the destination string the character defined by the syllable following the micro-operator 
syllable, if the External Sign flip-flop is equal to one. 

lf the External Sign flip-flop is equal to zero, this operator places in the destination string the character defined by the 
third syllable of this operator. 

INSERT OVERPUNCH (INOP) D8 

If the External Sign flip-flop is equal to one, this micro-operator places a· sign overpunch in the destination string character 
of 1101 for EBCDIC. 

5010986 9-3 



B 6900 System Reference Manual 
Edit Mode Operation and Operators 

If the External Sign flip-flop is equal to zero, the operator leaves the destination string character unaltered. 

END EDIT (ENDE) DE 

-This operator terminates a string of Edit micro-operators in Table Enter Edit operation mode. 

The microprogram string in the table must end with the End Edit operator. 

9-4 



B 6800 System Reference Manual 

SECTION 10 

VECTOR MODE OPERATORS 

GENERAL 

The use of Vector Mode provides for an increase in efficiency in the manipulation of arrays. The increase in efficiency 
is not an auto:i:natic feature that applies to all data processor operations. Vector Mode makes it possible for certain soft­
ware compilers, such as ALGOL or FORTRAN, to specify that Vector Mode rules apply under controlled conditions. 

LIMITATIONS OF VECTOR MODE 

Vector Mode operations require that the system be operated in control state. This requirement means that a processor 
performing Vector Mode operations cannot be interrupted to service external interrupts. 

Vector Mode operations do not permit segmentation of the arrays. This occurs because presence bit interrupts are dis­
allowed. This limitation requires that the entire extent of the array /arrays must be present in memory while performing 
vector operations. 

Vector Mode operation allows the use of other modes and ope_rators in the B 6900 operator set, subject to the following 
limitations: 

a. String operators and Edit Mode operators are not allowed. 

b. No family C operators, except the branching operators (BRTR, BRFL, and so forth) are allowed while 
operating in Vector Mode. 

c. No operator that pseudo-calls a family C operator is allowed while operating in Vector Mode. 

d. The LIT 48 and branch operators are not used while performing in Single Program Word Vector Mode 
(VMES) because of the size of the operator codes, in syllables. 

Appendix A lists the operators in alphabetic order, and appendix B lists the operators in numeric order 
by mode. 

HARDWARE FUNCTIONS 

The Vector Mode hardware does the following: 

a. Utilizes registers to hold the actual addresses of array elements that are referenced. 

b. Uses additional registers to contain the increment values used for altering _the addresses (indexing) to refer­
ence successive array elements. 

c. Uses one register to contain a "count" or length that controls the number of iterations. 

d. Provides for cycling through one (single-word mode) or more (multiple-word mode) words of code for each 
iteration. 

e. Introduces new operators for use while in Vector Mode to load and store the top-of-stack, and to control 
iterating and exiting from Vector Mode. 

f. Provides two primary mode operators used to enter Vector Mode. 

5010986 10-1 



B 6900 System Reference Manual 
Vector Mode Operators 

Seven IC memory locations are used as the registers previously mentioned to hold the three absolute addresses, the three 
corresponding increment values, and the length. 

The three addresses are referred to as A, B, and C, respectively. 

These registers are loaded automatically from the stack upon execution of either of two Enter Vector Mode operators. 

PRIMARY MODE ENTER VECTOR MODE OPERATORS 

Two primary mode operators are used for Vector operations in the B 6800 Data Processor. These operators are as 
follows: 

Mnemonic Hexadecimal Code Operator Description 

G VMOS EF Vector Mode Enter Single 

G VMOM E7 Vector Mode Enter Multiple 

ENTER VECTOR MODE OPERATION 

An entry into Vector Mode operations occurs when the VMOS (EF) or VMOM (E7) operator is executed from the 
processor P register. Prior to entering Vector Mode, the processor stack must be properly configured to perform 
Vector operators (Figure 10-1). 

The processor registers and the operating stack must have the following format: 

A REGISTER DATA DESCRIPTOR (POINTER C) 

B REGISTER LENGTH OPERAND (OPTIONAL) } DATA PROCESSOR 
TOP-OF-STACK REGISTERS 

MEMORY (S REG) DATA DESCRIPTOR (POINTER A) 

MEMORY (S-1) 

MEMORY (S-2) 

MEMORY (S-3) 

MEMORY (54) 

MV4568 

DATA DESCRIPTOR (POINTER B) 

POINTER C INCREMENT OPERAND 

POINTER A INCREMENT OPERAND 

POINTER B INCPEMENT OPERAND 

NOTE 

MEMORY PART OF 
PROCESSOR ST ACK 

If the optional LENGTH operand is not present in the stack, 
all subsequent required parameters are moved one word closer 
to the top-of-stack. There are no vacant spaces in the format. 

Figure 10-1. Vector Mode Stack Configuration 

Before entering Vector Mode, the values to be stored in IC memory must be placed in the stack. LENGTH specifies the 
number of iterations through the code to be executed while in Vector Mode, usually the number of elements in the· 
arrays being manipulated. The presence of a LENGTH value in the stack is indicated by bit 44=1 in Pointer C. Should 
bit 44=0, a default LENGTH of 220-1 is stored in the LENGTH register. Bit 44 (segmented bit) must be OFF in 
Pointer A and Pointer B. The software asceitains that bit 44 is ON in Pointer C before using it to indicate the presence 
of a LENGTH value. 



B 6800 System Reference Manual 
Vector Mode Operators 

The seven parameters are inserted in IC memory as follows: 

BRS3 

BRS7 

BRSI 

BRS2 

IRS3 

IRSl 

IRS2 

Vector Mode Contents of Register 

Pointer C [19:20] (or Pointer C [39:20] plus [19:20] if I* = 1) 

LENGTH [19:20] (or 220·0 

Pointer A [19:20] (or Pointer A [39:20] plus [19:20] if I* = I) 

Pointer B [19:20] (or Pointer B [39:20] **plus [19:20] if I*= 1) 

Pointer C increment [19:20] 

Pointer A increment [19:20] 

Pointer B increment [19:20] 

*I is the indexed bit, bit 45 in the descriptor. 
**Use [35: 16] if the size field is not equal to zero. 

The Enter Vector Mode operator can be terminated by one of the following interrupts: 

Type of Interrupt 

a. Invalid OP: 

b. Memory Protect: 

c. Presence Bit: 

Cause of the Interrupt 

Pointer A, B or C not tagged as a data descriptor or Pointer A or B has 
bit 44=1. 

Pointer A is read only {bit 43=1). 

Pointer A, B or C has bit 4 7=0. 

At the conclusion of the enter Vector Mode flow, the IC memory is config.ured as follows: 

Register Name Contents of the Register 

SIR The value of the "A" increment 

DIR The value of the "B" increment 

TIR Tne vaiue of the "'CH increment 

SBR The base address of pointer "A" 

DBR The base address of pointer "B" 

TBR The base address of pointer "C" 

TEMP The value of the LENGTH operand 

The word in the P register at the end of the Enter Vector Mode flow contains the Vector opera_~ors to be executed. The 
PSR register is equal to zero, and thus specifies that the first Vector Mode operator commences in syllable zero. 

~ 

5010986 10-3 



B 6900 System Reference Manual 
Vector Mode Operators 

If the entry to Vector Mode is the single-word mode entry VMES operator, the single word of code following that entry 
is held in the P Register (program word fetching is inhibited) and executed a number of times equal to the LENGTH 
parameter. Each time the word is executed, LENGTH is decremented by one until it becomes zero. Then Vector Mode 
is exited and normal operation continues with the next word of code in sequence. 

VECTOR STACK OPERATORS 

Vector Stack operators are a group of twenty-eight operators with a common syllable format (Figure 10-2). Variations of 
this· syllable provide the capabilities of storing or loading the top-of-stack with a single- or double-precision operand and 
choosing whether or not to increment the pointer. 

0 

P REGISTER 
t 

1 

LS A1 

RA AO 

RB I 
...... Ito 

MV2732 

L 

LS 

RA 

RB ... ,. 

D 

A1 14-BIT VECTOR VECTOR VECTOR .., 

AO ADDRESS COUPLE CJ'ERATOR CJ'ERA'IlJtc 1Jrt:RATOR 

I 
Ito ~6 32 28 24 20 16 ~2 8 I'!_ 0 

A VECTOR OPERATOR OCCUPIES ONE THROUGH 
THREE SYLLABLES OF THE P REGISTER. THE VECTOR 
BRANCH OPERATOR (VEBR, HEX CODE EE) USES THREE 
SYLLABLES. THE STOR/FTCH OPERATORS USE TWO 
SYLLABLES. ALL OTHER VECTOR OPERATORS USE A 
SINGLE SYLLABLE. 

Figure 10-2. Vector Mode Operator Format 

The format of the Vector Operator syllable is as follows: 

10-4 

Bit Description 

L The most significant bit in the Vector operator equals one if a LENGTH factor is passed to the vector 
stack upon entering Vector Mode; otherwise, L equals zero. 

LS Bit is OFF (O) for a Top-of-Stack Load operator and ON (1) for a Top-of-Stack Store operator. 

RA If a memory protect interrupt is sensed and no LENGTH is passed to the Vector Mode and RA=O, 
the top-of-stack word is deleted. If RA=l, the top-of-stack word is not deleted. 

RB Same as the RA bit, except that it governs the aciion taken on the second word of the stack. 

D Double-precision bit. If D--0, load or store single-precision operand (Fam G). If D=l, load or store 
doubie-precision operand {Fam H). 



Bit 

Al, AO 

B 6900 System Reference Manual 
Vector Mode Operators 

Description 

Selects the IC Memory Address register. 

0 0 Load from Pointer A (BRSl} 

0 Load from Pointer B (BRS2) 

0 Load from Pointer C (BRS3) 

When I equals one, the pointer used for the memory address is increased by its corresponding pointer 
increment following the Load or Store operator. When I equals zero, the pointer increment is inhibited. 

VECTOR MODE OPERATOR CODES 

The twenty-seven Vector Mode operators are identified in Figure 10-3. 

FAMILY 0 1 2 3 4 5 6 7 8 9 A B c D E F 

G E LOA LOAI LOB LOBI LDC LOCI VMEX DLA OLAI OLB DLBI DLC DLCI VEBR 

H F STA STAI STB STBI STC STCI DSA DSAI DSBI DSC DSCI NOOP NVL~ 

MV4589 

Figure 10-3. Vector Mode Operators 

Two other operators are used to load/store the top-of-stack from/to an address couple. They are enabled only. when a 
LENGTH is passed by the Vector Mode entry. Their format is shown in Figure 10-4. 

I 0 I LS I I NEXT SYLLABLE 

14 VECTOR OPERATOR ~1 
t4 ADDRESS COUPLE 

MV4573 

Figure 10-4. Load/Store Vector Mode Operators 

The address couple is formed from the low-order 6-bits of the Vector operator, and the next operator syllable, which are 
concatenated to form a 14-bit address couple. · 

Where: LS=O then load (FTCH operator), or when 
LS=l then store (STOR operator). 

The A register.is loaded from (or stored into) the memory location determined by the normal address couple decoding 
convention (same as Value Call). 

The previously listed operator mnemonic codes for Vector Mode are consistent with the mnemonic codes used for the B 6700 
System Hardware operator flow charts in the Test and Field Documentation Release Package. Certain software compilers 
(ALGOL and FORTRAN) have the capability to emit program code mnemonics for Vector Mode operators in a program code 

5010986 10-5 



B 6900 System Reference Manual 
Vector Mode Operators 

stream when the LIST CODE option is used at compile time. The operator mnemonics emitted by these compilers do not 
follow the code mnemonics used by the B 6900 System flow charts (see Figure 10-5). 

The operator mnemonics emitted by the compilers are subject to review with each revision of the compilers, and may 
change because of a change in the level of the Master Control Program (MCP) release. The following operator mnemonics 
are taken from the current release level of the ALGOL and FORTRAN compilers. Subsequent revisions to the compilers 
may cause these mnemonics to be in error; therefore, care must be taken in using them without recourse to specify MCP 
release level documentation. 

~ 

F 
A 
M 
I 
L 
y 

0 1 2 3 4 5 6 7 8 9 A B c D E F 

G E L1AX L1AI L1BX L1BI L1CX L1CI VXIT 1LAX 1LAI 1LBX 1LBI 1LCX 1LCI VEBR 

H F S1AX S1AI S1BX 5181 S1CX S1CI 1SAX 1SAI 1SBI 1SCX 1SCI NOOP NVLD 

MV2733 

Figure 10-5. FORTRAN/ALGOL Compiler Vector Mode Operator Mnemonics 

VECTOR OPERATORS 

The following is a _list of Vector Stack operators. 

Operator Hex OP-Code 

Load A EO 

Load B E2 

Load C E4 

Load A - Increment El 

Load B - Increment E3 

Load C - Increment ES 

Store A FO 

10-6 

Description 

The stack is adjusted (0,2) and the single-precision word selected by 
Pointer A (BRSI) is loaded into the top-of-stack. 

The stack is adjusted (0,2) and the single-precision word selected by 
Pointer B (BRS2) is loaded into the top-of-stack. 

The stack is adjusted (0,2) and the single-precision word selected by 
Pointer C (BRS3) js loaded into the top-of-stack~ 

The stack is adjusted (0,2) and the single-precision word selected by 
Pointer A (BRSI) is loaded into the top-of-stack. Pointer A is 
increased by its increment (IRS 1) following the transfer. 

The stack is adjusted (0,2) and the singie-precision word seiected by 
Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is 
increased by its increment (IRS2) following the transfer. 

The stack is adjusted (0,2) and the single-precision word selected by 
Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is 
increased by its increment (IRS3) following the transfer. 

The stack is adjusted (1,2) and the single-precision word in the top­
of·stack is stored in the location given by Pointer A (BRS l ), 



Operator 

Store B 

Store C 

Store A - Increment 

Store B ·- Increment 

Store C - Increment 

Double Load A 

Double Load B 

Double Load C 

Double Load A -
Increment 

Double Load B -
Increment 

Double Load C -
Increment 

Double Store A 

Double Store B 

Double Store C 

Double Store A -
Increment 

5010986 

B 6900 System Reference Manual 
Vector Mode Operators 

Hex OP-Code Description 

F2 

F4 

Fl 

F3 

FS 

ES 

EA 

EC 

E9 

EB 

ED 

F8 

FA 

FC 

F9 

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer B (BRS2). 

The stack is adjusted (1.2) and the single-precision word in the top­
. of-stack is stored in the location given by Pointer C (BRS3). 

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer A (BRSl ). 
Pointer A is increased by its increment (IRSl) following the transfer. 

The stack is adjusted (1,2) and the single-predsion word in the top­
of-stack is stored in the location given by Pointer B (BRS2). 
Pointer B is increased by its increment (IRS2) following the transfer. 

The stack is adjusted (1,2) and the single-precision word in the top~ 
of-stack is stored in the location given by Pointer C (BRS3). 
Pointer C is increased by its increment (IRS3) following the transfer. 

The stack is adjusted (0,2) and the double-precision word selected 
by Pointer A (BRSl) is loaded into the top-of-stack. 

The stack is adjusted (0,2) and the double-precision word selected 
by Pointer B (BRS2) is loaded into the top-of-stack. 

The stack is adjusted (0,2) and the double-precision word selected 
by Poh1ter C (BRS3} is loaded into the top-of-stack. 

The stack is adjusted (0,2) and the double-precision word selected 
by Pointer A (BRSl) is loaded into the top-of-stack. Pointer A is 
increased by its increment {IRSl) following the transfer. 

The stack is adjusted (0,2) and the double-precision word selected. 
by Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is 
increased by its increment (IRS2) following the transfer. 

The stack is adjusted (0,2) and the double-precision word selected 
by Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is 
increased by its increment (IRS3) following the transfer. 

The stack is adjusted (l ,2) and the double-precision word in the 
top-of-stack is stored in the location given by Pointer A (BRSl). 

The stack is adjusted (1,2) and the double-precision word in the 
top-of-stack is stored in the location given by Pointer B (BRS2). 

The stack is adjusted (1,2) and the double-precision word in the 
top-of-stack is stored in the location given by Pointer C (BRS3). 

The stack is adjusted (1,2) and the double-precision word in the 
top-of-stack is stored in the location given by Pointer A (BRSl). 
Pointer A is increased by its increment (IRSl) following the transfer. 

10-7 



Operator 

Double Store B -
Increment 

Double Store C -
Increment 

Vector Branch 

Vector Mode Exit 

B 6900 System Reference Manual 
Vector Mode Operators 

Hex OP-Code Description 

FB 

FD 

EE 

E6 

The stack is adjusted (1 ·,2) and the double-precision word in the 
top-of-stack is stored in the location given by Pointer B (BRS2). 
Pointer B is increased by its increment (IRS2) following the transfer. 

The stack is adjusted (1,2) and the doubie-precision word in the 
top-of-stack is stored in the location given by Pointer C (BRS3). 
Pointer C is increased by its increment (IRS3) following the transfer. 

A three-syllable operator where the two syllables following the 
operator contain a branch address. If the length count is> 0, the 
LENGTH count is decremented by one, and the program continues at 
the next syllable following the address. If the LENGTH is equal to 
zero, Vector Mode is exited by fetching the program word specified 
by the branch address. 

Allows the program to exit from Vector Mode to Primary Mode. 

VECTOR BRANCH AND VECTOR EXIT OPERATORS 

When the entry to Vector Mode is the multiple-word type (VMOM operator), whatever code that follows it is executed 
under Vector Mode rules. The two Vector Mode operators explained as follows are used only in conjunction with the 
VMOM operator. 

10-8 

a. Vector Mode Exit operator (VMEX) causes the program to exit from Vector Mode and return to normal 
mode operations. 

b. Vector Branch (VEBR) is a three-syllable operator. The two syllables following the operator code contain 
the branch address. The Vector Branch operator examines LENGTH. If it is greater than zero, LENGTH is 
decremented by one, the next two program syllables containing the branch address are skipped, and the 
program is resumed at the following syllable. If the examined LENGTH is zero, Vector Mode is exited, and 
normal mode operation commences with the program word located by the branch address. 



B 6900 System Reference Manual 

SECTION 11 

INPUT OUTPUT DEVICE OPERATIONS 

MLIP GENERAL INFORMATION 

Figure 11-1 shows the relationships and operating environment of the Message Level Interface Processor (MLIP) Module 
in a B 6900 system. The MLIP is a semi-autonomous control device, which is used to create and control interfaces 
between the software Master Control Program (MCP) and the Universal Input/Output (UIO) device subsystem. Semi­
autonomous means that the MLIP must be initiated into operation by the MCP, through execution of a CUIO operator 
code. Once the MUP is initialized into pperation, the micro-module control logic takes command; and subsequent MLIP 
operations are determined by the micro-module logic, not by the MCP. 

In addition to creating and controlling UIO interfaces, the MUP also performs other system functions that basically 
involve the use of timers or time-counting circuits. Some of these timing functions are controlled by inputs to the MLIP 
from the software operating system, and others are automatic functions of the MLIP logic circuits. 

Z4 
BUS - SYSTEM -- MEMORY 

i TOP OF 
~A,..V 

;;JI"''°'" 

-- REGISTERS -

DATA 
PROCESSOR 

MV4192 

5010986 

-- --- ~ 

Z3 -- -- --BUS - --- ---- -
MESSAGE LEVEL - --- -INTERFACE - ---PROCESSOR -- ... 

MODULE - MLI INTERFACE --- Z5 
s··~ ·, I 

I ENTRY VECTOR PATH Uo>I ---
---C REGISTER 

(50:19) 
·~ 

MICROCODE 

~ 
INTERRUPT -

MICRO ADDRESS ---- CPU 
MICROCODE MICRO -- -- MODULE 

Z1 BUS 
--

Figure 11-1. B 6900 System MLIP Module Environment 

u NIVERSAL 
1/0 

UBSYSTEM s 

11-1 



B 6900 System Reference Manual 
Input Output Device Operations 

UIO SUBSYSTEM GENERAL INFORMATION 

Peripheral 1/0 devices in a B 6900 system (see Figures 11-2 and 11-3) are controlled by data Link Processor (DLP) 
adapters. A unique DLP adapter is used for each type of peripheral device connected to a B 6900 system. A DLP 
adapter contains micro-coded control programs which are unique to the type of 1/0 device the DLP controls. 

DLP adapters are card-package modules which plug into a UIO-Base module backplane of an Input Output Data Com­
munications (IODC) cabinet (see Figure 11-4). The IODC cabinets in a B 6900 system are connected to the MLIP 
module of the CPU by means of external 25-wire MLI cables. From I to 8 MLI cables are connected to the MLIP 
module, and each MLI cable interfaces up to 8 intraconnected UIO-Base modules to the MLIP module (see Figure 11-5). 

BASE CONTROL CARD (BCC) 

PATH SELECTION MODULE (PSM) 

DISTRIBUTION CARDS (DC) 

IODC BASE 
MODULE 

-, 
I 
I 
I 
I 
I 
I 

FOREPLANE 
IFJ 
CONNECTOR 
RIBBON-CABLES 

INTERFACE I 
PANE.L l --.......... ------/• I I COMMON 

I I FRONT-END 
I CARD (CFE) 

6~~F=~l~MODULE --flr1- ---- .!L~~~J 1 

~~ I 

TO/FROM -{]~l~Ji-- ____ M.!:!_ ~BLE __ J 
MAINT PROC 1 \. 

~~~~E~AL -11
11

RIBBON CABLE

PERIPHERAL
DEPENDENT
CARD (PDC)

MAINT --
TO/FROM ~EJ RIBBON CABLE-MAINT

PROCESSOR I

TERM OR TO/ 11
NEXT MAINT
BUS CABLE

MV4560

11-2

Figure 11-2. IODC Base Module With One DLP

IODC BASE MODULE

RIBBON CABLE

OPTIONAL JUMPER

MLI CABLE~

INTERFACE PANE:L

INTERCONNECT CARD

MV4561

Figure 11-3. B 6900! IODC Base Module Organization

--w

11-4

:NOEPENDENT POWER
(OPTIONAL) CONTROL PANEL

INTERFACE PANEL

INDEPENDENT POWER
(OPTIONAL) CONTROL PANEL

INTERFACE PANEL

MV4&82

B 6900 System Reference Manual
Input Output Device Operations

12V POWER SUPPLY

SMALL IODC BASE
MODULES (24 CARDS)

CABLE TROUGH

CABLE TROUGH

20 KHz 5 KW
POWER INPUT
MODULE

LARGE IODC BASE
MODULE (38 CARDS)

CABLE TROUGH

t'41:~---- LARGE IODC BASE
MODULE

n';'---- 20 KHz 5 KW

12V POWER SUPPLY

Figure 11-4. B 6900 IODC Base Module Cabinets

POWER INPUT
MODULE

U\
0 -f6
00

°'

--v.

LINE EXPANSION M4JOULE ~ LEM EXCHANGE

lr ~~~~~ACE --~----------------------------,~
r.(DISTRIBUTION
I CARD CL

~~~~ROM __ -O[Tr:----~~L~~-----, 0 -,0: ~ 
LI I -l-01 ~ 

~~~~~ ..--o)~ _____ BASE..!!!_L~~BLE ___ , L 1 :~--, ~ 
MLI ~ ").... I ? I lol-, :
JUMPER I l I I L j I I

L-or t-t----BASE~,~~---,L' _J I l,' I

t L-----+---·-j
·) 1 ----- I

r ~ BASE MLI CABLE .---- - -- - - - - _J

~1 -~~~-----. ---J r_ffi_n_o_N_~_BL-E---------------~
TO/FROM

MAINT -,----0
PAOC '-. riJ

~I ~1
g1 !1
~ (SI
~I ffil~ I ol ~I~
ffi -,~ I

0

DISTRIBUTION
CARD

CL
0
c(

.... z
;(
~

~1 -u .

Y-OJt+-~· ____ ~E~~~--~-~J~!-R-IB_B_O_N_C_A_BL-E-------------~~
MAINT "

TERMINATOR }f
MV4563

Figure 11-5. Multiple IODC Cable Connections

B 6900 System Reference Manual
Input Output Device Operations

A separate MLI cable connects the B 6900 Maintenance Processor module to a UIO-Base module. A different external
cable interfaces the B 6900 Maintenance Processor to the maintenance logic circuits in the various B 6900 system IODC
cabinets.

The 25-line MLI cable contains 17 lines used to transfer a word of data (16-bits of data plus an odd-parity bit) between
the MLIP and the UIO subsystem. This cable also contains 4 lines used to send OLP sequence counts and result status
to the MLIP module. One line of the MLI interface is a system strobe-signal line used by the MLIP to initiate actions
in the UIO subsystem logic. Another line is a strobe signal line used by the UIO subsystem to initiate actions in the
MLIP logic. The remaining 2 lines are used for various synchronizing logic levels and signals, during an MLI line
communication process.

B 6900 1/0 DEVICE OPERATION PROCESSES

1/0 peripheral device operations begin when the CPU MLIP module uses one of its MLI Port interface cables to com­
municate with the UIO subsystem. This interface communication must follow lm established MLI interface protocol.
The protocol requires that at least 6 MLI data words of UIO control information, in fixed w6rd formats, be passed
from the MLIP module to the UIO-Base and OLP logic. The entire process of meeting the requirements of the MLI
protocol is commonly referred to as a connection sequence. -

The 6 required data-words transferred during a connection sequence are:

1. An MLI Address word that identifies the Base module and OLP addressed.

2. An i/O Descriptor that identifies not only the particular function the !/O peripheral device is to execute,
but also the specifications for optional characteristics of the 1/0 device that apply during the execution.

3. A Longitudinal Parity Word used to verify that the 1/0 Descriptor word/words are valid MLI connection
sequence words.

4. Two Descriptor-Link words that identify the MLI (Host system) making the connection, and contain the
memory address of the IOCB that initiated the connection sequence.

5. A Longitudinal Parity Word used to verify that the preceding 3-words are valid connection sequence words.

An MLIP module 1/0 device initiation process begins when the Data Processor module executes a CUIO operator code,
and transfers the starting memory address of an IOCB to the MLIP logic, The MLIP subsequently accesses words of
the IOCB, and writes fields from the various IOCB words into the MLIP RAM memory. The MLIP then causes a

connection sequence to be performed.

MLIP· To-IODC Connection Sequence Address Word

The first information required by the MLIP to perform a connection sequence is the particular MLI interface port
through which the connection sequence is to take place. This information is present in word-4 [19:4] of the MLIP
RAM memory, and was originally obtained from word-1 [19:4] of the IOCB. Bits [15: 16] of MLIP RAM word-4

(aiso from IOCB word-i) contain the data required for the first MLI protocol connection sequence.

11-6

B 6900 System Reference Manual
Input Output Device Operations

The data required for an MLI connection are:

1. Base Control Card bit (MLIP RAM word-4, bit-15).

2. Line Expansion Module bit (MLIP RAM word-4, bit-14).

3. Base Module IO bits (MLIP RAM word-4, bits [7:4]).

4. DLP IO (MLIP RAM word-4, bits [3:4]).

The MLIP micro-logic (MAKE.CON sequence) utilizes data from MLIP RAM word-4 to implement a connection between
the MLIP and a particular DLP module, over the proper MLI Port and interface cable. The MLIP logic formats and
transmits the DLP address to the IODC logic, as shown in Figure 11-6.

A A
p 8 4

p I BCC I LEM I
Where:

MV4564

A
2

u

A

u

B
8

u

B
4

u

B
2

u

B

u

P = Odd-Parity bit for other word-bits.
BCC = Base Control Card ID bit.
LEM = Line Expansion Module ID bit.

U = Unused bit-positions in the word.
B IODC UIO-Base module ID code.

OLP = OLP ID code.

NOTE

c
8

B

c
4

B

The 8 control-signal lines of the MLI
interface cable are not shown.

c
2

8

C D D D D
8 4 2 1

Figure 11-6. B 6900 Connection Sequence Address Word Layout

MLIP-To-IODC Connection Sequence 1/0 Descriptor

The MLIP micro-logic (INIT.IOCB sequence) formats 1/0 Descriptors from a list of 1/0 Descriptor data present in system
memory. The MLIP accesses the 1/0 Descriptor list in system memory by means of an address which is contained in the
1/0 Command Pointer (word 4 of the IOCB). The MLIP logic formats the 1/0 Descriptor found in system memory into
i6-bit data words, and transmits them to the DLP device over the MLI interface. 1/0 Descriptors may consist of several
consecutive 16-bit words on the MLI interface bus.

LPW Word For 1/0 Descriptor

A Longitudinal Parity Word is formatted and transmitted from the MLIP to the IODC and DLP device. This word
represents a block-check of the data transmitted in the 1/0 Descriptor. The format of an LPW word is defined later
in this section.

5010986 11-7

B 6900 System Reference Manual
Input Output Device Operations

MLIP-To-IODC Connection Sequence Descriptor Link Words

The MLIP micro-logic (INIT.IOCB sequence) utilizes data from the MLIP RAM memory, word-7 and word-A, to create
2 Descriptor Link words. The 2 words are transmitted to the IOOC logic during the MLI interface connection process,
and are used subsequently by the IODC to reconnect to the· MLIP during other sequences of the IO device operation
process.

The format of the 2 Descriptor Link data words on the MLI interface are shown in Figure 11-7.

Descriptor Link Word-1 Layout

A A A A B
8

B
4

B
2

B c
8

c
4

c
2 p 8 4 2

p H H H H H H H H

Descriptor Link Word-2 Layout

p

p

A
8

A
4

Where:

A
2

A
1

B
8

B
4

B
2

B
1

c
8

c
4

c
2

P Word Parity-bit
H Host Return Field (the B 6900 Processor ID value,

from word-A of the MLIP RAM memory). This
field identifies which of 6 possible Distribution
Cards (DC) in the IODC the MLI connection came.
This field defines which DC (MLI cable) of the
IODC to use to reconnect (POLL REQUEST func­
tion) to the same host system.
IOCB memory address field (from word-7 of the
MLI RAM memory). This field is used to refresh
the contents of the MLIP RAM memory during
subsequent connections between the IODC OLP

MV4565 control device, and the MLIP module.

c

c

D
8

D
8

Figure 11-7. B 6900 Connection Sequence Descriptor Link Word Layouts

MLIP-To-IOOC Connection Sequence LPW Word

D
4

D
4

D
2

D
2

D

D

The MLIP micro-logic generates and formats a Longitudinal Parity Word (LPW) for all serial data transmitted over an
MLI interface. The LPW word is automatically transmitted to the IODC after the last serial dataword has been
transmitted.

An LPW-word represents the combined longitudinal parity (Block-check value) for the datawords transmitted over the
MU interface during the present connection sequence. An LPW accounts over the MLI cable for only longitudinal
parity of words transmitted in a single transmission burst, in a single direction. If line-turnarounds are performed during
a connection sequence, an LPW~word is generated and transmitted each time a new burst of date is transmitted in either
direction over the MLI interface cable.

11-8

B 6900 System Reference Manual
Input Output Device Operations

The IODC logic contains circuits that generate and format an LPW-word as serial data-words are received over the MLI
interface cable. When the LPW-word from the MLIP is received by the IODC logic, it is compared to the LPW-word
generated by the IODC logic from preceding MLI serial datawords. If the 2 LPW-words do not compare equal, an MLI
interface data parity-error is detected by the IODC logic.

Both the MLIP logic and the IODC logic generate and transmit LPW-words as part of their normal data transmission
operations over an MLI interface. Both also generate an LPW-word for serial data received, and compare that LPW-word
against the LPW-word received over the MLI interface cable. Thus, either the MLIP or the IODC can detect an MLI
interface data parity-error condition.

IODC-To-MLIP Connection Sequence

After a POLL TEST connection sequence has been completed by the MLIP module, the MU connection protocol
provides for a disconnect to occur. A disconnect is necessary because the DLP device to which the MLIP is connected
needs to execute one or more of its internal micro-code procedures at this point.

Whatever the cause of an MLI disconnect, once a connection has been completed the DLP can initiate the next connec­
tion sequence, because the IODC logic now contains Descriptor Link data. The Descriptor Link data identifies the proper
DC (MLI cable) to be used for the second or subsequent connection sequence.

IODC-To-MLIP Connection Sequence Global Priority Word

During a POLL REQUEST operation connection sequence, the requesting DLP device must return a Global Priority word
of data to the MLIP logic. This word is required because an IODC can contain 1-to-8 DLP devices, and the MLIP must
know which DLP is initiating the connection sequence. The Global Priority word has the format shown in Figure 11-8.

A A A A B B B B c c c c [) [) [) [)

p 8 4 2 8 4 2 8 4 2 1 8 4 2

p u u I u u u B B B B I OLP I OLP I OLP I OLP I GP GP GP

Where:
p Word Parity Bit

u Unused, a field filled with zeroes
B IOOC Base module identity code

OLP OLP identity code (relative location of the OLP
device within the IOOC Base module

GP The Global Priority of the OLP that initiated
the POLL REQUEST operation

MV4566

Figure 11-8. B 6900 IODC POLL REQUEST Global Priority Word Layout

5010986 11-9

B 6900 System Reference Manual
Input Output Device Operations

IODC-To-MLIP POLL REQUEST Priority Resolution In The IODC

The Global Priority field contains the Global Priority of the DLP that initiated the POLL REQUEST. It is possible
that more than one DLP device in an IODC Base module will require a POLL REQUEST operation at the same time.
If such a condition occurs, the IODC module logic will resolve POLL REQUEST sequence conflicts between its DLP
devic~s on the basis of their configured Global Priority. The DLP with the highest Global Priority performs a POLL
REQUEST operation first, and other DLPs must wait until they have the highest Global Priority in their Base before
they can initiate a POLL REQUEST operation.

IODC-To-MLIP POLL REQUEST Global Priority Resolution In The MLIP

The MLIP Priority Sequencer Logic samples the Global Priority values from POLL REQUESTs, over all 8 possible MLI
interface ports, and in port number order. If two or more MU interface ports contain simultaneious POLL REQUESTs,
the Priority Sequencer logic selects the MLI port that has the highest Global Priority to initiate the next POLL
REQUEST. If two or more MLI port POLL REQUESTs share the highest Global Priority request present, then the
Priority Sequencer logic selects the MLI with the highest port number as the one for which the next POLL REQUEST
operation is performed. O~her MLI ports that are trying to initiate a POLL REQUEST operation must wait until they
have the highest current priority before they are granted a POLL REQUEST sequence.

IOCB ORGANIZATION AND WORD LAYOUTS

The 1/0 device specifications placed in memory by the MCP are in a fixed-word format called an Input/Output Control
Block (IOCB). An IOCB occupies 15 consecutive memory addresses to which other word addresses may be appended
for software control purposes. Figure 11-9 shows the layout and identification of the first 15 words in an IOCB.

The first 1 S words of an IOCB are defined in the following subsections. The order of definition in an IOCB is the same
as the order of the words in system memory.

11-10

5010986

Word

B 6900 System Reference Manual
Input Output Device Operations

Number Mnemonic Word Contents

0 [CW] Control Word

0 [LCPAW] DLP Address Word

2 [CQHP] Command Queue Header Pointer

3 [SELFP] IOCB Self Pointer

4 [LC PCP] DLP 1/0 Command Pointer

5 [LCPRP] DLP 1/0 Result Pointer

6 [LCPCRL J DLP Command/Result Lengths

7 [RM J Result Mask

8 [RQHP J Result Queue Head Pointer

9 [NL] Next IOCB Link

A [CDP 1 j MLIP Current Data Area Pointer

B

I

[CL] l MLIP Current 1/0 Length

c [HRSLT l I MLIP State and Result
I"'\ [STIME u I '"' s•-rt •=--: 1/V 1.a I. 1 llllt;

!
E [FTIME

F

) i i/O Finish Time
!

F

i 10

i 11
12 IOCW (67/68 IOCW)
13
14
15
16
17

MV4193

Figure 11-9. IOCB Word Format and Layout

I
I

I

11-11

IOCB Control Word

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-10 shows an IOCB (word ZERO) Control Word. The IOCB Control Word (CW) is a formatted operand
containing the 16-bit "IOCB" mark in bits [47: 16], and the 20-bit MLIP control-field in bits [19:20]. The control­
field defines the type of operation the MLIP is to perform.

(O'S REQD)

0 0 0
47 43 39 35 31 27 2~ 19 15 11 7 3

0 0 0 0 I I
46 4" IOCB" 34 30 26 22 MLIP CONTROL FIELD 2

MARK ---
0 0 0 0

45 41 37 33 29 25 21 17 13 9 5 1

, 0 0 0 0
44 40 36 32 28 _2__4 20 16 12 8 4 0

NOTE

THE 4"10CB" MARK IS DEFINED AS FOLLOWS:

47 0 0 1 1

0 0 1 0

0 0 0 1

1 0 0 1 32

VALUE= I 0 c B (HEXADECIMAL)

MV4194

Figure 11-10. IOCB Control Word Layout

MLIP CONTROL-FIELD BIT DEFINITIONS

The meaning of each bit in the MLIP control-field is described below:

Bit 0 =

Bit 1 =

Bit 2 =

11-12

Queue-at-Head. If this bit is SET during the execution of a CUIO operator, the IOCB (or the
chain of IOCB's) will be inserted at the front of the Command Queue. The IOCB is inserted
at the end of the Conmm1d Queue if bit 0 is RESET.

MLIP/DLP-Command. If this bit is SET, the IOCB contains a command to be interpreted and
executed by the logic of the MLIP (not by a UIO-DLP). If this bit is RESET, the MLIP
directs the command to a UIO-DLP and utilizes information from other words in the IOCB to
determine which UIO-DLP is to be addressed, and what kind of operation it has to perform.

Attention. If this bit is SET, the MLIP will construct an MLIP Result Word which has both
the Attention-bit and the Exception-bit SET at the conclusion of the 1/0 operation.

Bit 3 =

Bit 4 =

Bit S =

Bit 6 =

Bit 7 =

[10:3] = 001:

[10:3] = 010:

[10:3] = 100:

[10:3] = 110:

5010986

B 6900 System Reference Manual
Input Output Device Operations

Cause 1/0 Finish Interrupt. If this bit is SET, the MLIP unconditionally causes an 1/0 fini&1.
CPU interrupt (External Interrupt-I/O Finish) at the completion of the I/O operation. If this
bit is RESET, the MLIP only causes the I/O Finish interrupt to occur when an I/O error­
conditiori such as a 1/0 data-parity error is detected. -

Memory Override/Memory Protect. If this bit is SET, the MLIP ignores the tag of memory
words durLr1g memory operations (Override). If this bit is RESET, the MLIP terminates
data transfer to memory if it READS (or attempts to WRITE into) a memory address that
has an odd-numbered TAG-FIELD value (Memory Protect).

Input. If this bit is RESET and DLP goes to Read-Status (STC=4) the MLIP flags a DLP
Status-Error and disallows 1/0 input-data transfers. This bit must be SET for all input
operations (data transfers from the peripheral device to system memory}. See definition of
[6:2], below.

Output. If this bit is RESET and DLP goes to Write-Status (STC=8} and this bit is RESET,
the MLI flags a DLP Status-Error. See definition of [6:2], below.

If bits 5 and 6 are both SET, an Echo Command is performed by the DLP. If bits S and 6
are both RESET, any attempt to transfer data as input or output will cause a DLP Status­
Error to be flagged and no data will be transferred.

Output Zeros. If this bit is SET and the Output-bit also is SET, the MLIP sends to the DLP
bytes of binary zeroes for the spedfied record-length. This type of data transfer has one valid ,
function to perform a magnetic-tape erase.

Tag Control. The value of this field defines ho\11 tags are h~'ldled during data transfer
operations.

Transfer Single Byte Tag. Tags are treated as one additional byte of data. During output the
3-bits of TAG are placed in the 3 least significant bit positions of the additional byte, and the
most significant bit is RESET. During input the 3 least significant bits of the additional byte
are transferred to the TAG-FIELD of the memory word, and the other bits of the additional
byte are ignored.

Transfer Double Byte Tag. Tags are treated as two additional bytes of data. During output
tM 3-bits of the word TAG are placed in the 3 least significant bits of the most significant
byte, and the remaining 13 bits of the byte are RESET to ZERO. During input, the 3 least
significant bits of the most significant byte are placed in the TAG-FIELD of the memory
word, and the other 13 bits of the byte are ignored.

Force Tags to Single (0). Memory word TAG-FIELDS are not treated as part of data, and
are not transferred. During input, the TAG-FIELD of each memory word is unconditionally
RESET. During output, memory TAG-FIELDs are skipped.

Force Tags to Double (2). This value is valid only during input. It performs the same as
Force Tags to Single (above) except the TAG of each word is SET to double (2). *skip 1
[10:3] = 111:

Force Tag to Code (3). This value is valid only during input. It performs the same as
Force Tags to Single (above) except the TAG of each word is SET to Code (3).

11-13

Bit 11:

Bit 12:

Bit 13:

Bit 14:

Bit 15:

Bit 16:

17:

[19:2] :

B 6900 System Reference Manual
Input Output Th:vice Operations

Word/Character Oriented Transfer. If this bit is SET, the amount of data to be transferred
is counted in words, which must be accessed by means of a word Data-Descriptor. If this bit
is RESET, the data to be transferred is counted in characters, which must be accessed by
means of a string Data-Descriptor.

Memory Direction. If this bit is SET, the MLIP transfers data into memory in a reverse
direction. If this bit is RESET, data is transferred into memory in a forward direction. If
this bit and the Output-bit are both SET, an Invalid MLIP Control Field error is returned and
no data is transferred.

Continue Count at End of Length. When this bit is SET and the Input-bit also is SET, the
MLIP does not terminate the transfer of data between the DLP and MLIP when the LENGTH
count reaches ZERO. Instead, the DLP continues transferring data to the MLIP; but the
MLIP does not store the additional data in memory. The 1/0 length continues to be counted
and the value used to determine the actual record length. If this bit and the Output-bit are
both SET, an Invalid MLIP Control Field error is returned and no data is transferred.

Ignore Count Error. If this bit is SET, the MLIP will SET the Count-Error bit when the
LENGTH Count at the end of the 1/0 operation is equal to zero. If this bit is RESET the
MLIP will not SET the Count-Error bit because of LENGTH being equal to zero at the end
of the 1/0 operation.

Dont Count. If this bit is SET when this IOCB is initiated/completed, the MLIP logic will
not increment or decrement the ACTIVE-count field in the Command Queue CW word.
This bit is used during CANCEL type I/O command operations. The purpose of an I/O
CNACEL operation is to terminate a currently executing 1/0 operation. An 1/0 operation
that is CANCELed decrements the ACTIVE-count field in its Command Queue CW word,
when its IOCB completes.

Ignore Suspend All Queues. If this bit is SET, the MLIP will not suspend the Command Queue
IOCBs when adding an IOCB to the Result Queue, regardless of the setting of the Suspend­
All-Queues flag.

Immediate. If this bit is SET and the MLIP is pointing at the first IOCB in a queue, the
MLIP attempts to initiate the IOCB regardless of the ACTIVE-COUNT and LIMIT field
values in the Command Queue CW word. Initiating an IOCB which has its Immediate-bit
SET does not increment the. ACTIVE-COUNT value of the Command Queue CW word. If
the UIO-DLP is BUSY, then the MLIP attempts to add this IOCB to a Horizontal Queue.

This field is not used and must contain ZEROES.

V AUD CONTROL-FIELD BIT CONFIGURATIONS

Figure 11-11 identifies valid Control-Field bit configurations in an IOCB (CW) word. A valid CW Control-Field bit
configuration is used to cause a particular type of 1/0 Command to be initiated by a UIO-DLP. The CW control-field
is also used to cause the MLIP to perform a function that is internal to the MLIP, and does not involve the use of an
MLI interface or a UIO-DLP device. A UIO-DLP (Data Link Processor) is the final control for a B 6900 system
peripheral Input/Output device. Control-Field bit configJrations originate in an IOCB in system memory and are
passed through the MUP module and an MLI interface cable to a UIO-DLP that is located in a B 6900 system IODC
module cabinet.

11-14

BIT NO. 17 16

MLIP OP X

TEST

INPUT

x

x
x
x
x
x
x

OUTPUT X

ECHO

MV4195

x
x
x
x

x

I
""' ""' ~

0
$
~
~
~/3
a~

-?' .:> SEo
x

x

x
x
x
x
x

x
x
x
x

x

x

x

0
0
0
0
0

0

0

x
x
x
x
x

0 x
0 x
0 x
o I x

I

0 x

0 0

0 0

x 0
x. 0
x x
x x
x x

0
0
0
0

0

0
0
0
0

0

B 6900 System Reference Manual
Input Output Device Operations

x

x

x
x
x

x
x

x

12

I

0
0

0
0

11 10

I

0

0

0
1
0

0
1
0
0

0

NOTE

0

0

1
0
0
0

1
0
0
0

0

0

0

0
0
0
0
0

0
0
0

0

0

0

0
0
0
0
0

1 =THE BIT MUST BE SET TO A BINARY 1.

0 =THE BIT MUST BE RESET TO A BINARY 0.

X =THE BIT MAY BE EITHER SET OR RESET.

0

0

0
0
0
0

Figure 11-11. Valid Commands in CW Control-Field

0

0

x
x
x

1
x
x

x

x

x

x
x
x
x
x

x
x
x
x

x

x

x

x
x
x
x
x

x
x
x
x

x

0

0
0
0
0
0

0
0
0
0

0

x

x

x
x
x
x
x

x
x
x
x

x

The MLIP OP operation specified in Figure 11-11 identifies a function of the MLIP logic that does not use an MLI
interface or address a UIO-DLP. The MLIP OP functions performed by an MLIP are specified in detail within the
paragraphs entitled MLIP Commands. The difference between an MLIP OP function and a UIO-DLP function. is the
code contained in the Command specification, which is pointed at by DLPCP (word 4) of the IOCB. Bit-I of the CW
Control-Field is the key value used to select an MLIP operation or a UIO-DLP operation.

5010986 11-15

IOCB DLP Address Word

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-12 shows an IOCB (word one) OLP Address word. The OLP Address word (OLPAW) is a formatted operand
which contains the address environment of a UIO-OLP. The MLIP utilizes the OLP address data to connect to the OLP
specified over an MLI interface.

(O'S REQUIRED) (OLP ADDRESS)

0 0 0 0 0 0 0 PORT BCC 0 LEMP OLP
47 43 39 35 31 27 23 ~ 15 11 7 3

0 0 0 0 0 0 0 0 PORT LEM 0 LEMP OLP
46 42 38 34 30 26 22 ~ 1~ 10 6 2

0 0 0 0 0 0 0 0 PORT 0 0 LEMP OLP
45 41 37 33 29 25 21 u 13 9 5 1

0 0 0 0 0 0 0 0 PORT 0 0 LEMP OLP
44 40 36 32 28 24 20 ~ 12 8 4 .o

MV4196

Figure 11•12. IOCB OLP Address Word Layout

DLP ADDRESS WORD FIELD AND BIT DEFINITIONS

The definition of the fields in an IOCB OLP Address are as follows:

Field

Port

BCC

LEM

LEMP

OLP

11-16

Bits

[19:4]

[15: 1]

[14: 1]

[07:4]

[03:4]

Meaning or Usage

Selects the MLI port (0-7, HEX) to be used by the MLIP for this command.

If SET, the command is directed to the Base Control Card (BCC) of the IODC.

If SET, the command is directed to the Line Expansion Module (LEM) of the IOOC
selected by LEMP [07:4].

Selects the JODC module (0-7,HEX), if LEM, [14: J], is SET,

If BCC and LEM are RESET, this field selects the OLP location (0-7 ,HEX) in the IODC
module addressed by [19:4].

Command Queue Header Pointer Word

B 6900 System Reference Manual
Input Output Device Operations

Figure l i-13 shows an IOCB (word 2) Command Queue Header Pointer. A Command Queue Header Pointer (CQHP) is
an unsegmented, unindexed word Data Descriptor that points at the Command Queue Header. The MCP initializes this
word, and its values are not changed during the operation of the 1/0 device.

I i 1 I I i I
.... ,_.__X___.:_4 .:..+l __ Q_

4.:..::.J.,__.=J9+1- _, __ __Jl __ _!I]J ~--1-l--1~

46 41 ,. , '" ,, I • 1 ------------t-- (LENGTH) -----; -----=--~H-~-- (ADDRESS) ---+i--

1 0

44 40

-~r---_!_!.+-_13 -l
24 20 1 b 11 8 1

SI

1 IN WORDS COMMAND QUEUE HEADER 0 0 0
._----l~-4_S+----4--11 1----3_1+--------~---- __ ~

I
321 2~ 0

1 0 0
36

X = 1 or 0
MV4197

Figure 11-13. IOCB Command Queue Header Pointer Word Layout

IOCB Self Pointer Word

Figure 11-14 shows an IOCB (word 3) IOCB Self Pointer word layout. A Self Pointer (SELFP) is a present, unsegmented,
unindexed word Data Descriptor. The Self Pointer points at the first word (word zero) of the IOCB in which the Self
Pointer is located. Self Pointers are used to link the !OCB (of which they are part) into a Command Queue or ir1to a
Result Queue in system memory. The use of Seif Pointers aiiows an IOCB to remain in a fixed memory address, and to
be associated with other IOCBs by means of a series of Next Link Pointers to all IOCBs that are linked together. Linking
an IOCB into a queue involves copying the Self Pointer into the Next IOCB Link (word 9) of the previous IOCB in the
queue. The value fields of a Self Pointer are never changed, because the address of the IOCB in memory remains con­
stant throughout an 1/0 operation.

1 0
47 43

1 x 0
46 42

0 0 0
45 4~

1 0 0
44 40

MV4198

5010986

39 3S 31 27 23 19 1S 11

I I I
I I I I

38 (LENGTH) 26 22 18
(ADDRESS)

IN WORDS J OF IOCB [CW]
3!

36

11 I 291 21 , 7 --j_

I
32! 2~ 24 20 16

NOTE

If operand:O= NULL Link
1 = IOCB Initiated

X = 1 OR 0

Figure 11-14. IOCB Self Pointer Word Layout

131 91

1
12 sl

7 3

6 2

s 1

4 0

11-17

B 6900 System Reference Manual
Input Output Device Operations

IOCB DLP Command Pointer Word

Figure 11-15 shows an IOCB (word 4) DLP Command Pointer word. A DLP Command Pointer (DLPCP) is an unseg­
mented word Data Descriptor that is present. The Descriptor points at the actual DLP Command Descriptor address in
system memory. The values of the DLP Command Pointer are established by the MCP before the 1/0 operation is
initiated, and they remain unchanged during the entire 1/0 operation sequence. Refer to the description of the IOCB
Control Word (IOCB word ZERO) defined in the previous paragraph.

1 0
41 43

1 x 0
46 42

0 x 0
45 41

1 0 0
44 40

MV4199

IOCB DLP Result Pointer Word

NOTE

The layout of 1/0 Command Descriptors for various
types of DLP devices are given in the B 6900 Pocket
Reference, Form No. 5011497.

0
J9 35 31 27 23 19 15

0
LENGTH ADDRESS OF 38 26 22

11 7 J

2

IN WORDS OLP COMMAND WORDS -
0

331 37 29 2S 21 17 13 9 5 1

0
36 32 28 _1.4 20 16 12 _i 4 Jl

X = 1 or 0

Figure 11-15. IOCB DLP Command Pointer Word Layout

Figure 11-16 shows an IOCB (word 5) DLP Result Pointer word. The DLP Result Pointer (DLPRP) word is an unseg­
mented word Data Descriptor which is present and which points to the address in memory where the MLIP is to store
the DLP Result Descriptor at the conclusion of the 1/0 device operation. This pointer is initiated by the MCP before
the start of the 1/0 device operation, and remains unchanged during the operation sequence.

11-18

NOTE

The layout of 1/0 Result Descriptors for various
types of DLP devices are given in the B 6900 Pocket
Reference, Form Number 5011497.

'j ! 0 !
47 43 39

1 x 0
46 42 38

0 x 0
45 41 37

1 0 0
44 40 36

MV4200

B 6900 System Reference Manual
Input Output Device Operations

T

'
1

35 31 27 2J I 19 .I 15 I 11

T 1 I
ADDRESS WHERE

T
7 J

LENGTH 26 ~ OLP RESULT DESCRIPTOR ~
IN WORDS

I I
WILL BE STORED

I I
33 29 25 2j 17 13 9 5 1

32 28 24 20 ..16 12 ..I. 4 0

X = 1or0

Figure 11-16. IOCB DLP Result Pointer Word Layout

IOCB DLP Command/Result Length Word

Figure 11-17 shows an IOCB (word 6) DLP Command/Result Length word. The DLP Command/Result Length word
(DLPCRL) is a formatted operand that contains the length of the DLP Command and 1/0 result status, in 16-bit bytes.
Both length values in the DlP Command/Result Length word must be an even number of 16-bit byte increments, The
values of this word are used to determine the maximum number of bytes to be transferred between the MLIP and the
IODC module, over the MLI interface. If the maximum number of bytes for transfer is exceeded, an Unexpected DLP
Status error is reported to the Interrupt Controller. This word is initialized by the MCP before the 1/0 operation is
started, and remains unchanged during the execution of the 1/0 operation.

0 0 0 0
47 43 39 35 31 27 23 ~ 15 11 7 J

0 0 0 0 0 I
46 42 38 34 COMMAND LENGTH .!!j ~RESULT LENGTH~

I I (IN BYTES! (IN BYTES) I
0 0 0 0 0

45 41 37 33 29 25 21 17 13 9 5 1

0 0 0
401

0 0
44 36 32 28 24 _2_0 ul 12 8 _ _..t_ _g

iviV4201

Figure 11-17. IOCB DLP Command/Result Length Word Layout

5010986 11-19

IOCB Result Mask Word

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-18 shows an IOCB (word 7) Result Mask word. The Result Mask word (RM) is a formatted operand that is
used to limit the conditions of I/O device operation that can cause an exception or error to be sensed by the Interrupt
Controller Logic. Bits [47:48] of the Mask word are ANDed with corresponding bits from the MLIP State And Result
word (IOCB word C). An interrupt is sensed if corresponding bits in the Mask and the MLIP State And Result word are
both SET. An interrupt is not sensed if either or both corresponding bits are RESET. When the MCP generates the
contents of the IOCB, it determines which bits are SET in the Result Mask word and which of the exceptions present in
the MLIP Result And Status word can cause an interrupt to be sensed.

47 43 39 35 31 27 23 19 1S 11 J 3

0
46 42 38 34 RESULT MASK 18 14 10 6 2

0
4S 41 37 33 29 25 21 17 13 9 s l

0
401 44 36 32 28 .1..4 20 16 12 8 4 0

MV4202

Figure 11-18. IOCB Result Mask Word Layout

IOCB Result Queue Head Pointer Word

Figure 11-19 shows the IOCB (word 8) Result Queue Head Pointer. The Result Queue Head Pointer (RQHP) is an
unsegmented, indexed word data descriptor which is present and which points at a Result Queue Head word in
the Result Queue array of system memory. When an I/O operation sequence is completed, the IOCB for that !/O opera­
tion is de-linked from the Command Queue and linked into a Result Queue. The IOCB is always linked at the tail of the
Result Queue. The Result Queue Head Pointer points at the head of the Result Queue, and from this reference address
the IOCB is linked into the Result Queue at the tail of the queue.

1 0 0 I I
47 43 J9 35 31 211 23 19 isl 11 7 3

1 x 0 0 I
46 42 38 LENGTH 26 22 18

ADDRESS OF
6 2

0 0 0 0 IN WORDS RESULT QUEUE HEAD WORD
JJ

1 291 171 13
1 ~' ~' 45 41 37 2S 21 ':I ;) 1

1 0 0 0
44 40 36 32 28 _1_4 20 16 12 _s_ 4 Jl

X = 1or0
MV4203

Figl.tre 11-19. IOCB Result Queue Head Pointer Word Layout

11-20

iOCB Next IOCB Link Word

B 6900 System Reference Manual
Input Output Device Operations

Figure i i-20 shows the Next IOCB Link Word (word 9). The Next Link word (NL) is a preseni, unsegmented, unindexed
word Data Descriptor that points at the first word of the next IOCB in squence (following the IOCB of which this Next
link word is a part) in the queue. The MCP initializes the Next Llnk word before the 1/0 operation sequence is started.

The MUP changes the value of a Next IOCB Link word during various parts of the I/O device sequences. When a con­
nection is made over the MLI, to initialize the operation of the UIO-DLP, the MLIP replaces the Next Link word with
a..11 integer operand of one (1). This operand is used to show that the 1/0 operation is in process.

If an IOCB is the last IOCB in the queue of IOCBs, the MUP replaces the Next IOCB Link word with an integer ope.rand
value of zero (0). There is no next IOCB to be linked in, thus the zero operand shows that this is the last IOCB in the
queue. If a subsequent IOCB is linked into the queue at the tail, it becomes the last IOCB. The Self Pointer of this
subsequent IOCB is written in the Next Link word of the previous IOCB, overwriting the integer operand of zero, thus
extending the IOCB linkage to include the new tail IOCB. The Next Llnk word of the new tail IOCB is replaced by
integer value zero, to mark it as the last IOCB in the queue.

If an IOCB is ENQUEUEd at the head of the queue, the MLIP replaces the value of the Next IOCB Link word with the
IOCB Self Pointer (word 3) of the original queue head IOCB. Consequently, the newly enqueued IOCB is at the head of
the queue, and its Next IOCB Link word points at the IOCB originally at the head of the queue. The MbIP
must also adjust the address of the Head IOCB Link word in the Command Queue (word 1) if a new IOCB is
ENQUEUEd at the head of the queue.

47

0 1
43

Tl
19 15 11 39 35 31 27

i

3

X I 0 I ! ! I I ! 1 I
___ _.,_ __ 46+' __ 4 2.,.__38-+'- (LENGTH) _2s_· _____ 22..___1_si_'. ADDRESS OF _6 __ 2_

IN WORDS I NEXT IOCB OR •
.OPERAND= 0 OR 1 . ~ . - - ..,

0 0 0
4S 41 33 29 37 25 21

44

0 0 1
4Q 36

I
~ 32 28 20 12 4 24 16

X = 1or0
MV4204

Figure 11-20. IOCB Next IOCB Link Word Layout

5010986 11-21

IOCB Current Data Area Pointer Word

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-21 shows the Current Data Area Pointer (word iO). The Current Data Area Pointer (CDP) is a present,
unsegmented, string or word Data Descriptor which points to where data transfer begins or resumes. If CDP is a string
Data Descriptor, then the SIZE FIELD must indicate 8-bit character format (the only data format used in the B 6900
system). The type of Data Descriptor used for CDP must agree with the word/character oriented transfer-bit (bit-11 of
word zero) field oft.lie !OCB CW word. The CDP word of the IOCB is initialized by the MCP before the CUIO operator
is executed, and is updated by the MLIP as each block of data is transferred between the UIO-DLP and system memory.
For reverse data transfer operations, the CDP must be set to indicate the last word or character of the data, plus 1.

1 0
T

•7 43 39 35 31 27 23 19 15 11 7 3

1 x x LENGTH ADDRESS OF
46 42 38 IN WORDS OR 26 22 18 DATA BUFFER 6 2

0 1 0
CHARACTERS IN MEMORY

45 41 37 33 29 25 21 17 13 9 ~ 1

1 0 0
44_ 40 36 ..J1. 28 _1_4 20 Hi 12 8 4 0

X = 1or0
MV4205

Figure 11-21. IOCB MLIP Current Data Area Pointer Word Layout

IOCB MUP Current 1/0 Length Word

Figure 11-22 shows the MUP Current 1/0 Length word (word 11). The MLIP Current 1/0 Length word (CL) is a
formatted operand that contains an integer length count valu~ in bits [19:20]. The state of bit-46 (Sign Of Mantissa)
is also significant in the CL word. The value of the length count represents the amount of 1/0 data yet to be trans­
ferred during this 1/0 operation.

0 0 0 0 0 0 0
4; 43 JS 35 31 27 2] 19 15 11 7 3

0 x 0 0 0 0 0 0 LENGTH IN
46 42 38 34 30 26 ~ 18 MLI WORDS OR 6 2

0 0 0 0 0 0 0 0 CHARACTERS
I I

45 41 37 33 29 25 21 17 13 9 5 1

0 0 0 0 0 0 0 0
44 40 36 32 28 24 ~ 16 12 8 4 0

X = 1 or 0
iviV4206

Figure 11-22. IOCB MLIP Current 1/0 Length Word Layout

11-22

B 6900 System Reference Manual
Input Output Device Operations

If this 1/0 operation is a word-oriented data transfer; then the integer value in t..lie CL word represents the number of
16Qbit bytes of data yet to be transferred over the MU interface. If this 1/0 operation is a character-oriented data
transfer, then the integer value in the CL word represents the number of 8-bit bytes yet to be transferred over the MLI
interface.

The integer value in the CL word can be a negative value (bit-46 = 1) if the Continue-Count-At-End-Of-Length bit in
the CW word is SET (see the definition of bit-13 for word ZERO of the IOCB).

IOCB MLIP State and Result Word

Figure 11-23 shows the MLIP State And Result Word (word 11). The MLIP State And Result word (HRSLT) is a
formatted operand that contains the micro-module state and MLIP status report for an 1/0 operation. The MCP
initializes the HRSLT word in the IOCB to all-zeroes. The MLIP logic of the micro-module causes the fields of the
HRSLT word to be initialized at the beginning of an 1/0 operation and updates the fields of the HRSLT word each
time the IOCB is accessed. At the conclusion of an 1/0 operation, the values of the fields in the HRSLT word repre­
sent the accumulated status information from all of the hardware circuits and modules used during the entire 1/0
operation.

0 0
47 43 39 35 31 27 19 15 11 7 3

I
0 S 0 0 MLIPAND /OR MLI

11--_ MLIP MICROMODULE~ e _ 1 26 ~ 181 141 10 6 MLIP
'STATE COUNT p T ERROR - FIELD

0 I I I u 0 I I RESULT

1 ° 1 :i :i :1 ::i J 0 :i :1 ::i ::t :r Fir ~I
MV4207

Figure 11-23. IOCB MLIP State and Result Word Layout

STATE AND RESULT WORD BIT AND FIELD DEFINITIONS

Following are the field/bit definitions for the IOCB State and Result word:

Bits [47: 16]:

Bits [31 :32] :

Bits [31:4]:

Bits [27:6T:

5010986

MLIP State. This field contains the current micro-module address value. The MLIP must
remember the micro-module address in case an error occurs in the niicro-module while it is
performing an MUr sequence. The micro-moduie address is reported in the P-3 Interrupt
Parameter for all interrupts originating in the MLIP module.

The micro-module logic for the MLIP updates the State Count field in the State And Result
word of the IOCB each time the IOCB is accessed during an 1/0 operation.

MLIP Result. This field contains result status from the DLP, MLIP/MLI, and MLIP opera­
tions. The following is a list of all bits in this field and their usage:

DLP Status Field. If bit-16 is SET, this field contains the DLP status returned at the time of
the error.

This field must be zero.

11-23

Bits [21:16]:

Bit 21:

Bit 20:

Bit 19:

Bit 18:

Bit 17:

Bit 16:

Bit 15:

Bit 14:

Bit 13:

Bit 12:

Bits [11 :4] :

Bit 7:

Bit 6:

Bits [5:6]:

Bit 5:

Bit 4:

11-24

B 6900 System Reference Manual
Input Output Device Operations

MLIP/MLI Error Field. The meaning or usage of each bit in this field is described below.

Invalid MLIP Command. If this bit is SET, it indicates a wrong combination of bits SET in
the MLIP Command field of the IOCB Control Word.

MU Time-out. If this bit is SET, it means the MLIP timed-out during an operation using the
MLI interface. Either a OLP strobe was not returned to the MLIP within 8-milliseconds, or
the UIO-OLP was busy for more than 2-seconds.

MLIP hung the OLP. If this bit is SET, it means the MUP attempted to hang the OLP in
response to a DLP-error.

OLP Busy. If this bit is SET, it means the MLIP, while attempting to connect to this OLP,
has found the OLP busy and cannot place the IOCB in a horizontal queue.

Non-present OLP. If this bit is SET, it means the MLIP attempted to connect to a OLP that
is not present.

Unexpected OLP Status. If this bit is SET, it means the OLP presented the MLIP with a
status other than the one expected. In this condition the MLIP disconnects and leaves the
OLP hung.

MU LPW Error. If this bit is SET, it indicates the MLIP has detected incorrect longitudinal
parity on the MU interface.

MU Vertical Parity Error. If this bit is SET, it indicates a parity-error detected on a word
being transferred over the MU interface.

Invalid MUP Control Field. If this bit is SET, it indicates a wrong combination of bits in the
MLIP Control field; that is, TAG-TRANSFER with character-oriented 1/0.

Improper IOCB Word. If this bit is SET, it indicates an error in the format of an IOCB word.

IOCB Index. The bits on in this· fieid point to the incorrect word in the IOCB, when Bit-12
is SET. For example, Bits [11:4) = 9 indicates the next IOCB Link word (word number nine)
containing an error.

Count Error. If this bit is SET, it means the Input or Output bit in the MUP Control field
was SET and the Current Length bit was not equal to ZERO at the end of the I/O. This bit
will not be SET if the Ignore Count Error bit is SET in the MUP Control field.

Memory Protect. If this bit is SET, it indicates an attempt to transfer a word to the DlP with
an odd TAG, or to Overwrite a word with an odd TAG on input when the Memory Override
bit is RESET in the MLIP Control field.

MUP Result Field. This field contains the overall results of an MLIP operation. The definition
of each bit follows.

Completed After Queue Suspended. If this bit is SET, it means the 1/0 finished while the
Command Queue was marked as suspended.

MLIP/Hardware Error. If tliis bit is SET, it means the MLIP detected an error and the param­
eters and error infom1ation will be reported through the Error IOCB.

Bit 3:

Bit 2:

Bit 1:

Bit 0:

B 6900 System Reference Manual
Input Output Device Operations

MLIP/MLI Error. If this bit is SET, it indicates a bit SET in the MLIP/MLI Error field [21 :16].

DLP error. If this bit is SET, it means a bit in the first 48 bits of the DLP result descriptor is

on after ANDing the DLP result descriptor with the Result Mask.

Attention. If this bit is SET, it means the Software Attention was SET in the MLIP Control
field.

Exception. If this bit is SET, it means that another bit in the MLIP Result field [5:5] is SET.

IOCB 1/0 Start Time Word

Figure 11-24 shows the 1/0 Start Time word (word 13). The 1/0 Start Time word (STIME) is a formatted integer value
word that contains a Time-Of-Day value. The MLIP logic causes the Time-Of-Day to be SET in this word when the 1/0
device is initiated into operation. The Time-Of-Day value indicates the 24-hour clock time at the beginning of the 1/0
operation, in 2.4 microseconds increments.

0 0 0 0
47 43 J9 35 31 27 23 19 15 11 7 3

0 0 0 0 I I I I I
46 ~2 38 TIME-OF-DAY VALUE IN 2.4 6 2

331
MICROSECOND INCREMENTS

0 0 0 l 0 I

45 41 37 29 25 2J 17 13 9 5 1

o I I
I

I I 0 0 I 0 I I I I I ! I
I

I I 441 20] al
MV4208

Figure 11-24. IOCB 1/0 Start Time Word Layout

IOCB 1/0 Finish Time Word

Figure 11-25 shows the I/O Finish Time word (word 14). The 1/0 Finish Time word (FTIME) is similar to 1/0 Start
Time word (STIME), except that where 1/0 Start clocks the initialization of an 1/0 operation, 1/0 Finish Time clocks the
termination of an I/O operation. The Time-Of-Day value for FTIME has the same accuracy as that for STIME.

0 0 0 0 T
47 43 J9 35 i1 27 23 19 151 11 7 J

0 0 0 0
I

1/0 FINISH TIME
46 42 38

-IN 2.5 MICROSECOND 6 2

0 0 0 0 J INCREMENTS
I

45 41 37 29 25 2tl 1.7 13 9 5 I

1
0 0 0 0

44 40 36 32 28 .1.4 201 16 12 _6_ 4 _Q_

MV4209

Figure 11-25. IOCB Finish Time Word layout

5010986 11-25

B 6900 System Reference Manual
Input Output Device Operations

COMMAND QUEUE ORGANIZATION AND WORD LAYOUTS

A Command Queue is an organization of IOCBs that are scheduled to be executed, but have not yet been initiated. The
location of a Command Queue in system memory is an MCP software control function that is specified in CQHP (word 2)
of the IOCB when control of the IOCB is passed to the MLIP by execution of the CUIO operator.

Manipulation of the contents of a Command Queue is a function of the logic for the MUP. While an IOCB is
ENQUEUEd in a Command Queue, the B 6900 system software does not touch the IOCB. When the 1/0 operation
specified by an IOCB is terminated, the MUP links the IOCB into the Result Queue specified in RQHP (word 8) of the
IOCB. Manipulation of the contents of a Result Queue is a function of the system software. While an 1/0 operation
is in process, the IOCB for the operation is not part of a queue in memory; it is an independent area that is referenced
by an address in the UIO-DLP.

Figure 11-26 shows the word organization of a Conunand Queue. Each of the words that are present in the Command
Queue are defined in subsequent paragraphs.

Word Mnemonic Word Contents

0 [CW Control Word

[HEAD] HEAD IOCB LINK

2 [TAIL] TAIL IOCB LINK

3 [HQHP] HORIZONTAL QUEUE HEAD POINTER

4 [HQL HORIZONTAL QUEUE LINK I
Figure 11-26. Conunand Queue Word Format and Layout

Command Queue Control Word

The Conunand Queue Control Word (CW) is a formatted operand that is used to identify the first word in a Command
Queue. The CW contains data used by the MLIP logic to monitor and control its activity with the IOCBs that are
linked into this particular Command Queue. Figure 11-27 shows the Command Queue Control Word (word zero).

0 0 1 1
47 43 39 35 31 27 23 19 15 11 7 3

0 0 0 1 1
4S 42 38 34 INACTIVE~ ~ACTIVE~ r-ACTIVE~ 1-CONTROL

COUNT COUNT LIMIT FIELD
0 0 0 0 0

2J 51 45 41 37 33 29 25 17 13 9 1

1 .. 1 I 0
361

0
1 T 0 0

20l 41 401 3] 28 24 1_§ 12 8 0

MV4210

Figure 11-27. Command Queue Control Word Layout

11-26

B 6900 System Reference Manual
Input Output Device Operations

The B 6900 system software control program (MCP) initializes the monitor and control values of the Control Word,
when it establishes the Command Queue in system memory. The logic of the MLIP normally updates the values of the
Control Word when an IOCB is linked into the queue, and when an IOCB is delinked from the queue (see exceptions
specified by bits-15/16 of IOCB word zero, CW).

COMMAND QUEUE CONTROL WORD BIT DEFINITIONS

The meaning of the fields in a Command Queue Control Word are as follows:

Bits f 47:16]:

Bits [31:8]:

Bits [24:8] :

Bits [16:8]:

Bits [7:8]:

Bit 2:

Bit 1:

Bit 0:

5010986

Command Queue Header Mark. This field contains 4"10CC", and is used by the MLIP to
identify this word as the first word of a Command Queue (see the Mark explanation NOTE
for word zero [CW] of the IOCB word layout, in Figure 11-10).

Inactive Count. This field contains the number of IOCB's that are currently linked into this
Command Queue, but have not yet been activated by the MLIP.

Active Count. This field contains the number of IOCB's that are linked into this Command
Queue, and are currently being processed by the MLIP.

Active Limit. This field contains a non-zero value (initialized by .the MCP, and not changed
by the MLIP) which is the maximum number of IOCB's that can be normally active in this
Command Queue at any given timeo The Immediate-bit of an IOCB (word zero) CW is the
basis for an exception to the normal Command Queue Limiting procedures.

Control Field Bits

These bits must be ZERO

Horizontal Queue Present. If _this bit is Set, it means this Command Queue can be linked as
a Horizontal Queue. This bit is used in a manner consistent with the definition of a Horizontal
Queue Head Pointer (word 3, HQHP, below).

Waiting. If this bit is SET, it means this Command Queue has been dynamically linked into a
Horizontal Queue.

Suspended. If this bit is SET, the MLIP only initiates an IOCB linked into this Command
Queue if its Immediate-bit is SET. The Suspended-bit is SET by the MLIP logic when an 1/0
in this Command Queue finishes with an error, or when the Global MLIP Suspend-All-Queues
flag is SET and the Ignore-Suspend-All-Queues flag of an IOCB in this Command Queue is
RESET.

11-27

B 6900 System Reference Manual
Input Output Device Operations

Command Queue Head IOCB Link Word

Figure 11-28 shows the Command Queue Head IOCB Link word (word 1). The Command Queue Head Link word
(HEAD) is initialized by the MCP when the Command Queue is formed, as a formatted operand with all bits equal to
ZERO.

When an IOCB is linked into this Command Queue, the logic of the MLIP causes the initial formatted operand (ieft by
the MCP) to be replaced by a present, unsegmented, unindexed word Data Descriptor pointing to the first IOCB in the
Command Queue. The Head Link word always points at the first IOCB in the Command Queue; therefore, if a subse­
quent IOCB is ENQUEUEd at the head of this Command Queue, the Head Link word is replaced by a new Head IOCB
link word which points at the new first IOCB in the Command Queue.

1 I 1 T I

r I

1 0 I I ,I i . J..: { -- -_ _! 1~
I

41 4J J9 ---~It-- __ L!. r -- - ~~!
,,,;

1 lt . · 1 - ·--- . --+-----1
I I I
I I

:
1 x 0 I !

!•1-
I

otr
J81

(LENGTH) --~--
.).,

(ADDRESS)
t1

1
.. '

+ - - ~~ - - -t-----1
I

0
I IN WORDS OF FIRST IOCB I

4~ 41 JI JI! ... _,I ~~I ~, 11 1 IN THIS QUEUE 1;· _ 1
. -- - ---1 . --·r ; I ~ ·-

1 0 0
. i I

i 2J I I

44j 40 J6 32' 21:) 20 1t.1 1.'I 0 4 I u

MV4211
X = 1or0

Figure 11-28. Command Queue Head IOCB Link Word Layout

Command Queue Tail IOCB Link Word

Figure 11-29 shows the Command Queue Tail IOCB Link word (word 2). The Tail IOCB Link word (TAIL) is initialized
by the MCP as a formatted operand with all bits SET to zeroes. When an IOCB is ENQUEUEd in this Command Queue,
the logic of the MLIP replaces the formatted operand word (left by the MCP) with a present, unsegmented, unindexed
word Data Descriptor that points at the last IOCB in the Command Queue. If a subsequent IOCB is ENQUEUEd at the
tail of the Command Queue, the MLIP replaces the Tail IOCB Link word with a new link word that points at the last
IOCB, newly ENQUEUEd in the Command Queue.

1

41 43 39

T I 1 Jl "]J

19

1 1-t- '1

(LENGTH) J6 22
Hl+ (ADDRESS). ti+

O O O IN WORDS OF LAST IOCB IN
___ ..____4,....5f--__ 41 ___ 3-+' __ 3_Jl ___ m ----~ ___ 2 1 f--_,_11 .. __ T_H--..-IS __ QUEUE __ ,

J
I I l' I ''1 -1 I

36. 321 21:) 24 20 161 12 81 41

1 0

x 0
46 42

1 0
40 0

MV4212 X = 1 or 0

Figure 11-29. Command Queue Tail IOCB Link Word Layout

11-28

B 6900 System Reference Manual
Input Output Device Operations

Corrm1and Queue Horizontal Queue Head Pointer Word

Figure 11-30 shows the Command Queue Horizontal Queue Head Pointer (word 3) word. Tne Horizontal Queue Head
Pointer (HQHP) word is initialized by the MCP as either a formatted operand (with all bits zeroes), or as a present,
unsegmented, indexed word Data Descriptor.

If the Horizontal Queue Head Pointer word is a formatted operand then this Command Queue cannot be horizontally
queued. A Horizontal Queue Head Pointer word is never change}! after initialization. This status is estabiished by the
MCP and is never changed, regardless of any capability of the Command Queue to be horizontally queued.

If the Horizontal Queue Head Pointer is a word Data Descriptor, it points to a Horizontal Queue Head in the Horizontal
Queue Array. This status marks this Command Queue with the capability of being horizontally queued.

I
: T ! :

1 0 I i
I

_l.'._t
:

4 / 4J J'I I ~ , j .: • 1 I l 1·•! ,, 11 __ __._, --+- + t -+ r +
I I I
I I I I

1 x I 0 I I
I I I I

45! 42 JH '.
(LENGTH) ib{ ,, 1 r;!

(ADDRESS) - ~ t ~- -----;- ~----+ ~~ t --~
I I

0 0 I 0
I IN WORDS ;

OF NEXT HORIZONTAL I I I . ·1-- _;.>
I "I ~EAD IN SEQUENCE ~ J: \\ .. ~ .. : •• 1 ,

-·- - - r ·-t

r
. 'i --

i I

1 0 ! 0 !

.:dl
I I i : .:~l I I

44 40 Jt.Jj J.'. .'ll 11,: (' -l

X = 1 or 0
MV4213

Figure 11-30. Command Queue Horizontal Queue Head Pointer Word Layout

Command Queue Horizontal Queue Link Word

Figure 11-31 shows the Command Queue Horizontal Queue Link word (word 4). The Horizontal Queue Link word
(HQL) is initialized by the MCP, as a formatted operand (with all bits equal to zeroes). The MLIP subsequently replaces
the formatted operand with a present, unsegmented, unindexed word Data Descriptor, to dyna..111ically link Command
Queues into the Horizontal Queue. The MLIP updates the Horizontal Queue Link word, so that it always points to the
first Head word in the horizontal queue.

r--- t---- - ---t --·+ . ~
~

T ' -·--
I I

1 x ! 0 I
I I I
I

2t> t 46' 4} !h
(LENGTH)

,,
~ K 1

(ADDRESS) - ~ t - _:..., ..,______ --- --1 .,__ - ,,_ -t i

0 0 i 0 I IN WORDS
I OF FIRST HEAD WORD

- -~i---- ~, J \ ... ".' "I .·1 IN n~E HO~IZONJAL que_u_f, - t -t t t

I
I

I I

1 0 0 !

.'dl
i I I Jbl I ! 44 4() J ... ' .:oil .'U 1v " -l

l' J , , ~ I 'I J

MV4214
X = 1 or 0

Figure 11-31. Command Queue Horizontal Queue Link Word Layout

5010986 11-29

B 6900 System Reference Manual
Input Output Device Operations

HORIZONTAL QUEUE ORGANIZATION AND WORD LAYOUTS

Figure 11-32 shows the organization of a Horizontal Queue array. A Horizontal Queue array is a dynamic control
linkage used to associate Command Queues for a common UIO-DLP device. Dynamic control means that the number of
Command Queues associated in a Horizontal Queue array depends on the number of I/O operations in process, or waiting
to be processed by the common lHO-DLP.

Word

0

n-1

n

Mnemonic

[HOH

[H01

[HOn-1]

[HOn

Word Contents

HORIZONTAL QUEUE HEADER

HORIZONTAL QUEUE HEAD

HORIZONTAL QUEUE HEAD

HORIZONTAL QUEUE HEAD

Figure 11-32. Horizontal Queue Array Word Format and Layout

The B 6900 system MCP determines whether or not a Command Queue can be horizontally queued (see HQHP, word 3
of Command Queue). If the MLIP ENQUEUEs an IOCB into a Command Queue that contains an HQHP, and if the
UIO-DLP is BUSY when the MLIP subsequently attempts to initiate the I/O operation specified by the IOCB, then the
MLIP logic links the Command Queue into the Horizontal Queue for the UIO-DLP. Command Queues are linked into
a Horizontal Queue on a First-In-First-Out basis. That is, the oldest Command Queue in a Horizontal Queue is linked
by the first Horizontal Queue Head word in the array, and the latest Command Queue is linked by the last Head word
in the array.

When the MLIP links a Command Queue into a Horizontal Queue, it also completes the Command Queue Horizontal
link word (HQL, word 4 of the Command Queue). An HQL word always points to the first Horizontal Queue Head
word in the Horizontal Queue array, and thus associates all Command Queues in the Horizontal Queue. The Command
Queue Horizontal Link word preserves the First-In-First-Out principal for Horizontal Queuing, because the reference
address into the Horizontal Queue always points at the oldest Command Queue Head word in the Horizontal Queue
array.

When a Command Queue linked in a Horizontal Queue is completed, the logic of the MLIP dynamically deletes its
Horizontal Queue Head word from the Horizontal Queue array and moves subsequent Head words in the array up in
priority, to fill the space created by the deletion.

Horizontal Queue Array Header Word

Figure 11-33 shows the Horizontal Queue Header word (word ZERO). The Horizontal Queue Header word (HQH) is a
formatted operand that marks the beginning of a Horizontal Queue array in system memory. The MCP places the
Header word in memory, and the MLIP never accesses this word. The fields of the HQH word are used only for software
purposes.

11-30

47 43 39

0 HORIZONTAL

B 6900 System Reference Manual
Input Output Device Operations

0 0 0
35 31 27 n

0 0 0

l

19 15 11 I 3

I 461 421 381 34 JO 26 22 (QUEUE ARRAY LENGTH)2
HEADER MARK

0 I 0 0 0
I I I I

45 4"10CE" 37 33 29 25 21 1 7 13 9 5 1

0 I 0 0 0
44 401 36 32 -1.8 _1_4 20 16 12 8 4 0

MV4215

Figure 11-33. Horizontal Queue Array Header Word Layout

HORIZONTAL QUEUE HEADER WORD FIELD AND BIT DEFINITION

The fields of the Horizontal Queue Header word are as follow:

.Bits (47:16]: Horizontal Queue Header Mark. This field contains 4"10CE" and is set up by the MCP to
identify this word as a Horizontal Queue Header Word.

Bits [19:20] : Queue Length. This field contains the length of the horizontal queue in words.

Horizontal Queue Head Word

Figure 11-34 shows the Horizontal Queue Head word (words 1 through n). The Horizontal Queue Head word (HQn) is
initialized by the MCP as a formatted operand with all bits zeroed. The MLIP logic replaces the HQn word with a
present, unsegmented, unindexed word Data Descriptor that points at the memory address of the Command Queue
Header (word zero), when a Command Queue is linked into the Horizontal Queue array.

When a horizontally queued Command Queue is completed, the MLIP deletes the HQn word from the Horizontal Queue
array.

1 0 f 1
41 43 39 -1 Jl 21 2J 19 ~~ I J

~-

1 x 0 I I
I 46 42 38 (LENGTH) -~ 22 18

(ADDRESS) 6 J

I

0 0 0 IN WORDS COMMAND QUEUE HEADER
45 41 31 -t--~ ·----~ ..

21 ,,

1J
~I 1

1 0 0
44 40 36 321 2~ 24 20 16 4 0

MV4216
X= 1 orO

Figure 11-34. Horizontal Queue Array Horizontal Queue Head Word Layout

5010986 11-31

MLIP COMMANDS

B 6900 System Reference Manual
Input Output Device Operations

The MCP generates IOCBs for MUP path control logic commands. These commands are not sent to the UIO subsystem;
instead, they are executed by internal logic circuits of the MLIP. Basically, MUP commands establish values of control
logic .parameters that are used by the micro-module while performing other MLIP sequences. By exercising control over
the path selection criteria of the MLIP, the MCP controls t.h.e overall operation of the I/O device subsystem.

The format of an IOCB for an MUP Command is similar to that for an 1/0 device operation, except that bit-I of the
IOCB Control Word (the MUP/DLP-Command bit) is SET. For an 1/0 Command, bit-I is RESET. When the logic of
the MUP INITIATE sequence references the DLP Command Descriptor (through the reference provided in word-4 of
the IOCB) it finds an MUP Command Word instead of an I/O device Command Descriptor. Figure 11-35 shows the
layout of an MUP Command Word.

MARK 4"FO"

1 0 0 0 0 0 0 0 0 0
47 ~ 39 35 31 27 23 19 15 11 1 3

0 1 0 0 0 0 0 0 0 0 0
46 42 MLIP 34 30 26 22 1s 14 10 6 2

0 1 0
COMMAND

0 0 0 0 0 0 0 0
45 41 37 33 29 25 21 17 13 9 5 1

0 1 0 0 0 0 0 0 0 0 0
__M. 40I 36 32 28 24· 20' .1.6J J.2 . B ... J2

MV4217

Figure 11-35. MUP Command Word Layout

The. fields in an MLIP Command Word are as follows:

Bits [47:8]

Bits [39:8]

4"01"

4"02"

4"03"

11-32

MLIP Command Word Flag Field. This field must contain the value 4"FO", to indicate that
this is indeed an MUP Command Word. If the MLIP/DLP-Command bit of the IOCB Control
Word is SET, the INITIATE sequence logic expects to find the Flag-field equal to 4"FO", to
mark this word as an MUP Command Word. If this field is not equal to 4"FO", then an
ALARM interrupt is generated by the Interrupt Controller, and the MUP Command is aborted.
if this field is equal to 4"FOn, then the INITIATE sequence causes the MLIP Command
(indicated by the value of [39:8)) to be executed.

MLIP Command Descriptor Code

Wait For Error (Error-IOCB). The IOCB is identified by this code as an Error-IOCB, and the
MLIP logic writes its absolute memory address in the MUP RAM memory. The MLIP uses
this address whenever its logic requires an Error-IOCB. (To report an error that is not other­
wise reported in another IOCB, refer to MLIP Error-IOCB paragraphs.)

Clear DLP. The MUP Selectively Clears the UIO-DLP device specified in the DLP Address
Word (word-i of the IOCB). After the DLP has been Seiectiveiy Cieared, the IOCB is linked
into the Result Queue specified in word-8 of the IOCB.

General Clear. The ML1P initiates a Master Clear of all MU-Ports. The IOCB is then linked
into the Result Queue specified in word-8 of the IOCB.

4"04"

4"05"

4"06"

4"07''

4"08"

4"09"

0

0

0

MV4218

5010986

47

B 6900 System Reference Manual
Input Output Device Operations

SET Suspend-All-Queues flag. The MUP causes the flag-bit to be SET, and then links the
IOCB into the Result Queue specified in word-8 of the IOCB. The MCP executes this MLIP
Command just before executing a MEMORY-DUMP procedure, to prevent MLIP data in mem­
ory from being changed while the dump procedure is in process.

RESET Suspend-All-Queues Flag. The MUP causes the flag-bit to be RESET, and then links
the IOCB into the Result Queue that is specified in word-8 of the IOCB. The MCP executes
this MUP Command just after a MEMORY-DUMP procedure. The execution of this MUP
Command allows the MUP to resume 1/0 Commands that were interrupted while a dump
procedure was being performed.

Read OLP-Status. The MLIP logic causes a CONNECT-sequence to be performed to the DLP
specified in the DLP Address Word (word-I) of the IOCB. The Result-status that is returned
by the UIO-DLP is written into the MUP State And Result Word (word-12 of the IOCB), 'and
then the IOCB is linked into the Result Queue specified in word-8 of the IOCB.

Activate Queue. The MUP RESETS the Suspended-bit in the Command Queue Header Word
referenced by word-2 of the IOCB. If appropriate the MLIP also initiates the first IOCB in
the Command Queue that is activated. The IOCB that caused the Command Queue to be
activated is then linked into the Result Queue specified by word-8 of the IOCB.

Return Queue. The MLIP accesses the Command Queue referenced by word-2 of the IOCB.
The Head IOCB Link (word-I of the Command Queue) and the Tail IOCB Link (word-2 of
the Command Queue) are RESET to all zeroes. The original Head IOCB Link word value is
placed in the first word referenced by the DLP 1/0 Result Pointer (word-5 of the IOCB). The
IOCB that caused the Conunand Queue to be returned is then liP~ked into the Result Queue
specified by word-8 of the IOCB. A returned Command Queue is not deiinked from a possible
Horizontal Queue into which it may be linked. The Inactive-Count field of the returned
Command Queue Control Word (word ZERO) is RESET to zero.

Read MLIP Status. The MUP formats a word of MLIP Status as shown in Figure I I-36. The
formatted MUP Status word is written into system memory. The memory address of the
status word is referenced by the DLP 1/0 Result Pointer (IOCB, word-5). The IOCB is then
linked into the Result Queue specified by word-8 of the. IOCB.

0 0
tj 39 35 31 27 23 19 15 11 7 3

HOST I

SYSTEM MUP 1-1n~T' 0 0 ML! I l""V I I I

TYPE-S FIRMWARE ,_RETURN 5J 22 18 PORTS PRESENT ~
CODE REV FIELD 0 0

45 41 37 33 29 25 21 17 13 9 5 1

0 0
44 ~ 36 32 28 24 20 16 12 8 4 0

Figure 11-36. MLIP Status Word Layout

11-33

B 6900 System Reference Manual
Input Output Device Operations

RESULT QUEUE ORGANIZATION AND WORD LAYOUTS

Figure 11-37 shows the organization of a Result Queue structure. A Result Q11~~e is the final structure into which the
MLIP links a Command Queue, after the I/O operation specified by the Command Queue has terminated. linking a
Command Queue into a Result Queue returns control of the I/O operation to the B 6900 system software, and deletes
all records of die !/O operation from the logic of the MLIP module.

Word Mnemonic Word Meaning

0 [ROH RESULT QUEUE HEADER

[RQ1 RESULT QUEUE HEAD

?
n-1 [RQn-1] RESULT QUEUE HEAD

n [RQn RESULT QUEUE HEAD

Figure 11-37. Result Queue Word Format and Layout

Result Queue Header Word

Figure 11-38 shows the Result Queue Header Word (word ZERO). The Result Queue Header Word (RQH) is a formatted
operand, used to mark the beginning of a Result Queue in system memory. The MCP initializes the RQH Word, and the
MLIP never accesses this word.

The fields of the Result Queue Header Word are as follow:

Bits [47: 16]:

Bits [19:20]:

0

0

0

MV4219

11-34

47

Result Queue Header Mark. This field contains 4" 1 OCF" and is set up bv the MCP identify
this word as a Result Queue Header Word.

Queue Length. This field contains the length of the result queue.

0 0 0
43 39 35 31 27 2j 19 15 11 7 3

RESULT QUEUE 0 0 0 I
461 421 381 34 30 26 22 (QUEUE ARRAY LENGTH)~
HEADER MARK . I I I I

I 0 0 0 4"10CF" 45 . . 37 33 29 25 21 1 7 13 9 5 1

I 0 0 0
441 I _i_al 161 sl 41 401 36 32 24 20 12 0

Figure 11-38. Result Queue Header Word Layout

Result Queue Head Word

Figure 11-39 shows the Result Queue Head Word (1 through n). This word (RQn) is initialized in system memory by the
MCP as a formatted operand with all bits equal to zeroes. The MLIP delinks a Command. Queue at the termination of
the 1/0 operation, and links the Command Queue into the Result Queue. The procedure the MLIP used to link the
Command Queue into the Result Queue is to replace the formatted operand in the Result Queue with a Result Queue
Head pointer that points at the Command Queue Header word.

1 0
47 43 39 35 31 27 23 19 15 11 7 3

1 x 0 ADDRESS OF
46 42 38 LENGTH 26 2_~ 18 COMMAND QUEUE--1

IN WORDS
0 0 0 HEADER

45 41 37 33 29 25 2~ 17 13 9 5 1

1 0 0
44 40 36 32 28 24 2Q 16J .J.2. jl_ 4 0

X = 1or0
MV4220

Figure 11-39. Result Queue Head Word Layout

ERROR=IOCB WORD FOR.\!ATS .A~1'JD STRUCTURES

There·are three categories of 1/0 operation errors that can be detected by the logic of the MLIP and reported to the
B 6900 software operating system. Two of these error categories have been defined and described previously. They are
(1) hardware errors that affect a single DLP (reported to the software by means of a Result Descriptor), and (2) logical
errors that affect the MLIP (reported to the software by means of the IOCB State And Result Word). The third category
consists of errors that may affect the entire 1/0 subsystem of the B 6900 and, therefore, have no proper place to be
reported in the formats of Result Descriptors and/or IOCB State And Result Words.

An Error-IOCB is a mechanism for reporting errors of the third category. Such errors consist of, but are not limited to,
Invalid Descriptor Link Words and Invalid Queue Words. Third-category type errors· are detected by the logic of the
MLIP micro-module sequences, and cause automatic micro-code error-handling subroutines to be executed by the

micro-module.

Figure 11-40 shows the word layout of an Error-IOCB in system memory. An Error-IOCB must be initialized by the
system software before a third-category error-condition can be reported. 'When an Error-IOCB is present, the absolute
memory address of the first word in the IOCB is stored in the Data Storage section (word 1) of the MLIP RAM memory.

5010986 11-35

Word Mnemonic

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

11-36

'

B 6900 System Reference Manual
Input Output Device Operations

Word Meaning

SYSTEM TYPE, FIRMWARE REV, ERROR-CODE, OLP

ERROR-TYPE (ALARM/HARDWARE INTERRUPT)

MEM. ADDR., GLOBAL PAR., PROM-CARD, MICRO-ADDR.

iC MEM. ADDR. VALUES FOR iRS7 (BUFi, BRS7 (TEMP)

TOP-OF-STACK Z REGISTER VALUE

UNDEFINED

TOP-OF-STACK C REGISTER VALUE

UNDEFINED

WORD IN MICRO-STACK AT MICRO-STACK POINTER ADDR.

WORD IN MICRO-STACK AT MS POINTER +1

WORD IN MICRO-STACK AT MS POINTER +2

WORD IN MICRO-STACK AT MS POINTER +3

UNDEFINED

WORD 0 OF MLIP RAM (MLIP.STAT.REG)

WORD 1 OF MLIP RAM (ERR.IOCB.ADR)

WORD 2 OF MLIP RAM (ERR RSLT ADR)

WORD 3 OF MLIP RAM (WOLP.ADR)

WORD 4 OF MLIP RAM (COLP.ADA)

WORD 5 OF MLIP RAM (HOH.ADR)

WORD 6 OF MLIP RAM (CO.ADR)

WORD 7 OF MLIP RAM (IOCB.ADR)

WORD 8 OF MLIP RAM (CO.OW.1)

WORD 9 OF MLIP RAM (CO.CW.2)

WORD A OF MLIP RAM (HST.RET.FLD)

WORD B OF MLIP RAM {BR.STAT.REG)

WORD C OF MLIP RAM (NOT USED)

WORD D OF MLIP RAM (NOT USED)

WORD E OF M LIP RAM (NOT USED)

WORD F OF MLIP RAM (NOT USED)

CONTENTS OF MLIP REGISTER 3

UNDEFINED

UNDEFINED

Figure i i-40. Error-IOCB Organization And Layout

I

1

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word Zero Layout

Figure 11-41 shows the bit-field layout of the first word in an Error-IOCB. This word defines a B 6900 system MLIP,
the current Firmware Revision of the MLIP micro-module logic, the type of error being reported in the Error-IOCB,
and the UIO-DIP Address of the peripheral device operating when the error occurred.

The usage or meaning of the bit-fields in word ZERO of an Error-IOCB is as follows:

[47:8]

[39:8]

[31 :8]

4"01"

4"02"

4"03"

4"04"

4"05"

4" 1 O"

4"40"

[23:4]

[19:20]

0

0

0

MV4221

5010986

.-1

I

System Type. This field always contains the value 4"01", which identifies the system type as
a B 6900 system.

Firmware Revision. This field contains a literal value from the micro-module, which identifies
the current level of the CPU Micro-code.

Error Code. This field contains a code that identifies the kind of error that is being reported
in this Error-IOCB:

An Invalid Descriptor Link was detected.

An Invalid Global Parameter was detected.

A Descriptor Link I.PW error was detected.

A DI.P Address mismatch error was detected.

A Host Return Field mismatch error was detected.

A Queueing error was detected.

A Memory/Hardware error was detected.

An Error-IOCB was discontinued.

This field must contain all zeroes.

DLP Address. This field contain.s the address-vector through the MU interface Ports to the
peripheral device UIO-DI.P that was operating when the error was detected.

0
.. j 39 35 31 27 2_~ 19 15 11 7 3

I I
SYSTEM FIRMWARE ER00R 0 lDLP !

461 •i 38j 26 ~ 18 ADDRESS 6 2

TYPE REVISION CODE
0

45 41 37 33 29 25 2j 17 13 9 !> 1

0
.... 40 36 32 28 24 20 .tii J.1. -8. 4 0

Figure 11-41. Error-IOCB Word Zero Layout

11-37

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word One Layout

Figure 11-42 shows the layout of an Error-IOCB, word-I. Word-I of an Error-IOCB contains a field that specifies the
type of interrupt that caused the .Error-IOCB to be completed. There are two conditions that can cause an Error-IOCB
to be completed. The first is a hardware failure in the MLIP logic, a PROM card module error, and the second is a
link-Word or Pointer-error that causes an addressing failure within the 1/0 device control parameters of system memory.

0 0 0 0 0 0 0 0 0 0
•7 •3 39 35 31 27 23 19 15 11 7 3

0
ERROR 42

0 0 0 0 0 0 0 0 0 0
38 ~ 30 26 22 18 14 10 6 2

TYPE
0 0 0 0 0 0 0 0 0 0 0

46 41 37 33 29 25 21 17 13 9 5 1

0 d 0 0 0 0 0 0 0 0 0
MV4222 44 40 36 32 28 24 20 16 12 8 4 0

Figure 11-42. Error-IOCB Word One Layout

Error-IOCB Word Two Layout

Figure 11-43 shows the layout of word-2 in an Error-IOCB. This word contains key information that is useful in
reconstructing the MIJP conditions at the time in which the Error occurred. The data contained in this word is as
follows:

[47:20)

[27: I]

[26:3]

[23:4)

[19:8)

[11: 12)

0

0

•7

.t6

46

Last Memory Address. This fieid contains the absolute memory address value of the last
memory access request originated by the logic of the MLIP.

This bit contains a zero.

Global Parameter. This field contains the Global Parameter value for the last POLL REQUEST
sequence performed by the logic of the MLIP.

PROM Card Error Code. This field contains a code-value that identifies the MLIP plug-in
PROM card-module that detected a parity-error condition.

This field contains zeroes.

Micro-module Address. This field contains the micro-module address of the MLIP sequence
in which the Error-IOCB was completed.

0 0 0
43 39 35 31 2_7 2~ 19 15 11 7 3

PROM
G p CARD 0 0

LAST .-2! L A. ERR. 18 1• MICRO-MODULE -R MEMORY ADDRESS 0 A CODE ADDRESS

371 331 B M 0 0 sl sl 41 29 25 21 17 13 1

T I 1 T

MV4223 ..._
0_1_ .. _I _40_1,,36_1 _..._32 __ 1,28_1 --...24_1 _....20_1 ___

0
16......_I ___..

0
12_1 ___.s...._I ___...4...._I _J

Fi!;ure 11-43. Error-IOCB Word-Two Layout

11-38

Error-IOCB Word Three Layout

B 6900 System Reference Manual
Input Output Device Operations

Figure 1144 shows the layout of word-3 in an Error-IOCB. This word contains the contents of 2 JC Memory
Registers, which are used by the logic of the MLIP to process memory request addresses and to perform the mathematics
for incrementing/decrementing 1/0 device data length counts. Figure 11-44 shows the layout of this Error-IOCB word.

0

_;_41+! _
0

_:.4=:t3 _ __;:39-=+---=-J~ __ J l---=--2 '.__--=-=2l;a.. _ ____:_,.::: 9 ~-- ,>l---4--____ 1TI--, __ J

o o o CONTENTS OF CONTENTS OF
.__ __ _.__ _ __;46'+---'--=4z4-___.:38c...+- IC MEMORY 22 1s IC MEMORY

REGISTER REGISTER I
BUF (I RS7) TEMP (BRS7) :

13 9l ~1
0 0 0

33 ,,

J]_•

21 37 45 41

0 J J 0 0
·"- 401 ~41 ')(_ 1.6 16.

MV4224
Figure 11-44. Error-IOCB Word Three Layout

Error-IOCB Word Four Layout

Figure 11-45 shows the layout of word-4 in an Error-IOCB. This word of the Error-IOCB contains the contents of the
Top-of-Stack Z Register at the time when the Error-IOCB was completed. The logic of the MLIP utilizes the Z Register
to process data between the MLIP and system memory .

......... ~_4_7t--~-43+-~-39;---~-3~:,______;J~1-t-~2~'t-~=23+--~~19=-t-~ ,J __ ,~, 3

C~NTE~TS Oi THE ~OP-O:F-STA~K Z ~EGIJER 1
9

°i -H
41 l 3 7 3J 29 2!) 21 17 13 1 ~ 1

0

0

46

45

0 T l
4ol 36 321 20 24 20 16 12 al 4 44 0

MV4225

Figure 11-45. Error-IOCB Word Four Layout

5010986 11-39

-,

Error-IOCB Word Six Layout

B 6900 System Reference Manual
Input Output Device Operations

Figure 11-46 shows the layout of word-6 of an Error-IOCB. This word of the Error-IOCB contains the contents of the
Top-of-Stack C Register when the Error-IOCB was completed. The logic of the MLIP utilizes the C Register to process
data· between the MLIP and system memory.

Figure 11-46. Error-IOCB Word Six Layout

Error-IOCB Word-8 Through Word-11 Layout

Figure 11-47 shows the layout of word-8 through word-11 of an Error-IOCB. These Error-IOCB words, containing the
4 most recent words written in ihe MLIP RAM Micro-stack section represent data used by the micro-module to manage
the MLIP micro-code sequence subroutines. They are valuable for error analysis because they indicate the MLIP
sequences that preceded the error IOCB condition. Word-8 of the Error-IOCB contains the most-recent micro-code
word that was written into the Micro-stack section of the MLIP RAM. Word-9 of the Error-IOCB contains the next­
most-recent word written into the Micro-stack section; word-10 holds the second-from-most-recent word in the Micro­
stack section; and word-11 contains the third-from-most/ word in the Micro-stack section.

0 0 0 0 0 0 0 0 I 0
1.1 43 39 35 31 27 23 19 15 11 7 3

0 0 0 0 0 0 0 0 0 0 ONE OF 4MOST
46 42 38 34 30 26 22 18 14 RECENT WORDS.

IN MLIP RAM
..

0 0 0 0 0 0 0 0 0 0 MICRO-ST ACK
45 41 37 33 29 25 21 17 13 gJ sl 1

- I\ T T 0 0
401 ° I . 36 u 321

0
201

MV4227

Figure 11-47. Error-IOCB Word-8 Through Word-11 Layout

11-40

•

B 6900 System Reference Manual
Input Output Device Operations

Error-IOCB Word-13 Through Word-28 Layout

Figure 11-48 shows the layout of word-13 through word-28 of an Error-IOCB. These words contain the first 16-words
from the MLIP RAM, which are the Data-Register section. These words contain the specificaitons from the IOCB, for
the I/O device operation in process when the Error-IOCB was completed.

0 0 0 0 0 0 0
47 43 39 35 31 27 2~ 19 15 11 1 3

0 0 0 0 0 0 0 0 WORDOTHROUGH16FROM

46 42 38 34 30 26 22 THE DATA-REGISTER 2
SECTION OF THE MLIP RAM -

0 0 0 0 0 0 0 0 (IOCB SPECIFICATIONS)
45 41 37 33 29 25 21 17 13 9 5 1

0 0 0 0 0 0 0 0
44 40 36 32 28 24 20 16 12 8 4 0

MV4228

Figure 11-48. Error-IOCB Word-13 Through Word-28 Layout

Error-IOCB Word-29 Layout

Figure 11-49 shows the layout of word-29 in an Error-IOCB. This word contains the value of MLIP hardware
Register-3. Register-3 of the MLIP contains the initial and remaining I/O operation LENGTH count. Each time 16-bits
of peripheral data are transferred between the MLIP and system memory, the value of Register-3 is incremented/
decremented so that it contains the instantaneous value of remaining 16-bit bytes to be transferred. The value of
word-29 in the Error-IOCB is therefore the number of 16-bit bytes of data not yet transferred when the MLIP com­
pleted the Error-IOCB.

0 0 0 0 0 0 0
47 43 39 35 31 27 ~ 19 15 11 7 3

0 0 0 0 0 0 0 0 VALUE
. 46 42 38 34 30 26 2~ OF MLIP HARDWARE~

0 0 0 0 0 0 0 0 REGISTER-THREE

171 • ..I sl ~J 45 ~~ 37 33 29 25 2~ ... 1

MV4229

Figure 11-49. Error-IOCB Word Layout

5010986 1141

B 6900 System Reference Manual
Input Output Device Operations

GLOSSARY OF MLIP/UIO OPERATING TERMS

The following are some miscellaneous terms and mnemonics useful in understanding MLIP/IOOC concepts:

11-42

MUP

IODC

IOCB

CUIO

IOCB MARK

ERROR IOCB

MU

MLIP/CPU
"INTERFACE

MLIP/UIO
INTERFACE

DLP

POLL TEST

POLL
REQUEST

GLOBAL
PRIORITY
WORD

COMMAND
QUEUE

RESULT QUEUE

COMMAND
QUEUE HEADER

RESULT QUEUE
HEADER

Message Level Interface Processor - protion of CPU logic which controls operations between
the Data Processor and the IOOC and its associated DLP's

Input Output Data Communication - subsystem utilized for 1/0 and Datacomm operations,
common to the MU interface specifications.

Input Output Control Block - a contiguous area of memory containing the necessary
information for the performance of an 1/0 or MUP operation.

Communicate with Universal 1/0 - a variant mode operator (954C) which starts an operation
to the MLIP or IOOC using a data descriptor found in the top of the stack pointing to the
first word of the IOCB.

A value of 4"10CB" found in [47: 16] of the first word in an IOCB used by the logic to
verify this is actually the first word of an IOCB.

An IOCB set aside by the MCP to be used by the MLIP to terminate an 1/0 operation when
normal error termination is not possible.

Message Level Interface - a 25 line bidirectional interface between the MUP and the IODC
containing data and control information.

Connection between CPU and MLIP, primarily Zl bus, ZS bus, C register, and micro-module
address lines.

Connection between IODC and MUP called MU.

Data Link Processor - a specialized micro-processor used to transfer information to and from
a peripheral device.

Process of MLIP connecting to IODC.

Process of IOOC reconnecting to MUP following operation initiated by MUP.

A word returned to MLIP during POLL REQUEST indicating priority of each DLP requesting
connection to the MLIP.

A linking together of IOCB's in the order in which they will be performed.

A linking together of IOCB's as the 1/0 operation is completed.

A structure used to maintain the current state of a command queue.

A structure used to maintain the current state of the completed I/O operations.

B 6900 System Reference Manual

APPENDIX A

OPERATORS, ALPHABETICAL LIST

Hexa-
Decimal

Name Mnemonic Code

ADD ADD 80
BIT RESET BRST 9E
BIT SET BSET 96
BRANCH FALSE BRFL AO
BRANCH TRUE BRTR Al
BRANCH UNCONDITIONAL BURN A2
CHANGE SIGN BIT CHSN 8E
COMPARE CHARACTERS EQUAL DESTRUCTIVE CEQD F4
COMPARECHARACTERSEQUAL,UPDATE CEQU FC
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE CGED Fl
COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE CGEU F9
COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD F2
COMPARE CHARACTERS GREATER, UPDATE CGTU FA
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE CLED F3
COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU FB
COMPARE CHARACTERS LESS, DESTRUCTNE CLSD FO
COMPARE CHARACTERS LESS, t.JPDATE CLSU F8
COMP ARE CHARACTERS NOT EQUAL, DESTRUCTIVE CNED FS
CONTROL UNIVERSAL INPUT OUTPUT CUIO 95C4
COMP ARE CHARACTERS NOT EQUAL, UPDATE CNEU FD
CONDITIONAL HALT (all modes) HALT DF
COUNT BINARY ONES CBON 9SBB
DELETE TOP-OF-STACK DLET BS
DISABLE EXTERNAL INTERRUPT DEXI 9547
DIVIDE DIVD 83
DOUBLE LOAD A DLA EO
DOUBLE LOAD A INCREMENT DLAI E9
DOUBLE LOAD B DLB E2
DOUBLE LOAD B INCREMENT DLBI EB
DOUBLE LOAD C DLC E4
DOUBLE LOAD C iNCREMENi DLCI ED
DOUBLE STORE A DSA F8
DOUBLE STORE A INCREMENT DSAI F9
DOUBLE STORE B DSB FA
DOUBLE STORE B INCREMENT DSBI FB
DOUBLE STORE C DSC FC
DOUBLE STORE C INCREMENT DSCI FD
DUPLICATE TOP-OF-STACK DUPL B7
DYNAMIC BIT RESET DBRS 9F
DYNAMIC BIT SET OBST 97
DYNAMIC BRANCH FALSE DBFL AB
DYNAMIC BRANCH TRUE DBTR A9

5010986 A-1

B 6900 System Reference Manual
Operators, Alphabetical List

Name Mnemonic

DYNAMIC BRANCH UNCONDITIONAL DBUN
DYNAMIC FIELD INSERT DINS
DYNA...\fIC FIELD ISOLATE DISO
DYNAMIC FIELD TRANSFER DFTR
DYNAMIC SCALE LEFT DSLF
DYNAMIC SCALE RIGHT FINAL DSRF
DYNAMIC SCALE RIGHT ROUND DSRR
DYNAMIC SCALE RIGHT SAVE DSRS
DYNAMIC SCALE RIGHT TRUNCATE DSRT
ENABLE EXTERNAL INTERRUPTS EEXI
END EDIT (edit mode) ENDE
END FLOAT (edit mode) ENDF
ENTER ENTR
EQUAL EQUL
ESCAPE TO 16-BIT INSTRUCTION VARI
EVALUATE EVAL
EXCHANGE EXCH
EXECUTE SINGLE MICRO, SINGLE POINTER
UPDATE EXPU
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD
EXECUTE SINGLE MICRO, UPDATE EXSU
EXIT EXIT
EXTENDED MULTIPLY MULX
FIELD INSERT INSR
FIELD ISOLATE ISOL
FIELD TRANSFER FLTR
GREATER THAN GRTR
GREATER THAN OR EQUAL GREQ
IDLE UNTIL INTERRUPT IDLE
INDEX INDX
INDEX AND LOAD NAME NXLN
INDEX AND LOAD VALUE NXLV
INPUT CONVERT, DESTRUCTIVE ICVD
INPUT CONVERT UPDATE ICVU
INSERT CONDITIONAL (edit mode) INSC
INSERT DISPLAY SIGN (edit mode) INSG
INSERT MARK STACK IMKS
INSERT OVERPUNCH (edit mode) INOP
INSERT UNCONDITIONAL (edit mode) INSU
INTEGER DIVIDE IDIV
INTEGERIZE, ROUNDED NTGR
INTEGERIZE, TRUNCATED NTIA
INTEGERIZE, ROUNDED DOUBLE-PRECISION NTGD
INVALID OPERA TOR (all modes) NVLD
LEADING ONE TEST LOG2
LINKED LIST LOOKUP LLLU
LESS THAN LESS
LESS THAN OR EQUAL LSEQ
LIT CALL ONE ONE

A-2

Hexa-
Decimal
Code

AA
9D
9B
99
Cl
C7
C9
cs
C3
9S46
DE
DS
AB
BC
9S
AC
B6

DD
D2
DA
A3
SF
9C
9A
98
8A
89
9S44
A6
AS
AD
CA
CB
DD
D9
CF
D8
DC
84
87
86
9S87
FF
9S8B
95BD
88
8B
Bl

Name

LIT CALL ZERO
LIT CALL 8-BITS
LIT CALL 16-BITS
LIT CALL 48-BITS
LOAD
WADA
LOAD A INCREMENT
WADB
WAD B INCREMENT
WADC
WAD C INCREMENT
LOAD TRANSPARENT
LOGICAL AND
LOGICAL EQUAL
WGICAL EQUIVALENCE
LOGICAL NEGATE
LOGICAL OR
MAKE PROGRAM CONTROL WORD
MARK.STACK
MASKED SEARCH FOR EQUAL
MOVE CHARACTERS (edit mode)

B 6900 System Reference Manual
Operators, Alphabetical List

Mnemonic

ZERO
LT8
LT16
LT48
LOAD
LDA
LDAI
LDB
LDBI
LDC
LOCI
WDT
LAND
SAME
LEQV
LNOT
LOR
MPCW
MKST
SRCH
MCHR

MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU
MOVE TO STACK MVST
MOVE WITH FLOAT (edit mode) MFLT
MOVE WITH INSERT (edit mode) MINS
MULTIPLY MULT
NAME CALL NAMC
NO OPERATION (all modes) NOOP
NORMALIZE NORM
NOT EQUAL NEQL
OCCURS INDEX OCRX
OVERWRITE DESTRUCTIVE OVRD
OVERWRITE NON-DESTRUCTIVE OVRN
PACK DESTRUCTIVE PACD
PACK UPDATE PACU
PUSH DOWN STACK REGISTERS PUSH
READ AND CLEAR OVERFLOW FLIP-FWP ROFF
READ CENTRAL PROCESSOR COUNTER RCPC
READ COMPARE FLIP-FLOP RCMP
READ PROCESSOR IDENTIFICATION WHOI
READ PROCESSOR REGISTER RPRR
READ TAG FIELD RTAG
READ TIME OF DAY RTOD
READ TRUE/FALSE FLIP-FLOP RTFF
READ WITH LOCK RDLK
REMAINDER DIVIDE RDIV
RESET FWAT (edit mode) RSTF
RETURN RETN
ROT ATE ST ACK DOWN RSDN

5010986

Hexa-
Decimal
Code

BO
B2
B3
BE
BD
EO
El
E2
E3
E4
ES
95BC
90
94
93
92
91
BF
AE
95BE
D7
D6
95AF
Dl
DO
82
40=>7F
FE
958E
8D
9585
BA
BB
DI
D9
B4
D7
9540
95B3
954E
95B8
9SBS
9SA7
DE
9SBA
85
D4
A7
9SB7

A-3

B 6900 System Reference Manual
Operators, Alphabetical List

Name Mnemonic

ROTATE STACK UP RSUP
RUNNING INDICATOR RUNI
er AT D T D"C''T'
..;l'V.M..L,,.L,, .L,,.L,,J. J. SCLF
SCALE RIGHT FINAL SCRF
SCALE RIGHT ROUNDED SCRR
SCALE RIGHT SA VE SCRS
SCALE RIGHT TRUNCATE SCRT
SCAN-IN SCNI
SCAN-OUT SCNO
SCAN WHILE EQUAL, DESTRUCTIVE SEQD
SCAN WHILE EQUAL, UPDATE SEQU
SCAN WHILE FALSE, DESTRUCTIVE SWFD
SCAN WHILE FALSE, UPDATE SWFU
SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE SGED
SCAN WHILE GREATER OR EQUAL, UPDATE SGEU
SCAN WHILE GREATER, DESTRUCTIVE SGTD
SCAN WHILE GREATER, UPDATE SGTU
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED
SCAN WHILE LESS OR EQUAL, UPDATE SLEU
SCAN WHILE LESS, DESTRUCTIVE SLSD
SCAN WHILE LESS, UPDATE SLSU
SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED
SCAN WHILE NOT EQUAL, UPDATE SNEU
SCAN Wi-IILE TRUE, DESTRUCTIVE SWTD
SCAN WHILE TRUE, UPDATE SWTU
SET DOUBLE TO TWO SINGLES SPLT
SET EXTERNAL SIGN SXSN
SET INTERVAL TIMER SINT
SET PROCESSOR REGISTER SPRR
SET TAG FIELD STAG
SET TO DOUBLE-PRECISION XTND
SET TO SINGLE-PRECISION, ROUNDED SNGL
SET TO SINGLE-PRECISION, TRUNCATED SNGT
SET TWO SINGLES TO DOUBLE JOIN
SKIP FORWARD DESTINATION
CHARACTERS (edit mode) SFDC
SKIP FORWARD SOURCE CHARACTERS (edit mode) SFSC
SKIP REVERSE DESTINATION
CHARACTERS (edit mode) SRDC
SKIP REVERSE SOURCE CHARACTERS (edit mode) SRSC
STEP AND BRANCH STBR
STORE A STA
STORE A INCREMENT STAI
STORE B STB
STORE B INCREMENT STBI
STOREC STC
STORE C INCREMENT STCI
STORE DESTRUCTIVE STOD
STORE NON-DESTRUCTIVE s'T'l"\11.T

lVl'll

A4

Hex a-
Decimal
Code

95B6
9541
co
C6
C8
C4
C2
954A
954B
95F4
95FC
95D4
95DC
95Fl
95F9
95F2
95FA
95F3
95FB
95FO
95F8
95F5
95FD
95D5
95DD
9543
D6
9545
95B9
95B4
CE
CD
cc
9542

DA
D2

DB
D3
A4
FO
Fl
F2
F3
F4
F5
B8
B9

B 6900 System Reference Manual
Operators, Alphabetical List

Name Mnemonic

STRING ISOLATE SISO
STUFF ENVIRONMENT STFF
SUBTRACT SUBT
TABLE ENTER EDIT, DESTRUCTIVE TEED
TABLE ENTER EDIT, UPDATE TEEU
TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND
TRANSFER UNCONDITIONAL, UPDATE TUNU
TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD
TRANSFER WHILE EQUAL, UPDATE TEQU
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE TGED
TRANSFER WHILE GREATER OR EQUAL, UPDATE TGEU
TRANSFER WHILE GREATER, DESTRUCTIVE TGTD
TRANSFER WHILE GREATER, UPDATE TGTU
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED
TRANSFER WHILE FALSE, DESTRUCTIVE TWFD
TRANSFER WHILE FALSE, UPDATE TWFU
TRANSFER WHILE TRUE, DESTRUCTIVE TWTD
TRANSFER WHILE TRUE, UPDATE TWTU
TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU
TRANSFER WHILE LESS, DESTRUCTIVE TLSD
TRANSFER WHILE LESS, UPDATE TLSU
TRANSFER WIIlLE NOT EQUAL; DESTRUCTIVE TNED
TRANSFER WHiLE NOT EQUAL, lJPDATE TNEU
TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD
TRANSFER WORDS OVERWRITE UPDATE TWOU
TRANSFER WORDS, DESTRUCTIVE TWSD
TRANSFER WORDS, UPDATE TWSU
TRANSLATE TRNS
UNPACK ABSOLUTE, DESTRUCTIVE UABD
UNPACK ABSOLUTE, UPDATE UABU
UNPACK SIGNED, DESTRUCTIVE USND
UNPACK SIGNED, UPDATE USNU
VALUE CALL VALC
VECTOR BRANCH VEBR
VECTOR MODE ENTER MULTIPLE VMEM
VECTOR MODE ENTER SINGLE VMES
"v"ECTOR MODE EXff VMEX
WRITE TIME OF DAY WTOD

5010986

Hexa-
Decimai
Code

DS
AF
81
DO
D8
E6
EE
E4
EC

El
E9
E2
EA
E3
95D2
95DA
95D3
95DB
EB
EO
E8
ES
ED
D4
DC
D3
DB
95D7
95Dl
95D9
95DO
95D8
00 => 3F
EE
EF
E7
E6
9549

A-5

Hexa=
Decimal
Code

PRIMARY MODE

00=> 3F
40=> 7F

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
80
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
Al
A2
A3
A4
AS
A6
A7
A8

5010986

B 6900 System Reference Manual

APPENDIXB

OPERATORS~ NUMERICAL LIST

Name

VALUE CALL
NAME CALL
ADD
SUBTRACT
MULTIPLY
DIVIDE
INTEGER DIVIDE
REMAINDER DIVIDE
INTEGERIZE, TRUNCATED
INTEGERIZE, ROUNDED
LESS THAN
GREATER THAN OR EQUAL
GREATER THAN
LESS THAN OR EQUAL
EQUAL
NOT EQUAL
CHA..~GE SIGN BIT
EXTENDED MULTIPLY
LOGICAL AND
LOGICAL OR
LOGICAL NEGATE
LOGICAL EQUIVALENCE
WGICAL EQUAL
ESCAPE TO 16-BIT INSTRUCTION
BIT SET
DYNAMIC BIT SET
FIELD TRANSFER
DYNAMIC FIELD TRANSFER
FIELD ISOLATE
DYNAMIC FIELD ISOLATE
HELD INSERT
DYNAMIC FIELD INSERT
BIT RESET
DYNAMIC BIT RESET
BRANCH FALSE
BRANCH TRUE
BRANCH UNCONDITIONAL
EXIT
STEP AND BRANCH
INDEX AND WAD NAME
INDEX
RETURN
DYNAMIC BRANCH FALSE

Mnemonic

VALC
NAMC
ADD
SUBT
MULT
DIVD
IDIV
RDIV
NTIA
NTGR
LESS
GREQ
GRTR
LSEQ
EQUL
NEQL
CHSN
MULX
LAND
WR
LNOT
LEQV
SAME
VARI
BSET
OBST
FLTR
DFTR
ISOL
DISO
INSR
DINS
BRST
DBRS
BRFL
BRTR
BRUN
EXIT
STBR
NXLN
INDX
RETN
DBFL

B-1

Hexa-
Decimal
Code

A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BD
BE
BF
co
Cl
C2
C3
C4
cs
C6
C7
CB
C9
CA
CB
cc
CD
CE
CF
DO
Dl
D2
D3
D4
DS
D6
D7
DB
D9

B-2

B 6900 System Reference Manual
Operators, Numerical List

Name

DYNAMIC BRANCH TRUE
DYNAMIC BRANCH UNCONDITIONAL
ENTER
EVALUATE DESCRIPTOR
INDEX AND LOAD VALUE
MARK STACK
STUFF ENVIRONMENT
UT CALL ZERO
UT CALL ONE
LIT CALL 8-BITS
LIT CALL 16-BITS
PUSH OOWN ST ACK REGISTERS
DELETE TOP-OF-STACK
EXCHANGE
DUPLICATE TOP-OF-STACK
STORE DESTRUCTIVE
STORE NON-DESTRUCTIVE
OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
LOAD
LIT CALL 4B-BITS
MAKEPROGRAMCO~~ROLWORD

SCALE LEFT
DYNAMIC SCALE LEFT
SCALE RIGHT TRUNCATE
DYNAMIC SCALE RIGHT RUNCATE
SCALE RIGHT SAVE
DYNAMIC SCALE RIGHT SAVE
SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUNDED
DYNAMIC SCALE RIGHT ROUND
INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT, UPDATE
SET TO SINGLE-PRECISION, TRUNCATED
SET TO SINGLE-PRECISION, ROUNDED
SET TO DOUBLE-PRECISION
INSERT MARK STACK
TABLE ENTER EDIT, DESTRUCTIVE
PACK DESTRUCTIVE
EXECUTE SINGLE MICRO, DESTRUCTIVE
TRANSFER WORDS, DESTRUCTIVE
TRANSFER WORDS OVERWRITE DESTRUCTIVE
STRING ISOLATE
SET EXTERNAL SIGN
READ AND CLEAR OVERFLOW FLIP-FLOP
TABLE ENTER EDIT, UPDATE
PACK UPDATE

Mnemonic

DBTR
DBUN
ENTR
EVAL
NXLV
MKST
STFF
ZERO
ONE
LT8
LT16
PUSH
DLET
EXCH
DUPL
STOD
STON
OVRD
OVRN
LOAD
LT48
MPCW
SCLF
DSLF
SCRT
DSRT
SCRS
DSRS
SCRF
DSRF
SCRR
DSRR
ICVD
ICVU
SNGT
SNGL
XTND
IMKS
TEED
PACD
EXSD
TWSD
TWOD
SISO
SXSN
ROFF
TEEU
PACU

Hexa-
Decimal

Code

DA
DB
DC
DD
DE
DF
EO
El

E2
E3
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
Fl

F2
F3

F4
FS

F8
f 9
FA
FB
FC
FD
FE
FF

VARIANT MODE

9540
9541
9542
9543
9544

5010986

B 6900 System Reference Manual
Operators, Numerical List

Name

EXECUTE SINGLE MICRO, UPDATE
TRANSFER WORDS, UPDATE
TRANSFER WORDS OVERWRITE UPDATE
EXEClJTE SINGLE MICRO, SINGLE POINTER UPDATE
READ TRUE/FALSE FLIP-FLOP
CONDITIONAL HALT
TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE
TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, DESTRUCTIVE
VECTOR MODE ENTER SINGLE
TRANSFER WHILE LESS, UPDATE
TRANSFER WHILE GREATER OR EQUAL, UPDATE
TRANSFER WHILE GREATER, UPDATE
TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE EQUAL, UPDATE
TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER UNCONDITIONAL, UPDATE
VECTOR MODE ENTER MULTIPLE
COMPARE CHARACTERS LESS, DESTRUCTiVE
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE
COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE
COMPARE CHARACTERS EQUAL, DESTRUCTIVE
COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE
COMPARE CHARACTERS LESS, UPDATE
COMPARE CHARACTERS GREATER OR EQUAL, UPDATE
COMPARECHARACTERSGREATER,UPDATE
COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARECHARACTERSEQUAL, UPDATE
COMPARECHARACTERSNOTEQUAL,urDATE
NO OPERATION
INVALID OPERATOR

READ CENTRAL PROCESSOR COUNTER
RUNNING TIMER
SET TWO SINGLES TO DOUBLE
SET DOUBLE TO TWO SINGLES
IDLE UNTIL INTERRUPT

Mnemonic

EXSU
TWSU
TWOU
EXPU
TRFF
HALT
TLSD

TGED
TGTD
TLED
TEQD
TNED
TUND
VMES
TLSU
TGEU
TGTU
TLEU
TEQU
TNEU
TUNU
VMEM
CLSD

CGED
CGTD

CLED
CEQD

CNED
CLSU
CGEU
CGTU
CLEU
CEQU
CNEU
NOOP

· NVLD

RCPC
RUNI
JOIN
SPLT
IDLE

B-3

Hexa-
Decimal

Code

9545
9546
9547
9549
954A
954B
954C
954E
9585
9587
958B
958E
95A7
95AF
95B3
95B4
95B5
95B6
95B7
95B8
95B9
95BA
95BB
95BC
95BD
95BE
9500
9501
9502
9503
9504
95D5
9507
95D8
9509
95DA
95DB
95DC
9500
95DF
95FO
95Fl

95F2
95F3
95F4
95F5
95F8
95F9

B-4

B 6900 System Reference Manual
Operators, Numerical list

Name

SET INTERVAL TIMER
ENABLE EXTERNAL INTERRUPTS
DISABLE EXTERNAL INTERRUPTS
WRITE TIME OF DAY
SCAN-IN
SCAN-OUT
CONTROL UNIVERSAL INPUT OUTPUT
READ PROCESSOR IDENTIFICATION
OCCURS INDEX
INTEGERIZE, ROUNDED, DOUBLE-PRECISION
LEADING ONE TEST
NORMALIZE
READ TIME OF DAY
MOVE TO STACK
READ COMPARE FLIP-FLOP
SET TAG FIELD
READ TAG FIELD
ROTATE STACK UP
ROTATE ST ACK DOWN
READ PROCESSOR REGISTER
SET PROCESSOR REGISTER
READ WITH WCK
COUNT BINARY ONES
LOAD TRANSPARENT
LINKED LIST LOOKUP
MASKED SEARCH FOR EQUAL
UNPACK SIGNED, DESTRUCTIVE
UNPACK ABSOLUTE, DESTRUCTIVE
TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE TRUE, DESTRUCTIVE
SCAN WHILE FALSE, DESTRUCTIVE
SCAN WHILE TRUE, DESTRUCTIVE
TRANSLATE
UNPACK SIGNED, UPDATE
UNPACK ABSOLUTE, UPDATE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, UPDATE
SCAN WHILE FALSE, UPDATE
SCAN WHILE TRUE, UPDATE
CONDITIONAL HALT
SCAN WHILE LESS, DESTRUCTIVE
SCAN WHILE GREATER OR EQUAL,
DESTRUCTIVE
SCAN WHILE GREATER, DESTRUCTIVE
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
SCAN WHILE EQUAL; DESTRUCTIVE
SCAN WHILE NOT EQUAL, DESTRUCTIVE
SCAN WHILE LESS, UPDATE
SCAN WHILE GREATER OR EQUAL, UPDATE

Mnemonic

SINT
EEXI
DEXI
WTOD
SCNI
SCNO
CUIO
WHOI
OCRX
NTGD
LOG2
NORM
RTOD
MVST
RCMP
STAG
RTAG
RSUP
RSDN
RPRR
SPRR
RDLK
CBON
LOOT
LLLU
SRCH
USND
UABD
TWFD
TWTD
SWFD
SWTD
TRNS
USNU
UABU
TWFU
TWTU
SWFU
SWTU
HALT
SLSD

SGED
SGTD
SLED
SEQD
SNED
SLSU
SGEU

Hexa-
Decimal

Code

95FA
95FB
95FC
95FD
95FE
95FF

EDIT MODE

DO
DI
D2
D3
D4
DS
D6
D7
DB
D9
DA
DB
oc
DD
DE
DF
FE
FF

VECTOR MODE

EO
El
E2
E3
E4
ES
E6
E8
E9
EA
EB
EC
ED
EE
FO
Fl
F2
F3
F4

5010986

B 6900 System Reference Manual
Operators, Numerical List

Name

SCANWHILEGREATER, UPDATE
SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE EQUAL, UPDATE
SCAN WHILE NOT EQUAL; UPDATE
NO OPERATION
INVALID

MOVE WITH INSERT
MOVE WITH FLOAT
SKIP FORWARD SOURCE CHARACTERS
SKIP REVERSE SOURCE CHARACTERS
RESET FLOAT
END FLOAT
MOVE NUMERIC UNCONDITIONAL
MOVE CHARACTERS
INSERT OVERPUNCH
INSERT DISPLAY SIGN
SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL
INSERT CONDITIONAL
END EDIT
CONDITIONAL HALT
NO OPERATION
INVALID

WADA
LOAD A INCREMENT
LOADB
WAD B INCREMENT
LOADC
WAD C INCREMENT
VECTOR MODE EXIT
DOUBLE LOAD A
DOUBLE LOAD A INCREMENT
DOUBLE LOAD B
DOUBLE LOAD B INCREMENT
DOUBLE LOAD C
DOUBLE LOAD C INCREMENT
VECTOR BRANCH
STORE A
STORE A INCREMENT
STOREB
STORE B INCREMENT
STOREC

Mnemonic

SGTU
SLEU
SEQU
SNEU
NOOP
NVLD

MINS
MFLT
SFSC
SRSC
RSTF
ENDF
MVNU
MCHR
INOP
INSG
SFOC
SRDC
INSU
!NSC
ENDE
HALT
NOOP
NVLD

LDA
LDAI
LDB
LDBI
LOC
LOCI
VMEX
DLA
DLAI
DLB
DLBI
DLC
DLCI
VEBR
STA
STAI
STB
STBI
STC

B-5

Hexa­
Decimal

Code

B-6

FS
F8
F9
FA
FB
FC
FD

STORE C INCREMENT
DOUBLE STORE A

B 6900 System Reference Manual
Operators, Numerical List

Name

DOUBLE STORE A iNCREMENT
DOUBLE STORE B
DOUBLE STORE B INCREMENT
DOUBLE STORE C
DOUBLESTORECINCREMENT

Mnemonic

STCI
DSA
DSAI
DSB
DSBI
DSC
DSCI

B 6900 System Reference Manual

APPENDIX C

DATA REPRESENTATION

EBCDIC Decimal EBCDIC Hex. EBCDIC
Graphic Value Internal Graphic Card Code Octal

BLANK 64 0100 0000 40 No Punches 60
[74 0100 1010 4A 12 8 2 33

7S 0100 1011 4B 12 8 3 32

< 76 0100 1100 4C 12 8 4 36
(77 0100 1101 4D 12 8 s 3S
+ 78 0100 1110 4E 12 8 6

79 01001111 4F 12 8 7 37

& 80 0101 0000 so 12 34
] 90 0101 1010 SA 11 8 2 76
$ 91 0101 1011 SB 11 8 3 S2

* 92 0101 1100 SC 11 8 4 S3
) 93 0101 1101 SD 11 8 s SS

94 0101 1110 SE 11 8 6 S6
95 01011111 SF 11 8 7 57

96 0110 0000 60 11 S4

I 97 0110 0001 61 0 1 61
107 01101011 6B 0 8 3 72

% 108 0110 1100 6C 0 8 4 73
109 01101101 6D 0 8 5 74

> ilO 0110 i ilO 6E 0 8 6 16
? 111 0110 1111 6F 0 8 7 14

122 01111010 7A 8 2 15

123 0111 1011 7B 8 3 12
@ 124 01111100 7C 8 4 13

125 0111 1101 7D 8 s 17
126 01111110 7E 8 6 7S

" 127 01111111 7F 8 7 77

(+)PZ 192 1100 0000 co 12 0 20
A 193 1100 0001 Cl 12 1 21
B 194 11000010 C2 12 2 22
,,...

195 1100 0011
,,...

12 3 23 \,, \,,..)

D 196 1100 0100 C4 12 4 24
E 197 1100 0101 cs 12 5 2S
F 198 1100 0110 C6 12 6 26
G 199 11000111 C7 12 7 27
H 200 1100 1000 cs 12 8 30

201 1100 1001 C9 12 9 31

(!)MZ 208 1101 0000 DO 11 0 40
J 209 1101 0001 DI 11 1 41

*All other codes

5010986 C-1

EBCDIC Decimal
Graphic Value

K 210
L 211
M 212
N 213
0 214
p 215
Q 216
R 217

¢ 224
s 226
T 227
u 228
v 229
w 230
x 231
y 232
z 233

0 240
1 241
2 242
3 243
4 244
5 245
6 246
7 247
8 248
9 249

C-2

B 6900 System Reference Manual
Data Representation

EBCDIC Hex.
Internal Graphic

1101 0010 D2
11010011 D3
1101 0100 D4
1101 0101 DS
11010110 D6
1101 0111 D7
1101 1000 D8
1101 1001 D9

1110 0000 EO
1110 0010 E2
1110 0011 E3
1110 0100 E4
11100101 ES
1110 0110 E6
11100111 E7
1110 1000 E8
11101001 E9

1111 0000 FO
1111 0001 Fl
11110010 F2
1111 0011 F3
1111 0100 F4
1111 0101 FS
1111 0110 F6
11110111 F7
11111000 F8
1111 1001 F9

EBCDIC
Card Code Octal

11 2 42
11 3 43
11 4 44
11 s 45
11 6 46
11 7 47
11 8 50
11 9 51

0 8 2
0 2 62
0 3 63
0 4 64
0 5 65
0 6 66
0 7 67
0 8 70
0 9 71

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 10

9 11

z
0
N
E

+ + +

0
9 9 9

0
9 9

0
9

NUM HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F HEX NUM
~

81 0 NUL OLE SP & - JJ Ol ! "- 0 0 81
t--~~tt-~--i~--...... ----...-~~-t--~~,_, __ ,.._ __ ._ __ t---~~~-+-·~-t~_,.--...... ~...-+------it--....-~~--tt-~--t

1 1 SOH DC1 I a j A J 1 1 1
.__.~~.u-~~~~-1-~~--<1-~~-1-~~~-~-1-~ --11--.--t~~--j~---1----1r---+~-t-~-...--~-tt~--~-~--t

2 2 STX DC2 SYN b k s B K S 2 2 2

3 3 ETX DC3 I c 1 t C L T 3 3 3
---~~++-~--t--~-+-~~~-~~-t-~-~r-~-+-~+--~+-----t~~---t~-~+---r---+-~--~----+----~~--~---

4 4 d mu D MU 4 4 4
1--~~i+-~--ifl--~-+~~4-~~-+-~---1--~-+-~---~------~~~1~--+---i~-+-~-+-~-+-~-+--tt~~-*~~---t

5 5 HT LF e n v E N V 5 5 5

6 6 BS ETB f o w F 0 W 6 6 6
---~~--~--t--~---~~--~~-t-~-----·~--~----~--~·---~--~~----~---~--~--~----~~-++-~~--. 7 7 DEL ESC EQT g p x G P X 7 7 7
1--~~-++-~~1+-~-+~~-1-~~-+-~~+-~-+-~-t-~+-------~--+-~---1~-+-~-+-~+-~+----tt----~~-w-~~--

8 8 CAN h q y H 0 Y 8 8 8

81 9 EM i r z I R Z 9 9 9
--~~.--~---tM-~-+~~--~~-+--------;r-~-t-~-..---r-~·-t-~-;-~--i-----t----r-·~;-~;-~r--tt-~~-n-~~--.

82 A [] l : A 82

83 B • $, # B 83
---~++-~---tM-~-+~~--~~--t----~--~----t~--1·~---~---t-~--r---t-~-t-~-+---t---t---------~--.

84 C FF FS DC4 < * % @ C 84

85 D CR GS EN Q NAK () _ 1 D 85
t--~~++-~---tM-~-+~~-+-~~-r---~--~----t~---t-~---~---t-~--r---t-~-+-~-+-~-t-~-t---tt-~~~-~---

86 E SO RS ACK + , > = E 86

87 F SI US BEL SUB I --, ? 11 -·-----+--·--- F 87

NUM HEX

z
0
N
E

0

9

+

9

2

9
0

3 4 5 6 7

9
0

+

8

0

+

9 A B C D E F HEX NUM

0

+

0

+

9
0

+

9 9 9
0 0

+ +

B 6900 System Reference Manual
B 6900 EBCDIC/HEX Card Code

Use of the B 6900 EBCDIC/HEX Card Code Chart.

D-2

a. Locate the .desired EBCDIC graphic code within the table.

b. The two-part hexadecimal code is read as follows:

1. The first part is found in the vertical column above or below the desired EBCDIC code.

2. The second part is found in the horizontal row either to the right or left of the desired EBCDIC code.

(a) Examples:
SYN
F

32
= C6

c. The two-part card code is found in the same manner as HEX (2) except the zone and numeric bits are
read from the very outer portion of the table.

1. Examples:
SYN = 9 2
F = + 6

2. The card code exceptions to the above procedures are enclosed in heavy lines on the chart and are
defined below:

(1) 00 = + 0981 (NUL)
(2) 10 = + -981 (OLE)
(3) 20 = -0981
(4) 30 = + -0981
(5) 40 = BLANK
(6) 50 = + (&)
(7) 60 = - (-)
(8) 70 = + -0
(9) co = + 0 ({) (6)

(10) oo = - o o)(o)
(11) EO = .O 82 (\)
(12) FO = 0 (O)
(13) 61 = 0 1 (/)
(14) El = -09 1
(15) 6A = + - (:)

B 6900 System Reference Manual

INDEX

AAIF Command (Soft Display), 4-74
Absolute Address Conversion, 2-22, 3-14
ADD Command (Soft Display), 4-78
Address Couple, 2-20
Add, 7-1
Adder, Address, 5-7
Adder, Exponent, 5-11
Adder, Mantissa, 5-11
Adder, Residue Interrupt, 5-18
Address Adder, 5-11
Address Environment Defined, 3-12
Address Retry Interrupt, 5-23
Alarm Interrupts, 5-15
ALTF Command (Soft Display), 4-74
American Standard Code for Information Interchange, 2-3
ARCS Command (Soft Display), 4-72
A Register, 4-6
ASCII, 2-3
Arithmetic Controller, 5-11
Arithmetic Operators, 7-1
AROF, 3-3, 4-29

Base and Limit of Stack, 3-2
Base of Address Level Segment, 3-14
Base Module, 1-17
Bit Operators, 7-13
Bit Reset, 7-14
Bit Reset Dynamic, 7-14
Bit Set, 7-13
Bit Set Dynamic, 7-13
Bit Sign Change, 7-14
Bottom of Stack Interrupt; 5-29
Branch False, 7-7
Branch False Dynamic, 7-8
Branch Operators, 7-7
Branch True, 7-8
Branch True Dynamic, 7-8
Branch Unconditional, 7-8
Branch Unconditional Dynamic, 7-8
B Register, 4-6
BRIGHT Command (Soft Display), 4-78
BROF, 3-3, 4-30
Brownout, 1-13
Bus Residue Interrupts, 5-20

Cabinets, 1-2
CAPTUR Command (Soft Display), 4-79
Central Power Cabinet, 1-13
Central Processor Unit Cabinet, 14
Change Sign, 7-14
Character Codes, Internal, 2-3

5010986

Character Type Data, 2-10
CHLT Command (Soft Display), 4-74
Clocks, 14
CLRICCommand (Soft Display), 4-79
CLRMM Command (Soft Display), 4-80
Command Queue, 11-26
Command Queue Control Word, 11-26
Command Queue Head IOCB Link, 11-26, 11-28
Command Queue Horizontal Queue Head Pointer,

11-26, 11-29
Command Queue Horizontal Queue Link, 11~26, 11-29
Command Queue Tail IOCB Link, 11-26, 11-28
Compare Characters Equal Destructive, 7-19
Compare Characters Equal Update, 7-19
Compare Characters Greater, Destructive, 7-18
Compare Characters Greater or Equal, Destructive, 7-18
Compare Characters Greater or Equal Update, 7-19
Compare Characters Greater, Update, 7-18
Compare Characters Less Destructive, 7-20
Compare Characters Less or Equal Destructive, 7-20
Compare Characters Less or Equal Update, 7-20
Compare Characters Less Update, 7-20
Compare Characters Not Equal Destructive, 7-20
Compare Characters Not Equal Update, 7-20
Compare Operators, 7-18
Compare Residue Interrupt, 5-20
Conditional Halt, 4-51
Confidence Error Interrupt, 5-31
Control Universal Input Output Operator, 5-38, 8-3
Controller, Arithmetic, 5-11
Controller, Interrupt, 5-11
Controller, Memory, 5-32
Controller, Program, 5-2
Con troll er, Stack, 5-10
Controller, Transfer, 5-7
Control State/Normal State, 5-33
Copy Bit, 3-6
Count Binary Ones, 8-8
CPTF Command (Soft Display),4-74
C Register, 4-6
CSTP Command (Soft Display), 4-74

Data Addressing, 3-5
Data-Dependent Presence Bit, 5-30
Data Descriptor, 2-15
Data Field Convention, 2-3
Data Link Processor (DLP) Devices, 11-2
Data Processor, 14
Data Representation, 2-1
Data Types and Physical Layout, 2-1
Decimal to Coded Number Conversion, 2-6

Index-I

B 6900 System Reference Manual

Decimal and Hexadecimal Table Conversion, 2-8
DEL Command (Soft Display), 4-80
Delete Top-of-Stack, 7-10
Descriptor Link Words, 11-8
DIFF Command (Soft Display), 4-81
Disable External Interrupts, 8-2
Display Panels, 4-1
Display Register, 4-1
Display Registers, 4-1
Display Signal, 4-7
Divide, 7-2
Divide by Zero Interrupt, 5-29
DLP Device, 11-2
Double Load A, 10-7
Double Load A Increment, 10-7
Double Load B, 10-7
Double Load B Increment, 10-7
Double Load C, 10-7
Double Load C, Increment, 10-7
Double Store A, 10-7
Double Store A Increment, 10-7
Double Store B, 10-7
Double Store B Increment, 10-8
Double Store C, 10-7
Double Store C Increment, 10-8
Double-Precision Operands, 2-12
Double-Precision Stack OP, 3-3
DO-UNTIL Command (Soft Display), 4-81
DUMP Command (Soft Display), 4-82
Duplicate Top-of-Stack, 7-10
Dynamic Branch False, 7-8
Dynamic Branch True, 7-8
Dynamic Branch Unconditional, 7-8

EBCDIC, 2-3
Edit Mode Operation, 9-1
Edit Mode Operators, 9-1
Enable External Interrupts, 8-2
END Command (Soft Display), 4-83
End Edit, 9-4
End Float, 9-3
Enter Operators, 7-20, 7-27, 7-32
Enter Vector Mode, 7-32
Equal, 7-7
Error IOCB, 11-35
Escape to 16-bit Instruction, 8-1
Evaluate, 7-27
EVNT Command (Soft Display), 4-74
Exchange, 7-10
EXEC Command (Soft Display), 4-83
Execute Single Micro Destructive~ 7-21

Index-2

INDEX {Cont)

Execute Single Micro Single Pointer Update, 7-21
Execute Single Micro Update, 7-21
Exit Operator, 7-23
Exponent Adder, 5-11
Exponent Overflow and Underflow Interrupt, 5-29
Extended Binary Coded Decimal Interchange Code, 2-3
External Interrupts, 5-23

Family A, 5-1
Family B, 5-1
Family C, 5-1
FAMILY Command (Soft Display),4-76,4-84
Family D, 5-1
Family E, 5-1
Family U (F, G, H), 5-1
Field Insert, 7-15
Field Insert Dynamic, 7-15
Field Isolate, 7-14
Field Isolate Dynamic, 7 -1 5
Field Transfer, 7-14
Field Transfer Dynamic, 7-14

Global Memory, 5-65
Global Memory Addressing, 5-64
Global Memory Module (GMM), 5-65
Global Memory Not Ready Interrupt, 5-18
Global Memory Port, 5-69
Global Priority Word, 11-9
Global System Control, 5-74
Global System Control Operations, 5-76

Global SCAN-OUT, 5-76
Global SCAN-IN, 5-77
Global Scan Operation Function Word, 5-76
Global Scan Operation Data Word, 5-76
Global Scan Operation Response Word, 5-78
Global Scan Operation OP Code Field, 5·78
Global Scan Operation Variant (VV) Field, 5-78
Global Scan Operation Receiver Address Field, 5-77

Global System Organization, 5-65
Global Physical Structure, 5-66

Elementary Global System Requirements, 5-66
Global Memory Module Interface,·5-84
Global Memory Port Interface Control Logic, 5-84
Global Memory Port Processor Status and Control Logic,

5-86
Global Logical Structure, 5-68
Global Processor Name, 5-68
Global Master-Slave Relationship, 5-68
Global Logical Levels, 5-69
Global Port. Identification Addressing, 5-68
Global Logical Name Addressing, 5-68

B 6900 System Reference Manual

Global Logical Name Addressing, 5-68
Global Mask, 5-68
Greater Than, 7-6
Greater Than or Equal, 7-7

HALT Command (Soft Display), 4-72
Hardware Interrupts, 5-18
HELP Command (Soft Display), 4-84
Hexadecimal and Octal Notation, 24
Hexadecimal to Decimal Table Conversion, 2-8
Horizontal Queue, 11-30
Horizontal Queue Header Array Header, 11-30
Horizontal Queue Head Word, 11-30, 11-31

Idle Confidence Testing, 1-7
Idle Until Interrupt, 8-2
Index, 7-11
Index and Load Name, 7-11
Index and Load Operators, 7-11
Index and Load Value, 7-12
Index Bit, 3-5
Index, Invalid, 3-5
Index, Valid, 3-5
Lndirect Reference Word; 2-19
iNFO Command (Soft Display), 4-85
Initialize Running Timer Operator, 5-38, 8-1
Input Convert Destructive, 7-22
Input Convert Operators, 7-21
Input Convert Update, 7-22
Input/Output Control Block (IOCB), 545
Input/Output Device Operation, 1-8, 11-1, 11-6
INSERT Command (Soft Display}, 4-85
Insert Conditional, 9-3
Insert Display Sign, 9-3
Insert Mark Stack Operator, 7-27
Insert Overpunch, 9-3
Insert Unconditional, 9-3
Integer Divide, 7-3
Integerized Rounded, D.P., 7-3
Integerize Rounded, 7-3
Integerize Truncated, 7-3
Integer Overflow Interrupt, 5-29
Integrated Circuit {IC) Memory, 5-5
Integrated Circuit (IC) Memory Cabinet, 1-19
Internal Character Codes, 2-3
Internal Data Transfer Section, 5-9
Interrupt Controller, 5-11
Interrupt Handling, 5-11
Interrupt Parameters, 2-25, 5-13
Interrupt System, 2-25
Interrupts, Alarm, 5-15

5010986

INDEX (Cont)

Interrupts, External, 5-23
Interrupts, Operator Dependent, 5-24
Interval Timer Interrupt, 5-31
Invalid Address Interrupt, S-17
Invalid Address Residue Interrupt, 5-18
Invalid Address Local Interrupt, 5-17
Invalid Address Global Interrupt, 5-18
Invalid Index Interrupt, 5-29
Invalid Operand Interrupt, 5-29
Invalid Operator, 7-9
Invalid Program Word Interrupt, S-17
IOCB Command Queue Head Pointer, 11-10, 11-17
IOCB Control Word, 11-10, 11-12
IOCB DLP Address Word, 11-10, 11-16
IOCB DLP Command/Result Lengths Word, 11-10, 11-19
IOCB DLP 1/0 Command Pointer, 11-10, 11-18
IOCB 1/0 Finish Time Word, 11-10, 11-26.
IOCB DLP 1/0 Result Pointer, 11-10, 11-18
IOCB"I/O Start Time Word, 11-10, 11-25
IOCB MLIP Current Data Area Pointer, 11-10, 11-22
IOCB MLIP Current 1/0 Length Word, 11-10, 11-22
IOCB MLIP State and Result Word, 11-10, 11-23
IOCB Next IOCB Link Word, 11-10, 11-21
!OCB Organization, 11-10
iOCB Result Mask Word, i 1-iO, 11-20
IOCB Result Queue Head Pointer, 11-10, 11-20
IOCB Self Pointer, 11-10, 11-17
IOCB Valid Control-Field Bit Configurations, 11-14
IOCB Word Layout, 545
IODC to MLIP Connection Sequence, 11-9
I/O Descriptor, 11-7

Job Splitting, 3-17

Keyboard Control Keys, 1-23

Leading One Test, 8-5
Less Than, 7-7
Less Than or Equal, 7-7
Level Definition, 2-21, 3-14
Lexicographical Level, 3-14
Light Emitting Diode, 4-1
Linked List Lookup, 8-8
Lit Call Zero, 7-10
Lit Call One, 7-10
Lit Call 8-Bits, 7-10
Lit Call 16-Bits, 7-11
Lit Call 48-Bits, 7-11
Literal Call Operators, 7-10
Load, 7-12
Load A, 10-6

lndex-3

B 6900 System Reference Manual

Load A Increment, 10-6
Load B, 10-6
Load B Increment, 10-6
Load C, 10-6
Load C Increment, 10-6
Load Transparent, 8-8
Local Memory Allocation, 3-12
Local Memory Interface, 5-80
LOCL Command (Soft Display), 4-74
Logical AND, 7-5
Logical Equal, 7-5
Logical Equivalence, 7-5
Logical Negate, 7-5
Logical Operands, 2-14
Logical Operators, 7-5
Logical OR, 7-5
Logic Card Testing, 1-7
Longitudinal Parity Word (LPW), 11-7
Look Ahead Logic, 1-4, 5-5
Loop Interrupt, 5-17
LPW Word, 11-8

Maintenance Control Panel, 4-57
Maintenance Display Processor, 1-9, 4-1
Maintenance Processor, 1-9, 4-1
Maintenance Processor Control Panel, 4-60
Make PCW, 7-11
Mantissa Field, 2-11
Mark Stack Control Word, 2-23
Mark Stack Control Word Linkage, 3-13
Mark Stack Operator, 7-27
Mask and Steering, 5-9
Mask and Steering Example, 5-9
Masked Search for Equal, 8-8
Master Control Program, 1~1
Memory Address, 5-64
Memory Address Interrupt, 5-17, 5-23
Memory Addressing, 5-64
Memory Area Allocation, 3-12
Memory Bus, 5-80
Memory Cabinet Configuration, 1-18
Memory Control, 1-9
Memory Controller, 5-64
Memory Error Detection/Correction, 1-9, 5-74
Memory Interface, 1-19, 5-64

Memory Organization, 5-64
Memory Parity Interrupt, 5-18
Memory Port Interface, 5-80
Memory Ports, 1-19
Memory Priority, 5-58

Tndex-4

INDEX (Cont)

Memory Protect Interrupt, 5-28
Memory Protection, 5-28
Memory Retry, 5-22, 5-74
Memory Stack Controller, 5-10
Memory Tester, 5-88
Memory Testing, 5-88
Memory Words, 2-1
Message Level Interface Processor (MLIP), 1-8, 5-33
MLIP, 1-8, 5-33
MLIP Barrel Shift Operations, 5-57, 5-63
MLIP Base Busy Timer, 5-41
MLIP Burst Data Memory Operation, 5-57
MLIP Command Queue, 5-46
MLIP Commands, 11-32
MLIP Connect/Disconnect Sequence, 5-53
MLIP Error Handling, 5-63
MLIP Interfaces, 5-34
MLIP Interval Timer, 5-41
MLIP Loop Timer, 5-40
MLIP Memory Operation, 5-57
MLIP Polling Operation, 5-53
MLIP Poll Request Operation, 5-53
ML!P Poll Test Operation, 5-53
MLIP Priority Sequencer, 5-42
MLIP Processor Timer, 5-39
MLIP RAM Memory, 5-51
MLIP RAi\1 Memory Addressing, 5-52
MLIP Ready Timer, 5-41
MLIP Time-Of-Day Operation, 5-39
MLIP Running Timer, 5-40
MLIP To IODC Connection Sequence, 11-7
MLIP to Data Processor Interface, 5-37
MUP to Micro-Module Interface, 5-37
MUP to Peripheral Device Interface, 5-38
Module Definition, 5-64
Move Characters, 9-1
Move Numeric Unconditional, 9-1
Move to Stack, 8-5
Move With Float, 9-2
Move With Insert, 9-1
Multiple Stacks and Re-Entrant Code, 3-17
Multiple Variables (Common Address Couples), 3-14
Multiply, 7-2
Multiply (Extended), 7-2

Name Call, 6-4, 7-23
No Operation, 7-9
Normalize, 8-5
Normal State, 5-33
NOSTEP Command (Soft Display), 4-85
Not Equal, 7-7

Number Bases, 24
Number Conversion, 2-5
NZDATA Command (Soft Display), 4-86

Occurs Index, 8-4
OCTAL Command (Soft Display),4-74
Octal Notation, 24
ODT, 1-23,4-62
Operands, 2-11
Operation Types, 6-3
Operator Display Terminal, 1-13, 1-23, 4-62
Operators Control Console, 1-23
Operator Dependent Interrupts, 5-24
Operator Families, 5-1
Operator Panel, 1-23
Operators, 6-3
Overflow FF, Read and Clear, 7-22
Overwrite Destructive, 7-9
Overwrite Non-Destructive, 7-10

Pack Destructive, 7-21
Pack Operators, 7-21
Pack Update, 7-21

B 6900 System Reference Manual

INDEX (Cont)

Program Operators, 5-2
Program (P) Register, 6-1
Program Structure, 3-11
Program Structure in Memory, 3-11
Program Segment, 3-12
Program Words, 6-1
PROGRM Command (Soft Display), 4-87
PROM Card Parity Interrupts, 5-20
PULSE Command (Soft Display), 4-72
Push Down Stack Registers, 3-2,_ 7-10

RAM Card Parity Interrupts, 5-20
RD HDP Command (Soft Display), 4-87
RDIC Command (Soft Display), 4-88
RDMM Command (Soft Display), 4-88
Read and Qear Overflow FF, 7-22
Read Compare Flip-Flop, 8-6
Read' Data Check Bit Interrupt, 5-23
Read Data Multiple Interrupt, 5-18
Read Data Retry Interrupt, 5-22
Read Data Single Error, Interrupt, 5-22
Read·Only Bit, 3-6

Peripheral Device(s), 1-8, 5-33, 5-38, 542; 545; 5-52;

Read Processor Identification, 8-3
Read Processor Register, 8-7
Read Processor Tin1e Counter, 5-38, 8-1
Read TAG Field, 8-6

5-03, 11-6
Planar Core Memory Cabinet, 1-19
Poiish Notation, 3-6
Polish String, 3-8
Polish String, Rules for Evaluating, 3-8
Polish String, Rules for Generating, 3-6
Poll Request Priority Resolution, 11-10
Power Busses, 1-16
Power Cabinet, 1-13
Power, System, 1-13
P Register, 6-1
Pl Parameter, 2-26, 5-13
P2 Parameter, 2-26, 5-13
P3 Parameter, 2-26, 5-13
Presence Bit, 3-5
Presence Bit Interrupt, 5-30
Primary Mode Operators, 7-1
Priority Sequencer, 542
Procedure-Dependent Presence Bit, 5-30
Processor, 14
Processor States, 5-33
Processor System Concept, 5-1
Program Control, 5-2
Program Controller, 5-2
Program Control Word, 2-22
Program Index Register, 2-23, 5-6
Programmed Operator, 5-2, 6-1

5010986

Read Time-of-Day Operator, 5-38, 8-5
Read True False FF, 7-22
Read With Lock, 8-7
Reentrance, 3-17
REGISTER Command (Soft Display), 4-65
Register, P, 6-1
Relational Operators, 7-5
Relative-Addressing, 3-13
Remainder Divide, 7-3
RESET Command (Soft Display), 4-65
Reset Float, 9-3
Residue Adder Testing, 5-7
Residue Testir1g, 5-7
RESTOR Command (Soft Display), 4-89
Result Queue, 11-34
Result Queue Header Word, 11-34
Result Queue Head Word, 11-35
RETURN Command (Soft Display), 4-90
Return Control Word, 2-31
Return Operator, 7-27
REVERS Command (Soft Display), 4-90
Reverse Polish Notation, 3-6
Rotate Stack Down, 8-7
Rotate Stack Up, 8-6
Rules for Generating Polish String, Simplified, 3-6

Index-5

B 6900 System Reference Manual

SAFE Command (Soft Display), 4-74
SAVE Command (Soft Display), 4-90
Scale Left, 7-12
Scale Left Dynamic, 7-12
Scale Operators, 7-12
Scale Right Dynamic Final, 7-13
Scale Right Dynamic Save, 7-13
Scale Right Dynamic Truncate, 7-13
Scale Right Final, 7-13
Scale Right Round Dynamic, 7-13
Scale Right Rounded, 7-13
Scale Right Save, 7-12
Scale Right Truncate, 7-13
SCAN-IN, 8-3
SCAN-OUT, 8-3
Scan While Equal, Destructive, 8-11
Scan While Equal, Update, 8-11
Scan While False, Destructive, 8-12
Scan While False, Update, 8-12
Scan While Greater, Destructive, 8-10
Scan While Greater, Update, 8-11
Scan While Greater or Equal, Destructive, 8-11
Scan While Greater or Equal, Update, 8-11
Scan While Less, Destructive, 8-11
Scan While Less or Equal, Destructive, 8-11
Scan While Less or Equal, Update, 8-11
Scan While Less, Update, 8-11
Scan While Not Equal, Destructive, 8-12
Scan While Not Equal, Update, 8-12
Scan While True_, Destructive, 8-12
Scan While True, Update, 8-12
SECL Command (Soft Display), 4-75
Segment Descriptor, 2-32
Segment Dictionary, 3-12
SET Command (Soft Display), 4-65
Set Double to Two Singles, 8-2
Set External Sign, 7-22
Set Interval Timer, 8-2
Set Processor Register, 8-7
Set TAG Field, 8-6
Set to Double-Precision, 74
Set to Single-Precision Rounded, 14
Set to Single-Precision Truncated, 7 4
Set Two Singles to Double, 8-1
Single Precision Operands, 2-11
Skip Forward Destination Character!. 9-2
Skip Forward Source Characters, 9-2
Skip Reverse Destination Characters, 9-3
Skip Reverse Source Characters, 9-2
SMEAR Command (Soft Display), 4-91
Software Words, 2-18

Index-6

INDEX (Cont)

Soft Display, 4-1, 4-62
Soft Display Command Categories, 4-64
:Soft Display Command Structure, 4-63
Soft Display Command Syntax, 4-65
Soft Display Commands, 4-64
Soft Display Families Control Commands, 4-76
Soft Display Functions Commands, 4-78
Soft Display General Commands, 4-65
Soft Display Maintenance and Event Control Commands,

4-73
Soft Display Program, 1-13, 4-62
Software Words, 2-18
Stack, 3-1
Stack Adjustment, 3-3
Stack Area, 3-1
Stack, Base and Limit, 3-2
Stack, Bi-Directional Data Flow, 3-2
Stack Boundries, 3-2
Stack Controller, 5-10
Stack Deletion, 3-13
Stack Descriptor, 3-17
Stack, Double-Precision Operation, 3-3
Stack-History and AddressingaEnvironment Lists, 3-12
Stack History, Summary, 3-17
Stack Operation, 3-8
Stack Operators, 7-10
Stack Pushdown, 3-2
Stack Pushup, 3-2
Stack Registers, 5-7
Stack, Simple Operation, 3-8
Stack Vector Descriptor, 3-18
States, Processor, 5-33
STATUS Command (Soft Display), 4-91
Status Display, 4-1
Step and Branch, 7:.8
STEP Command (Soft Display), 4-72
Step Index Word, 2-17
STOP Command (Soft Display), 4-72
Store A, 10-6
Store A Increment, 10-7
Store B, 10-7
Store B Increment, 10-7
Store C, 10-7
Store C Increment, 10-7
Store Destructive, 7-9
Store; Non-Destructive: 7-9
Store Operators, 7-9
String Descriptor, 2-15
String Isolate, 7-18
String Operators, 5-32, 6-7
String Transfer Operators, 7 -15

B 6900 System Reference Manual

Stuff Environment, 7-27
Stuffed Indirect Reference Word, 2-19
Subroutine Operators, 7-23
Subtract, 7-2
Syllable Addressing, 2-33, 6-1
Syllable Dependent Interrupts, 5-24
Syllable Format, 2-33, 6-1
Syllable Identification, 2-33, 6-1
System Clock, 14
System Concept, 5-1
System Controls, 1-23, 4-51
System Control Commands, 4-72
System Control Panel, 4-51
System Description, 1-1
System Expansion, 1-1
System Maintenance Control Panel, 4-57
System Memory Interface, 1-19
System Options and Requirements, 1-1
System Organization, 1-1
System Power, 1-13

Table Enter Edit Destructive, 7-20
Table Enter Edit Update, 7-20
Terminal Device, 1-23
Top-of-Stack Control Word, 2-33
Top-of-Stack Register, 3-1, 3-3, 5-7
Transfer Controller, 5-7
Transfer Operators, 7-14
Transfer Unconditional Destructive, 7-17
Transfer Unconditional, Update, 7-18
Transfer While Equal, Destructive, 7-17
Transfer While Equal, Update, 7-17
Transfer While False, Destructive, 8-10
Transfer While False, Update, 8-10
Transfer While Greater Destructive, 7-16
Transfer While Greater or Equal, Update, 7-17
Transfer While Greater Update, 7-16
Transfer While Less, Destructive, 7-17
Transfer Whlie Less, Update, 7-17
Transfer While Less or Equal, Destructive, 7-17
Transfer While Less or Equal, Update, 7-17
Transfer While Not Equal, Destructive, 7-17
Transfer While Not Equal, Update, 7-17
Transfer While True, Destructive, 8-9
Transfer While True, Update, 8-10
Transfer Words Destructive, 7-15
Transfer Words, Overwrite Destructive, 7-16
Transfer Words, Overwrite Update, 7-16
Transfer Words, Update, 7-16
Translate, 8-10
T Register, 6-1

5010986

INDEX (Cont)

True False FF, Read, 7-22
Type Transfer Operators, 74

Universal Operators, 7-9
Unpack Absolute Destructive, 8-9
Unpack Absolute Update, 8-9
Unpack Signed Destructive, 8-9
USERFAM Command (Soft Display), 4-92

Valid Index, 3-5
Value Bit, 2-25
Value Call, 64, 7-23
Variant Mode Operation and Operators, 8-1
Vector Mode Branch, 10-8
Vector Mode Exit, 10-8
Vector Mode Hardware Functions, 10-1
Vector Mode Limitations, 10-1
Vector Mode Enter Multiple, 10-2
Vector Mode Enter Single, 10-2
Vector Mode Operator Codes, 10-5

WAIT Command (Soft Display), 4-93
Word Data Descriptor, 2-15
Word Definition, 2-1
Word Parity, 2-1
Word TAG Field, 2-1
Word Wraparound, 2-3
Word Data Formats, 2-1
Wrap Around, 2-3
WRIC Command (Soft Display), 4-93
Write Time-of-Day Operator, 5-38, 8-2
WRMM Command (Soft Display), 4-94

X Register, 3-1, 5-7

Y Register, 3-1, 5-7

Z Register, 3-1, 5-7

+ + Command (Soft Display), 4-94

- - Command (Soft Display), 4-94

* * Command (Soft Display), 4-94

Index-7

Documentation Evaluation Fonn

Title: B 6900 Svstem ReforP-ncP. Manual Form No: _s_o~l09~8~6 ____ ~---
Date:. July 1981

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

0 Addition 0 Deletion 0 Revision 0 Error

Comments:

From:

Name -------------------------~--------~~~~------------~
Title

Company --------------------------------~~---------------~
Address

Phone Number --------------

Remove form and mail to:

Burroughs Corporation
Documentation Dept., TIO -West

P.O. Box 4040
El Monte, CA 91734

U.S.A.

Date ___________ _

Printed in U.S.America July 1981 Form 5010986

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	01-01
	01-02
	01-03
	01-04
	01-05
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-20
	04-01
	04-03
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	04-87
	04-88
	04-89
	04-90
	04-91
	04-92
	04-93
	04-94
	05-01
	05-02
	05-03
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	05-80
	05-81
	05-82
	05-83
	05-84
	05-85
	05-86
	05-87
	05-88
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-10
	reply
	xBack

