CYBER 180
Programming
Guidelines
A course in the
CYBER 180 curriculum
CONTROL
DATA

PRIVATE

‘_ @S WDATA COKPORATION

" ‘CONTROL DATA
EDUCATION COMPANY

_ A A “ “ “

Student Handout

CYBER 180
Programming
‘Guidelines

A course in the
CYBER 180 curriculum

' CONTROL DATA
EDUCATION COMPANY

@ E aservice of
CONTROL DATA CORPORATION

REVISION RECORD

REVISION DESCRIPTION

A Manual released.

(8-9-79)

Publication No.

REVISION LETTERS I, O, Q AND X ARE NOT USED
ASE Part No. RW 3500
- CDC Pub. No. 76361446

Copyright © 1980 by Coniro_l Data Corporation

All rights reserved. No part of this material may
be reproduced by any means without
permission in writing from the publisher.
Printed in the United States of America
123456789

Address comments concerning this
manual to:

Seminar Division
5001 W. 80th Street
Bloomington, MN 55437

HA3010

CONTENTS

Introduction to the Course

. Introduction
. System Interface Standard
. Performance

. Project Conventions

Appendix

CONTROL DATA PRIVATE

25

33

43

[}

1o

-

GENERAL COURSE
DESCRIPTION

COURSE TITLE

Programming Guidelines

COURSE NUMBER
RW 3500

COURSE LENGTH
One day (5-6 hours)

GOAL

Contribute to the production of quality C180
software by increasing awareness of the stan-
dards, guidelines, and techniques used by C180
software developers.

DESCRIPTION

To attain this goal, the class will work with the
System Interface Standard (SI1S) and other
documents that describe the C180 software
development process. The class will participate
in discussions, evaluate code examples, and
attend some short presentations.

CONTROL DATA PRIVATE

v

GENERAL COURSE
DESCRIPTION
(continued)

PREREQUISITES

The minimum requirements for the course
- are the asterisked courses listed below. The
others are recommended.
* C180 Introduction or C180 Hardware
* CYBIL
* Structured Analysis/Structured Design
- Utility Smorgasbord
NOS/VE Internals and NOS/VE Usage
SYMPL

COURSE MATERIAL

1. System Interface Standard (SIS)

2. NOS/VE Project Procedures and
Conventions

3. Handout

CONTROL DATA PRIVATE

Vi

OUTLINE

INTRODUCTION (1 hour)
A. GOALS
B. GENERAL RULES

. SYSTEM INTERFACE STANDARD (2 hours)

A. PRIORITIES
B. INPUT
1. Product Calls
2. Source Input
3. Product Directives
C. OUTPUT
1. Logs
2. Listable Output
D. SYSTEM-WIDE CONVENTIONS
1. Naming
2. Interactive Processing
3. Error Processing
E. COMPILER AND ASSEMBLER OBJECT CODE
1. Interlanguage Calling Sequences
2. Support Modules

PERFORMANCE (1 hour)

A. PROCESS

B. LOCALITY OF REFERENCE
1. Code
2. Data

. PROJECT CONVENTIONS (1 hour)

A. HIERARCHY
B. PROJECT CONVENTION DOCUMENT
C. CYBIL CONVENTIONS
1. Readability and Clarity
2. Reliability and Safety
3. Performance
D. PACKAGING

APPENDIX

CONTROL DATA PRIVATE

vii

INTRODUCTION

CONTROL DATA PRIVATE

1

GOALS

RULES

Edicts

Conventions SUGGESTIONS
Policies Guidelines
Requirements Techniques

Standards Practices

QUALITY
Maintainability
Usability

Security

Economy

Good Performance
Reliability

CONTROL DATA PRIVATE

2

'"GENERAL RULES

Use structured methods for all applicable phases
of analysis, design, implementation, and test.

Follow the system interface standard (SIS) in
all OS/product, product/product, and product/
user communications.

Code for simplicity and clarity; measure, then
revise.

Foliow the coding conventions (for naming,
documenting, and so on) listed in the SIS or
documents for your product.

Access tools for maintaining, manipulating,
documenting, compiling, debugging, and so on
through SES procedures.

Use the program interface for messagqge pro-

cessing, access methods, interlocking, and so
on. |

CONTROL DATA PRIVATE

3

PROCESS

| ANALYSIS

Data Flow Diagrams
Data Dictionary

Structured

English

| Module Descriptions
Interfaces

DESIGN
Structure Charts
Documents

Performance

IMPLEMENTATION

Coding Conventions

Coding Practices

Error Handling

Messages

Listing Formats
Language Efficiencies

CONTROL DATA PRIVATE

.

ENFORCEMENT

Management
Design Team

Automated Tools
SES

Peers
Walkthroughs
Code Reviews

Integration and Evaluation
Quality Assurance

CONTROL DATA PRIVATE

-

SIS

CONTROL DATA PRIVATE

SIS PRIORITIES

. Usability/Human Engineering

. Uniformity/Consistency

. Good Performance

. C170 Compatibility

CONTROL DATA PRIVATE

.

INPUT

System Command Language (SCL)
Product Call Parameters
Source Input

Product Directives

CONTROL DATA PRIVATE

9

PRODUCT CALL @
PARAMETERS

RULES

e |f the parameter exists in the SIS, use it.

e SIS parameters cannot be used for undefined
purposes.

e You do not have to use all the parameters.

e New parameters must be approved.

GUIDELINES

e Consider new options instead of new param-
eters.

e Use names that emphasize relationships.

CONTROL DATA PRIVATE

10

DIRECTIVES @

COMPILATION

eject

list/nolist

space =

title =

subtitle =
range/norange
trace/notrace
debug/nodebug
sequence/nosequence
objlist/noobijlist
prefix =

PRODUCT

brief/full
count

file |
wait/nowait
user/password
upon

library

CONTROL DATA PRIVATE

11

OUTPUT @

NUMBER BASES
OUTPUT LOGS
LISTABLE OUTPUT

USAGE STATISTICS

CONTROL DATA PRIVATE

12

OUTPUT LOGS @

SINARY
Accounting
Log

E’ngineering
Log

Statistics
Log

Statistics

CONTROL DATA PRIVATE

13

LISTABLE CUTPUT

e Vertical Layout
e Narrow/Wide Format

® Source Listing
Object Code
Map
Cross-Reference
Error Listing

CONTROL DATA PRIVATE

,14, :

SYSTEM-WIDE
CONVENTIONS

Names, Dates, and Times
Interactive Processing
Installation Parameters
Error Processing

Effective Use of Hardware

CONTROL DATA PRIVATE

SIS
4

NAMES

P|P|C|S$ | x | x | x

!

Meaningful Name

\ A
CLASS

C — Constant
F — File

P — Procedure
V — Variable
and so on

Y
PRODUCT ID

AM — Access Method

CY —CYBIL

FT — FORTRAN

JM — Job Management

OS — Operating System

PF — Perm. File Manager
- and so on

CONTROL DATA PRIVATE

16

INTERACTIVE
COMMUNICATION

MESSAGES

e Courteous

¢ Understandable
e Short form

LISTING

e Levels of detail
e 72 or 132 char/line formats
® No loss of data

INPUT

e Easily correctable errors
Reduce typing

Flexible sources
Flexible modes

CONNECT/DISCONNECT

Terminal = ASCII sequential file
Logical disconnect

Interruptible processes

Restart after break

STATUS TO USER
Almost any time

e Progress reports

e Environment/resources
e Real-time reporting

HELP

e A reasonable response anytime

CONTROL DATA PRIVATE

17

ERROR PROCESSING

Status
\ Records

Condition
Handlers

Program
(Internally
Diagnosed)

Y

° Understandable
Messages

¢ Traceback
® Current Position

e Dumps, Tables, etc.

Terminal

CONTRdL DATA PRIVATE

18

EFFECTIVE USE OF @
HARDWARE

HARDWARE OPERATION

Register reservation
Alignment

PERFORMANCE

Locality
Register use

SECURITY

Use callers pointer
Avoid passing pointers |

CONTROL DATA PRIVATE

19

COMPILER AND ASSEMBLER
OBJECT CODE

e Use of Loader Features
¢ |nterlanguage Calling Sequences
e Storage Management

° Common Support Modules

CONTROL DATA PRIVATE.

20

INTERLANGUAGE @
CALLING SEQUENCE

COMPILER
A

COMPILER
B

¢ Information Required Across Call
e Parameter Lists

e Data Representation

e Data Mapping

CONTROL DATA PRIVATE

21

COMMON COMPILER @
‘ MODULES |

DIAGNOSTIC MESSAGES

CCP$sdm_set_diagnostic_mode
CCP$ddl_declare_diagnostic_level
CCP$rsd_reset_diagnostics
CCPSiin_insert_name
CCP$iad_issue_a_diagnostic
CCP$res_return_error_severity

LISTABLE OUTPUT

CCP$fsl_format_source_line
CCP$foh_format_heading
CCP$fol_format_output_listing

SYMBOL TABLE FOR DEBUG
PACKAGE

STORAGE MAP/ATTRIBUTE/
CROSS-REFERENCE LISTS

CCP$den_define_entity
CCP$der_define_entity_reference

CCP$fam_format_attribute_map
CCP¢$iat_insert_attribute_token

USAGE STATISTICS
REPRIEVE STATISTICS

CONTROL DATA PRIVATE

22

COMMON
PROCEDURES

NOS/VE PROGRAM INTERFACE

SCL Parameter Processing
Message Generator

Condition Handling

Time, Date, Job Name, and so on
Logs

Status Interrogation

MATH LIBRARY (CMML)

Math Routines
Numeric Conversion

' COMMON CODE GENERATOR (CCG)
- MEMORY MANAGEMENT (CYBIL)

CONTROL DATA PRIVATE

23

?

- PERFORMANCE

CONTROL DATA PRIVATE

IMPLEMENTATION PROCESS

Analyze

Design

Code

NO Works
Correctly
9

Meets

Performance

Objectives
l’

Hypothesize

Measure

YES A)k
W

CONTROL DATA PRIVATE

26

GOOD DESIGN BEGETS
GOOD PERFORMANCE

e Correct

® Fast

CONTROL DATA PRIVATE
27

CODE FOR SIMPLICITY
AND CLARITY

e Simple search techniques
e Straightforward interfaces
® Document for future reader
e Small procedures (10-100 statements)
e Avoid overly tight code
e Single-purpose procedures
e Don’t pass control infdrmation

¢ Meaningful names

CONTROL DATA PRIVATE
28

MEASURE, THEN REVISE

e APD to Isolate Problem

e Code Considerations
Locality
Algorithms
Language Inefficiencies

e Data Considerations
Locality
Referencing Algorithms
Data Structures

CONTROL DATA PRIVATE

29

ANALYZE PROGRAM
DYNAMICS

Time A A
= B
£ C
A D
—5" . =
a F
E
D Object
F Procedures
A
E
D A
F E
A D
= F
D C
£ B
B
2 Reordered
D Object
F Procedures
A
E
C

¢ Small procedures
* Low coupling
e High cohesion

® Exception processing and initialization in sepa-
rate procedures

CONTROL DATA PRIVATE

30

LOCALITY OF REFERENCE

OBJECTIVES: Minimize

1. Working set variations
2. Page faulits
3. Average working set size

RECOMMENDED PRACTICES

Low coupling

Cluster related data

Declare data at lowest level

Initialize data as you use it

Access data sequentially

Access memory, use the data, release memory

CONTROL DATA PRIVATE
31

LOCALITY OF REFERENCE

OBJECTIVES: Minimize

1. Working set variations
2. Page faults
3. Average workingsetsize

DISCOURAGED PRACTICES

Large numbers of segments

Use of static chain

“Elaborate” search/sort techniques
Interleaved structures

Externally declared variables

Trying to trick the paging mechanism

CONTROL DATA PRIVATE
32

IV

PROJECT CONVENTIONS

CONTROL DATA PRIVATE
33

GUIDELINES HIERARCHY

GENERAL RULES

... /DATA
BASE
MANAGER
CODING STANDARDS /

CONTROL DATA PRIVATE
34

PROJECT GUIDELINES

® Mode of Operating
Review cycles
Change procedures
Analysis/design tools
Documents
Development/test tools

® Programming Language
Naming
Layout
Efficiencies
Interfaces
Techniques

¢ Packaging
Size
Common decks
Performance

CONTROL DATA PRIVATE
35

NOS/VE

Design Team

Document Organization
Procedural Interface
Program Library Conventions
CYBIL Coding Convention
Code Submittal Process
Document Maintenance
-Yourdon Methodology

CONTROL DATA PRIVATE
36

PARAMETER TYPING

Use type identifiers.
Use self-documenting feature of ordinals.

Use constants to:
— delimit subranges
— specify string length

Use sets to specify multiple subfunctions.

Arrays are good if:
— multiple generation or manipulation will
take place
— components are independent

Record should be a unified entity.
— field has a clear relationship
— all fields are essential to the function being
performed
— one directional

Avoid packed structures, adaptable type, and
bound variant records.

CONTROL DATA PRIVATE
37

NOS/VE CYBIL
CODING CONVENTION

‘o Formatter

e Use of CYBIL

e Use of English

e CYBIL Naming Convention

® Module and Procedure Documentation
o Title

e Commenting

e Attribute Comments

® Module Organization

CONTROL DATA PRIVATE
38

USE OF CYBIL

READABILITY AND CLARITY

e Label both ends of structured statement.
e Use ordinal and subrange.
e Declare all input parameters first.
e Parameters to procs (0) pass information
(@ document data used by the proc.
e Use procedures (1) as subroutines
(@ to show structure.

RELIABILITY AND SAFETY

Cover all CASEs.
Don’t use default parameter values.

o
o
e Use parentheses in arithmetic statements.
e Avoid #LOC.

PERFORMANCE

e Avoid XREF/XDCL.

e Declarations should be at lowest level.

¢ The first condition on a boolean expression
should be the most probable.

e Consider PUSH instead of ALLOCATE/FREE.

CONTROL DATA PRIVATE

39

CCG CODING CONVENTION

® Philosophy

‘ 1. Code correct
2. Sensible structure
3. Pretty

® Module Layout

1. Use of pragmats

2. Commenting

3. Procedure parameters
e Common Decks

® Declarations

e CYBIL Formatter

CONTROL DATA PRIVATE

40

PACKAGING GUIDELINES

MODULE SIZE AND CONTENTS

e Limit scope of declarations
e Localize static data

* Repackaging ease

COMMON DECKS

e Don’t hand-code the same thing in several
places — use a procedure
e Self-contained

PROCEDURE SIZE AND CONTENTS

e Single purpose, testable separately
e Block comments instead of one-liners
10—100 statements?!

MANAGEMENT

e Source code
e Object code
e Library

CONTROL DATA PRIVATE

41

SUMMARY

1. Where are they?

2. What kinds of things do they cover?

3. Which ones apply to me?

CONTROL DATA PRIVATE
42

APPENDIX

CONTROL DATA PRIVATE
43

GENERAL STANDARDS

AGREE? | RULE | STANDARD | GUIDELINE

What guidelines, conventions, and standards
would you want and expect to have specified for
any software development project you become
involved with? -

CONTROL DATA PRIVATE

44

SIS CONVENTIONS

Compare this set of declarations with the set on the next page. List the conventions used.
What do you like or dislike about each?

NOS/VE:

{ N0OS/7180 request status record: used to convey resulits of all system 2}
{ reques?s and optionally all commands. }

TYPE

ostédstatus = record
normal? boolean,
state! ostdstatus_states,
identifier? string (2),
subidentifier? string (3),.
condition: ostsstatus_condition,
subcondition? ostsstatus_subcondition,
text?: cltschar_strings

recends,

ost$status_states = (osc®normal_status, osc3informative_status,
oscswarning_status, osclerror_status, oscgfatat_status),

osf%sfatus_condition = 0 e OScSmax_conditions,
ostsstatus_subcondition = 0 <. o0sc3max_subcondition,

ci tschar_string = record
thi? 1 e« 257,
rhit 0 ee 256y
bufs string (256),
recends§

CONST
osc$max_condition = 16000,
osc3¥max_subcondition = 100%

{ Asynchronous request parameter? used by alil NOS/180 requests that 3}
{ can be operformed asynchronously te indicate whether the caller }
{ wishes to execute fhe.requgsf synchronously or asynchronousiye }

TYPE : . _ ,
ostswWait = (oscSwait, oscSnowait)y

{ Secure memory/file parameter 3}

TYPE :
ostsclear_file_space = -booleans’

CONTROL DATA PRIVATE

45

COMMON CODE GENERATOR:

{ SPECIFIED CONSTANTS AND TYPES:

{ The remainder of the constants and types a~e both descrijsed
€ and defined {In terms of value) in the CCG180 Interface

{ Specifications

CONST
cgc$_max_section_offsat = 7fffffes(16)
{ the maximum offset #ithin a section 2f 31y item 2} 3

TYPE
cgt3_byte_offset = 0 .. cgcs_max_section_offset,
{ a byte offset

cgt$_byte_tength = 0 <« cgc¥_max_section_offset + 1,
{ maximum section iength

cgt$_number = - 800000({16) <. 7FfEfff(16),
£ a CCG180 *identifier® :

cgtd_interf_class = 0 «e 15,
{ the interference class values

cgts_tlibrary_name = st~ing (31),
{ standard name field

cgt$_optinization_tleval = (
C optimization tevel s5~dinal
cgo$_opt_tevel_locals cgo$_opt_level_global),

cgt$_host_compiler = {

{ ordinal over the possible hosts

cgo$_host_algols cgo$_host_algol_b6b8, cgod_host_basicsy cgo$_host_cobol,
cgo$_host_fortrany cgod_host_obtigey c998_host_pascalx, cgog_host_sascal,
cgo$_host_plt_iy cgod_host_sympl),

cgts_section_access = (
{ the access attributes for data areas
cgo®_access_ready cgo$_access_writel,

cgts$_sections = (

{ varleties ot loader sections ‘

cgo®_sect_commons, cgo$_sect_workingy cgod_sect_ext_commony
cgod_sect_ext_working),

cgt$_data_areas = {
{ varjeties of data areas

CONTROL DATA PRIVATE

46

Ly
3LVAIHd VLVA TOHINOD

SINITIAL CammAnIDY .« STAnA
ovERVIEW + commAn. LENETI
oLl - sce
Processor
* COomMAND N
o PARAKETER U S « sThvus
+ CoOMmMAND _ORIG!
oCemmanb. ID
CCPicRenTE] ocpisaieT| ocptceene ocPs
BT °f’ :::"“ DISBLAY ocrians locrieerac eptcaming Mosuk ocPiveure 4eeoe oc ocrd sansey 5 ocrsEn>
UakARy VALY tever

8v
31VAIHd V.L1VA TOHLINOD

0cP3 ORTAIN
okyeer
Fue

*Fue- PR]

* FRENARE
oML FREUST

ocPt sEnRen.
OPN.FiLE.
usT

ocP4 p€wND
oB8Jecr
Fre

(]

ospd seT
STATUS
Aaornac—

> CommAND . NAME

© DARAMETER LIST™ eSTATeS
* CamAAD. OR1GEN
® ComMAND - ID

arsREPLACE

REP
REMACK LIBRARY = < LOCAL FILE_NVAMT >
L morore ~ (<maumvameg >C .. <mopuLe.name>]
L, <moouur_ wars >L.. <madure wan513)]

» 4,
OMODKE. NAMT D““«c_% o
S HERACEADIT s QANLM _usT 2 4,

ocPhremach

ST

ocPtsowcH oPdpuip oerdrernce
o Modur ownTe
usT DascrPTION wm usT

o Mobudk . pescePTION !

oxP $£reT
Madus

ERROR. LIST
G) FiLE mOT EOuAD
(R MODULE NeoT ON Fie
(®) MOBULE AT ON pRTECT URRARY
@ BAd opyTer Fir

6V
J1VAIHd V1vd T0HLNOD

LDENTIFIER

1

10
1]
In
InON

T

IN
1]
IR

1s
ISAN
1son

1soml
Isomn2
']

94

INT

NA
N8
NC

NCI

FTNS CROSS-REFERENCE LISTING FORMATTED BY CCM

DEFINED
UN
39

84
217

23

64

81
82
23

26

WPE

SIPPLLAVAR

ARRAY
SINkLCAVAR
SINELESVAR
ARRAY

ARkAY

SINELEAVAR
ARRAY

ARRAY

ARRAY
ARRAY

ARRAY

ARRMY
ARRAY
SINPLEAVAR

SINPLEAVAR

SINPLEAVAR

ARRAY

ARRAY
ARRAY
ARRAY
SINFLEAVAR
SINFLEAVAR
SIMELEAVAR

SIMPLEAVAR

ATTRIBUTES MsMOULFY, AsATTRIBUTE, SsSUBSCRPT,
REFERENCES : I=l/U ReFy ROREAC) WehRITE, PePARAM
SIZt 1 WOPDs OFFSET 7701 BYTES ,»INTcGER
40 4l &5 46 46 4d 49 49 5C 50
51 53 39 60 70
SIZE 210 wGRUS» OFFSET 1232 BYTES » INTEGER
10/M S54/M 55/M4 63
SIZE 1 WORDs OFFSET 7715 BYTES »INTEGER
84 84
SIZE 1 WORD, OFFSET 7677 BYTES ,INTEGER
60
3IZE 210 WORDS, OFFSET 7350 BYTES » INTEGER
17/M 56/M 5T/M 59/M 62 12
SIZE 210 wCRDS, OFFSET 2742 BYTES » INTEGER
11/M s/ 36/H 40/M &2 42 44 46/0 49 61
66
SIZE 1 WORD, OFFSET 7700 BYTES »INTEGER
70
SIZE 210 wWORDS, OFFSET 7026 BYTES ,INTEGER
16/ 33/NM 34/ 79
SIZE 840 WORDS» OFFSET 4774 BYTES » INTEGER
: 42 43 44 47 61 62 62 66 67 n
73 74 18 9 80
SIZE 210 WURDSy OFFSET 6504 BYTES » INTEGER
15/M 3l/n 32/8 . 78
. SIZE 210 wORDS» OFFSET 1554 BYTES » INTEGER
18/M 67 69 74 76 79 ec
SIZE 210 WORDS, OFFSET 3606 BYTES , INTEGER
8/n 44 46 47 50 61 €2 63 63 66
69/ n 72 73 74 18 6C
SIZE 210 WORDS, OFFSET 4130 BYTES » INTEGER
13/M 49/M 67 78 890 [:2% €2 83 a4/u
SIZE 210 WORDS, OFFSET 4452 BYTES » INTEGER
14/0 51/M 74 q6/0 79
SIZE 1 WORD, OFFSET 7674 BYTES »INTEGER
25 27 28 29 29/M 42 43 44 47 61
63 66 67 71 T2 73 4 10 78 80
84
SIZE 1 WORD» OFFSET 7672 BYTES ,INTEGER
6 7 8 9 10 11 12 13 14 15
17 18
SIZE 1 WORD, OFFSET 7707 BYTES ,INTEGER
65 65 68 69 69 15 L 76
SIZE 210 WGRDS, OFFSET 3264 BYTES , INTEGER
12/M 37/n 38/M 41/n 43 43 47 50/¢ 31 n
73
SIZE 210 WORDS, OFFSET 710 BYTES » INTEGER
9/n 52/M 53/M 63 6a2/M 606 7
SIZE 210 wORDS, OFFSET 2076 BYTES , IMTEGER
6/N 42 44 6l
SIZE 210 WORDS» OFFSET 2420 BYTES » INTEGER
/N 43 47 n
SIZE 1 WORD, OFFSET 7713 BVTES ,INTEGER
82 83
SIZE 1 WORDs» OFFSET 7714 BYTES ,INTEGER
83 B4/W
SIZE 1 WORD, OFFSET 7675 BYTES ,INTEGER
26 29 30 30/n 42 43 44 47 61 62
66 67 71 T2 73 14 18 19 8c 83/
SIZE 1 WORD, OFFSET 7676 BYTES »INTEGER
32 34 36 38 33 55 51

51

62

72

67

62
84

16

72

63
84/ N

NS

0S
J1VAIdd Y1vd TOHLNOD

e=VARIAILE AAP==(LO=A/K)

SAMPLE FTN 5 CROSS-REFERENCE LISTING

«NANC===ADOREIS==BLUCK=====pPRIFERTILS TYPE

{ 77018 INTEGER
v 12328 AMTEGER
1J 77158 INTEGER
i 76778 INTEGER
RN 7354 LNTEGER
Int 27428 INTEGER
InN 77008 LNTEGER
1 70208 LNVEGER
IR 47748 INTEGER
IS 65048 ANTEGER
REYY] 15548 INTEGER
Isun 36008 INTEGER

PRUGRAN PP ILYALY CPis=g

SI2ZE<=~REFERENCES=

39/¢C 40
. 50 51
210 2 1075
84 84/C
2Us 60/¢C
210 2 11/8
210 2 11/
61 62
286/ 70
210 2 16/8
840 2 42
71 72
210 2 1578
210 2 18/8
210 2 8/

S
FTN 5.0+¢308

=NANE==~ADORESS~~BLUCK=====PROPERTIEI=>~====TYPE~=voemaacS| 2E~~=REFERENCE S~

1s0n1
15042
lu

u

J
INT

K
L]
N
NA
N8
NC

NCI

41308
44528
ToT48

76728

77078
32048

7108
20768
24208
77138
77148
76738

76768

INTEGER
INTEGER
IATEGER

INTEGER

INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER

210
210

210

210
210
210

67
13/8
1448
25
62

69/
49/S
51145
27
63
84

ASARGLIST» CoCTRL OF DO» I=DATA INIT,
RsReADy) SaSTOREs L=J/C ULNIT, WeWRITE

43/C
58/¢
949/8

51S
36/

- 46
/04

4t
39
63

5645
40/$

79 15.59.51

72
T8
1648
29
67

9

69
4145

63

6l
n

3048
n

38

4¢
ec/C

€2
€2

€l
19

€
30

42
12

Lk}

48/C
70

B}

.2

€2
80

9
6l

4
el

42
1

1

15/¢C
43

66

43
13

49

44

€3

€0
PAGE
78
82

43
13

12

6
7

"3

44
14

57

49

46/5

66

60
83

44
"

13

16
%0/3

a7
18

50

49

67

84/u

47
78

14

51

6l
19

PROJECT STANDARDS

AGREE? | RULE STANDARD | GUIDELINE

Suppose you are assigned as manager of a
software project (for example, a data manage-
ment system). What guidelines would you specify
for the project? Assume that the SIS must be
adhered to.

CONTROL DATA PRIVATE

51

PROJECT CONVENTION

Compare the following procedure declaration with the one on the next
page.

List the conventions used.

What do you like or dislike about each?

Cyber 188 Common Code Generator Interface Speci flcatlion

12.0 PHYSICAL INTERFACES.
12.4.2 DEFINITION PROCEDURES

LGPidbt defing bit tiald

ae XREF Declaratlion

PROCEDURE (XREF1 CGP3dbt_define_bit_fleld (
base! CGT3$_number,
field_attributest CGTS_field_attributes_set,
intert_classt COT3_interf_class,
lexlcal_level? (.e7y
byte_offsett CGT3_byte_offsat,
first_bit_offset,
'an_blf_OffSQf: 000637
name? STRING (¥*)

VAR F_number? CGT3_number)

be Function

This procedure defines a bit aligned flefas, unto 63 bits
fang. The base of the field is given by the base
parametery, [ts byte offset by the byte_offset parameter,
its blit offset and tength by the first_bit_offset and
ltast_blt_oftset parameters and its attributes by the tleild
attributes and Intert_class parameters. Note that bit
fietds cannot have a bdp type. If the name of the ftield
ls required for oblect code listingy, 1t should be suppllied
as the name parameter. The procedure returns an Fenumber
that describes (t.

CONTROL DATA PRIVATE
52

PROJECT CONVENTION

List the conventions used.
What do you like or dislike about each?

3-5

NOS/VE ERS = PROGRAM INTERFACE
12717779

- ow —-—w - - -

3.0 RESCURCE MANAGEMENT -
3elel1e5 RMPSDEFINE_ALLOCATION_UNIT

- > > w oo " > -

3ele1.5 RMPIDESFINE ALLOCATION UNIT

The purpose of this regquest is to define the aliocation
unilt size of a file prior to flle accesse.

This request [s [gnored [t a previous REQUEST command has deflned)
the allocation_unit for the fite or if the file already existse}
If the request [s Ignored an abnormal status Is returned.}

RMPSDEFINE_ALLOCATION_UNIT (LOCAL_FILE_NAME,
ALLOCATION_UNIT, STATUS)

LOCAL_FILE_NAME: (input) thls parameter specifies the local file
name of the file for which the request is being Issued.

ALLOCATION_UNIT: (input) This parameter specifies the number of
contlguous mass storage device allocation units which are}

altocated to the file each time the system determinas that}

allocatlon (s necessary.}
Atiocatlion_unit options are:

rmc3default_au - specifles system default (al)
rmc$al - 1 device aliocation unit (DAU)

rmc$a2 - 2 DAUs

rmac3abk - 4 DAUs

rmc3ad - 8 DAUs

rmc$alé- 16 DAUs

rmc$a32~- 32 DAUs

N N N N N N N Y N N Y e N a e la e kalalaale e Nt o ot ors)

STATUS? (output) Thlis parameter speciflies the request statuse.

PROCEDURE (XREF] rmpsdefine_allocation_unit (local_file_name:
amtSilocal_file_names
allocation_unit? rmt8allocation_unit;
VAR status: ostsstatus);

*callc amdname
¥cailc rmdau
*callc osastat

CONTROL DATA PRIVATE
53

ALGORITHMS AND
CODING PRACTICES*

The following recommendations are for the FTN/180 implementation process. They are in
no particular order beyond a loose attempt to separate them into “general coding” and
“data reference” categories. Their common aim is to improve locality of reference and
main memory usage during some short time span (on the order of 1 to 100 milliseconds).

1.

Reduce the short-term use of main memory, even if it causes long-term virtual
memory usage to increase. Main memory is expensive; virtual memory (auxiliary page
storage) is practically free.

. Write in-line code for the normal, average, standard cases. Move special, pathological,

end-case code out-of-line, possibly into separate procedures. Remember that the in-
line code must detect the funny cases, even though it relies on/calls the out-of-line
code for the actual processing. Structured programming principles should not be dis-
regarded completely, but an occasional bend of the rules might not hurt much.

Don’t write overly tight code just to save a few bytes. It tends to be unreliable, nasty to
unravel, and even harder to fix. If the bytes really are important, or it's an inner-inner
loop, maybe a simpler algorithm would do the same function—clearly.

If a heavily-used procedure routinely calls a distant utility routine, consider the possi-
bility of replicating the utility code either inside or near (same page) the procedure.

. Resist all temptation to stuff too many functions in a procedure, or to fudge on its

interface with another procedure, just to save a little memory. Keep in mind that
memory is cheap, but PSRs aren't.

. Try to confine references (either data or code) to-pages that should be in main

memory simultaneously, that is, in the current working set. Remember that the virtual
addresses may be widely separated, yet may refer to pages that are adjacent in main
memory at the moment.

*Reprinted with permission from “Impact of C180 Virtual Memory of FTN 180,” Dillion, D'Ci_

CONTROL DATA PRIVATE

54

10.

11.

12.

13.

Don't try to outwit the NOS/180 page management strategy. While it may be entirely
possible to do so, such practices as dummy procedure calls “just to drag the next
page in early” will probably interfere with more global attempts to fine-tune the com-
piler's or NOS/180’s performance. Also, compiler performance statistics would be
artificially distorted.

Don't initialize a large number of data areas en masse (e.g., at the beginning of a
pass). This could cause many pages to be brought into main memory long before they
are really needed. Instead, initialize each data area just before it is first used. This dic-
tum can be ignored if the data areas are small and located in the same page.

Don't reuse global shared (“common”) storage for different purposes during separate
phases of compilation. On a virtual machine, the technique probably won’t save any
main memory. Furthermore, the global coupling is often not obvious and can cause
very subtle bugs.

Where possible, process data and release its storage in small chunks, not large ones.
This may require delicate compromises between code space and data space.

Don’t over-pack data structures just because PASCAL makes it easy. The compiler
code to pack and unpack the structures is bulky and slow, and could degrade perfor-
mance more than a slight increase in data paging. Review each major data structure
and make a reasoned decision about packing the structure. When hardware becomes
available for performance testing, conduct tests to update the decisions.

“Reference data in the order in which it is stored and/or store data in the order in
which it is referenced. This is particularly true of arrays. If an array is stored by
columns (as in FORTRAN), complete all references to a single column before moving
to the next. The order in which data areas are referenced is, of course, of no conse-
quence if the entire area fits into a single page. Most page-replacement algorithms
tend to favor pages that have been used recently. Therefore if a procedure causes a
large sequential space of storage to be traversed, the direction of scan should be
reversed in alternate passes.” [Morrison] (The reversing technique may strain the spirit
of paragraph 7., “thou shalt not trick the paging strategy.” It depends on the exact cir-
cumstances, and one’s own conscience.)

“Avoid the use of elaborate search strategies for large data areas. Avoid the use of
large, linked lists if these techniques cause a wide range of addresses to be refer-
enced. Methods of using list structures are referenced. The use of binary search for
sequential tables spanning many pages should be carefully evaluated. Useful alterna-
tives to binary search are hashing entries for direct access, or resequencing the table
by frequency of use so that a sequential search may be used.” [Morrison]

CONTROL DATA PRIVATE

95

~ 14. Reference a data structure naturally—which means, if possible, sequentially. Consider
the possibility of reordering the structure if the reference pattern suggests excessive
paging demands. For example, consider the multiplication of two matrices. This
requires referencing one matrix in row order and the other in column order. Depend-
ing on the order of element storage, one of these reference patterns will cause exces-
sive paging if the matrix spans many pages (the problem does not exist if each matrix
fits in one page). The problem may be minimized by transposing the offending matrix
before the multiply. The transpose, or reordering, operation may require less time
than the paging overhead for the ill-conditioned case.

Sometimes, one procedure of a program will refer to a data structure in a pattern that
differs significantly from others found elsewhere in the program. Either reordering the

data structure or revising the referencing algorithm of the lone procedure may improve
the pattern.

CONTROL DATA PRIVATE

56

REFERENCES

Architectural Objectives and Requirements, ARH 1688. Control Data Document.

Boehm, B.W., Brown, J.R., and Lipow, M. “Quantitative Evaluation of Software Quality,” from
the Second International Confer_ence on Software Engineering, October, 1976.p.592.

Brooks. “The Mythical Man-Month,” Addison-WésIey, 1975.

C180 Common Compiler Modules (CCM), Interface Specification. S2987. Control Data
Document.

C180 Mathematical Library (CMML), S2929. Control Data Document.

C180 System Interface Standard, S2196. Control Data Document.

- “CCG 180 - Coding Conventions,” July 11, 1979. Control Data Document.

CMML Assembly - Language Support System, S3410. Control Data Document.
CYBIL Implementation Dependent Handbook, ARH3078. Control Data Document.
Dillon, D.C. “Impact of C180 Virtual Memory on FTN/180.”

Dillon, D.C. and Waddell, J.P. “CYBER 180 Compiler Architecture Guidelines,” December 20,
1978. Control Data Document.

Kernighan and Plauger. “Software Tools,” Addison-Wesley, 1976.
Kernighan and Plauger. “The Elements of Programming Style.”

Morrison, J.E. “User Program Performance in Virtual Storage Systems,” IBM Systems
Journal, Vol. 12, #3, 1973.

Myers. “The Art of Software Testing,” New York, 1979.
NOS/VE Project Procedures and Conventions. Control Data Document.

Rogers, J.A. “Structured Programming for Virtual Storage Systems,” IBM Systems Journal,
Vol. 14, #4, 1975.

CONTROL DATA PRIVATE
o7

REFERENCES — Continued

“SYMPL Coding Standard for the SYMPL Project.” Control Data Document.
Wilson, J.A. “Segment Usage,” October 30, 1979.

Weinberg. “The Psychology of. Computer Programming,” New York.

CONTROL DATA PRIVATE

58

