I

(

088 ddedsenoviessssesstsdonsddasdesdedseagn s

' EY-0072E-SG-0201

RSX-11M/M-PLUS
Utilities and
Commands

A Self-Paced Course

Volumelll

dlilgliltiall



EY-0072E-SG-0201

RSX-11M/M-PLUS
Utilities and
Commands

A Self-Paced Course

Student Workbook
Volume |l

Prepared by Educatiohal Services
of
Digital EQuipment Corporation



Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 05/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

10/82-15



SG STUDENT GUIDE

1

INTRODUCTION. « . .+ .
COURSE DESCRIPTION. .
PREREQUISITES . . . .
COURSE GOALS. . . . .
NONGOALS. . . . .« .
COURSE RESOURCES .« .
COURSE ORGANIZATION .
COURSE MAP. . . . .

.

HOW TO TAKE THIS COURSE

PERSONAL PROGRESS PLOTTER

RSX-11M-PLUS CURRICULUM .

COURSE STRING . . . .

RSX-11M/M-PLUS SYSTEM OVERVIEW

INTRODUCTION. o« o« « =
OBJECTIVES. .« « « .« .
RESOURCES ¢« ¢ « ¢ o
OVERVIEW. ¢« o « « o &
The Hardware. . .
The Software. .
THE OPERATING SYSTEM

LEARNING ACTIVITY . .

THE RSX-11M-PLUS OPERATING SYSTEM

L] . . L] .

. . L] .

. L] . L]

e o s o

RSX-11M/M-PLUS Characteristics.
RSX-11M/M-PLUS Components

Documentation . .
Other Resources .
OPERATING SYSTEM.
Memory Use. . . .
Tasks « « o + =«

Steps Required to

THE

Allocating Memory to a Task

Partitions. . . .
Checkpointing . .
Shuffling . . . .

.

Run

Task.
The System Task Directory (STD)
Active Task List (ATL).

Allocating CPU Time to a Task
Round Robin Scheduling.

Task Addresses. .

Physical Addresses.

iii

.
.
.
.
.

. L]

L) [ L] L[]

CONTENTS

* L[] . L[] L] L[]

NHWOWONOUEE &S WW

=

15
15
16
17
17
17
18

18



Mapped SYStemS. o« « o« o« o« o o« o o o o o o o + o+ o« « 56
Unmapped SysStemS. « o o o o o o o o o o o o o o o o 57

2 GETTING STARTED ON THE SYSTEM

INTRODUCTION. &« ¢ o o o o o o o s e o o o o o o o o o« o« 61
OBIJECTIVES. « e « o o o o o o o o o s s o o s o o o o« » 61
RESOURCES 4 « o ¢ o o o o o o o o o o o o o a » s o o« o« 61
LOGGING ON THE SYSTEM . & ¢ ¢ o ¢ « e o o o o o « o o o 63
User Identification Code (UIC). . ¢ v v « o +« « o« « 64
PAaSSWOILAS v o« o o o« o o o o s o o o o s s o « o o o b4
Command Line Interpreter (CLI). « « o « o s o o« o « 65
Notes on Example 2-1. ¢ ¢« o ¢ o « « o o« o o o o o« o« 65
Notes on Example 2-=2. . 4 o « ¢ « o o« o o« o « o« « o+ 68
LOGGING OFF THE SYSTEM. . . . e o o e s s e s s o s« o 18
USING THE TERMINAL EFFECTIVELY e e s o e o o e o o o o 12
Terminals o o o o o o o o o o o o o o o o o o o o o 12

LEARNING ACTIVITIES . v « o « o o o o s o o o o o o o« o 16

CONVERSING WITH THE OPERATING SYSTEM. ¢« « « o o o« o o o 17
Command Line Interpreter (CLI). « ¢« ¢ & o o o o « o 77
CLI PromptsS o o o o o o o o o o o o/ o o o o o o o o 17
Default CLT ¢ « v v ¢ o« o o o o o o o o o o o o « o 18
Changing from One CLI to Another. . . . . . . « . . 78
USING THE DIGITAL COMMAND LANGUAGE (DCL). « ¢ « « « o« . 78
Features O0f DCL +« &« « ¢ o o o o o o o o o o o o o o 19
DCL Command Format. +« « « ¢ ¢ o o o o « o o« o o o« « 80
THE HELP COMMAND. . ¢ o o 2 o o o o o o« o o o o o » o« o« 88
HELP Command Format .« « « ¢« o« o « o« o o« o« « o« o« o o+ 88
Notes on Example 2-5. ¢ ¢ ¢ ¢ o o o ¢ o o o o« o « « 89

LEARNING ACTIVITIES . . ¢ o ¢ & o o o o o s s« o s =« o« » 93

FILE SPECIFICATIONS . + ¢ o « o o o o o o o o o o o« @« « 94

Files « ¢ &« o« « o & . e e o o o s o o » 94
File Specification Command Format e o + o o o'e s & 95
Devices . . . e e o s & s e s e e s o o o o o o o 96

Physical Dev1ce NAameS + o o o o o o o o o« o « « 96
Logical Device Name€S. ¢« « « o o o o « o « « o 100
Notes on Figure 2-3 . . & & ¢ ¢ o o o o o s o « - 100
Pseudo Device NameS . « « « « o o « « o o o« « 103
User File Directories (UFDS). ©« o ©« ¢ o« o o « « » 185
File NameS. . o ¢ o ¢ o o o o o o o « o« o « « 1085
File TYPeSe « o o 2 o o o s o o o o o o o o« o 185
VersionS.: v o o o ¢ « o o & e o e o e e e 105
Wildcards in the File Spec1f1cat10n e s e o o o o 110
Wildcards . ¢ o ¢ ¢ o o o o o o o o« o o o o« « 1190
Notes on Example 2-6. ¢« ¢« o o o« « o o o o o o o+ o 111

iv



LEARNING ACTIVITY . . . . .

USING THE MONITOR CONSOLE ROUTINE

MCR & ¢ ¢ &« o &« o o o &
MCR Command Format. . .
Notes on Example 2-7. .
PRIVILEGED COMMANDS . . . .
INTERPRETING ERROR MESSAGES
Error Message Format. .

3 CREATING AND MODIFYING FILES

INTRODUCTION. &« « @« & o o
OBJECTIVES. . & o o o« o « &
RESOURCES . 4« & o o o o o &«
OVERVIEW. ¢ & ¢ ¢ o o o o &
Purpose of an Editor. .
EDT Editor Features . .
CREATING A TEXT FILE. . . .
Notes on Example 3-1. .
EDITING AN EXISTING FILE. .
Notes on Example 3-2. .
THE HELP FACILITY « « « « o
Command Format. . . . .
EDITING COMMANDS USING LINE
COMMAND MODE COMMANDS . . .
Displaying Lines. . . .
Command Format. . . « &
Inserting Lines . . . .
Command Format. . . . &

LEARNING ACTIVITIES . . . .

Deleting Lines. . . . .
Command Format. . . . .
Copying Lines . .
Command Format. .
Moving Lines. . .
Command Format. .
Text Substitution
Command Format. . . . .
Renumbering Lines . . .
Command Format. . . . .
Ending the Edit Session
Command Format. . . . .

L]
L]
.

L] . L] .
.
.

LEARNING ACTIVITIES . . . .

Character Mode Features

(MCR)

e s 0

e o o o ¢ o

116

117
117
118
129
127
128
128

133
133
133
135
135
138
139
139
149
1490
141
141
143
144
144
144
147
147

149

1540
150
152
142
153
153
156
156
158
158
160
160

160

161



THE KEYPADS . ¢ o ¢ ¢ o o o o o o o
VT108 Keypad Functions. . . . . .
VT52 Keypad Functions . . . . . .
Changing to Character Mode. . . .
Positioning the Cursor. . . . . .
Positioning the Cursor (Alternate
Inserting Text. . . . . .
Deleting Text . « + « .«
Help Function . . . . . .
Exiting Character Mode. .

LEARNING ACTIVITIES v o « o o o o « &

4 FILE AND DIRECTORY MAINTENANCE

INTRODUCTION. ¢ &« ¢ o o o o o o o o o
OBJECTIVES. +« o o 2 o o o o o o o o o
RESOURCES . ¢« ¢ e« ¢ o o « o o o o o« &«
FILE STRUCTURE. « ¢ ¢ o o o o o o o
FILES=1l. ¢« ¢ « ¢ o o o o o
Master File Directory (MFD) . . .
User File Directory (UFD) . . . .
User Default UFD., . . « . &
User Default Device .« &« ¢« ¢ o « &
System UFDS . . . . « « . &

LEARNING ACTIVITY o o &« o o o o o o =

MAINTAINING A USER FILE DIRECTORY . .
Command Formats . o« « o o o o o &
Defaults in File Specification
Command Format. . . . .
Listing Directories . .
Command Format. . . .
Notes on Example 4-3.
Deleting Files. . . . . .
Command Format. . . .
Purging 0ld Files . .
Command Format. . . .
Notes on Example 4-5.
Copying Files . . . .
Command Format. . . . .
Renaming Files. « « + ¢« ¢« ¢ o + &

L] . L] .
.
[
]
L]
L]

Command Format. . . .
INSPECTING THE CONTENTS OF

FILES. .

3

Methods)

3

.

.

.

L]

Displaying File Contents at Your Terminal

Command Format. « « ¢ ¢ o o o o &

vi

L] L] L] L] L]

. ] . [ ] [ ]

162
162
163
164
165
168
172
173
174
174

175

179
179
179
181
181
181
181
184
184
184

187

188
188
190
199
192
192
196
197
197
199
199
201
202
202
203
203
205
205
205



Displaying Files on a Line Printer.

Command Format. . .

3

L]

PRINT Command Defaults.

LEARNING ACTIVITIES . .

PROTECTING YOUR FILES .
File Ownership. . .
File Access Rights.

Default File Protection

Setting and Changing File

Command Format. . .

Equivalent MCR Commands

LEARNING ACTIVITIES . .

5 PROGRAM DEVELOPMENT

INTRODUCTION. . . . . .
OBJECTIVES. « « .« . . .
RESOURCES . . . « . . .
OVERVIEW. . . . « .+ . &
PROGRAMMING LANGUAGES .

LEARNING ACTIVITIES . .

ASSEMBLING/COMPILING. .
MACRO-11 Language

.

.

.

Protection.

L3

MACRO-11 Assembler Command Format

Common Error Messages

Notes on Example 5-1.

LEARNING ACTIVITIES . .

FORTRAN Languages .

FORTRAN Compiler Command Format

Common FORTRAN Error Messages

FORTRAN Compiler Listing.

LEARNING ACTIVITIES . .

TASK-BUILDING/LINKING .
overview. « o« o « &
Notes on Figure 5-4

Task Builder Command Format

-

.

L3

Common Task Builder Error Messages.
Interpreting a Task Map .

Notes on Example 5-3

vii

3

3

L] . L] L

287
207

208
208

209
209
212
213
214
214
215

216

221
221
221
223
226

229

230
232
232
235
236

238

239
239
242
242

244

245
245
249
250
253
254
255



LEARNING ACTIVITIES . . .
RUNNING THE TASK. . . . &
LEARNING ACTIVITIES . . .

Notes on Figure 5-5 .

6 USING THE EDITOR EFFECTIVELY

INTRODUCTION. . . . . « .
OBJECTIVES‘ L] L] L] . L3 . L]
RESOURCES . . « « « « « &

USING THE EDITOR EFFECTIVELY

Editor Buffers. . . .
Buffer Use. . . . . .
Creating a Buffer . .
Referring to a Buffer
LINE MODE FEATURES. . . .

Searching for a Character
Reading and Writing Files

Generating EDT Macros
A Macro . . « o o
Defining a Macro.

Notes on Example 6-1.

Setting Editor Parameters

.

-

Additional Line Mode Commands
The Startup Command File.

CHARACTER MODE FEATURES .

Additional Keypad Functions

LEARNING ACTIVITIES . . .

.

Other Character Mode Functions.

String Searches in Character Mode
Cutting and Pasting Text. . . . .
Repeating Functions Automatically
Entering Line Mode Commands . . .
Nokeypad Character Mode . . . . .

Invoking Nokeypad Mode.
Exiting Nokeypad Mode .

LEARNING ACTIVITIES . . .

7 USING INDIRECT COMMAND FILES

INTRODUCTION. . . . . . .
OBJECTIVES. « « ¢ « o « &

[

256
257

257

258

261
261
261
263
263
263
264
264
265
265
265
266

266
267

267
269

279
271

272
272

273

274
275
275
276
277
278
278
278

279

283
283



RESOURCES . o ¢ & ¢ o 2 o o o o o o o o o o o o o o« o 283
WHAT IS AN INDIRECT COMMAND FILE. . « « « « o« « « o « 285
CREATING SIMPLE CLI COMMAND FILES . +« « « « o o« « « o 285
CREATING SIMPLE TASK INDIRECT COMMAND FILES . « . . . 287

Benefits of Using an Indirect Command File. . . . 289

LEARNING ACTIVITIES . . . o o +¢ ¢ ¢ o o o o o o « o« « 289

INCLUDING DIRECTIVES.: 4 « o o « o « o o o o o o o o« o« 290
DirectiveS. ¢« o ¢ o o« o o o o o o o o o o o o o o 290
SYmMbols . & & v 4 4 4 4 4 e o s e o o o s o o 291

Values Given to Symbols . . . « + ¢« « « « « o 291

Logical Test Directives . . ¢« ¢ & o &« « o « o 293

Logical Control Directives. .« « ¢ « « « « o o 295

More Useful DirectivesS. « o ¢« o « « « « o o o« 296

Special Symbols . . « ¢ ¢« 4 ¢ & o o s o o o o 297

LEARNING ACTIVITIES . . ¢ ¢ ¢ o o o o o o o o o o o o 297

Establishing Symbols. . . « ¢« ¢ « ¢« & o« o & 298
Notes on Example 7-=1. « . ¢ o« o o o o o o &« 298
Asking the User for Input . . ¢« ¢« ¢ &« & + & 301
Notes on Example 7-2. ¢« & o ¢« o o o o o o = 391

Notes on Example 7=3. ¢ ¢ ¢ ¢ o o o & e o o« o o 303
Making Logical TeStS. « « o « o o « o« « o« o« o« o« o 306
Notes on Example 7-4. o« + o o o o o o o o o o o o 306
Notes on Example 7-5. ¢ « & & o o o o o o« o« « o o 309
Controlling Execution Flow. « « « ¢ o« o o« o « « « 310
Setting Operating Modes . . + ¢ « « o« o o o « o« o 312
Notes on Example 7-8. . 312
Notes on Example 7-9. . e o o o o 314
Using Special Symbols . « o« « » o 316
Notes on Example 7-10 . e o « o o 316
Notes on Example 7-11 . e o« o« o o 318

]
]
.
L]
L]
.
L]
.
.
]
.
.
L

e o e o
]

e o s
.

. L . L]

L] L[] * [
L]

. L] e L[]

8 CONTROLLING TASK EXECUTION

INTRODUCTION. &« + o o o o s s o o o o o o o o o o o o 325
OBJECTIVES. & o o o o o o o o o o o o s o s o o« » o « 325
RESOURCES . & & o + o o o = s o s o o o s o o o o o o 325
HOW RSX MANAGES TASKS &« &« « o o o o o o o o o o o o o 327
Priority and Scheduling . . « ¢« « ¢ ¢ o« « o o « o 327
Task StatesS .« o o « o o o o s o o o o o o o o o o« 329
Memory Allocation . . o o ¢ & « o o o o o o o o« o 331

LEARNING ACTIVITY + o « o o o s s o o o o o o o o o« « 331
USING TASK BUILDER FACILITIES . . « « ¢ « o o o o o« o« 332

Assigning a Task Name . +. « « ¢« « ¢ o o« o o o o o 332
Setting Task Priority . « « ¢ « o o o « o« o o« « o 333

ix



Indicating a Partition.

Making a Task Checkpointable.

Assigning Logical Units

Notes on Example 8-1.

LEARNING ACTIVITIES

INSTALLING A TASK .

Notes on Example 8-2.

RUNNING A TASK. . .

Running Tasks Immediately

Installed Tasks
Tasks Scheduled

LEARNING ACTIVITIES

9 LIBRARIES

INTRODUCTION., . . .
OBJECTIVES. . « .« &
RESOURCES « « ¢ + &
LIBRARIES . « « . &

Benefits of

LEARNING ACTIVITIES

Macro Libraries

to Run Later.

3

Using
Library File Format
Notes on Figure 9-1

Object Libraries.

Universal Libraries

.

Libraries

.

Using Macro Libraries

Notes on Figure 9-5

Using Object Libraries.

Notes on Figure 9-6

Using Universal Libraries
Creating/Maintaining Libraries.

LEARNING ACTIVITIES

.

Notes on Example 9-1.
Notes on Example 9-2.

10 ADVANCED MAINTENANCE OPERATIONS

INTRODUCTION., . . .
OBJECTIVES. . . . .
RESOURCES . . . . .
VOLUME MAINTENANCE.

e o o o

. L] L] L] L]

L] L] ] .

. . L] .

333
334
335
337

340

341
342
343
343
343
344

445

349
349
349
351
351
352
353

354
355
357

359
362

363
364
365
366
366

379

373
375

379
379
379
381



Device TYPESe o « o o o o o o o o o o o &
FILES-11 Volume Structure . . . « « « &
Volume Files., . . . . .
Index Files . . « .« . .
Bitmap File . . . . . .
ANSI Magnetic Tape Structure.
Other Tape FormatS. .« ¢« ¢« o« « o « o«
Device and Volume Accessibility . . . . .
Device Ownership. « « &« ¢« &« ¢ &« ¢ « &
Mounting a Volume . « « « ¢« ¢ ¢ o o &
Preparing a Disk Volume for Use . . . . .
Physical Formatting . . . . . . . . .
FILES-11 Initialization . . . o o .
Preparing a Magnetic Tape Volume for Use.

e o o
L] L] L] .
L] L] L] .
e o o o 3

Backing Up a Volume . . . . - .
Backup and Restore Ut111ty (BRU) . .
Command Format. . . . . . . . . .

Disk Save and Compress Ut111ty (DSC).
VERIFY (VFY) . L] L] [ 3 L] . . L ] [ ] [ ] - L]

LEARNING ACTIVITIES . ¢ ¢ ¢ ¢ o ¢ o o o o o o

FILE MAINTENANCE. ¢ ¢ ¢ o o o o o o o o o o o

Transferring Files Between Computer Systems

File Transfer Program . . « « « o o &
Transfer Mode SwitcheS. « ¢ « ¢ o o o o o
Command Format. « ¢« ¢« ¢ ¢ o o o o o o o &
Controlling the Print Queue . e o s e
Looking at the Contents of a F11e e o o .

File Dump Utility (DMP) . . .+ + + o
Command Format. « « ¢ o ¢ o« o o o o o o o

LEARNING ACTIVITIES . ¢ . ¢ ¢ o o ¢ o o o o o

PROGRAM MAINTENANCE . « ¢ o ¢ o o o o o o o o
Comparing the Contents of Two Files . . .
File Compare Utility (CMP). « « « .«

Command Format. . . . o« ¢ ¢ ¢« o o o o o &

LEARNING ACTIVITIES . . « & ¢ &« « ¢ o o o o &
AP APPENDIX

BATCH JOB FILE. 4 & 2 o o o o o o s o o o s
BATCH Command Lin€. « « o o e o o o o o o
Command Format. « ¢« ¢« « ¢ o o o « o o o =

PROCESSING THE BATCH FILE « ¢ ¢ ¢ o o o o o o
Command Format. « « ¢ o ¢ « o o o o o o o

xi

381
382
383
384
387
389
389
391
391
392
393
393
393
394
396
396
397
399
399

400

401
401
401
493
493
495
409
409
419

414

415
415
415
415

418

419
420
420
422
422



[ UL

|
HEWOYOJOUDd WN K
=

—

e e b e b R e e
| |

=

S W

1-15
1-16
1-17
1-18
1-19

—
|
N
=

[

| i
ST WN

U

WWWwwwwwww NNDNNDNDNDN
| [
HWOOJINHNU B WN

N
[
B W N

The Documentation. .« « ¢« o ¢ ¢ o ¢ o o o o o &
Sequence for Reading Manuals . . « ¢« ¢ ¢ « o o«
Memory USEe ¢ o o o o o s s o o o o o o o o o o
A Task is the Result of Program Development. .
System Task Directory. « . ¢ « ¢ o ¢ ¢ o o o &
Active Task LisSt ¢ o ¢ ¢ ¢ o ¢ o o o o o o o &
Tasks are Built with a Priority. . « « « « . &
Memory Divided Into Partitions . . . . .« « . &«
Tasks Execute in a Specific Partition. . . . .
Running Tasks in a System-Controlled Partition
Running Tasks in a User-Controlled Partition .
Checkpointing a Task . ¢« & ¢ o o o o o o o o &
Partition Fragmentation. « .« « « o « o« o « o &

FIGURES

Partition Shuffling to Obtain Contiguous Memory. . . . 48

Task States. ¢« ¢ ¢ ¢ ¢ o ¢ o ¢ ¢ o e o o o o
Round Robin Scheduling . . . . « « « « ¢« ¢« o &
Virtual Address SPacCe. « o« o o o o o o o o o
Physical Address Space e e e o 8 8 = & s o

Mapping a Virtual Address Into a Physical Address

on a Mapped System . . ¢« o & o ¢ o o o o o o o
Task Built to Execute on an Unmapped System. .

LA12@ and VT100 KeYS v ¢ o o o o o o s o o o
Physical Device Name€S. . o« « o o o o o o o o o«
Logical Device Assignments . . « « o o o o o &
Pseudo Device NameS. « « e o o s o o« o o o o o
Standard File Types Depicted . e o e e .

Valid File Specifications for Latest A.FTN Version . 109

Creating a Text File . . & ¢ ¢ ¢ « o o o o o &
Modifying Existing Text Files. . . « ¢« ¢ o o &
VT100 Keypad Functions . . ¢ o« ¢ ¢ o o o o o &
VT52 Keypad Functions. . « ¢« ¢ o o o o o o o &
Changing to Character Mode . . « ¢« &« ¢ « o « &
Positioning the Cursor . « « ¢« ¢ ¢ o« o o o o
Positioning the Cursor (Alternate Methods) . .
Inserting Text . ¢ o & o o o o o o o o o o o o
Deleting Text. . . . . e o o e o e s e e
VT100 Keypad Editing Help Text e e e e o s e

FILES-11 Directory Structure . . « ¢« « o o « &
User File Directories. . . e e s e s e s e o
Changing the Default UFD and Device. . . .+ . .
Transferring File Ownership. « « o &« ¢« « &« « &

xii

e o o« o 26
e o o o 29
e o o o 31
e o o o 33
e « .« o« 35
« o« .« o 36
e o o o 37
e o « « 39
e o o o 40
e o . . 42
e o« o o 43
e o o o 45
« o o o 47
e o o« o 50
« o o o 53
« o « o 54
« « « 55
« o« o« . 56
e o« « o 57
« o o . 14
e o o « 97
e o o 101
.« . 104
. « . 106
. « o 136
e o o 137
e « o 162
e « o 163
. « o 164
. « « 165
. « . 168
e o o 172
e o o 173
e o« o 174
« + o 182
e o+ o 183
. « . 185
e o o 210



19-4
19-5
10-6
19-7
19-8
19-9

—
|
w

N NN
I
[SSINNC o

Accessing a File . . ¢ ¢ ¢ ¢ ¢ o o o o &

The Program Development ProcesS. . « « o o « &
Translating a Program Source File Into
Machine Language . . . . . e e e .
Task-Building an Executable Image. e e e e o
Task Image Structure . . .« ¢« ¢ o« o o o o o o &
Requesting a Task to RUN « ¢« & &« ¢ &« ¢ o o o &

Creating and Invoking a CLI Indirect Command File. . 286

A MCR Task Indirect Command File . « ¢ ¢ o o &

Highest Priority Ready-to-Run Task Gains CPU
Control. . L] L] L] L3 L] L3 L] L] L] L] L] o * L] L] . L3 .
Task States. . . L] L] L] L3 L ] * L] . L] L] L] o L] L] L]

Library File Format. « « « ¢ o o o o o o o o« o
A Macro Library. « o o« o o o o o o o s o o o
Object Libraries . « ¢ &« o« o o o o o o o o o &
Universal Libraries. . . ¢« ¢ ¢ ¢ ¢ ¢ o« o « o« .
Using Macro LibrarieS. « « o« o« o o ¢ o o o o &
Using Object Libraries . « ¢« ¢« ¢ o« ¢« o o o o &

FILES-11 Standard System Files Found on Every

Volume . . . . o e e o e a4 o o o e o o @
The Two Parts of a F11e. e o o o o o o s o o
Index File Format. o« o o o o o o e o o o o o

Directory Structure for Single- User Volume . .
Directory STructure for Multiuser Volume . . .
ANSI Magnetic Tape Structure . . . . . . . . .
PDP~11 File Structures. . « « « o « o« s o o o«
The Queue MBNAGEr. « o o « s o o s o o o o o o«
How the DMP Program Interprets 16 Bits . . . .

PDP—].]. operating Systems . . . 3 . . . 3 . . .
Characteristics of System- and User-Controlled
Partitions . L] L] . L] L] . - *® L] L] L] L] . . . L] L]

Significant Events that Cause Rescheduling
of the CPU L] L] . L3 . L] . . L] . L] L] L3 L] . L] L] .

Special Terminal Keys. . . . . e e e e

Echoing of Delete Key on CRTS/Hardcopy e o o
Partial List of DCL Commands . . « o ¢ ¢ o o &

xiii

e o« o 216
L] L] L3 225
L] . L] 231
. . . 247
« o« . 248
« « o 258
L] L3 L] 288
. . . 328
L] L] L 33@
« « . 352
. L] L] 356
. « . 358
. L] . 36@
Ld L L4 362
. . . 364
« « o 383
.« « . 385
. « . 386
. L] L] 388
. . . 388
e o« o 390
L . L] 4@2
. . . 406
L] L] L] 411

TABLES
c e e 19
|
. . . .51
e e . . T5

. L3 . . 76
3 . . . 81



[ I T T T N IO T |
=030 WU D
[l

NN NDDNDDNDDDN

A N L w w
L O L L L L | LT T O O N T b
OWO-JOUd WHN - NSO WN - N

Lottt ot

[e) )}
[ (I
Ny s W N =

[
NV s W -

|

NNNNNN N Y OV OY O©

RSX-11M/M-PLUS Peripheral Devices. . ¢« ¢« ¢ &« « « &
Pseudo Device NameS. « « « o o o o o
Standard File TypPeS. « « o o o o o o
File Specification Defaults. . . . .
Allowed Use of Wildcard Characters .
Partial List of MCR Commands . . . .
Partial List of Privileged Commands.
Some Common Error MesSsSageS . .« o« o o o o o o o o o

L]
L]
.
L]
L
.
.

Line Mode Commands « &« &« o o o o o o o o o o o o o
Range Specifications . . . o o ¢ o o ¢ o ¢ o o o o

Special User File DirectoriesS. « « o o ¢ o o o o o
File Maintenance Commands. . . .
Defaults in a File Specification .
Groups of Users. « « o o o o o o .
Access Rights. . ¢« &« ¢ &« &« o o & .
Default File Protection. . . « « « « « &
Equivalent MCR File Maintenance Commands . . . . .

L] L] . L]
. * L] L]
. ]

.

]

.

L]

.

.

Language TYPES o o o o o o o s o o o o o o o o o
Available Lanaguage Translators for RSX Use. . . .
MACRO Command and File Qualifiers. . . « . ¢« ¢« « &
Examples Using the MACRO Command . +. « « o & o« o o«
FORTRAN Command Qualifiers . . « « o o ¢ ¢ o o « &
Examples Using the FORTRAN Command . « « o« o o« o &
LINK Command and File Qualifiers . . . « « o« « .« &
Examples Using the Task Builder. « « « ¢ ¢ « o « &
Standard Task Builder Defaults . . ¢« ¢« « + ¢ ¢ o &

String Search Commands in Line Mode. . . « « « + &
Line Mode Commands to Read and Write

Files from Within EDT. o « « o o o o o ¢ o o o o &
SET and SHOW CommandS. « =« « 2 o o o ¢ o o o o o @
Other Useful Line Mode CommandS. « « o s o o o o o
Additional Commands to Move the Cursor . . . . . =«
Additional Character Mode Function KeyS. . « « « .
Nokeypad Character Mode CommandsS . + « + o o o o o«

Directives to Define Symbol Values . . . « « . . .
Directives Used to Perform TesStS « « « ¢ o o o o« o
Relational Operators « « o o o o o o o o o o o o o
Compound Logical Operators . « « « o o « o o o o @
Directives Used to Control Command File Execution.
Other Directives « o o« ¢ o« ¢ o o o o o o o o o o =
Special Symbols to Obtain System and User

Information. .« o o ¢ o ¢ ¢ o o o o o o s o o o o o

Xiv

98
193

107
198
116
119

127
129

143
145

187
189

191
212
212
213
217

227
228
233

234
249

241
251

252
253

265

266
269

270
272

274
278

292
293
294
294

295

296

297



19-3
19-4
19-5

NNDNDNNDDNDNDDN
(| O
N WN -

WWWwWwwww
|
NoOuTs WN -

Overriding Task Attributes . . .

MCR Commands to Invoke the Task Builder

to Override Task Builder Defaults. . .

Sources of EPT, MNT Entries Used in Creating

a Library File . . ¢« o ¢« o o« o &

DIGITAL-Supplied Libraries on LB:

DCL Library Commands . . . . . .
Equivalent MCR Library Commands.

(1,1]

. .

CREATE Command Parameters and Quallflers .

Librarian Listing Qualifiers . .

Device Ownership . . . « « « « &
Volume Accessibility . . . . . .
Backup Command Qualifiers. . . .
FLX Format Switches. . . « . . .
Default Transfer Modes . . « + &
Print Command Qualifiers . .

DCL Commands to Alter Print Queue. o .

Equivalent MCR Commands to Alter
DMP Switch Format. . « ¢« ¢ « o &

Batch Commands « « o ¢ o o &
Exit Status Code . « ¢ « o &
Submit Command Qualifiers. .
Changing the Batch Queue . .

Logging On the System. . . . . .
Sample Terminal Session. . . . .
Logging Off the System . . . . .
DCL CommandsS .« « + o o o o o o &
HELP Command .« . . « « « o

Using Wildcards in a File Spec1f1cat10n

MCR Command Samples. « « « « « =«

Creating a Text File . .
Editing an Existing File
HELP Command .
TYPE Command .
INSERT Command
DELETE Command
COPY Command « « « « o o o o o o

. [ ] L] L]
e o o o
L] L[] L] L[]
L] [ ] . L[]
e o o o
L L[] . L] L] .
e o o o
e o o o
L] . . L]

Xv

Print

.

338

339

354

361
367
368
369
369

391
392
398
404
494
497
498
408
411

421
423
423
424

67
69
71
82
90
112
121

139
149
142
146
148
151

152



R

[ Y i S g S W Www
|
HERPOOJAUVTSWN - O 00

RS

ol or
|
wN =

(o)
|
o]

NN
[ LI |
U wN -

NI 99
|
-0 00 Jdo

~
1

—

w

o
1
N

|
N

19-1
10-2
19-3

MOVE Command . « « o o o o o o o o o o o o o o o
SUBSTITUTE Command . « « o o o o o o o o o o o &«
RESEQUENCE Command « « o« o o o o o o o o o o o o

How the Default UFD WOrkS. « ¢ o ¢ o o o o « o &
Using Defaults in a File Specification . . . . .
DIRECTORY Command SampleS. « « ¢ o o o ¢ o o o o
DELETE Command Samples . o « ¢ o o s o o o o o
Purging FileS. . v ¢ o o o o o o o o o o o o o o
COPY Command .« « « o o &+ o o o o o o o o o o o o
Renaming Files . .« & o ¢ ¢ o o o o o o o o o o
Using the TYPE Command . .+ « « o o o o o o o o &
File Ownership o« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o
Transferring File Ownership Samples. . « « « .« .
Setting File Protection. . + ¢ ¢ ¢ ¢ o o ¢ o o &

Sample MACRO Assembly Listing. . . « o ¢ ¢ « o &
Sample FORTRAN Compiler Listing. . « « « « « « &
Sample Task MaPe o o o o s o o o o o o o o o o o

Defining a Macro . o« « o o o o o o o o o o o o =

.SET Directive - Used to Define Symbol Value . .
.ASK Directive - Used to Define Symbol Value . .
Execution of INPUT.CMD Showing User Response . .
Using the .IF Directive to Test Symbols. . . . .
Execution of LOGICAL.CMD and the Results of User
INPUt. o ¢ o o o o o o o o s o o o o o o o o o o

Command File Showing How to Control Execution Flow

Execution of CONTROL.CMD and User Response . . .
Command File Showing Operating Mode Usage. . . .
Execution of OPERATING.CMD and User Response . .
Command File Showing Special Symbol Usage. . . .
Execution of SPECIAL.CMD . . &« &« & ¢ o o o o o o«
An Indirect Command File to Send Message

to Terminal, and Change Current CLI. . . . . . .

An Indirect Command File to Edit, Print
and Purge FileS. o« &4 o o o o o o o o o s o o o o«

Associating Logical Units with Physical Devices.
Samples of Installing a Task o « o o o o o o o @

Obtaining Library Directories. . « ¢« « ¢« « o o« &
Commands to Create a Library and Delete Modules
from that Library. « ¢« ¢ ¢ ¢ ¢« o o o o o o o o &

Preparing a Disk Volume. « « ¢ « « o o o o o o
Preparing a Magnetic Tape Volume . . . . « « « &
Directory File Header Dump . . .

xvi

154
157

159

186
191
193
198
200
202
203

206
209

211
214

237
243
254

268

300
392

385
308

309

319
311

313
315

317
319
320
321

337
341

371
374
395

395
412



19-4
19-5
19-6
19-7
19-8

A-1

Directory File Dumped in Octal Word Mode

Directory File Dumped in Radix-50 Mode .

Two Similar ASCII Files. .

Compare Program Output Between Two ASCII Files

Change Bar Format. . . . .

Batch Control File to Print MACRO Source Files

Sample Batch Command Files

xvii

413
414
416

417
417

425
426






PROGRAM DEVELOPMENT






PROGRAM DEVELOPMENT

INTRODUCTION

RSX-11M/M-PLUS operating systems provide complete facilities
for all program development tasks. This module discusses program
development in detail. MACRO-11, FORTRAN IV and FORTRAN IV-PLUS

are emphasized since these languages are wused in most
applications.

OBJECTIVES

l. Assemble a MACRO-11 program.

2. Compile a FORTRAN IV or FORTRAN IV-PLUS program.

3. Task-build a program.

4. Use the task map to obtain basic information.

5. Run a task.

RESOURCES

1. Introduction to RSX-11M/M-PLUS

2. RSX-11M/M-PLUS Command Language Manual

221






PROGRAM DEVELOPMENT

OVERVIEW

Every task running on a computer 1is the solution to some
well-defined problem. Someone said we need a method of
automatically generating payroll checks (the problem) and a
software developer wrote a program that reads payroll records and
generates paychecks for everyone on the payroll (the solution).
Or, someone said we need a method of entering our source code more
efficiently and a programmer wrote a program that allows a
terminal user to capture text into a file.

Program development is the process by which a problem
solution 1is translated from a human-understandable form into a
machine-understandable form. Some of ﬁthe many steps necessary to
do this conversion are shown in Figure 5-1. The process is longer
than shown in the flowchart, but for our purposes, it begins at
the point where the process needs the computer to complete the
task.

Once the problem to be solved is defined and a solution is
designed and coded, the first step ( 1 in Figure 5-1) is to enter
the code into a file. Source statements are entered using a text
editor. Output from the editor is an ASCII file containing the
source statements that comprise the program (or a module of the
program) written with correct syntax required by the programming
language. This file 1is the human-understandable form of the
program and the first step in the translation of the program into
-a machine-understandable form.

The next step ( 2 in Figure 5-1) is to take the output file
from the * editing session and assemble or compile it with the
appropriate language processor. Table 5-2 shows the language
processors available on the RSX-11M/M-PLUS operating systems. The
language processor performs the following functions:

checks the source statements for syntax errors

- generates program addresses for relocatable machine code
- produces a listing of the source statements

- lists any errors that exist

The primary output from this step is an object file that contains
object modules of relocatable machine instructions.

223



PROGRAM DEVELOPMENT

If there are no assembly errors, the next step in the process
is to build (link) the actual runnable image of the program ( 3 in
Figure 5-1). This may require 1linking the ©program with other
object modules located in the user's UFD, or in user or system
libraries, as shown in Figure 5-3. It is the Task Builder's job
to take all object modules and 1link them together, resolving
references between modules, and incorporating modules from
referenced system libraries. The Task Builder outputs an
executable task image. An optional output file is a map file that
contains information describing the allocation of addresses,
program sections in task image, modules of origin, and the wvalues
of all global symbols. A symbol definition file is other optional
output that contains information used to create a shared region.
Shared regions and the use of the file are covered in another
course.

Before releasing a task for general use, the task should be
run and tested against original specifications to ensure that it
does indeed run correctly and solves the original problem ( 4 in
Figure 5-1). Debugging aids, 1like the On-Line Debugging Tool
(ODT), can be used to help locate problems within the code. If
any error conditions arise during this step it may be necessary to
go back to the first step in the flowchart and repeat the steps
once again until the task executes correctly.

When the task is ready for general use ( 5 in Figure 5-1), it
can be permanently installed in the System Task Directory. Not
all tasks are permanently installed. Your system manager makes
this choice based wupon how often a task is run and how critical
its nature.

224



PROGRAM DEVELOPMENT

START

CORRECT
SOURCE
FILE

CORRECTIONS
AS NEEDED

YES

APPLY SOURCE

YES

225

SOURCE
FILE (.MAC)
TEXT (.FTN)
*  EDITOR (EDT)
-
v LISTING
LANGUAGE FILE (.LST) ~—
PROCESSOR
(MAC) -
(FOR) >
.
T
ASSEMBLY ——
ERRORS?
~ [ -
! { MAP <
FILE (.MAP)
TASK
BUILDER
(TKB) L
-
TKB
ERRORS? —
> TASK IMAGE
FILE (.TSK)
DUMP
FILE (.PMD)
RUN AND IN UED [1,4]
DEBUG
ERRORS?
NO
INSTALL
IN STD
Figure 5-1 The Program Development

MACRO
LIBRARY FILE
(DEFAULT=RSXMAC.SML)

OBJECT
LIBRARY FILE
(DEFAULT=SYSLIB.OLB)

SYMBOL DEFINITION
FILE (.8TB)

Process

CREATING AND
FORMATTING
MACRO-11
SOURCE

FILES

ASSEMBLING
AND
CORRECTING
A PROGRAM
MODULE

AND
TESTING A
TASK

LBUILDING

RUNNING
AND
DEBUGGING
A TASK

TK-7671



PROGRAM DEVELOPMENT

PROGRAMMING LANGUAGES

There are three fundamental types of programming languages in
use today; the difference 1is 1in the manner in which the
translation of source statements into machine instructions occurs.
These three types are interpreted, assembled and compiled
languages.

In an interpreted language, such as BASIC, each source
statement is translated and executed before the next line is read.
There are no separate compile or task-build steps. The results of
arithmetic expressions and input/output statements are immediate
and can be checked for correctness. As there 1is no permanent
output from the translation process, the cost of translating the
source statements into machine instructions is borne each time the
program 1is run. An interpreted language is most often used for
applications that are run infrequently but need to be developed
quickly. They are also used as an instructional language for
beginning programmers.

In an assembled language, a program called an assembler
translates source statements into machine instructions, which are
saved in a file called an object file. Each source statement
translates directly into one machine instruction. This
intermediate file (called the object file) passes through another
process, called linking, to make an executable image. Translation
of source statements into machine instructions 1is not required
each time the program is run. Therefore, execution time is less
with an assembled language than an interpreted language.

A compiled 1language, often referred to as a high-level
language, processes 1like the assembled language. However, the
source statements are more English-like, and each source statement
translates into one or more machine instructions. The program
that converts high-level source code into object code is called a
compiler.

Table 5-1 compares the three types of languages.

226



PROGRAM DEVELOPMENT

Table 5-1 Language Types

e

227



PROGRAM DEVELOPMENT

Table 5-2 Available Language Translators for RSX Use

i
e

e
i i umggﬁ .
i @;ﬁ?’éws o
S .

e
i

3

228



PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

READ Chapter 4, How to Do Work on the
System, in the Introduction to
RSX~11M/M-PLUS Manual.

DO Written Exercises 1 through 6 for this
module.

229



PROGRAM DEVELOPMENT

ASSEMBLING/COMPILING

Figure 5-2 illustrates the process of translating a source
file into machine instructions. Although a MACRO-11 program is
used as an example, the process 1is similiar for a compiled
language. The reference numbers in the following text refer to
the numbers on the figure.

The language translator performs the following functions:

© 1Identifies symbols to be known to other modules (global
symbols).

Inserts macro definitions in MACRO-11 programs.

Translates source language instructions into machine
instructions.

Assigns program addresses (relocatable virtual addresses)
to each machine instruction.

Input to the language translator consists of one or more
modules written in the source language (item G’). In the case of
MACRO-11, input may also come from macro definition 1libraries
(item c’). The MACRO-11 assembler automatically searches
RSXMAC.SML for any undefined symbols that remain after processing
all the input files.

Output from the language translator consists of an object
module file and an optional listing file. The object file (item
") has a default file type of .0OBJ, and contains the machine
instructions and information needed 1in the next step of the
program development process. The 1listing file (item @ )has a
default file type of .LST and contains the following:

- source instructions

- machine instructions (item @)

- relocatable virtual addresses (item @)

- error messages

- symbol listings

- assemble/compile statistics

230



PROGRAM DEVELOPMENT

(1) PGMO1.MAC

BUFF:: .BLKB AD8O0

_EVEN
° PGMO01.0BJ
ST: MOV #TEXT,RO "
MOV #BUFF,R1 .
MoV #DOT,R2 ¢
LOOP: MOVB (RO)+,(R1) 000026
CMPB (R1)+,R2 000146 012700 000000’
BNE LOoOP 000152 012701 000026’
.END 000156 012702 000056

000162 112011
000164 122102

, 000166 001375
SY:(305,303] oo1ars
PGMOT.MAC §Y:(305,303]
\_/
e MAC.TSK
\__.J LANGUAGE PGMO1.MAC
LB:[1,1] PROCESSOR PGMO1.0BJ
) > (MACRO-11) PGMO1.LST
\___’/
O] rsxmacsmL
\___/
e’
PGMO1.LST
— b
8 000026 BUFF:: BLKB ADSO
9 () ‘EVEN
10
11 000146 012700  000000'ST: MOV #TEXT,RO
12 000152 012701  000026" MOV #BUFF.R1
13 000156 012702 000056 MOV #DOT,R2
14 000162 112011 LOOP: MOVE (RO)(R1)
15 000164 122102 CMPB (R1)+(R2)
16 000166 001375 BNE LOOP
17 000001 END
L

TK-7673

Figure 5-2 Translating a Program Source File Into Machine Language

231



PROGRAM DEVELOPMENT

MACRO-11 Language

The command format below shows how to invoke the MACRO-11
Assembler. The MACRO-11 Assembler takes MACRO source files and
library files as input. The default input file type is .MAC. In
specifying a series of input files, the last file specified cannot
be a library file. You should place a 1library specification in
front of the source file that requires it. After processing all
the input files, the MACRO Assembler automatically searches the
system macro library, RSXMAC.SML, for unsatisfied macro
definitions. The last file name in the command is wused as the
default name for the output files. Table 5-3 lists some of the
more frequently used command qualifiers. For more qualifiers,
refer to Chapter 6 of the RSX-11M/M-PLUS Command Language Manual.
Table 5-4 shows some examples of MACRO command usage.

MACRO-11 Assembler Command Format

>MACRO/LIST USER/ LIBRARY, PROG

W\.—-—\/‘V

o o 2] o O 2]

Command name
Command qualifier
Input file specification (default file type = .MACQC)

Input file specification delimiter

Input file specification qualifier

232



PROGRAM DEVELOPMENT

Table 5-3 MACRO Command and File Qualifiers

233



Examples Using the MACRO Command

Table 5-4

sy
i

i

i m@:ggg

PROGRAM DEVELOPMENT

i
.
-
-
L
.
o
L

Fusi
2l
s

234

-
-




PROGRAM DEVELOPMENT

Common Error Messages

8-14
description of

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

The following are common MACRO-11 error messages.

through 8-17 of the MACRO-11 Reference Manual

See

these and other error messages.

COMMAND SYNTAX ERROR

ILLEGAL FILENAME

ILLEGAL SWITCH

I/0 ERROR ON
I/0 ERROR ON
I/0 ERROR ON
OPEN FAILURE

OPEN FAILURE

INPUT FILE

MACRO LIBRARY FILE

OUTPUT FILE

ON INPUT FILE

ON OUTPUT FILE

235

pages

for

a



PROGRAM DEVELOPMENT

Notes on Example 5-1

Example 5-1 shows a section of a MACRO-11 listing file. The
following comments are keyed to the example.

0000600 O

The title of the program
Assembly instructions that control the type of output.

These may be overridden at assembly time by using the
appropriate MACRO command qualifier.

Source line numbers. Diagnostic messages refer to these
numbers.

Virtual addresses assigned to the machine instruction

The resulting machine instruction
The MACRO-11 source instruction
Comments to explain the logic of the program

A table of all symbols defined and/or referenced in the
file. Asterisks 1in the address field denote unsatisfied
references. Their definitions need to be satisfied at
link time. Those symbols with an R following the address
are relocatable addresses. Those symbols with a G are
global symbols. A global symbol 1is one that may be
referenced from another source file.

Diagnostic section

Assembly statistics, including the assembly time and
command line (in MCR format) that invokes the assembly.

236



PROGRAM DEVELOPMENT

HIYA MACRO M1200 01-DEC=81 15:22 PAGE 1

.TITLE HIYA
o .LIST TTM
.NLIST BEX
; MACRO LIBRARY CALLS

«MCALL EXIT$S,QIOWS,DIRS

000000 INDPB: QIOWS I0.RLB,S,1,,I0ST 3 REST TO BE FIL
000030 QUTDPB: QIOWS I0.wLB,5,1,,108T,,<,,40>

3 LOCAL EQUATES
000120 BSIZE=80, ;7 ACCEPTS NAMES UP TO 80

¢ LOCAL DATA BUFFERS

N) o A -  pr e e e
CQOUWDNNAUNDWNFCODNOC U D WN -

20 000060 103 MSGi: «ASCII /COULD I HAVE YOUR NAME PLEASE?/
21 000036 MSGiL=,=MSG1 ? THE LENGTH OF MSG1
22
23 000116 122 MS5G2; «ASCII /RSX=11M=PLUS CALLING /
24 000025 MSG2L=,=MSG2 3 THE LENGTH OF MSG2
25 000143 BUFF: +«BLKB BSIZE ? SET UP BUFFFER LENGTH = BSIZE
26
27 000263 111 OBUFF: LASCII /IO ERRCR WITR STATUS/<12><15>
28 000311 104 1I1: «ASCII /DSW = /
29 000326 111 I2: «ASCII /IOST = /
30 000060 QSIZ=,=0BUFF
31
32
33 «EVEN
34 000344 I0ST: «BLKW 2
35
36
37
38 s MAIN PROGRAM
39 G’ "
‘, 40 000350 012700 HIYA: MoV #MSG1,RO } SET UP CALL
41 000354 012701 MOV #MSG1L,RY 7 TO WRITE SUBROQUTINE
42 000360 004767 CALL WRITE ¢ OUTPUT MSG1
43 000364 012700 MOV #BUFF,RO 3 SET UP CALL
44 000370 012701 MoV #BSIZE,R1 7 TO READ SUBROUTINE
45 000374 004767 CALL READ 3 READ NAME INTO BUFFER
46 000400 012700 ¥ov #MSG2,R0 3 SET UP CALL
47 000404 012701 MoV #MSG2L,R1 3 TO WRITE SUBROUTINE
48 000410 060201 ADD R2,Rr1 3 LENGTH OF MSG2 + NAME
49 000412 004767 CALL WRITE s OUTPUT MSG2 WITH NAME
50 000416 EXITSS 3 LEAVE
51 it
52 3 WRITE = SUBROUTINE TO WRITE A MESSAGE TO THE TERMINAL
53 ;
54 5 INPUTS:
55 H RO = ADDRESS OF STRING TO BE PRINTED ON SCREEN
56 H Rl = LENGTH OF STRING TO PRINT
57 ;

Example 5-1 Sample MACRO Assembly Listing (Sheet 1 of 2)

237



PROGRAM DEVELOPMENT

HIYA  MACRO 1200 01=DEC=81 15:22 PAGE 1-3
© syreoL ThBLE

BSIZE = 000120 MSG1 000060R Q.I0LU= 000004
BUFF 000143R MSGIL = 000036 Q. I0PL= 000014
ERR1 000510R MSG2 000116R 0.I0PR= 000007
HIYA 000350R MSG2L = 000025 Q.1088= 000010
INDPB 000000R OBUFF 000263R READ 000454RG
I0ST 000344R 0SIZ = 000060 WRITE 000424RG
ID.RLB= ¥¥X%kx% GX QUTDPB 000030R SCBDSG= **¥¥%x (X
I0.WLB= *¥¥kx% GX Q.J0AE= 000012 SDSW = Xx¥¥*xx% GX
11 000311R Q.I0EF= 000006 $§$8ARG= 000003
I2 000326R Q.I0OFN= 000002 $$805T= 000014
« ABS, 000000 000

000574 001

0 ERRORS DETECTED: 0
‘:} VIRTUAL MEMORY USED: 8774 WORDS ( 35 PAGES)
DYNAMIC MEMORY: 10316 WORDS ( 39 PAGES)

ELAPSED TIME: 00:00:06
HIYAL,HIYAL=HIYAL

Example 5-1 Sample MACRO Assembly Listing (Sheet 2 of 2)

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

e 6.1, Introduction
e 6.2, Source Language

2. DO Written Exercises 7 through 18 for
this module.

238



PROGRAM DEVELOPMENT

FORTRAN Languages

RSX-11M/M-PLUS systems support three FORTRAN source language
compilers: FORTRAN IV, FORTRAN IV-PLUS and FORTRAN-77. Check
with your system manager to determine which compiler (if any) your
system has. Input source file(s) must contain source statements
that comply with the rules of the compiler that you plan to use.

The command format below shows how to invoke a FORTRAN
compiler. If you wish to use the FORTRAN IV-PLUS or FORTRAN-77
compiler, you must use the appropriate command qualifier to
specify which one (Table 5-5). FORTRAN IV is the default FORTRAN
compiler. The default input file type 1is .FTN for all three
compilers. Output from the FORTRAN compiler can be an object file
and/or a listing file.

Table 5-6 gives examples of how to «construct a command to

compile a FORTRAN source file called PROG.FTN, as well as the
equivalent MCR commands.

FORTRAN Compiler Command Format

~>FORTRAN/F4P CALCA,SINEX,SINEY

Command name
Command qualifiers

File specification (default file type = .FTN)

File specification delimiter

239



PROGRAM DEVELOPMENT

Table 5-

. —— , - ’ . ;s . T T
- —— ; y s ” . ) ’ .
~ = B i i o .
- -

i
o

-

0

Ly
Do f

ey

o

s
o
s

2490



ve

Table 5-6 Examples Using The FORTRAN Command

e

g e

FORTRAN BROG 11111 1 woRn
i et
i

S T

.

W
e
e

a

LNIWdOTIATA WYYDOUd



PROGRAM DEVELOPMENT

Common FORTRAN Error Messages

The following are common FORTRAN error messages.

See

Appendix C in the FORTRAN IV User's Guide for a complete

description of all error messages.
FOR -- BAD SWITCH

FOR -- BAD SWITCH VALUE

FOR —-- ERROR READING SOURCE FILE
FOR -- ERROR WRITING LISTING FILE
FOR -- ERROR WRITING OBJECT FILE
FOR -- OPEN FAILED FOR FILE

FOR —-- SYNTAX ERROR

FOR —-- TOO MANY INPUT FILES

FOR -- TOO MANY OUTPUT FILES

FOR -- WILD CARD NOT ALLOWED

FORTRAN Compiler Listing

Example 5-2 is a sample of a FORTRAN compiler 1listing.
listing file 1is optional compiler output. To generate the
the /LIST qualifier must be specified in the FORTRAN command
The default file type is .LST. The following comments are
to the example.

The
file,
line.
keyed

@ Compiler name and version number, time and date of
compile, and the compiler command (in MCR) invoking the

compilation.

these numbers.
FORTRAN source statements.

Diagnostics indicating problem areas in the code.

Storage map providing information on symbols,
blocks, arrays, and subroutines.

242

Source statement line numbers. Error diaghostics refer to

common



PROGRAM DEVELOPMENT

" FORTRAN IV V02,2-1 TUE 0)1=DEC=81 15:51:32

PROG,PROG=PROG

© oo @ cowronsconsi(10)
0002 DO 100, J=1,10

0003 READ(5,900)I(])
0004 CALL SUB(J,M)

0005 WRITE(5,901)M

0006 100 CONTINUE

0007 WRITE(5,902)

0008 CALL EXIT

0009 SUBROUTINE SUB(J,K)
0010 COMMON/COM/I(10)
0011 K=2*I(J)

0012 RETURN

0013 900 FORMAT(I3)

0014 901 FORMAT(® *,16)

0015 902 FORMAT(® THIS IS THE END’)
0016 END

FORTRAN IV DIAGNOSTICS FOR PROGRAM UNIT (MAIN,

IN LINE 0002, WARNING: POSSIBLE MUDIFICATION OF INDEX "J"

IN LINE 0009, ERROR: SUBPROGRAM STATEMENT MUST BE FIRST

IN LINE 0010, ERRGR: MULTIPLE DECLARATION FOR VARIABLE "IV
eFORTRAN IV STORAGE AP FOR PROGRAM UNIT MAIN,

LOCAL VARIABLES, .PSECT SDATA, SIZE = 000006 ( 3, WORDS)

NAME  TYPE OFFSET NAME  TYPE OFFSET NAME  TYPE

J I¥2 000000 K I¥2 000004 M 1*2

COMMON BLOCK /COM  /, SIZE = 000024 ( 10, WORDS)

NAME  TYPE OFFSET NANE  TYPE OFFSET NAME  TYPE

I I¥2 000000

LOCAL AND COMMDN ARRAYS:

NAME TYPE SECTION JFFSET ww==e=SlZE===== DIMENSIONS

1 I%2 COM 000000 000024 ¢ 10,) (10)
SUBROUTINES, FUNCTIONS, STATEMENT AND PROCESSOR=DEFINED FUNCT
NAME TYPE NAME TYPE NAME TYPE NAME TYPE NAME
EXIT Rx4 suB R*4

Example 5-2 Sample FORTRAN Compiler Listing

243

PAGE 001

OFFSET
000002

OFFSFET

IONS:

TYPE



PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

READ Section 6.2.3, FORTRAN, in the
RSX-11M/M-PLUS Command Language Manual.

DO Written Exercises 11 through 15 for
this module.

244



TASK-BUILDING/LINKING

Overview

Figure 5-3 1illustrates the next step in the program
development process, 1linking object modules into an executable
task image. This step is <called task-building or 1linking. A
special system utility, the Task Builder, performs this function.

Generally, a task image will be built wusing many object
modules that may reside 1in more than one object file. 1In an
object module, a reference can be made to a symbol or routine
located in another object module. The symbol or routine can also
be located in a special file called an object library. It is the
Task Builder's function to bring together all the object modules
from object files and libraries, and join them together 1logically
into one output file called the task image file (item "iJl Figure
5-3). The Task Builder also resolves references to symbols and
routines in different modules by placing the appropriate address
in the instruction where the reference was made. In this way, all
the separate modules that make up a task are linked together.

Input to the Task Builder (item (}) are the object files that
are output from the assembler or a compiler. The default input
file type is .0OBJ. Another source of input 1is wuser or system
object libraries. These libraries contain code for frequently
used routines that have been developed and debugged. If after
processing all the input files there remain symbols that have not
been defined, the Task Builder automatically searches the system
library 1looking for the code. This 1library, SYSLIB.OLB, is
located in LB:[1,1] (item G’). If the search is successful, the
Task Builder 1includes 1in the task the object module from the
library.

Task Builder output can include a task image file, a map
file, and a symbol definition file. Each output file is optional,
and the Task Builder will generate any combination of the three.
The task image file (item @) contains the actual machine
instructions that load into memory and execute in the CPU. The
Task Builder <creates the file 1in the special format shown in
Figure 5-4. (See the notes that refer to this figure.)

Another output file of the Task Builder, and a useful tool
for the programmer, is the MAP file (item @ ). This file
contains information on the allocation of address space 1in the
task image, the program sections created in the task image, and
the module of origin and the value of each global symbol. We will
discuss this file in more detail later.

245



PROGRAM DEVELOPMENT

The symbol table file is the third output file (item @).
This file contains global symbols defined in the task, and their
virtual or relocatable addresses. It is in a format suitable for
reprocessing by the Task Builder. You specify this file when you
are building a resident library or common. Resident libraries and
commons are discussed in the Task Builder Manual, and are advanced
topics covered in the RSX-11M/M-PLUS Programmer course. They will
not be discussed here.

Table 5-9 lists some of the characteristics of a task that
the operating system must know before the task can be run. These
characteristics, supplied at task-build time, are included in the
label and header ©portions of the task image. If these are not
specified, the task is built with the default values listed in the
table. In Module 8, we discuss building a task with different
characteristics.

246



PROGRAM DEVELOPMENT

0 PGMO01.TSK

LABEL BLOCK

HEADER

STACK

PGMO1
|— CALL RTNO1
CALL RTNO2

RTNO1

RTNO2

SY:[305,303]

SY:[305,303]

o TKB.TSK
PGMO1.0BJ —Q@——= romorTsk
RTNO1.0BJ If;\f"fBU'LDER —©—+ Fomormar
RTNO2.0BJ —OQ— Fovoists
PGMO1.MAP

LB:[1,1] o

OVR.TSK:25 MEMORY ALLOCATION MAP  TKB M36

13-APR-79 09:10

TASK NAME :
SYSLIB.OLB PARTITION NAME : GEN

IDENTIFICATION . o1

TASK uIc . [303,3]

TASK PRIORITY ;

STACK  LIMITS . 000176 001175 001000 00512.

oDT XFR ADDRESS :

PRG XRF ADDRESS : 010010
TASK ATTRIBUTES :

TOTAL ADDRESS WINDOWS : 1.
MAPPED ARRAY

TASK  EXTENSION

TASK IMAGE SIZE : 10496. WORDS
TOTAL TASK SIZE :
TASK ADDRESS LIMITS : 000000 050753

R-W DISK BLK LIMITS : 000002 000106 000105 00069.
R-O DISK BLK LIMITS :

OVR.TSK;26 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000000 020677 020700 08640. ROOTM
020700 034723 014024 06164. MULOV
020700 034723 014024 06164. ADDOV
034724 050747 014024 06164. SUBOV
034724 050753 014030 06168. DIvov

OVR.TSK;25 MEMORY ALLOCATION MAP TKB M36
ROOTM 13-APR-79 09:10

TK-7674 °

Figure 5-3 Task-Building an Executable Module

247



PROGRAM DEVELOPMENT

1000

750
500

RTNO2.0BJ
PGMO01.0BJ RTNO1.0BJ

0 0 0

OBJECT MODULES SUPPLIED
IN THE TASKBUILD

s
RTN02.0BJ
X+1500
RTNO1.0BJ
X+1000 Le
PGMO01.0BJ
X r
STACK )
X4 HEADER 9
|| LaseL BLOCK (1]
PGMO1.TSK

TK-7677

Figure 5-4 Task Image Structure

248



PROGRAM DEVELOPMENT

Notes on Figure 5-4

The following comments are keyed to the figure.

Label Block

Contains task information necessary for running the task
(name, partition, size, priority). The INSTALL command
uses this information to create a Task Control Block (TCB)
in the STD, and to initialize the task header.

Header

Contains information the Executive uses to run the task.
Also provides a storage area for saving essential data
when the task 1is checkpointed. The INSTALL command
initializes the part of the header not initialized by the
Task Builder.

Stack, Code and Data
This part of the task image includes the task stack and

linked modules of code and data. The task header along

with the stack, code and data are loaded into memory when
a task is requested to run.

249



PROGRAM DEVELOPMENT

Task Builder Command Format

The command format below shows the basic structure used to
invoke the Task Builder. Input to the Task Builder consists of
object files and library files. The default input file type for
object modules is .OBJ. Library file specifications must include
the /LIBRARY qualifier, and are of default type .OLB. The default
output file types include .TSK for the task image file, .MAP for
the map file, and .STB for the symbol table file.

The LINK command can take qualifiers that modify the 1linking
of modules. The most frequently used qualifiers are listed in
Table 5-7. The RSX-11M/M-PLUS Command Language Manual describes
these and others in more detail. Examples of the LINK command and
equivalent MCR commands are shown in Table 5-8.

>LINK/MAP ROQT,RTN1,USOBJ/LIB

im./ |\..—\~\—\~

Command name

Command qualifier

Input file specification
File specification delimiter

File specification qualifier

250



PROGRAM DEVELOPMENT

Table 5-7 LINK Command and File Qualifiers

i e
e

.
-

251



PROGRAM DEVELOPMENT

Examples Using the Task Builder

Table 5-8

252



PROGRAM DEVELOPMENT

Table 5-9 Standard Task Builder Defaults

Ngos
s
1

.
i
el
o,

Common Task Builder Error Messages

The following is a 1list of common Task Builder error
messages. See Appendix F of the Task Builder Manual for a
complete description of all error messages.

ALLOCATION FAILURE ON FILE file-name
COMMAND SYNTAX ERROR

FILE file-name HAS ILLEGAL FORMAT
ILLEGAL FILENAME

INVALID PARTITION/COMMON BLOCK SPECIFIED
I/0 ERROR ON INPUT FILE file-name

I/0 ERROR ON OUTPUT FILE file-name
LOOKUP FAILURE ON FILE file-name

OPEN FAILURE ON FILE file-name

REQUIRED INPUT MISSING

TASK IMAGE FILE file-name IS NONCONTIGUOUS

n UNDEFINED SYMBOLS SEGMENT seg-name

253



PROGRAM DEVELOPMENT

Interpreting a Task Map

Example 5-3 is a sample of the Task
used to build the task,

tells which modules were

Builder map file. It

in what order

they were linked together, and at what virtual address they begin.

It also other information
program.
further information,

Chapter 10 of the Task Builder

gives

refer to the

Read the notes for more details

that is useful when debugging a
on the example. For
discussion of the /SH switch in
Manual. Not all of this

information 1is of wvalue to you
that you know what the map file is
contains.

now. It is important, however,
and what type of information it

HIYAL,TSK Memory allocation map TKB M39,7D Page 1
1=DEC=81 15:23

partition name 3 GEN @

Identification ¢ 0351

Task UIC : 0305,3031@

Stack limits: 000254 001253 001000 00512.(’

PRG xfr address: 001624 @

Total address windows: 1,

Task image sgize ¢ 640, words|3

Task address limits: 000000 0023771 @

R=W disk blk 1limits: 000002 000004 000003 00003,

*%% Root segment: HIYAL @ .

R/W mem 1imits: 000000 002377 002400 01280, C’

Disk blk 1imits: 000002 000004 000003 00003,

Memory allocation synopsis:

Section Title 1Ident File

« BLK,$(RW,I,LCL,REL,CON)

$8RESL$ (RO, T,LCL,REL,CON)

Global symbols:

READ 001730=R WRITE 001700=R

*¥%x Task builder statistics:

Total work fille references: 1099,
Work file reads: O,
Work file writes: 0O,
Size of core pool:
Size of work file: 1024, words (4,

Elapsed time:00:00:03

Example 5-3
254

001254 001012 00522,
001254 000574 00380, HIYA
002266 000112 00074,

H1YA1,08071 @

7086, words (27, pages)

pages)

Sample Task Map



PROGRAM DEVELOPMENT

Notes on Example 5-3

The partition in which the task will be loaded.

The UIC under which the task will be run for time-based

schedule requests. This determines which files the task
can access.

The low and high limits of the task stack, followed by its
length in octal and decimal bytes.

The virtual address at which the program will begin
executing.

The task image size in decimal words.

The lowest and highest virtual address allocated to the
task.

The name of the root segment, in this case, the task name.

From left to right:

Beginning virtual address of root segment
Virtual address of the last segment byte
Length in octal bytes

Length in decimal bytes

From left to right:

Program section name

Program section attributes

Starting virtual address of the section
Length in octal bytes

Length in decimal bytes

This line contains the same first fields as 9 and also a
title and 1identification number obtained from the source
code, and the name of the file containing the source code.

This section contains statistics that are of no interest
to the general user.

255



PROGRAM DEVELOPMENT

LEARNING ACTIVITIES

l. READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

e 6.4, Linking the Task

e 6.4.1, Introduction to the Link -
Command

e 6.4.2, Link

2. DO Written Exercises 16 through 19 for
this module.

256



PROGRAM DEVELOPMENT

RUNNING THE TASK

After linking, you run a task by supplying the task image
file specification as a parameter to the RUN command. The
operating system will then go through the procedure of installing,
running and removing your task, as shown in Figure 5-5. This is
the most frequently used version of the RUN command, as most tasks
are not permanently installed in the STD. We will discuss the
other versions of the RUN command in Module 8, Controlling Task
Execution.

LEARNING ACTIVITIES

1. READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

e 7.1, Task Installation and Execution
e 7.1.1, Task Naming
e 7.2, Introduction to the RUN Command
e 7.3, Abort Command

2., DO Written Exercises 2@ and 21 for this
module.

3. DO the Lab Exercises for this module.

257



PROGRAM DEVELOPMENT

MEMORY

1/0 PAGE

DRVPAR

XYZPAR

SY:(305,303]

GEN

PGMO1.TSK

| —>
P LDR MCR PGMO1 DSR
“POOL"

EXEC

> RuN PGMo1 @)

TK-7678

Figure 5-5 Requesting a Task to Run

Notes on Figure 5-5
The following comments are keyed to the figure.
o User requests PGM@l to run
© PGMPLl added to the list of known tasks
€© PGMP1 added to the lists of active tasks
@ PGMA1 loaded into memory ready-to-run

On completion, entries in STD and ATL for PGM@l are removed.

258



USING THE EDITOR
EFFECTIVELY







USING THE EDITOR EFFECTIVELY

INTRODUCTION

EDT, the DEC editor, creates and modifies files. As you grow

more accustomed to using it, you will appreciate many additional
features that make it quicker to use. A number of these
additional features is presented in this module.

OBJECTIVES

1. Move or copy sections of text from one buffer to another.

2. Read in text from another file.

3. Write a subset of the text to an output file.

4. Write a Macro to execute EDT commands.

5. Set editor characteristics for special purposes.

6. Use character mode with a keypad.

RESOURCES

l. EDT Editor Manual

261






USING THE EDITOR EFFECTIVELY

USING THE EDITOR EFFECTIVELY

There are many features of the editor that will make your
editing sessions easier. Such features as alternate buffers,
user-defined macros, and the ability to set terminal
characteristics, do character searches, and perform cut and paste
operations can shorten the time it would normally take to create a
file. Suppose, for example, that you had the responsibility of
writing a user's manual for a piece of hardware. After capturing
your first thoughts wusing the editor, you decide to order the
paragraphs differently. The cut and paste feature of character
mode allows you to select a paragraph, phrase or word and easily
move it to another location. You can guess how 1long an editing
session would be if you had to delete the lines and retype them in
their new location! This is one of many features discussed in
this module that will make your editing session easier.

Editor Buffers

From our previous discussion on the editor, you learned that
the editor creates workspaces called buffers. At the start of an
editing session, EDT automatically creates two standard buffers
for wuse during the editing session. The first buffer, called
MAIN, is for general editing. The second buffer, called PASTE, is
for the cut and paste operations done in character mode.

EDT also allows for the creation of additional buffers as
they are needed.

Buffer Use
You may use these buffers in the following ways:
e To divide one or more files into sections
e To include part or all of another file

e To create another file from part or all of the text 1in a
buffer

263



USING THE EDITOR EFFECTIVELY

Creating a Buffer

You create a buffer by naming it, i.e., by referencing a 1-3¢
character name preceded by an equal sign. (See example below.)
You can make the reference on a line by itself, or in a range
specification. The reference automatically creates the buffer and
places your cursor at the beginning of the buffer. For example,
issuing the command =NEWBUF alone on a line creates a buffer with
the name NEWBUF. This becomes your current buffer, and the
current line is now pointing to the beginning of the buffer. You
can also create a buffer while performing editor operations such
as MOVE or COPY. For example, you may reference a buffer name in
a range specification in the COPY command. EDT will first create
the buffer and then copy the lines into the buffer. Once again,
the buffer is now the current buffer and the current 1line 1is in
the new buffer, not MAIN.

Example: *=NEWBUF

Referring to a Buffer

Part of a range specification is the buffer name. If you do
not supply a buffer name 1in a range specification, the editor
assumes you are referring to the current buffer. If you wish to
specify another buffer, it is done this way:

*MOVE 1:3 TO =DOC 5

This example moves lines numbered 1 through 3 from the current
buffer to the line before line number 5 in the buffer named DOC.

You determine the current buffer by using the SHOW BUFFER
command:

*SHOW BUFFER

=NEWBUF 2@ LINES
MAIN 260 LINES
PASTE @ LINES

The buffer preceded by the equal sign is the current buffer.

264



USING THE EDITOR EFFECTIVELY

LINE MODE FEATURES

Searching for a Character String

The line mode search function is useful for locating a word
or character string when the line number of the string location is
not known. The search direction can be either forward or backward
from the current line position. It is also possible to search for
all occurrences of a string within a range of 1lines, or through
the complete file.

When you enclose a character string with single or double
quotes and type a carriage return, the editor searches forward in
the file to locate the first occurrence of the string. Table 6-1
lists the formats for this and other types of character searches.

Table 6~1 String Search Commands in Line Mode

Reading and Writing Files

The editor has additional file-handling facilities to aid the
user during the editing session. You will find the INCLUDE
command useful when you want to include the contents of another
file in the one you are creating. This is done by specifying
INCLUDE with the name of the file to be included, and giving a
range specification to indicate where it is to be placed in the
new file. One use of this command is to include a file in an
alternate buffer, and search the alternate buffer for specific
lines of text. Once located, the lines can be copied 1into the
correct position in the MAIN buffer. There is no need to clean up

the alternate buffer as the exit command saves only the contents
of MAIN.

265



USING THE EDITOR EFFECTIVELY

The WRITE command will create a file containing all or part
of the text that you are editing. Once the file is created you
may continue work in the editing session. The /SEQUENCE qualifier
of the WRITE command allows you to save the editing line numbers
along with the text. These line numbers will not be displayed
when you type the file to the terminal, but will appear when you
print the file on a line printer. WRITE is also useful when you
wish to break up a file into many files. Suppose you have a
FORTRAN source file containing many subroutines. You can divide
that file into one file per subroutine by issuing the WRITE

command the appropriate number of times with the appropriate range
specifications.

The PRINT command allows you to create and print files in one
operation. When you issue this command with a file name and range
specification, the editor will create a file containing the 1lines
of text specified, and then automatically print the file for you.

Table 6-2 lists examples of the commands used for each of
these features.

Table 6-2 Line Mode Commands to Read and Write
Files from Within EDT

Generating EDT Macros
A Macro

The DEFINE MACRO command is another useful EDT feature.
Before we discuss the command, we need to define the term macro in
relation to the editor. A macro is a sequence of editing commands
with a name assigned to it. You can issue the macro name just
like a line mode command. Every time you do so the editor
executes the sequence of commands. This facility allows you to
extend the range of commands available for your use in EDT.

266



USING THE EDITOR EFFECTIVELY

Defining a Macro

DEFINE MACRO establishes the sequences of commands to a macro
name. When you issue this command, the editor sets up a buffer
with the name you supply in the DEFINE MACRO command. Using the
INSERT command, you can enter the EDT commands of your choice into
the buffer. This macro name then becomes a part of the EDT
command 1list for the duration of the editing session, and can be
used just like any other command. It can also be wused in
character mode by using the GOLD COMMAND function. If you want to

save this macro for use during future editing sessions, perform
the following steps:

l. Use WRITE to put the contents of the macro buffer into a
file.

2. In your next editing session, use DEFINE MACRO again to
set up the buffer.

3. Then use INCLUDE to read the file created above into the
buffer created by DEFINE MACRO.
Notes on Example 6-1

Example 6-1 shows the process of creating and executing a
macro in line mode. The following notes are keyed to the example.

© Command to define the macro. The name of the macro is
DOoC.

SHOW BUFFER command issued to show all existing buffers.

Command to make DOC the current buffer so that text is
stored in it, not MAIN.

Enter input mode and type the editor commands.

Set the current buffer back to MAIN (which is empty at
this time).

Execute the macro.
Display the contents of MAIN.,
Execute the macro again.

Display the contents of MAIN again.

0000 00 O

Save the macro DOC in a file called DOC.MAC.

267



© © 00 00

USING THE EDITOR EFFECTIVELY

>
=EDIT/Z/EDT MANUAL . TXT
Input file does not exist

CEOR]
XDEFINE MACRO DOC
*XSH RUF
noc 0 limes
=MAIN 0 lines
FASTE © lines
*=00C
CEOR]
XxI
INSERT E3$CHAFTER
INSERT Ej3
INSERT E3sSECTION
INSERT E33$
INSERT Es+
~Z
CEOB]
X=MAIN
CEOR]
xDoc
*=MAIN
1 s CHAFTER
2 H
3 FSECTION
4 H
5 §
CEOR]
X00C: |
X=MAIN
1 $ CHAFTER
2 H
3 FSECTION
4 H
5 H
b $ CHAFTER
7 H
8 $SECTION
? H
10 H
CEOR2Y

XWRITE DOC.MAC =D0OC
DRO$L305,3031N0C.MACH1 5 lines

XEXIT

DRO:L305,303IMANUAL . TXT$1 15 lines

Example 6-1 Defining a Macro

268



USING THE EDITOR EFFECTIVELY

Setting Editor Parameters

There are many operating characteristics of EDT that you can
set for an editing session. These characteristics control how
information is displayed at your terminal. The SET and SHOW
commands allow you to alter the default characteristics, or to
display their settings. Table 6-3 lists some parameters you may

find useful. Table 6-4 summarizes other useful 1line mode
commands.

Table 6-3 SET and SHOW Commands

i D et
e
i i

.
i
e
i

L g@ﬁg:g@ .
sem e !i@ﬂaﬁlzxgmmmgx
o
e
i

o - ; c
5 | - o : . e 5 % i :
b P - e ~ i o -
e - - e o y =
= . . g Es o - bii e L e . - .
.
. fﬁ% & - s
Gosaoid i o . - etn ss s e ”,m . -
G %) isz_ss T E s G R ‘@Em, e s i
i . G e L i s i G - e i‘@sm
mmmm i L P S | i L . m; , o e
4 ) = - . e . .
Hﬁﬁ)xﬁ@ﬁx(ﬁ -

: x il @ ) % i i
& L [ S R . 6 it i
v ‘g " mm%@wmgum_&mx m@mmm ;%vm@xa g@mmm@@g

s
o

4

&K s i
i g,.&mgi@§@;sg%m%@am




USING THE EDITOR EFFECTIVELY

Additional Line Mode Commands

Table 6-4 Other Useful Line Mode Commands

3 e 5 e
e Line Mo v " Al e
i i b4, ! :
e e ¢ . | L e

2 T
- i

i . e a
SRR R RITR 5 = . s e el 1

ES%Q% L

-
-
e

il
e
i

- xmg@iﬁ
.

=
e
S

R

270



USING THE EDITOR EFFECTIVELY

The Startup Command File

When you start your editing session, EDT automatically
searches vyour UFD for a file called EDTINI.EDT. This file, if it
exists, is then read by EDT for commands that would customize the
editing session. If this file does not exist, EDT initializes the
editing session in the standard way.

You create this file, called a startup command file, using an
editor. It contains 1line mode commands that you want to have
executed automatically when EDT is started. Such commands as SET,
DEFINE MACRO, DEFINE KEY and INCLUDE may be used to create your
own editing environment. By using SET MODE CHANGE in the file,
EDT will automatically change to character mode every time you
start the editor. The process of wusing an existing EDT macro
discussed before 1in the section, Defining a Macro, can be done
automatically by putting the DEFINE MACRO and INCLUDE commands in
the startup command file. Then each time you use the editor, the
macro would be available without your having to recreate it.

If you have an EDTINI.EDT file in your UFD and wish to edit a

file without first initializing EDT, use the /NOCOMMAND qualifier

shown below. EDT will start up normally without reading the start
up command file.

EDIT/EDT/NOCOMMAND filespec

271



USING THE EDITOR EFFECTIVELY

CHARACTER MODE FEATURES

Tables 6-5 and 6-6 summarize some of the available
of the character mode.

Additional Keypad Functions

T e " o Biprmse Rt
- i i ; e
S o .
o . i
0

e : i ol o i
o b e -
R R e s

s
= SRR
o

272

. . he) Ndilie ,
= o , S b L
. e ik ChEl " Sy

features

B

o

-
o




USING THE EDITOR EFFECTIVELY

LEARNING ACTIVITIES

1. READ the following in the EDT Editor
Manual :

e Chapter 6, Line Numbers, Text Buffers
and Ranges

- Section on Text Buffers
e Chapter 9, Set and Show Commands
e Chapter 7, Line Editing

~ Sections on Clear, Define Key,
Replace and Substitute Next,
Define Macro

e Chapter 4, The Command Line and
Startup Command Files

2. DO Lab Exercises 1 through 10 for this
module. ~

273



USING THE EDITOR EFFECTIVELY

Other Character Mode Functions

e
i
an 5 ,5!$
s

274



USING THE EDITOR EFFECTIVELY

String Searches in Character Mode

Character mode also has string search capability. This is
done by the following procedure:

1. Position the cursor at one end of a range of lines to be
searched.

2. \User types: (ADVANCE/BOTTOM) or (BACKUP/TOP)to establish

the direction of the search

3. User types: (GOLD)(FINDNEXT/FIND)

4, EDT responds: SEARCH FOR:

5. User types: (THIS IS ENTER/SUBS)

The string is remembered, and additional searches can be done
using the FINDNEXT key:

l. User types: (FINDNEXT/FIND)

Cutting and Pasting Text

Cutting and pasting text in character mode is equivalent to
the copy command in 1line mode. However, because you are in
character mode, you can select a section of text that begins in
the middle of a line, and move it to a location in the middle of
another line. The text you select is stored in the PASTE buffer;
more text can be appended to this buffer wusing the APPEND

function. The following procedure shows how to use the CUT and
PASTE feature:

1. Move the cursor to one end of the portion of text to be
moved.

2. Type (SELECT/RESET)

3. Move the cursor to the other end of the portion of text to
be moved. ‘

4. Type CUT/PASTE) . The text is now saved in the PASTE
buffer.

5. Move the cursor to the desired new location.

6. Type (GOLD) (CUT/PASTE)

275



USING THE EDITOR EFFECTIVELY

Repeating Functions Automatically

Many times, vyou would 1like to delete more than one
consecutive word or character at a time. You can do this by
typing the DEL L or DEL W key an appropriate number of times, but
there is another way that requires fewer key strokes. Suppose you
want to delete the next five words. After ensuring that the
ADVANCE direction 1s set, you type the sequence of keys shown in
the example. Note that the 5 key 1is the one on the standard
keyboard and not the one on the keypad. The 5 on the keypad
already has a special meaning, other than the number 5.

Example:

Keys : 5 DEL WORD

Before Command:

#ELL A MAN THERE ARE 300 BILLION STARS IN THE UNIVERSE
AND HE'LL BELIEVE YOU, TELL HIM A BENCH HAS WET PAINT
ON IT AND HE’LL HAVE TO TOUCH IT TO BE SURE,

UNDER THE MOST RIGOROUSLY CONTROLLED CONDITIONS OF PRESSURE
TEMPERATURE, VOLUME, HUMIDITY, AND OTHER VARIABLES THE
QRGANISM WILL DO AS IT DARN WELL PLEASES,

ANY GIVEN PROGRAM, WHEN RUNNING IS OBSOLETE,

THE ATTENTION SPAN OF A COMPUTER IS ONLY AS
LONG AS ITS ELECTRICAL CORD,

THE DEGREE OF TECHNICAL COMPETENCE IS INVERSELY PROPORTIONAL
TO THE LEVEL OF MANAGEMENT,

A FAILURE WILL NOT-APPEAR TILL A UNIT HAS PASSED
FINAL INSPECTION,

After Command:

‘400 BILLION STARS IN THE UNIVERSE
AND HE’LL BELIEVE YOU,., TELL HIM A BENCH HAS WET PAINT
ON IT AND HE‘LL HAVE TO TOUCH IT TO BE SURE,

UNDER THE MOST RIGOROUSLY CONTROLLED CONDITIONS OF PRESSURE
TEMPERATURE, VOLUME, HUMIDITY, AND OTHER VARIABLES THE
ORGANISM WILL DO AS IT DARN WELL PLEASES,

ANY GIVEN PROGRAM, WHEN RUNNING IS OBSOLETE.

THE ATTENTION SPAN OF A COMPUTER IS ONLY AS
LONG AS ITS ELECTRICAL CORD.

THE DEGREE OF TECHNICAL COMPETENCE IS INVERSELY PROPORTIONAL
TO THE LEVEL OF MANAGEMENT,

A FAILURE WILL NOT APPEAR TILL A UNIT HAS PASSED
FINAL INSPECTION,

TK-7875

276



USING THE EDITOR EFFECTIVELY

Entering Line Mode Commands

In addition to the character mode commands, 1line mode
commands are also available from within character mode. The
following are examples using two line mode commands in character
mode :

e SET NOTRUNCATE

User types: (GOLD) (PAGE/COMMAND )

EDT responds: COMMAND: SET NOTRUNCATE ENTER/SUBS

e SUBSTITUTE

User types: (GoLD) (PAGE/COMMAND)

EDT responds: COMMAND: S/BIGGEST/BIGGER/WH (ENTER

This feature also extends the set of commands available to you in
character mode to include macros that you have developed.

277



USING THE EDITOR EFFECTIVELY

Nokeypad Character Mode

For users whose terminals do not have a keypad, there 1is a
nokeypad editor mode that can be used for character mode editing.
Although it is somewhat less convenient to use, it does offer the
functionality available 1in character mode. In fact, keypad
functions in character mode are actually defined as sequences of
one or more hokeypad commands. Table 6-7 shows examples of the
nokeypad operations that can be performed. The wuser types the
commands on the standard keyboard. The commands appear at the
bottom of the screen, while the results are shown at the
appropriate place in the upper part of the screen.

invoking Nokeypad Mode

To invoke nokeypad mode, the user must issue the SET NOKEYPAD
command in 1line mode, and then using the CHANGE command enter
character mode.

Exiting Nokeypad Mode

To exit nokeypad mode, type EXIT. The editor returns to line
mode. Typing <CTRL/Z>, the usual method for exiting character
mode, does not work for nokeypad mode.

Those who may have to use a terminal without a keypad should
now read Chapter 8, Nokeypad Editing, in the EDT Editor Manual.

Table 6-7 Nokeypad Character Mode Commands




USING THE EDITOR EFFECTIVELY

LEARNING ACTIVITIES

1. READ the following sections in Chapter 5
of the EDT Editor Manual:

e Locating Text

e Movement Throughout the buffer
e Replacing and Substituting Text
e Using Line Editing Commands

e Special Characters, Changing Case and
Filling Lines

2. DO Lab Exercises 11 through 16 for this
module.

279






USING INDIRECT
COMMAND FILES







USING INDIRECT COMMAND FILES

INTRODUCTION

Once you become adept at using the system, vyou will notice
many constant operations that could be automated to save
continuous entering of commands.

RSX-11M/M-PLUS operating systems can execute commands
contained 1in a file. 1In addition, special commands can be added

to control execution flow and make the command process more
flexible.

The greatest benefit of this facility 1is being able to

control <complex processes, to eliminate typos and save the user
from tedious errors.

OBJECTIVES

1. Create an indirect command file that will execute a series
of task commands.

2. Create a simple indirect command file that will execute a
series of DCL commands.

3. Create an indirect command file that asks the user for
input and controls execution flow depending on user input.

4. Invoke an indirect task and CLI command file.

RESOURCES

1. RSX-11M/M-PLUS MCR Operations Manual

283






USING INDIRECT COMMAND FILES

WHAT IS AN INDIRECT COMMAND FILE

During the course of a terminal session, there are many
operations performed repeatedly, for example, file maintenance and
program development. Automating processes can save you a lot of
typing and time.

An indirect command file is a text file that contains a
series of commands (a process) for one or more tasks. The command

file is processed by the task(s) as though the commands came
directly from the terminal.

There are two types of indirect command files: task and CLI
(Command Line Interpreter).

A task indirect command file contains commands that the task
understands. For example, the Peripheral Interchange Program
(PIP) is the utility task DCL uses to implement file maintenance
commands like COPY, DIR and PURGE. (To perform file maintenance
commands when MCR is your current CLI, use PIP directly.) All the
commands in the file must be commands that are understood by PIP.

A CLI indirect command file contains commands that the CLI
understands. For example, if we are using DCL, the file contains
commands such as COPY, DIRECTORY, PURGE, FORTRAN, and LINK. In
addition, a CLI command file may contain special commands that
control the flow of execution, ask the user for input, and perform
tests and other operations. These commands, called directives,
require special processing before being passed on to the operating
system. The Indirect Command Processor is the task responsible
for processing these files.

CREATING SIMPLE CLI COMMAND FILES

Figure 7-1 illustrates the procedure to create an indirect
command file. The following notes are keyed to the figure.

@ Use an editor to create a file with a file type of .CMD.
In the example, the file name is BUILD.CMD. The commands
that you normally issue from the terminal are typed as
input to the file. In the example, the DCL FORTRAN, LINK
and PRINT commands are a typical sequence for building a
task. You issue these commands over and over again during
a terminal session. At the end of the editing session,
you have a file that contains these commands.

285



USING INDIRECT COMMAND FILES

© To have the Indirect Command Processor read the file and
execute the commands in the file, you type an @ followed
by the file name. The default file type is .CMD.

G’ The commands are read from the file and processed just as
though they have been issued from the terminal. The
Indirect Command Processor reads the command. If it does
not contain directives that require interpretation by
Indirect, the <command 1is passed on to the CLI for
processing.

@ This line is the end-of-file indicator that shows that
processing of the file is complete.

> EDIT/EDT BUILD.CMD

*

FORTRAN/LIST MAIN
LINK/MAP MAIN, LB:[1,1] FOROTS/LIB

r

PRINT MAIN.LST,MAIN.MAP

NZ
* EXIT
v
BUILD.CMD
~ Y A
> @BUILD

> FORTRAN/LIST MAIN \———*)

> LINK/MAP MAIN,LB:[1,1] FOROTS/LIB
>PRINT MAIN.LST,MAIN.MAP

>@<EOF>

TK-7876

Figure 7-1 Creating and Invoking a CLI Indirect Command File

286



USING INDIRECT COMMAND FILES

CREATING SIMPLE TASK INDIRECT COMMAND FILES
Figure 7-2 shows how to create and use an indirect command
file for a task. Typing MAC from MCR invokes the MACRO assembler.
The format of the command line is:
MAC taskfile,listfile=sourcefile
Suppose you have four source files to assemble: PROG.MAC,

RTN1.MAC, RTN2.MAC, RTN3.MAC. 1If you want to assemble more than

one source file at a time, you issue the following sequence of
commands :

>MACKRET>
MAC>PROG, PROG=PROG<RET>
MAC>RTN1,RTN1=RTN1<RET>
MAC>RTN2,RTN2=RTN2<RET>
MACD>RTN3, RTN3=RTN3<RET>
MAC> " Z<RET>
>

This is the multiple line input format.

Figure 7-2 shows the process to use if you want to assemble
more than one source file by using an indirect command file. The
first step is to create a file containing the commands for each

source file. Then the indirect command file is specified in the
MAC command line.

287



USING INDIRECT COMMAND FILES

>EDIT/EDT ASSEMBLE.CMD

*1

PROG, PROG = PROG
RTN1, RTN1= RTN1
RTN2, RTN2 = RTN2
RTN3, RTN3 = RTN3

NZ
*EXIT

\__/

ASSEMBLE.CMD
>MAC @ ASSEMBLE
>MAC PROG, PROG = PROG
>MAC RTN1, RTN1= RTN1

>MAC RTN2, RTN2 = RTN2

>MAC RTN3, RTN3= RTN3
> @<EOF>

TK-7877

Figure 7-2 A MCR Task Indirect Command File

(Macro Commands are Put into a File and the File Name
is Passed to MACRO Assembler)

288



USING INDIRECT COMMAND FILES

Benefits of Using an Indirect Command File
Makes the user's job easier by:

e Reducing the amount of typing needed to do frequently
performed tasks

e Allowing the command syntax to be corrected before
execution

® Reducing the possibility of human error for complex,
error-prone procedures

e Allowing for user interaction and program flexibility

e Automating housekeeping tasks

LEARNING ACTIVITIES

1. READ the following sections in Chapter 4
of the RSX-11M/M-PLUS Operations Manual:

e 4.1, Indirect Command Files
e 4.2, Indirect Command Processor

e 4.5, Switches

289



USING INDIRECT COMMAND FILES

INCLUDING DIRECTIVES

Directives

A directive is a special command that is interpreted
indirect

by
command processor. It is distinguished by a period

the
()

as the first character in the command line, and forms a procedural
language that allows you to:

Define labels

Define and assign values to symbols of three
logical, numeric, and string

Create and access data files

Control the logical flow within a command file
Perform logical tests

Enable or disable any of several operating modes
Increment or decrement a numeric symbol

Control time-based and parallel task execution

Use special symbols for obtaining system information

Allow for nesting of command files

Tables 7-1 through 7-7 list the available directives, and
examples of each.

290

types:

give



USING INDIRECT COMMAND FILES

Symbols

A symbol is a string of ASCII characters that serve as a name
for a memory location where a value is stored. The symbol name

consists of a string of 1 to 6 ASCII characters. It must start
with a 1letter (A-Z) or a dollar sign ($). The remaining
characters can be alphanumeric (A-Z,0-9) or a S$. The following
are legal symbol names:

START

SA3

ATOZEE

A symbol can be one of three types, which describes the kind
of value stored in the symbol. Symbols can be

- Logical
- String
- Numeric

A logical symbol is one whose value 1is either true or false
(represented by a 1 or @ respectively). A string symbol is one
that contains ASCII characters. A numeric symbol has a number

stored 1in its memory location. The symbol type is defined when a
value is first assigned to the symbol.

Values Given to Symbols

There are two sets of directives that give a wvalue to a
symbol, .SET and .ASK.

.SETS, .SETN, .SETT, .SETF and .SETL directives give a
literal wvalue to a symbol. For example, the values "2" and
"PURGE" are literal values that can be assigned to a symbol; they

do not vary. The directives .SETO and .SETD redefine the radix of
a numeric symbol.

+ASK, .ASKS and .ASKN directives allow for interaction with
the wuser of the indirect command file. They pose a question to
the terminal, and wait for a response to be typed. These
directives allow a variable value to be assigned to the symbol.
That is, each time the same .ASK directive 1is executed, the
resulting value stored in the symbol varies.

291



yourself with their
following Table 7-7 discuss

familiarize

The sections

how to use some of the more frequently used directives.
to Define Symbol Values

to

tables
Directives

USING INDIRECT COMMAND FILES
1

these

Table 7

through

Tables 7-1 through 7-7 list some of the available directives.
structure and contents.

Read

-

m@m%%mm%@@m@mm@m@m%m@wmmm m@ﬁwmmm |

Yy
-
.

. B ! GEmmeE . ; ,u@m§@@@@@a,m@wm%m@@@m@%mgmmmm,%wmm%m@m 5
-y - , . o .
... B @@@m@m s g@ - .

B i i e
dEnananG L

mmﬁmmmmmw mﬁmw@m
e

-
i
..

. e

- -
.

. o o
e

G

i

. o
- w0
- =

: - e
e

SREsSEYE sy

E e

. = @ . - Lo

. . - e =k
... @ ; . 3 : e E@.@mn@%@wm@%mmmm
. - - - . : . SESESREEERE e i
. - : .
. i ; .

foo G EEReRG
..

...

m,mWw%mm@;z B aﬂmﬂm

b m%@,@w@m@“@i_ s e
e < e - .
- . - ; .
- . i =

.
e

sin s e

iEegr i i

. L o

Al e S

@ E . -
S0 i o =

, , i

putane

k@ﬁ - E %Q Tee e
. e s
o B ; . .
Le mmwwwmm Looonnne

e

o

1Mme o . - . =

Hme = s ; . . e = umm

0 A m%u %ﬁig ; L
e - e M Oh M4 BN

; i s
- . _ . .
. - @

, -
.

o . . .. .
.+ @ ... -
. , . . .
Bemnnsy Tuake: mmm@mmsa immmm@%mmmwuwm@@mm@mm@@mgm@%@@gm@ mmm@m@@@@@mwmmm@mm .

- . 0 Ll
o e e > ,mms G e
- @@m@@mmm@mm mmmmmwm%@mm@wﬁ%mmﬂmwwmmmm@@%@@

s sE e

. i ; - . e
e i S o i e g B
- @@m%mm%r .. - Gned : mmm@m@wmmmmmwmm -
e - - o D i .
... __ _ . -
- - . - - . .
e s g BEau e e @m |
. = - e
o B . =

s

x . san

@m_ﬂ@ﬁ@w@mmf : S

Y . .

- 2 ‘ e

AR E e ﬁm@ SRS e S e a R R R B e - A0 1 001 50 s
... . .mm@@mmmmmm@m@mmmwmm e :
G o - wmamwnmmmmmmwmﬂmmw%%m@%@mm@%m@%m mmmﬁmmmmmm
P rTaracieaT & S e
e - .

e e %ﬂi

e L0 O ed , , . ]

e i e L e ; g
W%@mm%ﬁ@%ﬂ%wﬁwmwmmﬁmmmwwmﬁwﬁwﬁm . e %@%
. k. s i

%3k
. -0 0w .0 0D
: . ... = 5 . o
Epl o BRE  R T @s@m .
= T mm%am ;-

o BReen

. e = - - - . = .
= = ey - - .
- . = o . e 3 i
, . v 5 . sl .=
. e e e e EEEEEU SR ERRRSER Sk e R
ﬁ%ﬁ@%&%@ﬁ@ . @Wmm ...
L e e e
i é@ﬁ%m@mﬂmmw&mss ssMM i O ok o
0 o @m@%m%%mmm
= .

-
5

.
SiErnEnEERs

292



USING INDIRECT COMMAND FILES

Logical Test Directives

Table 7-2 Directives Used to Perform Tests

s

293



USING INDIRECT COMMAND FILES

Table 7-3 Relational Operators

294



USING INDIRECT COMMAND FILES

Logical Control Directives

Table 7-5 Directives Used to Control Command File Execution

s
ik

295



USING INDIRECT COMMAND FILES

More Useful Directives

Table 7-6 Other Directives

296



USING INDIRECT COMMAND FILES

Special Symbols

Table 7-7 Special Symbols to Obtain System
and User Information

s

m%&‘g«m s
L
Ll

s

s
.

5

.

- %@%
kyi«ﬁ% L

A

e T R

LEARNING ACTIVITIES

1. READ the following sections in Chapter 4
of the RSX-11M/M-PLUS Operations Manual:

e 4.4, Symbols

e 4.6, Description of Indirect
Directives

297



USING INDIRECT COMMAND FILES

Establishing Symbols

The following sections will discuss how to use the directives
and symbols. The indirect command files used in the examples have
been provided with the course materials on magnetic media. If you

have

trouble understanding the examples, you may want to execute

the indirect command files at your terminal.

Notes on Example 7-1

The following comments are keyed to the example.

The .SETN directive gives a symbol a value, and
establishes that symbol as a numeric symbol. The symbols
N1, N2 and N3 are numeric symbols; their contents are
interpreted as numbers, not ASCII characters nor Boolean
(True, False) values. N1 contains the wvalue 2(180); N2
contains the wvalue 3(18). N3 contains the value of the
numeric expression N14N2*4, The expression 1is evaluated
from 1left to right with the wvalues of the symbols
substituted. There is no hierarchy of numeric operators.
As shown in item @, the value of N3 is 20. Different
results will occur if the expression is written .SETN N3
N1+ (N2*4). The value of N3 under these circumstances will
be 14,

The .SETS directive gives a symbol a value and establishes
that symbol as a string symbol. A string symbol is one
whose value is a string of ASCII characters. In other
words, the content of the symbol is interpreted as ASCII
character (s), not a number or a true/false value.

In item e', the expression S1+"B"+S2[1:3] has the
following meaning:

Take the value of S1 (which is A), concatenate (append)
that with the ASCII character B, and concatenate that
string with the first three characters contained 1in 82

(CDE) to ©produce a value (ABCDE) and store it in symbol
S3.

This feature of the indirect command processor is very
powerful for the <creation of command lines, parsing of
command lines, and general manipulation of ASCII strings.

298



USING INDIRECT COMMAND FILES

The .SETT and .SETF directives set a symbol value to true
and false respectively, and establish the symbol as a
logical symbol. You use a logical symbol for testing a
condition or situation. For example, if X is set to true,
then print the file EXAMPLE.CMD.

These statements display the values of the symbols on the
terminal. The J.ENABLE SUBSTITUTION directive statement
will be discussed later.

All the commands shown thus far are in a file called
SYMBOLS.CMD. To execute these commands, the file name
preceded by an @ symbol is issued. There is no need to
supply the file type (.CMD), as the Indirect Command
Processor uses .CMD as the default file type.

These statements display the values of the symbols as they
were assigned by the wvarious .SET directives. of
particular interest are the values of N3 and S3, as they
are a result of the evaluation of an expression.

299



"

USING INDIRECT COMMAND FILES

it
ot
ot THIS COMMAND FILE SHOWS HOw TO DECLARE A SYMBOL
o3 AND HOW TO GIVE IT A VALUE, THEREBY ESTABLISHING
ot THE SYMBOL TYPE
% A
P And
o: NOW TO ESTABLISH A NUMERIC SYMBOL
LN 4
o
of
LSETN N1 2. {IF THE DOT IS NOT USED TO INDICATE DECIMAL
© |.seTn N2 3, ITHE NUMBER WILL BE CONSIDERED OCTAL AND
JSETN N3 N1+N2¥4, !OUTPUT WILL RE IN OCTAL
o!
o3
ot NOW TO ESTABLISH A STRING SYMBOL
o
o
JSETS S1 "A"
@ .sETs s2 "CDEF"
.SETS S3 S1+"B"+52(1:3)
o
LN
ot NOW TO ESTABLISH A LOGICAL SYMBOL
.’
o3
© ‘SEI X
+SETF Y
o
*
LENABLE SUBSTITUTION
: Ni = ‘N1’
5 N2 = ‘N2°
° H N3 = ‘N3’
: st = ’S1°
’ §2 = ’'S2°
’ §3 = *'S3°
; x - 'Xl
: Y = *y’
© esvrsoLs
>4 Nt = 2
¥ N2 = 3
>4 N3 = 20
> 81 = A
Ol §2 = CDEF
>4 $3 = ABCDE
¥ X =T
¥4 Y =F
| >e <EOF>

Example 7-1 L.SET Directive ~ Used to Define Symbol Value

300



USING INDIRECT COMMAND FILES

Asking the User for Input

Notes on Example 7-2

The following comments are keyed to the example.

A symbol may also be given a value by asking the user to
supply that wvalue. The .ASKN, .ASKS and .ASK directives
query the user for information, and wait for the user to
type a response. On completion, the symbol contains the
information the user supplies. Like the .SET directives,
the .ASK directives also establish the symbol type as
numeric, string or logical. In the syntax of the
directive, the question you wish to ask immediately
follows the symbol name. The entire command 1line cannot
exceed 132(1@) <characters. This directive, .ASKN, asks
the user to supply a number.

You may also specify a range of values that are acceptable
for wuser input, and a default value if the user wants to
take the default by responding with only a carriage
return.

This example specifies just the default value for input,
with no specification of a range for input.

This example asks for a string of characters to be input.

This example asks for a string of characters of no less
than one character and no more than six characters.

The .ASK directive asks for a true/false value.

301



USING INDIRECT COMMAND FILES

124

A4

H THIS COMMAND FILE DEMONSTRATES HOW TO ASK THE USER

’ FOR INPUT, THEREBY MAKING A COMMAND FILE MQRE FLEXIBLE
: IN IT’S USE.,

’.

-

$ ASK THE USER FOR A NUMERIC INPUT

}

)

+ ASKN SYM DEFINE NUMERIC SYMBOL A

-

+ASKN [2:35:16] NUMSYM DEFINE NUMERIC SYMROL A

-

«ASKN [23:5] NUM GIVE ME A NUMBER

ASK THE USER FOR A STRING INPUT

e % we 3 we

«ASKS NAME PLEASE EMTER YQUR NAME
+ASKS [1:6]) MIDNAM PLEASE ENTER YOUR MIDDLE NAME

e s %o e we we

ASK THE USER FOR A TRUE/FALSE INPUT
(6] «ASK CONT DO YOU WANT TO CONTINUE

«ENABLE SUBSTITUTION
SYM = ‘SyM’

NUMSYM = °*NUMSYM®
NUM = "3UM’

NAME = ‘NAME’

MIDNAM = °*MIDNAM*
CONT = ‘CONT*

- % s “o we e

Example 7-2 .ASK Directive - Used to Define Symbol Value

302



USING INDIRECT COMMAND FILES

Notes on Example 7-3

The following comments are keyed to the example.

This is the execution of command file INPUT.CMD, which
contains the commands shown in Example 7-2, It was run on

a hard-copy terminal to capture the actual activity
produced by its execution.

Comments from the command file were displayed at the
user's terminal to inform the user of the purpose of the
command file.

This 1line is the result of the interpretation and
execution of the first .ASKN directive (item @ in Example
7-2). Indirect prompts with the question supplied in the
.ASKN command 1line, and informs the user that the input
should be an octal number ([O]). In response, the user
types the number 8, which 1s not an octal number.
Indirect performs checks on the input to see if it meets
the specification of the .ASK directive.

Indirect comes back and asks again for proper input. The
user supplies the wvalue 7 which 1is acceptable, and
execution continues to the next command line in the file.

This example shows the results of item (’ in Example 7-2.
Indirect prompts the user:

with a question "DEFINE NUMERIC 'SYMBOL A"

- with the range of values for acceptable input (2 - 35)

- with” the default values (16 (8)) 1if the wuser just
types a carriage return

- that the number should be octal (O)
The user types 36, which is not in range.

Indirect comes back and asks again for the proper input.
The user types 34, which is acceptable.

This is the result of executing the .ASKN directive, item

in Example 7-2. The user response was a carriage
return, so the symbol will contain the default value of 5.

303



USING INDIRECT COMMAND FILES

These two examples show the results of executing items @
and @ of Example 7-2. The first example asks for a
string of characters. The second example asks for a
string of 1 through 6 characters. 1Indirect will check the
supplied string for the correct number of characters.

This is the result of item @) in Example 7-2. The user is
to respond with either a [y] for yes or an [n] for no in

answer to the question. The symbol, CONT, will contain a
1l for true.

These are the symbol names and the values they contained
after executing this command file. 1If we executed the
command file once again, supplying different answers,
those new answers would be reflected here.

304



USING INDIRECT COMMAND FILES

-

>
Q einrur

S5+
St
>3 THIS COMMAND FILE DEMONSTRATES HOW TO ASK THE USER
> FOR INPUT, THEREBY MAKING A CONMAND FILE MORE FLEXIBLE
0’ IN IT’S USE.
>i-
>4
> ASK THE USER FOR A NUMERIC INPUT
>3
>3
O :x DEFINE NUMERIC SYNBOL A [01% 8
AT, 756 -- Invalid answer or terminator
O :x DEFINE NUMERIC SYMEOL A [O3¢ 7
>4
TR
© :x DEFINE NUMERIC SYMBOL A [0 R:2-35 Di161% 36
AT.T56 -- Value not in rande
© >« DEFINE NUMERIC SYMBOL A [0 R:2-35 Di161¢ 34
>3
>3
Q GIVE ME A NUMBER [O D!51%
>4
>3
>3 ASK THE USER FOR A STRING INPUT
>
>3
© :x FLEASE ENTER YOUR NAME [S1: ELIZABETH
>% PLEASE ENTER YOUR MIDDLE NAME [S R31-61% JANNA
>
>3
>
>3 ASK THE USER FOR A TRUE/FALSE INFUT
>3
>3
© x DO YOU WANT TO CONTINUE? L[Y/NI$ Y
>3
>
> SYM = 7
> NUMSYM = 34
0 NUH = 5
> NAME = ELIZABETH
>3 MIDNAM = JANNA
> CONT = T
>@ <EOF>

Example 7-3 Execution of INPUT.CMD Showing User Response

305



USING INDIRECT COMMAND FILES

Making Logical Tests

Notes on Example 7-4

The following comments are keyed to the example.

The .IF directive provides the feature of comparing two
symbols to determine the relationship between them. For
example, is the value of one symbol larger or smaller than
another? Is it equal to the other? It also provides for
taking some action depending upon that relationship. In
this example, if the value of the first symbol is less
than the second symbol, then Indirect will <continue
processing the command with the label 2@0.

This is an example of a label. A label marks a place 1in
the command file where control <can be transferred in
executing the file. A label begins with a period as the
first character, followed by 1 to 6 characters, and
terminates with a colon.

The action taken as a result of comparing two symbols may
be another directive, or an operating system command
stated in either DCL or MCR. 1In this example, if N1 is
less than or equal to ( <= ) N2, the DCL DIRECTORY command
will be passed to the operating system for processing.

The .IF directive in this example controls how many times
to execute a series of commands. If the symbol N is equal
to or greater than the number 3, processing will continue

at the label 2@. Otherwise, processing continues at the
label STEP2.

306



USING INDIRECT COMMAND FILES

This is an example of a logical test at label "2@". Three
questions are asked where the answer to each is either yes
or no. The next statement tests the answer to the first
question. If the answer 1is vyes, the command file
processor continues processing at label "10@0". The next
statement tests the answer to the second question; if it
is false, processing continues at label "15¢". 1If a test
does not meet the <condition specified, processing
continues at the next statement in line.

The next two statements are examples of compound tests.
Using 1logical operators "OR" and "and", you are able to
test for more than one simple condition. For processing
to continue at Label "D" by executing the first statement,
either A or B must be true, and C must be true. By using
parentheses you can change the meaning of an expression.
The expression contained within parentheses 1is evaluated
before other operators are evaluated. The second
statement changes the meaning to: A must be true, or both
B and C must be true for processing to continue at D.

307



USING INDIRECT COMMAND FILES

THIS COMMAND FILE SHOWS HOw TO USE
DIRECTIVES TO MAKE TESTS ON SYMBOLS

e we %o we we

JTESTING CHARACTERS
«ENABLE SUBSTITUTION
«SETN N O
«ASKS X GIVE ME A CHARACTER
«ASKS Y GIVE ME A CHARACTER

o JIF X LT Y ,GOTU 200

© .vext: $TESTING NUMBERS
LASKN N1 GIVE ME A NUMBER
LASKN N2 GIVE ME A NUMBER

(3] LIF N1 <= N2 DIR

LSETS S1 "AAp"
.SETS 52 "AA"
.STEP23
JASKS S3 GIVE ME A CHARACTER
JIF 81 >= S2+453(1:1) LINC N
; N NOW EQUALS °N*
[« ) JIF N >= 3, ,GOTO 20
.GOTO STEP2
:,0GICAL TESTS

$ 202
.ASK A ARE YOU A PROGRAMMER
+ASK B DO YDU WORK FOR A LIVING
e «ASK C ARE YQU RETIRED
JIFT A ,GOTO 100
JIFF B ,GJOTO 150
;COMPOUND TESTS
‘, «IFT A .OR ,IFT B ,AND (IFT C ,GOTO D
«IFT & ,OR (LIFT B ,AND L,IFT C) ,GOTO D
+«GAOTO 20
21002 sA WAS TRUE S0 B WMUST RE TRUE
+EXIT
«150¢ 7B WAS FALSE
+EXIT
<03 s TRIS 1S D
+EXIT

«200¢ s X WAS LESS THAN Y
«GOTO NEXT

Example 7-4 Using the .IF Directive to Test Symbols

308



USING INDIRECT COMMAND FILES

Notes on Example 7-5

The following comments are keyed to the example.

This is the result of item ) in Example 7-4. The user
responds to the first question by typing the letter H.
The symbol X now contains the letter H. In the second
question, the user responds by typing a J. The symbol Y
now contains the letter J. The character test (X less
than Y) is true so control passes to the label 200, which
displays the message at the terminal.

This is the result of item @ in Example 7-4. When the
question prompts the user to enter an octal number, the
user responds with 5. Symbol N1 now contains the value 5.
In response to the second question, the symbol N2 contains
the value 4. As a result, the DIRECTORY command does not

execute Dbecause the test is not met. Nl is not less than
or equal to N2,

This is the result of item @ in Example 7-4. The value
of the symbol N is incremented by 1 each time the value of
S1 is greater than or equal to the -evaluation of the

expression. When N 1is incremented to three, processing
continues at the label 20.

This is the result of item @ in Example 7-4, which
performs a logical test.

»~@LOGICAL

>3

> THIS COMMAND FILE SHOWS HOW TO USE

> DIRECTIVES TO MAKE TESTS ON SYMBOLS

33

}; sTESTING CHARACTERS

>% GIVE ME A CHARACTER [S1: H
© > GIVE ME A CHARACTER [S1! J
>$X WAS LESS THAN Y
>3 TESTING NUMBERS
@ * GIVE ME A NUMBER Loi: s
>% GIVE ME A NUMBER [01% 4
- >% GIVE ME A CHARACTER  [81% S
>4 N NOW EQUALS 1
@) >* OIVE ME A CHARACTER (513 D
>4 N NOW EQUALS 2
3% GIVE ME A CHARACTER  [81! E
> N NOW EQUALS 3
- >X ARE YOU A PROGRAMMER 7 CY/NIS Y
>% DD YOU WORK FOR A LIVING? LY/N1: N
O >x ARE YOU RETIRED ? CY/N1i Y
>34 WAS TRUE SO B HUST BE TRUE
>@ <EOF>
>

r

—

Example 7-5 Execution of LOGICAL.CMD and the Results

of User Input

309



USING INDIRECT COMMAND FILES

Controlling Execution Flow

o}
o
o) THIS COMMAND FILE SHOW HOW TO USE CONTROL
o? DIRECTIVES TO COWNTROL THE EXECUTION OF A
P COMMAND FILE
o
o3
+ASKN SYM #1: DEFINE NUMERIC SYMBOL A
«ASKN([2.835,:46,) NUMSYM #2: DEFINE NUMERIC SYMBOL A
+ASKN[::5,] NUM #3: GIVE ME A NUMBER
+ASKS NAME #4: PLEASE EJTER YDUR NAME
+ASKS([136) MIDNAM #5: PLEASKE ENTER YOUR MIDDLE NAME
«ASKS[1:30) LASTNM #bt PLEASE ENTER YGUR LAST NAME
+ASK CONT #7: DO YOU WANT TO CONTINUE
o IFF CONT LEXIT
JENABLE SUBSTITUTION
+IF NUMSYM LT 17, .GOSUBR STEP2
+IF NUM EQ 5, ,GOTO STEP3
«STEPY
JSYM = *SYM’
$NUMSYM = ‘NUMSYM’
JNUM = NUM’
«STOP
«STEP2:
H
H
H
SHELLD ’*NAME’ °*MIDNAM’ ‘LASTNM'
H
’
sHERE IS HOW YOU RESPONDED TO THE QUESTIONS:
r
+RETURN
+STEP3:

$YOU TOOK THE DEFAULT ON QUESTION #3 SO I WOA'T
7SHOW YOU HOW YOU RESPONDED TO THE OTHER QUESTIONS.
«STOP

Example 7-6 Command File Showing How to Control Execution Flow

310



USING INDIRECT COMMAND FILES

»@CONTROL

>% #1! DEFINE NUMERIC SYMBOL A [01: 3

>% #21 DEFINE NUMERIC SYMBOL A [D R!2.-35. Di16.12¢ 12,
>k #3¢ GIVE ME A NUMBER L[D D:5.1:

>%x #4! FLEASE ENTER YOUR NAME [S1¢ ELIZABETH

>k #5! FLEASE ENTER YOUR MIDINDLE NAME [S R11-631%! JANNA
>k #6¢ FLEASE ENTER YOUR LAST NAME [S Ri11-301: VAN

>k #7¢ D0 YOU WANT TO CONTINUE? LY/N1! Y

>

>3

=4

>iHELLO ELIZABETH JANNA VAN

>3

>3

>$HERE IS5 HOW YOU RESPONDED TO THE QUESTIONS:

>

>3YOU TOOK THE DEFAULT ON QUESTION #3 SO I WON'T
>$SHOW YOU HOW YOU RESPONDED TO THE OTHER QUESTIONS.
>e <EOF>

>

>

;@CONTROL

>% #1! DEFINE NUMERIC SYMBOL A [O031: 55

»%x #2% DEFINE NUMERIC SYMEOL A [D R:2.-35. D:16.,3% 2

>% #3! GIVE ME A NUMBER [D D!S5.]1! 32

>% #4! FLEASE ENTER YOUR NAME [S1! JOHN

>% #5! PLEASE ENTER YOUR MIDDLE NAME [S Ri1-61:! JACOB

>% #6! FPLEASE ENTER YOUR LAST NAME [S5 R:11-301! JINGLEHEIMER
>k #71 DO YOU WANT TO CONTINUET L[Y/NJ! Y

v
-

LR
w ws s es ws es ws s

*HELLO JOHN JACOB JINGLEHEIMER

HERE IS HOW YOU RESFONDED TO THE QUESTIONS?

C NN NN

4
-
/2]
-
x

= 55

>iNUMSYN = 2

>iINUM = 32

>@ <EOF>

>BCONTROL

>¥% #1! DEFINE NUMERIC SYMEBOL A COJ: 72

>% #2! DEFINE NUMERIC SYMBOL A [D R:2.-35. D316.3¢ 26
>% #3% GIVE ME A NUMBER [D D:!S5.13 62

2% $#4% PLEASE ENTER YOUR NAME [S1: PAUL

>k #5! FLEASE ENTER YOUR MIDDLE NAME [S R:1-61¢! H.

>%x #6! PLEASE ENTER YOUR LAST NAME [S R$1-301%! HARVEY
>% $#7¢ [0 YOU WANT TO CONTINUE? LCY/N1:! N

>@ <EOF>

>

~

Example 7-7 Execution of CONTROL.CMD and User Response

311



USING INDIRECT COMMAND FILES

Setting Operating Modes
Notes on Example 7-8
The following comments are keyed to the example.

" Quiet mode suppresses the echoing of operating system
command lines at the terminal. In this example, if the
user answers yes to the question, the .ENABLE QUIET
statement turns quiet mode on. In this case, the SHOW
TASKS ACTIVE command would not echo at the terminal.
However, the results of 1issuing the command would be
displayed. If the user answers no to the question, the
SHOW TASKS ACTIVE command would be echoed, and the results

of issuing the command would be displayed. You use
.ENABLE and .DISABLE to turn the operating modes on and
off.

© Substitution mode allows for the substitution of a
symbol's value for the symbol in the command line. For
example, if the user answers the question, SPECIFY SOURCE
FILE, with NOTES.TXT, the statement TYPE 'FILE' would
become TYPE NOTES.TXT. Two steps must be accomplished for
this mode to work correctly. Substitution mode must be
enabled, and the symbol must be enclosed in single quotes
where the substitution is desired.

© Llowercase mode allows characters read from the terminal in
response to .ASKS directives to be stored in the string
symbol without lower- to uppercase conversion.

" This mode allows an escape character to be an acceptable
response to a .ASK directive.

G’ This mode allows the user to output lines to a secondary
file. Enabling this mode directs Indirect to output the
lines between the .ENABLE DATA and .DISABLE DATA
statements to a secondary file. This is most useful for
dynamically creating another indirect command file, or a
data file for another task.

(’ Global symbol mode provides for symbols whose names begin
with a $ to be recognized in all levels of command files.
Those symbols whose name do not begin with a $ are only

recognized in the level of the command file in which they
are defined.

For more information on the wvarious operating modes, refer to
Chapter 4 of the MCR Operations Manual.

312



USING INDIRECT COMMAND FILES

e
I+
) THIS COMMAND FILE SHOWS HOW THE OPERATING MODES
’ WORK ,
’
;
; LOWER CASE
' DATA
; GLOBAL
; SUBSTITUTION
; ESCAPE
: QUIET
’.
’-
’
© : ouier Mope
:

+ASK QUIET DO YOU WANT COMMAND LINES SUPPRESSED
«IFT QUIET ,ENABLE QUIET

oIFF QUIET ,DISABLE QUIET

SHOW TASKS ACTIVE

© ; sussriTUTION MODE

+ENABLE SUBSTITUTION
«ASKS FILE SPECIFY SOURCE FILE
TYPE *FILE"

s
© ; LowErR-CASE MuvE
;

.DISABLE QUIET
LASK CASE DO YOU WANT LOWER=CASE ENABLED
V1FT CASE .ENABLE LOWERCASE
JIFF CASE ,DISABLE LOWERCASE
JASKS A DEFINE STRING SYMROL A
A’
:
Q ; ESCAPF RECOGNITION MODE

’
$IF YOU WANT A LIST UF OPTIONS, TYPE <ESC>
+ENABLE ESCAPE
+ASKS A ENTER OPTION
+IFT <ESCAPE> ,uUTO LIST
.STFP1:

;
© ; oara MoDE

.OPEN ASSEMBLE,CMD

+ENABLE DATA

LENABLE SUBSTITUTION

MACRO/LIST *’sX’’
«DISABLE DATA

+CLOSE FILE,TXT

;
’ GLOBAL MODE

+ENABLE GLOBAL
«SETS $X "TEST"
RASSEMBLE
«STOP
+LIST: ;OPTIONS ARE: A(ADD), S(SUBTRACT),M (MULTIPLY)
.GNTO STEP!

Example 7-8 Command File Showing Operating Mode Usage

313



USING INDIRECT COMMAND FILES

Notes on Example 7-9

The following comments are keyed to the example.

In this example, the use of quiet mode 1is shown. In
response to the question, the user answers yes. The DCL
command, SHOW TASKS ACTIVE, which executes, does not echo
at the terminal. However, the results of the command do.

In this example, quiet mode is still active. The TYPE
TEST.MAC command does not echo on the terminal. However,
the string "TEST.MAC" replaces 'FILE' in the TYPE command
in item 2 of Example 7-8. This feature allows your
indirect command file to work for wvariable file names
rather than just one file.

In this example, lowercase characters entered in response
to a question remain in lowercase. If this mode was not
enabled, lowercase letters would be converted to uppercase
on input. This could be a problem later when comparing
characters in symbols if the case did not match (i.e.,
uppercase to lowercase).

Escape recognition mode permits the response to an .ASK,
.ASKN, or .ASKS directive to be an escape character. A
question answered this way sets the special logical symobl

<ESCAPE> to true. You can then test this symbol for true
or false.

This example creates an indirect command file that will be
used in the following example. The .OPEN directive opens
a file with the name supplied with the directive. In this
case, the file name is ASSEMBLE.CMD. The lines following
the .ENABLE DATA statement up to the .DISABLE DATA
statement are output to the file ASSEMBLE.CMD. The .CLOSE
statement closes the file. A DIR command issued after
this operation would show a file called ASSEMBLE.CMD in
the user's UFD.

314



USING INDIRECT COMMAND FILES

©@ In this example, ASSEMBLE.CMD is invoked from the indirect
command file. This is a second level of indirection. The
.ENABLE GLOBAL statement allows for the recognition of the
symbol $X from another indirect command file. The second
statement gives a value of the string TEST to the symbol
$X. The next statement invokes the indirect command file
that was created in the previous example. Processing now
continues from the indirect command file ASSEMBLE.CMD.
The symbol $X is recognized in this file, and substitution
takes place. This creates the command line of MACRO/LIST
TEST, which 1is sent to the operating system for
processing. Quiet mode was disabled in example 3 above,
so the command 1line 1is echoed at the terminal. The
results of the assemble are also shown.

»>@OPERATING
>it
>it
g THIS COMMAND FILE SHOWS HOW THE OFERATING MODES
>3 WORK »
>3
g THERE ARE SIX OFERATING MODES!
>3 LOWER CASE
> DATA
> GLOEBAL
b SUBSTITUTION
H ESCAPE
; QUIET
;_
H
H
i

AR EVEVEVEY

QUIET MODE
1
" >% DO YOU WANT COMMAND LINES SUPPRESSED? LY/NJ! Y
MCR .+
SHOTSé
AT.TSé

" >% SPECIFY SOURCE FILE [S]! TEST.MAC
+MACRO EXIT$S ERR
+MCALL LIRS

MOV (PCY+»—-(SF)
+BYTE S1.91
DIRS

+IIF NB <ERR>» CALL ERR
+ENDM EXIT$S
" »>% DO YOU WANT LOWER-CASE ENABLED? [Y/N1: Y
»%k DEFINE STRING SYMEOL A [S1¢! This is Lower Case
+»3This is Lower Case

"

s

ONNON VWV W W Y

ws W W W W e

ESCAFE RECOGNITION MODE

s W wr s @

IF YOU WANT A LIST OF OPTIONS, TYPE <ESC>
¥ ENTER OPTION [51:
sOPTIONS ARE!: ACADD)» S(SUBTRACT)M (MULTIFLY)

DATA MODE

GLOBAL MODE
>3

O :Hacko/LIST TEST
ERRORS DETECTED: 1
TEST»TEST/SP=TEST
>@ <EOF>

Example 7-9 Execution of OPERATING.CMD and User Response
) 315



USING INDIRECT COMMAND FILES

Using Special Symbols

Table 7-7 lists some of the special symbols available for
your use. These symbols provide system information and replies to
queries presented during command file execution. The symbol names
are enclosed 1in brackets and are used in the same manner as
user-defined symbols.

Notes on Example 7-10

The following comments are keyed to the example.

Nine different special symbols are used in this example.
When the file 1is executed, these comment lines will be
displayed at the terminal with the values of the special
symbols substituted.

In this example, the user is asked to input a string of
characters. The special symbols are tested and, if found
true, the command following the statement is executed.

If the wuser types an <ESC> (escape character), the
indirect command file will exit. If all alphanumeric
characters are typed, Indirect will display the message at
the terminal that all characters typed were alphanumeric.
If all characters were Radix-50, another message 1is
displayed. In the .SETN statement, the number of
characters in the input string is saved in the symbol
<STRLEN> and then output with a message.

316



e % “e we

USING INDIRECT COMMAND FILES

THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

+ENABLE SUBSTITUTION

e %e N4 e We Ve W %o 8 we

THE USER OF THIS COMMAND FILE IS ‘<UIC>’ AND HE

IS RUNNING ON AN RSX SYSTEM WITH °<MEMSIZ>’ K OF CORE,
HIS DEVICE IS ‘<SYDISK>*’<SYUNIT>’, HE IS PRESENTLY
USING ‘<CLI>" AS HIS CURRENT COMMAND LANGUAGE
INTERPRETER, THE DATE IS ‘<DATE>’ AND THE TIME THIS
COMMAND FILE IS RUNNING IS ‘<TIME>’, THE LIBRARY

FOR THIS SYSTEM IS IN ‘<LIBUIC>’ AND THE SYSTEM UIC IS
‘<SYSUIC>’,

+ASKS USER GIVE MFE A STRING
+IFT <ESCAPE> ,EXIT

" «IFT <ALPHAN> ;YOU TYPED ALL ALPHA/NUMERIC CHARACTERS
+IFT <RADS0> ;YJU TYPED ALL RAD50 CHARACTERS

«SETN STRLEN <STRLEN>
«SETD STRLEN

$YOU JUST TYPED ‘STRLEN’ CHARACTERS

?

Example 7-~10

Command File Showing Special Symbol Usage

317



USING INDIRECT COMMAND FILES

Notes on Example 7-11

The indirect command file, SPECIAL.CMD, is executed three
times in this example. Each time, Indirect substitutes
the system information for the special symbols. For
example, the special symbol <UIC> represents the UIC in
which the indirect command file is processing. The value
of this symbol 1in this example contains the character
string [305,303]. Indirect substitutes this value in the
comment line Dbefore displaying the line at the terminal.
You may want to try running this example on your system to
see how it works and how the information changes.

318



USING INDIRECT COMMAND FILES

SFPECIAL

THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

THE USER OF THIS COMMAND FILE IS [305,303] AND HE

IS RUNNING ON AN RSX SYSTEM WITH 512 K OF CORE.

HIS DEVICE IS DBO. HE IS FRESENTLY

USING DCL AS HIS CURRENT COMMAND LANGUAGE
INTERFRETER. THE DATE IS 22-SEF-81 AND THE TIME THIS
COMMAND FILE IS RUNNING IS 14109:07., THE LIBRARY

FOR THIS SYSTEM IS IN [1,54] AND THE SYSTEM UIC IS
£4,541.

FWMNV NNV VY VY Y VIV OV VYWY
s s s s wh W Wb wr ws e W we s es )

%X GIVE ME A STRING [S1! THISISASTRING
»>3YOU TYPED ALL ALPHA/NUMERIC CHARACTERS
>3YOU TYPED ALL RADS0 CHARACTERS

»

w

: YOU JUST TYPED' 13 CHARACTERS
<EOQF>
SPECIAL

THIS COMMAND FILE SHOWS HOW TO USE THE SPECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

THE USER OF THIS COMMAND FILE IS [305,303] AND HE

IS RUNNING ON AN RSX SYSTEM WITH S12 K OF CORE.

HIS DEVICE IS DEO. HE IS FRESENTLY

USING DCL AS HIS CURRENT COMMAND LANGUAGE
INTERFRETER., THE DATE 18 22-SEF-81 AND THE TIME THIS
COMMAND FILE IS RUNNING IS 14:09:39. THE LIBRARY

FOR THIS SYSTEM IS IN [1,54] AND THE SYSTEM UIC IS
C4,5417.

GIVE ME A STRING [S51! THIS IS A STRING

SN N R RS N N W W N W N NS N S N

"

YOU JUST TYPED 16 CHARACTERS

S

<EOF >
SPECIAL

THIS COMMAND FILE SHOWS HOW TO USE THE SFECIAL
SYMBOLS THAT ARE AVAILABLE TO THE USER

PRV

9

w0
v

R IR
Wt NSy

» THE USER OF THIS COMMAND FILE IS [305,303] AND' HE
> IS RUNNING ON AN RSX SYSTEM WITH 512 K OF CORE.

> HIS DEVICE IS DBO. HE IS FRESENTLY

> USING DCL AS HIS CURRENT COMMAND LANGUAGE

> INTERPRETER, THE DATE IS 22-SEP-81 AND THE TIME THIS
> COMMAND FILE IS RUNNING IS 14:09:54., THE LIBRARY
> FOR THIS SYSTEM IS IN [1,54] AND THE SYSTEM UIC IS
> £4,541,

*%X GIVE ME A STRING [S81! TH6SIS32ASSTRING

>3YOU TYPED ALL ALFHA/NUMERIC CHARACTERS

>3YOU TYPED ALL RADSO CHARACTERS

>

w

YOU JUST TYPED 16 CHARACTERS

fD wr W Wb wr wr JE WS e er wr e W wh W W wr s s s ws (D] M@ Ws wr s JE W We s wr s WS W wh s W W ws wr wr (3} (R} we ws e

<EOF>

NN N

Example 7-11 Execution of SPECIAL.CMD
319



USING INDIRECT COMMAND FILES

Examples 7-12 and 7-13 show how to use the commands you have
learned to automate processes that vyou perform every day. In
Example 7-12, the first command file will change your current CLI
to either MCR or DCL, depending on which CLI is presently active
at your own terminal. The second example will print the time of
day, and the third will send a message file to a terminal.

Example 7-13 is a file maintenance task that vyou perform
every day. It will edit a file, print a copy of the edited files,
and then clean up your work area by puring unnecessary copies of

the file when you are finished. You may want to try these at your
terminal to see the results.

o)

of THIS COMMAND FILE WILL CHANGE THE CURRENT
o3 CLI TO EITHER DCL OR MCR DEPENDING UPON WHICH IS
o CURRENT,

.
e

o}
+ENABLE QUIET
JIF <CLI> EQ "DCL" ,GOTO 10
SET /DCL=TI:
JEXIT
103 SET TERMINAL MCR

«ENABLE SUBSTITUTION
+SETS t <time>
$THIS IS THE CORRECT TIME: ‘T’

THIS FILE WILL SEND A MESSAGE FILE
TO A SPECIFIED TERMINAL

. o @
. v we

+ENABLE SUBSTITUTION
+ASKS FI TERMINAL NUMBER
<ENABLE QUIET
PIP TT’FI’¢=TEXT.TXT

H

Example 7-12 An Indirect Command File to Send Message to Terminal,
and Change Current CLI

320



USING INDIRECT COMMAND FILES

This command file supports file editing and

] management, allowing user to edit, purge,
o? print, and run files,
+ENABLE LOWERCASE !We want lowercase
«ENABLE SUBSTITUTION tand symbol substitution
o7
o) Some definitions:
+SETF IND
o’ Get file type

«108 «ASKS TYPE FILE TYPE EXTENSION (E.G., "CMD")
+TEST TYPE iNull type?
+IF <STRLEN> FQ O «GOTO ERR1 !Then error

o3 Get file name
<1582 +ASKS NAME NAME FILE YOU WISH TO EDIT ( NO TYPE)

o? Make complete filespec by concatenating name and type
+«SETS FILE NAME+" ,"+TYPE
o Valid name?
+TEST NAME
«IF <STRLEN> EQ O .G0TO ERR2 {If no, report error
o Edit fille
«208: EDT ‘FILE’
o! After EDT exit, ask if another edit is desired

o ASK REPEAT DO YOU WANT TO EDIT THE SAME FILE AGAIN
«IFT REPEAT L,GOTO 208

] If filetyve was ,CMD (indirect command file)

o? see if user wants to execute file
+IF TYPE EQ "emd" ,ASK IND DO YOU WANT TO RUN *FILE’
.IF TYPE EQ "CMD" ,ASK IND DO YOU WANT TO RUN °FILE’
JIFT IND Q’FILE® !If yes, run it

! to RUNOFF and print ,MEM file on LP:

o See {f user wants to print file

«ASK PRINT DO YOU WANT TO PRINT THE FILE
JIFT PRINT PRINT *FILE* !If ves, orint it

o3 See 1f user wants to purge previous versions of file
23082 +ASK PURGE DO YOU WANT TO PURGE ‘FILE’

! If yes, send to PIP
JIFT PURGE PIP ‘FILE’/PU/LD
o? See 1f user wants to edit another file
+ASK OTHER DD YOU WANT TO EDIT ANOTHER FILE
JIFT OTHER .GOTO 108 11£f so, loop
+GOTO 100
H
H ERROR PROCESSING
H
+«ERR1:
H
H FILE TYPE ERROR = PLEASE ENTER THE FILE TYPE (EXTENSION
H OF THE FILE YOU WISH TO EDIT)
«GOTO 108
«ERR2:
3 .
H FILE NAME ERROR = PLEASE ENTER THE FILE YOU wWISH TO EDIT
H
«GOTO 158
+100¢

Example 7-13 An Indirect Command File to Edit, Print
and Purge Files

321






CONTROLLING
TASK EXECUTION







CONTROLLING TASK EXECUTION

INTRODUCTION

You have seen how the operating system manages resources and
controls memory sharing and CPU time. 1In this module you will
learn how to set up and/or change various task parameters that
affect how the task competes for memory and CPU time.

OBJECTIVES

1. Know when and how to change task parameters, such as
priority, that affect task execution.

2. Use the RUN command for immediate and time-based
scheduling of a task.

3. Install a task as an MCR spawnable task, and how to invoke
such a task using an MCR command.

RESOURCES

l. Introduction to RSX-11M/M-PLUS Systems

2. RSX-11M/M-PLUS Command Language Manual

3. RSX-11M/M-PLUS MCR Operations Manual

4. RSX-11M/M-PLUS Task Builder Manual

325






CONTROLLING TASK EXECUTION

HOW RSX MANAGES TASKS
Priority and Scheduling

In module 1, Overview, a discussion on how RSX-11M/M-PLUS
manages tasks 1indicates that a task's priority and its state
govern when it will get CPU control. The highest-priority,
ready-to-run task 1is given control of the CPU. Once a task
controls the CPU, it continues to execute until it completes,
becomes blocked, or a task of higher priority is ready-to-run.
The current task 1is the task that holds CPU control. The
scheduler changes the current task to the higher priority task
through the occurrence of a significant event. When a significant
event occurs, the scheduler looks at the Active Task List (ATL) to
select the current task. Only those tasks in the ATL are
considered for CPU scheduling.

In Figure 8-1, the arrows weaving through the System Task
Directory point to the tasks that are active and competing for
resources. TASKB, TASKD, TASKE, TASKG, TASKI, and TASKJ are the
active tasks. The scheduler, in searching this list, will select
TASKE as the current task. It is the highest-priority,
ready-to-run task. If TASKE completes and no other task state
changes occur in the list, TASKJ will then be the next task
selected as the current task. Resource scheduling only occurs at
the time of a significant event. If you need to, refer to Table

1-3 to refresh your memory on what events constitute significant
events.

Figure 8-2 illustrates the various task states.

327



CONTROLLING TASK EXECUTION

SYSTEM TASK DIRECTORY (ALL INSTALLED TASKS)

TASK A
PRI = 248,

ACTIVE TASK LIST — t1askB

PRI = 240.

BLOCKED

TASK C

PRI = 232.

—»} TASKD

PRI = 182.

BLOCKED

—»] *TASKE

PRI = 150.

UNBLOCKED

TASK F

PRI = 120.

L o] TASKG
PRI = 75.

BLOCKED

TASK H
PRI = 50,

—»1 TASKI
PRI = 50.

BLOCKED

—»] TASKJ
PRI = 50.

UNBLOCKED

* CURRENT TASK
(NOW EXECUTING IN
THE CPU).

TK-7504

Figure 8-1 Highest Priority Ready-To-Run Task Gains
CPU Control

328



CONTROLLING TASK EXECUTION

Task States

The following is a review of task states and their meaning:

1 UNKNOWN

A task for which there is no STD entry

2 KNOWN

A task for which there is a STD entry

3 DORMANT

A task for which there is a STD entry
but no ATL entry (no request to run)

4 ACTIVE

A task for which there is a STD and an
ATL entry (a request to run has been made)

5 READY~- - An active task not waiting for any
TO-RUN event

6 BLOCKED - An active task waiting for an event

7 CURRENT - An active task with current CPU control

329



peE

UNKNOWN KNOWN
DORMANT ACTIVE
EXECUTIVE
UNKNOWN INSTALL IN RUN GRANTS CPU
TO SYSTEM TASK RUNNABLE CURRENT
SYSTEM  J<—EMOVE  \P!RECTORY EXIT EXECUTIVE
OR GRANTS CPU
ABORT TO OTHER TASK
TASK WAITS
FOR EXTERNAL
EVENT
REQUIRED
EXTERNAL
EVENT OCCURS
BLOCKED
TK-7496
Figure 8-2 Task States

(Every Task is Allocated CPU, and Memory-Dependent Upon its State)

NOILNDAXH MSVI OSONITIOHILNOD



CONTROLLING TASK EXECUTION

Memory Allocation

Before an active task can gain control of the CPU, it must be
memory-resident. Memory allocation occurs on a
partition-by-partition basis. A task's state, priority, and the
partition in which the task was built to run are all considered
when a task memory allocation request is made. The task loads
into the partition if there is room for it, and no higher-priority
task is competing for the same spot. If there is no room in the
partition, the task must wait until the operating system can

provide memory space. The task cannot be 1loaded 1into another
partition.

The operating system checks to see if it can provide memory
space for the task by searching the partition for a memory-
resident task of lower-priority that is checkpointable. If found,
that task will be checkpointed to allow loading of the higher-
priority task. The memory allocator checkpoints as many tasks as
necessary to load the higher-priority task. However, all
checkpointed tasks will be of 1lower-priority, and have the
checkpoint characteristic built into the task.

LEARNING ACTIVITY

1. DO Written Exercises 1 through 3 for this
module.

331



CONTROLLING TASK EXECUTION

- USING TASK BUILDER FACILITIES
The Task Builder defaults assume typical wusage and storage
requirements. You <can override these defaults by using switches

and options, thus tailoring a task for its own input/output and
storage requirements.

Some attributes that can be altered:
e Task Name
e Priority
e Partition
e Logical Units
e Checkpointability

Others can be found in the RSX-11M/M-PLUS Task Builder Manual.

Assigning a Task Name

Task names by default are the first six characters of the
task image file name. Sometimes, this naming convention is not
suitable. 1If so, the name can be specified at task-build time by
using the /OPTIONS qualifier on the LINK command, as shown in the
example below. The Task Builder will prompt with Option?. The
user then supplies the TASK option with a 1 to 6 character name.
The Task Builder will than prompt again with Options?. More
options can be entered if needed. Complete the process by typing
a carriage return in response to the prompt. The Task Builder
will then process the command data to create a task image file.

>LINK/OPTIONS PROG

Option?TASK=QRST
Option?<CR> .

332



CONTROLLING TASK EXECUTION

Setting Task Priority

The priority of a task 1is also established at task-build
time. If not overridden at install time, the task-build priority
becomes the default priority at which the task will run. If a
task is run on a multiuser protection system, it will not run at a
priority greater than the system default priority (50), unless it
is installed or run from a privileged terminal.

The priority is a decimal integer in the range of 1-258. The
default priority is 5¢. If a real-time task is being created, its
priority should be in the range of 150-250. To specify the
priority when building your task, use the following commands:

>LINK/OPTIONS PROG
Option?PRI=150
Option?<CR>

Indicating a Partition

A third consideration when building your task 1is the
partition in which the task is to run. Partition selection is
dependent upon the task's function. If it is a real-time task,
you will ©probably build the task to run 1in its own special
partition so that it does not compete with general tasks for a
position 1in memory. If the task is for general use, you will
probably build it to run in the general partition called GEN. GEN
is the default partition used if you do not specify a partition.
The partition in which a task runs can be overridden when the task
is installed, without having to rebuild the task. The following
example shows how to specify a different partition when building
your task.

LINK/OPTIONS TEST

Option?PAR=DRVPAR
Option?<CR>

333



CONTROLLING TASK EXECUTION

Making a Task Checkpointable

Generally, tasks are built checkpointable. This means the
task can be swapped out of memory and stored on disk to make room
for a higher-priority task. When the system checkpoints a task,
it places the task's memory image out on disk. There is a file on
each disk volume called CORIMG.SYS. The system uses this file to
temporarily store checkpointed task images. When space becomes
available again, the system reads the task 1image from the
checkpoint file and writes it back into memory. The task is again
competing for CPU time.

In addition, space can be allocated within the task image
file to store the memory image of a checkpointed task. This
guarantees available checkpoint space even when the system
checkpoint file is full. The following command examples show how
to build a task to be checkpointable. The default 1is not
checkpointable.

LINK/CHECKPOINT:SYSTEM VIPPROG
LINK/CHECKPOINT:TASK VIPPROG

In the first example, the task is built to be checkpointed to
the system checkpoint file.

In the second example, the task is built with space reserved
within the task image file for checkpointing space. The size of
the task 1image file created with this qualifier will be

approximately twice the size of the task image created with the
/CHECKPOINT:SYSTEM qualifier.

In both cases, the tasks, 1if checkpointed, will first be
written to the System Checkpoint File.

334



CONTROLLING TASK EXECUTION

Assigning Logical Units

Example 8-1 shows the process of associating logical wunits
with the actual physical device that 1is to be used for
input/output. A source program uses logical units for reading and
writing to devices (I/0O). They are called logical units because
at this point in the program development process, the physical
device to which the input/output will be done is not known. It
may be known that a certain type of disk drive is to be used, but
the specific wunit probably 1is not. Furthermore, you would not
want to "hardwire" the real device name into the program. It is
advantageous to delay association with the real physical device as
long as possible.

In item @ in Example 8-1, in the statement WRITE (1,10)
VAR1, "1" is the 1logical unit number. There are three logical
units shown in this short program fragment. Two of them are
output devices (WRITE statements) and one is an input device (READ
statement). This program will read from one file and write to two
devices. At this point, you do not know what devices will be used
for the files.

When the task is linked using the /OPTIONS qualifier, vyou
must further inform the Task Builder about the devices. First,
you must tell how many I/0 units the program has (item G’ in the
example). The Task Builder will assign six units by default if
you do not specify a number. In the case of FORTRAN programs, the
Task Builder allocates seven units.

Next, you must give the Task Builder the physical, logical or
pseudo device assignments for the logical units. This is shown in
items G’, ", and G’of the example. The ASG keyword accepts
assignments with the following syntax: Physical device:Logical
unit. In this example, the logical unit number 1 1is associated
with the pseudo device SY: (the user's default device). Every
time this program writes to logical unit 1, output will appear on
the wuser's default device (item@). The program will read from
logical device LZ:, which correlates to logical unit 2. As this
is a 1logical device, the connection to a physical device has not
been completed. After task-building, another step 1is required
before this program can be successfully run. The logical device

LZ: must be assigned to a physical device wusing the ASSIGN
command.

Logical unit 3 has been associated with the physical device

MM@:, the first magnetic tape unit on the system. Every time the
program does a write to logical unit 3, output goes to MM@:.

335



CONTROLLING TASK EXECUTION

After the task has been built, and before it <can be run
properly, the association between 1logical device LZ: and some
physical device must be accomplished. This is done with the DCL

ASSIGN command, as shown in item @ of the example. Only then can
the program be run.

By delaying 1logical wunit assignments until just before
running the program, Yyou provide the program with device
independence. This is especially useful when a device 1is not
working, or is busy. For example, suppose the magnetic tape unit
is being used by someone else, and you wish to run this program,
which was built to use the magnetic tape unit. You might either
wait until the tape unit becomes free (which could be a 1long
time), or rewrite and rebuild your program to write to another
magnetic tape unit. These two solutions are time-consuming and

tedious. By using the procedure in Example 8-1, you save time and
frustration.

When you build your task you may specify up to 250 units.

336



CONTROLLING TASK EXECUTION

PROG.SRC

WRITE (1,10) VAR1
READ (2,15) VAR2

WRITE (3,25) VARS3

>LINK/OPTIONS PROG

OPTIONS? UNITS=3@
OPTIONS? ASG=SY:1,LZ:2,MM@:3
OPTIONS? <RET>@ © (5 )

>ASSIGN DK: Lz: @
>RUN PROG

Example 8-1 Associating Logical Units with Physical Devices

Notes on Example 8-1

The following comments are keyed to the example.

Logical unit numbers represent a device for I/O
Telling the Task Builder there are 3 input/output units

Assigning logical unit 1 to user's default disk (pseudo
device)

Assigning logical unit 2 to the logical device LZ:

Assigning logical unit 3 to a physical device (the first
magnetic tape unit)

Before running the task, the association between the
logical device LZ: and some physical device must be made
for the program to execute correctly.

The association between SY: and the user's default

physical device was made when the user logged on, or
through the DCL ASSIGN command.

337



CONTROLLING TASK EXECUTION

Table 8-1 shows
attributes. For

how to override some of these task
to run it at a

instance, it is not necessary to rebuild a task

different priority. Nor is 1t necessary to
reinstall a task to have it run at a different priority.

Table 8-1 Overriding Task Attributes

o
‘.

s
e
i
;

o
oy

5

Characteristics of a task can be changed without rebuilding the
task.

338



CONTROLLING TASK EXECUTION

Table 8-2 shows the MCR commands that are the equivalent of
the DCL commands used earlier. By typing TKB<KRET>, you are
invoking the multiple input line format of the Task Builder. You
must use this form to enter options. (Input files can also be
typed on multiple lines.) When you type (/), TKB prompts with
ENTER OPTIONS. Typing (//) terminates option mode and the Task
Builder creates the task image file.

Table 8-2 MCR Commands to Invoke the Task Builder to
Override Task Builder Defaults

There are many more task characteristics that can be
specified at task-build time. The few mentioned here are the most
frequently used. For further information regarding the use of the
Task Builder and the options and switches available, refer to the
RSX-11M/M-PLUS Task Builder Manual.

339



1.

CONTROLLING TASK EXECUTION

LEARNING ACTIVITIES

READ the following in the RSX-11M/M-PLUS
Task Builder Manual:

e Chapter 1, Introduction and Command
Specification

e Chapter 16, Switches
- Section 1¢.1, Switches

- Section 1¢.1.6,
/CP--Checkpointable

e Chapter 11, Options

- Section 11.1.4, ASG--Device
Assignment

- Section 11.1.9, PAR--Partition
- Section 11.1.20, PRI--Priority
- Section 11.1.27, TASK--Task Name

- Section 11.1.30, UNITS--Logical
Unit Usage

READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

e Chapter 6, Linking the Task

DO Written Exercises 4 through 13 for
this module.

349



CONTROLLING TASK EXECUTION

INSTALLING A TASK

Installing a task in the System Task Directory (STD) is done
by issuing the INSTALL command. It makes the task known to the
system and records the task name, priority, partition and disk
address of the task image file in the STD. Before any task can be
run, it must be installed. Installing a task does not cause it to
execute, but does cause the task's state to be KNOWN and DORMANT.
A privileged user can install a task. Because memory is required
for each task entered into the STD, the number of installed tasks
should be minimized.

To remove a task from the STD, use the REMOVE command, which
is privileged.

In Example 8-2, a task image file called PROGRAM.TSK is used
to show how to install a task, run it and then remove it from the
STD. This task accepts one line of input from the terminal. It
then changes the input line from uppercase characters to lower-
case. The new line 1s then output to the terminal.

© . INSTALL/FRIORITY:!?S FROGRAM.TSK
*SHOW TASKS!FROGRA/INSTALLED
FROGRA 01 GEN 75, 00001700 DRO:-01321644

;INSTQLL/TASK_NAHEZJIM FROGRAM, TEK

»GHOW TASKS!JIM/INSTALLED
JIM 01 GEN 50, 00001700 DIROI-01321644

=INSTALL/TASK._NAME! ... JIM FROGRAM.TSK

*GHOW TASKS! JIM/INSTALLED

JIM 01 GEN 50, 00001700 DIIRO!-01321644
»SHOW TASKS! ., o HIM/INSTALLLNLANEDNANNN

TAS -- Task not in sustem

>GHOW TASKS!.,, . JIM/INSTALLED

veeJIM O1 GEN 50, 00001700 IRO!I-01321644
»RUN JIM

ABCDEFGHIJKL

abcdefshiJkl

= JIM

ABCDEFGHI JKL

abedefdghidkl

»RUN FROGRA

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR FARTY.
row is the time for 21l Hood men to come to the 2id of their rartu,

“REMOVE JIM
“REMOVE ... JIH
“REHOVE FROGRA

&

Example 8-2 Samples of Installing a Task
341



CONTROLLING TASK EXECUTION

Notes on Example 8-2

The following comments are keyed to the example.

The task image from the file named PROGRAM.TSK is
installed with a priority of 75. The task name, by
default, the first six characters of the task image file
name. The SHOW TASKS command shows that the task will be
loaded into partition GEN, has a priority of 75, and the
disk address of the image file is DR@:-01321644. To run
the program, use the name PROGRA.

The same task is installed again, with a task name of JIM.
The priority defaults to the priority with which the task
was built. To run the program, use the name JIM.

In this case, the task is installed with the name ...JIM.
This makes the task MCR spawnable. An MCR spawnable task
is one that can be run by issuing 3just the last three
characters of the task name. The RUN command is not used
to invoke the task, as you will see in a later example.

Notice that SHOW TASK shows a task name of ...JIM. At
this point in time, there are three entries in the STD,
all pointing to the same task image file. We can run the
task in three different ways.

To run an installed task that has not been installed as
MCR spawnable, you must wuse the RUN command. In this
example, type RUN JIM. The task waits for you to enter
the string of <characters. After a carriage return, the
task converts the string to lowercase and outputs it to
the terminal. The job is complete. Whenever you want to
run the task again, you must say RUN JIM. There is no
need to reinstall the task.

This is an example of invoking an MCR spawnable task. You
do not have to use the RUN command. MCR utilities are
invoked in this manner. For example, PIP, the Peripheral

Interchange Program, 1is invoked by typing PIP. 1Its task
name is ...PIP.

This shows how to invoke the task that was installed 1in

note 1 above, wusing the first six letters of the task
name.
This shows how to remove the entries from the STD. After

their removal, the task's states return to UNKNOWN.
Trying to run a removed task would result in the error
message:

$##4#INS--file not found.

342



CONTROLLING TASK EXECUTION

RUNNING A TASK
Tasks can be scheduled to run:
- Immediately
- At a specific time of day
- At some time interval from now

- Repeatedly, at a time interval synchronized on the next
hour, minute, second or tick. (A "tick" is one pulse from
the system clock. Usually, the system clock is
synchronized with the ac line frequency.)

Running Tasks Immediately

Use the following format to run Uninstalled tasks
immediately:

RUN filename
RUN S$filename

All tasks must be installed to run on the system. Therefore, this
form of the RUN command does an automatic Install-Run-Remove.
Note that the command requires a file name, not a task name. The
$ in the second example above is a short form representation for
the System UFD (M systems) or the System and Library UICs (M-PLUS
systems). The system will run the task located in the system UFD
rather than one located in the user's default UFD.

Installed Tasks

Installed tasks can be invoked in two ways. If they are MCR
spawnable tasks, 1invoke them by issuing the three character name
derived from the last three characters of the task name. For
instance, under MCR, the Compare program that compares two ASCII
files is invoked by typing CMP. 1Its task name is ...CMP.

343



CONTROLLING TASK EXECUTION

All other installed tasks are invoked wusing the folléwing
format:

RUN taskname
RUN Staskname

Note that the command requires a task name. The $, once again,

means to look on the System UIC (and the library UIC on M-PLUS
systems) for the task image file.

Tasks Scheduled to Run Later

Suppose you wish to run a task during nonprime time hours
when you are not at work. You can do that using the RUN command,
provided that the task is installed and you are a privileged user.

When you schedule a task to run at a later time, an entry is
made in the system clock queue. The clock queue is a list of
tasks that are waiting for time to expire before they are to run.
This queue is checked frequently for tasks whose time has expired
and are, therefore, to be activated.

To observe what jobs are in the queue, the SHOW CLOCK_ QUEUE
command will give information regarding the task. To remove a
task from this queue, you must issue the CANCEL command.

In the following examples, the commands show how to run a

task at a specific time, a delayed time or on an interval time
basis.

>RUN/SCHEDULE:11:30:0@ BATCHRUN
>RUN/DELAY:10S VIPROG
>RUN/INTERVAL:1@0M EXERCISER

In the first example, an entry is made in the clock queue to
run the task BATCHRUN at 11:3¢. This is an example of running a
task at a specific time of day.

In the second example, the command specifies that VIPPROG
should be run ten seconds from the time you issue the RUN command.

In the third example, the command specifies that the task
EXERCISER should run every ten minutes.

344



1.

2.

CONTROLLING TASK EXECUTION

LEARNING ACTIVITIES

READ the following sections in the
RSX-11M/M-PLUS Command Language Manual.

e Chapter 7, Running Tasks

- Section 7.1, Task Installation
and Execution

- Section 7.2, Introduction to the
RUN command

- Section 7.3, ABORT

- Section 7.5, CANCEL
~ Section 7.8, INSTALL
- Section 7.9, REMOVE

- Section 7.12.3, SHOW TASKS

Section 7.12.5, SHOW CLOCK QUEUE

DO Written Exercises 14 through 22 for
this module.

345






LIBRARIES







LIBRARIES

INTRODUCTION

In this module you will learn how to create, maintain and use
libraries.

A library file is a direct access file containing a number of
modules, wusually of the same type. Users can collect often used

subroutines and macro definitions for ease of wuse and faster
access during program development.

OBJECTIVES

To use libraries effectively, a user must be able to:

l. Create libraries
2. Maintain libraries
3. Use libraries during program development

4. Use libraries to collect files together

RESOURCES

1. RSX-11M/M-PLUS Command Language Manual

2. RSX-11M Utilities Manual

349






LIBRARIES

LIBRARIES

Libraries are specially formatted files that contain a
collection of associated files. For example, Object libraries
contain object modules for program code that has been processed
with a language translator. The object code could be for routines
that are commonly used like a READ or WRITE RECORD routine. These
object modules are grouped together into one file for the
convenience of the user. You save program development time by
using code that has already been developed and debugged.

These files are maintained by a task <called the Librarian.
As the files are specially formatted for quick access and space
saving, they cannot be displayed by using the DCL TYPE command.
You must use the Librarian task to display the contents of a
library file. There are three types of libraries:

- Macro Source libraries
- Object libraries

- Universal libraries

Macro Source libraries contain macro definitions written in
the MACRO-11 language. They are source statements. You use these
libraries as input files when assembling them as MACRO-11 source
files.

Object libraries. contain object modules. Object modules are
the output from a language translator (like FORTRAN, COBOL,
MACRO-11 Assembler). Before being placed in the library, the code

has been used 1in a program and debugged. Object libraries are
used at task-build time.

Universal libraries are general-use libraries. They may
contain text files, indirect command files or whatever you wish to
place in them. They can be used merely as a repository for files,
or as in the case of indirect command files, as a central file for
frequently used command files.

There are many DIGITAL-supplied System libraries available,
and the user may create his own special libraries.

Benefits of Using Libraries

The greatest benefit of libraries comes from sharing code
that has already been developed and debugged. Development costs
are reduced when a programmer uses existing code.

351



LIBRARIES

Second, the MACRO-11 Assembler and the Task Builder
automatically search the System library. After processing all the
input files, both tasks search a System library for any unresolved
references. The System library specification is not included in
the input command line. User libraries, which may also be used
with both of these tasks, however, are not automatically searched.

Their file specifications must be included in the input command
line.

Finally, having all modules in the same location saves time
and overhead. Control can be applied to libraries; this assures
that the latest version of a routine 1is being used. Only one
entry for each module can be placed in a library. If a user
wishes to have other versions of a routine maintained in a
library, he must insert them with a different module name, or
place them in another library.

Library File Format

All library files have the same format, as in Figure 9-1.

h
(1 ) LIBRARY HEADER
o ENTRY POINT TABLE
EPT
© | VoouLe navE TasLE
MNT
MODULE #1 HEADER
o MODULE #1 < B,
0) ) _svsLiBoLE |
MODULE #N HEADER
MODULE #N . J
L ]
L]
L ]
L ]
L]
(s ) AVAILABLE SPACE
.
[ ]
[ ]
L]
.
TK-7487

Figure 9-1 Library File Format

352



LIBRARIES

Notes on Figure 9-1

The following comments are keyed to the figure.

Library Header

This section contains information on the current 1library
status including the date and time of the last addition,
the number of Entry Point Table entries, the number of
Module Name Table entries, the amount of available space,
and the number of logically deleted bytes. For Universal
libraries only, the default file type 1is kept in the
header.

Entry Point Table

The Entry Point Table is used only with Object 1libraries.
It is an alphabetic list of all the entry points in all
the object modules in the library.

An entry point is an address within a piece of code
to which a program can transfer control such as:

- a global label in MACRO
- a subroutine

- a function

block data

This table is used to 1locate a piece of code 1in the
library, when a request is made with the entry point name.
See Table 9-1 for the source of the Entry Point Table

name.

Module Name Table

The Module Name Table contains the name of every module in
the 1library. It is wused to find the module in the
library. See Table 9-1 for the source of the Module Name
Table entry.

Header and module body for every module inserted into the
library

Space available

Total 1library size set at creation time. If space
exhausted, library must be rebuilt.

353



LIBRARIES

Table 9-1 Sources of EPT, MNT Entries Used in
Creating a Library File

e = e
e S . - T
i R L e St
e = 'y gy
e o e 2 L
i ot ! e ety e Sl
R L = e TR e
Raral S - e =
S s e s sy s ————
e - o o o L
- . . - .
T~ e e
e e -
e e Lt
o - o - .
- . = - Vs
o - S L s
- . S .
o e e v
el SRR e e 0 e
- S bt e
» e e e e .
- S e . o
e L e S Beara R B J Sy . i T
L s - - el e -
L S . - e -
- i L e R e e -
L ylit e N Py e e
et 4 ﬁ g T i ﬂx‘:ﬁw . Rk -
e el el o e 0= o e = e e
%‘iu . e omA e
>tion routi STA N
L P e S o we e
B e e R o e N
- . g . e L e
i L \ i D . s
e e - e e e
. o > . . L

L . . - oo e N N > - - e
e e - - L o
o = -
e e

. - S
el e . et S
. e Lo e :
: L e e s i S

e L . : e - .

. = L o - -

Y L e ’ o -

- - JoCQ . -

e e = v -

e e - e . .

. T - 5 e L

L

LEARNING ACTIVITIES

1. READ the following sections in Chapter 10
of the RSX-11M/M-PLUS Utilities Manual:

° 'lﬂ.l, Format of the Library File
e 10.2, LBR Restrictions

2. READ Section 6.3, Library, in Chapter 6

of the RSX-11M/M-PLUS Command Language
Manual.

3. DO Written Exercises 1 through 4 for this
module.

354



LIBRARIES

Macro Libraries

Figure 9-2 is an example of the type of information stored in
a Macro library. There are three macro definitions shown here,
ALUNSS, CALL, and EXITSC. Each macro consists of all the
instructions between the .MACRO and the .ENDM statements, and is
written in MACRO-11 assembly language. Each of these was
developed and tested before it was put into the library.

The format of the Macro 1library consists of the 1library
header, and the Module Name Table (MNT), followed by a module
header and module for each macro definition.

The module header contains information regarding the module
itself. The size of the module, its status, and the date the
module was inserted is stored here. For more detailed information
regarding the module header format, refer to the RSX-11M/M-PLUS
Utilities Manual.

The default file type for a Macro 1library 1is .MLB. The
System Macro library is RSXMAC.SML, and is located on LB:[1,1].

355



96¢

K "LB:{1,1] >

v
_RSXMACSML

v

(_SY:[305,303] )

USERMAC.MLB

RSXMAC.SML

LIB HEADER
EPT

— ALUNSS

CALL

EXIT.$C

—> ALUNS$S HEADER

ALUNSS

CALL HEADER

CALL

~N~—

»| EXIT$C HEADER

EXITS$C

FREE SPACE

Figure 9-2 A Macro Library

.
.
.

-.MACRO ALUNSS LUN,DA,DU,ERR
.MCALL MOV$,DIR$
MOV$
MOV$
MOV$
{(PC+,—(SP)
LERR
ALUNS$S
.MACRO CALL ADR
JSR PS,ADR
CALL

.MACRO
.MCALL
IF NDF
.PSECT
$3%=

JFTF
EXITS
JFT
.PSECT
DIR$
.ENDC
.ENDM

EXIT$C  PSCT,ERR
EXIT$,DIR$

$$$GLB

$DPB$S

PSCT
#$$$,ERR

EXITSC

TK-7488

SHIYYYEIT



LIBRARIES

Object Libraries
Figure 9-3 shows the format of an Object library.

An object module is difficult to visualize as it 1is not in
human-readable form. Each object module contains instructions in
object code. Each requires linking before it can be run.

In the figure, there are three object modules in the library:
ARITH, CLOSE and WRITE. ARITH has two entry points, $DIV:: and
$MUL::. CLOSE and WRITE have one each, .CLOSE:: and .WRITE::.
Notice that the EPT has an entry for each entry point in the
library, and a pointer to the header of the respective object
module, where it can be located. The Object library is the only
one of the three library types to use the Entry Point Table (EPT).

Entry points tell where a program will transfer control when the
program executes.

The default file type for an Object 1library 1is .OLB. The
System Object library is LB:[1,1]SYSLIB.OLB. After processing all
the input files, the Task Builder searches through this 1library
for any unresolved references.

The Task Builder is able to search an Object library in two
ways. The first way 1is when it tries to resolve unsatisfied
references on global symbols. The global symbol is looked for in
the Entry Point Table. The second way is when a module name has
been specified with the /LIBRARY/INCLUDE qualifier of the LINK
command. In both cases, when the module 1is found, the Task

Builder extracts the complete module and includes it in the task
image file.

357



SYSLIB.OLB

k__———/

N~ —

LIBRARIES

SYSLIB.OLB

LIB HEADER

$DIV

.CLOSE

$MuUL
WRITE

ARITH
CLOSE
WRITE

'

-

ARITH HEADER

$DIV::
$MUL::

CLOSE HEADER

.CLOSE::

WRITE HEADR

WRITE::

FREE SPACE

» EPT

» MNT

0 OBJECT MODULES DERIVED FROM AN ASSEMBLER
OR COMPILER
OBJECT FILE FORMAT INCLUDES ENTRIES IN THE

EPT.

Figure 9-3

Object Libraries

358

TK-7495



LIBRARIES

Universal Libraries

Universal libraries have the same format as Macro 1libraries.
Like the Macro library, however, the EPT is not used. Figure 9-4
shows this format and the type of input that a Universal 1library
may have. This particular 1library is a collection of indirect
command files that can be executed directly from the 1library.
They do not need to be extracted first.

The Universal library can be used to collect 1listing files
with their source and object files. This 1is one method of
transporting a program package from one system to another. When
transferring the file from one media to another, only one file
needs to be specified in the copy operation. Universal 1libraries

can be wused to collect memos on a certain topic, like your
programming project.

The default file type for Universal libraries is .ULB.

359



gt

MYLIB.ULB

LIB HEADER

SY:[305,303] e EPT

~—__ BACKUP  STRTUP
~MYLIB.ULB BUILD SYSLOG MNT
SHUTUP  WHO
WHO.CMD

\

BACKUP HEADER

v BACKUP

* INDIRE MAND
WHO HEADER ' CT COMMA

WHO - ENABLE SUBSTITUTION
. < TESTFILE T
.SETS Tl <FILSPC>[1,5]

CE ’
FREE SPA ; TERMINAL ‘TI" IS AT
; '<KSYDISK>' ‘<SYUNIT>':'<UIC>

ENTRIES INTO THE LIBRARY MAY BE OF A UNIVERSAL
TYPE. THIS ONE CONTAINS INDIRECT COMMAND FILES.

€@ LIBRARY FILE FORMAT - EPT IS NOT USED.

TK-7490

Figure 9-4 Universal Libraries

SHIYVYLIT]



LIBRARIES

DIGITAL supplies many libraries for your use. Table 9-2
lists the 1libraries that are available. Not all will be present
on your system. You may perform a directory command on LB:[1,1]
to see which ones your system does have. The most frequently used
libraries are RSXMAC.SML, SYSLIB.OLB and the FORTRAN Object Time
System libraries.

Table 9-2 DIGITAL-Supplied Libraries on LB:[1l,1]

(o i i LR
- . . . . : .
e o . i . b : E o
2 1 . < .
n ] e/ ﬁ% ; L r .
i . i i el i e v i G , & Sieia
L . : . S . e

m@g‘,”
.
.

L
i
s
-

&
&

P
-}m
.
-

s
-

e
o
-

i
-
.
-
=

i
.

S

s

o
o
o
i
2
o e

o

-

L
=

.
c
i

-
o
ﬁ%@
e
-
o
i
i
e
o

i
s

ki
.

o

it
i
°
s
)

o

¢

.
.

- §M~ &
i
e it

=
?ggig. S
.
s
P

S
7
- inggg e
ey e
o S
- o
< Zauds

S
L

15
-
-
=
o

.
i

[

i

361



LIBRARIES

Using Macro Libraries

Figure 9-5 illustrates how to use Macro libraries.

MACRO.MAC SY:[305,303]

. LBR.TSK _

o ; »| LIBRARY —>
MACRO SAVE LIST
JRP X, <LIST>
MOV X,-(SP)
.ENDR
[ENDM SAVE
PROG.MAC PROG.LST
: ST: SAVE <RO,R1,R2,
MCALL SAVEEXIT$C ALPHA, OMEGA>
. MOV RO, - (SP)
: MACRO MOV R1, - (SP)
ST: SAVE <ROR1,R2, ASSEMBLER MOV R2. - (SP)
(2 ] ALPHA,OMEGA> MOV ALPHA -(SP)
: 1 MOV OMEGA-(SP)
EXITSC
EXITSC
(3] > MACRO/LIST MYMAC/LIBRARY, PROG

LB:[1,1]

MACRO EXIT$C ongse [ '
o LIBRARY W

.ENDM

TK-7489

Figure 9-5 Using Macro Libraries

362




LIBRARIES

Notes on Figure 9-5

The following comments are keyed to the figure.

Using the Librarian, put the Macro source in a library.

In this example, the Macro SAVE 1is added to the User
library MYMAC.MLB.

Reference the Macro 1in a source file. In a source
program, PROG.MAC, reference 1s made to the SAVE macro.
EXITSC is also referenced.

Assemble the source referencing the library containing the
Macro. The Macro Assembler searches MYMAC.MLB for the
macro definition for SAVE and finding it expands the
macro, making the proper symbol substitutions. The Macro
EXITSC 1is not found 1in this library and remains
unsatisfied.

Previous to the assembly process, the System Macro
library, RSXMAC.SML, was created using the Librarian. The
Macro EXITS$C is contained 1in this 1library. Once the
assembler searches any User libraries specified in the
MACRO command line, it turns to the System Macro library
to resolve any other unsatisfied references. In this
case, EXITSC is found, extracted from the 1library and
included 1in the source program. The MACRO-11 Assembler
searches the User library for unsatisfied references, then
automatically searches the System Macro library,
LB:[1,1]RSXMAC.SML.

363



LIBRARIES

Using Object Libraries

The procedure for using Object libraries is similar to that
of Macro libraries, however, their use occurs later in the program
development process.

>LIBRARY/CREATE MYLIB WRITE,READ
WRITE.OBJ.

SY:[305,303]

LIBRARIAN MYLIB.OLB

>LIBRARY/INSERT [1,1] SYSLIB CLOSE,OPEN

CLOSE.OBJ
g Lo,
OPEN.OBJ LIBRARIAN SYSLIB.OLB

OPEN::

>FORTRAN PROG

PROG.FTN

OPEN FiLE
DO I = 1,10
WRITE RECORD

CONTINUE
CLOSE FILE

FORTRAN
_COMPILER

SY:[305,303]

PROG.OBJ

SY:[305,303]

>LINK/MAP PROG, MYL!IB/LIBRARY

LB:{1,1]

SYSLIB.O

PROG.MAP

LB

TKB/
LINK

-

WRITE::
READ::
CLOSE::
OPEN::

Figure 9-6

364

Using Object Libraries

TK-7505



LIBRARIES

Notes on Figure 9-6

The following comments are keyed to the figure.

A User Object library called MYLIB.OLB is created wusing
the Librarian. Two object modules (WRITE, READ) contained
in two object files (WRITE.OBJ and READ.OBJ) are placed in
the library when it is created.

The System Object 1library, SYSLIB.OLB, 1is modified to
include two object modules (CLOSE and OPEN) which are
contained in two object files (CLOSE.OBJ and OPEN.OBJ).

In a source file, PROG.FTN, reference to three of those
modules is made (OPEN, WRITE and CLOSE). The file is
compiled. A listing file generated from the compile shows
those three references as unsatisfied, as they are not
defined within this source file.

At link time, the User Object 1library, MYLIB.OLB, is
supplied in the command line. The Task Builder reads this
library first, searching for code for OPEN, WRITE and
CLOSE. Only the code for WRITE is found, extracted and
included in the Task Build from this 1library. The Task
Builder then searches the SYSLIB.OLB for CLOSE and OPEN.

Be careful in supplying library specifications in the LINK
command line. If the User library contains object modules
for CLOSE and OPEN, the Task Builder would extract these
modules to satisfy the references to those symbols. If
the desired code is in the System 1library, the results
then are wrong. For a solution to the situation, read the
DCL HELP provided on the /LIBRARY/INCLUDE qualifier to the
LINK command, or refer to the /LB switch discussion in the
RSX~-11M/M-PLUS Task Builder Manual.

365



LIBRARIES

Using Universal Libraries

When universal libraries are used as repositories for text
files, you create them by using the Librarian and inserting the
text modules into them. The module names will be taken from the
input file name. You can then use the librarian commands to list
the contents, extract or insert new modules. If the library is a
collection of indirect command modules, a particular command
module can be executed without extracting it from the 1library
using the following command:

>E@MYLIB.CLB/LB:WHO (MCR command)
In this example, the library file, MYLIB.CLB, is used with the /LB

switch to specify the indirect command module (WHO.CMD) to be
executed.

Universal libraries can also be accessed from a task by
building that capability into the task in the following manner:

- Build a Universal library containing the desired modules.

- Develop your application program wusing $ULA, a System
library routine, to access the library.

~- Assemble/compile, task-build and run the application
program.

For more information regarding $ULA, refer to Appendix B of the
IAS/RSX-11M System Library Routines Reference Manual.

Creating/Maintaining Libraries

Table 9-3 lists operations using the Librarian. The DCL
command is shown, along with a command example. Table 9-4 shows
the equivalent MCR commands to accomplish the same operations.

Table 9-5 lists CREATE command parameters and qualifiers,
while Table 9-6 lists Librarian listing qualifiers.

366



LIBRARIES

Table 9-3 DCL Library Commands

367



LIBRARIES

Table 9-4 Equivalent MCR Library Commands

368



LIBRARIES

|

@M -
[ %@@m
mwmﬁmwﬁ -
ﬁs@%ﬂ
o
o

s

o

.- . -

= - . L
e - == : WMWWM& WW,
. i

|
. =
e

i
- i e

& 4
e
i

= %@ W%

-
|

-
o

E@ﬂ( i
-

ﬂgmmmammﬁmmm

iers

if

Qual

ing

Librarian List

.
-

e

i

-
-

_

369

e @m

.

-
o =

P
- -

e
s

o

gmgmk e
e
-

-

Table 9-5 CREATE Command Parameters and Qualifi
Table 9-6

ean
B
]




LIBRARIES

LEARNING ACTIVITIES

1. READ the following sections in Chapter 10

of
°

the RSX-11M/M-PLUS Utilities Manual:

19.5.1, Compress Switch
19.5.2, Create Switch
1¢.5.3, Delete Switch
19.5.7, Extract Switch

19.5.8, 1Insert Switch for Object,
Macro Libraries

10.5.9, Insert Switch for Universal
Libraries

19.5.109, List Switches

1d.5.12, Replace Switch for Object,
Macro Libraries

19.5.13, Replace Switch for Universal
Libraries

2. DO Written Exercises 5 through 11 for
this module.

370



Examples
commands.

Example 9-1

LIBRARIES

9-1 and 9-2 show some frequently used

-
-~

“

*LIBRARY/LIST LE!C1s»1IRSXMAC.SHL

Directory of file RSXMAC.SML#121

Macro library created bus! LBR V046.00

Last insert occurred 23-AUG-81 at 13:04:21
MNT entries allocated! S12% Availasble! 93
EPT entries allocated! 0§ Available! O
File srace available! 01193 words
Recoverable deleted sracet! 00179 words

ABRT$
ABRTS$C
ABRT$S
AFF$
ALTPS
ALTFS$C
ALTFP$S
ALUNS
ALUNSC
ALUNSS
ASTX$
ASTX$C
ASTX$S
ATRGS
ATRG$C
ATRGSE
BDOFF$
CaLL
CALLR

;

e

~

LIBRARY/LIST/FULL LEBICL,1IRSXMAC ., SML

Directory of file RSXMAC.SML#121

Macro library created bwy! LER V06.00
Last insert occurred 23-AUG-81 at 13:04:21
MNT entries allocated! 5125 Available:! 93
EFT entries allocated?! 03 Available! 0
File srace available! 01193 words
Recoverable deleted srace! 00179 words
ABRT$ Size!00096 Inserted!7-AUG-81
ARRT$C Size!00096 Inserted!?7-AUG-81
ABRT$S Size!00048 Inserted!?7-AUG-81
AFF$ Size 00101 Inserted!7-AUG-81
ALTFPS Size!00112 Inserted!7-AUG~81
ALTP$C 6Sizel00104 Inserted!7-AUG-B1

ALTF$S Size!00078 Inserted!7-AUG-81

LIBRARY

Obtaining Library Directories (Sheet 1 of 2)

371



LIBRARIES

© LIBRARY/LIST/NAMES LE:[1,11SYSLIK,OLR
Directory of file SYSLIEB.OLK:$33
Obdect module library created by! LBR V046.00
lLast insert occurred 11-AUG-81 at 10119325
MNT entries allocated! 768% Availasble! 524
EFT entries allocated! 2304 Available! 9464
File space available! 004675 words
%% Module!ALERR

$ALERR

XX Modulel!ALSCT

ALSCT

%% Module!ALTFRI
ALTFRI

XX Module!ANSFAD

X¥X Modulel!ARITH

$DIV $MUL

Example 9-1 Obtaining Library Directories (Sheet 2 of 2)

372



LIBRARIES

Notes on Example 9-1

The following comments are keyed to the example.

To list the contents of a 1library you use the /LIST
qualifier on the LIBRARY command. The 1library, file
specification is given as a parameter. The output from
issuing this command consists of a short statistical
section and then the 1list of names of the modules
contained in the library. This example lists the contents
of the System Macro library. The module names are listed
in ascending order. A <CTRL/0O> was typed before the
output was finished, so this is not a complete list.

By using the /FULL qualifier, additional information is
provided on the modules. Their size and the date they
were inserted into the library are displayed.

To obtain the entry point names in an object module, the
/NAMES qualifier 1is wused. The entry point name appears
after the module name. In this example, module ARITH has
two entry points, $DIV and $MUL.

373



LIBRARIES

.,
&

>

© L IBRARY/CREATE/MACRO MYLIF FILES

‘, AL IBRARY/DELETE MYLIE.MLE MVE$,0FF$
Modules deleted!?
MVES
OFF$

Q@ LIERARY/REFLACE MYLIE.HLE FILES
Module "CALL * rerlaced

Module "QI0W$ * rerlaced

Module "EXIT$C®" rerlaced

© LIBRARY/LIST MYLIE.HLE

Directorwy of file MYLIE.MLE31

Macro library created bu! LEBR V04.00

lLast insert occurred 3-SEF-81 at 14154140
MNT entries allocated! 256% Available! 251
EFT entries allocated! 0i Available! 0
File serace available: 23877 words

caLL
EXIT$C
MVE$
OFF$
QIOWS

Example 9-2 Commands to Create a Library and
Delete Modules from that Library

374



LIBRARIES

Notes on Example 9-2

This is an example of the command you issue to <create a
library. If you do not specify the libary type, the
Librarian assumes an Object library. In this case, the
Librarian creates a Macro 1library with a file name of
MYLIB.MLB. FILES is the name of the 1input object file
(FILES.OBJ) containing the modules to be inserted into the
library. The size of the resulting library file will be
100 blocks, with space in the MNT for 256 entries. These
are the default values for creating a Macro library (See
Table 9-5). If these values are not suitable for your

library, you must supply the proper wvalues with the
/CREATE qualifier.

Listing the contents of the library shows that there are
five macro definition modules in the 1library: CALL,
EXITSC, MVBS$S, OFFS and QIOWS.

To delete modules from a library, a list of module names
is supplied after the library file specification. When
you delete a module from the library, it is only logically
deleted from the file. The space in which it resides is
not released for wuse until the file 1is compressed.
Compressing a library file removes deleted modules, and
compresses the remaining modules toward the beginning of
the file. Free space is then generated at the end of a
file for inserting new modules.

When you want to place a newer version of a module in the
library, you must use the /REPLACE qualifier. The input
file, FILES.OBJ, contains newer versions of CALL, QIOWS
and EXITSC that will replace the respective modules in the
library.

375






ADVANCED MAINTENANCE
OPERATIONS







ADVANCED MAINTENANCE OPERATIONS

INTRODUCTION

You have studied some of the most common operations involving
files and storage volumes. We will now look at some of the more
advanced operations.

Until now, it was assumed that all the files you would access
would be on your default volume, or on some other volume defined
by your system manager as public (i.e., available to anyone). For
reasons of security or convenience, you may instead wish to access
your files on a private volume. Or, you may wish to set up a
shareable wvolume that certain chosen wusers can access. This

module shows you how to set up, use and maintain private and
shareable volumes.

It was also assumed that you would deal solely with a single
RSX-11M and/or RSX-11M-PLUS system. Transferring files to another
operating system, or between different RSX-11M/M-PLUS systems,
involves access to volumes with a different format than FILES-11.

These volumes are called foreign volumes. Accessing foreign
volumes is also covered in this module.

OBJECTIVES

l. Prepare and maintain private volumes for file storage.

2. Use the file transfer utility to transfer files between
computer systems and convert file formats.

3. Print files and control the print queue.
4. Use the dump utility to inspect the contents of a file.

5. Use the compare utility to segregate the differences
between two ASCII files.

RESOURCES

1. RSX-11M/M-PLUS Utilities Manual

2. RSX-11M/M-PLUS Command Language Manual

379






ADVANCED MAINTENANCE OPERATIONS

VOLUME MAINTENANCE

Up until now, you have been using a volume that was
initialized, maintained, and backed up by someone else, most
likely your system manager. However, the opportunity may arise
when vyou will want to wuse a private volume to store files for
special applications, or for transferring files to other computing
systems. To do this, you must know about the utility tasks
available for maintaining a volume. In this section you will
learn about the volume maintenance utilities (FMT, BAD, BRU, DSC,
VFY), a more detailed understanding of the file structure, and
device and volume accessibility.

Device Types

There are two types of hardware devices that the operating
system must control: record-oriented and file-structured devices.

Record—-oriented devices, like line printers, terminals and
card readers, process records one at a time. For example, the
operating system transfers data to the line printer 132 characters
at a time. After the transmission completes, there is no way to
access that record again. The printer does not collect each of
these records into a file. Storage of these records occurs
off-line, on a piece of paper.

On file-structured devices like disk drives, magnetic tape
drives, and DECtape drives, the operating system is able to
collect records into a file and store them for future use. One
structure 1is wused for storing and retrieving files on all
file-structured devices.

381



ADVANCED MAINTENANCE OPERATIONS

FILES-11 Volume Structure

FILES-11 is a software system that creates and maintains the
file structure on disks, DECtape and floppy disks. It uses a two
level directory structure to organize and maintain files on a
volume. The first 1level structure is the Master File Directory
(MFD). The second level is the User File Directory (UFD). This
structure 1is maintained by the Ancillary Control Processor task,
F11ACP, part of the FILES-11 software system. It performs the
following tasks:

- Locates logical blocks on disk

- Allocates storage for files

-~ Reads and writes file attributes

- Controls access to files

- Performs MOUNT and DISMOUNT operations for FILES-11

volumes

To locate a file on a volume, the system must first check the
MFD, ([0,0]000000.DIR), to see if the UFD specified in the file
specification actually exists on the volume. If there is no entry
in the MFD for the specified UFD, the system returns an error
message. If there is an entry, the system then 1looks at the
directory file for the specified UFD, to see if the requested file
actually exists.

382



ADVANCED MAINTENANCE OPERATIONS

Volume Files

A new volume must be prepared before the operating system can
access it. One of the preparation steps is to establish the
FILES-11 structure by creating the five standard system files that
must be present on each volume. You do this with the INITIALIZE
command, which creates the five files listed in Figure 1¢-1 under
the special UFD [9,0].

Once these files are present on the volume, you can use the
CREATE/DIRECTORY command to create any needed UFD.

Once the UFDs are established, files <can be <created under
each by using the editor, copying files from another volume, or by
program execution.

File Name Contents
© 1NDEXF.SYS Index File
© BITMAP.SYS Storage-allocation file
© BADBLK.SYS Bad block file
O 900000.DIR Master File Directory (MFD)
@ CORIMG.SYS System Checkpoint File

__INDEXFSYS
__BITVAPSYS |
__BADBLKSYS |
__000000DIR__

_CORINGSYS _

N~

TK-7486

Figure 1¢-1 FILES-11 Standard System Files Found on Every Volume

383



ADVANCED MAINTENANCE OPERATIONS

Index Files

The first system file in Figure 10-1 is the index file, the
most important £file ‘on the volume. It is the master key for
accessing any file.

Figure 10-3 shows the format of the index file, and contains
the following information:

e Volume Information (Home Block)

- Volume Name

- Device Type

- Volume Owner's UIC

- Volume Protection Code
- Default File Protection

e File Header Blocks

- One for each file on volume
- 256 words 1long
- Contains:

File ID number to indicate which file header to
use to locate the file on the volume

File sequence number to verify correct header

Every file is made up of two parts, as shown in Figure 1@-2.
The body of the file, which can be stored anywhere on the disk
volume, contains the data. A system, called INDEXF.SYS, contains
the second part of a file, the file header. Every file on the
volume has a header that the system uses to locate the body of the
file. Before locating any file on the volume, the INDEXF.SYS file
must be read to obtain the necessary information to locate the
body of the file.

Figure 10-3 shows the format of the INDEXF.SYS file. Notice
that headers exist for the five system files that must be present

on every volume, the MFD, all UFDs, and user files present on the
volume.

384



ADVANCED MAINTENANCE OPERATIONS

MESSAGE.TXT

HEADER

MESSAG.TXT

VERSION=2
BODY

DISK ADDR:5003
SEG #1

DISK ADDR:5104
SEG #2

DISK VOLUME

TK-7498

Figure 10-2 The Two Parts of a File

385



ADVANCED MAINTENANCE OPERATIONS

[0,0]INDEXF.SYS

BOOTSTRAP BLOCK

HOME BLOCK

INDEX-FILE BIT MAP

HEADER-INDEX FILE

HEADER-STORAGE MAP FILE

HEADER-BAD BLOCK FILE

HEADER-MFD FILE

HEADER-CHECKPOINT FILE

HEADER-UFD #1

HEADER-UFD #N

HEADER-USER FILE #1

HEADER-USER FILE #N

TK-75602

Figure 1¢-3 Index File Format

386



ADVANCED MAINTENANCE OPERATIONS

Bitmap Files

The second system file, BITMAP.SYS, is the file the operating
system uses to control available space on the volume. Each volume
is divided into blocks where the operating system can store
information. In the bitmap file, there is one bit for each block
on the volume. When a block is in use, its representative bit 1is
set to a "1". 1If it is not in use, the bit is set to "@0". The
operating system checks the BITMAP.SYS file to find available
space for <creating and extending files, and to mark the bit for
blocks that become available.

Bad Block File - All blocks not readable by the operating system
are allocated to the file called BADBLK.SYS. The system task,
BAD, run when preparing a volume for use, provides the information
for this file. Allocating bad blocks to this file makes them
unavailable, and decreases the frequency of I/0 read and write
errors.

Core Image File - This file, CORIMG.SYS, is set up to provide
space for system checkpointing. Every volume has the capability
of having system checkpoint space where checkpointed tasks can be
written. To activate this area, a privileged user must use the
SET DEVICE/CHECKPOINT FILE command to allocate space to this file.

Directory Files - The two types of directory files that are
present on a volume contain entries for UFDs or user files. Each
entry in the file contains a file name, a file header number, and
a file sequence number.

On a single user volume, (Figure 1@¢-4), only one type of
directory file is needed, the Master File Directory (MFD).

On multiuser volumes, (Figure 1¢-5) you must have one MFD and
one UFD for each volume user. You use the CREATE/DIRECTORY
command or the ACNTS program to establish the UFDs.

387



ADVANCED MAINTENANCE OPERATIONS

000000.DIR
MASTER
FILE
DIRECTORY
>
| INDEXFSYS_
_BITVAPSYS
_BADBLKSYS 4 I
CORIMG.SYS FILEA FILE B FILE C
\_-—/

N~ —

TK-7500

Figure 10-4 Directory Structure for Single-User Volume

000000.DIR

MASTER

FILE

DIRECTORY
[0,0]

_mArsYs

BADBLK.SYS
000000.DIR

el USER UFD UFD

~—CORIMG.SYS FILE
00100101k 1+ ——]DIRECTORY (5,10] [305,303]

~—J050T0.DIR 001001.DIR 005010.DIR 305303.DIR

__305303DIR_

NS—

FILE A FILE B

TK-7499

Figure 1¢-5 Directory Structure for Multiuser Volume

388



ADVANCED MAINTENANCE OPERATIONS

ANSI Magnetic Tape Structure

The structure used for storing data on magnetic tape varies
according to the application. Generally, on RSX-11M/M-PLUS
systems, the ANSI Magnetic Tape structure is used to write data on
the medium. This structure, shown in Figure 10-6, is maintained
by the Magnetic Tape Ancilliary Control Processor task (MTACP).
Notice that it does not have the MFD, UFD structure. Files are
stored sequentially on the tape, with the file header preceding
the body of the file. The file header contains the following

information:
~ file name and extension
- file section number
- file sequence number

- ~creation date

- record format

Other Tape Formats

Utilities such as BRU, DSC, and FLX each have their own
magnetic tape formats for efficient processing. A tape created by
a particular utility can only be processed by that utility. It is
important to remember how you <create a magnetic tape so that
information can be retrieved by using the proper utility.

389



ADVANCED MAINTENANCE OPERATIONS

/‘\ |

BEGINNING OF
TAPE MARKER

BOT

VOLUME LABEL
(voL 1)

FILE HEADER LABELS
HDR1, HDR2

TAPE MARK (TM)

FILE BODY

TAPE MARK (TM)

FILE TRAILER LABELS
(EOF1,EOF2,EQV1,EQV2)

TAPE MARK (TM)
TAPE MARK (TM)

END OF TAPE (EOT)
MARKER

LT

TK-7503

Figure 10#-6 ANSI Magnetic Tape Structure

390



ADVANCED MAINTENANCE OPERATIONS

Device and Volume Accessibility

Volumes and the devices on which they reside are available to
the user depending upon characteristics established for them. Not
all volumes or all devices are available for everyone's use.
Accessibility 1is established 1in two ways: device ownership and
volume accessibility.

Device Ownership

Devices on the system are declared to be public, private or
unowned, as in Table 1¢-1.

A public device is one established for use by all users. The
SET DEVICE command, which is privileged, declares a device to be
public. When a device is set to public, the volume mounted on the
device 1is automatically mounted as public. This allows any user
access to the data stored on that volume.

A private device is one for use by the person who allocates

it.

Any device that has not been set public, private, or mounted
is known as an unowned device.

Once the device attributes are established, a user can grant
access to the volume mounted on the device, as shown in Table
19-2. 1If the device is public, no further command is neccessary.
However, to establish the volume as private or shareable, use the
MOUNT command.

391



ADVANCED MAINTENANCE OPERATIONS

Mounting a Volume

Before a disk or magnetic tape volume can be wused on a
device, the operating system must know that it is there. Just
physically mounting a disk volume on the drive is not enough. You
must logically inform the operating system by using the MOUNT
command. This command establishes the software connection between
the operating system and the volume.

The operating system also must know if the structure of the

volume information is in FILES-11 format. If not, you mount it as
FOREIGN,

The MOUNT command also establishes who may have volume
access. Table 1¢-2 indicates how to establish a volume as public,
private or shareable.

e
el - : :
g ; 5 - ; oy

L ’@xagf%:fsw " . A o . ‘ e Lo @m%&

i

; 4
s

o

i

392



ADVANCED MAINTENANCE OPERATIONS

Preparing a Disk Volume for Use
Physical Formatting

Before you can use a disk pack on the system for the first
time, it must be properly initialized. Initialization of the pack
is a two step process. The first step is to physically format the
disk. The system task, FMT, formats the disk into blocks, the
smallest unit of writing area allocated to a file. The task, BAD,
is then run to determine which blocks on the disk cannot be

written to, or read properly. The following steps accomplish the
physical formatting of the disk:

e Allocate disk drive using ALLOCATE/DEVICE command
e Physically load disk pack on drive
e Logically mount pack using MOUNT/FOREIGN command
e Run utility formatter task (FMT)

MCR FMT
e Run bad block task (BAD)

MCR BAD

FILES-11 Initialization

The second step in the initialization process is to set up
the FILES-11 volume structure, which includes the creation of the
five system files that must be present on the volume. Once the
FILES-11 structure is there, vyou can create UFDs for those who
require them. Example 10-1 shows the complete process. Once the
following steps are done, the disk volume is ready for use:

e Use INITIALIZE command to set up FILES-11 volume structure

e Logically DISMOUNT the volume and REMOUNT it with wvolume
label name

e Create UFDs with CREATE/DIRECTORY command

393



ADVANCED MAINTENANCE OPERATIONS

Preparing a Magnetic Tape Volume for Use

To prepare a magnetic tape for use requires that an ANSI
standard volume label be written on the tape, followed by a dummy
file. Tape initialization requires no physical formatting. The
following steps ©prepare a magnetic tape for use. An actual tape
initialization process is shown in Example 10-2.

e Allocate magnetic tape unit using ALLOCATE/DEVICE command

e Physically mount the tape on the drive

e lLogically mount the tape using MOUNT/FOREIGN command

e Use INITIALIZE command to prepare magnetic tape in ANSI
standard format

e Logically DISMOUNT volume and REMOUNT it with volume label
name

394



ADVANCED MAINTENANCE OPERATIONS

”

»ALLOCATE DK2:
>MOUNT/FOREIGN DK2¢! USER
>MCR FMT

FMT>DK2:

%%k WARNING - Data will be lost on DK2: X%
Continue? LY OR NI! Y

8tany formatting

Start verification

Oreration comrlete

FMT>"Z

>MCR BAD

BADN[K2?

BAD -- DK2: Total bad blocks= 0.

BAD>"Z

SINITIALIZE DK2?! USER

SDISMOUNT DK2!

DMO -- TTS56¢ dismounted from DK2: XX Final dismount initiated XXX
SMOUNT DK2: USER

»IIKR DK2:L0,01

Directorw DK2:[0,03]
15-SEP-81 113133

INDEXF .S5YSi#1 155, 15-SEP-81 11133
BITMAP.SYSi1 3. 15-SEP-81 11333
BADBLK.S5YSi#1 1, 15-8EP-81 11133
000000.DIR#1 1. 15-SEP-81 11133
CORIMNG.SYS#1 0. 15-SEP-81 11133

Total of 160./160, blocks in 3. files
>

>

>CREATE/DIRECTORY DK2:! [305,3031

>DIR DBK2IL305+3031
DIR -- No such file(s)

>LO
DMO -- TTS5é6¢ dismounted from DK2! XkX Final dismount initiated X%x
Have a Good Morning

;S*SEP-SI 11:36 TT56¢ losdded off QUASAR

Example 10-1 Preparing a Disk Volume

e N

hY

“ALLOCATE MMO?

>MOUNT/FOREIGN MMO! USER

»>INITIALIZE MMO! USER

>DISMOUNT MMO!

DMO -~ TTS56! dismounted from MMO: XXX Final dismount initiated XX%x
>

Example 10-2 Preparing a Magnetic Tape Volume

395



ADVANCED MAINTENANCE OPERATIONS

Backing Up a Volume

For critical files that you cannot afford to lose, it makes
sense to routinely backup the files on another volume. Backing up
a volume means making a duplicate copy of it, and storing the copy
in a protected place. Then, if needed, you can restore the files
from the backup volume.

There are a number of ways to backup files, or a complete
volume. The simplest way is to use the COPY command to copy files
to another volume. This is sufficient when backing up a few
files, but is quite cumbersome if backing up a complete volume.
BRU and DSC are two utilities that exist to backup volumes. Each
has its benefits.

Backup and Restore Utility (BRU)

The Backup and Restore Utility (BRU) is wused for FILES-11
volumes. The output volume can be either a disk or magnetic tape.
In addition to performing the backup, BRU will initialize the disk
and run BAD to locate bad blocks. With this utility you can

backup selected files, or a complete volume by file specification,
date or time.

BRU writes data to the magnetic tape in its own tape format.

Therefore, BRU must be used to restore data from a BRU backup
tape.

Table 10¢-3 lists the various backup command qualifiers.

396



ADVANCED MAINTENANCE OPERATIONS

Command Format

>BACKUP/SAVE _SET: VIPPROGS DB1:** MM1:

N\ — pr— 7/ N A ——

Command to invoke BRU to back up a disk area

Command qualifier

Qualifier wvalue

Source device and file specification for files to be backed up

Destination device

397




T

-

it e

, ﬁmﬁm@%@m@ s i
ﬂ&%ﬁﬁ%@@%&%

-

e

398

ADVANCED MAINTENANCE OPERATIONS

Backup Command Qualifiers

Table 10-3




ADVANCED MAINTENANCE OPERATIONS

Disk Save and Compress Utility (DSC)

The Disk Save and Compress Utility (DSC) is used to duplicate
FILES-11 volumes wusing either disk-to-disk or disk-to-tape file
transfers. DSC backs up and restores entire volumes, and in the
process compresses files into contiguous blocks, making more space
available. DSC also has its own output magnetic tape format, so
DSC must be used to restore a tape that it creates.

VERIFY (VFY)

The VERIFY wutility 1is wused to maintain the FILES-11
structure. It recaptures blocks marked as used but not belonging
to a file. It searches for files in the index file that are not
in any directory, as well as validates directories against the
files they list. VERIFY requires that the volume to be verified
be mounted as a FILES-11 device, and no other activity on the
volume takes place. It is generally used after a system crash to
ensure integrity of the structure, or if you suspect corruption on
the volume.

399



ADVANCED MAINTENANCE OPERATIONS

LEARNING ACTIVITIES

1. READ the following sections in the
RS5X-11M/M-PLUS Command Language Manual:

e 5.1.3, Public, Shared, Private and
Unowned Devices and Mounted Volumes

e 5.1.4, How to Prepare a Scratch Disk
for Use

e 5.1.5, How to Prepare a Scratch ANSI
Magnetic Tape for Use

e 5.4, Allocate

e 5.5, Deallocate

e 5.6, Mount

e 5.7, Dismount

e 5.8, Initialize

e 5.9, Backup

e 5.10.2, Set Device

2. READ the following in the RSX-11M/M-PLUS
Utilities Manual:

e Chapter 7, Backup and Restore Utility
(BRU)

e Chapter 8, Disk Save and Compress
(DSC)

e Chapter 5, Disk Volume Formatter
(FMT)

e Chapter 6, Bad Block Locator Utility
(BAD)

3. DO Written Exercises 1 through 11 for
this module.

400



ADVANCED MAINTENANCE OPERATIONS

FILE MAINTENANCE

Transferring Files Between Computer Systems
File Transfer Program

The File Transfer Program (FLX) transfers files from one
volume to another. In addition, when the volume structures
differ, FLX will convert the file to the output volume format.
The following file conversions and transfers can be accomplished:

e DOS-11 to FILES-11l volumes

e FILES-11 to DOS-11 volumes

e DOS-11 to DOS-11 volumes

e FILES-11 to FILES-11 volumes
e FILES-11 to RT-11 volumes

e RT-11 to RT-11 volumes

e RT-11 to FILES-11 volumes

Figure 10-7 shows the different file structures used by three
operating systems that run on PDP-11 hardware. RT-11 uses a
contiguous file storage structure. All blocks of a file are
stored together on the disk.

RSTS (D0OS-11) uses a linked list structure. Each block is
stored individually where space permits. A pointer to the next
block in the file is stored with each block.

On RSX-11M/M-PLUS, FILES-11 breaks up the file into segments
and stores the segments on the volume. A segment consists of one
or more blocks. In the header of the file, a record 1is kept of
the number of segments, the number of blocks in each segment, and
the address location of the segment on the volume.

In addition to this difference, there is a difference in the
way text files, object files, and executable files are formatted
on each operating system. For text files on RSX, the record
length 1is determined by a character count, which is stored in the
first position of a string of characters that constitute the
record. On RSTS and RT, the record length is determined by the
<CR> <LF> that is stored at the end of a string of characters.

401



ADVANCED MAINTENANCE OPERATIONS

Each operating system formats and stores files differently.
Therefore, the DCL COPY command which does a straight copy, cannot
be used to transfer files from a volume initialized on one system,
to one initialized on another system.

FILE STRUCTURES

RT-11
FILE.TXT
VB1 |VvB2 | VB3| VB4 | VBS
S
\\\ \\\
\\\ NG
\\
~.
~
~
VBT[vaz[ve3 [vealves)
CONTIGUOUS FILE STRUCTURE
DOS-II
FILE.TXT
VB1 VB2 | VB3 | VB4 | VB5
LINKED LIST STRUCTURE
FILES-II
FILE.TXT
VB1 | VB2 | VB3 | vB4 VB56
INDEXF.SYS
FILE HEADER
L

MAP-FILE STRUCTURE
VB=VIRTUAL BLOCK TK-7494

Figure 1¢-7 PDP-11 File Structures

4902



ADVANCED MAINTENANCE OPERATIONS

Transfer Mode Switches
There are three transfer modes (Table 1¢-5) that you may use:
e Formatted ASCII
e Formatted Binary

e Image Mode

Formated ASCII is used to embed the <CR> <KLF> in text files
when you are generating RSTS and RT output. Formatted binary is
used to correctly format .0OBJ, .STB, .BIN and .LDA files for RSTS
and RT output. Image mode is a straight copy with no changes for
executable files and libraries.

Command Format

>FLX<RET>
FLX>DK1: / RT=DKO0:SYS1. MAC[B§

N ——— | ————
2] 00 o o

Command to invoke the file transfer program
Output device

A volume format, transfer mode or control switch
Delimiter

Input file and device specification

A volume format, transfer mode, or control switch

403



ADVANCED MAINTENANCE OPERATIONS

FLX Format Switches

Table 10-4

. %%WWWW%% e m%%«%%%@m@%mm@ﬁ
: .- ¥ .
- - %ww@w% . »%m%@w

- :

i

g .
-

=
i

Table 186-5 Default Transfer Modes

dig
i
o

404



ADVANCED MAINTENANCE OPERATIONS

Controlling a Print Queue

When a device is frequently used, like the 1line printer, a
method 1is needed to manage that device efficiently to ensure that
it is readily available for |use. A system task, the Queue
Manager, is responsible for managing such devices. Line printers,
plotters, and hard-copy terminals being used as line printers are
the kinds of devices the Queue Manager oversees.

Once a device is under control of the Queue Manager, it can
no longer be used in the usual manner. For example, when the line
printer is under Queue Manager <control, files cannot be sent

directly to the line printer. Queue Manager commands must be used
to process files.

Figure 10-8 shows how the Queue Manager handles a line
printer as a spooled device. The PRINT command indicates a file
to be printed on the line printer. This command is passed to the
Queue Manager for processing. A file called LB:[1,7]QUEUE.SYS
contains an entry to indicate that a file is ready for printing.
This part of the process is called spooling. The Queue Manager
frequently checks the queue to see if there are any waiting jobs.
If it finds one for the 1line ©printer, it checks if the 1line
printer is available. If no job is printing, the Queue Manager
starts printing the file. This part of the process is called
despooling.

To enter a job into the print queue, you use the PRINT
command . Examples are shown in Table 1@-6. Once the job is in
the queue, to alter job characteristics or to cancel a Jjob, you
must use the commands in Table 10-7 or 14-8.

405



ADVANCED MAINTENANCE OPERATIONS

THE QUEUE MANAGER

>PRINT FILE.TXT

FILE.TXT J
< LB:[1,7]
QUEUE.SYS
v
\_____/
« ~ J \ - _
SPOOLING DESPOOLING
USE PRINT COMMAND TO MAKE USE QUEUE COMMANDS TO ALTER
ENTRY IN THE QUEUE JOB ONCE {T HAS BEEN ENTERED IN THE
QUEUE

TK-7506

Figure 10-8 The Queue Manager

406



ADVANCED MAINTENANCE OPERATIONS

Table 1@9-6 Print Command Qualifiers

497



ADVANCED MAINTENANCE OPERATIONS
Table 10-7 DCL Commands to Alter Print Queue

s
o
S

SSsmmee EsmeneEEse Ty

gwsg@@é@;ﬁxsg
S % s
. -

.
o

o

- -
e
.
e
-
R
-
-

t Queue

in

.

o
o
}mﬁ

o

g

e
m,w%mmmm,%% mw%i

=
-

o,
:

lent MCR Commands to Alter Pr

O
>
=
5 B
oy

5]

©

|

5]

—~

o

—

o

> i

e = =

408



ADVANCED MAINTENANCE OPERATIONS

Looking at the Contents of a File
File Dump Utility (DMP)

In the course of program development, it 1is sometimes
necessary to inspect the contents of a file. You may want to
check the file format to ensure that it is correct. And if it |is
not correct, you would want to determine the spot where it was not
formatted ©properly. The File Dump Utility (DMP) helps in
uncovering such problems.

DMP will dump a file in any one of the formats 1listed in
Table 10-9. You must decide which format is suitable for your use
and for the file.

Figure 10-9 depicts how the DMP program can interpret sixteen

bits of data. If a word contains the value as shown in the
figure, the string of @s and 1ls can be interpreted in many
different ways. For example, interpreting the data as an octal

word gives it the value of @44124. Interpreting the data as octal
bytes, the 1left byte wvalue is 110, and the right byte value is
124. Interpreting the data as two ASCII characters yields an H in
the 1left byte, and a T 1in the right byte. Each of these
interpretations could be correct depending upon the content and
purpose of the file.

The DMP utility has two modes of operation: file mode and
device mode. File mode requires that the volume on which the file
is located be mounted as a FILES-11 volume. This mode dumps the
virtual blocks of a file, and is used more frequently. Device
mode is for dumping logical blocks on a volume. For a more
detailed description of both file and device mode, read the
appropriate sections in Chapter 11 of the RSX-11M/M-PLUS
Utilities Manual.

To produce the results shown in Example 10¢-3, a directory
file 203054.DIR was copied from UFD [@,0] into UFD [3¢5,303]. The
DMP utility was then used on the file [305,303]203054.DIR to dump
the header of that file. The three sections of the file header
(header, identification, and map areas) provide useful information
for the wuser, and especially the operating system. The header
area provides the file sequence number (1335,3) which is wused to
locate the file on the volume, the file owner ([305,303]), the
file protection word ([REWD,RWED, RWED,R]), and other information.

The 1identification area supplies the file name, type,
revision number, the date and time of creation, and the date and
time of last revision. The DCL command, DIRECTORY, uses this
information from the header of the UFD file to provide the listing
you see at your terminal when you issue the command.

409



ADVANCED MAINTENANCE OPERATIONS

Example 1¢-4 shows the results of dumping the same directory
file in Octal Word format. The numbers in the first column
represent the virtual disk addresses for the data that follows.

Across the row is the octal representation of each word of data in
the file.

Example 10-5 shows the same directory file dumped in Radix-50
format; information 1in the file header is stored in Radix-50
format. To use the dump program efficiently, the user must Kknow
how the data is stored in the file.

Command Format

>RUN $DMP

DMP>TI:=305303.DIR/R5
20 o 0

Command to invoke the Dump program

Output file specification
Delimiter

Input file specification

A dump switch to specify a mode

410



ADVANCED MAINTENANCE OPERATIONS

Table 1¢-9 DMP Switch Format

H o l T — ASCII
- AY e Al
0 1 00 1 01l|o0 0 0|1 0 1 0 1 0 0
— A —— A ~ A -~ A —_— A y ,
1 1 0 l 1 2 4 — OCTAL BYTES
044124 — OCTAL WORD

TK-7710

Figure 10-9 How the DMP Program Interprets 16 Bits

411



ADVANCED MAINTENANCE OPERATIONS

DUMP OF DB2:([305,303]203054,DIR?! = FILE ID 1335,3,0
FILE HEADER

HEADER AREA

Ho, IDOF 027

H, MPOF 056

H,FNUM,

H.FSEQ (1335,3)

H,FLEV 401

H.FOWN {305,303]

H,FPRO [RWED,RWED,RWED,R]
H, UCHA 200 = UC,.CON
H.SCHA 000 =

H. UFAT

F.RTYP 001 = R,FIX
F+<RATT 000 =
F.RSIZ 20 = 16,

F.HIBK H:0 L:000002 = 2,
F.EFBK H:0 L:000003 = 3,
F.,FFBY 0 = 0,
(REST)
000000 000000 000000 000000 000000 900000 000000 000000
000500
IDENTIFICATION AREA
I,FNAM,
I,FTYP,
I.FVER 203054 «DIRzE
I.RVNO 1
I.RVDT 16=SEP=81
I.RVTI 11:07:52
I.CRDT 16=SEP=81
I.CRTI 11:07:52
I.EXDT - -
MAP AREA
M.ESQN 000
M.ERVN 000
M.EFNU,
M,EFS0 (0,0)
M.CTSZ 001
M.LBSZ 003
M.USE 002 = 2,
M, MAX 314 = 204,
M RTRV
SIZE LBN
2, H:1000 L:024104 = 10308,
CHECKSUM

H.CKSM 061747

Example 10-3 Directory File Header Dump

412



ADVANCED MAINTENANCE OPERATIONS

DUMP OF DB2:[305,3031203054,DIRs1 ~ FILE ID 1335,3,0
VIRTUAL BLOCK 0,000001 = SIZE 512, BYTES

000000 000152 000076 000000 071620 143245 000000 074742 000001
000020 001172 000025 000000 004640 000000 000000 100003 000002
000040 001201 000053 000000 004640 000000 000000 074742 000002
000060 003047 000111 000000 004640 000000 000000 014474 000001
000100 003060 000020 000000 055210 000000 000000 100003 000002
000120 003061 000011 000000 055210 000000 000000 074742 000002
000140 001533 000245 000000 054204 000000 000000 100003 000003
000160 003123 000054 000000 055210 076452 000000 100003 000002
000200 003124 000017 000000 055210 076452 000000 074742 000002
000220 003125 000100 000000 015370 000000 000000 100003 000002
000240 003126 000010 000000 015370 000000 000000 074742 000002
000260 003127 000046 000000 015370 076452 000000 100003 000002
000300 003131 000012 000000 015370 076452 000000 074742 000002
000320 003133 000037 000000 015370 000000 000000 014474 000002
000340 003134 000014 000000 062204 000000 000000 100003 000002
000360 003136 000061 000000 062204 000000 000000 074742 000002
000400 003143 000155 000000 062204 000000 000000 014474 000002
000420 003145 000012 000000 021300 000000 000000 100003 000002
000440 003154 000150 000000 055251 054374 000000 100003 000002
000460 003157 000011 000000 055254 000000 000000 100003 000002
300500 003277 000044 000000 055400 000000 000000 100003 000002
000520 003353 000002 000000 054010 000000 000000 100003 000002
000540 003355 000002 000000 054353 017500 000000 100003 000002
000560 003371 000002 000000 046166 000000 000000 100003 000002
200600 003401 000002 000000 046547 000000 000000 100003 000002
000620 003411 000002 000000 051272 000000 000000 100003 000002
000640 003441 000023 000000 011665 000000 000000 100003 000002
000660 003453 000002 000000 010155 000000 000000 100003 000002
000700 003457 000002 000000 077353 000000 000000 100003 000002
000720 003465 000002 000000 047006 000000 000000 100003 000002
000740 003473 000002 000000 024263 000000 000000 100003 000002
000760 003475 000002 000000 024261 000000 000000 100003 000002

Example 10-4 Directory File Dumped in Octal Word Mode

413



ADVANCED MAINTENANCE OPERATIONS

DUMP OF DB2:([305,303)203054,DIRy1 =~ FILE ID 1335,3,0

000000
000020
000040
000060
000100
000120
000140
000160
000200
000220
000240
000260
000300
000320
000340
000360
000400
000420
000440
000460
000500
000520
000540
000560
000600
000620
000640
000660
000700
000720
000740
000760

VIRTUAL BLOCK 0,000001f = SIZE 512, BYTES

BZ AV RSX 11iM ST8 A
04 u AUX TSK B
PA  AC AuX STB B
90 A3 AUX DAT A
9X P NSP TSK B
9Y I NSP STB B
Us DE NFT TSK C
A S AD NSP TAB TSK B
AT 0 NSP TAB STB B
AU AX DLX ISK B
AV H DLX STB B
AW 8 DLX TAB TSK B
AY J DLX TAB STB B
AS 1 PLX DAT B
A, L PCL TSK B
A0 AI PCL STB B
AS B/ PCL DAT B
A7 J Eve TSK B
AAD BX NTI NIT TSK 8
AAG I NTL TSK B
ACG 6 NVP TsK B
ADK B NCP : TSK B
ADM 8 NIC E TSK B
ADY B LIN TSK -]
AD3 B LOO TSK B
AEA B MIR TSK B
AEY S CFE TSK B
AES 8 BYE ISK )
AE9 B TLK TSK B
AFE B LSA TSK B
AFK B FTIS TSK B
AFM B FTQ TSK B

Example 1@-5 Directory File Dumped in Radix-5@¢ Mode

LEARNING ACTIVITIES

READ the following in the RSX-11M/M-PLUS
Utilities Manual:

e Chapter 11, File Dump Utility (DMP)

e Chapter 4, File Transfer Program
(FLX)

READ the following sections in the
RSX-11M/M-PLUS Command Language Manual:

e 2.5, Show Queue
e 4.4.2, Print

DO Written Exercises 12 through 16 for
this module.

414



ADVANCED MAINTENANCE OPERATIONS

PROGRAM MAINTENANCE
Comparing the Contents of Two Files
File Compare Utility (CMP)

The File Compare Utility (CMP) compares the contents of two
ASCII files to determine their differences. CMP reads the two
input files, comparing them line-by-line, and generates a 1listing
showing the difference.

The DCL command to invoke the utility is DIFFERENCES which is
shown in the command format below. The /OUTPUT qualifier
indicates that the differences should be placed in a file with the
name DIF.DIF. If you want the output to come to the terminal,
omit the /OUTPUT qualifier. The next two file specifications
indicate which files are to be compared.

Example 10-6 shows the contents of two ASCII files. Using
these two files as input to the CMP produces the results found in
Example 1¢-7.

Example 10-7 shows the standard output format, indicating the
lines that are different between the files.

Example 1¢-8 is an example of the second output format
available. On lines 6, 8, and 13-17, an exclamation point appears
to the right of the 1line number. This character 1is wused to
represent a change bar, and indicates which lines in the second
input file differ from the first input file.

Command Format

>DIFFERENCES/OUTPUT: DIF.DIF SOURCE.MAC;1 SOURCE.MAC;2

415



ADVANCED MAINTENANCE OPERATIONS

A4

.,

»TYPE COMPARE.TXT

THIS IS8 A TEST TO SHOW THE RESULTS OF THE COMPARE
FILE UTILITY (CMP). THIS UTILITY COMPARES TWO

ASCII FILES. THE FILES ARE COMPARED LINE BY LINE TO
DETERMINE WHETHER PARALLEL RECORDS ARE IDENTICAL.
USING CMP» YOU CAN FERFORM THE FOLLOWING FILE-
COMPARE FUNCTIONS!

R

GENERATE A LISTING SHOWING THE DIFFERENCES
BETWEEN THE TWO FILES. EACH DIFFERENCE IS
LISTED AS A FAIR3 FIRSTy THE LINES FROM
THE FIRST FILE THAT ARE BEING COMFPARED TO
LINES IN THE SECOND FILE, THEN THE LINES
FROM THE SECOND FILE,

GENERATE A LISTING IN THE FORM OF ONE LIST,
WITH DIFFERENCES MARKED BY CHANGE BARS.

GENERATE OUTFUT SUITARLE FOR INFUT TO THE SLFP
UTILITY. THIS OQUTPUT CONTAINS THE SLP COMMANDS
AND INPUT REQUIRED TO MAKE THE FIRST INFUT

FILE IDENTICAL TO THE SECOND INPUT FILE.

>TYPE CMP.TXT

THIS IS A TEST TO SHOW THE RESULTS OF THE COMFARE
FILE UTILITY (CMP), THIS UTILITY COMFARES TWO

ASCII FILES. THE FILES ARE COMFARED LINE BY LINE TO
DETERMINE WHETHER PARALLEL RECORDS ARE IDENTICAL.
USING CMP» YOU CAN PERFORM THE FOLLOWING FILE~
COMPARE FUNCTIONS?

GENERATE A LISTING SHOWING THE DIFFERENCES
BETWEEN THE TWO FILES. EACH DIFFERENCE IS
LISTED AS A PAIR} FIRST» THE LINES FROM
THE FIRST FILE THAT ARE BEING COMFARED TO
LINES IN THE SECOND FILE, THEN THE LINES
FROM THE SECOND FILE.

GENERATE A LISTING IN THE FORM OF ONE LIST,
WITH DIFFERENCES MARKED BY CHANGE BARS.

GENERATE OUTFUT SUITAELE FOR INPUT TO THE SLF
UTILITY. THIS OUTPUT CONTAINS THE SLP COMMANDS
AND INPUT REQUIRED TO MAKE THE FIRST INFUT

FILE IDENTICAL TO THE SECOND INPUT FILE.

CMP PROVIDES SWITCHES THAT ALLOW YOU TO CONTROL COMPARE
PROCESSING., USING THESE SWITCHES, YOU CAN CONTROL
COMPARISON OF BLANKSs TABS» FORM-FEEDS, AND COMMENTS.
YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
LINES REQUIRED FOR CMP TO CONSIDER THAT A MATCH IS MADE
BETWEEN LINES IN THE TWO FILES.

>

>

Example 10-6 Two Similar ASCII Files

416



ADVANCED MAINTENANCE OPERATIONS

>DIFFERENCE/OUTPUT!DIF,TXT COMPARE.TXT CMP.TXT

>TYPE DIF.TXT .

123323322232 23233223223323323323222332232833233222¢%3%
1) DBO!C305,3031COMPARE.TXT#1

12332333 ¢2 22 8¢ 3
2) DBO!C3I0Ss303ICMP.TXT32
23 CMF FROVIDES SWITCHES THAT ALLOW YDU TO CONTROL COMFARE
24 PROCESSING. USING THESE SWITCHES, YOU CAN CONTROL
25 COMPARISON OF ELANKS, TABS: FORM-FEEDS, AND COMMENTS.
26 YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
27 LINES REQUIRED FOR CMFP TO CONSIDER THAT A MATCH IS MADE
28 BETWEEN LINES IN THE TWO FILES,

1 differences found
DIF.TXT/BL/FF=COMPARE .TXTsCMP . TXT
>DIFFERENCE/OUTPUT!DIF.TXT/CHANGE_BAR COMFARE.TXT CMP.TXT
>TYPE DIF.TXT
83322333333 2338233823332333282332332833283233¢2823243
1) DBO!C305,3031COMPARE.TXT#1
p2 8233333882838 %
2) DBOCL30S,303ICMP.TXTH2
23 CMP PROVIDES SWITCHES THAT ALLOW YOU TO CONTROL COMPARE
24 PROCESSING, USING THESE SWITCHES, YOU CAN CONTROL
25 COMPARISON OF BLANKSy TABSs FORM-FEEDS» AND COMMENTS.
26 YOU CAN ALSO CONTROL LINE NUMBERING AND THE NUMBER OF
27 LINES REQUIRED FOR CMF TO CONSIDER THAT A MATCH IS MADE
28 BETWEEN LINES IN THE TWO FILES.

1 differences found
DIF.TXT/BL/FF/VB=COMPARE . TXTsCHNP . TXT
>

Example 10-7 Compare Program Output Between Two ASCII Files
(Standard Format)

1 «TITLE FIG1

2 TEXT: +ASCII /TRY THIS, DID IT WORK?/
3 RO=%0

4 R1=%1

5 R2=%2

6 ! DOT=’,

8 ! BUFF «BLKB *D8O

9 +EVEN

11 ST: Mov $TEXT,RO
12 MOV #BUFF,R1
13 ! MOV #DOT,R2

14 ! LDoP: MOVB (RO)+,(R1)
15 !¢ CMPB (R1)+,R2
16 !¢ BNE LOGOP

17 ! JEND

2 DIFFERENCES FOUND
PROG,DIF/CB=PROG,MAC;2,PROG,MAC:3

Example 10-8 Change Bar Format

417



ADVANCED MAINTENANCE OPERATIONS

LEARNING ACTIVITIES

READ Chapter 12, File Compare Utility
(CMP), in the RSX-11M/M-PLUS Utilities

Manual.

READ Section 4.4.5, Differences, 1in the
RSX-11M/M-PLUS Command Language Manual.

DO Written Exercise 17 for this module.

418



APPENDIX A
BATCH JOBS
(M-PLUS ONLY)

BATCH JOB FILE

In addition to the 1Indirect Command File Processer, the
RSX-11M-PLUS Operating System has another means of automating a
process. The Batch File Processor is like the Indirect Command
File Processor in that it 1is able to read and then process
commands from a file. Because the job 1is run from a wvirtual
terminal, your terminal is free to do other tasks.

419



APPENDIX A BATCH JOBS (M-PLUS ONLY)

BATCH Command Line

The following command line format shows how to write a batch
command . The dollar sign in the first position is necessary to
indicate that the line is to be interpreted as a Batch command.
If the dollar sign is not present, the line is considered to be
data. The first command in the Batch file is JOB (mandatory) and
marks the beginning of the job. The last command is EOJ
(mandatory) which indicates the end of the job. What comes in
between is dependent upon the process you are automating, and will
include some or possibly all of the commands listed in Table A-1.

Command Format

> $[START:JIPRINT _DELTAX.TXT] =

‘. Batch processor symbol indicating that the line following is
to be interpreted as a DCL command.

Optional label (1 through 6 characters terminated by a colon)

used to mark a position in the command file to which a GOTO
statement may refer.

Any DCL or MCR command except LOGIN, LOGOUT, HELLO and BYE.

Character (hyphen) to indicate the command will be continued
on the next line.

429



Batch Commands

APPENDIX A BATCH JOBS (M-PLUS ONLY)
Table A-1

—

%;&;a;,,gszwg
-

Brruy T
e B e
-
; Esoiaslus bEaos e
A

‘. .
o - -
. e
=
-
-

-
neiung
-

Lo . . T
= -
5 i

: .
- ww@%wwﬁs

-
=

o
o

.

421



APPENDIX A BATCH JOBS (M-PLUS ONLY)

PROCESSING THE BATCH FILE

After vyou define the process and translate it into a
corresponding Batch file, the next step is to submit the batch job
for processing. The following command format shows how to do
this.

The SUBMIT command places your job in the Batch queue, which
the Queue Manager checks periodically for jobs to run.

Depending upon the SUBMIT command qualifiers you use, (Table
A-3) and the number of Jjobs in the Batch queue, your job may
either start up immediately, or at a later time. The /AFTER
qualifier allows you to specify the time at which you wish the
Queue Manager to consider your job for processing.

Once a job is in the queue, you must wuse the SET QUEUE,
RELEASE/JOB, DELETE/JOB or SHOW QUEUE to display, delete or change
the characteristics of the job (Table A-4).

The Batch Processor automatically provides a record of the
activity generated when processing a job, which is called the log
file. Unless you specify otherwise, this log file prints on vyour

system's 1line printer after processing is complete, and then is
deleted.

Example A-1 shows a Batch file and the 1log file the Batch
processor creates when processing the file.

Command Format

>SUBMIT/JOB:BATRUN BATCH.CMD,PROCESS.CMI
o e & o &

Command to queue a Jjob for processing by a batch processor

Command qualifier

File specification of file from which batch commands will be
read. Default file type is .CMD.

File specification delimiter

422



APPENDIX A BATCH JOBS (M-PLUS ONLY)

Table A-2 Exit Status Code

Table A-3 Submit Command Qualifiers

423



APPENDIX A BATCH JOBS (M~-PLUS ONLY).

Table A-4 Changing the Batch Queue

Examples A-1 and A-2 show how Batch commands can be organized
to automate a process. Example A-1 allocates a disk drive, mounts
the volume and performs a full directory on the volume, sending
the output to the line printer. Then the volume is dismounted,
and the drive deallocated.

Example A-2 runs a task called WONDER, If a severe error
occurs, a message is sent to terminal number 16 indicating that an
error has occurred, and the run will end. If an error occurs, a
message is sent to terminal number 10, and the task OLD is run.
If a warning occurs, a message is sent to the terminal and the
command file terminates.

424



APPENDIX A BATCH JOBS (M-PLUS ONLY)

$JOB PRTJOB ([305,303]

$ITHIS IS A BATCH CONTROL FILE THAT WILL PRINT ALL MY

$IMY MACRO SOURCE FILES., WHEN I SUBMIT THIS FILE FOR PROCESSING
$§11 WILL USE THE /AFTER QUALLFIER OF THE SUBMIT COMMAND TO
$!DELAY THE EXECUTION UF THE BATCH FILE UNTIL AFTER NORMAL

$ I WORKING HOURS SO THAT I wON’T TIE UP THE PRINTER,

SPRINT ¥*.,MAC

$EOQJ

QMG Betch Job = PRTJOB BPR VB2 2deJAN=82 11117 Page 1|
Processor BAPO

11117108 $J08 PRTJOB [305,303]

2SS 8SSEI3IZTTEISSSTSSRITITTISTTSSTES
User Job = PRTJOB Terminal VT2:
uIc = (305,303)

TERM
’ RSX=i{iM=PLUS V02 BLS [2,54) System KERMIT
: ERR R NN RR AR AN RRA R RN AN RN RN R R AR AR AN R AR RN RN B RN RN RN R R AR AR AW
: * Welcome to RSXe{iMeP_US bateh *
. " Version 2 Base leve! 8 *
. * 1]
. * This is file LBE[1,2)BATCH,TXT *
* *
: BRERRRRNRERREERARRRRENA AR RR A AR ARRAR R ARN AR R ARk h ks
1 ]
11317110 ${THIS IS A BATCH CONTROL FILE THAT WILL PRINT ALL MY
11117110 $|MY MACRO SOURCE FILES, WHEN I SUBMIT THIS FILE FOR PROCESSING
11317110 $J1 WILL USE THE /AFTER QUALIFIER OF THE SUBMIT COMMAND TO
1131710 $IDELAY THE EXECUTION OF THE BATCH FILE UNTIL AFTER NORMAL
11117210 $IWORKING HOURS 80 THAT I WON’T TIE UP THE PRINTER,
11117810 SPRINT # MAC

TERM PRY = Job 666y name "PRTJOB ", subm{tted to queue "PRINT *
11117318 $SEOJ _
TERM Connect timet 1 minutes
. CPU time usedt! 2 seconds
N Tesk totals [

Example A-1 Batch Control File to Print MACRO Source Files

425



APPENDIX A BATCH JOBS (M-PLUS ONLY)

$J0B

$!

8! THIS BATCH JUB WILL GET A FULL DIRECTORY LIS1ING
8! OF AN PLOY DISK THAT IS ALREADY LOADED AND SPUN UP,
s!

$SET TERMINAL MCR

SALL DL13

$MOU NL1:IMREADY

$PIP LPO:=DL1:(¥,*)/FU

$0OMD DL1:

$OEA DL1:

$£0J

$JOB AONE[303,14)

$!

8! IF COMMAND EXAMPLE

$!

$RUN WONWDER,TSK

$IF SEVEREERROR THEN GOTIOQ BOMB
$IF ERR THEWN GOTO ALAS

$IF WARNING THEN GOTU OKAY

$GOTO REST !SUCCESS ASSUMED
$80MB:

$3R0O TT10: SEVERE ERRQOR. RUN ENDS
$STOP

$ALASS

$BRO TT10: ERROR RUNNING OLD,TSK
SRUN OLD.TSK

$GOTO REST

$OKAY:

$SBRO TT10:WARNING RECEIVED
SREST:E0J

Example A-2 Sample Batch Command Files

426



15,0000 000080008 000000000000800N00 RIS

r 4 ¥ L ] ) ¥ ¥

Digital EQuipment Corporation ¢ Bedford, MA 01730



