
Linearizable Counting Networks

Maurice Herlihy Nir Shavit� Orli Waartsy

Digital Equipment Corporation
Cambridge Research Lab

CRL ����� December �� ����

Abstract

The counting problem requires n asynchronous processors to assign themselves
successive values� A solution is linearizable if the order of the values assigned re�ects
the real�time order in which they were requested� Linearizable counting lies at the
heart of concurrent timestamp generation� as well as concurrent implementations
of shared counters� FIFO bu�ers� and similar data structures�

We consider solutions to the linearizable counting problem in a multiprocessor
architecture in which processors communicate by applying read�modify�write op�
erations to a shared memory� Linearizable counting algorithms can be judged by
three criteria� the memory contention produced� whether processors are required
to wait for one another� and how long it takes a processor to choose a value �the
latency�� A solution is ideal if it has low contention� low latency� and it eschews
waiting� The conventional software solution� where processes synchronize at a sin�
gle variable� avoids waiting and has low latency� but has high contention� In this
paper we give two new counting network constructions� one with low latency and
low contention� but that requires processors to wait for one another� and one with
low contention and no waiting� but that has high latency� Finally� we prove that
these trade�o�s are inescapable� an ideal linearizable counting algorithm is impos�
sible� Since ideal non�linearizable counting algorithms exist� these results establish
a substantial complexity gap between linearizable and non�linearizable counting�

�MIT Lab� for Computer Science� Supported by DARPA contracts N���������J�����
and N���������K����	 and by a Rothschild postdoctoral fellowship�

yStanford University� Supported by the NSF grant CCR�������� and by ONR contract
N���������K���

�

A preliminary version of this work appeared in the Proceedings of the �	�nd Annual

Symposium on Foundations of Computer Science� San Juan� Puerto Rico� October

��
� pp� �	
����� ���

c�Digital Equipment Corporation
��
� All rights reserved�

��� replied the businessman� �I count them and recount them� It is di�cult but
I am a man who is naturally interested in matters of consequence��

� Antoine de Saint�Exup�ery� The Little Prince

� Introduction

In the counting problem� asynchronous concurrent processors repeatedly as�
sign themselves successive values� such as integers or locations in memory	
The linearizable counting problem requires that the order of the values as�
signed re
ects the real�time order in which they were requested	 For ex�
ample� if k values are requested� then values � � � �k � � should be assigned�
and if processor P is assigned a value before processor Q requests one� then
P �s value must be less than Q�s	 Linearizable counting lies at the heart
of a number of basic problems� such as concurrent time�stamp generation�
concurrent implementations of shared counters� FIFO bu
ers� and similar
data structures �e	g	 ��� ��� ��� ����	

The requirement that the values chosen re
ect the real�time order in
which they were requested is called linearizability ����	 The use of lineariz�
able data abstractions greatly simpli�es both the speci�cation and the proofs
of multiple instruction�multiple data �MIMD� shared memory algorithms	
As discussed in more detail elsewhere ����� the notion of linearizability gener�
alizes and uni�es a number of ad�hoc correctness conditions in the literature�
and it is related to �but not identical with� correctness criteria such as se�
quential consistency ���� and strict serializability ����	

Linearizable counting algorithms can be judged by three criteria�

� Contention� Because of limitations on processor�to�memory band�
width� performance su
ers when too many processors attempt to ac�
cess the same memory location at the same time	 Such �hot�spot�
contention is well�documented� and has been the subject of exten�
sive research both in hardware ��� ��� ��� ��� ��� and in software
��� �� �� ��� ���	

� Latency� The time needed to choose a value is strongly a
ected by
the number of variables a processor must access	 We will show that
�not surprisingly� there is an inherent �inverse� relationship between
the maximum contention at a variable and the number of variables
accessed	

�

� Waiting� Algorithms that require later processors to wait for earlier
processors are not robust � the failure or delay of a single processor
will result in halting or delays in non�faulty processors	 All else be�
ing equal� it is preferable to choose algorithms that ensure that some
processes make progress even when others halt in arbitrary locations	

Informally speaking� a linearizable counting algorithm is ideal if it has low
contention� low latency� and it eschews waiting	 In this paper� we will show
that no ideal linearizable counting algorithm exists� but that it is possible
to satisfy any two out of the three criteria	

First� consider the naive solution in which all n processors increment a
single shared variable using a read�modify�write � operation	 This algorithm
has low latency �a single variable�� it eschews waiting �the read�modify�write
is assumed to be atomic�� but very high contention	 �For more complete doc�
umentation of the performance problems of the single�variable solution see
Anderson et al	 ��� and Graunke and Thakkar ����	 Also see the experimen�
tal results described below	�

Elsewhere ���� we have proposed low�contention solutions to the �non�
linearizable� counting problem based on a new class of data structures called
counting networks	 In this paper� we show how counting networks can be
adapted to solve linearizable counting	 We �rst give a construction that
employs a counting network of depth O�logn�	 This construction has low
contention and low latency� but it requires processes to wait for one another	
We then give a two alternative counting network constructions that do not
require waiting	 The �rst employs a network of depth O�n�� and it guaran�
tees that some non�halted processor makes progress	 The second employs a
network of depth O�n��� and it guarantees that every non�halted processor
makes progress	

Finally� we prove that these trade�o
s are a fundamental aspect of lin�
earizable counting� any low�contention network that does not rely on wait�
ing must have depth ��n�� where n is the number of processes	 Since
non�linearizable counting does have ideal solutions ��� with low contention�
polylogarithmic depth� and no waiting� this result establishes a substantial
complexity gap between linearizable and non�linearizable counting	

�A read�modify�write operation ���� atomically reads the value of a memory location

modi�es it
 writes it back
 and returns the location�s old value�

�

��� Background

A counting network� like a sorting network ���� is a directed graph whose
nodes are simple computing elements called balancers� and whose edges are
called wires	 Each token �input item� enters on one of the network�s w � n
input wires� traverses a sequence of balancers� and leaves on an output
wire	 Unlike a sorting network� a w input counting network can count any
number N � w of input tokens even if they arrive at arbitrary times� are
distributed unevenly among the input wires� and propagate through the
network asynchronously	

Figure � shows a four�input four�output counting network	 Intuitively�
a balancer �see Figure �� is just a toggle mechanism that repeatedly alter�
nates in sending tokens out on its output wires	 Figure � shows an example
computation in which input tokens traverse the network sequentially� one
after the other	 For notational convenience� tokens are labeled in arrival
order� although these numbers are not used by the network	 In this net�
work� the �rst input �numbered �� enters on wire � and leaves on wire ��
the second leaves on wire �� and so on	 �The reader is encouraged to try
this for him�herself	� Thus� if on the i�th output wire the network assigns
to consecutive output tokens the values i� i � �� i� � � �� � � �� it is counting
the number of input tokens without ever passing them all through a shared
computing element�

Counting networks achieve a high level of throughput by decomposing
interactions among processors into pieces that can be performed in par�
allel� e
ectively reducing memory contention	 In ���� two O�log� n� depth
counting network designs were presented	 Aharonson and Attiya ��� have re�
cently proved several fan�out and cyclicity properties of such networks� and
Klugerman and Plaxton ���� have shown an explicit network construction of
depth O�c log

� n logn� for some small constant c� and an existential proof of
a network of depth O�logn�	

Unfortunately� all known counting network constructions ��� �� ��� are
not linearizable	 It is even possible for a processor to shepherd two tokens
through a network� one after the other� and by suitable overtaking� have the
second token receive the lesser value	 Can counting networks solve lineariz�
able counting�

�

��� Overview

In Section �� we propose a simple data structure� called aWaiting�filter�
which transforms any low�contention non�linearizable counting protocol into
a low�contention linearizable counting protocol	 The resulting protocol� how�
ever� requires that later processors wait for earlier processors to complete�
implying that the failure or delay of a single processor will produce halting or
delay in the other� non�faulty processors	 Nevertheless� we give experimen�
tal evidence that in the absence of such timing anomalies� the transformed
protocol performs as well as the original	

In Section �� we present two linearizable counting protocols that do not
require processors to wait for one another	 Each of these protocols uses two
counting networks� a standard non�linearizable counting network� and a
��lter� network	 In the �rst Skew network each token traverses an average
of O�n� balancers� but an individual token may be forced along an in�nite
path if it is in�nitely often overtaken	 The second Reverse�skew network
construction guarantees that every token emerges after traversing O�n��
balancers� hence starvation is impossible	 If implemented directly in terms
of balancers� these �lter networks would have in�nite size� so we give a simple
technique for �folding� these in�nite networks onto �nite data structures	

In Section �� we prove that the trado
s among our constructions is in�
herent	 In any low�contention linearizable counting network� a token must
traverse an average of ��n� gates before taking a value	 In ���� it was
shown that there exist width n non�linearizable counting networks in which
each token traverses at most O�logn� balancers	 Our results therefore es�
tablish a substantial complexity gap between the class of linearizable and
non�linearizable counting networks � in other words� linearizability comes
at a cost	

� A Brief Introduction to Counting Networks

In this section we provide an introduction to counting networks	 A more
complete discussion of the properties of counting networks can be found in
��� ��	

Counting networks belong to a larger class of networks called balancing
networks� constructed from wires and computing elements called balancers	
A balancer is a computing element with two input wires� denoted as the north
and south wires �and indexed by � and ��� and two output wires� similarly
named	 Tokens arrive on the balancer�s input wires at arbitrary times and

�

x

x

0

1

y =
0

x + x0 1

2

1
y =

x + x0 1

2

bbbbaaaallllaaaannnncccceeeerrrr

7 6 4 2 1

5 3

1 3 5 7

2 4 6

input output

bbbb

Figure �� A Balancer	

are output on its output wires	 Intuitively� one may think of a balancer as a
toggle mechanism� that given a stream of input tokens� repeatedly sends one
token to the left output wire and one to the right� e
ectively balancing the
number of tokens that have been output on its output wires	 We denote by
xi� i � f�� �g the number of input tokens ever received on the balancer�s i�th
input wire� and similarly by yi� i � f�� �g the number of tokens ever sent on
its i�th output wire	 Throughout the paper we will abuse this notation and
use xi �yi� both as the name of the i�th input �output� wire and a count of
the number of tokens received on the wire	

Let the state of a balancer at a given time be de�ned as the collection of
tokens on its input and output wires	 For the sake of clarity we will assume
that tokens are all distinct	 We denote by the pair �t� b�� the state transition
in which the token t passes from an input wire to an output wire of the
balancer b	

We can now formally state the safety and liveness properties of a bal�
ancer�

�	 In any state x� � x� � y� � y� �i	e	 a balancer never creates output
tokens�	

�	 Given any �nite number of input tokens m x�� x� to the balancer�
it is guaranteed that within a �nite amount of time� it will reach a
quiescent state� that is� one in which the sets of input and output
tokens are the same	 In any quiescent state� x� � x� y� � y� m	

�	 In any quiescent state� y� dm��e and y� bm��c	

A balancing network of width w is a collection of balancers� where out�
put wires are connected to input wires� having w designated input wires
x�� x�� ��� xw�� �which are not connected to output wires of balancers�� w
designated output wires y�� y�� ��� yw�� �also unconnected�� and containing
no cycles	 Let the state of a network at a given time be de�ned as the union
of the states of all its component balancers	 The safety and liveness of the

�

network follow naturally from the above network de�nition and the proper�
ties of balancers� namely� that it is always the case that

Pw��
i�� xi �

Pw��
i�� yi�

and for any �nite sequence of m input tokens� within �nite time the network
reaches a quiescent state� i	e	 one in which

Pw��
i�� yi m	

It is important to note that we make no assumptions about the timing of
token transitions from balancer to balancer in the network � the network�s
behavior is completely asynchronous	 Although balancer transitions can
occur concurrently� it is convenient to model them using an interleaving
semantics in the style of Lynch and Tuttle ����	 An execution of a network
is a �nite sequence s�� e�� s�� � � �en� sn or in�nite sequence s�� e�� s�� � � � of
alternating states and balancer transitions such that for each �si� ei��� si����
the transition ei�� carries state si to si��	 A schedule is the subsequence of
transitions occurring in an execution	 A schedule is valid if it is induced by
some execution� and complete if it is induced by an execution which results
in a quiescent state	 A schedule s is sequential if for any two transitions
ei �ti� bi� and ej �tj � bj�� where ti and tj are the same token� then all
transitions between them also involve that token	 In other words� tokens
traverse the network one completely after the other	

In a MIMD shared memory multiprocessor� a balancing network is im�
plemented as a data structure� where balancers are records and wires are
pointers from one record to another	 Each of the machine�s n asynchronous
processors runs a program that repeatedly traverses the data structure� each
time shepherding a new token through the network �see the following Sub�
section �	��	 The limitation on the number of concurrent processors trans�
lates into a limitation on the number of tokens concurrently traversing the
network�

Pw��
i�� xi �

Pw��
i�� yi � n	

We de�ne the depth of a balancing network to be the maximal depth of
any wire� where the depth of a wire is de�ned as � for a network input wire�
and maxi�f����g�depth �xi� � �� for the output wires of a balancer having
input wires xi� i � f����g	

A counting network of width w is a balancing network whose outputs
y�� ��� yw�� have the step property in quiescent states�

� � yi � yj � � for any i � j	

To illustrate this property� consider an execution in which tokens traverse
the network sequentially� one completely after another	 Figure � shows such

�

an execution on the Bitonic��� network de�ned in ���	 As can be seen� the
network moves input tokens to output wires in increasing order modulo w	 A
balancing network having this property is called a counting network� because
it can easily be adapted to count the number of tokens that have entered
the network	 Counting is done by adding a �local counter� to each output
wire i� so that tokens coming out of that wire are consecutively assigned the
numbers i� i� w� i� �w� ��� i� �yi � ��w	 The number i� w � k assigned by
the counter at the end of output wire i to the k�th token exiting on it� is
called the token�s value	 We can now state the following simple yet useful
lemma�

Lemma ��� When a token takes a value v� then there are at most n � �
values less than v that are yet untaken�

Proof� Suppose otherwise	 A value is missing if no token has taken it	
If we let the network quiesce� then all values less than v will be taken	
Therefore every missing value corresponds to a token traversing the network�
and the claim follows because there are at most n tokens in the network	

Note that when a token takes v� it may not yet be determined which token
will take which of the lower values	

De�ne the traversal interval of a token through the network to be the
time interval �tenter � texit� from the moment it entered the balancing network
and until it exited it	

A counting network is linearizable if for any two tokens a and
b with traversal intervals �t aenter � t

a
exit� and �t

b
enter� t

b
exit�� if t

a
exit �

t benter then value�a� � value�b�	

Though outside the scope of this paper� this de�nition can easily be shown
to meet the linearizability de�nition of ����	 �

��� Implementing a Counting Network

In this paper� we assume that counting networks are implemented on a
multiprocessor in which processors communicate by applying read�modify�
write operations to a shared memory	 The counting network is implemented

�Informally
 this would amount to showing that the history of all processor�s requests
�of values� and replies is equivalent to a sequential history which is consistent with all
non�concurrent pairs of request�reply events�

�

7 6 2

4 3 1

5

1 4

3

2 6

5 7

1 5

4 7

2 6

3

4

3 7

1 5

2 6

inputs

1 5

2 6

3 7

4

outputs

Figure �� A sequential execution of an input sequence to a Bitonic��� net�
work	

as a data structure in memory	 A balancer is represented as a record with
the following �elds� toggle is a boolean value �initially True� and north
and south are pointers which reference either other balancers� or counter
cells	 Processors shepherd tokens through the network by executing the
code shown in Figure �	 Each processor toggles the balancer�s state by
calling fetch�complement� which atomically complements the toggle �eld
and returns the old value	 Based on the toggle state� it goes to the north or
south successor	 When it encounters a counter� it atomically increments it
by w and returns the old value	 Note that balancers use only bounded size
memory� but counters� by de�nition� do not	

� The Waiting Filter

We begin by proposing a solution with low contention and low latency� but
that requires processors to wait for one another	 The key idea is simple�
each token exiting the network simply waits for a token to take the next
lower value	 This solution is therefore not robust� since a failure or delay
by one processor will force halting or delays in other� non�faulty processors	
Nevertheless� contention is low� since every processor waits on a separate
location	

We use two component data structures	 The �rst is a non�linearizable
counting network of arbitrary width �e	g	� the bitonic or periodic networks
����� and the other is aWaiting�filter of width n	 Informally� theWaiting�

filter is a kind of barrier� to be traversed after the non�linearizable network�

�

balancer �toggle� boolean� north� south� pointer�
traverse�b� pointer� returns�integer�

loop until counter�b�
state � fetch!complement�b	toggle�
if state

then b � b	north
else b � b	south
end if

end loop

v � fetch!add�b	state�w�
return v
end traverse

Figure �� Code for Traversing a Counting Network of width w

where each token waits for the tokens with lower values to �catch up	� A
token leaves the �lter only when all lower values have been assigned� guar�
anteeing that every token that enters the network later will receive a higher
value	 More precisely� a Waiting�filter is an n�element array of boolean
values� called phase bits� where indexing starts from �	 De�ne the function
phase�v� to be b�v�n�c mod �	 We construct the new network by having
tokens �rst traverse the counting network and then access the Waiting�

filter	 When a token exits the non�linearizable counting network with
value v� it awaits its predecessor by going to location �v � �� mod n in the
�lter� and waiting for that location to be set to phase�v � ��	 When this
event occurs� it noti�es its successor by setting location v to phase�v�� and
then it returns its value	

Lemma ��� When token p with value v sets its phase bit� every token that
takes a lesser value has also set its phase bit�

Proof� Assume by way of contradiction that p is the token of lowest value
v to violate this property	 It must have seen location v�� mod n in the �lter
set to phase�v� ��� a value that could only have been written by the token
with value v � �kn � �� for some k � �	 In particular� a token with value
v � n� � could not have yet written its phase bit� and thus by assumption�
neither could any token with one of the n values v�n � � �v� �	 By the step
property of the non�linearizable counting network� since a token with value
v exited the network� there must be at least n�� tokens currently traversing

�

the network or past the network and before the phase change� that will take
on the values v � n� �� v� n� � � � � v� �	 Since by de�nition there can be at
most n tokens concurrently in the construct� we have a contradiction	

Corollary ��� The Waiting�filter is a linearizable counter�

��� Performance

We now make a brief digression to explore the performance of theWaiting�

filter	 In a cache�consistent architecture� the Waiting�filter has very
low contention� since each position is concurrently read by only one processor
and written by only one processor	 Waiting for a location to change value
does not produce memory contention� since the waiting processor simply
rereads the value in its cache� and does not need to access the shared memory
until the cache is invalidated	

To explore how the waiting �lter performs in practice� we compare the
performance of a bitonic counting network with and without theWaiting�

filter	 As a control� we also compare the performance of a conventional
spin lock� implemented by an in�line compiled �test!test!set� ���� loop	
These implementations were done in C on an Encore Multimax	

For each network� we measured the elapsed time necessary for a ���

�approximately a million� tokens to traverse the network� controlling the
level of concurrency	 In Figure �� the horizontal axis represents the number
of processes executing concurrently	 When concurrency is �� each processor
runs to completion before the next one starts	 The number of concurrent
processes increases until all sixteen processes execute concurrently	 The
vertical axis represents the elapsed time �in seconds� until all ��� tokens
have traversed the network	 Each point on each curve represents the same
amount of work	

At low levels of concurrency� the spin lock outperforms the networks� but
as concurrency increases� the spin lock�s throughput diminishes dramatically�
while the networks� throughputs eventually increase	 The throughputs of the
linearizable and non�linearizable networks are essentially the same	

� Linearizable Counting Without Waiting

In this section� we present two linearizable counting protocols with low con�
tention that do not require processes to wait for one another	 Just as in the
waiting construction given in the previous section� each token traverses a

��

non�linearizable counting network followed by a ��lter� network	 The �rst
protocol is non�blocking� it guarantees that some token always emerges after
the system as a whole has taken a bounded number of steps� but it allows
individual tokens to run forever without taking a value �starvation�	 The
second construction is wait�free� it guarantees that every token emerges af�
ter taking a �xed number of steps �no starvation�	 Both networks have high
latency� with depth ��n�	

��� The Skew Network

Our �rst construction is based on the Skew �lter� a balancing network
illustrated in the right�hand�side of Figure � �for now� ignore the empty
balancers and the numeric labels�	 A Skew�layer network is an unbounded
size balancing network consisting of a sequence of balancers bi� for � � i	 For
b�� both input wires are network input wires	 For all bi� the north output
wire is a network output wire� and the south output wire is the north input
wire for bi��	 A Skew balancing network with a layer depth � of d� is
constructed by layering d Skew�layer networks so that the i�th output
wire of one is the i�th input wire to the next	 We say that a balancer b has
layer i if it belongs to the i�th Skew�layer component	

This �lter is combined with a non�linearizable counting network as fol�
lows	 Each token �rst traverses the non�linearizable counting network� and
then uses the resulting value as the index of its input wire into the in��
nite Skew �lter network	 For brevity� we refer to these two data structures
as the combined Skew network� even though the ensemble is not� strictly
speaking� a counting network	

The correctness of our constructions is based on the following technical
lemma� easily proven by induction on the number of balancers in a balancing
network	

Lemma ��� For any balancing network� if exactly c tokens enter on each
input wire� then exactly c tokens will arrive at each input wire of each bal�
ancer�

Corollary ��� In any execution where no more than c tokens enter on any
input wire� there are never more than c tokens on any wire�

The capacity c of an execution in which n tokens concurrently traverse a
network is de�ned to be the maximal number of tokens that arrive on any

�Layer depth should not be confused with depth
 which is in�nite for Skew�

��

input wire	 Let the capacity c of a network be the maximum capacity over
all executions	 Corollary �	� implies that in a network with capacity c� no
more than c tokens arrive on any internal or output wire during an execution
involving n tokens	

In the Skew �lter� the capacity c is �� that is� at most one token en�
ters�exits on each of a balancer�s input�output wires	 We can thus de�ne
the toggle state of a balancer to be the number of tokens it has output	
Let a northwest barrier starting in balancer bk be a sequence of balancers
bk� � � � � b�� all in toggle state �� where the north input wire of every bi is the
south output wire of bi��� and where b��s north input is wire �	 It immedi�
ately follows from Lemma �	� that any token that approaches a balancer in
a northwest barrier will be diverted below the barrier� e
ectively protecting
all wires behind the barrier from late�arriving tokens	

Lemma ��� If a token p exits a balancer b on its south wire� then there is
a northwest barrier starting from b�

Proof� By induction on i� the number of the wire on which p exited south
from a balancer b	 For i � the result is immediate	 Otherwise� assume
the claim for i� �	 Since p exited on the b�s south wire� another token must
already have visited b	 By Lemma �	�� one of the two tokens must have come
from b�s north input wire� the south output wire of a preceding balancer�
hence it must have exited south on wire i� �	 The result now follows from
the induction hypothesis	

Lemma ��� Let q be a token that enters the �lter after token p has taken a
value� If q traverses a higher numbered wire than p at layer k� then it does
so at all layers greater than k�

Proof� Assume otherwise	 Then� p�s path and q�s must cross	 The only
way two paths can cross in the Skew �lter is if they traverse a common
balancer	 By Lemma �	�� each balancer is visited by only two tokens and
since p got there �rst �i	e	 in toggle state ��� p must exit on the north wire�
and q on the south	

Corollary ��� Let q be a token that enters the �lter after token p has taken
a value� If p and q pass through a common balancer� then q will take a higher
value than p�

Lemma ��� The protocol ensures that the outputs of the Skew �lter have
the step property in any quiescent state�

��

Proof� In a quiescent state� all � � k tokens entering the combined net�
work must have exited	 By de�nition� the outputs of the non�linearizable
counting network part have the step property	 This implies that exactly k

tokens have arrived on the k lower�numbered input wires of the Skew �lter	
By simple induction on the layers of the Skew �lter� if k tokens enter on
the k lower input wires� they will exit on the k lower output wires	

Lemma ��� If processors use a non�linearizable counting network to choose
their input wires� then for a Skew �lter of layer depth d� where d � n��� for
any two tokens a and b with traversal intervals �t aenter � t

a
exit� and �t

b
enter � t

b
exit��

if t aexit � t benter then value�a� � value�b��

Proof� We argue inductively that this property is preserved among all
tokens that have entered the Skew �lter network on wires less than or
equal to k	 When k �� the result is immediate� so assume the result for
wires less than k � �	

We prove the result for wires less than or equal to k by way of contra�
diction	 Assume that token p exits the network� and token q then enters
the network and exits with a value less than p�s	 Lemma �	� implies that q
entered the �lter on a lower numbered wire than p	 The inductive hypoth�
esis implies therefore that p enters the �lter on wire k	 There are two cases
to consider� ��� p leaves some balancer b on its south wire� and ��� p leaves
every balancer on its north wire	

In the �rst case� Lemma �	� implies that there is a northwest barrier
extending from b to wire �� and the token q must be diverted south �below
the barrier� to higher numbered lines	 Lemma �	� implies therefore that q
will take a value greater than p�s� a contradiction	

In the second case� if k � n � � d� then p goes north until it reaches
wire �� and the result is immediate	 Otherwise� if k � n � �� then p goes
north on n� � balancers� and hence gets value k � n � �	 Since k � n � ��
Lemma �	� applied to the non�linearizable counting network implies that
at least k � n � � tokens must have entered the Skew �lter on lines less
than k and left it before p entered	 Therefore� since by Lemma �	� only one
token can exit on a given output wire of the �lter� there exists a token r
that exited the network before p entered the �lter� and took a value � k�n	
It follows that r exits the network before q entered it� and by the induction
hypothesis� it took a lesser value than q� since otherwise we would have a
linearizability violation among the �rst k � � lines	 But in this case� q�s
value must be smaller than p�s value � k� n� � and greater than r�s value
of k � n� a contradiction	

��

Theorem ��	 This protocol solves linearizable counting if the Skew �lter
has layer depth greater than or equal to n � ��

Proof� The outputs of the combined Skew network satisfy the step prop�
erty in quiescent states �Lemma �	��	 The proof that the network is lin�
earizable follows from Lemma �	� since for any token entering the combined
network� its traversal interval through the Skew �lter is a subinterval of its
traversal interval through the whole network	

Although the combined Skew network permits starvation� the average traver�
sal path length is O�n�	

Lemma ��
 The average number of balancers traversed by any token in the
Skew �lter is �n� ��

Proof� In any quiescent state� k tokens have entered and exited the net�
work on the lower numbered k wires	 There are k wires of �n� � balancers
each� yielding an average path length of �n� �	

��� The Reverse�skew Network

Our second �lter is the combined Reverse�skew network	 A Reverse�

layer network is the mirror image of the Skew�layer	 It consists of a
sequence of balancers bi� for � � i	 For b�� both output wires are network
output wires	 For all bi� i � �� the south output wire is a network output
wire� and the north output wire is the south input wire for bi��	 A Reverse�

skew network of layer depth d is constructed by layering d Reverse�layer
networks so that the i�th output wire of one is the i�th input wire to the
next	 The protocol is the same as before� each token traverses the non�
linearizable counting network� and uses its output value to choose the input
wire into the Reverse�skew �lter	

Theorem ���� The protocol solves linearizable counting if the non�linearizable
counting network has width w and the Reverse�skew �lter has layer depth
greater than or equal to d�n� ����ew� ��

The proof of this theorem is omitted because it is nearly identical to that
of Theorem �	�	 It uses one additional observation� which is� Lemma �	�
implies that there is no violation of linearizability between any two tokens
that enter the �lter on input wires that are of distance greater than d�n �

��

����ew� �	 Therefore� the northwest barrier created when some token exits
the network� need only protect against tokens that entered on input wires
that are less than d�n � ����ew apart from its �lter input wire	

The following lemma shows that the Reverse�skew protocol is wait�
free	

Lemma ���� The number of balancers traversed by any token in the Reverse�
skew �lter is at most �d�n� ����ew� n� ��

Proof� Note that a token can exit on the south end of at most d�n �
����ew � � balancers	 The number of the output wire on which a token
exits is at most n � � smaller than the number of the token�s input wire
in the �lter� and therefore� a token can exit on the north end of at most
n � � � d�n � ����ew� � balancers� and the claim follows	

As in Lemma �	�� the average number of balancers traversed by any
token in the Reverse�skew �lter is �d�n� ����ew� �	 Note that if c �
then n w and the depth of the network is O�n��	

��� Implementing an In�nite Network

We now show how to represent the in�nite Skew �lter using a �nite network	
�The construction for the Reverse�skew �lter is omitted� since it is nearly
identical	� We �rst de�ne a coordinate system for identifying balancers	
Each balancer is denoted bi�j � where i ranges from � to in�nity and j ranges
from � to d � � in a network of layer depth d	 Balancer bi�� is the �rst
balancer whose north output wire is on row i� bi�d�� is the last balancer on
row i �equivalently� whose north output wire is on row i�� and bi�j is balancer
on layer j and on row i	

A folded Skew �lter network is a w width by d depth array of multibal�
ancers ci�j 	 Each c��� has two input wires� ci��� i � �� has one input wire� and
each ci�d�� has one output wire	 For � � i � w and � � j � d� there is one
wire from ci�j to ci���j � where index arithmetic is mod w" and for � � i � w

and � � j � d� �� there is also one wire from ci�j to ci�j��	 The multibal�
ancer ci�j simulates each of the balancers bi�j� bi�w�j � bi��w�j� � � �	 The folding
of a Skew network of layer depth d � into a folded network with w �
and d � is illustrated in Figure �	

Like a balancer� a multibalancer can also be represented as a record with
toggle� north� and south �elds	 The north and south �elds are still pointers
to the neighboring multibalancers or counters� but the toggle component is

��

more complex� since it encodes the toggle states of an in�nite number of
balancers	 The following theorem shows that this in�nite sequence has a
simple structure	

Theorem ���� Let s�� s�� � � � be the toggle states of bi�j� bi�w�j � � � � in Skew
	the ones represented by a multibalancer ci�j
� If there are m � n tokens
traversing the Skew �lter� then there are at most �m � � values of k such
that sk � sk���

Proof� We argue by induction on m� the number of tokens concurrently
traversing the network	 LetN be the total number of tokens that are travers�
ing or have completed traversing the network	 If m �� the Skew network
is quiescent� implying that the �rst bN��c balancers have been visited by �
tokens� the next by N mod � tokens� and the rest by no tokens	 Assume the
result for m � � tokens concurrently traversing the network� and consider
the situation where there are m tokens traversing it	 Choose any traversing
token� run it to completion� and let s�k be the new toggle state of balancer
bi�kw�j 	 By the induction hypothesis� there are at most �m values of k such
that s�k � s�k��	 The result follows because with the addition of one more
token� there are at most two k values such that sk � sk�� and s�k s�k��

Since the number of concurrently traversing tokens m is always bounded
by n� we have that�

Corollary ���� There are at most �n� � values of k such that sk � sk���

The toggle component of the multibalancer ci�j can therefore be treated as
a set containing �at most� �n�� pairs �k� sk� such that bi�kw�j � bi��k���w�j �
and an additional pair of ��� s��	 This set could be implemented with a
short critical section �which introduces a small likelihood of blocking� or it
could be implemented without blocking using read�modify�write operations
as discussed elsewhere ����	

� Lower Bounds

We now show that it is impossible to construct an ideal linearizable counting
algorithm� one with low contention� low latency� and without waiting	 We
give two results	 The �rst concerns counting networks� �rst� any non�trivial�

�The trivial counting network consists of a single balancer�

��

non�waiting linearizable counting network must have an in�nite number of
balancers� implying that the �folding� structure employed in the previous
section�s �lter constructions is� in a sense� inescapable	 The second concerns
linearizable counting in general� in any non�waiting protocol� whether based
on counting networks or not� contention and latency are inversely related	

The lower bound on the number of balancers is not as alarming as it
sounds� since we have shown it is possible to �fold� an in�nite number
of balancers into a simple �nite data structure	 The time bound is more
signi�cant� in a low�contention non�waiting network� any processor must
traverse an average of ��n� balancers before choosing a value	 There exist
non�linearizable counting networks with polylogarithmic depth ��� �� ����
and therefore non�waiting linearizable counting networks will always have
lower throughput than their non�waiting non�linearizable counterparts	

��� Lower Bounds on Size

We �rst show that the only non�waiting linearizable counting network of
�nite width is the trivial one consisting of a single balancer	 Given a non�
trivial �nite counting network� we construct an execution in which a later
token overtakes an earlier token� resulting in non�linearizable behavior	

Theorem ��� There is no non�blocking �nite�width linearizable counting
network of width greater than two�

Proof� We assume such a network and derive a contradiction	 Let b be
the last balancer on wire w � �	 Send w tokens p�� � � � � pw�� sequentially
through the network� where each pi enters on input wire i	 If a token arrives
at balancer b� halt it on b�s input wire� otherwise let it proceed until it takes
a value	 Lemma �	� implies that there is exactly one token on each input
wire of b	

One of the halted tokens on b�s input wires is pw��	 To see why� consider
the state of the network before pw�� enters	 At least one token is halted
before b	 If all halted tokens resume their traversals� then the step prop�
erty implies that exactly one token will have emerged on each of the wires
�� � � � � w � �� and none on w � �	 Thus pw�� must exit on wire w � � and
therefore is halted on one of b�s input wires	

Now let pw�� resume its traversal� taking a value less than w � � �since
there is at least one more halted token on the input wires to b�� and send
w more tokens q�� � � � � qw�� sequentially through the network� where each qi

��

enters on input wire i	 As before� if a token arrives at balancer b� halt it on
b�s input wire� otherwise let it proceed until it takes a value	 Each qi follows
the same path as pi� and by similar reasoning� two qi are halted before b� one
being qw��	 The remaining w � � � � tokens will each take values greater
than w� �	 If qw�� resumes its traversal� it will be the second token to visit
b� hence it will take w� �� violating linearizability	

We have shown a slightly stronger result	 In the execution we con�
structed� no token overtakes another on a single wire� and therefore there is
no non�trivial �nite linearizable counting network even under the additional
constraint that the wires between balancers are �rst�in��rst�out	

Corollary ��� Any input wire of a linearizable counting network can be
used only a bounded number of times�

Proof� Suppose otherwise	 The step property requires that each output
wire of an in�nite�width network be traversed no more than once in any
�nite execution	 Consider a sequential execution in which token p enters on
input wire i� runs uninterruptedly through the network� and emerges after
d steps on output wire j	 If we run �d additional tokens sequentially from
input wire i� then the last token will follow exactly the same path as p� since
the state of each balancer along the path will have been reset	 Now two
tokens have traversed output wire j� violating the step property	

��� Lower Bounds on Time

In this section� we prove some fundamental lower bounds for any linearizable
counting protocol that does not use waiting� whether or not it relies on
counting networks	 A protocol is de�ned as follows� each processor applies
read�modify�write operations to a sequence of variables and then chooses a
value	 A processor may choose the next variable based on the values of earlier
variables� but some processor must decide after a �nite number of steps
�no waiting�	 The protocol�s latency is the maximum number of variables
any processor visits before choosing its value	 A protocol is quiescent if no
processor is in the process of choosing a value	 In the protocols given so far�
the variables correspond to balancers� and the latency corresponds to the
network depth	

A path is a sequence of variables	 In any protocol state� processor p has
preferred path u if p would traverse u if it were run in isolation until choosing
a value	 If p would choose value v� then v is its preferred value	 De�ne the

��

capacity c of the protocol to be the maximal number of processes that access
any particular variable in any execution	 If c is high� so is the maximum
number of concurrent accesses to a variable� so Capacity is a measure of
potential contention	

Consider a linearizable counting protocol for n processors with capacity
c	

Lemma ��� In any quiescent state� the preferred path for any token p must
traverse at least d�n� ����c� ��e variables�

Proof� Consider the following execution	 Suppose the protocol is in a
quiescent state� and i � � is the last value taken	 For each processor q
distinct from p� run q in isolation until either

�	 q is about to choose value k	

�	 q is about to access a variable in p�s preferred path	

We claim the �rst case cannot occur	 Since the protocol is in a quiescent
state� all values less than i have been taken� and therefore any processor
that starts the protocol and runs uninterruptedly must choose i	 If p and q
can both run to completion without accessing a common variable� they will
both choose i� a contradiction	 Therefore q�s path must eventually intersect
p�s preferred path	

By hypothesis� no more than c � � processors can access any variable
along p�s path	 Since every process�s path must intersect p�s path somewhere�
the path must include d�n� ����c� ��e distinct variables	

Theorem ��� Any linearizable counting protocol for n processes and capac�
ity c has latency ��n�c��

Proof� It is enough to show that in any sequential execution� every pro�
cessor traverses at least d�n � ����c � ��e variables	 Initially� the protocol
is quiescent� and Lemma �	� implies that the �rst processor traverses at
least dn�ce � � variables	 After each processor chooses a value� the protocol
returns to a quiescent state� and the same argument applies	

If we de�ne a low�contention algorithm to be one where c is constant�
then any low�contention linearizable counting protocol has linear latency	

This theorem has further implications for counting networks	 Elsewhere�
��� we have shown that the set of balancers traversed by a set of tokens in a
counting network does not depend on how transitions are interleaved� which
implies�

��

Corollary ��� In any execution of a counting network� the average number
of balancers traversed by every token is ��n�c��

� Conclusion

The following joke circulated in Italy during the �����s and ���s	

Mussolini claims that the ideal citizen is intelligent� honest� and
Fascist	 Unfortunately� no one is perfect� which explains why ev�
eryone one meets is either intelligent and Fascist but not honest�
honest and Fascist but not intelligent� or honest and intelligent
but not Fascist	

The ideal linearizable counting algorithm has low contention� low latency�
and does not require waiting	 Unfortunately� Theorem �	� shows that no
ideal algorithms exist	 The best algorithms one can devise either have low
latency and no waiting but high contention �like the single shared vari�
able�� low contention and low latency but require waiting �like theWaiting�

filter�� or low contention and no waiting but high latency �like the Skew
and Reverse�skew �lters�	

� Acknowledgments

We thank Cynthia Dwork� Serge Plotkin� and Vaughan Pratt for their many
constructive comments	

��

References

�
� E� Aharonson and H� Attiya� Counting networks with arbitrary fan out� In
Proceedings of the �rd Symposium on Discrete Algorithms� Orlando� Florida�
to appear� January
��	� Also� Technical Report
��� The Technion� June

��
�

�	� A� Aggarwal and M� Cherian Adaptive backo� synchronization techniques�
��th Symposium on Computer Architecture� June
����

��� T�E� Anderson� The performance implications of spin�waiting alternatives
for shared�memory multiprocessors� Technical Report ��������� University of
Washington� Seattle� WA ��
��� April
���� To appear� IEEE Transactions
on Parallel and Distributed Systems�

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting networks and multi�processor
coordination� In Proceedings of the ��rd Annual Symposium on Theory of

Computing� May
��
� New Orleans� Louisiana�

��� M�P� Herlihy� N� Shavit� and O� Waarts� Linearizable Counting Networks�
In Proceedings of the �	nd Annual Symposium on Foundations of Computer

Science� San Juan� Puerto Rico� October
��
� pp� �	
�����

�
� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algorithms�
MIT Press� Cambridge MA�
����

��� C�S� Ellis and T�J� Olson� Algorithms for parallel memory allocation� Journal
of Parallel Programming�
������������� August
����

��� D� Gawlick� Processing �hot spots� in high performance systems� In Proceedings

COMPCON����
����

��� J� Goodman� M� Vernon� and P� Woest� A set of e�cient synchronization
primitives for a large�scale shared�memory multiprocessor� In Proceedings of

the �rd International Conference on Architectural Support for Programming

Languages and Operating Systems� April
����

�
�� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph� and
M� Snir� The NYU ultracomputer � designing an MIMD parallel computer�
IEEE Transactions on Computers� C��	�	��
���
��� February
����

�

� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for the e��
cient coordination of very large numbers of cooperating sequential processors�
ACM Transactions on Programming Languages and Systems� ��	��

��
���
April
����

�
	� G� Graunke and S� Thakkar� Synchronization algorithms for shared�memory
multiprocessors�� IEEE Computer� 	��
��
����� June
����

��

�
�� M�P� Herlihy� A methodology for implementing highly concurrent data struc�
tures� In Proceedings of the Second ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming� pages
���	�
� Seattle� WA� March

��

����

�
�� M�P� Herlihy and J�M� Wing� Linearizability� A correctness condition for con�
current objects� ACM Transactions on Programming Languages and Systems�

	�����
����	� July
����

�
�� M� Klugerman and C� Greg Plaxton� Small�Depth Counting Networks� In
preparation� MIT�LCS�UT at Austin� October
��
�

�

� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multipro�
cessors with shared memory� In Fifth ACM SIGACT�SIGOPS Symposium on

Principles of Distributed Computing� August
��
�

�
�� L� Lamport� A new solution of Dijkstra�s concurrent programming problem�
Communications of the ACM�
������������� August
����

�
�� L� Lamport� How to make a multiprocessor computer that correctly executes
multiprocess programs� IEEE Transactions on Computers� C�	����� September

���

�
�� N�A� Lynch and M�R� Tuttle� Hierarchical Correctness Proofs for Distributed
Algorithms� In Sixth ACM SIGACT�SIGOPS Symposium on Principles of

Distributed Computing� August
���� pp�
���
�
� Full version available as
MIT Technical Report MIT�LCS�TR�����

�	�� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable synchronization
on shared�memory multiprocessors� Technical Report Technical Report ��	�
University of Rochester� Rochester� NY
�
	�� April
����

�	
� C�H� Papadimitriou� The serializability of concurrent database updates� Jour�
nal of the ACM� 	
����
�
�
��� October
����

�		� G�H� P�ster et al� The IBM research parallel processor prototype �RP��� intro�
duction and architecture� In International Conference on Parallel Processing�

����

�	�� G�H� P�ster and A� Norton� �hot spot� contention and combining in multistage
interconnection networks� IEEE Transactions on Computers� C����

������
���� November
����

�	�� L� Rudolph� Decentralized cache scheme for an MIMD parallel processor� In
��th Annual Computing Architecture Conference�
���� pp� ��������

�	�� H�S� Stone� Database applications of the fetch�and�add instruction� IEEE

Transactions on Computers� C�������
���

	� July
����

��

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|4

|8

|12
|16

|20

|24

|28

|32

|36

non-linearizable

linearizable

single

bitonic[4]

bitonic[4]

variable

Figure �� Shared Counter Implementations

��

SSSSkkkkeeeewwww NNNNeeeettttwwwwoooorrrrkkkk

4444

2222

3333

5555

9999

1111

2222

3333

6666

7777

4444

8888

11116666

11115555

11114444

11113333

11112222

11111111

11110000

6666

7777

8888

11111111

11112222

11116666

1111
xxxx0000

xxxx
1111

xxxx2222

xxxx3333

....
....
....

yyyy
0000

yyyy
1111

yyyy
2222

yyyy
3333

....
....
....

FFFFoooollllddddeeeedddd SSSSkkkkeeeewwww NNNNeeeettttwwwwoooorrrrkkkk

yyyy
1111
yyyy
5555,,,, ,,,,........4444 55551111 2222

5555 6666

66663333

7777

66664444

9999 11110000 11111111 11112222

8888

11113333 11114444 11115555 11116666 yyyy
0000
yyyy
4444,,,, ,,,,........

yyyy
2222
yyyy
6666,,,, ,,,,........

yyyy
3333
yyyy
7777,,,, ,,,,........

N

Figure �� Skew Network and Folding

��

