Data General Nova Series

The new Dual Nova, which uses Data General's Real-time Disc Operating System (RDOS), is said to be the first dual-processor/ shared-disc minicomputer available to users as a standard product. Three models are available, using a fixed-head Novadisc, a moving-head disc cartridge, or a disc pack drive. Prices start at $\$ 44,930$ for a basic Dual Nova 2 (pictured), and range upward to $\$ 83,172$ for a Dual Nova 840 sharing a 24.9-megabyte disc pack drive.

MANAGEMENT SUMMARY

Data General's widely accepted Nova series has been somewhat reshaped by the October 1974 announcement of the new Eclipse series (see following report). For one thing, the Supernova and the original, basic Nova are no longer in production. Further, the 840 is no longer the most powerful Data General system. However, the remaining Novas at the low end of the series will continue to proliferate in those areas where low-cost OEM systems are in demand. Additionally, the Novas are the only Data General systems currently available with 4,096 words of memory. Nevertheless, Data General will not hesitate to replace the entire Nova series if the new Eclipse line takes off. This is particularly true because all Nova systems software and most user programs written for the Novas will run on Eclipse systems.

When the basic Nova minicomputer-forerunner of a family presently comprising 10 models-was introduced in September 1968, it was based upon a 16 -bit word length at a time when most manufacturers were busily developing 12-bit machines (e.g., DEC's PDP-8 family). Less than a year later, Data General introduced the Supernova, a machine with more than three times the Σ

The numerous Novas, which comprise one of the most popular 16-bit minicomputer families, are marketed to OEMs and sophisticated end users. This dynamic family of minicomputer systems has elevated its maker, Data General Corporation, to the coveted "Number Two" position among minicomputer manufacturers.

CHARACTERISTICS

MANUFACTURER: Data General Corporation, Southboro, Massachusetts 01772. Telephone (617) 485-9100.

MODELS: Nova $2 / 4,2 / 10,800,820,840,1200,1210$, 1220.

DATA FORMATS

BASIC UNIT: 16-bit word. The processor can also handle eight-bit bytes.

FIXED-POINT OPERANDS: 16-bit operands can be interpreted as logical words, memory addresses, two eight-bit bytes, or as 16 -bit signed or unsigned binary numbers.

FLOATING POINT OPERANDS: 32-bit single-precision operands with a seven-bit exponent and signed 24 -bit fraction; and 64-bit double-precision operands with a seven-bit exponent and signed 56 -bit fraction. All Nova processors can implement single and double-precision floating-point arithmetic through software subroutines. With the optional floating point unit (FPU), single- and double-precision arithmetic can be handled by hardware (not available on Nova 2/4).

INSTRUCTIONS: One-word instructions. There are four basic instruction types; each with different formats: Jump and Modify Memory, Move Data, I/O, and Arithmetic and Logic. In all instructions, bit positions $\mathbf{0 - 2}$ specify the instruction type.

In the Jump and Modify instructions, bits 3 and 4 identify the specific function (op code), and the rest of the word contains information used to calculate the effective address (8-bit displacement, two-bit index register specification, and one-bit indicator to specify direct or indirect addressing). In Move Data instructions, bits 3 and 4 address an accumulator, and the rest of the word is identical in structure to the Jump and Modify type above. For I/O instructions, bits 5-9 specify the function (indication of transfer direction, selection of an I/O device register and/or specification of an operation). Bits 3 and 4 select an accumulator for transfer, and bits 10-15 indicate a specific device. Arithmetic and Logic instructions use bits 1 and 2 to identify an accumulator containing a second operand (if present), bits 5-7 to specify primary function, and the rest of the word to specify secondary functions, if any.

Data General Nova Series

Σ speed of the original Nova and with unusually strong processing capabilities for a minicomputer of that day. That machine subsequently was followed by the Supernova SC, the first commercial minicomputer to employ semiconductor main memory. The Supernova SC extended the upper limit of the Nova family to nearly seven times its original processor capability.

Also announced in October 1970, with the Supernova SC, were the Nova 1200 and Nova 800, using 1200nanosecond and 800 -nanosecond core memories, respectively. About a year later, the Models 1200 and 800 were, in turn, redefined by the $1210,1220,1230$, and 820. The primary distinction between these models and the earlier 1200 and 800 systems lies in mechanical packaging that permits more economical production and assembly methods.

With the addition of the larger Model 840 (800 nanoseconds) in April 1973 and the low-priced Nova 2/4 and 2/10 (1 microsecond or 800 nanoseconds) in June 1973, Data General is currently focusing marketing attention on the $2 / 4$ and $2 / 10$ for orders of five or more units, and on the 840 system for heavier processing requirements. The Model 840 is the top of the current Nova line, with the largest main memory range among Novas and with processor speeds equal to the most demanding applications in the minicomputer arena.

The latest additions to the Nova line are the dualprocessor configurations announced early in 1974. The Nova 840 and Nova $2 / 10$ are both available in standard dual-processor, shared-disc system configurations, which are unique in the minicomputer industry as off-the-shelf items, according to Data General.

At present, therefore, Data General's Nova line comprises three sets: the low-cost Series 2, the high- Σ

For all memory reference instructions, bits 5-15 are used to formulate the effective address, using bits 8-15 as the displacement (or direct address). Each instruction can address the 256 words in its vicinity directly, or can use either relative or base register addressing. No decimal instructions are available for any Nova family member.
INTERNAL CODE: ASCII, binary.

MAIN STORAGE

STORAGE TYPE: Magnetic core.
CYCLE TIME: 1.2 (1200 series), 1.0 (2 series), and 0.8 (800 series and 2 series) microseconds per word of core.

CAPACITY: 4 K to 32 K words of core memory, for most family members, in increments of $4 \mathrm{~K}, 8 \mathrm{~K}$, or 16 K words, except Model 840 which can have up to 128 K words. (The 16K-word board is available in the 1.2 -microsecond cycle time for the Nova 2 series only.) A read-only memory (ROM) of 256,512 , or 1,024 words is available for any Nova family member except the 840 and the 2 series.

CHECKING: None.

STORAGE PROTECTION: None of the Nova 2 or 1200 series. In the 800's, an optional memory allocation and protection (MAP) option is available to confine individual program access to an authorized area in main memory. The MAP option divides main memory into 4 K -word segments, and can restrict access to 256 -word pages. MAP is not supported by any standard DGC software, except by the Real-Time Disc Operating System.

A memory management and protection unit (MMPU) is available on the 840 for expanding memory to 128 K words and protecting memory and restricting physical level I/O device access from user programs. The 840 MMPU divides main memory into 1 K -word pages, and can protect individual pages through software support under the Real-Time Disc Operating System (RDOS).

CENTRAL PROCESSORS

GENERAL: The entire Nova family is organized around a single basic design with the processor, memory modules,

SUMMARY DATA FOR NOVA MODELS

	Nova $2 / 4$	Nova $2 / 10$	Nova 800	Nova 820	Nova 840	$\begin{aligned} & \text { Nova } \\ & 1200 \end{aligned}$	$\begin{aligned} & \text { Nova } \\ & 1210 \end{aligned}$	$\begin{aligned} & \text { Nova } \\ & 1220 \end{aligned}$
Announced	6/73	6/73	10/70	11/71	3:73.	10/70	11/71	11/71
First Delivery	10/73	10/73	3/71	4/72	6/73	12/70	2/72	3/72
Basic Purchase Price*	\$3,850	\$4,750	\$6,950	\$6,450	\$16,880**	\$5,450	\$4,350	\$5,250
Relative Power	4.5	4.5	4.5	4.5	4.5	2.5	2.5	2.5
Available Chassis Slots	2	8	4	7	12	5	2	8
Number Installed	All models, over 12,000							

[^0]Data General Nova Series

PERIPHERALS/TERMINALS

DEVICE	DESCRIPTION	SPEED
MAGNETIC TAPE UNITS		
6020/21/22/23	$\begin{aligned} & \text { Industry-compatible, } 75 \text { ips; } \\ & \left.\begin{array}{l} \text { 7-track, } 556 / 800 \text { bpi } \\ 9 \text {-track, } 800 \mathrm{bpi} \end{array}\right\} \begin{array}{l} \text { with contro! for } \\ \text { up to } 8 \text { drives } \end{array} \end{aligned}$	60 KBS
4030K/L (Wang 812)	Industry-compatible, $12.5 \mathrm{ips} ;$ 7-track, 556/800 bpi (1 slot/control), 9 -track, 800 bpi	10 KBS
4196A/B	Industry-compatible, 45 ips; 7-track, 1600 bpi 9 -track, 1600 bpi	72 KBS
Nova Cassette	One-to-eight-drive subsystem, 30 ips, 50K words (1 slot/control)	800 words/sec.
LINE PRINTERS		
4034C (Centronics 101)	132-position, 64-character, ASCII (4014A interface)	165 cps
4034D	132-position, 64-character, ASCII (4014A interface)	165 cps
4034G	136-position, 64-character, ASCII (4014A interface)	300 lpm
4034H	136-position, 96-character, ASCII (4014A interface)	240 lpm
CARD EQUIPMENT		
4016C	Reader, 80-column (4036 interface)	150 cpm
4016D (Documation)	Reader, 80-column (4036 interface)	285 cpm
4016E (Documation)	Reader, 80-column (4036 interface)	400 cpm
4016F (Documation)	Reader, 80-column (4036 interface)	600 cpm
4016G (Documation)	Reader, 80-column (4036 interface)	$1,000 \mathrm{cpm}$
4016H, I, J, K, L	Mark sense reader (4036 interface)	$150,285,400,600$ or $1,000 \mathrm{cpm}$
PAPER TAPE EQUIPMENT		
6013	Reader, 8-channel (4007 interface)	400 cps
4012A (TTY BRPE-11)	Punch, 8-channel (4007 Interface)	63.3 cps
TERMINALS		
40101	A/N CRT, 20 lines $\times 80$ characters	to 2,400 bps
6010	A/N CRT, 24 lines $\times 80$ characters	to $4,800 \mathrm{bps}$
6012	A/N CRT, 24 lines $\times 80$ characters (buffered)	to $4,800 \mathrm{bps}$

Σ performance Series 800, and the intermediate Series 1200. Please review the Nova Series Summary Data Chart at left for a convenient recap of the current Nova models.

Although processor options and configuration rules vary among various members of the Nova family, all employ the same basic 16 -bit architecture with four accumulators for computational use (two of which can be used Σ
and communications/peripheral interfaces each contained on one or more individual 15 -inch square boards. These boards plug into sots in the Nova chassis with its distinctive backplane wiring and power supply. In Models $820,1210,1220$, and 2 , the power supply is built into the back panel. Both models 1200 and 800 are optionally available in a "Jumbo" cabinet with space and power supplies for ten more board slots than the standard models. (See Configuration Rules below for available subassembly slots on all models.)

Data General Nova Series

for indexed registers), interchangeable core and readonly memory (except for the Nova 2 and 840), an I/O Bus, either a standard or high-speed Direct Memory Access (DMA) data channel, common 15 -inch-square PC board packaging design, and strong communications capabilities. Most Nova systems can have both a core main memory and a semiconductor ROM. The actual number of devices that can be configured with any Nova system depends upon the number of available plug-in circuit board "slots" in the chassis.

The Nova family of minicomputers is generally used in control/monitoring systems, industrial testing, data acquisition/analysis, and various other scientific and educational applications, rather than in general business or accounting. The majority of Nova users are either OEM buyers or end users building their own control systems. The Nova 840, with its multiprogramming capability and high-level language processors, is moving strongly into the sophisticated end user market.

Independently packaged complete systems built upon Nova minicomputers include the following: point-of-sale systems manufactured by TRW Data Systems; the 15 -terminal text editing (word processing) system from Index Systems, Inc.; the Designer I or II plotter/digitizer system from Computervision Corporation in Burlington, Mass.; message switching systems from Action Communications Systems; Laboratory Instrumentation systems from Syntex Analytical Instruments (X-Ray diffraction); and DigiLab's Interferometer.

Data General's own end user packaged systems include the Seminar series of educational systems, all supporting the BASIC language. The Seminar machines range from single-user BASIC systems to 32 -user educational/ administrative systems offering BASIC, FORTRAN 5 , and ALGOL 60 support. Prices range from $\$ 6,100$ to more than $\$ 84,000$ for these systems. The Nova 840 , in the largest of the Seminars, offers concurrent timesharing and batch operations.

Data General does not produce a "ruggedized" Nova, but such versions are available from Rolm Corporation, of Cupertino, California.

INSTRUCTION TIMES

	Series 2		Series 800	Series 1200
	800 nsec.	1000 nsec.		2.0
1.6	2.55			
Load/Store	0.8	1.0	0.8	1.35
Add/Subtract	$5.5 / 5.8$	$5.6 / 5.9$	8.8	$3.75 / 4.05$
Multiply/Divide	1.1	2.1	1.0	2.7

Any Nova system can have either a full programmer's console or a lower-level on-off-type "turnkey"console.

In fully debugged, dedicated applications environments, the programmer console can be excluded completely and the Nova processor used as a hardwired controller with the turnkey console; program changes would be made by substitution of ROM boards. The turnkey console is an operator panel, rather than a true console with keyboard, signal lights, power on/off buttons, etc.

Processor options for all Nova models include power monitor/auto restart, hardware multiply/divide, and a real-time clock. The later attaches and operates like a peripheral device. In addition to the "standard" options, the $\mathbf{8 0 0}$ series has a memory allocation/protection option. Also, 2's, 1200's, and 800's can have an automatic program load option.

All models except the $2 / 10,820,1220$, and 840 can be contained in a $51 /$-inch high cabinet; the 800 and 1200 Jumbos, as well as the $2 / 10,820,1220$, and 840 use the full-sized $101 / 2$-inch cabinet.

REGISTERS: Each Nova processor has four 16-bit accumulators and a 15 -bit program counter (PC) register. The accumulators are used to hold operands for arithmetic and logical operations and two of them can be used as index registers. The PC register can also be used by applications programs as an index register for relative addressing of up to 256 words in the vicinity of the instruction (128 positions ahead or behind).

INDIRECT ADDRESSING: Standard, multi-level.

INSTRUCTION REPERTOIRE: All Novas have the same basic complement of four Jump and Modify Memory instructions, two Move Data instructions, 16 I/O instructions, and eight arithmetic and logic instructions. (There are 256 variations on each of the arithmetic and logic instructions.) Hardware multiply/divide instructions are available as options.

INSTRUCTION TIMINGS: The timings shown in the accompanying chart are for full-word, fixed-point operands in microseconds.

INTERRUPTS: A 16-level programmed priority interrupt facility is used to recognize interrupts for $1 / 0$ operations. Each I/O device is wired to one of 16 bus positions, and is either authorized or denied authorization to interrupt particular service routines by an Interrupt Disable Mask Bit that corresponds to the bus position of the device.

PROCESSOR MODES: The $\mathbf{8 0 0}$ Series recognizes either a supervisor or user mode of program execution for use with the memory allocation and protection options. The executive program runs in the supervisor mode, and can write-protect portions of each user's memory area. With this option and operating in user mode, no user can write in a protected area, use more than two levels of indirect addressing, or issue I/O instructions. The memory management and protection unit on the Nova 840 also provides user (mapped) and supervisor (non-mapped) modes. In the user mode, logical memory addresses are mapped to physical addresses, memory can be writeprotected, and I/O devices can be individually protected from physical access.

Data General Nova Series

DMA DATA CHANNEL RATES*

	Series 800	Series 1200	Series 2**
Standard in	500,000	833,333	$476,190 /$
Standard out			434,782
	500,000	555,555	$476,190 /$
			434,782
High-speed in	$1,250,000$	-	$1,250,000 /$
			833,333
High-speed out	$1,000,000$	-	$833,333 /$
			714,285
Standard increment	454,545	416,666	$454,545 /$
			416,666
High-speed increment	833,333	-	$769,230 /$
			666,666

[^1]**With $800 \mathrm{~ns} / 1.0$ us memories.
Σ Data General provides its own maintenance and field support services through about 50 Field Service Centers distributed worldwide, which employ approximately 200 service personnel. Two depot locations, Southboro, Massachusetts and El Segundo, California, provide comprehensive repair facilities.

Competition for Data General's Nova family comes from a number of other minicomputer builders, but the main source of competition is Digital Equipment Corporation's PDP-11 family of 16-bit minicomputers. Generally, both families are highly regarded in the industry, and until release of the Nova 2's, offered roughly comparable price performance. The Nova 2's, and their dramatic price cuts of about 40%, once again restated Data General's determination to keep improving the minicomputer industry's price/performance ratios. While DEC has far more systems of all types installed, Data General has delivered roughly as many 16-bit machines as DEC, and many users feel that Data General's Nova software support is somewhat more fully developed. (Please note that Data General's software is described in detail in Report M13-304-101.)

In any event, as the Number Two minicomputer vendor, Data General has fared well with the Novas, and is still in the process of expanding their peripheral equipment and software facilities.

USER REACTION

In Datapro's 1974 survey of minicomputer users, responses were received from 21 Data General users with a total of 88 installed Nova Series computers. Here's how they rated their Novas in nine important areas:

INPUT/OUTPUT CONTROL

INPUT/OUTPUT CHANNELS: An I/O bus and a Direct Memory Access (DMA) channel are standard on all Novas. Various high-speed options are available (see table). The DMA data channel provides a multiplexor-like capability and can be seized by any device through a data channel request to handle 16 -bit data transfers to and from main memory. The DMA channel can be used to increment the contents of storage locations by " 1. ."

SIMULTANEOUS OPERATIONS: Memory overlapping is provided on the Series 2 only.

CONFIGURATION RULES: Up to 62 peripheral devices can be attached to the \mathbf{I} / \mathbf{O} bus. The actual number of devices that can be attached to a particular Nova depends upon the available slots in the basic chassis and any available chassis extensions. The $\mathbf{2 / 1 0}$ has 10 slots (1 for the processor and 1 for a standard memory module); the 1200 has 7 slots (1 used for processor); the 1200 Jumbo has 17 slots ($\mathbf{1}$ for processor); the $\mathbf{1 2 1 0}$ or $\mathbf{2 / 4}$ has 4 siots (1 used for the processor and 1 for a standard core memory module); the 1220 has 10 slots (one used for processor and 1 for a standard core memory module); the 800 has 7 slots (2 used for the processor); the 800 Jumbo has 17 stots (2 for the processor); the $\mathbf{8 2 0}$ has $\mathbf{1 0}$ slots (2 for the processor, 1 for a standard memory module); and the 840 has 17 slots (2 for the processor, 2 for the basic memory modules, and 1 for the MMPU). Each memory module occupies one slot. The multiply/divide feature on the Nova 1200's requires one slot; the memory protection feature on the 800's requires one slot. The Memory Management and Protection Unit occupies one of the sots in an 840 chassis. Memory expansions of 7 slots are provided for the $\mathbf{1 2 0 0}$ or the $\mathbf{8 0 0}$, $\mathbf{1 0}$ slots for the $\mathbf{1 2 2 0}$ and 820 , and 7 or 15 slots for the 840 . Individual slot requirements for interfaces and communications terminals are shown in the Peripherals/Terminals table and Equipment Prices section.

MASS STORAGE

Note that all disc subsystems can be accessed by two controllers, facilitating the design of dual processor/ shared-disc systems. Dual-processor configurations are fully software-supported by Data General.)

FIXED-HEAD DISC SUBSYSTEMS: Consists of a 4019 Controller and a total on-line capacity of up to two million words. Novadiscs can hold 131,072, 262,144, 524,288 or 786,432 words. All of the fixed-head drives run at 3600 rpm , with an average access time of 8.4 milliseconds and an average data transfer rate of 57,835 words per second. Each disc is organized into tracks with 8 sectors per track and 256 words per sector. (A disc may have from 32 to 384 tracks.) Quarter- or half-unit drives have fewer heads, and therefore recognize fewer tracks. Under operator control, switches on the back of each drive can be manually set to provide write protection to any of 8 sets of 16 tracks. The 4019 Controller connects to the data channel on any Nova series system.

MOVING-HEAD DISC SUBSYSTEMS: These removabledisc subsystems consist of a 4046 Controller, an adapter for any of three types of disc drives, and up to four individual drives with a total on-line capacity of 49 million words.

Data General Nova Series

Σ	Excellent	Good	Fair	Poor	$\underline{W}{ }^{*}$
Overall performance	10	7	2	0	3.4
Ease of programming	1	10	6	1	2.6
Ease of operation	6	9	5	0	3.1
Hardware reliability	8	8	3	0	3.3
Maintenance service	0	10	8	1	2.5
Technical support	0	9	6	3	2.3
Operating systems	5	4	7	0	2.9
Compilers and assemblers	4	7	6	0	2.9
Applications programs	1	5	1	4	2.3

control is included in the subsystem. Options are available for parity checking with each character, and an internal clock for use without a modem.

4023 ASYNCHRONOUS SINGLE LINE CONTROLLER: Provides full-duplex interface for a single Model 37ASR, 37KSR; 6010, 6012, 4010 I video display; or Bell System 103, or equivalent, with manual answer. Standard rate is 150 bps for 10 - or 11 -unit codes. (Other rates are optionally available.) The 4029 option adds modem control features for Bell System 202 units with Automatic Answer.

4025 IBM 360/370 PROGRAMMABLE INTERFACE: Attaches to a selector or Multiplexor channel, and can simulate the IBM 2803, 2700 series, etc. Operates in multiplexed or burst mode at up to 150,000 bytes/ second. A 4025-IBM Software Driver is provided for \mathbf{I} / \mathbf{O} programming. The 4025 can operate with RDOS or RTOS in a real-time environment.

4026 PROGRAMMED ASYNCHRONOUS MULTIPLEXOR: Uses the Data Communications Multiplexor Handler (DCMH) software package to provide full-duplex interface for up to 16 EIA Standard level or 20 -mil teletype lines per subsystem. Automatic answering is available as an option.

4038 MULTIPROCESSOR COMMUNICATIONS ADAPTER: Permits attachment of up to 15 Nova systems through their DMA data channels to a common communications bus. The common communications bus has a bandwidth of 500,000 words/second with typical data transfer rates of 140 K words/second (Nova 1200) to 250K words/second.

4060 ASYNCHRONOUS MULTIPLEXOR: Provides interfaces for up to 64 lines (four lines per subassembly, up to 16 subassemblies) at speeds from 45 to 9600 bits/ second with five- to eight-level codes.

4100 ASYNCHRONOUS MULTIPLEXOR: Provides interfaces for up to 128 asynchronous lines. Line speed and character size are programmable. Parity and modem control are optional. Communication interfaces reside in an external chassis accessible by two processors.

4073 SYNCHRONOUS/BISYNCHRONOUS LINE ADAPTER: Provides programmable interface to four half or full-duplex synchronous data sets (201-type). A singleline adapter (4074) is also available. Up to sixteen 4073's can be attached for a maximum 64-line interface.

SOFTWARE

OPERATING SYSTEMS: Three levels of system control programming are available for various configurations of the Nova systems. Each of these includes an appropriate level of language processors and utility programs.

STAND-ALONE OPERATING SYSTEM: SOS is a subset of the Real-Time Disc Operating System that uses magnetic tape or cassette tape as a system residence to provide device-independent, buffered I/O service. SOS is upward compatible with RDOS, and provides Assembler support on an 8 K system. With 12K words, Extended BASIC is supported. FORTRAN IV and ALGOL support requires 16 K words.

Data General Nova Series

REAL-TIME OPERATING SYSTEM: RTOS is an up-ward-compatible subset of the Real-Time Disc Operating System that runs in only 4 K words of main memory to provide multitasking. Run-time support for Assembler and FORTRAN IV programs is available under RTOS.

REAL-TIME DISC OPERATING SYSTEM: RDOS is a full-scale multitasking system that runs in 16 K words to support program development under Assembler and FORTRAN IV, and in 20K words for Extended BASIC and ALGOL. A substantially more powerful FORTRAN 5 language processor can be run on Novas with 32 K words of Memory, 512 K words of disc, a floating-point processor, hardware multiply/divide, and a magnetic tape unit.

A Batch Monitor spooling supplement is available for 16 K Nova systems to handle 1/O streams without operator intervention.

A mapped version of RDOS (MRDOS) is available on the 840 to support two-partition multiprogramming with the 31K-word user program areas and an operating system area of up to 31 K words (typical size is $8 \mathrm{~K}-12 \mathrm{~K}$ words). RDOS also provides an extensive file management capability.

Also available are cross-assemblers for the IBM 360/370, CDC 6600, and Univac 1108, and time-shared BASIC for up to 16 simultaneous users. A single-user BASIC facility can be used on smaller configurations.

PROGRAMMING: The most often used Nova programming languages are FORTRAN IV and Extended Assembler. These languages are used with the two primary operating systems: RTOS and RDOS. A significantly more powerful FORTRAN 5 is available for use with larger Novas under RDOS. BASIC and FORTRAN IV languages include full standard specifications, and subsets and supersets of each are available. Also available are an IBM/2780 emulator, a commercial subroutine package, and a Sort/Merge program.

APPLICATIONS: Software consists of about 20 mathematical routines, more than two dozen CPU and peripheral device diagnostics, and a variety of language processor libraries, utility programs, format conversion routines, etc. For details, please turn to Report M13-304-101.

PRICING

POLICY: Data General provides the Nova family on a purchase-only basis, with two types of separately priced maintenance agreements: the On-call Service contract and the Factory Service contract, which involves return of faulty equipment to a designated repair location. In either case, all parts and labor are included at no additional cost. For non-contract on-site service, the maintenance rates range rom $\$ 25-\$ 35$ per hour depending upon shift and holiday hours.

Data General software is licensed so as to be included without charge on a system with sufficient Data General hardware to operate it. The software is available for purchase on other Data General configurations utilizing other than Data General equipment (e.g., peripherals, add-on memory, etc.).

Software prices range from $\$ 5$ for object versions of various language processors to $\$ 1,000$ for full source listings of FORTRAN or ALGOL library systems. Typical prices are $\$ 200$ for single-user BASIC Source listing, and $\$ 600$ for stand-alone FORTRAN IV compiler listing.

The Nova 2 series computers are available in quantities of five or more. Prices shown are for single-unit quantities, and standard OEM three-five quantity discounts of 19 percent apply. Discounts of about 40 percent are available for quantities of $\mathbf{1 0}$ or more units.

EQUIPMENT: The following typical system purchase pricess include all required control units, adapters, and cables.

TYPICAL 1220 BATCH CONFIGURATION: Includes 8154 processor with 16 K words of 1.2 -microsecond core memory, 4010A Teletype console (10 cps), 6013 paper tape reader (400 cps), 4016D card reader (285 cpm), 4034A line printer (356 lpm), and one 4047 A disc drive (1.2 million words), and rack. Purchase price is $\$ 40,550$. With the addition of an 8020 high-performance floatingpoint unit, the price increases to $\$ 44,550$.

TYPICAL $2 / 10$ BATCH CONFIGURATION: Includes Nova $2 / 10$ processor with 24 K words of 1.0 and 0.8 -microsecond core memory, 4010A Teletype console (10 cps), 6013 paper tape reader (300 cps), 4016D card reader (285 cpm), 8020 high-performance floating point unit, 8307 multiply/divide, 4034A line printer (356 lpm), one 4047A disc drive (1.2 million words), and rack. Purchase price is $\$ 46,150$.

BASIC DUAL 2/10 CONFIGURATION: Includes two Nova $2 / 10$ processors with 32 K words of core memory each, two power monitors with auto restart, two automatic program loaders, two real-time clocks, a 6013 high-speed paper tape reader, a 4010 I 2Oline, 80 -character video display, a 4047B moving-head disc drive (2.49 million words), a 4047C dise cartridge, a 4010A Teletype console (10 cps) and a 4119 2,400-baud oscillator. Purchase price is $\$ 57,100$.

BASIC DUAL 840 CONFIGURATION: Includes two Nova 840 processors with 32 K words of core memory each, two memory management and protection units, two power monitors with auto restart, two automatic program loaders, two real-time clocks, a 4119 2,400-baud oscillator, a 6013 high-speed paper tape reader, a 4010 I 20 -line, 80 -character video display, a 4047B moving-head disc drive ($\mathbf{2 . 4 9}$ million words), a 4047C disc cartridge, a 4030J magnetic tape transport, a 4010A Teletype console (10 cps), and the major portion of supplied software on magnetic tape. Purchase price is $\mathbf{\$ 8 7 , 3 0 0}$.

Data General Nova Series

EQUIPMENT PRICES

NOVA 2 MEMORIES (for field expansion only)

8300	4,096 words (800 nanosecond) core memory	2,000	20	10
8301	8,192 words (800 nanosecond) core memory	2,200	32	16
8302	16,384 words (1,000 nanosecond) core memory	3,500	44	22
NOVA 800 SERIES CENTRAL PROCESSORS				
8230	Nova 800 processor with 4,096 words (4) **	6,600	53	27
8231	Nova 800 processor with 8,192 words (4) **	8,000	64	32
8232	Nova 800 processor with 16,384 words (3)**	11,200	99	50
8233	Nova 800 processor with 24,576 words (2)**	14,400	134	67
8235	Nova 800 Jumbo processor with 4,096 words (14)**	7,450	60	30
8236	Nova 800 Jumbo processor with 8,192 words (14)**	8,850	71	36
8237	Nova 800 Jumbo processor with 16,384 words (13)**	12,050	106	53
8238	Nova 800 Jumbo processor with 24,576 words (12)**	15,250	141	70
8239	Nova 800 Jumbo processor with 32,768 words (11)**	18,450	176	88
8253	Nova 820 processor with 4,096 words (7)**	6,100	63	32
8254	Nova 820 processor with 8,192 words (7) **	7,500	74	37
8284	Nova 820 processor with 16,384 words (6) **	10,700	109	56
8285	Nova 820 processor with 24,576 words (5)**	13,900	144	72
8286	Nova 820 processor with 32,768 words (4)**	17,100	179	90

[^2]
Data General Nova Series

EQUIPMENT PRICES

NOVA 800 SERIES MEMORIES (for field expansion only) (Continued) -		Purchase Price	Monthly Maintenance		
		On-Call Service	Factory Seryice		
8264	Nova 840 processor with 16,384 words (expansion to 64 K memory in th is chassis; (12)**		\$ 16,530	\$ 134	\$ 67
8290	Nova 840 processor with 24,576 words (expansion to 64 K memory in this chassis; 11)**	19,730	169	85	
8291	Nova 840 processor with 32,768 words (expansion to 64 K memory in this chassis; 10)**	22,930	204	102	
8292	Nova 840 processor with 40,960 words (expansion to 64 K memory in th is chassis; 9)**	26,130	239	120	
8293	Nova 840 processor with 49,152 words (expansion to 64 K memory in th is chassis; 8)**	29,330	274	137	
8294	Nova 840 processor with 65,536 words (6)**	35,730	344	172	
8295	Nova 840 processor with 81,920 words (expansion to 128 K in this unit; 19)**	45,130	438	219	
8296	Nova 840 processor with 98,304 words (expansion to 128 K in this unit; 17)**	51,530	508	254	
8297	Nova 840 processor with 131,072 words (13)**	64,330	648	324	
8265	Nova 840 processor with 16,384 words (12)**	13,230	106	53	
8298	Nova 840 processor with 24,576 words (11)**	16,430	141	71	
8299	Nova 840 processor with 32,768 words (10) **	19,630	176	88	
DUAL NOVA 840 PACKAGED SYSTEM (includes applicable software)					
	Two 840 processors with 32 K words of core storage each, two memory management and protection units, two 8206 power monitors and au to restart, two 8208 auto program loads, two 4007 1/O interfaces, two 4008 real-time clocks, two 4010 Teletype/video display I/O interfaces, 2,400 baud oscillator, 6013 high-speed paper tape reader, two 4240 interprocessor busses, 40101 20-line, 80 -character video display, 4047 B moving-head disc drive (2.49 -million words), 4047C disc cartridge, 4030 J magnetic tape transport, 4010A Teletype console, and the major portion of supplied software on magnetic tape.	87,300	784	-	
NOVA 800 SERIES MEMORIES (for field expansion only)					
8268	4,096-word, 16-bit 800-nanosecond core memory (1 slot; not for 840)*	\$ 2,500	\$ 24	\$ 12	
8269	8,192-word, 16-bit 800-nanosecond core memory (1 slot)*	3,200	35	18	
8226/8277	256-word, 16-bit semiconductor read-on!y memory (1 slot; not for 840)*	900	9	5	
8227/8278	512-word, 16-bit semiconductor read-only memory (1 slot; not for 840)*	1,450	13	7	
8228/8279	1024-word, 16-bit semiconductor read-only memory (1 slot; not for 840)*	1,950	20	10	
NOVA 1200 SERIES CENTRAL PROCESSORS					
8182	Nova 1200 processor with 4,096 words (5)**	5,100	40	20	
8183	Nova 1200 processor with 8,192 words (5)**	5,950	52	26	
8184	Nova 1200 processor with 16,384 words (5)**	7,550	64	32	
8185	Nova 1200 processor with 24,576 words (4)**	9,550	96	48	
8186	Nova 1200 processor with 32,768 words (4)**	11,050	108	54	
8187	Nova 1200 Jumbo processor with 4,096 Nords (15)**	5,950	44	22	
8188	Nova 1200 Jumbo processor with 8,192 words (15)**	6,800	56	28	
8189	Nova 1200 Jumbo processor with 16,384 words (15)**	8,400	68	34	
8190	Nova 1200 Jumbo processor with 24,576 words (14)**	10,400	100	50	
8191	Nova 1200 Jumbo processor with 32,768 words (14)**	11,900	112	56	
8133	Nova 1210 processor with 4,096 words (2)**	4,000	40	20	
8134	Nova 1210 processor with 8,192 words (2)**	5,400	59	30	
8140	Nova 1210 processor with 16,384 words (2)**	7,000	71	36	
8141	Nova 1210 processor with 24,576 words (1)**	9.000	103	52	
8142	Nova 1210 processor with 32,768 words (1)**	10,500	115	58	
8153	Nova 1220 processor with 4,096 words (8) **	4,900	44	22	
8154	Nova 1220 processor with 8,192 words (8)**	6,300	56	28	
8165	Nova 1220 processor with 16,384 words (8)**	7,900	68	34	
8166	Nova 1220 processor with 24,576 words (7) **	9,900	100	50	
8167	Nova 1220 processor with 32,768 words (7) **	11,400	112	56	
NOVA 1200 SERIES MEMORIES (for field expansion only)					
8120	4,096-word, 16-bit, 1200-nanosecond core memory (1 slot)*	1,800	20	10	
8121	8,192-word, 16-bit, 1200-nanosecond core memory (1 slot)*	2,000	32	16	
8117	16,384-word, 16-bit, 1200-nanosecond core memory (1 slot)*	3,500	44	22	
8126/8177	256-word, 16-bit semiconductor read-only memory (1 slot)*	750	8	4	
8127/8178	512-word, 16-bit semiconductor read-only memory (1 slot)*	1.250	12	6	
8128/8179	1024 -word, 16-bit semiconductor read-only memory (1 slot)*	1,750	18	9	
OPTIONS FOR ALL NOVA PROCESSORS					
$4006 / 8106 /$ $8206 / 8306$	Power Monitor and auto-restart. Causes program interrupt when power fails and automatic restart when power is restored (1 slot)*	400 1.600	1 13	1	
8107/8307	Multiply/divide. Multiplies two 16-bit numbers to produce a 32-bit product. Divides one 32-bit dividend by a 16 -bit divisor to produce a quotient and remainder. (Not for 800 series; 1 slot) *	1,600	13	7	

EQUIPMENT PRICES

Data General Nova Series

EQUIPMENT PRICES

Data General Nova Series

EQUIPMENT PRICES

		PurchasePrice	Monthly Maintenance	
			On-Call Service	Factory Service
ANALOG DATA CONVERSION SYSTEM				
4120	A/D subsystem,single-channel, single-ended input. Includes programmed I/O interface, 10-bit A/D converter, sample and hold, analog I/O paddleboard with mating connector. (System conversion rate: 75 KHz) (1 slot)*	\$ 2,450	\$ 30	\$ 18
4121	Same as 4120 but 8 -channel subsystem (1 slot)*	2,625	32	19
4122	Same as 4121 but 16 -channel subsystem (1 slot)*	2,800	34	20
4123	Same as 4121 but 32-channel subsystem (1 slot)*	3,150	38	22
4130	A/D subsystem, single-channel differential input. Includes programmed I/O interface, 10-bit A/D converter, sample and hold analog 1/O paddleboard and mating connector. (System conversion rate: 75 KHz) (1 slot)*	2,650	32	19
4131	Same as 4130 but 4 -channel subsystem (1 slot)*	2,825	34	20
4132	Same as 4130 but 8 -channel subsystem (1 slot)*	3,000	36	21
4133	Same as 4130 but 16 -channel subsystem (1 slot)*	3,350	40	23
4140	A/D subsystem, single-channel, single-ended input, includes programmed I/O interface, 12-bit A/D converter, sample and hold, analog I/O paddleboard with mating connector. (System conversion rate: 28 KHz) (1 slot)*	2,600	32	19
4141	Same as 4140 but 8 -channel subsystem (1 slot)*	2,775	34	20
4142	Same as 4140 but 16 -channel subsystem (1 slot)*	2,950	36	21
4143	Same as 4140 but 32-channel subsystem (1 slot)*	3,300	40	23
4150	A/D subsystem, single-channel, differential input. Includes programmed I/O interface, 12-bit A/D converter, sample and hold, analog I/O paddleboard mating connector. (System conversion rate: 28 KHz) (1 slot) *	2,800	33	19
4151	Same as 4150 but 4 -channel subsystem (1 slot)*	2,975	35	20
4152	Same as 4150 but 8 -channel subsy stem (1 slot)*	3,150	37	21
4153	Same as 4150 but 16 -channel subsystem (1 slot)*	3,500	41	23
4160	Extended A/D interface. Adds data channel operation	1,000	8	4
4161	Programmable gain option for single-ended systems	400	5	3
4162	Programmable gain option for differential systems	400	5	3
4180	Basic D/A interface and one 12-bit D/A converter. Requires some A/D subsystem	- 600	8	7
4181	Basic D/A interface and one 12-bit D/A converter. For use if no A / D subsystem. Includes analog I/O paddleboard and mating connector (1 slot)*	1,000	16	12
4182	Second 12-bit D/A converter	300	4	2
4183	Oscilloscope control	200	2	1
ANALOG-TO-DIGITAL CONVERSION				
4014	I/O interface subassembly. Must be ordered with basic A/D interface (4032) (1 slot)*	200	2	1
4032	Basic A/D interface. Connects $\mathbf{4 0 5 5}$ series converters and multiplexors to programmed I/O system	700	6	3
4033	A/D interface expansion. Adds data channel connections to 4032 interface	1,000	8	4
4055A	A/D, D/A chassis and power supply for an A/D converter with sample and hold and multiplexor with 32 single-ended or 16 differential channels, or 16 single-ended channels plus 2 D/A converters, or 8 D/A converters, or 8 differential channels plus 2 D/A converters	900	8	4
4055B	A/D, D/A chassis and power supply for an A/D converter with sample and hold and multiplexor for up to 64 single-ended or 32 differential channels and up to 8 D/A converters	1,200	11	6
4055C	A/D converter; 8 bits	450	5	3
4055D	A/D converter; 10 bits	600	8	4
4055 E	A/D converter; 12 bits	750	10	5
4055F	A/D converter; 13 bits	950	12	6
4055G	A/D converter; 14 bits	1,200	15	8
4055H:	A/D converter; 15 bits	3,200	40	20
40551	Buffer amplifier, single-ended	200	3	2
4055J	Buffer amplifier, differential	400	5	3
4055K	Timing and control for multiplexor and sample and hold	230	4	2
4055L	Sample and hold	300	4	2
4055M	Multiplexor, 8-channel	160	2	1
4055 N	Multiplexor, 16-channel (8-channel differential)	300	4	2
40550	Enclosure, power supply, and decoding for 128 channel (64 differential) multiplexor expander	2,500	35	18
4055P	Enciosure and power supply for 64-channel (32 differential) simultaneous sample and hold expander	2,500	35	18
40550	Dual sample and hold	600	8	4
4014	1/O interface subassembly for basic wide-range A/D interface. (1 slot)*	200	2	1
4085A	Wide-range analog input system for up to 128 input channels, 13-bit A/D	4,200	50	25

programmable gain amplifier with gain control networks, channel address decode logic, analog-to-digital converter, and chassis wired to accept up to 16 eight-channel wide-range analog input relay cards. Does not include wide-range analog input relay cards (16)*

[^3]
Data General Nova Series

EQUIPMENT PRICES

$\left.\begin{array}{lllll} & & \text { Purchase } \\ \text { Price }\end{array}\right)$

Data General Nova Series

EQUIPMENT PRICES

[^0]: * All prices include I/O interface subassembly and TTY I/O interface, as well as CPU and 4 K words of core memory.
 **CPU plus 16K words of core memory and memory management and protection unit (MMPU).

[^1]: * Expressed in words/second

[^2]: *Slots required.
 **Slots available.
 *** Unit price for minimum quantity of five units.

[^3]: *Slots required.
 **Slots available.

