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Abstract

The counting problem requires n asynchronous processors to assign themselves
successive values� A solution is linearizable if the order of the values assigned re�ects
the real�time order in which they were requested� Linearizable counting lies at the
heart of concurrent timestamp generation� as well as concurrent implementations
of shared counters� FIFO bu�ers� and similar data structures�

We consider solutions to the linearizable counting problem in a multiprocessor
architecture in which processors communicate by applying read�modify�write op�
erations to a shared memory� Linearizable counting algorithms can be judged by
three criteria� the memory contention produced� whether processors are required
to wait for one another� and how long it takes a processor to choose a value �the
latency�� A solution is ideal if it has low contention� low latency� and it eschews
waiting� The conventional software solution� where processes synchronize at a sin�
gle variable� avoids waiting and has low latency� but has high contention� In this
paper we give two new counting network constructions� one with low latency and
low contention� but that requires processors to wait for one another� and one with
low contention and no waiting� but that has high latency� Finally� we prove that
these trade�o�s are inescapable� an ideal linearizable counting algorithm is impos�
sible� Since ideal non�linearizable counting algorithms exist� these results establish
a substantial complexity gap between linearizable and non�linearizable counting�
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��� replied the businessman� �I count them and recount them� It is di�cult but
I am a man who is naturally interested in matters of consequence��

� Antoine de Saint�Exup�ery� The Little Prince

� Introduction

In the counting problem� asynchronous concurrent processors repeatedly as�
sign themselves successive values� such as integers or locations in memory	
The linearizable counting problem requires that the order of the values as�
signed re
ects the real�time order in which they were requested	 For ex�
ample� if k values are requested� then values � � � �k � � should be assigned�
and if processor P is assigned a value before processor Q requests one� then
P �s value must be less than Q�s	 Linearizable counting lies at the heart
of a number of basic problems� such as concurrent time�stamp generation�
concurrent implementations of shared counters� FIFO bu
ers� and similar
data structures �e	g	 ��� ��� ��� ����	

The requirement that the values chosen re
ect the real�time order in
which they were requested is called linearizability ����	 The use of lineariz�
able data abstractions greatly simpli�es both the speci�cation and the proofs
of multiple instruction�multiple data �MIMD� shared memory algorithms	
As discussed in more detail elsewhere ����� the notion of linearizability gener�
alizes and uni�es a number of ad�hoc correctness conditions in the literature�
and it is related to �but not identical with� correctness criteria such as se�
quential consistency ���� and strict serializability ����	

Linearizable counting algorithms can be judged by three criteria�

� Contention� Because of limitations on processor�to�memory band�
width� performance su
ers when too many processors attempt to ac�
cess the same memory location at the same time	 Such �hot�spot�
contention is well�documented� and has been the subject of exten�
sive research both in hardware ��� ��� ��� ��� ��� and in software
��� �� �� ��� ���	

� Latency� The time needed to choose a value is strongly a
ected by
the number of variables a processor must access	 We will show that
�not surprisingly� there is an inherent �inverse� relationship between
the maximum contention at a variable and the number of variables
accessed	
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� Waiting� Algorithms that require later processors to wait for earlier
processors are not robust � the failure or delay of a single processor
will result in halting or delays in non�faulty processors	 All else be�
ing equal� it is preferable to choose algorithms that ensure that some
processes make progress even when others halt in arbitrary locations	

Informally speaking� a linearizable counting algorithm is ideal if it has low
contention� low latency� and it eschews waiting	 In this paper� we will show
that no ideal linearizable counting algorithm exists� but that it is possible
to satisfy any two out of the three criteria	

First� consider the naive solution in which all n processors increment a
single shared variable using a read�modify�write � operation	 This algorithm
has low latency �a single variable�� it eschews waiting �the read�modify�write
is assumed to be atomic�� but very high contention	 �For more complete doc�
umentation of the performance problems of the single�variable solution see
Anderson et al	 ��� and Graunke and Thakkar ����	 Also see the experimen�
tal results described below	�

Elsewhere ���� we have proposed low�contention solutions to the �non�
linearizable� counting problem based on a new class of data structures called
counting networks	 In this paper� we show how counting networks can be
adapted to solve linearizable counting	 We �rst give a construction that
employs a counting network of depth O�logn�	 This construction has low
contention and low latency� but it requires processes to wait for one another	
We then give a two alternative counting network constructions that do not
require waiting	 The �rst employs a network of depth O�n�� and it guaran�
tees that some non�halted processor makes progress	 The second employs a
network of depth O�n��� and it guarantees that every non�halted processor
makes progress	

Finally� we prove that these trade�o
s are a fundamental aspect of lin�
earizable counting� any low�contention network that does not rely on wait�
ing must have depth ��n�� where n is the number of processes	 Since
non�linearizable counting does have ideal solutions ��� with low contention�
polylogarithmic depth� and no waiting� this result establishes a substantial
complexity gap between linearizable and non�linearizable counting	

�A read�modify�write operation ���� atomically reads the value of a memory location

modi�es it
 writes it back
 and returns the location�s old value�

�



��� Background

A counting network� like a sorting network ���� is a directed graph whose
nodes are simple computing elements called balancers� and whose edges are
called wires	 Each token �input item� enters on one of the network�s w � n
input wires� traverses a sequence of balancers� and leaves on an output
wire	 Unlike a sorting network� a w input counting network can count any
number N � w of input tokens even if they arrive at arbitrary times� are
distributed unevenly among the input wires� and propagate through the
network asynchronously	

Figure � shows a four�input four�output counting network	 Intuitively�
a balancer �see Figure �� is just a toggle mechanism that repeatedly alter�
nates in sending tokens out on its output wires	 Figure � shows an example
computation in which input tokens traverse the network sequentially� one
after the other	 For notational convenience� tokens are labeled in arrival
order� although these numbers are not used by the network	 In this net�
work� the �rst input �numbered �� enters on wire � and leaves on wire ��
the second leaves on wire �� and so on	 �The reader is encouraged to try
this for him�herself	� Thus� if on the i�th output wire the network assigns
to consecutive output tokens the values i� i � �� i� � � �� � � �� it is counting
the number of input tokens without ever passing them all through a shared
computing element�

Counting networks achieve a high level of throughput by decomposing
interactions among processors into pieces that can be performed in par�
allel� e
ectively reducing memory contention	 In ���� two O�log� n� depth
counting network designs were presented	 Aharonson and Attiya ��� have re�
cently proved several fan�out and cyclicity properties of such networks� and
Klugerman and Plaxton ���� have shown an explicit network construction of
depth O�c log

� n logn� for some small constant c� and an existential proof of
a network of depth O�logn�	

Unfortunately� all known counting network constructions ��� �� ��� are
not linearizable	 It is even possible for a processor to shepherd two tokens
through a network� one after the other� and by suitable overtaking� have the
second token receive the lesser value	 Can counting networks solve lineariz�
able counting�
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��� Overview

In Section �� we propose a simple data structure� called aWaiting�filter�
which transforms any low�contention non�linearizable counting protocol into
a low�contention linearizable counting protocol	 The resulting protocol� how�
ever� requires that later processors wait for earlier processors to complete�
implying that the failure or delay of a single processor will produce halting or
delay in the other� non�faulty processors	 Nevertheless� we give experimen�
tal evidence that in the absence of such timing anomalies� the transformed
protocol performs as well as the original	

In Section �� we present two linearizable counting protocols that do not
require processors to wait for one another	 Each of these protocols uses two
counting networks� a standard non�linearizable counting network� and a
��lter� network	 In the �rst Skew network each token traverses an average
of O�n� balancers� but an individual token may be forced along an in�nite
path if it is in�nitely often overtaken	 The second Reverse�skew network
construction guarantees that every token emerges after traversing O�n��
balancers� hence starvation is impossible	 If implemented directly in terms
of balancers� these �lter networks would have in�nite size� so we give a simple
technique for �folding� these in�nite networks onto �nite data structures	

In Section �� we prove that the trado
s among our constructions is in�
herent	 In any low�contention linearizable counting network� a token must
traverse an average of ��n� gates before taking a value	 In ���� it was
shown that there exist width n non�linearizable counting networks in which
each token traverses at most O�logn� balancers	 Our results therefore es�
tablish a substantial complexity gap between the class of linearizable and
non�linearizable counting networks � in other words� linearizability comes
at a cost	

� A Brief Introduction to Counting Networks

In this section we provide an introduction to counting networks	 A more
complete discussion of the properties of counting networks can be found in
��� ��	

Counting networks belong to a larger class of networks called balancing
networks� constructed from wires and computing elements called balancers	
A balancer is a computing element with two input wires� denoted as the north
and south wires �and indexed by � and ��� and two output wires� similarly
named	 Tokens arrive on the balancer�s input wires at arbitrary times and
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Figure �� A Balancer	

are output on its output wires	 Intuitively� one may think of a balancer as a
toggle mechanism� that given a stream of input tokens� repeatedly sends one
token to the left output wire and one to the right� e
ectively balancing the
number of tokens that have been output on its output wires	 We denote by
xi� i � f�� �g the number of input tokens ever received on the balancer�s i�th
input wire� and similarly by yi� i � f�� �g the number of tokens ever sent on
its i�th output wire	 Throughout the paper we will abuse this notation and
use xi �yi� both as the name of the i�th input �output� wire and a count of
the number of tokens received on the wire	

Let the state of a balancer at a given time be de�ned as the collection of
tokens on its input and output wires	 For the sake of clarity we will assume
that tokens are all distinct	 We denote by the pair �t� b�� the state transition
in which the token t passes from an input wire to an output wire of the
balancer b	

We can now formally state the safety and liveness properties of a bal�
ancer�

�	 In any state x� � x� � y� � y� �i	e	 a balancer never creates output
tokens�	

�	 Given any �nite number of input tokens m  x�� x� to the balancer�
it is guaranteed that within a �nite amount of time� it will reach a
quiescent state� that is� one in which the sets of input and output
tokens are the same	 In any quiescent state� x� � x�  y� � y�  m	

�	 In any quiescent state� y�  dm��e and y�  bm��c	

A balancing network of width w is a collection of balancers� where out�
put wires are connected to input wires� having w designated input wires
x�� x�� ��� xw�� �which are not connected to output wires of balancers�� w
designated output wires y�� y�� ��� yw�� �also unconnected�� and containing
no cycles	 Let the state of a network at a given time be de�ned as the union
of the states of all its component balancers	 The safety and liveness of the
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network follow naturally from the above network de�nition and the proper�
ties of balancers� namely� that it is always the case that

Pw��
i�� xi �

Pw��
i�� yi�

and for any �nite sequence of m input tokens� within �nite time the network
reaches a quiescent state� i	e	 one in which

Pw��
i�� yi  m	

It is important to note that we make no assumptions about the timing of
token transitions from balancer to balancer in the network � the network�s
behavior is completely asynchronous	 Although balancer transitions can
occur concurrently� it is convenient to model them using an interleaving
semantics in the style of Lynch and Tuttle ����	 An execution of a network
is a �nite sequence s�� e�� s�� � � �en� sn or in�nite sequence s�� e�� s�� � � � of
alternating states and balancer transitions such that for each �si� ei��� si����
the transition ei�� carries state si to si��	 A schedule is the subsequence of
transitions occurring in an execution	 A schedule is valid if it is induced by
some execution� and complete if it is induced by an execution which results
in a quiescent state	 A schedule s is sequential if for any two transitions
ei  �ti� bi� and ej  �tj � bj�� where ti and tj are the same token� then all
transitions between them also involve that token	 In other words� tokens
traverse the network one completely after the other	

In a MIMD shared memory multiprocessor� a balancing network is im�
plemented as a data structure� where balancers are records and wires are
pointers from one record to another	 Each of the machine�s n asynchronous
processors runs a program that repeatedly traverses the data structure� each
time shepherding a new token through the network �see the following Sub�
section �	��	 The limitation on the number of concurrent processors trans�
lates into a limitation on the number of tokens concurrently traversing the
network�

Pw��
i�� xi �

Pw��
i�� yi � n	

We de�ne the depth of a balancing network to be the maximal depth of
any wire� where the depth of a wire is de�ned as � for a network input wire�
and maxi�f����g�depth �xi� � �� for the output wires of a balancer having
input wires xi� i � f����g	

A counting network of width w is a balancing network whose outputs
y�� ��� yw�� have the step property in quiescent states�

� � yi � yj � � for any i � j	

To illustrate this property� consider an execution in which tokens traverse
the network sequentially� one completely after another	 Figure � shows such
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an execution on the Bitonic��� network de�ned in ���	 As can be seen� the
network moves input tokens to output wires in increasing order modulo w	 A
balancing network having this property is called a counting network� because
it can easily be adapted to count the number of tokens that have entered
the network	 Counting is done by adding a �local counter� to each output
wire i� so that tokens coming out of that wire are consecutively assigned the
numbers i� i� w� i� �w� ��� i� �yi � ��w	 The number i� w � k assigned by
the counter at the end of output wire i to the k�th token exiting on it� is
called the token�s value	 We can now state the following simple yet useful
lemma�

Lemma ��� When a token takes a value v� then there are at most n � �
values less than v that are yet untaken�

Proof� Suppose otherwise	 A value is missing if no token has taken it	
If we let the network quiesce� then all values less than v will be taken	
Therefore every missing value corresponds to a token traversing the network�
and the claim follows because there are at most n tokens in the network	

Note that when a token takes v� it may not yet be determined which token
will take which of the lower values	

De�ne the traversal interval of a token through the network to be the
time interval �tenter � texit� from the moment it entered the balancing network
and until it exited it	

A counting network is linearizable if for any two tokens a and
b with traversal intervals �t aenter � t

a
exit� and �t

b
enter� t

b
exit�� if t

a
exit �

t benter then value�a� � value�b�	

Though outside the scope of this paper� this de�nition can easily be shown
to meet the linearizability de�nition of ����	 �

��� Implementing a Counting Network

In this paper� we assume that counting networks are implemented on a
multiprocessor in which processors communicate by applying read�modify�
write operations to a shared memory	 The counting network is implemented

�Informally
 this would amount to showing that the history of all processor�s requests
�of values� and replies is equivalent to a sequential history which is consistent with all
non�concurrent pairs of request�reply events�
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Figure �� A sequential execution of an input sequence to a Bitonic��� net�
work	

as a data structure in memory	 A balancer is represented as a record with
the following �elds� toggle is a boolean value �initially True� and north
and south are pointers which reference either other balancers� or counter
cells	 Processors shepherd tokens through the network by executing the
code shown in Figure �	 Each processor toggles the balancer�s state by
calling fetch�complement� which atomically complements the toggle �eld
and returns the old value	 Based on the toggle state� it goes to the north or
south successor	 When it encounters a counter� it atomically increments it
by w and returns the old value	 Note that balancers use only bounded size
memory� but counters� by de�nition� do not	

� The Waiting Filter

We begin by proposing a solution with low contention and low latency� but
that requires processors to wait for one another	 The key idea is simple�
each token exiting the network simply waits for a token to take the next
lower value	 This solution is therefore not robust� since a failure or delay
by one processor will force halting or delays in other� non�faulty processors	
Nevertheless� contention is low� since every processor waits on a separate
location	

We use two component data structures	 The �rst is a non�linearizable
counting network of arbitrary width �e	g	� the bitonic or periodic networks
����� and the other is aWaiting�filter of width n	 Informally� theWaiting�

filter is a kind of barrier� to be traversed after the non�linearizable network�
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balancer  �toggle� boolean� north� south� pointer�
traverse�b� pointer� returns�integer�

loop until counter�b�
state � fetch!complement�b	toggle�
if state

then b � b	north
else b � b	south
end if

end loop

v � fetch!add�b	state�w�
return v
end traverse

Figure �� Code for Traversing a Counting Network of width w

where each token waits for the tokens with lower values to �catch up	� A
token leaves the �lter only when all lower values have been assigned� guar�
anteeing that every token that enters the network later will receive a higher
value	 More precisely� a Waiting�filter is an n�element array of boolean
values� called phase bits� where indexing starts from �	 De�ne the function
phase�v� to be b�v�n�c mod �	 We construct the new network by having
tokens �rst traverse the counting network and then access the Waiting�

filter	 When a token exits the non�linearizable counting network with
value v� it awaits its predecessor by going to location �v � �� mod n in the
�lter� and waiting for that location to be set to phase�v � ��	 When this
event occurs� it noti�es its successor by setting location v to phase�v�� and
then it returns its value	

Lemma ��� When token p with value v sets its phase bit� every token that
takes a lesser value has also set its phase bit�

Proof� Assume by way of contradiction that p is the token of lowest value
v to violate this property	 It must have seen location v�� mod n in the �lter
set to phase�v� ��� a value that could only have been written by the token
with value v � �kn � �� for some k � �	 In particular� a token with value
v � n� � could not have yet written its phase bit� and thus by assumption�
neither could any token with one of the n values v�n � � �v� �	 By the step
property of the non�linearizable counting network� since a token with value
v exited the network� there must be at least n�� tokens currently traversing
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the network or past the network and before the phase change� that will take
on the values v � n� �� v� n� � � � � v� �	 Since by de�nition there can be at
most n tokens concurrently in the construct� we have a contradiction	

Corollary ��� The Waiting�filter is a linearizable counter�

��� Performance

We now make a brief digression to explore the performance of theWaiting�

filter	 In a cache�consistent architecture� the Waiting�filter has very
low contention� since each position is concurrently read by only one processor
and written by only one processor	 Waiting for a location to change value
does not produce memory contention� since the waiting processor simply
rereads the value in its cache� and does not need to access the shared memory
until the cache is invalidated	

To explore how the waiting �lter performs in practice� we compare the
performance of a bitonic counting network with and without theWaiting�

filter	 As a control� we also compare the performance of a conventional
spin lock� implemented by an in�line compiled �test!test!set� ���� loop	
These implementations were done in C on an Encore Multimax	

For each network� we measured the elapsed time necessary for a ���

�approximately a million� tokens to traverse the network� controlling the
level of concurrency	 In Figure �� the horizontal axis represents the number
of processes executing concurrently	 When concurrency is �� each processor
runs to completion before the next one starts	 The number of concurrent
processes increases until all sixteen processes execute concurrently	 The
vertical axis represents the elapsed time �in seconds� until all ��� tokens
have traversed the network	 Each point on each curve represents the same
amount of work	

At low levels of concurrency� the spin lock outperforms the networks� but
as concurrency increases� the spin lock�s throughput diminishes dramatically�
while the networks� throughputs eventually increase	 The throughputs of the
linearizable and non�linearizable networks are essentially the same	

� Linearizable Counting Without Waiting

In this section� we present two linearizable counting protocols with low con�
tention that do not require processes to wait for one another	 Just as in the
waiting construction given in the previous section� each token traverses a
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non�linearizable counting network followed by a ��lter� network	 The �rst
protocol is non�blocking� it guarantees that some token always emerges after
the system as a whole has taken a bounded number of steps� but it allows
individual tokens to run forever without taking a value �starvation�	 The
second construction is wait�free� it guarantees that every token emerges af�
ter taking a �xed number of steps �no starvation�	 Both networks have high
latency� with depth ��n�	

��� The Skew Network

Our �rst construction is based on the Skew �lter� a balancing network
illustrated in the right�hand�side of Figure � �for now� ignore the empty
balancers and the numeric labels�	 A Skew�layer network is an unbounded
size balancing network consisting of a sequence of balancers bi� for � � i	 For
b�� both input wires are network input wires	 For all bi� the north output
wire is a network output wire� and the south output wire is the north input
wire for bi��	 A Skew balancing network with a layer depth � of d� is
constructed by layering d Skew�layer networks so that the i�th output
wire of one is the i�th input wire to the next	 We say that a balancer b has
layer i if it belongs to the i�th Skew�layer component	

This �lter is combined with a non�linearizable counting network as fol�
lows	 Each token �rst traverses the non�linearizable counting network� and
then uses the resulting value as the index of its input wire into the in��
nite Skew �lter network	 For brevity� we refer to these two data structures
as the combined Skew network� even though the ensemble is not� strictly
speaking� a counting network	

The correctness of our constructions is based on the following technical
lemma� easily proven by induction on the number of balancers in a balancing
network	

Lemma ��� For any balancing network� if exactly c tokens enter on each
input wire� then exactly c tokens will arrive at each input wire of each bal�
ancer�

Corollary ��� In any execution where no more than c tokens enter on any
input wire� there are never more than c tokens on any wire�

The capacity c of an execution in which n tokens concurrently traverse a
network is de�ned to be the maximal number of tokens that arrive on any

�Layer depth should not be confused with depth
 which is in�nite for Skew�
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input wire	 Let the capacity c of a network be the maximum capacity over
all executions	 Corollary �	� implies that in a network with capacity c� no
more than c tokens arrive on any internal or output wire during an execution
involving n tokens	

In the Skew �lter� the capacity c is �� that is� at most one token en�
ters�exits on each of a balancer�s input�output wires	 We can thus de�ne
the toggle state of a balancer to be the number of tokens it has output	
Let a northwest barrier starting in balancer bk be a sequence of balancers
bk� � � � � b�� all in toggle state �� where the north input wire of every bi is the
south output wire of bi��� and where b��s north input is wire �	 It immedi�
ately follows from Lemma �	� that any token that approaches a balancer in
a northwest barrier will be diverted below the barrier� e
ectively protecting
all wires behind the barrier from late�arriving tokens	

Lemma ��� If a token p exits a balancer b on its south wire� then there is
a northwest barrier starting from b�

Proof� By induction on i� the number of the wire on which p exited south
from a balancer b	 For i  � the result is immediate	 Otherwise� assume
the claim for i� �	 Since p exited on the b�s south wire� another token must
already have visited b	 By Lemma �	�� one of the two tokens must have come
from b�s north input wire� the south output wire of a preceding balancer�
hence it must have exited south on wire i� �	 The result now follows from
the induction hypothesis	

Lemma ��� Let q be a token that enters the �lter after token p has taken a
value� If q traverses a higher numbered wire than p at layer k� then it does
so at all layers greater than k�

Proof� Assume otherwise	 Then� p�s path and q�s must cross	 The only
way two paths can cross in the Skew �lter is if they traverse a common
balancer	 By Lemma �	�� each balancer is visited by only two tokens and
since p got there �rst �i	e	 in toggle state ��� p must exit on the north wire�
and q on the south	

Corollary ��� Let q be a token that enters the �lter after token p has taken
a value� If p and q pass through a common balancer� then q will take a higher
value than p�

Lemma ��� The protocol ensures that the outputs of the Skew �lter have
the step property in any quiescent state�
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Proof� In a quiescent state� all � � k tokens entering the combined net�
work must have exited	 By de�nition� the outputs of the non�linearizable
counting network part have the step property	 This implies that exactly k

tokens have arrived on the k lower�numbered input wires of the Skew �lter	
By simple induction on the layers of the Skew �lter� if k tokens enter on
the k lower input wires� they will exit on the k lower output wires	

Lemma ��� If processors use a non�linearizable counting network to choose
their input wires� then for a Skew �lter of layer depth d� where d � n��� for
any two tokens a and b with traversal intervals �t aenter � t

a
exit� and �t

b
enter � t

b
exit��

if t aexit � t benter then value�a� � value�b��

Proof� We argue inductively that this property is preserved among all
tokens that have entered the Skew �lter network on wires less than or
equal to k	 When k  �� the result is immediate� so assume the result for
wires less than k � �	

We prove the result for wires less than or equal to k by way of contra�
diction	 Assume that token p exits the network� and token q then enters
the network and exits with a value less than p�s	 Lemma �	� implies that q
entered the �lter on a lower numbered wire than p	 The inductive hypoth�
esis implies therefore that p enters the �lter on wire k	 There are two cases
to consider� ��� p leaves some balancer b on its south wire� and ��� p leaves
every balancer on its north wire	

In the �rst case� Lemma �	� implies that there is a northwest barrier
extending from b to wire �� and the token q must be diverted south �below
the barrier� to higher numbered lines	 Lemma �	� implies therefore that q
will take a value greater than p�s� a contradiction	

In the second case� if k � n � �  d� then p goes north until it reaches
wire �� and the result is immediate	 Otherwise� if k � n � �� then p goes
north on n� � balancers� and hence gets value k � n � �	 Since k � n � ��
Lemma �	� applied to the non�linearizable counting network implies that
at least k � n � � tokens must have entered the Skew �lter on lines less
than k and left it before p entered	 Therefore� since by Lemma �	� only one
token can exit on a given output wire of the �lter� there exists a token r
that exited the network before p entered the �lter� and took a value � k�n	
It follows that r exits the network before q entered it� and by the induction
hypothesis� it took a lesser value than q� since otherwise we would have a
linearizability violation among the �rst k � � lines	 But in this case� q�s
value must be smaller than p�s value � k� n� � and greater than r�s value
of k � n� a contradiction	
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Theorem ��	 This protocol solves linearizable counting if the Skew �lter
has layer depth greater than or equal to n � ��

Proof� The outputs of the combined Skew network satisfy the step prop�
erty in quiescent states �Lemma �	��	 The proof that the network is lin�
earizable follows from Lemma �	� since for any token entering the combined
network� its traversal interval through the Skew �lter is a subinterval of its
traversal interval through the whole network	

Although the combined Skew network permits starvation� the average traver�
sal path length is O�n�	

Lemma ��
 The average number of balancers traversed by any token in the
Skew �lter is �n� ��

Proof� In any quiescent state� k tokens have entered and exited the net�
work on the lower numbered k wires	 There are k wires of �n� � balancers
each� yielding an average path length of �n� �	

��� The Reverse�skew Network

Our second �lter is the combined Reverse�skew network	 A Reverse�

layer network is the mirror image of the Skew�layer	 It consists of a
sequence of balancers bi� for � � i	 For b�� both output wires are network
output wires	 For all bi� i � �� the south output wire is a network output
wire� and the north output wire is the south input wire for bi��	 A Reverse�

skew network of layer depth d is constructed by layering d Reverse�layer
networks so that the i�th output wire of one is the i�th input wire to the
next	 The protocol is the same as before� each token traverses the non�
linearizable counting network� and uses its output value to choose the input
wire into the Reverse�skew �lter	

Theorem ���� The protocol solves linearizable counting if the non�linearizable
counting network has width w and the Reverse�skew �lter has layer depth
greater than or equal to d�n� ����ew� ��

The proof of this theorem is omitted because it is nearly identical to that
of Theorem �	�	 It uses one additional observation� which is� Lemma �	�
implies that there is no violation of linearizability between any two tokens
that enter the �lter on input wires that are of distance greater than d�n �
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����ew� �	 Therefore� the northwest barrier created when some token exits
the network� need only protect against tokens that entered on input wires
that are less than d�n � ����ew apart from its �lter input wire	

The following lemma shows that the Reverse�skew protocol is wait�
free	

Lemma ���� The number of balancers traversed by any token in the Reverse�
skew �lter is at most �d�n� ����ew� n� ��

Proof� Note that a token can exit on the south end of at most d�n �
����ew � � balancers	 The number of the output wire on which a token
exits is at most n � � smaller than the number of the token�s input wire
in the �lter� and therefore� a token can exit on the north end of at most
n � � � d�n � ����ew� � balancers� and the claim follows	

As in Lemma �	�� the average number of balancers traversed by any
token in the Reverse�skew �lter is �d�n� ����ew� �	 Note that if c  �
then n  w and the depth of the network is O�n��	

��� Implementing an In�nite Network

We now show how to represent the in�nite Skew �lter using a �nite network	
�The construction for the Reverse�skew �lter is omitted� since it is nearly
identical	� We �rst de�ne a coordinate system for identifying balancers	
Each balancer is denoted bi�j � where i ranges from � to in�nity and j ranges
from � to d � � in a network of layer depth d	 Balancer bi�� is the �rst
balancer whose north output wire is on row i� bi�d�� is the last balancer on
row i �equivalently� whose north output wire is on row i�� and bi�j is balancer
on layer j and on row i	

A folded Skew �lter network is a w width by d depth array of multibal�
ancers ci�j 	 Each c��� has two input wires� ci��� i � �� has one input wire� and
each ci�d�� has one output wire	 For � � i � w and � � j � d� there is one
wire from ci�j to ci���j � where index arithmetic is mod w" and for � � i � w

and � � j � d� �� there is also one wire from ci�j to ci�j��	 The multibal�
ancer ci�j simulates each of the balancers bi�j� bi�w�j � bi��w�j� � � �	 The folding
of a Skew network of layer depth d  � into a folded network with w  �
and d  � is illustrated in Figure �	

Like a balancer� a multibalancer can also be represented as a record with
toggle� north� and south �elds	 The north and south �elds are still pointers
to the neighboring multibalancers or counters� but the toggle component is

��



more complex� since it encodes the toggle states of an in�nite number of
balancers	 The following theorem shows that this in�nite sequence has a
simple structure	

Theorem ���� Let s�� s�� � � � be the toggle states of bi�j� bi�w�j � � � � in Skew
	the ones represented by a multibalancer ci�j
� If there are m � n tokens
traversing the Skew �lter� then there are at most �m � � values of k such
that sk � sk���

Proof� We argue by induction on m� the number of tokens concurrently
traversing the network	 LetN be the total number of tokens that are travers�
ing or have completed traversing the network	 If m  �� the Skew network
is quiescent� implying that the �rst bN��c balancers have been visited by �
tokens� the next by N mod � tokens� and the rest by no tokens	 Assume the
result for m � � tokens concurrently traversing the network� and consider
the situation where there are m tokens traversing it	 Choose any traversing
token� run it to completion� and let s�k be the new toggle state of balancer
bi�kw�j 	 By the induction hypothesis� there are at most �m values of k such
that s�k � s�k��	 The result follows because with the addition of one more
token� there are at most two k values such that sk � sk�� and s�k  s�k��

Since the number of concurrently traversing tokens m is always bounded
by n� we have that�

Corollary ���� There are at most �n� � values of k such that sk � sk���

The toggle component of the multibalancer ci�j can therefore be treated as
a set containing �at most� �n�� pairs �k� sk� such that bi�kw�j � bi��k���w�j �
and an additional pair of ��� s��	 This set could be implemented with a
short critical section �which introduces a small likelihood of blocking� or it
could be implemented without blocking using read�modify�write operations
as discussed elsewhere ����	

� Lower Bounds

We now show that it is impossible to construct an ideal linearizable counting
algorithm� one with low contention� low latency� and without waiting	 We
give two results	 The �rst concerns counting networks� �rst� any non�trivial�

�The trivial counting network consists of a single balancer�
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non�waiting linearizable counting network must have an in�nite number of
balancers� implying that the �folding� structure employed in the previous
section�s �lter constructions is� in a sense� inescapable	 The second concerns
linearizable counting in general� in any non�waiting protocol� whether based
on counting networks or not� contention and latency are inversely related	

The lower bound on the number of balancers is not as alarming as it
sounds� since we have shown it is possible to �fold� an in�nite number
of balancers into a simple �nite data structure	 The time bound is more
signi�cant� in a low�contention non�waiting network� any processor must
traverse an average of ��n� balancers before choosing a value	 There exist
non�linearizable counting networks with polylogarithmic depth ��� �� ����
and therefore non�waiting linearizable counting networks will always have
lower throughput than their non�waiting non�linearizable counterparts	

��� Lower Bounds on Size

We �rst show that the only non�waiting linearizable counting network of
�nite width is the trivial one consisting of a single balancer	 Given a non�
trivial �nite counting network� we construct an execution in which a later
token overtakes an earlier token� resulting in non�linearizable behavior	

Theorem ��� There is no non�blocking �nite�width linearizable counting
network of width greater than two�

Proof� We assume such a network and derive a contradiction	 Let b be
the last balancer on wire w � �	 Send w tokens p�� � � � � pw�� sequentially
through the network� where each pi enters on input wire i	 If a token arrives
at balancer b� halt it on b�s input wire� otherwise let it proceed until it takes
a value	 Lemma �	� implies that there is exactly one token on each input
wire of b	

One of the halted tokens on b�s input wires is pw��	 To see why� consider
the state of the network before pw�� enters	 At least one token is halted
before b	 If all halted tokens resume their traversals� then the step prop�
erty implies that exactly one token will have emerged on each of the wires
�� � � � � w � �� and none on w � �	 Thus pw�� must exit on wire w � � and
therefore is halted on one of b�s input wires	

Now let pw�� resume its traversal� taking a value less than w � � �since
there is at least one more halted token on the input wires to b�� and send
w more tokens q�� � � � � qw�� sequentially through the network� where each qi
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enters on input wire i	 As before� if a token arrives at balancer b� halt it on
b�s input wire� otherwise let it proceed until it takes a value	 Each qi follows
the same path as pi� and by similar reasoning� two qi are halted before b� one
being qw��	 The remaining w � � � � tokens will each take values greater
than w� �	 If qw�� resumes its traversal� it will be the second token to visit
b� hence it will take w� �� violating linearizability	

We have shown a slightly stronger result	 In the execution we con�
structed� no token overtakes another on a single wire� and therefore there is
no non�trivial �nite linearizable counting network even under the additional
constraint that the wires between balancers are �rst�in��rst�out	

Corollary ��� Any input wire of a linearizable counting network can be
used only a bounded number of times�

Proof� Suppose otherwise	 The step property requires that each output
wire of an in�nite�width network be traversed no more than once in any
�nite execution	 Consider a sequential execution in which token p enters on
input wire i� runs uninterruptedly through the network� and emerges after
d steps on output wire j	 If we run �d additional tokens sequentially from
input wire i� then the last token will follow exactly the same path as p� since
the state of each balancer along the path will have been reset	 Now two
tokens have traversed output wire j� violating the step property	

��� Lower Bounds on Time

In this section� we prove some fundamental lower bounds for any linearizable
counting protocol that does not use waiting� whether or not it relies on
counting networks	 A protocol is de�ned as follows� each processor applies
read�modify�write operations to a sequence of variables and then chooses a
value	 A processor may choose the next variable based on the values of earlier
variables� but some processor must decide after a �nite number of steps
�no waiting�	 The protocol�s latency is the maximum number of variables
any processor visits before choosing its value	 A protocol is quiescent if no
processor is in the process of choosing a value	 In the protocols given so far�
the variables correspond to balancers� and the latency corresponds to the
network depth	

A path is a sequence of variables	 In any protocol state� processor p has
preferred path u if p would traverse u if it were run in isolation until choosing
a value	 If p would choose value v� then v is its preferred value	 De�ne the
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capacity c of the protocol to be the maximal number of processes that access
any particular variable in any execution	 If c is high� so is the maximum
number of concurrent accesses to a variable� so Capacity is a measure of
potential contention	

Consider a linearizable counting protocol for n processors with capacity
c	

Lemma ��� In any quiescent state� the preferred path for any token p must
traverse at least d�n� ����c� ��e variables�

Proof� Consider the following execution	 Suppose the protocol is in a
quiescent state� and i � � is the last value taken	 For each processor q
distinct from p� run q in isolation until either

�	 q is about to choose value k	

�	 q is about to access a variable in p�s preferred path	

We claim the �rst case cannot occur	 Since the protocol is in a quiescent
state� all values less than i have been taken� and therefore any processor
that starts the protocol and runs uninterruptedly must choose i	 If p and q
can both run to completion without accessing a common variable� they will
both choose i� a contradiction	 Therefore q�s path must eventually intersect
p�s preferred path	

By hypothesis� no more than c � � processors can access any variable
along p�s path	 Since every process�s path must intersect p�s path somewhere�
the path must include d�n� ����c� ��e distinct variables	

Theorem ��� Any linearizable counting protocol for n processes and capac�
ity c has latency ��n�c��

Proof� It is enough to show that in any sequential execution� every pro�
cessor traverses at least d�n � ����c � ��e variables	 Initially� the protocol
is quiescent� and Lemma �	� implies that the �rst processor traverses at
least dn�ce � � variables	 After each processor chooses a value� the protocol
returns to a quiescent state� and the same argument applies	

If we de�ne a low�contention algorithm to be one where c is constant�
then any low�contention linearizable counting protocol has linear latency	

This theorem has further implications for counting networks	 Elsewhere�
��� we have shown that the set of balancers traversed by a set of tokens in a
counting network does not depend on how transitions are interleaved� which
implies�

��



Corollary ��� In any execution of a counting network� the average number
of balancers traversed by every token is ��n�c��

� Conclusion

The following joke circulated in Italy during the �����s and ���s	

Mussolini claims that the ideal citizen is intelligent� honest� and
Fascist	 Unfortunately� no one is perfect� which explains why ev�
eryone one meets is either intelligent and Fascist but not honest�
honest and Fascist but not intelligent� or honest and intelligent
but not Fascist	

The ideal linearizable counting algorithm has low contention� low latency�
and does not require waiting	 Unfortunately� Theorem �	� shows that no
ideal algorithms exist	 The best algorithms one can devise either have low
latency and no waiting but high contention �like the single shared vari�
able�� low contention and low latency but require waiting �like theWaiting�

filter�� or low contention and no waiting but high latency �like the Skew
and Reverse�skew �lters�	
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