A -7 ST -

SS00 -

. o , COMPUTER SYSTEMS
S ' - META/MASTER

| | REFERENCE MANUAL

.
.
.
. '
¥ .
n)
L4 -)
.
r
19 .)
-
L]
4
.
.
| .
.
-
.
.
.
L] . |
- - -
.
L]
.
-
.
.
.
. .
| .
| .
. .

_ REVISION RECORD -
REVISION | | : NOTES
(11-20-68) Original printing.
ﬂ R
- P
l 4
i
B i
Vi
. S——— ;] * :
l = |
i -] ':
| — -
Additional copies of this manual may be Address comments concerning this
obtained from the nearest Control Data . manual to:
C i les office. | | :
orporation sales oflice . | Control Data Corporation
Pub. No. 60236400 | | Software Docun}entation
November 1968 . | 4201 North Pexmgton Avenue
B St. Paul, Minnesota 55112
©1968 Control Data Corporation S or use Comment Sheet in the back of
Printed in the United States of America this manual,

4

PREFACE

y This manual is directed at programmers using the 3300/3500 Meta-Assembler. It discusses the
- principles, features, methods, rules, and techniques of producing a META language program.

The reader is assumed to be familiar with the CONTROL DATA®3300 Computer System or the
CONTROL DATA® 3500 Computer System. In addition, familiarity with the 3300/3500 MASTER

Multiprogramming Executive Operating System and the 3300/3500 COMPASS Assembly Language |
is helpful.

60236400 iii

TRt e T e TN T A T R, s e ST

CHAPTER 1

'CHAPTER 2

"CHAPTER 3

60236400

CONTENTS

INTRODUCTION
1.1 Features
1.2 Hardware Configuration

STATEMENT STRUCTURE

Character Set

Statement Format

.2, Label Field

Command Field
Operand Field
Comments Field
Statement Continuatior
.6 Examples

mentary Items

Delimiters

Decimal Integer

BCD Decimal Integer
Octal Integer

Real Number

BCD Character String
ASCII Character String
.3.8 Operators

Symbols

Locations Counters
Expressions

2.6.1 Attributes

2.6,2 Modes-of Expressions
2.6.3 Literals

2.7 Sets

DN N
(NI

NN NN NN
) BENCNVC RV

2.3 El

o 0 LW W W WO VDN DN DN

DO NN N DN
1 U R WO DN

N DN N
S O e

- . LOCATION CONTROL AND ADDRESSING

3.1 Relocatable Addresses
3.2 Location Counters

MNMMNMNM(}OMNN[\Q[\DNMNN

~ Page

(SN B
LN N e e

(I T I
O O~ IO OOWUL G e W oW

DD NN

[I S |
ph o ok ek
N O OO

2-12
2-14
2-15

CHAPTER 4

.a.a-ﬁnpp-w:-'
HHHHH

W~
Lo o

PO A S T

4.1.

41

.4,

. 4.

%)

-3 O O W QW N =

2
3
.4
6
7

1

7

1

1

.1
.2

mmﬁmm

.1
.2
.3
.4
em
.1
2

" DIRECTIVES .

Listing Control
NOLIST

LIST

SPACING
EJECT
TITLE
BRIEF
DETAIL
Object Machine Definition (UNIT)
Symbol and Set Definition
4. 3.
- 4.3.2 RDEF
4,3,3 NSET
4.3.4 Forward References
Location Control
SECP
SECD
SECA
ORG

EQU

LIT

RES
RESB .
Data Generation

GEN

GEND
GENB
FORM
TEXT
TEXTC
TEXTA
Program Linking
ENTRY

EXT

epeat and Skip
RPT

LNID |
RPT and GOTO Processing
bly Termination

END

ﬁ####&?ﬁﬁﬁ&&ﬁ

- Page

TSN
{
b

. RO
O O ~IT O U O i W WWN NN

L

T
=t €O
O

4-11
4-12
4-12

4-13

4-13
4-13
4-14
4-15
4-15
4-18
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-21
4-22
4-23
4-24
4-24
4-24

. 60236400

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

APPENDIX A
APPENDIX B

APPENDIX C

60236400

&

FUNCTIONS AND PROCEDURES

5.1 Directives
5.1.1 PROC
5.1.2 FUNC
5.1.3 NAME
5.1.4 ENDS
5.1.5 TREF
5.1.6 LIBS
5.2 Definition Processing
5.3 Referencing
5.4 Levels and Local Labels

ATTRIBUTE FUNCTIONS

Relocation (REL)

Mode (MDE)

Number of Elements (NUM)
Size of Data (SZE)

Symbol (SYM)

-Word Address (WRD)
Pyte Address (BYT)

Y S OO O O &
S B> T 3; T O JUR X e

PROGRAM EXECUTION

7.1 Control Card Requirements
- 7.1.1 $JOB

7.1.2 $SCHED

7.1.3 $META

7.1.4 Task Name

7.1.5 End of File
7.2 Sample Deck Structures

MESSAGES

List Format

Error Codes
Supplementary Information
Cross Reference Table
Messages on Out

® ® 0 ®
() B VU R

CHARACTER SET
3300/3500 MNEMONIC INSTRUCTIONS

BINARY OUTPUT

Page

(9)]
I
st

11 !
=D AT O U WL NN

Lo

SA R I &)) S 2 B IS))
|

|
ek

vii

Page

APPENDIX D 3300/3500 RELOCATABLE BINARY OBJECTDECK -+ . D-1
GLOSSARY o : o ‘Glossary-1
INDEX | | | Index-1

LIST OF TABLES

2-1. | | Legal Of)erators - ' o | | - - - 2-9
2-2 - Combination of Operators l ‘ - 2-13
A-1 "~ BCD/ASCII Code Conversion Table . - A-3

- B-1 - - IDENT Procedure References B-9
B3-2 - MONITOR Procedure References B-21
B-3 o BDP Procedure References o | | B-30
B-1 Octal Index to Mnemonics B-39
viii

60236400

1.1
FEATURES

60236400

INTRODUCTICN | | 1

The 3300/3500 META/MASTER a Meta Assembler executing on a |
CONTROL DATA® 3300 Computer System or CONTROL DATA® 3500 Com-
puter System, provides a versatile, extensive, and self-extending language
for directing the generation of object code.

Using Meta-Assembler (META), the programmer can_' choose a relocatable
binary output format acceptable for loading and executing under the 3300/
3500 MASTER Multiprogramming Executive Operating System, or define

- output as a byte stream not restricted to a 24-bit object word. Meta-

Assembler is an ideal language in which to code compilers and assemblers,
or to produce code for an alternate computer system. The object computer,
real or simulated, may have a word size up to 48 bits.

Source statements to META include directives that control the assembler
in much the same way machine language instructions control the computer,
procedure definitions and references, and function definitions and refer-
ences.

The Meta-Assembler language allows simple, brief notation, nested
functions and procedures, and complex expressions involving sets.

Procedures and functions provide extensive parameterization of source
statements. For example, META includes standard procedures for the
3800/3500 machine language instructions and for generating equivalent
code. While these mnemonics resemble the 3300/3500 COMPASS reper-
toire, differences in syntax and in notation used for operand fields and

‘modifiers cause incompatibilities between the two languages. In addition,

META does not recognize COMPASS macros, most pseudo instructions, or
numeric operation codes. For example, the representation of an octal
number in the 3300 COMPASS language is a string of octal digits followed
by the letter B. The representation of an octal mumber in the META
language is the letter O followed by a strmg of octal d1g1ts enclosed in
apostrophes. . .

A complete list of 3300/3500 mnemonic instructions is given in appendix B.
A group of Meta-Assembler directives makes it possible for the program-

mer to assign his program and data to as many as 15 relocatable control
sections, as well as one absolute control section. The assembler main-

1-1

1.2 |
HARDWARE
CONFIGURATION

"~ One CONTROL DATA

"One CONTROL DATA

tains a location counter for each section so that data locations within a
control section are relative to the beginning of that section. The pro-
grammer can increment these counters by words or bytes. (He can also -
define the size of words and bytes.)

The requirements for executing Meta-Assembler on the 3300/3500 are the
minimum requirements for executing MASTER.

MASTER minimum core memory (about 16K should be available for
META)

3304 or 3504 Processor: -

® @

One CONTROL DATA® 3311 Multiprogramming Module (3300 only)

405 Card Reader and buffered controller

® @

One CONTROL DATA 501, 505, or 3254 Line Printer and buffered
controller

One CONTROL DATA® 415 Card Punch and buffered controller

Two CONTROL DATA® 3306 or 3307 (3507) Communication (Data)
Channels : -

2.5 million words (10 million characters) of mass storage.

90K-100K words or about 9 scratch segments of mass storage should
be available to META for its temporary files.

60236400

m‘?“i

i

2.1
CHARACTER SET

2.2 |
STATEMENT
FORMAT

60236400

STATEMENT STRUCTURE 2

Programs written for Meta-Assembler may use alphabetic characters

A-Z, numeric characters 0-9, blank spaces, and the special characters
listed below.

+ plué ' apostrophe

- minus less than or equal

IA

* multiply

IV

greater than or equal

/ divide [left bracket |

= equal] right bracket

< less than | t decimal eicponent

> greater than l bihary exponent
period = NOT

, comma ; semicolon

left parenthesis — right arrow

right parenthesis = identity

percent : colon

@®]~ o~

dollar’ | vV OR
A AND

The relationship of these characters to printer graphic characters, internal
octal codes, and card codes is shown in appendix A. Characters that have
special significance as operators are given in Table 2-1.

A Meta-Assembler statement consists of a label field, a command field, an
operand field, and a comments field. Each field is terminated by two or
more consecutive blanks,

Format:

Statements can begin in character position 1 and continue through character
position 71. A semicolon in character position 72 indicates card continua-
tion. Any information beyond character position 72 is not interpreted by

Meta-Assembler but does appear on the assembly listing. Thus, columns)
72-80 can be used for sequencing. |
Within a field, a single blank can separate elementary items, operators, :
. . 3
and delimiters. A blank is optional for separating a symbolic operator, i
“such as **, from its operands, but is required for separatfing a mnemonic !

~ operator (AND) from its operands.

2.2.1
LABEL ; |
FIELD The label field begins in character position 1 or 2, and is terminated by two
consecutive blanks., If character positions 1 and 2 are blank, the state-
ment has no label. -
A label field may contain a symbol, set element reference, or SYM attri-
bute function reference (section 6.5). A set element reference is legal only
with an RDEF directive (section 4.3.2).
The definition of a symbol in a label field depends on the content of the com-
mand field, Throughout this manual, unless stated otherwise, a label field
symbol is optional and, if present, is the value of the control counter prior
to processing the command field. This value is either a word address or a
byte address, depending on the command (section 3. 1),
COMMAND ,
FIELD The command field of a statement begins with the first nonblank character
following the label field and is terminated by two consecutive blanks. If the
label field is blank, the command may start in character position 3. |
The following are legal command field entries.
An assembler directive
A mnemonic machine instruction code followed by its modifiers which
are separated from the instruction code by a comma
The name of a previously defined FORM
The name of a previously defined procedure which may be followed by
a set separated from the procedure name by a comma
A SYM attribute function reference f
5-9 . | . ° 60236400 4

2.2.3

OPERAND
FIELD

2.2.4
COMMENTS
FIELD

2.2.5
STATEMENT
CONTINUATION

2.2.6
EXAMPLES

60236400

The command field entry of a Meta-Assembler statement determines if an
entry is required in the operand field. If present, the operand field begins
with the first nonblank character following the command field. The oper-
and field contains either an expression or a set that supplies information
for the command field. For sets, see section 2. 7.

Two consecutive blanks terminate the operand field.

Comments begin with the first nonblank character after the operand field or,
if the statement requires no operand field, with the first nonblank character
following the command field. In addition, if the first character of any field
is an asterisk, all successive characters of the line are comments. Thus,
when the label field entry begins with an asterisk, the line is a comment
line. Comments can continue through character position 72 but cannot be
continued on the next line.

Any characters are legal as comments. Although META does not process

- comments, they do appear in the symbolic listing. Comments on lines of
~ procedure or function definitions are not retained in the’ Meta-Assembler

representation of the definition.

Normally, character position 71 terminates a source statement that has not
yet terminated. However, a line of code that cannot be contained in the
first 71 character positions can be continued to the next line by placing a
semicolon in character position 72 and continuing-the field at character
position 2 of the next line; character position 1 is ignored.

Any character other than a semicolon in character position 72 is ignored.

The following line contains all four fields.

MMM

label] command operand comments

2.3
ELEMENTARY
ITEMS

2-4

The foliowi;lg line haé a blank label field and does not contain comments.

command loperand

The following line is continued.

TA .. MSET. . .L'DOG', L' EASY., L/ Fo) (L’ L
. ' AR ! / / / / / '
) /O | lML&&#JL AN i [T N N ¥ U5 N
Lg.', L' LIMA NANCY.!, L', 4

column
72

The following line contains a command and a comment.
‘ | ‘ N |
The following line is a comment line.

| # PARAMETER LIST FOLLANS

The following line is not continued; character position 71 terminates the
operand field. | ' '

Ignored;
not semicolon.

. a ‘ ¢ . F 4 .. .
y M AMA A , 2. e d V4 X PREGI 2345

Last significant
character

The basic representation of data for META are elementary items. An
elementary item is self-defining|and its meaning is immediately obvious;
no additional information is needed for its interpretation. Meta-Assembler
recognizes the following as elementary items. |

Delimiters

Decimal integers

Binary coded decimal (BCD) integers
Octal integers

60236400

L ihrgh A s AL L e g e s - T

.....

Floating-point real numbers

BCD character strings, left or right adjusted
~ ASCII character strings |

Arithmetic and logical operators (symbolic and mnemonic)

2.3.1
DELIMITERS META recognizes the following characters as delimiters.

Comma Delimits subfields of a source statement field,
elements of a set or subset, and subscripts of a set
element reference.

Parentheses Enclose and delimit function arguments and nested
expressions,

Brackets Enclose and delimit nested subsets and set element
references.

Blank Separates elementary items for visual clarity or de-
limits them when required_. .

Two blanks - Terminate 'ﬁelds .of:a’ source slatement.

Apostrophes Enclose and delimit character and numeric strings.

' | Within a character string, only the single apostrophe
is a delimiter; any other delimiter is accepted as a
valid character in the string. A pair of apostrophes
signifies a valid BCD or ASCII apostrophe.
2.3.2
DECIMAL
INTEGER A decimal integer is a string of numeric characters from the character set

0-9. Meta-Assembler converts a decimal integer to its binary equivalent.

If the resulting binary number exceeds 48 bits, META truncates it with the
loss of the most significant bits and sets an error flag. META also sets an
error flag and truncates the resulting binary number if it exceeds a specified
field size during data generation.

- Examples:

429
-3

60236400 | | E | . 2-5

233
BCD INTEGER

2.3.4
'OCTAL
INTEGER

2~6

To specify a BCD integer, write the letter D followed by a string of one to
eight numeric characters from the character set 0- 9 enclosed in |
apostrophes.

Examples:
D'078!
D'123'
-D'123'

A BCD integer is not converted to its binary equivalent, but is represented
as a string of 6-bit BCD characters (appendix A). If the number of BCD

characters is greater than eight, truncation causes loss of the most signifi-

cant characters and META sets an error flag. During data generation, if
the field into which the integer is to be placed is too small, META truncates
the most significant characters and sets an error flag (section 4.5).

If during data generation, the field size is greater than required, the BCD
integer is right adjusted with leading zeros.

Expressions containing BCD mtegers are evaluated using 6-bit BCD arith-
metic. The sign of a BCD 1ntbger is placed in the left bit of the rightmost

digit of the number.

- Examples:

. 00 o1 | o2 03
-D'i23' | 00 01 | o2 43

An octal integer is noted with the letter O followed by a string of numeric
characters from the character set 0-7 enclosed in apostrophes.

Examples:

0T
0'123'

Meta-Assembler converts an octal integer to its binary equivalent. If the

resulting binary number exceeds 48 bits, truncation causes loss of the most
significant bits and META sets an error flag. If during data generation, the
field into which the integer is to be placed is too small, META truncates the

- most 31gn1f1cant d1gits and sets an error flag (section 4, 5).

60236400

.

235
REAL
NUMBER

2.3.6
BCD CHARACTER
 STRING

- 60236400

A real or floating-point number is written as a maximum of 14 decimal
digits. It must contain a decimal point and may contain an exponent repre-
senting a power of 10 designated by the letter E and an optionally signed

1- to 3-digit decimal integer,

Examples:
1. 1.E+2 (1.0 x 102
.35 — 327.7E-2 (327.7 x 1072
4.79 '

META converts a real number to 48-bit 3300/3500 intérnal normalized float-
ing-point format. It consists of two 24-bit words made up of a 12-bit char-
acteristic and a 36-bit mantissa.

23 | 11 | 00
word 1 characteristic

word 2 mantissa

Tf during data generation the field size into which the number is to be placed

is less than 48 bits, a truncation error is flagged and the rightmost bits of
the number are lost. For a negative value the 2-word value, including
characteristic, is complemented.

A programmer specifies that a BCD character string be either right adjusted
with leading zeros or left adjusted with trailing blanks.

A right-adjusted character string is written as the letter C followed by a
string of not more than eight legal BCD characters enclosed in apostrophes,

~ or simply as a string of BCD characters enclosed in apostrophes.

A left-adjusted character string is written as the letter L followed by a string
of not more than eight legal BCD characters, enclosed in apostrophes.

Because an apostrophe is used as a delimiter, the representation of an
apostrophe as a character in character strings is two consecutive apostro-
phes.

Examples:
'ABC' Right-adjusted string of three characters ABC
"C'A'"BC! Right-adjusted string of four characters A'BC

L'A'"YBC' Left-adjusted string of five characters A''"BC

2.3.7
ASCII
CHARACTER STRING

2-8

If the number of characters in a BCD string exceeds eight truncation cauges
loss of the leftmost characters and META sets an error flag. During data
generation, if the field into which the character string is to be placed is too
small, META truncates the leftmost characters and sets an error flag,

If the field size is greater than that required to hold a left-adjusted string',
the string used in data generation is left adjusted with trailing blanks., If
the field size is not a multiple of 6 bits, "the extraneous bits are on the left

and are 0. The remainder of the field is used for characters and is blank
filled. |

Example:

L'AB' is stored in 21-hbit field as

20 17 _ 11 05 00

3 bits zero

A right-adjusted string used in data generation is right adjusted with leading
zeros if the field size is greater than that required to hold the string.

An ASCII character string is written as the letter A followed by an apostrophe,

a string of one to six ASCH characters (appendix A), and an apostrophe.
Each ASCII character occupies eight bits,

Because an apostrophe is a delimiter, an apostrophe as a character in the
string is represented as two consecutive apostrophes.

Example:
A'AB''CD' A string of five characters AB'CD
A''""ABC' A string of five characters 'ABC'

If the number of characters exceeds six, truncation causes loss of the left-
most characters and META sets an error flag. During data generation, if
the field into which the character string is to be placed is too small, META
truncates the leftmost characters and sets an error flag.

An ASCII string used in data generation is right adjusted with leading zeros
if the field size is greater than that required to hold the string.

60236400

ARt

2.3.8
OPERATORS

60236400

The following table summarizes legal operators and their hierarchies and

 meanings.
Table 2-1. Legal Opefators
Alternate |
Operator Mnemonic ‘Meaning Hierarchy
+ Unary plus 1
| - Unary minus
{ DS Decimal scaling 2
| BS Binary scaling " .
* Arithmetic product 3
/ Arithmetic quotient
+ Arithmetic addition 4
- Arithmetic subtraction
| < LT Less than (compare) 5]
= EQ Equal (compare)
ml NE Not equal (compare)
> GT Greater than (compare)
= . LE Less than or equal
(compare)
:__;_ GE - | Greater than or equal
. (compare)
Kk AND Logical product (AND) 6
-) XOR Logical difference T
(exclusive OR) 7
+ + OR Logical addition
: (inclusive OR)
=) Unary equal; 1-word
literal 8
= = Unary double equal;
2-word literal
2-9

2.4
SYMBOLS

2.5
LOCATION

COUNTERS

2.6
EXPRESSIONS

2-10

A symbol is an alphabetic character from the set A-Z followed by 0-11
alphabetic or numeric characters from the sets A-Z, .0~-9.

Examples:

Legal Symbols Illegal Symbols

P | 5A
R3 E | ST$RT
PROGRAM -~ ABC-1

A unique location counter is associated with each of the 16 control sections

- available under Meta-Assembler. META interprets a reference to a con-

trol section name as a reference to the current value of the location counter
(a word address) within that control section.

In addition, META interprets the character $ as the value of the current

location counter, a word address, prior to processing the line containing $.

Loocation counters are disciussed in detail in section 4. 4.

A combination of one or more elementary items, symbols, set element
references, or function references makes up an expression. The program-

mer can form subexpressions by using parenthéses in the normal role of
arithmetic grouping. Thus an expression may contain subexpressions which

in turn are made up of operators and other subexpressiens or elementary
items. |

Examples:

$
A+ 2

(A+ 2)*B

60236400

....

B

- B W T TR APy S
b ol S G R R R

60236400

Rules for evaluating expressions are:

Expressions are evaluated left to right with lower numbered hierar-
chies evaluated first. |

Parenthetical subexpressions are expanded from the inside and are
performed {irst.

Operators of equal hierarchy are evaluated left to right.

If a mnemonic operator is used in lieu of a special symbol (e.g., DS
instead of {), it must be preceded and followed by a single blank.

- The value of a compare operation is 1 if the expression is true, 0 if it
- is false. |

For the < or LT and the > or GT operators, 0 is greater than -0.
For the = or LE, the™li= or NE, and the = or EQ operators, 0 is
equal to -0.

In expressions used for data generation, META performs the arith-
metic operation and places the v.iue in the specified field. If the
resultant value exceeds the specified field size, META truncates the
most significant bits and flags the error.

Examples:
Expression Evaluation
A+ B-C Add A to B; compare the result to C-.
A+ B*C | Multiply B by C; add A to the product.
(A + B)*C | - Add A to B; multiply the sum by C.
(A<B) + + (C>D) Compare A to B; compare C to D; perform

a logical OR on the two subexpressions.

If either or both inequalities are true, the
value is 1; if both are false, the value is 0.

If an expression contains relocatable symbolic addresses, its value must be
relative to a single location counter, or not related to a location counter and
thus nonrelocatable.

Examples :

In the following examples, P;, Dy, and C; refer to relocatable addresses in
the program, data, and common areas. ‘ |

| The'following are relocé.table addresses,

P x - D+1 ~-C

2-11

2.6.1
ATTRIBUTES

2.6.2
MODES OF

EXPRESSIONS

2-12

Subtracting one relocatable address from another in the same program con-
trol section produces an absolute nonrelocatable result.

Pi-Py
=C1+ Gy
Dy -Pp+ ' Pp-Dy+ C3- Co

The result of an expression cannot be the sum of two or more relocatable
addresses in the same or different control sections. The following are

illegal.

Py + (Pg + 5) Relocated twice relative to P
P+ D Relocated to both P and B
-P1 - P2+ Pg- P4 Relocated twice relative to P

Single relocation or an absolute value can legally result from a complex
expression.

Py - Po + Pg | Single positive relocation

~-Py + Py - Pg | " Single negative relocation

P+ Dy- Dg+ 2)-Cy+ (Cg-6) Result P-8 is single positive
relocation

P,+ (Py* 5)+ D,-(D, + 2)-Cy+ (Cot+ 6) ‘Result + 9 is not relocatable . |
relative to any control section.

®

An attribute is a property of an expression, such as its mode. Intrinsic
attribute functions interpret the properties as values that can be used in
expressions. Chapter 6 describes the Meta-Assembler attribute functions.

A mode associated with each elementary item defines how META is to inter-
pret the data when it performs an arithmetic operation on the item. Meta-

'Assembler recognizes 11 modes accessible through the mode attribute

function (section 6. 2).

Expressions are evaluated using either integer, real, or binary—codeii-'-
decimal arithmetic. META permits mixed-mode arithmetic on real and
integer values, converting the integer to a real value and performing the
operation in floating-point arithmetic. The mode of the result is real. With
any combination other than real and integer, if all elements of the expres-
sion are not of the same arithmetic type, META flags an error and sets the
value of the expression to 0,

60236400

" In arithmetic and relational expressions, META treats character strings
and addresses that are not external as integers.

META performs logical operations on a bit-by-bit basis without regaI:d to
mode. The result of a logical or compare operation is in integer mode.

The following table shows legal combinations of operators and operands.
For + , -, *, and /, interchanging the first two columns does not affect the
result. The mode of the second value must not be external.

60236400

-

- Table 2-2. Combinations of Operators

Mode 1st Mode 2nd Mode of
Operator Value Value Result
Integer Integer Integer
} Real Integer Real
Decimal - Integer Decimal
Integer Integer Integer
! Real Integer Real
+, - Integer Integer Integer
Integer Real Real
Integer Word Addr Word Addr
Real Real Real
.Decimal Decimal Decimal
Word Addr Word Addr Word Addr
Word Addr Byte Addr Byte Addr
Byte Addr Byte Addr Byte Addr
Ext Wrd Addr Integer Ext Wrd Addry
| LExt Byte Addr Integer Ext Byte Addr
*, / Integer Integer Integer
Integer Real Real
Real Real Real
‘| Decimal Decimal Decimal
kAt - Any Any ' Integer
>,=,1=,<,=<,= |Mode 1,3,5,7, Modc 1, 3,5, 7, Integer
9, 11+ 9,11%t
Real Real Integer
Decimal Decimal Integer

¥ External word addresses and external byte addressed cannot be

interchanged.
T 1 Section 6.2

2-13

Scale factérs, both decimal and binary, must be integer.

Examples':
1.5%*3 | Legal-; value is 4.5 real.
D'15'+ D'17' Legal; both items are decimal integers.
D'15' + 1.5 I | Illegal; cdnﬂict:ing modes.
1.542.5 | Illegal; scaling factor is not an integer.
2.6.3 . o .
LITERALS A literal is an expression beginning with an equal or a double equal sign

depending on whether the value is to occupy one or two words.

Examples:
- =0"7T7700077" ==1.2
=A+B-§ = = A'ABCDEF'
=1_ : = =

META places the value of the expression in a literal table. If the value ex-

ceeds the specified numbher of object computer words, META truncates it o 35

and flags the error. If the object computer word size is greater than 24 gl

bits, use of a 2-word literal causes truncation because the maximum pre- | %

cision allowed is 48 bits. By using one or more LIT directives (section | };__
I

4.4.5), the programmer can designate which control sections are to contain
literal tables. If the program contains no LIT directive, the literal table is
appended to the program section. The address of a literal is the address of
the literal table entry relative to the beginning of the control section. Liter-
als with identical expression values are entered into a single literal table
only once.

An attempt to place a literal in a numbered common area is flagged as an
error; numbered common cannot be preset.

2-14 | - | | 60236400

2.7
SET

60236400

A set is one or more set elements separated by commas. A set element is
an expression, a set name, or a subset. A subset is a set enclosed in

brackets.

The NSET directive (section 4.3. 3) aSSigns a set name to a set. Set names

can also be assigned through the PROC and FUNC directives (sections

5.1.1 and 5. 1. 2).

Examples: . | - . T R

B—'—NS-‘EI—‘—*M Lt A is a set of two elements.

| |a NS 51: Ktﬁ Q | B is a set of two elements.
The first element is an
expression; the second is
a set name.

W C is a set of thrée ele~

ments. The first is a sub-

- tﬁl,_nﬂ_u_‘. set which is a set of two

elements. The second
‘element is a subset which
is a set of two elements,
the first of which is itself
a subset. The third ele-
ment is a set name. -

In the preceding example, the first element of set C could have been written

as A.

~To refer to a set element, write the name of the set followed by a left

bracket and one or more expressions separated by commas and a right-

bracket. The values of expressions represent the ordinal location of the set
‘element referenced. From left to right, they represent the level of the ele-
ment in a set containing subsets. To refer to an entire set, write the name

of the set.

If the reference is to a nonexistent elemeni:, META uses zero.

2-15

Example:

‘ The symbol A is defined as the set 5, C, [9, [3,4]]. The set has three ele-
ments. The third element [9, [3,4]] contains two elements, the second of | .
which also contains two elements [3, 4].

‘Reference Element | Value

A All 5,C, [9, [3,4]] i
1 ~ First element of A 5 | '
] . Sécond element of A | C

3 Third element of A 9, [3,4]

L

3, 1] First element of subset 9
| | of third element of A

- A[3,2] | Second element of sub- 3,4
| ' set of third element
of A

Af3, 2, 1) First element of sub- 3
| set of second element
of subset of third
element of A

A[15,33] Nonexistent element 0

In the preceding example, if C is a set name for a set consisting of the list
elements 7, 8, 6, elements of C could be referred to as follows:

‘Reference - Element | Value -

A[2,1] or C[1] First element of C 7 | | B
A[2,2] or C[2] Second element of C 8 | |
A[2, 3] or C[3] Third element of C 6

The Meta~Assembler maintains information about a set and its elements to-
gether with the symbol defining the set. The programmer can access this
information for use by the assembler through attribute function references.
For example, the NUM attribute function (section 6.3) supplies the number
of elements in the set.

2-16 - | - o | | - 60236400

LOCATION CONTROL AND ADDRESSING 3

Meta-Assembler provides location control by making available one absolute
and up to 15 relocatable control sections, each with an associated location
counter. The counters can be incremented in word or byte increments.

3.1

RELOCATABLE

ADDRESSES | A relocatable address is either a word address (mode 9) or a byte address
(mode 11). Mode is specified implicitly by the directive. Word-oriented
directives cause definition of relocatable word addresses. Byte-oriented
directives cause definition of relocatable byte addresses.

A label field symbol is a word address for the following directives.

RES . TEXT
" GEN TEXTA
" GEND

Also, literals and control section names are word addresses. A reference
to a control section name returns, as a word address, the current value of
the location counter in use prior to processing the line. Use of the $ returns
the word value of the current location counter prior to processing of the
line.

" For the following directives, a label field symbbl is a byte address.

NOLIST LIT DETAIL ENTRY

LIST RESB SECP EXT
SPACING GENB SECD GOTO
EJECT TITLE SECA ENDS
ORG BRIEF TEXTC TREF
LIBS

A label field symbol on a FORM reference line or a procedure reference line
is a byte address. This means that a mnemonic instruction (which is actu-
ally a procedure reference) does not cause the counter to be rounded to the
nearest word address, |

60236400 . - ‘ 3-1

A word-oriented directive that follows a byte-oriented address causes the

~control counter for the section to be rounded up to the nearest word address.

A byte-oriented directive always uses the next available byte..

Use of the $ returns the word value of the current location counter prior to
processmg the line.

Examples:

Reserve 1 byte

Reserve 1 word

(/N D1, [
- X&SH 1’1 L1 1 Reserve 1 byte
0.4 RESB . i\ Reserve 1 byte
Vi/

RES in the first example causes the control counter to be rounded up to the
next word boundary prior to definition of the symbol Bl. The control
counter is not rounded up in the second example. |

UNIT o oy 4 o |Computer word of four 6-bit bytes.
L OECP, | PR@& . + | PROG is control section name. -
L F M FORM defines three fields; 24 bits.

1 A [Ll '_LLL,.J_I_A_I_ Form reference; XY is a byte address.
M ¢ s K DG Control section; XM is a word address.

s
el

N
=

-
i

1¥a O,V LSL S T $ returns XK as a word address
EQU . . 2., |L1teral XZ is a word address.

RES and RESB are discussed in sections 4.4.6 and 4.4.7.

60236400

3.2
LOCATIONS
COUNTERS

60236400

Location counters are designated 0-15, corresponding to the 16 control sec-
tions a programmer can define using SECA, SECD, and SECP directives
(chapter 4). |

Location counter 0 is reserved for the absolute control section (defined by
SECA).

Location counter 1 is reserved for the first program control directive. If
the program has no SECP directive defining a program control section name,
location counter 1 is still used for the program.

Location counters 2 through 15 are used for either program control sections
or data control sections. As META encounters each SECP or SECD direc-
tive, it assigns the next available location counter. |

L

DIRECTIVES 4

4.1
LISTING
CONTROL

4.1.1
~ NOLIST

60236400

Directives control the operation of Meta-Assembler much the same as
machine mnemonic codes direct the computer. The programmer can use
directives to: '

Control the content and format of the Meta-Assembler listing.

Define word and byte size when the object computer is not a 3300 or
3500, o .

® Define a symbol and assign it a value or set of values.

Assign up to 15 relocatable and one absolute location counters for
address assignment.

Generate code to be loaded and executed on the object computer.

Specify field sizes for the object code.

® Specify that certain symbols are entry points to separately

assembled subprograms, or that symbols used within the current
subprogram are external to it.

® Repeat or skip source statements conditionally.

® Terminate assembly of a subprogram or group of subprograms.

Define a procedure and assign it one or more names for subsequent
reference.

Define a function and assign it one or more names.

Through listing control directives, the programmer suppresses portions of
the output listing, selects spacing, places a title at the top of any page of the
listing, and requests the level of detail he wants to appear in the listing.

For all listing control directives, a label is optional; if present, it has the
current location counter value. ‘

NOLIST suppresses generation of the output listing until the assembler en-
counters a LIST directive. The NOLIST line is suppressed from the listing.

Format:

4-1

a.1.2
LIST

4.1.3
SPACING

- EJECT

LIST causes resumption of the normal assembler l1st1ng followmg a NOLIST

directive. LIST appears on the output listing,

Format;:

WM&IL_{.Q:M&“_A_

SPACING allows the programmer to select single, double, or triple spacing
in the output listing.

Format:

Ilﬂ_b_flfﬁ | S_PWMMWEI&_L

exp - Expression evaluated as 1, 2, or 3 corresponding to
- single, double or triple spacing, respectively. Other-
wise, directive is ignored.

The specified spacing remains in effect until another SPACING directive ap-.

pears. If no SPACING directives appear in a program, the listing is single
spaced. |

EJECT terminates the current page of the output listing and causes listing to
resume at the top of the following page. EJECT is printed as the first line
of the next page. .

Format:

WMM

If EJECT is already the first line of a page, it is prmted but has no other

effect.

60236400

v Bl e nt

B

4.1.5 . . S . | |
TITLE TITLE causes the current page to be ejected and the TITLE directive line
| | ~ itself to be printed on the first line of the new page. Until another TITLE
- directive is processed, all succeeding pages begin with this title.
Format: |
M&&MILE_A_AMLMMMDL&@J; . Comments.
character string 1-56 characters that appear as title at
| top of each page of output listing
(section 8. 1)
4.1.6 | |
" BRIEF | BRIEF causes listing of source lines and lines of code generated by data
| | ~ generating directives only. BRIEF remains in effect until a DETAIL direc-
tive occurs. The default mode of listing is BRIEF.
Format:
F 1mﬂ|.ttﬁ_.l_l_
4.1.7 | | |
DETAIL DETAIL causes listing of all lines of code other than library procedure defi-

" nitions in subsequent LIBS directives (section 5. 1. 6) and causes listing of
procedure expansions, DETAIL remains in effect until a BRIEF directive

is processed. A NOLIST directive takes precedence over a DETAIL direc-
tive.

Format:

|labed . DETAIL . comments: . .

60236400 | 4-3

4.2 |

OBJECT MACHINE
DEFINITION
(UNIT) '

. 4.3
SYMBOL AND SET

DEFINITION

4-4

The Meta-Assembler running on a Control Data 3300 or 3500 Computer Sys-
tem to assemble programs for other computers must have certain informa-
tion about the object computer to generate the proper binary information.
The UNIT directive defines the byte size and word size of the object compu-
ter. Word size of the object computer must not be less than 8 bits nor
greater than 48 bits.

Format: . - | | -
label Optional
‘expy Evaluatable nonrelocatable expression defining the byte
| size of the object computer in bits. During assembly, the
location counter is incremented by 1 for each expy bits.
eXPy Evaluatable nonrelocatable expression specifying the num-

ber of bytes per word. |

In the absence of a UNIT directive, META uses the host computer unit size
of 6 bits per byte and 4 bytes per word. Binary output is in the form accep-_
table to the 3300/3500 MASTER relocatable loader.

UNIT, if used, must precede all lines of code other than listing control di-
rectives and comment cards. Use of UNIT causes binary output to be in the
alternate form (appendix C). | | ' - -

]

A symbol that appears in the label field of an EQU or RDEF directive has a

defined value. Whenever the symbol is used in an expression, this defined

value rather than the address of the symbol is used in evaluating the expres-
sion. '

A symbol that appears in the label field of an NSET directive or the label
field, command field (as a modifier), or the operand field of a PROC or
FUNC directive (chapter 5), becomes the set name for a list of set elements.
Whenever the subscripted set name is used in an expression, the value of
the set element is used in evaluating the expression. '

60236400

4.3.1
EQU

4.3.2
RDEF

60236400

EQU assigns the value and attributes of the operand fleld expressmn to the
label field symbol

Format:

Mﬁﬂm L exp. comments |

" The label field must contain a symbol. A symbol defined by EQU cannot be

redefined later in the program.

Example:

Mlizlj

RDEF assigns the value and attributes of the operand field expression to the
symbol or set element named in the label field.

- Format:

|labet . RDEF exp. . comments. .

The label field must contain a symbol or a set element reference. The value
and attributes assigned to this symbol or set element remain in effect until
an RDEF with an identical label field symbol or set element is processed or
until an RPT (section 4.7.1) with an identical label ‘field symbol is pro-
cessed. If the operand field is blank, the symbol or set element has a value
of 0.

Example:

L1 E.@.UI_L_L_LLIE_J__L_ A has value of 15

L i1 R:D;EA' | JSI {11 B has value of current location counter

L RDEF | A+ C has value A + 3, or 18
et e Illegal; A is doubly defined

1 11 M Illegal; B is doubly defined
Lol Mn O+2 Legal; C changed from 18 to 20

S O | Eﬂ_ULllinlJ DhasvalueO |
1 RDEF; N Illegal; D may not be redefined

| M4_£ 1 Define set E

ke Redefine element two of set E

4.3.3

NSET - NSET assigns the label field symbol as the set name of the operand field
| , set. The label field must contain a symbol which is the name by which the
set or set elements can be referenced. If the operand field is blank, the
- set consists of one element which has a value of 0.

Format:

'li&zbmzqﬁ_LJmﬁEEE1L¢_¢nedh_LJ:Lunun£a1¢msLJ_

Example:

A is a set of three élements.

B is a set of two elements, the second of which is a set of two ele-
ments.

C is a set of tWo elements, the second of which is a set of three
elements.

D is a set of one zero element.

A[2] is redefined to be 9 in the last line of the exam.ples; thtis the final
set A is defined as though the following had been written.

4. NSET . 3,9, $ - o

An entire set can be redefined through use of NSET.
Example:

] .t t 1

4.

4-6 - o ' | 60236400

i

4.3.4

FORWARD |
REFERENCES - A forward reference is a reference to a symbol or set element before it is

t defined. The Meta-Assembler processes forward references in two passes.
1 | | On the first pass, a reference to a symbol before it is defined is not given a
B value; a reference to the symbol after it is defined is given the most recently
assigned value. On the second pass, the forward reference is given the
most recent value assigned.

- i

An expression cannot contain a forward reference if:

1. The value affects location counting.

2. The undefined symbol is defined subsequently by an EQU directive
that contains a second forward reference

The undefined symbol or set element is not defined subsequently.

4. The expression is not evaluatable.

A forward reference to a symbol or set element redefined subsequently by
RDEF or NSET directives that contain forward references yields the final
value assigned to the symbol or set element.

Examples:

Legal use of forward reference First Pass Second Eess

1L311‘11111.|1 IJLI.‘ A undefined A=2.5

TS N N N S N I O B=2.5 | B=2.5

b1 1X1X1 L1111t 11 AA undefined AA =7

‘ llRpEFI 1_1ZLYL|||11.1111 XX undefined XX =2

1EQM111X_X1111111111 BB undefined BB =2

14ep£F;1211111111:1| YY =2 .YY=2

IIRD,EFIIIZIILIIIlIJI XX =17 XX =7

L JM@L AA[2] undefined AA[2]=9
11111&011|1811111|1'.B’B=8 BB = 8

e NSET L 1, BB, 77 AANY=1; AA[2) AA[1] = 1; AA[2)

llﬁkENl LA.ALZJlil = 8; AA[3] =T =8;|AA[3].—.—.7

Mu?uuu_ AA[2] =9 _A'A[Z]'=9

60236400 - 4-7

4.4
LOCATION

+ CONTROL

Reﬁlac’ing the last line of the previous exémple with the following would
achieve the same result. L

it

GEN directive contains forward
reference to AA which is defined
by an EQU containing a forward
reference. |

Value affecting location counting
must be defined on first pass,

RES affects location counting.

Value affecting location counting
must be defined on first pass.

RES affects location counting.

Value affecting location counting
must be defined on first pass.

RES affects location counting.

-

Meta~-Assembler provides one absolute and 15 relocatable control sections,
each of which has an associated location counter. Any program can use

one or more control sections.

Meta-Assembler directives described in this section assign names to con-
trol sections and address values to location counters.

60236400

4.4.1
- SECP

4.4.2
SECD

- 60236400

" The first SECP directive defines a program control section.

Format:

|labed . SECP . sym . comments. ..

label Optional; if present, label has the value of the location
. counter after the SECP directive is processed.

sym 1-8 character name of program control section (subpro-
gram name). A reference to sym later in the program
returns the current value of the assomated location
counter, |

After the first SECP naming a specific sym, successive SECP directives
using this sym indicate that the code that follows is an extension of the pre-
viously declared program control section. A programmer coding for
MASTER may use only one program control section; any additional SECP
directive naming a new sym is flagged with an informative D error.

- The first SECD in a program defines a blank common, numbered commbn,

or labeled common control section.

Format: | | |
) | exp .comments . .
label Optional; if present, label has the value of the‘location
counter after the SECD directive is processed.
sym Optional; name of control section defined or referenced.
zZero or Control section defined or referenced
blank | is zero or blank common.
1-8-character Control section is labeled common
symbol block. '
1-4 decimal Control séction is numbered common
digits block. .

For the 3300/3500 relocatable output, if sym is blank or

0, the block name is IAMAAAAAA for chapter 1 and 2ZAAAAAAA
for chapter 2. For other than the 3300/3500, the block
name depends on the item type (appendix C).

4-9

If sym is a symbol, a reference to the symbol later in the
program returns the value of the associated location -
counter.

exp Optional; if execution is under 3300/3500 MASTER, exp is
an evaluatable expression with value 1 or 2 designating the
chapter to which the section is assigned. If exp is absent,
chapter one is assigned.

Each new sym on an SECD directive causes creation of a new control section

starting at relative address 0. If a sym appears on a subsequent SECD di-

rective, exp is ignored and code following the subsequent SECD directive

down to the next location control directive is an extension of the previously
- declared control section.

4.4.3 | | S
SECA A program can have an absolute control section declared by a SECA direc-

tive.

Format:

I ML&ECA_J_JZ)VM' Cormments | .

label Optional; if present, label has the value of the lecation
counter after the SECA is processed.

sym . 1-8 character name of the absolute control section. A
subsequent reference to sym returns the current value of
the absolute location counter.

Any SECA directive after the first one in a program indicates that the code
following it is an extension of the originally defined absolute control section.
If SECA is preceded by an ORG directive setting the absolute location
counter, the code following the SECA extends the absolute control section.

SECA cannot be used when coding for MASTER.,

4-10 | S B 60236400

W TR ORI b T T T " .
N G e e sy e et e S A SR S i R bk S ey i e e R R S O
PR T R e S T MR : T N e N R et R T T L T S St

?? 4.4.4 |

-:f ORG | ORG sets the specified control counter to a specified address.

Format:)

label. Optional; if present, the label has the value of the location

| counter after the ORG directive is processed. |
exp Evaluatable expression. The expression indicates the con-
trol counter to be selected and the address to which it is to
! be set. Lines of code following ORG are placed in the con-
trol section indicated.

Examples:
ECP ALPIH/‘L L4 Defines program control section

.' ALPHA.

FJIEUT DR NS NN NN U NS ISNUN SO S SO |

S U NS DU SN WS SN S G A |

| o - | 5_C.Q_L_‘C.QMM,_LLL_L Specifies labeled common block of

COMM in cha pier one,

VU WD UUS U N WS JSUU VOV S PN |

- | ULV WS VS S S0 N VAU SO A (N A |

SECM L1111 Specifies numbered common block.
Chapter one is implied.

D NS WU WS NN U SO0 OSSO N S AN S B

[D 0 TS D T S T D00 U S D I B

| Lﬁﬂﬁ__J__L_ALEHA_I_L - Specifies resumption of program con-
. f g ;. NI I N A B B A A trol section. (Here, ORG has the same
. effect as SECP ALPHA).

[N W TS P VRS N W SN WO S S N N I

Specifies resumption of I'abeled

o et L common block COMM.
[/ NES 1[1 Lty Location within COMM.
DKG | '5_‘@ L1 Selects absolute location counter and
N N sets its value to 50.
g 1)31&91 U U U S O B Specifies hlank common. For the 3300/
Lt L d®t bbbty 3500theb100knameis1/\/\/\/\/\/\/\;
) otherwise, the block name is 00000000,
| S N N I S D A Y I O A S Y R . .
RG . . P Selects the location counter for COMM
. | and sets the location counter value to

Ll 1% 4t & t 1 ! & i { i 1

the value of D.

. .
J T T Y N VU AU U NN DEN N NN U WO IO O |

yy

ALFHA Specifies resumption of program con-

trol section ALPHA,

60236400 | . _ | - 411

4.4.5 .
LT : LIT designates the control section in which literals are to be placed.

’ -

Format: | | | '

label Optional; if present, label has the value of the location
~ counter. |

sym ~ Name of a previously defined control section.

META places literals (section 2. 6. 3) in the control section'specified by a
LIT directive, regardless of which control section contains the reference,
until it encounters another LIT directive designating a different control sec-
tion for literals. In any given literal table, only one entry is made for
identical literals. However, a literal table can have entries that duplicate

entries in other literal tables. A literal results in the generation of object
code.

In the absence of a LIT directive, lliteralé are appended to the first program
control section.

4.4.6
RES RES adds the value of the expression in the operand field to the current loca- g
tion counter value as a word increment to reserve storage. | |

Formit:

e

exp Evaluatable nonrelocatable expression (must not contain a

forward symbolic reference or reference to an externally
defined symbol).

Examples:

T IR Increment location counter by two words. -
) RE&_,_LL,DL L Increment location counter by ten words.
1 RES | | .5 L1 Decrement location counter by five words.

4-12 ' o - - B . 60236400

44.7
RESB

4.5
DATA
~ GENERATION

4.5.1
GEN

60236400

RESB adds the value of the expression in the operand field to the current
value of the location counter as a byte increment to reserve storage.

’

Format:
MMI L 18X 0 | Commenls: | 1
exp Evaluatable nonrelocatable expression by which to
o increment the counter.
Examples:

i Increment location counter 16 bytes.

R,ES,& . é & L, Increment 16 more bytes.

Data generating directives define data formats and generate words or bytes
of information to be loaded into the computer at execution time,

GEN places the values of expressions in the operand field set in successive
words, one word for each expressmn

&ormat:

‘M&bﬁli ! ﬁEN ! lsie.lél | _;Cpmmelni@ 1

set Set of expressions to be generated. A set of sets is not
permitted.

A Examples:

For the following examples, the object computer word size is 24 bits.

| ¢ - o
J_‘_LL_EEN_._E,L_'AHM L1 Generate two words, the first

containing 5, the second con-
taining the internal BCD
representation of ABCD.

4-13

4.5.2
GEND

4-14

_ p 3 13113111 Results in the same
:ﬁEN: lﬁ'lillllx AN D T O T T O OO O Yaluesastheabove,

L. 8 06,71 lllegal; the set in the

cL GEN line must not con-
11 NS DU O B]
tain sets.

-
.
=3
ulnian
= .
p—
p——
e
=1
e

-
-
i
s
p——
—
e
ad
-
}-.

ta v r 11 a1 Generate th_ree_words, |
ELEN L1 &.ELLI'MJML'_M‘JZJJ_L containing 5, 6, and

7.

Mlllll-lll'lillllli Illegal; values must

be single precision.

14 EXKTI 11 F; Lot g1 a1 vt ey gy Legal; reference to
external symbol.
) ﬂl I T U W R i B O B NS O 0 S O

GEND generates the values of expressions in the operand field set, two

object computer words per expression. Maximum precision for a value is
48 bits. If the objeet computer word size exceeds 24 bits, META truncates
the value to 48 bits and flags the error. |

Format:

label Optional

set Set of expressions to be generated. A set of sets is not
- permitted.

Example:

In the following example, the object computer word size is 24 bits.
A ceno . 2.4, 250480

The code generates six words. The first two words contain the floating-
point representation of 2.4. The next two contain the binary integer
representation of 25. The last two words contain the internal BCD
representation of ABC right-justified with leading zeros.

60236400

o

.
b drtowee S g b i Y Y da s O & Ly T s e, S e e R e ke B Y St iy i d g L s S et b et B s L T et g i i ki e L B e, e e Bt T Ut T e e B .. oy g i L
e O L L T e S e L RN ot s b gl Wi Sl S« iy A Db Ealad st Sl S i G LR b c ko A e e L SOl ek L I s e et s L s e e et e L i -, bl iy S

e

- 5.2
-
N

4.5.3 : - -
GENB o GENB evaluates the values of expressions in the operand field set and places

the values in successive bytes. If the value of an expression exceeds the
byte size specified in the UNIT directive, META truncates the value to the

byte size and flags the error.

Format:
Vlebel GENB . set. . comments. ..
label ~ Optional |
set Set of expressions to be placed in successive bytes. A set
of sets is not permitted,
| Example:

For the following example, the object cdmputer byte size is 6 bits.

0L . GENG . 5,9, 43,08, 52 .\

- - The above code generates five 6-bit bytes. The last byte contains the
one's complement of -2 truncated to 6 bits (111101).

4.5.4 | .
FORM - FORM defines a data format by specifying field sizes, left to right, in one

or more object computer bytes.

Format:

mmmll comments, | |

label Required; label is the name referring to FORM

set - A set of expressions, each of which defines a field size
in bits. A set of sets is not allowed.

60236400 | | _ _ 4-15

Examples:

For the following examples, the object. computer byte size is 6 bits
“and the object computer word size is 24 bits.

-
| S T S |

-;-; 1 Fl@m ,usz S B I B A One field, four bytes
ANEKY | FRMJ 1‘/81 S A N B A B One field, eight bytes

i" KNV Four fields, four bytes

Lo 1
ADK Fi@RM ! &p 1171 141 ~ Two fields, four bytes N
N-] IM ;JI] Lot Four fields, four bytes

To refer to a format defined by a FORM directive, place the label of the
FORM directive line in the command field of a line. Supply a set of expres-
sions, corresponding to the fields, in the operand field of the referencing
line. A form reference generates code starting with the next available byte.

A label on the line referring to a FORM directive has the value of the loca-
tion counter prior to processing the line. If a value exceeds the specified
field size or if the field size exceeds 48 bits, high-order bits are truncated
.and an error flag is generated. For a negative value, the one's complement
of the absolute value is used unless the value is in BCD decimal mode. For
a BCD decimal value, the sign is inserted in the leftmost bit of the least
significant character position of the field.

If the field contains a 6-bit character type value and the field size is not a
multiple of 6-bits, the characters are placed in the rightmost bits of the
field with the leftmost extraneous bits zero.

References to FORM directives can be circular.

Examples:

N T I N Y I S I N O O N A A
. 11111,MJ1$'&3:|1111111111111

Generates a single word with value $+3 right justified in the 24-bit field.

._EMM:“S;-:;lI::111111'1'11'1
1::!1M1l1111111t1111

Generates the 48-bit floating-point value of 1. 59,

4-16 - ' . - _ ' 60236400

60236400

11Fm_|_1éI_W111111111|

| N | t | ctitligkl__waﬁdm
kllEEl | l ;M!‘ | I:;’I l:: | I I T N
21

Generates one word containing the following octal value: ' 1l77(117(l12

':'-illlﬁgglilélilllillljj

Generates a word with zero in the leftmost 7 bits and the byte value
of the location counter in the rightmost 17 bits. .

L MNSET by 2,005
11FM1I{1111111111

llllllwmz__l_

Generates a word with value 12 right adjusted in the leftmost 10 bits,
zeros in the next 3 bits, and the current word address plus 2 in the

rightmost 15 bits.

The following example illustrates circularity of forms.

'V 111@1411141111.11
11&@&_1_&_39,11'1111111

Byl '.“Z!“ZEF 2,0 . Generates 2 bytes
N - Ll Generates 2 bytes identical to
HF¢@MI£H“HLJH”[last two
- 12.,_._2“_129 2 ., Generates 4 bytes filling last
' with zeros

Generates 5 bytes

-

o4 | 10] 20| 40

The 4 bytes generated by G are:

The 5 bytes generated by G are: 06 i 141739] o1 i 43

In the followmg example, BCD characters XY are to be stored in a 19-bit
field.

14[1?111411
11&1111“_1“{111

BCD characters X, Y, and blank are placed in the rightmost 18 bits of the

- field. The leftmost bit is 0.

4-17"

4.5.5
TEXT TEXT generates an integral number of object computer words containing the
specified BCD character string. : |

Format:

Mﬁr&_L JTIEJXJT 1 L' 5lflrl‘.lﬂ.g'l '1 i lc_ﬂ_mm_eﬂilﬁl__l__l_

The last word is padded with blanks as needed. If the object computer Word
size is not a multiple of 6 bits, as many characters as f1t are placed in each
word, right adjusted with upper bits zero.

4.5.6
TEXTC | TEXTC is identical to TEXT except that the BCD character string generated
is placed in consecutlve words without padding the last word.
Format:
p&b&e 1 ITEXIT:CI L MMF&S !
TEXTC generates code starting with the next available byte.
4-5.7 ’ :) .
' TEXTA TEXTA generates 8~-bit ASCII characters in the same way TEXT generates
| BCD characters. Padding of the last word, if needed, is with the internal
representatmn of ASCII blanks.
Format:
lﬂt&hﬁhfl. TEXTA ! strying', . comments, |
4.6
PROGRAM . |
LINKING - The directives ENTRY and EXT do not define symbols, but either classify
T o D - symbols defined within the subprogram as being known outside the subpro-
gram, or classify symbols referenced in a subprogram as being defined
outside of the subprogram.

4-18 o = | 80236400

4.6.1
ENTRY

4.6.2
EXT

4.7
- REPEAT
'AND SKIP

4.7.1
RPT

60236400

The ENTRY directive specifies which symbols defined may be referenced by
subprograms compiled or assembled independently. That is, ENTRY

. directives list entry points to the curren{ subprogram.

Format:

| k&b& J/ B

symj; Entry poiht symbols, 1-8 BCD characters |

The EXT dire-ctive lists symbols which are defined as entry points in inde-

- pendently compiled or assembled subprograms, but for which references

appear in the subprogram being assembled.

Format:

l@élblé!l ! éx;ril. [%ﬂmwmnn _comménta.

- 8ym; - External symbols, 1-8 BCD characters

Source statements can be'processed repeatedly or skipped conditionally

through use of the RPT and GOTO directives.

RPT Specifies processing a portion of code a given number of times.

Format:

Uabed . RET. . exp, inid. . commeats ..

4-19

Optional; if present, the original value is 0. The

~ value of the label is tested and incremented by 1
prior to each processing of the lines of code, to a
final value that is the value of exp. ‘ |

label

exp 'Absolute evaluatable nonrelocatable expression (con-
| tains no forward or external references) indicating
the number of times the following lines are to be
processed. If exp is less than or equal to 0, the
following lines are not processed and the RPT acts

as a skip.

linid Label of the last line to be processed by this RPT.
If linid field is missing, one line is processed.

RPTs may be nested to a level of at least six and possibly more depending on
available table space. Space not required for processing functions and pro-
cedures could be used for additional levels of RPTs. Processing of repeated
statements is from innermost to outermost. Every inner RPT range must lie
totally within the range of the next outer RPT. |

‘The programmer can redefine the RPT label within the repeated statements
to terminate a repetition prematurely.

Examples:

The following sequence generates a 10-word table of even numbers,
0-18. Because linid is absent, only one line is processed.

[W O O
: 1A*|gi'12;1;..

1 tes 0 0 1 & 1 ¢ & 2 1 1)

Generates one word for each value
0, 2,4,6,8,...,18 |

The follcjwing example illustrates two levels of repeats; the nested repeats
produce 10 words. -

L RPT . 5,S..
IIRIPLTJng;'sli .'

4-20

O O DL H O
|
W N 30 bk b

I - R -

]

!

i

NV = N

OO0 D D D
!
o R e 0

&N R A X

!

DO d DO e D

SR S S -

60236400

In the following example, lines 5-8 are processed three times.

S S N

0.

O S |

é@Mi:i“lﬂHllu

=3

14 11

15@.0111511111'1

o

v

e
—
i
p—

RPT . . B-At2,. D

L1

RnDéE l &"'Cf’i!l |

1

I N W RIPJT.: | 1%}135 S I O

L1 11 lﬁﬂll] }S.ELC.J1¥51£C‘1‘1,J1

L1 1
L2
L, 4
L 5
.. 6

T

.8

lLlJ_LNLwJIIIIIIJIIIIIL

repeat range

In this example, the elements of set S are initially zero. On the first proces-
sing of lines 5-8, C is 1, and S[1} is redefined as A + C - 1, or 4. On the
second RPT directive, the test S{1] = B is not true (0); the GEN line is
skipped. When lines 5-8 are repeated, C is 2 and S[2] is redefined as 5. The
test S[2] = B is true (1) so the GEN line is processed; it generates one word
with a value of 20. On the final iteration, C is 3, S[3] is redefined as 6, and
the test S[3] = B is not true (0); the GEN statement-is skipped. Without the
use of repeats, this example would be: A

1!i'fA5£LQ,.ﬂ+dlxi

Lt t |

lEQUi_llilll'liL

A=14

4 1

15@.”1115111111

B=5

g&&gl&llltll

i

S{1] =4

1;LIRID&F;11A_tJIIJIJ l.l l.l.l.

S[2] = 5

4.7.2

GEN S[27%S.L1.7 |Generate 20
J I) "

GOTO GOTO specifies a conditional skip.

- Format:

exp

linidi

60236400

ElA*Jleilll]l S[3]=6

Q gl Nt a.

Evaluatable nonrelocatable expression

~ GOTO.

) WYL Y

Line identifiers defined as labels on lines following

4-21

Expression exp is evaluated and used as an index to the list of line identifiers. -
The line containing the label identified by the indexed line identifier is. the . | | |
next line assembled. For example, if exp has value 2, the second line iden- |

tifier is the label of the next line to be assembled. If 0= exp> n, where n is)
the number of line identifiers, assembly continues with the next line.

Example: - | | .

s e pm— - —

For the following lines of code, since (B-A)*B = 2, the next line
assembled after GOTO is the line identified by the second line identi- =

fier, the line labeled BILL. Lines between GOTO and the line labeled
BILL are skipped.

JlliEﬂljﬁ!lllllllLLllll_l-ll_llllllll
LillEQUil&IIIILJ-JJllLllllLIJIlI

[)
llllllI'll_l_l'll[lljj.il'ljllllilLljll

. ‘ ‘) .
(DI | AP L'l_LJllIILLJJilllllli

.
1t 1 1 it o4 0 1t 1 Qv 1 % 4 & 1 1 1 1 + t 1 1 1 . « i 24

AR b b o S,

F 4 P 4
L.J 1 —d M A 1 77 " N T I I N I T T I I

»
SN A T U T A T I R T N NS T Y T U T G A U U

FA/M L
-f;..f’v". 1111111i11!1_1115;=

4.7.3 - | P
LNID 'LNID inserts a dummy label for line identification purposes. The label has
no value and is not entered in the Meta-Assembler symbol table. "As long as
- no ambiguity exists, the same label may appear on more than one LNID line,
or on any non-LNID line, or on both LLNID and non-LNID lines.

Format: | | ' . i

i ,_i

- L

i ~ i

'

- - | .

There is no operand; comments can be entered immediately after the com- _ |
mand without the use of an asterisk.

LNID is particularly useful for defining the range of an RPT, since the use
of normal labels may sometimes result in duplicate symbol definitions. :

4-22 _ - - - I - 60236400

4.7 .4
RPT AND GOTO | | |
- PROCESSING - When META encounters an RPT directive, it compresses lines of code

within the RPT range by removing comments and redundant blanks, and
stores the lines in an internal table of definitions.

In the process of saving the lines of code within the RPT range, the assem-
bler examines the command field of each line to ensure that the RPT range
does not include an END or FINIS directive. The assembler also recog-
nizes procedure and function definitions (chapter 5) which are within the
range of an RPT.

When a procedure or function definition appears within an RPT range, label
field symbols within the procedure or function definition are lucal to the pro-
cedure or function definition and are not considered in determining the RPT
range.

i I | | | Example:

JI&PL.;:J!’A||
11P£@Cj1111111

5 N U S I S .
) = B _' Y A Not end of RPTirange-
I | EN&J i 1 1 1. 1 1 i

/T T T S T EndeRPTrange

A GOTO directive may aﬁpear within the range of an RPT. The object of the
. GOTO may be either within or outside the range of the RPT. If the object of
a GOTO is outside the range of an RPT, the RPT is terminated.

Within a procedure or function definition, the object of a GOTO or an RPT
must be within the procedure or function definition, and must be At the same
level as the GOTO or RPT directive line. (Level of definition is discussed

. in section 5.4.)

Examples:

Cllli]l_l_

L i 4 1 1

JJll'lJ_llJllll

1 &P T . hél.}.a__l_l_ B is within the procedure definition and

is at the same level as the RPT
directive line.

prorr.

llJlJ_llllJlll_

i 4 1 1 1 1 1

L
I S I 3% Y O I O N S O |

. 11]

60236400 - : B | - | - 423

' I WO N N N U U B |

lMll'llll'lJl
L]

[U G U U UL 3 N NN NSNS Y TN SO W SR DS W S

L1 GM L1} Illegal; B is not in the procedure

. ~definition. If the procedure is
L4 4 4 tef 1 4 |. T T T U N S 'referenced, the GOTO is terminated
L1 ENstl N T T U N - on encountering ENDS.

L1yt r*y 1ttt 5 1 1 4 1 8 1 1

LNID 00
11|Aanijlnl_9_|29_15_.|_n_

e

48

ASSEMBLY

TERMINATION The directives END and FINIS specify the end of a subprogram and of a set
of subprograms, respectively.

4.8.1 .

END END terminates a subprogram. The symbol in the operand field is optional

| | but, if present, must be a symbol of eight characters or fewer declared as

an entry point in some subprogram. The symbol specifies the symbolic
location at which execution is to begin.
Format:

4.8.2

FINIS FINIS causes termination of assembly. Normally, an assembly is a set of

subprograms, each of which ends with an END directive. The FINIS direc-
tive should follow the END directive for the final subprogram.

Format:

4-24 . . - 60236400

60236400

PROCEDURES AND FUNCTIONS 5

Procedure and function definitions are bodies of code resembling sub-
routines but processed during assembly rather than object-time execution.
They provide programmers with a means of conditionally generating
sequences of code. A procedure reference consists of the appearance of
the procedure name in the command field of a statement; the referenced
procedure generates object code each time it is referenced according to
parameters supplied with the reference. A function reference consists

of the function name and its argument appearing in a statement; the
function generates a value or set of values dependent on the argument.

A procedure or function definition begins with a PROC or FUNC directive,

respectively, and terminates with an ENDS directive. The definition must
precede a reference to it.

A functi~n or procedure definition can wholly contain other definitions and
references to yet other definitions. Such definitions are nested. Each
nested definition is considered one *evel higher than the definition that
contains it. Nesting can occur to a level of 14 Levels of nestmg are

~ discussed more fully in section 5.4.

Examples of nesting:

>

P | Function definition
Procedure L lies totally within
definition E. |procedure definition.
_ I 1 o
i1 1 t*1 1 1 1 2 1 1
. | EN%I i 11

If the procedure being defined contains a forward reference to a locally
defined symbol, proper data generation cannot result in a single pass.

An optional parameter on the PROC directive indicates a two-pass
procedure to permit local forward references. The Meta-Assemblerithen
makes a preliminary symbol defining pass through the procedure similar to
the first assembly pass of a program,

5.1

'DIRECTIVES | META.provides directives specifically related to use of procedures and
- functions. | | | - | |
- 5.1.1 | . | | | | | | | |
PROC | A PROC directive declares the beginning of a procedure definition.
Izaib‘_ll] E A . z . . - < . ' e IF I D ¢ L2INMME Y
label - Optional; if present, label becomes the name of sets '

given on NAME lines in the procedure.

~setnamey Optional; set name that identifies the set in the
- command field of the procedure reference. This
setname is in the command field and is separated
from PROC by a comma, |

setname, - Optional; set name that identifies-the set in thé |
- operand field of the procedure reference.

exp | Optional; if value of expression is nonzero, procedure
- requires two passes. Note: This option requires
core for expression buildiug and causes a reduction in
assembly speed. It should not be used unless the
procedure contains a forward reference.

When defining a two-pass procedure, the user should take care to prevent
the inadvertent doubling of expression values. For the following lines of
code, after a reference to procedure TWO, A has value 1 because it was
initialized to zero each pass; B has value 2 because|it was not initialized
and was incremented once each procedure pass. :

Example:

B 31101 TWO is entry name to procedure
'Ilatl_.l'll' '_ o | o |
yB:'h'x 1 1 :

A

>
+
~

1 m 31931341 TWO is reference to procedure_ |

.5;2 | _._}. . . ”) o .‘ ;_: }_,:_._. . i .; 60236400

5.1.2
FUNC

60236400

FUNC declares thé beginning of a function definition,

Format:

uaRtu1A5_LJélﬂ&KL_L4s1utzmaznzLJ_muznmnuunihsLA_

label - Optional; if present, label becomes the name of the
- - sets appearing on NAME lines in the function when the

function is referenced.

setname

| passed to the function.

Setname becomes the name of a set of parameters

A function should not include directives that generate code or affect

counters.

Example:

4.1 14 szaMCLlll ' I A

1

L1 & &t 1 ¢t 1 1 1

1

\

i

11

1

!Llllmﬂtll

o

1

]|

]

1
|4J L1 1el 1 1 3 4120t 11101

A4+ 1 1®) ¢ & ¢ 3t 8 0 & 1 0 2 0 ¢t 1 t t 4

[W W NN BN k(N U N NN Y NN U S OO OO IS SN I O B O I

N BN I A 5 NN U SO0 NN TN UUR NN WO I A TN A N OO O NN BN A

-lllMMlllllll'll

Begin function FX

End function FX

Set B has two elements,
4 and 5

NAME directives define entry names by which a function or procedure can
be referenced. They must be between the PROC or FUNC directive and its
associateC ENDS directive. The label field symbol of the NAME directive
is used as the command field of the statement referencing the function or
procedure. Any number of NAME directives can appear within a definition.

5-4

Format:

labed . NAME . set. . comments. . .

label Required symbol; an entry name to the procedure or
function.
set Optional set of expressions or sets that are to be

associated with this NAME. The name associated with
~ this set is in the label field of the PROC or FUNC

directive preceding this NAME. If the PROC or FUNC

label field contains a set name and the operand field

of the NAME directive is blank, the set consists of one

element having a value of 0.

. |
30 (NS 1Y TN SN N N NS S U O Y NN TN T T L2 T O U A W O

The procedure can contain references to a set named E, When the
procedure is referred to by name ENTER1, elements 12 and I are
assigned set name E as if the following line had been written:

.. ‘

If, instead, the procedure is referred to by name ENTER2, elements |
13 and J are assigned set name E as if the following line had been
written:

60236400

it T i £,

- IS

60236400

ENDS terminates a procedure or function definition.

Format:

MmmmmlilL

When ENDS terminates a procedure definition, META expects no operand
field entry, However, an asterisk must precede comments. :

When ENDS terminates a function definition, exp is either an expression
that defines the function value, a set name for a set of values, or set
elements enclosed by brackets. A function reference that returns a set or
a set name may be used instead of a subset. That is, to return a set, exp
must be one of the forms: |

(set)

setname

func(set)

Examples:

i

.
| S O B Pl A |
1
. ..
.

Begin outer procedure.

Begin inner procedure.

. ‘End inner procedure.

End outer procedure.
Begin first function.

End first function. The
value of the function is

“the sum of the first two

values of the calling set.
Begin second function.

End second function. The
function returns a set of
values rather than a single
value,

5-6

The TREF directive terminates processing of a reference to a procedure or
function definition before the ENDS directive.

Format: | | o

For a function reference, control returns to the statement containing the
reference and passes to it the value or set defined by the expression in the
operand field of the TREF. Exp is either an expression that defines the
function value, a set name for a set of values, or set elements enclosed by
brackets. A function reference that returns a set or a set name may be

used instead of a subset. That is, to return a set, exp can be one of the
forms:

(set)

setname
func(set)

Example:

PROC,T A . .\ .\ ...

t 1 & 1 1 & 1 1 1 1 1%

Eﬁultljiljlllxillja
SECJR«HIS!MCALLJJ_L_J

1EEE A I I S I I A O Terminate Reference
1M4M_E L.t 1 wl’jz[ol’]_ 1.4 1 11 |
11 M L4 4 Lﬁ"”pl'l N T N TS Y N T T T T O Y W S 'a_ L1

1LE|!:!IIM&LLMJALMM

[D G U N N I e B N T I N N N N N S N I N N B N T |

r—

A reference to IDENT terminates at the statement before the LDA
NAME directive. References to the procedure by names LDA or
STA terminate at the ENDS directive.

60236400

. 3.1.6
~ LIBS

60236400

The LIBS directive enables the user to retireve procédpre.definitions from
a file. It must not appear within a procedure or function definition. |

Format: | | |

label . Optional symbol.

dsi - Data set identifier of the file containing the procedure -
definitions. This file, if it is not the system library
file, must have been allocated and opened through use
of MASTER control cards before META executes
(3300/3500 MASTER Reference Manual Pub. No.
60213600). Procedures are searched for by name;
they can be in any order on the file. If no dsi is
given, META .uses ppAA -

sym; Label ficld symbol of each NAME directive line for
every outer procedure to be retrieved. .

" Function definitions can be obtained from a file through nesting of
definitions and through externalization (section 5.4).

Procedures are stored on the system library by GLIB, the MASTER
library generation program, and can be placed on some other file through
use of XFER, the MASTER transfer routine (MASTER Reference Manual).
They cannot be on an auxiliary library.

- Examples:

The following procedure definition appears in-a procedure library on
file DSI. | '

 PROC.
 NAME, .\
IFJUNCLIII
 NAME |

.
| S I .5 S W I T |

1_J£blL35L P
 FUNC, | |
- 'UV%“EE 11)

il T T A W R TR T T |

IlJ_EMDSIIIII.
Jl[lemllll

5-8

Procedure P1 is obtained by LIBS as follows:

| .

After P1 has been obtained, function names F1 and F2 are defined by
writing P1 as a command field entry.

| l‘ Pl i,

A procedure with names A and B is on the system library, =LIB.

Cor oY o i
L]

RSN I N

[R B S T T I

N Lt Lt L1

By using the following LIBS directive, both A and B are defined and
may be referenced. The user needs to specify only the first pro-
cedure name to obtain the entire definition.

. iL.'mraL}A__L

If a user has no use for the A entry name, he can save.cor'e during
assembly by obtaining only the portion of the definition following the
B entry name.

|78, L'wrB', 8.,

60236400

S

5.2
DEFINITION

PROCESSING |

60236400

“When META encounters a procedure or function definition, it compresses

the lines of code representing the procedure by removing comments and
redundant blanks, and stores the lines in core,

Meta-Assembler removes the NAME lines of outer level procedures and
functions and inserts the labels of these lines into the symbol table. These

labels are procedure or function entry names, and contain the location of

the definition and the values of any sets associated with the NAMESs.

Entry names of inner definitions are not processed. Meta-Assembler
stores these in the procedure definitions area as part of the lines of code
comprising the definition., When procedure or function definitions are
nested, entry points to the inner definitions are not known until the outer
procedure is referenced. META does not save outer level PROC and
FUNC lines, but instead creates a PROC or FUNC symbol table entry for
each such line. -

When an outer procedure or function is referenced, META processes

- only PROC, FUNC, NAME, and ENDS lines of the next level of procedures

or functions. Unless the inner procedure name is externalized (section
5. 4) subsequent reference to an inner procedure may occur only within the
next outer procedure, | | |

Each procedure and function definition may contain several NAME
directive lines. The position of a NAME directive determines the first

line of code to be processed when the procedure is referenced.

Example:

~ If the procedure is called by name X, the first line of code processed
is:) '

lA_‘_RQEFuJun

5-9

If the prbcedure is called by name Y, the first line processed is:

Mﬂﬁlﬁ.muw

The position of NAME directive lines within a procedure affects LIBS
directive processing. If the following line is written the entire pro-
cedure is retrieved from the file. |

. L185 Lidai

If LIBS is written as below, the only line preceding the NAME line
‘with label Y retrieved is the PROC directive line.

| L18s . Lidsit, Y. .,

5.3

REFERENCING Te.:xe a.p . . N . ne-in the
idcafﬁhon as a command The labul field can bc blank or can contmn a
symbol that is assigned the value of the current location counter. To
su, . ly parameters to the procedure, place a set in the operan! field of the
procedure call line, append a set to the procedure name in the command
field, or do both., Within the procedure definition, the sets are referred to
as if they were defined by NSET directives. If set names are provided in
the command and operand fields of the PROC directive or the operand |

field of the FUNC directive and the corresponding field of the procedure or
function reference is blank,_ the set used consists of one zero element.

Example:

I

Lot 0 ¢t 4t 41

: :
L1 L g led 1 3 8} 2 0 ¢ 1t 0 & t 1 & 3 & 3 ¢ 0 t f 21

llllll%lllllllllllllLllllll_Lll.

When the procedure is referred to by name ENTER, elements A, B, $,

[C-3,5] are associated with name JOE as if the following line had been
written.

(W0E . NSET. . 4,8, $,06-3,51..

5-10 : | 60236400

'JOE [1] refers to A, JOE [2] refers to B, JOE [3] refers to the
- value of § at the time the reference occurs, and JOE [4] consists
of 4 subset of two elements, C-3,5. |

Set X, Y has set name M and is referred to as if the following line had
been written, |

M. NSET . X, ¥ ...,

Thus

JOE {3]1=$
JOE [4,1] = C-3
M([2]=Y

The label appearing on the PROC directive line assigns a name to the set

- in the operand field of the NAME line. In the preceding example, E is the
set 12,1, | |

To refer to a function, write the label of a NAME directive appearing in the
function definition followed by an argument enclosed jn parentheses. A
function reference must include the parentheses. |

Example:

IJAx_LIIEUMcl,:lUillll__llll!lllll_L_l_llJ]l

R WY S Y U O U AN NSO NS VS SN NN U OO U DY W SO B N N

~J§—QQI'W‘L)JML—Ls
lL_L_lllle%lllElellllllljl!lllllllllll

IliLlllll:lllllllllll_lllllll]ll'llllllLJ'

-

e

In the above reference, FU [1] is 15 and FU [2] is 4; A has value
(15 + 4 - 1)/4. If the reference had been|CQUOT(), the set FU

| would have been a single element set with value of zero and would
e | : have been illegal because FU [2] is a divisor with value 0,

Parameters are referenced within a function in exactly the same way as
¥ they are referenced within a procedure.,

A reference to a function that returns a value may appear as an operand in
an expression, Reference to a function that returns a set may appear any-
where a set name may appear.

60236400 | | - _ 5-11

- (the symbol from the label field of the PROC directive line). The level of

When a procedure is referred to, META forms as many as three sets in
the symbol table. The set in the operand field of the procedure reference
line, the set appearing in the command field of the procedure reference
line, and the NAME directive set associated with the procedure reference,

The set in the operand field of the procedure reference line is evaluated §
and entered in the assembler symbol table. Its set name is the symbol .
that appeared in the first operand subfield of the PROC directive line for ,
the procedure. The level of definition of the set is one greater than the

level in effect for the procedure reference line.

A set appearing in the command field of the procedure reference line is
processed in the same manner as the operand field set of the procedure
reference line. The name of this set is the entry in the second subfield
of the command field of the PROC directive.

The NAME directive set associated with the procedure reference is |
treated differently. At the time of procedure reference, the elements of
the NAME directive set are already in the assembler symbol table but have
no set name. META forms the NAME directive set in the assembler
symbol table by copying the elements of the NAME directive set from one
point in the symbol table to another and by assigning them the set name

definition is the same as for the other two sets previously described.

When META encounters the ENDS line for the procedure, it removes local
symbols and sets from the symbol table. Externalized symbols are saved,

Meta-Assembler processes lines of code between a NAME line and a TREF

or an ENDS line as if these lines appeared on the source input file. The
lines are read from core storage rather than from the source input file.
When there is nesting of definition, ‘it also reads PROC, NAME, and ENDS
lines from core storage. Again, processing is similar to that for lines

on the source input file. Information is extracted from the first encountered
PROC line and all associated NAME lines; other lines are skipped until a
corresponding ENDS line. Had these lines been on the source input file,

the assembler would have saved them. However, since the lines are
already in core, it is unnecessary to save them again,

60236400

v

54 S
LEVELS AND
- LOCAL LABELS - META allows nesting of function and procedure references as well as
B nesting of definitions. A definition can contain a reference to another
procedure and, within that procedure, there can be a reference to still
another procedure., Nesting of references, as with nesting of definitions,
can continue to 14 levels.

| Meta—Assembler recognizes 16 levels of symbol definition. Symbols
defined at a given level are always available at the given level and all
higher (inner) levels, but cannot be referred to at lower (outer) levels.

Symbols external to the program (i.e., those appearing as operands in an
EXT directive) are defined at level 0. Symbols defined in the program but
outside of procedures or functions are at level one. Symbols defined within
procedures or functions are at level two or higher, the level being raised
by one for each nesting of the reference.

. Except for labels of NAME directives, which are available to the next
outer level, labels within a procedure or function definition are local to the
procedure or function; they are not available to outer procedures or to the
program,

~ To make a label defined within a proc'edure or function available outside
that procedure or function, the programmer can append one or more dollar

signs to the symbol. Each dollar sign lowers the definition of the symbol
one level to a minimum level of 1. |

Examples:

TN . EQU EXP. Define A one level lower.
113 |.| ! 1I i IEQ‘JI_J_LE.X.B_ Define B two levels lower.

Define P[1] one level lower
(see section 6.5 for'SYM).

- Thus, by lowering the procedure level of a symbol definition, the definition
 is available at a lower level outside the procedure or function.

- 60236400 | - | - | 5-13

Example:

In the following example, procedure C is defined at level 2 when
referenced by the main program (second line from bottom). Its R
entry name (C) is known at levels 1 and 2. Within C, acallto 1
procedure A defines A one level higher (level 3) causing its entry E
name (A) to.-be known at levels 2 and 3. Label E is local to pro-
‘cedure A, Label B is known at levels 1, 2, and 3. Label D is
known at levels 2 and 3. Consequently, labels D and E are not
known when they are referenced at level 1 by the GEN directive
following the reference to procedure C. If the reference were to
A instead of C, A would be defined at level 2 makmg labels B and

D available to the GEN directive. _ | . | ﬂ
3 Pl L 1 3 1 11
I T T TS U A O O O Aknownatlevels3arﬂ2
1L 61 1 11 1) 1 E local to level 3 -
151...., B known down to level 1

1171111111 D known at levels 3 and 2
g 'B,D, and E all known

- N Y G N I N S . O

W

L1 . s 1 1 1.1

C known at levels 2 and 1

S U TS T WY G N O

llLlAlLllllLllllll

| N P N | IG_MJ.LM_E_‘__L LeveIZ;EnOtkIlown
11:1%:1:114111-4 |

 J
ST T B S 0 WO A NS T B OO B B O B B

1lllQi.ll].lj‘]1_llllL Levell;Ckmwn

...iﬁﬁﬂ_,_,_ﬂ'_ﬂ,_ﬂ_,_,_ Level 1; D and E not known

5-14 _ - o R 60236400

6.1
RELOCATION

(REL)

60236400

' ATTRIBUTE FUNCTIONS - 6

In the process of assembling source programs, Meta-Assembler constructs
tables of information about elements of the source program. Attribute
functions provide the user with information about expressions and sets.

" The implicit attribute of a symbol or a set element is its value. Within:

Meta-Assembler, the value attribute of a symbol is synonymous with the
symbol; no further notation is needed to obtain that information.,

Example:

Let A and B be defined as follows:

| I S

IJHlllll

Within META, A*xB and 3*4 are identical expressions.

Attribute functions are used to obtain information about attributes other

- than value, As with a symbolic reference, an attribute function reference
results in a value. To refer to an attribute function, write the attribute

name followed by an expression or set enclosed in parentheses. An
attribute function reference can be an operand in an expression.

The relocation attribute function, REL, returns value zero if the expreSsion

within the parentheses is not a value or is an absolute value. If the expres-
sion is relocatable relative to a control section origin, REL returns the
internal location counter designation (1-15) of the control section containing

‘the expression.

Example:
| | I‘Mlz ip| .| gE,L;(:.A).“:;l., Cg [

If A is in control section using location counter 1, go to C.

6.2
MODE

(MDE)

Assume the program contains only one program control section and that B is
an expression in that section. |

REL(B)=1

REL(15) = 0

The first program control section is always assigned
location counter 1.

The argument is absolute.

The mode attribute function, MDE, returns the mode of the argument.

Mode

© =3 N b L N - ©

10

11
12

Type of Expression

Not a value; for example, a set or function name

Integer (decimal or octal) value
Real- or floating-point value

BCD character string, right adjusted
BCD decimal integer

- BCD character string, left adjusted

ASCII character string

Relocatable word address (includes literals, control
section names, and specia! character §)

External word _address

Relocatable byte address
External byte address

Examples: Let A, B, and C be defined as follows.

f <, |||l|_._£11|141_[11||11|111||_

”
-~

A1 .“.s..- lllJllllllllLlllL_LLl
ll..EQUll 1’ _lll_lLlllLll.Ll.lLlll.ll_
/), AT =Y = s "'J - ML : M)

D[1] = MDE(A) = 2

D[2] = MDE(B) = 1

D{3] = MDE(C)

=4

60236400

63
NUMBER OF
ELEMENTS

(NUM) | NUM returns the number of elements in a set. If f_he symbolic item is not a
. - set, NUM returns value 0,

' Examples: Let A and B be defined as shown. |

O S B
. | | o : 11!31111i111111|11

NUM(A)= 3 | Set A has three elements.
NUM(A[1])= © A[1] is a value, not a set.
NUM(A[S]) = 2 A[3lisa set of two elements.
NUM(A[3,1))= 0 A[3,1] is value 7, not a set.
NUM@B)= 0 B is not a set.

£ NSET .\ v

NUM(C) = 1 | Set C has one element (zero).

The following example tests for number of elements in a set and tests
elements of a set for subsets.

i 1 1 1 1

lllRIDEFllNUMCA)IIIJIIIIl
LL:RPT:UM.HHUiJLL TésteacheiementlofA.

. GOTH . NUMCALCI)>0,E . ; Exitto E for|A[3).
P LNm IR IO WO O A AN U A W35 G WY S U N U W0 OO | |
P9 ﬁmrl¢ IM S WS N N SRS VRS WU N SN TN N B

IIIIRDDE_FI 1 MM.CIAELCLJJI S O W R B B E=2;SubsetA[3]has
"'RJPT.!lIEU_ﬁJlllliiltlx 2 elements.

« Lt 1 MUM&,_HJJJZQ,J. \ Test each element of

. subset for subset.
_l_llJ‘JlJJlllll]lllJlllJllllI

Jllwlilllllllllljlllllj

i
o

B = 3;/A has 3 elements.

e
s

=

60236400 | ' | | ' . 6-3

6.4
SIZE OF DATA

(SZE)

6-4

SZE returns either the number of object machine bytes needed to contain
the value of an expression or the number of characters, depending on the
mode of the expression. If the item is not a value, SZE returns value
zero., SZE considers an address to be a one-word value.

SZE returns values depending on mode.

Mode Size
0 Zero

1or2 Number of bytes

3, 4, 5, |

or 7 Number of characters

9, 10, 11 | |

or 12 One word expressed as a byte count
Examples:

Let A, B C,; D, and E»«be ﬁeﬁned as; 5hewn for an object computer
word size of 24 b1ts and byte size of 6 bits.

U lald
"""“: . ' A

FR .
2 . EA z«...
z K .: M..p

5 1 VS L1
‘SZE (A)=3 | Three characters
SZE(B)= 8 | Two words or eight bytes
SZE(C) = 4 One word or four bytes
SZE(D) = 4 | One wor_dor four bytes
| SZE(E) =0 | Eisa set, not a value

60236400

6.5

SYMBOL _ | | |

(SYM) SYM causes the value of the argument expression to be treated as a symbol.
A SYM attribute function reference can appear in the label, command, or
operand field. By using SYM, the programmer creates a symbol which
is the value of the argument expression. The assembler represents the
symbol as either 24 or 48 bits. |

One use of the SYM attribute function is to refer to a symbol that is other-
wise illegal. SYM can also be used for symbol concatenation, -

Another use is to move a symbolic parémeter into any field of a procedure
or function. In this way, symbols supplied as parameters can be defined
within a procedure or function.

Examples: - | ‘
SYM(Q' 214 / .')H.BQEE“/..,H Defines AAAA
AAAA ..., ROEF 2 ., .,
BYMCL'AAAAY) . . RDEE . 3 | . . .} Redefine

SYMCC'AAAA'), . ROEF 4 . .)44
SlYM_CQID&)! [N A B RDE_EIEI goé , ;, Defines 2.5

o

The following example illustrates symbol concatenation. It generates

.symbol XY by scaling parameters X and Y into appropriate b1t pos1t10ns to
form the value of the argument expression.

IIIPMl.lLLIl!lllllllllll-]llllllllll

-lJMIIIIJLLLJIt]iLlllllIl_lJllllJ]-l_lil
f A v & - ‘ l
5YMS (. (AA \rCAAL2D, A 4 M) EQU

S T VS P DUNE IO NN G SN TG IS N U S0 WO N NN S0 N NN NN NN NN U NN N N N NN N AN NN AN N N N SN O A

®

MM N T
IIIENmIIIIlLJIIllllllll_llllllll!llllllll
_ Y) .
.]
W T N 0 N WA TS TN WA WO WA WOUN WO SN SN NN SN A TN WA U TN SO NS VAN U O WA N NN N UK SR 26 SN AN SN UM IS O
: _
« AN S T S N0 WO NS T U TN (NS SN VNG N NS U NN N WO N TN W SO M NN NS SN NOU WO N BAN UNN U OO BN B B B B

-

S Vvt ¢)!' -
_.. i [A]li-liXIl lll_llll_lJlllllIllJliIlllllli.

60236400 v o | 6-5

A reference to the symbol Q8Q.XYZ is ordinariljr illegal because of the
decimal point. It can, however, be referred to through use of the SYM

attribute.

A reference to a procedure can be a SYM-defined name

 PRec. . £,

A N U TE T Y T 1 Li 1t 4 1t b 113
¢ NAMS
LTI O Mhlllllllllllllllll
ii_l_lllllli‘K@‘alQLllllilllllll
|\ Ad . Y} (S N U O ¢
®
»
' U DU DO T N BN G SN OO I 3% NS (Y NN U WY TN U GE U SN NS U NUNY SN UGN G NN N 1
- M, ﬁ . 11.’11111111111111
.
[N S N S U U A B WO TN 1 % T S TUNY WU U U U N WU W N NS WA NI WU S UG SR NN
| S O I W N P U D | 1 ¢+ 1 1 bt 1
0 S S I S B N 5ifﬁQCJEILLLL)LJ_AfﬂlﬁilL L1101
JllLllllllE N I i B N S

-
-

o
o
o
=
e
e

s
=

Outer procedure

Procedure has

SYM-defined name

End inner
procedure

End definition

J.FTK .t AMMQE_’L_._ JFR reference

The above code causes the procedure JFR to be interpreted as if it had

been written:

l L1 1 i 1 I
MLlllllLllLlllll
P@@C.Q S T N N N I O
NMJ:&)Q{ 1 2 J 4t 4 1 1 3

4 44 v 1.1 ¢ & 1 &t 9 1 {1

l$llllllJJLlll

| S S W U VS D NN R T N DO A S A

P 4 £ & 0 & 0 ¢ 10 % 1t 31

[

1

i

Begin JFR

End JFR

Refer to JFR

60236400

6.6 . .
WORD ADDRESS
(WRD)

60236400

After the inner reference to procedufe AB, 'the EQU line becomes:

pEdt . £au . 4 ..

If the mode of the argument expression is either 9 (word) or 11 (byte),
WRD returns the value of the argument as a word address. If the mode of
the argument expression is 12 (external byte address), WRD changes the -
mode to 10 (external word address). If the mode of the argument expres-
sion is not 9, 10, 11, or 12, WRD returns the argument expression
unchanged. If the argument expression is a byte address that does not
correspond to a word address, truncation occurs.

Examples:

|Computer word 6 bits per byte,
four bytes per word.
A has mode 11, value 0.

AA has mode 9, value 0.
B has mode 11, value 4.
BB has mode 9, value 1.
C has mode 9, value 2.
CC has mode 9, value 2.
D has mode 1, value 10,
DD has mode 1, value 10,
E has mode 11, value 12.

&_l_l_ggga_LJﬁ_l_LJ_l_l_l_LJ_

AA . EQU , WRDCA), .
'a__l__l_géﬁ&_J_.lﬁ_l_L_l_l_l_l_L_l_

B8 . EQU. . WRDCB). . .\
G_l_l_ggslllllllllllll

CC. . EQU . WRDCL) .
D EQU L0

E.,»RESB..:.

kl L RESB i |,| T I T R B F has_mode 11, value 13.
IEE_L_J&Q_I_]_MQ(EIL_I_I_L [FF has mode 9, value 3 truncated.
L1l |EIX|T.- 11 G RIS AR N G has mode 10, value 0.

GG EQU . . BYT(G). . . .
BGG . EOU . WRDCGG) .+

GG has mode 12, value 0.
GGG has mode 10, value 0,

6.7
BYTE ADDRESS

(BYT) If the mode of the argument expression is 9 or 11 (word or byte), BYT
returns the value of the argument expression as a byte address, If the
mode of the argument is 10 (external word address), BYT changes the
mode to 12 (external byte address). If the mode is not 9, 10, 11 or 12, ~
BYT returns the argument expression unchanged.

Examples:

Computer word 6 bits per
h“““‘m*"ﬁ "'“:‘ byte, four bytes per word.
11 1 REIS i1 l'! j I T TR S S N | A has mwe 9, value o.

AA has mode 11, value 0.
B has mode 9, value 1.

BB has mode 11, value 4.

U
Co EE&B. 1 nlu (I I C has mode 11, value 8.
cC . EQU ., BYTCR). . CC has mode 11, value 8.

L EQD LD D has mode 1, value 10.

DD has mode 1, value 10,
E*has mode. 10, value...;
EE has mode 12, value 0.

lSllll’LLlllllL

6-8 ' . 60236400

PROGRAM EXECUTION 7

7.1
-CONTROL CARDS

7.10
$JOB

60236400

META can be called either by a MASTER task name control card or by a
task already in execution,

When called by control card, META is loaded and placed in multipro-
grammed execution as soon as its class, core, and file requirements can
be met. When called by a CALL macro, a copy of META is loaded, if the
job making the call does not already have a copy of the task. If it has a
copy, the call is queued; that is, the caller must wait for the existing copy.
Since META reinitializes itself, a job may make multiple calls to the Meta-
Assembler. Parameters ordinarily specified on a META control card
(including parentheses) are passed as secondary parameters of a CALL
macro, For use of CALL macro, sce MASTER Reference Manual.

When the object deck is to be executed, it must be called by a task name
control card or another task. The job monitor then calls the loader which
loads relocatable binary information, links independently assembled sub-
programs, and loads and links library routines referenced by the loaded
program. The program then executes multiprogrammed with all other
active tasks. '

Assembly of META source programs under MASTER and execution of

. 3300/3500 binary object decks require MASTER.control cards identifiable

by a $ in column 1 (except for the end~of-file card). The name of the
control card followed by any necessary parameters begins in column 2.
The name and parameters must be contained on an 80-column card.

MASTER control cards optionally accompanied by source and data decks

are read serially from the input card reader. Cards required for META
jobs are described in sections 7.1.1 through 7.1.5.

A JOB card must appear in a job deck either as the first card or, if a
DIRECT card is used, as the second card.

@OB,c,i.u,z,p

[S - S -

p

Example:

BCD account number; required

BCD job identifier; required

Time limit in minutes; optional
Printer line limit (1-99999); optional
Punched card limit (0-99999); optional

ﬁJ OB, 639, DJ, 15, 150,100, COMMENTS

7.1.2

$SCHED A SCHED card, immediately follows the JOB card in the job deck and
provides the system with core and scratch mass storage requirements.

ﬁSCHED, CORE=qp, SCR=seg, . ..

Otk r SCHED card parameters, not normally required by the META
assembler, are described in the MASTER Reference Manual,

CORE=qp

-2

Estimate of maximum amount of core, in quarter

~ pages, required for assembly or execution, whichever

has the higher core requirement. The estimate for
the META assembler is a minimum of 32 quarter pages.
Add four quarter pages if MASTER mnemonic instruc-
tion set is required and allow for any other procedures
or functions.

If the loader determines that the estimate is below that
required by the job, the job is terminated with a
message on the OUT file.

When the CORE field is omitted, gp is set by
installation parameter.)

60236400

' éCR:seg

-

Number of segments of mass storage scratch area
required by the job. The segment size is determined
when the operating system is installed.

If the length of a segment is 10, 000 words, the file for
executable output (usually LGO) requires roughly one
segment for each 400 source statements, Normally,
LGO needs only one segment,

META uses at least one and sometimes three system
scratch files in addition to files indicated on the META
card. All are in standard MASTER blocked format
with a block size of 1280 characters. META always
|uses a file with the dsi INT for source card images of
the subprogram being assembled., The SCR field must
schedule sufficient segments for this file to contain the
largest subprogram or a set of subprograms to be
assembled.

If the X or F option is requested, META uses a scratch
file having the dsi BIN., Normally, one segment is
sufficient; the file contains most of the binary output
for one subprogram.

If a cross reference table is requested, META writes
reference information on a scratch file with the dsi
INTP. Normally, one segment is sufficient for INTP.

If the sum of the mass storage requirements indicated
by the JOB card line and punch limits and the SCR and
ABORT requests exceeds the storage reserved for
these files, the job is not initiated.

When the SCR field is omitted, -seg is set to an

installation parameter.

»

$META o The MASTER task name control card that causes META to be called, loaded,
and executed (multiprogrammed) has the following format.

60236400

e : |/§META(p1,....,pn)

-4

The optional parameters, p;, are separated by commas and may appear in
any order within the parentheses. Parameters have the format:

assembly option = dsi
or
assembly option
The assembly options are character strings, beginning with I, L, X, F, P,

or R. The dsi's are MASTER data set identifiers of 1-4 alphanumeric char-
acters; 0000 may not be used for a dsi.

The options, and the data set identifier assigned for each if none is given on
the META card, are listed below:

Option Significance dsi
I Source input INP
L Listable output ouT
X Load-~and-go output LGO
F Load-and-go output with _
forced execution LGO
P Punchable output PUN
Cross reference table Same dsi as for L

(selectable only in con-
junction with L)

The X and F options are mutually exclusive, If the X option is used and
assembly errors occur, META issues a SUPPRESS request (MASTER
Reference Manual) so that the object program is not executed. Under the
X option, assembly errors do not prevent generation of the executable out-
put, just its loading and execution in the same job. The F option causes
execution of the 3300/3500 object program despite assembly errors.

The Meta-Assembler source deck can be on the standard input card reader
(INP) or a file, such as a magnetic tape file, specified by the programmer.
If it is on the card reader, the MASTER input preprocessor transfers the
deck from the card reader to the INP file. The programmer has the option
of bypassing this transfer by placing a DIRECT card in front of his deck.

MASTER either accumulates Meta-Assembler printer output on the mass
storage standard output file (OUT) for automatic post-job processing, prints
output directly during job execution, or places the output on some other file
specified by the user and for which printing is not automatic.

60236400

7.1.4
TASK NAME

60236400

Similarly, MASTER either accumulates Meta-Assembler binary output on a
punch file (PUN) for automatic post-job punching, punches output directly
during job execution, or places the output on some other file specified for
the user and for which punching is not automatic. *

For all output options, META assigns a system scratch file if the user does
not specify either a standard file (OUT, PUN, or LGO) or a permanent file.
All scratch files are automatically released at job end. The SCR parameter
on the SCHED card must allow for all scratch files.-

Use of permanent files is described in the MASTER Reference Manual,

Example:

ﬁMETA(LIST, XCUTE, PUNCH)

META is loaded from MASTER library file *LIB. Source statements
are read by META from the INP file. Statements and assembly list-
ings are written on the job OUT file and automatically printed. The
punchable output is written on the job PUN file and automatically
punched. Executable output is written on the LGO file.

ﬁMETA(INéSRCE, LIST=0UT, FORSX=GOGO)

META is loaded from MASTER library file *LIB. It reads source
statements from file SRCE. Printer output goes to the OUT file and
is automatically printed. The job does not have any punch output. -
Executable output goes to user file GOGO. Because of the F option,
the program on GOGO can be loaded and executed despite errors.
occurring during assembly.

A task name control card directs MASTER to call and load the object-time

" program from the specified file and to begin execution of the task.

If the object-time program is to be executed following assembly, a task
name card of the following form must follow the source deck (if it is on the
standard input file) or the META card (if the source deck is elsewhere).

ﬁname, dsi

name 1-4 alphanumeric characters; name is required.

dsi dsi of an opened file from which the named task is to be
loaded. When the dsi is zero or the field is omitted,
MASTER looks for the task on the system library. Nor-
mally, dsi is LGO.

For execution of a previously assembled program, the task name card for
the object deck immediately follows the SCHED card. The object deck fol-
lows the task name card or is on the named file.

7.1.5
END-OF-FILE A job is terminated with an end-of-file card characterized by 7,8 punches in

columns one and two. Columns 3-80 may contain comments.

8% END OF FiLE .
D2 B AP f 2308158080 20 2BNBK038RANDBUDXTBAOHQOVUSHTN D UNBAHRT D WG

11 i
000000000000006000000,,0000000000000000000000080000000000060000000000600060.00000000

12345670901 OUHBRTINNNANBNENTABNINVHUNIRNABHAQ2BUBEIUNNVINNASHRIBANARURBUTHBOAIRINEETIANN

[RRR R AR AR R R R R R RER R AR RS R R R
22

123486733 N2NUNBEIRURAZANBBINININBUBENIRNVAQOUBENQAHNNNNUBUINNBUOROHUSHIRSIINNIUERTNNN

3332333333339333
G34040 4444444444444 884444484402444444484420444044084044004008040428040000008044

123456739 N2BVUBKTIBINANBUBAVIINARIUIRIRNNGHNCHEEITAINI NN INIDVHNROHUBHONONNIIINBETNNS

55355555555 55595585$

665666CBoPBccc666666666666666666666666666566656666666666666666666665656666666666¢
12345578 10NUBNBRIBRBARNNEBNAANINDUBRLBNQNQOUEEIARRNEVVHBEASIBNIARNUSRUSNNARTINSR T NS0

[RRREE R R RN R R RN R R R R R R R R N R R R R R R N R R R R R R R R R R R R R DR R R R R R R R R]

BBsroossaasess38830828888082383388383083088880883 0888808838888 BR0080008830083808108)
2136 T I INNUDKMSRNANNANNNSRNANNINBUBANANVIQOUSHIBBRIDNHSBUTHNNACOUBSHENRATINNBRD NN
999999999999993999999999999959999999998959999999999899939999999999599999999985999
123438

SIVNNBUBEUBBRARNINBBTNIVI RBUBRNIABBUQUVUGSEITSBNNRIABSHIUNAAROUBUETABAINDINBIERTI NN
50 -3084 -

7-6 . 60236400

o

7.2
SAMPLE DECKS

60236400

The following sample deck structures illustrate the use of MASTER control

cards in job decks.

Assemble, list, and execute

(i -

88

_ (DATA)
MASTER loads ($MTAP, LGO
assembled pro- >
gram from LGO FINIS

file and executes it

(SOURCE SUBPROGRAMS)

($META (LIST, XCUTE, PUNCH)

($SCHED, CORE=32,SCR=10

$JOB, 73,J0B2, 10,5000,1000

7-8

Assemble and list

77
A 88
($META (I-SRCE, L, X=BEN, R)
r$*DEF(U,W,BEN,607,,,,,0)
($*DEF (U, W, SRCE, 607)
($SCHED, CORE=35, SCR=10, 607=2

é $JOB, 32EB, 160A,5

This job does notlinclude execution of an object deck because the source pro-
gram on file SRCE contains a UNIT directive describing a computer system
other than the 3300 or 3500. Output is to permanent file BEN. In this exam-
ple, SRCE and BEN are on magnetic tape. For use of 607 parameter on
SCHED card and for use of *DEF cards, refer to the MASTER Reference
Manual,

60236400

| 60236400

- "Execute onlsr '

7
88
[(DATA)
ELD . \
IDC (BINARY OBJECT PROGRAM)
$PROG, INP

($SCHED, CORE=12, SCR=2

$JOB, 6178,JOBX, 3

Binary object
program begins
with IDC and ends
with ELD.

This example illustrates execution of a 3300/3500 deck assembled

previously by META.

7-9

7-10

List only

7
88

FINIS

(META SOURCE SUBPROGRAMS)

$META(L)

K“pSCHED, CORE=32,SCR=10

$JOB, 71568,SMITH, 10, 1000

This job assembles the source deck but produces only a listing as output.

60236400

MESSAGES | 8

8.1
LIST FORMAT When the L option is selected on the META control card, META generates
list output. Each page of list output is in the following format:
META/MASTER VERn.n |title (optional) date PAGE
source o | word address o object computer | source
statement 2 S| word v statement
- e .
number S s
ol® ald
] Sle
B8 &=
w® o
518 8|5
o8 i 218
9| F|&
title Characters supplied by TITLE directive.
‘7) : date Date of computer run. ‘
source statement number Position of source statement in the source
deck (00000-99999).
error code ' Code if source statement is erroneous
: (section 8.2),
relocation section - Control section (00-15) containing object com-
" puter word.
w‘ord address . Address of object computer word.
byte position On byte-oriented source lines, pos.iu"on of byte
in word from left to right. 00-n, respectively,
where n is the number of bytes per word.
operand relocation _ Control section (00-15) containing operand; X
indicates operand is external symbol.
v :) Object computer word Object computer word generated by META (3-16 -
e . o octal digits).
source statement 1-80 characters of source input line, including
& sequence number if provided. :
E |
60236400 8-1
1

Example:

Y

META/MASTER VER 1,0 09/06/68 PAGE 1
00001 01 00000000 00 LIBS Ly*LIBY, IDENT
00002 01 00000000 00 TDENT PETN
META/MASTER VER 1.0 FUNCTION DIRECTIVE TVEST 09/06/68 PAGE 2
00003 01 00000000 00 TITLE #FUNCTION DIRECTIVE TESTS
00004 01 00000000 00 ENTRY BEGIN
00005 01 00000000 00 EXT uIc
00006 s1 FUNC s2
00007 FUN) NAME 1,4
00008 FUN2 NAME 2,5
00009 FUN3 KVE - 3,8
00010 ENDS S1[2] + s2[2] * (s2[1] + s2[(3]), s1)
00011 01 00000000 00 BEGIN WP $
01 00000000 01 01000000
00012 01 00000001 00 ENI 0,1 -
01 00000001 00 14100000
00013 01 00000002 00 ENI FUNI(1,2,3)
01 00000002 00 14000014
00014 01 00000003 00 ENA n
01 00000003 00 O 14600034
00015 01 00000004 00 18€ 2.
01 00000004 00 04100030 .
00016 01 00000005 00 ENA nf*
01 00000005 00 01 14600042 .
00017 01 00000006 00 [18) RESULT
01 00000006 00 01 00700024
00018 01 00000007 00 ENI 0.2
‘0) 00000007 00 * 14200000
00019 01 00000010 00 [} FUN2(3,1,5)
01 10 00 H
00020 01 1100 A ENA T2
0 00000011 00 01 14600050
00021 01 00000012 00 1S€ 48,2
01 00000012 00 04200060 : :
00022 01 00000013 00 ENA T2F
01 00000013 00 01 14600056
00023 01 00000014 00 i8] RESULT
01 00000014 00 O 00700024
00024 SET NSET 2,0,3
00025 01 00000015 00 ENI 0,3
01 00000015 00 14300000
3 ENDS S1{2] + S2[2] * (S2[1] + s2[3]), 301}
00026 01 00000016 00 Nl FUN3(SETT)
01 00000016 00 14000000
00027 01 00000017 00) ENA ™
01 00000017 00 01 14600064
00028 0} 00000020 00 ISE 30,3
01 00000020 00 04300036
00029 01 00000021 00 ENA TaF
01 00000021 00 01 14600072 .
00030 01 -00000022 00 RTY RESWLT
01 00000022 00 O1 00700024
00031 01 00000023 00 we,1 BEGIN
01 00000023 00 0} 01400000
00032 .
00033 01 00000024 00 RESULT WP §
01 00000024 00 01 01000024
00034 01 00000025 00 S RESWLTY

60236400

8.2 -
ERROR CODES "~ Meta-Assembler flags each detected error with a single-character error
’ code and 3 asterisks on the line of the source. statement in error.

Code Meaning

CHx* Common error. An attempt was made to assemble information
into numbered common.

D** Double definition. 1) A symbol has two values at the same level,
or 2) A subprogram that does not contain a UNIT directive con-
tains more than one SECP directive.

EX** Expression error. The expression is syntactically correct, but
‘ an error, such as an illegal combination of modes, exists.

Pk Forward reference error. A forward reference appeared in an
expression which must be evaluatable.

) b Illegal instruction. The command field contains a symbol that
is neither a directive nor the name of a procedure or FORM.
The command field contains a misplaced directive.

N**x* Nesting error. More than 14 procedure levels or six RPT nests
were encountered, or an RPT, procedure, or function is im-
properly nested.

R¥** Relocation error. The relocation associated with an expression
is neither absolute, nor singularly positive, nor singularly
negative, nor an external plus or minus a constant. ‘

SHkx Syntax error. The syntax is unrecognizable or illegal. For
‘ example, a symbol has more than 12 cha.racters

TR Truncation error caused by 1) A value larger than the recewmg
field can accept. Note: No error is flagged when all the
truncated bits are the same as the most significant bit (sign)
of the value placed in the field. 2) A word-oriented statement
following a byte-oriented statement. 3) Mixing of word-
oriented and byte-oriented operations.

Ykxx Undefined symbol. An operand contains a reference to a symbol |
that is neither defined in the program nor declared as external.

60236400 _ | - 8-3

83

SUPPLEMENTARY
INFORMATION Following the source program listing, META provides supplementary infor-
mation as a standard part of the Meta-Assembler output listing. The supple-
mentary information is identified as follows: ‘
Message Meanin;

LITERALS Identifies the list of literals. The loca-
tion and control section designator (0-15)
are given for each literal.

CONTROL SECTIONS Begins new page. Identifies list of con-
trol section names, octal length of section
in words, and location counter designator
(0-15). Each entry in the list begins
with SECA, SECP, or SECD, indicating
the type of control section.

EXTERNAL SYMBOLS Identifies the list of external symbols.

ENTRY-POINT SYMBOLS Identifies the list of entry-point symbols.

UNDEFINED SYMBOLS Identifies the list of undefined symbols.

MULTIPLY-DEFINED SYMBOLS Identifies the list of multiply-defined
symbols.

FIRST 25 ERROR LINES Identifies line numbers of first 25 lines
flagged with error codes, If the line in
error is not a source input line and
thus has no line number, the number of
the most recently encountered input line
is used.

NUMBER OF LINES WITH Identifies count of the number of lines

DIAGNOSTICS flagged with error codes.

Example:

CONTROL SECTIONS
SECP REAL 114 1
EXTERNAL SYMBOLS
UIC
ENTRY-POINT SYMBOLS
SSSSSSS
UNDEFINED SYMBOLS
MULTIPLY-DEFINED SYMBOLS
FIRST 25 ERROR LINES
10 1 _15 16 18
NUMBER OF LINES WITH DIAGNOSTICS 00013
8-4

60236400

8.4

TABLE

8.5.
MESSAGES
ON OUT

60236400

CROSS REFERENCE

META provides the cross reference table if the R option is selected on the
META control card. - If both R and L options are selected, the table follows
supplementary information, This table is identified by the title:

CROSS REFERENCE TABLE

The first column gives the address of the directive defining the symbol
given in the second column. Addresses of references to the symbol are in

the remaining columns.

Example:
CROSS REFERENCE TABLE
5 A
14 B
1 GENT -1

After detecting an error, META writes one of the following messages on the

OUT file for the job.

Message ' Cause
*¥META request ERROR ° Input/output error occurred. If other than
code DSI dsi LINE line read error (PICK reject code 04000000 or

050xxxxx), run is abnormally terminated.
Message appears as voluntary abort code
on accounting information as well as in

listing.

request Blocker/deblocker or system
OCARE request name

code Reject code for request:

- (Q) for blocker/deblocker

(A) for system OCARE

dsi " Data set identifier for request

line ° Number of META source in-

put line

8-5

**META BAD LIBRARY

#*META FINIS GENERATED

**META ILLEGAL
$META CARD

**META $SCHED MORE
CORE

Examples:

The overlays of META are not in task
directory. Library generation is incorrect.
The run is abnormally terminated and mes-
sage also appears as voluntary abort code.

FINIS directive generated because of end-
of-file condition encountered on source input
file. Execution continues.

$META card contains illegal parameter such
as illegal option or data set identifier. The
run is abnormally terminated and message
also appears as voluntary abort code.

Request for additional core rejected. The
run is abnormally terminated and message
also appears as voluntary abort code. Re-
submit job with more core specified on
$SCHED card.

**META SEXPAND ERROR 30000000 DSI INT LINE 10422

**META PICK ERROR 05000000 DSI INP LINE 00012

8-6

60236400

APPENDIX ‘SECTION

CHARACTER SET | | A
: 501|
Type of Printer _ Internal Card
Character Graphic Code Octal Code
VAR -\ 21 12,1
B 22 12,2
C 23 12,3
D 24 12,4
E 25 12,5
F 26 12,6
G 27 12,7
H 30] 12,8
1 31 12,9
J 41 11,1
K 42 - 11,2
L 43 11,3
Alphabetic 4 M 44 11,4
N 45 11,5
(o] 46 11,6
P 47 11,7
Q 50 - 11,8
R 51 11,9
S 62 : 0,2
T 63 0,3
U 64 0,4
\'4 65 0,5
w 66 0,6
X 67 0,7
Y 70 0,8
\ Z 71 0,9
4 0 00 L]
1 01 1
2 02 2
3 03 3
Numeric 4 4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
\ 9 11 9

60236400 ' A-1

Type of
Character

Blank

Special

501
Printer

Graphic

blank
+

V A LS #)

W} d—=—="NNKNR®BR"~-~

/ .
>< -

plus

minus

times

divide

equals

less than
greater than
period

comma

left parenthesis
right parenthesis
percent

dollar

not equal (apostrophe on keypunch)
less or equal
greater or equal
left bracket
right bracket
decimal exponent
binary exponent
NOT

semicolon

right arrow
identity

colon

OR

AND

Internal

Code Octal

60
20
10
54
61
13
32
57
33
73
74
34
16
53
14
15
35
17
72
55
56 °
36
37.
75
76
12
52
77

‘space

60236400

Card
Code

12
11
11,4,8
0,1
3,8
12,0
11,7,8
12,3,8
0,3,8
0,4,8
12,4,8
6,8
11,3,8
4,8
5,8
12,5,8
7,8
0,8,2
11,5,8
11,6,8
12,6,8
12,7,8
0,5,8 ~
0,6,8
2,8
11,0
0,7,8

-BCD/ASCI Conversion Table

TABLE A-1.

(bit positions)

Binary Status of ASCII Character

7*

8-bit
ASCII
Character

"

6-bit
BCD Code

00

01

02
03

04
05

06
07
10
11
12
13

14
15
16
17
20

21

22
23

24
25

26

27

30

31

32
33
34
35

36
37

*ASCII bit 7 is unassigned and 0 for all codes.

v

A-3

60236400

BCD/ASCI Conversion Table

TABLE A-1.

Sff ™ © ™ © W O H O MM O MO O O OO O MO MO MO HMO OO ™o
| © H H O O HH O O H OO H MO MO H MO O N ®NO O OO O O o
I
m .
m21001111000010,0010101111000110111
Q
=
O 9] @ ™ ™M ot M OO OO0 O OO O H OO OO0 O o e o oo
7
< 5
-~
© 0 :
oped
m..m.a. © O O OO0 OO HMHMHO O OO O MO © mMor e oo MO O o o
St
[ngt<)
g vl "o 0000000 HHHAOMHHOOO0 00000 OO O
apt
o}
O] © M A EHEH A EH A O OO O O O O T e NN O N O
*
~]] © o ©c o 0o 0o 0o OO0 O 00 O O OO0 O O OO0 0000000 O O O O
o
5 E g
mm;& — Q
o.om I » M A8 20K —~e* - AANODEHDPBEXMNO « L o~
25 .
=
@]
O
t.w \
=20 S M MWW O N M WO D e MY IO O m M N IO
2 oW DD Y DD D OO DD O D O bbb b ot
© A .
O
M

*ASCII bit 7 is unassigned and 0 for all codes.

60236400

A-4

! ' .

3300/3500 MNEMONIC INSTRUCTIONS B

A 3300/3500 META mnemonic instruction is a procedure reference in which the label field
optionally contains a symbolic address, the command field contains a mnemonic instruction and
modifiers, and the operand field contains operands that depend on the mnemonic.

META assembles 3300/3500 mnemonic instructions through the use of three standard sets of
procedures on the system library. The sets are identified through their primary entry names as
IDENT, MONITOR, and BDP.

IDENT

IDENT includes procedures for the 3300/3500 mnemonic instructions executable in program state,
for the HLT instruction, and for the following 3300,’3000 COMPASS/MASTER pseudo instructions.

.

IDENT e
BSS

BSS, C

DEC

DECD

Capabilities paralleling those provided by the following pseudo instructions are available through
Meta-Assembler directives (Chapter 4). :

END NOLIST
FINIS LIST
ENTRY EJECT
EXT TITLE
EQU

Of these, TITLE is the only directive that does not correspond to the COMPASS psuedo instruction.

META does not recognize the following 3300/3500 COMPASS/MASTER pseudo instructions.

REM IFZ IFF BCD, C
COMMON PRG IFN ENDM
OCT ORGR DATA LIBM

 VFD BCD EQU,C SPACE
IFT '~ MACRO

60236400 _ , B-1

MONITOR

MONITOR includes procedures for assembling 3300/3500 mnemonic instructions executable in the
monitor state only,

BDP

BDP provides for assembly of 3300/3500 BDP instructions only.

USE OF LIBS

Before they can be used, the 3300/3500 mnemonic instruction procedures must be obtained from the
library through use of the LIBS directive.

Examples:

_._LI&S_J_._;!LIB_.’MTT. L1t 111 v Program state instructions
1., LTAS | LIB, 1y IQEMZ;,&QB Lt All but monitor state instructions

|Lr8s ‘#lrg', IOENT, MGNLT@R . . All but BDP instructions

[N
k-]

MASTER PROGRAM TASK \

A META-Assembler program to be executed as a task under the MASTER multiprogramming
operating system must include a copy of the user interrupt control routine (UIC) that provides the
task with an entrance and an exit. Each subprogram must begin with a LIBS directive.

When loading and execution of the assembled output is called for by the task name card (section '
7.1.4), the call connects with the UIC routine which contains a return jump to the task primary
entry point. The return address is inserted into the operand field for the UJP as a normal
function of a return jump execution. To obtain a copy of UIC, the program must declare UIC as
an external symbol,

B-2 : 60236400

Example:

_L_n_x_._x_x_t_LIBﬁ_L_J._L\LI&L,JIQEAm_L Call for library procedures.
1o IDENT L IQE! , First subprogram named JOE.

START. . . UTL. ., . 0O iy START is the task primary entry
N 7 point.

Lo 18 b b
lllllLJl:llllllllllllllJJlLl

4oy LIRS ‘,ﬁ[_ZB’" LOENT.: Begin second subprogram named XY.

..n.;;lEMIRY.,HXM,J,....J.
T TN TN SO0 O T Y Sl SN YN NS TN T Y U NN NN SN A O TN G VO OO0 S0
L]
L]
N WO TN Y A S s N N N S Y U A S SO T A WO T OO WO A
1|1«||1EN011|11:|1q|||||||
:.HlunFIAfIS...;.....1“.:'

PROCEDURE SETS

Three tables present brief descriptions of procedure references and resultant object code assembled
by the IDENT, MONITOR, and BDP procedure sets. For a complete description of the actual
machine instructions, refer to the 3300 or 3500 Computer System Reference Manual.

Because the 3300/3500 instructions are assembled through procedures, operation code modifiers
must be defined as symbols having values. A reference to each of the sets IDENT, MONITOR,
and BDP, causes the symbols for operation code modifiers to be defined. No other definition
can be given these symbols., Thus, a group of words is reserved for each set of procedures.

The following list of terms defines modifiers, operands, registers, and nonstandard symbols
that appear in the tables.

In some instructions, the execution address m or r, or the shift count k may be modified by adding
to them the contents of an index register, B, The 2-bit designator b specifies which of the three
index registers is to be used, Symbols representing the respective modified quantities are M, R,

and K.

60236400| ‘ B-3

Term

ch

cm

dec

EQ
GE

o

Meaning

MONITOR operation modifier: Conversion (alter the characters
transmitted).
Other:; 24-bit A register or word count control for INAC, and INAW,

The b subfield designates an index register. The b subfield may be
represented by a digit; a symbol; or an expression with a nonrelocatable
value of 1 2, or 3.

MONITOR operation|modifier: Backward read or write,
Other: Index register defined by Bb,

Index register flag, M= mt+ (By,) for these instructions only..

Index register flag. 1f Bp= 1or 3, R=r+(Bl). If B, =2, R= r+(B2).
IfB,=0, R=r.

Index register flag. If Bg=1or 3, S= s+(B1). If Bg= 2, S= s+ (B2).
If Bs'—' 0, S= S.

IDENT operation modifier: Evaluate address expression|modulo 2173

00-77g BCD code of search character. The c address subfield may contain
any symbol value, or expression, that represents the 6-bit character code
of the character for which the search is made, 00=c= 77g.

Channel designator for input/ouiput instruction, The ch address subiield
may contain a symbol, value, or expression that results in a nonrelo-
catable value 0=ch=7, ‘

8-bit channel.mask, This uddress subfield may contain a symbol,
constant, or expression that results in a nonrelocatable value .0=cm= 2°-1,

D register

BDP operation modifier: Indicates delimiting character; represented as

. right-adjusted BCD character string (mode 3).

Examples:
_J_J_|_|_MMZSJ.H:_L&.'_L_J_|_J_J_LJ_L Delimiting character is K.
L.;_L_wl_u V has mode 3.

MVZ&. V. . i i1 ., Delimiting character is V.

48/-bit E register.

IDENT and BDP operation modifier: Indicates equal.

IDENT operation modifier: Indicates greater than or equal.)
MONITOR operation modifier: Indicates half assembly or disassembly.
BDP operation modifier: Indicates (BCR)}=012 jump condition,

60236400

v
1 » Term B o Meanin
I IDENT operation modifier: Indicates indirect addressing.
i - Increment or decrement. The i address subfield may contain a symbol,
] constant, or expression which results in a nonrelocatable value from
1 0to7.
7 INT MONITOR operation modifier: Indicates interrupt on completion.
k Shift count
, £ Field length of block. 0-177g. The £ address subfield may be a symbol
1 or an expression which results in a nonrelocatable value from 1 to 177g.
LOW BDP operation modifier: Indicates (BCR)=105 jump condition.
LR BDP operation modifier: Indicates left-to-right scan.
LT IDENT operation modifier: Indicates less than. .
Iy Number of characters in field R.
Is Number of characters in field S,
m 15-bit word address, first operand, or jump address. The m address
subfield may contain a symbol, $, a constant, an expression, or a
literal,
M Actual operand or jump address as modified; M= m+ (Bb).
N MONITOR operation modifier: Indicates no assembly or disassembly.
n Same as m, second operand address.
NE . IDENT and BDP operation modifier: Indicates not equal,
P . 15 (or 17)-bit P register. '
Q 24-bit Q register.,
T 17-bit character address. The r address subfield may contain a symbol,
literal, constant, external symbol, expression, or $.
R Actual character address as modified; R = r+ (Bb).
RL BDP operation modifier: Indicates right-to-left scan.
RNI Abbreviation for read next instruction at. For example, RNI P+1 means

read the next instruction at the current location plus 1 of the P register.

Same as r, second operand address.

IDENT operation modifier: Sign extension if S present; no sign extension
if S omitted.
Other: Same as R, second operand address; S= s+(Bb).

3 sc Scan character

v 6-bit address in register file. The v address subfield may contain a
symbol, constant, or expression which results in a nonrelocatable value

60236400 "~ B-5

Term , ' Meaning

w Page index filé address.

X Connect code or interrupt mask. The x address subfield may contain a
symbol, constant, or expression that results in a nonrelocatable value
0=x<212_1, ' '

y 15-bit operand. The y address subfield may contain a symbol, * or **,
constant, an expression, or a literal,

ZRO . BDP operation modifier: Indicates (BCR)=0 jump condition,

O Operation analysis symbol indicating the contents of, For example,

(A) means the contents of the A registar.

— Operation analysis symbol indicating replace. For example, (M}—+(A)
means replace the contents of the A register with the contents of the M
operand field.

Procedures for COMPASS pseudo instructions precede the tables.
IDENT procedures are grouped according to instruction types as:

Transfers .. ‘
Arithmetic operations
Character opei‘ations :

Decisions

&

Jumps, pauses, and stops

Interrupt operations

No-operation instruction
Shift instructions

Ldgical instructions
MONITOR procedures are grouped according to instruction types as:

Transfers
Decisions

Jumps, pauses, and stops

Input/output operations

Interrupt operations

BDP procedures are not divided into subgroups.

B-6 60236400

PROCEDURE REFERENCES FOR COMPASS PSEUDO INSTRUCTIONS

IDENT sym

BSS m

6023640¢C

‘The IDENT procedure names a subprogram and provides control

information for META. The operand field contains a 1-8 character
symbol naming the subprogram. The procedure contains a SECP
directive that places the name on the IDC card of the relocatable
object subprogram deck. The label field is defined as the value of
the location counter,

The subprogram name is not an entry point name and cannot be
referred to within the source subprogram. Each subprogram must
have a SECP directive or IDENT instruction preceding all but the
LIBS, UNIT, or list control directives.

Lines of code following IDENT are assembled, using the location
control counter, until the next SECP, SECA, SECD, or ORG directive.

BSS reserves and labels a block of words in any area. The label field
is blank or contains a symbol defined as the 15-bit relocatable word
address of the first word in the block.

The operand field specifies the number of words to be reserved. It
must contain a constant, a symbol, or an address expression that
results in a nonrelocatable value. ‘

Example:
ABLE ‘ 1
ABLE+ 1 12
words
ABLE + 11
v

A double asterisk is illegal in the operand field. A symbol in the
operand field must be defined in the label field of a preceding instruction.

A negative operand field such as -Q '2' is interpreted as O'77777775".
META reserves 777777758 words.

If the operand field is in error or is zero, no storage is reserved but
the label field symbol is defined. If the operand field is zero, and a
byte-oriented instruction immediately precedes the BSS, the next
instruction that uses space begins with a new word,

BSS,C m

DEC dl’d2' ces ,dn

DECD d;,dy, -

..,d

n

BSS, C reserves and labels a block of bytes. The label field is blank
or contains a symbol defined as a 17-bit relocatable address of the
first byte (BCD character position) in the block to be reserved. The
operand field specifies the number of bytes reserved. It must contain
a constant, a symbol, or an address expression that results in a non-
relocatable value, A '

A negative operand field such as -O '2' is interpreted as O '77777775".
META reserves T7777175g bytes.

A zero operand does not reserve space but the label field symbol is
defined.

Example:
23 1817
ABLE

1211 6 5 0
ABLE+1 . ..

Bits

25
characters

e

| ABLE+ 23-

ABLE + 24 §§\\T\\\\2§§\\MY

DEC generates one computer word for each decimal value in the operand
field. The label field is blank or contains a symbol defined as a 15-bit
relocatable address of the first word generated. The operand field
contains values, symbols, or expressions that result in decimal values. -

Example:

Generates three words.

' DECD generates two computer words in 48-bit internal floating-point

format for each real (floating~point) value in the operand field. The
label field is blank or contains a symbol defined as the 15-bit relocatable
address of the first word generated. The operand field contains values,
symbols, or expressions that result in real or floating-point values.

50236400

TABLE B-1. IDENT PROCEDURE REFERENCES

60236400

T
y Command Operand
p Field Field Operation Object Code
e
AEU (A)—~E 25 17 14 00
47-24
| 55 |6 [ZZ Z
23 17 14 00
AQE (4, Q~E4q7_g9 55 |7 /////////W
_ 23 17 14 00
EAQ Egp_g0~2Q 7
55- |3 %
23 17 14 00
ELQ (Eg7-24—Q .
w (1
ENA y 0—A, then y—A14 0o 23 17 14 00
" 14 6
&
1]
g
& | ENA,S y 0—(A), then y—Ay4_g0. 23 17 14 00
sign extended 14 | 4
ENI y,b O—oBb; then y—»Bb; becomes 23 17 14 00
a no-operation instruction if| 14 1ab
b=10
00
ENQ y 0--Q, then y—Q,, o, 23 17 14
14 7
ENQ,S y O—’Q, then y-’Q14_00, 23 17 14 00
sign extended 14 5
EUA (Egq_gq)—~A 23 17 14 00
- 77
"
s 277
LCA,I m,b Complement of (M)—A 23 17 14 _00
2+ Ho
B-9

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y | Command Operand
P Field Field Operation Object Code
e
LCAQ,I m,b Complement of (M)—A; 23 17 14 00
complement of (M+1)—Q 26 l, b m
LDA,I m,b (M—A 23 17 14 00
20 41) m
LDAQ, I m,b (M)—~A, (M+1)—~Q 23 17 14 0
25 R@ib m
LDI,I m,b (M14-oo)-Bb 23 17 14 00
54 Hb m
H 21 Hb 0
& m gl
g .
) 55 |5
RIS Relocate to instruction state 23 17 14 00
" ROS Relocate to operand state 23 17. 1{} 00
55 |4 ///%
STA,I m,b (A)~M |23 17 14 00
40 Hb m
STAQ,I m,b (A)—M, (Q—M+1 23 17 14 00
45 alb m
— 23 1
STI,1 m,b ®P—~M,, g0 7 14 00
. 47 }i b m .
B-10 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

60236400

T
y Command Operand
p Field Field Operation Object Code
e —
STQ,I m,b Q)—M 23 17 14 00
41 b m
— 23 17 14 00
SWA, I m,b (A14-00""M14-00
44 F.b m
TAI b (A14-00)—BP; becomes a no- 23 17 14 11 00
operation instruction if b=0 53 {1b] 0
TAM v A)—v 23 17 14 11 05 00
53 2 // v
. 23 17 14 11 00
e ’ itoed, o 4707 = Wl o O
11 b=V, U
8 7
g
& | Tim ~v,b (Bb)""m-oo 23 17 14 11 05 00
53 fib| 3 v
— 23 17 14 11 05 00
TMA v (V14-00 A "
./
TMI v,b (V14-00~B" 23 17 14 11 5. 00
53 fob] 3 W v
TMQ v V)—Q 23 1;14 }/}/05 00
53 |0 % 1 Z /7; v
TQM Q—v 23 17 14 11 05 00
. v -
a7 -« |
53 A1 4 v
B-11

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y | Command Operand
p Field Field Operation Object Code
€ 3= ————
ADA,1 m,b (A)+ (M)—A 123 17 14 0
30 b| m
ADAQ, 1 m,b (A, Q)+ (M, M+1)—A,Q 23 17 14 00
32 }1 b m
AIA b (Ay+(BP)—A, sign of (B) is 23 17 14 00|
: extended prior to addition /////
_ 53 plbl4 P 7
AQA (A)+(Q—A 23 17 14 00|
: 53 014 %
o | DvaL m,b (A,Q)/(M)—A, remainder —@ | [23__ 17 14 00 .
: o b m 9
g i y
g .
< | pvaq,I m,b (A,Q,E)/(M,M+1)—A,Q, 23 17 14 |
remainder with sig.:. extended 57 }1 b m
—-E
FAD,1 m,b Floating-point addition of 23 17 14 00
| (M, M+1) to (A, Q—4,Q 60 b m
FDV,1 m,b Floating-point division of (A,Q)| |23 17 14 00
by (M, M+1)—A, Q; remainder L
6
with sign extended —(E) 3 b o
FMU, I' m,b Floating-point multiplication of 23 17 14 0
(A,Q) and (M, M+1)—A,Q 62 |db m
FSB,1 m,b Floating-point subtraction of 23 17 14 00
(M, M+1) from (A,Q)—A,Q 61 b m

B-12 . : 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

60236400

T
y Command Operand
p Field Field Operation Object Code
€ —
IAI b A)+(BP—~BP, sign of BP is 23 17 14 11 001
extended prior to addition 53 hlbl 4
INA y Increase (A) by y 23 17 14 00!
15 6 y
INA,S y Increase (A) by y, sign of y is 23 17 14 00
extended 15° |4 y
INI y,b Increase (Bb) by y, signs of y 23 17 14 00
and B~ extended; becomes a 15 b y
no-operation if b=0
INQ y Increase Q) by y 23 17 14 00
B 15 |7 y
(]
2 INQ,S y Increase (Q) by y, signof y 23 17 14 00
extended 15 |5 y
MUA, I m,b AY*(M)—Q, A 23 17 14 00
50 Jab m
MUAQ,I m,b (A, Q*M,M+1)—A,Q,E 23 17 14 00
56 alb m
RAD,I m,b (M)+(A)—M 23 17 14 00
34 Ia b m
SBA,I m,b (A) - (M)—A 23 17 14 00
31 jalb m
 SBAQ,I m,b (A,Q) - (M, M+1)~A,Q 23 17 14 00
: 33 b m
B-13

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y | Command Operand
p Field Field Operation Object Code
e wme—
ECHA r 0—A, then character address 23 17 00
r~A16-00 un p z
ECHA,S r 0--(A), then character address 23 17 00:
r—-A16_00, sign extended 11 z
LACH r,1 0—A, character in (R)—A(5_q0 23 7 0
22 b r
5 LQCH r,2 0—Q, character in R)~Qy= 00 23 17 00
g 23 r
=
g 23 17
SACH r,2 Character in (Ags_o0)—R L 00
42 b r
SCHA,1 m,b Character address in A16-00 23 17 14 00
! >
~M16-00 46 pjb m
SQCH r,1 Characiter in (Qo5-00)—R, 23 17 00
use (B™) to index 43 b r
AQJ, mod m If condition is satisfied, RNI m,| |23 17 14 00
otherwise, RNI P+1 03 [1f; m
mod test condition j
EQ A =@ 0
NE (A)=Q 1
]
2 GE A) = Q) 2
B LT (A)<@ 3
A
R-14 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand)
p Field Field Operation Object Code
e
ASE y Ify= (A14_00), RNI B+ 2, 23 17 14 00
otherwise, RNI P+1 04 6 y
ASE,S y Ify= (Ay4_gg)» RNI P+2, 23 17 14 00
otherwise, RNI P+1, sign 04 4 y
of y is extended
ASG y If (A) =y, RNI P+2, other- 23 17 14 00
wise, RNI P+1 05 |6 y
ASG,S y If (A) =y, RNI P+2, other- 23 17 14 00
wise, RNI P+1, signofy 05 |4 y 1
is extended |
AZJ,mod m If condition is satisfied, RNI 23 17 14 00
o m, otherwise, RNI P+1 03 |o|j m
g
‘3 mod test condition j
[
A
EQ @A) =0 0 % Positive zero = negative zero
NE (A) %0 1
GE (A) =0 2) »
Negative zero < positive zero
LT (A) <0 3
19D m,b 1f (8%) =0, RNI P+1; if (BP) 23 17 14 00
=0, (BP) - 1~ BP, RNI 02 |ijp m
-m; becomes a no-operation
instruction if b=0
1J1 m,b if BP) =0, RNI P+1; if (BD) 23 17 14 00
=0, (BY) + 1~ BP, RNI 02 lolb m
m; becomes no-operation
instruction if b=0
ISD y,b For b =0, if (BP) =y, clear 23 17 14 00,
BP and RNI P+2; if (BP) =y, 10 hib v
(BY) - 1 b, RNI P+1 :
For b=0, if y = 0, RNI P+2;
if y =0, RNI P+1

1 60236400 . B-15

TABLE B-1.

IDENT PROCEDURE REFERENCES

Command
Field

® o< W

Operand
Field

ISE

ISG

ISI

MEQ

Decision

MTH

y.b

y,b

y;b

m,i

Operation

Object Code

Forb =0, if y = (B%), RNI P+2,
otherwise, RNI P+1

For b=0, if y = 0, RNI P+2,
otherwise, RNI P+1

For b =0, if (B®) =y, RNI P42,
otherwise, RNI P+1

For b=0, if y =0, RNI P+2,
otherwise, RNI P+1

For b =0, if (Bb) =y, clear BP
and RNI P+2; if (Bb) =Y, (Bb) +1
—B", RNI P+1

For b=0, if y = 0, RNI P+2;
if y =0, RNI P+1

(Bl) -i— Bl if (Bl) negative,
RNI P+1; if (BY) positive, test
(A) = logical product of (Q) and
(M);. if true, RNI ¥+2, if false,
repeat sequence

Designator Decrement

i Interval

CNOU W=
Q-3 OB W

(B2) -i— B2, if (Bz) negative,
RNI P+1, if (B2) positive, test
(A) =logical product of (Q)

and (M); if true, RNI P+2; if
false, repeat sequence; designa-
tion table same as for MEQ

17 14

00

04 [ofb

17 14

00

10 job

17 14

00

06 |[i

23

17 14

00

07 i

B-16

60236400

TABLE B-1.

IDENT PROCEDURE REFERENCES

T
y Command Operand .
) Field Field Operation Object Code
e
QSE y Ify= Qpq_go RNIP+2, 23 17 14 00
otherwise, RNI P+1 04 |7 y
QSE, S y Ify= (@), RNI P+2, other- 23 17 14 0
wise, RNI P+1, signofy is 04 5 y
extended
g
2 | QsG y If Q1400 =¥s RNI P+2, 23 17 14 00
2 otherwise, RNI P+1 05 |7 y
QSG,S y If Q) =y, RNI P+2, other- 23 17 14 00f
wise, RNI P+1, signofy 05 |5 y !
is extended
HLT m Unconditional stop, RNI m 23 17 14 00
w upon restarting 00 |o m |
o
8
n .
2 | Ry m (P)+1—~my4-00. RNIm+ 1 23 17 14 00
o 00 |7 m
Q
[}
5
A SJj m If SELECT JUMP j (where j 23 17 14 00
@ = 1-6) is set, jump to m; 00 m
g otherwise, RNI P+ 1
=
=
uJp,1 m,b Unconditional jump to M 23 17 14 00
01 |ajb m
g 23 17 11 00
o DINT Disable interrupt control
—
m |\ w7
8 23
B EINT Interrupt control enabled; 17 11 00
g . . W/ :
E allows one more mstn.xctmn 77 74 / //%
2 to be executed before inter-
= rupt

60236400

B-17

TABLE B-1. IDENT PROCEDURE REFERENCES

Command
Field

0T <

Operand
Field

Operation

Object Code

NOP

No-operation

No operation (assembled NOP),
RNI P+1

14

SCAQ

SHA

SHAQ

Shift Instructions

SHQ

k,b

k,b

k,b

k,b

Shift (A, Q) left end around until
upper 2 bits of A are unequal;
residue K = k- shift count; if
b=1, 2, or3, K— BP;ifb=0,
K is discarded

Shift (A); shift count K=k + (BP)
(signs of k and BP extended); if
bit 23 of K=1, shift right; com-
plement of lower 6 bits equals
shift magnitude; if bit 23 of K=0,
shift left; lower 6 bits equal shift
magnitude; letft shifts end
around; right shifts end off

Shift (A,Q) as orz register; shift
count K=k + (BP) (signs of k and
BY extended); if bit 23 of K=1,
shift right and complement of
lower 6 bits equals shift magni-
tude; if bit 23 of K = 0, shift
left and lower 6 bits equal shift
magnitude; left shifts end around;
right shifts end off

Shift (@); shift count K=k + (BP)
(signs of k and BP extended); if
bit 23 of K =1, shift right, com-
plement of lower 6 bits equals
shift magnitude; if bit 23 of K = 0,
shift left, lower 6 bits equal shift
magnitude; left shifts end around;
right shifts end off

_ lzs

fe
S

13

’23

23

17 14

13

23

17

14

12

B-18

60236400

TABLE B-1. IDENT PROCEDURE REFERENCES
T
y Command Operand
p Field Field Operation Object Code
e
» | SSH m Test sign of (m), shift (m) left | 23 17 14 00
5 one place, end around and re- 10 lo m
g place in storage; negative sign,
2 RNI P+2, otherwise RNI P+1
2
&
=
17}
ANA y Logical product (AND) of y and | 23 17 14 0
(A)—~A 17 |6 y
ANA,S y Logical product (AND) of y and | 23 17 14 00
(A)—A, sign of y extended 17 4 y
ANI y,b Logical product (AND) of y and 23 17 14 00
(B%)—BP; becomes no-operation 17 lob y
instruction if b=0
ANQ y Logical product (AND) of y and 23 17_14 00
Q—Q 17 |7 y
2
S | ANQ,s y Logical product (AND) of y and 23 17 14 00
s (Q)—Q, sign of y extendeu 17 |s v
2)
2
-; LDL,1 m,b Logical product (AND) of (M) 23 17 14 00
2 and (Q)—A 27 Ia b m
(C;)B .
=
LPA,I m,b Logical product (AND) of (M) 23 17 14 00
and (A)—A 37 b m
SCA,1 m,b Where (M) contains a 1 bit, 23 17 14 00
complement the corresponding 36 kb m
bit in A |
60236400 B-19

TABLE B-1. IDENT PROCEDURE REFERENCES
T
y Command Operand
p TField Field Operation Object Code
e
SSA,1 m,b Where (M) contains a 1 bit, set 23 17 14 00
the corresponding bit in A to 1 35 hlb m
XOA y Selective complement (exclu- 23 7 14 0
: sive OR) of y and (A)—~A 16 6 y
" XOA,S y Selective complement (exclu- 23 17 14 0
5 sive OR) of y and (A)—A, sign 16 4 y
g of y extended
=1
?é XOI y,b Selective complement (exclu- 23 17 14 _ " 00
= sive OR) of y and (Bb)—Bb; 16 OIb v
8 becomes no-operation in-
& struction if b= 0
= ;
XoQ y Selective complement (exclu- 23 17 14 OOL
sive OR) of y and Q)—Q 16 7 y
X0Q,S y Selective compl.ment (exclu- 23 17 14 00
sive OR) of y and (Q)—Q, sign 16 5 y
of y extended
B-20 60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e
ACI (AOZ_OO)——channel index register| 23 1 7 1,/1 00
n %
ACR (AOS_OO)—»condition register 23 17 11 08 00
ki 63 4 000
AIS (A g5 gp)—instruction state 23 17 108 0
register 77 66 |4 000
AOS (Aga-go)—operand state register 23 17 11 00,
77 66 0000
APF w,2](aAnl_oo)—z-pagedfifle ind:x w; if 23 — 17 - 10 06 00
21, . - 4
§ (B“) used for indexing A w
Ui
5
& | cla 0—(A), then channel index 23 ¥i 00
register—Ag, o Vi 55 ///////
CRA Condition register—Ags_qg; 23 17 11 00
clear condition register 77 63 0000
(CR) Significance
00 Boundary jump
01 Destructive load A
02 OSR in use
03 Program state jump
04 Interrupts enabled
05 Program state
ISA 0—(A), instruction state 23 17 11 08 00
regxsterj-A02_00 77 67 4 000

60236400

B-21

TABLE B-2. MONITOR PROCEDURE REFERENCES

Command
Field

o T < N

Operand
Field

Operation

Object Code

JAA

LBR

OSA

PFA

RCR

Transfer

SBJP

SPR

SDL

SRA

Last executed jump address
~A14-00

Load BCR and restore BDP
conditions from data at m

0—-(A); operand state register
—A
02-00

0—A, then (page index file w)
—Aq1-00; if b is 1, (B%) used
for indexing

Subcondition register—condition
register

Set condition register for
boundary jump; system trans-
fers from monitor state to pro-
gram state when next jump
ocecurs

Store contents of BCR and BDP
conditions at m for interrupt
recovery.

Set 01 in condition register to
flag destructive load so that upon|
next LDA instruction:

1. (M)—A

2. 777717777-M

3. O—condition register

0—A; subcondition register—
Ap2-00

23

17

71

56

23

17 14

00

70

23

17

11 00

77

67

0000

23

17

77

65

23

11 08 00

77

000

£

23

11 : 00

77

0000

™o
]

17 14

00

70

23

17

11 08 00

77

62

4 000

23

17

11 00

77

63

0000

B-22

60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES
T
y Command Operand
P Field Field Operation Object Code
e
CPR,I m,b (M) > (A), RNI P+1 (A) and |23 17 14 00
Q) > (M), RNI P+2 Q) are || 52 |[a|b m
(A) = (M) = (Q), RNI P+3\ un-
changed|
]
.% TMAV Initiate memory request; if reply |23 17 11 00)
3, occurs within 5 usec, address 77 61 0000
] axists, RNI P+2; if not, address
does not exist, RNI P+1; storage
address tested is (BZ) with
operand state register) or zero
appended
Pause Sensing Mask
Mask Bits Mask Codes Condition Notes
00 0001 1/0 channel 0 busy Channel read or write operation in
01 0002 1 progress, the External MC logic
02 0004 2 within the channel is set, or a Reply
03 0010 3 or Reject from a previous operation
04 0020 4 is still present at the channel
05 0040 5
06 0100 6
07 0200 7
08 0400 Typewriter busy Typewriter 1/0 in progress
09 1000 Typewriter NOT finish Finish logic not set
10 2000 Typewriter NOT repeat Repeat logic not set
11 4000 Search/Move control Search or Move operation in
busy progress
60236400 B-23

TABLE B-2. MONITOR PROCEDURE REFERENCES

Command Operand
Field Field * Operation Object Code

® T <

PAUS X Sense busy lines; if 1 appears on | 23 17 11 00
a line corresponding to 1 bits in 77 60
x, do not advance P; if P is in-
hibited for longer than 40 ms,
read reject instruction from P+1;
if no comparison, RNI P+2

PRP P Same as PAUS, except real- 23 17 1 0
time clock cannot increment 77 61 X
during the pause. <

SLS Program stops if selective stop | 23 11

switch is on; upon restarting 77 1770 0

RNI P+1

Jumps, Pauses, and Stops

ucs Unconditional stop; upon re- 23 17 11 00

starting RNI P+1 77 77m

CLCA cm Clear the specified channel, 23 17 11 07 00
but not external equipment ; ™ 51 o

cm

CON x, ch If channel ch is busy, reject 23 17 14 11 00]
instruction, RNI P+1. If 4 77 |0 Jch x
channel ch is not busy, send
12-bit connect code (x) on
channel ch with connect enable,
RNI P+2

123 714 11 00
77 2 |ch 0000

COPY ch External status code from 1/0
channel ch~A11_00, (interrupt
mask register)—-A%_,lz, RNI
P+1

Input/Output

B-24 . 60236400

INTERRUPT MASK REGISTER BIT ASSIGNMENTS

60236400

Mask Bit
Positions Mask Codes (x) Interrupt Conditions Represented
00 0001 I/O Channel 0 (includes interrupts generated within
01 0002 1 the channel and external equipment
02 0004 2 interrupts)
03 0010 3
04 0020 4
05 0040 5
06 0100 6
07 0200 7
08 0400 Real-time clock
09 1000 Exponent overflow/underflow & BCD faults
10 2000 Arithmetic overflow & divide faults
11 4000 Search/Move completion
TABLE B-2. MONITOR PROCEDURE REFERENCES
T
y Command Operand
p Field Field Operation Object Code
e
23 17 11 00
CTI Set console fypewriter input.
Beginning character address 77 75 W
must be in location 23 of register
file, last character + 1 must be
in location 33 of the file
CTO Set console typewriter output 23 17 11 00
Beginning character address 77 76 W
must be in location 23 of register
file, last character + 1 must be
in location 33 of the file
§. EXS X, ch Sense external status; if 1 bits 23 17 14 11 00
g occur on status lines in any of 77 2 |ch X
> the same positions as 1 bits in
:é. the mask, RNI P+1; if no com-
= parison, RNI P+2
B-25

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e
INAC,INT ch (A) is 'cleared and a 6-bit char- 23 % 00
acter is transferred from a p 73 1////////%
peripheral device to the lower
6 bits of A 2320 Q0
IV
o1 (a0 17 i
INAW,INT | ch (A) is cleared and a 12- or 24- | 23 1 } 00
bit word is read from a periph-|, 74 Q1 m
eral device into the lower 12
bits or all of A (word size 23 18 0
0
depends on 1/0 channel) p+1 LCh N Z
INPC,INT, ch,r,s A G- or 12-bit character is 23 16 00
= B,H,A read from a peripheral device p 73 0 s
= and stered in memory at a
§ given location 23 201816 00
- 1
S . p+l|ch HT T
g . ®
INPW,INT, ch,m,n Word address is placed in bits 23 16 14 00
B,N,A 14-00; 12- or 24-bit words are | 74 o n
read from a peripheral device
and stored in memory 23 20181614 00
1
p+ljch AENT m
MOVE,INT| {,r,s Move £ characters from r to s; 23 ‘15 00
0=t = 12710) 72 . s
23 16 ' 00
p+1f |4 r
B-26

60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e
OTAC,INT ch Character from (Agg_gq) is 23 1,6 00
. { 7
sent to peripheral device, p (T ////M
(A) retained “
23 0 1/}1/ (V]
gl
pt+lic ?/ %
OTAW,INT | ch Transfers (A1 _00) or 23]ﬁ 00
Agg_go, depending on type of |p | 76 1///////%
I/0 channel, to a peripheral =
device 23 201816 00
\ln BN i
p+1fch /BNy / /
5
&
3
> OUTC,INT,| ch,r,s Storage words assembled into 23 16 00
3 | B,H,A 6- or 12-bit characters and p | 75 [0 s
5) .
— sent to a peripheral device
23 201816 00
p+1fch AEH: r
OUTW,INT,{ ch,m,n Transfer 12- or 24-bit words 23 17 14 00
B,N,A from storage to a peripheral p 76 o n
~ device Z.
) 23 20181614 d
1
p+llch w m
SEL x, ch If channel ch is busy, read 23 17 14 11 00
reject instruction from P+1; if 77 11 |lch x
not busy, send a 12-bit function
code on channel ch with a func-
tion enable, RNI P+2
& | CILO cm Lockout external interrupt on 23 17 0
o masked channels, cm, until 77 51 1 cm
§ channel is not busy
R

60236400 ‘ B-27

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
P Field Field Operation Object Code
e
CINS X,ch Interrupt mask and internal 123 17 14 11 00
status—A 77 |3 {ch 0000
% IAPR Interrupt associated processor | |23 17 11 00
Rt
INCL X Interrupt faults defined by x 23 L7 11 00
are cleared 77 50 x
Internal Status Sensing Mask
Masked Bit
Positions Mask Codes (x) Interrupt Conditions Represented
- 00 0001 Paritf error on channel ch
01 0002 Channel ch busy reading
02 0004 Channel ch busy writing
03 0010 External reject active on channel ch
04 0020 No-response reject active on channel ch
05 0040 t1llegal write
06 0100 Channel ch preset by CON or SEL, but no
reading or writing in progress
07 0200 Internal 1/0 channel interrupt on channel ch upon:
1) completion of read or write operation, or
2) end-of-record
08 0400 tExponent overflow/underflow fault (floating-point)
09 1000 tArithmetic overflow fault (adder)
10 2000 iDivide fault
11 4000 +BCD fault

tPeripheral Equipment Reference Manual,

B-28

Pub. No. 60108800

60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T <

Command
Field

Operand
Field

Operation

Object Code

Interrupt

INS

INTS

IOCL

SBCD

SCIM,I

SFPF

SSIM

X,ch

x,ch

Sense internal statust; if 1 bits
occur on status lines in any of

the same positions as 1 bits in
the mask, RNI P+1; if no com-
parison, RNI P+2

Sense for interrupt condition;
if 1 bits occur simultaneously
in interrupt lines and in the
interrupt mask, RNI P+1; if
not, RNI P+2

Clears 1/0 channel or search/
move control as defined by bits
00-07, 08, and 11 of x

Set BCD fault logic

Selectively clear interrupt
mask register for each 1 bit in
x; corresponding bit in the
mask register is set to 0

Set floating-point fault logic

Selectively set interrupt mask
register for each 1 bit in x;
corresponding bit in the mask
register is setto 1

23

23

11

77

17 14 11

00

77

4 |ch

23

17

11

00

71

51

)
G2

7

23

17

11

17 : 0
72

00

71

53

77

23

17

11

7 1L 0
71

00,

77

52

{Internal faults are cleared when sensed.

60236400

B~29

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e
ADM r,B., 4., Add field R to field S— 23 16 0
s,BS,Is field S p 67 D r
,23 201816 00
pe1|0 BrBs| s
23 11 00
p+2 'l r ll s
ATD m,B_, Translate ASCH code field 123 16 0
£ m’ S M~—BCD character field S p I 66 D m
B : '
s |23 201816 00
\
a 23 " 1 9
ATD,dc m, Bm, Translate ASCII code field 23 6 01
: !m’ s, M~—BCD character field S P 66 |1 m
Bg with delimiting character
possibility 23 201816 00
p+]_' 3 mBa 8
- 19 11 0
p+2 de , Im
!
B-30 60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
P Field Field Operation Object Code
e
CMP r,B., L, Compare field R to field S 23 16 00
’ s, Bg, L from left to right, exit upon p 67 o r
encountering = characters
23 201816 00
p+1|3 P1 B;{ s
23 11 00
p+2 Ly 1g
CMP.dc r,B,s, Compare field R to field C 23 16 00
BS,ES from left to right, exit upon p 67 p r
encountering = characters;
delimiting character 23 201816 00
. possibility p+1{ 3 [B.|Bg s
[aX
gg 23 17 11 00
CVBD m, B, Convert binary field M to 23 16 01
n,B, BCD—field N p | e |0 m %
23 201816 01
p+1l 1 BmhBh n %
23 0
+2 '’
P W, %

60236400

B-31

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand :
p Field Field Operation Object Code
e
CVDB r,B., 2., | Convert BCD field R to \':3 16 00
m,B binary—field M Ip 86 r
23 201816 00
p+1 0 Ber m - %
23 11 00
p+2' |2 r
DTA r,Br,lr, Translate BCD field R to 23 16 00
B ASCII code—~field M p 66 D r
1
23 201816 01
LB Y777
el 2 [3.3 m /9
n. ‘ » : — 4
) 1
a 123 1 00
:ﬁ p+2 'tr
. 1
DTA,dc r,B.,{,., | Translate BCD field R to 23 16 00
m, B ASCII code—field M; o |[66 |1 r
delimiting character
possibility k3 201816 ooJ
p+1 2 Ber m
\2 17 11 0
fio+2 _de e

B-32 _ - : 60236400

TABLE B-3. BDP PROCEDURE REFERENCES
T
y Command Operand
p Field Field Operation Object Code
e
EDIT r, Br,ﬂr, Field R—field S with COBOL 23 16 00
s, Bs,ls type of editir?g specified by P! 64 Ml r
picture previously stored in
field S 23 201816 0
p+1 4 Br BS [
23 11 00
p+2 Ly £ s
FRMT r,Bp Move field R—field S; replace 23 16 00
s,BS,ls leading zeros with blanks; p 64 D r
insert a comma after every
three characters moved, 23 201816 0
o, insert a decimal point in third p+1| 4 [By{Bd s
a lowest order position in S)
| field 23 1 0
p+2 Ly Ls
JMP, mod m Test status of BCR = condition | 23 17 14 00
specified by mod and jump to m 70 |j m
if true; otherwise, RNI P+1
mod (BCR) J
HI 01, 0
ZRO 00 1
LOW 10 2
60236400 B-33.

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand) ‘
P TField Field Operation Object Code
e
MVBF r, Br,lr, Move characters from field R 23 16 00
s,BS,lZS —field S; if field S > field R, p 64 b r
blank fill
23 201816 00
ptll 1 BPBSI s
23 11 00
p+2 £, L
MVE r,B,, ! - Move characters from field 23 8 00
s, Bg, 1 s R—field S according to p 64 b r
parameters -
) 23 101816 00
o] p+l 0
a NPl s
23 11 00
. pt2 Lr 1y
s e
!
MVE,dc r,B.,s, Move characters from field R 23 16 0
. Bg, Ly —field S; delimiting character |p 64 |1 r
possibility
23 201816 00}
p+1{ 0 ByBg s
2 17 1 0
' 1
p+2 _dC ! s
B-34 60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Opcrand
p Field Field Operation . Object Code
e
MVZF r,Bp, 4., Move characters from field R 23 16 00
s, Bg, 45 — field S; if field S > field R, pl 64 o r
zero fill
23 201816
p+1} 2 BrBg s
23 11 Q
p+2 Ly Ly
MVZS r,By, 4, Move characters from field R 23 q 0
s,Bg, L g — field S; suppress leading Pl 64 o r T
Zeros
23 201816 Q0
p+1| 3 B.Bg s
o 23 11 004
a 2 2
m p+2 r S
MVZS, dc r,B,,s, Move characters from field R 23 16 00
BS,RS — field S; suppress leading Pl 64 1 r
zeros; delimiting character
possibility 23 201816 00
p+1 3 BrBS S
23 17 11 00
7/
p+2 //// de 2

60236400 : B-35

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand) _
P Field Field Operation Object Code
e
PAK T, Br,lr, Convert and pack a 6-bit 23 16 00’
m, B, numeric BCD field R to a 4-bit |p 66 D r
numeric BCD field and store the
result in field M 23 201816 01
p+] 4 erm m
23 11 00
SBM r,Bp, Ly, Subtract field beginning at R 23 16 00
8,Bg,Lg from field beginning at S— D 67 D r
field beginning at S -
23 201816 (
p+l| 1 ,lle 8
23 : 11 i Od
. p+2 Le Ly
(28 e
Q L]
m
SCAN, dir, r,B,, Scan field beginning at R 23 6 0y
mod £,,8¢c p 65 P r :
dir, mod X ;
EE— - 23 2018 00
LR,EQ Left to right 0 p+1] x
stop on =
RL,EQ Righttoleft 1 7 1 L ¢
, ight to le P
stop on = p+2| 8c r
LR,NE Left to right 2
stop on =
RL,NE Righttoleft 3
stop on =

B-36 ’ 60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand .
p Field Field Operation Object Code
€
SCAN, dir, r,Bp, Scan field beginning at R, l{‘S 16 00
mod,dc L.,sc delimiting possibility Ip 65 1L r
dir, mod X 53 201 90
p+tli x B
LR,EQ Left to right, 0
stop on = f’.?» 17 11 00
RL,EQ Right to left, 1 jp*2| sc | de [tr.
stop on =
LR,NE Left to right, 2
stop on #
RL,NE Right to left, 3
stop on =
SRCE,INT c,r,s Search for equality of character| [23 6 00
o ¢ in list beginning at r until an [, 71 Eg s
a equal character is found, or
until character at s is reached; l|23 16 00
0<c= 6310 p+1 sc b r
Operation commences while L
main control continues -at P+3.
SRCN, INT c,r,s Inequality search; same as 23 116 : 0
SRCE Pl 7 P s
,l23 16 00
p*‘llL sc [r
TST r, B, 4, Test field R for -, 0, or+ 23 6 00
L\P T 67 D r
3 901?’7// // v
ol 4P
\?3 1 L 00
a |2 7

60236400 B-37

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
i e
TSTN r,Br,4y | Test field R for numeric 23 16 00
pl 67 1 r i
23 2018 - o oq
vilabl
2 0
p+2 Ly
. i 23 16
UPAK m, Bm,fg | Unpack 4-bit BCD field M %6 b
Bs,Ig into 6-bit BCD field S m
23 201816 00
5 BniBd 8
9 2 11 o
. 13
. B
ZADM r,Bp, Ly, | Clear field s; field R— 3a 4 0
s,Bg, L field S, right justify 67 [0 r
23 201816 00
2 Br 8
23 11 00.
L sl

B-38 ' , 60236400

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal Code Mnemonic Octal Code Mnemonic
00.0 HLT 05.5 QSG,S 15.5 INQ,S
00.1-6 SJ1-SJ6 05.6 ASG 15.6 INA
00.7 RTJ 05.7 QSG 15. 7> INQ
01 UJP,1 06.0-7 MEQ 16.0 No-op
02.0 No-op 07.0-7 MTH 16.1-3 XO1
02.1-3 1J1 10.0 SSH 16.4 XOA,S
02.4 No-op 10.1-3 ISI 16.5 X0Q,S
02.5-7 1JD _10. 4-7 ISD 16.6 XOA
03.0 AZJ,EQ 11.0 ECHA 16.7 X0Q
03.1 AZJ,NE 11.4 ECHA,S 17.0 No-op
03.2 AZJ,GE 12.0-3 SHA 17.1-3 ANI
03.3 AZJ,LT 12.4-7 SHQ 17.4 ANA,S
03.4 AQJ,EQ 13.0-3 SHAQ 17.5 ANQ,S
03.5 AQJ,NE 13.4-7 SCAQ 17.6 ANA
03.6 AQJ,GE 14.0 NOP 17.7 ANQ
03.7 AQJ,LT 14.1-3 ENI 20 LDA,I
04.0-3 ISE 14.4 ENA,S 21 LDQ,I
04.4 ASE,S 14.5 ENQ, S 23 LOCH
04.5 QSE, S 14.6 ENA 24 LCA,1
04.6 ASE 14.7 ENQ 25 IL.DAQ,I
04.7 QSE 15.0 No-op 26 LCAQ,I
05.0-3 ISG 15.1-3 INI 27 LDL,I
05.4 ‘ ASG 15.4 INA, S 30 ADA,1

60236400 B-39

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal Code Mnemonic Octal Code Menmonic
31 SBA, I 53.(0+b)4 |AIA 64.4-7 MVE,dc
MVZS, dc
32 ADAQ, I 53.41 QM
‘ 65.0-3 SCAN, LR, EQ
33 SBAQ,I 53.42 TAM SCAN, LR, NE
SCAN, RL,EQ
34 RAD, I 53. (4+b)0 | TAI SCAN, RL, EQ
35 SSA,I 53. (4+b)3 | TIM 65.4-7 SCAN,|RL, EQ,dc
SCAN,|LR, NE,dc
36 SCA,1 53.(4+b)4 |IAI SCAN,|RL, EQ,dc
SCAN,|RL, NE, dc
37 LPA,I 54 LDI, I
66.0-3 ATD
40 STA, 1 55.0 RIS CVBD
CVDB .
41 STQ,1 55.1 ELQ DTA
PAK
42 SACH 55.2 EUA UPAK
43 SQCH 55.3 EAQ 66.4-7 "ATD,dc
iIDTA,dc
44 SWA, I 55.4 ROS
67.0-3 ADM
45 STAQ,I 55.5 QLL CMP
SBM
46 SCHA, 1 55.6 AEU TST
T ZADM
47 STI, 1 55.7 AQE
67.4-7 CMP,dc
50 MUA,I 56 MUAQ, I TSTN
51 DVA,I 57 DVAQ,I 70.0 JMP, HI
52 CPR,I 60 FAD,1 70.1 JMP, ZRO
53.01 TMQ 61 FSB,I 70.2 JMP, LOW’
53.02 TMA 62 FMU, I 70.6 LBR -
53.04 AQA 63 FDV,I 70.7 SBR
53. (0+b)0 | TIA 64.0-3 MVBF 71 SRCE, INT
MVE SRCN, INT
53.(0+b)3 | TMI MVZF ‘
MVZS
B-40

60236400

v

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal Code Mnemonic
72 MOVE,INT 77.61 PRP
TMAV
73 INPC,INT,B,H,A
INAC,INT 77.62 SBJP
74 OUTC,INT,B,H,A 77.624 SDL
INAW,INT
INPW,INT, B,N,A 77.63 CRA
. SRA
75 OUTC,INT,B,H,A
OTAC,INT 77.634 ACR
RCR
76 OUTW,INT,B,N,A
OTAW, INT 77.64 APF
77.0 CON 77.65 PFA
77.1 SEL 77.66 AOS
77.2 EXS 77. 664 AIS
COPY
77.67 OSA
77.3 INS
CINS 77.674 ISA
77.4 INTS 77.70 SLS
77.50 INCL 77.71 SFPF
77.51 CILO 77.72 SBCD
CLCA
IOCL 77.73 DINT
77.52 SSIM 77.74 EINT
77.53 SCIM 77.75 CTI
77.54 ACI 77.76 CTO
77.55 CIA .77 UCS
77.56 JAA
77.57 IAPR
77.60 PAUS

60236400

B-41

BINARY OUTPUT

When the META source deck contains a UNIT directive, the object computer is not the 3300 or
3500, and binary output (if requested) is in an alternate form. Information is written as binary
card images, that is, in 40-word logical records in standard MASTER blocked format (MASTER

Reference Manual).

Each 40-word logical record consists of a set of 160 6-bit bytes. Binary output is in the form of
a byte stream. The first four bytes of each logical record are:

Byte

W N e

The byte stream consists of multibyte items.

Value

Unused; 0
05g

Unused; 0
Unused; 0

The first byte of an item is its item type, indicating

the class of information. The number and contents of the bytes in the item vary according to item

type.
Type Byte Information
1 Item type
2-9 Control section name
1
10-13 Control section byte length
14 Chapter number (3 bits)
1 Chapter 1
2 Chapter 2
Control section type (3 bits)
0 Absclute
1 Program
2 Labeled
3 Numbered
4 Blank common
1 Item type
2
2-9 External symbol
1 Item type
3 2 Location counter number
3-6 Load address (byte address)
60236400

Type Bute

2"n+1

Information

Item type
Contents of a word (n bytes)

Item type; item contains relocation information associated with preceding
type 4 item

Leftmost bit position of field in ward (7 bits)
Field size (7 bits)
Positive or negative relocation (1 bit)

0 Positive
1 Negative

Word or Byte relocation (1 bit)

0 Word
1 Byte

[Unused; 0 (2 bits)

|
Relocation counter

Item type; item contains external reference information associated with
preceding type 4 item

Bit position of field in ward (7 bits)
Field size (7 bits)
Positive or negative relocatizn (1 bit)

0 Positive
1 Negative

Word or byte relocation (1 bit)

0 Word
1 Byte

External symbol table ordinal (14 bits)
Item type
Entry point symbol

Entry point byte address
Relocation counter

Item type
Transfer symbol
Item type; end of stream on a logical record

Item type; end of stream

60236400

The number of bytes in a type 4 item is a function of the object computer word size. A value is
right justified in the number of bytes required. For example, if the object computer word size is
19 bits, n equals 4,

"All symbols are left justified and blank filled in eight bytes. The collection of type 2 items forms
the external symbol table. Type 7 items refer to this table. :

For type 6 and 7 items, bit positions are numbered from right to left in ascending order, begin-
ning with zero. Thus, for a word address reference on the 3300, the following is true.

Leftmost bit position of field in word 14
Field size ‘ 15

When word size is 12, the leftmost bit position of a 13-bit field is 0.
Example:
The following program results in the binary (byte) stream shown.

Program:

__L_I_I_L_I_J._I_UMLL_J_J_.L_Ié)i!III|1Il
. L SECP. . A Ly
AB | . FQRM 6,232,158
__I__J_A_J_I_L_J_&&L_.L_J_J__I_JXAXJ,.LYJ.M__I_L_L.L_
_.L_I_I__L..L_I_.LABJ_L_L_J_L_J_.S,_LLL'_LXIKI_L_L_I_

_I_I_L_I_J_L_I__AL&_J_LJ__A_L_@JZ,_MX_I_L-L.
'K_J_L..L_J_J_J__ﬁEM_J_L__L_l_.LZ__L_l—L_I_J_LJ_I_

_|__L_4_|___|__|_|__1§EN41||1K||||||||
_J_x_J_J_l_I_L.MZ_J_LJ_J_.L_J_
L.L...I_L_L_I_I_EIIMIS.LII!III!I!III

60236400 | C-3

Binary stream of 6-bit bytes:

00 |05 00lo00 | .
0LJA | AJA A JAJA | A A]o00foo o0 |20]11
02X | X ALA]A A
02|y |Y A |[A]A]A A
03]01}00|00]|o00] 00
04 | 05| 10/ 00 | 00

Card 1 07| 07| 03|60 [00| 01
04 | 06| 20/ 00| 00
07 07| 03|60 00] 02
04 | 00 00f 00| 07
04| 00| 00/oo0] 03
06| 13} 46|/ 00| 01
1]xX |Y{zZ [A]ALA [ALA
00

Ccard 2 00 | 05 |.00] 00 ®
&

The first four bytes cause rows 7 and 9 to be punched in column 1 of a binary card; column 2 is
blank. Successive bytes consist of items and their associated information. A space is indicated

by A.

C-4

60236400

For a subprogram, all external symbol iterhs (item type 2) form a table of external symbols that
immediately follows the table of control section name items. '

1 Normally, a load address item (item type 3) immediately follows the last external symbol item.
A load address item appears in the stream as necessary and always precedes the first contents-
of-word item (item type 4). If a load address is more than one greater than the address
associated with the previous contents-of-word item, META generates a load address item.

Example:

g ' B T T UNLIITT LJ&,_JM_L_L_.L

. . BECP LA . .

L BEM New load address
1 1 1 4 RESI i f 5 J T I T |

v BEN 2 . ! New load address
J L SEGD NEW .

.. .. 6EN .. 3 New load address
.__L_L__I_I_MJ__J__MKG—]—J—L ’

The binary output stream for the above is as follows.

/00050000
{OL| LIA]JAJALAJALAA|[00]00]00]34]11

OLINIE|W|A|A|[A]JA]A]00]00]00[04} 12

03]01|00§00 00j 00

04{00{00]00}01

Card 1 < lo3]o1foo]oo]o0l30
1 o4]00]00]o00]o02
{os|o2|o00f00]00]o00

104100]00}00j03

\llMKGAA/\/\A
|

It 00
00| 05}00]o00

Card 2

77

60236400

For a subprogram, all control section name items (item type 1) form a table of control section
names. This table is first in the binary output stream. The entries in the table are in order
according to their associated location counters. The first entry is for counter 0 or 1 depending
on whether or not the program uses 0, the absolute location counter.

Example:

First entry in the control section name table is for location counter 0.

5 ECD m c Location counter 2
5 EQ A QB Location counter 0

SEC p X)ﬁ Location counter 1
SECP Kﬁ Location counter 3

SECD kKB ..., Location counter 4

| END \ , XY& .]

Binary stream for above program:

00] 05| 00} 00
o1jAlBJA|A[A]A A'[A 00 |00 | 00 00| 10
01| X |Y|A|A|A|A]A]A [00]|00]00]00]11
Card 1] 01{J |O|E|A|A|A]|A|A |00 |00]00]o00]12
o1l KIA|AALALAA|A |o0of:]oo]o00] 12
01K |B|A|A|A|A]|A]|A |oo|00]|00]o00]12
mlxlylz [Ala|Aa]Aa]A
00
00{ 05} 00] 00
Card 2|
77

Cc-6 _ : 60236400

It is possible to change control sections at boints other than at word boundaries and resume the

control sections.,

Example:

_M
..\ SECP . I8 . .
__,_L_L_,ﬁma vod

Causes item 4 to be 5 bytes
Causes item type 1
Causes item types 3 and 4

Causes item type 1
Causes item types 3 and 4

“Returns to address A (counter 1)

Causes item types 3 and 4

Causes item type 9 (118)

The binary oulput stream for the above is as follows.

/ 00105(00] 00

00{J O BJ]A

0LJAJK | K| A

03101100} 00 00

00

04 | 01{00]| 0000

Card 1 03 | 02|00 0ol o0

00 . . These 2 items must be combined

04102]00| 00] 00

[to form 1 object computer word.

0310100} 00} 00

01

04 100]03]} 00} 00

\llMXT/\
00

Card 2 00]05]00f 00

77

60236400

For the previous example, note that in the control section named JOB, two contents-of-word
items (item type 4) are generated for the contents-of-word location zero.

GENB 1 04 |01 | 0000 |00

04 |00 |03 | 00 |00

GENB 3

Contents-of-word 0103] 00|00

A field with a size greater than that of the object computer word may contain a relocatable value
or an external symbol plus or minus a constant. More than one contents-of-word item (type 4)
result, but they are not consecutive. A relocatable reference item (type 6) or an external
reference item (type 7) immediately follows the first contents-of-word item (type 4). The
condition can be detected when the leftmost bit in the word and the field size indicate a position
beyond the preceding computer word. :

Example:
_____.__UAE.L_._;LZHL._,_L_._ Causes item 4 to be 3 bytes
. L5 94 ' ; Causcs itemi
_A____._&_Es [T | l’l | SO N O U | B -
B .. RES , b, N
| . Fi e 48-bit Tield (four 12-bit words)
... Fl . B ., .., Causesitems3, 4, 6, 4, 4, 4
_JE.,Z _ FQRM 14,13 .
. F2 ., 7,8 .., Causesitems4, 6, 4
... . BEND . A Causesitems4, 6, 4
____J_J_EA@. o XMA Causes item 9

Cc-8 N 60236400

00{ 05|00 | 00 |00
o1f AlM|{T]|A|A]|A|A A |00]o0 |00]12]11
03{ 01100 | 00 {00 {02
04| 00100 Leftmost 12 bits of 48-bit field; first word.
06| 0554 | 00 |01 Leftmost bit in word is 11; field size is 48.
04{ 0000 Second word.
04] 0000 Third word.
card1 < 04| 00 j01 Rightmost 12 bits of 48; fourth word.
04| 00 |16 11-bit field containing 7 and leftmost bit of 13-bit field.
06} 0003 | 20 |01 Leftmost bit is 0; field size is 13.
04| 00 |01 13-vit field containing 1.
04 00 {00 First 12 bits of 24 for GEND.
06} 05 {46 | 00 {01 Leftmost bit is 11; field size is 24.
04 00 {00 Second 12 bits of 24 for GEND.
1 X {M|A|A[A]A]A]|A
N | 00
00] 05 |00 | 00
Card 2
77

60236400 : ' c-9

3300/3500 RELOCATABLE BINARY OBJECT DECK D

The 3300/3500 MASTER reclocatable loader accepts relocatable binary object decks produced by the
Meta-Assembler when there is no UNIT directive. During assembly, the X or F option on the META
control card uses card images of the relocatable deck to be written on the LGO file (or some other
file optionally specified). The P option on the META card causes the binary deck to be punched. A
binary deck is comprised of the following types of cards.

Subprogram identification card (IDC)
Block common table cards (BCT)
Subprogram entry point cards (EPT)
Relocatable information cards (RIF)
External name and linkage cards (XNL)
Transfer cards (TRA)

End loading card (ELD)

These cards are described in the MASTER Reference Manual. Information on the cards is related
to directives as shown in table D-1.

Table D-1 Loader Cards

Card lV_ Source of Information

IDC 41g Name taken from SECP directive; length of subprogram calculated

~ by META.

BCT 478 Names of labeled and numbered common blocks taken from SECD
directives.

EPT 42g Entry points taken from ENTRY directives.

RIF 1-36g Relocatable information generated by mnemonic instructions, GEN,
GEND, GENB, LIT, TEXT, TEXTC, TEXTA. RES or RESB
causes start of new RIF card. Relocation factor set for character
addressing if symbol generated is defined in bytes. Increment/
decrement count and base depend on relocation counter used by
Meta-Assembler.

XNL 43g External symbols taken from EXT directives.

TRA 448 Transfer point symbol taken from END directive.

ELD 778 Card generated upon encountering FINIS.

60236400 ’ | D-1

@P

GLOSSARY OF TERMS

Absolute program

A program that must be loaded into specific core storage locations.

Assemble

To prepare an object language program for the 3300/3500 Computer System or for some
" other computer system from a symbolic source language program.

ASCII
]’ American Standard Code for Information Interchange
Attribute
A characteristic of a symbol4(value), such as its size in words or bytes and its mode of
U representation (decimal, octal, character, etc.).
Byte

A subdivision of a word as defined by a UNIT directive, if the source program contains
one; otherwise, a byte is 6 bits.

' Byte stream

Output from the Meta-Assembler when the source program contains a UNIT directive.
Each 40-word record (160 6-bit bytes) consists of 11 types of multibyte items.

Command

The field in the source statement that specifies the operation to be performed by the
Meta-Assembler.

Control Section
The portion of object code generated under a single location counter.
Definition
1. A group of source statements comprising a procedure or function. 2. The association

- of a symbol with a value and its other attributes so that use of the symbol causes its value
or the address of its value to be used.

60236400 ' Glossary-~1

Delimiter

Character or characters that limit a string of characters and therefore cannot be a member
of the string,

Directive
A source statement that instructs a Meta-Assembler.
Elementary item
A self defining component of an expression.
Entry point
A label of a source statement at which execution or processing can begin.
Expression

A valid series of values, symbols, and functions that may be connected by mnemonic or
symbolic operators as required to cause a desired computation.

External symbol

!

A label defined in a subprogram other than the subprogram or at a level othe. than a level
currently being assembled and used as an'operand in the program or at the level being
assembled.)

Forward reference
A label that is referenced in the operand field and has not been defined previously.

Function

A series of source statements that, when referenced, provides a single value or a set to
be used in the source statement containing the reference. '

Label
1. A string of alphanumeric characters used to identify or describe an item or placed at
any location for informational and instructional purposes. 2. To assign a symbol as a
means of identifying a source statement or a location in an object deck.

Literal

An item of data having a constant value.

Glossary-2 60236400

Location counter

A counter for the 16 control sections controlled by the assembler,

Meta-Assembler

An assembler that transcends the capabilities of a conventional assembler by allowing
extensive programmer control of the assembly process.

Mnemonic instruction

Use of symbolic notation in place of actual machine code. A mnemonic instruction must
be translated to actual operation codes by META procedure references.

Operand

A piece of data upon which an operation is performed; the contents of the operand field of
a source statement.

Operator

The symbol or mnemonic that tells what to do with two operands, e.g., * is the operator
for multiplication of the two operands as in A * B.

Procedure

A subset of source statements meeting a specific purpose that can be repeatedly referenced
to cause parameterized code generation.

Processing

The interpretation by the Meta-Assembler of a source statement or group of source
statements.

Real number

A value written with a decimal point, using decimal digits. The sign is a unary operator.
An integer exponent preceded by E may follow the real number.

Symbolic referencing
The assembler allows mnemonic symbols to be used in place of instruction codes, modi-

fiers, addresses, formats, procedures, and functions. The assembler interprets the
symbol and determines where to find specific information.

60236400 . Glossary-3

Set

A collection of elements that bear a relationship to one another and have a common name.
An element may be a set; i.e., a subset of a set. A reference to an element consists of
the set name followed by one or more integers enclosed in brackets indicating the location
of the element.

Source program

A program written in META language that must be translated into machine language before
it can be executed.

Statement

An instruction interpreted by an assembler.
Subprogram

A part of a program that can be assembled independently.
Subscript

One or more integers enclosed by brackets used to specify a particular element in a set.

Unary operator

*

- :
An operator such as the sign of a value (+ or -) that operates on one operand only rather
than causing an addition or a subtraction.

Word

A group of bytes as defined by the UNIT directive if the source program contains one;
otherwise, 24 bits, the standard 3300/3500 word size.

Glossary-4 o 60236400

INDEX

A Asterisk, single
ASCII string indicator 2-8 multiplication symbol 2-9
conversion modifier B~4 example 2-10; 4-21, 22
Account number 7-2 to indicate comments 2-3
ACI instruction B-21 ATD instruction B-30
ACR instruction B-21 Attributes, |description 2-12
ADA instruction B-12 Atribute functions 6-1
ADAQ instruction B-12 : AZJ instruction B-15
Addressing :
absolute 4-10
byte-oriented 3-1
. word-oriented 3-1 B
E ADM instruction B-30 backward read/write modifier B-4
i AEU instruction B-9 : BCD character notation 2-7
« AIA instruction B-12 BCD integer notation 2-6
- AIS instruction B-21 : ' BCD pseudo instruction B-7
1 U ANA instruction B-19 BDP procedure references B-30
f ANI instruction B-19 Binary scaling
1 ANQ instruction B-19 example 2-13; 6-5
AOQOS instruction B~21 operator 2-9
APF instruction B-21 Blank, double 2-1,5
|Apostrophe Blank fill
character in ASCII string 2-8 BCD characters 2-8
character in BCD string 2-6 Blank, single
delimiter, 2-5 elementary item separator 2-2,5
in TEXT directive 4-18) expressions 2-11
printer character A-2 Bracket delimiter 2-5,15
AQA instruction B-12 BRIEF directive
AQE instruction B-9 byte-oriented directive 3-1
AQJ instruction B-14 description 4-3
Arithmetic 2-12 BSS pseudo instrirction B-7
Arithmetic instructions B-13 Byte
ASCII code attribute function (BYT) 6-8
character set A-3 examples 4-15; 6-7,8
generation of text 4~18 generation 4-15
instructions (See BDP]procedure position in objectjword 8-1
references) size 4-4
notation 2-8 ; Byte address, [mode 6-2
ASE instruction B-15 Byte stream
ASG instruction B-15 file for 7-3
Asterisk, double 2-9 format C-1

selection as output 4-4

60236400 _ , ' Index-1

character address modifier B-4
common error code 8-3
for right-adjusted BCD string 2-7
Card codes A-1
Chapter, assign data to 4-9
Character set
BCD/ASCII conversion A-3
card codes A-1
internal codes A-1
legal characters 2-1
Printer graphics A-1
Character string
ASCII notation 2-8
BCD notation 2-7
Mode 6-2
Character instructions B-14
Characteristic of real number 2-7|
CIA instruction B-21
CILO instruction B-27
CINS instruction B-28
Circularity of form 4-17
CLCA instruction B-24
CMP instruction B-31
Comma
command field delimiter 2-2
set element delimiter 2-15
to delimit, general 2-5
Command field, description of 2-2
Comment field, description 2-3
Comment line
description 2-3 -
example 2-4
Common block
blank 4-9
illegal assignment of literalsto 2-14
in byte stream C-1
labeled 4~9, example 4-11
numbered 4-9, example 4-11
zero 4-9
Common error 8-3
Compare symbols and mnemonics 2-9
examples 2-11
COMPASS language
general differences from META 1-1
pseudo instructions B-1, 7
CON instruction B-24
Concatenation of symbols 6~5

Index-2

Configuration, minimum for META 1-2
Continuation of source statement
description 2-3
examples 2-4
Control cards required 7-1
Control section
absolute 4-10
creation 4-8,9,10
general features 1-1
list 8-4
name 4-8,9,10
name as word address 3-1
relocatable 4-8
COPY instruction B-24
CPR instruction B-23
CRA instruction B-21
Cross reference table
format 8-5
selection 7-4
CTI instruction B-25
CTO instruction B-25
CVBD instruction B-31
CVDB instruction B-32
Current address symbol (see dollar sign)

s
E-]

D
double definition error code 8-3
for BCD integer 2-6
DEC pseudo instruction B-8
Decimal integer notation
description 2-6
Decimal point in real number 2-7
Decimal scaling
of real number 2-7
operator in expression 2-9
Decision instructions
IDENT B-15
MONITOR B-23
Deck structure, examples 7-7
Definition
form 4-15
function 5-1,3
machine 4-4
procedure 5-1,2
set, 4-4,6
symbol 4-4

60236400

Delimiters 2-5 END directive
Delimiting character modifier B-4 description 4-24
DETAIL directive examples B-3; C-3,5,6,7,8
as byte-oriented directive 3-1 relationship to TRA card D-1
description 4-3 End-of-file|card 7-6
Diagnostic messages 8-5 ENDS directive
DINT instruction B-17 as byte-oriented directive 3-1
Directives description 5-5
data generating 4-13 examples 4-23; 5-1,2,3,5,6,8,9,10,14;
definition 4-1 6-5,6
location control 4-8 ENI instruction B-9
machine defining 4-4 , ENQ instruction B-9
procedure defining 5-2 ENTRY directive
program linking 4-19 as byte-oriented directive 3-1
repeat 4-20 description 4-19
L I skip 4-21 example B-3
a symbol defining 4-4 relationship to EPT card D-1
’ uses 4-1 Entry point symbol
‘ Dollar sign - : declaration 4-19
i as current address symbol 2-10 list 8-4
; examples 4-5,13,17 EQ modifier B-4
as word address 3-2 EQU directive
U to change symbol level 5-13 description 4-5
examples 5-13,14; 6-5,6,7 examples 3-2; 4-5,7, 8,21; 5-6,11,13,
Double definition error 8-3 14; 6-1,2,3,4,6,7,8; B-4
example 4-5 Errors, assembly
: DTA instruction B~32 codes for 8-3
i Dummy label 4-22 .on listing 8-1
] DVA instruction B-12) lines 8-4
DVAQ instruction B-12 . EUA instruction B-9
Expression

arithmetic 2-12
definition 2-10

E evaluation 2-10,12
exponent indicator 2-7 examples 2-10,11,13
;) expression error code 8-3 mixed mode 2-12
; ’ example 8-2 [mode 2-12
: EAQ instruction B-9 parenthetical 2-11
: ECHA instruction B-14 relational 2-13
1 EDIT instruction B-33 subexpressions 2-10
; EINT instruction B-17 Expression error 8-3
EJECT directive EXS instruction B-25
as byte-oriented directive 3-1 EXT directive
description 4-2 . ' as byte-oriented directive 3-1
Elementary items 2-4 description 4-19
ELQ instruction B-9 examples 4-14; 6-6,7,8; C-3
ENA instruction B-9 relationship to XNL card D-1

60236400 Index-3

External symbol
declaration 4-19
list 8-4
UIC required as B-2

forward reference error code 8-3
to force execution 7-4
FAD instruction B-12
FDV instruction B-12
FINIS directive
description 4-24
example B-3, C-3
relationship to ELD card D-1
Floating point
data generation 4-14
in expression 2-12
instructions B-12
mode 6-2
notation 2-7 .
pseudo instruction B-8
FMU instruction B-12
Forced execution 7-4
FORM directive
description 4-15
example 3-2; 4-16
FORM reference :
as byte-oriented statement 3-1
description 4-16
example 3-2; 4-16,18; 5-6; C-3,8
Forward reference
discussion 4-7
examples 4-7,8
in procedure definition 5-1,2
Forward reference error 8-3
FRMT instruction B-33
FSB instruction B-12
FUNC directive
description 5-3
example 5-1,3,5,7,11
Function
attribute 6-1
definition 5-1-
processing 5-9|

Index 4

Function reference
- description 5-11
example 5-3,11; 6-1,2,3,5,6,7,8

GE as modifier B-8
GEN directive
as word-oriented directive 3-1
description 4-13
example 4-7,8,20,21; 5-14; C-3,5
relationship to RIF card D-1
GENB directive
as byte-oriented directive 3-1
description 4-15
example C-7
relationship to RIF card D-1
GEND directive
as word-oriented directive 3-1
description 4-14
examples 4-14; C-8
Generate object code
by word 4-13
by byte 4-15
by two words 4-14
Generation of byte stream D-1
CTO directive
as byte-oriented directive 3-1.
description 4-21 '
example 6-1,3
processing 4-24

H

half assembly/disassembly modifier B-4

Heading (see TITLE directive)
HLT instruction B~17

indirect address modifier B-5
illegal instruction error code 8-3
to select input file 7-4

IAI instruction B-13

IAPR instruction B-28

IDENT procedure set B-1,9

IDENT pseudo instruction
description B-4
example B-3

1JD instruction B-15

1JI instruction B-15

Illegal instruction error 8-3

INA instruction B~13

INAC instruction B-26

INAW instruction B-26

INCL instruction B-28

INI instruction B-13

INPC instruction B-26

Input files 7-4

Input/output instructions B-24

INPW instruction B-26

INQ instruction B-13

INS instruction B-29

Instructions, machine
arithmetic B-12
BDP B-30
character B-14
decisions B-15, 23
floating-point B-12
input/output B-24
interrupt B-17,29
jumps, pauses, stops B-17, 24
logical B-19
no-operation B-18
shift B-18
transfer B-9,21

INT interrupt modifier B-5
interrupt instructions B-17,29

Integer
BCD notation 2-6
decimal notation 2-5
octal notation 2-6
mode 6-2

Internal octal codes A-1

INTS instruction B-29

IOCL instruction B-29

ISA instruction B-21

ISD instruction B-15

ISE instruction B-16

ISG instruction B-16

ISI instruction B-16

60236400

JAA instruction B-22

JMP instruction B-33

JOB control card
description 7-1
examples 7-7

Job identification 7-1

Jump, pause, -stop instructions
IDENT B-17
MONITOR B-24

to indicate left-adjusted BCD character
string 2-7 '
to select list output 7-4
Label field
description 2-2
LACH instruction B-14
LBR instruction B-22
LCA instruction B-9
LCAQ instruction B-10
LDA instruction B-10
LDAQ instruction B-10
LDI instruction B-10
LDL instruction B-19
LDQ instruction B10
Left-adjusted character strings
description 2-7
example 4-18
Library
procedures B-1
*LIB 5-7; 7-1
LIBS directive
as byte-oriented directive 3-1
description 5-7
example 5-8,10; B-2,3
to obtainlinstruction set B-2
LIST directive
as byte-oriented directive 3-1
description 4-2
List
brief 4-3
control 4-1
detailed 4-3
format 8-1
of comments 2-3

Index-5

of sequence columns 2-2
parameter on META card 7-4
resumption 4-2
suppression 4-2
LIT directive
as byte-oriented directive 3-1
description 4-12
relationship to RIF card D-1
Literal
assignment 4-12
symbols 2-9, 14
description 2-14
listing 8-4
LNID directive]
description 4-22
examples 4-20, 22,23, 24; 6-3
Load and go output
scheduling of mass storage 7-3
selection 7-4,17, 8,10
Location counter
$ reference to 2-10
absolute 3-3
assignment 3-3
data 3-3; 4-9 °
description 3-3
general feature 1-1
program 3-3; 4-10
relocatable 3-3
“rounding up of 3-2|
Logical instructions B-19
Logical operators .
symbols, mnemonics 2-9
LOW BCR modifier B-5
LPA instruction B-19
LR left/right modifier B-5
LT less than modifier B-5
LQCH instruction B-14

Machine definition (see UNIT directive)
Mantissa of real number 2-7
Mass storage

minimum required 1-2

scratch 7-3

standard 7-3

Index-6

Memory, core
examples of scheduling 7-7, 8, 9, 10, 11
minimum required 1-2
scheduling 7-2,3
MEQ instruction B-16
Messages, error 8-5
Meta-assembler -
configuration 1-2
definition Glossary-2
features 1-1
execution T7-1
library task 7-1
META control card
description 7-3
examples 7-5,7,8,10
Mnemonic operators B-3 .
Mnemonic instructions for 3300/3500
general differences from COMPASS 1-1
list B-1
Mode of expression 2-12
Mode of value
definition 6-2
related to size 6-4
Mode (MDE)attribute 6-2
Modifiers, command field
% general format 2-3
3300/3500 instruction B-4,9
MONITOR procedures B-21
MOVE instruction B-26
MTH instruction B-16
MUA instruction B-13
MUAQ instruction B-13
MVBF instruction B~34
MVE instruction B-34
MVZF instruction B-~35
MVZS instruction B-35

nesting error code 8-3
no assembly/disassembly modifier B-5
NAME directive
description 5-3
examples 4-23,24; 5-2,3,4,5,6,7,8,9,
5-10,11, 14; 6-5,6 .
NE not equal modifier B-5

60236400

Nesting level
procedure/function 5-1
repeat 4-20
NOLIST directive
as byte-oriented directive 3-1
description 4-1
NOP instruction B-18
Nesting
expressions 2-12
functions/procedures 5-1,12
sets 2-15
repeated groups 4-20
NSET directive
description 4-6
example 4-6,7,8,14,16,17; 5-3,4,5, 11;
6-2,3,4
Number of elements attribute (NUM) 6-3
Null set element 2-15

0]
to indicate octal integer 2-6
Object computer 1-1; 4-4
Octal instruction index B-39
Octal notation
example 2-6; 4-17
format 2-6
Operand field format 2-3
Operators
examples 2-10,11,13
hierarchy 2-9
legal combinations 2-13
list 2-9
ORG directive
as byte-oriented directive 3-1
description 4-11
example 4-11; C~7
OSA instruction B-22
OTAC instruction B-27
OTAW instruction B-27
OUTC instruction B-27
Output files 7-4
OUTW instruction B-27

60236400

P .
punch selection parameter 7-4
_ register B-5
PAK instruction B-36
Parentheses
delimiter 2-5
enclosing function arguments 5-11
enclosing nested expressions 2-10
PAUS instruction B-24
PFA instruction B-22
Printer
eject of page 4-2
line limit for job 7-1
list control 4-1
output on 8-1 ,
scheduling mass storage 7-3
selection 4-3; 7-4
spacing 4-2
PROC directive
description 5-2
examples 4-23,24; 5-1,2,4,5,6,17,8,9,10,
5-14; 6-5,6
on library 5-8, 10
processing 5-9
Procedure reference
as byte-oriented statement 3-2
BDP B-30
description 5-10
examples 5-2, 8,10, 14; 6-5,6; B-3,7,8
IDENT B-1,9
MONITOR B-21
processing 5-10,13
Procedure
definition 5-1
nesting of 5-12
processing 5-9
repetition 4-23
standard library B-1
Processing
forward reference 4-7
function definition 5-9
function reference 5-10, 12
GOTO 4-23
procedure definition 5-9
procedure reference 5-9,12
RPT 4-23
Program section (see control section)

Index~7

PRP instruction B-24
Punch output
card limit for job 7-1
scratch needed 7-3
selection 7-4

Q

register B-5
QEL instruction B-10
QSE instruction B~17
QSG instruction B-17

R
relocation error code 8-3
select cross reference 7-4
RAD instruction B-13
RCR instruction B-22
RDEF directive
description 4-5
example 4-5,6,7,21,23; 5-2,9; 6-3
Real notation 2-7
Reference
FORM 4-16 .
forward 4-7
function 5~11
procedure 5-10
set 2-15
set element 2-15
Relocatable expression, rules 2-11
Relocation attribute REL) 6-1
Relocation error 8-3
Relocation of operand 8-1
RES directive
as word-oriented directive 3-1
description 4-12
example 3-2; 4-8,11,12; 6-4,7,8
relationship to RIF card D-1
RESB directive
as byte-oriented directive 3-1
description 4-13
example 3-2; 4-13; 6-4,7,8; C-7
relationship to RIF card D-1

Index-8

Repeat 4-20
Reserve storage
bytes 4-13
words 4-12
Right-adjusted
character strings 2-7,8
examples 2-7; 4-14,17
values in fields 4-16
RIS instruction B~10
RL right/left modifier B-5
ROS instruction B-10
RPT directive
description 4-20
examples 4-20,21; 6-3
processing 4-23
RTJ instruction B-17

]
syntax error code 8-3
SACH instruction B-14 :

"SBA instruction B-13

SBAQ instfuctioitB-13
SBCD instruction B-29
SEJP instruction B-22
SBM instruction B-36
SBR instruction B-22
SCA instruction B-19
Scaling, binary
example 6-5
factor 2-14
operator 2-9
Scaling, decimal
factor 2-14
operator 2~9
of real number 2-7
SCAN instruction B-36
SCAQ instruction B-18
SCHA instruction B-14
SCHED control card
description 7-2
example 7-7,8,9,10
SCIM instruction B-29
SDL instruction B-22

60236400

SECA directive STA instruction B-10
as byte-oriented directive 3-1 STAQ instruction B-10
description 4-10 Statement
E example C-5 format 2-2
i SECD directive) number 8-1
as byte-oriented directive 3-1 STI instruction B-10
3 description 4-9 STQ instruction B-11
1 example 4-11; C-5,6,7 SWA instruction B-11
' relationship to BCT card D-1 Symbol
‘ SECP directive attributes 6-1
] . as byte-oriented directive 3-1 concatenation 6-5
' description of 4-9 definition 4-4
B example 3-3;4-11; 5-6; C-3,5,6,7,8 entry point 4-19,24
] ’ relationship to IDC card D-1 external 4-19
Segments of mass storage illegal 6-6
k examples of scheduling 7-7,8,9,10 level 5-13
; minimum for META 1-2 reserved B-3
scheduling 7-2 Symbol attribute (SYM) 6-5
SEL instruction B-27 Syntax error 8-3
Semicolon 2-2,3
Set
U assignment 4-6; 5-2,3
. definition 4-6 T
description 2-15 truncation error code 8-3
element 2-15 TAI instruction B-11
| example 2-15; 4-6 : TAM instruction B-11
function reference 5-10 Task name control card
. procedure reference 5-10 - description 7-5
subsets 2-15 example 7-7, 9,10
SFPF instruction B-29 Termination
E I SHA instruction B-18 _ assembly, abnormal 8-5
! SHAQ instruction B-18 assembly, normal 4-24
Shift instructions B-18 function definition 5-5
SHQ instruction B-18 procedure definition 5-5
h 8Jj instruction .B-17 reference to definition 5-6
. SLS instruction B-24 repeat 4-20
1 » Size attribute (SZE) 6-4 subprogram assembly 4-24
Space (see blank) TEXT directive
SPACING directive as word-oriented directive 3-1
as byte-oriented directive 3-1 description 4-18
description 4-2 relationship to RIF card D-1
SQCH instruction B-14 TEXTA directive
SRA instruction B-22 as word-oriented directive 3-1
SRCE instruction B-37 . description 4-18
SRCN instruction B-37 ' . relationship to RIF card D-1
1 SSA instruction B-20
‘ SSH instruction B-19
SSIM Instruction B-29

60236400 ' Index-9

TEXTC directive
as byte-oriented directive 3-1
description 4-18
relationship to RIF card D-1
TIA instruction B-11
TIM instruction B-11
Time limit for job 7-1
TITLE directive
as byte-oriented directive 3-1
description 4-3
TMA instruction B-11
TMAY instruction B-22
TMI instruction B-11
TMQ instruction B-11
TQM instruction B-11
Transfer instructions B-9,21
TREF directive
as byte-oriented directive 3-1
description 5-6
example 5-6
Truncation .
. ASCII character string 2-8
BCD character string 2-8
BCD integer 2-6
decimal integ2r 2-6
error code 8-3
expression value 2-11
octal integer 2-6
real number 2-7
sign bits 8-3
word size 4-13
TST instruction B-37
TSTN instruction B-38
Two-pass option 5-1,2

U
undefined symbol error 8-3
UCS instruction B-24
UIC routine B-3
UJP instruction
procedure reference B-17
example B-3
Unary equal 2-9, 14
Unary double equal 2-9,14

Index-10

Unary minus 2-9

examples 2-5, 6; 4-12, 15
Unary plus 2-9
UNIT directive

description 4-4

example 3-2; 4-17; 6-7; C-3, 5, 6, 7, 8

UPAK instruction B-38

Word
attribute function (WRD) 6-7
generation 4-13
size 4-4
Word address 3-1
list 8-1
mode 6-2
X

code on listing 8-~1

load and go parameter 7-4
XOA instruction B-20
XOI instruction B-20

" XO instruction B-20

ZADM instruction B-38

Zero element 4-6

Zero fill
ASCII character strings 2-8
BCD character strings 2-8
odd-sized field 4-18

Zero, negative 2-11

ZRO BDP modifier B-6

60236400

COMMENT AND EVALUATION SHEET
3300/3500 META Reference Manual

Pub. No. 60236400 November 1968
THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
B8E MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

CUT ALONG LINE

FROM wnawme:

PRINTED IN USA

BUSINESS
ADDRESS @

c

. w—— — St e— Co—— — — SRS S SR S — — —— S S— A — GSE CH— —— —— G GEINN I G TG CS——— C——— U I SRS SE—— e, A — — S S S— — —— ST SE— w—
¢
H .

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE : STAPLE

— ame wm wmr e mm— eer wmr mme wee e A eme e e M G G P AR G wE EE EEE wmr e Gem e e e e e - =

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL IS, MINN,

)
|
I
}
!
I
BUSINESS REPLY MAIL m—— :...
NO POSTAGE STAMP NEGESSARY |F MAILED IN U,S,.A, B 'g
S T
_ A 10
POSTAGE VQ:ILL BE PAID }-;v e —. ' :
: CCf)NTROL DATA CORPORATION . e— 13
Software Documentation -
4201 North Lexington Avenue — :
St. Paul, Minnesota 55112 — |
~ _ I
N |
[] |
] |
MD248 _ o e :
FOLOD FOLD

STAPLE STAPLE

Pub, No. 60236400

I 4

1-1/4

|

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

IVANVIN SONINILTN &

LSV N VLN Q08

-~
-

