
,

, EY-0072E-SG-020 1

RSX-llM/M-PLUS
Utilities and

Commands
A Self-Paced Course

"

Volume II

EY-0072E-SG-020 1

RSX-llM/M-PlUS
Utilities and

Commands
A Self-Paced Course

Student Workbook
Volume II

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment

Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com­
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DECUS
UNIBUS

DECsystem-10
DECSYSTEM-20

DIBOL
EDUSYSTEM
VAX
VMS

MASSBUS
OMNIBUS

OS/8
RSTS
RSX
lAS

10/82-15

CONTENTS

SG STUDENT GUIDE

INTRODUCTION. • •• •• • • • • • • • • •••• 3
3
4
4
4
5
6
7
8
9

COURSE DESCRIPTION.. •••• • • • ••
PREREQUISITES • • • • • • • • • • •
COURSE GOALS. • •• • •••••••••••••
NONGOALS. • • • • • • • • • ••••••••
COURSE RESOURCES ••••••••••••••••••
COURSE ORGANIZATION • •• • • • • • • • • • • •
COURSE MAP. • • • • • • • •• • • • • • • •
HOW TO TAKE THIS COURSE • • • • • • • • • • • • • • • •
PERSONAL PROGRESS PLOTTER • ••••••• •
RSX-IIM-PLUS CURRICULUM • • • • • • • • • • • • •
COURSE STRING • • • • • • • • • • • •• •••

1 RSX-11M/M-PLUS SYSTEM OVERVIEW

INTRODUCTION.
OBJECTIVES. • • • • • • • • • • • • •
RESOURCES • • • • • • • •
OVERVIEW. • • • • • • • • • • • • • •

The Hardware •••••
The Software.

THE OPERATING SYSTEM. • • • • • •

LEARNING ACTIVITY • • •

• 11
• • • 12

• 15
• 15

• • 16
• 17

• • 1 7
• 17
• 18

• • • 18

THE RSX-1lM-PLUS OPERATING SYSTEM •••••• • 21
RSX-11M/M-PLUS Characteristics ••••••••••• 21
RSX-11M/M-PLUS Components • •••••••••• 23
Documentation • • • • • • • • • • • • • • • • • • • 25
Other Resources • • • • • • • • • • • • • • 30

THE OPERATING SYSTEM. • • • • • • • • • • • 31
Memory Use ••••••••••••••••••••• 31
Tasks • • • • • • • • • • • • • • • • • 32
Steps Required to Run a Task •••••••••••• 34
The System Task Directory (STD) • • • • • • • • 34
Active Task List (ATL). •• • ••••••••• 34
Allocating Memory to a Task • •••••• • 37
Partitions. • • • • • • • • • • • • •• 38
Checkpointing • • • • • • • • • • • • • • • • • • • 44
Shuffling ••••••••••••••••••••• 46
Allocating CPU Time to a Task ••••••••• 49
Round Robin Scheduling. • • • • • • • • • • • • 52
Task Addresses. •• ••• • • • •• •• 54
Physical Addresses. • • • • • • • • •••••• 55

iii

Mapped Systems. • • • 56
Unmapped Systems ••••••• • 57

2 GETTING STARTED ON THE SYSTEM

INTRODUCTION. • • • • •• •••••••• • 61
OBJECTIVES. • • • • • • • • • • • ••••• 61
RESOURCES • • • • • •• •••••••••••••• 61
LOGGING ON THE SYSTEM • • • • • • •• • 63

User Identification Code (UIC). • • • • • • • • • • 64
Passwords • 64
Command Line Interpreter (CLI). • ••• 65
Notes on Example 2-1 •••••••••••••••• 65
Notes on Example 2-2. • • • •• • • •••• 68

LOGGING OFF THE SYSTEM. • • • • • • 70
USING THE TERMINAL EFFECTIVELY. • • •• • ••••• 72

Terminals • •• •••• •••• •• • • 72

LEARNING ACTIVITIES • • 76

CONVERSING WITH THE OPERATING SYSTEM. • • • • • • • • • 77
Command Line Interpreter (CLI).. •••• • 77
CLI Prompts • • • • • • • • I.. 77
Default CLI •••••••••••• / • • • ••• 78
Changing from One CLI to Another •••••••••• 78

USING THE DIGITAL COMMAND LANGUAGE (DCL). • • ••• 78
Features of DCL •• ••••••• • • • • • • • 79
DCL Command Format. • • •• • ••• 80

THE HELP COMMAND. • • • • • • • • • • • • • • • • • • • 88
HELP Command Format • • • • • •• • 88
Notes on Example 2-5. • • •• • ••••• 89

LEARNING ACTIVITIES

FILE SPECIFICATIONS • • • • • • • • • • • • • • Ie

F i 1 es • • • • • • • • • • • • • •
File Specification Command Format
Devices • • • • • • • • •

Physical Device Names
Logical Device Names ••

Notes on Figure 2-3 • • • • • •
Pseudo Device Names • •• • • • • • • • •

User File Directories (UFDs) ••••
File Names •••••••••••
File Types ••••••••••••••••••
Versions ••••••••••••

Wildcards in the File Specification • • • ••
Wildcards • • • • • • •

Notes on Example 2-6 •••••••••••••••

iv

• 93

• 94
• 94

95
• 96
• 96

100
100
103
105
105
105
105
110
110
III

LEARNING ACTIVITY

USING THE MONITOR CONSOLE ROUTINE (MCR)
MeR • • • • • • • • • • • • •
MCR Command Fo rma t. • • • • •
Notes on Example 2-7.

PRIVILEGED COMMANDS • • • • • • •
INTERPRETING ERROR MESSAGES •

Error Message Format.

3 CREATING AND MODIFYING FILES

.

INTRODUCTION.
OBJECTIVES. • ••
RESOURCES • •
OVERVIEW. • • •

.

Purpose of an Editor ••••
EDT Editor Features •

CREATING A TEXT FILE •••
No tes on Exampl e 3-1. • • •

EDITING AN EXISTING FILE ••
Notes on Example 3-2.

THE HELP FACILITY • • • •
Command Format. • • •• •••••••

EDITING COMMANDS USING LINE MODE •••••••••••
COMMAND MODE COMMANDS ••••••••••••

Displaying Lines. • •••••
Command Format.. •••• • • • • • • • • • •
Inserting Lines • •••• • • • • • • • •
Command Format. • • • • • • • • • • • • •

LEARNING ACTIVITIES •

Deleting Lines ••
Command Format. • • •
Copying Lines • • • • • • • • •
Command Format ••
Moving Lines •••••••••••
Command Format. • • • • • •
Text Substitution ••••••••••
Command Format. • • • •
Renumbering Lines ••••••
Command Format. • • • • • • • • • • • •
Ending the Edit Session •••••
Command Fo rma t. • • • • •

LEARNING ACTIVITIES • •

Character Mode Features •

v

116

117
117
118
120
127
128
128

133
133
133
135
135
138
139
139
140
140
141
141
143
144
144
144
147
147

149

150
150
152
142
153
153
156
156
158
158
160
160

160

161

THE KEYPADS • • • • • • • • • ••• ••••• 162
VT100 Keypad Functions. • • • • •• ••• 162
VT52 Keypad Functions • • • • • • 163
Changing to Character Mode. • • • • • • • • • •• 164
Positioning the Cursor. • • • • • • • • • • • •• 165
Positioning the Cursor (Alternate Methods). • 168
Inserting Text. • • • • • • • • • • ••• 172
Deleting Text. • • • • • • • • • •• •• 173
Help Function. • • • • • • •• • • • 174
Exiting Character Mode. • • • • • • • • • • • •• 174

LEARNING ACTIVITIES • 175

4 FILE AND DIRECTORY MAINTENANCE

INTRODUCTION. • • • • • • • • • • • • • • • • • • 179
OBJECTIVES. • • • • • • • • • •• • • • • 179
RESOURCES • • • • • • • • • • • • • ••• 179
FILE STRUCTURE. • • • • • • • • • • • • • •••• 181

FILES-II. • • • • • • • • • ••• 181
Master File Directory (MFD) • •• 181
User File Directory (UFD) • • • • •• 181
User Default UFD. •• ••• • 184
User Default Device • ••••• • • • • • •• 184
System UFDS • • • • • •••• 184

LEARNING ACTIVITY

MAINTAINING A USER FILE DIRECTORY •
Command Formats • • • • • • •• • • • • • • •
Defaults in File Specification. • ••
Command Format. • • • • • • • ••
Listing Directories . ••• • ••••••
Command Format. • •• • • • • • • • • • • • •
Notes on Example 4-3 •••••••••••••••
Deleting Files. • • • • • • • • • ••
Command Format. • • • • • • • ••••
purging Old Files ••••••••••
Command Format. • • • • • • •
Notes on Example 4-5. • •••••••
Copying Files • • • •• • • •
Command Fo rma t • • • • • • • •
Renaming Files.. •••• • •••••
Command Format. • • • • • • • • • • •

INSPECTING THE CONTENTS OF FILES •••••••••.•
Displaying File Contents at Your Terminal
Command Format. • • • • • • • • • • • • • •

vi

187

188
188
190
190
192
192
196
197
197
199
199
201
202
202
203
203
205
205
205

Displaying Files on a Line Printer ••
Command Format. • • • • • • • • • •

PRINT Command Defaults •••••

LEARNING ACTIVITIES • •

207
207
208

208

PROTECTING YOUR FILES • • • • • • • • • • • • • • •• 209
File Ownership. • • • • • • • 209
File Access Rights. • • • • • • • • • •• 212
Default File Protection. • • • • • • • ••• 213
Setting and Changing File Protection. • • • • •• 214
Command Format. • • • • • • • • • •• 214
Equivalent MCR Commands • • • • • • • • • • • •• 215

LEARNING ACTIVITIES

5 PROGRAM DEVELOPMENT

INTRODUCTION ••••••••••
OBJECTIVES. • • • • • • • • • • ••
RESOURCES • • • • • • • • • • • • • •
OVERVIEW. • • • • •••• • •
PROGRAMMING LANGUAGES • • • • •

LEARNING ACTIVITIES •

ASSEMBLING/COMPILING •••••••••
MACRO-ll Language • • •• •••
MACRO-II Assembler Command Format •
Common Error Messages • • • • •
Notes on Example 5-1. • ••

LEARNING ACTIVITIES •

216

221
221
221
223
226

229

230
232
232
235
236

238

FORTRAN Languages •••••••••••• 239
FORTRAN Compiler Command Format • • • • • • • •• 239
Common FORTRAN Error Messages • • • • 242
FORTRAN Compiler Listing. • • • • • • •• 242

LEARNING ACTIVITIES •
TASK-BUILDING/LINKING •

Overview. • • • • • • • • • • • • • • • •
Notes on Figure 5-4 • •• • • • •
Task Builder Command Format • • • • • • •
Common Task Bui Ider Er ror Messages. • • • • • • •
Interpreting a Task Map • • • • • • •
Notes on Example 5-3 •••••••••••

vii

244

245
245
249
250
253
254
255

LEARNING ACTIVITIES •

RUNNING THE TASK ••

LEARNING ACTIVITIES •

Notes on Figure 5-5 •

6 USING THE EDITOR EFFECTIVELY

INTRODUCTION. • ••••••••
OBJECTIVES. • • • • • • • • ••
RESOURCES • • • • • • • • • • •• • • • • • •
USING THE EDITOR EFFECTIVELY. • •••••••

Editor Buffers. • •• • •••••••••••
Buffer Use ••••••••••••••••
Creating a Buffer •• ••••• •
Referring to a Buffer • •••• • • • • • • •

LINE MODE FEATURES. • • • • • • • • •••
Searching for a Character String •••••••
Reading and Writing Files ••••••••••••
Generating EDT Macros • •••••••••

A Macro • • • • • • • •
Defining a Macro •••

Notes on Example 6-1. • • •
Setting Editor Parameters.
Additional Line Mode Commands •
The Startup Command File ••••••••••

CHARACTER MODE FEATURES • • • •
Additional Keypad Functions ••••••••

LEARNING ACTIVITIES •

Other Character Mode Functions ••••••••
String Searches in Character Mode ••
Cutting and Pasting Text. • • • •
Repeating Functions Automatically •
Entering Line Mode Commands • • • •
Nokeypad Character Mode • • • • • • • • • • • • •

Invoking Nokeypad Mode. • • • •
Exiting Nokeypad Mode

LEARNING ACTIVITIES • • •

7 USING INDIRECT COMMAND FILES

INTRODUCTION ••••••••
OBJECTIVES ••••••••

viii

256

257

257

258

261
261
261
263
263
263
264
264
265
265
265
266
266
267
267
269
270
271
272
272

273

274
275
275
276
277
278
278
278

279

283
283

RESOURCES • • • • • • • • • • • • • ••• • • 283
WHAT IS AN INDIRECT COMMAND FILE. • • • • • • • • •• 285
CREATING SIMPLE CLI COMMAND FILES • • • • • • • • 285
CREATING SIMPLE TASK INDIRECT COMMAND FILES • 287

Benefits of Using an Indirect Command File. • •• 289

LEARNING ACTIVITIES • • • • 289

INCLUDING DIRECTIVES •••
Directives. • • • • • • • • • • • ••••••

Symbols • • • • • • • • • • • • • • • • •
Values Given to Symbols • • • • • • •
Logical Test Directives •••••••
Logical Control Directives ••••••••••
More Useful Directives ••••••••
Special Symbols • • •• • ••••

LEARNING ACTIVITIES • •

290
290
291
291
293
295
296
297

297

Establishing Symbols. • • • • • • • • • • • • •• 298
Notes on Example 7-1. •••• • ••• 298
Asking the User for Input • • • • • • • • • • 301
Notes on Example 7-2. • • • • • • • ••••• 301
Notes on Example 7-3.. ••••• • • • • •• 303
Making Logical Tests. • • •• •••••• 306
Notes on Example 7-4. • • • • • • • • • • • • •• 306
Notes on Example 7-5. •••• • • •• 309
Controlling Execution Flow. • • • • • • • • • •• 310
Setting Operating Modes •••••• ••• 312
Notes on Example 7-8.. .••• • • • • • •• 312
Notes on Example 7-9.. ••••••••••• 314
Using Special Symbols • ••• • • • • 316
Notes on Example 7-10 • • • • • • • • 316
Notes on Example 7-11 • ••••••••• 318

8 CONTROLLING TASK EXECUTION

INTRODUCTION. • •••••
OBJECTIVES.. •• •
RESOURCES • • • • •
HOW RSX MANAGES TASKS • • • • • • • • • •

Priority and Scheduling ••••••
Task States • • •••
Memory Allocation •

LEARNING ACTIVITY • •

.

. . . .

USING TASK BUILDER FACILITIES
Assigning a Task Name ••••
Setting Task Priority ••

.

ix

325
325
325
327
327
329
331

331

332
332
333

Indicating a Partition. • • •• • • • • • 333
Making a Task Checkpointable. • • • • • • • • •• 334
Assigning Logical Units • • • • • • • • • • • 335
Notes on Example 8-1. • • • • • • • ••••• 337

LEARNING ACTIVITIES 340

INSTALLING A TASK • • • • • • • • • • • • • • • • •• 341
Notes on Example 8-2. • • • • • • • • 342

RUNNING A TASK. • • • • • • • • • • • • • • • • • •• 343
Running Tasks Immediately •••••••••• 343
Installed Tasks • • • • • • • • • • • • • • • •• 343
Tasks Scheduled to Run Later. • • • • 344

LEARNING ACTIVITIES 445

9 LIBRARIES

INTRODUCTION. • • • • • • • • • • • • •• 349
OBJECTIVES. • • • • • • • • • • • • • • •• • 349
RESOURCES • • • • • • • • • • • • • • • • •• 349
LIBRARIES • • • • • • • • • ••••• 351

Benefits of Using Libraries • • • • • •• •• 351
Library File Format • • • • • • • • • • • • • 352
Notes on Figure 9-1 • • • • • • • •• 353

LEARNING ACTIVITIES • •

Macro Libraries • • • • • • • •
Object Libraries. • • ••••••••••
Universal Libraries •••••••••
Using Macro Libraries • • • • • •• • ••••
Notes on Figure 9-5 •• ••• • •• •
Using Object Libraries. • ••••••
Notes on Figure 9-6 • • • • • • • • • • • • • • •
Using Universal Libraries • • • ••••
Creating/Maintaining Libraries.

LEARNING ACTIVITIES • • • •

Notes on Example 9-1.
Notes on Example 9-2.

.

10 ADVANCED MAINTENANCE OPERATIONS

INTRODUCTION. • ••••••
OBJECTIVES. • • • • • • • • • • • • • • • •
RESOURCES • • • • • • • • • • • • • • •
VOLUME MAINTENANCE. • •••• ••••••••

x

354

355
357
359
362
363
364
365
366
366

370

373
375

379
379
379
381

Device Types •••••••••••••••••••
FILES-II Volume Structure • • • • • • ••

Volume Files •••••••••••••••
Index Files • • • • • • • • • • •••••
Bitmap File • • • • • • • ••

ANSI Magnetic Tape Structure. • •••••••
Other Tape Formats. • • • • • • • • •••
Device and Volume Accessibility •••••••

Device Ownership. • • • •
Mounting a Volume • • • • • • • •

preparing a Disk Volume for Use •••••••
Physical Formatting • • • • • • • • •
FILES-II Initialization •••••

Preparing a Magnetic Tape Volume for Use •••••
Backing Up a Volume •••••••••••••••

Backup and Restore Utility (BRU) •••
Command Format. • • • • • • • • • • • • • • • • •

Disk Save and Compress Utility (DSC).
VERIFY (VFY). •• • ••• •

LEARNING ACTIVITIES •
FILE MAINTENANCE •••

Transferring Files Between Computer Systems •
File Transfer Program • • • • • • • •

Transfer Mode Switches ••••••••••••••
Command Format •••••••••••••
Controlling the Print Queue. • ••
Looking at the Contents of a File •

File Dump Utility (DMP) ••••
Command Format •••••••

LEARNING ACTIVITIES ·
PROGRAM MAINTENANCE •

Comparing the Contents of Two Files • • • • •
File Compare util i ty (CMP). • • • • • • • • •

Command Format. • • • • • • • • • ••

LEARNING ACTIVITIES • ·
AP APPENDIX

BATCH JOB FILE ••••••••••••••••
BATCH Command Line. • ••••••••••••
Command Format. • • • • • • • • • • • • •

PROCESSING THE BATCH FILE • • • • • • • • • • • •
Command Format. • • • · . . .'. . .

xi

381
382
383
384
387
389
389
391
391
392
393
393
393
394
396
396
397
399
399

400

401
401
401
403
403
405
409
409
410

414

415
415
415
415

418

419
420
420
422
422

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19

1-20

2-1
2-2
2-3
2-4
2-5
2-6

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

4-1
4-2
4-3
4-4

FIGURES
The Documentation. • • • •• •• • • • • • • • • • 26
Sequence for Reading Manuals • • • • • ••• • 29
Memory Use • • • • • • • •• •• • • • • • 31
A Task is the Result of Program Development. • 33
System Task Directory ••••••••••••••••• 35
Active Task List • • • • • • • • • • • • • 36
Tasks are Built with a Priority. • • • • • • • • • 37
Memory Divided Into Partitions. • • • • • • • 39
Tasks Execute in a Specific Partition ••••••••• 40
Running Tasks in a System-Controlled Partition. • 42
Running Tasks in a User-Controlled Partition. • • 43
Checkpointing a Task • • • • • • • • • • • • •• • 45
Partition Fragmentation •••••••••••••••• 47
Partition Shuffling to Obtain Contiguous Memory. • 48
Task States. • • • • •• • •••••••••••• 50
Round Robin Scheduling • • •••••••••••• 53
Virtual Address Space. • • • • • • •• ••• • 54
Physical Address Space • • • • • • • • • • • • 55
Mapping a Virtual Address Into a Physical Address
on a Mapped System • • • • • • • • • • • •• ••• 56
Task Built to Execute on an Unmapped System. • 57

LA120 and VT100 Keys • • • • • • • • • • • • • 74
Physical Device Names. • • •••••••••• 97
Logical Device Assignments • •• • • • • • • •• 101
Pseudo Device Names ••• '. • • • • • • • 104
Standard File Types Depicted • • • • • • • • • • •• 106
Valid File Specifications for Latest A.FTN Version. 109

Creating a Text File • • • • • •• • ••••••
Modifying Existing Text Files. • • • • • ••
VT100 Keypad Functions • •• •• • • • • • •
VT52 Keypad Functions. • •• • •••••••••
Changing to Character Mode • • •••
Positioning the Cur$or • • • • • • • • • • •••
Posi tioning the Cursor (AI ternate Methods) • • •
Inserting Text • • • • • • • • • • • • • • • • • • •
Deleting Text. • • • • • • • • • • •• •••
VT100 Keypad Editing Help Text • • • • • • •

FILES-II Directory Structure • ••• • • • •
User File Directories ••••••••••••
Changing the Default UFD and Device ••
Transferring File Ownership •••••••••••.•

xii

136
137
162
163
164
165
168
172
173
174

182
183
185
210

4-5

5-1
5-2

5-3
5-4
5-5

Accessing a File • • • • • • • • •

The Program Development Process •••••
Translating a Program Source File Into
Machine Language • • • • • • • • •
Task-Building an Executable Image.
Task Image Structure • • • • • • • • • •
Requesting a Task to Run • • • • • • • •

216

225

231
247
248
258

7-1 Creating and Invoking a CLI Indirect Command File.. 286
7-2 A MCR Task Indirect Command File • • • • •• 288

8-1

8-2

9-1
9-2
9-3
9-4
9-5
9-6

Highest Priority Ready-to-Run Task Gains CPU
Control. • • • •••••
Task States. • ••••••••

Library File Format. • • • • •
A Macro Library •••
Object Libraries • • • • • • • • •
Universal Libraries.
Using Macro Libraries.
Using Object Libraries •

328
330

352
356
358
360
362
364

10-1 FILES-II Standard System Files Found on Every

10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

Vol ume • • • • • • • • • • •• ••••
The Two Parts of a File •••••••••••
Index File Format. • • • • • • • • • • • • • • •
Directory Structure for Single-User Volume •••••
Directory STructure for Multiuser Volume ••••
ANSI Magnetic Tape Structure • ••• • • • • • •
PDP-II File Structures •••••••••••••••
The Queue Manager. • • • • • • • • •• • ••••
How the DMP Program Interprets 16 Bits •••

383
385
386
388
388
390
402
406
411

TABLES

1-1 PDP-II Operating Systems • • • • • • • • • • • • • 19
1-2 Characteristics of System- and User-Controlled

Partitions • • • • • • •• • • • • • • • • • • • • 41
1-3 Significant Events that Cause Rescheduling

of the CPU • • • • • •• •• • • • • • • • • • • • 51

2-1
2-2
2-3

Special Terminal Keys •••••••••
Echoing of Delete Key on CRTS/Hardcopy • • • •
Partial List of DCL Commands • • • ••••

xiii

• • 75
• • 76
• • 81

2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11

3-1
3-2

4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

6-1
6-2

6-3
6-4
6-5
6-6
6-7

7-1
7-2
7-3
7-4
7-5
7-6
7-7

RSX-llM/M-PLUS Peripheral Devices •• • • • 98
Pseudo Device Names. • • • • • •• • ••
Standard File Types. • • • • • • • • ••••••
File Specification Defaults. • • • • ••••
Allowed Use of Wildcard Characters •••
Partial List of MCR Commands • • • • • • • • • •
Partial List of Privileged Commands.. • ••
Some Common Error Messages • •• • •••••

Line Mode Commands •
Range Specifications

.
Special User File Directories •••••
File Maintenance Commands •••••••
Defaults in a File Specification.
Groups of Users ••••••••••
Access Rights •••••••••••
Default File Protection •••••••••
Equivalent MCR File Maintenance Commands •

Language Types • • • • • • • • • • • • • •
Available Lanaguage Translators for RSX Use ••
MACRO Command and File Qualifiers •••••••
Examples Using the MACRO Command • ••••
FORTRAN Command Qualifiers ••••••••
Examples Using the FORTRAN Command • • • •
LINK Command and File Qualifiers • • •••
Examples Using the Task Builder.. • •••
Standard Task Builder Defaults ••••••

String Search Commands in Line Mode ••
Line Mode Commands to Read and Write
Files from Within EDT. • • •• • ••••••••
SET and SHOW Commands ••••••••••••••••
Other Useful Line Mode Commands. • • •• • •••
Additional Commands to Move the Cursor •••
Additional Character Mode Function Keys. • • ••
Nokeypad Character Mode Commands • • • • • • • •

Directives to Define Symbol Values •••••••••
Directives Used to Perform Tests • • ••
Relational Operators • • • • • •• ••••• • •
Compound Logical Operators •••••••••••••
Directives Used to Control Command File Execution ••
Other Directives • • • • • • • • • • • • • • • • • •
Special Symbols to Obtain System and User
Information. • • • • • • • • • • • ••

xiv

103
107
108
116
119
127
129

143
145

187
189
191
212
212
213
217

227
228
233
234
240
241
251
252
253

265

266
269
270
272
274
278

292
293
294
294
295
296

297

8-1
8-2

9-1

9-2
9-3
9-4
9-5
9-6

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

A-I
A-2
A-3
A-4

Overriding Task Attributes • • • • • • • • •
MCR Commands to Invoke the Task Builder
to Override Task Builder Defaults ••••

Sources of EPT, MNT Entries Used in Creating

338

339

a Library File • • • • • • • • • • • • • • • • • •• 354
DIGITAL-Supplied Libraries on LB:[l,l] • • • • • 361
DCL Library Commands • • • • • • • • • •• • •• 367
Equivalent MCR Library Commands. • • • •• ••• 368
CREATE Command Parameters and Qualifiers •••• 369
Librarian Listing Qualifiers • • • • • • • • • • 369

Device Ownership • • • • • • • • • • • • •• 391
Volume Accessibility. • • • • • • • • • • • • • 392
Backup Command Qualifiers. • • • • • • • • • • • •• 398
FLX Format Switches. • • • • • • • • • • 404
Default Transfer Modes • • • • • • • • • • • • • •• 404
Print Command Qualifiers • • • • • • • • • • • • • • 407
DCL Commands to Alter Print Queue. • • • • • • • •• 408
Equivalent MCR Commands to Alter Print Queue • • •• 408
DMP Switch Format. • • • • • • • • • • • 411

Ba tch Commands • • • • • •
Exit Status Code •••••
Submit Command Qualifiers.
Changing the Batch Queue •

421
423
423
424

EXAMPLES

2-1 Logging On the System. • • • • • • • • • • 67
2-2 Sample Terminal Session. • •• •••••• • • 69
2-3 Logging Off the System. • • • • • •• 71
2-4 DCL Commands • • • • •••• • • •• •••• • 82
2-5 HELP Command • • • • • • • •• • • • • • • 90
2-6 Using Wildcards in a File Specification. • • • • •• 112
2-7 MCR Command Samples. •• • • • • • • •• •• 121

3-1
3-2
3-3
3-4
3-5
3-6
3-7

Creating a Text File •••••
Editing an Existing File •••••
HELP Command • • • • •
TYPE Command • • • • •• •• •
INSERT Command • . • • • • • • • •
DELETE Command • • • •
COpy Command • • ••••• • •

xv

139
140
142
146
148
151
152

3-8
3-9
3-10

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

5-1
5-2
5-3

6-1

7-1
7-2
7-3
7-4
7-5

7-6
7-7
7-8
7-9
7-10
7-11
7-12

7-13

8-1
8-2

9-1
9-2

10-1
10-2
10-3

MOVE Command • • • •
SUBSTITUTE Command •
RESEQUENCE Command •

.
154
157
159

How the Default UFD Works. • • • • • • • • • 186
Using Defaults in a File Specification ••• 191
DIRECTORY Command Samples. • •• •••••• 193
DELETE Command Samples • • • • • • • • • • • 198
Purging Files. • • • • • • • • • • • 200
COpy Command • • • • • • • • • • • • • • • • 202
Renaming Files • • • • • • • • • •• 203
Using the TYPE Command • •••••• • ••• 206
File Ownership • • • • • • • • • • • • • • • • • 209
Transferring File Ownership Samples. •••••• 211
Setting File Protection. • • • • • • • • • • • • •• 214

Sample MACRO Assembly Listing •••••
Sample FORTRAN Compiler Listing ••
Sample Task Map. • • • • • • • • •

Defining a Macro ••

.

.SET Directive - Used to Define Symbol Value ••••

.ASK Directive - Used to Define Symbol Value ••••
Execution of INPUT.CMD Showing User Response • • ••
Using the .IF Directive to Test Symbols. • •••
Execution of LOGICAL.CMD and the Results of User
In pu t •
Command File Showing How to Control Execution Flow •
Execution of CONTROL.CMD and User Response •••••
Command File Showing Operating Mode Usage ••••••
Execution of OPERATING.CMD and User Response
Command File Showing Special Symbol Usage ••
Execution of SPECIAL.CMD ••••••••••••••
An Indirect Command File to Send Message
to Terminal, and Change Current CLI ••••
An Indirect Command File to Edit, Print
and Purge Files •••••••••••••••••••

Associating Logical Units with Physical Devices.
Samples of Installing a Task • • • • • •• • ••

Obtaining Library Directories.. • ••••
Commands to Create a Library and Delete Modules
from that Library •••••••••••••••

Preparing a Disk Volume ••••••
Preparing a Magnetic Tape Volume •
Directory File Header Dump ••••

xvi

237
243
254

268

300
302
305
308

309
310
311
313
315
317
319

320

321

337
341

371

374

395
395
412

10-4 Directory File Dumped in Octal Word Mode · · · · 413
10-5 Directory File Dumped in Radix-50 Mode · · · · · · · 414
10-6 Two Similar ASCII Files. . · · · · · · · · · 416
10-7 Compare Program Output Between Two ASCII Files · 417
10-8 Change Bar Format. · · . . · · · · · · · 417

A-I Batch Control File to Print MACRO Source Files · 425
A-2 Sample Batch Command Files · · . . · · · · · · · · · 426

xvi i

PROGRAM DEVELOPMENT

PROGRAM DEVELOPMENT

INTRODUCTION

RSX-IIM/M-PLUS operating systems provide .complete facilities
for all program development tasks. This module discusses program
development in detail. MACRO-II, FORTRAN IVand FORTRAN IV-PLUS
are emphasized since these languages are used in most
applications.

OBJECTIVES

1. Assemble a MACRO-II program.

2. Compile a FORTRAN IV or FORTRAN IV-PLUS program.

3. Task-build a program.

4. Use the task map to obtain basic information.

5. Run a task.

RESOURCES

1. Introduction to RSX-IIM/M-PLUS

2. RSX-IIM/M-PLUS Command Language Manual

221

PROGRAM DEVELOPMENT

OVERVIEW

Every task running on a computer is the solution to some
well-defined problem. Someone said we need a method of
automatically generating payroll checks (the problem) and a
software developer wrote a program that reads payroll records and
generates paychecks for everyone on the payroll (the solution).
Or, someone said we need a method of entering our source code more
efficiently and a programmer wrote a program that allows a
terminal user to capture text into a file.

Program development is the process by which a problem
solution is translated from a human-understandable form into a
machine-understandable form. Some of ~the many steps necessary to
do this conversion are shown in Figure 5-1. The process is longer
than shown in the flowchart, but for our purposes, it begins at
the point where the process needs the computer to complete the
task.

Once the problem to be solved is defined and a solution is
designed and coded, the first step (1 in Figure 5-1) is to enter
the code into a file. Source statements are entered using a text
editor. Output from the editor is an ASCII file containing the
source statements that comprise the program (or a module of the
program) written with correct syntax required by the programming
language. This file is the human-understandable form of the
program and the first step in the translation of the program into
a machine-understandable form.

The next step (2 in Figure 5-1) is to take the output file
from th~·· editing session and assemble or compile it with the
appropriate language processor. Table 5-2 shows the language
processors available on the RSX-IIM/M-PLUS operating systems. The
language processor performs the following functions:

checks the source statements for syntax errors
generates program addresses for relocatable machine code
produces a listing of the source statements
lists any errors that exist

The primary output from this step is an object file that contains
object modules 'of relocatable machine instructions.

223

PROGRAM DEVELOPMENT

If there are no assembly errors, the next step in the process
is to build (link) the actual runnable image of the program (3 in
Figure 5-1). This may require linking the program with other
object modules located in the user's UFD, or in user or system
libraries, as shown in Figure 5-3. It is the Task Builder's job
to take all object modules and link them together, resolving
references be~ween modules, and incorporating modules from
referenced system libraries. The Task Builder outputs an
executable task image. An optional output file is a map file that
contains information describing the allocation of addresses,
program sections in task image, modules of origin, and the values
of all global symbols. A symbol definition file is other optional
output that contains information used to create a shared region.
Shared regions and the use of the file are covered in another
course.

Before releasing a task for general use, the task should be
run and tested against original specifications to ensure that it
does indeed run correctly and solves the original problem (4 in
Figure 5-1). Debugging aids, like the On-Line Debugging Tool
(ODT) , can be used to help locate problems within the code. If
any error conditions arise during this step it may be necessary to
go back to the first step in the flowchart and repeat the steps
once again until the task executes correctly.

When the task is ready for general use (5 in Figure 5-1), it
can be permanently installed in the System Task Directory. Not
all tasks are permanently installed. Your system manager makes
this choice based upon how often a task is run and how critical
its nature.

224

PROGRAM DEVELOPMENT

0
} CREATING AND

FORMATTII\G
MACRO-11

MACRO
SOURCE LIBRARY FILE

(DEFAUL T=RSXMAC.SML) FILES
LISTING

LANGUAGE FILE (.LST)

• PROCESSOR
} ASSEMBLING (MAC) AND

(FOR) CORRECTING
A PROGRAM

CORRECT MODULE

SOURCE
FILE YES OBJECT

LIBRARY FILE
(DEFAUL T=SYSLlB.OLB)

MAP
FILE (.MAP)

TASK • BUILDER BUILDING

(TKB) AND
TESTING A

SYMBOL DEFINITION
TASK

FILE (.STB)

YES
APPLY SOURCE
CORRECTIONS TASK IMAGE
AS NEEDED FILE (.TSK)

DUMP
FILE (.PMD)

} RUNNING

0 IN UFD [1,4) AND
DEBUGGING
A TASK

YES

o
TK-7671

Figure 5-1 The Program Development Process

225

PROGRAM DEVELOPMENT

PROGRAMMING LANGUAGES

There are three fundamental types of programming languages in
use today; the difference is in the manner in which the
translation of source statements into machine instructions occurs.
These three types are interpreted, assembled and compiled
languages.

In an interpreted language, such as BASIC, each source
statement is translated and executed before the next line is read.
There are no separate compile or task-build steps. The results of
arithmetic expressions and input/output statements are immediate
and can be checked for correctness. As there is no permanent
output from the translation process, the cost of translating the
source statements into machine instructions is borne each time the
program is run. An interpreted language is most often used for
applications that are run infrequently but need to be developed
quickly. They are also used as an instructional language for
beginning programmers.

In an assembled language, a program called an assembler
translates source statements into machine instructions, which are
saved in a file called an object file. Each source statement
translates directly into one machine instruction. This
intermediate file (called the object file) passes through another
process, called linking, to make an executable image. Translation
of source statements into machine instructions is not required
each time the program is run. Therefore, execution time is less
with an assembled language than an interpreted language.

A compiled language, often referred to as a high-level
language, processes like the assembled language. However, the
source statements are more English-like, and each source statement
translates into one or more machine instructions. The program
that converts high-level source code into object code is called a
compiler.

Table 5-1 compares the three types of languages.

226

PROGRAM DEVELOPMENT

Table 5-1 Language Types

.... ' .. , .. :T." · •. :l,.~· ... ·.m '·,· ... e ·,.· •. ·.: ·.·.~ .•... e .. · •.... ' ... ·.·.·.,.·.'.r: .. · .•...•.•. : ... l:tic,a::.f.::.·· .: "Mti~t ·"~E!~h·n i'ea 1
:t.aSJts:: .. ,::,:·· .' " .::;;,,:j~·~p,Bl:i~;~;t'!d;n$;

227

PROGRAM DEVELOPMENT

Table 5-2 Available Language Translators for RSX Use

228

PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

1. READ Chapter 4, How to Do Work on the
System, in the Introduction to
RSX-IIM/M-PLUS Manual.

2. DO Written Exercises 1 through 6 for this
module.

229

PROGRAM DEVELOPMENT

ASSEMBLING/ COMPILING

Figure
file into
used as an
language.
the numbers

5-2 illustrates the process of translating a source
machine instructions. Although a MACRO-II program is
example, the process is similiar for a compiled
The reference numbers in the following text refer to
on the figure.

The language translator performs the following functions:

tt Identifies symbols to be known to other modules (global
symbols) •

t» Inserts macro definitions in MACRO-II programs.

t) Translates source language instructions into
instructions.

o Assigns program addresses (relocatable virtual
to each machine instruction.

machine

addresses)

Input to the language translator consists of one or more
modules written in the source language (item ct). In the case of
MACRO-II, input may also come from macro definition libraries
(item (t). The MACRO-II assembler automatically searches
RSXMAC.SML for any undefined symbols that remain after processing
all the input files.

Output from the language translator consists of an object
module file and an optional listing file. The object file (item tt) has a default file type of .OBJ, and contains the machine
instructions and information needed in the next step of the
program development process. The listing file (i tern 0) has a
default file type of .LST and contains the following:

source instructions

machine instructions (item t»)
relocatable virtual addresses (item 0)
error messages

symbol listings

assemble/compile statistics

230

0
BUFF::

ST:

lOOP:

PROGRAM DEVE~OPMENT

PGM01.MAC

.BlKB I\D80

.EVEN

MOV #TEXT,RO
MOV #BUFF,R1
MOV #DOT,R2
MOVB (RO)+,(R1)
CMPB (R1)+,R2
BNE lOOP
.END

0
~

8 000026
9

10
11 000146 012700
12 000152 012701
13 000156 012702
14 000162 112011
15 000164 122102
16 000166 001375
17 000001

MAC.TSK

lANGUAGE
PROCESSOR
(MACRO-11)

e BUFF::
,.

OOOOOO'ST:
000026'
000056

lOOP:

0 PGM01.0BJ

000026
000146 012700 000000'
000152 012701 000026'
000156 012702 000056
000162 112011
000164 122102
000166 001375

000001

.BlKB I\D80

.EVEN

MOV #TEXT,RO
MOV #BUFF,R1
MOV #DOT,R2
MOVB (RO)+,(R1)
CMPB (R1)+,(R2)
BNE lOOP
.END

TK-7673

Figure 5-2 Translating a Program Source File Into Machine Language

231

PROGRAM DEVELOPMENT

MACRO-11 Language

The command format below shows how to invoke the MACRO-II
Assembler. The MACRO-II Assembler takes MACRO source files and
library files as input. The default input file type is .MAC. In
specifying a series of input files, the last file specified cannot
be a library file. You should place a library specification in
front of the source file that requires it. After processing all
the input files, the MACRO Assembler atitomatically searches the
system macro library, RSXMAC.SML, for unsatisfied macro
definitions. The last file name in the command is used as the
default· name for the output files. Table 5-3 lists some of the
more frequently used command qualifiers. For more qualifiers,
refer to Chapter 6 of the RSX-IIM/M-PLUS Command Language Manual.
Table 5-4 shows some examples of MACRO command usage.

MACRO-11 Assembler Command Format

> MACRO / LIST USER / LIBRARY, PROG
~~-..-'~'- v ~I~

o 0 0 0 0 0

0 Command name

0 Command qualifier

0 Input file specification (default file type = .MAC)

0 Input file specification delimiter

0 Input file specification qualifier

232

PROGRAM DEVELOPMENT

Table 5-3 MACRO Command and File Qualifiers

U$erW~ntsMACROCommand,Qualifier to Use
" '"., ·n·"'·"··" ,,',

A 1~~tlt:l9,,£tl~··. .

Acros $':'r,efe~rerl:c~ :t'{le

TQ.,·.speC'·i.·.:~~,;· •. ~n·, •.•... ,q,~zj;e:<;.t:'
;f~ .. l.e<:,:~J;t:Inei"·9.t;bet<,.:."tb~ii··
~·tie· .. defatllt /•... :.:: ; •...

i013P¢diiY'a>~;~~ih~i' .,'
. w~d·th >lis~Jl1(J·>,~l'le

,l~IST,,'

"'pCROSS _REFERENCE

IN OWI DE
o ••• ' ".,.,:" ••• ,

233

'0
s::
10
e e
o
u
o
0::
U

~
Q)

..c:
.j.J

0'1 s::
0.-i

til
o

PROGRAM DEVELOPMENT

234

PROGRAM DEVELOPMENT

Common Error Messages

The following are common MACRO-II error messages. See pages
8-14 through 8-17 of the MACRO-II Reference Manual for a
description of these and other error messages.

MAC COMMAND SYNTAX ERROR

MAC ILLEGAL FILENAME

MAC ILLEGAL SWITCH

MAC I/O ERROR ON INPUT FILE

MAC I/O ERROR ON MACRO LIBRARY FILE

MAC I/O ERROR ON OUTPUT FILE

MAC OPEN FAILURE ON INPUT FILE

MAC OPEN FAILURE ON OUTPUT FILE

235

PROGRAM DEVELOPMENT

Notes on Example 5-1

Example 5-1 shows a section of a MACRO-II listing file. The
following comments are keyed to the example.

ct The title of the program

t» Assembly instructions that control the type of output.
These may be overridden at assembly time by using the
appropriate MACRO command qualifier.

t) Source line numbers. Diagnostic messages refer to these
numbers.

o
o
o
o
o

o
CD

Virtual addresses assigned to the machine instruction

The resulting machine instruction

The MACRO-II source instruction

Comments to explain the logic of the program

A table of all symbols defined and/or referenced in the
file. Asterisks in the address field denote unsatisfied
references. Their definitions need to be satisfied at
link time. Those symbols with an R following the address
are relocatable addresses. Those symbols with a G are
global symbols. A global symbol is one that may be
referenced from another source file.

Diagnostic section

Assembly statistics, including the assembly time and
command line (in MCR format) that invokes the assembly.

236

PROGRAM DEVELOPMENT

o
HIYA MACRO M1200 Ol-OEC-81 15:22 PAGE 1

o

1
2
3
4
5
b
7
8
9

10 000000
11 000030
12
13
14
15
16
17
19
19
20 000060
21
22
23 000116
24
25 000143
26
27 000263
28 00031t
29 000326
30
31
32
33
34 000344
35
36
37
38
39
40 000350
41 000354
42 000360
43 000364
44 000370
45 000374
46 000400
47 000404
48 000410
49 000412
50 000416
51
52
53
54
55
56
57

000120

103
0000)6

122
000025

111
104
111

000060

o
012700
012701
004767
012700
012701
004767
012700
012701
060201
004767

o .LIST
.NLIST

'l'TM
SEX

.TITLE HIYA

MACRO LIBRARY CALLS

.MCALL EXITSS,QIDwS,DIR$

INDPS: QIOW$ IO.RLB,5,1"lOST , REST TO BE Fl~
OUTDPB: QIOW$ IO.WLS,5,1"IOST,,<,,40>

; LOCAL EQUATES

SSIZE=80. ACCEPTS NA~ES UP TO 80

; LOCAL DATA BUFFERS

MSG1: .ASCII
"4SG1L=.-M5Gl

MSG2: .ASCII
MSG2L=.-MSG2
BUf'(i': • ALKB

oaUFF: .ASCII
11: .ASCII
I2: .ASCII
OSIZ=. -oeUFfi'

lOST:
• EVfi:N
.BLKW

; MAIN PROGRAM

HIYA: ~P.10V
MOV
CAIJL
MOV
MOV
CALL
Mav
MOV
AOD
CALL
EXIT$S

;+

ICOULD I MAVE tOUR NAME PLEASE?I
, THE LF.NGTH OF MSG1

IRSX-11M-PLUS CALLING I
THE LENGTH or MSG2

BSIZE SgT UP aUFFr.R LENGTH = BSIZE

110 E~ROR WIT~ STATUSI<12>(15)
IDSW = I
IIOST = I

2

#~SG1,RO

#MSG1L,Rl
ViRITE:
#8UFF,RO
#8SIZE,Rl
READ
.MSG2,RO
'MSG2L,Fl
R2,Rl
WRITE

o
SET UP CALL

TO WRITE SU8ROUTINE
OUTPUT MSG1
SET UP CALL

TO READ SUBROUTINE
READ NAME INTO BUFFER
SET UP CAt .. L

TO WRITE SUBROUTINE
LENGTH or MSG2 + NAME
OUTPUT MSG2 WITH NAME
LEAVE

WRITE • SUBROUTINE TO wRITE A MESSAGE TO THE TERMINAL

INPUTS:
RO - ADDRESS OF STRING TO 8E PRINTED ON SCREEN
R1 - LENGTH OF STRING TO PRINT

•
•
•

Example 5-1 Sample MACRO Assembly Listing (Sheet 1 of 2)

237

0

o
G

PROGRAM DEVELOPMENT

HIYA MACRO ~1200 01-0EC-81 15:22 PAGE 1-3
SYMBOL TABLE

BSIZe: = 000120 MSGl 0000&01<
BUFF 000143R MSG1L = 000036
&:RR1 000510R MSG2 OOOl16R
HtYA 000350R MSG2L = 000025
INOPS OOOOOOR OeUFF 0OO263R
lOST 000344R OSIZ = 000060
IO.RLBa ****** GX OUTDPB OOOD30R
IO.WLB= ****** GX O.IOAE= 0()OO12
11 000311R O.IOEF= 000006
12 000326R Q.IOFN= 000002

• ABS. 000000 000
000574 001

&:RRORS DETECTED: 0

VIRTUAL MEMORY USED: 8774 WORDS (35 PAGES)
DYNAMIC MEMORY: 10316 wORDS (39 PAGES)
€LAPSEO TIME: 00:00:06
HIYA1,HIYA1=HIYAl

Q.IOLIJ= 000004
Q.IOPL= 000014
O.IOPR= 000007
0.1058= 000010
REl\O 0OO454RG
WRITE 000424RG
SCBDSG= ****** GX
SDSW = *'**** GX
$$$1IRG= 000003
$$$05T= 000014

Example 5-1 Sample MACRO Assembly Listing (Sheet 2 of 2)

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-IIM/M-PLUS Command Language Manual:

• 6.1, Introduction

• 6.2, Source Language

2. DO Written Exercises 7 through 10 for
this module.

238

PROGRAM DEVELOPMENT

FORTRAN Languages

RSX-IIM/M-PLUS systems support three FORTRAN source language
compilers: FORTRAN IV, FORTRAN IV-PLUS and FORTRAN-77. Check
with your system manager to determine which compiler (if any) your
system has. Input source file(s) must contain source statements
that comply with the rules of the compiler that you plan to use.

The command format below shows how to invoke a FORTRAN
compiler. If you wish to use the FORTRAN IV-PLUS or FORTRAN-77
compiler, you must use the appropriate command qualifier to
specify which one (Table 5-5). FORTRAN IV is the default FORTRAN
compiler. The default input file type is .FTN for all three
compilers. Output from the FORTRAN compiler can be an object file
and/or a listing file.

Table 5-6 gives examples of how to construct a command to
compile a FORTRAN source file called PROG.FTN, as well as the
equivalent MCR commands.

FORTRAN Compiler Command Format

>FORTRAN/F4P CALCA,SINEX,SINEY
'- v .J'__._ ~I~~I~

o 0 eoeoo

0 Command name

0 Command qualifiers

e File specification (defaul t file type = .FTN)

0 File specification delimiter

239

PROGRAM DEVELOPMENT

Table 5-5 FORTRAN Command Qualifiers

240

N
.t:::.
~

Table 5-6 Examples Using The FORTRAN Command

"'0
::0
o
G)

::0
~
:s:
t:l
tzl
<:
tzl
t""I
o
"'0
3:
tzl
Z
t-3

PROGRAM DEVELOPMENT

Common FORTRAN Error Messages

The following are common FORTRAN error
Appendix C in the FORTRAN IV User's Guide
description of all error messages.

FOR BAD SWITCH

FOR BAD SWITCH VALUE

FOR ERROR READING SOURCE FILE

FOR ERROR WRITING LISTING FILE

FOR ERROR WRITING OBJECT FILE

FOR OPEN FAILED FOR FILE

FOR SYNTAX ERROR

FOR TOO MANY INPUT FILES

FOR TOO MANY OUTPUT FILES

FOR WILD CARD NOT ALLOWED

FORTRAN Compiler Listing

messages. See
for a complete

Example 5-2 is a sample of a FORTRAN compiler listing. The
listing file is optional compiler output. To generate the file,
the /LIST qualifier must be specified in the FORTRAN command line.
The default file type is .LST. The following comments are keyed
to the example.

o Compiler name and
compile, and the
compilation.

version number, time and date of
compiler command (in MCR) invoking the

«t Source statement line numbers. Error diagnostics refer to
these numbers.

~ FORTRAN source statements.

Ct Diagnostics indicating problem areas in the code.

o Storage map providing information
blocks, arrays, and subroutines.

242

on symbols, common

o
o

PROGRAM DEVELOPMENT

FORTRAN IV V02.2-1 TUE 01-DEe-81 15:51:32
PROG,PROG=PROG

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016

e

100

900
901
902

COr<fMONICOM/I(10)
DO 100, J=1,10
REA D e 5 , 900) I (.J)
CALL SUR(J,M)
WRITE(5,901)M
CO~TINUE
WRITE(5,902)
CALL EXIT
SU9ROUTINg SUBCJ,K)
COM~ONICa~/I(10)

K=2*I(J)
RETU~N
FORMATeI3)
FOR"1ATC' ',J6)
FORMATC' THIS IS THE END')
END

PAGE 001

o FORTRAN IV DIAGNOSTICS FOR PROGRAi\i UI'lIT .MAIN.

IN LINE 0002, WARNING:
IN LINE 0009, ERROR:
IN LINE 0010, E~ROR:

POSSIBLE MODIFICATION OF INDEX "J"
SUBPROGRAM STATEMENT MUST BE FIRST
MULTIPLE DECLA~~TION rOR VARIABLE "I"

C) FORTRAN IV STORAGE ~AP FOR PROGRAM UNIT .MAIN.

LOCAL VARIA8LES, .PSECT SDATA, SIZE = 000006 3. WORDS)

NAME
J

Typg OFFSET
1*2 000000

I~AME
I(

TYPE OFFSET
1*2 000004

NAME
M

TYPE OFFSET
1*2 000002

COMMO~ BLOCK ICOM I, SIZE = 000024 10. WORDS)

NAME
I

TYPE OFFSET
1*2 000000

TYPE OFFSET NAME TYPE OFFSFT

LOCAL AND COMMON ARRA~S:

~AME

I
TYPE

1*2
S€CTION JPFSET ------SIZE----- DIMENSIONS
COM 000000 000024 (10.) (10)

SUBROUTINES, FUNCTIONS, STATEMENT AND PROCESSOR-DEFINED FUNCTIONS:

NAME
EXIT

TYPE
R*4

NAMF:
SUB

TYPE
R*4

NAME TYPE NAME TYPE NAME

Example 5-2 Sample FORTRAN Compiler Listing

243

TYPE

PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

1. READ Section 6.2.3, FORTRAN, in the
RSX-IIM/M-PLUS Command Language Manual.

2. DO Written Exercises 11 through 15 for
this module.

244

TASK-BUILDING/LINKING

Overview

Figure 5-3 illustrates the next step in the program
development process, linking object modules into an executable
task image. This step is called task-building or linking. A
special system utility, the Task Builder, performs this function.

Generally, a task image will be built using many object
modules that may reside in more than one object file. In an
object module, a reference can be made to a symbol or routine
located in another object module. The symbol or routine can also
be located in a special file called an object library. It is the
Task Builder's function to bring together all the object modules
from object files and libraries, and join them together logically
into one output file called the task image file (i tern 0 in Figure
5-3). The Task Builder also resolves references to symbols and
routines in different modules by placing the appropriate address
in the instruction where the reference was made. In this way, all
the separate modules that make up a task are linked together.

Input to the Task Builder (item ~) are the object files that
are output from the assembler or a compiler. The default input
file type is .OBJ. Another source of input is user or system
object libraries. These libraries contain code for frequently
used routines that have been developed and debugged. If after
processing all the input files there remain symbols that have not
been defined, the Task Builder automatically searches the system
library looking for the code. This library, SYSLIB.OLB, is
loca ted in LB: [1, 1] (i tern e) . If the search is successful, the
Task Builder includes in the task the object module from the
library.

Task Builder output can include a task image file, a map
file, and a symbol definition file. Each output file is optional,
and the Task Builder will generate any combination of the three.
The task image file (i tern 0) conta ins the actual machine
instructions that load into memory and execute in the CPU. The
Task Builder creates the file in the special format shown in
Figure 5-4. (See the notes that refer to this figure.)

Another output file of the Task Builder, and a useful tool
for the programmer, is the MAP file (item 0). This file
contains information on the allocation of address space in the
task image, the program sections created in the task image, and
the module of origin and the value of each global symbol. We will
discuss this file in more detail later.

245

PROGRAM DEVELOPMENT

The symbol table file is the third output file (item (t).
This file contains global symbols defined in the task, and their
virtual or relocatable addresses. It is in a format suitable for
reprocessing by the Task Builder. You specify this file when you
are building a resident library or common. Resident libraries and
commons are discussed in the Task Builder Manual, and are advanced
topics covered in the RSX-llM/M-PLUS Programmer course. They will
not be discussed here.

Table 5-9 lists some of the characteristics of a task that
the operating system must know before the task can be run. These
characteristics, supplied at task-build time, are included in the
label and header portions of the task image. If these are not
specified, the task is built with the default values listed in the
table. In Module 8, we discuss building a task with different
characteristics.

246

SY: [305,303]

•

LB:[1,1] •

PROGRAM DEVELOPMENT

TKB.TSK

TASKBUILDER
LINK

o PGM01.TSK

LABEL BLOCK

HEADER

STACK

PGM01
CALL RTN01
CALL RTN02

OVR.TSK;25 MEMORY ALLOCATION MAP TKB M36
13-APR-79 09:10

TASK NAME
PARTITION NAME GEN
IDENTIFICATION 01
TASK UIC [303,3]
TASK PRIORITY
STACK LIMITS 000176 001175 001000 00512.
ODT XFR ADDRESS
PRG XRF ADDRESS 010010
TASK ATTRIBUTES
TOTAL ADDRESS WINDOWS: 1.
MAPPED ARRAY
TASK EXTENSION

10496. WORDS

000000 050753

TASK IMAGE SIZE
TOTAL TASK SIZE
TASK ADDRESS LIMITS
R-W DISK BLK LIMITS
R-O DISK BLK LIMITS

000002 000106 000105 00069.

OVR.TSK;25 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 020677 020700 08640. ROOTM
020700 034723 014024 06164. MULOV
020700 034723 014024 06164. ADDOV
034724 050747 014024 06164. SUBOV
034724 050753 014030 06168. DIVOV

OVR.TSK;25 MEMORY ALLOCATION MAP TKB M36
ROOTM 13-APR-79 09:10

TK·7674 .

Figure 5-3 Task-Building an Executable Module

247

PROGRAM DEVELOPMENT

1000 po----......
750 .-----....

500....-----......
RTN02.0BJ

PGM01.0BJ RTN01.0BJ

0 ---...-.. Or..----.... Or..----....

OBJECT MODULES SUPPLIED
IN THE TASKBUILD

X+1500

X+1000

x

x

RTN02.0BJ

RTN01.0BJ

PGM01.0BJ

STACK

HEADER

LABEL BLOCK

PGM01.TSK

• •
Figure 5-4 Task Image Structure

248

TK-7677

PROGRAM DEVELOPMENT

Notes on Figure 5-4

The following comments are keyed to the figure.

o Label Block

Contains task information necessary for running the task
(name, partition, size, priority). The INSTALL command
uses this information to create a Task Control Block (TCB)
in the STD, and to initialize the task header.

o Header

Contains information the Executive uses to run the task.
Also provides a storage area for saving essential data
when the task is checkpointed. The INSTALL command
initializes the part of the header not initialized by the
Task Builder.

tt Stack, Code and Data

This part of the task image includes the task stack and
linked modules of code and data. The task header along
with the stack, code and data are loaded into memory when
a task is requested to run.

249

PROGRAM DEVELOPMENT

Task Builder Command Format

The command format below shows the basic structure used to
invoke the Task Builder. Input to the Task Builder consists of
object files and library files. The default input file type for
object modules is .OBJ. Library file specifications must include
the /LIBRARY qualifier, and are of default type .OLB. The default
output file types include .TSK for the task image file, .MAP for
the map file, and .STB for the symbol table file.

The LINK command can take qualifiers that modify the linking
of modules. The most frequently used qualifiers are listed in
Table 5-7. The RSX-llM/M-PLUS Command Language Manual describes
these and others in more detail. Examples of the LINK command and
equivalent MCR commands are shown in Table 5-8.

> LINK / MAP ROOT ,RTN 1 ,USOBJ / LIB
---~ ~I~I~---

00 eoeoe 0

0 Command name

0 Command qualifier

e Input file specification

0 File specification delimiter

0 File specification qualifier

250

PROGRAM DEVELOPMENT

Table 5-7 LINK Command and File Qualifiers

251

<X)

I
Lt'l

OJ
r-1
.a
to

E-<

PROGRAM DEVELOPMENT

252

PROGRAM DEVELOPMENT

Table 5-9 Standard Task Builder Defaults

Common Task Builder Error Messages

The following is a list of common Task Builder error
messages. See Appendix F of the Task Builder Manual for a
complete description of all error messages.

ALLOCATION FAILURE ON FILE file-name

COMMAND SYNTAX ERROR

FILE file-name HAS ILLEGAL FORMAT

ILLEGAL FILENAME

INVALID PARTITION/COMMON BLOCK SPECIFIED

I/O ERROR ON INPUT FILE file-name

I/O ERROR ON OUTPUT FILE file-name

LOOKUP FAILURE ON FILE file-name

OPEN FAILURE ON FILE file-name

REQUIRED INPUT MISSING

TASK IMAGE FILE file-name IS NONCONTIGUOUS

n UNDEFINED SYMBOLS SEGMENT seg-name

253

PROGRAM DEVELOPMENT

Interpreting a Task Map

Example 5-3 is a sample of the Task Builder map file. It
tells which modules were used to build the task, in what order
they were linked together, and at what virtual address they begin.
It also gives other information that is useful when debugging a
program. Read the notes for more details on the example. For
further information, refer to the discussion of the ISH switch in
Chapter 10 of the Task Builder Manual. Not all of this
information is of value to you now. It is important, however,
that you know what the map file is and what type of information it
contains.

IiIYA1.TSK Memory allocation map TKB M39,70
1-0EC-81 15:23

Partition name I GEN.
I~entlflcation : 0351
Task UIC : [305,303].
Stack limits: 000254 001253 001000 00512."
PRG xfr ad~ress: 001624 ct
Total address wln~ows: 1.
TaslC Image size : 640, wordS.
Task address limits: 000000 0023770'
R-W disk blk limits: 000002 000004 000003 00003.

*** Root seqment: HIYA10'

R/W mem limits: 000000 002371 002400 01280 ••
Disk blk limits: 0000Q2 000004 000003 00003.

Memory allocation synopsis:

Paqe 1

Section • Title Ident File

• BLK.:(RW,I,LCL,REL,CON)

$$RESLICRO,I,LCL,REL,COh)

Global symbols:

001254 001012 00522 •
001254 000574 00380, HIYA
002266 000112 00074.

READ 001730-R WRITE 001700-R

CD *'* Task builder statistics:

Total work file references: 1099.
Work file reads: O.
Work file wr1tes: o.
Size of core pool: 7086, words (27. pages)
Size of work file: 1024. words (4, pages)

Elapsed tlme:OO:00:03

Example 5-3 Sample Task Map
254

HIYA1.0BJ,1 •

PROGRAM DEVELOPMENT

Notes on Example 5-3

o
o

The partition in which the task will be loaded.

The UIC under which the task will be run for time-based
schedule requests. This determines which files the task
can access.

~ The low and high limits of the task stack, followed by its
length in octal and decimal bytes.

ct The virtual address at which the program will begin
executing.

C» The task image size in decimal words.

C) The lowest and highest virtual address allocated to the
task.

tt The name of the root segment, in this case, the task name.

C) From left to right:

Beginning virtual address of root segment
Virtual address of the last segment byte
Length in octal bytes
Length in decimal bytes

C) From left to right:

Program section name
Program section attributes
Starting virtual address of the section
Length in octal bytes
Length in decimal bytes

CD This line contains the same first fields as 9 and also a
title and identification number obtained from the source
code, and the name of the file containing the source code.

ct This section contains statistics that are of no interest
to the general user.

255

PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-llM/M-PLUS Command Language Manual:

• 6.4, Linking the Task

• 6.4.1, Introduction to
Command

• 6. 4. 2, Li nk

the Link'

2. DO Written Exercises 16 through 19 for
this module.

256

PROGRAM DEVELOPMENT

RUNNING THE TASK

After linking, you run a task by supplying the task image
file specification as a parameter to the RUN command. The
operating system will then go through the procedure of installing,
running and removing your task, as shown in Figure 5-5. This is
the most frequently used version of the RUN command, as most tasks
are not permanently installed in the STD. We will discuss the
other versions of the RUN command in Module 8, Controlling Task
Execution.

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-IIM/M-PLUS Command Language Manual:

• 7.1, Task Installation and Execution

• 7.1.1, Task Naming

• 7.2, Introduction to the RUN Command

• 7.3, Abort Command

2. DO Written Exercises 20 and 21 for this
module.

3. DO the Lab Exercises for this module.

257

PROGRAM DEVELOPMENT

MEMORY

I/O PAGE

DRVPAR

XYZPAR

SY: [305,303]

GEN

o

> RUN PGM01 0

Figure 5-5 Requesting a Task to Run

Notes on Figure 5-5

DSR
"POOL"

TK-7678

The following comments are keyed to the figure.

0 User requests PGM0l to run

0 PGM0l added to the list of known tasks

e PGM0l added to the lists of active tasks

0 PGM0l loaded into memory ready-to-run

On completion, entries in STD and ATL for PGM0l are removed.

258

USING THE EDITOR
EFFECTIVEL Y

USING THE EDITOR EFFECTIVELY

INTRODUCTION

EDT, the DEC editor, creates and modifies files. As you grow
more accustomed to using it, you will appreciate many additional
features that make it quicker to use. A number of these
additional features is presented in this module.

OBJECTIVES
1. Move or copy sections of text from one buffer to another.

2. Read in text from another file.

3. Write a subset of the text to an output file.

4. Write a Macro to execute EDT commands.

5. Set editor characteristics for special purposes.

6. Use character mode with a keypad.

RESOURCES
1. EDT Editor Manual

261

USING THE EDITOR EFFECTIVELY

USING THE EDITOR EFFECTIVELY

There are many features of the editor that will make your
editing sessions easier. Such features as alternate buffers,
user-defined macros, and the ability to set terminal
characteristics, do character searches, and perform cut and paste
operations can shorten the time it would normally take to create a
file. Suppose, for example, that you had the responsibility of
writing a user's manual for a piece of hardware. After capturing
your first thoughts using the editor, you decide to order the
paragraphs differently. The cut and paste feature of character
mode allows you to select a paragraph, phrase or word and easily
move it to another location. You can guess how long an editing
session would be if you had to delete the lines and retype them in
their new location! This is one of many features discussed in
this module that will make your editing session easier.

Editor Buffers

From our previous discussion on the editor, you learned that
the editor creates workspaces called buffers. At the start of an
editing session, EDT automatically creates two standard buffers
for use during the editing session. The first buffer, called
MAIN, is for general editing. The second buffer, called PASTE, is
for the cut and paste operations done in character mode.

EDT also allows for the creation of additional buffers as
they are needed.

Buffer Use

You may use these buffers in the following ways:

• To divide one or more files into sections

• To include part or all of another file

• To create another file from part or all of the text in a
buffer

263

USING THE EDITOR EFFECTIVELY

Creating a Buffer

You create a buffer by naming it, i.e., by referencing a 1-30
character name preceded by an equal sign. (See example below.)
You can make the reference on a line by itself, or in a range
specification. The reference automatically creates the buffer and
places your cursor at the beginning of the buffer. For example,
issuing the command =NEWBUF alone on a line creates a buffer with
the name NEWBUF. This becomes your current buffer, and the
current line is now pointing to the beginning of the buffer. You
can also create a buffer while performing editor operations such
as MOVE or COPY. For example, you may reference a buffer name in
a range specification in the COpy command. EDT will first create
the buffer and then copy the lines into the buffer. Once again,
the buffer is now the current buffer and the current line is in
the new buffer, not MAIN.

Example: *=NEWBUF

Referring to a Buffer

Part of a range specification is the buffer name. If you do
not supply a buffer name in a range specification, the editor
assumes you are referring to the current buffer. If you wish to
specify another buffer, it is done this way:

*MOVE 1:3 TO =DOC 5

This example moves lines numbered 1 through 3 from the current
buffer to the line before line number 5 in the buffer named DOC.

You determine the current buffer by using the SHOW BUFFER
command:

*SHOW BUFFER
=NEWBUF 20 LINES
MAIN 260 LINES
PASTE 0 LINES

The buffer preceded by the equal sign is the current buffer.

264

USING THE EDITOR EFFECTIVELY

LINE MODE FEATURES

Searching for a Character String

The line mode search function is useful for locating a word
or character string when the line number of the string location is
not known. The search direction can be either forward or backward
from the current line position. It is also possible to search for
all occurrences of a string within a range of lines, or through
the complete file.

When you enclose a character string with single or double
quotes and type a carriage return, the editor searches forward in
the file to locate the first occurrence of the string. Table 6-1
lists the formats for this and other types of character searches.

Table 6-1 String Search Commands in Line Mode

Reading and Writing Files

The editor has additional file-handling facilities to aid the
user during the editing session. You will find the INCLUDE
command useful when you want to include the contents of another
file in the one you are creating. This is done by specifying
INCLUDE with the name of the file to be included, and giving a
range specification to indicate where it is to be placed in the
new file. One use of this command is to include a file in an
alternate buffer, and search the alternate buffer for specific
lines of text. Once located, the lines can be copied into the
correct position in the MAIN buffer. There is no need to clean up
the alternate buffer as the exit command saves only the contents
of MAIN.

265

USING THE EDITOR EFFECTIVELY

The WRITE command will create a file containing all or part
of the text that you are editing. Once the file is created you
may continue work in the editing session. The /SEQUENCE qualifier
of the WRITE command allows you to save the editing line numbers
along with the text. These line numbers will not be displayed
when you type the file to the terminal, but will appear when you
print the file on a line printer. WRITE is also useful when you
wish to break up a file into many files. Suppose you have a
FORTRAN source file containing many subroutines. You can divide
that file into one file per subroutine by issuing the WRITE
command the appropriate number of times with the appropriate range
specifications.

The PRINT command allows you to create and print files in one
operation. When you issue this command with a file name and range
specification, the editor will create a file containing the lines
of text specified, and then automatically print the file for you.

Table 6-2 lists examples of the commands used for each of
these features.

Table 6-2 Line Mode Commands to Read and Write
Files from Within EDT

Generating EDT Macros

A Macro

The DEFINE MACRO command is another useful EDT feature.
Before we discuss the command, we need to define the term macro in
relation to the editor. A macro is a sequenc~ of editing commands
with a name assigned to it. You can issue the macro name just
like a line mode command. Every time you do so the editor
executes the sequence of commands. This facility allows you to
extend the range of commands available for your use in EDT.

266

USING THE EDITOR EFFECTIVELY

Defining a Macro

DEFINE MACRO establishes the sequences of commands to a macro
name. When you issue this command, the editor sets up a buffer
with the name you supply in the DEFINE MACRO command. Using the
INSERT command, you can enter the EDT commands of your choice into
the buffer. This macro name then becomes a part of the EDT
command list for the duration of the editing session, and can be
used just like any other command. It can also be used in
character mode by using the GOLD COMMAND function. If you want to
save this macro for use during future editing sessions, perform
the following steps:

1. Use WRITE to put the contents of the macro buffer into a
file.

2. In your next editing session, use DEFINE MACRO again to
set up the buffer.

3. Then use INCLUDE to read the file created above into the
buffer created by DEFINE MACRO.

Notes on Example 6-1

Example 6-1 shows the process of creating and executing a
macro in line mode. The following notes are keyed to the example.

ct Command to define the macro. The name of the macro is
DOC.

t» SHOW BUFFER command issued to show all existing buffers.

t» Command to make DOC the current buffer so that text is
stored in it, not MAIN.

C» Enter input mode and type the editor commands.

C» Set the current buffer back to MAIN (which is empty at
this time).

o Execute the macro.

o Display the contents of MAIN •

C) Execute the macro again.

C) Display the contents of MAIN again.

CD Save the macro DOC in a file called DOC.MAC.

267

o o

e
o

o
o
o
o

o

USING THE EDITOR EFFECTIVELY

::=-

::=-
>EDIT/EDT MANUAL.TXT
Input file does not exist
rEOBJ
*DEFINE MACRO DOC
*SHBUF

DOC 0 lines
=MAIN 0 lines

PASTE 0 lines
*=II(~C
rEOBJ
*1

rEOBJ
*=MAIN
rEOB)
*DOC
*=MAIN

1
2
3
4
5

rEOBJ
*IIOC:,
*=MAI1N

1
2
3
4
5

INSERT Ei;CHAPTER
INSERT E;i
INSERT E;iSECTION
INSERT E;;
INSERT E;i
.... Z

iCHAPTER
;
;SECTION

;CHAF'TER

iSECTION

6 ;CHAPTER
7
8 ;SECTION
9

10
CEOBJ
*WRITE DOC.MAC =DOC
DRO:C305,303JDOC.MAC;1 5 lines
*rr;XIT

. DRO: C305, 303JMANUAL. TXT it 15 1 ines

Example 6-1 Defining a Macro

268

USING THE EDITOR EFFECTIVELY

Setting Editor Parameters

There are many operating characteristics of EDT that you can
set for an editing session. These characteristics control how
information is displayed at your terminal. The SET and SHOW
commands allow you to alter the default characteristics, or to
display their settings. Table 6-3 lists some parameters you may
find useful. Table 6-4 summarizes other useful line mode
commands.

Table 6-3 SET and SHOW Commands

269

USING THE EDITOR EFFECTIVELY

Additional Line Mode Commands

Table 6-4 Other Useful Line Mode Commands

270

USING THE EDITOR EFFECTIVELY

The Startup Command File

When you start your editing session, EDT automatically
searches your UFD for a file called EDTINI.EDT. This file, if it
exists, is then read by EDT for commands that would customize the
editing session. If this file does not exist, EDT initializes the
editing session in the standard way.

You create this file, called a startup command file, using an
editor. It contains line mode commands that you want to have
executed automatically when EDT is started. Such commands as SET,
DEFINE MACRO, DEFINE KEY and INCLUDE may be used to create your
own editing environment. By using SET MODE CHANGE in the file,
EDT will automatically change to character mode every time you
start the editor. The process of using an existing EDT macro
discussed before in the section, Defining a Macro, can be done
automatically by putting the DEFINE MACRO and INCLUDE commands in
the startup command file. Then each time you use the editor, the
macro would be available without your having to recreate it.

If you have an EDTINI.EDT file in your UFD and wish to edit a
file without first initializing EDT, use the /NOCOMMAND qualifier
shown below. EDT will start up normally without reading the start
up command file.

EDIT/EDT/NOCOMMAND filespec

271

USING THE EDITOR EFFECTIVELY

CHARACTER MODE FEATURES

Tables 6-5 and 6-6 summarize some of the available features
of the character mode.

Additional Keypad Functions

Table 6-5 Additional Commands to Move the Cursor

272

USING THE EDITOR EFFECTIVELY

LEARNING ACTIVITIES

1. READ the following in the EDT Editor
Manual:

• Chapter 6, Line Numbers, Text Buffers
and Ranges

Section on Text Buffers

• Chapter 9, Set and Show Commands

• Chapter 7, Line Editing

Sections on Clear, Define
Replace and Substitute
Define Macro

Key,
Next,

• Chapter 4, The Command Line and
Startup Command Files

2. DO Lab Exercises 1 through 10 for this
module.

273

USING THE EDITOR EFFECTIVELY

Other Character Mode Functions

Table 6-6 Additional Character Mode Function Keys

274

USING THE EDITOR EFFECTIVELY

String Searches in Character Mode

Character mode also has string search capability.
done by the following procedure:

This is

1. Position the cursor at one end of a range of lines to be
searched.

2. User types: {ADVANCE/BOTTOM} or(BACKUP/TOP}to establish

the direction of the search

3. User types: (GOLD}(FINDNEXT/FIND)

4. EDT responds: SEARCH FOR:

5. User types: (THIS IS ENTER/SUBS)

The string is remembered, and additional searches can be done
using the FINDNEXT key:

1. User types: (FINDNEXT/FIND)

Cutting and Pasting Text

Cutting and pasting text in character mode is equivalent to
the copy command in line mode. However, because you are in
character mode, you can select a section of text that begins in
the middle of a line, and move it to a location in the middle of
another line. The text you select is stored in the PASTE buffer;
more text can be appended to this buffer using the APPEND
function. The following procedure shows how to use the CUT and
PASTE feature:

1. Move the cursor to one end of the portion of text to be
moved.

2. Type (SELECT/RESET)

3. Move the cursor to the other end of the portion of text to
be moved.

4. Type (CUT/PASTE). The text is now saved in the PASTE
buffer.

5. Move the cursor to the desired new location.

6. Type (GOLD) (CUT/PASTE)

275

USING THE EDITOR EFFECTIVELY

Repeating Functions Automatically

Many times, you would like to delete more than one
consecutive word or character at a time. You can do this by
typing the DEL L or DEL W key an appropriate number of times, but
there is another way that requires fewer key strokes. Suppose you
want to delete the next five words. After ensuring that the
ADVANCE direction is set, you type the sequence of keys shown in
the example. Note that the 5 key is the one on the standard
keyboard and not the one on the keypad. The 5 on the keypad
already has a special meaning, other than the number 5.

Example:

Keys (GOLD) 5 (DEL WORD)

Before Command:

TELL A MAN THERE: ARE 300 BILLION STARS IN THE UNIVEPSE
AND HE'LL BELI~VE YOU. TELL HIM A 8ENCH HAS W~T PAINT
ON IT AND HE'LL HAVE TO TOUCH IT TO 8E SURE.

UNDER THE MOST RIGOROUSLY CONTROLLED CONDITIONS OF PRESSURE
TEMPERATURE, VOLUME, HUMIDITY, AND OTHER VARIA8LES THE
ORGANISM WILL DO AS IT DARN WELL PLEASES.

ANt GIVEN PROGRAM, WHEN RUNNING IS OBSOLET~.

THE ATTENTION SP~N OF A COMPUTER IS ONLY AS
LONG AS ITS ELECTRICAL CORD,

THE DEGREE OF TECHNICAL COMPETENCE IS INVERSELY PROPORTIONAL
TO THE LEVEL OF ~ANAGEMENT.

A fAILURE WILL NOT'APPEAR TILL A UNIT HAS PASSED
~INAL INSPECTION,

After Command:

~OO BILLION STARS IN THE UNIVEPSE
AND HE'LL BELIEVE YOU.~ TELL HIM A 8ENCH HAS WET PAINT
ON IT AND HE'LL HAVE TO TOUCH IT TO 8E SURE.

UNDER THE MOST RIGOROUSLY CONTROLLED CONDITIONS OF PRESSURE
TEMPERATURE, VOLUME, HUMIDITY, AND OTHER VARIA8LES THE
ORGANISM WILL DO AS IT DARN WELL PLEASES.

ANt GIVEN PROGRAM, WHEN RUNNING IS OBSOLET~.

THE ATTENTION SP~N OF A COMPUTER IS ONLY AS
LONG AS ITS ELECTRICAL CORD.

THE DEGREE OF TECHNIC~L CO~PETENCE IS INVERSELY PROPORTIONAL
TO THE LEVEL or MANAGEMENT.

A fAILURE WILL NOT APPEAR TILL A UNIT HAS PASSED
~INAL INSPECTION.

276

TK-7875

USING THE EDITOR EFFECTIVELY

Entering Line Mode Commands

In addition to the character mode commands, line mode
commands are also available from within character mode. The
following are examples using two line mode commands in character
mode:

• SET NOTRUNCATE

User types: {GOLD} {PAGE/COMMAND}

EDT responds: COMMAND: SET NOTRUNCATE ENTER/SUBS

• SUBSTITUTE

User types: {GOLD} {PAGE/COMMAND}

EDT responds: COMMAND: S/BIGGEST/BIGGER/WH {ENTER}

This feature also extends the set of commands available to you in
character mode to include macros that you have developed.

277

USING THE EDITOR EFFECTIVELY

Nokeypad Character Mode

For users whose terminals do not have a keypad, there is a
nokeypad editor mode that can be used for character mode editing.
Although it is somewhat less convenient to use, it does offer the
functionality available in character mode. In fact, keypad
functions in character mode are actually defined as sequences of
one or more nokeypad commands. Table 6-7 shows examples of the
nokeypad operations that can be performed. The user types the
commands on the standard keyboard. The commands appear at the
bottom of the screen, while the results are shown at the
appropriate place in the upper part of the screen.

Invoking Nokeypad Mode

To invoke nokeypad mode, the user must issue the SET NOKEYPAD
command in line mode, and then using the CHANGE command enter
character mode.

Exiting Nokeypad Mode

To exit nokeypad mode, type EXIT. The editor returns to line
mode. Typing <CTRL/Z>, the usual method for exiting character
mode, does not work for nokeypad mode.

Those who may have to use a terminal without a keypad should
now read Chapter 8, Nokeypad Editing, in the EDT Editor Manual.

Table 6-7 Nokeypad Character Mode Commands

278

USING THE EDITOR EFFECTIVELY

LEARNING ACTIVITIES

1. READ the following sections in Chapter 5
of the EDT Editor Manual:

• Locating Text

• Movement Throughout the buffer

• Replacing and Substituting Text

• Using Line Editing Commands

• Special Characters, Changing Case and
Filling Lines

2. DO Lab Exercises 11 through 16 for this
module.

279

USING INDIRECT
COMMAND FILES

USING INDIRECT COMMAND FILES

INTRODUCTION
Once you become adept at using the system, you will notice

many constant operations that could be automated to save
continuous entering of commands.

RSX-IIM/M-PLUS operating systems can execute commands
contained in a file. In addition, special commands can be added
to control execution flow and make the command process more
flexible.

The greatest benefit of
control complex processes,
from tedious errors.

this facility is being able to
to eliminate typos and save the user

OBJECTIVES

1. Create an indirect command file that will execute a series
of task commands.

2. Create a simple indirect command file that will execute a
series of DCL commands.

3. Create an indirect command file that asks the user for
input and controls execution flow depending on user input.

4. Invoke an indirect task and CLI command file.

RESOURCES
1. RSX-IIM/M-PLUS MCR Operations Manual

283

USING INDIRECT COMMAND FILES

WHAT IS AN INDIRECT COMMAND FilE

During the course of a terminal session, there are many
operations performed repeatedly, for example, file maintenance and
program development. Automating processes can save you a lot of
typing and time.

An indirect command file is a text file that contains a
series of commands (a process) for one or more tasks. The command
file is processed by the task(s) as though the commands came
directly from the terminal.

There are two types of indirect command files: task and CLI
(Command Line Interpreter).

A task indirect command file contains commands that the task
understands. For example, the Peripheral Interchange Program
(PIP) is the utility task DCL uses to implement file maintenance
commands like COPY, DIR and PURGE. (To perform file maintenance
commands when MCR is your current CLI, use PIP directly.) All the
commands in the file must be commands that are understood by PIP.

A CLI indirect command file contains commands that the eLI
understands. For example, if we are using DCL, the file contains
commands such as COPY, DIRECTORY, PURGE, FORTRAN, and LINK. In
addition, a CLI command file may contain special commands that
control the flow of execution, ask the user for input, and perform
tests and other operations. These commands, called directives,
require special processing before being passed on to the operating
system. The Indirect Command Processor is the task responsible
for processing these files.

CREATING SIMPLE Cli COMMAND FilES

Figure 7-1 illustrates the procedure to create an indirect
command file. The following notes are keyed to the figure.

o Use an edi tor to create a file wi th a file type of .CMD.
In the example, the file name is BUILD.CMD. The commands
that you normally issue from the terminal are typed as
input to the file. In the example, the DCL FORTRAN, LINK
and PRINT commands are a typical ~equence for building a
task. You issue these commands over and over again during
a terminal session. At the end of the editing session,
you have a file that contains these commands.

285

USING INDIRECT COMMAND FILES

tt To have the Indirect Command Processor read the file and
execute the commands in the file, you type an @ followed
by the file name. The default file type is .CMD.

t» The commands are read from the file and processed just as
though they have been issued from the terminal. The
Indirect Command Processor reads the command. If it does
not contain directives that require interpretation by
Indirect, the command is passed on to the CLI for
processing.

C» This line is the end-of-file indicator that shows that
processing of the file is complete.

> EDIT/EDT BUILD.CMD
* I

FORTRAN/LIST MAIN

LINK/MAP MA!N, LB: [1,1] FOROTS/LiB

PRINT MAIN.LST,MAIN.MAP

I\z
* EXIT

> @BUILD

> FORTRAN/LIST MAIN

> LINK/MAP MAIN,LB:[1,1] FOROTS/L1B

>PRINT MAIN.LST,MAIN.MAP

>@<EOF>

TK-7876

Figure 7-1 Creating and Invoking a CLI Indirect Command File

286

USING INDIRECT COMMAND FILES

CREATING SIMPLE TASK INDIRECT COMMAND FILES

Figure 7-2 shows how to create and use an indirect command
file for a task. Typing MAC from MCR invokes the MACRO assembler.
The format of the command line is:

MAC taskfile,listfile=sourcefile

Suppose you have four source files to assemble: PROG.MAC,
RTNl.MAC, RTN2.MAC, RTN3.MAC. If you want to assemble more than
one source file at a time, you issue the following sequence of
commands:

)MAC<RET)

MAC)PROG,PROG=PROG<RET)

MAC)RTNl,RTNl=RTNl<RET)

MAC)RTN2,RTN2=RTN2<RET)

MAC)RTN3,RTN3=RTN3<RET)

MAC)"Z<RET)

)

This is the multiple line input format.

Figure 7-2 shows the process to use if you want to assemble
more than one source file by using an indirect command file. The
first step is to create a file containing the commands for each
source file. Then the indirect command file is specified in the
MAC command line.

287

USING INDIRECT COMMAND FILES

>EDIT/EDT ASSEMBLE.CMD
*1

PROG, PROG = PROG
RTN1, RTN1 = RTN1
RTN2, RTN2 = RTN2
RTN3, RTN3 = RTN3

!\Z
*EXIT

>MAC @ ASSEMBLE

> MAC PROG, PROG = PROG
> MAC RTN1, RTN1 = RTN1
> MAC RTN2, RTN2 = RTN2
> MAC RTN3, RTN3 = RTN3
>@<EOF>

TK-7877

Figure 7-2 A MCR Task Indirect Command File

(Macro Commands are Put into a File and the File Name
is Passed to MACRO Assembler)

288

USING INDIRECT COMMAND FILES

Benefits of Using an Indirect Command File

Makes the user's job easier by:

• Reducing the amount of typing needed to do frequently
performed tasks

• Allowing the command syntax to be corrected
execution

before

• Reducing the possibility of human error for complex,
error-prone procedures

• Allowing for user interaction and program flexibility

• Automating housekeeping tasks

LEARNING ACTIVITIES

1. READ the following sections in Chapter 4
of the RSX-llM/M-PLUS Operations Manual:

• 4.1, Indirect Command Files

• 4.2, Indi rect Command Processor

• 4.5, Switches

289

USING INDIRECT COMMAND FILES

INCLUDING DIRECTIVES

Directives

A directive is a special command that is interpreted by the
indirect command processor. It is distinguished by a period (.)
as the first character in the command line, and forms a procedural
language that allows you to:

• Define labels

• Define and assign values to symbols of three types:
logical, numeric, and string

• Create and access data files

• Control the logical flow within a command file

• Perform logical tests

• Enable or disable any of several operating modes

• Increment or decrement a numeric symbol

• Control time-based and parallel task execution

• Use special symbols for obtaining system information

• Allow for nesting of command files

Tables 7-1 through 7-7 list the available directives, and give
examples of each.

290

USING INDIRECT COMMAND FILES

Symbols

A symbol is a string of ASCII characters that
for a memory location where a value is stored.
consists of a string of 1 to 6 ASCII characters.
with a letter (A-Z) or a dollar sign ($).
characters can be alphanumeric (A-Z,0-9) or a $.
are legal symbol names:

START

$A3

ATOZEE

serve as a name
The symbol name
It must start

The remaining
The following

A symbol can be one of three types, which describes the kind
of value stored in the symbol. Symbols can be

Log ical

String

Numeric

A logical symbol is one whose value is
(represented by a lor 0 respectively).
that contains ASCII characters. A numeric
stored in its memory location. The symbol
value is first assigned to the symbol.

Values Given to Symbols

either true or false
A string symbol is one
symbol has a number
type is defined when a

There are two sets of directives that give a value to a
symbol, .SET and .ASK •

• SETS, • SETN, • SETT, • SETF and • SETL d i recti ves give a
literal value to a symbol. For example, the values "2" and
"PURGE" are literal values that can be assigned to a symbol; they
do not vary. The directives .SETO and .SETD redefine the radix of
a numeric symbol •

• ASK, .ASKS and .ASKN directives allow for interaction with
the user of the indirect command file. They pose a question to
the terminal, and wait for a response to be typed. These
directives allow a variable value to be assigned to the symbol.
That is, each time the same .ASK directive is executed, the
resulting value stored in the symbol varies.

291

USING INDIRECT COMMAND FILES

Tables 7-1 through 7-7 list some of the available directives.
Read through these tables to familiarize yourself with their
structure and contents. The sections following Table 7-7 discuss
how to use some of the more frequently used directives.

Table 7-1 Directives to Define Symbol Values

292

USING INDIRECT COMMAND FILES

Logical Test Directives

Table 7-2 Directives Used to Perform Tests

293

USING INDIRECT COMMAND FILES

Table 7-3 Relational Operators

Table 7-4 Compound Logical Operators

294

USING INDIRECT COMMAND FILES

Logical Control Directives

Table 7-5 Directives Used to Control Command File Execution

User . Wants To

Oefinea. block
structur~e

295

USING INDIRECT COMMAND FILES

More Useful Directives

Table 7-6 Other Directives

296

USING INDIRECT COMMAND FILES

Special Symbols

Table 7-7 Special Symbols to Obtain System
and User Information

LEARNING ACTIVITIES

1. READ the following sections in Chapter 4
of the RSX-IIM/M-PLUS Operations Manual:

• 4.4, Symbols

• 4.6, Description of Indirect
Directives

297

USING INDIRECT COMMAND FILES

Establishing Symbols

The following sections will discuss how to use the directives
and symbols. The indirect command files used in the examples have
been provided with the course materials on magnetic media. If you
have trouble understanding the examples, you may want to execute
the indirect command files at your terminal.

Notes on Example 7-1

The following comments are keyed to the example.

ct The .SETN directive gives a symbol a value, and
establishes that symbol as a numeric symbol. The symbols
NI, N2 and N3 are numeric symbols; their contents are
interpreted as numbers, not ASCII characters nor Boolean
(True, False) values. Nl contains the value 2(10); N2
contains the value 3(10). N3 contains the value of the
numeric expression Nl+N2*4. The expression is evaluated
from left to right with the values of the symbols
substituted. There is no hierarchy of numeric operators.
As shown in item ~, the value of N3 is 20. Different
results will occur if the expression is written .SETN N3
Nl+(N2*4). The value of N3 under these circumstances will
be 14.

tt The .SETS directive gives a symbol a value and establishes
that symbol as a string symbol. A string symbol is one
whose value is a string of ASCII characters. In other
words, the content of the symbol is interpreted as ASCII
character(s), not a number or a true/false value.

In item tt, the expression Sl+"B"+S2[1:3]
following meaning:

has the

Take the value of Sl (which is A), concatenate (append)
that with the ASCII character B, and concatenate that
string with the first three characters contained in S2
(CDE) to produce a value (ABCDE) and store it in symbol
S3.

This feature of the indirect command processor is very
powerful for the creation of command lines, parsing of
command lines, and general manipulation of ASCII strings.

298

o

o

o

USING INDIRECT COMMAND FILES

The .SETT and .SETF directives set a symbol value to true
and false respectively, and establish the symbol as a
logical symbol. You use a logical symbol for testing a
condition or situation. For example, if X is set to true,
then print the file EXAMPLE.CMD.

These statements display the values of the symbols on the
terminal. The • ENABLE SUBSTITUTION directive statement
will be discussed later.

All the commands shown thus far are in a file called
SYMBOLS.CMD. To execute these commands, the file name
preceded by an @ symbol is issued. There is no need to
supply the file type (.CMD), as the Indirect Command
Processor uses .CMD as the default file type.

These statements display the values of the symbols as they
were assigned by the various .SET directives. Of
particular interest are the values of N3 and S3, as they
are a result of the evaluation of an expression.

299

0

o

o

USING INDIRECT COMMAND FILES

.; +
• , +
.J THIS COMMAND FILE SHOWS HOw TO DECLARE A SYMBOL
., AND HOW TO GIVE IT A VALUE, THEREBY ESTABLISHING
.1 tHE SYMBOL TYPE .,-· :-
.: NOW TO ESTABLISH A NUMERIC SYMBOL

· , , · ; · ,
· , · ,

[

SETN Nl 2. o .5ETN N2 3.
.SETN N3 Nl+N2*4.

!tF THE DOT IS NOT USED TO INDICATE DECIMAL
!T~E NUM8ER WILL BE C~NSIDEREO OCTAL AND
!OUTPUT WILL FE IN OCTAL

.1 NOW TO ESTABLISH A STRING SYMBOL

· , , · ,
· · , · · , , : · ,

• 1

• 1 · · ,

o

•
• EN A8tl E
1

,SETS 51 "A"
• SETS 52 "CD~~~"
.SETS 53 51+"8"+52[1:3)

NOW TO ESTAdLISH A LOGICAL 5YMBOL

.5ETT X
• SE't'F Y

SUBST1TUTION
N1 = 'tH'
N2 = 'N2'
N3 = '1'13'
51 = '51'
52 = '52'
53 = 'S.~'
X = 'X'
Y = ''l'

>@SYtiBOLS
>; Nl 2
); N2 = 3
); N3 = 20
); SI A
); 52 CDEF
>; 53 ABCDE
). ; X T
); Y F
)@ <EOF)

Example 7-1 .SET Directive - Used to Define Symbol Value

300

USING INDIRECT COMMAND FILES

Asking the User for Input

Notes on Example 7-2

The following comments are keyed to the example.

o

o

A symbol may also be given a value by asking the user to
supply that value. The .ASKN, .ASKS and .ASK directives
query the user for information, and wait for the user to
type a response. On completion, the symbol contains the
information the user supplies. Like the .SET directives,
the .ASK directives also establish the symbol type as
numeric, string or logical. In the syntax of the
directive, the question you wish to ask immediately
follows the symbol name. The entire command line cannot
exceed 132(10) characters. This directive, .ASKN, asks
the user to supply a number.

You may also specify a range of values that are acceptable
for user input, and a default value if the user wants to
take the default by responding with only a carriage
return.

t» This example specifies just the default value for input,
with no specification of a range for input.

ct This example asks for a string of characters to be input.

ct This example asks for a string of characters of no less
than one character and no more than six characters.

ct The .ASK directive asks for a true/false value.

301

o
o

•
o •
o

;+
1+

USING INDIRECT COMMAND FILES

; THIS COMMAND ~lLE DEMONSTRATES HOW TO ASK THE USER
, FOR INPUT, THE~EBY MAKING A COMMAND FILE MORE FLEXIBL~
, IN IT'S USE.

,-
ASK THE USER FOR A NUMERIC INPUT

.ASKN SYM DEFINE NUM~RIC S~MBOL A

.ASKN [2:35:16] NU~SYM DEFINg NUMERIC SYMAOL A

.ASKN [::5) NUM GIVE ME A NUMBER

ASK THE USER FOR A STRING INPUT

.ASKS ~AMg PLEASE ENTER YOUR NAME

.ASKS [1:6J MIDNAM PLEASE ENTER tOUR _IDOLE NAME

ASK THE USER FOR A TRUE/FALSE INPUT

.ASK CONT on tOU WANT TO CONTINU~

,ENABLE SUBSTITUTION
SYM = 'SYM'
NUMSYM = 'NUMSYM'
NUM = 'NUM'
NAME = 'NAME'
MIDNAM = 'MIDNA~'
CONT = 'CONT'

Example 7-2 .ASK Directive - Used to Define Symbol Value

302

USING INDIRECT COMMAND FILES

Notes on Example 7-3

The following comments are keyed to the example.

ct This is the execution of command file INPUT.CMD, which
contains the commands shown in Example 7-2. It was run on
a hard-copy terminal to capture the actual activity
produced by its execution.

o

e

o

Comments from the
user's terminal
command file.

command file were displayed at the
to inform the user of the purpose of the

This line is the result of the interpretation and
execution of the first .ASKN directive (item ct in Example
7-2). Indirect prompts with the question supplied in the
.ASKN command line, and informs the user that the input
should be an octal number ([0]). In response, the user
types the number 8, which is not an octal number.
Indirect performs checks on the input to see if it meets
the specification of the .ASK directive.

Indirect comes back and asks again for proper input. The
user supplies the value 7 which is acceptable, and
execution continues to the next command line in the file.

o This example shows the results of item 0 in Example 7-2.
Indirect prompts the user:

with a question "DEFINE NUMERIC 'SYMBOL A"

with the range of values for acceptable input (2 - 35)

with' the default values (16 (8» if the user just
types a carriage return

that the number should be octal (0)

The user types 36, which is not in range.

C) Indirect comes back and asks again for the proper input.

o
The user types 34, which is acceptable.

This is the result of executing the .ASKN directive, item e in Example 7-2. The user response was a carriage
return, so the symbol will contain the default value of 5.

303

o

o

USING INDIRECT COMMAND FILES

These two examples show the results of executing items ct
and ct of Example 7-2. The first example asks for a
string of characters. The second example asks for a
string of 1 through 6 characters. Indirect will check the
supplied string for the correct number of characters.

This is the result of item C) in Example 7-2. The user is
to respond with either a [y] for yes or an [n] for no in
answer to the question. The symbol, CONT, will contain a
1 for true.

These are the symbol names and the values they contained
after executing this command file. If we executed the
command file once again, supplying different answers,
those new answers would be reflected here.

304

USING INDIRECT COMMAND FILES

,
) o)@INF'UT
);+

THIS COMMAND FILE DEMONSTRATES HOW TO ASK THE USER
); FOR INPUT, THEREBY MAKING A COMMAND FILE MORE FLEXIBLE

IN IT'S USE.

);-
); ASK THE USER FOR A NUMERIC INPUT

DEFINE NUMERIC SYMBOL A [0]: 8

AT.TS6 -- Invalid answer or terminator
0)* DEFINE NUMERIC SYMBOL A COl: 7

);

0
;;.; --
>* DEFINE NUMERIC SYMBOL A [0 R:2-35 D:16]: 36

• AT.TS6 -- Value not in ran!le
>* IIEFINE NUMERIC SYMBOL A [0 R:2-35 D:16l: 34

GIVE ME A NUMBER [0 D:5]:

);
); ASK THE USER FOR A STRING INPUT
);

)- ;
C) >* PLEASE ENTER YOUR NAME [S]: ELIZABETH

>* PLEASE ENTER YOUR MIDDLE NAME [S R:1-6]: JANNA
);
);
);

); ASK THE USER FOR A TRUE/FALSE INPUT

);
• >* DO YOU WANT TO CONTINUE? [Y/NJ: Y

);

4);
W);

);
)@ <EOF)

SYM = 7
NUMSYM = 34
NUM = 5
NAME = ELIZABETH
MIDNAM = JANNA
CONT = T

Example 7-3 Execution of INPUT.CMD Showing User Response

305

USING INDIRECT COMMAND FILES

Making Logical Tests

Notes on Example 7-4

The following comments are keyed to the example.

o

o

o

The .IF directive provides the feature of comparing two
symbols to determine the relationship between them. For
example, is the value of one symbol larger or smaller than
another? Is it equal to the other? It also provides for
taking some action depending upon that relationship. In
this example, if the value of the first symbol is less
than the second symbol, then Indirect will continue
processing the command with the label 200.

This is an example of a label. A label marks a place in
the command file where control can be transferred in
executing the file. A label begins with a period as the
first character, followed by 1 to 6 characters, and
terminates with a colon.

The action taken as a result of comparing two symbols may
be another directive, or an operating system command
stated in either DCL or MCR. In this example, if Nl is
less than or equal to (<=) N2, the DCL DIRECTORY command
will be passed to the operating system for processing.

The .IF directive in this example controls how many times
to execute a series of commands. If the symbol N is equal
to or greater than the number 3, processing will continue
at the label 20. Otherwise, processing continues at the
label STEP2.

306

USING INDIRECT COMMAND FILES

o This is an example of a logical test at label "20". Three
questions are asked where the answer to each is either yes
or no. The next statement tests the answer to the first
question. If the answer is yes, the command file
processor continues processing at label "100". The next
statement tests the answer to the second question; if it
is false, processing continues at label "150". If a test
does not meet the condition specified, processing
continues at the next statement in line.

C» The next two statements are examples of compound tests.
Using logical operators "0R" and "and", you are able to
test for more than one simple condition. For processing
to continue at Label "0" by executing the first statement,
either A or B must be true, and C must be true. By using
parentheses you can change the meaning of an expression.
The expression contained within parentheses is evaluated
before other operators are evaluated. The second
statement changes the meaning to: A must be true, or both
Band C must be true for processing to continue at D.

307

o
o ,NEXT:

•
,STEP2:

0

.20:

0

•
.100:

,150:

.0:

.200:

USING INDIRECT COMMAND FILES

THIS COMMAND FILE SHOWS HO~ TO USE
DIRECTIVES TO MAKE TESTS ON SYMBOLS

,ENABLE SUBSTITUTION
,SETN N 0
.ASKS X GIVE ~E A CHARACTER
.ASKS Y GlVE M~ A CHARACTER
.IF X LT Y .GOTO ?OO

.ASKN Nt GIVE ME A NUMBER

.ASKN N2 GIVE ME A NUMSgR

.IF N1 <= N2 DIR

.SETS S1 "AAb"

.SETS S2 IIAA"

,ASKS S3 GIVE M~ A CHARACTER
.IF S1 >= 52+53[1:1J .INC N

N NOW EOU~LS 'N'
.IF N >= 3 •• GOTO 20
,GOTO STEP2

.AS~ A ARE YOU A P~OGRAMMER

.ASK 8 DO YOU WO~K fOR A LIVI~G
,ASK C A~E YOU RETIRED
,1FT A .GOTD 100
.IFF B .GOTD 150

.IFT A .OR .1FT B .AND .IFT C .GOTO D

.IFT A .OR (.IFT B .AND .IFT C) .GOTO D

.GOTO 20
;A WAS TRUE SO B MUST AE TRUE
.EXIT
; B WAS FAl,S~:

.EXIT
;THI5 t5 D
.EXIT

:X WA5 LESS T~AN Y
.GOTO NEXt'

,TESTING CHARACTERS

;TESTING NUiltBERS

: t,OGICAll TESTS

;COMPOUND TESTS

Example 7-4 Using the .IF Directive to Test Symbols

308

USING INDIRECT COMMAND FILES

Notes on Example 7-5

The following comments are keyed to the example.

Ct This is the result of item Ct in Example 7-4. The user
responds to the first question by typing the letter H.
The symbol X now contains the letter H. In the second
question, the user responds by typing a J. The symbol Y
now contains the letter J. The character test (X less
than Y) is true so control passes to the label 200, which
displays the message at the terminal.

tt This is the result of item tt in Example 7-4. When the
question prompts the user to enter an octal number, the
user responds with S. Symbol Nl now contains the value S.
In response to the second question, the symbol N2 contains
the value 4. As a result, the DIRECTORY command does not
execute because the test is not met. Nl is not less than
or equa 1 to N 2.

e

o

This is the result of item 0 in Example 7-4. The value
of the symbol N is incremented by 1 each time the value of
Sl is greater than or equal to the
expression. When N is incremented
continues at the label 20.

This is the result of item C»
performs a logical test.

>@LOGICAL ~ ,

in

); THIS COMMAND FILE SHOWS HOW TO USE
>; DIRECTIVES TO HAKE TESTS ON SYMBOLS
>;
);
>* GIVE HE A CHARACTER [8J: H ct >* GIVE HE A CHARACTER [SJ: J
>;X WAS LESS THAN Y
>;TESTING NUMBERS

• >* GIVE HE A NUHBER
>* GIVE HE A NUHBER (Ol: 4
>* GIVE HE A CHARACTER [SJ: S

[

); N NOW EQUALS 1

•
>* GIVE HE A CHARAC.TER [SJ: D
); N NOW EQUALS 2
)* GIVE HE A CHARACTER [S3: E

[OJ: 5

); N NOW EQUALS 3
>* ARE YOU A PROGRAHHER 1 [Y/NJ: Y

O [
>.* DO YOU WORK FOR A LIVING1 (YIN]: N

. >*ARE YOU RETIRED 1 [Y/NJ: Y
,.); A WAS TRUE SO B HUST BE TRUE

>@ <EOF>
>

evaluation of the
to three, processing

Example 7-4, which

;TESTING CHARACTERS

Example 7-S Execution of LOGICAL.CMD and the Results
of User Input

309

USING INDIRECT COMMAND FILES

Controlling Execution Flow

., · ,

., THIS CO~MANO fILE SHOW HOw TO USE CONTROL

.1 DIRgCTIVES TO CONTHOL THE EXECUTION OF A

.; COMMAND fILE · : · :

.STEP!:

.STEP2:
J ,

.RETURN

.STEPl:

.ASKN SYM .1: DEFIN~ NUMERIC SYMBOL A
,ASKN[2.:35.:16.J NUMSYM #2: D~FINE NUMfRtC SYMBOL A
.ASKN[::5.l NU~ #3: GIV~ ~E A NUMBER
.ASKS NAME .4: PLEASE E~TER YOUR ~A~E
,ASKS[1:6J MIDNA~ #5: PLEASE E~TEF YOUR ~lDDLE NAME
.ASKS[l:JO] LASTNM #0: PLEASE ENTFR YOUR LAST NAME
,ASK CONT #7: DO YOU WANT TO CONTINIIE
.IfF CONT .e:Xl'f
.ENABLE SUBSTITUTION
.IF NUMSYM LX 17 •• GOSUB STEP2
.IF NUM EO 5 •• GOTO STEP3

,SYM = 'SYM'
'NU~SYM = 'NUMSY~'
;NUM = 'NUM'
,STOP

;HELLO 'N~ME' 'MIDNAM' 'LASTNM'

;
;HERE IS HOW YOU ~ESPONDEO TO THE QUESTIO~S:

;YOU TOOK THE DEFAULT ON OUESTIOh #3 50 1 WOij'T
; SHOw YOU HOw YOLl PESPON OED TO THE OTHER QUEST I al~s •
• STOP

Example 7-6 Command File Showing How to Control Execution Flow

310

USING INDIRECT COMMAND FILES

,
)@CONTROL
>* 11:
>* 12:
>* 13:
>* 14:
>* 15:
>* 16:
>* 17:
);

);
);
>;HELLO
>;
);

DEFINE NUMERIC SYMBOL A [0): 3
DEFINE NUMERIC SYMBOL A [D R:2.-35. D:16.): 12.
GIVE ME A NUMBER [D D:5.):
PLEASE ENTER YOUR NAHE [S): ELIZABETH
PLEASE ENTER YOUR MIDDLE NAME [S R:1-6): JANNA
PLEASE ENTER YOUR LAST NAME [S R:1-30J: VAN
DO YOU WANT TO CONTINUE? [YIN]: Y

ELIZABETH JANNA VAN

);HERE IS HOW YOU RESPONDED TO THE QUESTIONS:
>;
);YOU TOOK THE DEFAULT ON QUESTION 13 SO I WON'T
>;SHOW YOU HOW YOU RESPONDED TO THE OTHER QUESTIONS.
)@ <EOF)
>

>
>
)@CONTROL
>* 11: DEFINE NUMERIC SYMBOL A [0]: 55
>* 12: DEFINE NUMERIC SYMBOL A [D R:2,-35. D:16.): 2
>* 13: GIVE ME A NUMBER [D D:5.): 32
>* 14: PLEASE ENTER YOUR NAME [S]: JOHN
>* 15: PLEASE ENTER YOUR MIDDLE NAME [S R:1-6J: JACOB
>* 16: PLEASE ENTER YOUR LAST NAME [S R:1-30]: JINGLEHEIHER
>* 17: DO YOU WANT TO CONTINUE? [YIN): Y

);HELLO JOHN JACOB JINGLEHEIMER

);HERE IS HOW YOU RESPONDED TO THE QUESTIONS:

>;SYM = 55
);NUHSYH = 2
);NUH = 32
>@ <EOF>
>@CONTROL
>* 11: DEFINE NUMERIC SYMBOL A [0]: 72
>* 12: DEFINE NUMERIC SYMBOL A [D R:2.-35. D:16.]: 26
>* 13: GIVE ME A NUMBER [D D:5.J: 62
>* 14: PLEASE ENTER YOUR NAME [5]: PAUL
>* 15: PLEASE ENTER YOUR MIDDLE NAME [5 R:1-6]: H.
>* 16: PLEASE ENTER YOUR LAST NAME [S R:1-30J: HARVEY
>* 17: DO YOU WANT TO CONTINUE? [YIN]: N
>@ (EOF)
> ,

Example 7-7 Execution of CONTROL.CMD and User Response

311

USING INDIRECT COMMAND FILES

Setting Operating Modes

Notes on Example 7-8

The following comments are keyed to the example.

ct Quiet mode suppresses the echoing of operating system
command lines at the terminal. In this example, if the
user answers yes to the question, the • ENABLE QUIET
statement turns quiet mode on. In this case, the SHOW
TASKS ACTIVE command would not echo at the terminal.
However, the results of issuing the command would be
displayed. If the user answers no to the question, the
SHOW TASKS ACTIVE command would be echoed, and the results
of issuing the command would be displayed. You use
• ENABLE and .DISABLE to turn the operating modes on and
off.

tt Substitution mode allows for the substitution of a
symbol's value for the symbol in the command line. For
example, if the user answers the question, SPECIFY SOURCE
FILE, with NOTES.TXT, the statement TYPE 'FILE' would
become TYPE NOTES. TXT. Two steps must be accomplished for
this mode to work correctly. Substitution mode must be
enabled, and the symbol must be enclosed in single quotes
where the substitution is desired.

t» Lowercase mode allows characters read from the terminal in
response to .ASKS directives to be stored in the string
symbol without lower- to uppercase conversion.

ct This mode allows an escape character to be an acceptable
response to a .ASK directive.

ct This mode allows the user to output lines to a secondary
file. Enabling this mode directs Indirect to output the
lines between the • ENABLE DATA and .DISABLE DATA
statements to a secondary file. This is most useful for
dynamically creating another indirect command file, or a
data file for another task.

C) Global symbol mode provides for symbols whose names begin
with a $ to be recognized in all levels of command files.
Those symbols whose name do not begin with a $ are only
recognized in the level of the command file in which they
are defined.

For more information on the various operating modes, refer to
Chapter 4 of the MCR Operations Manual.

312

'+
1+ , ,
I
I
I ,
I
I ,
I ,-
I-

0
,
I ,

USING INDIRECT COMMAND FILES

THIS CQMMANO fILE SHOWS Hnw THE OPERATI~G MODES
WORK.

QUIET MODF:

LJWER CASJO.:
DAtA
GLOBAIJ
SUBSrITLJTIO~

ESCAPE
QUIET

.ASK OUIET DO YOU wANT CO~MANO LINES SUPPRESSED

.IFT QUIET .ENABLE QUIET

.IFF QUIET .DISABLE QUIET
SHOW TASKS ACTIVE

o SUHS'£ITUTION MODE

,ENABLE SUHSTITUTION
,AS~S FILE SPECIFY SOURCE FILE
TYPE 'FILE'

• LOWER-CASE MUPE

o
,'A·
I

.DISARLE OUIET

.ASK CASE DO YUU ~ANT LOWER-CASE ENABLED
,1FT CASE .ENAHLE LOWJO.:RCASE
,IFF CASE ,DISABL~ LOWERCASE:
.ASKS A DEFINE STRl~G SYMijOL A

I ESCAPF RECOGNITION MOD~

I
IIF YOU WANT A LIST OF OPTIONS, rYp~ <gSC>

,ENABLE ESCAPE
,ASKS A ENTER OPTrO~

.IFT <ESCAPE) .~uro LIST

.STF'P1:

C) DATA MODE

,OPEN ASSEMBLE.CMu
,f.N~BLE DATA
,ENABLE SUSSTITUTrO~
MACRO/LISr ,'sx"

.DISABLE DATA
.CLOS!!: rILE.TXT

GLOBAL MODE

• ENABIJE GLOBAL
,SETS $X "TESf"
I!lASSE~eLE
,STOP

.LIST: ;OPTIONS ARf.: ACADD), S(SUBTRACT),M (MULfIPLY)
.Goro STEPt

Example 7-8 Command File Showing Operating Mode Usage

313

USING INDIRECT COMMAND FILES

Notes on Example 7-9

The following comments are keyed to the example.

o

o

o

In this example, the use of quiet mode is shown. In
response to the question, the user answers yes. The DCL
command, SHOW TASKS ACTIVE, which executes, does not echo
at the terminal. However, the results of the command do.

In this example, quiet mode is still active. The TYPE
TEST.MAC command does not echo on the terminal. However,
the string "TEST.MAC" replaces 'FILE' in the TYPE command
in item 2 of Example 7-8. This feature allows your
indirect command file to work for variable file names
rather than just one file.

In this example, lowercase characters entered in response
to a question remain in lowercase. If this mode was not
enabled, lowercase letters would be converted to uppercase
on input. This could be a problem later when comparing
characters in symbols if the case did not match (i.e.,
uppercase to lowercase).

Escape recognition mode permits the response to an .ASK,
.ASKN, or .ASKS directive to be an escape character. A
question answered this way sets the special logical symobl
<ESCAPE> to true. You can then test this symbol for true
or false.

This example creates an indirect command file that will be
used in the following example. The .OPEN directive opens
a file with the name supplied with the directive. In this
case, the file name is ASSEMBLE.CMD. The lines following
the • ENABLE DATA statement up to the .DISABLE DATA
statement are output to the file ASSEMBLE.CMD. The .CLOSE
statement closes the file. A DIR command issued after
this operation would show a file called ASSEMBLE.CMD in
the user's UFD.

314

USING INDIRECT COMMAND FILES

C) In this example, ASSEMBLE.CMD is invoked from the indirect
command file. This is a second level of indirection. The
.ENABLE GLOBAL statement allows for the recognition of the
symbol $X from another indirect command file. The second
statement gives a value of the string TEST to the symbol
$X. The next statement invokes the indirect command file
that was created in the previous example. Processing now
continues from the indirect command file ASSEMBLE.CMD.
The symbol $X is recognized in this file, and substitution
takes place. This creates the command line of MACRO/LIST
TEST, which is sent to the operating system for
processing. Quiet mode was disabled in example 3 above,
so the command line is echoed at the terminal. The
results of the assemble are also shown.

)I!OPERATING
);t
);t
); THIS COMMAND FILE SHOWS HOW THE OPERATING MODES
); WORK.

); THERE ARE SIX OPERATING MODESS
); LOWER CASE
); DATA
); GLOBAL
); SUBSTITUTION
:>; ESCAPE
); GUIET

); GUIET MOIIE
); o)* IIO YOU WANT COMMAND LINES SUPPRESSED? [Y INJ: Y
MCR •••
SHOTS6
AT.TS6

• >* SPECIFY SOURCE FILE [SJ: TEST.MAC
.MACRO EXIT$S ERR
.HCALL DIR$
HOV (PC)t,-(SP)
.BYTE 51..1
DIR$
.IIF NB <ERR), CALL ERR
.ENDH EXIT$S

• >* IIO YOU WANT LOWER-CASE ENABLED? [Y INJ: Y
)* DEFINE STRING SYMBOL A [S]: This is Lower Case
);This is Lower Case

); ESCAPE RECOGNITION MODE
>;

C» >;IF YOU WANT A LIST OF OPTIONS, TYPE <ESC)
>* ENTER OPTION [SJ:
);OPTIONS ARE: A(ADD), S(SUBTRACT),M (MULTIPLY)
); o)oj
);

DATA MODE

); GLOBAL HODE
); o >MACRO/LIST TEST
ERRORS DETECTED: 1
TEST,TEST/SP=TEST
)G <EOF)

Example 7-9 Execution of OPERATING.CMD and User Response
315

USING INDIRECT COMMAND FILES

Using Special Symbols

Table 7-7 lists some of the
your use. These symbols provide
queries presented during command
are enclosed in brackets and
user-defined symbols.

special symbols available for
system information and replies to
file execution. The symbol names
are used in the same manner as

Notes on Example 7-10

The following comments are keyed to the example.

o

o

Nine different special symbols are used in this example.
When the file is executed, these comment lines will be
displayed at the terminal with the values of the special
symbols substituted.

In this example, the user is asked to input a string of
characters. The special symbols are tested and, if found
true, the command following the statement is executed.

If the user types an <ESC) (escape character), the
indirect command file will exit. If all alphanumeric
characters are typed, Indirect will display the message at
the terminal that all characters typed were alphanumeric.
If all characters were Radix-50, another message is
displayed. In the .SETN statement, the number of
characters in the input string is saved in the symbol
<STRLEN) and then output with a message.

316

o

o

USING INDIRECT COMMAND FILES

THIS COMMAND FILE SHOWS HO~ TO USE THE SP€CIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

.ENABLE SUBSTITUTIO~

THE USER OF THIS COMMAND FILE IS '<UIC>' AND HE
IS RUNNING ON AN RSX SYSTgM WITH '<MEMSIZ>' K OF CORE.
HIS DEVIC~ IS '<SYDISK>"<SYUNIT>'. HE IS PRF.SENTLY
USING '<CLI>' AS HIS CURRENT COMMAND LANGUAGE
INTERPRETER. THE DATE IS '<DATE>' AND THE TI~E THIS
COMMAND FILE IS RUNNING IS '<TI~E>'. THE LIBRARY
FOR THIS SYSTEM IS I~ '<LIBUIC>' AND THE SYSTEM UIC IS
'<SYSUIC>' •

• ASKS USER GIVE Mr. A STRING
.IFT <ESCAPE> .EXIT
.IFT <ALPHAN> ;YOU TYPED ALL ALPHA/NUMERIC CHARACTERS
.IFT <RAD50> ;YOU TYPED ALL RAD50 CHARACTERS

.SETN STRLEN <ST~LEN>

.SETD STRLEN

rYOU JUST TYPED 'STRLEN' CHARACTERS
;

Example 7-10 Command File Showing Special Symbol Usage

317

USING INDIRECT COMMAND FILES

Notes on Example 7-11

o The indirect command file, SPECIAL.CMD, is executed three
times in this example. Each time, Indirect substitutes
the system information for the special symbols. For
example, the special symbol <UIC> represents the UIC in
which the indirect command file is processing. The value
of this symbol in this example contains the character
string [305,303]. Indirect substitutes this value in the
comment line before displaying the line at the terminal.
You may want to try running this example on your system to
see how it works and how the information changes.

318

0

USING INDIRECT COMMAND FILES

>
)@SPECIAl
>;
);
>;
);
);
>;
}- ;
>;
);
);
)- ;
);
>;
>;

THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

THE USER OF THIS COMMAND FILE IS [305,303J AND HE
IS RUNNING ON AN RSX SYSTEM WITH 512 K OF CORE.
HIS DEVICE IS DBO. HE IS PRESENTLY
USING DCl AS HIS CURRENT COMMAND LANGUAGE
INTERPRETER. THE DATE IS 22-SEP-81 AND THE TIME THIS
COMMAND FILE IS RUNNING IS 14:09:07. THE LIBRARY
FOR THIS SYSTEM IS IN [1,54] AND THE SYSTEM UIC IS
[4,54).

>* GIVE ME A STRING [S): THISISASTRING
);YOU TYPED ALL ALPHA/NUMERIC CHARACTERS
);YOU TYPED All RAD50 CHARACTERS

>;YOU JUST TYPED 13 CHARACTERS

)@ <EOF)
)@SPECIAL

>;
>;
);
;.;
., .
/'
>;
};
>;
);
>;
)0;
~:. ;
). ;

>* GIVE

THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

THE USER OF THIS COMMAND FILE IS [305,303J AND HE
IS RUNNING ON AN RSX SYSTEM WITH 512 K OF CORE.
HIS DEVICE IS DBO. HE IS PRESENTLY
USING DCl AS HIS CURRENT COMMAND lANGUAGE
INTERPRETER. THE DATE IS 22-SEP-81 AND THE TIME THIS
COMMAND FILE IS RUNNING IS 14:09:39. THE lIBRARY
FOR THIS SYSTEM IS IN [1,54J AND THE SYSTEM UIC IS
[4,54].

ME A STRING [S): THIS IS A STRING

);YOU JUST TYPED 16 CHARACTERS

)@ <EOF)
>@SPECIAL
>;
>; THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
); SYMBOLS THAT ARE AVAILABLE TO THE USER

); THE USER OF THIS COMMAND FILE IS [305,303J AND HE
); IS RUNNING ON AN RSX SYSTEM WITH 512 K OF CORE.
); HIS DEVICE IS DBO. HE IS PRESENTLY
); USING DCl AS HIS CURRENT COMMAHD lANGUAGE
); INTERPRETER. THE DATE IS 22-SEP-81 AND THE TIME THIS
); COMMAND FILE IS RUNNING IS 14:09:54. THE lIBRARY
); FOR THIS SYSTEM IS IN [1,54J AND THE SYSTEM UIC IS
>; [4,54].

>* GIVE ME A STRING [S]: TH65IS32A5STRING
);YOU TYPED ALL ALPHA/NUMERIC CHARACTERS
>;YOU TYPED ALL RAD50 CHARACTERS

);YOU JUST TYPED 16 CHARACTERS

>@ <E.OF)
:>

Example 7-11 Execution of SPECIAL.CMD

319

USING INDIRECT COMMAND FILES

Examples 7-12 and 7-13 show how to use the commands you have
learned to automate processes that you perform every day. In
Example 7-12, the first command file will change your current CLI
to either MCR or DCL, depending on which CLI is presently active
at your own terminal. The second example will print the time of
day, and the third will send a message file to a terminal.

Example 7-13 is a file maintenance task that you perform
every day. It will edit a file, print a copy of the edited files,
and then clean up your work area by puring unnecessary copies of
the file when you are finished. You may want to try these at your
terminal to see the results.

Example 7-12

· , · ,
• J , , . · , · ,

THIS COMMAND FILE wILL CHANGE THE CU~RENT
CLI TO EITHER DCL OR MCR DEPENDING UPON WHICH IS
CURRENT.

.ENABLE QUIET
,IF (CLI> EO "DCL" .GOrD 10
SET IDCL:Tl:
.EXIT

.10: SET TERMINAL MCR

.ENABLE SUBSTITUTION
,SETS t (tl~e>
;T~IS IS THE CORRECT TIME: 'T'

.~ THIS FILE WILL SEND A MESSAGE FILE

.t TO A SPECtFIED TgRMINAL . · , .ENABLE SUBSTITUTIUN
.ASKS FI rERMINAL NUMRER
.ENABLE QUIET
PIP TT'FI'::TEXT.TXT

An Indirect Command File to Send Message to Terminal,
and Change Current CLI

320

· , · ; · · ,
· ; · ,
· ;
.10$:

· ; .15SI

USING INDIRECT COMMAND FILES

This command fIle supports fIle edit1ng and
manaq@ment, allowinq user to edIt, purge,
print, and run files.

,ENABLE LOWERCASE
.ENABLE SUBSTITUTION

Some def1n1tions:
.SETF INO

Get tIle type

lWe want lowercase
land symbol substitutIon

.ASKS TYPE FILE TYPE EXTENSION (E.G., "CMO")

.TEST TlPE lNUll type?

.IF (STPLEN) ~O 0 .GOTO ERR1 lThen error

Get file name
• ASKS NU\E NAME FILE YOU WISH TO EDIT (NO TlPE)

., Make complete filespec by concatenating name and type

· · ,

· ,

· , · ,

· ,
• J

, ;
.30$:

· · ,
, ,

, , ,
,ERR1: , ,
;

.ERR2: ,

.SETS FILE NAME+"."+TYPE

ValId name?
.TEST NAME
.IF <STRLEN> EO 0

Edit file
EDT 'FILE'

.GOTO ERR2 11£ no, report error

After EDT exit, ask 1t another edit is desired
.ASK REPEAT DO YOU WA~T TO gDIT THE SAME FILE AGAIN
.IFT REPEAT .GOro 20$

If filetyoe was .C~O (indirect command ftle)
see if user wants to execute file
.IF TYPE EO "cmd" .ASK IND DO YOU WANT TO RUN 'FILE'
.IF TYPE EQ "eMD" .ASK INO DO YOU WANT TO RU~ 'FILE'
.IFT INO @'flLE' lIt yes, run it

to RUNOFF and pr1nt .MEM fIle on LP:

See if user wants to print f1le
.ASK PRINT DO YOU WA~T TO PRINT THE FILE
.IFT PRINT PRINT 'FILE' IIf yes, print it

S@e if user wants to purge previous versions ot tile
.ASK PURGE DO YOU WANT TO PURGE 'FI~E'

If yes, send to PIP
.IFT PURGE PIP 'FILE'/PU/LD

S@e If user wants to edit another file
.ASK OTHER DO YOU WANT TO EDIT ANOTHER FILE
.IFT OTHER .GOTO 10$ llf so, loop
.GOTO 100

ERROR PROCESSING

FILE TYPE ERROR - PLEASE ENTER THE FILE TYPE (EXTENSION
OF THE FILE YOU WISH TO EDIT)

.GOTO 10$

, FILE NAME ERROR - PLEASE ENTER THf rILE YOU WISH TO EDIT
;

.GOTO 15$
.100:

Example 7-13 An Indirect Command File to Edit, Print
and Purge Fi les

321

CONTROLLING
TASK EXECUTION

CONTROLLING TASK EXECUTION

INTRODUCTION

You have seen how the operating system manages resources and
controls memory sharing and CPU time. In this module you will
learn how to set up and/or change various task parameters that
affect how the task competes for memory and CPU time.

OBJECTIVES

1. Know when and how to change task parameters, such as
priority, that affect task execution.

2. Use the RUN command for
scheduling of a task.

immediate and time-based

3. Install a task as an MCR spawnable task, and how to invoke
such a task using an MCR command.

RESOURCES

1. Introduction to RSX-IIM/M-PLUS Systems

2. RSX-l1M/M-PLUS Command Language Manual

3. RSX-IIM/M-PLUS MCR Operations Manual

4. RSX-IIM/M-PLUS Task Builder Manual

325

CONTROLLING TASK EXECUTION

HOW RSX MANAGES TASKS

Priority and Scheduling

In module 1, Overview, a discussion on how RSX-llM/M-PLUS
manages tasks indicates that a task's priority and its state
govern when it will get CPU control. The highest-priority,
ready-to-run task is given control of the CPU. Once a task
controls the CPU, it continues to execute until it completes,
becomes blocked, or a task of higher priority is ready-to-run.
The current task is the task that holds CPU control. The
scheduler changes the current task to the higher priority task
through the occurrence of a significant event. When a significant
event occurs, the scheduler looks at the Active Task List (ATL) to
select the current task. Only those tasks in the ATL are
considered for CPU scheduling.

In Figure 8-1, the arrows weaving through the System Task
Directory point to the tasks that are active and competing for
resources. TASKB, TASKD, TASKE, TASKG, TASKI, and TASKJ are the
active tasks. The scheduler, in searching this list, will select
TASKE as the current task. It is the highest-priority,
ready-to-run task. If TASKE completes and no other task state
changes occur in the list, TASKJ will then be the next task
selected as the current task. Resource scheduling only occurs at
the time of a significant event. If you need to, refer to Table
1-3 to refresh your memory on what events constitute significant
events.

Figure 8-2 illustrates the various task states.

327

CONTROLLING TASK EXECUTION

SYSTEM TASK DIRECTORY (ALL INSTALLED TASKS)

TASK A
PRI = 248.

ACTIVE TASK LIST -. TASK B
~ PRI = 240.

TASKC
PRI = 232 .

......... TASK D

[
PRI = 182.

*TASK E
- PRI = 150.

TASK F
PRI = 120.

~ TASKG
r--- PRI = 75.

TASK H
PRI = 50.

L....+ TASK I

[
PRI = 50.

TASKJ
PRI = 50.

BLOCKED

BLOCKED

UNBLOCKED

BLOCKED

BLOCKED

UNBLOCKED

* CURRENT TASK
(NOW EXECUTING IN
THE CPU).

TK-7504

Figure 8-1 Highest Priority Ready-To-Run Task Gains
CPU Control

328

CONTROLLING TASK EXECUTION

Task States

The following is a review of task states and their meaning:

1 UNKNOWN - A task for which there is no STD entry

2 KNOWN - A task for which there is a STD entry

3 DORMANT - A task for which there is a STD entry
but no ATL entry (no request to run)

4 ACTIVE - A task for which there is a STD and an
ATL entry (a request to run has been made)

5 READY- - An active task not waiting for any
TO-RUN event

6 BLOCKED - An active task waiting for an event

7 CURRENT - An active task with current CPU control

329

w
w
~

UNKNOWN KNOWN

DORMANT ACTIVE

EXECUTIVE
GRANTS CPU

EXECUTIVE
GRANTS CPU
TO OTHER TASK

REQUIRED
EXTERNAL
EVENT OCCURS

Figure 8-2 Task States

TASK WAITS
FOR EXTERNAL
EVENT

TK-7496

(Every Task is Allocated CPU, and Memory-Dependent Upon its State)

()

o z
~
::0
o
t"'I
t"'I
H
Z
G)

~
~
(f)

~

t%]

:><:
t%]
()

C
~
H
o
Z

CONTROLLING TASK EXECUTION

Memory Allocation

Before an active task can gain control of the CPU, it must be
memory-resident. Memory allocation occurs on a
partition-by-partition basis. A task's state, priority, and the
partition in which the task was built to r~n are all considered
when a task memory allocation request is made. The task loads
into the partition if there is room for it, and no higher-priority
task is competing for the same spot. If there is no room in the
partition, the task must wait until the operating system can
provide memory space. The task cannot be loaded into another
partition.

The operating system checks to see if it can provide memory
space for the task by searching the partition for a memory­
resident task of lower-priority that is checkpointable. If found,
that task will be checkpointed to allow loading of the higher­
priority task. The memory allocator checkpoints as many tasks as
necessary to load the higher-priority task. However, all
checkpointed tasks will be of lower-priority, and have the
checkpoint characteristic built into the task.

LEARNING ACTIVITY

1. DO Written Exercises 1 through 3 for this
module.

331

CONTROLLING TASK EXECUTION

USING TASK BUILDER FACILITIES

The Task Builder defaults assume typical usage and storage
requirements. You can override these defaults by using switches
and options, thus tai lor ing a task for its own input/output, and
storage requirements.

Some attributes that can be altered:

• Task Name

• Pr iori ty

• Partition

• Logical Units

• Checkpointability

Others can be found in the RSX-llM/M-PLUS Task Builder Manual.

Assigning a Task Name

Task names by default are the first six characters of the
task image file name. Sometimes, this naming convention is not
suitable. If 50, the name can be specified at task-build time by
using the /OPTIONS qualifier on the LINK command, as shown in the
example below. The Task Builder will prompt with Option? The
user then supplies the TASK option with a 1 to 6 character name.
The Task Builder will than prompt again with Options? More
options can be entered if needed. Complete the process by typing
a carriage return in response to the prompt. The Task Builder
will then process the command data to create a task image file.

)LINK/OPTIONS PROG
Option?TASK=QRST
Option?<CR)

332

CONTROLLING TASK EXECUTION

Setting Task Priority

The priority of a task is also established at task-build
time. If not overridden at install time, the task-build priority
becomes the default priority at which the task will run. If a
task is run on a multiuser protection system, it will not run at a
priority greater than the system default priority (50), unless it
is installed or run from a privileged terminal.

The priority is a decimal integer in the range of 1-250. The
default priority is 50. If a real-time task is being created, its
priority should be in the range of 150-250. To specify the
priority when building your task, use the following commands:

)LINK/OPTIONS PROG
Option?PRI=150
Option?<CR)

Indicating a Partition

A third consideration when building your task is the
partition in which the task is to run. Partition selection is
dependent upon the task's function. If it is a real-time task,
you will probably build the task to run in its own special
partition so that it does not compete with general tasks for a
position in memory. If the task is for general use, you will
probably build it to run in the general partition called GEN. GEN
is the default partition used if you do not specify a partition.
The partition in which a task runs can be overridden when the task
is installed, without having to rebuild the task. The following
example shows how to specify a different partition when building
your task.

LINK/OPTIONS TEST
Option?PAR=DRVPAR
Option?<CR)

333

CONTROLLING TASK EXECUTION

Making a Task Checkpointable

Generally, tasks are built checkpointable. This means the
task can be swapped out of memory and stored on disk to make room
for a higher-priority task. When the system checkpoints a task,
it places the task's memory image out on disk. There is a file on
each disk volume called CORIMG.SYS. The system uses this file to
temporarily store checkpointed task images. When space becomes
available again, the system reads the task image from the
checkpoint file and writes it back into memory. The task is again
competing for CPU time.

In addition, space can be allocated within the task image
file to store the memory image of a checkpointed task. This
guarantees available checkpoint space even when the system
checkpoint file is full. The following command examples show how
to build a task to be checkpointable. The default is not
checkpointable.

LINK/CHECKPOINT:SYSTEM VIPPROG

LINK/CHECKPOINT:TASK VIPPROG

In the first example, the task is built to be. checkpointed to
the system checkpoint file.

In the second example, the task is built with space reserved
within the task image file for checkpointing space. The size of
the task image file created with this qualifier will be
approximately twice the size of the task image created with the
/CHECKPOINT:SYSTEM qualifier.

In both cases, the tasks, if checkpointed, will first be
written to the System Checkpoint File.

334

CONTROLLING TASK EXECUTION

Assigning Logical Units

Example 8-1 shows the process of associating logical units
with the actual physical device that is to be used for
input/output. A source program uses logical units for reading and
writing to devices (I/O). They are called logical units because
at this point in the program development process, the physical
device to which the input/output will be done is not known. It
may be known that a certain type of disk drive is to be used, but
the specific unit probably is not. Furthermore, you would not
want to "hardwire" the real device name into the program. It is
advantageous to delay association with the real physical device as
long as possible.

In item 0 in Example 8-1, in the statement WRITE (1,10)
VARl, "1" is the logical unit number. There are three logical
units shown in this short program fragment. Two of them are
output devices (WRITE statements) and one is an input device (READ
statement). This program will read from one file and write to two
devices. At this point, you do not know what devices will be used
for the files.

When the task is linked using the /OPTIONS qualifier, you
must further inform the Task Builder about the devices. First,
you must tell how many I/O units the program has (item tt in the
example). The Task Builder will assign six units by default if
you do not specify a number. In the case of FORTRAN programs, the
Task Builder allocates seven units.

Next, you must give the Task Builder the physical, logical or
pseudo device assignments for the logical units. This is shown in
items tt, tt, and ctof the example. The ASG keyword accepts
assignments with the following syntax: Physical device:Logical
unit. In this example, the logical unit number 1 is associated
with the pseudo device SY: (the user's default device). Every
time this program writes to logical unit 1, output will appear on
the user's default device (itemtt). The program will read from
logical device LZ:, which correlates to logical unit 2. As this
is a logical device, the connection to a physical device has not
been completed. After task-building, another step is required
before this program can be successfully run. The logical device
LZ: must be assigned to a physical device using the ASSIGN
command.

Logical unit 3 has been associated with the physical device
MM0:, the first magnetic tape unit on the system. Every time the
program does a write to logical unit 3, output goes to MM0:.

335

CONTROLLING TASK EXECUTION

After the task has been built, and before it can
properly, the association between logical device LZ:
physical device must be accomplished. This is done with
ASSIGN command, as shown in item (tof the example. Only
the program be run.

be run
and some
the DeL
then can

By delaying logical unit assignments until just before
running the program, you provide the program with device
independence. This is especially useful when a device is not
working, or is busy. For example, suppose the magnetic tape unit
is being used by someone else, and you wish to run this program,
which was built to use the magnetic tape unit. You might either
wait until the tape unit becomes free (which could be a long
time), or rewrite and rebuild your program to write to another
magnetic tape unit. These two solutions are time-consuming and
tedious. By using the procedure in Example 8-1, you save time and
frustration.

When you build your task you may specify up to 250 units.

336

CONTROLLING TASK EXECUTION

PROG.SRC

o

WRITE (1,10) VARI
READ (2,15) VAR2

WRITE (3,25) VAR3

)LINK/OPTIONS PROG
OPTIONS? UNITS=3"
OPTIONS? ASG=SY:l,LZ:2,MM0:3
OPTIONS? <RE'I'). 0 0

)ASSIGN DK: LZ: 0
)RUN PROG

Example 8-1 Associating Logical Units with Physical Devices

Notes on Example 8-1

The following comments are keyed to the example.

o Log ical uni t numbers repres'ent a device for I/O

tt Telling the Task Builder there are 3 input/output units

t» Assigning logical unit 1 to user's default disk (pseudo
device)

C» Assigning logical unit 2 to the logical device LZ:

ct Assigning logical unit 3 to a physical device (the first
magnetic tape unit)

C) Before running the task, the association between the
logical device LZ: and some physical device must be made
for the program to execute correctly.

The association between SY: and
physical device was made when the
through the DCL ASSIGN command.

337

the user's default
user logged on, or

CONTROLLING TASK EXECUTION

Table 8-1 shows how to override some of these task
attributes. For instance, it is not necessary to rebuild a task
to run it at a different priority. Nor is it necessary to
reinstall a task to have it run at a different priority.

Table 8-1 Overriding Task Attributes

Characteristics of a task can be changed without rebuilding the
task.

338

CONTROLLING TASK EXECUTION

Table 8-2 shows the MCR commands that are the equivalent of
the DCL commands used earlier. By typing TKB<RET>, you are
invoking the multiple input line format of the Task Builder. You
must use this form to enter options. (Input files can also be
typed on multiple lines.) When you type (/), TKB prompts with
ENTER OPTIONS. Typing (II) terminates option mode and the Task
Builder creates the task image file.

Table 8-2 MCR Commands to Invoke the Task Builder to
Override Task Builder Defaults

, ,

User\yants

Override task attributes >TKB(RE,T>
att,a::;k __ bu ildtlme "TKB)PROG/CP',

, TKB>/<RET>
ENTE
';I'K~>PRI::l50<RET> .,,' .. ' .. ;
TKB >pAR= S YSt>AR<RET;>;:
TKB>rASK~VIPTSK<REl'r>' ':<
Ti<.e>,lJN1TS';::8.(R}!!T>:.,:.." </' '. , .. '. .'.

,,:;,.;';I'~.B'~'~'SQ:~S¥:0 .. :J>:2>~/3,:,i.~";':': .. ::~I:J~,.:: .5>::6 ,.,' :~M'~:;'1'~tS~,;~#~~'~"
'.' 'TKB~/"/"'/bE""T"""""" "'> ' ",/.,",::,.\. . .. , ,'" , '/ :,:';:;,,/,·'~,n.,»' ',," ,<,»:.' ",;"~j::,~,::,,,;,,:,

"',. ." :;,.~. ;:',".,\ ~ . ,

There are many more task characteristics that can be
specified at task-build time. The few mentioned here are the most
frequently used. For further information regarding the use of the
Task Builder and the options and switches available, refer to the
RSX-llM/M-PLUS Task Builder Manual.

339

CONTROLLING TASK EXECUTION

LEARNING ACTIVITIES

1. READ the following in the RSX-IIM/M-PLUS
Task Builder Manual:

• Chapter 1, Introduction and Command
Specification

• Chapter 10, Switches

Section 10.1, Switches

Section 10.1.6,
/CP--Checkpointable

• Chapter 11, Options

Section 11.1.4,
Assignment

ASG--Device

Section 11.1.9, PAR--Partition

Section 11.1.20, PRI--Priority

Section 11.1.27, TASK--Task Name

Section 11.1.30, UNITS--Logical
Unit Usage

2. READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

• Chapter 6, Linking the Task

3. DO Written Exercises 4 through 13 for
this module.

340

CONTROLLING TASK EXECUTION

INSTALLING A TASK

Installing a task in the System Task Directory (STD) is done
by issuing the INSTALL command. It makes the task known to the
system and records the task name, priority, partition and disk
address of the task image file in the STD. Before any task can be
run, it must be installed. Installing a task does not cause it to
execute, but does cause the task's state to be KNOWN and DORMANT.
A privileged user can install a task. Because memory is required
for each task entered into the STD, the number of installed tasks
should be minimized.

To remove a task from the STD, use the REMOVE command, which
is privileged.

In Example 8-2, a task image file called PROGRAM.TSK is used
to show how to install a task, run it and then remove it from the
STD. This task accepts one line of input from the terminal. It
then changes the input line from uppercase characters to lower­
case. The new line is then output to the terminal.

• :INSTALL/PF:IORITY: 75 PF:OGF\AM, TSI<
>SHOW TASKS:PROGRA!INSTALLED
PROGRA 01 GEN 75. 00001700 DRO:-01321644

>
•)INSTALL/TASK_NAME t JIM PROGRAM, TS~:

)SHOW TASKS:JIM/INSTALLED
JIM 01 GEN 50. 00001700 DRO:-01321644
>

•)INSTALL/TASK_NAMEt •• ,JIM PF:OGRAM.TSK
)SHOW TASKS:JIM/INSTALLED
JIM 01 GEN 50. 00001700 DRO:-01321644
)SHOW TASKS: •• ,HIM/INSTALLL\L\ED\\\\
TAS -- Task not in s~stem o >SHOW TASKS: ••• JIM/INSTALLED
••• JIM 01 GEN 50. 00001700 DRO:-01321644

•)RUN JIM
ABCIIEFGH I JKL
abcdefShiJkl

•)JIM ABCDEFGHIJKL
abcdef!ih i JIo:.l

• >RUN PF:OGRf~
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY.
now is the time for ~ll Sood men to come to the aid of their part~.

:> o >REMOVE JIM
)REMOVE ••• JIM
)F:EMOVE PROGF\A

:>
:>

Example 8-2 Samples of Installing a Task

341

CONTROLLING TASK EXECUTION

Notes on Example 8-2

The following comments are keyed to the example.

o

o

e

o

e

o

o

o

The task image from the file named PROGRAM.TSK is
installed with a priority of 75. The task name, by
default, the first six characters of the task image file
name. The SHOW TASKS command shows that the task will be
loaded into partition GEN, has a priority of 75, and the
disk address of the image file is DR0:-01321644. To run
the program, use the name PROGRA.

The same task is installed again, with a task name of JIM.
The priority defaults to the priority with which the task
was built. To run the program, use the name JIM.

In this case, the task is installed with the name ••• JIM.
This makes the task MCR spawnable. An MCR spawnable task
is one that can be run by issuing just the last three
characters of the task name. The RUN command is not used
to invoke the task, as you will see in a later example.

Notice that SHOW TASK shows a task name of ••• JIM. At
this point in time, there are three entries in the STD,
all pointing to the same task image file. We can run the
task in three different ways.

To run an installed task that has not been installed as
MCR spawnable, you must use the RUN command. In this
example, type RUN JIM. The task waits for you to enter
the string of characters. After a carriage return, the
task converts the string to lowercase and outputs it to
the terminal. The job is complete. Whenever you want to
run the task again, you must say RUN JIM. There is no
need to reinstall the task.

This is an example of invoking an MCR spawnable task. You
do not have to use the RUN command. MCR utilities are
invoked in this manner. For example, PIP, the Peripheral
Interchange Program, is invoked by typing PIP. Its task
name is ••• PIP.

This shows how to invoke the task that was installed in
note I above, using the first six letters of the task
name.

This shows how to remove the entries from the STD. After
their removal, the task's states return to UNKNOWN.
Trying to run a removed task would result in the error
message:

#####INS--file not found.

342

CONTROLLING TASK EXECUTION

RUNNING A TASK

Tasks can be scheduled to run:

Immediately

At a specific time of day

At some time interval from now

Repeatedly, at a time interval synchronized on the next
hour, minute, second or tick. (A "tick" is one pulse from
the system clock. Usually, the system clock is
synchronized with the ac line frequency.)

Running Tasks Immediately

Use the following
immediately:

RUN filename
RUN $filename

format to run Uninstalled tasks

All tasks must be installed to run on the system. Therefore, this
form of the RUN command does an automatic Install-Run-Remove.
Note that the command requires a file name, not a task name. The
$ in the second example above is a short form representation for
the System UFD (M systems) or the System and Library UICs (M-PLUS
systems). The system will run the task located in the system UFD
rather than one located in the user's default UFD.

Installed Tasks

Installed tasks can be invoked in two ways. If they are
spawnable tasks, invoke them by issuing the three character
derived from the last three characters of the task name.
instance, under MCR, the Compare program that compares two
files is invoked by typing CMP. Its task name is ••• CMP.

343

MCR
name

For
ASCII

CONTROLLING TASK EXECUTION

All other installed tasks are invoked using the fol16wing
format:

RUN taskname
RUN $taskname

Note that the command requires a task name. The $, once again,
means to look on the System UIC (and the library UIC on M-PLUS
systems) for the task image file.

Tasks Scheduled to Run Later

Suppose you wish to run a task during nonprime time hours
when you are not at work. You can do that using the RUN command,
provided that the task is installed and you are a privileged user.

When you schedule
made in the system
tasks that are waiting
This queue is checked
and are, therefore, to

a task to run at a later time, an entry is
clock queue. The clock queue is a list of
for time to expire before they are to run.
frequently for tasks whose time has expired
be activated.

To observe what jobs are in the queue, the SHOW CLOCK QUEUE
command will give information regarding the task. To remove a
task from this queue, you must issue the CANCEL command.

In the following examples, the commands show how to run a
task at a specific time, a delayed time or on an interval time
basis.

)RUN/SCHEDULE:ll:30:00 BATCHRUN
)RUN/DELAY:10S VIPROG
)RUN/INTERVAL:10M EXERCISER

In the first example, an entry is made in the clock queue to
run the task BATCHRUN at 11:30. This is an example of running a
task at a specific time of day.

In the second example, the command specifies that VIPPROG
should be run ten seconds from the time you issue the RUN command.

In the third example, the command specifies that the task
EXERCISER should run every ten minutes.

344

CONTROLLING TASK EXECUTION

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-IIM/M-PLUS Command Language Manual.

• Chapter 7, Running Tasks

Section 7.1, Task Installation
and Execution

Section 7.2, Introduction to the
RUN command

Section 7.3, ABORT

Section 7.5, CANCEL

Section 7.8, INSTALL

Section 7.9, REMOVE

Section 7.12.3, SHOW TASKS

Section 7.12.5, SHOW CLOCK QUEUE -
2. DO Written Exercises 14 through 22 for

this module.

345

LIBRARIES

LIBRARIES

INTRODUCTION

In this module you will learn how to create, maintain and use
libraries.

A library file is a direct access file containing a number of
modules, usually of the same type. Users can collect often used
subroutines and macro definitions for ease of use and faster
access during program development.

OBJECTIVES

To use libraries effectively, a user must be able to:

1. Create libraries

2. Maintain libraries

3. Use libraries during program development

4. Use libraries to collect files together

RESOURCES

1. RSX-IIM/M-PLUS Command Language Manual

2. RSX-IIM Utilities Manual

349

LIBRARIES

LIBRARIES

Libraries are specially formatted files that contain a
collection of associated files. For example, Object libraries
contain object modules for program code that has been processed
with a language translator. The object code could be for routines
that are commonly used like a READ or WRITE RECORD routine. These
object modules are grouped together into one file for the
convenience of the user. You save program development time by
using code that has already been developed and debugged.

These files are maintained by a task called the Librarian.
As the files are specially formatted for quick access and space
saving, they cannot be displayed by using the DCL TYPE command.
You must use the Librarian task to display the contents of a
library file. There are three types of libraries:

Macro Source libraries

Object libraries

Universal libraries

Macro Source libraries contain macro definitions written in
the MACRO-II language. They are source statements. You use these
libraries as input files when assembling them as MACRO-II source
files.

Object libraries, contain object modules. Object modules are
the output from a language translator (like FORTRAN, COBOL,
MACRO-II Assembler). Before being placed in the library, the code
has been used in a program and debugged. Object libraries are
used at task-build time.

Universal libraries are general-use libraries. They may
contain text files, indirect command files or whatever you wish to
place in them. They can be used merely as a repository for files,
or as in the case of indirect command files, as a central file for
frequently used command files.

There are many DIGITAL-supplied System libraries available,
and the user may create his own special libraries.

Benefits of Using Libraries

The greatest benefit of libraries comes from sharing code
that has already been developed and debugged. Development costs
are reduced when a programmer uses existing code.

351

LIBRARIES

Second, the MACRO-II Assembler and the Task Builder
automatically search the System library. After processing all the
input files, both tasks search a System library for any unresolved
references. The System library specification is not included in
the input command line. User libraries, which may also be used
with both of these tasks, however, are not automatically searched.
Their file specifications must be included in the input command
line.

Finally, having all modules in the same location saves time
and overhead. Control can be applied to libraries; this assures
that the latest version of a routine is being used. Only one
entry for each module can be placed in a library. If a user
wishes to have other versions of a routine maintained in a
library, he must insert them with a different module name, or
place them in another library.

Library File Format

All library files have the same format, as in Figure 9-1.

o

o
o
e

o[

•

LIBRARY HEADER

ENTRY POINT TABLE
EPT

MODULE NAME TABLE
MNT

MODULE #1 HEADER

MODULE #1

• ·
MODULE #N HEADER

MODULE #N

• • • • •
AVAILABLE SPACE

• • • • •

Figure 9-1 Library File Format

352

TK-7487

LIBRARIES

Notes on Figure 9-1

The following comments are keyed to the figure.

o Library Header

This section contains information on the current library
status including the date and time of the last addition,
the number of Entry Point Table entries, the number of
Module Name Table entries, the amount of available space,
and the number of logically deleted bytes. For Universal
libraries only, the default file type is kept in the
header.

o Entry Point Table

The Entry Point Table is used only with Object libraries.
It is an alphabetic list of all the entry points in all
the object modules in the library.

An entry point is an address within a piece of code
to which a program can transfer control such as:

a global label in MACRO
a subroutine
a function
block data

This table is used to locate a piece of code in the
library, when a request is made with the entry point name.
See Table 9-1 for the source of the Entry Point Table
name.

t» Module Name Table

The Module Name Table contains the name of every module in
the library. It is used to find the module in the
library. See Table 9-1 for the source of the Module Name
Table entry.

C» Header and module body for every module inserted into the
library

ct Space available

ct Total library size set at creation time.
exhausted, library must be rebuilt.

353

If space

LIBRARIES

Table 9-1 Sources of EPT, MNT Entries Used in
Creating a Library File

LEARNING ACTIVITIES

1. READ the following sections in Chapter 10
of the RSX-11M/M-PLUS Utilities Manual:

• 10.1, Format of the Library File

• 10.2, LBR Restrictions

2. READ Section 6.3, Library, in Chapter 6
of the RSX-11M/M-PLUS Command Language
Manual.

3. DO Written Exercises 1 through 4 for this
module.

354

LIBRARIES

Macro Libraries

Figure 9-2 is an example of the type of information stored in
a Macro .library. There are three macro definitions shown here,
ALUN$S, CALL, and EXIT$C. Each macro consists of all the
instructions between the .MACRO and the .ENDM statements, and is
written in MACRO-II assembly language. Each of these was
developed and tested before it was put into the library.

The format of the Macro library consists of the library
header, and the Module Name Table (MNT), followed by a module
header and module for each macro definition.

The module header contains information regarding the module
itself. The size of the module, its status, and the date the
module was inserted is stored here. For more detailed information
regarding the module header format, refer to the RSX-IIM/M-PLUS
Utilities Manual.

The default file type for a Macro library is .MLB. The
System Macro library is RSXMAC.SML, and is located on LB:[I,I].

355

w
Ul
0"\

RSXMAC.SML

CALL

CALL

EXIT$C

FREE SPACE

Figure 9-2 A Macro Library

.MACRO

.MCALL
MOV$
MOV$
MOV$
MOV
.BYTE
DIR$
.ENDM

.MACRO
JSR
.ENDM

$$$=.

.MACRO

.MCALL

.IF NDF

.PSECT

.IFTF
EXIT$
.IFT
.PSECT
DIR$
.ENDC
.ENDM

ALUN$S LUN,DA,DU,ERR
MOV$,DIR$
DU
DA
LUN
(PC+,-(SP)
7,4
,ERR
ALUN$S

CALL
PS,ADR
CALL

ADR

EXIT$C PSCT,E R R
EXIT$,DIR$
$$$GLB
$DPB$$

PSCT
#$$$,ERR

EXIT$C

TK·7488

t""'
H
ttl
:0
~
:0
H
trl
Ul

LIBRARIES

Object Libraries

Figure 9-3 shows the format of an Object library.

An object module is difficult to visualize as it is not in
human-readable form. Each object module contains instructions in
object code. Each requires linking before it can be run.

In the figure, there are three object modules in the library:
ARITH, CLOSE and WRITE. ARITH has two entry points, $DIV:: and
$MUL::. CLOSE and WRITE have one each, .CLOSE:: and .WRITE::.
Notice that the EPT has an entry for each entry point in the
library, and a pointer to the header of the respective object
module, where it can be located. The Object library is the only
one of the three library types to use the Entry Point Table (EPT).
Entry points tell where a program will transfer control when the
program executes.

The default file type for an Object library is .OLB. The
System Object library is LB:[I,I]SYSLIB.OLB. After processing all
the input files, the Task Builder searches through this library
for any unresolved references.

The Task Builder is able to search an Object library in two
ways. The first way is when it tries to resolve unsatisfied
references on global symbols. The global symbol is looked for in
the Entry Point Table. The second way is when a module-name has
been specified with the /LIBRARY/INCLUDE qualifier of the LINK
command. In both cases, when the module is found, the Task
Builder extracts the complete module and includes it in the task
image file.

357

LIBRARIES

SYSLlB.OLB

LIB HEADER

$DIV
.CLOSE

$MUL

.WRITE

- ARITH

CLOSE

WRITE

--?
--==

ARITH HEADER

$DIV::

$MUL::

•
SY: [305,303] • •

- CLOSE HEADER

USER.OLB .CLOSE::

• • •
WRITE HEADR

.WRITE::

FREE SPACE

o OBJECT MODULES DERIVED FROM AN ASSEMBLER
OR COMPILER

• OBJECT FILE FORMAT INCLUDES ENTRIES IN THE
EPT.

Figure 9-3 Object Libraries

358

....

EPT

MNT

loJ

o

o

o

TK-7495

LIBRARIES

Universal Libraries

Universal libraries have the same format as Macro libraries.
Like the Macro library, however, the EPT is not used. Figure 9-4
shows this format and the type of input that a Universal library
may have. This particular library is a collection of indirect
command files that can be executed directly from the library.
They do not need to be extracted first.

The Universal library can be used to collect listing files
with their source and object files. This is one method of
transporting a program package from one system to another. When
transferring the file from one media to another, only one file
needs to be specified in the copy operation. Universal libraries
can be used to collect memos on a certain topic, like your
programming project.

The default file type for Universal libraries is .ULB.

359

W
0"1
!Sl

•

MYLlB.ULB

LIB HEADER

EPT

STRTUP BACKUP
BUILD
SHUTUP
STARTU

MNT SYSLOG
WHO----+--,

BACKUP HEADER

BACKUP

FREE SPACE

INDIRECT COMMAND

o o ENABLE SUBSTITUTION
o TESTFI LE TI:
• SETS TI <FILSPC>[1,5]

; TERMINAL 'TI' IS AT
; '<SYDISK>' '<SYUNIT>':'<UIC>'

o ENTRIES INTO THE LIBRARY MAY BE OF A UNIVERSAL
TYPE. THIS ONE CONTAINS INDIRECT COMMAND FILES .

• LIBRARY FILE FORMAT - EPT IS NOT USED.

Figure 9-4 Universal Libraries

TK-7490

t"'1
H
OJ
:::0
>
:::0
H
[%:J
C/l

LIBRARIES

DIGITAL supplies many libraries for your use. Table 9-2
lists the libraries that are available. Not all will be present
on your system. You may perform a directory command on LB:[l,l]
to see which ones your system does have. The most frequently used
libraries are RSXMAC.SML, SYSLIB.OLB and the FORTRAN Object Time
System libraries.

Table 9-2 DIGITAL-Supplied Libraries on LB:[l,l]

361

LIBRARIES

Using Macro Libraries

Figure 9-5 illustrates how to use Macro libraries.

MACRO.MAC SY: [305,303]

C
LBR.TSK -

o -.f LIBRARY ~ """"- -
~YMAC.ML~ -.MACRO SAVE LIST

.IRP X,<LlST>
MOV X,-(SP) -. ENDR
.ENDM SAVE

PROG.MAC PROG.LST

ST: SAVE <RO,R1,R2,

MCALL SAVE,EXIT$C ALPHA, OMEGA>
MOV RO, . (SP)

- MACRO r---- MOV R1, . (SP)
ST: SAVE <RO,R1,R2, ASSEMBLER MOV R2, . (SP)

ALPHA,OMEGA> MOV ALPHA,-(SP) o
MOV OMEGA-(SP)

EXIT$C

EXIT$C .
.

e > MACRO/LIST MYMAC/LiBRARY, PROG

LB: [1,1]

.MACRO EXIT$C LBR.TSK
C ':)

-1 LIBRARY I---

....... RSXMAC.SM!::.. -o

........ -.ENDM

TK·7489

Figure 9-5 Using Macro Libraries

362

LIBRARIES

Notes on Figure 9-5

The following comments are keyed to the figure.

ct Using the Librarian, put the Macro source in a library.
In this example, the Macro SAVE is added to the User
library MYMAC.MLB.

t» Reference the Macro in a source file. In a source
program, PROG.MAC, reference is made to the SAVE macro.
EXIT$C is also referenced.

Assemble the source referencing
Macro. The Macro Assembler
macro definition for SAVE and
macro, making the proper symbol
EXIT$C is not found in this
unsatisfied.

the library containing the
searches MYMAC.MLB for the
finding it expands the
substitutions. The Macro

library and remains

C» Previous to the assembly process, the System Macro
library, RSXMAC.SML, was created using the Librarian. The
Macro EXIT$C is contained in this library. Once the
assembler searches any User libraries specified in the
MACRO command line, it turns to the System Macro library
to resolve any other unsatisfied references. In this
case, EXIT$C is found, extracted from the library and
included in the source program. The MACRO-II Assembler
searches the User library for unsatisfied references, then
automatically searches the System Macro library,
LB:[I,I]RSXMAC.SML.

363

LIBRARIES

Using Object Libraries

The procedure for using Object libraries is similar to that
of Macro libraries, however, their use occurs later in the program
development process.

o

o

o

o

>LlBRARY/CREATE MYLIB WRITE,READ

WRITE.OBJ.

WRITE::
SY: [305,303] ----""----~ C ~ ---.-.- -- - -.....--

READ.OBJ LIBRARIAN - __ MYLlB,OLB

READ:: S
-. oJ

~--

>LlBRARY/INSERT [1,1] SYSLIB CLOSE,OPEN

CLOSE.OBJ

CLOSE::
LB:[l.l] ----

~-~~ ~

::.:: =-::::.. t---

OPEN.OBJ LIBRARIAN f--I--SYSUB.OLB

O~~-U ---- '- ~

>FORTRAN PROG

PROG.FTN SY:[305,303]

· · -- ~

OPEN FiLE
DO I = 1,10 -1 FORTRAN ~ WRITE ~ECORD . COMPILER

__ PROG.OBJ __

CONTINUE
CLOSE FILE

.... --·
·

>UNK/MAP PROG, MYUB/UBRARY

PROG.MAP

SY:[305,303] LB: [1,1]

WRITE::

PROG.OBJ SYSLlB.OLB READ::

MYLlB.OLB
CLOSE::

OPEN::

Figure 9-6 Using Object Libraries

364

LIBRARIES

Notes on Figure 9-6

The following comments are keyed to the figure.

o

o

o

A User Object library called MYLIB.OLB is created using
the Librarian. Two object modules (WRITE, READ) contained
in two object files (WRITE.OBJ and READ.OBJ) are placed in
the library when it is created.

The System Object library, SYSLIB.OLB, is modified to
include two object modules (CLOSE and OPEN) which are
contained in two object files (CLOSE.OBJ and OPEN.OBJ).

In a source file, PROG.FTN, reference to three of those
modules is made (OPEN, WRITE and CLOSE). The file is
compiled. A listing file generated from the compile shows
those three references as unsatisfied, as they are not
defined within this source file.

At link time, the User Object library, MYLIB.OLB, is
supplied in the command line. The Task Builder reads this
library first, searching for code for OPEN, WRITE and
CLOSE. Only the code for WRITE is found, extracted and
included in the Task Build from this library. The Task
Builder then searches the SYSLIB.OLB for CLOSE and OPEN.

Be careful in supplying library specifications in the LINK
command line. If the User library contains object modules
for CLOSE and OPEN, the Task Builder would extract these
modules to satisfy the references to those symbols. If
the desired code is in the System library, the results
then are wrong. For a solution to the situation, read the
DCL HELP provided on the /LIBRARY/INCLUDE qualifier to the
LINK command, or refer to the /LB switch discussion in the
RSX-llM/M-PLUS Task Builder Manual.

365

LIBRARIES

Using Universal Libraries

When universal libraries are used as repositories for text
files, you create them by using the Librarian and inserting the
text modules into them. The module names will be taken from the
input file name. You can then use the librarian commands to list
the contents, extract or insert new modules. If the library is a
collection of indirect command modules, a particular command
module can be executed without extracting it from the library
using the following command:

>@MYLIB.CLB/LB:WHO (MCR command)

In this example, the library file, MYLIB.CLB, is used with the /LB
switch to specify the indirect command module (WHO.CMD) to be
executed.

Universal libraries can also be accessed from a task by
building that capability into the task in the following manner:

Build a Universal library containing the desired modules.

Develop your application program using $ULA, a System
library routine, to access the library.

Assemble/compile, task-build and run the
program.

application

For more information regarding $ULA, refer to Appendix B of the
IAS/RSX-llM System Library Routines Reference Manual.

Creating / Maintaining Libraries

Table 9-3 lists operations using the Librarian. The DCL
command is shown, along with a command example. Table 9-4 shows
the equivalent MCR commands to accomplish the same operations.

Table 9-5 lists CREATE command parameters and qualifiers,
while Table 9-6 lists Librarian listing qualifiers.

366

DCL Command
DCL Example
Note

DCL Command
DCL Example
Note

DCL Command
DCL Example

DC L' Command
OCL Exampl,~

nCLCommand
OCLExample
NQte'

J.)C:~~9~mand
,D,G:t.:,c;xample "

LIBRARIES

Table 9-3 DeL Library Commands

Creating a New Library

>LIBRARY/CREATE [:ARG] [/QUALIFIER[S]] tIBSPEC [INFILE [S]]
>LIBRARY/CREATE/BLOCKS:200. MYLIB
See Table 9-5

Listing the Contents ofa File

>LIBRARY /LIST [:FILESPEC] [/QUALIFIER [S]] LIBSPEC
>LIBRARY/LIST/FUt,L MYLIB
See Table 9-6

Adding a Module toa Library

>LIBRARY/INSERT[/QUALIFIER[S]] LIB$PEC FILESPEC[S]
>LIBRARY/INSERT UNILIB. ULB LOGIN!,CMD,LOGOUT.CMD

>LI-BRARY/REPLACE [/QUALIFIERIS1]<'~tas~EG,FILESI>ECls]
>LIBRARY/REPLACE UNL,;['B. ULB "LOGINI¢M£)','LQ~qlJT~ CMD

DeletingaModUl~fro~,.'t:.l~r(1ry

>~LIBRARY/DELJ!:T~ L;r'~SJ?ECMQD{JLtlS)
>LIBRARY/DELETE ,MYLIB'A,B,iC '

>LIBRARY/COMPRES8[,:ARG-] ',[IQUALiFIER[S]] otDLIBSPEC NEWLIBSPEC
>LIBRARY/COMPRESS:BLOCKS:200. 'MYLIB'MYLIB2
se~ Figur. '9-6 ' '

Extracting a Modul~
" • y

'>J:rB~~RY/EXTRACT/ 0lJTPUT: ~ILES PEC~;r BSPEC
'>LIBRARY!EXTRACT/OUTPUT:A MYLIB •. MLB A

367

LIBRARIES

Table 9-4 Equivalent MeR Library Commands

368

LIBRARIES

Table 9-5 CREATE Command Parameters and Qualifiers

Table 9-6 Librarian Listing Qualifiers

369

LIBRARIES

LEARNING ACTIVITIES

1. READ the following sections in Chapter 10
of the RSX-IIM/M-PLUS Utilities Manual:

• 10.5.1, Compress Switch

• 10.5.2, Create Switch

• 10.5.3, Delete Swi~ch

• 10.5.7, Extract Switch

• 10.5.8, Insert Switch for Object,
Macro Libraries

• 10.5.9, Insert Switch for Universal
Libraries

• 10.5.10, List Switches

• 10.5.12, Replace Switch for Object,
Macro Libraries

• 10.5.13, Replace Switch for Universal
Libraries

2. DO Written Exercises 5 through 11 for
this module.

370

LIBRARIES

Examples 9-1 and
commands.

9-2 show some frequently used

>
:>
:> o >LIBRARY/LIST LB:[lr1JRSXMAC.SML

Director~ of file RSXMAC.SML;121
Macro librar~ created b~: LBR V06.00
Last insert occurred 23-AUG-81 at 13:04:21
MNT entries allocated: 512; Available: 93
EPT entries allocated: 0; Available: 0
File space available: 01193 words
Recoverable deleted space: 00179 words

ABRT$
ABRT$C
ABRT$S
AFF$
ALTP$
ALTP$C
ALTP$S
ALUN$
ALUN$C
ALUN$S
ASTX$
ASTX$C
ASTX$S
ATRG$
ATRG$C
ATRG$S
BDOFF$
CALL
CALLR
)-

> o >LIBRARY/LIST/FULL LB:[l,lJF:SXMAC.SML

Director~ of file RSXMAC.SML;121
Macro librar~ created b~: LBR V06.00

Example 9-1

Last insert occurred 23-AUG-81 at 13:04:21
HNT entries allocated: 512; Available: 93
EPT entries allocated: 0; Available: 0
File space available! 01193 words
Recoverable deleted space: 00179 words

ABRT$ SizetOOO96 Insertedt7-AUG-81

ABRT$C Size:00096 Inserted!7-AUG-81

ABRT$S Size:00068 Inserted:7-AUG-81

AFF$ Sizet00101 Insertedt7-AUG-81

ALTP$ Size!00112 Inserted!7-AUG-Bl

ALTP$C Size:00104 Insertedt7-AUG-81

ALTP$S Size:00078 Inserted:7-AUG-81

Obtaining Library Directories (Sheet 1 of 2)

371

LIBRARY

LIBRARIES

• >L1BRARY IL 1ST INAMES LB: [1,1 JSYSL1B. OLB

Director~ of file SYSLIB.OLB;33

Example 9-1

Object .odule librar~ created b~t LBR V06.00
Last insert occurred l1-AUG-81 at 10:19:25
HNT entries allocated: 768; Available: 524
EPT entries allocated: 2304; Available: 964
File space available: 00675 words

** Hodule:ALERR

$ALERR

** HoduletALSCT

ALSCT

** Hodule:ALTPRI

ALTPRI

** Hodule:ANSPAD

** Hodule:ARITH

$DIV $t1UL

Obtaining Library Directories (Sheet 2 of 2)

372

LIBRARIES

Notes on Example 9-1

The following comments are keyed to the example.

o

o

To list the contents of a library you use the /LIST
qualifier on the LIBRARY command. The library, file
specification is given as a parameter. The output from
issuing this command consists of a short statistical
section and then the list of names of the modules
contained in the library. This example lists the contents
of the System Macro library. The module names are listed
in ascending order. A <CTRL/O> was typed before the
output was finished, so this is not a complete list.

By using the /FULL qualifier, additional information is
provided on the modules. Their size and the date they
were inserted into the library are displayed.

To obtain the entry point names in an object module, the
/NAMES qualifier is used. The entry point name appears
after the module name. In this example, module ARITH has
two entry points, $DIV and $MUL.

373

LIBRARIES

>
:>
> o >LIBRARY/CREATE/MACRO MYLIB FILES

• >LIBRARY/DELETE MYLIB.MLB MVB$,OFF$
Modules deleted:
HVB$
OFF$

o >LIBRARY/r~Ef'LACE MYLIB.MLB FILES
Module "CALL "re~laced

Module "OIOW$ I re~laced

Module "EXIT$C" re~laced

o >LIBRARY/LI51 !'iYLIB.MLB

Director~ of file MYLIB.MLB;l
Macro library created b~: LBR V06.00
Last insert occurred 3-SEP-81 at 14:54:40
MNT entries allocated! 256; Available! 251
EPT entries allocated: 0; Available: 0
File space available~ 23877 words

CALL
EXIT$C
MVB$
OFF$
OIOW$

Example 9-2 Commands to Create a Library and
Delete Modules from that Library

374

LIBRARIES

Notes on Example 9-2

o

o

o

This is an example of the command you issue to create a
library. If you do not specify the libary type, the
Librarian assumes an Object library. In this case, the
Librarian creates a Macro library with a file name of
MYLIB.MLB. FILES is the name of the input object file
(FILES.OBJ) containing the modules to be inserted into the
library. The size of the resulting library file will be
100 blocks, with space in the MNT for 256 entries. These
are the default values for creating a Macro library (See
Table 9-5). If these values are not suitable for your
library, you must supply the proper values with the
/CREATE qualifier.

Listing the contents of the library shows that there are
five macro definition modules in the library: CALL,
EXITC, MVB, OFF$ and QIOW$.

To delete modules from a library, a list of module names
is supplied after the library file specification. When
you delete a module from the library, it is only logically
deleted from the file. The space in which it resides is
not released for use until the file is compressed.
Compressing a library file removes deleted modules, and
compresses the remaining modules toward the beginning of
the file. Free space is then generated at the end of a
file for inserting new modules.

When you want to place a newer version of a module in the
library, you must use the /REPLACE qualifier. The input
file, FILES.OBJ, contains newer versions of CALL, QIOW$
and EXIT$C that will replace the respective modules in the
library.

375

ADVANCED MAINTENANCE
OPERATIONS

II

ADVANCED MAINTENANCE OPERATIONS

INTRODUCTION

You have studied some of the most common operations involving
files and storage volumes. We will now look at some of the more
advanced operations.

Until now, it was assumed that all the files you would access
would be on your default volume, or on some other volume defined
by your system manager as public (i.e., available to anyone). For
reasons of security or convenience, you may instead wish to access
your files on a private volume. Or, you may wish to set up a
shareable volume that certain chosen users can access. This
module shows you how to set up, use and maintain private and
shareable volumes.

It was also assumed that you would deal solely with a single
RSX-llM and/or RSX-IIM-PLUS system. Transferring files to another
operating system, or between different RSX-IIM/M-PLUS systems,
involves access to volumes with a different format than FILES-II.
These volumes are called foreign volumes. Accessing foreign
volumes is also covered in this module.

OBJECTIVES
1. Prepare and maintain private volumes for file storage.

2. Use the file transfer utility to transfer files between
computer systems and convert file formats.

3. Print files and control the print queue.

4. Use the dump utility to inspect the contents of a file.

5. Use the compare utility to segregate the differences
between two ASCII files.

RESOURCES

1. RSX-IIM/M-PLUS Utilities Manual

2. RSX-IIM/M-PLUS Command Language Manual

379

ADVANCED MAINTENANCE OPERATIONS

VOLUME MAINTENANCE

Up until now, you have been using a volume that was
initialized, maintained, and backed up by someone else, most
likely your system manager. However, the opportunity may arise
when you will want to use a private volume to store files for
special applications, or for transferring files to other computing
systems. To do this, you must know about the utility tasks
available for maintaining a volume. In this section you will
learn about the volume maintenance utilities (FMT, BAD, BRU, DSC,
VFY), a more detailed understanding of the file structure, and
device and volume accessibility.

Device Types

There are two types of hardware devices that the operating
system must control: record-oriented and file-structured devices.

Record-oriented devices, like line printers, terminals and
card readers, process records one at a time. For example, the
operating system transfers data to the line printer 132 characters
at a time. After the transmission completes, there is no way to
access that record again. The printer does not collect each of
these records into a file. Storage of these records occurs
off-line, on a piece of paper.

On file-structured devices like disk drives, magnetic tape
drives, and DECtape drives, the operating system is able to
collect records into a file and store them for future use. One
structure is used for storing and retrieving files on all
file-structured devices.

381

ADVANCED MAINTENANCE OPERATIONS

FILES-11 Volume Structure

FILES-II is a software system that creates and maintains the
file structure on disks, DECtape and floppy disks. It uses a two
level directory structure to organize and maintain files on a
volume. The first level structure is the Master File Directory
(MFD). The second level is the User File Directory (UFD). This
structure is maintained by the Ancillary Control Processor task,
FIIACP, part of the FILES-II software system. It performs the
following tasks:

Locates logical blocks on disk

Allocates storage for files

Reads and writes file attributes

Controls access to files

Performs MOUNT and DISMOUNT operations for
volumes

FILES-II

To locate a file on a volume, the system must first check the
MFD, ([0,0]000000.DIR), to see if the UFD specified in the file
specification actually exists on the volume. If there is no entry
in the MFD for the specified UFD, the system returns an error
message. If there is an entry, the system then looks at the
directory file for the specified UFD, to see if the requested file
actually exists.

382

ADVANCED MAINTENANCE OPERATIONS

Volume Files

A new volume must be prepared before the operating system can
access it. One of the preparation steps is to establish the
FILES-II structure by creating the five standard system files that
must be present on each volume. You do this with the INITIALIZE
command, which creates the five files listed in Figure 10-1 under
the special UFD [0,0].

Once these files are present on the volume, you can use the
CREATE/DIRECTORY command to create any needed UFD.

Once the UFDs are established, files can be created under
each by using the editor, copying files from another volume, ~r by
program execution.

File Name Contents

0 INDEXF.SYS Index File

0 BITMAP.SYS Storage-allocation file

e BADBLK.SYS Bad block file

0 000000.DIR Master File Directory (MFD)

e CORIMG.SYS System Checkpoint File

• [0,0]

• BITMAP.SYS • • OOOOOO.DIR • CORIMG.SYS

TK-7486

Figure 10-1 FILES-II Standard System Files Found on Every Volume

383

ADVANCED MAINTENANCE OPERATIONS

Index Files

The first system file in Figure 10-1 is the index file, the
most important file on the volume. It is the master key for
accessing any file.

Figure 10-3 shows the format of the index file, and contains
the following information:

• Volume Information (Home Block)

Vo 1 ume Name
Device Type
Volume Owner's UIC
Volume Protection Code
Default File Protection

• File Header Blocks

One for each file on volume
256 words long
Contains:

File ID number to indicate which file header to
use to locate the file on the volume

File sequence number to verify correct header

Every file is made up of two parts, as shown in Figure 10-2.
The body of the file, which can be stored anywhere on the disk
volume, contains the data. A system, called INDEXF.SYS, contains
the second part of a file, the file header. Every file on the
volume has a header that the system uses to locate the body of the
file. Before locating any file on the volume, the INDEXF.SYS file
must be read to obtain the necessary information to locate the
body of the file.

Figure 10-3 shows the format of the INDEXF.SYS file. Notice
that headers exist for the five system files that must be present
on every volume, the MFD, all UFDs, and user files present on the
volume.

384

ADVANCED MAINTENANCE OPERATIONS

HEADER

MESSAG.TXT
VERSION=2

DISK ADDR:5003
SEG #1

DISK ADDR:5104
SEG #2

MESSAGE.TXT

BODY

DISK VOLUME

Figure 10-2 The Two Parts of a File

385

TK-7498

ADVANCED MAINTENANCE OPERATIONS

[O,O]INDEXF.SYS

BOOTSTRAP BLOCK

HOME BLOCK

INDEX-FILE BIT MAP

HEADER-INDEX FI LE

HEADER~STORAGE MAP FI LE

HEADER-BAD BLOCK FI LE

HEADER-MFD FILE

HEADER-CHECKPOINT FI LE -

HEADER-UFD #1

•
•
•

HEADER-UFD #N

HEADER-USER FI LE #1

HEADER-USER FI LE #N

TK-7502

Figure 10-3 Index File Format

386

ADVANCED MAINTENANCE OPERATIONS

Bitmap Files

The second system file, BITMAP.SYS, is the file the operating
system uses to control available space on the volume. Each volume
is divided into blocks where the operating system can store
information. In the bitmap file, there is one bit for each block
on the volume. When a block is in use, its representative bit is
set to a "1". If it is not in use, the bit is set to "0". The
operating system checks the BITMAP.SYS file to find available
space for creating and extending files, and to mark the bit for
blocks that become available.

Bad Block File - All blocks not readable by the operating system
are allocated to the file called BADBLK.SYS. The system task,
BAD, run when preparing a volume for use, provides the information
for this file. Allocating bad blocks to this file makes them
unavailable, and decreases the frequency of I/O read and write
errors.

Core Image File - This file, CORIMG.SYS, is set up to provide
space for system checkpointing. Every volume has the capability
of having system checkpoint space where checkpointed tasks can be
written. To activate this area, a privileged user must use the
SET DEVICE/CHECKPOINT_FILE command to allocate space to this file.

Directory Files - The two types of directory files that are
present on a volume contain entries for UFDs or user files. Each
entry in the file contains a file name, a file header number, and
a file sequence number.

On a single user volume, (Figure 10-4), only one type of
directory file is needed, the Master File Directory (MFD).

On multiuser volumes, (Figure 10-5) you must have one MFD and
one UFD for each volume user. You use the CREATE/DIRECTORY
command or the ACNTS program to establish the UFDs.

387

ADVANCED MAINTENANCE OPERATIONS

[0,0]

INDEXF.SYS

BITMAP.SYS

OOOOOO.DIR

MASTER
FilE
DIRECTORY

[0,0]

TK-7500

Figure 10-4 Directory Structure for Single-User Volume

[0,0]

INDEXF.SYS

OOOOOO.DIR
~SER

CORIMG.SYS EllE

001 001.DI R QIRECTORY

005010.DI R
[1,1]

001001.DI R
305303.DIR

OOOOOO.DIR

MASTER
FilE
DIRECTORY

[0,0]

UFD

[5,10]

005010.DI R

UFD

[305,303]

305303.DIR

TK-7499

Figure 10-5 Directory Structure for Multiuser Volume

388

ADVANCED MAINTENANCE OPERATIONS

ANSI Magnetic Tape Structure

The structure used for storing data on magnetic tape varies
according to the application. Generally, on RSX-I1M/M-PLUS
systems, the ANSI Magnetic Tape structure is used to write data on
the medium. This structure, shown in Figure 10-6, is maintained
by the Magnetic Tape Ancilliary Control Processor task (MTACP).
Notice that it does not have the MFD, UFD structure. Files are
stored sequentially on the tape, with the file header preceding
the body of the file. The file header contains the following
information:

file name and extension

file section number

file sequence number

creation date

record format

Other Tape Formats

Utilities such as BRU, DSC, and FLX each have their own
magnetic tape formats for efficient processing. A tape created by
a particular utility can only be processed by that utility. It is
important to remember how you create a magnetic tape so that
information can be retrieved by using the proper utility.

389

ADVANCED MAINTENANCE OPERATIONS

BEGINNING OF
TAPE MARKER

BOT

VOLUME LABEL

(VOL 1)

FILE HEADER LABELS

HDR1, HDR2

TAPE MARK (TM)

FI LE BODY

TAPE MARK (TM)

FI LE TRAI LER LABELS
(EOF 1 ,EOF2,EOV1 ,EOV2)

TAPE MARK (TM)

TAPE MARK (TM)

•
•
•
•

END OF TAPE (EOT)
MARKER

TK-7503

Figure 10-6 ANSI Magnetic Tape Structure

390

ADVANCED MAINTENANCE OPERATIONS

Device and Volume Accessibility

Volumes and the devices on which they reside are available to
the user depending upon characteristics established for them. Not
all volumes or all devices are available for everyone's use.
Accessibility is established in two ways: device ownership and
volume accessibility.

Device Ownership

Devices on the system are declared to be public, private or
unowned, as in Table 10-1.

A public device is one established for use by all users. The
SET DEVICE command, which is privileged, declares a device to be
public. When a device is set to public, the volume mounted on the
device is automatically mounted as public. This allows any user
access to the data stored on that volume.

A private device is one for use by the person who allocates
it.

Any device that has not been set public, private, or mounted
is known as an unowned device.

Once the device attributes are established, a user can grant
access to the volume mounted on the device, as shown in Table
10-2. If the device is public, no further command is neccessary.
However, to establish the volume as private or shareable, use the
MOUNT command.

Table l~-l Device Ownership

391

ADVANCED MAINTENANCE OPERATIONS

Mounting a Volume

Before a disk or magnetic tape volume can be used on a
device, the operating system must know that it is there. Just
physically mounting a disk volume on the drive is not enough. You
must logically inform the operating system by using the MOUNT
command. This command establishes the software connection between
the operating system and the volume.

The operating system also must know if the structure of the
volume information is in FILES-II format. If not, you mount it as
FOREIGN.

The MOUNT command also establishes who may have volume
access. Table 10-2 indicates how to establish a volume as public,
private or shareable.

Table 10-2 Volume Accessibility

392

ADVANCED MAINTENANCE OPERATIONS

Preparing a Disk Volume for Use

Physical Formatting

Before you can use a disk pack on the system for the first
time, it must be properly initialized. Initialization of the pack
is a two step process. The first step is to physically format the
disk. The system task, FMT, formats the disk into blocks, the
smallest unit of writing area allocated to a file. The task, BAD,
is then run to determine which blocks on the disk cannot be
written to, or read properly. The following steps accomplish the
physical formatting of the disk:

• Allocate disk drive using ALLOCATE/DEVICE command

• Physically load disk pack on drive

• Lo g i call y mo un t pack using MOUNT/FOREIGN command

• Run utility formatter task (FMT)

MCR FMT

• Run bad block task (BAD)

MCR BAD

FILES-11 Initialization

The second step in the initialization process is to set up
the FILES-II volume structure, which includes the creation of the
five system files that must be present on the volume. Once the
FILES-II structure is there, you can create UFOs for those who
require them. Example 10-1 shows the complete process. Once the
following steps are done, the disk volume is ready for use:

• Use INITIALIZE command to set up FILES-II volume structure

• Logically DISMOUNT the volume and REMOUNT it with volume
label name

• Create UFOs with CREATE/DIRECTORY command

393

ADVANCED MAINTENANCE OPERATIONS

Preparing a Magnetic Tape Volume for Use

To prepare a magnetic tape for use requires that an ANSI
standard volume label be written on the tape, followed by a dummy
file. Tape initialization requires no physical formatting. The
following steps prepare a magnetic tape for use. An actual tape
initialization process is shown in Example 10-2.

• Allocate magnetic tape unit using ALLOCATE/DEVICE command

• Physically mount the tape on the drive

• Logically mount the tape using MOUNT/FOREIGN command

• Use INITIALIZE command to prepare magnetic tape in ANSI
standard format

• Logically DISMOUNT volume and REMOUNT it with volu~e label
name

394

ADVANCED MAINTENANCE OPERATIONS

>
>ALLOCATE DK2!
)MOUNT/FOREIGN DK2: USER
)MCR fMT
FMT)DK2!

** WARNING - Data will be lost on DK2: **
Continue? tY OR NJ: Y

Stat\1' forlll.ttin!i

St.r~ verification

FMT>'"'Z
)MCR "BAD
BAD)tClK2!
BAD -- DK2: Total bad blocKs= O.
BAD)"'Z
)INITIALIZE DK2: USER
>DISMOUNT DK2:
DMO -- TT56: dismounted fro_ DK2:
>MOUNT DK2: USER
)DIR DK2:rO,0]

Director~ DK2:CO.OJ
15-SEP-81 11t33

*** Final dismount initiated ***

INDEXF.SYS;l
BITMAP.SYS;l
BADBLK.SYSf1
000000.DIRf1
CORIHG.SYSH

155.
3.
1 •
1 •
o.

15-SEf'-81 11:33
15-SEP-81 1 U 33
15-SEP-81 11:33
15-SEP-81 11:33
15-SEP-81 11:33

Total of 160./160. blocks in S. files

>
:>
>CREATE/DIRECTORY DK2! [305,303]
)DIR DK2:r305,303]
DIR No such file(s)

>LO
DMO -- TT56: dis.ounted fro. DK2: *** Final dismount initiated ***
Have a Good Hornin!i
15-SEP-81 11:36 TT56: 10!i!ied off QUASAR
>

Example 10-1 Preparing a Disk Volume

>
)ALLOCATE MMO:
>MOUNT/FOREIGN MMO: USER
>INITIALIZE MMO: USER
>DISMOUNT MMO:
DMO -- TT56: dismounted from HMO:
>

*** Final dis.ount initiated ***

Example 10-2 Preparing a Magnetic Tape Volume

395

ADVANCED MAINTENANCE OPERATIONS

Backing UP a Volume

For critical files that you cannot afford to lose, it makes
sense to routinely backup the files on another volume. Backing up
a volume means making a duplicate copy of it, and storing the copy
in a protected place. Then, if needed, you can restore the files
from the backup volume.

There are a number of ways to backup files, or a complete
volume. The simplest way is to use the COpy command to copy files
to another volume. This is sufficient when backing up a few
files, but is quite cumbersome if backing up a complete volume.
BRU and DSC are two utilities that exist to backup volumes. Each
has its benefits.

Backup and Restore Utility (BRU)

The Backup and Restore Utility (BRU) is used for FILES-II
volumes. The output volume can be either a disk or magnetic tape.
In addition to performing the backup, BRU will initialize the disk
and run BAD to locate bad blocks. With this utility you can
backup selected files, or a complete volume by file specification,
date or time.

BRU writes data to the magnetic tape in its own tape format.
Therefore, BRU must be used to restore data from a BRU backup
tape.

Table 10-3 lists the various backup command qualifiers.

396

ADVANCED MAINTENANCE OPERATIONS

Command Format

> BACKUP / SAVE _SET: VIPPROGS DB 1 : * * MM 1 :

ct Command to invoke BRU to back up a disk area

ct Command qualifier

t» Qualifier value

ct Source device and file specification for files to be backed up

Ct Destination device

397

ADVANCED MAINTENANCE OPERATIONS

Table 10-3 Backup Command Qualifiers

398

ADVANCED MAINTENANCE OPERATIONS

Disk Save and Compress Utility (DSC)

The Disk Save and Compress Utility (DSC) is used to duplicate
FILES-II volumes using either disk-to-disk or disk-to-tape file
transfers. DSC backs up and restores entire volumes, and in the
process compresses files into contiguous blocks, making more space
available. DSC also has its own output magnetic tape format, so
DSC must be used to restore a tape that it creates.

VERIFY (VFY)

The VERIFY utility is used to maintain the FILES-II
structure. It recaptures blocks marked as used but not belonging
to a file. It searches for files in the index file that are not
in any directory, as well as validates directories against the
files they list. VERIFY requires that the volume to be verified
be mounted as a FILES-II device, and no other activity on the
volume takes place. It is generally used after a system crash to
ensure integrity of the structure, or if you suspect corruption on
the volume.

399

ADVANCED MAINTENANCE OPERATIONS

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-IIM/M-PLUS Command Language Manual:

2.

3.

• 5.1.3, Public, Shared, Private and
Unowned Devices and Mounted Volumes

• 5.1.4, How to Prepare a Scratch Disk
for Use

• 5.1.5, How to Prepare a Scratch ANSI
Magnetic Tape for Use

• 5.4, Allocate

• 5.5, Deallocate

• 5.6, Mount

• 5.7, Dismount

• 5.8, Initialize

• 5.9, Backup

• 5.10.2, Set Device

READ the following in the RSX-IIM/M-PLUS
Utilities Manual:

• Chapter 7, Backup and Restore Utility
(BRU)

• Chapter 8, Disk Save and Compress
(DSC)

• Chapter 5, Disk Volume Formatter
(FMT)

• Chapter 6, Bad Block Locator Utility
(BAD)

DO Written Exercises 1 through 11 for
this module.

400

ADVANCED MAINTENANCE OPERATIONS

FILE MAINTENANCE

Transferring Files Between Computer Systems

File Transfer Program

The File Transfer Program (FLX) transfers files from one
volume to another. In addition, when the volume structures
differ, FLX will convert the file to the output volume format.
The following file conversions and transfers can be accomplished:

• DOS-II to FILES-II volumes

• FILES-II to DOS-II volumes

• DOS-II to DOS-II volumes

• FILES-II to FILES-II volumes

• FILES-II to RT-ll volumes

• RT-ll to RT-ll volumes

• RT-ll to FILES-II volumes

Figure 10-7 shows the different file structures used by three
operating systems that run on PDP-II hardware. RT-ll uses a
contiguous file storage structure. All blocks of a file are
stored together on the disk.

RSTS (DOS-II) uses a linked list structure. Each block is
stored individually where space permits. A pointer to the next
block in the file is stored with each block.

On RSX-llM/M-PLUS, FILES-II breaks up the file into segments
and stores the segments on the volume. A segment consists of one
or more blocks. In the header of the file, a record is kept of
the number of segments, the number of blocks in each segment, and
the address location of the segment on the volume.

In addition to this difference, there is a difference in the
way text files, object files, and executable files are formatted
on each operating system. For text files on RSX, the record
length is determined by a character count, which is stored in the
first position of a string of characters that constitute the
record. On RSTS and RT, the record length is determined by the
<CR) <LF) that is stored at the end of a string of characters.

401

ADVANCED MAINTENANCE OPERATIONS

Each operating system formats and stores files differently.
Therefore, the DCL COPY command which does a straight copy, cannot
be used to transfer files from a volume initialized on one system,
to one initialized on another system.

FILE STRUCTURES

RT-II
FILE.TXT

I VB 1 1 VB 2 1 VB 31 VB 4 I VB 51 ---- , -- '
-........................ ---...... ~-----

CONTIGUOUS FI LE STRUCTURE

DOS-II
FILE.TXT

I VB 1 I VB2 I VB3 I VB4 I VB5 I

LINKED LIST STRUCTURE

FILES-II
FILE.TXT

I VB1 I VB2 I VB3\ VB4 \ VB5 I

MAP-FILE STRUCTURE

VB=VI RTUAL BLOCK TK-7494

Figure 10-7 PDP-II File Structures

402

ADVANCED MAINTENANCE OPERATIONS

Transfer Mode Switches

There are three transfer modes (Table 10-5) that you may use:

• Formatted ASCII

• Formatted Binary

• Image Mode

Formated ASCII is used to embed the <CR) <LF) in text files
when you are generating RSTS and RT output. Formatted binary is
used to correctly format .OBJ, .STB, .BIN and .LDA files for RSTS
and RT output. Image mode is a straight copy with no changes for
executable files and libraries.

Command Format

o --
>FLX<RET>
FLX> DK 1 : / RT = DKO:SYS 1.MAC / RS
~ ____ __ """'---...... __ --..... v,.,---_...",J ~

000 o o

o Command to invoke the file transfer program

o Output device

o A volume format, transfer mode or control switch

o Delimiter

o Input file and device spec i fication

o A volume format, transfer mode, or control switch

403

ADVANCED MAINTENANCE OPERATIONS

Table 10-4 FLX Format Switches

Table 10-5 Default Transfer Modes

404

ADVANCED MAINTENANCE OPERATIONS

Controlling a Print Queue

When a device is frequently used, like the line printer, a
method is needed to manage that device efficiently to ensure that
it is readily available for use. A system task, the Queue
Manager, is responsible for managing such devices. Line printers,
plotters, and hard-copy terminals being used as line printers are
the kinds of devices the Queue Manager oversees.

Once a device is under control of the Queue Manager, it can
no longer be used in the usual manner. For example, when the line
printer is under Queue Manager control, files cannot be sent
directly to the line printer. Queue Manager commands must be used
to process files~

Figure 10-8 shows how the Queue Manager handles a line
printer as a spooled device. The PRINT command indicates a file
to be printed on the line printer. This command is passed to the
Queue Manager for processing. A file called LB:[1,7]QUEUE.SYS
contains an entry to indicate that a file is ready for printing.
This part of the process is called spooling. The Queue Manager
frequently checks the queue to see if there are any waiting jobs.
If it finds one for the line printer, it checks if the line
printer is available. If no job is printing, the Queue Manager
starts printing the file. This part of the process is called
despooling.

To enter a job into the print queue, you use the PRINT
command. Examples are shown in Table 10-6. Once the job is in
the queue, to alter job characteristics or to cancel a job, you
must use the commands in Table 10-7 or 10-8.

405

ADVANCED MAINTENANCE OPERATIONS

THE QUEUE MANAGER

>PRINT FILE.TXT--------.I'--____ --'

FILE.TXT

~-________ v------------J \ I .,
SPOOLING DESPOOLING

USE QUEUE COMMANDS TO ALTER USE PRINT COMMAND TO MAKE
ENTRY IN THE QUEUE JOB ONCE IT HAS BEEN ENTERED IN THE

QUEUE

TK-7506

Figure 10-8 The Queue Manager

406

ADVANCED MAINTENANCE OPERATIONS

Table 10-6 Pr into Command Qualifiers

407

ADVANCED MAINTENANCE OPERATIONS

Table 10-7 DCL Commands to Alter Print Queue

Table 10-8 Equivalent MCR Commands to Alter Print Queue

408

ADVANCED MAINTENANCE OPERATIONS

Looking at the Contents of a File

File Dump Utility (DMP)

In the course of program development, it is sometimes
necessary to inspect the contents of a file. You may want to
check the file format to ensure that it is correct. And if it is
not correct, you would want to determine the spot where it was not
formatted properly. The File Dump Utility (DMP) helps in
uncovering such problems.

DMP will dump a file in anyone of the formats listed in
Table 10-9. You must decide which format is suitable for your use
and for the file.

Figure 10-9 depicts how the DMP program can interpret sixteen
bits of data. If a word contains the value as shown in the
figure, the string of 0s and Is can be interpreted in many
different ways. For example, interpreting the data as an octal
word gives it the value of 044124. Interpreting the data as octal
bytes, the left byte value is 110, and the right byte value is
124. Interpreting the data as two ASCII characters yields an H in
the left byte, and a T in the right byte. Each of these
interpretations could be correct depending upon the content and
purpose of the file.

The DMP utility has two modes of operation: file mode and
device mode. File mode requires that the volume on which the file
is located be mounted as a FILES-II volume. This mode dumps the
virtual blocks of a file, and is used more frequently. Device
mode is for dumping logical blocks on a volume. For a more
detailed description of both file and device mode, read the
appropriate sections in Chapter 11 of the RSX-llM/M-PLUS
Utilities Manual.

To produce the results shown in Example 10-3, a directory
file 203054.DIR was copied from UFD [0,0] into UFD [305,303]. The
DMP utility was then used on the file [305,303]203054.DIR to dump
the header of that file. The three sections of the file header
(header, identification, and map areas) provide useful information
for the user, and especially the operating system. The header
area provides the file sequence number (1335,3) which is used to
locate the file on the volume, the file owner ([305,303]), the
file protection word ([REWD,RWED, RWED,R]), and other information.

The identification area supplies the file name, type,
revision number, the date and time of creation, and the date and
time of last revision. The DCL command, DIRECTORY, uses this
information from the header of the UFD file to provide the listing
you see at your terminal when you issue the command.

409

ADVANCED MAINTENANCE OPERATIONS

Example 10-4 shows the results of dumping the same directory
file in Octal Word format. The numbers in the first column
represent the virtual disk addresses for the data that follows.
Across the row is the octal representation of each word of data in
the file.

Example 10-5 shows the same directory file dumped in Radix-50
format; information in the file header is stored in Radix-50
format. To use the dump program efficiently, the user must know
how the data is stored in the file.

Command Format

o
~ _______ A~ ____ ~,

>RUN $DMP
DMP> TI: =305303.DIR/R5

00 o o
o Command to invoke the Dump program

Ct Output file specification

e Delimiter

o Input file specification

o A dump switch to specify a mode

410

ADVANCED MAINTENANCE OPERATIONS

Table 10-9 DMP Switch Format

laD

lax

H
....

0 I a 11 I

I
0

I
0

1
0 1 a I

y A

'" 1
~ __ J~~ __ ~ __ ~ ________ ~

'"
0

...
044124

T
....

I
0

I I a I
... ~ ...

2

- ASCII
,

I
0

I
0

I
".

4 - OCTAL BYTES

- OCTAL WORD

TK-7710

Figure 10-9 How the DMP Program Interprets 16 Bits

411

ADVANCED MAINTENANCE OPERATIONS

OUMP OF DB2:[]05,303J203054.DIR;1 - FILE 10 1335,3,0
FILE HEADER

HEADER AREA
H.IDOF
H.MPOF
H.FNUM,
tf.FSEQ
H.FLEV
H.FOWN
H.FPRO
H.UCHA
H.SCHA
H.UFAT

IDENTIFICATION
I.FNAM,
I.FTYP,
I.rVER
I.RVNO
I.RVDT
I.RVTI
I.CRDT
I.CRTI
I.EXDT

MAP AREA
M.ESQN
M.ERVN
lot.EFNU,
M.EFSO
M.CTSZ
M.LBSZ
M.USE
H.MAX
M.RTRV
SIZE
2.

CHECKSUM
H.CKSM

r.RTYP
F.RATT
r.RSIZ
r.HIBK
r.EFBK
F.FFBl
(REST)
000000
0001)00

AREA

LBN

027
056

(1335,3)
401
(305,303J
CRWEO,RWEO,RWEO,Rl
200 = UC.CON
000 =
001 = R.FIX
000 =
20 = 16.
H:O Lz000002 = 2.
H:O L:000003 = 3.
o = O.

000000 000000 000000 000000 000000 000000 000000

203054 .DIR;l
1
16-SEP-81
11:07:52
16-SEP-81
11:07:52

000
000

(0,0)
001
003
002 = 2.
314 = 204.

HIOOO L:024104 = 10308.

061747

Example 10-3 Directory File Header Dump

412

ADVANCED MAINTENANCE OPERATIONS

DUMP OF DB2:[305,3031203054.DIR:l - FILE 10 1335,],0
VIRTUAL BLOCK 0,000001 - SIZE 512. BYTES

000000 000152 000076 000000 071620 143245 000000 074742 000001
000020 001172 000025 000000 004640 000000 000000 100003 000002
000040 001201 000053 000000 004640 000000 000000 074742 000002
000060 003047 000111 000000 004640 000000 000000 014474 000001
000100 003060 000020 000000 055210 000000 000000 100003 000002
000120 003061 000011 000000 055210 000000 000000 074742 000002
000140 001533 000245 000000 054204 000000 000000 100003 000003
000160 003123 000054 000000 055210 076452 000000 100003 000002
000200 003124 000017 000000 055210 076452 000000 074142 000002
000220 003125 000100 000000 015370 000000 000000 100003 000002
000240 003126 000010 000000 015370 000000 oooaoo 074742 000002
000260 003127 000046 000000 015370 076452 000000 100003 000002
000300 003131 000012 000000 015370 076452 000000 074142 000002
J00320 003133 000037 000000 015370 000000 000000 014474 000002
000340 003134 000014 000000 062204 000000 000000 100003 000002
000360 003136 000061 000000 062204 000000 000000 074142 000002
000400 003143 000155 000000 062204 000000 000000 014414 000002
000420 003145 000012 000000 021300 000000 000000 100003 000002
000440 003154 000150 000000 055251 054374 000000 100003 000002
000460 003157 000011 000000 055254 000000 000000 100003 000002
000500 003277 000044 000000 055400 000000 000000 100003 000002
000520 003353 000002 000000 054010 000000 000000 100003 000002
000540 003355 000002 000000 054353 017500 000000 100003 000002
000560 003371 000002 000000 046166 000000 000000 100003 000002
000600 003401 000002 000000 046547 000000 000000 100003 000002
000620 003411 000002 000000 051272 000000 000000 100003 000002
000640 003441 000023 000000 011665 000000 000000 100003 000002
000660 003453 000002 000000 010155 000000 000000 100003 000002
000700 003457 000002 000000 077353 000000 000000 100003 000002
000720 003465 000002 000000 047006 000000 000000 100003 000002
000740 003473 000002 000000 024263 000000 000000 100003 000002
000760 003475 000002 000000 024261 000000 000000 100003 000002

Example 10-4 Directory File Dumped in Octal Word Mode

413

ADVANCED MAINTENANCE OPERATIONS

DUMP OF OB2:[305,303l203054.DIR,1 - FILE 10 1335,3,0
V1RTUAL BLOCK 0,000001 - SIZE 512. BYTES

000000 BZ AV RSX 11M STB A
000020 04 U AUX TSK B
000040 PA AC AUX STa B
000060 90 A3 AUX OAT A
000100 9X P NSP TSK a
000120 9Y I NSP STa a
000140 US DE ~FT TSK C
000160 A 5 AD NSP TAb TSK a
000200 A T 0 NSP TAB STa 8
000220 A U AX OLX TSK B
000240 A V H DLX ST8 8
000260 A W t! OLX TAB TSK B
000300 A Y J OLX TAB STS e
000320 A S 1 DLX OAT a
000340 A • L PCL TSK a
000360 A 0 AI PCL ST8 8
000400 A 5 81 PCL OA'r 8
000420 A 7 J EVP TSK 8
000440 AAD ax NTl NIT 'ISK e
000460 AAG I NTL TSK 8
000500 ACG 6 NVP 'ISK 8
000520 ADK B NCP TSK i3
000540 ADM 8 NIC E TSK 8
000560 AOY 8 LII~ 'fSK 8
000600 A03 B LOO TSK 8
000620 AEA B MIR TSK 8
000640 AEY 5 crE TSK B
000660 AE5 8 aYE TSK i3
000700 AE9 8 TLK TSK B
000720 AFE B L5ti TSK B
000740 AFK B FIS TSK B
000760 AFM B FTO TSK B

Example 10-5 Directory File Dumped in Radix-50 Mode

LEARNING ACTIVITIES

1. READ the following in the RSX-llM/M-PLUS
Utilities Manual:

• Chapter 11, File Dump Utility (DMP)

• Chapter 4, File Transfer
(FLX)

Program

2. READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

• 2.5, Show Queue

• 4 • 4 • 2, Pr i n t

3. DO Written Exercises 12 through 16 for
this module.

414

ADVANCED MAINTENANCE OPERATIONS

PROGRAM MAINTENANCE

Comparing the Contents of Two Files

File Compare Utility (CMP)

The File Compare Utility (CMP) compares the contents of two
ASCII files to determine their differences. CMP reads the two
input files, comparing them line-by-line, and generates a listing
showing the difference.

The DCL command to invoke the utility is DIFFERENCES which is
shown in the command format below. The /OUTPUT qualifier
indicates that the differences should be placed in a file with the
name DIF.DIF. If you want the output to come to the terminal,
omit the /OUTPUT qualifier. The next two file specifications
indicate which files are to be compared.

Example 10-6 shows the contents of two ASCII files. Using
these two files as input to the CMP produces the results found in
Example 10-7.

Example 10-7 shows the standard output format, indicating the
lines that are different between the files.

Example 10-8 is an example of the second output format
available. On lines 6, 8, and 13-17, an exclamation point appears
to the right of the line number. This character is used to
represent a change bar, and indicates which lines in the second
input file differ from the first input file.

Command Format

>DIFFERENCES/OUTPUT: DIF.DIF SQURCE.MAC;1 SOURCE.MAC;2

415

>
>
)

ADVANCED MAINTENANCE OPERATIONS

>TYPE COMPARE.TXT
THIS IS A TEST TO SHOW THE RESULTS OF THE COMPARE
FILE UTILITY (CMP). THIS UTILITY COMPARES TWO
ASCII FILES. THE FILES ARE COMPARED LINE BY LINE TO
DETERMINE WHETHER PARALLEL RECORDS ARE IDENTICAL.
USING CMP, YOU CAN PERFORM THE FOLLOWING FILE­
COMPARE FUNCTIONS:

GENERATE A LISTING SHOWING THE DIFFERENCES
BETWEEN THE TWO FILES. EACH DIFFERENCE IS
LISTED AS A PAIR; FIRST, THE lINES FROM
THE FIRST FILE THAT ARE BEING COMPARED TO
LINES IN THE SECOND FILE, THEN THE LINES
FROM THE SECOND FILE.

GENERATE A LISTING IN THE FORM OF ONE lIST,
WITH DIFFERENCES MARKED BY CHANGE BARS.

GENERATE OUTPUT SUITABLE FOR INPUT TO THE SlP
UTILITY. THIS OUTPUT CONTAINS THE SlP COMMANDS
AND INPUT REQUIRED TO MAKE THE FIRST INPUT
FILE IDENTICAL TO THE SECOND INPUT FILE.

>TYPE CMP.TXT
THIS IS A TEST TO SHOW THE RESULTS OF THE COMPARE
FILE UTILITY (CMP). THIS UTILITY COMPARES TWO
ASCII FILES. THE FILES ARE COMPARED lINE BY lINE TO
DETERMINE WHETHER PARALLEL RECORDS ARE IDENTICAL.
USING CHP, YOU CAN PERFORM THE FOLLOWING FILE­
COMPARE FUNCTIONS:

GENERATE A LISTING SHOWING THE DIFFERENCES
BETWEEN THE TWO FILES. EACH DIFFERENCE IS
lISTED AS A PAIR; FIRST, THE LINES FROM
THE FIRST FILE THAT ARE BEING COMPARED TO
LINES IN THE SECOND FILE, THEN THE lINES
FROM THE SECOND FILE.

GENERATE A LISTING IN THE FORM OF ONE LIST,
WITH DIFFERENCES MARKED BY CHANGE BARS.

GENERATE OUTPUT SUITABLE FOR INPUT TO THE SlP
UTILITY. THIS OUTPUT CONTAINS THE SlP COMMANDS
AND INPUT REQUIRED TO MAKE THE FIRST INPUT
FILE IDENTICAL TO THE SECOND INPUT FILE.

CMP PROVIDES SWITCHES THAT ALLOW YOU TO CONTROL COMPARE
PROCESSING. USING THESE SWITCHES, YOU CAN CONTROL
COMPARISON OF BLANKS, TABS, FORM-FEEDS, AND COMMENTS.
YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
LINES REQUIRED FOR CHP TO CONSIDER THAT A MATCH IS HADE
BETWEEN LINES IN THE TWO FILES.
>
>

Example 10-6 Two Similar ASCII Files

416

ADVANCED MAINTENANCE OPERATIONS

>DIFFERENCE/OUTPUT:DIF.TXT COMPARE. TXT CMP.TXT
>TYPE DIF.TXT
** 1) DBO:C305,303lCOHPARE.TXT;1
*************** 2) DBO:C305,303lCMP.TXT;2

23 CMP PROVIDES SWITCHES THAT ALLOW YOU TO CONTROL COMPARE
24 PROCESSING. USING THESE SWITCHES, YOU CAN CONTROL
25 COMPARISON OF BLANKS, TABS, FORM-FEEDS, AND COMMENTS.
26 YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
27 LINES REQUIRED FOR CMP TO CONSIDER THAT A MATCH IS MADE
28 BETWEEN LINES IN THE TWO FILES.

1 differences found
DIF.TXT/BL/FF=COMPARE.TXT,CMP.TXT
>DIFfERENCE/OUTPUT:DIF.TXT/CHANGE_BAR COMPARE. TXT CMP.TXT
>TYPE DIF.TXT
** 1) DBO:C305,3031COMPARE.TXT;1
****'*'*'*****' 2) DBO:C305,3031CMP.TXT;2

23 CMP PROVIDES SWITCHES THAT ALLOW YOU TO CONTROL COMPARE
24 PROCESSING. USING THESE SWITCHES, YOU CAN CONTROL
25 COMPARISON OF BLANKS, TABS, FORM-FEEDS, AND COMMENTS.
26 YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
27 LINES REQUIRED FOR CHP TO CONSIDER THAT A MATCH IS MADE
28 BETWEEN LINES IN THE TWO FILES.

1 differences found
DIF.TXT/BL/FF/VB=COHPARE.TXT,CMP.TXT
>

Example 10~7 Compare Program Output Between Two ASCII Files
(Standard Format)

1
2 TEXT:
3 RO=%O
4 Rl=%l
5 R2=~2
6 OOT='.
8 BUFF:
9

11 ST:
12
13
14 LOOP:
15
16
17

,TITLE fIG1
.ASCII ITRY THIS. DID IT WORK?I

.BLKB ·080

.EVEN
MOV #TEXT,RO
MOV 'BUFf,Rl
MOV #DOT,~2
~OVB (RO)+,(Rl)
CMPB (Rl)+,R2
BNE LOOP
.ENO

2 OIFFERENC~S fOUND
PROG.OIF/C8=PROG.MAC;2,P~OG.MAC:3

Example 10-8 Change Bar Format

417

ADVANCED MAINTENANCE OPERATIONS

LEARNING ACTIVITIES

1. READ Chapter 12, File Compare Utility
(CMP), in the RSX-IIM/M-PLUS Utilities
Manual.

2. READ Section 4.4.5, Differences, in the
RSX-IIM/M-PLUS Command Language Manual.

3. DO Written Exercise 17 for this module.

418

BATCH JOB FILE

APPENDIX A
BATCH JOBS

(M-PLUS ONLY)

In addition to the Indirect Command File Processer, the
RSX-IIM-PLUS Operating System has another means of automating a
process. The Batch File Processor is like the Indirect Command
File Processor in that it is able to read and then process
commands from a file. Because the job is run from a virtual
terminal, your terminal is free to do other tasks.

419

APPENDIX A BATCH JOBS (M-PLUS ONLY)

BATCH Command Line

The following command line format shows how to write a batch
command. The dollar sign in the first position is necessary to
indicate that the line is to be interpreted as a Batch command.
If the dollar sign is not present, the line is considered to be
data. The first command in the Batch file is JOB (mandatory) and
marks the beginning of the job. The last command is EOJ
(mandatory) which indicates the end of the job. What comes in
between is dependent upon the process you are automating, and will
include some or possibly all of the commands listed in Table A-I.

Command Format

> $[START:][PRINT DELTAX.TXT] -
--~...... v ~

o 0 0 0

o Batch processor symbol indicating that the line following is
to be interpreted as a DCL command.

o Optional label (1 through 6 characters terminated by a colon)
used to mark a position in the command file to which a GOTO
statement may refer.

t) Any DCL or MCR command except LOGIN, LOGOUT, HELLO and BYE.

o Character (hyphen) to indicate the command will be continued
on the next line.

420

APPENDIX A BATCH JOBS (M-PLUS ONLY)

Table A-I Batch Commands

421

APPENDIX A BATCH JOBS (M-PLUS ONLY)

PROCESSING THE BATCH FILE

After you define the process and translate it into a
corresponding Batch file, the next step is to submit the batch job
for processing. The following command format shows how to do
this.

The SUBMIT command places your job in the Batch queue, which
the Queue Manager checks periodically for jobs to run.

Depending upon the SUBMIT command qualifiers you
A-3) and the number of jobs in the Batch queue,
either start up immediately, or at a later time.
qualifier allows you to specify the time at which
Queue Manager to consider your job for processing.

use, (Table
your job may

The /AFTER
you wish the

Once a job is in the queue, you must use the SET QUEUE,
RELEASE/JOB, DELETE/JOB or SHOW QUEUE to display, delete or change
the characteristics of the job (Table A-4).

The Batch Processor automatically provides a record of the
activity generated when processing a job, which is called the log
file. Unless you specify otherwise, this log file prints on your
system's line printer after processing is complete, and then is
deleted.

Example A-I shows a Batch file and the log file the Batch
processor creates when processing the file.

Command Format

> SUBMIT / JOB:BATRUN BATCH.CMD,PROCESS.CM(
~....... V' ~...... v ~--........ 'V'..------

o 0 e 0 e

Ct Command to queue a job for processing by a batch processor

__ Command qualifier

t» File specification of file from which batch commands will be
read. Default file type is .CMD.

ct File specification delimiter

422

APPENDIX A BATCH JOBS (M-PLUS ONLY)

Table A-2 Exit Status Code

Status Code Meaning

SUCCESS Results should be as expected

WARNING Task SUcceeded 'butlrre9ularltl~s
possible '

ERROR Results unlikely to be as expecteq.
, "

SEVEREERROROneor more fatal error's or abort
encounter~d

Table A-3

User Wants To

Submit Command Qualifiers

423

submit.Cql!lmand
Qu.all fi e r ''rQ Use.

APPENDIX A BATCH JOBS (M-PLUS ONLY)

Table A-4 Changing the Batch Queue

Examples A-I and A-2 show how Batch commands can be organized
to automate a process. Example A-I allocates a disk drive, mounts
the volume and performs a full directory on the volume, sending
the output to the line printer. Then the volume is dismounted,
and the drive deallocated.

Example A-2 runs a task called WONDER. If a severe error
occurs, a message is sent to terminal number 10 indicating that an
error has occurred, and the run will end. If an error occurs, a
message is sent to terminal number 10, and the task OLD is run.
If a warning occurs, a message is sent to the terminal and the
command file terminates.

424

APPENDIX A BATCH JOBS (M-PLUS ONLY)

SJOB PRTJOB [305,303]
$lTHla IS A BArCH CONTROL fILE THAT WILL PRINT ALL MY
$1 MY .·{"ACRO SOURCE FILES. WIiEt-J I SUBMIT TH IS FILE FOR PROCESSING
$11 WILL USE THE IArTER QUALLFIER Of THE SUBMIT COMMAND TO
$10ELAY THE EXECUTION 0F THE RATCH FILE UNTIL AFtER NORMAL
$IWORKING ~OURS so THAT 1 WON·T TIE UP THE PRINTER.
$PRINT *.MAC
$EOJ

QMG aetc'" Job - PRTJOB BPR V02 24-JAN-8Z 11111
P!"oce •• o,. BAP0

11 i 171218 SJOB PRTJOB [305,]0]]

aa::a.::.aa:::.a:aaa: ••• aaa:a=== ••••
Ut.!" Job - PRTJoa T'!lm4",.1 VT21

UIC a [305,30]]
:aaa:: •• : •• :a=::a:::=:=:=a::a: •••• :a

T[RM
RSX-lIM-PLUS V02 BL8 [2,54l SVlt.m kERMIT

P.oe 1

•

•

11117110
11,11,10
11111110
11111110
11111110
11111110

TERM
11,1,,18

TERM

* * * Welcom. to RSX-llM-PLUS blteh *
* Ve~ •• o'" Z ee •• 'ey.' 8 *
*
*
*

*
*
* ***

'ITHIS IS A BATCH CONTROL FILE THAT WILL PRINT ALL MY
'IMY MACRO SOURCE FILES. WHEN I SUeMIT THIS FILE FOR PROC!SSING
5&1 WILL USE THE 'AFTER QUALIFIER OF THE SUBMIT COMMAND TO
"DELAY THE EXECUTION OF THI BATCH FILE UNTIL AFTER NORMAL
.,WORKING HOURS SO THAT I WON'T TIE UP THE PRINTER.
SPRINT *.MAC
PRt - Job 666, "1m' "PATJOB " lubm4tt.d to ~ueue ·PAINT •
SEOJ
CO"".ct time. 1 m4"ut ••
CPU time u •• dl 2 .eco"dl
T •• k tOtl'l 6

Example A-I Batch Control File to Print MACRO Source Files

425

APPENDIX A BATCH JOBS (M-PLUS ONLY)

SJOB
$1
91 THIS BATCH JOB WILL GET A FULL DIR£CTOPY LJS11HG
$1 OF A~ PLOt OISK THAT IS ALREADY LOADED AND SP~N UP.
$!
SSE! T~RMINAL ~CR
$ ALrJ DL 1 :
$~OU nL1:IMPEADY
$PIP LPO:=DL1:[',*]/FU
SOMO OLt:
SOEA OL1:
SI!OJ

SJ08 AONE[lOl,t4]
$I
SI IF COMMAND €XAMPL~

91
$RUN W01~De:H. 1SK
SIr SEVEREERROR THEN GOIO BOMB
SIr ERR 1H~~ GOTO ALAS
SIr WA~NING T~E~ GOTU OKA~
SCOTO REST lSUCCESS ASSUMED
S80MB:
saMO TTtO: Sf.~€RE g~ROR. RUN ENDS
SSTOP
$ALAS.
SBRO TTtOI E~ROR RUNNING OLD.TSK
SRUN OLD.1SK
$GOTO REST
SOKAY:
saRO TT10:~ARNI~G R~CEIVEO
$REST:I£OJ

Example A-2 Sample Batch Command Files

426

.. . ~.

Digital EquiRment Corporation. Bedford, MA 01730

