Burroughs

O

Distribution Code SA

Programmer’s

Guide

Priced Item
Printed in U.S.A.
May 1985

1180098



Burroughs

Programmer’s
Guide

distribution Code SA : Priced Item 1180098
Printed in U.S.A.

May 1985



Burroughs cannot accept any financial or other re-
sponsibilities that may be the result of your use of
this information or software material, including di-
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/or information complies
with the laws, rules, and regulations of the jurisdic-
tions with respect to which it is used.’

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changesand/or
additions. ‘

The Graphics Support Package contains software routines that
drive the following hardware peripherals supported by Burroughs
Corporation: : .

Burroughs AP1351 Multi Function Printer

Burroughs B9253 dot matrix printer

The Graphics Support Package also contains software routines
which drive the following hardware peripherals:

Hewlett-Packard Model HP7220C 8 pen plotter
Hewlett-Packard Model HP7220T 8 pen plotter
Hewlett-Packard Model HP7470A 2 pen plotter
Hewlett-Packard Model HP7475A 6 pen plotter
Strobe Model 100 1 pen plotter

Printronix MVP dot matrix printer

Envision 420 dot matrix printer

Anadex 9620 dot matrix printer

Okidata Microline 93 dot matrix printer
Dataproducts 8010 dot matrix printer

The particular device selected is the responsibility of the
customer.

Correspondence regarding this publication should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Product Informa-
tion East, 209 W. Lancaster Ave., Paoli, PA 19301, U.S.A.



LIST OF EFFECTIVE PAGES

Page Issue
iii Original
iv Blank
v thru ix Original
X Blank
1-1 thruil-=3 Original
1=1 Blank
2-1 thru 2-12 Original
3-1 thru 3-63 Original
3-64 Blank
4-1 thru 4-18 Original
5-1 thru 5-15 Original
5-16 Blank
A-1 thru A-3 Original-
A=Y Blank
B-1 thru B-6 Original
C-1 thru C-5 Original
c-6 Blank
D-1 Original
D-2 Blank
E-1, E-2 Original
F-1 Original
F-2 Blank
1 thru 4 Original

ifi






TABLE OF CONTENTS

Section Title Page

1 OVERVIEW.  eveeoeessosesccocccnns cescesenesenn ceeee 1
B20GSh . eiereeroesnsnnanan cesceresssrrsssse s ceeeas 1
Highlighfs..eeeeioioeereoeerssnsetasacnasennae .o 1
Installation ProceduresS.ccecececereseccccsocccsns 1

File Contents.iuieeeeeeseesesssccococsoososoncccs 1

2 CONCEPTS..ettvesenans teesesscssnsennes tesessesse ..
Graphics Library..eeicsertesescacsosocees cessenneas
Device-Independent ProceduresS.....eeesccessccans
Pictures and ObjectS.uiiveeeesoronoessocecsonnaes
Drawing Attributes..... creesss ceessesccessassene
Text Attributes...ivieieeeecncnnnns crtecestessnne
Picture Filei.ivieieeotonoosscaseancsnns ceessans
Temporary ObjectS.uieierteerotocoenosesocssssonans
Device-Independent Coordinate Systems....ccuecees
Viewing Perspectives....ccveeu... ceesensssrsasens
Device-Dependent Procedures......seeesse ceeecene
Control ProceduresS...ecscssessacsscsssnssssassas
Vector and Arc Manipulation Procedures..........
Color ProceduresS.ceseescessessscesaossosossosaans
Alphanumeric Attribute Procedures.......... csens
OULpPUL DevVicCeS.iieiieteeeieesoseasssecssscsesononne

FnopPPNONDD DD
[} 11
OCO0OWVWNITOWNH N = =

1
U |

I\)l\)l‘\)l\)l\)l\)
— e ) —
_-S O

3 DEVICE-INDEPENDENT PROCEDURES.¢eeteeeeencesscnnse .
Initialization ProcedureS..ccecescecsccssssasovsosnse
ClearViewport.esoeeseesesosssessossnscsososessonsocs
InitGraphicsS.ieeeeeaease Cesesseessesssasssaenas .
SetLimits.eiiieeeteeesetaneosssescsesccasaosssasans
SetOutputDevViCe i ieeetseersoctscscnssecccscaconnese
SetOUtpPULTYDPee et teertstoenssesssscscsncsssesnnas
SetPlotterDevice.i i ieeeeesstesrsecersecsccsscncocns
SetPlotterMaterial.ceeieeecessecersscscsscsccncses
SetUserCoordinatesS.seeeeeeseseecesssssoscsssccacs
Picture ProceduresS.iceseeececsecescsscssscsssoancas
AddPiCEUre..ceieteeeseescesecncscosessosesscsanse
ClosePictUre.seseseecssecesssossoscsocssssnscsasncs
DisplayPicture.iicssesseeesecscanconnnnss secenas
GetNumberOfObjectS.eeereersseesovsssssossasoeancns
OpenPicture..ceeeeceseeecaseescossssscnsesscnnas
WritePicture..ieeeeeeesssnceocosossesscncassennss
Object Procedures..iiiceciieesssessesessoscesooosnes
AddObject eeeereeeesssssocecccssssssssncssscsscoce
ClearLabels.seeeeeseseessessessesscsossnssssscnsnes
ClearVecCtorS.ceeeieesrsesscesssseasscasssssenosssoese
CloseObjeCteseeeeeeioesen ceeecaa sesessessasanven
CloseTempObject.ceeeeessseeseesesrocronsanconcee
DisplayCurrentObject.seeeeeeesensesscsceconcnnnas
OpenTempObjecteseeeeeeeesececscccccesccncssnccne
RemoveCurrentObjecteveieeieerseseoscsoosscassnnens

I I wuwwwwwww w
1
OQOWVWOWOONONAEEWNN 20VOVEOEOJOVITUIE -

{ U T O N N A Y Y A B B N |
[ T ) O S e T I R R R e Y= |

wWWwwwuwuwwuwwwuwuwwwwww



vi

Section

3
(cont.)

TABLE OF CONTENTS (Cont.)

Title

SetFirstObject.ciieessoseossssssoesscsssosesanans
SetNextObject . it ieeeeeoreeeeossocoonnsonnnsa
Attribute ProceduresS. . iccececesosecsstssccccccsonens
GetPictureColorS . ieeceeccccseccossacnaeassnsannss
SetC0lOr.ieeeenesacenssoosssososssososssssnsscnsense
SetCurrentPalette. i ceeeeeeeeeeeneoeesoncnsanonnns
SetDrawingMode. cveeeeereorscessssersssscossccssons
SetlineType.eeeeeseesosesesssesesosessassssanses
Drawing ProcedureS..csieceeceesssseoscssoscccensnne
Draw.ceeeesssecececcones cesesseeseressesecrssene
DraW Al C .ttt etetesstonssoossasnssonsccansascosses
DraWwCirCle i ceeecessecsseeesssoacesscsacasencnsosnss
DraWline.eeeesseceseosceesesscsonscosconcccnns ceene
DrawRelative.ieeeeeeeeeeeecosesoeesosnosnnsansnas
FillRectangle..veieevieereeneneieenoesoenennnnnns
MOVttt ittt erneeeresssoesosscssossosocosenansesan
MoveRelative.eieieeeeoseoonresoscsconccncososase
Text Procedures...iiierieeieeecocecancoanensancnnoss
SetCharacterSize..cieeereescrceeecvecceaanes ceeas
SetFONt . ettt tieeeresenesessoncnasennonensesnsas
SetLabelOrigin.eeeeeeeeeeeeeeceeacssoocnaccnnsos
WriteTexXxtString.iee e e erieeereeeeenoeseoacncnsnnns
Font ProceduresS..ciiesecececesesscecoensonsnnnnsons
GetFontName..veeeeeeeeenneanenn evescssssarsaveces
GetFontNumber.oe oo stoeseeeoosoocnsoccases ceeess e
GetNumberOfFoNntS. et iivieeeeenoeeesooneonenanonan
GetUserFontName..i.eeeeeoeeoteoacenstscoeeeccncnns
SetUserFont....... cesesssesressestes s eterssnens ]
Label ProceduUreS..icecsceesceessccsncsssensessnssse
AddLabel.u et eeennessonasoenoossssssosoacascscsses
DeleteCurrentlabel .icieeeeeecseseeoesoccsoessnesnoe
GetCurrentLabel...ieiieieeeeseeeosrsecioenocasesas
GetLabelData.ieieeeeeeeeeeeeseonsonsccanssosnesosne
ModifyLabel..uieeesseoeeonaosesasosnosssacaccncsas
SetFirstLabel.veeeieeeeieeretesecanssecesccnnnnse
SetNextLabel.iieeeeeeeeeeeeeencoonnennns crerecee
Transformation Procedures...ccceeeeceecescsososasne
.GetTransformationData...eeeeeeeeeceoenoonnconsas
SetSCalerieieieceratescensrssosccascsnsonessnsoss
SetScaleRelalive. it ieerieeereeeececcoeoonooononss
SetTranslate.iieeeeeeccccsscsosssossosccsssascsncss
SetTranslateRelative..iieiieereeenceooonceonnnss
Viewing ProceduresS...cceecescsscescsscoscscssonses
GetWindowData.ieeeeeeeeeeeoeeracoancoaccnosensnas
SetViewport..eeeiieeeesoosesosasessssssncsnsnsans
SetWIiNdoW. e e eeeeeeetresoeoosssasssnsscescnsonnsnse
Cursor ProceduresS...veeeseecescssccssoscsonsecnacns
GetCUursorPoSitioNeeeeeeeeececesseccossosacnnsnosnns
SetNDCCUrsorPoSition.eececsesosesscscsosscsssscesse

Page

3-21
3-21
3-22
3-22
3-23
3-24
3-25
3-25
3-26
3-27

. 3-28

3-29
3-29
3-30
3-30
3-31
3-32
3-33
3-33
3-34
3-35
3-36
3-37
3-39
3-30
3-40
3-41
3-41
342
3-45
3-45
3-47
3-47
3-48
3-49
3-49
3-50
3-50
3-51
3-52
3-53
3-54
3-55
3-55
3-56
3-56
3-57
3-57
3-58



Section

3
(cont.)

TABLE OF CONTENTS (Cont.)
Title

SetObjectCursorPosSition..ceeeeeeeessvcoococnonse
SetWorldCursorPosition..eeceececescsososassocssne
TUrNOff CUr SO . s ittt teresevaesensssncsscnnsssonnses
TUrnONCUr SO r e e e eeesseseseossssscsssossessesssssnee
User-Written Procedures..icecececeescesosrsesssases
LoadPaper.eceesescssscscseosessesessessessssosssans
ReadInterruptKey.eeeeeeeeessossesonossessnssosanns

SetPen........................t.................

DEVICE~-DEPENDENT PROCEDURES.::eevevsesesoscsncnses
Control ProceduUresS..cicisseecssnscsssosssssssssosssse
ClearSCreeN.eesisessssessesscsssscsossensnsosssnsae
InitScreenGraphicCS.ieciececessesessosecscossosnsnne
SetCommandScreen.eseeeesseecsssescsessscsssnsases
SetVisibleScCreen.seeeseseesssosssessssosassosssancs
TurnOffGraphicsS.sseeesssecsesssossssnsossosananes
TurnOffGraphicsColor..seeeseeesceessesonsosssscanae
TurnOnGraphicsS.s e eeeeseesescseceosssscsscssosncs
TurnOnGraphicsColor,...icieiiesvessesnsacsannnne
Vector and Arc Manipulation Procedures....ceceee..
ClearScreenRectangle.iccieieescecsosssessscsosnncnes
DrawScereenArC..scesessesesssssessssssssscsssoscas
DrawScreenLline..ccececsesceseossscsssssssssssnsas
FillScreenRectangle..eeeseecsessssascsscsssnnnas
LoadSoftPattern..iceieeeeeescessescescsocsssssnnsa
SetScreenDrawingMode..cioeeeeecesosssnsocssnnnns
SetScreenLineTypPe.eceesessecssoesosssssssssscsscss
Color ProceduresS..cieeseesvessoscsscsosensesnnsonoss
LoadColoreesesessssesasssssasesosnsosnsnassasass
LoadColorMapPereeeesessessscssescssencssnssnsnsos
SetColorMapper.iiceesescsesesscsssesosssssssesoas
Alphanumeric Attribute Procedures....ceeeecesecses
LoadColorStyleRam..sseeesscesessoscsssesosssncscans
SetStyleRamEntry..cceeeeeeeeeeseascessscasssocnns
SetStyleRam.ieieissesosscscesassesssnssssssccnns

ACCESSING BUSINESS GRAPHICS .ttt ececesoansosocasnas
OVervVieW.seoesosossasosasssosssesassssssasesssosnssas
Picture File.iieeeseeosseoeosososssnnossssoenenes
Format File.ieieeosooessosonsososacosssanssnccse
Data FillEeuiuieeeeososesoaonosesoonsosssosossssnsssasne
Title-..Q.ll....oll...l...0.....0....000...00'..
LabelsS.ecieeeceseietaseeesoscssssescssosssssoscsonccas
Palette File.icieeeeoseseooscossccosssossssssocscca
Drawing a Bar Chart..ceeceecesceecossosscsavsoncnss
Data File Format.ceeeeeseosessossecscsacssscosnne
ParametersS..cieiceerasececcsecosssessosesscnacene
Drawing a Pie Chart.i.eieeieseesceecsccnessosssnnnns
Data File Format.eceeeeeesoceseecscscsassocasancesns
ParametersS.ceieeececsececerssssscssssscnsssssssssse

LI IS — i — i i~ X o I I i i g g
1

Page

3-59
3-60
3-61
3-61
3-61
3-62

ww
11
[o) Yo}
w N

[}
OO OUVITVNIW N = m 0w oUIVIVIEETWWNH N =

PR N~ K g
B e T T QU G N W W QU Wi G W |

1
O_N_TEWWWNNRON o=

U'IU'IU1U1U1U'IU'I\'HU'IU'IU'IU'|U1U1

vii



Section

5
(cont.)

viii

TABLE OF CONTENTS (Cont.)

Title Page

Drawing a Line Chart..ceeeeeeseoscoscossscascananns 5-9
Data File Format - Numeric Line Chart........... 5-10
Data File Format - Alphanumeric Line Chart...... 5-11
Parameters.iseieiesesascessasessssssessnsssssanses bH=12
An Alternative to the Data File...... ceceensetenns 5-13
A Sample BASIC Program..escececessossssceens sesesses 5-13
STATUS CODES et evetessvesessossssesssasssnssssscens A-1
PLOTTERS AND PRINTERS...¢ecveececeses eeesees tesesee B-1
Supported PeripheralsS.ceseecscecosesesscosonssosss B-1
Unsupported Peripherals........ ces e cesseane s ans B-1
Peripheral Configuration..i.eeieeeciocinennsnnnnes B-2
Spooled Peripheral Support....ieeeeeeccecceesonses B-4
CONNECLLlONS e ieteevsesossssssssssscnsosansssnsnnsss B-5
SAMPLE GRAPHICS APPLICATION PROGRAM..............} C-1
MINIMUM MEMORY REQUIREMENTS..evieeeceesnsrannnnosas D-1
Picture..ceveveneeennne st e cescas e st ssses e en s D-1
ObJECl et tsteesstsosenssossososcosssnsessnnsonanss D-1
Printer......cveeeeee s resessssessessesassenennsenne D-1
GLOSSARY.eeeevennn et eeseesets e aes et et e s E-1
KNOWN LIMITATIONS.:eeeeeneene tesssseencsose s eetessans F-1
INDEX. . eovannn Ceeseereeserassenne crteesrseannen 1



LIST OF ILLUSTRATIONS

Figure Title
2-1 Line TypeS.seeeeesecsssssseasnnsse ceeceenes cessesee
2-2 Drawing ModeS...vseon sttt sassesseecessesassnas
2-3 Label Origin.seeeeeesas teresenns cesseressnnns .
3-1 Angles in RadianS.e.eceeiesesessssssssanes sesses
3-2 Fill TYDPeSeveeeeosososssssssssssssonsonsscononsns
4-1 Determining Arc Length...vvvvvetrieeecoosonnnnsas
4-2 Drawing Directions (Angles in Radians).........
4-3 Fill TypPESiuieeeesesooesoosossnssssasssssssocnnscss
5-1 Business Graphics Bar Chart..... teeetsessssaeenn
5-2 Business Graphics Pie Chart...cciveeeneeee ceeenn
5-3 Business Graphics Line Chart.siveesveeserscence
B-1 Crossed Cable for RS-232-C Communications......
LIST OF TABLES

Table Title
3-1 Device-Independent Procedures by Function

(2 PABeS) eeeeeresesecnsennanns et eeerseseenanas
3-2 Graphics.Font Entries....veeienneeeerieneeccenes
3-3 Label Structure..... it e et eenseceecaastasessensae
4-1 Device-Dependent Procedures by Function........
42 The Color Palette.iieeieveeosnescnsnsossessnsnnns
5-1 Bar Chart Data File...... ceressaansan creasessns
5-2 Pie Chart Data File..v.i:ieeeeeeeonnnn ceseesaeane
5-3 Line Chart Data File.i.:oseoseoeosceccnccsanns .o
5-4 Alphanumeric Line Chart Data File..veveeeeoeoee






SECTION 1
OVERVIEW

Burroughs graphics software products support a wide range of
graphics functions. Using a modular architecture that
distributes the processing between the host CPU and the graphics
control board, the graphics software provides two levels of
support:

o Business Graphics, a high-level, menu-driven graphics
application system that <can be accessed from user-
designed applications.

o the graphics library, a set of system-level procedures that
can be called from user-designed applications to wuse all
the capabilities of the graphics software.

This guide focuses on the second level of graphics
support, the graphics library (Graphics.Lib). Using the
procedures in this library, system designers can access the
full range of graphics functions to develop high-performance,
flexible application systems. The graphics library procedures
are used to draw vectors and arcs and, on the B 22, to
manipulate rectangles of bits. A variety of colors, 1line
types, drawing modes, and fill patterns are available. Text
labels and annotations can be written with variable attributes
for font, color, character size, and 1label origin. Once a
graphic representation has been created, it can easily be
scaled and translated to assume different sizes, shapes, and
positions on the display. These transformations are handled
independently and do not alter the original definition of
the figure.

Graphic representations can also be viewed in a variety of
ways. Small sections can be magnified, and the size and shape
of the display can be changed dynamically. Complex graphic
representations can be built by merging different figures in the
same display. Graphic representations created with graphics
library procedures can also be filed for future use. In
addition, they can be plotted on publication-quality pages or
on transparencies and printed on dot matrix printers.



Business Graphics is a Burroughs application system that uses
graphics library procedures to perform graphics functions for
business applications. Business Graphics must be used in
conjunction with an application system that extracts statistical
data or figures from a data base and arranges this data in a
tabular format. Business Graphics is invoked to convert the
tabular data into graphic representations such as line charts,
bar charts, and pie charts. Business Graphics can be accessed
through Multiplan or another Burroughs software product, or
system developers can create their own applications to interface
with Business Graphics. Detailed information about the features
of Business Graphics is found in the Business Graphics Reference
Manual. In addition, Section 5 of this guide explains how
application systems can be modified to pass data to Business
Graphics for the generation of graphic representations.

B20GS4
Highlights

B20GS4 is the package for the Burroughs 4.0 Graphics Support
Package. It can be installed on the XE520 as well as B 20 and
B 26 workstations.* The package is created on one floppy disk
for both the 8 inch and 5-1/4 inch medias.

Installation Procedures v
To install B20GS4 on the XE520, db the following:
1. Insure that all cluster workstations are powered off.
2. Use either the XE520 BTOS User's Guide (form 1166295)
or the XE520 System Administrator's Handbook (form

11663117 to determine installation procedures. These
procedures involve booting a clustered workstation.

3. Follow steps 1 and 2 on the next page.

* Note that while the software is installed on the XE520, it
actually runs on the attached B 20 series workstation.
Therefore, when this manual refers to B 20 series
workstations, such references include B 20 workstations that
are attached to the XES520.



To install B20G34 on any workstation, other than a B 26 Dual
Floppy Standalone, the procedure is the same for both the 8 inch
and 5-1/4 inch medias:

1. 1Insert the B20GS4 floppy disk into the appropriate disk
drive, FO;

2. type in the command Software Installation and press GO.
At this point, you receive these prompts:

INSTALLATION OF BURROUGHS GRAPHICS PACKAGE

PRESS GO WHEN READY
After the apropriate response, FdSys.Version_ is appended to
Sys.Version. All the files in directory [FOJ]<Burroughs> are then
copied to directory <SYS> on the system disk.
Next you see the following message:

INSTALLATION OF BURROUGHS GRAPHICS PACKAGE IS NOW COMPLETE
You can then use the newly installed software to write programs
that invoke graphics calls.
File Contents
The file contents for B20GS4 are the same for the floppy disk in

both the 8 inch and 5-1/4 inch medias, with two exceptions as
noted. These files are listed as follows:

<Sys>fileHeaders.sys <Burroughs>Graphics.Fonts
{Sys>mfd.sys {Burroughs>Graphics.Lib
{8ys>log.sys <Burroughs>ComplexRoman.font
<Bys>sysImage.sys {Burroughs>DuplexRoman.font
<Bys>bootExt.sys *¥ <Burroughs>Gothic.font
<Sys>badBlk.sys <{Burroughs>SimplexPlot.font
<Sys>crashDump.sys {Burroughs>3implexRoman.font
{Sys>Diaglest.Sys ** <Burroughs>HPPlotterConfig.sys
<8ys>FdlBys.Version <{Burroughs>PlotterConfig.sys
<Sys>Grfx-5.0-Update.Sub <Burroughs>StrobeConfig.sys.
<Sys>Install.Sub <{Burroughs>StrobePlotterConfig.sys

{Burroughs>GraphicsPrinterConfig.sys

*¥% — These files are found only on 8 inch floppy disks and are
not on 5-1/4 inch floppy disks.






SECTION 2
CONCEPTS

GRAPHICS LIBRARY

The graphics library contains two different types of procedures.
The main portion of the library is a set of device-independent
procedures. Programs calling these procedures can be executed on
any B 20 Graphics workstation. Many of the features described in
the "Overview" section, such as saving graphic representations in
files, translating and scaling figures on the screen, and viewing
graphic representations from different perspectives, are
supported only by the device-independent procedures. Detailed
descriptions of the functions supported appear in the "Device-
Independent Procedures" subsection that follows. The actual
procedural interfaces for these commands are included in Section
3, "Device-Independent Procedures."

The graphics library also contains device-independent procedures
that are called by the graphics software. These called
procedures can be replaced by user-written routines to expand the
capabilities of the software. They are used primarily to provide
the end user with messages or instructions about operating the
output devices. These user-written procedures are also included
in Section 3, "Device-Independent Procedures."

The other procedures found in this library are device-dependent.
The use of these procedures is restricted to the following
workstations: . ‘

* B 21 (color)

¥ B 22 (monochrome)

* B 26 (color and monochrome) '

Detailed descriptions of these low-level procedures appear in the
"Device-Dependent Procedures" (the following subsection). The
actual procedural interfaces for these commands are included in
Section 4, "Device-Dependent Procedures."

The device-dependent procedures are executed on the graphics
control board. These procedures include bit manipulation
functions that are mapped directly to the video display screen
and are, therefore, only available at this level. The device-
dependent procedures execute faster than the device-independent
procedures. They are particularly useful for applications that
use animation or require custom-designed fonts. Using device-
dependent commands does, however, preclude the use of some of the
features of the device-~independent commands. Graphic
representations do not include text labels, and they cannot be
transformed, saved, or viewed from different perspectives.

2-1



Applications designed for the B 22 Graphics workstation can use
device—-dependent procedures that support user-defined fonts.
These bit-mapped fonts can be used to create character
representations not available in the standard 10-by-15 pixel
alphanumeric font.

Both the B 21 graphics control board and the B 26 graphics
controller module contain color mappers. Color mappers enable
multicolor graphic representations to be displayed on the video
screen. The device-dependent color procedures allow the use of
up to eight colors at a time.

In addition, there are device-dependent procedures that use the
color style RAM on the B 21 graphics control board as well as the
B 26 graphics controller module. These procedures combine color
selection with display attributes for alphanumeric data. ZEight
different combinations of color and attributes can be used on the
screen at one time.

Device-Independent Procedures

There are two main concepts that are important in understanding
the use of the device-independent procedures. PFirst, there are
the structural components of the graphic representations. These
components are called pictures and objects. The other key
concept is the use of device-independent coordinate systems
rather than the coordinates of the physical device on which the
graphic images are displayed. These two concepts are discussed
below.

Pictures and Objects

In device-independent procedures graphic representations are
called pictures. A picture is composed of one or more objects.
One bar chart on the screen, for example, is a picture with one
object. A pie chart, a line chart, and a bar chart all together
on the screen is a picture with three objects. Objects can also
overlay each other in pictures. If the graphic representation is
to be saved, a picture must be opened before any drawing or text
labeling can be performed. Once a picture is open, objects can
be created.

An object is a set of graphics commands and labels that can be
edited and manipulated as an entity. Although several objects
can be present in the same picture, only one object can be
created or edited at a time. As an object is constructed,
information about its structure is accumulated. ZEach object has
the following components:

o a list of vector and text commands

o a list of labels (text and attributes)

o0 a list of transformation values

2-2



Vector List. The graphic's portion of the data
representation is collected here. The vector list includes
commands such as Move, Draw, FillRectangle, and SetColor, which
are used to create a graphic representation. Drawing attributes
such as line type, drawing mode, and color are also saved.

In addition, text that 1is not to be modified is put 1in the
vector 1list. Individual commands within the vector 1list
cannot be modified, but the entire list can be cleared and
rebuilt to modify the object.

Label List. Labels are textual explanatory notes that accompany
the vector portion of the object. The label 1list consists of
the text and the attributes for each label. The attributes
are characteristics of the 1label such as font name, character
size, and 1label origin. Individual labels within the label
list for an object can be added, deleted, or modified.

The alphanumeric labels and the vector list for an object are
mapped to display memory, logically ORed, and displayed
together. Because the text and vector commands are stored in
different lists, these two components of an object are
processed independently of each other. There are several
different types of modifications that can be made to label text.
Changing the font, changing the actual text, and moving the
label, for example, can all be accomplished without

altering the vector portion of an object.

Transformation List. Once an object has been created,
transformation procedures can be used to alter the object's
size, shape, and position within the picture. The
transformation procedures translate and scale the object and
save the translation and scalar units in a transformation
list. The original specifications for the object, which are kept
in the vector and label lists, are unchanged.

Drawing Attributes

Attributes are variable characteristiecs of an object.
Drawing attributes are used with drawing procedures to provide
more variety and contrast in graphic representations. These
attributes are saved with drawing commands in the vector

list. The attributes that are used with drawing procedures are
line type, drawing mode, and color.

Line Type. The graphics software includes eight line types. A
solid line 1is the default, and there are other patterns of
dots and dashes. Figure 2-1 illustrates the eight 1line
types provided with the graphics software.



Drawing Mode. The drawing mode describes the method by which
a vector or arc is written to display memory. When the bits
that form the vector have been calculated according to the
line type, they are compared to the existing memory bits and
written to display memory according to the drawing mode.
There are four drawing modes: set, clear, complement, and
replace. Figure 2-2 shows examples of the same pattern written
to the display memory in each of the four modes.

0-Solid Line
1-Line Dash Dash - - -
2-Line Dash - : - -
3-Line Dot . . .
4-Line Blank

5-Line Blank Blank

6-DashedLine = = = = = = = = - - - = - - - -

7-Dotted Line ® o 060 06 06 0 0 0 ¢ 0 06 0 0 0

Figure 2-1. Line Types

Set mode logically ORs the pattern of the line to be drawn with
the backgound bits already in the memory location. Thus, the
bits that are "off" in the line pattern have no effect on
the bits already in memory. Any bits that are "on" in the line
pattern or the background remain on when they are merged.

Clear mode causes the bits that are on in the line pattern to
turn the corresponding memory bits off, :

Complement mode causes the line pattern to take on the opposite
characteristic ~of the corresponding memory bits. The line
pattern is logically XORed with the background display memory.

Replace mode is different from the other three modes in that
no logical operation is performed between the line pattern and
the existing memory. Whatever is in the 1line pattern
replaces the existing memory bits. The background has no
bearing on the line pattern. ,

2-4



Figure 2-2.

Drawing Modes

Background

Pattern

Set

Cleka’r

Complement

Replace .

2-5



Color. The use of multiple colors is supported in both video
display and plotter output on the following Color Graphics
workstations: ,

* B 21 (color)
* B 26 (color)

On these display screens, 64 colors are available, any eight of
which can be displayed at a time. The set of eight colors is
called the color palette. Color selection is supported in the
device-independent procedures by selecting a color from the
current palette. Refer to the "Device-Dependent Procedures"
subsection following for information specifying color palettes.
If the output device is a plotter, the color parameters are used
to specify pen numbers. The user can select a maximum of eight
colors and assign a pen number for each one.

Text Attributes

Attributes are also used with text strings and labels to provide
variety and contrast. The attributes associated with text :
strings are saved in the vector list for an object, and the label
attributes are saved in the label list. The attributes that are
used with text strings and labels are character size, font, and
label origin.

Character Size. The standard alphanumeric font uses a character
cell with a height of 36 pixels. The default character size is 1
" for this standard size, but characters can be enlarged or reduced
proportionally by specifying other values. Character size 2, for
example, produces characters that are twice as high as the
standard size, and .5 characters are half the size. The
character size attribute functions as a scaling factor when an
object is transformed. The characters maintain the same
proportions in relation to each other and to their cells when an
object is scaled to a smaller size.

FPont. The graphics software includes four fonts: SimplexRoman,
ComplexRoman, DuplexRoman, and Gothic. These font names are the
internal names. The internal name is the name that is used by
the graphics software and saved in pictures. User-friendly names
such as Standard, Complex, Bold, and Gothic can also be defined
for these fonts. With the exception of the standard default
font, SimplexRoman, the file specifications for each font can be
modified.

Label Origin. The label origin attribute indicates how text
should be oriented in relation to the current display position.
Text can be placed left flush, right flush, or centered at the
current position, and it can begin at the top, middle, or bottom
of the current position. Figure 2-3 illustrates the label origin
positions.

2-6



Left Center Right

2 5 8 Top
'ORIGIN: =
0 3 6 Bottom

Figure 2-3. Label Origin
Picture File

Multiple objects can be transformed and merged on the display
screen to create complex pictures. A completed picture, whether
simple or complex, 1is saved in a picture file. Using the
picture file eliminates the need to call all of the procedures
used to create an object each time the picture is needed. The
picture file can be opened repeatedly to change the way the
picture is viewed and ‘to modify or transform the objects within
it.

Temporary Objects

Objects can also be defined as temporary. Temporary objects
are used only when a picture 1is not open. For quick graphic
representations used in testing, demos, or initial system
development, this definition provides more efficient processing.
The commands are performed to display the object, but no
information is accumulated in vector or label 1lists to be
saved in a picture file. Temporary objects also cannot be
transformed, and only the standard font 1is available.

Device-Independent Coordinate Systems

To insure that applications that are written using device-
independent procedures can run on any B 20 Graphiecs
workstation, device-independent coordinates are used for
mapping vector and text positions. The three different
coordinate systems used to support output to workstation
display screens and other devices such as plotters are:



o world coordinate system
o user-defined coordinate systems
o] normalized device coordinate system

World Coordinate System. The world coordinate system is the
primary system wused internally by device-independent graphics
library procedures. When an object is created, modified, or
transformed, its position in the world coordinate system is
mapped to display memory and saved in the vector 1list, 1label
list, or +transformation list. The world coordinate system
theoretically maps objects to a 100-by-100 area. Position (0,0)
is the 1lower left <corner of the area, and the upper right
corner is position (100,100), Coordinate units are specified as
real numbers within this range.

Because the video display screens are not square, only the
portion of the world coordinate system that represents the
aspect ratio, or the ratio of height to width for the screen, is
generally used. The coordinate positions that represent the
aspect ratio of the B 22 screen are (0,0) to (100,77.74). The
range for the B 21 series screen is {(0,0) to (100,73.84). The
range for the B 26 series screen is (0,0) to (100,74)., Because
the B 22, B 21, and B 26 series Graphics workstations have
different aspect ratios, applications that are designed to run
on both types of workstations must use the smaller range of
(0,0) to (100,73.84) that is required for the B 21 series Color
Graphics workstation.

User-Defined Coordinate Systems. The device-independent
graphics library procedures also support user-defined coordinate
systems. Once the user defines the minimum and maximum X

and Y coordinate units, the parameters in subsequent
procedures used to draw objects are interpreted as user-defined
coordinates. The graphics software automatically converts the
user-defined coordinates to the corresponding world coordinates.

Normalized Device Coordinate System. This system is wused to
reference the display area in a relative way. The
coordinate positions range from (0,0) at the lower left corner to
(1,1) at the top right. Once again, +to maintain the aspect
ratio of the screen, positions (0,0) to (1,.7774) for the

B 22, (0,0) to (1,.7384) for the B 21 series, and (0,0) to
(1,.74) for the B 26 series are the default ranges for the
graphics workstations. The coordinate units actually describe
positions in terms of their relation to the top, bottom and
left sides of the display area. They are used to reference
the video display screen, not a picture that is to be displayed.
Currently, the only procedures that wuse 'this coordinate
system are the cursor control functions and the viewport
procedures. The coordinates used to place the cursor in the
middle of the B 22 video display area, for example, are
(0.5,0.39).

2-8



Viewing Perspectives

Pictures can be viewed dynamically from a wide range of
perspectives., These viewing capabilities are invoked by
adjusting the size of the world coordinate system window and
the screen display area viewport. The window is a portion of
the world coordinate area It defines what is to be displayed.
The viewport is a portion of the screen. It defines where the
information in the window 1is to be viewed. The information
is displayed by scalingthe world coordinate values within the
window to fill the viewport. The window/viewport
transformations enable pictures to be viewed from many different
perspectives. These viewing functions do not affect the picture
data. The vector, label, and transformation lists for the
objects within the picture are not altered.

The maximum size for the window is ordinarily the portion of
the world coordinate area that corresponds to the aspect
ratio of the display screen. Coordinate positions (0,0) to
(100,77.74) for the B 22 Graphics workstation, positions (0,0)
to (100,73.84) for the B 21 series Color Graphics
workstation, and positions (0,0) to (100,74) for the B 26 series
Graphics workstation are the ranges that represent the aspect
ratios of the two different screens. The window can be set
and reset to define different portions of the entire world
coordinate area. For a window that defines the lower left
quadrant of the B 22 display area, for example, the the
boundaries are (0,0) to (50,38.87). No matter what objects have
been mapped to positions in the world coordinate area, only
the coordinates surrounded by the window are viewed. All of
the coordinate positions outside the window are clipped.

The maximum viewport 1is the -entire screen area. However, the
viewport can be set and reset to define any rectangular
portion of the screen where a picture is to be displayed.
Ordinarily, part of the screen area 1is reserved for messages
and forms, Therefore, the viewport is usually 1less than the
whole screen area.

The perspective for viewing a picture can be altered
dynamically as often as needed by adjusting the window and
viewport sizes, shapes, or positions. A large picture can be
scanned, for example, by keeping the size of. the window
constant but changing its position within the world
coordinate area. A small section of a picture can be
magnified by keeping the viewport large and resetting the
window to surround only the portion of the picture that is to
be enlarged. When the window and viewport are the same shape,
the picture is viewed as it appears conceptually in the world
coordinate area. When the window and viewport have dissimilar
aspect ratios, the viewed picture is an oblique version of the
original.

2-9



Device-Dependent Procedures

Device-dependent procedures support high-speed graphics
functions. Device-dependent procedures can be used to draw
vectors and arcs. These functions are device-dependent because
they are executed entirely by the graphics control board
firmware. Graphic representations are drawn using coordinates on
display screens within the following workstations:

* B 21 (color)
* B 22 (monochrome)
* B 26 (color and monochrome)

Device-dependent procedures should, therefore, be used only when
the code does not need to be transportable. The advantages of
using these procedures are that they execute faster and provide
color selection that is not available with the device-independent
procedures.

The device-dependent graphics library procedures fall into four
main functional categories: control functions, vector and arc
manipulation functions, color functions, and alphanumeric
attributes functions. The color procedures and alphanumeric
attributes procedures can be used only on the following Color
Graphics workstations: :

* B 21 (color)
* B 26 (color)

Control Procedures

These procedures are used to control the output to the video
display screen. For the B 22 Graphics workstation, there are
procedures to control the two 64k bit-mapped planes. Only one
plane can be displayed at a time. The displayed plane is called
the visible plane. Either the visible plane or the invisible one
can be defined as the current plane. The current plane is the
destination for the operations creating a graphic representation.

Vector and Arc Manipulation Procedures

Vectors and arcs are plotted by calculating lines between
endpoints. On the B 22 video display the current display plane
is mapped using coordinate positions for a screen resolution of
656-by-510 pixels. Coordinate position (0,0) is the lower left
corner of the screen, and coordinate position (655,509) is the
top right corner. The B 21-series display memory has a screen
resolution of 432-by-319 pixels. Coordinate position (0,0) is
the lower left corner and (431,318) is the top right.

The B 26 series display memory has a screen resolution of 718-by-
348 pixels. However, coordinate position (4,0) is the lower left
corner (1435,1043) and is the top .right. There are two ‘
coordinate positions per pixel horizontally and three coordinate
positions per pixel vertically on a B 26.

2-10



Different line types, drawing modes, and colors can be set.

Refer to the "Drawing Attributes" subsection above for detailed
information about the line type, drawing mode, and color options.

Color Procedures

The B 21 and the B 26 Color Graphics workstations support the use
of 64 different colors, any eight of which can be displayed
simultaneously in a picture. The color procedures allow for the
definition of 8-byte color palettes that have one byte for each
of eight colors. The bit settings in each color byte are
interpreted by the color mapper and then displayed by the color
monitor (on either the B 21 graphics control board or the B 26
graphics controller module).

Two 8-color palettes can be defined at a time, and individual
colors in a palette can be replaced or modified. Color palettes
can be accessed by device-independent procedures such as
SetColor, but the specification of the colors that make up a
palette is handled only by low-level functions. The color
palette is saved with a picture in the picture file enabling
pictures to be redisplayed with the same color specifications.

Alphanumeric Attribute Procedures

These procedures can be used only on the B 21 or the B 26 Color
Graphics workstations. Text can be displayed in color
independently or in conjunction with graphic representations.

The alphanumeric attribute procedures allow the standard
alphanumeric style RAM to be overridden by a color style RAM (on
either the B 21 graphics control board or the B 26 graphics
controller module). Eight different colors can be defined at one
time along with different combinations of the reverse video and
underlining attributes.

OUTPUT DEVICES

In addition to the workstation display screen, the graphics
software also enables output to plotters and dot matrix printers.
‘The plotters that can be interfaced with graphics for output are
the Hewlett-Packard models T7470A, T475A, 7220C, and 7220T, and
the Strobe 100. Output can be plotted on paper or
transparencies, and it can be written to a disk file. User-
written procedures can be combined with device-independent
graphics library procedures to provide messages and instructions
on the screen for end users to load paper or change pens. Refer
to Appendix B, "Using a Plotter" for detailed information on
connecting and operating a plotter.

The only dot matrix printers that are supported for use with
graphics are the Burroughs models AP1351 and B9253.



The dot matrix printers that can be interfaced with graphics are
the Printronix MVP, the Envision 420, the Anadex 9620, the
Okidata Microline 93, and the Data Products SPG-8010 and SPG-8050
printers, Like the plotter output, printer output can also be
written to a disk file. When a printer is the output device,
all of the data that represents a picture 1is accumulated in
a buffer before the picture 1is actually printed. To
accommodate the printer buffer, much more memory must be
allocated for the picture file work area than when other
output devices are used. In addition, since the  actual printing
does not begin until the picture is complete and the buffer
is released, DisplayPicture, an operation that writes the
entire picture, must be used. Other procedures that draw and
display one vector or one text string, for example, instead
of the whole picture will return an error code when the printer
is the current output device.



SECTION 3
DEVICE-INDEPENDENT PROCEDURES

The device-independent procedures in the graphics library are
used in application systems designed to run on any B 20 Graphics
workstation. They permit output to hardcopy devices (such as
plotters and dot matrix printers) as well as video display
screens within B 21, B 22 and B 26 series.

The device-independent procedures are organized in this section
by general function. The order in which procedures from the
different groups are used in an application is very flexible and
depends on the functional requirements of the application. The
arrangement used in this guide follows a logical top-down
graphics processing sequence. The 11 groups of procedures are
shown in Table 3-1.

Table 3-1. Dévice-Independent Procedures by Function
(Page 1 of 2)

Initialization Object
ClearViewport AddObject
InitGraphics ClearLabels
SetLinits ClearVectors
SetOutputDevice CloseObject
SetOutputType CloseTempObject
SetPlotterDevice DisplayCurrentObject
SetPlotterMaterial OpenTempObject
SetUserCoordinates RemoveCurrentObject

SetFirstObject

SetNextObject
Picture Attribute
AddPicture SetColor
ClosePicture SetCurrentPalette
DisplayPicture SetDrawingMode
GetNumberOfObjects SetLineType
OpenPicture SetPictureColors
WritePicture

3-1



Table 3-1.

Device-Independent Procedures by Function
(Page 2 of 2)

Drawing

Draw

DrawArc
DrawCircle
DrawLine
DrawRelative
FillRectangle
Move
MoveRelative

Text

SetCharacter3ize
SetFont
SetLabelOrigin
WriteTextString

Font
GetFontName
GetFontNumber
GetNumberFonts

GetUserFontName
SetUserFont

Label

AddLabel

DeleteCurrentLabel

GetCurrentLabel
GetLabelData
ModifyLabel
SetFirstLabel
SetNextLabel

Transformation

GetTransformationData
SetScale
SetScaleRelative
SetTranslate
SetTranslateRelative

Viewing

GetWindowData
SetViewport
SetWindow

Cursor

GetCursorPosition
SetNDCCursorPosition
SetObjectCursorPos.
SetWorldCursorPosition
TurnCursorOff
TurnCursorOn

3-2



The following steps are presented as a guideline to illustrate
typical wuse of the device-independent procedures. In this
example, a picture is opened, an object is created, and the
picture 1is saved in a picture file. The procedures, or
examples of possible procedures, used to accomplish each step
are included in parentheses.

1. Allocate memory for the picture file workarea
(AllocMemorySL).

2. Initialize the graphics system (InitGraphics).
3. Open a new picture in write mode (OpenPicture).

4., Begin a new object and specify the range of user coordinates
to be used for drawing the object (AddObject).

5. If the drawing is to be limited to a subset of the world
coordinate system, specify the limits (SetLimits).

6. Use attribute, drawing, label, text, and font commands to
create an object (for example, SetColor, DrawlLine, Move,
WriteTextString, AddLabel).

7. Close the object (CloseObject).
8. Save the picture (ClosePicture).

Transformation procedures can be used whenever an object 1is
open. Viewing procedures can be used any time the picture is
open.

This section contains a subsection for each group of
device-independent procedures. The procedures within each
group are ordered alphabetically. A brief description, the
procedural interface, and the parameter definitions are included
for each procedure. The conventions used for parameter names in
graphics library procedures are defined in the B 20
Operating System Reference Manual. DBesides the data type
prefixes defined there, the graphics software introduces two
new types: "r" and "w."

o r 4-byte short real number
o w word (16 bits)

In addition to describing the device-independent graphics library
procedures, this section also includes a subsection on user-
written procedures that can be called from the graphics software
to provide extended capabilities for an application. A user-
written procedure can be called, for example, from the graphics
code that handles plotter output. An application can include
procedures that are called by the graphics software to halt
the plotter output while pens are changed or paper is loaded.
User interaction through messages and replies on the video
display unit can also be provided by user-written procedures.



INITIALIZATION PROCEDURES

The initialization procedures are used to set the values for
different variables used by the graphics software.

There are eight initialization procedures:

o) ClearViewport

o) InitGraphics

o SetLimits

o SetOutputDevice

o] SetOutputType

o SetPlotterDevice

o SetPlotterMaterial

o SetUserCoordinates

InitGraphics 1is always the first graphics function performed
prior to using device-independent (high level) procedures.

The other initialization procedures <can be used to set their
respective variables at any point. :

3-4



ClearViewponrt

Description

ClearViewport clears the viewport. The video display screen is
erased.

If a plotter or printer has been assigned as the output device,
this procedure has no effect.
Procedural Interface

ClearViewport: ErcType

InitGraphics
Description

InitGraphics initializes the variables used by the graphics
software. The display memory on the graphics control board is
cleared, and the default line type and drawing mode values

are set., The B 22 window defaults to the range (0,0) through
(100,77.74), and the viewport is set to (0,0) through (1,.7744).
On the B 21 series the range is (0,0) through (100,73.84),
with the viewport set to (0,0) through (1.7384). The B 26
window defaults to the range (0,0) through (100,74), and the
viewpoint is set to (0,0) through (1,.74).

InitGraphics must be the first graphics procedure called.
Procedural Interface

InitGraphics: ErcType



SetLimits
Description

SetLimits allows a portion of the world coordinate system to

. be defined as the area of interest. Used in conjunction with
SetUserCoordinates, this procedure sets up a rectangular
area, and SetUserCoordinates provides the range of wuser-defined
coordinate values that are mapped to the rectangle.

This procedure could be used, for example, to define a box
around a bar chart. If SetUserCoordinates is wused, the
user-defined coordinates supplied when the bar chart is drawn are
mapped to the area defined by the box.

If SetLimits 1is not used, the default 'world coordinate area

is the portion with the same aspect ratio as the video display
screen; (0,0) to (100,77.74) for B 22, (0,0) to (100,73.84) for

the B 21, and (0,0) to (100,74) for the B 26 series systems.

The order in which the SetLimits command is used is important.

If called before an object is opened, it must be followed by an
AddObject command or an OpenTempObject command. If used after an
object is opened, it must be followed by a SetUserCoordinates
command. If these conventions are not followed, the invocation
of SetLimits will have no effect on subsequent drawing commands.

Procedural Interface

SetLimits (rXMin, rYMin, rXMax, rYMax): Erctype

where

rXMin specifies the minimum X value in world
coordinates.

rYMin specifies the minimum Y value in world
coordinates.

rXMax specifies the maximum X value in world
coordinates.

rYMax specifies the maximum Y value in world

coordinates.



SetOutputDevice
Description

SetOutput Device allows the output device to be reassigned. The
default output device is the video display screen.

This procedure is used to assign a plotter or a dot matrix
printer as the output device. Refer to the "User-Written
Procedures" subsection below for information on application
procedures that «can be called by graphies library procedures
to extend the capabilities for plotter output processing.
Refer also to the descriptions of the following procedures:
SetOutputType, SetPlotterDevice, and SetPlotterMaterial. These
procedures should be called, if needed, before SetOutputDevice.

Procedural Interface

SetOutputDevice (iDevice): Erctype

where

iDevice specifies the output device.
0 = video display screen
1 = plotter
2 = dot matrix printer

3-7



SetOutputType

Description

SetOutputlype specifies the code for fhe device that is to be
used when the output is directed to a plotter or a printer.
procedure must be called before SetOutputDevice is called.

Procedural Interface

SetOutputType (iOutputType): ErcType

where

iOutputType

This

specifies the code for the output device.-

0

—_

W 0 < o Ul >~ W

@)

-— -
N -

HPT7470A
HP7220C
Strobe 100
Printronix MVP
Anadex 9620
AP1351
B9253
Envision 420
not used
HPT4T5A
HP7220T
Okidata Microline 93
Data Products 8010



SetPlotterDevice
Description

SetPlotterDevice specifies either the name of the disk file
where the output is to be written or, if the output is to be
written directly to the output device, the configuration file
for the device. If the output is not going to disk, the
following type of configuration information is used:

[coMM]A
HP7470A - [COMMIB&[sys]<sys>PlotterConfig.sys
HPT7220C

[COMM]A
Strobe - [COMM]B&[sysl<sys>StrobeConfig.sys
Anadex - [LPT]
Printronix

In order to plot to a spooler or disk file, applications must
declare an external byte variable called FSpool and assign it the
value 255 (OFF hex) before calling SetPlotterDevice.

Procedural Interface

SetPlotterDevice (pbDevName, cbDevName): ErcType

where

pbDevName

cbDevName describe the disk file name or
configuration file for the device.

SetPlotterMaterial

Description

SetPlotterMaterial specifies whether the output is to be plotted
on paper or on a transparency. This procedure should be
called before using SetOutputDevice. The SetOutputDevice
initialization routine reduces the plotter speed when the
output 1is going to be plotted on a transparency.

Procedural Interface

SetPlotterMaterial (iMaterial): ErcType

where
iMateriél specifies whether the output is to be on
paper or on a transparency.

0 = paper

1 = transparency

3-9



SetUserCoordinates
Description

SetUserCoordinates sets the user-defined coordinates used in the
drawing procedures. The units supplied in this procedure are
mapped to the world coordinate system. When user-defined
coordinate positions are specified in subsequent procedures, the
graphics software automatically translates the wunits to the
world coordinate system.

SetLimits can be used in conjunction with this procedure to
define a portion of the world coordinate system to which
the wuser-defined coordinates are to be mapped.

Procedural Interface

SetUserCoordinates (rXMin, rYMin, rXMax, rYMax): Erctype

where

rXMin specifies the minimum x value in user-
defined coordinates to be mapped to the
minimum X value in world coordinates.

rYMin specifies the minimum Y value in user-
defined coordinates to be mapped to the
minimum Y value in world coordinates.

rXMax specifies the maximum X value in user-
defined coordinates to be mapped to the
maximum X value in world coordinates.

rYMax specifies the maximum Y value in user-

defined coordinates to be mapped to the
maximum Y value in world coordinates.

3-10



PICTURE PROCEDURES

The picture procedures are used to manage picture files and
to manipulate pictures in display memory. When a new graphic
representation is being created a picture 1is opened to save
it. Likewise, when an object 1in an existing picture is to be
modified, the first step is to open the picture. Once a picture
is opened, the graphic representations within the picture can
be be created, modified, and transformed. When the current
picture has been fully processed, it is written to a picture
file and closed. After the current picture 1is closed,
" another picture can be processed.

There are six picture procedures:
o) AddPicture

o ClosePicture

o DisplayPicture

[} GetNumberOfObjects

o OpenPicture

o WritePicture

OpenPicture must be performed before any of the other picture
procedures can be used.



AddPicture
Description

AddPicture adds the specified picture file to the current
picture. The added picture becomes part of the current picture.
In B 24 and B 26 Color Graphics workstation applications, the
fOverwritePalette parameter is used to specify which color
palette should be used to draw the added object. TRUE = yes,
overwrite with the palette from the added picture file. FALSE =
no, use the palette that has already been set for the current
picture.

Procedural Interface

AddPicture (pbPictureName, cbPictureName
fOverwritePalette): ErcType

where
pbPictureName
cbPictureName describes the picture file to be merged into
the current picture. :
fOverwritePalette specifies whether the palette from the
added picture should overwrite the palette
in the current picture.
OFFh = TRUE, overwrite

OOh = FALSE, do not overwrite

ClosePicture

Description

ClosePicture closes the current picture. If the parameter fSave
is set to TRUE, the picture is written before it is closed. I%
is saved in the picture file previously specified in the
OpenPicture command. The fSave parameter is set to FALSE when
the picture has already been saved by a previous WritePicture
command .

Procedural Interface

ClosePicture (fSave): ErcType

where

fSave gspecifies whether the picture is to be
written before it is closed.

OFFh = TRUE, write.
OOh = FALSE, do not write.



DisplayPicture

Description

DisplayPicture displays the current picture. It is used after
OpenPicture to display a picture, and after a picture is
modified, to redisplay it. The screen is not erased before the
picture is displayed; the new information is merged or overlays
parts of the existing picture. ClearViewport must be used before
DisplayPicture if the screen is to be erased before displaying.

DisplayPicture calls the procedure, ReadInterruptKey to
determine whether the output to the screen, plotter, or printer
should be interrupted. The graphics 1library version of
ReadInterruptKey returns a "O" status code which prompts
DisplayPicture to continue writing the output without an
.interruption.

ReadInterruptKey can be replaced by a user-written procedure
with the same name to halt the DisplayPicture process. Refer to
the "User-Written Procedures" subsection for detailed
information about the use of ReadInterruptKey.

SetPen is another procedure that 1is called by DisplayPicture
and can be replaced by user-written code. When the output
device 1is a plotter and DisplayPicture encounters a new pen
number, SetPen is called. The purpose of SetPen is to enable the
application to halt the plotter output and notify the wuser that
the pen should be changed. Refer to the "User-Written
Procedures" subsection for detailed information about the use of
SetPen.

Procedural Interface
DisplayPicture (fInterruptOnKey): ErcType
where

fiInterruptOnKey indicates whether or not
ReadInterruptKey is to be called.

OFFh = TRUE, ReadInterruptKey
is called.

00h = FALSE, it is not.

3-13



GetNumberOfObjects
Description

GetNumberOfObjects returns the number of objects in the current
picture. The number is placed in a 4-byte memory location.

Procedural Interface

GetNumberOfObjects (pNObjectsRet): ErcType

where

pNObjectsRet points to the memory address where the
number of objects in the picture is to be
returned.

OpenPicture
Description

OpenPicture opens the specified picture. It is used to create
new pictures and to modify existing ones.

One of three modes must be specified: read, write, or modify.

Read mode is used to view an existing picture. The size of the
window or viewport can be changed, the objects within the picture
can be transformed, but the objects cannot be modified.

Modify mode also requires an existing picture. This mode is used
when new,objects are to be added to the picture and when ex1st1ng
objects are to be modified.

Write mode is used to create a new picture. Objects can be
created for the new picture or existing pictures can be added
from picture files to create a complex picture. Write mode can
also be used to open existing pictures from picture files. When
write mode is used with an existing picture, the picture is
deleted when the file is opened, and the new version replaces the
old.

A segment of memory must be allocated before OpenPicture is
executed. The memory area is used as a workarea and must be
large enough to contain the whole picture. Refer to Appendix D
for information about the memory requirements for pictures and
objects.

OpenPicture must be called before SetOutputDevice when printing a
picture and after SetOutputDevice when plotting a picture.

3-14



Procedural Interface

OpenPicture

where

pbPictureName
cbPicturelName

pbPassword
cbPassword

mode

pMemory
cParasMemory

(pbPictureName, cbPictureName, pbPassword,
cbPassword, mode, pMemory, cParasMemory):
Erctype

describe a character string specifying the
name of a picture file.

describe the standard volume, directory, or
file password that authorizes access to the
picture file.

is read (shared) or modify and write
(exclusive). The mode is indicated by a 16-
bit value representing the ASCII constants
"mr" (mode read), "mm" (mode modify), or "mw"
(mode write). 1In these ASCII constants, the
first character (m) is the high-order byte
and the second character (r, m, or w
respectively) is the low-order byte. This

is the reverse of the byte order for strings
in B 20 programming languages.

specifies the segment of memory to be used as
a work area for the picture. The memory size
is specified as the number of 16-byte
paragraphs allocated.



WritePicture
Description

WritePicture writes the current picture to the picture file
specified by pbPictureName, cbPictureName. If a picture file
with this name already exists, it is overwritten by the current
picture.. When WritePicture is executed, the current picture is
not closed; it remains the current picture, and processing can
continue.

Procedural Interface

WritePicture (pbPictureName cbPictureName):

ErcType
where
pbPictureName
cbPictureName specifies the picture file to which the

current picture is to be written.
OBJECT PROCEDURES

The object procedures are used to add new objects to the current
picture, and to modify existing objects. When there are multiple
objects in a picture, only one can be processed at a time. There
are also object procedures that are used to move through the
objects in a picture to select the current object. When a
current object is designated, subsequent commands operate on that
object until another object is selected as the current object.
There are ten object procedures:

o AddObject

o ClearLabels T

o ClearVectors

o CloseObject

o CloseTempObject

o DisplayCurrentObject

o OpenTempObject

o RemoveCurrentObject

(o} SetFirstObject

o SetNextObject

Before any objéct procedures can be used, a picture must be

opened with OpenPicture, or the object must be declared as a
temporary object by OpenTempObject.

3-16



AddObject

Description

AddObject is used to begin a new object that is to be part of the
current picture. The object specified by pbObjectName,
cbObjectName becomes the current object. All subsequent vector
commands and labels are stored in this object's vector and label
lists.

Minimum and maximum X and Y coordinates specify the range of user
coordinates that the new object will use. User-defined
coordinate values specified in a previous AddObject or
SetUserCoordinate procedure will be overridden by this call.

A picture must be open in modify or write mode before AddObject
can be used, and no other object may be open.
Procedural Interface

AddObject (pbObjectName, cbObjectName, rXMin,
r¥YMin, rXMax, rYMax): ErcType

where

pbObjectName

cbObjectName specifies the name of theobject to be added.
The maximum length for an object name is 12
characters. '

rXMin specifies the minimum X value of the object.

rYMin specifies the minimum Y value of the object.

rXMax specifies the maximum X value of the object.

riMax specifies the maximum Y value of the object.

3-17



ClearLabels

Description

ClearLabels clears the current object's label list. Since
individual labels can be modified by ModifylLabel, this procedure
is used only when all the labels are to be replaced.

A picture must be open in write or modify mode before ClearLabels
can be used. An object must also have been designated as the
current object.

Procedural Interface

ClearLabels: ErcType

ClearVectors

Description

ClearVectors clears the current object's vector list. Because
individual vector commands cannot be modified, the whole 1list is
cleared when an individual vector is to be recomputed.

A picture must be open in write or modify mode before
ClearVectors can be used. An object must also have been
designated as the current object.

Procedural Interface

ClearVectors: ErcType
CloseObject

Description

CloseObject closes the current object. An object must be closed
before a new one can be selected as the current object.

Both a picture and an object must be open to use CloseObject.
The object cannot be temporary.
_Procedural Interface

CloseObject: ErcType



CloseTempObject

Description

CloseTempObject closes a temporary object.

An error condition occurs if there is not a temporary object
open.

Procedural Interface

CloseTempObject: ErcType

DisplayCurrentObject

Description

DisplayCurrentObject displays the current object on the screen.
The screen is not erased before the object is displayed. The
current object is merged with the current contents of the screen.
A picture must be open before DisplayCurrentObject is used, and
an object must have been designated as the current object.

Procedural Interface

DisplayCurrentObject: ErcType



OpenTempObject

Description

OpenTempObject opens a temporary object. When an object is
temporary, subsequent commands are not saved in a picture file.
If a picture has been opened, it must be closed before a
temporary object can be opened. Likewise, if a current object
has been designated, it must be closed before OpenTempObject can
be used.

Minimum and maximum coordinates are specified to indicate the
range of user coordinates that will be used for this object.User-
defined coordinate values specified in a previous AddObject or
SetUserCoordinates procedure will be overridden by this call.

Procedural Interface

OpenTempObject (rXMin, rYMin, rXMax, rYMax):

ErcType
where
rXMin specifies the minimum X value of the object.
rYMin specifies the minimum Y value of the object.
rXMax specifies the maximum X value of the object.
rYMax specifies the maximum Y value of the object.
RemoveCurrentObject
Description

RemoveCurrentObject removes the current object from the current
picture.

A picture must be open in write or modify mode, and an object

must have been designated as the current object before
RemoveCurrentObject can be used.

Procedural Interface

RemoveCurrentObject: ErcType

3-20



SetFirstObject

Description

SetFirstObject designates the first object in the picture as the
current object. Objects are stored in the order they were
created.

A picture must be open before SetFirstObject can be used.

Procedural Interface

SetFirstObject: ErcType

SetNextObject

Description

SetNextObject specifies a new current object. The object that
follows the current object becomes the new current object. If a
current object has not been designated when this procedure is
called, then the first object in the picture becomes the current
object. Objects are stored in the order they were created