
,,
'
'

. ~

.
'

•

' ,,;A . ..,

•

. . .

" -'l.
' ..)

•

r

r •

'

•

1

•

r

•

•

r

COMPUTER SYSTEMS

META/MASTER
REFERENCE MANUAL

•

,

•

• REVISION
60236400

REVISION
.

111-20-6~ Original printing.

.

.

.

. --·-

.

.

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 60236400
November 1968

©1968 Control Data Corporation
Printed in the United States of America

.

.
•

'

•

RECORD . .

NOTES

•

.

.

.

.

•

•

.

.

. . .
• .

.

.......

.

Address comments concerning this
manual to:

Control Data ·corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

..

t

•

,,

•'

r·
· 1.

i

'

• .

.'

>

I · 1;·
I
)

" . .

•

.
' •

Q . . w . .

•

•

•

•

PREFACE

,

This manual is directed at programmers using the 3300/3500 Meta-Assembler. It discusses the
principles, features, methods, rules, and techniques of producing a !v1ETA language progra1n.

The read.er is assumed to be fan1iliar with the CONTROL DATA® 3300 Computer System or the
CONTROL DATA® 3500 Computer System. In addition, familiarity with the 3300/3500 MASTER .
Multiprogramming Executive Operating System and the 3300/3500 COMPASS Assembly Language
is helpful.

•

•

,

• •

60236400 iii

•

•

•

•

•
•

•

•

'

Q .
.

<.;

, .

•

•

a . .

. .

CHAPTER 1

CHAPTER 2

_)

""
' '
'

•

CHAPTER 3

60236400

•

CONTENTS

•

•

IN1'R ODUCTION

1. 1 Features
1. 2 Hardware Configuration

STATEl\JENT STRUCTURE

2.1 Character Set
2.2 Statement Format

2.2.1 Label Field
2.2.2 Com111and Field
2.2.3 Operand Field
2.2.4 Comments Field
2.2.5 Statement Continuatior
? ? h _,_ . ..~~ . 1 Exnn1plPs

2.3 Eleme11tar:y Items
2.3.1 Delimiters
2.3.2 Decimal Integer
2.3.3 BCD Decimal Integer
2.3.4 Octal Integer
2.3.5 Real Number
2.3.6 BCD Character String
2.3.7 ASCII Character String
2.3.8 Operators

2.4 S)rmbols
2.5 Locations Cou11ters
2.6 Expressions

2.6.1 Attributes
2.6.2 1vlodes-of Expressions
2.6.3 Literals

2.7 Sets

. LOCATION CONTROL AND ADDRESSING

3. 1 Relocatable Addresses
3. 2 Location Counters

•

•

'

•

Page

1--1

1-1
1-2

2-1

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-9
2-10
2-10
2-10
2-12
2-12
2-14
2-15

3-1

3-1
3-2

v

•

•

• . .

Page

•
•

CHAPTER 4 DIRECTIVES . 4-1 • • .

• .
4.1 Listing Control 4-1

'
4.1.l NO LIST 4-1
4.1.2 LIST 4-2 • .

~

4.1.3 SPACING 4-2 ,,

4.1.4 EJECT 4-2 ' j
'.

·'

4. 1.5 TI'fLE 4-3 -~

4.1.6 BRIEF 4-3' . l~

. I

4 .. 1. 7 DETAIL 4-3 ' I ':
-t
'

4.2 Object !V'Iachine Definition (UNIT) 4-4 -
j

4.3 Symbol and Set Definition 4-4
4.3.1 EQU 4-5 '

4.3.2 RDEF 4-5 i
l

4.3.3 NSET 4-6 I
' . '

4.3.4 For\vard References 4-7 '

4.4 Location Control 4-8
,:,

4.4.1 SECP 4-9 -~- '

4.4.2 SECD 4-9
4.4.3 SECA 4-10 ::.

,.-

4.4.4 ORG 4-11

w 4.4.5 LI'f 4-12
'

~ ..

4.4.6 RES 4-12 ~.

4.4.7 RESB 4-13
4.5 Data Generation 4-13

4.5.1 GEN 4-13
4.5.2 GEND 4-14 •-'

4.5.3 GENB 4-15
,_
;.:.
"

4.5.4 FORl\t· 4-15'
4.5.5 TEXT 4-18
4.5.G TEXTC 4-18 ,.

-• 4.5.7 TEXT A 4-18
-
'

4.6 Progran1 Linking 4-18
4.6.1 ENTRY 4-19
4.6.2 EXT 4-19

4,7 Repeat and Skip 4-19 '

' .

4.7. 1 RPT 4-19 ·'·'
"' /•

4.7.2 GOTO 4-21 "" --

4.7.3 LNID 4-22 --
'

4.7.4 RPT and GOTO Processing 4-23
4.8 Assembly Termination 4-24

4.8.1 END 4-24
4.8.2 FINIS 4-24

vi 60236400

--------- - ----- --

--.

"
•

- -

.

CHAPTER 5

.
• . .
,.

.;;

' ' ,/

CHAPTER 6

CHAPTER 7
•

•

CHAPTER 8

APPENDIX A

APPENDIX B

APPENDIX C

60236400

•

•

FUNCTIONS AND PROCEDURES

5.1 Directives
5. 1 .. 1 PROC
5.1.2 FUNC
5. 1. 3 NA1\1E
5.1.4 ENDS
5. 1.5 TREF
5.1.G LIBS

5.2 Definition Processing
5.3 Referencing
5.4 Levels and Local Labels

ATTRIBUTE FUNCTIONS

6. 1 Relocation (REL)
6. 2 Mode (l\1DE)
6. 3 Number of Elements (NUivI)
6. 4 Size of Data (SZE)
6. 5 S)'n1bol(SY1\1)
6. ·6 Word Address (WRD)
6. 7 B)·te J\ddrcss (BYT)

PROGRAM EXECUTION
,

7. 1 Control Card Requirements
7. 1. 1 $JOB
7. 1. 2 $SCHED
7. 1. 3 $META
7. 1. 4 Task Name
7. 1. 5 End of File

7. 2 Sample Deck Structures

l\1ESSAGES

8.1 List Format
8.2 Error Codes
8.3 Supplementary Information
8.4 Cross Reference Table
8.5 Messages on Out

CHARACTER SET

3300/3500 MNEMONIC INSTRUCTIONS

BINARY OUTPUT

- ...

,

•

•

'

•

-- '- ..

Page

5-1

5-2
5-2
5-3
5-3
5-5
5-6
5·_7
5-9
5-10
5-13

6-1

6-1
6-2
6-:3
6--l

G-5
6-7
G-8

7-1

7-1
7-1
7-2
7-3
7-5
7-6
7-7

8-1

8-1
8-3
8-4
8-5
8-5

·A-1

B-1

C-1

vii

. ~ '~· .; •.

•

-

-

' ' ' '·.' . • • • 'l;f;C.'.11

•
•

. .
. .

Page
•

•

APPENDIX D 3300/3500 RELOCATABLE BINARY OBJECT DECK • D-1

GLOSSARY Glossary-1

13-2 l\10NITOR Procedt1re References B-21

RDP Pr1..1cedure Refere11ces B-30

B--1 Octal Index to l\111emonics B-39

•

•

•

viii 60236400

'

<

'

·,
y

'

'

----~-.11:~-------

•

-

•

..

-

' ,• . ' • ~·" 7. - •

1.1
FEATURES

60236400

•

INTRODUCTION 1

•

,

The 3300/3500 META/1'.1.ASTER, a Meta Assembler executing on a
® . 00

CONTROL DATA 3300 Computer System or CONTROL DATA 3500 Com-
puter System, provides a versatile, extensive, and self-extending language
for directing the generation of object code.

•

Using Meta-Assembler (META), the programmer ca~ choose a relocatable
binary output format acceptable for loading and executing under the 3300/
3500 l\.fASTER Multiprogramming Executive Operating Systen1, or define
output as a byte stream not restricted to a 24-bit object \vord. Meta­
Assen1bler is an ideal language in which to code compilers and assemblers,
or to produce code for an alternate computer system. The object computer,
real or simulated, may have a \vord si7 e up to 48 bits.

Source statements to META include .directives that control the assembler
in much the same way machine language instructions control the computer,
procedure definitions and references, and function definitions a11d refer­
ences.

The Meta-Assembler language allows simple, brief notation, nested
functions and procedures, and complex expressions involving sets.

Procedures and functions provide extensive parameterization of source
statements. For example, META includes standard procedures for the
3~00/3500 machine language instructions and for generating equivalent
code. While these mnemonics resemble the 3300/3500 COMPASS reper­
toire, differences in syntax and in notation used for operand fields and

. modifiers cause incompatibilities between the two languages. In addition,
META does not recognize COMPASS macros, most pseudo instructions, or
numeric operation codes. For example, the representation of an octal
number in the 3300 C01\i1PASS language is a string of octal digits followed
by the letter B. The representation of an octal rrumber in the META
language is the letter 0 followed by a string of octal digits enclosed in
apostrophes ..

A complete list of 3300/3500 mnemonic instructions is given in appendix B.

A group of l'v1eta-Assembler di1'ectives makes it possible for the program­
mer to assign his program and dat'l to as many as 15 relocatable control
sections, as well as one absolute control section. The assembler main-

1-1

•

•

•

•

1.2
HARDWARE
CONFIGURATION

1-2

•

•
. .

-

tains a locatio11 counter for each section so that d~ta locations within a
co11trol section are relative to the beginning of that section. The pro­
grammer ca11 increment these counters by words or bytes. (lie can also ~ . . .

define the size of words and bytes.)

The requirements for executing Meta-A~sen1bler on the 3300/3500 are the
minimum requirements for executing MASTER.

MASTER minimum core memory (about 16K should be available for
META)

®
·One CONTROL DATA 3304 or 3504 Processor·

One CONTROL DATA® 3311 Multiprogramming Module (3300 only)

®
·One CONTROL DATA 405 Card Reader and buffered controller

One CONTROL DATA® 501,. 505, or 3254 Line Printer and buffered
controller

® One CONTROL DATA 415 Card Punch and buffered controller

T-...vo CONTROL DATA® 3306 or 3307 (3507) Communication (Data)
Channels

2, 5 million \\'Ords (10 million characters) of mass storage.
90K-100K \vords or about 9 scratch segments of mass storage should
be available to ~1ETA for its temporary files.

•

•

60236400

•

•

.c·~ ..

•

I .
l '

I
I

I
I
! •

I~

' "
u.

'
•

' ~,,

. ~
..

•
)'

}

'!'.'

,-

i·:

< .•

r

~: . '

. ' .

.·

:~

•

•

•

2.1
CHARACTER SET

2.2
STATEMENT
FORMAT

60236400

•

STATEMENT STRUCTURE

•
. .

•

Programs written for 1\ieta-Assembler may use alphabetic characters
A-Z, numeric characters 0-9, blank spaces, and the special characters
listed below.

+

-

*
I

<

>

•

,

(

)

%

$

plus

• minus

multiply

divide

equal

less than

greater than

period

comma

left parenthesis

right parenthesis

percent

dollar·

•

'

<

[

]

t

• •

-
•
•

v

/\

•

apostrophe

less than or equal

greater than or equal

left bracket

right bracket

decimal exponent

binary exponent

NOT

semicolon

right arrow

identity

colon

OR

AND •

·2

The relationship of these characters to printer graphic characters, internal
octal codes, and card codes is shown in appendix A. Characters that have
special significance as operators are given in TaJ.>le 2-1.

A Meta-Assembler statement consists of a label field, a command field, an
operand field, and a comments field. Each field is terminated by two or
more cons-ccutive blanks.

Format: ·
•

2-1

•

-

•

2.2.1
LABEL
FIELD

2.2.2
COMMAND
fl ELD

2-2

•

• . .

.
State111ents can begin in character position 1 and continue through character
position 71. A semicolon in character position 72 indicates card continua­
tion. Any information beyond character position 72 is not interpreted by
Meta-Assen1bler but does appear on the assembly listing. Thus, columns
72-80 can be used for sequencing.

Within a field, a single blank can separate elementary items, operators,
and delimiters. A blank is optional for separating a symbolic operator,
such as **, from its operands, but is required for separating a mnen1onic
operator (AND) from its ·operands.

The label field begins in character position 1 or 2, and is terminated by two
consecutive blanks. If character positions 1 and 2 are blank, the state­
ment has no label.

A label field may contain a symbol, set element reference, or SYM attri­
bute function reference (section 6. 5). A set element reference is legal only
with an RDEF directive (section 4.3.2).

The definition of a sy1nbol in a label field depends on the content of the com­
ma11d field. Throughout this manual, t1nless stated other\vise, a label field
symbol is optional and, if present, is the value of the control counter prior
to processing the command field. This value is either a word address or a
byte address, depending ort the command (section 3. 1).

.
The command field of a statement begins \vith the first nonblank character
following the label field and is terminated by two consecutive blanks. If the
label field is blank, the command may start in character position 3.

The_ following are legal comma.nd field entries.

An assembler directive

A mnemonic machine instruction code followed by its modifiers which
are separated from the instructio11 code by a comma

The name of a previously defined FORM

The name o~ a previously defined procedure which may be followed by
a set separated from the procedure name by a comma

•

A SYM attribute function reference

•

60236400

t

\J
I
f
f

• l
• 1

~

i-
' < •

I
I
l

'

,.~'

,;;

':'
-;·

'

__ -1

-
'

,._._

'

'
'

:;

•·

' ...

·, .

;,

•

•

2.2.3
OPERAND
FIELD

2.2.4
COMMENTS
FIELD

2.2.5
STATEMENT
CONTINUATION

2.2.6
EXAMPLES

60236400

•

•
. .

The command field ~ntry of a Meta-Assembler statement determines if an
entry is required in the operand field. If present, the operand field begins
with the first nonblank cl1aracter following the command field. The oper­
and field contains either an expression or a set that supplies information
for the command field. For sets, see section 2. 7.

Two consecutive blanks terminate _the operand field.

Comments begin with the first nonblank character after the operand field or,
if the statement requires no operand field, with the fir~t nonblank character
following the command field. In addition, if the first character of any field
is an asterisk, all successive characters of the line are comments. Thus,
when the label field entry begins with an asterisk, the line is a comment
line. Comments can continue th.rough character position 72 but cannot be
continued on the next line.

Any characters are legal as comn1ents. Although META does not process
comments, they do appear in the symbolic listing. Co111ments on lines of
procedure or fu11ction definitions 'lre not retained i11 the. l\!eta-Assembler
representation of the definition.

Normally, character position 71 terminates a source s.tatement that has not
yet terminated. However, a line of code that cannot be contained in the
first 71 character positions can be continued to the 11ext line by placing a
semicolon in character position 72 and continuing·the field at character
position 2 of the next line; character position 1 is ignored .

•

Any character other than a semicolon in character position 72 is ignored.

The following line contains all four fields.

~!/~~ I l OA1 I i i~C l 1alAD1 Ai REG 1IS. -:I_E..R.1

iabel / command operand comments

2-3

•

•

•

•

•

2.3
ELEMENTARY
ITEMS

2-4

•

•
. .

The following line has a blank label field and does not contain comments.

I I ,I DA I J 1Q5C, I I

command pperand

The following line is continued.

'

The following line contains a command and a comment.

The following line is a comment line.

,

•
column

72

The following line is not continued; character position 71 terminates the
operand field.

Ignored;
not semicolon.

. 1
. ~ . I''· ,J,-;t.2.J,51 .J;:",1/6, • • ~ ~g, ,,'/i'{fJ8,f/IG,/;2131/.fh
Last significant
character

•

The basic representation of data for META are elementary items. An
'

elementary item is self-definingland its meaning is immediately obvious;
• no additional information is needed for its interpretation. Meta-Assembler

recognizes the following as elementary items .

Delimiters

Decimal integers

Binary coded decimal (BCD) integers

Octal integers

60236400

•

•

i. ..•. _ ...

•

,

I
j

''

. .

. }

" .

"

..
:; .

•

. .

•

2.3.1
DELIMITERS

2.3.2
DECIMAL
INTEGER

60236400

'

•

Floating-point real numbers

BCD character strings, left or right adjusted
• .

· ASCII character strings

Arithmetic and logical operators (symbolic and mnemonic)

META recognizes the following characters as delimiters.

Comma

Parentheses

Brackets

Blank

'I'wo blanks

Apostrophes

Delimits subfields of a source statement field,
elements of a set or subset, and subscripts of a set
element reference.

Enclose and delimit function arguments and nested
• expressions.

Enclose and delimit nested subsets and set element
references.

Separates elementary items for visual clarity or de­
limits them when required.

Terminate fields of a source statement.

Enclose and delimit character and numeric strings.
Within a character string, only the single apostrophe
is a delimiter; any other delimiter is accepted as a
valid character in the string. A pair of apostrophes
signifies a valid BCD or ASCII apostrophe.

A decimal integer is a string of numeric characters from the character set
0-9. Meta-Assembler converts a decimal integer to its binary equivalent.
If the resulting binary number exceeds 48 bits, META truncates it with the
loss of the most significant bits and sets an error flag. META also sets an
error flag and truncates the resulting binary number if it exceeds a specified
field size during data generation.

Examples:

429

-3

2-5

•

•

2.3.3
BCD INTEGER

2.3.4
OCTAL
INTEGER

2-6

. .

•

•

•

To specify a BCD integer, write the letter D followed by a string of one to
eight numeri_c characters from the character set .0-9, enclosed in

•
apostrophes.

Examples:

D'078'

D'l23'

-D'123'

A BCD integer is not converted to its binary equivalent, but is represented
as a string of 6-bit BCD characters (appendix A). If the number of BCD
characters is greater than eight, truncation causes loss of the most sigfilfi­
cant characters and META sets an error flag. During data generation, if
the field into which the integer is to be placed is too small, META truncates
the most significant characters an'.i sets an error flag (section 4. 5).

If during data generation, the field size is greater than required, the BCD
integer is right adjusted with leading zeros.

Expressions containing BCD integers are evaluated using 6-bit BCD arith­
rnetic. Tl1e slg11 of a BCD integer is placed in tl1e left bit of the rightmost
digit of the number.

Examples:

D'123 I I 00 I 01 I 02 I 03 I
. -D'l23' I 00 I 01 I 02 I 43 · 1

An octal integer is noted with the letter 0 followed by a string of numeric
characters from the character set 0-7 enclosed in apostrophes.

Examples:

0'77'

0·'123'

Meta-Assembler converts an octal integer to its binary equivalent. If the
resulting binary number exceeds 48 bits, truncation causes loss of the most
significant bits and META sets an error flag. If during data generation, the
field into which the integer is to be placed is too small, META truncates the

. most significant digits and sets an error flag (section 4. 5).

•

60236400

•

•

,,,

' '
. ;

• t . ·,

I
l

i

. ' J . • ,.

.
'

. . ..

; .

~'\

. .

.,

' 3

:~

,,

.I

. 4-1

•

•

•

2.3.5
REAL
NUMBER

2.3.6
BCD CHARACTER
STRIN.G

60236400

•

•

A real or· floating-point number is written as ·a. maximum of 14 decimal
digits. It must contain a decimal point and may contain an e'):Ponent repre­
senting a power of 10 designated by the letter E and an optionally signed
1- to 3-digit decimal integer.

Examples:

1. 1.E+2 (1. 0 x 102)

. 35 327. 7E-2 (327. 7 x 10-2)

4.79
•

META converts a real number to 48-bit 3300/3500 internal normalized float­
ing-point format. It consists of two 24-bit words made up of a 12-bit char­
acteristic and a 36-bit mantissa.

23 11 00

word 1 characteristic

word 2 mantissa

If rlur1nr:f o::Jt~ ~eneration the field size into 'vhich the number is to be placed
is less than 48 bits, a truncation error is flagged and the rightmost bits of
the number are lost. For a negative value the 2-\vord value, including
characteristic, is complemented .

A programmer specifies that a BCD character string be either right adjusted
wtlh leading zeros or left adjusted with trailing blanks .

A right-adjusted character string is written as the letter C follo\ved by a
string of not more than eight legal BCD characters enclosed in apostrophes,
or simply as a string of BCD characters enclosed in apostrophes.

A left-adjusted character string is written as· the letter L followed by a string
of not more than eight legal BCD characters, enclosed in apostrophes.

Because an apostrophe is used as a delimiter, the representation of an
apostrophe as a character in cl1aracter strings is two consecutive apostro­
phes.

Examples:

'ABC'

C'A''BC'

L'A''''BC'

• •

Right-adjusted string of three characters ABC

Right-adjusted string of four characters A 'BC

Left-adjusted string of five characters A' 'BC

2-7

•

•

--··· ----

•

•

2.3.7
ASCII
CHARACTER STRING

2-8

•

•

If the number of characters in a BCD string exceeds eight,· truncation cau~es
loss of the leftmost characters and META sets an error flag .. During data
generation, if the field into \Vhich the character string is to be placed is too
small, META truncates the leftmost characters and sets an error flag.

If the field size is greater than that required to hold a left-adjusted string,
the string used in data generation is left adjusted with trailing blanks. If
the field size is not a multiple of 6 bits, "the extraneous bits are on the left
and are O. The remainder of the field is used for characters and is blank
filled.

Example:

L 'AB' is stored in 21-bit field as

20 17 11 05 00

I 0 I A I B I A l
t
3 bits zero

A rfr~ht-adjusted string used in data generation is right adjusted with leading
zeros if the field size is greater than that required to hold the string.

An ASCII character string is written as the letter A followed by an apostrophe,
a string of one to six ASCII characters (appendix A), and an apostrophe.

.

Each ASCII character occupies eight bits.

Because an apostrophe is a delimiter, . an apostrophe as a character in the
string is represented as two consecutive· apostrophes.

Example:
.

A 'AB''CD' A string of five characters AB'CD

A '''ABC''' A string of five characters 'ABC'

If the number of characters exceeds six, truncation causes loss of the left- ·
most characters and META sets an error flag. During data generation, if
the field into which the character string is to be placed is too small, META
truncates the leftmost characters and sets an error flag.

An ASCII string·used in data generation is right adjusted with leading zeros
if the field size is greater than that required to hold the string.

.
60236400

•

·'"···· •:.
""'

•

Ii •. ····:. ..
'

'

~

I
'
1
l
j

l •

I

,,

.,,
r·:

'

'
,

' , .•

<

'·

'i

·i;
<·:
" ··:,

;;·
'

.,

'

' "
/\
' '

-: ·~;

,,

}'

•

•

.
'

•

•

•

2.3.8
OPERATORS

60236400

I

•

•
•

The following table summarizes legal operators and their hierarchies and
meanings.

,
Table 2-1. Legal Operators

Alternate
Operator Mnemonic Meaning Hierarchy

+ Unary plus 1
.

- Unary minus

t DS Decimal scaling 2
•

. .

' BS Binary scaling .

* Arithmetic product 3

I Arithmetic quotient

+ Arithn1etic addition 4

- Arithmetic subtraction

< LT Less than (compare) 5

- EQ Equal (compare)

Ii NE Not equal (compare)

> GT Gre.ater than (compare)

<. LE Less than or equal
(compare)

.
GE Greater than or equal ~ .

• (compare)

** AND Logical product (AND) 6

XOR Logical difference • --
(exclusive OR) 7

++ . OR Logical addition
. (inclusive OR)

- Unary equal; 1-word
literal 8

.
- - Unary double equal; - -

2-word literal
.

2-9

•

•

•

2.4
SYMBOLS

2.5
LOCATION
COUNTERS

2.6
EXPRESSIONS

2-10

•

• . .

. . .

A symbol is an alphabetic character from the set A-Z foll~wed by 0-11
alphabetic or numeric ch~racters from the sets A-Z, .0-9.

Examples:

Legal Symbols

p

R3

PROGRAM

Illegal Symbols

5A

ST$RT

ABC-1

•

A unique location counter is associated with each of the 16 control sections
· available under Meta-Assembler. META interprets a reference to a con­
trol section name as a reference to the current value of the location counter
(a word address) within that control section.

In addition, META interp1'ets the character$ as the value of the current
location counter, a word address, prior to processing the line containing $.
I ... ocatio11 counters are discussed in detail in section 4. 4.

A combination of one or more elementary items, symbols, set element
references, or function references n1akes up an expression. The program­
mer can form subexpressions by Usi11g parentheses in the normal role of
arithmetic grouping. Thus an expression may contain subexpressions which
in turn are made up of operators and other subexpressiens or ele111entary
items .

Examples:

$

A+ 2

(A+ 2)*B

•

60236400

•

,.
' . 1
.f

" '·

'

'

! ,_-

;

I
l

I
. i

I I ,

. '

I
I "
I

..
' .,

--------------------------~-- ~-

' ,

,
• .

' '

•

•

'

-·

60236400

•

Rules for evaluating expressions are:

Expressions are evaluated left to right ·with lower numbered hierar­
chies evaluated first.

Parenthetical subexpressions are expanded from the inside and are
performed first.

Operators of equal hierarchy are evaluated left to right.

If a mnemonic operator is used in lieu of a special symbol (e.g., DS
instead of f), it must be preceded and followed by a single blank.

The value of a compare operation is 1 if the expression is true, 0 if it
is false.

For the < or LT and the > or GT operators, 0 is greater than -0.
For the ::: or LE, theli= or NE, and the = or EQ operators, 0 is
equal to -0.

In expressions used for data generation, META performs the arith­
metic operation and places tl1e \-, .• .lue in the specified field. If the
resultant value exceeds the specified field size, META truncates the
most significant bits and flags the error.

Examples:

Expression

(A+ B)*C

(A< B) + + (C>D)

Evaluation

Add A to B; compare the result to C.

Multiply B by C; add A to the product.

Add A to B; multiply the sum by C.

Compare A to B; compar~ C to D; perform
a logical OR on the two subexpressions.
If either or both inequalities are true, the
value is 1; if both are false, the value is O.

If an expression contains relocatable symbolic addresses, its value must be
relative to a single location counter, or not related to a location counter and
thus nonrelocatable.

Examples:

In the following examples, Pi, Di, and Ci refer to relocatable addresses in
the program, data, and common areas.

The following are relocatable addresses.

p D + 1 -c

2-11

•

•

•

2.6.1
ATTRIBUTES

2.6.2
MODES OF
EXPRESSIONS

2-12

•

•

•

Subtracting one relocatable address from another in the same program con­
trol section produces an absolute nonrelocatable result.

Pi- P2

-Ci+ C2

,

-D1 - P1 + -p2 - D2 + C1 - C2

The result of an expression cannot be the sum of two or more relocatable
addresses in the same or different control sections. The following are
illegal.

P 1 + (P2 + 5)

P+ D

-Pi - P2 + P3 - P 4

Relocated twice relative to P .

Relocated to both P and D

Relocated twice relative to P

Single relocati.011 or an absolute value can legally result from a complex
expression.

P1 - P2 + P3

-P1 + P2 - P3

P + D1 - (D2 + 2) -C1 + (C2 -6)

Single positive relocation

Single negative relocation

Result P-8 is single positive
relocation

Result + 9 is not relocatable .
relative to any control section.

An attribute is a property of an expression, such as its mode. Intrinsic
attribute functions interpret the properties as values that can be used in

•
expressions. Chapter 6 describes the Meta-Assembler attribute functions.

,

A mode associated with each elementary item defines how META is to inter­
pret the data whein it performs an arithmetic operation on the item. Meta­
Assembler recognizes 11 modes accessible through the mode attribute
function (section 6. 2).

• • •
Expressions are evaluated using either integer, real, or binary-coded-
decimal arithmetic. META permits mixed-mode arithmetic on real and
integer values, converting the integer to a real value and performing the
operation in floating-point arithmetic. The mode of the result is real. With
any combination other than -real and integer, if all elements of the expres­
sion are not of the same arithmetic type, META flags an error and sets the
value of the expression to 0.

60236400

• ..

" l
I

-
~

'

-
-.

'

' l ~-
'

- ~

•

)

•

; ..

;

•

-!.
;

60236400

------ -- --------·----

•

• . .

. .

In arithmetic and relational expressions, META treats character strings
and addresses that are not e:x.1:ernal as intege·rs.

•
META performs logical operations on a bit-by-bit basis without regard to
mode. The result of a logical or compare operation is in integer mode.

The following table shows legal combinations of operators and operands.
For + , - , *, and I, interchanging the first two columns does not affect the
result. The mode of the second value must not be external.

Table 2-2. Combinations of Operators

Mode 1st Mode 2nd Mode of
Operator Value Value Result

Integer Integer I11teger

t Real Integer Ile al
Deci111al . Integer Deci111al

•
Integer I11teger I11teger
Real Inteo-er Real t>

+ -, I11teger I11teger Integer
Integer I~eal Real
I11teger \\'ord Adclr Word Addr
Real Real Real
.Decimal Decimal Decimal
Word Addr Word Addr Word Addr
Word Addr Byte Addr Byte Addr
Byte Addr Byte Addr Byte Addr
Ext Wrd Addr Integer .Ext Wrd Addrt
~xt Byte Addr Integer Ext Byte Addrt

* I Integer Integer Integer
'

.
Integer Real Real
Real • Real Real
Decimal Decimal Decimal

** ++ --, , Any Any . Integer
.

> - 11- < < > , -, 1-, , - , - Mode 1, 3, 5, 7, Modc..1,3,5,7, Integer
9,lltt 9,lltt

Real Real Integer
Decimal Decimal Integer

t External word addresses and external byte addressed cannot be
interch·anged.

t t Sectiop 6. 2

2-13

•

2.6.3
LITERALS

•

2-14

•

•

.

Scale factors, both decimal and binary, must be integer.

Examples:

1.5*3 Legal; value is 4. 5 real.

D'15' + D'17' Legal; both items are decimal integers.

D'15' + 1. 5 Illegal; conflicting modes.

1.5 .1-2.5 Illegal; scaling factor is not an integer.

.
A literal is an expression beginning with an equal or a double equal sign
depending on whether the value is to occupy one or two words.·

Examples:

=0'77700077'

-A+ B - $

=1

= = 1.2

= =A 'ABCDEF'

==1

•

META places the value of the expression in a literal table. If the value ex­
ceeds the specified number of object con1puter words, META truncates it
and flags the error. If the object computer word size is greater than 24
bits,· use of a 2-word literal causes truncation because the maximu1n pre­
cision allowed is 48 bits. By using 011e or more LIT directives (section
4. 4. 5), the programmer can designate which control sections are to contain

•

literal tables. If the program contains no LIT directive,. the literal table is
appended to the progra1n section. 1.'he address of a literal is the address of
the literal table entry relative to the beginning of the control section. Liter­
als with identical expression values are e11tered into a single literal table
only once.

An attempt to place a literal in a numbered common area is flagged as an
error; numbered common cannot be preset.

60236400

•

•

gl

t. ·~ .,,.

. t
f ~.

. l
I
f :
! . I .
' ,.
' ' '

'
l

'

.
~ '

i ,

' ,

~·

'

•

2.7
SET

. 60236400

•

. .

•

•

A set is one or more set elements separated by commas. A set element is
. .

an expression, a set name, or a subset. A sub~et is a set enclosed in
brackets.

The NSET directive (section 4. 3. 3) assigns a set name to a set. Set names
can also be assigned through the PROC and FUNC directives (sections
5. 1. 1 and 5. 1. 2).

Examples:

kl NS,sr , ,,,> ,2 . ,

~ NSE,J: I X.t~ A

A is a set of two elements.

B is a set of two elements.
The first element is an
expression; the second is
a set name .

C is a set of three ele­
ments. The first is a sub­
set which is a set of two
elements. The second
element is a subset which
is a set of t\vo elements,
the first of which is itself
a subset. The third ele­
ment is a set name ..

In the preceding example, the first element of set C could have been written
as A.

To refer to a set element, write the name of the set followed by a left
bracket and one or more expressions separated by commas· and a right·
bracket. The values of expressions represent the ordinal location of the set
elen1ent referenced. From left to right, they represent the level of the ele­
ment in a set containing subsets. To refer to an entire set, write the name
of the set.

If the reference is to a nonexistent element, META uses zero .

2-15

•

. .

,

•

2-16
•

•

•

Example:

The symbol A le defined as the set 5, C, (9, (3, 4] J. The set has three ele-
. .

ments. The third element [9, (3, 4)) contains two elements, ·the second of
which also contains two elements (3, 4).

Reference

A

A[l]

A[2)

A[3)

A[3, 1)

A[3, 2)

A[3, 2, l]

A[15, 33)

Element

All

. First element of A

Second element of A

Third element of A

First element of subset
of third element of A

Second element of sub­
set of tlrlrd elen1ent
of A

First element of sub­
set of second element
of subset of third
element of A

Nonexistent element

Value

5,c, (9, [3,411

5

c

9' (3,4)

9

3,4

3

0

In the preceding example, if C is a set name for a set c·onsisting of the list
elements 7, 8, 6, elements of C could be referred to as follows:

Reference

A[2, 1] or C[l]

A[2, 2) or C[2]

A[2, 3] or C[3]

Element

First element of C

Second element of C

Third element of C

Value·

7

8

6

The Meta-Assembler maintains information about a set and its elements to­
gether with the symbol defining the set. The programmer can access this
information for use by the assembler through attribute function references.
For example, the NUM attribute function (section 6. 3) supplies the number
of elements in the set.

60236400

•

..

' .: ; i

I
'

,·~

" '

.
" / .. •

t ·.
I , .
I

C·

~:
..

ii

' "
1:

---------------------------------- -- ·-

••

•

3.1 .
RELOCATABLE
ADDRESSES

60236400

•

.
LOCATION CONTROL AND ADDRESSING 3

•

•

•

Meta-Assembler provides location control by making available one absolute
and up to 15 relocatable control sections, each with an associated location
counter. The counters can be incremented in word or byte increments.

A relocatable address is either a word address (mode 9) or a byte address
(mode 11). Mode is specified implicitly by the directive. Word-oriented
directives cause definition of relocatable word addresses. Byte-oriented
directives cause definition of relocatable byte addresses.

A label field symbol is a word address for the following directives .

RES

GEN

GEND

TEXT

TEXT A

Also, literals and control section names are word addresses. A reference
to a control section riame returns, as a word address, the current v~lue of
the location counter in use p1·ior to processing the line. Use of the$ returns
the word value of the current location counter prior to processing of the
line.

For the following directives, a label field symbol is a byte address.

NO LIST

LIST

SPACING

EJECT

ORG

LIT

RESB

GENB

TITLE

BRIEF

DETAIL

SECP

SECD

SECA

TEXTC

ENTRY

EXT

GOTO

ENDS

TREF

LIBS

A label field symbol on a FORM reference line or a procedure reference line
is a byte address. This means that a mnemonic instruction (which is actu­
ally a procedure reference) does not cause the counter to be rounded to the
nearest word address.

3-1

•

. .

•

3-2

'---- --·~------------------

•

•

A word-oriented directive that follows a byte-oriented address causes the
·control counter for the section to be rounded up to the nearest word address.
A byte-oriented directive always uses the next available·byte ..

Use of the$ returns the word value of the current location counter prior to
processing the line.

Examples:

Reserve 1 byte

Reserve 1 word

Reserve 1 byte

Reserve 1 byte

RES in the first example causes the control counter to be rounded up to the
next \vord boundary prior to definition of the symbol Bl. The control
counter is not rounded up in the second example.

s

•

Computer word of four 6-bit bytes.

PROG is control section name. ·

FORM defines three fields;_ 24 bits.

Form reference; XY is a byte address .

Control section; XM is a word address.

$ returns XK as a word address.
I Literal XZ is a word address ..

RES and RESB are discussed in sections 4. 4. 6 and 4. 4. 7.

60236400

•

'

'
'· ,

,,
l

•

•

•

•

3.2
LOCATIONS
COUNTERS

60236400

•

•
•

Location counters are designated 0-15, corresponding to the 16 control sec-,
tions a programmer can define using SECA, SECD, and SECP directives
(chapter 4).

Location counter 0 is reserved for the absolute control section (defined by
SECA).

L<;>cation counter 1 is reserved for the first program control directive. If·
the program has no SECP directive defining a program control section name,
location counter 1 is still used for the program.

•

Location counters 2 through 15 are used for either program control sections
or data control sections. As META encounters each SECl~ or SECD direc­
tive, it assigns the next available location counter .

•

,

• •

3-3

•

•

•

•

•

,

•

'

•

l
l
l

l
i
l

1

l .. ;f

l
!
i
l
t
l
I

I . l
' ,
• I

.

·1 · r
·, i! .

I

'
I .
'

'

-------------~·-

• .

•·
·.

."'

•

•

•

4.1
LISTING
CONTROL

4.1.1
NOLIST

60236400

•

DIRECTIVES

•

,

Directives control the operation of Meta-Assembler much the same as
machine mnemonic codes direct the computer. The programmer can use
directives to:

• Control the content and format of the Meta-Assembler listing.

4

• Define word and byte size when the object computer is not a 3300 or
3500. .

• Define a symbol and assign it a value or set of values.

• Assign up to 15 relocatable and one absolute location counters for
address assignment.

• Generate code to be loaded and executed on the object computer.

• Specify field sizes for the object code.

• Specify that certain symbols are entry points to separately
assembled subprograms, or that symbols used within the current
st1bprogram are external to it.

• Repeat or skip source statements conditionally.

• Terminate assembly of a subprogram or group of subprogran:is .

• Define a procedure and assign it one or more names for subsequent
reference.

• Define a.function and assign it one or more names .

•

Through listing control directives, the programmer suppresses portions of
the output listing, selects spacing, places a title at the top of any page of the
listing, and requests the level of detail he wants to appear in the listing.
For all listing control directives, a label is optional; if present, it has the
current location counter value. ,

NOLIST suppresses generation of the output listing until the assembler en­
counters a LIST directive. The NOLIST line is suppressed from the listing.

Format:

4-1

•

•

4.1.2
LIST

.
4.1.3
SPACING

•

4.1.4
·EJECT

4-2

•

•

LIST causes resumption of the normal assembler listing following a NOLIST
directive. LIST appears on the output listing.

,
Format:

Jta,bel ,1,rsr: corrvJ>u>,t..s,

SPACING allows the programmer to select single, double, or tripfe spacing
in the output listing.

Format:

exp Expression evaluatoo as 1, 2, or 3 corresponding to
single, double or triple spacing, respectively. Other­
wise, directive is ignored.

The specified spacing remains in effect until another SPACING directive ap- .
pears. If no SPACING directives appear in a program, the listing is single ·
spaced .

•
EJECT terminates the current page of the output listing and causes listing to
resume at the top of the following page. EJECT is printed as the first line
of the next page.

Format:

,
I

If EJECT is already the first line of a page, it is printed but has no other
effect. · ·

60236400

r
I
I

g·- . .
!

•

•

, .
•

.
. .

' . ~'

,F,'

'

;----------------
\

i
' J

'

, .

'
·'

'
'

•

4.1.5
TITLE

4.1.6
BRIEF

4.1.7
DETAIL

60236400

. .

,

•

' .

TITLE causes the current page to be ejected and the TITLE directive line
itself to be printed on the first line of the new page. Until another TITLE
directive is processed, all succeeding pages begin with this title.

Format:

character str~ng 1-56 characters that appear as title at
top of each page of output listing
(section 8. 1)

BRIEF causes listing of source lines and lines of code generated by data
generating directives only. BRIEF remains in effect until a DETAIL direc­
tive occurs. The default mode of listing is BRIEF.

Format:

DETAIL causes listing of all lines of code other than library procedure defi­
nitions in subsequent LIBS directives {section 5~ 1. 6) and causes. listing of
procedure expansions. DETAIL remains in effect until a ~RIEF directive
is processed. A NO LIST directive takes precedence over a DETAIL direc­
tive .

Format:

4-3

•

•

...•

•

4.2
OBJECT MACHINE
DEFINITION
(UNIT)

. 4.3
SYMBOL AND SET
DEFINITION

4-4

•

•

The Meta-Assembler running on a Control Data 3300 or 3500 Computer Sys­
tem to assemble programs for other computers must have certain informa­
tion about the object con1puter to generate the proper binary information.
The UNIT directive defines the byte size and word size of the object compu­
ter. Word size of the object computer must not be less than 8 bits. nor
greater than 48 bits.

Format:

ieahei.L lJNX,Ti e.,p,1,, ,e,xp,., ,cammeint.s, ,
•

label Optional

Evaluatable nonrelocatable expression defining the byte
size of the object computer in bits. During assembly, the
location counter is incremented by 1 for each exp1 bits.

exp2 Evaluatable nonrelocatable expression specifying the num­
ber of bytes per word. ·

In the absence of a UNIT directive, META uses the host computer unit size
of 6 bits per byte and 4 bytes per word. Binary output is in the form accep- .
table to the 3300/3500 MASTER relocatable loader.

UNIT, if used, must precede all lines of code other than listing control di­
rectives and comment cards. Use of UNIT causes binary output to be in the
alternate form (appendix C) .

•

•

A symbol that appears in the label field of an EQU or RDEF directive has a
defined value. Whenever the symbol is used in an expression, this defined
value rather than the address of the symbol is used in evaluating the expres-
sion.

•

A symbol that appears in the label field of an NSET directive or the label
field, command field (as a modifier), or the operand field· of a PROC or
FUNC directive (chapter 5), becomes the set name for a list of set elements.
Whenever the subscripted set name is used in an expression, the value of
the set element is used in evaluating the expression. · ·

60236400

•

•

"
'

... ,.,

i<

' •.
k .
"
~:

'·

.:

.
r

'
'

'

. . .

~:
' ~; .

'

;.

•

4.3.1
EQU

4.3.2
RDEF

60236400

•

•
. .

. .

.
EQU assigns the value and attributes of the operand fi~ld expression to the
label field symbol. . ·

Format:

· The label field must contain a symbol. A symbol defined by EQU cannot be
redefined later in the program.

Example:

lee, EQU ,'f.

RDEF assigns the value and attributes of the operand field expression to the
symbol or set element named in the label field .

. F'ormat:

The label field must contain a symbol or a set element r~ference. The value
. . .

and attributes assigned to this symbol or set element remain in effect until
an RDEF with an identical label field symbol or set element is processed or
until an RPT (section 4. 7. 1) with an identical label 'field symbol is pro­
cessed. If the operand field is blanl}, the symbol or set element has a value
of 0.

Example:

A has value of 15

B has value of current location counter

---~--L.J-.L.1C"'-""~....._._-L-•• +_.,_,1_3.._,_ C has value A + 3, or 18

11 16 I

Illegal; A is doubly defined

Illegal; Bis doubly defined

Legal; C changed from 18 to 20

D has value 0

Illegal; D may not be redefined

Define set E

Redefine element two of set E

4-5

•

4.3.3
NSET

•

•

4-6

•

•

•

NSET assigns the label field symbol as the set name of the operand field
set. The label field must contain a symbol. which is the name by which the
set or set elements can be referenced. If the oper~1d field is blank, the
set consists of one element which has a value of O.

Format:

· tLabeL NSliT., ·'C'~' ,c.omment.s,

Example:
•

A is a set of three elements.

B is a set of two elements, the second of which is a set of two ele­
ments .

. .

C is a set of two elements, the second of which is a set of three
elements.

D is a set of one zero element.

A[2] is redefined to be 9 in the last line of the examples; thus the final
~et A is defined as though the following had been written.

•

An entire set can be redefined through use of NSET.
,

Example:

• •

60236400

•

..<

""' . '

•

!
i

. I
I

..·

..
'

·,

'

~-

.:_,,_

\- ;'

' .
' i

';l

.q

.

..

•

'

•

•

4.3.4
FORWARD
REFERENCES

60236400

•

•
•

A forward reference is a reference to a symbol or set element before it is
defi11ed. The Meta-Assembler processes forward references in two passes. ,
On the first pass, a reference to a symbol before it is defined is not given a
value; a reference to the symbol after it is defined is given the most recently
assigned value. On the second pass, the forward reference is given the
most recent value assigned.

An e:x-pression cannot contain a forward reference if:

1. The value affects location counting.

2. The undefined symbol is defined subsequently by an EQU directive
•

that contains a second forward reference.
.

3. The undefined symbol or set element is not clefined subsequently.

4. Tl1e expression is not evaluatable.

A for\vard reference to a symbol or set element redefined subsequently by
RDEF or NSET directives that contain forward references yields the final
value assigned to the symbol or set element.

Examples:

Legal use of for,vard reference First Pass Second Pass

A undefined A= 2·. 5

B = 2. 5 B = 2.5

AA undefined AA= 7

XX undefined xx= 2

BB undefined BB= 2
•

yy = 2 yy = 2

xx= 7 xx= 7

AA[2) undefined AA[2] = 9

181 I I I I
'

BB= 8 BB= 8

AA[l] .= 1; AA[2) AA[l] = 1; AA[2]

= 8; AA[3] = 7 = 8; ~[3] = 7

AA[2] = 9 AA[2] :... 9
• • •

4-7

•

•

4.4
LOCATION

· CONTROL

4-8

•

•

. .
Replacing the last line of the previous example with the following would
achieve the same result.

I

Illegal Forward References:

•

GEN directive contains forward
reference to AA which is defin0d
by an EQU containing a forward
reference.

Value affecting location counting
must be defined on first pass.

RES affects location counting.

Value affecting location counting
must be defined on first pass.

RES affects location counting.

Value affecting location counting
must be defined on first pass.

RES affects location counting.

•

Meta-Assembler provides one absolute and 15 relocatable control sections,
each of which has an associated location counter. Any program can use
one or more control sections .

.
Meta-Assembler directives described in this section assign names to con-
trol sections and address values to location counters.

•

60238400

'

' g.··

,··~

""" ' -

•

_,
,,._

- '

' '

' ' ' ' '

i
l ' '

~;

! ..

. ;

•

.'

•

_J

•

4.4.1
· SECP

4.4.2
SECD

•

60236400

•

•

The first SECP directive defines a program c.ontrol section.

Ji'ormat:

label

,

Optional; if present, label has the value of the location
counter after the SECP directive is processed .

sym 1-8 character name of program control section (subpro­
gram name). A reference to sym later in the program
returns the current value of the associated location
counter.

After the first SECP naming a specific sym, successive SECP directives
using this sym indicate that the code that follows is an extension of the pre'-­
viously declared program control section. A programmer coding for
MASTER may use only one program control section; any additional SECP
directive naming a new sym is flagged with an informative D error.

The first SECD in a program defines a blank common, numbered common,
or labeled common control section.

Format:
.

lfa.be1.l 1·5Ecl2. 51ym, 1C..Xp, .co1rnmen,t,s1 1 1

label Optional; if present, label has the value of the·location
counter after the SECD directive is processed.

sym Optional; name of control section defined or referenced.

zero or
blank

1-8-character
symbol

1-4 decimal
digits

Control section defined or referenced
is zero or blank common.

Control section is labeled common
block.

Control section is numbered common
block ..

For the 3300/3500 relocatable output, if sym is blank or
0, the block na1ne is lMAMM for chapter 1 and 2MAMM
for chapter 2. For other than the 3300/3500, the block
name depends on the item type (appendix C).

•

4-9

•

•

•

4.4.3
SECA

4-10

•

exp

•

•

. . . .

If sym is a symbol, a reference to the symbol later i11 t11e
program returns the value of the as,sociated location · . .

counter .

Optional; if executio11 is under 3300/3500 MASTER, exp is
an evaluatable ehi:>ression \Vith value 1 or 2 desigi1ating the
chapter to which the section is assigi1ed. If e>..i:> is absent,
chapter one is assigi1ed .

•

Each new sym on an SECD directive causes creation of a new control section
starting at relative address 0. If a sym appears on a subsequent SECD di­
rective, exp is ignored and code following the subsequent SECD directive
down to the next location control directive is an extension of the p1·eviot1Sl)'
declared. control section.

A program can have an absolute control section declared by a SECA clirec­
tive.

Format:

label

.sym .

Optional; if present, label has the value of the location
counter after the SECA is processed .

. 1.-8 character name of the absolute control section. A
subsequent reference to sym returns the current value of
the absolute location counter .

Any SECA directive after the first one in a program indicates that the code
following it is an extension of the originally defined absolute control section.
If SECA is preceded by an ORG directive setting the absolute location
counter, the code following .the SECA extends the absolute control section.

SECA cannot be used when coding for MASTER.

•

60236400

~;

•

•

~:

•

/,

'

•

•

~ I,
•

I

f

I
t

)

;1

' ,.

'
'

i:' .. ,

•

•

•

4.4.4
ORG

60236400

•

•
•

OI{G sets the specified cont11 ol counter to a specified address.

For1nat: ,

label Optional; if present, the label has the value of the location
counter after the ORG directive is processed.

exp Evaluatable expression. The expression indicates the con­
trol counter to be selected and the address to which it is to

Ex~1111ples:

•
be set. Lines of code following ORG- are placed in the eon-
trol section indicated.

'
' . '
•

' I I I I I I

SEC.a
•

•

: .
•

•

•

•

• •

• • •

•
•
•

•
•
•

I I I I I I

I . I

Defines program control section
ALPHA.

Specifies labeled common block of
COMM in ch«.pier one.

Spe·cifies numbered common block.
Chapter one is implied.

Specifies resumption of program con­
trol section. (Here, ORG has the same
effect as SECP ALPHA) .

Specifies resumption of rabeled
common block COl\fM .

Location within COMM.

Selects absolute location counter and
sets its valt1e to 50 .

Specifies blan~ common. For the 3300/
3500 the block name is lA A A A A A A ;
otherwise, the block name is 000.00000 .

•

Selects the location counter. for COMM
and sets the location counter value to
the value of D .

Specifies resumption of program con­
trol section ALPHA.

4-11

•

•

•

•

•

4.4.5
LIT

•

4.4.6
RES

4-12

•

•

LIT designates the control section in which literals are to be placed.

Format:

label

sym

,

Optional; if present, label has the value of the location
counter.

Name of a previously defined control section. •

META places literals (section 2. 6. 3) in the control section·specifiecl by a
LIT directive, regardless of which control section contains the reference,
until it encounters another LIT directive designating a different control sec­
tion for literals. In any given literal table, only one entry is made for
identical literals. However, a literal table can have entries that duplicate
entries in other literal tables. A literal results in the generation of object
code.

In the absence of a LIT directive, literals are appended to the first program
control section .

RES adds the value of the expression in the operand field to the current loca­
tion counter value as a _word increment to reserve storag_e.

Formdt:

exp

Examples:

I R6S •

Evaluatable nonrelocatable expression (must not contain a
forward symbolic reference or ref~rence to an externally
defined symbol).

Increment location counter by two words. ·
•

Increment location counter by ten words.

Decrement location counter by five words.

60236400

•

•

I
l

,

•

'{
. ~ . .

' -.

·-
' 1

:i .
-.•

"

·-
'

•

.

,. .

•.

•.

.

;";, ..

,, ..
,.

'

.

,-

.
f.
i

i\

•

' ,Ji ..,

. .

•

•

•

4.4.7 .
RESB

4.5
DATA
GENERATION

4.5.1
GEN

60236400

•

•
•

RESB adds the valtte of the expression in the operand field to the current
value of the location counter as a byte increment to reserve storage.

,
Format:

exp Evaluatable nonrelocatable expression by which to
increment the counter.

Examples: •

Increment location counter 16 bytes.

Increment 16 more bytes.

Data generating directives define data formats and generate words or bytes
of information to be loaded into the computer at execution time .

GEN places the values of expressions in the operand field set in successive
words, one word _for each expres~ion.

Format:

•

set Set of expressions to be generated. A set of sets is not
permitted. ,

Examples:

For the following examples, the object computer word size is 24 bits.
• •

Generate two words, the first
containing 5, the second con­
taining the internal BCD
representation of ABCD ..

4-13

•

•

•

4.5.2
GENO

4-14

•

•

•

•

'

1

I I

1

•

•

Results in the same
values as the above .

Illegal; the set in the
GEN line must not con­
tain sets.

Generate three words,
containing 5, 6, and
7.

Illegal; values must
be single precision.

Legal; reference to
external symbol.

GEND generates the values of expressions in the operand field set, two
object computer words per expression. Maximum precision for a value is
48 bits. If the object computer word size exceeds 24 bits, META truncates
the value to 48 bits and flags the error.

Format:

.

ltab1eiL , GEAJO .se ,f:, c" mme.n.tis ,

label

set

Example:

Optional

Set of expressions to be generated. A set of sets is not
per 111..i tted.

In the following example, the object computer word size is 24 bits.

~ GENO. , a.14 :li5; e 'MC.', ,

The code generates six words. The first two words contain the floating­
point representation of 2. 4. The next two contain the binary integer
representation of 25. The last two words contain the internal BCD
representation of ABC right-justified with leading zeros.

60236400

•

'
!<

I

' '

'·

. .
{
.!

•
:: .
· .

. .

,.
'

,.·.

.,

,').

'·'

. ,,.

• .

•

'

' .,

-------------,--------------------- - - ·--

•

4.5.3
GEN8

4.5.4
FORM

60236400

. .
•

GENB evaluates the values of expressions in the operand field set and places
the values. in successive bytes. If the value of. an expr.ession exceeds the
byte size specified in the UNIT directive, META truncates the- value to the
byte size and flags the error.

Forn1at:

label Optional

set Set of expressions to be placed in successive bytes. A set
of sets is not permitted.

Example:

For the following example, the object computer byte size is 6 bits .

. t1'b6 I P1FA18 I .'2, ,'/i, ,,\, '''"/ ,-£ I I I

-The above code generates five 6-bit bytes. The last byte contains the
one's complement of -2 truncated to 6 bits (llliOl).

FORM defines a data format by specifying field sizes, left to right, in one
or more object computer bytes .

Format:

ltab,e,l , FfARM , ,s,e,t, , conime.nct,s, , ,

label Required; label is the name referring to FORM
.

set A set of expressions, each of which defines a field size
in bits. A set of sets is not allowed .

4-15

•

•

•

•

. 4-16

•

•

Examples:
•

For the following examples, the object. computer bj•te size is 6 bits
· and the object computer word size is 24 bits.

I One field, four bytes

One field, eight bytes

Four fields, fo_ur bytes

Two fields, four bytes

Four fields, four bytes

To refer to a format defined by a FORM directive, place the label of the
FORM directive line in the command field of a line. Supply a set of expres­
sions, corresponding to the fields, in the operand field of the referencing
line. A form reference generates code starting with the next available byte.

A label on the line referring to a FORM directive has the value of the loca­
tion counter prior to processing the line. If a value exceeds the specified
field size or if the field size exceeds 48 bits, high-order bits are truncated
,and an error flag is generated. For a negative value, the one's complen1ent
of the absolute value is used unless the value is in BCD decimal mode. For
a BCD decimal value, the sign is inserted in the leftmost bit of the least
significant character position of the field.

If the field contains a 6-bit character type value and the field size is not a
multiple of 6-bits, the characters are placed in the rightmost bits of the
field with the leftmost extraneous bits zero.

References to FORM directives can be circular .

Examples:

Generates a single word with value $+3 right justified in the 24-bit field.

Generates the 48-bit floating-point value of 1. 59.

60236400

•

•

I

..

•.

c
'

• ,
'
'

.,

' '

t.1

. ...

i

"

·~ .

•

•

t

.j
«

•

•

"·)1

60236400

•

•

11111111

J410R1 I I Fit:ARM I lz 1/ !"' I I I I I I I

•

Generates one word containing the following octal value: (l/21 H77l1171112 j

I I I I I I I I

Generates a word with zero in the leftmost 7 bits and the byte value
of the location counter in the rightmost 17 bits. •

Generates a word with value 12 right adjusted in the leftmost 10 bits,
zeros in the next 3 bits, and the current word address plus 2 in the
rightmost 15 bits.

The follo\ving example illustrates circularity of forms.

1111111111

The 4 bytes generated by Gare: 1 04 I 10

Generates 2 bytes

qenerates 2 bytes identical to
last two

Generates 4 bytes filling last
with zeros
Generates 5 oytes

I 20 I 40 I
The 5 bytes generated by G are: 14 I ' 30 I 61 1 431
In the following example, BCD characters XY are to be stored in a 19-bit
field.

BCD characters X, Y, and blank are placed in the rightmost 18 bits of the
field. The leftmost bit is O.

4-17

•

•

4.5.5
TEXT

•

4.5.6
TEX TC

•

4.5.7
'TEXTA

•

4.6
PROGRAM
LINKING.

4-18

•

•
•

TEXT generates an integral number of object computer words containing the
specified BCD character string.

: ,
Format:

(fdb e J, , 'J,EX,77 , , ' s,i ,r,i 1ng•' , , ,ca mment,c;,,

The last word is padded with blanks as needed. If the object computer word
size is not a multiple of 6 bits, as many characters as fit are placed in each
word, tight adjusted with upper bits zero.

•

TEXTC is identical to TEXT except that the BCD character string generated
is placed in consecutive words without padding the last word.

Format:

TEXTC generates code starting with the next available byte .

TEXTA generates 8-bit ASCII characters in the same way TEXT generates
BCD characters. Padding of the last word, if needed, is with the internal
representation of ASCII blanks .

•
Format:

•

I ..L • '
I .s ~I t'-1 ' '"' I I

,

The directives ENTRY and EXT do not define symbols, but either classify
symbols defined within the subprogram as being known outside the subpro­
gram, or classify symbols referenced in a subprogram as being defined
outside of the subprogram.

•

60236400

•

•

'r , ,

.:-
•;.

,,
'
"
' '::o

,· ..

,
!:. ,

'
'

'
'

i

,,

.. ,

•

4.6.1
ENTRY

4.6.2
EXT

. .

4.7
REPEAT
AND SKIP

4.7.1
RPT

60236400

•

•

•

The ENTRY, directive specifies which symbols defined may be referenced by
subprograms compiled or assembled independently. That is, ENTRY
directives list entry points to the cur,rent subprogi:-am.

Format:

Entry point symbols, 1-8 BCD characters
. '

The EXT directive lists symbols which are defined as entry points in inde­
pendently compiled or assembled subprograms, but for which references
appear in the subprogram being assembled.

Format:

-External symbols, 1-8 BCD characters

Source statements can be processed repeatedly or skipped conditionally
through use of the RPT and GOTO directives .

RPT specifies processing a portion of code a given number of times.

Format:

4-19

•

•

•
•

•

•

'

4-20

•
•

label

exp

linid

I

•

Optional; if present, the original value is 0. The
value of the label is _tested and incremented by 1
prior to each processing of the lines of code, to a
final value that is the value of exp. '

Absolute evaluatable nonrelocatable expression (con­
tains no forward or external references) indicating
the number of times the following lines are to be
processed. If exp is less than or equal to 0, the
following lines are not processed and the RPT acts
as a skip.

Label of the last line to be processed by this RPT.
If linid field is missing, one line is processed .

•

RPTs may be nested to a level of at least six and possibly more depending on.
available table space. Space not required for processing functions and pro­
cedures could be t1sed for additional levels of RPTs. Processing of repeated
statements is from innermost to outermost. Every inner RPT range must lie
totally within the range of the next outer RPT.

· The programmer can redefine the RPT label within the repeated statements
to terminate a repetition prematurely. . .

Examples:

The following sequence generates a 10-word table of even numbers,
0-18. Because linid is absent, only one li-n-e is processed.

• •
•

-~

Generates one word for each value

0 ~ 2' 4 '· 6' 8' ... , 18

The following example illustrates two levels of repeats; the nested repeats
produce 10 words. ·

,

Q= 1, R= 1 2 Q 3, R= - 2 5 -
.

Q 1, R 2 3 - - Q 4, R 1 5 - - - -- -
Q - 2, R - 1 3 Q - 4, R 2 6 - -- -
Q - 2, R - 2 4 Q 5, R 1 6 - - - -- -
Q 3, 1 - R - 4 Q 5, R 2 7 - -- - - -

60236400

t
I
i

\j .

--

' .,.

.;~--

-

' -,, .
·-

,~~ ~

?

..
-

..
.~·--
' <' ;;,-

·-.
.,.
;;;'

v
' .
"""

.~.

' '

•

4.7.2
GOTO

60236400

•

•

In the following example, lines 5-8 are processed three times .

• a, I. 1

2

I I I f 4

5

6 repeat range
7

• I 8

In this example, the elements of set S are initially zero. On the first proces­
sing of lines 5-8, C is 1, and S[ll is redefined as A + C - 1, or 4. On the
second RPT directive, the test S[l] = B is not true (0); the GEN line is
skipped. When lines 5-8 are repeated, C is 2 and S[2] is redefined as 5. The
test S[2] = B is true (1) so the GEN line is processed; it generates one word
with a value of 20. On the final iteration, C is 3, S[3] is redefined as 6, and
the test Sf3l = B is not trtte (0); the GEN statement "is skipped. Without the
use of repeats, this example would be:

A

A~4

B=5

S[l] . 4

8[2] = 5

IGener:ate 20

S[3] = 6

GOTO specifies a conditional skip.

Format:

exp

linidi

Evaluatable nonrelocatable expression

Line identifiers defined as labels on lines following
GOTO.

4-21

•

•

•

4.7.3
LNID

4-22

•

•
. .

. . .
Expression exp is evaluated and used as an index to the list of line identifiers.
The line containing the label identified by the indexed line- identifier is. the .

•
next line assembled. FQr example; if exp has value "2, the second line iden-
tifier is the label of the next line to be assembled. If O~ exp> n, where n is
the number of line identifiers, assembly continues with the next line.

Example:

For the following lines of code, since (B-A) *B = 2, the next line
assembled afte.r GOTO is the line identified by the second line identi­
fier,. the line labeled BILL. Lines between GOTO and the line labeled
BILL are sldpped.

• •

• •
I • I

I

LNID inserts a dummy label for line identification purposes. The label has
no value and. is not enter.eel in the ·Meta-Assembler symbol table. As long as
no ambiguity exists, the same label may appear on more than one LNID line,
or on any non-LNID line, or on both LNID and non-LNID lines .

Format:

There is no operand; comments can be entered immediately after the com­
mand without the use of an asterisk.

LNID is particularly useful for defining the range of an RPT, since the use
of normal labels may sometimes result in duplicate symbol definitions.

•

60236400

•

•

t,·-~ I,

• I~ . .

,,-_,

0'

' '
l "

I ~

' I
I

I
'

'/

•

•

•

•

!

4.7.4
RPT AND GOTO
PROCESSING

•

•

60236400

•

•
•

When META encounters an RPT directive, it compresses lines of code ·
within the RPT range by removing comments and redundant blJlllks, and
stores the lines in an internal table of definitions.

In the process of saving the lines of code within the RPT range, the. assem­
bler exa1nines the command field of each line to ensure that the RPT range
does not include an END or FINIS directive. The assembler also recog­
nizes procedure and function definitions (chapter 5) which are within the
r8:Ilge of an RP'I'.

When a procedure or function definition appears within an RPT range, label
field symbols within the procedure or function definition are local to the p_ro­
cedure or function definition and are not considered in _determining the RPT
range.

Example:

..

1 Ir Not end of RPT range

End Qf RPT range

' A GOTO directive may appear within the range of an RPT. The object of the
GOTO may be either within or outside the range of th·e RPT.. If the object of
a pGTO is outside the range of an RPT, the RPT is terminated .

Within a procedure or function definition, the object of a GOTO or an RPT
must be within the procedure or function definition, and must be at the same
level as the GOTO or RPT directive line. (Level of definition is discussed
in section 5. 4.)

Examples:

• • •

,

B is within the procedure definition and
is at the same level as the RPT
directive line.

4-23

•

•

•

4.8
ASSEMBLY
TERMINATION

4.8.1
END

4.8.2
FINIS

4-24

,.
'

•

,

• • •

•

•

I I I

•

•

Illegal; B is not in the procedure
definition. If the procedure is
referenced, the GOTO is terminated
on encountering ENDS .

The directives END and FINIS specify the end of a subprogram and of a set
of subprograms, respectively.

END terminates a subprogram. The symbol in the operand field is optional
but, if preser1t, rnust be a symbol of eight characters or fewer declared as
an entry point in some subprogram. The symbol specifies the symbolic
location at which execution· is to begin.

Format:

FINIS causes termination of assembly. Normally, an assembly is a set of
subprograms, each of which ends with an END directive. The FINIS direc­
tive should follow the END directive for the final subprogram.

Format:

60236400

' ·'•
""'

•

•

..

1

!
'

. . .

.·

. .

·; ' ..

,ii

.
- •;>

. .

! t

,_
;o;

~-

--

- . -

•

,

60236400

•
•

PROCEDURES AND FUNCTIONS 5

Procedure and function definitions are bodies of code resembling sub­
routines but processed during assembly rather than object-time execution.
They provide programmers with a means of conditionally generating
sequences of code. A procedure reference consists of the appearance of
the procedure name in the command field of a statement; the referenced
procedure generates object code each time it is referenced according to
parameters supplied with the reference. A function reference consists
of the function name and its argument appearing in a statement; the
function generates a value or set of values dependent on the argument.

A procedure or function definition begins with a PROC or FUNC directive,
respectively, and terminates with an ENDS directive. The definition must
pre~ede a reference to it.

A functi"n or procedure definition can wholly contain other definitions and
references to yet other definitions. Such definitions are nested. Each
nested definition is considered one ~evel higher than the definition that
contains it. Nesting can occur to a level of 14.-. Levels of nesting are.
discussed more fully in section 5. 4.

Examples of nesting:

Procedure
definition

• • •

• •

1
Function definition
lies totally within
procedure definition.

If the procedure being defined contains a forward reference to a locally
defined symbol, proper data generation cannot result in a single pass.
An optional parameter on the PROC directive indicates a two-pass
procedure to permit local forward references. The Meta-Assembler{ then
makes a preliminary symbol defining pass through the procedure similar to
the first assembly pass of a program.

5-1

,
'

•

•

5.1
DIRECTIVES

5.1.1 I
PROC

5-2

• -----------------------------

META provides directives specifically related to use of procedures and
functions.

A PROC directive declares the beginning of a procedure definition.

Format:

label

setname1

setname2

exp

Optional; if present, label becomes the name of sets
given on NAME lines in the procedure.

Optional; set name that identifies the set in the
command field of the procedure reference. This
setname is in the command field and is separated
from PROC by a comma.

Optional; set name that identifies tht set in the
operand field of the procedure reference.

Optional; if value of expression is nonzero, procedure
requires two passes. Note: This option requires
co1·e for expression buildi11g and causes a reduction in
assembly speed. It should not be used unless the
procedure contains a forward reference.

When defining a two-pass procedure, the user should take care to prevent
the inadvertent doubling of expression values. For the following lines of
code, after a reference to procedure TWO, A has value 1 because it was
initialized to zero each pass; B has value 2 because lit was not initialized
and was incremented once each procedure pass.

Example:

Operand field set has name P

TWO is entry name to procedure

TWO is reference to procedure

60236400

•''

'J

5.1.2
FUNC

5.1.3
NAME

60236400

FUNC declares the beginning of a function definition.

Forn1at:
•

llab I,/, F'UNC, 5 et n,Bmt. ,c; o mme n ts,

label

setname

Optional; if present, label becomes the name of the
sets appearing on NAME lines in the function when the
function is referenced.

Setname becomes the name of a set of parameters
passed to the function.

A function should not include directives that generate code or affect
counters.

Example:

•
•

Begin function FX

End function FX

Set B has two elements,
4 and 5

NAME directives define entry names by which a function or procedure can
be referenced. They must be between the PROC or FUNC directive and its
associatec:' ENDS directive. The label field symbol of the NAME directive
is used as t1'e command field of the statement referencing the function or
procedure. Any number of NAME directives can appear within a definition •

•

5-3 .

..

•

'

'

5-4

Format:

label

set

Example:

• •
•

•
'

Required symbol; an entry name to the procedure or
·function.

Optional set of expressions or sets that are to be
associated with this NAME. The name associated with
this set is in the label field of the PROC or FUNC
directive preceding this NAME. If the PROC or FUNC
label field contains a set name and the operand field
of the NAME directive is blank, the set consists of one
element having a value of 0.

• •

The procedure can contain references to a set named E. When the
procedure is referred to by name ENTERl, elements 12 and I are
assigned set name E as if the following line had been written:

16 I "'5 6 z I I /1?. j It I I

If, instead, the procedure is referred to by name ENTER2, elements
13 and J are assigned set name E as if the following line had been
written:

ts I Ns.577 I ,/,a~ x I I

•

• 60236400
•

'
'

-
'

"--

"

, : . ·:

•
'

'
"

•

•

5.1.4
ENDS

••

60236400

c

•

•

. . .

ENDS terminates a procedure or function definition.
• • •

Format:

When ENDS terminates a procedure- definition, META expects no operand
field entry. However, an asterisk must precede comments .

When ENDS terminates a function definition, exp is either an expression
that defines the function value, a set name for a set of values, or set
elements enclosed by brackets. A function .reference that returns a set or
a set name may be used instead of a subset. That is, to :return a set, exp
must be one of the forms:

•

Examples:

(set) ·

setname

func(set)

• •

• • •

•
•
•
•

. ..
• •

•

•

•

•

•

Begin outer procedure.

Begin inner procedure .

End outer procedure .

Begin first function .

End first function. The
value of the function is
the sum of the first two
values of the calling set.
Begin second function ..

End second function. The
function returns a set of
values rather than a single
value •

5-5

•

5.1.5
TREF

5-6

•

The TREF directive terminates processing of a reference to a procedure or
function definition before the ENDS directive.

Format:

For a function reference, control returns to the statement containing the
reference and passes to it the value or set defined by the expression in the
operand field of the TRE F. Exp is either an expression that defines the
function value, a set name for a set of values, or set elements enclosed by
brackets. A function reference that returns a set or a set name may be
used instead of a subset. That ls, to return a set, exp can be one of the
forms:

Example:

(set)

setname

func(set)

I I I

Terminate Reference
I

I

A reference to IDENT ter1ninates at the statement before the LDA
NAME directive. References to the procedure by names LDA or
STA terminate at the ENDS directive.

60236400
•

. >

~'

- .

" '

·'

•.··

• •

' ..
' .•

..
•• .

' J ..,

•

5.1.6
LIBS

••

60236400

•

•
. .

. . .

..

The LIBS directive enables the user to retireve procedure definitions from
a file. It must not apP.ear within. a procedure or function definition. •

Format:

label

dsi

-
Optional symbol.

Data set identifier of the file containing the procedure ·
definitions. This file, if it is not the system library
file, must have been allocated and opened through use
of MASTER control cards before META executes
(3300/3500 l\1ASTER Reference Manual Pub. No.
60213600). Procedures are searched for by name;
they can be in any order on the file. If no dsi is
given, MET A. uses MM .

Label field symbol of each NAME directive line for
every outer procedure to be retrieved.

Function definitions can be obtained from a file through nesting of
definitions and througl1 externalization (section 5. 4) •

Procedures are stored on the system library by GLIB, the MASTER
_library generation program, and can be placed on some other file through
use of XFER, the MASTER transfer routine (MASTER Reference Manual).
They cannot be on an auxiliary library.

Examples:

The following procedure definition appears in ·a procedure library on
file OSI.

-

•

• • •

• •

•

E •

5-7

•

•

5-8

--~-- --~-~--~~--------,-----....,...---

Procedure Pl is obtained by LIBS as follows:

I · ,I XBS I ,/ I I ,DS.7, I~ "''I I I
After Pl has been obtained, function names Fl and F2 are defined by
writing Pl as a command field entry.

I I .Pi, , I I I I I I I .

A procedure with names A and Bis on the system library, •LIB. -

•
•

•

__,_ _ _i __ J• I !_ ! I I I I

By using the following LIBS directive, both A and Bare defined and
may be referenced. The user needs to specify only the first pro­
cedure name to obtain the entire definition.

I , , ' .ms, , ' . • ,., ,ts' 'I A , ,

If a user has no use for the A entry name, he can save core during
assembly by obtaining only the portion of the definition following the
B entry name.

I · I I :rs I I ,L,' ·"'' XB'" 8 I I

•

60236400
•

~··

' .

,.

'

.·'-

.j

'

> .

•

5.2
DEFINITION
PROCESSING

,

60236400

•

•

..

•

•

· When META encounters a procedure or function definition, it compresses
• •

the lines of code representing the procedure by removing comments and
redundant blanks, and stores the lines in core.

Meta-Assembler removes the NAME lines of outer level procedures and
functions and inserts the labels of these lines into the symbol table. These
labels are procedure or function entry names, and contain the location of
the definition and the values of any sets associated with the NAMEs.

Entry names of inner definitions are not processed. Meta-Assembler
stores these in the procedure definitions area as part of the lines of code
comprising the definition. Wl1en procedure or function definitions are
nested, entry points to the inner definitions are not known until the outer
procedure is referenced. META does not save outer level PROC and
FUNC lines, but instead creates a PROC or FUNC symbol table entry for
each such line .

When an outer procedure or function is referenced, META processes
only PROC, FUNC, NAME, and ENDS lines of the next level of procedures
or functions. Unless the inner procedure name is externalized (section
5. 4) subsequent reference to an inner procedure may occur only within the
next outer procedure.

Each procedure .and function definition may contain several NAME
. .

directive lines. The position of a NAfy!E directive determines the first
line of code to be processed when the procedure is referenced.

Example:

• • •

If the procedure is called by name X, the first line of code processed
is: ·

•

5-9

•

'

5.3
REFERENCING

5-10

•

If the procedure is called by name Y, the first line processed is:

~ ! . lla6F.. I a I I I I I I I I 1

The position of NAME directive lines within a procedure affects LIBS
directive processing. If the following line is written the entire pro­
cedure is retrieved from the file.

, , I :r85 I .1, I c1,s,; I , 'I lo I I

If LIBS is written as below, the only line preceding the NAME line
with label Y retrieved is the PROC directive line.

I · 1 185, , ,l , / ds,j , / 'I Y, , ,

lie,.:&.~r to ~.proce.i.W·, wrtte::!IU!' labe-?'or in~·.A:ffiE.'dtfecftViltffnif;!ln the
'tlcfirlitio1i as a con1nia11d. The label field ca.1 be blur.!;: or can contain a
symbol that is assigned the value of the current location counter. To
su1 . ly parameters to the procedure, place a set in the ope ran ! field of the
procedure call line, append a set to the procedure name in the command
field, or do both. Within the procedure definition, the sets are referred to
as if they were defined by NSET directives. If set names are provided in
the command and operand fields of the PROC directive or the operand
field of the FUNC directive and the corresponding field of the procedure or
function reference is blank, the set used consists of one zero element.

Example:

When the procedure is referred to by name ENTER, elements A, B, $, ·
[C-3, 5) are associated with name JOE as if the following line had been
written.

60236400
•

.

.

\

z-

'
'
\

'
' '
'

" '

' "
,

,

"
,.

, ' J ..,

. .

. ,

,

..

•

•

60236400

•

•

•

JOE [l) refers to A, JOE [2] refers to B, JOE [3] refers to the
value of$ at the time the reference occurs, and JOE [4] consists
of a. subset of two elements, C-3, 5. .

Set X, Y has set name Mand is referred to as if the following line had
been written.

Thus

JOE [3) = $

JOE [4, 1) = C-3

M [2] = Y

The label appearing on the PROC directive line assigns a name to the set
in the operand field of the NAME line. In the preceding example, E is the
set 12,I.

To refer to a function, write the label of a NAME directive appearing in the
fu11ction definition followed by an argument enclosed in parentheses. A
ftu1ctio11 reference n1ust include the parentheses.

Exa1111Jle:

• •

EGtA

Filli I I. I I I I I I I 111111111

I I I

In the above reference, FU [1] is 15 and FU (2] is 4; A has value
(15 t- 4 - 1)/4. If the reference had beenlCQUOT(), the set FU
\vould have been a single element set with value of zero and would
have been illegal because FU [2] is a divisor with value O •

Paran1cters arc referenced \vithin a function in exactly the same way as
tl1C)' are rcfcre11ccd \\'itl1in a procedure .

A reference to a ft111ctio11 that returns a value may appear as an operand in
a11 ex1Jrcssio11. Reference to a ft1nction that returns a set may appear any­
wl1ere a set 11an1c n1a)' appear.

•

15-11

•

•

•

5-12

-.

When a procedure is referred to, META for1ns as many as three sets in
the symbol table. The set in the operand field of the procedure reference
line, the set appearing in the command field of the procedure reference
line, and the NAME directive set associated with the procedure reference.

The set in the operand field of the procedure reference line is evaluated
and entered in the assembler symbol table. Its set name is the symbol
that appeared in the first operand subfield of the PROC directive line for
the procedure. The level of definition of the set is one greater than the
level in effect for the procedure reference line.

A set appearing in the command field of the procedure reference line is
processed in the same manner as the operand field set of the procedure
reference line. The name of this set is the entry in the second subfield
of the command field of the PROC directive.

The NAME directive set associated with the procedure reference is
treated differently. At the time of procedure reference, the elements of
the NAME directive set are already in the assembler symbol table but have
no set name. META forms the NAME directive set in the assembler
symbol table by copying the elements of the NAME directive set from one
point in the symbol table to another and by assigning thf..m the set name
(tbe·symbolfrom the label field of the PROC directive line). The level of
defi11iiion is the same as for the other two sets previously described.

When MET A encounters the ENDS line for the procedure, it removes local
symbols and sets from the symbol table. Externalized symbols are saved.

Meta-Assembler processes Imes of code between a NAME line and a TREF
or an ENDS line as if these lines appeared on the source input file. The
lines are read from core storage rather than from the source input file.
When there is nesting of definition, ·it also reads PROC, NAME, and ENDS
lines from core storage. Again, processing is similar to that for lines
on the source input file. Information is extracted from the first encountered
PROC line and all associated NAME lines; other lines are skipped until a
corresponding ENDS line. Had these lines been on the source input file,
the assembler would have saved them. However, since the lines are
already in core, it is unnecessary to save them again •

80236400
•

-, ..
'

·'; .
"

'i
, ,

')

'

•

•

•

5.4 .
LEVELS AND
LOCAL LABELS

•

•

60236400

•

..

•

•
•

META allows nesting of function and p~ocedure. references.as well as
nesting of definitions. A definition can contain a reference to another
procedure and, within that procedure, there can be a reference to still
another procedure. Nesting of references, as with nesting of definitions,
can continue to 14 levels .

. Meta-Assembler recognizes 16 levels of symbol definition. Symbols
defined at a given level are always available at the given level and all
higher (inner) levels, but cannot be referred to at lower (outer) levels.

Symbols external to the program (i. e. , those appearing as operands in an
EXT directive) are defined at level 0. Symbols defined in the.program but
outside of procedures or functions are at level one. Symbols defined within
procedures or functions are at level two or higher, the· level being raised
by one for each nesting of the reference •

. Except for labels of NAME directives, which are available to the next
outer level, labels within a procedure or function definition are local to the
procedure or function; they are not available to outer procedures or to the
program.

To make a label defined within a procedure or function available outside
that procedure or function, the programmer can append one or more dollar
signs to the symbol. Each dollar sign lowers the definition of the symbol
one level to a minimum level of 1 •

Examples:

,

Define A one level lower.

Define B two levels lower •

Define P[1] one level lower
(see section 6. 5 f9r·SYM).

Thus, by lowering the procedure level of a symbol definition, the definition
is available at a lower level outside the procedure or function.

,

5-13

•

•

•

5-14

.. --·--------------

Example:

In the following example, procedure C is defined at level 2 when
referenced by the main program (second line from bottom). Its
entry name (C) is known at levels 1 and 2. Within C, a call to
procedure A defines A one level higher (level 3) causing its entry
name (A) to be known at levels 2 and 3. Label E is local to pro­
cedure A. Label B is lmown at levels 1, 2, and 3. Label D is
lmown at levels 2 and 3. Consequently, labels D and E are not
known when they are referenced at level 1 by the GEN directive
following the reference to procedure C. If the reference were to
A instead of C, A would be defined at level 2 making labels B and
D available to the GEN directive.

• •

• • •

A lmown at levels 3 and 2

E local to level 3 ·

B known down to level I

D known at levels 3 and 2

B,D, and E all lmown

c known at levels 2 arvl 1

Level 2; E not lmown

Level 1; C known

Level 1; D and E not lmown

60236400
•

g . . -

•

'

-
'

;_.. -·

. ~

·.· ., J

' ~

•

6.1
RELOCATION
(REL)

••

60236400

•

ATTRIBUTE FUNCTIONS 6

•
. .

•
• •

In the process of assembling source programs, Meta-Assembler constructs
tables of information about elements of the source program. Attribute
functions provide the user with info11mation about expressions and sets.

· The implicit attribute of a symbol or a set element is its value. Within~

Meta-Assembler, the value attribute of a symbol is synonymous with the
symbol; no fu1~her notation is needed to obtain that infor1nation.

Example:

Let A and B be defined as follows:

Within META, A*B and 3*4 are identical expressions .

Attribute functions are used to obtain information about attributes other
than value. As witl:i a symbolic reference, an attribute function reference
.results in a value. To refer to an attribute function, write the attribute
name followed by an. expression or set enclosed in parentheses. An
attribute function reference can be an operand in an expression.

•

The relocation attribute function, REL, returns value zero if the expression
within the parentheses is not a value or is an absolute value. If the expres­
sion is relocatable relative to a control section origin, REL returns the
internal location counter designation (1-15) of the control section containing
the expression.

Example:

If Ai~ in control section using location counter 1, go to C.

•

6-1

•

•

6.2
MODE
(MDE)

8-2

Assume the program contains only one program control section and that B ls
an expression in that section.

REL(B) = 1

REL(l5) = 0

The first program control section is always assigned
location counter 1.

The argument is absolute.

The mode attribute function, MDE, returns the mode of the argument.

Mode

0

1

2

3

4

5

7

9

10

11

12

Type of Expression

Not a value; for example, a set or function name

Integer (decimal or octal) value

Real- or floating-point value

BCD character string, right adjusted

BCD decimal integer

BCD character string, left adjusted

ASCII character string

Relocatable word address (includes literals, control
section names, and special character$)

External word address

Relocatable byte address

External byte address

Examples: Let A, B, and C be defined as follows.

D[l) = MDE(A) = 2

D[2] = MDE (B) = 1

D[3) = MDE(C) = 4

•

8023&&00

· .
•

·-·.

·''

'
'f

>

'

'
~-,

'

.
'

:;1

.

. ,

.
' ~i

..

4-1·

•

•

6.3
NUMBER OF
ELEMENTS
(NUM)

•

60236400

..

•

•
•

. . .

• .
NUM returns the number of elements in a set. If the symbolic item is not a
set, NUM returns value O.

Examples: Let A and B be defined as shown •

NUM(A) = 3 Set A has three elements.

NUM(A[l]) = 0 A[l] is a value, not a set.

NUM(A[3]) = 2 A[3] is a set of two elements.

NUM(A[3, 1]) = 0 A[3, 1] is value 7, not a set.

NUM(B) = 0 B is not a set.

k:1 I ~~4 I I I I I I

NUl\i(C) = 1 Set Chas one element (zero).

The following example tests for number of elements in a set and tests
eleme11ts of a set for subsets.

~·

B - ? ; /A has 3 elements.

Test each element I of A .

.+-J......1.-~:!U :..u~L-..L..-L.I.J¥..L..-......i< :U.Ji..l.o~~~~_j_JL...L. Exit to E for\ A [3] .

•

• •

•

J,>flJ.T I

•

E = 2; Subset A[3] h~s
2 elements.

Test each element of
subset for subset .

. 6-3

'

6.4
SIZE OF DATA
(SZE)

- - ------- ------------

SZE returns either the number of object machine bytes needed to contain
the value of an expression or the number of characters, depending on the
mode of the expression. If the item is not a value, SZE returns value
zero. SZE considers an address to be a one-word value.

SZE returns values depending on mode.

Mode

0

1or2

3, 4, 5,
or 7

9, 10, 11
or 12

Examples:

Size

Zero

Number of bytes

Number of characters

One word expressed as a byte count

. . .

Let A, B, c, D, and· .. E~be.fiaed as.;~own for an object computer
word size of 24 bits and byte s~e of 6 bits.

,

SZE(A) = 3 Three characters

SZE(B) = 8 Two words or eight bytes

SZE(C) = 4 One word or four bytes

SZE(D) = 4 One word or four bytes

SZE(E) = 0 E is a set, not a value

•

60236400

•

> .

(:.;"

'
'~.
'· 1
'
' .,

.
" ,

' 6.5
SYMBOL
(SYM)

. •

1 • ---
'
,

•

60236400
•
'

•

•

. . . .

- .
SYM causes the value of the argu_ment expression to be treated as a synibol •

•

A SYM attribute function reference can appear in the label, command, or
operand field. By using SYM, the programmer creates a symbol which
is the value of the argument expression. The assembler represents the
symbol as either 24 or 48 bits.

One use of the SYM attribute function is to refer to a symbol that is other­
wise illegal. SYM can also be used for symbol concatenation.

Another use is to move a symbolic parameter into any field of a procedure
or function. In this way, symbols supplied as parameters can be defined
within a procedure or function.

Examples:

I Defines AAAA

Redefine
AAAA

Defines 2. 5

The following example illustrates symbol concatenation. It generates
symbol XY by scaling parameters X and Y into appropriate bit positions to
form the value of the argument expression.

•

•
• •

• •
•

•

I I

'

•

6-5

•

I I

I

.J

'

6-8

•

A reference to the symbol QSQ. XYZ is ordinarily illegal because of the
decimal point. It can, however, be referred to through use of the.SYM
attribute.

A reference to a procedure can be a SYl\f-defined name

• • •

• • •

.SYM(p,r.1JJ. er,1.1J , , , , ,

I

Procedure has
SYM-defined name

End inner
procedure

End definition

JFR reference

The above code causes the procedure J FR to be interpreted as if it had
been written:

• •

•

I I I I I I I I

I

Begin JFR

End JFR

Refer to JFR

60236400

,-'~
~

;,

'

6.6 .
WORD ADDRESS
(WRD)

..

60236400

After the inner reference to procedure AB, ·the EQU line becomes:

las$$ I EQU 1·$ I,,

If the mode of the argument expression is either 9 (word) or 11 (byte),
WRD returns the value of the argument as a word address. If the mode of
the argument expression is 12 (external byte address), WRD changes the ·
mode to 10 (external word address). If the mode of the argument expres­
sion is not 9, 10, 11, or 12, WRD returns the argument expression
unchanged. If the argument expression is a byte address that does not
correspond to a word address, truncation occurs.

Examples:

IComputer word 6 bits per byte,
four bytes per word.
A has mode 11, value 0.

AA has mode 9, value 0.

B has mode 11, value 4.

BB has mode 9, value 1.

C has mode 9, value 2.

CC has mode 9, value 2.

D bas mode 1, value 10.

DD has mode 1, value 10.

E has mode 11, ·value 12.

F has. mode 11, value 13.

/FF has mode 9, value 3 truncated.

G has mode 10, value 0.

GG has mode 12, value O.

GGG has mode 10, value 0 .

6-7

6.7
BYTE ADDRESS
(BYT)

8-8

If the mode of the argument expression is 9 or 11 (word or byte), BYT
returns the value of the argument expression as a byte address. If the
mode of the argument is 10 (external word address), BYT changes the
mode to 12 (external byte address). If the mode is not 9, 10, 11 or 12,
BYT returns the argument expression unchanged.

Examples:

Computer word 6 bits per
byte, four bytes per word.
A has mode 9, value O.

AA has mode 11, value O.

B has mode 9, value 1.

BB has mode 11, value 4.

C has mode 11, value 8.

CC has ~ode 11, value 8.

D has mode 1, value 10.

DD has mode 1, value 10.

:Rias mode .19.~; valua;O_..;,;,
EE has mode 12, value 0.

60236400

,··~

"""'

. 7.1
· CONTROL CARDS

7.1~
$JOB

60236400

PROGRAM EXECUTION

META can be called either by a MASTER task name control card or by a
task already in execution.

7

wqen called by control card, META is loaded and placed in multipro­
grammed execution as soon as its clas~, core, and file requirements can
be met. When called by ·a CALL macro, a copy of META is loaded, if the
job making the call does not already have a copy of the task. If it has a
copy, the call is queued; that is, the caller must wait for the existing copy.
Since META reinitializes itself, a job may make multiple calls to the Meta­
Assembler. Parameters ordinarily specified on a META control card
(including parentheses) are passed as secondary parameters of a CALL
macro. For use of CALL macro, see MASTER Reference Manual.

When the object deck is to be executed, it must be called by a task name
control card or another task. The job monitor then calls the loader which
loads relocatable binary information, links independently assembled sub­
programs, and loads and links library routines refer~nced by the loaded
program. The program then executes multiprogrammed with all other
active tasks .

Assembly of MET A source programs under MASTER and execution of
. 3300/3500 binary object decks require MASTER.control cards id_entifiable
by a $ in column 1 (except for the end-of-file card). The name of the
control card followed by any necessary parameters begins in column 2 ..
The name and parameters must be contained on an 80-column card.

MASTER control cards optionally accompanied by source and data decks
are read serially from the input card reader. Cards required. for META
jobs are described in sections 7. 1. 1 through 7. 1. 5.

A JOB card must appear in a job deck either as the first card or, if a
DffiECT card is used, as the second card.

rJOB, c, 1, tt ,1,p

7-1

7.1.2
$SCH ED

'l-2

c

i

tl

l

p

Example:

BCD account number; required

BCD job identifier; required

Time limit in minutes; optional

Printer line limit (1-99999); optional

Punched card limit (0-99999); optional

$JOB, 639, DJ, 15, 150, 100, COMMENTS

A SCHED card, immediately follows the JOB card in the job deck and
provides the system with core and scratch mass storage requirements.

rSCHED, CORE=qp, SCR=seg, •..

0th r SCHED card parameters, not normally required by the META
assembler, are described in the MASTER Reference Manual.

CORE=qp Estimate of maximum amount of core, in quarter
pages, required for assembly or execution, w~ichever
has the higher core requirement. The estimate for
the MET A assembler is a minimum of 32 quarter pages.
Add four quarter pages if MASTER mnemonic instruc­
tion set is required and allow for any other procedures
or functions.

If the loader determines that the estimate is below that
required by the job, the job is terminated with a
message on the OUT file.

When the CORE field is omitted, qp is set by an
installation parameter.

60236400

~··

7.1.3
$META

•

60236400

SCR=seg

•

Number of segments of mass storage scratch area
required by the job. Th~ segment size is determ~ed
when the operating system is installed.

If the length of a segment is 10, 000 words, the file for
executable output (usually LGO) requires roughly one
segment for each 400 source statements. Normally,
LGO needs only one segment.

META uses. at least one and sometimes three system
scratch files in addition to files indicated on the MET A
card. All are in standard MASTER blocked format
with a block size of 1280 characters. META always
I uses a file with the dsi INT for source card images of
the subprogram being assembled.. The SCR field mq.st
schedule sufficient segments for this file to contain the
largest subprogram or a set of subprograms to be
assembled.

If the X or F option is requested, META uses a scratch
file having the dsi BIN. Normally, one segment is
sufficient; the file contains most of the binary output
for one subprogram.

If a cross reference table is requested, META writes
reference information on a scratch file with the dsi
INTP. Normally, one segment is sufficient for INTP.

If the sum of the mass storage requirements indicated
by the JOB card line and punch limits and the SCR and
ABORT requests exceeds the storage reserved for
these files, the job is not initiated.

When the SCR. field is omitted, ·seg is set to an
installation parameter .

The MASTER task name control card that causes META to be called, loaded,
and executed (multiprogrammed) has the following format.

~META(p1, •••• , Pn)

7-3

The optional parameters, Pi, are separated by commas and may appear in
any order within the parentheses. Parameters have the format:

assembly option = dsl

or

assembly option

The assembly options are character strings, beginning with I, L, X, F, P,
or R. The dsi's are MASTER data set identifiers of 1-4 alphanumeric char­
acters; 0000 may not be used for a dsi.

The options, and the data set identifier assigned for each if none is given on
the META card, are listed below:

Option Significance dsi

I Source input INP

L Lista.hie output OUT

x Load-and-go output LGO

F Load-and-go output with
forced execution LG<>

p Punchable output PUN

R Cross reference table Same dsi as for L
(selectable only in con-
junction with L)

The X and F options are mutually exclusive. If the X option is used and
assembly errors occur, META issues a SUPPRESS request (MASTER
Reference Manual) so that the object program is not executed. Under the
X option, assembly errors do not prevent generation of the executable out­
put, just its loading and execution in the same job. The F option causes
execution of the 3300/3500 object program despite assembly errors.

The Meta-Assembler source deck can be on the standard input card reader
(INP) or a file, such as a magnetic tape file, specified by the programmer.
If it is on the card reader, the MASTER input preprocessor transfers the
deck from the card reader to the INP file. The programmer bas the option
of bypassing this transfer by placing a DmECT card in front of bis deck.

MASTER either accumulates Meta-Assembler printer output on the mass
st.orage standard output file (OUT) for automatic post-job processing, prints
output directly during job execution, or places the output on some other file
specified by the user and for which printing is not automatic. .

60236400.

~

7.1.4
TASK NAME

•

60236400

Similarly, MASTER either accumulates .Meta-Assembler binary output on a
punch file (PUN) for automatic post-job punching, punches output directly
during job execution, or places the output on some other file specified for
the user and for which punching is not automatic •.

For all output options, META assigns a system scratch file if the user does
not specify either a standard file (OUT• PUN, or LOO) or a permanent file.
All scratch files are automatically released at job end. The SCR parameter
on the SCHED card must allow for all scratch files •.

Use of permanent files is described in ihe MASTER Reference Manual~

Example:

rMETA(LIST, XCUTE, PUNCH)

MET A is loaded from MASTER library file *LIB. Source statements
are read by META from the INP file. Statements and assembly list­
ings are written on the job OUT file and automatically printed. The
punchable output is written on the job PUN file and automatically
punched." Executable output is written on the u;;-o file.·

rMETA(IN=SRCE, LIST=OUT, FORSX;(}()GO)

META is loaded from MASTER library file *LIB. It reads source
statements from file SRCE. Printer output goes to the OUT file and
is automatically printed. The job does not have any punch .output.·
Executable output goes to user file GOGO. Because of the F option,
the program on GOGO can be loaded and executed des·pite errors.
occurring during assembly.

A task naIDe control card directs MASTER to call and load the object-time
.. program from the specified file and to begin execution of the task.

If the object-time program is to be executed following assembly, a task
name card of the following form must follow the source deck (if it is on the
standard input file) or the META card (if the sourc~ deck is elsewhere).

7-5

name

dsi

1-4 alphanumeric characters; name is required.

dsi of an opened file from which the named task is to be
loaded. When the dsi is zero or the field is omitted,
MASTER looks for the task on the system library. Nor­
mally, dsi is LOO.

For execution of a previously assembled program, the task name card for
the object deck immediately follows the SCHED card. The object deck fol­
lows the task name card or is on the named file.

7.1.5
END-OF-FILE A job is terminated with an end-of-file card characterized by 7, 8 punches in

columns one and two. Columns 3-80 may contain comments.

88 EttD Of" F.iLE
I • l f I s t 1 I I I " 11 1J " 1s " n • it 20 zi u u H zs 8 n a a » " Jl D J4 .n s 11 • 11 " .. u u tt .s " n 41 .. • 51 v u ,. u 11 sr • y •I

I I I
00000000000000000000L~ooooooooeooooooooooooooeooooeoooooooooooooooeoooo~o111111e
123451 '''~" UMOMU••a~nnHnnnnn•~nUM~•»•M•auu~G414141ft9MUU~HYUMHUMUUMa"PUff•nnnMn•n•n•

I I I II I I I I I I I 1 1 1 11 1 11 111 111 11 I 1 1111111111 I 1 1 11111 111 111 1 I I II 111 I 11111 I I 1111 : 11 111

222L2222222222222222222222222222222222
12J•Sllllq~~Q .. ft1SllUWM~nnunnnnn~~UUH~•»•H•auuMU41U41ftW~U"~"Y"YHNMU~Ma•P•u•nn~~n•n•••
333:33333333l3333333333333333l33333333333333333333333333333333333l33333333333333

44444144
lll451Jl9~11~U~~~"·"~~nuunAnan~~nnHn•»•H•~U~MU~~"••MUU~U~UMUAMUUMaUPMU•nnnMn•n•••

553ll5555555Sl55

6SS6666ll6l666666666666666666666666666666666S66666666666666666666666666666Sll661
IZJ451Jll~HUUMft•»••n~nnu~nnnn•n»UHHX»•HQaUQMU•U•d9WRUMH~UKHUAUUM••P•U•nnnwaan•••

1111 7 1 7 1111111111 7 111111 7 1 7 7 1 7 7 1 7 1 7 7 7 1 7 111 7 1111111111111111 7 1 ; 11 7 111111111111111

111 ~ 11 111 I I 11 11 11 8 1111 I 111 I I I 8 I I I I 1111 I 111 11 I 8 I I 11 111 I 11 1111 1111 ! I 1111 I 111 I I I I I I
•zJ•~•r•tNnuUN6•n•~n~nnunnvnn•~»»Mn•n•n•aaa~u•u•••MUUM~~P~HMANmM••~•••nnnwaan•••

99999999999l99999999999999999S999999999S99
122•1111t~nuuMa•»•Mnnu~unnnnnn~u»Hn•n•n•auuququ•ow~uu~H~PWMUANDMHMPMM•nnnM~•n••~

~~ -

7-8 60236400

7.2
SAMPLE DECKS

..

. "'
60236400

The following sample deck structures illustrate the use of MASTER control
cards in job decks. ·

Assemble, list, and execute

MASTER loads
assembled pro­
gram from LGO
file and executes it

77
88

DATA

$MTAP,LGO

FINIS

(SOURCE SUBPROGRAMS)

$META(LIST,XCUTE, PUNCH)

$SCH ED I CORE=32' SCR=lO

$JOB, 73,JOB2, 10, 5000, 1000

7-7

'1-8

Assemble and list

77
88

$META(I=SRCE, L,X=BEN, R)

$*DEF(U, W,BEN,607,,,, ,0)

$*DEF(U, W,SRCE,607)

$SCHED, CORE=35, SCR=lO, 607=2

$JOB, 32EB, 160A, 5

This job does not\include execution of an object deck because the source pro­
gram on file SRCE contains a UNIT directive describing a computer system
other than the 3300 or 3500. Output is to permanent file BEN. In this exam­
ple, SRCE and BEN are on magnetic tape. For use of 607 parameter on
SCHED card and for use of *DEF cards, refer to the MASTER Reference
Manual.

80238400

..

''-'
60236400

·Execute only

ELD

77.
88

(DATA)

IDC (BINARY OBJECT PROGRAM)

$PROG,INP

$SCHED, CORE=l2, SCR=2

$JOB, 6178,JOBX, 3

Binary object
program begins
with me and ends
with ELD.

This example illustrates execution of a 3300/3500 deck assembled
previou~ly by MET A:·

7-9

f ~10

List only

77
88

FINIS

(META SOURCE SUBPROGRAMS)

$META(L)

$SCHED, CORE=32, SCR=lO

$JOB, 71568,SMITH, 10, 1000

This job assembles the source deck but produces only a listing as output.

80236400

(j.·

8.1
LIST FORMAT

60236400

MESSAGES 8

When the L option is selected on the META control card, META generates
list output. Each page of list output is in the following format:

META/MASTER VER n.n jtitle (optional1 date PAGE

source
s::::

word address object computer source
statement
number

title

date

(1)

"'O
0
0
M
0
M
$-1
(1)

0
•.-4
~

0
(1)
UJ

s::
0

•.-4

1\1
0
0 -(1)
J-1

source statement number

error code

relocation section

c
word adQress .

byte position

operand relocation ·

Object computer word

source statement

s::
0 word statement

•.-4

1\1
s:: 0

0
0 -•.-4 (1)
~ $-1 •.-4
11.l "'O 0 c 0. cd
(1) M
~ (1)

s 0..
0

Chara~ters supplied by TITLE directive.

Date of computer rnn.

Position of source statement in the source
deck (00000-~9999).

Code if source statement is erroneous
(section 8. 2).

Control section (00-15) containing object com-
puter· word. ·

Address of object computer word. .
On byte-oriented source lines, position of byte
in word from left to right. 00-n, respectively,
where n is the number of bytes per word.

Control section (00-15) containing operand; X
indicates operand is external symbol.

Object computer word generated by META (3-16 -
octal digits) .

1-80 characters of source input line, including
sequence number if provided.

8-1

Example:

META/"-'STER YER 1.0 09/06/68 PAGE
00001 01 00000000 00 LIBS l"*Ll8,.,JDENT
00002 01 00000000 00 IDENT MTIY

META/i-ASTER YER 1.0 FUNCTJIJf DIRECTIVE TEST 09/06/68 PAGE
00003 01 00000000 00 TITLE ,.FlllCTIOll DIRECTIVE TEST,.
00004 01 00000000 00 ENTRY 8E&IM
00005 01 00000000 00 EXT UIC
00006. Sl AJNC S2
00007 FUNl llAt£ 1,4
00008 fUN2 llAt£ 2.s
00009 FUN3 lfW - 3,6
00010 ENOS i1[2] + S2[2] * (52[1] + S2[3]), 51[1]
00011 01 00000000 00 8EGIM WP

01 00000000 00 01 01000000
00012 01 00000001 00 EIU 0.1

01 00000001 00 14100000
00013 01 00000002 00 ENI FUNl (1,2,3)

01 00000002 00 14000014
00014 01 00000003 00 DIA n

01 00000003 00 01 14600034
00015 01 00000004 00 JSE 24.1

01 00000004 00 04100030
00016 01 00000005 00 EllA TIF ·

01 00000005 00 01 14600042
00017 01 00000006 00 RTJ RESULT

01 00000006 00 01 00700024
00018 01 00000007 00 ENI o.i

·01 00000007 00 14200000
00019 01 00000010 00 £111 FUll2(3, 1,5)

01 _ ®OC!.i!J)lO Ol> J•5 Q 00020 01 00000011 00 ENA T2
01 OOOOOOl l 00 01 141100050

00021 01 00000012 00 ISE 48,2
01 00000012 00 04200060

00022 01 00000013 00 EM T2F
01 00000013 00 01 14600056

00023 01 00000014 00 RTJ RESULT
01 00000014 00 01 00700024

00024 SETl llSET 2,0,3
00025 01 00000015 00 ENI 0,3

01 00000015 00 14300000
£- ENOS S1[2] + 52[2] * (S2(1] + S2[3]), 51(1]

00026 01 00000016 00 t.111 FUll3(SETI)
01 00000016 00 14000000

00027 01 00000017 00 ENA T3
01 00000017 00 01 14600064

00028 01 00000020 00 ISE 30.3
01 00000020 00 04300036

00029 01 00000021 00 EM T3F
01 00000021 00 01 14600072

00030 01 -00000022 00 RTJ RESUlT
01 00000022 00 01 00700024

00031 01 00000023 00 WP,I 8EGIM
01 00000023 00 01 01400000

00032 •
00033 01 00000024 00 llESlLT WP $

01 00000024 00 01 01000024
00034 01 00000025 00 SWA RESULTI

Q.

60236400

8.2
ERROR CODES

•

60236400

Meta-Assembler flags each detected error with a single-character error
code and 3 asterisks on the line of the source. statement in error.

C***

D***

E***

F***

I***

N***

R***

S***

T***

U***

Meaning

Common error. An attempt was made t.o assemble information
into numbered common.

Double definition. 1) A symbol has two values at the same level,
or 2) A subprogram that dQes not contain a UNIT directive. con­
tains more than one SECP directive.

Expression error. The expression is syntactically correct, but
an error, such as an illegal combination of modes, exists.

Forward reference error. A forward reference appeared in an
expression which must be evaluatable.

Illegal instruction. The command field contains a symbol that
is neither a directive nor the name of a procedure or FORM.
The command field contains a misplaced directive.

Nesting error. More than 14 procedure levels or six RPT nests
were encountered, or an RPT, procedure, or function is im­
properly nested.

Relocation error. The relocation associated with an expression
is neither absolute, nor singularly positive, nor singularly
negative, nor an external plus or minus a constant.

Syntax error. The syntax is unrecognizable or illegal. For
example, a symbol has more than 12 characters.

Trtlncation error caused by 1) A value larger than the receiving
field can accept. Note: No error is flagged when all the .
truncated bits are the same as the most significant bit (sign)
of the value placed in the field. 2) A word-oriented statement
following a byte-oriented statement. 3) Mixing of word­
oriented and byte-oriented operations.

Undefined symbol. An operand contains a reference to a symbol·
that is neither defined in the program nor declared as external .

8-3

8.3
SUPPLEMENT ARY
INFORMATION

8-4

~-

Following the source program listing, META provides supplementary infor­
mation as a standard part of the Meta-Assembler output listing. The supple­
mentary information is identified as follows:

Message

LITERALS

CONTROL SECTIONS

EXTERNAL SYMBOLS

ENTRY-POINT SYMBOLS

UNDEFINED SYMBOLS

MULTIPLY-DEFINED SYMBOLS

FIRST 25 ERROR LINES

NUMBER OF LINES WITH
DIAGNOSTICS

Example:

CONTROL SECTIONS
SECP REAL

EXTERNAL SYMBOLS
UIC

ENTRY-POINT SYMBOLS
sssssss

UNDEFINED SYMBOLS
MULTIPLY-DEFINED SYMBOLS
FIRST 25 ERROR LINES

10 11 12

Meaning

Identifies the list of literals. The loca­
tion and control section designator (0-15)
are given for each literal.

Begins new page. Identifies list of con­
trol section names, octal length of section
in words, and location counter designator
(0-15). Each entry in the list begins
with SECA, SECP~ or SECD, indicating ·
the type of control section.

Identifies the list of external symbols.

Identifies the list of entry-point symbols.

Identifies the list of undefined symbols.

Identifies the list of multiply-defined
symbols.

Identifies line numbers of first 25 lines
flagged with error codes. If the line in
error is not a source input line and
thus has no line number, the number of
the most recently encountered input line
is used.

Identifies count of the number of lines
flagged with error codes.

114

16 18

NUMBER OF LINES WITH DIAGNOSTICS

15

00013

60236400

":

8.4
CROSS REFERENCE
TABLE

8.5.
MESSAGES
ON OUT

..

60236400

META provides the cross reference table if the R option is selected ~n the
META control card. ·If both Rand L options are ·selected, the table follows
supplementary information. This table is identified by the title:

CROSS REFERENCE ,TABLE

The first column gives the address of the directive defining the symbol
given in the second column. Addre'.Sses of references to the symbol are in
the remaining colunms. ·

Example:

CROSS.REFERENCE TABLE

_15 _A

14 .B

.1 _GENT -1

After detecting an error, META writes one of the following messages on the
OUT file for the job.

Message

*~META reque$t E!lROR
code DSI dsi LINE line

Input/output error occurred~ If other than
read error (PICK reject code 04000000 or
050xxxxx), run is abnormally terminated.
Message appears as voluntary abort code
on accounting information as well as in
listing.

request

code

Blocker /deblocker or system:
OCARE request name

Reject code for request:
(Q) for blocker/deblocker .
(A) for system OCARE

dsi Data set identifier for request

line Number of META source in­
put line

8-5

8-6

**META BAD LIBRARY

UMETA FINIS GENERATED

**META ILLEGAL
$META CARD

**META $SCHED MORE
CORE

Examples:

The overlays of META are not in task
directory. Library generation is incorrect.
The run is abnormally terminated and mes­
sage also appears as voluntary abort code.

FINIS directive generated because of end­
of-file condition encountered on source input
file. Execution continues.

$META card contains illegal parameter such
as illegal option or data set identifier. The
run is abnormally terminated and message
also appears as voluntary abort code.

Request for additional core rejected. The
run is abnormally terminated and message
also appears as voluntary abort code. Re­
submit job with more core specified on
$SCHED card.

**META SEXPAND ERROR 30000000 OSI INT LINE 10422

**META PICK ERROR 05000000 OSI INP LINE 00012

60236400

APPENDIX ·SECTION

'"'

CHARACTER SET A

5011
Type of Printer Internal Card

Character Graphic Code Octal Code

A 21 12,1
B 22 12,2
c 23 12,3
D 24 12,4
E 25 12,5
F 26 12,6
G 27 12,7
H 30 12,8
I 31 12,9
J 41 11, 1
K 42 11,2
L 43 11,3

Alphabetic M 44 11,4

"'
N 45 11,5
0 46 11,6
p 47 11,7
Q 50 11,8
R 51 11,9
s 62 0,2
T 63 0,3 (
u 64 0,4
v 65 0,5
w 66 0,6
x 67 0, '1
y 70 0,8
z 71 0,9
0 00 0
1 01 1
2 02 2
3 03 3

Numeric 4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
9 11 9

60236400 A-1

501
Type of Printer Internal Card

Character Graphic Code Octal Code

Blank blank 6C- space
+ plus 20 12

minus 40 11
* times 54 11,4,8
I divide 61 0,1

equals 13 3,8
< less than 32 12,0
> greater than 57 11,7,8

period 33 12, 3_, 8
comma 73 0,3,8

(left r-:irentbesis 74 0,4,8
) right parenthesis 34 12,4,.8
% percent 16 6,8

Special $ dollar 53 11,3,8
;it not equal (apostrophe on keypunch) 1~ 4,8
::s less or equal 15- 5,8
:!!: greater or equal 35 12,5,8
[left bracket 17 7,8

\,j J right bracket 72 0,8,2
t decimal exponent 55 11,5,8

' binary exponent 56 11,6,8
..., NOT 36 12,6,8

semicolon 37. 12,7,8
right arrow 75 0,5,8

I;; identity 76 0,6,8
colon 12 2,8

v OR 52 11,0
/\ AND 77 0,7,8

A-2 60236400

\·

TABLE A-1. ·BCD/ASCII Conversion Table

6-bit 8-bit Binary Status of ASCII Character
BCD Code ASCII (bit positions)

Character 7* 6 5 4 3 2 1 0

00 0 0 0 1 1 0 0 0 0

01 1 0 0 1 1 0 0 0 1

02 2 0 0 1 1 0 0 1 0

03 3 0 0 1 1 0 0 1 1

04 4 0 0 1 1 0 1 0 0

05 5 0 0 1 1 0 1 0 1

06 6 0 0 1 1 0 1 1 0

07 7 0 0 1 1 0 1 1 1

10 8 0 0 1 1 1 0 0 0

11 9 0 0 1 1 1 0 0 1

12 : 0 0 1 1 1 0 1 0

13 = 0 0 1 1 1 1 0 1

14 t 0 0 1 0 0 1 1 1

15 & 0 0 1 0 0 1 1 0

16 % 0 0 1 0 0 1 0 1

17 [0 1 0 1 1 0 1 1

20 + 0 0 1 0 1 0 1 1

21 A 0 1 0 0 0 0 0 1

22 B 0 1 0 0 0 0 1 0

23 c 0 1 0 0 0 0 1 1

24 D 0 1 0 0 0 1 0 0

25 E 0 1 0 0 0 1 0 1

26 F 0 1 0 0 0 1 1 0

27 G 0 1 0 0 0 1 1 1

30 H 0 1 0 0 1 0 0 0

31 I 0 1 0 0 1 0 0 1

32 < 0 0 1 1 1 1 0 0

33 . 0 0 1 0 1 1 1 0

34) 0 0 1 0 1 0 0 1

35 A 0 1 0 1 1 1 1 0

36 " 0 0 1 0 0 0 1 0

37 ; 0 0 1 1 1 0 1 1

*ASCII bit 7 is unassigned and 0 for all codes.

60236400 A-3

TABLE A-1. BCD/ASCil Conversion Table

6-bit 8-bit Binary Status of ASCII Character
BCD Code ASCII (bit positions)

Character 7* 6 5 4 3 2 1 0

40 - 0 0 1 0 1 1 0 1

41 J 0 1 0 0 1 0 1 0

42 K 0 1 0 0 1 0 1 1

43 L 0 1 0 0 1 1 0 0

44 M 0 1 0 0 1 1 0 1

45 N 0 1 0 0 1 1 1 0

46 0 0 1 0 0 1 1 1 1

47 p 0 1 0 1 0 () 0 0

50 Q 0 1 0 1 0 0 0 1

51 R 0 1 0 1 0 0 1 0

52 ! 0 0 1 0 0 0 0 1

53 $ 0 0 1 0 0 1 0 0

54 * 0 0 1 0 " 1 0 1 0

55 # 0 0 1 0 0 0 1 1

56 \ 0 1 0 0 0 0 0 ·o
57 > 0 0 1 1 1 1 1 0

60_ Blank 0 0 1 0 0 0 0 0

61 I 0 0 1 0 1 1 1 1

62 s 0 1 0 1 0 0 1 1
63 T 0 1 0 1 0 1 0 0

64 u 0 1 0 1 0 1 0 1

65 v 0 1 0 1 0 1 1 0

66 w 0 1 0 1 0 1 1 1
67 x 0 1 0 1 1 0 0 0

70 y 0 1 0 1 1 0 0 1

71 z 0 1 0 1 1 0 1 0

72 1 0 1 0 1 1 1 0 1
73 , Comma 0 0 1 0 1 1 0 0

74 (0 0 1 0 1 0 0 0

'15 l'- 0 1 0 1 1 1 0 0

76 0 1 0 1 1 1 1 1 -
77 ? 0 0 1 1 1 1 1 1

*ASCil bit 7 is unassigned and O for all codes.

A-4 60236400

'-'

4..J

3300/3500 MNEMONIC INSTRUCTIONS

A 3300/3500 META mnemonic instruction is a procedure reference in which the label field
optionally contains a symbolic address, the command field contains a mnemonic instruction and
modifiers, and ~he operand field contains operands that depend on the mnemonic.

META assembles 3300/3500 mnemonic instructions through the use of three standard sets of
procedures on the system library. The sets are identified through their primary entry names as
IDENT, MONITOR, and BDP.

!DENT includes procedures for the 3300/3500 mnemonic instructions executable in program state,
for the HLT instruction, and for the following 3300,'3<>00 COMPASS/MASTER pseudo instructions.

ID ENT (#•

'
BSS

BSS,C

DEC

DECD

Capabilities paralleling those provided by the following pseudo instructions are available through
Meta-Assembler directives (Chapter 4).

END

FINIS

ENTRY

EXT

EQU

NO LIST

LIST

EJECT

TITLE

B

Of these, TITLE is the only directive that does not correspond to the COMPASS psuedo instruction.

META does not recognize the following 3300/3500 COMPASS/MASTER pseudo instructions.

REM IFZ IFF BCD,C

COMMON PRG IFN ENDM

OCT ORGR DATA LIBM

VFD BCD EQU,C SPACE

IFT MACRO

60236400 B-1

MONITOR

MONITOR includes procedures for assembling 3300/3500 mnemonic instructions executable in the
monitor state only.

BDP provides for assembly of 3300/3500 BDP instructions only.

USE OF LIBS

Before they can be used, the 3300/3500 mnemonic instruction procedures must be obtained from the
library through use of the LIBS directive.

Examples:

MASTER PROGRAM TASK

Program state instructions

All but monitor state instructions

All but BDP instructions

\

A META-Assembler prograin to be executed as a task under the MASTER multiprogramming
operating system must include a copy of the user interrupt control routine (UIC) that provides the
task with an entrance and an exit .. Each subprogram must begin with a LIBS directive.

When loading and execution of the assembled output is called for by the task name card (section
7. 1. 4), the call connects with the UIC routine which contains a return jump to the task primary
entry point. The return address is inserted into the operand field for the UJP as a normal
function of a return jump execution. To obtain a copy of UIC, the program must declare UIC as
an external symbol.

B-2 60236400

{''~ ..

-~

Example:

Call for library procedures.

First subprogram named JOE.

START is the task primary entry
point.

Begin second subprogram named XY.

PROCEDURE SETS

Three ta"Qles present brief descriptions of procedure references and resultant object code assembled
by the ID ENT, MONITOR, and BDP procedure sets. For a complete description of the actual
machine instructions, refer to the 3300 or 3500 Computer System Reference Manual.

Because the 3300/3500 instructions are assembled through procedures, operation code modifiers
must be defined as symbols having values. A reference to each of the sets IDENT, MONITOR,
and BDP, causes the symbols for operation code modifiers to be defined. No other definition
can· be given these symbols. Thus, a group of words is reserved for each set of procedures.

The following list of terms defines modifiers, operands, registers, and nonstandard symbols
that appear in the tables.

In some instructions, the execution address m or r, or the shift count k may be modified by adding
to them the contents of an index register, Bb. The 2-bit desi.gnator b specifies which of the three
index registers is to be used. Symbols representing the respective modified quantities are M, R,

and K.

602364001 B-3

B-4

Term

A

b

B

c
c

ch

cm

D

de

E

EQ

GE

H

HI

Meaning

MONITOR operation modifier: Conversion (alter the characters
transmitted).
Other: 24-bit A register or word count control (or INAC, and INAW.

The b subfield designates an index register. The b subfield may be
represented by a digit; a symbol; or an expression with a nonrelocatable
value of 1 2, or 3.

MONITOR operationlmodifier: Backward read or write.
Other: Index register defined by Bb. ·

Index register flag, M = mt- (Bro) for these instructions only.

Index register flag. If Br= 1 or 3, R = r+ (B1). If Br= 2, R = r+ (B2).
If Br = 0, R = r.

Index register flag. If Bs = 1 or 3, S = s+ (Bl). If Bs = 2, S = s+ (B2).
If Bs = 0, S = s.

!DENT operation modifier: Evaluate address expressionlmodulo2l7-1

00-77g BCD code of search character. The c address subfield may contain
any symbol value, or expression, that represents the 6-bit character code
of the character for which the search is made, 00.s c.s 77 8·

Channel designator for input/output instruction. The ch a<l<lrest:; ::;uLfiel<l
may contain a symbol, value, or ~xpression that results in a _nonre_lo­
catable value O.s ch.s 7.

~

8-bit channel.mask. This address subfield may contain a symbol,
constant, or expression that results in a nonrelocatable value ·0.S cm.s 28-1.

D register

BDP operation modifier: Indicates delimiting character; represented as
right-adjusted BCD .character string (mode 3).

Examples:

48j-bit E register.

Delimiting character is K.

V has mode 3.

Delimiting character is V.

!DENT and BDP operation modifier: Indicates equal.

IDENT operation modifier: Indicates greater than or equal.

MONITOR operation modifier: Indicates half assembly or disassembly.

BDP operation modifier: Indicates (BCR)=Ol2 jump condition.

160236400

£--~ ..,,,,,,,

I

i

INT

k

1

LOW

LR

LT

1.r

ls

m

"-' M

N

n

NE

p

Q

r

R

RL

RNI

s

s

SC

v

60236400

Meaning

IDENT operation modifier: Indicates indirect addressing.

Increment or decrement. The i address subfield may contain a symbol,
constant, or expression which results in a nonrelocatable value from
0 to 7.

MONITOR operation modifier: Indicates interrupt on completion.

Shift count

Field length of block. 0-1773. The 1 address subfield may be a symbol
or an expression which results in a nonrelocatable value from 1 to 1773.

BDP operation modifier: Indicates (BCR)= 102 jump condition.

BDP operation modifier: Indicates left-to-right scan.

!DENT operation modifier: Indicates less than.

Number of characters in field R.

Number of characters in field S.

15-bit word address, first operand, or jump address. The m address
subfield may contain a symbol, $, a constant, an expression, or a
literal.

Actual operand or jump address as modified; M = m+ (Bb).

MONITOR operation modifier: Indicates no assembly or disassembly.

Same as m, second operand address.

IDENT and BDP operation modifier: Indicates not equal.

15 (or 17)-bit P register.

24-bit Q register.

17-bit character address. The r address subfield may contain a symbol,
literal, constant, external symbol, expression, or $.

Actual character address as modified; R = r+ (Bb).

BDP operation modifier: Indicates right-to-left scan.

Abbreviation for read next instmction at. For example, RNI Pt-1 means
read the next instruction at the current location plus 1 of the P register.

Same as r, second operand address.

IDENT operation modifier: Sign e::'\."tension if S present; no sign extension
if S omitted.
other: Same as R, second operand address; S = s+ (Bb).

Scan character

6-bit address in register file. The v address subfield may contain a
symbol, constant, or expression which results in a nonrelocatable value
0 to 6310•

B-5

w

x

y

ZRO

()

Meaning

Page index file address.

Connect code or interrupt mask. The x address subfield may contain a
symbol, constant, or expression that results in a nonrelocatable value
O:s x:s 212_1. .

15-bit operand. The y address subfield may contain a symbol, * or **,
constant, an expression, or a literal.

BDP operation modifier: Indicates (BCR)=O jump condition.

Operation analysis symbol indicating the contents of. For example,
(A) means the contents of the A register.

Operation analysis symbol indicating replace. For example, (MHA)
means replace the contents of the A register with the contents of the M
operand field. · ·

Procedures for COMPASS pseudo instructions precede the tables.

IDENT procedures are grouped according to instruction types as:

Transfers

Arithmetic Opeft.tiens

Character operations

Decisions

Jumps, pauses, and stops

Interrupt operations

No-operation instruction

Shift instructions

Logical instructions

MONITOR procedures are grouped according to instruction types as:

Transfers

Decisions

Jumps, pauses, and stops

Input/ output operations

Interrupt operations

BDP procedures are not divided into subgroups.

B-6 60236400

PROCEDURE REFERENCES FOR COMPASS PSEUDO INSTRUCTIONS

ID ENT sym

BSS m

6023640C

The IDENT procedure names a subprogram and provides control
information for META. The operand field contains a 1-8 character
symbol naming the subprogram. The procedure contains a SECP
directive that places the name on the IDC card of the relocatable
object subprogram deck. The label field is defined as the value of
the location counter.

The subprogram name is not an entry point name and cannot be
referred to within the source subprogram. Each subprogram must
have a SECP directive or IDENT instruction preceding all but the
LIBS, UNIT, or list control directives.

Lines of code following IDENT are assembled, using the location
control counter, until the next SECP, SECA, SECD, or ORG directive.

BSS reserves and labels a block of words in any area. The label field
is blank or contains a symbol defined as the 15-bit relocatable word
address of the first word in the block.

The operand field specifies the number of words to be reserved. It
must contain a constant, a symbol, or an address expression that
results in a nonrelocatable value.

Example:

ABLE

ABLE+ 1 1
12

words

ABLE+ 11

A double asterisk is illegal in the operand field. A symbol in the
operand field must be defined in the label field of a preceding instruction.

A negative operand field such as -0 '2' is interpreted as 0'77777775 '.
META reserves 777777758 words.

If the operand field is in error or is zero, no storage is reserved but
the label field symbol is defined. If the operand field is zero, and a
byte-oriented instruction immediately precedes the BSS, the next
instruction that uses space begins with a new word.

B-7

l

BSS,C m

B-8

BSS, C reserves and labels a block of bytes. The label field is blank
or contains a symbol defined as a 17-bit relocatable address of the
first byte (BCD character position) in the block to be reserved. The
operand field specifies the number of bytes reserved. It must contain
a constant, a symbol, or an address expression that results in a non-

relocatable value.

A negative operand field such as -0 '2' is interpreted as 0 '77777 775'.
META reserves 777777758 bytes.

A zero operand does not reserve space but the label field symbol is

defined.

Example:

23 1

ABLE

ABLE+ 24

ABLE+ 1

..
·'b

25
characters

j
DEC generates one computer word for each decimal value in the operand
field. The label field is blank or contains a symbol defined as a 15-bit
relocatable addr~ss of the first word generated. The operand field
contains values, symbols, or expressions that result in decimal values.

Example:

Generates three words.

· DECD generates two computer words in 48-bit internal floating-point
format for each real (floating-point} value in the operand field. The
label field is blank or contains a symbol defined as the 15-bit relocatable
address of the first word generated. The operand field contains values,
symbols, or expressions that result in real or floating-point values.

<)0236400

TABLE B-1. IDENT PROCEDUHE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

AEU (A)-E47-24 2:, 17 14 00

I 55 16-
23 17 14 00

AQE (A, Q)-E47-00
I 55
17-

EAQ (E47-00)-A, Q
23 17 14 00

I 13-55.

ELQ (E47-24)-Q
23 17 14 00

I 55 11-

ENA y 0-A, then y-A14-00 23 17 14 00

s..c I 14
1

6
1

y
J ~

{/)

s::
~ 23 17 14 s..c ENA,S y 0-(A), then y-A14_00 , 00
E-t I 14 1

sign extended 14 y I
ENI y,b O-Bb; then y-Bb; becomes 23 17 14 00

a no-operation instruction ift I 14 l~b I y I b= 0

ENQ y o-Q, then y-Q14-00
23 17 14 00

I 14 I 1 I y I
ENQ,S y o-Q, then y-Q14-00' 23 17 14 00

sign extended I 14 Is I y I
EUA (E47-24)-A 23 17 14 00

I 55 12-
LCA,I m,b Complement of (M)-A 23 17 14 00

I 24 8bl m I

60236400 B-9

~'
·~ ..

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

LCAQ,I m,b Complement of (M)-A; 23 17 14 00

complement of (M+ 1)-Q I 26 ~lbl m I
LDA,I m,b (M)-A 23 17 14 00

I 20 ldbl m I
LDAQ,I m,b (M)-A, (M+l)-Q 123

17 14 r I 25 Wbl m

LDl,I m,b (M 14-oo>-Bb 123
17 14 00

I 54 13bl m I
LDQ,I m,b (M)-Q /23 17 14 00

S-4 11 21 ~bl m I ~ I

en
§

123 S-4 QEL <Q>:-E2a-oo
\. 17 14 00

E-t .. I 55 I 5 ~
RIS Relocate to instruction state r3 17 14 00

I 55 I o ~
ROS Relocate to operand state

123
1..7." 14 00

I 55 14~

STA,I m,b (A)-M 23 17 14 00

I 40 13b I m I
STAQ,I m,b (A)-M, (Q)-M+ 1 123 17 14 00

1 45 13bl m I
STI,I m,b (B~:_ M14-00 23 17 14 00

I 47 ~lb I m I

B-10 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

STQ,I m,b (Q)-M 23 17 14 00

I 41 ldbl m I
SWA,I m,b (A14-00)-M14-00

23 17 14 00

I 44 ~lb I m ·1

TAI b (A14-oo)-Bb; becomes a no- 23 17 14 11 00

operation instruction if b=O I 53 14blo~
TAM v (A)-v 23 17 14 11 05 00

I 53 l~2 ~ v -,

TIA b 0-A, (B)-A14-00; 23 17 14 11 00

J-r if b=O, 0-(A) I 53 ~lblo~
<J)

<t-4
f/l

~ 23 17 14 11 J-r TIM v,b (Bb)-v14-00 ·
05 00

f:-4

I l~b,3~ -, 53 v

TMA v (v14-00)-A 23 17 14 11 05 00

I 53 el2 • v I
TMI v,b

b 23 17 14 -sv 09
(v14-00)-B I l~bl 3 I 53

TMQ v (v)-Q 23 17 14 11 05 00

I 53 1~1~ v I
23 17 14 11 05 00

TQM (Q)-v v

I ~~1~ 53 v I :

60236400 B-11

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

ADA,I m,b (A)+(M)-A r 17 14 00

1 30 Hbl m I
ADAQ,I m,b (A, Q)+(M, M+l)-A, Q 123 17 14 00

I 32 Rbl m I
AIA b (A)+ (Bb)-A, sign of (B~ is 23 17 14 11 00

extended prior to addition I 53 Mbl4~
AQA (A)+(Q)-A 23 17 14 11 00

I 53 lol4~

DVA,I m,b (A,Q)/(M)-A, remainder -Q 123 17 14 00
0

,! 51 El0 I
.....

I +»
(I) m s
~

I

.....
J.c

DVAQ,I m,b (A, Q, E)/(M, M+l):A, Q, 23 17 14 00 <
rema,inder with sigA• extended I 57 r1b1 IT1 I -E

FAD,I m,b Floating-point addition of 23 17 14 00
(M,M+l) to (A,Q)-A,Q I 60 blbl m I

FDV,I m,b Floating-point division of (A, Q) 23 17 14 00
by (M,M+l)-A,Q; remainder I 63 ~lbl m I with sign extended -(E)

FMU,I m,b Floating-point multiplication of
123

17 14 r (A,Q) and (M, M+l)-A,Q I 62 13bl m

FSB,I m,b Floating-point subtraction of 123 17 14 00
(M, M+l) from (A, Q)-A, Q I 61 8bl m I

B-12 60236400

TABLE B-1. !DENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

IAI b (A)+(B~-Bb, sign of Bb is 23 17 14 11 00

extended prior to addition I 53 Wb14~
INA y Increase (A) by y 23 17 14 001

I 15 161 y
I .

INA,S y Increase (A) by y, sign of y is 23 17 14 00
extended I 15 · 14 I I y

INI y,b Increase (Bb) by y, signs of y 23 17 14 00
and Bb extended; becomes a I 15 Plb I y I no-operation if b=O

INQ y Increase (Q) by y 23 17 14 00.
t.> I 15 I 1 I y I :p
<1)

~
•1"'4

INQ,S Increase (Q) by y, sign of y 23 17 14 J-4 y 00 < extended I f 5 I I 15 y

MUA,I m,b (A)*(M)-Q,A 23 17 14 00

I 50 Wbl m I
MUAQ,I m,b (A,Q)*(M, M+l)-A,Q, E 23 17 14 00

I 56 13b I m I
RAD,I m,b (M)+(A)-M 23 17 14 00

I 34 !alb I m I
SBA,I m,b (A) - (M)-A 23 17 14 00

I 31 lalbl m I
_ SBAQ,I m,b (A,Q) - (M,M+l)-A,Q 23 17 14 00'

I 33 gb1 m I

60236400 B-13

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation
e

ECHA r 0-A, then character address 123
r-AlG-00 I u

ECHA,S r 0-(A), then character address r r-A
16

_
00

, sign extended I u

LACH r,1 0-A, character in (R)-A05_00 r 22

s... LQCH r,2 0-Q, character in (R)-Q
05

_
00

23
.! I 0 23
~ s...
~ ..c:
u SACH r,2 Character in (A05_00)-R 23

I 42
I

SCHA,I m,b Character ~dres.~ in (A16_00) 123
-Ml6-00 I 46

SQCH r,1 Character in (Qos-oo)-R, r use (B1) to index 1 43

AQJ,mod m If condition is satisfied, RNI m, r3 otherwise, RNI P+l I 03

mod test condition j_

EQ (A) = (Q) 0

NE (A) ¢ (Q) 1
s::
.9 GE (A)~ (Q) 2
fl}

LT (A) < (Q) 0 3 (1)

Cl

B-14

Object Code

17

fl
17

fl
17

M
17

~
- 17

fJI

17 14

blbl

17

~I
17 14

l1lj I

00

z I
00

z I

r r
00

r I
00

r I
00

m

' 00

r I
Od

m I

60236400

{~ •.

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

ASE y If y = (A14-00)' RNI P+ 2-, 23 17 14 00

otherwise, RNI P+l I 04 I 6 I y I
ASE,S y If y = (A14-oo), RNI P+2, 23 17 14 00

otherwise, RNI P+l,, sign I 04
1

4
1

y I of y is extended

ASG y If (A) ~ y, RNI P+2, other- 23 17 14 00
wise, RNI P+ 1 I 05 .161 y I

ASG,S y If (A) ~ y, RNI P+2, other- 23 17 14 00

wise, RNI P+l, sign of y I 05
1

4
1

y I is extended

AZJ,moo m If condition is satisfied, RNI 23 17 14 00

~
m, otherwise, RNI P+l I 03 lolj I m I

.9
00

mod test condition j_ 'C) --<l>
~

EQ (A)= 0 0 I Positive zero = negative zero
NE (A)¢ 0 1

GE (A)~ 0 2 I Negative zero < positive zero
LT (A)< 0 3

IJD m,b If (Bb) =0, RNI P+l; if (Bb) 23 17 14 00

¢ 0, (Bb) - 1 - B b, RNI I 02
1
1& I m I

·m; becomes a no-operation
instruction if b=O

IJI m,b If (Bb) = 0, RNI P+l; if (Bb) 23 17 14 00
¢ 0, (Bb) + 1- Bb, RNI I 02 l0lb I m· I m; becomes no-operation
instruction if b=O

ISD y,b For b ¢ 0, if (Bb) = y, clear 23 17 14 00.
nb and RNI P+2; if (Bb) ¢y, I 10 f lb I y I (Bb) - 1 - Bb, RNI P+l

For b=O, if y = 0, RNI P+2;
if y ¢ 0, RNI P+ 1

60236400 B-15

TABLE B-1. !DENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

ISE y,b Forb ¢0, ify = (Bb), RNI P+2, r 17 14 QO
otherwise, RNI P+l I 04 l0lb I y I
For b=O, if y = 0, RNI P+2,
otherwise, RNI P+l

ISG y,b For b ¢ 0, if (B~ :!:Y, RNI P+2, r 17 H 00
otherwise, RNI P+l I 05 r1b1

y I
For b=O, if y :!: 0, RNI P+2,
otherwise, RNI P+l

ISi y,b For b ¢ O, i,f (B~ = y, clear Bb

j23
17" 14 00

andbRNI P+2; if (B~ ¢ y, (IP) + 1 I 10 Mbl y I -B , RNI P+l

For b=O, if y = 0, RNI P+2;
if y ¢ 0, RNI P+ 1

s::
MEQ (Bl) - i - Bl; if (Bl) negative, 123 17 14 00 0 :µi,i

. I 06 I i I I
fl}

RNI P+ l; if (Bl) positive, test m ()
Q) (A) =· logical product of (Q) and Q

(M) ;. if true, RNI i:-+2, if false,
repeat sequence

Designator Decrement
i Interval

1 1
2 2
3 3
4 4
5 5
6 6
7 7
0 8

MTH m,i (B2) - i - B2, if (B2) negative, r3 17 14 00
RNI P+l, if (B2) positive, test I 07 I i I m I (A) ~ logical product of (Q)
and (M); if true, RNI P+2; if
false, repeat sequence; designa-
tion table same as for MEQ

B-16 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

QSE y If y = (Q14_00), RNI P+2, 23 17 14 00

otherwise, RNI P+l I 04 I 1 J y I
QSE,S y If y = (Q), RNI P+2, other- 23

t~ r r wise, RNI P+ 1, sign of y is
.,

04 y
extended

s::
0
'{i)

QSG y If (Q14_00) ~ y, RNI P+2, 23 17 14 00
'C)
Cl) otherwise, RNI P+l I 05 I 1 I I Cl y

QSG,S y If (Q) ~ y, RNI P+2, other- 23 17 14 00

wise, RNI .P+ 1, sign of y I 05 1 5 1 y I ~
is extended

HLT m Unconditional stop, RNI m 23 17 14 OO;

~I}
upon restarting I 00 Io I m I 0..

.B
r.n
-0 RTJ (P)+l-m14-00' RNI m+ 1 23 17 14 00 ~ m
d I J 1 I I 00 00 m
(U
Ill
:::s ro

P-4 SJj m If SELECT JUMP j (where j 23 17 14 00
~ = 1-6) is set, jump tom; I 00 I j I I Ill m

0.. otherwise, RNI P+ 1 s
:::s

I-;)

UJP,I m,b Unconditional jump to M 23 17 14 00

I 01 l~b I m I 1

Ill
i:::

DINT Disable interrupt control 23 17 11 00
.9 I I ~ ('1$ 77 73

$..<
C)

0..
0

EINT Interrupt control enabled; 23 17 11 00 0..
::s I I ~Ii ~ allows one more instruction 77 74 ~
CLl to be executed before inter-.... s::

1-1 rupt

60236400 . B-17

TABLE B-1. !DENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

i:: NOP No operation (assembled NOP), 123 ~o 0 I 14
·~ RNI P+l ~
(1j
J..t
Q)
0.
0
I
0 z

SCAQ k,b Shift (A, Q) left end around until 123 17 14 00
upper 2 bits of A are unequal; 1 13 l1lb I k I residue K = k- shift count; if
b = 1, 2, or 3, K - Bb; if b = 0,
K is discarded

SHA k,b Shift (A); shift count K=k + (B~ 123 i7 14 00
(signs of k and Bb extended); if ,, 12

folbl k I bit 23 of K=l, shift right; com-
plement of lower 6 bits equals
shift magnitude; if bit 23 of K=O,
shift left; lower 6 bits equal shift
magnitude; left shifts end
around; right shifts end off

SHAQ k,b Shift (A, Q) as orJ register; shift 23 17 14 QO {/)

I ~lbl ~ count K=k + (Bb) (signs of k and 13 k I 0
·~

Bb extended); if bit 23 of K=l, ~
0 e shift right and complement of
~
{/) lower 6 bits equals shift magni-~ - tude; if bit 23 of K = 0, shift ~
·~ left and lower 6 bits equal shift .t::
00

magnitude; left shifts end around;
right shifts end off

SHQ k,b Shift (Q); shift count K=k + (Bb) :23 17 14 QQ
(signs of k and nb extended); if l I 12 ~lb I k I bit 23 of K = 1, shift right, com-
plement of lower 6 bits equals
shift magnitude; if bit 23 of K = 0,
shift left, lower 6 bits equal shift
magnitude; left shifts end around;
right shifts end off

B-18 60236400

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

SSH m Test sign of (m), shift (m) left 23 17 14 00
Ill

I I 0 I I ~ one place, end around and re- 10 .8 m place in storage; negative sign, C)

::s RNI P+2, otherwise RNI P+ 1 $-!
Ill
s::: -
~
•....C

..c: r:n

ANA y Logical product (AND) of y and 23 17 14

1° (A)-A I 17 -1 6 I y

ANA,S y Logical product (ANm of y and 23 17 14 00

(A)-A, sign of y extended I 17 14 I y I
ANI y,b Logical product (AND) of y and 23 17 14 00

(Bb)-Bb; becomes no-operation I 17 lo& I y I instruction if b=O

ANQ y Logical product (AND) of y and 23 17 14 00
(Q)-Q I 17 I 1 I y 1

Ill
c
.s ANQ,S y Logical product (AND) of y and 23 17 14 00

I f 5 I I t) (Q)-Q, sign of y extende<.l 17 ::s y
!-<
r.n c -'d LDL,l 111, b Logical product (AND) of (M) 23 17 14 00
CJ and (Q)-A I 27 Fib I I ·re m
0
~

LP.A,! m,b Logical product (AND) of (M) 23 17 14 00
and (A)-A I 37 ~lb I m I

SCA,! m,b Where (M) contains a 1 bit, 23 17 14 00
complement the corresponding I 36 ~lb I m I bit in A.

60236400 B-19

TABLE B-1. IDENT PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

SSA,I m,b Where {M) contains a 1 bit, set 23 17 14 00

the corresponding bit in A to 1 I 35 Fib I m I
XOA y Selective complement (exclu- f 3 i~ r

4 r sive OR) of y and (A)-A 16 y

XOA,S y Selective complement (exclu- 23 17 r 00 en I 14 I s:: sive OR) of y and (A)-A, sign 16 y ,g
..... of y extended
CJ
::s
~

XOI y,b Selective complement (exclu- 23 17 14 00 en
s:: I ~I I - sive OR) of y and (Bb)-Bb; - 16 y d becomes no-operation in-CJ

'tc struction if b = 0 0
~

XOQ y Selective complement (exclu- 23 17 14 00

\
si ve OR) of y and (Q)-Q I 16 j 7 i y I

XOQ,S y S~lective compl~ment (exclu- 23 17 14 00
sive OR) of y and (Q)-Q, sign [16 I s I y I of y extended

~

B-20 60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

ACI (A
02

_
00

)-channel index register 23 17 11 00

I 77 I 54 ~I
ACR (A

05
_

00
)-condition register 23 17 r 08

00

I I I 77 63 4 I ooo

AIS (A
02

_
00

)-instruction state 23 17 11 08 r register I 77 I 66 f 4 I 000

AOS (Ao2-oo)-operand state register 23 17 11 00

I 77 I 66 I 00-00 I
APF w,2 (An-oo)-page file index w; if 23 17 10 06 00

$..< b = 1, (B2) used for indexing I 77 I 64 I~ w I 0 -fii s::::
:"$
s... CIA 0- (A), then channel index 23 17 11 00 f-4

I l ~ register-A02 _00 77 55

CRA Condition register-A05_oo; 23 17 11 00

clear condition register I 77 I 63 I 0000 I
(CR) Significance

00 Boundary jump

01 Destructive load A

02 OSR in use

03 Program state jump

04 Interrupts enabled

05 Program state

ISA 0-(A), instruction state
23 17 11 08 00

registe~-A02_00 I 77 I 67
1

4
I

000 I

60236400 B-21

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Ccxle
e

JAA Last executed jump address 23 17 11 00

-A14-00 I 77 I 56 ~I
LBR m Load BCR and restore BDP 23 17 14 00

conditions from data at m I 70 Is I m I
OSA 0-(A); operand state register 23 17 11 00

-A I 77 I 67 I 0000 I 02-00

PFA w,2 0-A, then (page index file w) 23 17 11 00

-A11_00 ; if b is 1, (B2) used I 77 I 65 h~ w I for indexing

RCR Subcondition register-condition 23 17 11 08 00

~ register ! 771 63 I 4 I 000 I r.8 .
Ul \

s::
C'j
~ SB.JP Set condition re~ister for 23 17 11 00 ~

I I I I boundary jump; .;ystem trans- 77 62 0000
fers from monitor state to pro-
gram state ·.vhen next jump
occurs

SPR m Store contents of BCR and BDP 23 17 14 00
conditions at m for interrupt I 70 I 1 I m I recovery.

SDL Set 01 in condition register to 23 17 11 08 qo
flag destructive load so that upon I 77 I 62 I 41 000 I next LDA instruction:

1. (M)-A

2. 77777777-M

3. o-condition register

SRA O-A; subcondition register- 23 17 11 00

Ao2-oo I 771 63 I 0000 I

B-22 60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

CPR,I m,b (M) > (A), RNI P+ 1 l (A) and 23 17 14 00
(Q) > (M), RNI P+2 (Q) are

.,
52 falbl m I (A) ~ (M) ~ (Q), RNI P+3 un-

changed

s::
23 .s TMAV Initiate memory request; if reply 17 11 00

en

I 771 I I "ti occurs within 5 usec, address 61 0000 Q)
3Xists, HNI P+2; if not, address 0
does not exist, RNI P+l; storage
address tested is (B2) with
operand state register) or zero
appended

Pause Sensing Mask

Mask Bits Mask Codes Condition Notes

00 0001 I/O channel 0 busy Channel read or write operation in
01 0002 1 progress, the External MC logic
02 0004 2 within the channel is set, or a Reply
03 0010 3 or Reject from a previous operation
04 0020 4 is still present at the channel
05 0040 5
06 0100 6
07 0200 7
08 0400 Typewriter busy Typewriter I/O in progress
09 1000 Typewriter NOT finish Finish logic not set
10 2000 Typcwri ter NOT repeat Repeat logic not set
11 4000 Search/Move control Search or Move operation in

busy progress

60236400 B-23

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

PAUS x Sense busy lines; if 1 appears on 23 17 11 00
a line corresponding to 1 bits in [771 60 I x I x, do not advance P; if P is in-
hibited for longer than 40 ms,

en read reject instruction from P+l; 0. s if no comparison, RNI P+2
en
"CS s= PRP x Same as PA US, except real- 23 17 11 or CIS

I 771 I 00 time clock cannot increment 61 x
CD during the pause. rn -::s
d

P4 SLS Program stops if selective stop 23 17 11 00
~

I I -en switch is ~>n; upon restarting 77 70 0.
E RNI P+l ::s

"'":>

ucs Unconditional stop; upon re- 23 17 11 00
starting RNI P+ 1 I 77 I 77 ~

CLCA cm Clear the specified channel, 23 17 11 07 00
but not external· equipment .,

77 I 51 m2 m cm I ..:\) .
CON x,ch If channel ch is busy, reject 23 17 14 11 00

instruction, RNI P+l. If 11 77 Io Jch I x I channel ch is not busy, send
12-bit connect code (x) on
channel ch with connect enable,
RNI P+2

...... ::s
COPY ch External status code from I/O j23 17 14 11 00 Q.

11 77 I 2 I ch I I ::s channel ch-A11_
00

, (interrupt 0000 0
.......... mask register)-A23 _12 , RNI

::s
Q. P+l s::

B-24 60236400

INTERRUPT :MASK REGISTER BIT ASSIGNMENTS

Mask Bit
Positions Jvlask Codes (x) Interrupt Conditions Represented

00 0001 I/O Channel 0 (includes interrupts generated within
01 0002 1 the channel and external equipment
02 0004 2 interrupts)
03 0010 3
04 0020 4
05 0040 5
06 0100 6
07 0200 7
08 0400 Real-time clock
09 1000 Exponent overflow /underflow & BCD faults
10 2000 Arithmetic overflow & divide faults
11 4000 Search/Move completion

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

23 17 11 00
CTI Set console typewriter input.

I I frl'AI Beginning character address 77 75
must be in location 23 of register
file, last character + 1 must be
in location 33 of the file

CTO Set console typewriter output 23 17 11 00

Beginning character address I 77 I 76 ~I
must be in location 23 of register
file, last character + 1 must be
in location 33 of the file

.µ

00 5. EXS x,ch Sense external status; if 1 bits 23 17 14 11
+.>

I l2 I chi I
::s occur on status lines in any of 77 x ~ the same positions as 1 bits in .µ

5. the mask, nNI P+l; if no com-r::: - parison, RNI P+2

60236400 B-25

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Oper~d

p Field Field Operation Object Code
e

INAC,INT ch (A) is cleared and a 6-bit char- 23 ~o acter is transferred from a p I 73
peripheral device to the lower
6 bits of A

f3rO~d p+lchO~

INAW,INT ch (A) is cleared and a 12- or 24- 23 16 00

bit word is read from a periph- p I 74 f
eral device into the lower 12
bits or all of A (word size :2 !~o depends on I/O channel) p+l chi O

INPC, INT, ch,r,s A 6- or 12-bit character is 23 16 00
...... B,H,A read from a peripheral device p I 73 ~ s I :::l
0.. and stored in memory at a
:::l

\ given location 0 ~16 00
' I
8. p+l~ r

~

.5 •• .
INPW,INT, ch,m,n Word address is placed in bits 23 16 14 00
B,N,A 14-00; 12- or 24-bit words are p I 74 ~ n I read from a peripheral device

and stored in memory 23 20181614 00

p+1lchHm m I

MOVE,INT l,r,s Move 1 characters from r to s; 23 16 00

0 :51 :5 127 10 p I 72 I~ s I
23 16 00

p+ll 11 I r I

B-26 60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

OTAC,INT ch Character from (A05_00) is 23 16 00

sent to peripheral device, p I 75 r I
(A) retained

rrco ~o p+l~ ch j]~

OTAW,INT ch Transfers (A
1

_
00

) or 23

~ A23-oo, depenaing on type of p I 76
I/0 channel, to a peripheral I
device 23 201816 001

p+~lchOO~I
+>
[
+>
;:$
0 OUTC,INT, ch,r,s Storage words assembled into 23 16 00

I M I ;:$ B,H,A 6- or 12-bit characters and 75 s 0. p
c sent to a peripheral device 1-4

23 201816 00

p+ 11 ch HlifJf/ r I

OUTW,INT, ch,m,n Transfer 12- or 24-bit words 23 17 14 00

B,N,A from storage to a peripheral p I 76 ~~ n I device

~

23 20181614 0(

p+~lch ~H~~ . m I .
SEL x,ch If channel ch is busy, read 23 17 14 11 00

reject instruction from P+ 1; if
.,

77 I 1 lch I x I not busy, send a 12-bit function
code on channel ch with a func-
tion enable, RNI P+2

... CILO cm Lockout external interrupt on 2;l 17 ~ 07 r 0.

·1 I ;:$ masked channels, cm, until 77 51 M ~t[cm
M
Q) channel is not busy

+.> .s

60236400 B-27

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

CINS x,ch Interrupt mask and internal

j23
17 14 11 00

status-A I 77 13 lch I 0000 I
0. IAPR Interrupt associated processor 23 17 11 00 e I I -S.. 77 57 Q)
~
s:: -

INCL x Interrupt faults defined by x r 17 11 00
are cleared I 77 I 50 I x I

Internal Status Sensing Mask

Masked Bit
Positions Mask Codes (x) Interrupt Conditions Represented

00 0001 ParitJ: error on channel ch .
01 0002 Channel ch busy reading
02 0004 Channel ch busy writing
03 0010 External reject active on channel ch
04 0020 No-response reject active on channel ch
05 0040 tlllegal write
06 0100 Channel ch preset by CON or SEL, but no

reading or writing in progress
07 0200 Internal I/O channel interrupt on channel ch upon:

1) completion of read or write operation, or
2) end-of-record

08 0400 t Exponent overflow /underflow fault (floating-point)
09 1000 tArithmetic overflow fault (adder)
10 2000 tDivide fault
11 4000 tBCD fault

tPeripheral Equipment Reference Manual, Pub. No. 6010,8800

B-28 60236400

TABLE B-2. MONITOR PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

INS x,ch Sense internal statust; if 1 bits 23 17 14 11 r occur on status lines in any of I 77 13 jchJ x
the same positions as 1 bits in
the mask, RNI P+l; if no com-
parison, RNI P+2

INTS x,ch Sense for interrupt condition; 23 17 14 11 00

if 1 bits occur simultaneously I 77 141 chi x I
in interrupt lines and in the
interrupt mask, RNI P+l; if
not, RNI P+2

IOCL x Clears 1/0 channel or search/ 23 17 11 00

move control as defined by bi ts I 77 I 51 I x I 00-07, 08, and 11 of·x

SBCD Set BCD fault logic 23 r 72
~o ~ I 77 0.. ::s

J..t
J..t
Q)

1:: SCIM,I x Selectively clear interrupt 23 17 11 00 1-4

I I I I mask register for each 1 bit in 77 53 x
x; corresponding bit in the
mask register is set to 0

SFPF Set floating-point fault logic 23

t7 ~o I 77 71

SSIM x Selectively set interrupt mask 23 17 11 001
register for each 1 bit in x; I 771 52 I x I - corresponding bit in the mask
register is set to 1

tlnternal faults are cleared when sensed.

60236400 B-29

T
y Command
p Field
e

ADM

ATD

ATD,dc

B-30

TABLE B-3. BDP PROCEDURE REFERENCES

Operand
Field

r,Br,J.r,
s,Bs,J.s

m,Brn,·
lm,s'
BS

Operation

Add field R to field s-
field S

Translate ASCII code field
M-BCD character field S

Translate ASCII code field
M-BCD character field S
with delimiting character
possibility

Object Code

123
16

p 1 67 8
j23 201816

p+~I o I*~
~23 11

p+21 f1r I

r p : 66 ~6 [m

fr3 201816

p+1J 3 E~B~
-1~9

p+2
1
__ de t1

·~·

r r
QO

s I
0(

l1s I

01

~
00

s I
/lm r

60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

CMP r,Br,J.r, Compare field R to field S 23 16 00

s,Bs,J.s from left to right, exit upon p I 67 rt r I encountering¢ characters
23 20 18 16 00

p+l 13 E ~B1 s I
23 11 00

p+21 1' t I ls I

CMP.dc r,Br,s, Compare field R to field C 23 16 00

Bs, 1s from left to right, exit upon p I 67 ~I r I encountering ¢ characters;
delimiting character 23 201816 00
possibility

p+ 113 P3r I B ~ s I ~
Q

23 17 11 00 i:Q

p+2~ de I J.s I

CVBD in,B
11

, Convert binary field M to 23 16 01

n,Bn BCD-field N p I 66 I~ m ~
23 201816 01

p+1!1 ~1~ n ~
..... 0 p+2 ,,

60236400 B-31

~··

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

CVDB r,Br,1.r, Convert BCD field R to \23 16 00
m,Bm binary-field M

p
1 66 ~I r I
~~6

00

m ~ p+l~==
23 11 00

p+2,1 fl r ~

DTA r, Br,J.r, Translate BCD field R to 123 16 00

m,Bm ASCII code-field M p ,I 66 ~I r I
l23 201816 01

p+ll 2 erP~ m ~
tlt

\

·~:.~•

~ ~3 11 00

" p+2·~1 f.tr I • . I

DTA,dc r,Br,J.r, Translate BCD field R to r 16 00
m,Bm ASCII code-field M; p I 66. f I r I delimiting character

possibility ~3 20~816 00

p+l 2 ~r ~ m ~

'•J7 ·11 r [flr lp+2.=. de

B-32 60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

EDIT r,Br,£r, Field R-field S with COBOL 23 16 00
s,Bs,£s type of editing specified by

p: I 64 N r I picture previously stored in
field S 23 201816 r p+ll 4 ~r~sl s

23 11 00

p+2l r r I is I

FRMT r,Br,£r, Move field R-field S; replace 23 16 00

s,Bs,£s leading zeros with blanks; p I 64 ~I r I insert a comma after every
three ch~racters moved, 23 201816 OQ

~
insert a decimal point in third p+ll 4 IBJB~ s I 0 lowest order position in S

~ field 23 11 r p+2) £r I ls

I

JMP,mod m Test status of BCR =condition .23 17 14 00

specified by mod and jump to m I 70 I j I m I
if true; otherwise, RNI P+l

mod (BCR) i --
HI 012 0

ZRO 00 1

LOW 10 2

60236400 B-33.

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

MVBF r,Br,£r, Move characters from field R 23 16 00
s,Bs,..es -field S; if field S >field R, p I 64 ~I r I blank fill

23 201816 00

p+ll 1 §Js~ s I
23 11 00

p+2 I lr I ls I

MVE r, Br,lr, Move characters from field fa lfi 00
s, Bs,£s R-field S according to p A r I parameters

64

23 101816 00

~ p+l'l 0 Erlssl s I I 0
~ \

23 11 00

.. p+2I lr I '1 s I • t) .

'
MVE,dc r, Br, s, · l\fove characters from field R 23 16 r Bs,ls -field S; delimiting character 'P I 64 11 r

possibility
23 201816 00

p+l I 0 Erf3~ s I
.23 17 r r p+2·~ de /ls

B-34 ,60236400

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

1\lVZF r,Br,£r, Move characters from field R 23 16 00

s, Bs, ls - field S; if field S >field R, pl 64
1°1 r I zero fill

p+1l
3

2 ~~r s r
23 11 00

p+21 ir I is I

MVZS r,Br,J.r, Move characters from field R

f3
16 r s,Bs,J.s - field S; suppress leading

lol p 64 r
zeros

23 201816 QO

p+lj 3 ~~sl s I
~

23 11 00
0

p+21 lr I I. I ~ s

MVZS,dc r,Br,s, Move characters from field R 23 16 00

Bs,is - field S; suppress leading pl 64 f I r I zeros; delimiting character
possibility 23 201816 00

p+l,l 3 ~r~sl s I
23 17 11 00

p+2~ de I 2 I

60236400. B-35

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

PAK r,Br,lr, Convert and pack a 6-bit 23 16

m,Bm numeric BCD field R to a 4-bit pl 66 ~I numeric BCD field and store the
result in field M 23 201816

p+ll 4 ~~J m

23 11

p+2-

SBM r, Br,lr, Subtract field beginning at R 23 16
s, Bs,ls from field beginning at s- p I 67 B field beginning at S

f3~T p+l~ 1 ~-:~
23 11

... ~+21 lr I Pt ~ Cl. .
ill

SCAN,dir, ~,Br, Scan field beginning at R r 16

mod lr,SC p ~ 65 ~ dir,mod x
23 2018

LR,EQ Left to right 0 p+~ x §
stop on=

23 17 ll
RL,EQ Right to left 1

p+2l ~ stop on=
SC

LR,NE Left to right 2
stop on¢

RL,NE Right to left 3
stop on¢

B-36

00

r I
01

I
o_o

'r I

00

r I
r s

od
ls I

r r
00

'r
01

60236400

,·f~

"""'

..

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

SCAN,dir, r,Br, Scan field beginning at R, r 65

16 00
mod,dc lr,sc delimiting possibility p ~I r I

dir, mod ..!. p+~~~~o
LR,EQ Left to right, 0

stop on= fr3 17 11 00

RL,EQ Right to left, 1 p+2,I SC I de I l1r. I
stop on=

LR,NE Left to right, 2
stop on¢

RL,NE Right to left, 3
stop on¢

SRCE,INT c,r,s Search for equality of character r3 16 00
~ c in list beginning at r until an l-p I 71 ~ s I Cl equal character is found, or i::Q

until character at s is reached; 123 16 00
O::;;c::;;63

10 ~+ti SC Pl r I Operation commences while
main control continues ·at P+3.

SRCN,INT c,r,s Inequality sear ch; same as r 16 r SRCE p I 71 ~I s

123 16 00

p+~: SC H r I

TST r,Br,lr Test field R for -, 0, or+

p 1367
16 00

~I r I
p+1M9'~

0

~3
J>+2J l1 r 1--0

60236400 B-37

TABLE B-3. BDP PROCEDURE REFERENCES

T
y Command Operand
p Field Field Operation Object Code
e

TSTN r, Br,lr Test field R for numeric 23 16 00

Pl I 67 ~I r I ·
23 2018 00

p+ll4Er~~

p+2 f3 lr --0
Unpack 4-bit BCD field M f3 86 ~ UPAK m,Bm,ls

Bs,ls into 6-bit BCD field S ~ 66 m

23 201816 Q~

j 5~~B~ 8 I ~ \

~ --1 r \.
ls

-'O .

ZADM r, Br,lr, Clear field S; field R- t3 67 [

6 00

I, s,Bs,.ls field S, right justify r

23 201816 00

12 ~~~ s I
23 111 00~

I 'r I ilsJ I

B-38 60236400

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal Codo Mnemonic Octal Code Mnemonic

00.0 HLT 05.5 QSG,S 15.5 INQ,S

00.1-6 SJ1-SJ6 05.6 ASG 15.6 INA

00.7 RTJ 05.7 QSG 15.7 INQ

01 UJP,I 06.0-7 MEQ 16.0 No-op

02.0 No-op 07.0-7 MTH 16.1-3 XOI

02.1-3 IJI 10.0 SSH 16.4 XOA,S

02.4 No-op '10.1-3 ISI 16.5 XOQ,S

02.5-7 IJD 10.4-7 ISD 16.6 XOA

03.0 AZJ,EQ 11.0 ECHA 16. 7 XOQ

03.1 AZJ,NE 11.4 ECHA,S 17.0 No-op

03.2 AZJ,GE 12.0-3 SHA 17.1-3 ANI

03.3 AZJ, LT 12.4-7 SHQ 17.4 ANA,S

03.4 AQJ,EQ 13.0-3 SHAQ 17.5 ANQ,S

03.5 AQJ,NE 13.4-7 SCAQ 17.6 ANA

03.6 AQJ,GE 14.0 NOP 17.7 ANQ

03.7 AQJ,LT 14. 1-3 ENI 20 LDA,I

04.0-3 !SE 14.4 ENA,S 21 LDQ,I

04.4 ASE,S 14.5 ENQ,S 23 LOCH

04.5 QSE,S 14.6 ENA 24 LCA,I

04.6 ASE 14. 7 ENQ 25 LDAQ, I

04.7 QSE 15.0 No-op 26 LCAQ, I

05.0-3 ISG 15.1-3 INI 27 LDL,I

05.4 ASG 15.4 INA,S 30 ADA,I

60236400 B-39

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal Code Mnemonic Octal Code

31 SBA,I 53. (Otb)4 AIA 64.4-7

32 ADAQ,I 53.41 TQM
' 65.0-3

33 SBAQ,I 53.42 TAM

34 RAD,I 53. (4+b)O TAI

35 SSA,I 53. (4+b)3 TIM 65.4-7

36 SCA,I 53. (4+ b)4 IAI

37 LPA,I 54 LDI,I
66.0-3

40 STA,I 55.0 RIS

41 STQ,I 55.1 ELQ

42 SACH 55.2 EUA

43 SQCH 55.3 EAQ 66.4-7

44 swA,r 55.4 ROS
67.0-3

45 STAQ,I 55.5 Q~~L .
46 SCHA,1 55.6 AEU

47 STI,I 55.7 AQE
67.4-7

50 MUA,I 56 MUAQ,I

51 DVA,I 57 DVAQ,I 70.0

52 CPR,I 60 FAD,I 70.1

53.01 TMQ 61 FSB,I 70.2

53.02 TMA 62 FMU,I 70.6

53.04 AQA 63 FDV,I 70.7

53. (Ot b)O TIA 64.0-3 MVBF 71
MVE

53. (Ot b)3 TMI MVZF
MVZS

B-40

Menmonic

IMVE,dc
MVZS,dc

SCAN,LR,EQ
SCAN,LR,NE
SCAN,RL,EQ
SCAN,RL,EQ

SCAN,~L, EQ,dc
SCAN, LR, NE,dc
SCAN, RL, EQ, de
SCAN, RL, NE,dc

ATD
CVBD
CVDB
OTA
PAK
UPAK

JA'FD,dc
1DTA,dc

ADM
CMP
SBM
TST
ZADM

CMP,dc
TSTN

JMP,HI

JMP,ZRO

JMP,LOW

LBR

. -

SBR

i

SRCE, INT
SRCN,INT

60236400

{'~~ ,,,

TABLE B-4. OCTAL CODE INDEX TO MNEMONICS

Octal Code Mnemonic Octal ·Code Mnemonic

72 MOVE, INT 77.61 PRP
TMAV

73 INPC, INT, B, H,A
INAC,INT 77.62 SBJP

74 OUTC,INT,B,H,A 77.624 SDL
INAW,INT
INPW, INT, B, N, A 77.63 CRA

SRA
75 OUTC,INT,B,H,A

OTAC,INT 77.634 ACR
RCR

76 OUTW,INT,B,N,A
OTAW,INT 77.64 APF

77.0 CON 77.65 PFA

77.1 SEL 77.66 AOS

77.2 EXS 77.664 AIS
COPY

77.67 OSA
77.3 INS

CINS 77.674 ISA

77.4 INTS 77.70 SLS

77.50 INCL 77.71 SFPF

77.51 CILO 77.72 SBCD
CLCA
IOCL 77.73 DINT

77.52 SSIM 77.74 EINT

77.53 SCIM 77.75 CTI

77 .. 54 ACI 77.76 CTO

77.55 CIA 77.77 ucs

77.56 JAA

77.57 IAPR

77.60 PAUS

60236400 B-41

BINARY OUTPUT

When the META source deck contains a UNIT directive, the object computer is not the 3300 or
3500, and binary output (if requested) is in an alternate form. Information is written as binary
card images, that is, in 40-word logical records in standard MASTER blocked format (l\fASTER
Reference Manual).

Each 40-word logical record consists of a set of 160 6-bit bytes. Binary output is in the form of
a byte stream. The first four bytes of each logical record are:

Byte Value

1 Unused; 0

2 05g

3 Unused; 0

4 Unused; 0

c

The byte stream consists of rnultibyte items. The first byte of an item is its item type, indicating
the class of information. The number and contents of the bytes in the item vary according to item
type.

1

2

3

60236400

Information

1 Item type

2-9 Control section name

10-13

14

l 1

2-9

) ~
l 3-6

Control section byte length

Chapter number (3 bits)

1 Chapter 1
2 Chapter 2

Control section type (3 bits)

0 Absc!ute
1 Program
2 Labeled
3 Numbered
4 Blank common

Item type

External symbol

Item type

Location counter number

Load address (byte address)

C-1

4

6

7

8

9

0

63

C-2

2-4 I

5

1

2-6

l
1

2-9

10-13

14

l 1

2-9

Information

Item type

Contents of a word (n bytes)

Item type; item contains relocation information associated with preceding
type 4 item

/Leftmost bit position of field in ward (7 bits)
1Field size (7 bits)

Positive or negative relocation (1 bit)

0 Positive
: 1 Negative

~ord or Byte relocation (1 bit)

j O Word

l 1 Byte

!Unused; 0 (2 bits)

' Relocation counter

Item type; item contains external reference information associated with
preceding type 4 item

Bit position of field in ward (7 bits)

Field size (7 bits)

Positive or ne~ative relocatfon (1 bit)

0 Positive
1 Negative

Word or byte relocation (1 bit)

0 Word
1 Byte

External symbol table ordinal (14 bits)

Item type

Entry point symbol

Entry point byte address

Relocation counter

Item type

Transfer symbol

Item type; end of stream on a logical record

Item type; end of stream

60236400

The number of bytes in a type 4 item is a function of the object computer word size. A value is
right justified in the number of bytes required. For example, if the object computer word size is
19 bits, n equals 4.

·All symbols are left justified and blank filled in eight bytes. The collection of type 2 items forms
the external symbol table. Type 7 items refer to this table.

For type 6 and 7 items, ·bit positions are numbered from right to left in ascending order, begin­
ning with zero. Thus, for a word address reference on the 3300, the following is true.

Leftmost bit position of field in word 14

Field size 15

When word size is 12, the leftmost bit position of a 13-bit field is 0.

Example:

The following program results in the binary (byte) stream shown.

Program:

60236400 C-3

Binary stream of 6-bit bytes:

00 05 00 00
:

__

01 A /\ /\ /\ /\ /\ /\ /\ ooloo Joo l20J u]
02 x x /\ /\ /\ /\ /\ /\

02 y y /\ /\ /\ /\ /\ /\

03 01 00 00 00 00

04 05 10 00 00

Card 1 07 07 03 60 00 01

04 06 20 00 00

07 07 03 60 00 02

04 00 00 00 07

04 00 00 00 03

06 13 46 00 01

11 x y z /\ /\ /\ /\ /\

00

Card 2 {

..
00 05 . 00 00 ..
77

'----'

The first four bytes cause rows 7 and 9 to be punched in column 1 of a binary card; column 2 is
blank. Successive bytes consist of items and their associated information. A space is indicated

bYA·

C-4 60236400

\ti:

For a subprogram, all external symbol items (item type 2) form a table of external symbols that
immediately follows the table of control section name items.

Normally, a load address item (item type 3) immediately follows the last external symbol item.
A load address item appears in the stream as necessary and always precedes the first contents­
of-word item (item type 4). If a load address is more than one greater than the address
associated with the previous contents-of-word item, META generates a load address item.

Example:

New load address

New load address

New load address

The binary output stream for the above is as follows.

00 05 00 00

01 L A " " " " A " 00 00 00 34 11

01 N E w " A A A " 00 00 00 04 12

03 01 00 00 00 00

04 00 00 00 01

Card 1 03 01 00 00 00 30

04 00 00 00 02

' 03 02 00 00 00 00

i 04 00 00 00 03

i 11 M K G A " A A A
l

I 00

Card 2 {

i
! 00 05 00 00
i

i

I~

60236400 C-5

For a subprogram, all control section name items (item type l) form a table of control section
names. This table is first in the binary output stream. The entries in the table are in order
according to their associated location counters. The first entry is for counter 0 or 1 depending
on whether or not the program uses O, the absolute location counter.

Example:

First entry in the control section name table is for location counter O.

Binary stream for above program:

:

00 05 00 00

01 A B /\ A

01 x y /\ /\

Card ti 01 J 0 E /\

01 K A /\ /\

01 K B /\ /\

11 x y z /\

00
I

Card 21 00 05 00 00:

77___

C-6

Location counter 2

Location counter 0

Location counter 1

Location counter 3

Location counter 4

/\ /\ " ·I " 00

/\ /\ /\ /\ 00

/\ /\ /\ /\ 00

/\ /\ /\ /\ 00

/\ /\ /\ /\ 00

/\ /\ /\ /\

00 00 00 10

00 00 00 11

00 00 00 12
..

00 00 11 _.,

00 00 00 12

60236400
.·

It is possible to change control sections at points other than at word boundaries and resume the
control sections. ·

Example:

Causes item 4 to be 5 bytes

Causes item type 1

Causes item types 3 and 4

Causes item type 1

Causes item types 3 and 4

Returns to address A (counter 1)

Causes item types 3 and 4

Causes item type 9 (11
8

)

The binary ou~put stream for the above is as follows.

Card 1

Card 2

60236400

00 05 00 00

00 J 0 B /\ /\ /\ /\ /\ 00 00 00 02 11

01 A K K /\ /\ /\ /\ /\ 00 00 00 01 12

03 01 00 00 00 00

04 01 oo oo oo • L
03 02 00 00 00 00 I - These 2 items must be combined 1----+--+---+--+--+-outo form 1 object computer word.
04 02 00 00 00

03 01 00 00 00

04 00 03 00 00

11 MX T /\ /\ /\ /\ /\ /\

00

~ 00 05 00

t~
00

C-7

For the previous example, note that in the control section named JOB, two contents-of-word
items (item type 4) are generated for the contents-of-word location zero.

GENB 1

GENB 3

Contents-of-word·

I 04 I 01 I oo I oo I oo I
04 I oo I 03 I oo I oo

o 1 1 03 1 oo I oo I
A field with a size greater than that of the object computer word may contain a relocatable value
or an external symbol plus or minus a constant. More than one contents-of-word item (type 4)
result, but they are not consecutive. A relocatable reference item (type 6) or an external
reference item (type 7) immediately follows the first contents-of-word item (type 4). The
condition can be detected when the leftmost bit in the word and the field size indicate a position
beyond the preceding computer word.

Example:

C-8

Causes}tem 4 to be 3 bytes

Causes item 1

"' .~
48-bit field (four 12-bit words)

Causes items 3, 4, 6, 4, 4, 4

Causes items 4, 6, 4

Causes items 4, 6, 4

Causes item 9

60236400

00 05 00 00 00

01 A M T /\. /\. /\. 1 /\. 1 /\. I oo Joo 1 oo 112 J u J
03 01 00 00 00 02

04 00 00 Leftmost 12 bits of 48-bit fie ld; first word.

06 05 54 00 01 Leftmost bit in word is 11; fi eld size is 48.

04 00 00 Second word.

04 00 00 Third word.

Card 1
04 00 01 Rightmost 12 bits of 48; four th word.

04 00 16 11-bit field containing 7 and leftmost bit of 13-bit field.

06 00 03 20 01 l Leftmost bit is O; field size lS 13.

04 00 01 13--;,,it field containing 1.

04 00 00 First 12 bits of 24 for GEND

06 05 46 00 01] Leftmost bit is 11; field size is 24.

04 00 00 Second 12 bits of 24 for GE ND.

11 x M A1/\.1/\.T/\.J/\.I/\.J
00

Card 2 {
00 os Joo ool
77

L...-...;

60236400 C-9

3300/3500 RELOCATABLE BINARY OBJECT DECK D

The 3300/3500 MASTER relocatable loader accepts relocatable binary object decks produced by the
Meta-Assembler when there is no UNIT directive. During assembly, the X or F option on the META
control card uses card images of the relocatable deck to be written on the LGO file (or some other
file optionally specified). The P option on the META card causes the binary deck to be punched. A
binary deck is comprised of the following types of cards.

Subprogram identification card (IDC)

Block common table cards (BCT)

Subprogram entry point cards (E PT)

Relocatable information cards (RIF)

External name and linkage cards (XNL)

Transfer cards (TRA)

End loading card (ELD)

These cards are described in the MASTER Reference Manual. Information on the cards is related
to directives as shown in table D-1.

JDC

BCT

EPT

RIF

XNL

TRA

ELD

60236400

41g

478

42s

1-a68

438

44s

77s

Table D-1 Loader Cards

Source of Information

Name taken from SECP directive; length of subprogram calculated
by META.

Names of labeled and numbered common blocks taken from SECD
directives.

Entry points taken from ENTRY directives.

Relocatable information generated by mnemonic instructions, GEN,
GEND, GENB, LIT, TEXT, TEXTC, TEXTA. RES or RESB
causes start of new RIF cara~ Relocation factor set for character
addressing if symbol generated is defined in bytes. Increment/
decrement count and base depend on relocation counter used by
Meta-Assembler.

External symbols taken from EXT directives.

Transfer point symbol taken from END directive.

Card generated upon encountering FINIS.

D-1

•.

&;.!!~ .i

GLOSSARY OF TERMS

Absolute program

A program that must be loaded into specific core storage locations.

Assemble

To prepare an object language program for the 3300/3500 Computer System or for some
· other computer system from a symbolic source language program.

ASCII

American Standard Code for Information Interchange

Attribute

Byte

A characteristic of a symbol (value), such as its size in words or bytes and its mode of
representation (decimal, octal, character, etc.).

A subdivision of a word as defined by a UNIT directive, if the source program contains
one; otherwise, a byte is 6 bits.

Byte stream

Output from the Meta-Assembler when the source program contains a UNIT directive.
Each 40-word record (160 6-bit bytes) consists of 11 types of multibyte items.

Command

The field in the source statement that specifies the operation to be performed by the
Meta-Assembler.

Control Section

The portion of object code generated under a single location counter.

Definition

60236400

1. A group of source statements comprising a procedure or function. 2. The association
of a symbol with a value and its other attributes so that use of the symbol causes its value
or the address of its value to be used.

Glossary-1

Delimiter

Character or characters that limit a string of characters and therefore cannot be a member
of the string.

Directive

A source statement that ~nstructs a Meta-Assembler.

Elementary item

A self defining component of an expression.

Entry point

A label of a source statement at which execution or processing can· begin.

Expression

A valid series of values, symbols, and functions that may be connected by mnemonic or
symbolic operators as required to cause a desired computation.

External symbol

A label defined in a subprogram other than the subprogram or at a level othe:.. than a level
currently being assembled and used as an·,9perand in the program or at the level being
assembled. •

Forward reference

Function

Label

Literal

A label that is referenced in the operand field and has not been defined previously.

A series of source statements that, when referenced, provides a single value or a set to
be used in the source statement containing the reference. ·

1. A string of alphanumeric characters used to identify or describe an item or pl.aced at
any location for informational and instructional purposes. 2. To assign a symbol as a
means of identifying a source statement or a location in an object deck.

An item of data having a constant value.

Glossary-2 60236400

Location counter

A counter for the 16 control sections controlled by the assembler.

Meta-Assembler

An assembler that transcends the capabilities of a conventional assembler by allowing
extensive programmer control of the assembly process.

Mnemonic instruction

Operand

Use of symbolic notation in place of actual machine code. A mnemonic instruction must
be translated to actual operation codes by META procedure references.

A piece of data upon which an operation is pel'."formed; the contents of the operand field of
a source statement.

Operat.or

The symbol or mnemonic that tells what to do with two operands, e.g. , * is the operator
for multiplication of the two operands as in A * B.

Procedure

A subset of source statements meeting a specific purpose that can be repeatedly referenced
to cause parameterized code generation.

Processing

The interpretation by the Meta-Assembler of a source statement or group of source
statements.

Real number

A value written with a decimal point, using decimal digits. The sign is a unary operator.
An integer exponent preceded by E may follow the real number.

Symbolic referencing

60236400

The assembler allows mnemonic symbols to be used in place of instruction codes, modi­
fiers, addresses, formats, procedures, and functions. The assembler interprets the
symbol and determines where to find specific information.

Glossary-3

Set

A collection of elements that bear a relationship to one another and have a common name.
An element may be a set; i.e., a subset of a set. A reference to an element consists of
the set name followed by one or more integers enclosed in brackets indicating the location
of the element.

Source program

A program written in META language that must be translated into machine language before
it can be executed.

Statement

An instruction interpreted by an assembler.

Subprogram

A part of a program that can be assembled independently.

Subscript

One or more integers enclosed by brackets used to specify a particular element in a set.

Unary operator

Word

" .'{)

An operator such as the sign of a value (+ or-) that operates on one operand only rather
than causing an addition or a subtraction.

A group of bytes as defined by the UNIT directive if the source program contains one;
otherwise, 24 bits, the standard 3300/3500 word size.

Olossary-4 60236400

~ •.

A
ASCII string indicator 2-8
conversion modifier B-4

Account number 7-2
ACI instruction B-21
ACR instruction B-21
ADA instruction B-12
ADAQ instruction B-12
Addressing

absolute 4-10
byte-oriented 3-1
word-oriented 3-1

ADM instruction B-30
AEU instruction B-9
AIA instruction B-12
AJS instruction B-21
ANA instruction B-19
ANI instruction B-19
ANQ instruction B-19
AOS instruction B-21
APF instruction B-21
I Apostrophe

character in ASCII string 2-8
character in BCD string 2-6
delimiter, 2-5
in TEXT directive 4-18
printer character A-2

AQA instruction B-12
AQE instruction B-9
AQJ instruction B-14
Arithmetic 2-12
Arithmetic instructions B-13
ASCII code

character set A-3
generation of text 4-18
instructions (See BDP lt>rocedure

references)
notation 2-8

ASE instruction B-15
ASG instruction B-15
Asterisk, double 2-9

60236400

INDEX

Asterisk, single
multiplication symbol 2-9
example 2-10; 4-21, 22
to indicate comments 2-3

ATD instruction B-30
Attributes, I description 2-12
Atribute functions 6-1
AZJ instruction B-15

B
.backward read/write modifier B-4

BCD character notation 2-7
BCD integer notation 2-6
BCD pseudo instruction B-7
BDP procedure references B-30
Binary scaling

example 2-13; 6-5
operator 2-9

Blank, double 2-1, 5
Blank fill

BCD characters 2-8
Blank, single

elementary item separator 2-2, 5
expressions 2-11

Bracket delimiter 2-5, 15
BRIEF directive

byte-oriented directive 3-1
description 4-3

BSS pseudo instmction B-7
Byte

attribute function (BYT) 6-8
examples 4-15; 6-7, 8
generation 4-15
position in objectlword 8-1
size 4-4

Byte address, lmode 6-2
Byte stream

file for 7-3
format C-1
selection as output 4-4

Index-1

c
character address modifier B-4
common error code 8-3
for right-adjusted BCD string 2-7

Card codes A-1
Chapter, assign data to 4-9
Character set

BCD/ ASCII conversion A-3
card codes A-1
internal codes A;-1
legal characters 2-1
Printer graphics A-1

Character string
ASCII notation 2-8
BCD notation 2-7
Mode 6-2

Character instructions B-14
Characteristic of real number 2-71
CIA instruction B-21
CILO instruction B-27
CINS instruction B-28
Circularity of form 4-17
CLCA instruction B-24
CMP instruction B-31
Comma

command field delimiter 2-2
set element delimiter 2-15
to delimit, general 2-5

Command field, description of 2-2
Comment field, description 2-3
Comment line

description 2-3
example 2-4

Common block
blank 4-9
illegal assignment of literals to 2-14
in byte stream C-1
labeled 4-9, example 4-11
numbered 4-9, example 4-11
zero 4-9

Common error 8-3
Compare symbols and mnemonics 2-9

examples 2-11
COMPASS language

general differences from META 1-i
pseudo instructions B-1, 7

CON instruction B-24
Concatenation of symbols 6-5

Index-2

Configuration, minimum for META 1-2
Continuation of source statement

description 2-3
examples 2-4

Control cards required 7-1
Control section

absolute 4-10
creation 4-8, 9, 10
general features 1-1
list 8-4
name 4-8,9,10
name as word address 3-1
relocatable 4-8

COPY instruction B-24
CPR instruction B-23
CRA instruction B-21
Cross reference table

format 8-5
selection 7-4

CTI instruction B-25
CTO instruction B-25
CVBD instruction B-31
CVDB instruction B-32
Current address symbol (see dollar sign)

D
double definition error code
for BCD integer 2-6

DEC pseudo instruction B-8
Decimal integer notation

description 2-6
Decimal point in real number 2-7
Decimal scaling

of real number 2-7
operator in expression 2-9

Decision instructions
!DENT B-15
MONITOR B-23

Deck structure, examples 7-7
Definition

form 4-15
function 5-1, 3
machine 4-4
procedure 5-1,2
set, 4-4, 6
symbol 4-4

8-3

60236400

[~ ...

Delimiters 2-5
Delimiting character modifier B-4
DETAIL directive

as byte-oriented directive 3-1
description 4-3

Diagnostic messages 8-5
DINT instruction B-1 7
Directives

data generating 4-13
definition 4-1
location control 4-8
machine defining 4-4
procedure defining 5-2
program linking 4-19
repeat 4-20
skip 4-21
symbol defining 4-4
uses 4-1

Dollar sign
as current address symbol 2-10

examples 4-5, 13, 17
as word address 3-2
to change symbol level 5-13

examples 5-13, 14; 6-5, 6, 7
Double definition error 8-3

example 4-5
DTA instruction B-32
Dummy label 4-22
DV A instruction B-12
DVAQ instruction B-12

E
exponent indicator 2-7
expression error code 8-3

example 8-2
EAQ instruction B-9
ECHA instruction B-14
EDIT instruction B-33
EINT instruction B-17
EJECT directive

as byte-oriented directive 3-1
description 4-2

Elementary items 2-4
ELQ instruction B-9
ENA instruction B-9

60236400

END directive
description 4-24
examples B-3; C-3, 5, 6, 7, 8
relationship to TRA card D-1

End-of-file Icard 7-6
ENDS directive

as byte-oriented directive 3-1
description 5-5
examples 4-23; 5-1,2,3,5,6,8,9,10,14;

6-5,6
ENI instruction B-9
ENQ instruction B-9
ENTRY directive

as byte-oriented directive 3-1
description 4-19
example B-3
relationship to EPT card D-1

Entry point symbol
declaration 4-19
list 8-4

EQ modifier B-4
EQU directive

description 4-5
examples 3-2; 4-5, 7, 8, 21; 5-6, 11, 13,

14; 6-1, 2, 3, 4, 6, 7, 8; B-4
Errors, assembly

ccxles for 8-3
. on listing 8-1
lines 8-4

EUA instruction B-9
Expresswn

arithmetic 2-12
definition 2-10
evaluation 2-10, 12
examples 2-10, 11, 13
mixed mode 2-12
lrnode 2-12
parenthetical 2-11
relational 2-13
subexpressions 2-10

Expression error 8-3
EXS instruction B-25
EXT directive

as byte-oriented directive 3-1
description 4-19
examples 4-14; 6-6, 7, 8; C-3
relationship to XNL card D-1

Index-3

External symbol
declaration 4-19
list 8-4

F

UIC required as B-2

forward reference error code 8-3
to force execution 7-4

FAD instruction B-12
FDV instruction B-12
FINIS directive

description 4-24
example B-3, C-3
relationship to ELD card D-1

Floating point
data generation 4-14
in expression 2-12
instructions B-12
mode 6-2
notation 2-7
pseudo instruction B-8

FMU instruction B-~2
Forced execution 7-4
FORM directive

description 4-15
example 3-2; 4-16

FORM reference
as byte-oriented statement 3-1
description 4-16
example 3-2; 4-16, 18; 5-6; C-3, 8

Forward reference
discussion 4-7
examples 4-7, 8
in procedure definition 5-1, 2

Forward reference error 8-3
FRMT instruction B-33
FSB instruction B-12
FUNC directive

description 5-3
example 5-1,3,5,7,11

Function
attribute 6-1
definition 5-1 ·
processing 5-91

Index 4

Function reference
description 5-11
example 5-3,11; 6-1,2,3,5,6,7,8

GE as modifier B-8
GEN directive

as word-oriented directive 3-1
description 4-13
example 4-7,8,20,21; 5-14; C-3,5
relationship to RIF card D-1

GENB directive
as byte-oriented directive 3-1
description 4-15
example C-7
relationship to RIF card D-1

GEND directive
as word-oriented directive 3-1
description 4-14
examples 4-14; C-8

Generate object code
by word 4-13
by byte 4-15
by two words 4-14

Generation of byte stream D-1
G0TO directive

H

as byte-oriented directive 3-1.
description 4-21
example 6-1, 3
processing 4-24

half assembly/disassembly modifier B-4
Heading (see TITLE directive)
HL T instruction B-1 7

I
indirect address modifier B-5
illegal instruction error code 8-3
to select input file 7-4

IAI instruction B-13
IAPR instruction B-28
!PENT procedure set B-1, 9

60236400

!DENT pseudo instruction
description B-4
example B-3

IJD instruction B-15
IJI instruction B-15
Illegal instruction error 8-3
INA instruction B-13
INAC instruction B-26
INAW instruction B-26
INCL instruction B-28
INI instruction B-13
INPC instruction B-26
Input files 7-4
Input/output instructions B-24
INPW instruction B-26
INQ instruction B-13
INS instruction B-29
Instructions, machine

arithmetic B-12
BDP B-30
character B-14
accisions B-15, 23
floating-point B-12
input/output B-24
interrupt B-17,29
jumps, pauses, stops B-17,24
logical ti-19
no-operation B-18
shift B-18
transfer B-9, 21

INT intermpt modifier B-5
interrupt instructions B-17, 29

Integer
BCD notation 2-6
decimal notation 2-5
octal notation 2-6
mode 6-2

Internal octal codes A-1
INTS instruction B-29
IOCL instruction B-29
ISA instruction B-21
ISD instruction B-15
ISE instruction B-16
ISG instruction B-16
ISI instruction B-16

60236400

JAA instruction B-22
JMP instruction B-33
JOB control card

description 7-1
examples 7-7

Job identification 7-1
Jump, pause, -stop instructions

!DENT B-17
MONITOR B-24

L
to indicate left-adjusted BCD character

string 2-7 ·
to select list output 7-4

Label field
description 2-2

LACH instruction B-14
LBR instruction B-22
LCA instruction B-9
LCAQ instruction B-10
LDA instruction B-10
LDAQ instruction B-10
LDI instruction B-10
LDL instruction B-19
LDQ instruction BlO
Left-adjusted character strings

description 2-7
example 4-18

Library
procedures B-1
*LIB 5-7; 7-1

LIBS directive
as byte-oriented directive 3-1
description 5-7
example 5-8, 10; B-2, 3
to obtain I instruction set B-2

LIST directive

List

as byte-oriented directive 3-1
description 4-2

brief 4-3
control 4-1
detailed 4-3
format 8-1
of comments 2-3

Index-5

of sequence columns 2-2
parameter on META card 7-4
resumption 4-2
suppression 4-2

LIT directive
as byte-oriented directive 3-1
description 4-12
relationship to RIF card D-1

Literal
assignment 4-12
symbols 2-9, ~4
description 2-14
listing 8-4

LNID directive!
description 4-22
examples 4-20,22,23,24; 6-3

Load and go output
scheduling of mass storage 7-3
selection 7-4, 7, 8, 10

Location counter
$ reference to 2-10
absolute 3-3
assignment 3-3
data 3-3; 4-9 I

description 3-3
general feature 1-1
program 3-3; 4-10
relocatable 3-3

· rounding up of 3-2 I
Logical instructions B-19
Logical operators

symbols, mnemo.nics 2-9
LOW BCR modifier B-5
LPA instruction B-19
LR left/right modifier B-5
LT less than modifier B-5
LQCH instruction B-14

Machine definition (see UNIT directive)
Mantissa of real number 2-7
Mass storage

minimum required 1-2
scratch 7-3
standard 7-3

Index-6

Memory, core
examples of scheduling 7-7, 8, 9, 10, 11
minimum required 1-2
scheduling 7-2, 3

MEQ instruction B-16
Messages, error 8-5
Meta-assembler

configuration 1-2
definition Glossary-2
features 1-1
execution 7-1
library task 7-1

META control card
description 7-3
examples 7-5,7,8,10

Mnemonic operators B-3
Mnemonic instructions for 3300/3500

general differences from COMPASS 1-1
list B-1

Mode of expression 2-12
Mode of value

definition 6-2
related to 8i:tt:l 6-4

Mode (MDE) "'attribute 6-2
Modifiers, command field

-~ general format 2-3
3300/3500 instruction B-4, 9

MONITOR procedures B""'.'21
MOVE instruction B-26
MTHinstruction B-16
MUA instruction B-13
MUAQ instruction B-13
MVBF instruction H-34
MVE instruction B-34
MVZF instruction B-35
MVZS instruction B-35

N
nesting error code 8-3
no assembly /disassembly modifier B-5

NAME directive
description 5-3
examples 4-23,24; 5-2,3,4,5,6,7,8,9,

5-10, li, 14; 6-5, 6
NE not equal modifier B-5

60236400,

Nesting level
procedure/function 5-1
repeat 4-20

NOLIST directive
as byte-oriented directive 3-1
description 4-1

NOP instruction B-18
Nesting

expressions 2-12
functions/procedures 5-1, 12
sets 2-15
repeated groups 4-20

NSET directive
description 4-6
example 4-6,7,8,14,16,17; 5-3,4,5,11;

6-2,3,4
Number of elements attribute (NUM) 6-3
Null set element 2-15

0
to indicate octal integer 2-6

Object computer 1-1; 4-4
Octal instruction index B-39
Octal notation

example 2-6; 4-17
format 2-6

Operand field format 2-3
Operators

examples 2-10, 11, 13
hierarchy 2-9
legal combinations 2-13
list 2-9

ORG directive
as byte-oriented directive 3-1
description 4-11
example 4-11; C-7

OSA instruction B-22
OTAC instruction B-27
OTAW instruction B-27
OUTC instruction B-27
Output files 7-4
OUTW instruction B-27

60236400

p

punch selection parameter 7-4
register B-5

PAK instruction B-36
Parentheses

delimiter 2-5
enclosing function arguments 5-11
enclosing nested expressions 2-10

PAUS instruction B-24
PFA instruction B-22
Printer

eject of page 4-2
line limit for job 7-1
list control 4-1
output on 8-1
scheduling mass storage 7-3
selection 4-3; 7-4
spacing 4-2

PR QC directive
description 5-2
examples 4-23,24; 5-1,2,4,5,6,7,8,9,10,

5-14; 6-5, 6
on library 5-8, 10
processing 5-9

Procedure reference
as byte-oriented statement 3-2
BDP B-30
description 5-10
examples 5-2, 8, 10, 14; 6-5, 6; B-3, 7, 8
IDENT B-1, 9
MONITOR B-21
processing 5-10,13

Procedure
definition 5-1
nesting of 5-12
processing 5-9
repetition 4-23
standard library B-1

Processing
forward reference 4-7
function definition 5-9
function reference 5-10, 12
GOTO 4-23
procedure definition 5;_9
procedure reference 5-9,12
RPT 4-23

Program section (see control section)

Index-7

PRP instruction B-24
Punch output

Q

card limit for job 7-1
scratch needed 7-3
selection 7-4

register B-5·
QEL instruction B-10
QSE instruction B-17
QSG instruction B-1 7

R
relocation error code 8-3
select cross reference 7-4

RAD instruction B-13
RCR instruction B-22
RDE F directive

description 4-5
example 4-5, 6·, 7, 21, 23; 5-2, 9; 6-3

Real notation 2-7
Reference

FORM 4-16
foiward 4-7
function 5-11
procedure 5-10
set 2-15
set element 2-15

Relocatable expression, rules 2-11
Relocation attribute (REL) 6-1
Relocation error 8-3
Relocation of operand 8-1
RES directive

as word-oriented directive 3-1
description 4-12
example 3-2; 4-8, 11, 12; 6-4, 7, 8
relationship to RIF card D-1

RESB directive
as byte-oriented directive 3-1
description 4-13
example 3-2; 4-13; 6-4, 7, 8; C-7
relationship to RIF card D-1

Index-8

Repeat 4-20
Reserve storage

bytes 4-13
words 4-12

Right-adjusted
character strings 2-7, 8
examples 2-7; 4-14, 17
values in fields 4-16

RIS instruction B-10
RL right/left modifier B-5
ROS instruction B-10
RPT directive

description 4-20
examples 4-20, 21; 6-3
processing 4-23

RTJ instruction B-17

s
syntax error code 8-3

SACH instruction B-14
SBA instruction B-13
SBAQ· instfuctioff.,.B-13
SBCD instruction B-29
SE.JP instruction B-22
SBM instruction B-36
SBR instruction B-22
SCA instruction B-19
Scaling, binary

example 6-5
factor 2-14
operator 2-9

Scaling, decimal
factor 2-14
operator 2-9
of real number 2-7

SCAN instruction B-36
SCAQ instruction B-18
SCHA instruction B-14
SCHED control card

description 7-2
example 7-7, 8, 9, 10

SCIM instruction B-29
SDL instruction B-22

60236400

SECA directive
as byte-oriented directive 3-1
description 4-10
example C-5

SECD directive
as byte-oriented directive 3-1
description 4-9
example 4-11; C-5, 6, 7
relationship to BCT card D-1

SECP directive
as byte-oriented directive 3-1
description of 4-9
example 3-3;4-11; 5-6; C-3, 5, 6, 7, 8
relationship to IDC card D-1

Segments of mass storage
examples of scheduling 7-7, 8, 9, 10
minimum for META 1-2
scheduling 7-2

SEL instruction B-27
Semicolon 2-2, 3
Set

assignment 4-6; 5-2, 3
definition 4-6
description 2-15
element 2-15
example 2-15; 4-6
function reference 5-10
procedure reference 5-10
subsets 2-15

SFPF instruction B-29
SHA instruction B-18
SHAQ instruction B-18
Shift instructions B-18
SHQ instruction B-18
SJj instruction ,B-17
SLS instruction B-24
Size attribute (SZE) 6-4
Space (see blank)
SPACING directive

as byte-oriented directive 3-1
description 4-2

SQCH instruction B-14
SRA instruction B-22
SRCE instruction B-37
SR CN instruction B-3 7
SSA instruction B-20
SSH instruction B-19
SSIM Instruction B-29

60236400

STA instruction B-10
STAQ instruction B-10
Statement

format 2-2
number 8-1

STI instruction B-10
STQ instruction B-11
SWA instruction B-11
Symbol

attributes 6-1
concatenation 6-5
definition 4-4
entry point 4-19, 24
external 4-19
illegal 6-G
level 5-13
reserved B-3

Sy:mbol attribute (SYM) 6-5
Syntax error 8-3

T
truncation error code 8-3

TAI instruction B-11
TAM instruction B-11
Task name control card

· description 7-5
example 7-7, 9, 10

Termination
assembly, abnormal 8-5
assembly, normal 4-24
function definition 5-5
procedure definition 5-5
reference to definition 5-6
repeat 4-20
subprogram assembly 4-24

TEXT directive
as word-oriented directive 3-1
description 4-18
relationship to RIF card D-1

TEXTA directive
as word-oriented directive 3-1
description 4-18
r.elationship to RIF card D-1

Index-9

TEXTC directive
as byte-oriented directive 3-1
description 4-18
relationship to RIF card D-1

TIA instruction B-11
TIM instruction B-11
Time limit for job 7-1
TITLE directive

as byte-oriented directive 3-1
description 4-3·

TMA instruction B-11
TMA V instruction B-22
TMI instruction B-11
TMQ instruction B-11
TQM instruction B-11
Transfer instructions B-9, 21
TREF directive

as byte-oriented directive 3-1
description 5-6
example 5-6

Truncation
, ASCII character string 2-8

BCD character string 2-8
BCD integer 2-6
decimal integ~r 2-6
error code 8-3
expression value 2-11
octal integer 2-6
real number 2-7
sigri bits 8-3 ·
word size 4-13

TST instruction B-37
TSTN instruction B-38
Two-pass option 5-1, 2

u
undefined symbol error 8-3

UCS instruction B-24
UIC routine B-3
UJP instruction

procedure reference B-17
example B-3

Unary equal 2-9, 14
Unary double equal 2-9, 14

Index-10

Unary minus 2-9
examples 2-5, 6; 4-12, 15

Unary plus 2-9
UNIT directive

description 4-4
example 3-2; 4-17; 6-7; C-3, 5, 6, 7, 8

UPAK instruction B-38

Word
attribute function {WRD) 6-7
generation 4-13
size 4-4

Word address 3-1
list 8-1
mode 6-2

x
cooe on listing 8-1
load and go parameter 7-4

XOA instruction B-20
XOl instruction B-20
XO~ instruction B-20

ZADM instruction B-38
Zero element 4-6
Zero fill

ASCII character strings 2-8
BCD character strings 2-8
odd-sized field 4-18

Zero, negative 2-11
ZRO BDP modifier B-6

60236400

[;-., ...

I.LI
z
:J
<:> z

~I
Bl
I
I
I
I
I
I
I
I
I
I

~I
~'
~I

\J 1:
I
I
I

COMMENT AND EVALUATION SHEET
3300/3500 META Reference Manual

Pub. No. 60236400 November 1968
THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

•US I NESS
ADDRESS I~~~~~~~~~~~~~~~~~~----~~~------------

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

MD248
FOLD

9TA .. LE

BUSINESS REPLY MAIL

POSTAGE WILL BE PA 10 .iv .
CONTROL DATA CORPORATION
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

STAPLE

FOLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

eas..s;;.aH

-

FOLD

STA,.LE

w z
::;
0 z
9
4!
....
::>
u

..

......

.... ········
·::-:::::::::.:::<::.· .

. . ·.··. ·· .. ·.·.·.·.·.·.·.··.· ··· .. /.•·.·> /(·•. f ·•\ T>.• •••• ••• .Jhl
• .,.CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60236400

Mdtti;WlfiW~
~.~~J~&*"'M-·ma~M

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MJ\JOR CITIES THROUGHOUT THE WORLD

litho in U.S.A.

::0
m ,..
m
::0
m
z
0
m
s:
)>
z
c
)>
r

