NOS/VE ANALYSIS

Student Handout

L REVISION RECORD

REVISION

DESCRIPTION

A Manual released. This course reflects the state of the 0S as it is expected to be

(3-1-81) when released in 1983.

Publication No.

REVISION LETTERS |, 0, @ AND X ARE NOT USED

ASF Part No: RW4100
Copyright ©1982 by Control Data Corporation

All rights reserved. No part of this material may
be reproduced bv any means without

permission in writing from the publisher.

Printed in the United States of America
1234567839

ii

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Southgate Office Plaza
5001 West 80th Street
Bloomington, MN 55437

or use Comment Sheet in the back of
this manual.

HA3010

TABLE OF CONTENTS

LESSON PAGE
Introduction« . o v 0 e e v e e e e e e e e e e iv
Course Chart . . . « « o v v v v v v v v e e e e e e e e v
Course Outline v o « v v v v v v v e e e e e e e vi
Materials. . . . ¢ ¢ i e e e e e e e e e e e e e e e e .o Vil
Lesson 1. Objectives « . « o o o o o 1-1
Lesson 2. NOS/VE Structure 2-1
Lesson 3. Job Flow 3-1
Lesson 4. File Flow e v e e e 4-1
Lesson 5. Materials « . ¢« ¢« v ¢« « « « « v « . 5-1
Lesson 6. Internal Communication e e e e e e e . B-1
Lesson 7. External Communication e e 7-1
Lesson 8 Job Control+ .+ . . 8-1
Lesson 9. Program Execution 9-1
Lesson 10. SCL Interpreter 10-1
Lesson 11. Permanent Files . . e e e e e e e 11-1
Lesson 12. Logical I/0 « « « « « .« . 12-1
Lesson 13. Physical I/0 « « « « « .« . 13-1
Appendix A Packaging e

iii

INTRODUCTION

TITLE

NOS/VE Analysis

DESCRIPTION

NOS/VE Analysis is a "detailed overview" of the C180 virtual
state operating system. The course will cover system
structure thoroughly. Other topics will be covered in
somewhat less detail, for example, the executive, SCL
interpreter, task manager and logical I/0. This course will
also cover the tools, resources and techniques needed to
extend, maintain and support NOS/VE.

Note that it is the purpose of this course to provide a
solid base for further study and work on NOS/VE, not to make
any student an expert in any particular area of the system.

The course will be 5 days long. There will be projects and
exercises but no "hands-on" experiments.

PREREQUISITES

The student should be comfortable with CYBIL, the Program

Interface and the Command Interface. All three are offered
as courses by the Seminar Division as part of the NOS/VE -
€180 curriculum.

iv

COURSE CHART

HOUR DAY 1 DAY 2 DAY 3 DAY 4 DAY 5
1 Review Review Review Review
I INTRO
5 9
Resources 7 Program 12
2 External Execution Logical
Concepts Communication 10
Exercise
3
Job Flow B
10
SCL Exercise
lI 8
Job Control
4 —
File Flow 6
Internal 11
Communication Permanent 13
Files Physical
10
6 Exercise Exerc. .e Exercise .

PART I

PART II

PART III

COURSE OQUTLINE

CONCEPTS
1. Objectives
a. Course Objectives
b. Course Structure
c. NOS/VE Objectives
2. NOS/VE Structures
a. Packaging
b. Table Segments
c. Components
. Memory Layout
3. Job Flow
a. Initiation
b. Command Process ing
c. Termination
4, File Flow

a. Open

b. Trans fer

c. Close
COMMUNICATION

5. Resources
a. Documentation
b. System Initialization
c. Load Map
6. Internal Communication
: a. Call/Return
b. Interrupts
c. Monitor
d. Traps
7. External Communication
a. Dual State
b. Logs and Statistics
c. Message Generator
d. Keypoint

JOB/PROGRAM MANAGEMENT
8. Job Control
a. Queued File Management
b. Job Initiation
c. Job Termination
9. Program Execution
a. Task Management
b. Loader
. Condition Handl ing
10. SCL Interpreter
a. Control
b. Command Processors

vi

PART 1V

FILES
11.

12.

13.

Permanent Files

a. Control

b. Set Management

c. PF Management
Logical I/0

a. File Management

b. Basic Access Method
c. Device Management
Physical I/0

a. Page Fault Handling
b. Device Queue Management
c. PP Drivers

vii

MATERIALS

PRIMARY REFERENCES

® STUDENT HANDOUT
o NOS/VE PROCEDURES AND CONVENTIONS
° DESIGN SPECIFICATION

PART II - INTERNAL INTERFACE
PART III - PACKAGING

SECONDARY REFERENCES

() DESIGN SPECIFICATION
PART 1 - STRUCTURE CHARTS

® COMMAND INTERFACE (ARH3609)
[PROGRAM INTERFACE (ARH3610)
o GENERAL INTERNAL DESIGN

) INTEGRATION NOTEBOOK

viii

LESSON 1
0BJECTIVES

LESSON PREVIEW

COURSE OBJECTIVES
COURSE STRUCTURES
NOS/VE OBJECTIVES
NOS/VE RELEASE SCHEDULE

REFERENCES

ARCHITECTURAL OBJECTIVES/REQUIREMENTS (SO/R) - ARH1688.
SECTIONS 1.3 and 3.3

GID-PART 1, CHAPTER 2

0BJECTIVES
After completing this lesson the student should be able to --
o STATE THE GENERAL OBJECTIVES OF THE COURSE

0 UNDERSTAND ENGOUGH ABOUT THE STRUCTURE OF THE COURSE TO -NOT
BE SURPRISED BY ANY NEW TOPIC

0o OUTLINE THE MAIN OBJECTIVES OF NOS/VE AND THE STRATEGIES TO
MEET THEM

0 OUTLINE THE RELEASE SCHEDULE FOR NOS/VE

EXERCISES

NONE

1-1
Control Data Private

COURSE OBJECTIVES

EXTEND Careful Survey
Selected Detail

FIX Available Resources
Use of Tools

SUPPORT Methods & Procedures

1-2
Control Data Private

COURSE STRUCTURE

PART I CONCEPTS
1. Objectives
2. NOS/VE Structure
3. Job Flow
4, File Flow

PART II COMMUNICATION
1. Materials
2. Internal Communication
3. Memory Management
4, External Communication

PART III JOB/PROGRAM MANAGEMENT

1. Permanent Files
2. Logical I/0

3. Device Management
4, Physical I/0

PART 1IV FILES
l. Permanent File
2 Logical I/0
3. Device Management
4 Physical I/0

. 1-3
Control Data Private

NOS/VE OBJECTIVES

OBJECTIVES

RAM
CONFIGURABILITY
EXPANDABILITY
USABILITY
CONSISTENCY
EFFICIENCY
SECURITY

MIGRATION EASE

1-4

STRATEGIES

HARDWARE

SASD

CYBIL

STANDARDS

COMMAND INTERFACE
PROGRAM INTERFACT
DUAL STATE

CP OPERATING SYSTEM
CODE ISOLATION
SYSTEM USING ITSELF

ON-LINE DEVELOPMENT

Control Data Private

No

R1

R2

R3

PHASED RELEASES M

7
Basic Operating System Ef;y L
Disk and Tape Drivers
FORTRAN and COBOL

Dual-State
Conversion Aids JM/MM’A”A;t
Stand-Alone System ;D‘%4 |
Unit Record Drivers
Interactive Facility

Products and Utilities

Competitive System
Networks END 89
Applications

Etc.

1-5
Control Data Private

LESSON 2
NOS/VE STRUCTURE

LESSON PREVIEW

MONITOR VS JOB STATE

FUNCTIONAL DIVISION OF NOS/VE
MAP 0S TO HARDWARE

REFERENCES

MIDGS
GID-PART 1, CHAPTERS 3

OBJECTIVES
After completing this lesson the student should be able to--
o DISTINGUISH BETWEEN A MONITOR STATE AND A JOB STATE XP

0 EXPLAIN HOW SYSTEM PACKAGING TAKES ADVANTAGE OF THE RING
STRUCTURE TO EFFECT COMPONENT ISOLATION

0 LIST THE MAIN FUNCTIONAL AREAS OF THE SOFTWARE, INDICATE
WHERE THE CODE AND TABLES FOR EACH RESIDES

EXERCISES

NONE

2-1
Control Data Private

HARDWARE CONSIDERATIONS

0 JOB STATE vs MONITOR STATE
- Instruction Privilege
- Interrupts

o VIRTUAL ADDRESS SPACE 3’@jz;/af;r¢4f
2
- Large - ¢07¢ Aﬁ”“gt .
- Segmented
- Protected
0 COMMUNICATION

- Call/Return
- Exchange - st«te (MONTTO | SDED

/////- Traps

/
/

/ @onf!ﬂ/

2. Dxéd
‘ Farﬂhote"
Shaved data

&7h4/

2~2
Control Data Private

0S HIERARCHY

code //;7ta coii\\ /;7ta co%i\\\\/;;fa
\::\szﬁules 0S Modules User modules
Task Task.... Task Task...

\/

System Job User Job User Job...

Job State
Monitor State

Mgonitor

code data

2-3
Control Data Private

TA5K
user!ADDRESS SPACE

User Segments

R1l1 X RW RW
code Data Stack

NOS/VE Segments

R3

R2

R1 X RW RW
i code Data Stack

2-4
Control Data Private

PACKAGING

R11

"USER™
Code & Data R |
‘d)
/
R3 A //
v |/
Task Related Code and Data W / b
R AL
g | o TrT
E
R2
1
Job Related Code and Data /
R1
System Related Code & Data
[sy¥
JoB _)Y apC
MTR

MONITOR

2-5
Control Data Private

SHARED DATA

code data code\ /data code\ /data
0S Modules 0S Modules ‘ User modules
Task Task.... Task Task....

A/

System Job User Job User ‘Job...

Job State
Monitor State

////////EEDitqz\\\\\\\\\\
code data
2-6

Control Data Private

Job

TABLE RESIDENCE

GLOBAL TABLES

Task

Task Task
Private Shared
(oo \ |
Pageable w”ﬂ
Lyl Gk
0"90
LY v
o !
1
Job //"‘\\
Fixed MF
Pageable
Job
Mtr
MONITOR

2-7

Control Data Private

h
y ot
q P
§t4

Segment

1

TABLE SEGMENT ATTRIBUTES

Name

OSV$SMAINFRAME-WIRED

OSV$MAINFRAME-PAGEABLE

0SV$J0B-FIXED

0SV$JI0B-PAGEABLE
OSV$TASK-PRIVATE

OSV$TASK-SHARED

OSV$TASK-PRIVATE-R11

Control Data Private

2-8

Rings
(1,3)

(1,3)

(1,3)

(2,3)
(3,3)
(3,13)

(11,11)

Always in real
memory. One per
system. Monitor
read and write,

Pageable. One per
system.

Wired when the job
is active; swapped
when the job is
swapped. One per
job. Monitor read
and write.

One per job.
one /‘ét‘ 5 k

{
One per éesk?”b
Pageable. Shared
with other tasks of
the same job.

One per task.
Pageable. Not
shared.

FUNCTIONS

User Job System Job
Al ?ﬁ%f —=—4> Job Monitor or Job Monitor or
w 5{ yih User Program Job Scheduler
tagk to Task Task
0s
R1,2,3
e Record Mgr ® Record Mgr
e Loader e Loader
e File Mgr e File Mgr
e Command e Command
Interpreter Interpreter
e Trap Handler e Trap Handler
JoB
MTR
MONITOR

® Task Dispatcher
e Physical 1/0

® Page Manager

2-9
Control Data Private

COMMUNICATIONS

User Task

System Task

O~
“1 cail/

o~ Return 0
< -~
o

-

4~ Exchange ™=
Job State Signal
=
Monitor State \Vki\
\\ | p
\ b 'l A
‘————(
MONITOR
2-10

Control Data Private

STACK

Ring N

Save Area

var
————————— params

Save Area

var

params

— \

J

call

Ring M

T T patams]

Save Area

var

- ——

Save Area

var

— params

SAVE Apeh

VAL
T TN

oA

-TKkP/fMMEi

mln

2-11

Control Data Private

J/

[
—

X £
}ﬁz;;l~724f',40ﬁ02@%§

b\\‘
_%4

EXCHANGE

Job
0
¢
w
§0%9£>
/// 7
,/"/
JOB
MTR
Re
in X0 - éqte OF s Inltor
o] \ Q’ﬂécd'é”o" CpnﬁVd/ }/&[A’
2-12

Control Data Private

EXCHANGE/INTERRUPT

.EXCHANGE JUMP
The exchange jump instruction is used to change state.

Job state programs will exchange to monitor at the PVA in
the monitor state XP P register. The system call bit in
the MCR is set and the request will be in XO.

Monitor will find the XP of the appropriate task in the XCB
entry for that task and exchange to the XP address. A
system signal, a system flag or a MCR condition might
indicate a special reason for the entry. In that case,
monitor will set the free flag in the job state XP and
execute the exchange jump. A trap will occur immediately
in job state. '

EXCHANGE INTERRUPT

Exchange interrupts occur in job state when a selected
monitor condition occurs. Monitor runs at the PVA in the
monitor state XP. '

TRAP INTERRUPT

If traps are enabled, a trap interrupt will occur when a
selected user condition occurs in the job state or a
selected monitor condition occurs in monitor state. 1In
either case there is no exchange. A stack frame is built
and the trap handler is executed.

2-13
Control Data Private

331BATId4 e3BQ T0I3U0)]

71-¢

NOS/VE TARGET
RELEASE 1

C

Lf{

fvo‘6

2
k\

any
RING (1,0,0)
NOS/VE Misc Machine BAM Outward Command
HERP = Lock/uniack Cade External frogran A sor call Debugger o ars Language 2,0 D3
Manager ~ Conversion Breakout interfaces Processor Interpreter
Lo Remote FF BAM Task System validation Queued Job variable Comaand
Hamager Host Manager Internal Open/Close toader heff~d Manager Level Manager File Manager Manager Language
Interfaces Debugger Manager Interpreter
(2,3,0)
RING 3 Interacti
nteractive
Task Task toader Block Command
Manager Tesminal File Syabol veriables stack List
Tables Tables Table
* [\ T\ h | A
TMZ TH2 ™2 ™2 ™2 ™2 ™2
Log tateractive Job PP Open/Close Task validation Job
Manager Manager oF Manager Manager Manager Manager
Tables
Job
Slogat Terninal § [catalogs
Tables Tables
A (22,3
M2
N set
e 2 200 ebager
Tables
1 4 ., ¥ . 1 S | .
™1 ™ ™ M1 W ™
MLI Low Level Device M.
oriver Interactive set 170 Manager pooaer s der Task signal Queucd Job
Manager Manager Manager Processor Havager Manager
Segment
system Active Sziﬁ:’“ 8inding 1,3
Terminal Set tables Segment
RING | Tables Table EXTEND Active
Conflg- control Sob
it o0 Bl i
Machine Monitor MCU Disk CPUM Monitor CPUM
Code Anort Queue Allocation/ Je fhysical fog age et Job Interrupt Signal Jask cen
Breakout Processor Manager Beallocat ion 9 Management Processor Processor patcher
MONITOR 00 Page Oispatch
Queues Table Control

Table

NOS/VE TARGET (Cont.)

A
Program
Staster v MAINTENANCE
any Jo8 Y SYSTEM J08 308
R
TASK SERVICES - RING 3 1
N
G
B8AM Queued Command BAM Job
Debugger Internal File Language variable External Monitor Error
Interfaces Manager Interpreter Manager Interface Task Logging
Remote Permanent Lo validation Command Job ey
Host File Loader Maguqsr Manager Language Scheduler OSerseer
Manager Interpreter
Interactive n Task Job Trap Job Initiate
manager Open/Close Manager Manager Processor Terminator Diagnostics
TASK MONITOR - RING 2
NOS/VE HEAP Dead/Start Configuration]
Manager Recovery Manager
™ M2 ™2 ™2 ™2
Interactive Open/Close Task Job validation
Manager Processor Manager Manager Manager
Qutward Link Marage
2alt Helper Maintenance
Processor Task Displays
™2 T™2 ™2
Set PF Log
Manager Manager Manager
Command Interactive
Processor Executive
TASK MONITOR 1 - RING 1
T™L
- ™ML ™1 Misc. Queue
briver Taser Task Jab Jueued o Lock/Unlock fnput from
N Manager Manager wanager o Conversion ci70
™I Segment TML Machine
ae:‘a Maga;er ’:nleractive g?dek . Queue
anager anager ackou Qutput to
ci7o
ML Device oo
Signal Level Debug
Processor Manager 1/0
CPU MONTTOR
CPUW Monitor CPUM Machine
Signal Interrupt Dispatcher Job Code
Processor Processor Management Breakout
Monitor Disk . HCy
Avort Alloeation Physical fage Queue
Processor Deallocation o Manager Manager
trol c e e ======¢=
Control Data Corporation Do?;:!:r;t Mach Document Abstrect
Software Document : Type Project No.
sample Code Dogument AR,
Title Project Mgr. /U05 ‘/E m 6"57’
¢ lowchart D
Page of Project Name ?E! 5455 _‘L
Decision Table D Number Issue
Date Task No.
otner D Orawn 8y
JHW Date 7/2'/31 Task Name

2-15

Control Data Private

LESSON 3
JOB FLOW

LESSON PREVIEW

JOB ENTRY

JOB INITIATION
COMMAND PROCESSING
PROGRAM EXECUTION
JOB TERMINATION

REFERENCES

GID-PART 1, CHAPTER 3.1, 3.2, 3.3, 3.6, 3.10, 3.11

OBJECTIVES

After completing this lesson the student should be able to--
e DISTINGUISH BETWEEN JOB AND TASK

e TRACE A JOB FROM INITIATION TO TERMINATION

e EXPLAIN HOW THE SCL INTERPRETER FINDS THE PROCESSOR FOR A
COMMAND

e DISTINGUISH BETWEEN JOB SCHEDULING AND TASK DISPATCHING
e LIST THE MAIN TABLES THAT CONTROL JOBS AND TASKS

EXERCISE

NONE

3-1
Control Data Private

/collect_text ABC
login JHWS81

execute DEF

Logout

»* %

/submit ABC

SUBMIT JOB

----- PMP#EXECUTIVE

————— JIMP$ROUTE

3.2 :
Control Data Private

1
JOB ENTRY

NOS/VE

Command
Processor

"SUBMIT"

Queued File
Mgr

-

L&

R2 Cy

L

Queued File
Mgr

N

$SYSTEM
ABC

N
N——"

$SYSTEM

N—

3-3
Control Data Private

JOB QUEUEING

Queued file manager is part of task services. It processes
the jmp$route request.

Queued files are validated and registered in the $SYSTEM
catalog and queued through the known job list (KJL).

The KJL entry for a job is linked into a thread which
represents one of the following states.

"Deferred"” waiting for a time interval to elapse
"Queued" waiting to be initiated
"Initiated" active, inactive or swapped out but
available for execution
"Terminated" completed but output files queued for
disposition
3-4

Control Data Private

JOB SCHEDULER

.Job scheduler executes as a task in the system job.
Job scheduler determines:

-Order in which jobs in the input queue should be initiated
-When a job should be swapped into or out of memory

Some examples of scheduling criteria are:

-Current priority within job class
-Job resource requirements

-Job class and status

-Current system resource availability

Job scheduler monitors the available mix of queued and
initiated jobs and prioritizes them based on current system
usage.

3-5
Control Data Private

2
INITIATE JOB

System Job User Job

Scheduler Job Monitor
Task Task
|
SCL
Interpreter

A

R1

- | 1
I Scheduler |7 < IJMP$JOB-BEGIN
L]

e .
IMP$INITIATE-JOB .\
I §]

JOoB }

MTR

| |

Dispatcher
JMP$CREATE-JOB
l l Dispatch
Table
A4
3-6

Control Data Private

JOB INITIATION

When a job is selected, it is given
an entry in the Active Job List (AJL)

Initiate_Jjob with the help of monitor
initialized the 0SS$job_fixed segment
for the new job. The Job Control Block
(JCB) is built. The Execution Control
Block (XCB) is initialized with the XP
for the first task to run (Job Monitor)

Monitor creates a Primary Task List (PTL)
entry and logs the job monitor task into
the dispatch table. The new job waits
its turn. Eventually the dispatcher
gives the new job its first time slice.

Job begin initializes 0SS$job_pageable
and 0SS#task-shared segments. The
command file, output file, and job log
are also initialized.

The SCL interpreter interprets the first
command (LOGIN). The user is validated
and the prolog is executed.

3.7
Control Data Private

SYSTEM JOB
Scheduler Task
Scheduler

1

SYSTEM JOB
Scheduler Task
Initiate Job

Monitor

USER J0B
Job Monitor
Job Be%in

USER JOB
Job Monitor
SCL
Interpreter

3
COMMAND PROCESSING

NOS/VE

User Job

JoB
MONITOR

3-8
Control Data Private

SCL INTERPRETER

.SCL reads the command from the $COMMAND file.

SCL searches for the command in the command list, by

default -
$LOCAL
$SYSTEM

If SCL finds the command it runs the CYBIL procedure which
must have been provided to process it. This procedure can
run as part of the current task or as a new task.

If the command is a file name call, it might be a program
or an SCL procedure file.

In all cases, the SCL Interpreter passes the command
parameter list to a processor. The processor can now use
other SCL interfaces to crack the command.

3-9
Control Data Private

JoB

PROGRAM EXECUTION EXAMPLE

Caller Task

JAR

Job Monitor

N e Job Begin

> 0 SCL
Interpreter
- EXECUTE
Ve
b Task
Initiator
Task

Terminator

Called Task

User Program

’.

Entry Point

Exit <

[@ Task

o Loader

Initiator

Task
Terminator

MTR %5; N /4
Y
X d
MONITOR
3-10

Control Data Private

PROGRAM EXECUTION FLOW

Program or command
requests program execution
Calls task initiator

Builds tables for
the new task

Exchanges to system
monitor to request
task initiation

Links new task into
CPU dispatch 1list

CPU 1s dispatched to
new task

Loader loads object module
Loader passes control to
initial entry point

New task executes
asynchronously to
caller task

New task calls exit
interface

Cleans up task
Exchanges to system
monitor to request
task termination

Remove task entries
from dispatch list
Informs caller that
callee has terminated

3-11
Control Data Private

Caller Task

Caller Task
Services
.Task initiator

System Monitor

Callee Task
Services
.Program loader

Callee Task

Callee Task
Services
.Task terminator

System Monitor

4
JOB TERMINATION

System Job User Job
Job Terminator Job Monitor
Task Task
Command
Processor
"L oGouT"
I |
SCL
Interpreter
/'-"\\
[3c8)
4
R1 . i
IMP$TERMINATE JMP$END-J0B
-JoB . /____\ ~
q ' \xcs) /
\L ~

JoB \ /

MTR

\

Dispatcher
JMP3$END-J0OB

3-12
Control Data Private

JOB FLOW

PACKAGING
I 1 &] I 1
Program ?gter | Command
Starter ~_ Processor
| j [Preter |
ANY RING 1
RING 3 ¥
ﬁ f
| SCL g '
EinEd Job Task Li oader Inter- INter-
~iles Mgmt Mgmt 1 | | preter ﬁ:;;ge
Command
RING 2
Validation
L1
RING 1] | ; \ .
Queued Load Segment
Files _ |Oa erl b:gmt
J
@ @ &
JOB STATE
MONITOR STATE
 —
Dispatcher Job Manager
| I—

3-13
Control Data Private

JOB FLOW TABLES

COMMAND LIST

KIL-jmv$known-job-list
(IMDKJIL)

KOL-KNOWN QUTPUT LIST
(JMDKOL)

AJL-ACTIVE J0B LIST
(IMDAJL)

XCB-EXECUTION CONTROL BLOCK
(0SDXCB)

SDT-SEGMENT DESCRIPTOR TABLE
(0SDSTBL)

DISPATCH CONTROL TABLE
(TMDDCT)

PTL-PRIMARY TASK LIST
(TMDPTL)

v g‘;pb,m wivol - blsck

JCB-J0B CONTROL BLOCK
(JMDJICB)

() Common Deck Name

THIS LIST WILL BE SEARCHED BY
SCL INTERPRETER. IF THE COMMAND
IS FOUND, A COMMAND PROCESSOR
WILL BE CALLED.

ALL JOBS IN THE SYSTEM HAVE AN
ENTRY ON THIS TABLE.

ALL OUTPUT FILES WAITING FOR
ROUTING HAVE ENTRIES ON THIS
TABLE.

ALL JOBS THAT HAVE BEEN INITIATED
AND ARE NOT SWAPPED HAVE ENTRIES
ON THIS LIST.

EVERY TASK IN A J0B HAS AN XCB.
THIS TABLE CONTAINS THE TASKS
EXCHANGE PACKAGE.

ONE SDT PER TASK. EVERY

SEGMENT IN EVERY TASK HAS AN
ENTRY IN AN SDT. THE STD IS
USED BY HARDWARE TO RELATE VM
ADDRESS TO REAL MEMORY ADDRESSES.

THE DISPATCHER ORGANIZES TASKS
IN THIS TABLE BY PRIORITY AND
CHOOSES THE APPROPRIATE
CANDIDATE FOR EXECUTION.

THIS MONITOR TABLE CONTAINS
GLOBAL INFORMATION ABOUT EVERY
TASK IN THE SYSTEM.

THERE IS ONE JCB PER JOB. THE
JCB CONTAINS LIMITS, STATISTICS,
ETC., FOR THE JOB.

3-14

Control Data Private

LESSON 4
FILE FLOW

LESSON PREVIEW

OPEN FILE
LOGICAL I/0
PHYSICAL I/0
CLOSE FILE

REFERENCES
GID-PART 1, CHAPTER 3.4, 3.5, 3.7, 3.8

OBJECTIVES
After completing this lesson the student should be able to--

o TRACE A FILE FROM THE FIRST REFERENCE TO THE FILE TIL IT IS
RETURNED

o DISTINGUISH BETWEEN RECORD AND SEGMENT LEVEL ACCESS TO FILES

o DESCRIBE THE FLOW OF INFORMATION BETWEEN MEMORY AND DISK OR
TAPE

0 LIST THE MAIN TABLES THAT CONTROL FILE

EXERCISES

NONE

4-1
Control Data Private

CREATE FILE

<LE
. . fIL

Cﬂgﬁ“{c

DEFENE file = EX
CYBIL ...

LGO

AMP$FILE (1fn, attributes...
AMP$OPEN (1fn, amc$record,
attributes, fid...

AMP$PUT-NEXT (fid,...

AMP$CLOSE (fid,...
PMP$EXIT (status)

RETURN EX ?4f6 vid 5 Jocal Sile nare

4-2
Conttol Data Private

1
INITIATE FILE

Define
CYBIL
LGO
AMP$F ILE
AMP $0PEN
o ScL
AMP$PUT _NEXT
AMP$CLOSE ¥
AMPS$EXIT Command
. Processor
RETURN ~ Gt il
7
R3
PF] File
R2 Manager Manager
Catalog @ @
v
R1
L\
Device
1 Manager
JoB

MTR //

/wae evc»t; ﬁ'/f

4.3
Control Data Private

FILE INITIATION

If the first mention of the file is on a command, thén the
Job File Table (JFT), the Local Name Table (LNT), and the
System File Table (SFT) are built. The commands are:

REQUEST - TAPE
REQUEST - TERMINAL
PRINT

FILE

Any PF Command

For amp$file and some other requests, an auxiliary request
table is built. The file tables are built when the file is
opened for the first time.

Lok
Control Data Private

2

OPEN FILE
Define
CYBIL .
LGO :
AMP$FILE
AMP$OPEN
User
AMP$PUT_NEXT
AMP$CLOSE M
AMPS$EXIT Access
: Method
RETURN ° 7
R3 Fﬁy7(§4h accees pric)
7 - (:::) Y o
\\\ Open
R2 (File
/,/ Manager)
.
(D |
[
[
R1 l ;
y, vV
Device
<:::>’“\ Manager
JoB |
MTR
I oo
Physical Jlff P“-—*’/
I1/0 ;;i
File
Label
v
45

Control Data Private

OPEN

“When the file is opened, the information from commands,
program interface requests and AMP$OPEN will be used. The
precedence is:

1. AMP$OPEN
2. Commands
3. Requests

Open entails various processing depending on the file
residence and direction of transfer. For example:

DISK File attributes are read or written
TAPE Labels are checked or created (R2)
TERMINAL Attributes are sent to the interactive facility

4-6
Control Data Private

3

WRITE FILE
DEF INE
CYBIL
LGO R
AMPSFILE
AMP $OPEN
User
AMP$PUT_NEXT \
' Y —
mggg;gf 77| Access Record
: FAPs Method "
RETURN ° <1 L
R3 NS Yy
%
Basic
Access Fﬁf File
Method Segment
R2
\".’\
\
R1
. Device’
/@ Manager
JoB
MTR - Interface
Allocate Tables
Physical
I1/0
Page
Manager FILE
SN——
47

Control Data Private

ACCESS LEVELS

PUT=-NEXT

The access method gets records from the user's buffer and
puts them in the file segment that is opened for that
purpose (i.e., the system does segment level access). The
paging mechanism will take care of real memory and device
manager will make sure that space is allocated on the

disk. When the filled pages are needed by the system, page
manager will instruct the physical I/0 component to
transfer them.

GET-NEXT

Rgain the access method opens a file segment. Page faults
will occur when the needed data is not in real memory. But
the access methods is not aware of that; it simply copies
Ehe records from the file segment to the user's record
uffer.

Segment Level Access
If the user opens the file for segment level access, the
file segment is directly addressable by the user.

4-8
Control Data Private

4

CLOSE FILE
Define
CYBIL
LGO :
AMPS$FILE
AMP$OPEN
User
AMP$PUT_NEXT
AMP$CL OSE ////
AMPSEXIT Access [
. // Method FAPs
RETURN :) .
- /
£
, -
’, // \ f(/ljg
” TFT, C
Task Y& __
Manager [+ Close
R2 (File
Manager) ‘\\
:)<:::) 6f$
R1 :
o L
Device
Manager
JoB
MTR
0
Dispatcher
4.9

Control Data Private

CLOSE/RETURN

AMP$CLOSE is a request to close this instance of open. The
Task File Table (TFT) will be dismantled if there are no
other opens. At task termination (PMP$EXIT, for example)
all files in the task will be closed once for each instance
of open. Job and System File Tables will remain.

RETURN will cause all references to the file to be
deleted. Examples of file disposition are:

DISK Temporary files will no longer be
accessible. Permanent files will be known
through the user's catalog only.

TAPE Trailer labels will be processed (R2). The
volume will be returned.

TERMINAL Disconnected and returned.

At job termination all files are closed and returned.

4-10
Control Data Private

FILE FLOW
PACKAGING

» .
Command Basic
RuUn Processors Access
Anywhere T Method

R3 y a
File ~ /

PF Manager

Manager (Open/
Close)

R2

7~ N\
Catalogs

N

o
©

R1 \L/

Device
Manager

‘ 3
Nozoiol

J

I

MTR . /
Allocate/ [* Physical
Deallocate 1/0
S A
\ 4

Page
Manager

4-11
Control Data Private

TFT-bat$task_file table
(BADTFT) -

LNT-Local Name Table
(FMDLNT)

JFT-Job File Table
(BADJFT)

Catalogs

SFT-System File Tables
(DMDSFT)

FMD-File Medium
Descriptor
(DMDFMD)

FAT-File Allocation Table

(DMDFAT)

(Common Deck Name)

FILE FLOW TABLES

All files opened by a task are
controlled by this table. Entries
contain pointers to record and
block descriptors, file attributes
and user request tables.

This table controls the files known4

to a job by name. It keeps track
of the request and attribute info
which is global to the job.

This table has information about
all the files known to the job
including unnamed segments like
stack and binding.

Each user has a master permanent
file catalog.

These tables have entries for all
files in the system at a given
time. Entries point to tables
which describe the file on the
device.

This table lists the volumes on
which a file has been allocated.

There is one FAT per file. It
describes the physical location of
the file on the device.

4-12

Control Data Private

LESSON 5
MATERIALS

LESSON PREVIEW

ORGANIZATION OF THE NOS/VE PROJECT
DOCUMENTATION

STRUCTURE AND CONTENT OF SOURCE LIBRARIES
LOAD MAP

SYSTEM INITIALIZATION

OBJECTIVES
After completing this lesson the student should be able to--

GET COPIES OF ALL IMPORTANT NOS/VE DOCUMENTS.

FIND AND LIST NOS/VE SOURCE DECKS

DESCRIBE HOW THE SOURCE LIBRARIES ARE ORGANIZED

FIND THE PEOPLE IN THE DEVELOPMENT ORGANIZATION WHO HANDLE
CERTAIN AREAS OF THE SYSTEM

INTERPRET A LOAD MAP

DESCRIBE NOS/VE DEVELOPMENT ORGANIZATION

@ OUTLINE THE SYSTEM INITIALIZATION PROCESS

EXERCISES

1. GIVEN COMMON DECKS AND AN IDENTIFIED TABLE, INTERPRET SOME FIELDS
IN THE TABLE. '

2. GIVEN AN ADDRESS, FIND THE NAME OF THE MODULE IN A LOAD MAP AND
FIND THE CODE IN THE SOURCE LIBRARY

5-1
Control Data Private

DESIGN
TEAM

NOS/VE PROJECT ORGANIZATION

DESIGNERS

Job Mgmt
Program Mgmt
I/0

Dual State
Deadstart

DEVELOPMENT
TEST &
INTEGRATION
Project
Leader
Design
&———>'Team Rep
T&I
Rep e—y 1
Members
DEVELOPMENT GROUPS
® FPFs
e Physical I/0
e Logical I/0
e Dual State Communication
e Logs
e Program Control
® Program Execution
e Job Mgmt
¢ Command Language
e Monitor
® Maintenance
® Deadstart
5-2

Control Data Private

31BATI4 B3BQ TOIJUO)

MATERIALS

— —_
ERS
. Prog. Int.
. Com. Int.
—] | SIS ‘ —
3 P1 Data Dictionary Object Lib.
Project an NOS /VE J
AO/R | Procedure & Conv.*| | Design Specification | _ Prog. Lib — ,}lLoad Map
. Structure Charts
MIGDS CYBIL . Packaging¥*
. Internal Interface* Intﬁggggion
— |GID
. Direction — -
. Design Analysis
DFDs IMS -
Installation HE]
SES
User's Guide
[Ref. Man.

*Class Handout

NOTE: Annotated bibliography in appendix.

N U B WN

]

@

10.
11.
12,
13.
14,

NOS/VE PROCEDURES & CONVENTIONS

Introduction

. Design Team

. Document Review Process

Product Identifiers
Design Documentation

Procedure Interface Conventions

. NOS/VE Program Library Conventions

CYBIL Coding Conventions
Keypoint Usage

Code Submittat Process
NOS/VE Document Maintenance
Data Dictionary Conventions
Yourdon Methodology

Code Review Process

5-4

Control Data Private

SYNTAX:
XXC$
XXT$
XXE$
XXP$
XXM$
XXV$
XXK$

PREFIX NOMENCLATURE

= Constant

= Type

= Error Code
= Procedure
= Module

= Variable

= Keypoint

ID CODE (XX):

AM =
cL =
IC =
IF =
M =
OF =
0S =
PF =
PM =
RM =
SF =
MM =
FM =
MT =
Lo =
CI =
cY =

I0 =

Access Methods
Command Language
Interstate Communication
Interactive Facility
Job Management
Operator Facility
Operating System
Permanent Files
Program Management
Resource Management
Statistics Facility
Memory Management
File Management
Monitor

Loader

Common I/0

CYBIL

Input/output

MS
DB

BA
RH
ML
II
QF
DP
SY
ST
™
DM
LG
LN
AV
LU
HP

5-5

Maintenance Services
Debug

Signal Handler

Basic Access

Remote Host

Memory Link _
Interactive Inferface
Queued File

Display

System

Sets

Task Management
Device Management
Logs

Local Name
Accounting/Validation

Link User

Heap Processor

Control Data Private

DECK NAMING CONVENTION

pptzzzz
pp = two character identifier
t = deck type

zzzz = mnemonic !'? name

DECK TYPES
M = CYBIL
P = PP Assembler
A = CP Assembler
X = XREF declarations*
D = Type and Constant declarations*
H = Documentation Header*
I = In-line procedure*

E = Example

* = common deck

5-6
Control Data Private

INTERNAL INTERFACE

Chapter Descriptions
Procedure Descriptions

-Request Description
-Parameter Description
-XREF Declarations
-Common Deck Calls

Common Deck Expansions
Topics

CP MONITOR

Job Management
Resource Management
Segment /Memory Mgmt
Memory Mgmt

Queued Files
Program Mgmt

Preemptive Communication
File Mgmt

Intrinisics

PF Mgmt

SCL

Interstate Com.
Memory Link

Log Mgmt

System Access
Accounting
Operator Facility

5-7

Control Data Private

VoNONUME W

No

INTRINSICS

#CALLER_ID (1ID)

#CALL MONITOR (REQBLK)

#COMPRRE (S1,S2): RESULT

#COMPARE _ COLLATED (S1, S2, TABLE): RESULT
#COMPARE_SWAP (LOCK, INITIAL NEW, ACTUAL, RESULT
#DISABLE_TRAPS (OLD_TE)
#ENABLE_TRAPS (OLD_TE)

#FREE_RUNNING_CLOCK (PORT): INTEGER
#HASH_SVA (SVA, INDEX, COUNT, FOUND)
#INTERRUPT PROCESSOR (PORT SELECTOR)
#KEYPOINT TCLASS, EXPRESSION, CODE)

#MOVE (SOURCE, DESTINATION, LENGTH)

#OFFSET (PVA): INTEGER

#PREVIOUS SAVE AREA: POINTER
#PROGRAM_ERROR™

#PTR: (DISP, BASE POINTER): CELL

#PURGE BUFFER (OPTION, ADDRESS)
#READ_REGISTER (REGID): REGISTER_VALUE
#REAL MEMORY ADDRESS (PVA,RMA)

#REL TPOINTER, BASE POINTER): INTEGER

#RING (PVA): O .. 13

RESTORE TRAPS (OLD TE)

#SCAN (SELECT, STRING, INDEX, FOUND)
#SEGMENT (PVA):)..4995

#STORE_BIT (BIT_VALUE, BIT_VARIABLE)
#TEST_ALTER_CONDITION REG TSELOPT, BITNUM, BRANCH_EXIT)
#TEST_SET_BIT (BIT_VARIABLE, PREVIOUS VALUE)
#TRANSLATE (TABLE, SOURCE, DESTINATION)
#WRITE_REGISTER (REGID REGISTER_VALUE)

te: see Internal Interface

5-8
Control Data Private

SYSTEM INITIALIZATION PROCESS

Library Generation

System Generation

System Initialization

. System Library and Task Initialization

5-9
Control Data Private

8318ATI4 B31BQ TOIUO)

0T-¢

ASSEMBLER

CyBIL

GENERATE LIBRARY

BINARY
SECTIONS

GENERATE
OBJECT LIBRARY

CODE SEGMENTS

] ! 1
1,0,D l 2,0,0] |
. | ! l
R7-D | | I
T T I
R4-6 | I 2,6,6 | l
F
| | !
| | N |
| ‘ S
R3 1,3,0| |1,3,3] | ; 2,3,0 2,3,6 : |
l I
l | |
L C
[|
' |
R2 ; | 2,2,3
| I
‘ 1
l |
R1 1:1:3
JOB STATE
MTR STATE
CP
MONITOR
XLMMTR
.
SYSTEM CORE JOB TEMPLATE
(TASK MONITOR & CP MONITOR) (TASK SERVICES)
XLSnnn XLJnnn
5-11

Control Data Private

91BATI4 BlEBQ TOIJUO0)D

Z1-¢

Link
Monitor

LINKCOR CORE ID=xx

Link
Job
System Core

SYSTEM GENERATION

PP Code

m/

*
XLJ113
XLJ223

XLJ23D

ild DS
0STSJIxx OSTSMxx .___, Bu#ipe
7/ LINKJOB JOBID=yy COREID=xx
Link
Job Template JOBHDR VEGEN JOBxxyy

XL J2pD} (JOBLCB
b

LDJI0B :
b

Notes:

DSDIR

DSBUILD Jobid=uu

COREID=xx

DSxxyy

* - Temporary library, will be deleted,

C)- directive

file.

FILE DESCRIPTIONS

NAME

AREA TYPE
NOSVEPL PL
OSLPI PL
XLMMTR Monitor Object Lib.
XLSnnn System Core Object Lib.
XLInnn Job Template Object Lib.
SCMLCB Monitor Directives
SCJLCB System Core Directives
JOBLCB Job Template Directives
0sT
0STSJxx System Core OST
0STSMxx Monitor 0sT
MTRHDR Monitor Segment Files
SYSHDR System Core Segment Files
JOBHDR Job Template Segment Files

5-

COMMENTS

Contains all code & data source
for NOS/VE except program
interface.

Program Interface
Library of monitor modules

Library to run in rings (n,n,n)
Task monitor.

Library to run in rings (n,n,n)
Task services.

System Core/Monitor State Linker
Control Block

System Core/Job State Linker
Control Block

Linker Control Block

Qutboard Symbol Table. List of
gated entry points.

System Core/Job State dST. System
with id=xx.

System Core/Monitor State OST.
System id=xx.

This HDR describes a collection
of "seed" files with names
MTR101l, MTR102, etc.

describes a
"seed" files with
SYS102, etc.

This HDR file
collection of
names SYS101,

describes a
"seed" files with
JoB102, etc.

This HDR file
collection of
names JOB101,

13

Control Data Private

NAME
LDSYSC

LDJ0B

SYSxx

JOBxxyy

CMR
PP Code

DSDIR

DSxxyy

AREA

System Core

Job Template

System Core

Job Template

FILE DESCRIPTIONS

(Continued)
TYPE COMMENTS
Directives Load Directives for use by the
Virtual Environment Generator
(VEGEN) to build the system core
memory image.
Directives Load Directives for use by VEGEN

Memory Image

Memory Image

Directives

DS Tape

to build a job template memory
image.

This core is sufficient to
initialize a system with id=xx in
1M bytes.

This template will rumn under the
system with id=xx. The id of the
template is yy.

Set of peripheral drivers to run
in the PPs.

Control the building of the DS
Tape. .

5-14

Control Data Private

DEADSTART/RECOVERY
STAND ALONE MODE

! Basic 0/S deadstart job :
+ (CM image) !

[o e e = T
| System RMS controlware i
lom o o e o o o e o e - am am m > — — - — - -—- —

| System RMS driver :
| m e m e — e ——————————————— 4
' Other system drivers and |
, controlware !
|ttt R
| Balance of NOS/VE I
:(load modules) :
: i
] t
| |
I i
| ettt e T
| Product set libraries |
I |
i

: 3
i '
e ccccmmmmmmmmmm—————— d

CYBER 180 deadstart file format

5-15
Control Data Private

DEADSTART/RECOVERY

Deadstart function activates NOS/VE to the state in which it is
ready to execute user workloads

Includes recovery or initialization of

Permanent file bases

System log files

- I1/0 queues

]

Hardware configuration information

User/system jobs and their transient files

Deadstart/recovery function supports both dual-state and
stand-alone CYBER 180 operation

Deadstart levels.
1 Installation
2 Recovery

3 Continuation

5-16
Control Data Private

LEVEL 1 DEADSTART

5-17
Control Data Private

L INKMAP

XLcnnon
For each module
Directory . Name
. Section Description
Object . Entry Point List
Library (— . External List
____Binary
Tables
LINK

@ For each file .
. Name
: . Segment Attributes
. Length
. Address
SEGMENT
FILES

5-18
Control Data Private

LOAD MODULE

MADULE o L SPRNGIAM_EXECUTIIN_TIMMANDS LANGUAGE = 7YBIL

FILF e YLJ209 9970711734

2Yt29113)

PR B O DDD DO PDO DD D@D EODODD@E D@D GO o S W O e e a

CNDE = RE_2ID

PEAD EYECUTE

RINDING = 3 _xxXY

READ BINTING

WARKING $TIRAGE = Rf_29)

23F ¢ 1 ¢19 J272ACHsN

21 i LCC JIN{FEr&0

READ 704 1 119 17793293450
WIRKING STIRASE = ISSTIII_PASEN_LITECAL

READ 9. IR U I R R
WARKINS STI24A%E = JL3$207

READ 124, 1 (CA "270320R

WORKING STIQRASGF = 7153407
READ

ENTRY PIINT NEFINITIONS
CLPSSET_JIJSCT_LIST_COMMAND
CLPSSET_DQOGDAM_QPTIUNS_CﬂﬂMAN)
CLPBEXECUTE_CIMYAND
CLPSTEFMINATE _TASK_CO1MAND
CLOPSWA IT_CIMMAND
CLPSST ASK_CIMPLETE
CLPSSTASK_STATUS
CLOSDISPLAY_PRIGRAM_COMMAND

EXTERNAL ENTRY PQOINTS REFERENCED
CLPSCREATZ _NAMED_TASK_ENTRY
CLPSFINMI_NAMED _TASK_ENTRY
CLPIGET_VALYE
CLPSSC AN_ARGUMENT_LIST
CLPSCOANVERT_VALUS _TI_STRING
CLPSCLCSE_DISPLAY
CLPSPUT_DISOLAY
OSOSAPPEND_STATUS_PARAMETER
PMP ST HANGE _DEFAULT_PRIG_IPTIINS
PMD SES TARL ISH_CONDITIOJN_4ANDLER
PMPISE T1_JIJ3 _LI3RARY_LIST
PMOSGE T_NJMIER_JF_J03_LIBRARIES
PMPEGRE T_DEFAULT_PRIGRAM_JPTIINS
PMPSTE KMINATE
PMOSCONTINUE _TO_CAJSE

5-19

4yF 1 (A JI"CAs?8

A)dDesSS
€18 Y23u2a060
€15 927283CH
(18 INI23640
(18 2312C400
£18 3J)1205¢%0
¢1l8 3332794A0
c18 INT2CAED
C12 03321 F4D

Pt b Pt P fout psd Pt Pt

CLPS$DELFTE _NAMED_TASK _ENTRY
CLPIGET_SET_COUNT
CLOSSCAN_OCAQRAMETEL _{TIST
CLPSCONVERT_INTEGFP _TIJ_STRING
CLPSOPEN_DISOLAY
CLPSPUT_PARTIAL_NTSPLAY
NSPHSET_STATUS_ARNNRMAL
OSPSAWAIT_ATTIVITY_COMPLETION
PMP SCHANGE _JDA_LTI3RAPY_LIST
PMPLEXZCUTF

PMPSGET_DEANG _LIARRARY _LIST
PMPRGET _NUMRER_IF_NERYG _LI3S
PMVEPRESET_CINVERSTINN _TABLE
CYPRERROR

CYPINIL

Control Data Private

SEGMENT DESCRIPTION
PART 1

SES/C130 LINKER NYTPYT
FILE NAME/ LIAD/
SECTION NAMES -
HOWX131 CTTTTTTTTETTTTTTTTTTTTTTT T
READ WRITE 1721 % GC2 32002070
RW_113
DSS$MA INFRAME_PAGEABLE

HOWX102
WRITE EXTENSI3LE 2328 ¥ £03 329020450

HOWXL03
READ WRITE 18C8 & Cub I%INILYG
0SS3JNR_PAGEARLE

HOWXi 06
READ WRITE ICEA % (¢% Y)ILLARD
OSSSTASK_PRIVATE

HOWX105
READ WRITE 133A * (L6 NIL00CHD
OSSSTASK_SHARED

HDWX1 06
READ 17143 * 0CA O228)
OSSSMA INSRAME _PAGED _LITERAL
2SS3JNE_PAGED_LITERAL
CLS3$PODT
CLS$ADT

(&]
(S
(o]

HDWX1Q7
READ EXYECUTE-LICAL PRIV 2F487 * (08 23005070
RE_113

HDWX128
BINDING 12542 * COC d290000)
RB_XX X

5-20
Control Data Private

SEGMENT DESCRIPTION
PART 2

HOWX103
READ wRITE EXTENS[ALE 4oL * LOD AYALACAD

HOWX11J
READ WRITE EXTENSI3Le 323 ¥ (GF 27300070

HDWX111
READ WRITE eXTENSTALE
HDWX112
READ WRITE EXTENSIALE 8 * 01y 20304CT0

~N
Cs

S5
*
”~y
Pl
B

33NCIGa0

HOWX113
RE_123

HOWX114
READ WRITE EXTENSI3LE 9 *¥ (12 2993800022

HDWX115
READ EXECUTE-LOCAL PRIV 3709 * 013 03603000
RE_13X

HOWX1156
READ WRITE 180 * $lé 7d2C290)
RW_13X

" HDWX117

I

READ EXECUTE=-LOCAL PRIV 2443 % (15 2000200
RE_190

HDWX118
READ EXECUTE~-LOCAL PRIV 273900 *¥ C16 DI2ONCTD
RE_223

HOWX119
READ EXECUTE-LOCAL PRIV 77543 % G17 230
RE_23X

(%)
- J
D
-

-
D
Lo]

HOwWX12C
READ EXECUTE=-LOCAL PRIV TNIKE ¥ (13 2250000
RE_27D

5-21
Control Data Private

LESSON 6
INTERNAL COMMUNICATION

LESSON PREVIEW
-~ REGISTERS AND EXCHANGE PACKAGES

INTERPRET THE STACK

SIGNALS, SYSTEM FLAGS, AND MONITOR FAULTS
INTERRUPTS AND TRAPS

CP MONITOR

Trap Handler

REFERENCES

MIGDS
GID-PART 3 (PACKAGING)

OBJECTIVES

After completing this lesson the student should be able to--

INTERPRET THE CONTENTS OF EXCHANGE PACKAGE REGISTERS

INTERPRET THE SAVE AREA, AUTOMATIC VARIABLES AND PARAMETERS IN A
STACK

EXPLAIN HOW THE EXCHANGE INTERRUPT IS PROCESSED AND HOW THE
SIGNALS, SYSTEM FLAGS AND MONITOR CONDITIONS ARE PASSED TO A TASK
EXPLAIN HOW A TRAP INTERRUPT IS PROCESSED

GIVEN A CRASH DUMP, DETERMINE WHAT WAS RUNNING WHEN THE CRASH
OCCURRED

OVERVIEW THE CP MONITOR FUNCTIONS

EXPLAIN WHAT ACTION IS TAKEN BY CP MONITOR ON EACH OF THE MONITOR
CONDITIONS

SHOW HOW A MONITOR REQUEST IS MADE FROM JOB STATE

LIST THE REQUESTS THAT MONITOR IS PREPARED TO PROCESS

EXERCISES

1.

2.
3.

GIVEN A DUMP, DETERMINE WHERE THE SYSTEM WAS PROCESSING WHEN THE
DUMP WAS TAKEN.

GIVEN A STACK, FIND THE CURRENT FRAME AND TRACE THE CALL CHAIN.
DETERMINE WHAT PARAMETERS WERE PASSED TO A PROCEDURE AND WHAT THE
VALUE OF EACH PARAMETER 1IS.

6-1
Control Data Private

COMMUNICATION

MECHANISMS

Call

Return

Exchange Jump
Exchange Interrupt
Trap Interrupt

PROCESSORS

Monitor Interrupt Processor (MIP)
Request Processors

Trap Handler
Signal Handler
System Flag Handler
Monitor Fault Handlers

6-2
. Control Data Private

STACK DATA MAPPING

l. SFSA-stack frame save area

e Typically words 0-4. length in word 2
® See diagram and CYBIL definition

2. Automatic Variables

First two words not used

Each variable starts a new word

Array and record components are byte aligned unless packed
Packed components are bit aligned except characters,
integers, and pointers

3. Parameters

e Each parameter starts a new word
® VAR parameters are passed 'as pointers
® The pointer to the parameters is in A4

6-3
Control Data Private

871BATI4 BlEBQ TOIJUO]

STACK FRAME SAVE AREA

Word
[} 0 P REGISTER
MINIMUM 1 | vmiD AO REGISTER (DYNAMIC SPACE POINTER)
i‘:‘\éi 2 | FRAME DESCRIPTION | A1 REGISTER (CURRENT STACK FRAME POINTER)
3 | USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER)
4 A3 REGISTER (BINDING SECTION POINTER)
5 | USER CONDITION A4 REGISTER (ARGUMENT POINTER)
6 | MONITOR CONDITION | A5 REGISTER
7 A6 REGISTER
8 A7 REGISTER
MAXIMUM .
T SAVE o o~ . g
AREA ¢
16 | 00 »15 | AF REGISTER
17 X0 REGISTER
[)
~ o A
@
R 32 XF REGISTER

00 ‘ » 63

CONTROL DATA

PRIVATE

L S 3

L3

DATA MAPPING
EXAMPLE

MODULE x;
PROCEDURE ABC,
VAR
i: 1..10,
c: string(10),
a: array 1l..3 of string(é),

XYZ(i,c);

PROCEND ABC;
PROCEDURE XYZ (i:1..10; VAR s:string(l0));

SFSA

variables %

a

[p—

S I

parameters {ic

P

AQ

SFSA Al

A2

A3

A4

6-5
Control Data Private

USER STACK
r——————_——-

TRANSFER OF CONTROL

| AMP&OPEN |

SFSA

frame

SFSA

MONITOR STACK

frame

R3 STACK R2 STACK R1 STACK
frame frame
SFSA
JoB
XP
HARDWARE no
XP change
B # off
3 # off
MONITOR 2 # off
XP 3 # off
B # off
no
change
1. User makes a request using program
interface e.g. AMP$OPEN.
2. AMP$OPEN checks parameters and calls
BAP$GOPEN
3. BAPS$OPEN creates task tables and calls
FMP$OPEN to update job files.
4, FMP$OPEN returns
5. BAP$OPEN returns
6. AMP$OPEN returns
6-6

Control Data Private

EXCHANGE PACKAGE

Word

No.

ojP
-1 jVvMID* UVMID** AO

2 | Flags Traps Enables | A1

3 | User Mask A2

4 | Monitor Mask A3

5 | User Condition Ad

6 | Monitor Condition A5

7 | Kypt Class | LPID* A6

8 | Keypoint Mask A7

9 | Keypoint Code A8

10 A9

11 | Process Int. Timer AA

12 AB

13 | Base Constant AC

14 AD

15 | Model Dependent Flags AE

16 | Segment Table Length AF

17{ X0

T e~
32} XF

33{ Model Dependent Word
34| Segment Table Address Untranslatable Pointer
35 Trap Pointer
36 | Debug Index] Debug Mask | Debug List Pointer
37| Largest Ring Number Top of Stack Ring No. 1

~ ~
51 Top of Stack Ring No. 15

00 07 08 15 16 63

* Virtual Machine ldentifier

*%

¥* % *

Untransiatable Virtual Machine ldentifier
Last Processor ldentification

CONTROL OATA ¢
H PRIVATE §

'
o

6-7

Control Data Private

TRANSFER OF CONTROL

DMP&DELAY
USER STACK R3 STACK R2 STACK Rl STACK -
frame 4
SFSA
frame
SFSA
JoB
XP
HARDWARE B # off
XP 3 # off
B # off
3 # off
MONITOR STACK MONITOR M # off
XP M # off
frame 3 # off
M # off B # off
frame
1. User calls PMP$DELAY.
2. DELAY processor exchanges with an RSB

request.
3. Monitor Interrupt processor delays the
task.

4. Monitor réturns to the task.
5. Delay processor returns.

6-8
Control Data Private

33BATI4 BlBQg T0IJUO0J

Task [Monitor| gyent
Hardware R11 R3 R2 R1 Monitor XP XP
Time XP Stack | Stack | Stack | Stack Stack Area Event |Program Interface Requegﬂ
To B# n |B.frame |empty | emply | empty m.fvawe g':g;:‘: mip
T1 3 n SFSA 3.’{(0%\(. B.1 rpﬁu(g" 24 AMP+ RETURN
T2 19 L} SFSA [. trame 1.1 mzu!_sf ‘o updﬁggsi“f?é:%e
| T3 3% n 3frome, RI returns

Ta 1B# o Bframe R3 returns
Ts Lpage Foult

Tuterry o
Tg m¥ n M. rome, wer'ﬁ Poge o tt

B¥# n
Ty " SFSA ot

m:{rame 2 o

Tg n m.ﬁrW, Return From paqf Mazuagw
T h SFSA)
Tio H m.{mmu' Return “rowm 0l5pa_'!fh.%
11 2 ixchw +o new ’fo.sk
T12 '
Tz |BF mrame {Kcl/ia,uge to this task

37BATI4 ®B3BQ TOIZUO)D

01-9

EXTERNAL
INTERRUPT

CALL y CHECK

PERIODIC

DISPATCHER
? ACTIVITIES

CONSOLE
INPUT _
MESSAGE

DETECTED
UNPROTECTED
HOWR ERRORS

SHORT
WARNING

EXCHANGE
REQUEST

DISPATCHER IS CALLED IF
e CALL FLAG IS SET

DISPATCHER

EXCHANGE EXAMINE

JOB MCR

EXTERNAL
INTERRUPT

MCU
RESPONSES

e TIME SLICE HAS ELAPSED

8 SIT HAS RUN OUT

EXCHANGE MIGHT BE

TO NOS 170 IN
DUAL STATE.

JOB SELECTED
MCR
CONDITIONS

PAGE
FAULT

SYSTEM
CALL

BROKEN
TASK

H0SS3304d LdNYY3ILINI YOLINOW

SYSTEM CALL PROCESSING

XP
i#call_monitor (REQBLK) 1
code
status |RB: Request Block
params
Job
Monitor REQUEST
CODE
TABLE
MONITOR \
INTERRUPT
code —{ high-Ting PROCESSOR
local
priv.
~proc
count SXSTEM
3 CALL
time MGR

pPTOCEeSSOoTS

PROCEDURE [XDCL] xxp$yyyy (VAR rb:request—block)

6-11
Control Data Private

REQUEST BLOCK

MEMORY MANAGER REQUEST DEFINITIONS
1 MMT$RB_ADVISE
2 MMT$RB_ASSIGN_FLAWED_MEMORY
3 MMT$RB_ASSIGN_REAL_PAGE
4 MMT$RB_FLAW_PAGE
5 MMT$RB_FREE_FLUSH
6 MMT$SRB_UNFLAW_PAGE
TASK MANAGER REQUEST DEFINITIONS
TMT$RB_INITIATE_JOB
TMT$RB_INITIATE_TASK
TMT$RB_CYCLE
TMT$RB_DELAY
TMT$SRB_EXIT_JOB
TMT$RB_EXIT_TASK
TMT$RB_SEND_SIGNAL
TMT$RB_WAIT_SIGNAL
TMT$RB_CHANGE_SEGMENT_TABLE

VOO E WN

Note: see Internal Interface.

6-12
Control Data Private

21BATI4 BlB(Q TOIJUO]
¢1-9

Task | Monitor| £ yent D-\ceess Uiola‘h‘m
Hardware R11 R3 R2 R1 Monitor XP XP
Time XP Stack | Stack | Stack | Stack Stack Area Event
[T 1o , V

To b# n, @fra/w' emply | emply | emp 1 y | M rane \ ﬁﬁ? mIip

p! M # "' B ny Aceess \/l.O’O.‘HOM
T2 . Set free flag in UCR

3 |B¥* n MIP | Exchange

5F5SA .

T4 b# ny Bframe, Trap

Ts |3# a, |SFSA |3fme (td clefont? aau%”

T SF5A

¢ o s 3frame , | (art PMPA?ET B
77 3#’ n, po.P R“ Shc,k

T8 m# 3# n, [?ebues'f Task Terminahon

SFSA
T9 M3 hy m_(rma_ @w 5Q$+QW\ ('CLU processor
T10 M frome, Retuwrn a.éfer fermima:fihg tfask
T11 ck
Cat dispateher o P, ok

Ti2

SIGNAL HANDLING

TASK A TASK B
SUSPENDED TRAP
PROGRAM OF——0 /il o
ANY RING
R1,2,3 R1,2,3
XCB XCB
1 1
RB
Y
SIGNAL
HANDLER
PMP$SEND—-SIGNAL
Q T SIGNAL
J0B N
MTR

Control Data Private

N\

R) [
MIP

SYSTEM
CALL MGR

]

SIGNAL |
PROCESSOR

6-14

=

TRAP HANDLER

TRAP
HANDLER

DISPOSE OF
TRAPS

‘ﬁh\\\N-\‘~‘§“‘-_

DISPOSE OF DISPOSE OF DISPOSE OF

MONITOR PREEMPTIVE CRITICAL

FAULTS CONDITIONS FRAME FLAG
SEGMENT R SIGNAL SYSTEM FLAG BLOCK DELAYED
ACCESS CONDITIONS PROCESSOR PROCESSOR EXIT PREEMPTIVE
CONDITIONS CONDITION CONDITION

MERGE

USER

CONDITIONS
USER DEFAULT USER
CONDITION CONDITION CONDITION
HANDLER HANDLER HANDLER

PMP$ABORT
6~-15

Control Data Private

TRAP HANDLING

Trap Handler runs at the ring of the interrupted program.

Dispose-of-traps runs in ring 1.

Dispose-of-traps checks the reason for entry in this order:

1.

Monitor Faults

Segment Access Conditions, MCR conditions and User conditions
are merged together. If a user condition handler exists it
will be found in the stack. The default condition handler
will abort the task in all cases.

Preemptive Conditions

All signals and flags will be processed if the free flag is
set. If the ring of execution is lower than the recognition
ring, the critical frame flag will be set in the first stack
frame above the recognition ring. In all other cases the
signal or flag handler will be called.

Critical Frame Flag

If the critical frame flag indicates a delayed signal or flag
it will be resolved by dispose-of-preemptive-conditions. If
the user has established a block exit handler, the handler
will be found in the stack frame and called.

A Daley diagram of these modules is included in the chapter on
program management.

6-16
Control Data Private

SIGNAL PROCEDURES

SEND SIGNAL
PMP$SEND_SIGNAL(recipient,signal,status)

SIGNAL HANDLER
ppP$HANDLE_SIGNAL xxx(originator,signal)

DEFINE HANDLER (for test only)
PMP$DEFINE_SIGNAL_HANDLER(id,handler,recog_ring,status)

SIGNALS

Memory Link MLP$ handle_signal interprets 'sub_signals'
and calls a handler.

Interactive IFP$hande_signal passes info between the
interactive exec., job monitor, and user
tasks.

Callend PMP$child_terminator_handler.

Scheduler IMP$_ handle gfm_ia 31gnal processes the

signal from QF manager that interactive job
has been routed.

6-17
Control Data Private

SYSTEM FLAGS

SET FLAG
PMP$SET_SYSTEM_FLAG(flag_id,recipient,status)

FLAG HANDLER
ppP$HANDLE_FLAG_xxx(flag_id)

DEFINE HANDLER (for test only)
PMP$DEFINE_SYSTEM_FLAG_HANDLER(id,handler,recog_ring,st)

FLAGS
Statistics AVP$monitor statistics handler
Terminate PMP$terminate_flag_handler
Drop JMP$handle_drop_job_flag

Linked Signals TMP$dlspose mainframe _signals
This flag indicates that a signal occurred
while the task was swapped.

6-18
Control Data Private

MONITOR FAULTS

FAULT HANDLER

ppP$HANDLE_FAULT_xxx(fault,save_area)
DEFINE HANDLER (for test only)

PMP$DEF INE_MONITOR_FAULT(id,handler,status)

FAULTS
Instruction Specification Error
Address Specification Error
Access Violation
Environment Specification Error
Outward Call/Inward Return

SEGMENT ACCESS CONDITIONS
Read beyond EOI
Write beyond msl
Segment access error
Key lock violation
Ring violation
1/0 read error

6-19
Control Data Private

331BATI4 BlB(Q T[O0IIUO0)

0Z-9

MONITOR CONDITION REGISTER

TRAPS ENABLED TRAPS DISABLED
TRAP ENABLE F/F SET TRAP ENABLE F/F CLEAR MASK BIT
AND OR CLEAR
TRAP ENABLE DELAY TRAP ENABLE DELAY
F/F CLEAR F/F SET
AND AND JoB
MASK BIT SET MASK BIT SET OR
MONITOR
NITO J NITOR MODE
BIT NUMBER AND DEFINITION [\‘l:ggg M:‘IOIIE R MggE M:\)AODE
0 Processor Detected Malfunction Mon EXCH TRAP EXCH HALT HALT
1 Memory Detected Malfunction Mon EXCH TRAP EXCH HALT HALT
2 Power Warning Sys EXCH TRAP EXCH STACK STACK
3 . Instruction Specification Error Mon EXCH TRAP EXCH HALT HALT
4 . Address Specification Error Mon EXCH TRAP EXCH HALT HALT
5 Exchange Request Sys EXCH TRAP EXCH STACK STACK
6 - Access Violation Mon EXCH TRAP EXCH HALT HALT
7 - Environment Specification Error Mon EXCH TRAP EXCH HALT HALT
8 External Interrupt Sys EXCH TRAP EXCH STACK STACK
9 Page Table Search Without Find Mon EXCH TRAP EXCH HALT HALT
10 System Call Status - This bit is a flag only and does not cause any hardware action.
11 System Interval Timer Sys EXCH TRAP EXCH STACK STACK
12 iInvalid Segment Mon EXCH TRAP EXCH HALT HALT
13 - Outward Call/Inward Return Mon EXCH TRAP EXCH HALT HALT
14 Soft Error Log Sys EXCH TRAP EXCH STACK STACK
15 Trap Exception Status - This bit is a flag only and does not cause any hardware -action.

83BATI4 B1EBQ TOIJUO]

12-9

USER CONDITION REGISTER

TRAPS ENABLED

TRAPS DISABLED .

TRAP ENABLE F/F SET TRAP ENABLE F/F CLEAR | MASK BIT
AND OR CLEAR
TRAP ENABLE DELAY TRAP ENABLE DELAY
F/F CLEAR F/F SET JOB
AND AND OR
MASK BIT SET MASK BIT SET MONITOR
JOB MONITOR MODE
BIT NUMBER AND DEFINITION MODE MODE ';ng M('Z\)nl:)l;(E)R
0 Privileged Instruction Fault Mon TRAP TRAP EXCH HALT
1 Unimplemented Instruction Mon TRAP TRAP EXCH HALT These
2 Free Flag User TRAP TRAP STACK STACK mask bits
3 Process interval Timer User TRAP TRAP STACK STACK are
4 Inter-ring Pop Mon TRAP TRAP EXCH HALT permanently
5 Critical Frame Flag Mon TRAP TRAP EXCH HALT
6 Keypoint User TRAP TRAP STACK STACK
7 Divide Fault User TRAP TRAP STACK STACK STACK
8 Debug User TRAP TRAP Debug bit will not set when traps disabled.
$ Arithmetic Overflow User TRAP TRAP STACK STACK STACK
10 Exponent Overflow User TRAP TRAP STACK STACK STACK
11 Exponent Underflow User TRAP TRAP STACK STACK STACK
12 F. P. Loss of Significance User TRAP TRAP STACK STACK STACK
12 F. P. Indefinite ‘ User - TRAP TRAP STACK STACK STACK
14 Arithmetic Loss of Significance User TRAP TRAP STACK STACK STACK
15 Invalid BDP Data User TRAP TRAP STACK STACK STACK

LESSON 7
EXTERNAL COMMUNICATION

LESSON PREVIEW

MEMORY LINK (DUAL STATE)
INTERACTIVE FACILITY
OPERATOR FACILITY
STATISTICS FACILITY
MESSAGE GENERATOR
KEYPOINTS

LOGS

REFERENCES

PROGRAM INTERFACE

0BJECTIVES

After completing this lesson the student should be able to--

DESCRIBE THE MEMORY LINK INTERFACE

EXPLAIN HOW THE MEMORY LINK IS USED BY THE INTERACTIVE FACILITY,
THE OPERATOR FACILITY AND THE REMOTE HOST FACILITY

OUTLINE HOW THE NOS DEPENDENT CAPABILITIES WILL BE CHANGED TO BE
INDEPENDENT OF NOS

EMIT, ENABLE, AND ESTABLISH SYSTEM STATISTICS

ADD MESSAGE TEMPLATES TO THE TEMPLATE TABLE

GENERATE KEYPOINT DATA

USE THE LOG MANAGER INTERFACES TO MANIPULATE LOG FILES

EXERCISES

1.
2.
3.

ADD A MESSAGE TEMPLATE TO THE SYSTEM. USE IT.
ESTABLISH, ENABLE, AND EMIT A NEW STATISTICS
INTERPRET KEYPOINT OUTPUT.

7-1
Control Data Private

DUAL STATE CONFIGURATION

Control Data Private

Cl170 | Cl80
Inst.] Inst. cPU
Real
NOS NTH NOS/VE MemoTy
JNTERACTIVE OISk OPERATCR THPE UNIT MY Disk
; MUX SONSCLE RETORD
7-2

TAPE

VIRTUAL ENVIRONMENT PARTITIONING

The system resources are partitioned between CYBER 170 and CYBER
180 logical machines

CPU is partitioned using the VMID field in the exchange package.
Determines how the CPU will

- Fetch and interpret instructions
- Interpret the register file

- Interpret interrupts

CPU access to central memory

- CYBER 178 addresses map into real memory addresses @-N
- CYBER 180 addresses map into (N+1l) - (memory size-1l)

PPU access to central memory

- PPUs are assigned to either 178 system or NOS/VE
- I0U bounds register limits write access to CM

Channels are software partitioned to access only CYBER 178 or
CYBER 188 peripheral devices (except maintenance channel).

7-3
Control Data Private

NOS

QUEUE
FILE
JOBS

LINK FACILITY

PF
PARTNER
JoBs

NAM

> PASS ON

K-DISPLAY
DRIVER

PARTNER
JoB

i

NOS/VE
MEMORY LINK
MLI INPUT FILES
MLI HELPER OUTPUT FILES
RHF180
TASKS
C170
PERM. FILES
| INTERACTIVE
NOS EXEC
TRAP
HANDLER INTERACTIVE
> USER
(ScL)
K-DISPLAY OPERATOR
TRAFFIC ™ FACILITY
‘ML SUBSYSTEM
INTERSTATE USER

7-4

Control Data Private

COMMUNICATION | TASK

MEMORY LINK
INTERNAL INTERFACES

MLP$SIGN_ON
(name,max_msgs,unique_name,status)

MLP$SIGN_OFF
(name,status)

MLP$ADD_SENDER
(name, sender_name, status)

MLP$DELETE_SENDER
(name, sender_name,status)

MLP$CONF IRM_SEND
(name,destination_name,status)

MLP$SEND_MESSAGE |
(name, info,signal,message_area,message_length,destination
name, status)

MLP$FETCH RECEIVE_LIST
Tname,sender_name,list,count,status)

MLP$RECEIVE_MESSAGE
(name, info,signal,message_area,msg_length,msg_area
length, receive_index,sender_name,status)

’ 7.5
Control Data Private

MLI -PROTOCOL

sign on . NOS{NOS/VE
add sender .
confirm M sign on
L ¥ E ~add sender (A+B)
sign on -
adg sender il g H 1 - confirm (A+B)
confirm
fetch list
recelive R | H
N E y send (A+B)
L
T p L confirm
fetch list H £ I
receive i | R
send N
confirm H
N E M fetch list
T p | L receive (A+B)
send H e 1
confirm 1B R
sign off
M N M sign off
L T LI
2|+ I
sign off
7-6

Control Data Private

LINK HELPER TASK USER TASK OR SYSTEM TASK

21BATI4 B3BQ TOIUO0)

MLM$ NOS/VE
INVOICE PROGRAM
MLI_HELPER
MLM&
NOS
HANDLE
PROGRAM SIGNAL (:::)
NOS /
0 TRAP
17|HANDLER
o1 o ready—task ML;$
T c170_ ML I
MESSAGE ‘ HELPER Requests
T ML I
Reque
1 y
REQ
BLK MLI o] MP MLI
MW
MIP

MLMMTR

AYOW3NW

ANIT

MEMORY LINK SOFTWARE

The NOS program uses CYBIL procedures or COMPASS macros to
communicate with the NOS/VE job. These translate to 017
instruction which are trapped by the NOS trap handler (NOS T.H.).

When an 017 instruction is executed, the NOS trap handler runs in
NOS/VE instruction mode. It moves the message into a circular
buffer. The entries are called request blocks. Trap handler
issues a monitor request to ready the link_helper task.

MLI helper transfers the message from the circular buffer to the
mainframe pageable segment using MLI transfer requests. Some
NOS/VE applications are signaled when there is a message received
for that application.

MLI manages the queue and services the requests issued by MLI
helper, Interactive Facility, and so on.

The NOS/VE program transfers the message into its buffer using
MLI requests. Applications which use the facility are:

RHF180

Interactive Exec.

Interactive Facility

Operator Facilty

Interstate Communication (users)

7-8
Control Data Private

ANT

lock
application name
max msg=10
Areceive list
Apermit list
system name
unique id

A signal handler

MEMORY LINK TABLES

Sender | n

50

ANT=Application_name_table

10

1
n
Sender
Arbitrary-
info
A message |)
msg length
10

All tables are in mainframe pageable segment.

7-9

Control Data Private

message

095

MLM$ INVOKE_Mt I_HELPER (2,3.0)
ML PSINVOKE ML I_HELPER

ML HELPER

ML MLP$ MLP$ PMPSWAIT
EXECUTE enabled INITIALIZE HELP |t -
? HELPER €170 1000
MLP$C170_HELPER (1,1,B) /
MLP$HELP_C170 pa—
Increment N Document
MLP$ verify RAof| Flag
request blockj— — 1 k—-— Block
our pointer FRONT_END NOS T.H. NOS T.H. Count
//
e ¥
// MLP$
/ SIGN_OFF
7 | I MLPs
/ SIGN_ON
/ MLPS
/ —4] ADD_
/ SENDER
MLP$FRONT_END MLP$ ILL
| DELETE_
Get param SENDER
Check Illegal
address fromp——j : ;
‘—reo. Elock function [unction
. MLPS g
—i! CONFIRM_ \
SEND
0SP$
uLP SET_STATUS ||~
Form SléNg ABNORMAL
Addresses MESSEGE
NOTE - The reauest block
is a circular buffer MLP$
in C170 memory. Form FETCH_ Set length
T Address RECEIVE in words
LIST
MLP$:
Form Fix
—- RECEIVE_ |fomnd —
Addresses MESSAGE lengths
MLPSKILL
NAME/ALL
N

Control Data Private

31BATId4 BjlR(Q TOIJUO0)

11-¢

NOS User Task
PF start partner Command
Exec - Processor
Job
R11
NGS
route TRAP
l HAND-
LER Remote
Host
; Facility
PF get—flle
Par tner
Job replace~file R3
Message
@ MLI conversion
possible
R1

c1l70 -
File

c180
File

S37I4 WY3d-4dHY

NOS/VE REMOTE HOST FACILITY

USers must be validated for access to the remote host facilty
NOS/VE uses family name for mainframe ID.
Requests to access permanent files via the RHF include user
validation. :

File size limitations will be associated with each linked family
to restrict transfers via the RHF

NOS/VE remote host facility job

Communicates with the linked system
Receives input jobs and sends output files

Linked communication services

- User interface for permanent file handling via the 1link (get,
save, replace, purge, permit and catist commands)

Linked file conversion
- Link files are interchange format

- Queue files and permanent files are converted before and after
transfer

7-12
Control Data Private

81BATI4 B3EBQ TOIZUO)

£1-L

RH

Input ;
Job Lpy¢ r R11
les R3
\ REMOTE
?03 HOST
o / FACILITY
=" ///’\\\\
RH tiﬂt f
Output P JZ// \\\ conversion
Job p
Queue
MLI File Mgr.
R1
N~ —] \X_/
Cl170
Cl
Output Quzges
Queue
N— ~——

S37I4 43100dS-4dHY

97BATI4 BlBQ TOIJUO)]

Y1-L

PASSON

NGS

Ol

Interactive User
Task Task SCL
Access @
Method
R11
Inter-)
active conversion
LogIn |EXeC Inter-
Break | active
User
FAP R3
/////’//’ "
/)'O(It /(
7
tp& /
~—— R1
Queued
MLI File Mgr MLI

‘Terminal’

NOILYJIINNWWGI 3IAILOVYHILNI

INTERACTIVE PROCESSING

NOS/VE interactive terminal access is performed through the
Network Access Method (NAM). Its interactive facilities are a
superset of those of NOS/170. The terminal user may:

- Enter commands

- Enter data to programs

- Interrupt the execution of interactive jobs

- Define terminal attributes

- Receive command status messages

- Receive program output data

- Disconnect a terminal from a running interactive job thus
freeing the terminal for other work

- Recover an interactive job that was disconnected from its
terminal

NOS/VE treats terminal I/0 as normal file I/0 through Basic
Access Methods (BAM). BAM allows the name of an I/0 processing
(FAP) to be substituted into the file attributes at open time.
This is done for terminal I/0.

NOS/VE treats NAM as an external interface. The basic handling of
terminals will not change whether it is done through CYBER 170
NAM or through future versions of NAM on the CYBER 180 side.

7-15
Control Data Private

81BATI4 B3BQ TOIJUOD

91-L

ALITIJVS ¥Olvd3dO

NOS|Operator SCL &
Task Command
Processors
Access
NOS Method
T.H. TN R11
K-DISPLAY <= <
DRIVER ==
Interactive Screen
User FAP
commands FAP
\ Screen
~— Bfr.
Input dlleay
Buffer K-Display
Display i
Buffer R2
MLI
R1
Header
Output
Response

Prompt

OPERATOR COMMUNICATION OVERVIEW

Supports communication between:

- NOS/VE and system operators
- User jobs and system operators

An operator console is a terminal "logged-in" with system
operator privileges

- Operator commands and displays are processed by NOS/VE
interactive jobs having system operator privileges granted by
the NOS/VE user validation

- The installation may distribute access privileges between users

Status and control of hardware components

Status and control of NOS/VE user jobs and their resource
allocation

Status and control for the operating system, system jobs and
special applications

Allows NOS/VE to request operator assistance for tape mounts

Provides visible information on system operation, current
parameter values, etc.

Reports hardware and software problems
Allows operator-job and opérator~terminal communication
Supports on-line system debugging

Supports on-line diagnostic initiation and control

7-17
Control Data Private

OPERATOR FACILITY
INTERNAL INTERFACE (CH17)

OFP$SET_DATE(m,d,y,status)
OFP$SET_TIME(h,m,s,status)

OF P$SET_SYSTEM_STATE(type,value,status)
Types: security
attended
maintenance
debug

OFP$SET_JOB_CLASS_LIMIT(class,limit,status)
Classes: interactive
batch

OFP$GET_SYSTEM_INFORMATION(info,status)
Info: header
version
batch count and limit
interactive count and limit

OFP$GET_OPERATOR_ACTIONS(actions,status)
ActIon entry: ordinal
job name and id

task id

response boolean

message)
7-18

Control Data Private

31BATId4d BlBQ TOIZUO)D

61-L

NOS

Memory R
Link tal‘t
Subsystem 0
ar
&

I Z

l

Iroute NOS

| T.H.

|

1
Partner —_—”lﬁiﬂiigf———q
Job

User Task
User
Program
Access
Method
1 R11
|
|
] no
conversi
Interstate version
Communication
R3

MLI

R1

NOI1YJIINNWWOD 3JLYLISHILINI

89BATId BlBQ TOIJUO)

0Z-L

R11

USER

PRODUCT

R3

R2

R1

Zmao MOV NMX - OXrm NOoOHAH—U0nNH-—AD>—-Wn

Oor

TMoOor»Zr X

COC~_ —————__ ___HENGINEERING

ACCOUNTING
SYSTEM STATS

USER STATS

MONITOR

™ BINARY LOGS

USER

USER

SYSTEM

ASCII LOGS

SITE

S$907

LOG MANAGER

SCL

LGM$
DISPLAY_
LOG_COMMAND

LGM$
TERMINATE
LOG_COMMAND

N

(2,0,D)

e
N

LGM$
INTERNAL_
LOGGING_
INTERFACE

(2,3,D)

LGM$
LOCAL _
LOG_MANAGER

(2,2,3)

LGM$
GLOBAL_
LOG_MANAGER

LCV$
INT_LOGS_
NAMES

1,3

ARRAY

(1,1,3)

7-21

Control Data Private

LOG MANAGER
INTERNAL INTERFACE

LGP$ADD_ENTRY_TO_BINARY_LOG
(log,entry_address, log_address,cycle,status)

LGP$APPEND JOB LOG TO OUTPUT
(status)

LGP$BUILD DISPLAY OF _ASCII_LOG
(log,scroll_siIze,status)

LGP$INTERCEPT_LOG_IO_REQUEST

(fid,call_block,layer_no,status)
This is a FAP.

LGP$SETUP_ACCESS_TO_LOCAL_LOGS(status)
LGP$SETUP_ACCESS_TO_GLOBAL_LOGS(1logs,status)

7-22
Control Data Private

PROBE

A PROBE IS THAT PORTION OF SOFTWARE RESPONSIBLE FOR COLLECTING AND
EMITTING A STATISTIC TO THE STATISTICS FACILITY.

PROBES ARE EMBEDDED IN KEY AREAS OF THE SYSTEM, BUT ARE NOT
SUBJECT TO GUIDELINES LIKE KEYPOINTS.

THE PRECISE LOCATION OF PROBES AND THE INFORMATION REPORTED
WILL BE DETERMINED BY THE REQUIREMENTS OF THE COMPONENTS IN
WHICH THEY LIE.

THE FREQUENCY AT WHICH A PROBE EMITS A STATISTIC TO THE
STATISTICS FACILITY IS DETERMINED BY THE SUPERORDINATE
COMPONENT.

A PROBE DOES NOT ASCRIBE ANY INHERENT QUALITIES TO A
STATISTIC.

THERE SHOULD BE A ONE-TO-ONE CORRESPONDENCE BETWEEN A PROBE
AND STATISTIC.

NOS/VE STATISTIC

A NOS/VE STATISTIC HAS THREE COMPONENTS:

STATISTIC CODE : AN ORDINAL THAT UNIQUELY IDENTIFIES THE
STATISTIC.

DESCRIPTIVE DATA: A STRING INDICATING THE OCCURRENCE OF A
SYSTEM OR JOB EVENT.

COUNTERS : A SEQUENCE OF COUNTERS CONTAINING REPORTED

VALUES OF SYSTEM OR JOB VARIABLES.

7-23
Control Data Private

PRODUCT STATISTICS COLLECTED BY NOS/VE

In general, the 0/S is responsible for collecting job step
statistics that can be determined external to the product, that is
statistics that the 0/S is capable of determining.

For each product identified in SIS section 4.1 that is directly
invoked by the user, e.g., via command or as a program initiated
task, NOS/VE will record resources used per invocation. Resources
accounted for include:

e Total CP-time

® Maximum virtual memory used

¢ Maximum real memory used

e Average working set size

e CP-time per memory size used

e Number of I/0 requests

e Number of data read/written to files
Additional data to be collected for each invocation of a product
include:

e Origin of job step - batch command, terminal command,

procedure file, executing job.

Type of termination - normal, product error, time limit,
invalid memory request, operator drop, and so on. A recovered
condition does not cause product termination.

Abnormal conditions recovered from.

Average interactive response time for interactive products -
the average elapsed time between input data available and
output data issued to terminal.

The fact that the product was invoked (added to count of the
number of separate invocations).

Number of modules loaded (input units for the loader)

Sourc? languages of modules loaded (added to language usage
count) .

7-24
Control Data Private

Job
Statistics
Manager

STATISTICS MANAGER

System
Statistics
Manager

/

Global
Logs

o~

Local
Statistics
Manager

Local
Routing
Control

Accum.
Control
Table

Table
2,2,3
A

Global
Statistics
Manager

Global

Routing

Control

Table
1,1,3

7-25
Control Data Private

STATISTICS

GLOBAL BINARY LOG FORMAT

MANAGER TABLES

ACCUMULATION CONTROL

STATISTIC CODE

BINARY DATE AND TIME

ACCUMULATION CONTROL TYPE

STATISTIC CODE

ACCUMULATION ADDRESS

STATISTIC IDENTIFIER

FREQUENCY ADDRESS

JOB SEQUENCE NUMBER

THRESHOLD

GLOBAL TASK 1ID

FORWARD LINK

CONDENSING FREQUENCY

BACKWARD LINK

NUMBER OF COUNTERS

DESCRIPTIVE DATA SIZE

COUNTER_1

GLOBAL AND LOCAL ROUTING
CONTROL TABLE

COUNTER_2

STATISTIC CODE

IDENTIFIER

ROUTING CONTROL TYPE

ENABLED

COUNTER_N

CONDENSING_ADDRESS

DESCRIPTIVE DATA

THRESHOLD

INTERVAL SIZE

INTERVAL_END_TIME

LOG_CYCLE

FORWARD_L INK

BACKWARD LINK

Control Data Private

FEATURES

CONDENSING

The first counter of a statistic can be condensed, that is, the
information will be collected in the counter until either time runs-
out or a certain number occur. When the condensing threshold is
reached, a new entry is logged and collecting starts again. This
might be used to count page faults or total monitor time.

ACCUMULATING

Accumulation also involves collecting occurrences of an event. When
the threshold (limit) is reached, some action is taken. Typically
the job monitor will be signaled and will take further action.
Currently this is being used for CP time and SRUs.

BREAKOUT

Sometimes it is necessary to seek local and global statistics of the
same thing. An example might be job time. It would be necessary to
have total job time as well as the time for individual jobs to
compute standard deviation. If breakout is established, the
statistics manager will enter in both the local and the global logs.

7-27
Control Data Private

INTERNAL PROGRAM INTERFACE REQUESTS

PROCEDURE [XREF] sfp$establish_system_statistic (identifier:
sft$statistic_identifier;

statistic_code: sft$statistic_code;
log_name: pmt$global_binary_logs;
breakout: boolean;
condensing_control: sft$condensing_control;
VAR status: ost$status);
PROCEDURE [XREF] sfp$enable_system_statistic (statistic_group:
sft$statistic_group;
VAR status: ost$status;
PROCEDURE [XREF] sfp$disable_system_statistic (statistic_group;
sft$statistic_group;
VAR status: ost$status);
PROCEDURE [XREF] Sfp$disestablish_system_stat (identifier:
sft$statistic_identifier;
statistic_code: sft$statistic_code;
log_name: pmt$global binary_logs;
breakout: booclean;
VAR status: ost$status);
PROCEDURE [XREF] sfp$emit_system_statistic (identifier:
sft$statistic_identifier;
statistic_code: sft$statistic_code:
descriptive_data: sft$descriptive_data;
counter: sft$counters;
VAR status: ost$status);

7-28
Control Data Private

ACCOUNTING

Accumulation
Control
Validation
CP TIME File
A accumulatox -
Alimit 1
afrequency —\L~_+
AVP$BEGIN_ACCOUNT fime Limit
- Establish Accounting Stats SRUs
aaccumulator pRU Limit
ALImit 3
A fTequency
AVP$MONITOR_STATISTICS_HANDLER (every2FFFFF m.sec)
Routing
- Emit Accounting Stats Control
- Emit System Stats —
- If Accounting Stat exceeds limit, avli$page_
signal job monitor faults
vi$working_
set-size
avi$ready
task-count]
visend_
account
AVPSEND_ACCOUNT
- Call AVP$MONITOR_STATISTICS_HANDLER Accounting
- Establish Local Statistic Log
- Emit System Statistic
- Disestablish Local Sta‘ti’s_tic\
av.ibcp~time
avi$srus

7-29
Control Data Private

MESSAGE
GENERATOR

STATUS: 4
PRODUCTID

CONDITION
TEXT
TEXT

JOB LOG |

PROGRAM

MESSAGE

LIBRARY

SCL
MESSAGE
GENERATOR

7-30
Control Data Private

" TERMINAL

MESSAGE GENERATION

STATUS

‘AM
amcS$conflicting___access__level
MYPHY
AMPSREAD
AMCSRECORD

MESSAGE LIBRARY

]

| - ——
E File +F1: +P2
- issued but opened
for +P3 access.

TEMPLATE CODES

Y

ERROR File MYPHY:
AMPSREAD issued but
opened for AMC$SRECORD
access.

——
M
A

7-31
Control Data Private

MESSAGE GENERATOR PROCS

0SPSGENERATE_MESSAGE
(message_status, status)

OSP$FORMAT MESSATE
(message status, message_level, max_message_line, message,
status)

OSP$GET_STATUS_SEVERITY
(condition, severity, status)

OSP$SET STATUS ABNORMAL
(id, conditIon, text, status)

OSP$APPEND STATUS PARAMETER
(delimiter, text, status)

OSP$APPEND STATUS INTEGER
(delimiTer, int, radix, include_radix_specifier, status)

Parameters

- Message-level: full, brief, explain

- Severity: informative, warning, error, fatal

- Message: sequence, # lines, # char/line, text

- Delimiter: osc$status_parameter_delimiter or any other

- Include_radix_specifier: radix will be part of text added to
status

7-32
Control Data Private

KEYPOINT FLOW

NOS/VE
200
— Trap. _y| Word
SOURCE LGO Execute Handler Circular
- - Buffer
5
3
>
x}
o, 24 4 20 12
o o #INLINE(keypoint;section,data*256,id) jclock |sec [data |id
[N]
AN 0-0SK$data
- 1-0SK$unusual
s 2-0SK$entry
e 3-0SK$exit
w 4-0SK$debug
o 5-14 reserved
15-PMF
SIMULATOR
SOURCE LGO CPFILE

See Procedures and Conventions CH.9.

SESSMKF

SESSMKF

KEYPOINT FILES

RNVEKEY

KEYDESC

PNOSKEY

KEYDESC

Section id
Section #

Proc id

Special Marks
Length of Data
Data Description
Format

Text

RNOSKEY

CY maxprocid n
CV undefined
CV defined

CV ident

RUN

END

7-34
Control Data Private

» LIST

LIST

0 Summary

0o Itemized List
clock
elapsed time
data
text
mode
task id
section id

LESSON PREVIEW

LESSON 8
JOB CONTROL

QUEUED FILE MANAGEMENT
JOB MANAGEMENT
JOB RELATED TABLES

SCHEDULING JOBS
DISPATCHING TASKS

OBJECTIVES

After completing this lesson the student should be able to--

EXPLAIN THE

EXPLAIN THE
TABLES--AJL

EXPLAIN HOW
EXPLAIN THE
EXPLAIN THE

EXPLAIN THE

EXERCISE

LINKAGE AND HANDLING OF THE KJL AND KOL

LINKAGE AND HANDLING OF THE MAJOR JOB
& JCB

BATCH AND INTERACTIVE JOBS ARE VALIDATED
JOB SCHEDULING ALGORITHM

TASK DISPATCHING ALGORITHM

PROCESS OF BEGINNING AND TERMINATING JOBS.

GIVEN A DUMP, DETERMINE THE STATUS OF JOBS IN THE SYSTEM.

8-1
Control Data Private

31BATI4 B1BQ TOIjU0)
Z-8

JOB ENTRY

SYSTEM or USER JOB SYSTEM JOB
Scheduler Task
SCL.
R11
QUEUE FILE
RHF PRDGRKM_
INTERFACES
R3)y d
IF (IMP$)
SCHEDULER
R2 ~
\/
QUEUE_FILE
INTERNAL _
INTERFACES
QUEUED_FILE
MODULE
R1
TMM$
DISPATCHER
QFP$INTERNAL_INPUT_ROUTE

QUEUED FILES

$SYSTEM
$SYSTEM
| |
$308B_ $J0B_ $J0B_
INPUT QUTPUT_ SWAP_
QUEUE QUEUE FILES
One file per One file per One file per
KJL entry. KOL entry. initiated
KJL entry.
FILE NAMES: 1. user_job_name
2. system_job_name
AAAAS$,RAABT, ...
RECOVERY: The $SYSTEM catalog is recovered like any PF

catalog. Information in the system file labels

(SFL) of the files is sufficient to reconstruct
the KJL and the KOL.

8-3
Control Data Private

SCHEDULING OVERVIEW

1) Jobs can be divided into (currently) one of three classes:
system, batch, and interactive. Scheduler's class attribute
table is used to delineate the classes.

Low, high, and initial priorities are defined as are memory
values. The exclude class flag will inhibit the initiation
of jobs from this class. The self-terminating capability
will allow queued jobs of a class to be initiated even

though the maximum active jobs for that class have been
exceeded. The job will be up long enough to bring itself
down. Currently interactive class jobs have this capability.

The initiator is within the Job Scheduler task. When a job
is routed, it will be queued and the scheduler is signaled.

2) Job swapping is controlled by two parameters:
a) The maximum number of swapped jobs in a class.
b) The maximum overall number of swapped jobs.
Swapping is initiated as a result of three conditions:

a) If the scheduler determines that the system is
thrashing, a candidate will be chosen and swapout will
be performed. The two rules given above will be
overridden.

b) The scheduler will periodically examine the input and
active job queues.. If a job in input has a higher
priority than one executing, a swap request will be
issued for the active job. This swap request obeys the
two parameters governing the swap function.

c) If memory contention is high and a terminal break
occurs, that job will be swapped.

8-4
Control Data Private

SCHEDULING OVERVIEW (Continued)

3) Job priority adjustment is limited to aging queued jobs,
aging swapped jobs, and adjusting the priorities of
executing jobs.

The aging function will increment job priority based on
values local to the class. There are two aging increments
for each class: one for input list and the other for swap
list. The aging function will be performed on a periodic
basis.

Executing jobs will have their priorities adjusted according
to several factors. 1If the job has just been swapped in, it
will be given a priority boost to prevent it from being
swapped out immediately. If the job's ready task count
falls to zero, it will lose priority points. (This may or
may not initiate swapping.) If the job's time or memory
limits are exceeded, it will be switched to another internal
c%ass. Currently there are secondary interactive and batch
classes.

When a swapped job receives a signal, the scheduler will
increase that job's priority which will result in the job
being activated sooner.

8-5
Control Data Private

SCHEDULING TABLES

jmt$job_scheduler_table

-~ Total Pages

— 90%

adjust priority timing
age timing

page fault max

WS max ""”””’//,,,4
WS min

max AJL entries

max swapped jobs

/— o0%

jmt$class_list

System | Attributes

Interactive | Attributes

Batch | Attributes

L zero Pages

jmt$class_attribute_table

Priority range
Initial priority
Max jobs

Working set size
Page fault size
Time slice

Aging

Swap priority

8-6
Control Data Private

SCHEDULING PROCESS

Check for Thrashing

Add Working Set (ws) from all AJL entries.

If the sum is in the thrashing range, swap jobs til the
sum is out of that range. Start with the job with
largest ws.

Stop.

Check page fault rate (R2)

If page fault rate > page fault max in
jmt$job_scheduler_table, increase memory manager's aging
internal.

. Fill Free Memory

Built temporary queues for each state (active, queued,
swapped) for each class (batch, interactive, system,
etc.).

Calculate the number of free pages between the current
value and ws_max.

Select the algorithm (Aproc). The only R1 algorithm gets
the highest priority queued job from each class and
compares it with the highest priority swapped job. If
the queued job wins it is initiated, otherwise swap.
Continue until ws_min < ws < ws_max.

Stop.

8-7
Control Data Private

INITIALIZE JOB ENVIRONMENT

PMM$ TASK

INITIATION e

Scheduler
(IMM$)

Task

Initiation

(PMM$)

R3
O
(o]
)
pue
g}
O
[
R2
[
5 ¢
—+
mCD
o
L]
[
<
QO
—+
()]
R1

[
IMP$ 0SM$
INITIATE_JOB HEAP
MANAGER

ENVIRONMENT ;

TMM$DISPATCHER

tmm$create_job

JOB TEMPLATES

MP JF
: JcB
. Static Data
, jmr$task_private
template_p Heap Control
¥ jmr$system_job_
template_p XCB
: SOT
SDTS
Heap Control
itial XCB
Initia JP,TS,TP
Task Private R1ll
Task Private Heap Static Data

Heap Control
SDT,SDTX

and static

data for
template
segments

Scheduler creates all segments.
Scheduler initializes Job Fixed.
Initialize_Job_Environment initializes other segments.

8-9
Control Data Private

JOB CONTROL TABLES

MP

jmt$known_job_list_entry

Name

AJL Ordinal

Scheduling Thread

Job Type

Job Class

Job Mode

Priority

Drop Attribute
~71° Input Source

/7 Label Info

Time Stamp

$system catalog

MW

jmt$active_job_list_entry

Lock
Entry Status

Swap Status
Statistics

KJL Ordinal o~

8-10
Control Data Private

JF
jmt$job_control_block

Lock

Names/id.

Lo AJL Ordinal
Sense Switches
Input Source

~ Keyboard bfr
Accounting Info
Statistics

EXECUTION CONTROL BLOCK

JF
ost$execution_control_block TCB
XCB Exchange Package
1 MCR Selections
Lock
Flags
Wait Inhibited
Task Rethreaded
Give up CPU
Task ID
Priority ST
~o ~ XCB >
~ TCB o-*/ 0 - Page Table
~ ST o— 1l - Mainframe Wired
~ STX O~ 2 - Mainframe Paged
End Time Out 3 - Job Fixed
Quantum 4 - Job Pageable
Quantum Left 5 - Task Private
Monitor Faults 6 - Task Shared
Paging Stats 7 - Task Private R1l
8 - System Dayfile
9 - Job Dayfile
STX

XcB

8-11
- Control Data Private

TASK DISPATCHING TABLES

MW
tmt$primary_task_list
PTL
AJL
tmt$primary_task_list_entry
4///””//” PTL Thread ©S
Status (task) |\
AJL Ordinal -
XCB o
AJL Thread o< XC8B
\ Swap Status \
AJL
MW PTL
tmt$dispatch_control_table A~
DCT

1

2

‘ b
») 3
N

b 8

. ’\5/
ht

)

6)
7 ~0 o
:)
~o0 o~
9.
10
8-12

Control Data Private

TASK DISPATCHING

Currently (R1) all tasks are on DCT thread 4
unless they have a system table locked. Tasks
with a system table locked are put on thread 2,
and the rethreaded field in the XCB is marked
true.

All tasks on the highest priority thread get 50
m-sec time slice in a round robin fashion as long
as there are active tasks on that thread.

In future releases, all 10 threads will be used.
Different threads will have different time
slices. These algorithms have not been defined
yet.

NOS - NOS/VE scheduling is done in NOS and MIP.
If the current NOS job has higher priority, NOS
runs; if the current NOS/VE task has higher
priority, NOS/VE runs. If the priorities are
equal (NOS job default = NOS/VE task = 30) then
the CPU is toggled between states. Currently 50
ms are awarded to each side but that can be
changed to favor one side or the other. NOS trap
handler does the timing. Idle is in NOS.

8-13
Control Data Private

31BATI4 B3lBg TOI3U0D

71-8

JOB MONITOR

cLM$
IMMSINITIAL CLP$LOGIN
INTERPRET -
JOB_BEGIN COMMANDS —7/— CoMMAND
| N\
PMP$TASK gﬂ?%ARD
INITIATE -
/ CALL
N\
SET MGR JuMP$_JoB FILE MGR.
(STP$) BEGIN (LNP$)
LOADER
(LOM$)
LOG MGR ACCOUNTING MEM. LINK
(LGP$) (AVPS$) (MLP$)

/

TMM$J/

DISPATCHER

371BATI4 B3BQ TOIJU0)

S1-8

imp$job_begin

CALL

Initialize
System
Initialization
tine

1np$
initialize

1gp$
setup_access
to_local_logs

1qp$ setup
access_to
local_stats

Initiate
COMMAND
INPUT and
QUTPUT files

jmp_execute_system_job_task

RETURN

mp_
execute_
system_
job_tasks

mlp$
initialize

stp$
initialize_
sets

avp$
initialize

lgp$setup
access_to
global_logs

lap$setup
access_to
global_stats

pmp$execute

JoB
TERMINATOR

pmp$execute
MLI
HELPER

pmp$execute

EMS

|

pmp$execute
Jos
SCHEDULER

RETURN

81BATI4 Bjleg TOIJU0C)

91-8

'NEW?®

JOB TERMINATION

JoB

Job Monitor Task

SCL

CLP$
LOGOUT _
COMMAND

SYSTEM JOB

Job Terminator Task

od

'T-

PMP$TASK
TERMINATE

IMP$
JOB_END

P D

FMP$

LGP$

STP$

MMP $

JMM$I0B

TERMINATOR

MMP$

@r—

QFP$

@/\

QFP$

TMM$DISPATCHER

tmp$exit_job

331BATI4 B3lEBQ [0I3UO0]

LT-8

JIMM$I0B_MONITOR (2,2,3)
jmp$job_end

JOB END

fmp$purge lgp$append jmp$route mm$delete fmp$/n stp$set j$call
gggﬁtg;a — o l—— job_log_to }— - —non_inherTted}— job exit [~ end job~ #vonito?
$INPUT output OuUTPUT segs - —
T
i
_--—-"I
j$program_ . Iy
o —_——
error eye$1‘e,‘?_“t’-‘-‘—-""--
"
TMM$DISPATCHER l
tmp$exit_job
MONITOR__
INTERRUP
PROCESSOR
tmp$set . set call
task ready | | Remove | | Free the | |Set bit in| |37 -
= from DCT PTL entry Al dispatcher RETURN
TERMINATOR 9
JMM$JOB_TERMINATE
jmp$terminate_job
Find AJL i# call mmp$job_ mmp$delete . gfp$set gfpskil mpwait
START entry of monitor | |delete || segment |__lafpsunlink ajl_status| __] rethread pPmp3wa
terminating get~JF inherifed_ - ajl_kjl — - 1000
job segment SDT Old JF FREE UNDEF INED
T
|
b

Segment is added
to terminator's
SDT, used to
delete segments
and then deleted
itself.

LESSON 9
PROGRAM EXECUTION

LESSON PREVIEW

TASK INITIATION

SYNCHRONOUS AND ASYNCHRONOUS EXECUTION
JOB LOCAL QUEUES

DEBUGGER
LOADER

OBJECTIVES

After completing this lesson the student should be able to--

[OVERVIEW THE MODULES AND TABLES THAT CONTROL TASK
INITIATION AND EXECUTION

. EXPLAIN THE LINKAGE AND HANDLING OF THE TCB AND XCB

) DESCRIBE THE STRUCTURE OF OBJECT MODULES AND OBJECT
LIBRARIES

] OUTLINE THE PROCESSING OF THE CATEGORIES OF CONDITIONS

EXERCISE

NGONE

9-1
Control Data Private

PROGRAM CONTROL AND LOADER

DEBUGGER USER PROG.
13,13,13 ‘,,/”’;
PMM$ PMMS$
TASK_ OUTWARD_
TERMINATION CALLER
PPM$
STACK_FRAME_
POPPER
1,13,13
PMM$TASK PMM$
TERMINATIONf— S T Ak o [CHILD_TASK
RING 3 MANAGEMENT
PMM$
TASKING
SUPPORT_ LoM$:
RING_n LOADER _ LDR
EXECUTTVE TABLES
etc.
2,3,13
2,2,3
LOMS
@ L INKAGE BINDING
GENERATION
1,1,3

Control Data Private

PARENT/CHILD/SIBLING

A

4

9-3
Control Data Private

TASK CONTROL BLOCK

pmt$task_control_block

task id
< ~ parent Sibling
s ~ child TCB
~ sibling *
~ prog. desc. o
~ prog. params. o
~ termination st. e
~ parent status [\
parent rting
flag exec. ring
signal exec. rting
task signal list
Parent Termination Program Program
Status Status Parameters Description
Child
TCB
9-4

Control Data Private

TASK WAIT

PMP$CYCLE (status) Task waits till the next
cycle of the dispatcher.

PMP$DELAY (ms,status) Task waits ms
milliseconds.

PMP$WAIT (ms) Task waits for signal,
flag, PMP$READY_TASK
or ms milliseconds.

PMP$READY_TASK (task,status) Cause a waiting task to
be made ready for
execution.

9-5
Control Data Private

TASK IDENTIFICATION

PMP$FIND_EXECUTING_TASK_XCB (xcb)
PMP$FIND_TASK_XCB (tid,xcb)
PMP$GET_EXECUTING_TASK_GTID (gtid)
PMP$GET_GLOBAL_TASK_ID (tid,gtid,status)

PMP$TASK_STATE

9-6
Control Data Private

81BATI4 ®BleQ T0IJU0)

PMM$TASK_INITIATION-2,3,0

TASK INITIATION

PMP$EXECUTE(prog_desc,prog_parameters,wait,task_id,task_status,status);

oLd
TASK

should not return

t ori 5 PMP$ PMP$
parent ring X?ié?:;e CREATE_ INITIATE_
osc$tsry Description TASK CHILD_
ENVIRON. TASK
H Y
4”
- PMP$
parent ring = AWALT_
= - TASK_
caller ring - TERM.
7 l__
”—’
/”
’/”
PMP$TASK_BEGIN; -
”/
== PMPS
N INITIALIZE g:zg,_g FIND debug N Establish .
TASK_ PREEMPT 11| exectTing on starting From Program Descriptor or null name
PRIVATE COMMUN. ™~ TASK_TCB ? proc
' |
i)m??IALIZE Establish Initialize
308 ~ Degug Ol;ject From Program Descriptor er NIL or 'LGO’
T Mode tist
“ENVIRON.
PMP$ Initialize
mélIALIZE rgdltlle from Program Descriptor or NIL
s
TABLES
E?ég;:;”e From Program Description or
List job library list or NIL
Fix LOPS CALL _
Loader 1] LOAD_ —{| USER_
NEW Options PROGRAM PROGRAM
TASK]
0sP$
SYSTEM_

ERROR

"Qutward call error"

331BATId4 B}EQ TOIjUO0J]

TASK INITIATION (Continued)

PMM$TASK_INITIATION-2,3,D OUTWARD CALL
CALL_USER_PROGRAM(code_base_pointer, parameters)

pva pva PMP$ Put param PMPS
os§$tsrv ~oschtsry fw I 1ist in " | ourwaro-
ring rin - ’
9 SEGMENT stack CALL
7
//
Pupg PMPS
EXIT_ ORIGINAL /
ring error CALLER //
/ PMM$OUTWARD_CALL-2,D,D
/ PMP$OUTWARD_CALL (caller,ring,params,.preceeding_SFSA,stack,segment)
/
PMPS PMP$
CA BUILD RETURN_TO Assembler program pops task services frames
STACK Lt OUTWARD_ |~ 1{outwARD_ {[~] and returns. Caller runs in the target ring.
OUTWARD CALL_SFSA CALL_SFSA
PMP$TASK CALLER T
BEGIN RING |
(eg,3) |
POP CALL_USER_ I
PROGRAM I caller = PMP$ORIGINAL_CALLER(user, parameters)

PMP$OUTHARD_ debug USER PMP$
CALL on PROGRAM [[~1| EXIT

PMP$RETURN_TO

OUTWARD_CALL_SFSA
CALL PMP$
LOAD_
DEBUG_
RETURN PROCS
| Parameters | CALLEE
SFSA for Teo 1) [
PMPSORIGINAL
PMP$
CALLER CALL
BEGIN_
USER DEBUG

PROGRAM |

TASK TERMINATION LEVELS

Unwinding
e Revoke program termination (Debugger)
® Pop stock frames--block exit processing
@ Close files at each 'active ring' to ring 3
e Child Task Cleanup
- Abnormal--kill all child tasks
- Normal--await child termination

8 Clean up task environment

. Unwinding Impossible
e Stack, for example, is bad
e Child task cleanup

® Clean up task environment

Broken Task

e Monitor detects monitor fault with
traps disabled

e Fix trap handler tables to see
- broken task flag

Monitor Kill.

9-9
Control Data Private

LOADER CONTEXT

PROGRAM
STARTER
ﬁu
R11
TMM$
TASK_
INITIATOR
Object
Files
LOMS
LOADER
TCB EXECUTIVE
etc.
Segment
Files
BAM
R3
LOM$. s
L INKAGE Bﬂ;ﬂ;“g
GENERATOR ‘
R2
// R1

MMM$
SEGMENT_
MANAGER

Control Data Private

$-10

LOADER EXECUTIVE

LOM$LOADER_EXECUTIVE
LOP$LOAD_PROGRAM (object_file_list,
module list’,
execute llbrary list,
job_library_list,

startlng procedure,

- parent_ rlng,
determine loader_options,
initial_ code_base_pointer,
ring status)

1 _
add_prog_ execute libraries
load_ [~ " 7]job libraries
libraries
|
load_
object_
files
|
1load
module_
list
l
establish_
transfer__
symbol
i M

. 1. Loaded Modules
satisfy_ || 2. Job Libraries
externals|{[~ ~— ~ |3. Execute Libraries

{4. OSP$TASK_SERVICES_LIBRARY
| i
fix_ Code - X Ring
program_ || ___ _|Data _ R,N/ Key/Lock
seq_ Binding etc.
attr. etc.
l
finish_
load_
map

RETURN
9-11

Control Data Private

LOADER UPTIONS

PMP$CHANGE_DEFAULT_PROG_OPTIONS (change,status)

PMP$GET_DEFAULT_PROGRAM_OPTIONS (options)

PMP$CHANGE_JOB_LIBRARY_LIST (change,status)

PMP$GET_NUMBER_OF _JOB_LIBRARIES (n)

PMP$GET_JOB_LIBRARY_LIST (list,status)

9-12
Control Data Private

OBJECT MODULE INTERNAL FORMAT

Each object module is a set of records on the object file

The object record descriptor contains

e Item type

e Record length

Item types

IDR: Identification of module and attributes

LIB: Libraries from which to satisfy external references

SDC: Length and attributes of each section, code, working
storage, binding, and all common blocks

TEX: Text to be placed in each section

RPL: Text to be repetitively placed in each section

BIT: Inserts bit-level data into a section

EPT: Defines an address in a section as an entry point

RIF: Identifies addresses that must be relocated by the
library generator when binding modules together

ADR: Allows PVAs to be built at load time (when ring,
segment number, and offset are known)

XRL: List of external references to be satisfied

BTI: Binding template describes the contents of a location
in the binding section

TRA: Terminates the object module and gives the primary

entry point

9-13 ,
Control Data Private

LOCAL FILE LGO Rl=11, R2=11, R3=11

o NAME
IDR e TIME & DATE CREATED
e ETC.
LIB e FTNLIB
SDC CODE SECTION
USER SDC BINDING SECTION
COMMAND
STREAM sSDC WORKING STORAGE OBJECT
(VALIDATED FOR SECTION MODULE
RING 11) g FOR
. SDC COMMON BLOCKS MAIN
(] TEX, RPL BIT, REL ADR,
. XRL EPT, BIN
FTN,I=MAIN,B=LGO
FTN,I=SUB,B=LGO RECORDS FOR CODE, BINDING
LGO AND WORKING STORAGE
] SECTIONS
°
[TRA e STARTING ADDRESS
e END OF MODULE J
IDR W
LIB e FTNLIB
SDC e CODE
sSDC o BINDING
sDC e WORKING STORAGE 0BJECT
| MODULE
sDC e COMMON BLOCKS FOR
SuB
TEX, RPL BIT, REL ADR,
XRL EPT, BIN
RECORDS FOR CODE BINDING
AND WORKING STORAGE
SECTIONS
TRA
9-14

Control Data Private

0BJECT LIST (1)

)

IR

LS

2o

9-15
Control Data Private

o 2 fad
i . o
- L3S]
—r
W
LAl |
==
L
4
e
ol T
<z]
Ean e £ S LY A e
{rl i
. i
[N
=
2.

2

31BATI4 B1BQ TOIJUO0)

91-6

OBJECT LIST (2)

Jees.ovbilt o seaoi bebbbo ool

<&

ETs

1 IR

LIK

e 1

s

I

EFT

BTl

AL

BT

COMP L ING 2aal]
ERL CVERIL

Foeps,obldlist

SERACT - LIETING. BBER
bk

R 1
GREATEST SECTION ORD= 2 GEN [D=CYEIL

GEN NAME VERZ=C180 CYBIL 1.0 LEVEL #1188
COMMEN T ARY =

e 2 UYRILIR

M= 3 R IND=CODE ATTRIBUTES=RY OROINAL= O LENGTH=000001 1%
OFFSET= 0 ALIGNMENT=

R 4 RIND=BIMOING OTTRIBUTES=RE CROIMAL= 1 LEMETH=00000020
OFFSET= O ALTGMMENT= 2

l% M i

P RINDEWOREING ATTRIBUTED=R ORDINAL= 2 LENGTH=000000 1
OFFSETY-=

O ALTGNMENT= &

i

Fepds= &0 ZECTION= O OFFIET=QOOO00RE ATTRIFEUTESS:
MAME=M&TM LAMGUAGE =CYR I
DECLARATION MOTOHIMGY REGUIRED-TRUE VALUE-OQMP& T OECSZ0777

FM== 70 BIMOING QFFSET=00000008 CURRENT MOOULE
SECTION= 2 OFFSET=00000000 EINO=POIMTER

K= @ VALLE SECTIOM= 2 1
FAND=FOIMTER VALUE OFFSET=00000000 DEST. OFFZET=00000000

RM= 5 BIMDIMNG OFFSET=00000010 EXTERMAL REF
MAME =Y PSS ERROR AODRESZ=EXT PR

10 NAME=CYESERRUR LML GE=CY R]
WECLARATION MATCHING: REQUIRED-FALSE VALUE-00000000000001

SECTION ORDINAL= 1 OFFSET=00000010 EIND=EXT FROC

AT Vio2 MYS 10 ld 10/135:1

OBJECT LIST (3)

RIF RN= 11 SECTION® O FIELD ADORESS: BY TE-

FIELD ADDRE:

RIF KM= 12 SECTION= WU -

31BATI4 BlBQ TO0IJUC)H

LT-6

TEX

TEX

TRA

RN= 13
SIS 4143

20202020

RM= 14

BE 100020

LENGTH=0084
=4 450000
FR12EDO3E
LOTE00LVF
DO LS00
S417001e
L7 772000
EINELDOROS
BEOOQOFF

DD 1SO01F
70001185

KM= 15

LENGTH=00%5A
5 EDLEEDOE
ER12002E DULSOLEY
DOLEO1FY DF 154008
HE1£0100 S55L0008

O

RM= 1& NOME=MSIM

ST LN

DO20R0E0

SECT ION=
OO EEE OO

OO1ESDOE

44 EHO00E

SR Ti [:IN:::
QOTESLDOR
AT ARTIXRIBINME

SO00002R0

-
.

2OZOZOZ0

o b V2

6 CFFSET=00000000
OOFOES 1A OO 12765
OOL1O2014 DA420034

SISEOOT 1
PETO00E PEAGO0LR
DEAEO0L L -

OO0F
DFS7 £Q00 -
SEEDOOO0

=
o
oL
L5
o~
o
o
i
-
-
'

P
X

)

i

2]
s

»

R

PEAZFFES
EQDIL PEASFFDT7

OOLf
R4 4]
FELSO 1Ry
BOISFEDF

B4

HE1AODLIO

Q43%

2OE0ZOE0

(R SR IRTATSTN]

DAY

371BATI4 ®B21BQ [O0IJU0)

81-6

PREEMPTIVE COMMUNICATION AND CONDITIONS

DEBUGGER
13,13,13
/
PMM$ PMM$ PMM$COND .
;QSEESSOR L~ DISPOSE_ DISPOSE_OF - STACK -
OF _TRAPS CONDITIONS PROCESSOR -
TMM$DISPOSE_
OF_MONITOR
FAOLT
2,13,13
/
TMM$DISPOSE PMM$MANAGE
PREEMPTIVE CONDITION
COMMO STACKS
TMM$DISPOSE _ TMM$MANAGE
OF_RING 3_ MONITOR
PREEMPTS FAULTS
AN 2,3,13
- N
TMM$ALLOCATE TMM$DISPOSE_ TMM$MANAGE _ TMM$GET
EXECUTION_ OF RING 2~ |— PREEMPTIVE_ MONITOR™
RINGS PREEMPTS BUFFERS FAULT —
2,2,3
AN
TMM$MANAGE _ TMM$D ISPOSE
SIGNALS OF RING_1
AND_FLAGS PREEMPTS

PARENT/CHILD REQUESTS

PMP$VERIFY_CURRENT_CHILD (tid,current)

PMP$SIGNAL_ALL_CHILD_TASKS (signal,status)

PMP$FLAG_ALL_CHILD_TASKS (flag,status)

PMP$REVOKE_PROGRAM_TERMINATION

9-19
Control Data Private

PSA (A2)

CSF (Al)

DSP (AD)

CONDITION HANDLING

e c— w— —— — ——— — — —— —— —— =y

OCF=TRUE
AO
Al
A2
9-20

Control Data Private

SFSA

SFSA

81BATI4 BIBQ TO0IJU0)

12-6

CONDITIONS

DESCRIPTION SCOPE INFO RETURNED

USER Selector Current Ring Condition
name Condition Descriptor passed
~ handler on PMP$CAUSE_CONDITION

INTERACTIVE Selector All Rings Condition
id:0..255
~ handler

SYSTEM Selector Current Ring Condition
Set of MCR, UCR Save Area of frame that
Loop Prevention caused the condition
~ handler

BLOCK Selector Frame Condition
Set of reason Save Area of frame attempting
CFF Return, Pop or non-local
~ handler exit

JOB RESOURCE Selector All Rings Condition
id:0..255
~ handler

SEGMENT Selector Current Ring Condition

ACCESS id:0..255 Save Area of frame that

Segment Number caused the condition
Loop Prevention
~ handler

COMBINATION Selector - -
Set of category
~ handler

NOTE: See Program Interface

LESSON 10
SCL INTERPRETER

LESSON PREVIEW

COMMAND VS PROGRAM INTERFACE
LOGIN, LOGOUT PROCESSING
COMMAND SEARCH

COMMAND PROCESSING

SUB COMMANDS

PROLOG AND EPILOG PROCESSING

0BJECTIVES
After completing this lesson the student should be able to--

. ADD A COMMAND PROCESSOR THAT WILL RUN IN THE CURRENT TASK;
IN A NEW TASK

® EXPLAIN THE USE OF THE BLOCK STACK AND THE INPUT STACK TO
CONTROL THE PROCESSING OF COMMANDS

e OUTLINE THE PROCESSING OF LOGIN AND LOGOUT

EXERCISE

ADD A COMMAND PROCESSOR TO THE SYSTEM

10-1
Control Data Private

831BATI4 BlBQ TOIjU0]

Z-0T1

READ COMMAND

- Initial
e Interactive
e Batch
- Changed by
e Include
e SCL Proc Call
e Utility

CLI BASIC LOOP

INVOKE
COMMAND

- SCL Proc
- CYBIL Procedure

LOCATE COMMAND

Type

e Control or Assignment
e Command

Command List

e $LOCAL

e $SYSTEM

e Any Catalog

File

e Binary

e SCL Proc

e Program Descriptor

COMMAND PROCESSING

'_/
FILE
TERMINAL
- -
~”~
g
\/
COMMAND INTERFACE
CONTROL | COMMAND | ASSIGNMENT
$LOCAL $SYSTEM ANY CATALOG
<+« | COPY | DROP | FORTRAN | « -+
COMMAND FILE PF QUEUED FILE
LANGUAGE | MANAGER | MANAGER | MANAGER)
10-3

Control Data Private

21BATId4 B3lBQ TOIjUO)

7-0T1

Fa PN ey P e

P

L] ry

L]

-

COMMAND PROCESSOR (1)

PDT copv_pPdt(

from*!FILEREF = %$required

toFILEREF = $output

count? INTEGER O..amc$file_bvte_limit = 1
unit?ikEY file.pPartition.record

status)

VAR

copv_Pdtt [STATIC. READ, cls$pdtl clt$parameter_descrirtor_table i= [“copv_pdt_names. “copv_pdt_.Paramsls

VAR
copyo.prdt_names?
L“To-, 21, [“COUNTS, 31, [7UNIT", 41, [“STATUS , 5113

VAR)
copvopdtorarams: [STATIC, READ., cls$pdt] arravy [l .. S1 of clté$rarameter_descriptor = [

FROM 3

[Lclc$requiredl., 15 1. 1, 1, clc$value_rande.not._allowed, I[NIL, clc$file_value, clc$prosition_allowedl].,

TO >
Elclckortional —withodefault, “copv_pdt_dv2l}, 1, 1, 1, 1. clcé$value_rande_nost_allowed, ONIL,
cloc$file~value, clc$position_allowedll.

COUNT 3
[Lclcsortional cwith o default, “coepvordtodvil, 1, 1, 1, 1, clc$value_range_not.allowed, [NIL,
cledinteder—value, O, amchfilebrvte limitll,

LINIT 3
flelokortionall, 1., 1. 1. 1, clcé$value_rande_not_allowed, [“copv_pdt_okvd, clo$kevword_valuell,

STATUS X
[Lclckoptionall, 1, 1., 1, 1, clocdvalue_rande_not_allowed, [(NIL, clcoc$variable_reference.
clefarravonot_allowed, clo$status_valuelllds

VAR

copv.pdt_kv4: [STATIC, READ, <«ls$pdtl arrav L£1 .. 2] of osténame := [“FILE“, "FARTITION", “RECORD"I]s

VAR
copvopdt_dvie: [STATIC, READ. clséedt] strind (7) i= “doutput’;

VAR
copv.pdtodvi: [STATIC, READ. cls$pdt] strindg (1) = “17%

LSTATIC, READ. cls$pdtl arravy [1 .. 5] of clté$parameter_name_descrirtor t= [L“FROM”,

31BATI4 B3BQ T0IUO0)

$-0T1

FronlBEDORE DXL ole®

COMMAND PROCESSOR (2)

L. n

opvocommand dearameterotists clt#paramoter.listy

VAR statust oalt@ola

count.g crFieds boolean.
Uil b bootear,

Fromasatuer ottdvalue,

vatued ottdvalug.

coteattributest array 01 o0 101 of amtEsiloitems

clegescanararametorotist (parameter tist, copvopdlt, status)s
IF Moy atus. normal THERM

FECTURRM Y
TFERMED

ctpStestorparameter CTUNIT . upitospecified. status)s
T MOT status.normal THEMN

FRETLIRNS

FL
LFownmit

THEN

LFEMI

sreciFied, status)s

b Led THER

e

COOL T wtegnotovetoime Teomented, TUNMIT varam

ctatuz abrormal C70L7, steSnobtovetoimedomenbed, TOOUNT ravamaetaer”

status)

31BATI4 ®B31BQ TO0IJUO0)

9-01

COMMAND PROCESSOR (3)

clpkdet.value (“FROM"., 1. 1, clc$low, Ffrom.value, status)s
IF NOT status.normal THEN
RETURNS
IFENL3
IF from-value.file.oPren.Position.sprecified THEN
setoattritutes [1l.kev = amc$oren.rositions
set_attributes [1l.open_position &= from-value.file.orPen.pPosition.values
amP$file (from.wvalue.¥file.local fileoname, set.attributes, status)s
IF NOT status.normal THEN
RETURNS
IFENI;
IFENDS

clp$detovalue (°TO, 1, 1, cle$low. tovalue, status)s
IF NOT status.normal THEN
RETURNMS
IFENDS
IF to_value.file.oprpen.rPosition.sPecified THEN
set_attributes [1l.kev = amc$oren.pPositions
set.attributes [1l.oren_rosition f= to_valuec.file.oPen—position.value!
amp$file (to_valug.fileslocal file_name., set-attributes, status);
IF NOT status.narmal THEN
RETURNS
IFEND;S
IFEND;

ampfcopy_file {(from.value.file.local_file_mame. to.value.file.local_file_name,
IF NOT status.normal THEN
RETURNS
IFEND;
PROZCEND clp$copv_commands

MODEND clm$copv. . commands

status)s

331BATI4 ®B1BQg TO0IjU0)]

L-0T

SCL CONTEXT

USER
imﬁﬁIAL SCL | COMMAND
JOB BEGIN INTERPRETER "] PROCESSORS
BAM
R11
, \
INTERACTIVE SCL VARIABLE
FACILITY INTERPRETER MANAGER
BLOCK
STACK VARIABLES

R3

91BATI4 BlBQg TO0IJU0)

8-0T1

INTERPRET COMMAND

CLM$INTERPRET_COMMAND “Welcome to NOS/VE . DATE . TIME"
CLP$INTERPRET_COMMAND
CLP$ADD CLP$ADD_ CLPS - CLP$
AL T0_J08_ T0_J08_ DECLARE_ Espablish R ome SCAN_
COMMAND_ 1 COMMAND_ VARIABLE — Files goocone. COMMAND
| LIST LIST 0SVESTATUS € anner FILE
[T jﬁ
! $SYSTEM $LOCAL !
:]
! ! 0SP$
GENERATE
| INTERACTIVE BATCH MESSAGE —
= FILE TYPE NAME CONNECTION CONNECTION
K\ job_command_response $RESPONSE Job Output, Log $NULL
N,
N echo $ECHO $NULL $NULL
o RETURN
\\\ error_output $ERRORS Job Output OUTPUT
N,
\\\ listing_output $LIST $NULL OUTPUT
N,
\\\ standard_output $ouTPUT Job Output OUTPUT
~N
\\\ standard_input $INPUT Job Input INPUT
\\
~N
~
~N
~
N
N
IMP$ IMP$
BEGIN COMMAND

IMM$INITIAL 308 BEGIN (2,0,0)

IJMP$INITIAL”JOB BEGIN

" COMMAND"

BLOCK STACK

THE PRIMARY PURPOSE OF THE BLOCK STACK IS TO MAINTAIN:
CURRENT PARAMETER VALUES (PVT)

COMMAND LANGUAGE VARIABLES

TASK LOCAL
PROC OR WHEN LOCAL

BLOCK STRUCTURE
INFORMATION FOR LOOPNG STATEMENTS

INPUT STACK

THE INPUT STACK IS USED TO MANAGE THE COMMAND STREAM KNOWN AS
$COMMAND.

FILE NAME
BYTE ADDRESS OF CURRENT LINE
COMMAND LINE

LINE INDEX

FILE ID (PER TASK)

EXAMPLES:

/INCLUDE_FILE file = abc
JCREATE_OBJECT_LIBRARY

10-9
Control Data Private

LESSON 11
PERMANENT FILES

LESSON PREVIEW

PF CAPABILITIES
PF TABLES
SETS

OBJECTIVES
After completing this lesson the student should be able to--
° OUTLINE THE CAPABILITIES OF THE PF SYSTEM

® DESCRIBE THE RELATIONSHIPS BETWEEN PF MANAGEMENT AND OTHER
FUNCTIONAL AREAS OF THE SYSTEM

o DESCRIBE THE CONTENTS AND LINKAGE OF THE PF TABLES

EXERCISE

NONE

11-1
Control Data Private

CATALOG/PERM FILE

__—A
FILES
/
NAME
CYCLE —1
AC
ATTRIBUTES —
p— /
AC ALLOCATION
MASTER
CATALOG
\“*--“”7’/‘ FILES
NAME
CYCLE |
AC
NAME NAME ATTRIBUTES
AC A —
ALLOCATION
SUB SUB
CATALOG CATALOG
NAME NAME
AC AC
SUB SuB
CATALOG CATALOG
11-2

Control Data Private

CATALOG TREE STRUCTURE

SYSTEM
SET
1
FAMILY FAMILY FAMILY
1 2 N
USER USER USER
1 2 N
FILE CATALOG FILE CATALOG FﬁLE
1 11 2 12
FILE FILE FILE FILE
A
A {::E:::] CA;lLOG ! L
FILE FILE FILE FILE FILE
A 5 6 7 N
11-3

Control Data Private

SET MANAGER

STM$
REQUEST ™~
PROCESSORS

R3
B0 STM$
PF REQUEST
PROCESSORS N“-\(:::>
////// \\\\\\ }
AST STHS
MM MANAGER o
R1

11-4
Control Data Private

SET MANAGER TABLES

AST

stt$active_set_table
STBAST

JAST

stt$job_active_set_table
STDJAST

VST
stt$vol_set_table
STDVST

11-5

Name

Master VSN

~ Member VSNs

Set Owner

Number of Jobs Using Set
Root object list locator

Name
Set Owner
Root object list locator

VSN
Name
Member
Master VSN
Master
Set Owner

Root object list locator

~ Member VSNs
VST heap
Segment size fixer

Control Data Private

SET INTERNAL INTERFACES

FROM QUTSIDE SET MGR.

STP$CREATE_SET
STP$ADD_MEMBER_VOL_TO_SET
STP$PURGE_SET
STP$REMOVE_MEMBER_VOL_FROM_SET

STP$ASSOCIATE_CATALOGG

FROM WITHIN SET MGR.

STP$CREATE_VOL_SET_TABLE
STP$GET_ROOT_OBJECT_LOCATOR
STP$GET_SET_OWNER
STP$CHECK_CATALOG_ASSOCIATION
STP$CHANGE_ACCESS_TO_SET
STP$SET_END_JOB

11-6
Control Data Private

PF MANAGER

USER

R11

PFM$PROGRAM_
INTERFACE_
PROCESSOR

R3

PFM$
ATTACHED_
PF_TABLE

PFM$R2_
REQUEST_
PROCESSOR

FM

JoB
PF

/

ST

R2

PFA$CATALOG_
SEGMENT_
DEFINITION

11-7

OM

Control Data Private

R1

31BATI4 ®B31BQ T0IJUO0)

8-T1T1

Object_list_file

Interlock
Initialized
~object_list

Object_list

e

Object
Heap

Name

~ Permit List
Type (Catalog)
~ CAD

PF CATALOG STRUCTURE

Permit_list

CAD

charge id

Name

~ Permit List
Type (File)

~ PFD

~ object list

Object_list

Permit_list

PFD

Password
Charge id

PF Status

~ log_list

~ cycle_list

Log_list

N*Eycle_list

Name
Numbert
Expiration
~ FMD

~ SFL

FMD

SFL

LESSON 12
LOGICAL I/0

LESSON PREVIEW

OPEN/CLOSE

RECORD VS. SEGMENT LEVEL ACCESS
DEVICE MANAGEMENT

FAPS

FILE ATTRIBUTES
FILE TABLES

OBJECTIVES

After completing this lesson the student should be able to--

TRACE THE PROCESSING OF A RECORD LEVEL FILE FROM OPEN TO
CLOSE

TRACE THE PROCESSING OF A SEGMENT LEVEL FILE FROM OPEN TO
CLOSE

EXPLAIN HOW FAPS ARE HANDLED
EXPLAIN THE USE OF THE MAIN FILE TABLES-LNT,JFT,TFT,SFT

DESCRIBE THE ALGORITHMS FOR ASSIGNING DEVICES AND
ALLOCATING SPACE ON DEVICES

EXPLAIN THE USE OF THE MAIN DEVICE MANAGEMENT TABLES-FMD,FAT

EXERCISE

TRACE THE DISK ALLOCATION OF A FILE

12-1
Control Data Private

FILE MANAGEMENT COMPONENTS

USER
AM
TP

~

N

FM
Sl JoB FILES LOCAL NAME P
JF MW
() @y L™
OM I MM

—_—— 5

|
i

PP DRIVER

12-2

Control Data Private

BASIC ACCESS METHOD

USER
—————— —— USER
AM FAP
—
—
SYSTEM
‘l:’ FAP
.’-”
| BA
FAP
REQ FAP
TABLES CONTROL
FM FM C?XQAND
JOB FILE LOCAL FILE :
@ T g C

N\

/

N/

DM

12-3 .
Control Data Private

FILE ACCESS PROCEDURES

1. USER

2. SYSTEM

Advanced Access Method
Connected File
Operator Facility
Interactive Facility

Interstate Communication
Logging

3. BASIC ACCESS METHOD

12-4
Control Data Private

ATTRIBUTES

Permanent attributes are established
on the first open of a new file.

Permanent attributes are never changed (R1l).

Source of permanent attributes:

FAP Request

Open Reguest

Commands

Other program interface requests
Defaults

Source of temporary attributes:

Store reqguest

Open

Commands .
Other program interface requests
SFL

Defaults

12-5
Control Data Private

TASK FILE TABLES

TFT FAP CONTROL

s

FAP
structure A
exec bracket

Seg # ART
FAP controlA--—--—//

[1fn
Egzor Exit f -~ Teg desc.
- ~ label desc.

FTD A

FPI A FTD

Label exit) -

Access Mode Attributes

of layers ~ ?lock desc.
sfid boi

~ disk bfr. desc.
current byte
eol

error status
~ tape bfr. desc.

FPI

Open Count
Block info
Current byte
eol

vol. info

12-6
Control Data Private

FILE

JFT

MANAGER TABLES

fid

tid

global name
permit options
sfid

usage selections
ring attr.

open count

file type

32

12-7

LNT
Int
~ segment
device class
pf
global name
sfid
jfid
~ tequest desc.
~ label desc.
~ file desc.
~ Toute desc.
~ SFL
~ FPI
ring attr.

= ~ LNT

LNT

Control Data Private

FILE MANAGER INTERNAL INTERFACE

Local Name Mgr.
FMP$GET_JFID_SFID (1fn, jfid,sfid,status)
FMP$LN;ATTACH (1fn,sfid,usage_mode,share_mode,rings,status)

FMPSLN_OPEN_CHAPTER (1fn,chapter_number,validation_ring,
segment_attr,pointer_type,pointer,status)

FMP$LN_RENAME (o0ld,new,validation_ring,status)
FMP$LN_RETURN (1fn,ring,returned,status)

FMPSLN_CPEN_NAME_TABLE (1fn,ring,chapter,access_level,
request_desc,label_desc,file_desc,new_file_desc,
system_attr,position_info,status)

FMP$LN_CREATE (1fn,file_attr,sfid,global_name,status)

FMP$GET_FILE_ATTRIBUTES (1fn,request_desc,lable_desc,file_desc,
new_file_desc,system_attr,position_info,status)

FMP$LN_GET_JOB_FILE_ID (1fn,jfid,status)

12-8
Control Data Private

FILE MANAGER INTERNAL INTERFACE

Job File Manager

FMP$CREATE_OPEN_CHAPTER (attributes,ring,access_mode,chapter,
jfid,sfid,status)

FMPSCREATE_JOB_FILE_ENTRY (attributes,gl&bal_name,jfid,sfid,
status)

FMP$RETURN_JOB_FILE (jfid,ring,returned,status)
FMP$ATTACH_JOB_FILE (sfid,attributes, jfid,status)
FMP$OPEN_PHYSICAL (jfid,ring,access_mode,status)
FMP$CLOSE_PHYSICAL (jfid,ring,status)

FMP$OPEN_CHAPTER (jfid,ring,access;mode,chapter,sfid,status)

FMP$CLOSE_CHAPTER (jfid,ring,chapter,status)

12-9
Control Data Private

MASS STORAGE DEVICES

844-4%
885-1x
885-4x

i2-10
Control Data Private

CPU
MEMORY
PPo PP1i PPJ PPN
CONTROLLER
~~—_l—"1 S~——L——1 ~~—1——"] ~—L—"1
___/___/_/_/

DEFINITIONS

MAU--The minimum addressable unit is the quantum of data
transfer between a driver and a mass storage device. It

is a constant 2048 bytes in length.
released with page size 2

2043 bytes (MAU).

Standard software is
Special

systems could have page size < 2048 bytes but page size

could never be changed without file conversion.

DAU--The device allocation unit is the quantum of device

allocation.
of MAU.

It is a device dependent,

integral multiple

ALLOCATION UNIT--A power of 2 multiples of contiguous DAUs on a

device. An allocation unit does not span cylinders on a
device. A physical 1/0 request does not span allocation
units. Expressed as Al, A2, A4, A8, Als, A32, As4, Al2s8,
A256.
844-4X 885-1x 885-4x
Capacity
Cylinders/Spindle 823 843 843
Tracks/Cylinder 19 40 10
MAU/DAU (bytes) (4096) 2 (4096) 2 (4096) 2
Total (*105 bytes) 151.6 552.5 552.5
Performance
Seconds/Revolution .0167 .0167 .0167
Transfer rate .589x106 .981x106 3.924x106
(bytes/sec)
Allocation
DAU/ALl (Bytes) -(4096) 1 | (4096) 1 (4096) 1
DAU/A2 (Bytes) (8192) 2 | (8192) 2 | (8192) 2
DAU/A32 " 32 32 32
DAU/A64 " (180224) 44 64 64
DAU/A128 " 44 128 128
DAU/A256 " 44 | (655360)160 (655360)160
12-11

Control Data Private

DEVICE MANAGER CONTEXT

PF M

DM

-
-~

~

DM

12-12
Control Data Private

SFT
FMD

FAT

DvL
DFD
DFL

DAT

~AVT

MFL

MAT

DM TABLES

SYSTEM FILE TABLE
FILE MEDIUM DESCRIPTOR

FILE ALLOCATION TABLE

DEVICE LABLE
DEVICE FILE DIRECTORY
DEVICE FILE LIST

DEVICE ALLOCATION TABLE

ACTIVE VOLUME TABLE
MAINFRAME FILE LIST

MAINFRAME ALLOCATION TABLE

12-13
Control Data Private

1 entry/file
1l entry/subfile

1l entry/allocation

1/volume

[

entry/device file
1 entry/subfile

1l entry/AU

1 entry/volume
1 entry/new file

1 entry/available AU

DEVICE MANAGER USERS

FILE MANAGER

Locally Named File Mgr.
File Allocation
Set Mass Storage Limit
Job File Mgr.
Create File
Assign File to Device
Destroy File

MEMORY MANAGER
Store ASID in SFT for Sharing
Provide transfer unit offset and length

PHYSICAL IO
Device Address for IO transfers

Check initial write of new allocation
Flaws

MANAGE SETS
Add volume to Set
Remove volume from Set

MANAGE PFs

Get FMD for storage in PF Catalog
Manage FMD on attach/detach
Destroy PF

Lock and Unlock Catalog File

12-14
Control Data Private

371BATI4 BlBQg [0IU0)

ST-2T

GLOBAL SFT

MW

lock
global id
ASID

eoi

file limit

DM FILE TABLES

FMD

~ FMD

LOCAL SFT

Header
file type
lock
preset
requested
style

FAT

Subfile 1
AVT index
DFL index

FAT

~ FAT

.

Subfile n —

JF

FAT

FMD

_____/}/’———->FAT

FAT

91BATI4 BlBQ TOIJUO]

91-¢1

DM DEVICE AND MANAGEMENT TABLES

DFL

/-’

DVL DFD
~ DFD ____—|~Login Table
' ~ DFL
~ DAT
AVT
~ MFL
~ DAT M
TABLES
MFL DAT

DEVICE
TABLES

DEVICE LOG

DAT

LESSON 13
PHYSICAL I/0

LESSON PREVIEW

MEMORY MANAGEMENT
SEGMENT MANAGEMENT
PAGE FAULTS

PP COMMUNICATION
WORKING SET

OBJECTIVES
After completing this lesson the student should be able to--
] TRACE THE PROCESS OF RESOLVING PAGE FAULTS

. DESCRIBE THE WORKING SET ALGORITHMS

. TRACE THE PHYSICAL I/0 PROCESSES FROM INITIAL REQUEST TIL
THE TRANSFER IS COMPLETE

EXERCISE

NONE

13-1
Control Data Private

MEMORY MANAGER CONTEXT

TASK
|
| page
JjoB | fault
MTR H
i
[}
MTAS TMM$
MIP DISPATCHER
MMM$
MEMORY
MANAGER \
O~ O
DEVICE PHYSICAL
MANAGER 10
‘i:’ | UIT
10U
i |
\ PPIT
PP Driver
13-2

Control Data Private

TABLES

CST CPU State Table-MT 1/CPU
~XCB, JCB,statistics

PTL Primary Task List-TM 1 entry/task

DCT Dispatch Control Table-TM 1/mainframe

PT Page Table-S5Y 1 entry/active page
Hardware

PFT Page Frame Table 1 entry/page
Software

PQL Page Queue List 1/mainframe

PFT tops of threads

AST Active Segment Table 1/active segment
AST index — ASID
FMD File Medium Descriptor 1/file
FAT File Allocation Table 1/subfile
LUT Logical Unit Table 1/drive
UIiT Unit Information Table 1/drive
I0 request queue
PPIT PP Interface Table 1/drive
13-3

Control Data Private

MODULES

MONITOR INTERRUPT HANDLER
® Receive Page Fault
e Call Memory Manager to process fault

e Call Physical IO Mgr to process completion

DISPATCHER
® Adjust wait status

e Pick next task to execute

MEMORY MANAGER
e Process Page Fault
® Manage Working Set

e Lock/Unlock pages

PHYSICAL IO
e Link regquests
e Alert PP

@ Process I0 completion status

DEVICE MANAGER
@ Provide physical addresses

e Allocate space

PP DRIVER

® Function and status the device
@ Read/Write the device
& Read/Write Real Memory

13-4
Control Data Private

PHYSICAL I0

1. PROCESS PAGE FAULT

2. INITIATE PHYSICAL IO

3. PROCESS IO COMPLETION

13-5
Control Data Private

PROCESS PAGE FAULT

TASK
1
:page
308 fault
MTR |
I
¥
' MTAS$
TMM$ MONITOR _
DISPATCHER INTERRUPT_
HANDLER
{
MMM$
MEMORY_MGR
MONITOR _
MODE
Y
DMP$
FETCH_ Iggﬁe
CHAPTER e e
INFO Q
13-6

Control Data Private

SEGMENT TABLES

AST SOT SDTX
0
J
i ASID ——
in_use pointer_kind
SWAPPING_in chapter #
big segment error_exit_proc.
page_frame_gid attribute_set
pages_in_mem. v segment origin
segment_kind segmeht state
PT
2000
¢
¢
¢
C

Software hashes the AST index to assign the ASID.

Hardware hashes the ASID and page offset to find the page table
index. A sequential search of the next 24 entries might follow.

12-7
Control Data Private

PAGING TABLES

PFT
PQL
FREE 0
AVAIL. 1
AVAIL.M0OD|2
(»-SHARED 3
: WIRED 4
J
link -
queue index
AJL ordinal
age
PT index
Active I0 count
time stamp
locked page 3
task queue n AJLO*4+5
SVA (for debug) FIXED
Jn
SHARED AJLO*44+6
Jn
10 ERRQR [AJLO*4+7
Jn
WORKING AJLO*44+8
4*AJLO0; o +5
AJL
\\‘ ordinal (AJLO)

13-8
Control Data Private

31BATI4 ®BlBQ TO0IJU0)

6-¢1

CHE CK
FREE
QUEUE

UPDATE
WS
STATS

RECLAIMED
- UPDATE
AVAIL. MOD |] STATS
AVAIL
NEW UPDATE
—1 sTaTs]
FREE
MMMSMEMORY_MANAGER_MONITOR_MODE
PR_PF es
ACCESS SEND,
VIOLATION MONITOR_
| [
GET ULl LOCKED s UPDATE
UNTRANSLATABLE pheE R —| TAeK PAGE FAULT
POINTER ON DISK - STATS
WALT
Y
10 T:P$E JoB
TEMPORARY CAUSE_ - WORKING
REJECT TAsk_ SET
SWITCH 2eAN
PAGE TMP$
CAUSE
TABLE R R
FULL -
SWITTH
™P$
NO] SET
MEMORY TASK
WAIT

Il

RESTORE
UNTRANSLATABLE
POINTER

RETURN

INITIATE PHYSICAL 10

MMM$
I0P$QUEUE
REQUEST
DMM$
BUILD_DEVICE_
ADDRESSES
MMM$MEM .,
MGR. MTR MODE
LOCK
DMM$
ALLOCATE _
FILE_SPACE

-

S P

PP DRIVER @

N——

13-10
Control Data Private

COMPLETE IQ REQUEST

TASK
T
M3J
MTA$
MONITOR
INTERRUPT
HANDLER
10P$
TMM$
PROCESS 10
DISPATCHER COMPLETTONS
32??5 MMM$MEM.
INITIALIZE MGR. MTR. MODE
TERM - UNLOCK
PP DRIVER @ @

NO ERRORS--Ready Task

PF ERROR--Notify PF Manager
READ ERROR--Abort Task

WRITE ERROR--Leave page in memory

13-11
Control Data Private

NOS/VE DESIGN SPECIFICATION

PART III
SYSTEM PACKAGING

TABLE OF CONTENTS

LJ.OSYSTEM STRUCTURE & & v v v 4 4 4 4 o v ¢ o o o o o o o 1-1
1.1 GENERAL STRUCTURE ELEMENTS o e e e e e 1-1
1.1.1 J0B ELEMENT & & 4 4 4 ¢ v ¢ o o o o o o o o o o o & 1-2
JLLL2 TASK ELEMENT & v v 6 4 6 6 6 6 o 0 o o o o o o o o o 1-3
1.1.3MODULE ELEMENT & & & v v v v v o ¢ o 0 o o o o o o 1-5
2NOS/VE STRUCTURE & & & v 4 ¢ 4 o o o ¢ o o o o o o o s & 1-7
1.2.1 CPU MONITOR ENVIRONMENT . . . v ¢ v ¢ ¢ ¢ o o o « 1-7
1.2.1.1 CPU Monitor Request Handling 1-8
1.2.2 NOS/VE MODULES ENVIRONMENT . & v ¢ v v v & o o o & . 1-8
1.2.2.1 Task Services Modules . . e e e e e 1-8
1.2.2.1.1 TASK SERVICES REQUEST HANDLING 1-9
1.2.2.2 Task Monitor Modules . . « « « ¢ v ¢ ¢ ¢« ¢« o o & 1-9
1.2.3 OPERATING SYSTEM TASKS . & ¢ v ¢« ¢ ¢ o o o« s o o o & 1-9
1.2.4 OPERATING SYSTEM COMMUNICATION . & & & & 4 o & o « & 1-10
1.2.5 OPERATING SYSTEM ENVIRONMENT SUMMARY 1-11
1.2.6 SEGMENT USAGE '« & &+ ¢ ¢ ¢ ¢ o o o o s o o o o o o & 1-12
1.2.6.1 Ring Assignment for a User Task . . . « v o o 1-12
1.2.6.2 Segment Assignments for User Modules 1-13
SYSTEM TABLES AND INTERFACES . &« ¢ ¢ v ¢ ¢ ¢ ¢ o o o & & 2-1
GENERAL GUIDELINES e e e e e s e e e e e 2-1
TABLES AREAS & v v v v v ¢ ¢ o o s o o o s o o s o o . 2-2
TABLES AREA GUIDELINES . ¢ ¢ ¢ 4 o o ¢ o ¢ o o o o « o & 2-3
3.1 J0B PRIVATE FIXED & & & ¢ o o 4 o o o o o o o o o » 2-3
2.3.1.1 Job Private Fixed Static Section 2-3
2.3.1.2 Job Private Fixed Dynamic Section 2-3
2.3.2 J0B PRIVATE PAGEABLE . & & ¢ ¢ v v v ¢ o 4 o o o o & 2-3
2.3.2.1 Job Private Pageable Static Sectlon 2-4
2.3.2.2 Job Private Pageable Dynamic Section 2-4
233 TASK PRIVATE & v v v 4 v 6 4 e o o o o o o o o o o s 2-4
2.3.3.1 Task Private Static Section 2-4
2.3.3.2 Task Private Dynamic Section 2-5
2.3.4 MAINFRAME PAGEABLE &« . &« & v 4 v ¢ o o ¢« o ¢« o o o & 2-5
2.3.4.1 Mainframe Pageable Static Section 2-5
2.3.4.2 Mainframe Pageable Dynamic Section ' 2-5
2.3.5 MAINFRAME WIRED . & ¢ v ¢ v v ¢ ¢ ¢ o o o o o o o & 2-6
2.3.5.1 Mainframe Wired Static Sectiomn 2-6
2.3.5.2 Mainframe Wired Dynmamic Section 2-6

A-1

1.0 SYSTEM STRUCTURE

A basic objective is to provide a well defined system structure which will

result in a highly reliable system and one that can grow over time in an
orderly and cost effective manner.

In order to meet this objective, a set of hardware and software conventions
are imposed on both user and system code. This allows the normal protection,
debugging, loading, code maintenance, accounting, and error handling methods
of the user and the system to be the same. This also facilitates movement of
services between user and system.

1.1 GENERAL STRUCTURE ELEMENTS

Jobs, tasks and modules represent the basic structure elements for all
services provided by NOS/VE. They have the general relationship shown in
figure 1. Each element has a set of unique execution attributes, interface
conventions and resource requirements. System and application programmers
make services available to users with combinations of these elements.

Task(1) Task(2) Task(N)

! | |
Module(1) Module(2) Module(N)

Figure 1 - Structure Elements

Each level contains a system element which monitors the progress of other
elements within that level. The job level contains a system job which
schedules, initiates, and terminates (normal or abnormal) user and system
jobs. Within each job resides a system task which initiates and terminates
tasks of the job. Within each task resides a collection of system modules
which assist in the initiation and termination of the task.

Company Private Rev 4 October 1980

A-2

1.1.1 JOB ELEMENT

The general facility for presenting work to the system is a job. Jobs run on
behalf of a specific user whose identification is the basis of the system
access control mechanisms. In addition to batch or interactive jobs that are
submitted by end users, the operating system and various subsystems not
initiated by end users also run as jobs. Since all jobs are protected and
compete for resources via the same mechanism, it is anticipated that the
addition of new subsystem jobs will be quite straightforward.

Every job consists of multiple tasks. An important characteristic of a job is
that all tasks esecuting within the job share a common set of operating
system services that are determined at the time of job initiation. These
service modules, called task services, are the mechanism through which
operating system functions are made available. They are constructed from a job
templete that is selected based on job type. This allows different jobs to
have different services.

1.1.2 TASK ELEMENT

A task is the execution of a program. A program is a set of modules organized
to perform some specific function (e.g. compile COBOL statements, copy a
file). Tasks are protected from one another, can be dynamically created and
destroyed, can communicate with other tasks and can execute asynchronous with
other tasks. Tasks are the only asynchronous execution unit supported by
NOS/VE.

Tasks then are the environment for providing functions that are natural to

place outside of the requesting environment. Tasks are requested via an
operating system request. They have their own (clock) accounting, scheduling,
and execution characteristics. Tasks can come and go independently and
represent a mechanism which is used to control memory usage (e.g., each pass
of a compiler as a separate task). Protection is enforced by different segment
descriptor tables for the caller and callee.

The figure below illustrates a task environment.

Company Private Rev 4 October 1980

A-3

ANY
TASK

USER
MODULES

PROTECTED
RUN TIME
MODULES

RING BOUNDARY

0s
MODULES

e e e e e e
o ——— e %
+ ————

< ———— >

EXCHANGE
PACKAGE

|
SEGMENT |
DESCRIPTOR| QUEUE
|
|

TABLE

+o——— e
+ —_——
—————
t—— e —

Fo————— ¢

EXECUTION PROTECTICN COMMUNICATION

Every task looks similar to NOS/VE in that it has an exchange package which
defines execution status, a segment descriptor table which defines protection,
a queue which defines a communication path and a collection of modules which
define the program. The collection of modules can include "user" modules,
application or run time service modules and operating system modules. The
address space of each task is subdivided by a ring protection hierarchy. An
attribute of a module is its ring of execution. Each task will include
godu&eg which are protected from each other by executing in different ring
rackets.

Company Private Rev 4 October 1980

All tasks, regardless of the type of function they perform, have the same
appearance as illustrated below.

USER PRODUCT SET 0S

TASK TASK TASK
o				
USER PROGRAM		COMPILER		0S PROGRAM
[
MODULES		MODULES		MODULES
oo [
I I I				
PROTECTED		PROTECTED		PROTECTED
o				
} RUN TIME {	RUN TIME		RUN TIME	
MODULES		MODULES		MODULES
P				
1	I			
	oo			
0S I 0s I 0s				
MODULES		MODULES		MODULES

+ ——
+ ——
+ ——

1.1.3 MODULE ELEMENT

Modules are the enviromment for the set of services that are natural to place
within the environment of the caller. These services are provided as
procedures and are interfaced via the standard procedure call. They have the
same (clock) accounting, scheduling, and execution characteristics as the
caller. Examples include file access methods, loading, table handling and
Fortran object time. The available services can be added dynamically by
explicit requests of the loader. Protection enforced by the ring hardware may
exist between the caller and callee.

Company Private Rev 4 October 1980

1.2 NOS/VE STRUCTURE

NOS/VE utilizes the task and module structure elements to package the
operating system services. Some of its tasks execute as part of the "user"
Jobs and some execute as part of NOS/VE system jobs. NOS/VE also collects
together a set of modules that perform the lowest level operating system
functions into a special environment called the CPU Monitor. The operating
system services are provided within three basic environments:

CPU Monitor (one per system)

NOS/VE Modules (modules within each task)

Operating System Tasks (executing within "user" jobs, and executing within
"system" jobs)

Every request a user makes of the system is translated into communication with
one or more of these enviromments. Whenever operating system extensions are
being implemented, the conventions and interfaces of these environments must
be understood and used.

1.2.1 CPU MONITOR ENVIRONMENT

CPU Monitor is that portion of the operating system that is most directly
related to the hardware enviromnment. It provides:

Basic intertask communication (signals)
CPU Dispatching

Basic CPU Scheduling

Changing Task Status

Interrupt Handling

Page Management

Basic Physical I/0 Management

CPU Monitor is interrupt driven, nonpageable, and represents the most
thoroughly debugged, least frequently changed code within the operating system.

1.2.1.1 CPU Manitor Request Handling
CPU monitor requests are only made by Task Services and Task Monitor

functions. These requests are made using the hardware exchange instruction.
Parameters are passed in the hardware registers.

Company Private Rev 4 October 1980

1.2.2 NOS/VE MODULES ENVIRONMENT

NOS/VE modules are the set of operating system modules that execute within the
environment of a task. These modules perform the operating system functions
that are most directly related to the requestor's environment. To provide for
maximum protection and RAM these modules are divided into Task Services
modules and Task Monitor modules.

1.2.2.1 Task Services Modules
Task services modules provide the user interface to NOS/VE capabilities for:

File Management
Access Methods
Program Management
Job Management
Resource Allocation

Task services is a collection of protected procedures. These procedures are
directly callable by user code via the call instruction. The call causes a
change in privilege for the called procedure, allowing these operating system
services to execute with more or different privileges than the calling
procedure. This type of structure allows protected operating system services
to execute within the user environment. Task services provide a central
interface for all requests and responses made and received by a task. If the
requested service is not supported directly by task services, the request is
passed on to CPU Monitor or to an operating system task. Task services
occupies rings 3 to 6 within each address space. Only ring 3 is used for
release 1 of NOS/VE.

1.2.2.1.1 TASK SERVICES REQUEST HANDLING

There are multiple task service entry points gated to requestors. Every call
to a task service must supply a status variable of type ost$status. The
parameter rules will conform to those of CYBIL.

1.2.2.2 Task Monitor Modules

Task monitor modules perform the more privileged functions of NOS/VE and
execute at rings 1 and 2. These modules are a collection of procedures that

interface to NOS/VE basic system tables (e.g. segment table, system file
tables, catalogs, execution control tables) and to the CPU Monitor. The ring 2

Company Private Rev 4 October 1980

procedures manage job global tables (i.e. accessible in all tasks of a job).
The ring 1 procedures manage system wide tables (i.e. accessible in all tasks
of all jobs) and are more privileged and critical to the integrity of the
system. Task Monitor procedures are not directly callable by "users"; only
NOS/VE Task Services procedures can directly interface to Task Monitor
procedures.

1.2.3 OPERATING SYSTEM TASKS

Operating system tasks are those portions of the operating system that are
relatively independent of the requestor's enviromment. They may execute
asynchronous to the requestor and provide major portions of:

Job Management

Job Scheduling

Operator Communications
Device Drivers

Hardware Maintenance

Execution of a system task is triggered by a signal passed into its
communication queue. Tasks may execute in different processors. The device
drivers, for example, are system tasks which execute on the IOU.

1.2.4 OPERATING SYSTEM COMMUNICATION

The operating system functions communicate using a basic signal handling
service. The signals have a fixed format, a maximum size and are used by the
operating system primarily for communication between address spaces. CPU
Monitor is responsible for placing signals into the proper signal queue and
for notifying the proper Task Monitor that a signal exists. Task Monitor is
responsible for taking signals out of the communication queue and passing it
to a Task Services signal handler. Routing, based on signal type, to a signal
processor within Task Services will be effected by the Signal Handler.

Company Private Rev 4 October 1980

A-8

1.2.5 OPERATING SYSTEM ENVIRONMENT SUMMARY

The following figure summarizes the basic enviromments and interfaces of
NOS/VE.

TASK(1) TASK(N)

USER
MODULES

PROTECTED RUN
TIME MODULES

TASK SERVICES
TASK MONITOR

—_—— —— ——
+——t —— 4 ——

+——t ——t ——+

+

+ ——

< - 4

+

—

CPU --—-——-INTERRUPTS 3
MONITOR |

3 -+
-+ T

1 - INTERFACED VIA THE CALL INSTRUCTION, CYBIL PARAMETERS FOR COMMUNICATION,
RINGS FOR PROTECTION

2 - INTERFACED VIA THE SYSTEM CALL, SIGNALS FOR COMMUNICATION, SEGMENT TABLES
FOR PROTECTION

3 - INTERRUPTS ARE PROCESSED BY CPU MONITOR OR ARE TRANSLATED INTO SIGNALS

Company Private Rev 4 October 1980

1.2.6 SEGMENT USAGE

1.2.6.1 Ring Assignment for a User Task

I AREA : DATA PORTION I CODE PORTION | WHEN CREATED

l
| USER | WORKING STORAGE, | APPLICATION | AT LOAD TIME
| APPLICATION | STACK, | PROGRAM | ACCORDING TO
| PROGRAM | USER DATA | | LIBRARY LIST IN
. + + + PROGRAM DESCRIPTOR
PROTECTED	WORKING STORAGE,	DATA BASE
RUN TIME	STACK	MANAGER
MODULES	l	
TASK	WORKING STORAGE,	RECORD MANAGER
SERVICES/	STACK,	LOADER,
TASK	TABLES FOR JOB,	PROGRAM COMM.,
MONITOR	TABLES FOR SYSTEM	TRAP HANDLING
MODULES I I	INITIATION	

+

This diagram illustrates:
1. Examples of code which exist at each ring bracket
2. Examples of private data at each ring bracket
3. When the data and code segments are created
Entry points to task services are created by
system generation within the loader symbol table
and are dynamically linked to external references

from user and protected run time procedures by the
loader.

Company Private Rev 4 October 1980

A-10

1.2.6.2 Segment Assignments for User Modules

The following example demonstrates how the loader allocates and
initializes segments based on information contained in compiler generated
object text.

- Object Text Topology

RECORD TYPE SAMPLE CONTENTS
(identificaton record) name, date, generator name
(section definition) code, binding, working storage, protection
(interpretive text) text, replication, bit, entry, external

(transfer...end of text)

- Generated Object Text

CODE SECTION (R,X) STATIC SECTION (R,W)

. Non selfmodifying instructions . Modifiable data

BINDING SECTION (B) LITERAL SECTION (R)

. Base address of other sections . Constant data
. All procedure descriptions

DYNAMIC WORKING STORAGE SECTIONS (R,W)

Common blocks
Data allocated at run time

Company Private Rev 4 October 1980

A-11

- Mapping sections to segments (assume 2 modules) providing an executable
entity.

LGO file Module 1

Module 2
EOF
Segments
Segment N (R, X) Segment N+1 (B) Segment N+2 (R,W)
Code Section M(1) Binding Section M(1) Static Data M(1)
Code Section M(2) Binding Section M(2) Static Data M(2)
Any Named Common
Segment N+3 (R) Segment N+4 (R,W,E) Segment N+5 (R,W,E)
Literals M(1) Universal Heap Run Time Stack
Literals M(2) (Grow) (Grow)

The binding segment contains pointers to static, literals, code and other
binding sections. The advantages of using segments include:

Independent growth

o Integrity by separation

e Supports code sharing

e Non rewrite of code and constants (paging or swapping)

R - Read

E - Extensible
B - Binding

W - Write

X - Execute

Company Private Rev 4 October 1980

A-12

2.0 SYSTEM TABLES AND INTERFACES

2.1 GENERAL GUIDELINES

The operating system is dependent on the use of tables to provide interfaces
between different system modules and between the system and the user, and to
describe the basic objects supported by the system and how these objects are
related. When a table is defined within the system, consideration must be
given to the following six general characteristics.

e Protection - Should the information be protected by hardware from
inadvertent write operations? Must the information be protected from
malicious write/read operations?

e Scope - Should the information be local to a user or should it be made
global and shareable by other users? In general, information should be
globally defined only when required. Keeping information local to a user
has two advantages: 1) this information is private and no other user can
interfere with it, and 2) if most of the tables required by a Job are
collected locally, it is easier for the system to keep track of a user
(swapping, restart, paging critical tables, etc.).

e Residence - Should the information be pageable or locked down? Whenever
possible, information should be pageable. It should be locked down only
when an obvious efficiency case exists. Three points can be made: 1)
System Monitor cannot tolerate access interrupts, so any information
referenced by System Monitor must be in real memory at the time of
reference, 2) 1/0 channels use absolute addresses and require that real
memory exists when in operation, and 3) there are degrees of paging, that
is, some information must be present if a task is to use the CPU and can
only be explicitly removed.

¢ Life Cycle - When will the table come into existence and when will it
disappear? The data to describe a job is divided into environments which
will go away, when the job terminates, when a task terminates, when the
system crashes, and environments which will live forever unless explicitly
removed.

® Crash Resistance - When the system crashes, how will the tables be
reconstructed? What impact will there be on recovery if the tables cannot

be reconstructed? Will the corrupting of the tables cause a system crash?
What protection will be provided to detect corruption?

Company Private Rev 4 October 1980

A-13

e Structure - The general structure of each of the NOS/VE Tables Area is the
same and allocation of entries within a particular table is the same.

The contents (entries) of NOS/VE are position independent, that is,

a) the order and number of static entries in tables areas can vary from build
to build;

b) the order and number of static entries in tables areas (task and job
private) can vary among job types; and

c) the order and number of dynamic entries in the tables areas can vary among
instances of execution.

The allocation of entries in NOS/VE tables should require minimal interaction
among development projects; is controlled at the source level; via CYBIL; and
is managed by execution and the system generator.

The general structure, allocation technique or order, value assignment tactics
of NOS/VE tables should not impose undue constraints on the structure of
entries contained in tables areas.

The allocation of entries and the assignment of values to entries in NOS/VE
tables should be postponed as long as is feasible - priority order:

a) execution time
1) first use time
2) task initiation time
3) job initiation time
4) system initiation time
b) system generation time
c) source (compile) time.

2.2 TABLES AREAS

TABLES AREA Rl, Rl
TASK SHARED 3, 13
TASK PRIVATE ' 3, 13
JOB PRIVATE PAGEABLE 2, 13
JOB PRIVATE FIXED 1, 3
MAINFRAME PAGEABLE l, 3
MAINFRAME WIRED 1, 3

Company Private Rev 4 October 1980

A-14

2.3 TABLES AREA GUIDELINES
2.3.1 JOB PRIVATE FIXED

The Job Private Fixed tables area is the contaimer for tables shared among
monitor and all tasks of a job. Job Private Fixed tables reside in
non-pageable memory because of monitor access. Therefore, care should be
exercised to minimize the amount of space allocated to entries which are not
accessed by monitor.

2.3.1.1 Job Private Fixed Static Section

The Job Private Fixed static section is the container for statically allocated
tables entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Job Private Fixed tables area.
Statically allocated table entries are those which are somewhat constant in
nature for the duration of the job. Such entries may also be "root" pointers
to dynamically allocated entries in the Job Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.1.2 Job Private Fixed Dynamic Section

The Job Private Fixed dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) tables entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
Jjob. Dynamic entries whose lifetime is less than that of the job must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

2.3.2 JOB PRIVATE PAGEABLE

The Job Private Pageable tables area is the container for tables shared among

all tasks of a job. Table entries residing in this tables area are not
accessible by monitor.

Company Private Rev 4 October 1980

A-15

2.3.2.1 Job Private Pageable Static Section

The Job Private Pageable static section is the container for statically

allocated table entries. Static entries are allocated at compile time, via
CYBIL static variable declarations, which specify the Job Private Pageable
tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the job. Such entries may also be "root" pointers
to dynamically allocated entries in the Job Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.2.2 Job Private Pageable Dynamic Section

The Job Private Pageable dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) table entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
job. Dynamic entries whose lifetime is less than that of the job must be
freed (CYBIL free statement) when their lifetime expires - the responsibility
for freeing lies with the ultimate allocator.

2.3.3 TASK PRIVATE

The Task Private tables area is the container for tables shared among
procedures in task services and task monitor of a task. Task Private is
pageable. Table entries residing in this tables area are not accessible by
other tasks or monitor.

2.3.3.1 Task Private Static Section

The Task Private static section is the container for statically allocated
tables entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Task Private tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the task. Such entries may also be "root" pointers
to dynamically allocated entries in the Task Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

Company Private Rev 4 October 1980

A-16

2.3.3.2 Task Private Dynamic Section

The Task Private dynamic section is the container for dynamically allocated
(CYBIL allocate or next statements) table entries. Dynamic entries vary in
number and size - their lifetime is often less than the life of the task.
Dynamic entries whose lifetime is less than that of the task must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

2.3.4 MAINFRAME PAGEABLE

The Mainframe Pageable tables area is the container for tables shared among
all jobs in the system. This tables area is writable by Rl task monitor and
readavle up to task services. The mainframe pageable tables area is not
accessible to monitor.

2.3.4.1 Mainframe Pageable Static Section

The Mainframe Pageable static section is the container for statically
allocated table entries. Static entries are allocated at compile time, via
CYBIL static variable declarations, which specify the Mainframe Pageable
tables area.

Statically allocated table entries for those which are somewhat constant in
nature for the duration of the system. Such entries may also be "root"
pointers to dynamically allocated entries in the System Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.4.2 Mainframe Pageable Dynamic Section

The Mainframe Pageable dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) table entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
system. Dynamic entries whose lifetime is less than that of the system must be
freed (CYBIL free statement) when their lifetime expires - the responsibility
for freeing lies with the ultimate allocator.

Company Private Rev 4 October 1980

A-17

2.3.5 MAINFRAME WIRED

The Mainframe Wired tables area is the container for tables shared among
monitor and all jobs in the system. The Mainframe Wired tables reside in wired
memory due to monitor access. Therefore, care should be exercised to minimize
the amount of space allocated to entries which are not accessed by monitor.

2.3.5.1 Mainframe Wired Static Section

Only monitor software can allocate static table entries in the Mainframe Wired
static section.

The Mainframe Wired static section is the contaimer for statically allocated
table entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Mainframe Wired tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the system. Such entries may also be "root"
pointers to dynamically allocated entries in the System Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.5.2 Mainframe Wired Dynamic Section

The Mainframe Wired dynamic section is the container for dynamically allocated
(CYBIL allocate or next statements) table entries. Dynamic entries vary in
number and size - their lifetime is often less than the life of the system.
Dynamic entries whose lifetime is less than that of the system must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

Company Private Rev 4 October 1980

A-18

G2 BreSrarion:

CLASS EVALUATION

CLASS CYBIL) DATE
INSTRUCTOR
CLASS OBJECTIVES Upon completion of this course the student will be

prepared to implement software designs in CYBIL.

| OBJECTIVES

A.

Were the stated objectives the same as your objectives in attending this class?

Yes No - Please explain the differences.

In your opinion, did you attain the stated objectives?

Yes No - Please explain.

What topics do you feel were the most important?

What topics do you feel were the least important?

In your opinion, were any topics omitted? If so, what are they?

I, INSTRUCTION

A.

10118

Was the instructor effective in presenting the class material? Please explain.

A-20

CONTROL DATA PRIVATE

B. Was the instructor knowledgeable in the subject material? Please explain.

C. In your opinion, were the instructor's examples effective in clarifying topic areas?

III. REFERENCE MATERIALS

How do you rate the reference materials and handouts used in the class?

IV. COURSE IN GENERAL

A. Were the assigned projects meaningful, and were they good exercises for the material
covered?

B. List any suggestions you have for improvement concerning classroom facilities and,
materials.

C. What changes in the class would you make if you were the instructor?

D. Would you recommend this class to others in your company or department? Why?

Optional:

Name and/or Company

A-21 CONTROL DATA PRIVATE

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-20
	A-21

