
VAX

KA670 CPU Module
Technical Manual

Order Number: EK-KA670-TM-001

".

EK-KA670-UP-001

KA670 Technical Manual Update
This document provides updated information for the KA670 CPU Module 7echnical
Manual, EK-KA670-TM-001.

SSC Configuration Register, Bits <18:16>·
(Page 128)
The third sentence in the bit description for bits <18:16> (Halt Protect Space) should
read "These bits should be set to 1012

Setting these register bits to 11~ allows the SSC to protect 512 Kbytes. This is
unnecessary, because the EPROM contains only 256 Kbytes.

Network Interface SGEC Revision 4.0
(Pages 148 to 198)
The SGEC revision 4.0 needs a code patch if the virtual addressing mode (SVAPl'E or
PAPrE) is used for addressing the transmit buffers.

To apply this patch, perform the following steps:

1. Set the following diagnostic descriptor in the transmit descriptor list (page 178), to
download the code into the SGEC intemal memory. This descriptor must be placed.
before the setup3rame descriptor (page 184) with dC> set, or must be followed by
an end_of_Iist (descriptor owned by the host) to be able to synchronize the code load
completion on NICSR5<T1> interrupt.

Diagnostic descriptor format:
DDESO<31:0> = 8000000016

DDES1<31:0>

DDES2<31:0>

DDES3<31:0>

= 3080000016

= 000B22AA16

= Buffer physical
address

ow= 1.

DT = 3, WD = 1, ST = o.
load size = 11 code words.
SGEC load address = 22M16.

must be word-aligned.

The buffer pointed to by DDES3 must contain the following data:
D8541E7916

FF7FDA5316

C0195E7916

D951COI8t6

C3575E7916

0000031C16

2. After setting NICSR5<1D> (page 155) and before starting the receive or transmit
process, perform the following steps:

• Load the host address of the diagnostic descriptor in NICSR4 (page 153).

• Write the following command in NICSR6 (page 160):
<EI> = 0

<OM> =3

'Ib disable the SGEC interrupts to the host.

'Ib enter diagnostic mode.

<ST> = 1 'Ib precede the diagnostic descriptor (and eventually the setup
descriptor).

• Poll on NICSR5<T1> to wait for the completion of the code load.

• Write A2AA036916 in NICSR14 (page 170) to initialize the breakpoint.

• Poll on NICSR5<DN> to wait for the completion of the NICSR14 write.

At this point, the code patch is initialized and the normal initialization sequence can go
on.

Console BOOT Command
(Page 275)

Format
BOOT [qualifier] [{booCdevice} [,{booCdevice}] •••]

Description
The console initializes the processor and transfers execution to VMB. VMB attempts to
boot the operating system from the specified device or the default boot device, if none is
specified.

If a list of devices is specified, VMB attempts to boot from each device in turn. VMB
transfers control to the first successfully booted image. Network devices should always
be placed last in a list, since network bootstraps only terminate if a fatal hardware error
occurs or an image is successfully loaded.

Console SET Command
(Page 299)

SET BOOT

When using the console SET BOOT command, you may also specify a device list.

Copyright © by Digital Equipment Corporation 1990

All Rights Reserved. Printed in the U.S.A

_ T.
•• •

is a trademark of Digital Equipment Corporation.

EK-KA670-UP-OOI

KA670 Technical Manual Update
This document provides updated information for the KA670 CPU Module Technical
Manual, EK-KA670-TM-OOI.

SSC Configuration Register, Bits <18:16>
(Page 128)
The third sentence in the bit description for bits <18:16> (Halt Protect Space) should
read "These bits should be set to 1012 ... "

Setting these register bits to 1102 allows the SSC to protect 512 Kbytes. This is
unnecessary, because the EPROM contains only 256 Kbytes.

Network Interface SGEC Revision 4.0
(Pages 148 to 198)
The SGEC revision 4.0 needs a code patch if the virtual addressing mode (SVAP1'E or
PAP1'E) is used for addressing the transmit buffers.

To apply this patch, perform the following steps:

1. Set the following diagnostic descriptor in the transmit descriptor list (page 178), to
download the code into the SGEC internal memory. This descriptor must be placed
before the setup_frame descriptor (page 184) with dC> set, or must be followed by
an end_oCIist (descriptor owned by the host) to be able to synchronize the code load
completion on NICSR5<T1> interrupt.

Diagnostic descriptor format:
DDESO<31:0> = 8000000016

DDES1<31:0> = 3080000016

DDES2<31:0> = 000B22AA16

DDES3<31:0> = Buffer physical
address

ow= 1.

DT = 3, WD = 1, ST = O.

load size = 11 code words,
SGEC load address = 22AA16.

must be word-aligned.

The buffer pointed to by DDES3 must contain the following data:
D8541E7916

FF7FDA5316

C0195E7916

D951C01816

C3575E7916

0OO0031C16

2. After setting NICSR5<1D> (page 155) and before starting the receive or transmit
process, perform the following steps:

• Load the host address of the diagnostic descriptor in NICSR4 (page 153).

• Write the following command in NICSR6 (page 160):
<EI> = 0 'IO disable the SGEe interrupts to the host.

<OM> =3

<ST> = 1

'IO enter diagnostic mode.

'IO precede the diagnostic descriptor (and eventually the setup
descriptor).

• Poll on NICSR5<Tl> to wait for the completion of the code load.

• Write A2AA036916 in NICSR14 (page 170) to initialize the breakpoint.

• Poll on NICSR5<DN> to wait for the completion of the NICSR14 write.

At this point, the code patch is initialized and the normal initialization sequence can go
OD.

Console BOOT Command
(Page 275)

Format
BOOT [qualifier] [{boot_device} [,{booCdevice}] •••]

Description
The console initializes the processor and transfers execution to VMB. VMB attempts to
boot the operating system from the specified device or the default boot device, if none is
specified.

If a list of devices is specified, VMB attempts to boot from each device in turn. VMB
transfers control to the first successfully booted image. Network devices should always
be placed last in a list, since network bootstraps only terminate if a fatal hardware error
occurs or an image is successfully loaded .

. Console SET Command
(Page 299)

SET BOOT

When using the console SET BOOT command, you may also specify a device list.

Copyright © by Digital Equipment Corporation 1990

All Rights Reserved. Printed in the U.S.A. _l¥
is a trademark of Digital Equipment Corporation.

KA670 CPU Module Technical Manual
Order Number EK-KA670-TM-001

digital equipment corporation
maynard, massachusetts

First Edition, April 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equir:ment Corporation assumes no responsibility for
any errors that may appear in this dOl.l1ment.

The software described in this document is furnished under 2. license and may be used or copied only in
accordance with the terms of such lice nse.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright © Digital Equipment Corporation 1990

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX RV20
DECmate PDP ThinWire
DECnet
DEeUS
DECwriter
DEQNA
DIBOL
DSSI
LPVll-SA
MASSBUS
MicroPDP

PIOS
Professional
Q-bus
Q22-bus
Rainbow
RRD50
RSTS
RSX
RT

TQK50

ULTRIX
UNIBUS
VAX
VAXstation
VMS
VT
Work Processor

malaDID'·
This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

Contents

About This Manual

Overview and Installation

1 Overview
1.1
1.1.1

1.2
1.2.1
1.2.2
1.2.3

1.3
1.3.1
1.3.2
1.3.3
1.3.4

1.4
1.4.1
1.4.2
1.4.3

1.5
1.5.1

1.6

1.7

KA670 CPU Module
Module Components

Central Proocessing Subsystem
Central Processing Unit (P-Chip (DC52D))
Floating Point Accelerator (F-Chip (DC523))
The Cache .. .

System Support Subsystem
System Support Chip (SSC (DC511»)
Firmware ROMs
Boot and Diagnostic Register
Station Address ROM

VO Subsystem.
DSSI Mass Storage Interface (SHAC (DC542))
Ethernet InteJface (SGEC (DC541»
Q22-bus Interlace (CQBIC (DC52'7))

Memory Support Subsystem
Memory ControllerlBus Adapter (G-Chip (DC561»

MS670 Memory Module

H3604 Console Module

2 Installation and Configuration

XXl

3
4

6
6
7
7

7
7
8
8
8

8
8
9
9

9
9

10

11

2.1 Installing the KA670 and MS670 Memory Modules 13

2.2 Module Configuration and Naming. 14

2.3 Mass Storage Configuration 15
2.3.1 Changing the Node Name. 15
2.3.2 Changing the DSSI Unit Number. 16

iii

iv Contents

2.3.3 Accessing RF-series Firmware in VMS, Through DUP • 17
2.3.3.1 Allocation Class 18

2.4 DSSI Cabling, Device Identity, and Bus Termination 18

2.5 KA670 Connectors. 18

Architecture

3 Central Processor and Floating Point Unit
3.1 Central Processor
3.1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.2
3.1.3
3.1.4
3.1.5
3.1.5.1
3.1.5.2
3.1.6
3.1.6.1
3.1.6.2
3.1.6.3
3.1.6.4
3.1.6.5
3.1.6.6
3.1.7
3.1.7.1
3.1.7.2
3.1.8
3.1.9
3.1.9.1
3.1.9.2
3.1.9.3

3.2
3.2.1
3.2.2
3.2.3
3.2.4

Processor State
General-Purpose Registers
Processor Stat.us Longword
Internal Processor Registers

Process Structure
Data Types '"
Instruction Set
Memory Management

Translation Buffer.
Memory Management Control Registers

Interrupts and Exceptions
Interrupts .. .
Exceptions .. .
Information Saved on a Machine 8heck Exception
Machine Check Error Register (MCESR) IPR 38
System Control Block (SCB)
The HardwarE~ Halt Procedure

System Identification
System IdentHlcation Register
System Identification Extension Register (20040004)

Accelerator Control and Status Register (ACCS) IPR 40
CPU References

Instruction-Stream Read References
Data-Stream Read References
Write References '•.....

KA670 Floating Point Accelerator
Floating Point Accelerator Data Types
Floating Point Accelerator Instructions
Operand and Result Transfer
Power-Up State .. .

21
21
21
22
23
29
30
30
31
31
32
33
34
36
38
43
43
46
48
48
49
49
50
51
51
51

52
52
52
52
53

Contents v

4 Cache and Main Memory
4.1. KA670 Cache Me·mory. 54
4.1.1 Cacheable Refl~rences '. 54
4.1.2 Primary Cache Overview 55
4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5
4.1.2.6
4.1.2.7
4.1.2.8
4.1.2.9
4.1.2.10
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.3.5
4.1.3.6
4.1.3.7

Primary Cache Organization.
Primary Cache Address Transl8.tion
Primary Cache Data Block Allo·!ation
Primary Cache Behavior on Writes
Primary Cache Internal Processor Registers
Writing and Reading the Primary Cache Tag Array
Primary Cache Error Recovery
Primary Cache Initialization '
Primary Cache Diagnostics
Error Handling by the Primary Cache

Backup Cache Overview
Backup Cache Organization
Backup Cache Address Translation
Backup Cache Data Block Allocation
Backup Cache Behavior on Writes
Backup Cache External Processor Registers
Maintaining Primary Cache Consistency
Use of the C-Chip Registers

4.2 KA670 Main Memory System
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5
4.2.1.6
4.2.1.7

G-Chip Memory Controller
G-Chip Port
G-Chip Writ.e Buffers
G-Chip Registers
Bus Timeout and Nonexistent Addresses ...•...............
Peripheral Port (CP Port)
GMI Port
Tran sactions and Port Interactions .

55
56
58
58
58
64
64
65
65
65
68
69
69
71
71
71
83
86

87
87
87
87
88
98
99

100
104

4.2.1.8 Exceptions. 108

5 The Console Line, TOY Clock, and Bus System
5.1
5.1.1

KA670 Console Serial Line

5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.2
5.1.3
5.1.4

5.2

Console Registers
Console Receiver Control/Status Register - (IPR 32)•......
Console Receiver Data Buft'er-(lPR 33)
Console Transmitter Control/Status Register-(IPR 34)
Console Transmitter Data Buffer-{IPR 35)•......

Break Response .. .
Baud Rate .. .
Console Interrupt Specifications

KA670 TOY Clock and Timers

110
110
110
111
113
114
114

114

115

115

vi Contents

5.2.1 Time-of-Year Clock (TODR)-EPR 27 . 115
5.2.2 Interval Timer (ICCS)-EPR 24 . 116
5.2.3 Programmable Timers. 116
5.2.3.1 Timer Control Registers (TCRO and TCR!) 117
5.2.3.2 Timer Interval Registers (TIRO and TIR1) 118
5.2.3.3 Timer Next Interval Registers (TNIRO and TNIR1) 118
5.2.3.4 Timer Interrupt Vector Registers (TIVRO and TIVRl) 118

5.3 KA670 Bus Overview 119
5.3.1 RDAL Bus. 119
5.3.2
5.3.2.1
5.3.2.2
5.3.3

The CP Bus .. .
The CCLOCK Chip
CP Bus Arbiter _ .. .

GMI Bus

120
120
120
120

6 KA670 Boot and Diagnostic Facility
6.1 Boot and Diagnostic Register (BDR) . 121

6.2 Diagnostic LED Register (DLEDR)

6.3
6.3.1
6.3.2
6.3.2.1

EPROM Memory
EPROM Address Space ,
KA670 Resident Firmware Operation

Power-Up Modes

6.4

6.5
6.5.1
6.5.2
6.5.3

Battery Backed-Up RAM

KA670 Initialization

6.5.3.1
6.5.4
6.5.4.1
6.5.5
6.5.6
6.5.7
6.5.8

6.6

Power-Up Initialization
Hardware Reset
I/O Bus Initialization

I/O Bus Reset Register (IPR 55)
Processor Initialization

Configuring the Local I/O Page•....................
SSC Base Address Register (SSCBR)
BDR Address Decode Match Register (BDMTR)
BDR Address Decode Mask Register (BDMKR)
SSC Configuration Register (SSCCR) •

CP Bus Timeout Control Register (CBTCR)

7 Interface Subsystems

123

124
124
125
125

125

126
126
126
126
126
126
127
127
127
128
128

130

7.1 KA670 Q22-bus Interface 132
7.1.1 Q22-bus to Main Memory Address Translation . • • 133
7.1.1.1 Q22-bus Map Registers (QMR) . 134
7.1.1.2 Accessing the Q22-bus Map Registers. 135
7.1.1.3 The Q22-bus Map Cache. 136
7.1.2 CP to Q22-bus Address Translation 131

Contents vii

7.1.3
7.1.3.1
7.1.3.2
7.1.4
7.1.5
7.1.5.1
7.1.6
7.1.7
7.1.7.1
7.1.7.2
7.1.7.3
7.1.8

Interprocessor Communications Facility
Interprocessor Communication Register (IPCR)
Interprocessor Doorbell Interrupts

Q22-bus Interrupt Handling
Configuring the Q22-bus Map

Q22-bus Map Base Address RelPster (QBMBR)
System Configuration Register (SeR)
Error-Reporting Registers

DMA System Error Register (DSER)
Q22-bus Error Address Register (QBEAR)
DMA Error Address Register (DBEAR)

Error Handling .. .

7.2
7.2.1
7.2.2

KA670 Network Interface
Ethernet Overview
NI Station Address ROM (NISA ROM)

7.3 Programming the Ethernet Contron~r Chip (SGEC)
'1.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.8.1
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.15.1
7.3.15.2
7.3.16
7.3.17
7.3.17.1
7.3.17.2
7.3.17.3
7.3.17.4
7.3.17.5

Programming Overview
Command and Status Registers
Host Access to NICSRs

Physical NICSRs
Virtual NICSRs

Vector Address, IPL, Sync/Asynch (NICSRO)
Transmit Polling Demand (NICSR1)
Receive Polling Demand (NICSR2)
Descriptor List Addresses (NICSRa, NICSR4)
Status Register (NICSR5)

NICSR5 S~ltus Report
Command and Mode Register (NICSR6)
System Base Register (NICSR7)
Reserved Register (NICSRB)
Watchdog Timers (NICSR9)
Revision Number and Missed-Frame Count (NICSRI0)
Boot Message (NICSRll, 12, 13)
Diagnostic Registers (NICSR14,15)

Diagnostic Breakpoint Address Register (NICSRI4) '.'
Monitor Command Register (NICSRI5)

Descriptors and Buffers-Format
Receive Descriptors .

RDESO Word .. .
RDESI Word .. .
RDES2 Word .. .
RDES3 Word .. .
Receive Descriptor Status Validity

137
138
139
139
139
140
140
141
142
143
144
145

146
146
147

148
148
149
149
149
149
150
151
152
153
155
159
160
166
167
167
168
169
170
170
171
172
173
173
175
176
177
177

viii Contents

7.3.18
7.3.18.1
7.3.18.2
7.3.18.3
7.3.18.4
7.3.18.5
7.3.19
7.3.19.1
7.3.19.2
7.3.19.3
7.3.19.4
7.3.19.5
7.3.20
7.3.21
7.3.22
7.3.23
7.3.24
7.3.25
7.3.26

Transmit Descriptors 178
TDESO Word. 178
TDES1 Word ' ; 180
TDES2 Word. 181
TDES3 word . 182
Transmit Descriptor Status Valid~ty . 182

Setup Frame . 183
First Setup Frame 183
Subsequent Setup Frame .. 183
Setup Frame Descriptor .. 184
Perfect Filtering Setup Frame Buffer . 185
Imperfect Filtering Setup Frame Buffer , . . . 187

Hardware and Software Reset 191
Interrupts . 192
Startup Procedure. 192
Reception Process . 193
Transmission Process 194
Loopback Operations 196
Support for DNA CSMAlCD Counters and Events 197

7.4 KA670 Mass Storage Interface. 198
7.4.1 SHAC Overview .. 199
7.4.2 CI-DSSI Overview. .. 201
7.4.3 SHAC Registers .. 203
7.4.3.1 CI Port Registers 203
7.4.3.2 SHAC-Specific Registers. 211

8 KA670 Error Handling
8.1
8.1.1
8.1.2
8.1.2.1

Error Handling-SCB Entry Points
Error Categories for SCB Entry PoiJlts
Macrocode Error Handling and ReCC:lvery

Error State Collection • • . . •

214
215
216
217

8.1.2.2 Error Analysis. • . 217
8.1.2.3 Error Recovery • • • 218
8.1.2.4 Special Considerations for Cache and. Memory Errors 218
8.1.2.5 Error Retry•..•.................•..... : 220

8.2 Console Halt and Halt Interrupt. • • . • • • . . 220

8.3 Machine Check Exception. • • 221
8.3.1 Machine Check Stack Frame•...........•............. 221
8.3.2 Machine Check Parse Tree • 224
8.3.3 MCHK_FP _PROTOCOL_ERROR • • 227
8.3.4 MCHK_FP _ILLEGAL_OPCODE • 228
8.3.5 MCHK_FP _OPERAND_PARITY ". • . . • • • . 228
8.3.6 MCHK_FP _UNKNOWN_STATUS•.......•...•........ 229
8.3.7 MCHK_FP ~SULT_PARITY. • • 229
8.3.8 MCHK_TBM_ACV _TNV•..........•. ". 229

Contents ix

8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.13.1
8.3.13.2
8.3.14
8.3.14.1
8.3.14.2
8.3.15
8.3.16
8.3.17

MCHK_TBH_ACV_TNV
MCHK_INT_ID_ VALUE
MCHK_MOVC_STATUS
MCHK_UNKNOWN_IBOX_TRAP
MCHK_BUSERR_READ_PCACHE

Primary Cache Tag Parity Error on D-Stream Read Hit
Primary Cache Data Parity Error on D-Stream Read Hit

MCHK_BUSERR_READ_DAL
Data Parity Error on D-Stream Read
Bus Error on D-Stream Read

MCHK_BUSERR_ WRITE_DAL
MCHK_UNKNOWN_BUSERR_TRAP
MCHK_UNKNOWN_CS_ADDR

8.4

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9

Power-Fail Interrupt

8.6
8.6.1
8.6.2
8.6.2.1

Hard Error Interrupts
Parse Tree for a Hard Error Intermpt
RDAL Data Parity Error on Memory Write
Un correctable Main Memory Error on Masked Write
Main Memory Nonexistent Write
I/O Nonexistent Write
CP Bus Timeout on a Write
Q22-bus NXMINOSACK on a Write
Q22-bus NO GRANT on a Write
Q22-bus Device Parity Error on a Write

Soft Error Interrupts
Parse Tree for Soft Error Interrupts
Cache or Memory Errors

Primary Cache Errors
8.6.2.2 RDAL Data Parity Errors
8.6.2.3
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.3

8.7

8.8
8.8.1
8.8.2
8.8.3

Bus Error on I-Stream Read
Cache Fill Errors on the NonrequL~sted Quadword of a Read
C-Chip Errors

C-Chip Backup Tag Store Parity Error
C-Chip Primary Tag Store Parity Error
C-Chip Bus Protocol Error

Kernel Stack Not Valid Exception

Errors Without Notification "
Parity Generation and Detection Philosophy
Microcode-Detected Error Summary
Errors Detected by Self-Tests

229
230
230
230
230
231
231
231
231
232
233
233
233

234

234
234
236
236
236
236
236
237
237
237

237
237
239
239
239
240
240
240
241
241
241

241

242
242
242
243

x Contents

Firmware

9 Firmware
9.1 Finnware Capabilities 248

248

249
249
250
251
252

9.2 Finnware Overview

9.3
9.3.1
9.3.2
9.3.2.1
9.3.3

Halt Entry, Exit, and Dispatch
Halt Entry-Saving Processor State
Halt Dispatch

External Halts
Halt Exit-Restoring the Processor ,State

9.4
9.4.1
9.4.1.1
9.4.1.2
9.4.1.3
9.4.2

Power-Up .. . 252
252
253
253
254
255

Identifying the Console Device
Mode Switch Set to Test
Mode Switch Set to Query
Mode Switch Set to Normal

LED Codes

9.5
9.5.1

Operating System Bootstrap 256
256
258
260
260
263
263
264

9.5.1.1
9.5.1.2
9.5.2
9.5.3
9.5.3.1
9.5.3.2

Preparing for the Bootstrap
Boot Devices ..
Boot Flags "

Primary Bootstrap, Virtual Memory Boot
Device-Dependent Bootstrap Proced'ures

Disk and Tape Bootstrap Procedure
PROM Bootstrap Procedure

9.5.3.3 Network Bootstrap Procedure. 264

9.6 Operating System Restart. 265
9.6.1 Locating the Restart Parameter Blo:k .. 266

9.7 Console Service. 266
9.7.1 Console Control Characters. 267
9.7.2 Console Command Syntax. 268
9.7.3 Console Command Keywords. 268
9.7.4 Console Command Qualifiers. 270
9.7.4.1 Command Address Specifiers. 270
9.7.5 References to Processor Registers and Memory.......... 274

9.8 Console Commands , 274
BOar.. 275
CONFIGURE. 277
CONTINUE . 279
DEPOSIT , '.. 280
EXAMINE . 282
FIND .. , ... , . . . 285
HALT. 286
HELP , 287

9.8.1

9.9
9.9.1
9.9.2

Contents xi

INITIALIZE . 289
MOVE... 291
NEXT.. 293
REPEAT... 295
SEARCH... 296
SET................... 299
SHOW... 303
START... 307
TEST.. 308
UNJAM .. 311
X ... 312
!

Command Summary

Diagnostics
Error Reporting .. .
Diagnostic Interdependencies

314
315

318
319
320

A Q22-bus Specification
A.1 Introduction. .. 321
A.l.1 Master/Slave Relationship 322

A.2 Q22-bus Signal Assignments. 322

A.3 Data Transfer Bus Cycles . 325
A.3.1 Bus Cycle Protocol 326
A.3.2 Device Addressing. 327

A.4 Direct Memory Access. .. 334
AA.1 DMA Protocol . 334
A.4.2 Block Mode DMA 336
A.4.2.1 DATBI Bus Cycle 338
A.4.2.2 DATBO Bus Cycle. 340
A4.3 DMA Guidelines . 341

A5 Interrupts.... 341
A5.1 Device Priority 342
A5.2 Interrupt Protocol . 342
A5.3 Q22-bus Four-Level Interrupt Configurations. 345

A6 Control Functions . 346
A.6.1 Halt. 346
A6.2
A6.3

A7
A7.1
A7.2
A7.3
A7.4
A7.5

Initialization .. .
Power Status.

Q22-bus Electrical Characteristics
Signal Level Specifications
Load Definition .. .
120·0hm Q22--bus
Bus Drivers
Bus Receivers .'.

346
346

346
347
347
347
347
348

xii Contents

A.7.6
A.7.7
A.7.7.1
A.7.7.2
A.7.7.3

Bus Termination
Bus Interconnecting Wiring

Backplane Wiring
Intrabackplane Bus Wiring
Power and Ground

348
349
349
349
349

A.B System Configurations 350
A.B.1 Power Supply Loading 353

A.9 Module Contact Finger Identification . 353

B Specifications
B.1
B.1.1

B.2

B.3

Dimensions
KA670 Console Connector (J2)

DC Power Consumption

Bus Loads .. .

361
361

364

365

BA Battery Backup Specifications " 365

B.5. Operating Conditions 365

B.6 Nonoperating Conditions (Less Than 60 Days) 365

B.7 Nonoperating Conditions (Greater than 60 Days) 366

C Address Assignments
C.1

C.2

C.3

CA

KA670 General Local Address Space Map

KA670 Detailed Local Address Space Map 0 . 0

External, Internal Processor Registers 0 0 ... 0 0 .. 0 0 . 0 . 0 0 0 . 0 0 . 0 0 0 0

Global Q22-bus Address Space Map 0 . 0 0 . 0 0 . 0 .. 0 0 0 . 0 0 0 0 0 0 .. 0 0 0 0

o VAX Instruction Set
D.1 Syntax 00 0000 .. 0 0 . 0 0 0 0 0 .0··000.0000.000000. 0 0 0 0 0 0 0 0 0

E Machine State on Power-Up

367

368

371

372

373

Eo1 Main Memory Layout and State 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 . 0 . 0 ... 0 • . 384
Eo1.1 Reserved Main Memory 0 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 ... 0 0 0 .. 0 ... 0 ... 0 . 385
Eo1.1.1 Page Frame Number (PFN) Bitmap 0 0 0 0 . 0 00000 0 . 0 0 . 0 0 0 ... 0 385
Eolo1.2 Scatter/Gather Map 0 0 0 0 . 0 . 0 . 0 0 . 0 .. 0 0 0 ... 0 0 385
Eo1.1.3 Firmware Scratch Memory . 0 . 0 . 0 0 0 0 0 0 .. 0 . 0 ... 0 ... 0 0 0 . 0 . . 386
Eol.2 Contents of Main Memory .. 0 0 0 0 0 . 0 0 0 .. 0 . 0 . 0 0 386

E.2 Memory Controller Registers . 0 0 0 0 . 0 . 0 0 . 0 0 0 . 0 0 .. 0 . . 386
E.201 Primary (On-Chip) Cache 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 386
E.202 Translation Buffer. 0 .. 0 0 0 0 0 0 0 0 0 0 0 .. 0 ... 0 0 . 0 0 . 0 . 0 0 0 0 0 386
E.2.3 Halt-Protected Space 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 ... 0 0 0 0 .. 0 . 0 .. 0 0 ... 0 386

Contents xiii

F Maintenance Operation Protocol (MOP) Support
F.1 Network Listening . 387

F.2 MOP Counters .. 392

G ROM Partitioning
G.1 Finnware EPROM Layout. .. 396
G.l.1 Call-Back Entry Points. 397
G.1.l.1 CP$GETCHAR_R4. .. 397
G.l.l.2 CP$MSG_OUT_NOLF_R4 0........ 398
G.l.l.3 CP$READ_wrH_PRMPT_R4 o 0 • • • • • • •• • • 398
G.l.2 Boot Infonnation Pointers. .. 399

H RAM Partitioning
H.1 ssc RAM Layout. 401
H.l.1 Public Data Structures. .. 401
H.l.2 Console Program Mailbox (CPMBX) .. 402
H.l.3 Finnware Stack .. 403
HolA Diagnostic State . 403
H.1.5 User Area .. 403

I Data Structures
1.1 Halt Dispatch State Machine 0 ••••••••••••••••••••••••• , 404

1.2 Restart Parameter Block(RPB) 0 •• 407

1.3 VMB Argument List 0 0 •••••••••••••••••••••••••••••••••••• , 409

J Error Messages
J.1

J.2

J.3

Halt Code Messages 0 ••••••••• 0 ••••••••••

VMB Error Messages 0 •• 0 ••••••••••••••••••

Console Error Messages

Glossary

Index

411

413

414

xiv Contents

Examples
2-1 Changing a DSSI Node Name. 16
2-2 Changing a DSSI Unit Number 17
7-1 Perfect Filtering Buffer. 187
7-2 Imperfect Filtering Buffer. 188
7-3 Creating an Imperfect Filtering Setup Frame Buffer (C Program) ... 189
9-1

Figures
1-1
1-2
1-3
1-4
1-5
2-1
3-1
3-2
3-3·
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
4-1
4-2
4-3
4-4

4-5
4-6
4-7
4-B
4-9
4-10
4-11
4-12
4-13
4-14
4-15

Diagnostic Register Dump

KA.670 CPU Module
KA.670 CPU Module Block Diagram ,
KA.670 CPU Module Component Side
MS670 Memory Module
H3604 Console Module (Front View)
Backplane .. .
General-Purpose Register
Processor Status Longword
Translation Buffer Tag (TBTAGHIPR 4710 2FI6)
Translation Buffer Data (TBDATA)-(IPR 5910 3B 16)
Interrupt Priority Level Register (lPLR)- (lPR 1810 1216)
Software Interrupt Request Register (SIRR)- (IPL 2010 1416)
Software Interrupt Summary Register (SISR)- (lPL 2110 1516)
Information Saved on a Machine Check Exception
Machine Check Error Register (MCESR)- (lPR 3810 2616)
System Control Block Base Register (SCBB)- (IPL 1710 1116)
Console Saved PC (SAVPC)- (lPR 4210 2A16)
Console Saved PSL (SAVPSL)- (IPR 4310 2B16)
System Identification Register (SID)- (IPR 6210 3E16)
System Type Register (SYS_TYPE)
Accelerator Control and Status Register (ACCS)-(IPR 4010 2816)
Primary Cache Data and Tag Layout
Primary Cache Tag Entry
Primary Cache Data Entry
Primary Cache Physical Address Translation
Primary Cache Status Register (PCSTS)- (lPR12710 7F16)
Primary Cache Error Address Register (PCERR)-(IPR 12610 7E16) ..
Primary Cache Index Register (PCIDX)-(IPR 12510 7D16)
Primary Cache Tag Array Register (PCTAG)- (IPR 12410 7C16)
Primary Cache Detectable Single Errors
Primary Cache Detectable Double Errors
Tag and Valid Bits as They Correspond to Backup Cache Data
Backup Cache Physical Address Translation•..............
Backup Cache Backup Tag Store Register (BCBTS)- (EPR 113107116)
The Primary Cache Tag Store-C-Chip Copy
VAX Physical Address in C-Chip's Primary Tag Store Addressing (EPR
Operations)

319

3
4
5

10
11
14
21
22
33
33
36
36
36
38
43
43
46
46
48
49
49
55
55
56
57
59
63
64
64
67
68
69
70
72
73

74

Contents xv

4-16 Data Bus Format to Access the Primary Tag Store (C-Chip Copy) 74
4-17 C-Chip Refresh Register (BCRFRHEPR 11610 7416) 75
4-18 Backup Cache Index Register as Used for Backup Cache Tag Store. . . 76
4-19 Backup Cache Index Register as Used for Primary Cache Tag Store. . 77
4-20 Backup Cache Status Register (BCSTS)- (EPR 11810 7616) 78
4-21 Backup Cache Control Register (BCCTL)- (EPR 11910 7716) 81
4-22 Backup Cache C-Chip Error Address Register -(EPR 12010 7816) ... 84
4-23 Backup Cache Flush Backup Tag Store Register -(EPR 121107916) . . 85
4-24 Backup Cache Flush Primary Tag Store Register -(EPR 12210 7A16) 86
4-25 G-Chip System Error Status Register (MEMCSR32) 89
4-26 G-chip Memory Error Address Register (MEMCSR33) 92
4-27 G-Chip I/O Error Address Register (MEMCSR 34) 93
4-28 CP bus Error Address Register (MEMCSR 35) 93
4-29 G-Chip Mode Control and Diagnostic Status Register (MEMCSR 36) . . 94
4-30 32-Bit Modified Hamming Code 102
5-1 Console Receiver Control/Status Register- (lPR 3210 201S)' 111
5-2 Console Receiver Data Buffer - (lPR 3310 2116) 111
5-3 Console Transmitter Control/Status Register-{IPR 3410 2216). 113
5-4 Console Transmitter Data Buffer- (IPR 3510 2316) 114
5-5 Time-of-Year Clock (TO DR) - (EPR 2710 IBIS) 115
5-6 Interval Timer (ICCS) - (EPR 2410 1816) . 116
5-7 Timer Control Registers (TCRO and TCR1). 117
5-8 Timer Interval Registers (TIRO and TIRl) . 118
5-9 Timer Next Interval Registers (TNIRO and TNIR1) 118
5-10 Timer Interrupt Vector Registers (TIVRO and TIVR1) 119
6-1 Boot and Diagnostic Register (BDR) .. 121
6-2 Diagnostic LED Register (DLEDR) . 124
6-.'3 SSC Base Address Register (SSCBR) . 127
6-4 BDR Address Decode Match Register (BDMTR) , 128
6-5 BDR Address Decode Mask Register (BDMKR) 128
6-6 SSC Configuration Register (SSCCR) . 128
6-7 CP Bus Timeout Control Register (CBTCR) 131
7-1 Q22-bus Address Translation. 133
7-2 Q22-hus Map Register Format .. 135
7~ Q22-hus Map Cache Entry Format , 136
7-4 Interprocessor Communication Register (lPCR) " 138
7-5 Q22-hus Map Base Address Register (QBMBR) 140
7-6 System Configuration Register (SCR) . 140
7-7 DMA System Error Register (DSER) 142
7-8 Q22-hus Error Address Register (QBEAR) .. 144
7-9 DMA Error Address Register (DBEAR). 144
7-10 Ethernet Packet Format. 146
7-11 Vector Address, IPL, Sync/Asynch (NICSRO). 150
7-12 Transmit Polling Demand (NICSR1) . 152
7-13 NICSR2 Format. 152
7-14 Descriptor List Addresses Format. .. . 154

xvi Contents

7-15 NICSR5 Format
7-16 NICSR6 Format
7-17 NICSR7 Format

155
160
166

7-18 NICSR9 Format. 167
7-19 NICSRI0 Format ... 168
7-20 Boot Message .. 169
7-21 NICSR14 Format. 170
7-22 NICSR15 Format. 171
7-23 Receive Descriptor Format .. 173
7-24 Transmit Descriptor Format. 178
7-25 Setup Frame Descriptor Format . 184
7-26 Perfect Filtering Setup Frame Buffer Format. 186
7-27 Imperfect Filtering Setup Frame Format. 188
7-28 Relationship of the DSSI to SCA and CI . 200
7-29 Port Queue Block Base Register (PQBBR) 203
7-30 Port Queue Block Base Register (PQBBR) After Reset. 204
7-31 Port Status Register (PSR) Bits 205
7-32 Port Error Status Register (PESR) Bits 207
7-33 Port Failing Address Register (PFAR). .. 207
7-34 Port Parameter Register (PPR) .. 208
7-35 Port Control Registers. 208
7-36 Port Maintenance Control and Status Register (PMCSR) 211
7-37 SHAC Software Chip Reset (SSWCR) " 212
7-38 SHAC Shared Host Memory Address (SSHMA) 212
8-1 Stack Frame for Machine Check Exception. 222
8-2 Machine Check Parse Tree . 225
8-3 Parse Tree for a Hard Error Interrupts 235
8-4 Soft Error Interrupt Parse Tree 238
9-1 KA670 Firmware Structural Components.. 248
9-2 Language Selection Menu 254
9-3 Normal Diagnostic Countdown. 255
9-4 Abnormal Diagnostic Countdown 255
9-5 Console Boot Display With No Default Boot Device 255
9-6 Memory Layout Before VMB Entry. 258
9-7 VMB Boot Flags (/R5:) .•...............••••.•.•.•••..•.•••• 260
9-8 Memory Layout at VMB Exit . 262
9-9 Boot Block Format • 263
A-I DATI Bus Cycle. 328
A-2 DATI Bus Cycle Timing 329
A-3 DATO or DATOB Bus Cycle . 330
A-4 DATO or DATOB Bus Cycle Timing.. 331
A-5 DATIO or DATIOB Bus Cycle • . . • • 332
A-6 DATIO or DATIOB Bus Cycle Timing. 333
A-7 DMA Protocol. • 335
A-8 DMA Request/Grant Timing . 336
A-9 DATBI Bus Cycle Timing•......... '. 337

Contents xvii

A-lO DATBO Bus Cycle Timing. 338
A-11 Interrupt Request/Acknowledge Sequence. 343
A-12 Interrupt Protocol Timing. .. 344
A-13 Position-Independent Configuration 345
A-14 Position-Dependent Configuration. 346
A-15 Bus Line Terminations . 348
A-16 Single-Backplane Configuration 350
A-17 Multiple Backplane Configuration 352
A-18 Typical Pin Identification System . 353
A-19 Quad-Height Module Contact Finger Identification 354
A-20 Typical Q22-bus Module Dimensions. 355
E-1 Memory Layout Mter Power-Up Diagnostics 384
0--1 KA670 EPROM Layout. 396
H-l KA670 SSC BBU RAM Layout. 401
H-2 NVRO (20140400) : Console Program Mailbox (CPMBX) 402
H-3 NVR1 (20140401) . 402
H-4 NVR2 (20140402) . 403

Tables
1 Conventions. .. XXlll

3-1 General-Purpose Register Descriptions. 22
3-2 Internal Process Register Descriptions . 23
3-3 KA670 Internal Processor Registers. 24
3-4 Category 1 Internal Processor Registers . 28
3-5 Category 2 Internal Processor Registers . 29
3-6 Interrupt Priority Levels. 34
3-7 Exception Classes. 37
3-8 Floating Point Errors . 39
3-9 Memory Management Errors 39
3-10 Interrupt Errors. 40
3-11 Microcode Errors. 40
3-12 Read Errors ... 41
3-13 Write Errors ... 41
3-14 RDAL Bus Errors . 41
3-15 Internal State Information Field. 42
3-16 The System Control Block Format . 43
3-17 CPU State After a Halt. 46
3-18 HALT Codes. 47
3-19 System Identification Regist~r (SID) . 48
3-20 System Type Register (SYS_TYPE) . 49
3-21 Accelerator Control and Status Register Bit Definitions. 50
4-1 Primary Cache Internal Processor Registers. 58
4-2 Primary Cache Status Register. 59
4-3 Backup Cache ExternaVInternal Processor Registers 71
4-4 Backup Cache Backup Tag Store Register Bits . 72
4-5 Tag Store Subblock Numbers 73

xviii Contents

4-6 Primary Tag Store Register Bits . 75
4-7 C-Chip Refresh Register Bits 76
4-8 Backup Cache Index Register as used for Backup Cache Tag 76
4-9 Backup Cache Index Register as Used for Primary Cache " 77
4-10 Backup Cache Status Register Bits. 78
4-11 Status Bits Loaded in BCSTS During C-Chip Transactions 80
4-12 Backup Cache Control Register Bits. 81
4-13 Reenabling a Turned-Off Tag Store. 84
4-14 Backup Cache C-Chip Error Address Register Bits 85
4-15 G-Chip Registers. 88
4-16 G-Chip System Error Status Register Bits . 89
4-17 Memory Error Address Register Bits 92
4-18 G-Chip 110 Error Address Register Bits. 93
4-19 CP Bus Error Address Register Bits. 93
4-20 G-Chip Mode Control and Diagnostic Status Register Bits. 95
4-21 Syndrome Examples. 102
4-22 GMI Port Priority . 104
4-23 System Requirements for Buffered Writes and Invalidates. 107
5-1 Console Registers .. 110
5-2 Console Receiver ControllStatus Register Bits 111
5-3 Console Receiver Data Buffer Bits 112
5-4 Console Transmitter Data Buffer 113
5-5 Console Transmitter Data Buffer Bits. 114
5-6 Baud Rate Selection 115
5-7 Interval Timer Bits. 116
5-8 Timer Control Register Bits 117
6-1 Boot and Diagnostic Register Bits. 122
6-2 Diagnostic LED Register Bits . 124
6-3 Power-Up Modes .. , 125
6-4 sse Configuration Register Bits . 129
6-5 CP Bus Timeout Control Register Bits. 131
7-1 Q22-bus Map Register Addresses. 134
7-2 Q22-bus Map Register Bits. 135
7-3 Q22-bus Map Cache Entry Bit Description. 137
7-4 Interprocessor Communication Register Bits 138
7-5 System Configuration Register Bits 141
7~ DMA System Error Register Bits 142
7-7 Bit Access Modes .. 149
7-8 NICSRO Bits . 151
7-9 NICSRI Bits . • 152
7-10 NICSR2 Bits. 153
7-11 Descriptor List Address Bits. 154
7-12 NICSRS Bits. 155
7-14 NICSR6 Bits. 160
7-15 NICSR7 Bits. 166
7-16 NICSR9 Bits . 167

Contents xix

7-17 NICSRI0 Bits . 169
7-18 NICSRll,12,13 Bits 170
7-19 NICSR14 Bits. 170
7-20 NICSR15 Bits . 171
7-21 RDESO Bits. 173
7-22 RDESI Bits. 176
7-23 RDES2 Bits. 176
7-24 RDES3 Bits. 177
7-25 Receive Descriptor Status Validity 177
7-26 TDESO Bits. 178
7-27 TDES1 Bits. 180
7-28 TDES2 Bits. 182
7-29 TDES3 Bits. 182
7-30 Transmit Descriptor Status Validity. 183
7-31 Setup Frame Descriptor Bits. 184
7-32 NICSR Field Values After Reset. 191
7-33 Reception Process State Transitions. 194
7-34 Transmission Process State Transitions 195
7-35 CSMNCD Counters 197
7-36 Port Queue Block Base Address Register (PQBBR) Bits. 204
7-37 Port Queue BLock Base Address Register Bits. 204
7-38 Port Status Register Bits 205
7-39 Port Error Status Register (PESR) Bits. 207
7-40 Port Parameter Register (PPR) Bits. .. 208
7-41 Port Maintenance Control and Status Register (PMCSR) Bits. 211
8-1 CPU Internally Generated SCB Entry Points. 214
8-2 Error Summary Based on SCB Entry Points 215
8-3 Console Halt Codes . 220
8-4 Interrupt State Format. 222
8-5 AT (Address-Type) Codes 223
8-6 Data Length (DL) Codes . 223
8-7 Machine Check Fault Codes. .. 224
8-8 MCHK_FP _PROTOCOL_ERROR . 227
8-9 MCHK_FP _OPERAND_PARITY. 228
9-1 Halt Action Summary. 250
9-2 LED Codes 256
9-3 KA670 Supported Boot Devices. 259
9-4 Command, Parameter, and Qualifier Keywords 269
9-5 Console Symbolic Addresses . 270
9-6 Console Command Summary. 315
9-7 Console Qualifier Summary. 317
A-I Data and Address Signal Assignments. 322
A-2 Control Signal Assignments 323
A-3 Power and Ground Signal Assignments 324
A-4 Spare Signal Assignments. ~25

A-5 Data Transfer Operations ' 325

xx Contents

A-6 Bus Signals for Data Transfers . 326
A-7 Bus Pin Identifiers. 355
B-1 KA670 Console Connector (J2) Pinout 361
0-1 Integer Arithmetic and Logical Instructions. 374
0-2 Address Instructions .. 377
D-3 Variable Length Bit Field Instructions .. 377
D-4 Control Instructions .. 377
D-5 Procedure Call Instructions 378
D-6 Miscellaneous Instructions 378
0-7 Queue Instructions. 379
D-8 Operating System Support Instructions .. 379
0-9 Floating Point Instructions .. 380
0-10 Microcode-Assisted Emulated Instructions. 382
F-1 KA670 Network Maintenance Operations Summary. 388
F-2 Supported MOP Messages 389
F-3 Ethernet & IEEE 802.3 Packet Headers. ... 391
F-4 MOP Multicast Addresses and Protocol Specifiers 391
F-5 MOP Counter Block. 392
1-1 . Firmware State Transition Table 405
1-2 Restart Parameter Block Fields 407
1-3 VMB Argument List. 410
J-1 HALT Messages ... 412
J-2 VMB Error Messages 413
J-3 Console Error Messages 414

About This Manual

The KA670 CPU Module Technical Manual documents the functional, physical, and
environmental characteristics of the KA670 CPU module. The manual also includes
information on the MS670 memory expansion modules.

There are two versions of the KA670 CPU module, KA670-AA and KA670-BA. This
manual covers both versions. The KA670-BA CPU module is designed for use with
workstations and servers. The KA670-BA is functionally equivalent to the KA670-AA,
except that it does not support multiuser VMS and ULTRIX operating system licenses.

Audience
This manual is intended for a design engineer or applications programmer who is familiar
with Digital's extended LSI-ll bus (Q22-bus) and the VAX instruction set. This manual
should be used along with the VAX Architecture Reference Manual as a programmer's
reference to the module.

Organization
The manual is divided into three parts.

Overview and Installation

• Chapter 1, "Overview," introduces the KA670 CPU module, the MS670 memory
module, and the H3604 console module, including module features and specifications.

• Chapter 2, "Installation and Configuration," describes the procedures for installing
and configuring the CPU, memory, and console modules in the Q22-bus backplanes
and system enclosures.

Architecture

• Chapter 3, "Central Processor and Floating Point Unit," describes the functions of the
central processing unit (P-chip) and the floating point unit (F -chip).

• Chapter 4, "Cache and Main Memory," describes the operation of the KA670 CPU
module's cache memory as well as the feature of main memory.

• Chapter 5, "The Console Line, TOY Clock, and Bus System," describes the console
serial line and the time-of-year clock. The chapter also provides an overview of the
KA670 bus system.

• Chapter 6, "KA670 Boot and Diagnostic Facility," describes the boot and diagnostic
registers, EPROM memory, battery backed-up RAM and hardware initialization.

• Chapter 7, "Interface Subsystems," describes the interfaces the KA670 CPU module
uses for the Q22-bus, Ethernet, and mass storage bus.

xxi

xxii About This Manual

• Chapter 8, "KA670 Error Handling," describes unexpected KA670 system error
exceptions and interrupts, from the macrocoder's point of view.

Firmware

• Chapter 9, "Firmware," describes the entry dispatch code, boot diagnostics, device
booting sequence, console program, and console commands.

Appendices

• Appendix A, "Q22-bus Specification," describes the low-end member of Digital's bus
family. All of Digital's microcomputers, such as the MicroVAX 3500, MicroVAX 3600,
and MicroPDP-ll, use the Q22-bus.

• Appendix B, "Specifications," describes the physical, electrical, and environmental
characteristics of the KA670 CPU module.

• Appendix C, "Address Assignments," provides a map of VAX memory space.

• Appendix D, "VAX Instruction Set," is a list of the VAX instructions, provided for
reference only.

• Appendix E, "Machine State on Power-Up," describes the state of the KA670 after a
power-up halt.

• Appendix F, "Maintenance Operation Protocol (MOP) Support," describes the
maintenance operation protocol (MOP) support features in the KA670 firmware.

• Appendix G, "ROM Partitioning," describes the public ROM partitioning and
subroutine entry points that are guaranteed to be compatible over future versions
of the KA670 firmware.

• Appendix H, "RAM Partitioning," describes how the KA670 firmware partitions the 1
kilobyte of battery backed-up RAM.

• Appendix I, "Data Structures," describes the global data structures used by the
KA670 firmware.

• Appendix J, " Error Messages ," provides a list of the expected responses to error
conditions that may be encountered during various transactions on the KA670
module.

• The glossary defines many of the acronyms and new terms used in this manual.

Conventions

The following conventions are used in this manual:

About This Manual xxiii

Table 1 Conventions

Convention Meaning

<x:y> Represents a bit field, a set of lines, or a set of signals, ranging from x through y.
For example, RO <7:4> Indicates bits 7 through 4 in a general-purpose register
RO.
Represents a range of bits, from y through x. [x:y)

20140030 Eight-digit numbers in this document are hexadecimal longwords, typically
representing VAX-32 bit addresses or data.
In sections where octal, decimal, and hexadecimal numbers may appear, the
radix of a number is included to avoid ccnfusion.
Keys or switches that are labeled on the equipment appear in a box.
For key sequences that begin with the ICtr" key, hold down ICtr11 and press the
second key.
Contains information to prevent damage to equipment.
Contains general information.

Caution
Note

variable
()
[]

The names of variable command parameters and options appear in italics.
Encloses a required part of a console command.
Encloses an option to a console command.
Represents a list command elements.

Related Documents

The following documents are related to the KA670 CPU:
KA670 CPU System Maintenance Manual
MicroVAX Maintenance Kit
VAX Architecture Handbook
VAX Architecture Reference Manual

You can order these documents by phone or mail.

Continental USA and Puerto Rico

Call 800-258-1710 or mail to:

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

New Hampshire, Alaska, and Hawaii

Call 1-603-884-6660.

Outside the USA and Puerto Rico Mail to:

Digital Equipment Corporation
Attn: Accessories and Supplies Business Manager
do Local Subsidiary or Digital-Approved Distributor

EK-347AA-MG
QZ-K19AA-GZ130
EB-26115-46
EY-3459E-DB

Overview and Installation

• Chapter 1, Overview

• Chapter 2, Installation and Configuration

1
Overview

This chapter describes the KA670 CPU module, MS670 memory module, and H3604
console module.

1.1 KA670 CPU Module
The KA670 (Figure 1-1) is a quad-height VAX processor module for the Q22-bus.
The KA670 is designed for use in high-speed, real-time applications and in multiuser,
multitasking environments. The KA670 uses a cache memory to maximize performance.

Figure 1-1 KA670 CPU Module

The KA670 is used in the Micro VAX. 4000-300 system, which is housed in the BA440
enclosure. There are no jumpers or switches to configure. Fuses are located on the
H3604 console module.

The KA670 can be configured only as an arbiter CPU on the Q22-bus, where it arbitrates
bus mastership and fields bus interrupt requests and anyon-board interrupt requests.

3

4 Overview

The KA670 uses a lOO-pin ribbon cable to communicate with the H3604 CPU console
module. The module contains configuration switches, Ethernet and DSSI connectors, and
a LED display. Section 1. 7 describes the H3604 module.

A single KA670 CPU module can support up to four MS670 memory modules. The KA670
and MS670 modules mount in dedicated backplane slots in the BA440 enclosure. The
KA670 CPU module communicates with the MS670 memory modules across a memory
interconnect located on a 270-pin backplane connector. The backplane connector also
connects the subsystem with the Q22-bus and one DSSI bus. Together, the CPU and
memory modules form a VAX subsystem that uses the DSSI bus to communicate with
mass storage devices and the Q22-bus to communicate with I/O devices. Figure 1-2 is a
block diagram of the subsystem major functions.

H3604
Console
Module

Ribbon
Cable

KA670
CPU

Module

Figure 1-2 KA670 CPU Module Block Diagram

1.1.1 Module Components

Backplane Interconnect

To Q22-bus Slots

MS670 Memory Modules
(1 minimum/4 maximum)

MLO·OO3895

The KA670 CPU is a quad-height module that mounts in a dedicated CPU backplane slot.
The MS670 memory modules mount in four dedicated memory backplane slots. The CPU
module is fingerless and uses a 270-pin high-density, right-angle connector to connect to
the backplane.

KA670 CPU module includes the following major hardware components. Figure 1-3
shows chip locations, using the chip identification numbers.

• DC520 (P-chip): VAX central processor with a 143 MHz clock

• DC523 (F-chip): Floating point accelerator

• DC592 (C-chip): Two-level cache and its bank of associated RAM chips

Overview 5

• DC561 (G-chip): Main memory controller

• DC521: Clock

• DC527 (CQBIC): Q22-bus interface

• DC541 (SGEC): Ethernet interface

• DC542 (SHAC): DSSI interface chips (2)

• DC511 (SSC): System support chip

• DC509: Clock

• Two firmware ROMs: 256 kilobytes (Each is 128 kilobytes by 8.)

• lOO-pin connector to the H3604 console module

• 270-pin connector to the backplane carrying signals for the Q22-bus, the DSSI bus,
and the memory interconnect

Console Connector

" L,..../
"- \ A """'-J /'

W (u u U~ Firmware
ROMs

I oC54' I BOD
B B EJ

IOC52'I

B DC561 I oC5271 I oC542 1

1 ~ I
Backplane Connector /" MlO 003894

Figure 1-3 KA670 CPU Module Component Side

The KA670 CPU is designed for use in high-speed, real-time applications and in
multiuser, multitasking environments. The KA670 CPU incorporates a two-level cache to
maximize system performance. Estimated compute performance for the KA670-AA CPU
is 8.0 times that of a VAX 111780 system.

Functionally, the KA670-AA CPU module is divided into four major areas:

• Central processing subsystem

6 Overview

• System support subsystem

• 110 subsystem

• Main memory controller

1.2 Central Processing Subsystem
The central processing subsystem contains a CPU chip, a floating point accelerator (FPA)
chip, the cache RAMs, and a cache controller chip.

1.2.1 Central Processing Unit (P-Chip (DC520»

The CPU chip is the heart of the KA670 module. The CPU executes the 181 instructions
in the MicroVAX chip subset of the VAX instruction set. It is implemented by the CPU
chip (REX520, DC520), which is in a 224-pin surface-mount package. The CPU chip
achieves a 28 ns microcyle at an operating frequency of 143 Mhz. The processor also
supports full VAX memory management with demand paging and a 4 gigabyte virtual
address space.

The central processor supports the MicroVAX instruction set with the following string
instructions:

• CMPC3

• CMPC5

• LOCC

• SCANC

• SKPC

• SPANC

The central processor provides the following subset of the VAX data types:

• Byte

• Word

• Longword

• Quadword

• Character string

• Variable-length bit field

• Absolute queues

• Self-relative queues

• F-floating

• G-floating

• D-floating

Support for the remaining VAX data types can be provided through macrocode emulation.

Overview 7

1.2.2 Floating Point Accelerator (F-Chip (DC523»

The floating point accelerator is implemented by the F-chip, which executes the VAX
C, d_, and ~ floating point instructions. The F-chip receives opcode information from
the P-chip, and receives operands directly from memory or the P-chip. The result of the
floating point is always returned to the P-chip.

The floating point accelerator executes 61 floating point instructions and 2 longword­
length integer multiply instructions in the VAX base instruction group. The F-chip is in
a 224-pin surface mount package.

1.2.3 The Cache

The KA670 processor module uses a two-level cache to maximize CPU performance. The
first level is the primary cache, consisting of 2 kilobytes on the central processing chip
(P-chip). The second level is the backup cache, consisting of 24 16K-by-4 static RAMs and
a cache controller chip.

The cache controller chip is implemented with the backup cache chip, (C-chip, DC592),
which is in a 224-pin surface mount package. The C-chip contains the tag store and the
control logic for the backup cache RAMs, as well as a copy of the primary cache tag store
to guarantee primary cache coherence between memory and processor. The chip also
provides an additional bus interface for invalidate filtering, to improve performance.

1.3 System Support Subsystem
The system support subsystem handles the basic functions required to support the
console in a system environment. This subsystem contains the system support chip
(SSC), the firmware ROMs, the boot and diagnostic register, and the station address
ROM.

1.3.1 System Support Chip (SSC (DC511»
The SSC chip is in an 84-pin CERQUAD* surface mount package. The SSC chip provides
console and boot code support functions, operating system support functions, timers, and
the following features:

• Word-wide ROM unpacking

• 1 kilobyte of battery backed-up RAM

• Halt-arbitration logic

• Console serial line

• Interval timer with 10 ms interrupts

• VAX standard time-of-year clock with battery backup

• IORESET register

• Programmable COAL bus timeout (CPU data/address lines)

• Two programmable timers

• A register to control the diagnostic LEOs

• A ceramic-body device with leads on four sides.

8 Overview

1.3.2 FirmwareROMs
Resident finnware ROM is on two 128 Kbyte by 8 EPROM chips. The firmware gains
control when the CPU halts. The firmware contains programs that provide the following
services:

• Board initialization

• Power-up self-testing of the KA670 and MS670 modules

• Emulation of a subset of the VAX standard console (auto or manual bootstrap, auto or
manual restart; and a simple command language for examining or altering the state
of the processor)

• Booting from supported Q22-bus devices

• Multilingual translation of key system messages

See Chapter 9 for details on KA670 firmware.

1.3.3 Boot and Diagnostic Register

The boot and diagnostic register (BDR) allows the finnware and the operating system to
read KA670 configuration bits.

1.3.4 Station Address ROM

The station address ROM contains the network address of the system. This is
implemented in a 32-byte by 8-bit ROM (6331).

1.4 1/0 Subsystem
The I/O subsystem contains the following:

• 2 DSS! mass storage interfaces

• Ethernet interface

• Q22-bus interface

1.4.1 OSSI Mass Storage Interface (SHAC (DC542»
The two single-host adapter chips (SHAC) implement the DSSI bus interfaces. One
SHAC interfaces to the KA670 system console module, while the other SRAC interfaces
to the KA670 backplane. The DSS! interface allows each DSSI bus on the KA670 to
transmit packets of data to. and receive packets from, up to seven other DSSI devices.
These devices include the RF-series integrated storage elements (lSEs), a KFQSA

. module, a second KA670 module, or a KA640 module.

Each SHAC is in a 164-pin CERQUAD package. The SRAC facilitates scatter and gather
mapping along with internal FIFO buffering.

The DSS! bus improves system perfonnance, because it has a higher transfer rate than
the Q22-bus and it relieves the Q22-bus of disk traffic. The nSSI bus has eight data
lines, one parity line, and eight control lines. The ISEs have built-in controllers, so many
functions can be handled without host or adapter intervention.

Overview 9

1.4.2 Ethernet Interface (SGEC (DC541»

The Ethernet interface handles communications between the CPU module and other
nodes on the Ethernet. The interface is implemented with the second generation
Ethernet controller chip (SGEC, OC541) on-board network interface. Used in connection
with the H3604 console module, the SGEC allows the KA670 to connect to either a
Thin Wire or standard Ethernet. The SGEC supports the Ethernet data link layer and
the CP bus parity protection. The SGEC chip is in a 84 pin package. The chip facilitates
scatter and gather mapping along with dual internal FIFO buffering.

1.4.3 Q22-bus Interface (CQBIC (DC527»

The KA670 includes a Q22-bus interface that allows communication between the
KA670 and other devices on the bus. It is implemented with the CP bus to Q22-bus
asynchronous adapter chip (CQBIC, OC527). The CQBIC is in a 132-pin CERQUAD
surface mount package. The KA670 does not provide Q22-bus termination. The
backplane provides the termination resistors. The Q22-bus interface supports the
following functions:

• Programmable and direct mapping functions

• Masked and unmasked longword reads and writes from CPU to the Q22-bus memory
and I/O space and to the interface registers

• Up to 16-word, block mode writes from Q22-bus to main memory

• Up to 2-word, block mode transfers between the CPU and Q22-bus devices

• Transfers from CPU to local Q22-bus memory space

1.5 Memory Support Subsystem
This subsystem provides support for the KA670 memory subsystem. The memory support
subsystem contains a memory controller, a bus adapter, and a G-chip interface.

1.5.1 Memory Controller/Bus Adapter (G-Chip (DC561»

The memory controller and bus adapter are implemented by the memory controller chip
(G-chip, nC561). The G-chip is a dual-ported ECC memory controller and a bus adapter.
As a memory controller, the G-chip controls transactions between the GMI, RDAL bus,
and the CP bus. In addition, the G-chip is responsible for assisting with maintaining
primary and backup cache coherency with the memory system.

The G-chip controls communication among the P-chip, the CQBIC, and the SGEC and
SHAC chips. The G-chip controls and passes data to or from one, two, three, or four
buffered memory modules.

As a bus adapter, the G-chip controls transactions between the higher performance
RDAL bus and the lower performance CP bus. The CP bus port to the G-chip provides a
peripheral bus for direct memory access (OMA) by peripheral functions. The CP bus is a
peripheral bus on the KA670 and does not support the P-chip on this system.

The G-chip is in a 332-pin, high-performance tape package (HPTP). The tape package is
a surface mountable chip carrier with 12.5 mi1lead spacing.

10 Overview

1.6 MS670 Memory Module
The MS670-BA is a 32 Mbyte, double-sided board, with an access time of 100 ns in a
39-bit-wide array (32 bits of data and 7 bits of error correction code) implemented with a
1 Mbyte dynamic RAM in SOJ surface mount packages.

The module mounts in a dedicated memory backplane slot. The module is fingerless
and uses a l50-pin, high-density, right-angle connector to connect to the backplane.
Figure 1-4 is a photograph of the MS670 memory module.

MA-0349-90

Figure 1-4 MS670 Memory Module

Overview 11

1.7 H3604 Console Module
The H3604 console module (Figure 1-5) allows the KA670 CPU module to interface to a
serial line console device, a DSSI bus, and the Ethernet. The H3604 is wide enough to
cover the five slots dedicated to the KA670 and its four MS670 modules. Five adhesive
tags are included for the user to name the modules in the respective slots.

I ~ 1111
Language
Inquiry Switch II \-~.l. ~ Modified i/@ /1 1 Modular Jack
Baud Rate ~. 0 g
Select SWitch :::. '" .

I I ;~VoQ~ Halt Enable/

HEX Display --.lL7 -till ~._ II Disable Switch

DSSI

• 0 ~ Bu, Nod. ID PI'9'

~--ii-i----;--;- l~lll ~i~;·' Coooocl" Connectors
11~1!-- Standard Ethernet
~ Connector

o ~ ThinWire Ethernet
Connector

MLO-003896

Figure 1-5 H3604 Console Module (Front View)

The H3604 module contains the following connectors to allow CPU communication:

• A console serial line (with baud rate switch)

• Two Ethernet connectors (with switch)

• Two 50-ping DSSI connectors that allow daisy-chaining of one DSSI bus, terminators
for both DSSI connectors, and two bus node ID plugs

The H3604 module also has four feature selection switches:

• Baud rate select switch for the serial console line

• Power-up mode switch

• Break enable/disable switch from the console keyboard I Break I key (default) or ICtrl1 ~
depending on the state of SSCCR <15>_ If used, ICtr11 EI must be reset after each halt
action. If this switch is set to the enable position (1), the system does not autoboot on
power-up. Instead, the system enters console lIO mode and displays the »> prompt.

• Ethernet connector switch to selects the following:

• A 15-conductor connector for a standard Ethernet cable

• A male BNC connector for a Thin Wire Ethernet coaxial cable

LEDs indicate the selected connector and valid +12 Vdc for that connector.

12 Overview

In addition, the H3604 module contains the following features;

• Console serial line drivers and receivers

• Hexadecimal display

• Battery charger and low voltage detection

• 25.6 kHz TOY clock oscillator

• -9 V dc/dc converter

• Ethernet serial transceiver chip (SIA)

• Fused current surge protection

Inside the door of the H3604 module are a nSSI circuit fuse and two jumpers. The fuse
prevents shorts from the accidental grounding of the nSSI cable power pin. The jumpers
must be in place to give the bus node number 7 to both of the SHAC nSSI bus controllers
on the CPU board. (The two nSSI buses are separate.)

There are two connectors from the H3604 module to the internal BA440. One is a 4-pin
power connection to a small printed circuit card that inserts next to the KA670 CPU in
the backplane. The other is the IOO-pin connector to the KA670 CPU module.

2
Installation and Configuration

This chapter describes how to install the KA670 in a system. The chapter discusses the
following topics:

• Installing the KA670 and MS670 modules

• Configuring the KA670

• KA670 connectors

2.1 Installing the KA670 and MS670 Memory Modules
NOTE
You can use the KA670 and MS670 modules only in BA440 system enclosures
that use high-density backplane connector slots.

The KA670 CPU module and the MS670 memory modules must be installed in the five
rightmost backplane slots. Note that the KA670 module installs in backplane slot J5,
and the memory modules install in slots J4 through J1.

To install the KA670 and MS670 modules:

1. Install the KA670 CPU in slot J5 of the Q22-buslCD backplane.

2. Install MS670 memory modules in slots J4 through J1 next to to the KA670 CPU.

• If you only use one memory module, you can install it in any of the slots J4
through J1.

• If you use more than one memory module, you must install the first memory
module in J4, the second in J3, and so on. Do not leave a gap between memory
modules.

3. Install a lOO-pin ribbon cable between the KA670 CPU and the console module.

Figure 2-1 shows the positions of the KA670 CPU and the memory modules in the
backplane.

13

14 Installation and Configuration

Mass storage DSSI/SCSI Devices J23
J30 0

J28 0 J27 J21 J31 J20 0

0 0 0 0 0 0

J29 0 0 0 0 0 0

0 0 SCSI 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

DSSI 0 0 0 0 0

Slot Slot
12 11 10 9 8 7 6 5 4 3 2 1

KA670 CPU
J19 J17 J15 J13 J11 J9 J7 J5

* * * * * * * 1 *
* * * * * * * 1* DSSI
* * * * * * * 1* J25
* * * * * * * 1* J26
* * * * * * * 1* MS670 Memory
* Q22* Q22*Q22*Q22*Q22* Q22 * Q22 1* Modules 0

* * * * * * * 1 * J4 J3 J2 JI 0

* * * * * * * 1 * 1 * 1 1 * 1 1 * 1 1 * 1 0

* * * * * * * 1 * 1 * 1 ! * 1 1 * 1 1 * I 0

* * * * * * * 1* 1 * 1 1 * 1 1 * 1 1 * I 0

1* 1 * 1 1 * 1 1 * 1 1 * I 0

1* 1 * 1 1 * 1 1*1 1 * 1
* * * * * * * 1 * GMI*IGMIIGMIIGMII 0

* * * * * * * 1* 1 * 1 1*1 1 * 1 I * I 0

* * * * * * * 1* 1 * 1 1*1 1 * I 1 * I 0

* C/D* C/D*C/D*C/D*C/D* C/O * 1* 1*1 1 * 1 1*1 1 * 1 0

* * * * * * * 1 * 1 1 * 1 1 * 1 1*1 1 * 1 0

* * * * * * * 1 * 1 1*1 I * I 1 * 1 1 * 1 0

* * * * * * * 1* t 0

* * * * * * * 1 * 1 Power
* * * * * * * 1 * 1 J24 supply
* * * * * * * 1 * 1 0

J18 Jl6 J14 J12 JI0 J8 J6 o Console
o Power

I
J22

Fan
Power

Figure 2-1 Backplane

2.2 Module Configuration and Naming
Each module in a system must use a unique device address and interrupt vector. The
device address is also known as the control and status register (CSR) address. Most
modules have switches or jumpers for setting the CSR address and interrupt vector
values. The value of a floating address depends on what other modules are housed in the
system.

Set CSR addresses and interrupt vectors for a module as follows:

l. Determine the correct values for the module with the CONFIGURE command at the
console 110 prompt (»>).The CONFIG utility eliminates the need to boot the VMS
operating system to determine CSRs and interrupt vectors. Enter the CONFIGURE·
command, then HELP for the list of supported devices: .

Installation and Configuration 15

»> CONFIG
Enter device configuration, HELP, or EXIT
Device, Number? HELP
Devices:

LPVll KXJll DLVllJ DZQll DZVll DFAOl
RLV21 TSV05 RXV21 DRVllW DRVllB DPVll
DMVll DELQA DEQNA RQDX3 KDA50 RRD50
RQC25 KXXXX-DISK TQK50 TQK70 TU81E RV20
KXXXX-TAPE KMVll IEQll DHQll DHVll CXA16
CXB16 CXY08 VCB02 QDSS DRVllJ DRQ3B
VSV21 IBQOl IDVllA IDVllB IDVllC IDVllD
IAVllA IAVllB MIRA ADQ32 DTC04 DESQA
IGQll

The LPVll-SA has two sets of CSR address and interrupt vectors. To determine
the correct values for an LPVll-SA, enter LPVll,2 at the DEVICE prompt for one
LPVll-SA, or enter LPVll,4 for two LPVll-SA modules.

2. See the KA670 CPU System Maintenance Manual for switch settings and CSR and
interrupt vector jumper settings for supported options.

2.3 Mass Storage Configu ration
There is. space for four mass storage devices-either three integrated storage elements
(lSEs) and one TK70 tape drive, or four ISEs. The ISEs are part of the Digital storage
system interconnect (DSS!) bus.

The DSSI bus is part of the backplane. The ISEs are of the RF series, and they plug into
the backplane to become part of the bus. Each ISE must have its own unique uSSI node
ID. The ISE receives its node ID from a plug on the operator control panel (OCP) on the
front panel.

The VMS operating system creates DSSI disk device names according to the following
scheme:

nodename $ DIA unit number

For example,

SUSAN$DIA3

You can use the device name for booting, as follows:

»> BOOT SUSAN$DIA3

You can access local programs in the RF-series ISE through the MicroVAX diagnostic
monitor (MDM), or through the VMS operating system (version 5.0) and console 110
mode SET HOST/DUP command. This command creates a virtual terminal connection
to the storage device and the designated local program using the diagnostic and utilities
protocol (DUP) standard dialog. Section 2.3.3 describes the procedure for accessing DUP
through the VMS operating system.

2.3.1 Changing the Node Name
Each ISE has a node name that is maintained in EPROM onboard the controller module.
This node name is determined in manufacturing from an algorithm based on the drive
serial number. You can change the node name of the DSSI device to something more
meaningful by following the procedure in Example 2-1. In the example, the node name
for the ISE at DSSI node address 1 is changed from R3YBNE to DATADISK

16 Installation and Configuration

»> SHO OSSI
DSSI Node 0 (MDC)
-DIAO (RF71J

DSSI Node 1 (R3YBNE)
-DIAl (RF71)

!The node name for this drive will be
!changed from R3YBNE to DATADISK.

DSSI Node 7 (*)
»>
»> SET HOST/DOP/OSSI 1
Starting DUP server ...
Copyright 1988 Digital Equipment Corporation
DRVEXR Vl.O D 5-NOV-1988 15:33:06
DRVTST Vl.O D 5-NOV-1988 15:33:06
HISTRY V1.0 D 5-NOV-1988 15:33:06
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS Vl.O D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory
Task Name? params
Copyright 1988 Digital Equipment Corporation

PARAMS> SHO HODENAME

Parameter Current Default

NODENAME R3YBNE RF71

PARAMS> SET HOOENAME DATAOISK

Type Radix

String Ascii B

PARAMS> WRITE !This command writes the change
!to EEPROM.

Changes require controller initialization, ok? [Y/(N)] Y

Stopping DUP server ...
»> SHO OSSI
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (DATADISK)
-DIAl (RF71)

DSSI Node 7 (*)

!The node name has changed from
!R3YBNE to DATADISK.

Example 2-1 Changing a DSSI Node Name

2.3.2 Changing the DSSI Unit Number

By default, the ISE drive assigns the disk's unit number to the same value as the nSSI
node address for that drive.

Example 2-2 shows how to change the unit number of a nBSI device. This example
changes the unit number for the RF71 drive at nSSI node address 2 from 1 to 50
(decimal). You must change two parameters: UNITNUM and FORCEUNI. Changing
these parameters overrides the default, which assigns the unit number the same value as
the node address.

Installation and Configuration 17

»> SHO DSSI
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3QJNE)
-DIAl (RF71)

!The unit number for this drive will be
!changed from 1 to 50 (DIAl to DIA50).

DSSI Node 7 (*)
»>
»> SET HOST/DOP/DSSI 1
Starting DUP server ...
Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST Vl.O D 5-NOV-1988
HISTRY VI-O D 5-NOV-1988
ERASE VI-O D 5-NOV-1988
PARAMS VI-O D 5-NOV-1988
DIRECT VI-O D 5-NOV-1988
End of directory

Task Name? PARAMS

15:33:06
15:33:06
15:33:06
15:33:06
15:33:06

Copyright 1988 Digital Equipment Corporation

PARAMS> SHO UNITNUM

Parameter Current Default

UNITNUM o 0

PARAMS> SHO FORCEURI

Parameter Current Default

Type

Word

Type

FORCEUNI 1 1 Boolean

PARAMS> SET UNITNUM 50

PARAMS> SET FORCEURI 0

Radix

Dec U

Radix

0/1 U

PARAMS> WRITE

PARAMS> EX
Exiting ...

!This command writes the changes to EEPROM.

Task Name?

Stopping OUP server ...
»>
»>SHO DSSI
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3QJNE)
-DIA50 (RF71)

DSSI Node 7 (*)

!The unit number has changed
!and the node ID remains at 1.

Example 2-2 Changing a OSSI Unit Number

2.3.3 Accessing RF-series Firmware in VMS, Through DUP

You can also access the RF-series ISE firmware utilities from the VMS operating system
as well as through the console commands.

Use the VMS operating system to access the ISE firmware if you want to look up or view
parameter settings, but not change them. To change ISE parameter settings, enter the
ISE firmware through the console 110 mode SET HOSTIDUP command.

18 Installation and Configuration

Load the FYDRIVER using the following commands in SYSGEN:

$ NCR SYSGEN
SYSGEN> LOAD FYDRIVER/NOADAPTER
SYSGEN> CONNECT i'YAO/NOADAPTER
SYSGEN> EXIT
$

You can then access the ISE firmware utilities by using the following VMS command:

$ SET HOST /DOP /SERVER.=MSCP $DOP /TASK=PARAMS nodenama

2.3.3.1 Allocatlon Class
When a KA670 system containing ISEs is configured in a cluster, either as a boot node or
a satellite node, you must assign the allocation class in VMS SYSGEN and for the ISE
matching nonzero values. To change the allocation class of the ISE, use the following
commands:

»> SET HOST/DOP/DSSI <DSSI node number> PARAMS
Starting DUP server ..

PARAMS> SET ALLCLASS <allocation class value>

PARAMS> WRITE
Changes require controller initialization, ok? (YIN) Y

Stopping DUP server ..
»>

2.4 DSSI Cabling, Device Identity, and Bus Termination
The ISEs in one particular BA440 enclosure are connected to the system backplane
and communicate internally over the backplane. There are no internal DSSI cables.
Externally, a 50-pin ribbon cable connects the DSSI bus to other devices, either hosts or
expanders.

There are two DSSI ports in the KA670 system. One DSSI port is routed along the
backplane and exits the enclosure at the left edge, from a connector near the ISE slots.
The other DSSI port is configured by means of the DSSI connector on the H3604 panel.
If unused, DSSI connectors must be terminated.

There is no terminator on the KA670. The near-end termination is contained on the
backplane for the internal DSSI bus, and provided by the pluggable connectors for the
external bus.

An DSSI devices on the same bus must have unique identifiers. On the face of the H3604
console module, you can see the two DSSI bus ID plugs (Figure 1-5). These ID plugs
provide an identity for each DSSI bus. Because the DSSI buses are separate, the two ID
plugs may be identical.

2.5 KA670 Connectors
The KA670 CPU module uses two connectors, J1 and J2. J1 is a 270-pin connector that
mates with the backplane. J2 is the connector for the 100-pin ribbon cable that goes
to the console module. Users configure the KA670 through the H3604 console module.
Figure 1-3 shows the location of the connectors on the KA670 module.

Architecture

• Chapter 3, Central Processor and Floating Point Unit

• Chapter 4, Cache and Main Memory

• Chapter 5, The Console Line, TOY Clock, and Bus System

• Chapter 6, KA670 Boot and Diagnostic Facility

• Chapter 7, Interface Subsystems

• Chapter 8, KA670 Error Handling

3
Central Processor and Floating Point Unit

This chapter describes the functions of the central processing unit (P-chip) and the
floating point unit (F -chip).

3.1 Central Processor
The central processor of the KA670 supports the MicroVAX chip subset (plus six
additional string instructions) of the VAX instruction set and data types, as well as
full VAX memory management. The central processor is implemented with a single VLSI
chip called the P-chip (REX520).

3.1.1 Processor State
The processor state is that portion of the state of a process which is stored in processor
registers rather than in memory. The processor state is composed of 16 general-purpose
registers (GPRs), the processor status longword (PSL), and the internal processor
registers (lPRs).

Nonprivileged software can access the GPRs and the processor status word (bits <15:00>
of the PSL). Only privileged software can access the IPRs and bits <31:16> of the PSL.
The IPRs are explicitly accessible only by the move to processor register (MTPR) and
move from processor register (MFPR) instructions, which can be executed only while
running in kernel mode.

3.1.1.1 General-Purpose Registers
The KA670 implements 16 general-purpose registers as specified in the VAX Architecture
Reference Manual. These registers are used for temporary storage, accumulators, and as
base and index registers for addressing. The general-purpose registers are RO to R15.
The bits of a register are numbered from the right, <0> to <31>. Figure 3-1 shows the
fonnat of a general-purpose register. Table 3-1 describes the registers.

3
1

Figure 3-1 General-Purpose Register

o

Some of these registers have been assigned special meaning by the VAX-ll architecture:

21

22 Central Processor and Floating Point Unit

Table 3-1 General·Purpose Register Descriptions

Register Register Name Mnemonic Description

R15 Program counter PC The PC contains the address of the next
instruction byte of the program.

R14 Stack pointer SP The SP contains the address of the top of
the processor-defined stack.

RI3 Frame pointer

R12 Argument pointer

FP

AP

The VAX-U procedure call convention
builds a data structure on the stack,
called a stack frame. The FP contains
the address of the base of this data
structure.

The VAX-ll procedure can convention
uses a data structure tenned an
argument. The AP contains the address
of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the operation
and use of these registers.

3.1.1.2 Processor Status Longword
The KA670 processor status longword (PSL) is implemented as specified in the VAX
Architecture Reference Manual. See that manual for a detailed description of this
register's operation.

The PSL is saved on the stack when an exception or interrupt occurs, and is saved in
the process control block (PCB) on a process context switch. Nonprivileged software
can access bits <15:00>, but only privileged software can access bits <31:16>. Processor
initialization sets the PSL to 041F 000016. Figure 3-2 shows the format of the processor
status longword. Table 3-2 lists the bits and definitions.

3 3 2 2 2 2 2 2 222 2
1 098 7 6 5 4 321 0

1 1
6 5 876543210

F M
C T P I CUR PRV B 0 F I
M P MBl 0 S MOD MOD l IPL MBl V U V T N l V

Figure 3-2 Processor Status Longword

NOTE
VAX compatibility mode instructions can be emulated by macl'Ocode, but the
emulation software runs in native mode, so the eM bit is never set.

Table 3-2 explains the properties of each internal process register:

C

Central Processor and Floating POint Unit 23

Table 3-2 Internal Process Register Descriptions

PSL
Data
Bit Name

<31> CM

<30> TP

<29:28> MBZ

<27> FPD

<26> IS

<25:24> CUR

<23:22> PRY

<21> MBZ

<20:16> IPL

<15:8> MBZ

<7> DV

<6> FU

<5> IV

<4> T

<3> N

<2> Z

<1> V

<0> C

Definition

Compatibility mode. This bit always reads as zero, loading a one into this
bit is a NOP.

Trace pending

Must be written as zero

First part done

Interrupt stack

Current mode

Previous mode

Must be written as zero

Interrupt priority level

Must be written as zero

Decimal overflow trap enable This read/write bit has no effect on KA670
hardware; the bit can be used by macrocode that emulates VAX decimal
instructions.

Floating underflow fault enable

Integer overflow trap enable

Trace trap enable

Negative condition code

Zero condition code

Overflow condition code

Carry condition code

3.1.1.3 Internal Processor Registers
The KA670 internal processor registers (lPRs) can be accessed by using the MFPR and
MTPR privileged instructions. Each IPR falls into one of the following five categories:

1. Implemented by KA670 as specified in the VAX Architecture Reference Manual .

2. P-chip implementation that is unique or different from that specified in the VAX
Architecture Reference Manual.

3. Not implemented by KA670. Read as zero, NOP on writes.

4. Not implemented by KA670. Access causes a reserved operand fault.

5. Not fully implemented by KA670. Access causes unpredictable results.

Table 3-3 provides information on each IPR.

There are different categories of IPRs. Section 3.1.1.3.11ists category 1 IPRs and the
section where they are described. Section 3.1.1.3.2 lists category 2 IPRs and the section
where they are described.

24 Central Processor and Floating Point Unit

Table 3-3 KA670 Internal Processor Registers

Decimal Hex. Register Name Mnemonic Type

0 0 Kernel stack
pointer

1 1 Executive stack
pointer

2 2 Supervisor stack
pointer

3 3 User stack pointer

4 4 Interrupt stack
pointer

5-7 5-7 ReselVed

8 8 PO base register

9 9 PO length register

10 A PI base register

11 B 1 length register

12 C System base
register

13 D System length
register

14-15 E-F ReselVed

16

17

18

19

20

10 Process control
block base

11 System control
block base

12 Interrupt priority
level

13 AST level

14 Software
interrupt request
register

Type

R -Read-only register
W -Write-only register
RW-Readlwrite register

Scope -Processor register's scope

CPU -CPU-wide register
PROC-Per-process register

KSP RW

ESP RW

SSP RW

USP RW

ISP RW

POBR RW

POLR RW

PIBR RW

PUR RW

SBR RW

SLR RW

PCBB RW

SCBB RW

IPL RW

ASTLVL RW

SIRR W

Imp!. -Chip in which the processor register is implemented.

REX520 -REX520 chip <P-chip)
SSC -System support chip
C-chip -C-chip

Scope

PROC

PROC

PROC

PROC

CPU

PROC

PROC

PROC

PROC

CPU

CPU

PROC

CPU

CPU

PROC

CPU

Init? -Initialized on module RESET (power-up, or negatioD of DCOK)
Category-Processor register category

Impl. Init? Category

REX520 1

REX520 1

REX520 1

REX520 1

REX520 1

3

REX520 1

REX520 1

REX520 1

REX520 1

REX520 1

REX520 1

REX520 1 ,

REX520 1

REX520 Yes 1

REX520 Yes 1

REX520 1

Central Processor and Floating Point Unit 25

Table 3-3 (Cont.) KA670 Internal Processor Registers

Decimal Hex. Register Name

21 15 Software
interrupt
summary register

22-23 16-17 Reserved

24 18 Interval counter
control status

25-26 19-1A Reserved

27 IB Time-of-year
register

28 Ie Console storage
receiver status

29 1D Console storage
receiver data

30 iE Console storage
transmitter status

31 IF Console storage
transmitter data

32 20 Console receiver
control/status

33 21 Console receiver
data buffer

34 22 Console transfer
control/status

35 23 Console transfer
data buffer

36-37 24-25 Reserved

38

39

40

26 Machine check
error register

27 Reserved

28 Accelerator
control and status
register

Type

R -Read-only register
W -Write-only register
RW-Readlwrite register

Scope -Processor register's 8a)pe

CPU -CPU-wide register
PROC-Per-process register

Mnemonic Type

SISR RW

ICCS RW

TODR RW

CSRS RW

CSRD R

CSTS RW

CSTD W

RXCS RW

RXDB R

TXCS RW

TXDB W

MCESR W

ACCS RW

Impl. -Chip in which the processor register is implemented.

REX520 -REX520 chip (P-dlip)
SSC -System support chip
C..chip -C-dlip

Scope

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Init? -Initialized on module RESET (power-up, or negation of DCOK)
Category-Processor register category

ImpL Init? Category

REX620 Yes I

3

REX520 2

3

SSC 1

sse Yes 5

SSC Yes 5

SSC Yes 5

sse Yes 5

sse Yes 2

SSC Yes 2

sse Yes 2

sse Yes 2

3

REX620 2

3

REX620 Yes 2

26 Central ,Processor and Floating Point Unit

Table 3-3 (Cont.) KA670 Internal Processor Registers

Deeimal Hes. Register Name

41 29 Reserved

42 2A Console saved PC

43 2B Console saved
PSL

44-46 2C-2E Reserved

47 2F Translation buffer
tag

48--54 30-36 Reserved

56 37 110 system reset
register

66 38 Memory
management
enable

67 39 Translation buffer
invalidate all

58 3A Translation buffer
invalidate single

59 3B Translation buffer
data

60-61 3C-3D Reserved

62 3E System
identification

63 3F Translation buffer
check

64-111 40-6F Reserved

112 70 Backup cache
reserved register

113 71 Backup cache tag
store

114 72 Backup cache PI
tag store

Type

R -Read-only register
W -Write-only register
RW-Readlwrite register

Scope --Processor register's scope

CPU -CPU-wide register
PROC-Per-proc:ess register

MnemOJlicType

SAVPC R

SAVPSL R

TBTAG W

IORESET W

MAPEN RW

TBIA W

TBIS W

TBDATA W

SID R

TBCHK W

BC112 RW

BCBTS RW

BCPITS RW

Impl. -Chip in which the processor register is implemented.

REX520 -REX520 chip (P-chip)
sse -System support chip
C-chip -C-chip

Scope

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Init? -Initialized on module RESET (power-up. or negation or DeOK>
Category-Processor register catellDry

ImpL Init? Category

3

REX520 2

REX520 2

3

REX520 2

3

SSC 2

REX620 Yes 1

REX520 1

REX520 1

REX520 2

3

REX520 1

REX520 1

3

C-chip 5

C-Cbip 2

C-Cbip 2

Central Processor and Floating Point Unit 27

Table 3-3 (Cont.) KA670 Internal Processor Registers

Decimal Hex. Register Name Mnemonic Type Scope Impl. Init? Category
115 73 Backup cache P2 BCP2TS RW CPU C.Chip 2

tag store

116 74 Backup cache BCRFR RW CPU C-Chip 2
refresh register

117 75 Backup cache BCIDX
index register

RW CPU C-Chip 2

118 76 Backup cache BCSTS RW CPU C-Chip Yes 2
status register

119 77 Backup cache BCCTL RW CPU C-Chip Yes 2
control register

120 78 Backup cache BCERR R CPU C-Chip 2
eJTOr register

121 79 Backup cache BCFBTS W CPU C-Chip 2
flush backup tag
store

122 7A Backup cache BCFPTS W CPU C-Chip 2
flush primary tag
store

123 7B Vector interface VINTSR RW CPU C-Chip 2
eJTOr status
register

124 7C Primary cache tag PCTAG RW CPU REX520 2
store

125 7D Primary cache PCIDX RW CPU REX520 2
index register

126 7E Primary cache PCERR RW CPU REX520 2
eJTOr address
register

127 7F Primary cache PCSTS RW CPU REX520 Yes 2
status register

128- 80-FF Reserved 3
255

>255 >FF Reserved 4

Type

R -Read-only register
W -Write-only register
RW-Readlwrite register

Scope -Processor register's scope

CPU -CPU-wide register
PROC-Per-process register

Impl. -Chip in which the processor register is implemented.

REX520 -REX520 chip (P-c:hip)
SSC -System support chip
C-chip -C-chip

Init? -Initialized on module RESET (power-up, or negation of DCOK)
Category-Processor register category

28 Central Processor and Floating Point Unit

ACCESS TO CATEGORY 3 REGISTERS
Category 3 processor registers in the previous table are passed to the RDAL by
the P-chip. Since these registers are not implemented by the KA670 module, the
SSC terminates the EPR read or write transaction after the period specified by
the SSC bus timeout control register.

During this time, the CPU does not execute any other instructions, and no other
DAL transactions are possible. Therefore, category 3 processor registers should
not be referenced during normal system operation, as this may cause device or
CPU timeouts to occur.

3.1.1.3.1 KA670 VAX Standard Internal Processor Registers
Internal Processor Registers (lPRs) that are implemented as specified in the VAX
Architecture Reference Manual are classified as category 1 IPRs. See the VAX Architecture
Reference Manual for details on the operation and use of these registers.

The category 1 registers listed in Table 3-4 are also referenced in other sections of this
manual:

Table 3-4 category 1 Internal Processor Registers

Number

Decimal Hex Register Name Mnemonic Section

18 12 Interrupt priority level IPL 3.1.6.1

20 14 Software interrupt request SIRR 3.1.6.1

21 15 Software interrupt SISR 3.1.6.1
summary

27 1B Time-of-year clock TODR Section 5.2

56 38 Memory management MAPEN 3.1.5.2
enable

57 39 Translation buffer TBIA 3.1.5.2
invalidate all

58 3A Translation buffer TBIS 3.1.5.2
invalidate single

62 3E System identification SID Section 3.1.7

63 3F Translation buffer check TBCHK 3.1.5.2

3.1.1.3.2 KA670 Unique Internal Processor Registers
Internal processor registers (IPRs) that are implemented uniquely on the KA670 are
classified as category two IPRs. For example, category 2 IPRs are not contained in, or
do not fully conform to, the VAX Architecture Reference Manual. Category 2 IPRs are
described in detail in this manual. See the sertions listed in Table 3-5 for a description
of these registers:

Central Processor and Floating Point Unit 29

Table 3-5 Category 2 Internal Processor Registers

Number

Decimal Hex Register Name Mnemonic Section

24 18 Interval clock control/status ICCS 5.2.2

32 20 Console receiver control/Status RXCS 5.1.1.1

33 21 Console receiver data buffer RXDB 5.1.1.2

34 22 Console transmit control/status TXCS 5.1.1.3

35 23 Console transmit data buffer TXDB 5.1.1.4

38 26 Machine check error register MCESR 3.1.6.4

40 28 Accelerator control and status ACCS 3.1.8

42 2A Console saved PC SAVPC 3.1.6.6

43 2B Console saved PSL SAVPSL 3.1.6.6

47 2F Translation buffer tag TBTAG 3.1.5.2

55 37 110 system reset register IORESET 6.5.3.1

59 3B Translation buffer data TBDATA 3.1.5.2

113 71 Backup cache tag store BCBTS 4.1.3.5.1

114 72 Backup cache PI tag store BCPITS 4.1.3.5.2

115 73 Backup cache P2 tag store BCP2TS 4.1.3.5.2

116 74 Backup cache refresh register BCRFR 4.1.3.5.3

117 75 Backup cache index register BCIDX 4.1.3.5.4

118 76 Backup cache status register BCSTS 4.1.3.5.5

119 77 Backup cache control register BCCTL 4.1.3.5.6

120 78 Backup cache error register BCERR 4.1.3.6.1

121 79 Backup cache flush backup tag store BCFBTS 4.1.3.6.2

122 7A Backup cache flush primary tag store BCFPTS 4.1.3.6.3

123 7B Vector interface error status register VINTSR

124 7C Primary cache tag store PCTAG 4.1.2.5.4

125 7D Primary cache index register PCIDX 4.1.2.5.3

126 7E Primary cache error address register PCERR 4.1.2.5.2

127 7F Primary cache status register PCSTS 4.1.2.5.1

3.1.2 Process Structure
A process is a single thread of execution. The context of the current process is contained
in the process control block (PCB), which is pointed to by the process control block
base register (PCBB). The KA670 implements these structures as defined in the VAX
Architecture Reference Manual. See that manual for a description of the PCB and the
PCBB.

30 Central Processor and Floating Point Unit

3.1.3 Data Types
The KA670 CPU supports the following subset of the VAX. data types:

• Byte

• Word

• Longword

• Quadword

• Character string

• Variable-length bit field

• Absolute queues

• Self-relative queues

• F _floating

• G_floating

• D_floating

Support for the remaining VAX data types can" be provided by macrocode emulation.

3.1.4 Instruction Set

The KA670 CPU implements the following subset of the VAX instruction set types in
microcode:

• IntegeT arithmetic and logical

• Address

• Variable length bit field

• Control

• Procedure call

• Miscellaneous

• Queue *

• Character string (MOVCa, MOVC5, CMPC3*, CMPC5*, LOCC·, SCANC·, SKPC·,
SPANC·)

• Operating system support

• F _floating

• G_floating

• D _floating

The P-chip (REX520) provides special microcode assistance to aid the macrocode
emulation of the following instruction groups:

• Character string (except MOVC3, MOVC5, CMPC3'" t CMPC5"', wce"', SCANC· ,
SKPC· , SPANC·)

• Decimal string

• These instructions were in the microcode-assisted category on the KA63O-A (MicroVAX II) and
therefore had to be emulated.

Central Processor and Floating Point Unit 31

• CRC

• EDITPC

The following instruction groups are not implemented, but may be emulated by
macrocode:

• Octaword

• Compatibility mode instructions

Appendix D lists the entire KA670 instruction set. The appendix indicating which
instructions are implemented in the floating point accelerator (FPA) and which
instructions have microcode assists to speed up macrocode emulation.

3.1.5 Memory Management
The KA670 implements VAX Memory Management in full, as defined in the VAX
Architecture Reference Manual. System space addresses are virtually mapped through
single-level page tables, and process space addresses are virtually mapped through two­
level page tables. See the VAX Architecture Reference Manual for descriptions of the
virtual-to-physical address translation process, and the format for VAX page table entries
(PTEs).

3.1.5.1 Translation Buffer
To reduce the overhead associated with translating virtual addresses to physical
addresses, the P-chip employs a 64-entry, fully associative, translation buffer for caching
VAX PTEs. Each entry can store a PTE for translating virtual addresses in either the
VAX process space, or VAX system space. The translation buffer is flushed whenever the
following actions are perfonned:

• Memory management is enabled or disabled (for example, by writes to IPR 56).

• Any page table base or length registers are modified (for example, by writes to IPRs
13 to 8).

• IPR 57 (TBIA) or IPR 58 (TBIS) is written to.

Each entry is divided into two parts-a 24-bit tag register and a 27 -bit PTE register.
The tag register stores the virtual page number (VPN) of the virtual page that the
corresponding PrE Register maps, and a valid bit (TB.V) that indicates the tag contains
a valid VPN. The PTE register stores the 21-bit page frame number (PFN) field, the
PTE.V bit, the PrE.M bit, and the 4-bit PROT field from the corresponding VAX PTE.

During virtual-to-physical address translation, the contents of the 64 tag registers are
compared with the virtual page number field (bits <31 :9» of the virtual address of the
reference. If there is a match with one of the tag registers and the TB.V bit indicates
the entry is valid, then a translation buffer "hit" has occurred. The contents of the
corresponding PTE register are used for the translation.

If there is no match, the translation buffer does not contain the necessary VAX PTE
information to translate the address of the reference, and the PTE must be fetched
from memory. Upon fetching the PTE, the translation buffer is updated by replacing
the entry selected by the replacement pointer. Since this pointer is moved to the next
sequential translation buffer entry whenever it is pointing to an entry that is accessed,
the replacement algorithm is not last used (NLU). This pointer is called the NLU pointer.

32 Central Processor and Floating Point Unit

3.1.5.2 Memory Management Control Registers
There are four IPRs that control the memory management unit (MMU):

IPR 56 (MAPEN)
IPR 57 (TBIA)
IPR 58 (TBIS)
IPR 63 (TBCHK)

Memory management can be enabled or disabled through IPR 56 (MAPEN). Writing a
o to this register with a MTPR instruction disables memory management. Writing a 1
to this register with a MTPR instruction enables memory management. Writes to this
register flush the translation buffer. To determine whether or not memory management
is enabled, IPR 56 is read using the MFPR instruction.

Translation buffer entries that map a particular virtual address can be invalidated by
writing the virtual address to IPR 58 (TBIS), using the MTPR instruction. Whenever
software changes (1) a valid page table entry for the system or current process region,
or (2) a system page table entry that maps any part of the current process page table,
all process pages mapped by the page table entry must be invalidated in the translation
buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57 (TBIA) using
the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation for a
particular virtual page, by using the MTPR instruction to write a virtual address within
that page to IPR 63 (TBCHK) . If the translation buffer contains a valid translation
for the page, the condition code V bit (bit<1> of the PSL) is set. The TBIS, TBIA, and
TBCHK IPRs are write only. The operation of an MFPR instruction from any of these
registers is undefined.

There are three pairs of base and length registers that specify the base and length of the
PO, P1, and SO spaces:

• IPR 8 (POBR) and IPR 9 (POLR)

• IPR 10 (PIBR) and IPR 11 (P1LR)

• IPR 12 (SBR) and IPR 13 (SLR)

The base and length of the PO, PI, and SO page tables may be changed by writing the
appropriate address or length to any of the following registers:

IPR 8 (POBR)
IPR 9 (POLR)
IPR 10 (P1BR)
IPR 11 (P1LR)
IPR 12 (SBR)
IPR 13 (SLR)

Whenever the location· or size of the system map is changed by changing the SBR
(IPR 12) or SLR (IPR 13), the entire translation buffer must be cleared. The P-chip
accomplishes this by flushing the TB on any change to SBR and SLR, or to POBR, P1BR,
POLR, and P1LR.

When a process context is loaded with the LDPCTX instruction, aU TB entries that map
process-space pages are automaticaUy cleared. System-space mappings are preserved.

Central Processor and Floating Point Unit 33

Two IPRs are used by diagnostic software to test the translation buffer:

IPR 47 (TBTAG)(Fonnat shown in Figure 3-3.)
IPR 59 (TBDATA)(Format shown in Figure 3-4.)

3
1 9 8 o

~ ______ V_i_rt_ua_I_P_a_ge __ N_um __ be_r_(_W_ri_te_O_n_ly_) ______ ~ ______ M __ BZ ____ ~I:TBTAG

Figure 3-3 Translation Buffer Tag (TBTAGHIPR 4710 2F16)

3 3
1 0

222
765

2 2
1 0

PTE.PFN (Write Only)

PTE.M (Write Only)
PTE. PROT (Write Only)

PTE.V (Write Only)

Figure 3-4 Translation Buffer Data (TBDATA)-(IPR 59to 38 16)

o

:TBDATA

Diagnostic software may use IPR 47 (TBTAG) and IPR 59 (TBDATA) to test the operation
of the translation buffer. A write to TBTAG writes bits <31:9> of the source data into
the VPN field of the current tag location and clears the TB.V bit. A subsequent write
to TBDATA interprets the source data as a PTE; writes PTE.V, PTE.M, PTE. PROT, and
PTE.PFN into the current PTE location; sets the TB.V bit; and increments the NLU
pointer.

These registers are provided fOT diagnostic purposes only and should not be written
during normal operation. Writes to these registers must be done under very controlled
conditions to achieve the desired results. Specifically, the following restrictions apply:

• The NLU pointer must be in a known state. A TBIA will initialize the NLU pointer
to the first location in the array.

• Memory management must be enabled during the use of TBTAG and TBDATA,
because writing to MAPEN implicitly does a TBIA and resets the NLU pointer.

• Data- and instruction-stream references during the use ofTBTAG and TBDATA must
not be allowed to change the NLU pointer.

NOTE
The TBIS, TBIA, TBCHK, TBTAG, and TBDATA IPRs are write only. An MFPR
instruction used to read any of these registers will cause the P-cbip (REX520) to
initiate a reserved operand fault.

3.1.6 Interrupts and Exceptions
Both interrupts and exceptions divert execution from the normal flow of control.

An interrupt is caused by some activity outside the current process and typically transfers
control outside the process (for example, an interrupt from an external hardware device).
An exception is caused by the execution of the current instruction and is typically handled
by the current process (for example, an arithmetic overflow).

34 Central Processor and Floating Point Unit

3.1.6.1 Interrupts
Interrupts can be divided into two classes: nonmaskable and maskable. For more
information on error recovery and analysis, see Chapter 8.

Nonmaskable interrupts cause a halt through the hardware halt procedure. The
hardware halt procedure does the following:

• Saves the PC, PSL, MAPEN<O> and a halt code in IPRs.

• Raises the processor IPL to IF.

• Passes control to the resident firmware .

. The firmware dispatches the interrupt to the appropriate service routine, based on the
halt code and hardware event indicators. Nonmaskable interrupts cannot be blocked
by raising the processor IPL, but can be blocked by running out of the halt protected
address space. The exception is nonmaskable interrupts that generate a halt code of 3.
Nonmaskable interrupts with a halt code of 3 cannot be blocked, because this halt code is
generated after a hardware reset.

Maskable interrupts cause the following:

• The PC and PSL is saved.

• The processor IPL is raised to the priority level of the interrupt (except for Q22-bus,
mass storage, and network interface interrupts, where the processor IPL is set to 17
independent of the level at which the interrupt was received.)

• The interrupt is dispatched to the appropriate service routine through the system
control block (SCB).

Table 3-<3 lists the various interrupt conditions for the KA670, along with their associated
priority levels and SCB offsets.

Table 3-6 Interrupt Priority Levels

Priority Level

Nonmaskable

IF

IE
ID

Interrupt Condition

BDCOK and BPOK negated, then asserted on Q22-bus
(power up)

SCB Offset

BDCOK negated, then asserted while BPOK asserted on t
Q22-bus (power up)

BHALT asserted on Q22-bus t
BREAK generated by the console device t
Unused

BPOK nega.ted on Q22-bus

Uncorrectable main memory errors (MASKED writes
only)

Main memory NXM errors on writes

RDAL data parity errors on writes

CP bus NXMtrIMEOUT on a write

Q22-bus NXMINOSACK on a write

oc
60

60

60

60

60

·These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).

tThese conditions generate a hardware halt procedure with a halt code of 2 (extemal halt).

Central Processor and Floating Point Unit 35

Table 3-6 (Cont.) Interrupt Priority Levels

Priority Level Interrupt Condition SCB Offset

Q22-bus NOGRANT on a write 60

1C:1B Unused

1A Correctable main memory errors 54

Uncorrectable main memory errors (I-Stream) 54

RDAL data parity errors on I-stream or nonrequest 54
D-stream

Primary cache tag parity errors (writes or I-Stream) 54

Primary cache data parity errors (I-Stream) 54

CP Bus NXMITIMEOUTS errors (I-Stream) 54

19:18 Unused

17 BR7 L asserted Q-bus vector
plus 20016

16 Interval timer interrupt CO

BR6 L asserted Q-bus vector
plus 20016

15 BR5 L asserted Q-bus vector
plus 20016

14 Console tenninal F8,FC

Programmable timers 78,7C

Mass storage interface 1 (DSSI port 1) (external) 108

Mass storage interface 2 (DSSI port 2) (internal) 104

Network interface 10C

Interprocessor doorbell 204

BR4 L asserted Q-bus vector
plus 20016

13:10 Unused

OF:01 Software interrupt requests 84-BC

NOTE
Because the Q22-bus does riot allow differentiation between the four bus grant
levels (for example, a level 7 device could respond to a level 4 bus grant), the
KA670 CPU raises the IPL to 17 after responding to interrupts generated by the
assertion of either BR7 L, BR6 L, BRS L, or BR4 L. The KA670 maintains the IPL
at the priority of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs:

• IPR 18, the interrupt priority level register (IPLR) (Figure 3--5)
Used for loading the processor priority field in the PSL (bits<20:16».

• IPR 20, the software interrupt request register (SIRR) (Figure 3-6)
U sed for creating software interrupt requests.

• IPR 21, the software interrupt summary register (SISR) (Figure 3-7)
Records pending software interrupt requests at levels 1 to 15.

36 Central Processor and Floating Point Unit

See the VAX Architecture Reference Manual for more information on these registers.

3
1

Ignored. Returns 0

5 4

Figure 3-5 Interrupt Priority Level Register (IPLR)- (IPR 18to 1216)

3
1 4 3 o

o

Ignored I Requestl :SIRR

Figure 3-6 Software Interrupt Request Register (SIRR)- (lPL 20.0 1416)

3
1

1 1
6 5

Pending Software Interrupts

FEDCBA9 8 7 6 5 4 3 2

Figure 3-7 Software Interrupt Summary Register (SISR)- (IPL 2110 1516)

3.1.6.2 Exceptions
Exceptions can be divided into three types: trap, fault, and abort.

1

o

M
B
Z

:SISR

A trap is an exception that occurs at the end of the instruction that caused the exception.
Mer an instruction traps, the PC saved on the stack is the address of the next
instruction that normally would have been executed, and the instruction can be restarted.

A fault is an exception that occurs during an instruction. A fault leaves the registers
and memory in a consistent state, so eliminating the fault condition and restarting the
instruction gives correct results. After an instruction faults, the PC saved on the stack
points to the instruction that faulted.

An abort is an exception that occurs during an instruction, leaving the value of registers
and memory unpredictable. That is, the instruction cannot necessarily be correctly
restarted, completed, simulated, or undone. After an instruction aborts, the PC saved
on the stack points to the instruction that was aborted. The aborted instruction mayor
may not be the instruction that caused the abort. The instruction mayor may not be
restarted, depending on the class of the exception and the contents of the parameters
that were saved.

Exceptions can be divided into six classes. Table 3-7 lists exceptions by class. All the
exceptions listed (except machine check) are described in greater detail in the VAX
Architecture Reference Manual.

Central Processor and Floating Point Unit 37

Table 3-7 Exception Classes

Exception Class

Arithmetic Exceptions

Integer overflow

Integer divide by zero

Subscri pt range

Floating overflow

Floating divide by zero

Floating underflow

Memory Management Exceptions

Access control violation

Translation not valid

Operand Reference Exceptions

Reserved addressing mode

Reserved operand fault or abort

Instruction Execution Exceptions

Reserved/privileged instruction

Emulated instruction

Change mode

Breakpoint

Tracing Exception

Trace

Serious System Failure Exceptions

Console error halt

Interrupt stack not valid

Kernel stack not valid

Machine checks consisting of the following:

P-cache tag and data parity errors (D-stream reads)
B-cache data parity errors (D-stream reads)
RDAL data parity errors (nonrequested bytes only)
Main memory uncorrectable errors (D-stream)
Main memory read NXM errors
CP bus read parity errors
Q22-bus NXMINOSACK errors (D-stream reads)
Q22-bus read device parity errors
Q22-bus read NO GRANT errors
CP bus timeoutINXM read errors

"Dispatched by resident finnware rather than through the SCB.

Type

Trap

Trap

Trap

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Trap

Fault

Fault

Abort

Abort

Abort

Abort

SCD Offset

34

34

34

34

34

34

20

24

lC

18

10

C8,CC

40-4C

2C

28

•

08

04

Exceptions save the PC and PSL. In some cases, exceptions also save one or more
parameters on the stack. Most exceptions do not change the IPL of the processor or cause
the exception to be sent to the appropriate service routine through the SCB. .

38 Central Processor and Floating Point Unit

However, exceptions in the Serious System Failure class set the processor IPL to IF.
The interrupt stack not valid exception and exceptions that occur while an interrupt or
another exception is being serviced are sent to the appropriate service routine by the
resident firmware.

3.1.6.3 Information Saved on a Machine Check Exception
In response to a machine check exception, the following information is pushed onto the
stack as shown in Figure 3-8:

• Contents of the processor status longword

• Contents of the program counter

• Eight parameters

• A byte count

3
1

RI

1 1
6 .5

Byte Count

I

Contents of VA Register

Machine Check Code

Contents of VIBA Register

ICCS Register Bit <6> Contents I SISR <15:0>

Internal State Information

Contents of the Shift Count (SC) Register

Contents 01 the Program Counter (PC)

Contents of the Process Status Longword (PSL)

Figure 3-8 Information Saved on a Machine Check Exception

The following paragraphs explain the diagram of the stack pointer.

Byte Count

o

:SP

:SP + 4

:SP + 8

:SP + 12

:SP + 16

:SP + 20

:SP + 24

:SP + 28

:SP + 32

The byte count is <31:0> (0000001816,2410) The byte count value indicates the number
of bytes of information that follow on the stack, excluding the PC and PSL.

VAX Restart Bit (R)

Bit <31> of the longword at (SP)+4 after a machine check is the VAX. restart bit (R). If R
is 1, 110 state was by the instruction executing when the error was detected. If R is 0, the
state was changed by the instruction.

Machine Check Code Parameter

Bits <15:0> of the longword at (SP)+4 after a machine check contain the machine check
parameter code. This code value indicates the type of machine check that occurred. A list
of the possible machine cheek codes (in hexadecimal) and their associated causes follows:

• Floating Point Errors (Table 3-8)

These codes indicate that the FPA or CPU chips detected an error during the
execution of a floating point instruction.

Central Processor and Floating Paint Unit 39

There are two most likely cause of these types of machine checks:

A problem internal to the P-chip or FPA chips
A problem with the interconnect between the two chips

Machine checks due to floating point errors may be retried, depending on the state
of the VAX restart bit of the longword at (SP)+4, and the FIRST PART DONE flag
(captured in PSL <27». The error may be retried only if the VAX restart bit is set
and the FIRST PART DONE flag is cleared. Otherwise, the error is unrecoverable;
depending on the current mode, the current process or the operating system should
be terminated, or the FPA should be disabled. The information pushed on the stack
by this type of machine check is from the instruction that caused the machine check.

Table 3-8 Floating Point Errors

Hex Code Error Description

01

02

03

04

05

A protocol error was detected by the FPA chip during an F-chip operand/result
transfer.

An illegal opcode was detected by the FPA chip.

The FPA chip detected an operand parity error.

Unknown status was returned by the FPA chip.

The returned FPA chip result had a parity error.

• Memory Management Errors (Table 3-9)

These codes indicate that the microcode in the P-chip detected an impossible situation
while performing functions associated with memory management. The most likely
cause of this type of a machine check is a problem internal to the P-chip. Machine
checks due to memory management errors may be retried. Depending on the current
mode, either the current process or the operating system should be terminated. The
state of the POBR, POLR, P1BR, P1LR, SBR, and SLR registers should be logged.

Table 3-9 Memory Management Errors

Hex Code Error Description

08

09

A memory management error occurred while the P-chip was handling an access
control violation/translation not valid fault. The READIWRITE that caused the
error missed the translation buffer. This error may be retried if the VAX restart bit
or the FIRST PART DONE flag is set.

A memory management error occurred while the P-chip was handling an access
control violation/translation not valid fault. The READIWRITE that caused the
error hit the translation buffer. This error may be retried if the VAX restart bit
or the FIRST PART DONE flag is set. The fact that the errant reference hit the
translation butfer means that the P-chip is the most likely cause of the error.

• Interrupt Error (Table 3-10)

This code indicates that the interrupt controller in the P-chip requested a hardware
interrupt at an unused hardware IPL. The most likely cause of this type of a machine
check is a problem internal to the P-chip. Machine checks due to unused IPt errors
may be retried A nonvectored interrupt generated by a serious error condition .

40 Central Processor and Floating Point Unit

(memory error, power failure or processor halt) has probably been lost. The operating
system should be terminated.

Table 3-10 Interrupt Errors

Hex Code Error Description

OA A hardware interrupt was requested at an unused interrupt priority level (IPL).
'This error may be retried if the VAX restart bit or the FIRST PART DONE flag is
set.

• Microcode Errors (Table 3-11)

These codes indicate that the microcode detected an impossible situation while
the instruction was executing. Note that most erroneous branches in the P-chip
microcode will cause random microinstructions to be executed. The most likely cause
of this type of machine check is a problem internal to the P-chip. Machine checks
due to microcode errors may be retried. Depending on the current mode, either the
current process or the operating system should be terminated.

Table 3-11 MIcrocode Errors

Hex Code Error Description

OB

OC

OD

An impossible state (for example, an undefined state bit combination in the
microsequencer) was detected during a MOVC3 or MOVCS instruction (not move
forward, move backward, or fill). 'This error may be retried if the FIRST PART
DONE flag is set.

An undefined trap code was produced by the P-chip. 'This error may be retried if
the VAX restart bit is set and the FIRST PART DONE flag is cleared.

An undefined control store address was reached by the microsequencer. 'This error
may be retried if either the VAX restart bit or the FIRST PART DONE flag is set.

• Read Errors (Table 3-12)

These codes indicate that an error was detected while the P-chip was trying to read
from either the primary cache, bac~up cache, main memory, or Q22-bus. The most
likely cause of this type of machine check is determined from the state of the PCSTS,
PCERR, BCSTS, BCERR DSER, MEMCSR32, MEMCSR33, and MEMCSR34.

Machine checks due to read errors may be retried depending on the state of the VAX
restart flag, the FIRST PART DONE flag, and the PCSTS<trap2> double-error bit. If
either the FIRST PART DONE flag or VAX RESTART flag is set, and PCSTS<trap2>
are cleared, then the error may be retried. Otherwise, the error is unrecoverable;
depending on the current mode, either the current process or the operating system
should be terminated.

The information pushed on the stack by this type of machine check is· from the
instruction that caused the machine check.

Central Processor and Floating Point Unit 41

Table 3-12 Read Errors

Hex Code Error Description

10

11

A primary cache tag or data parity error occurred during a read.

An RDAL bus (error terminated cycle) or data parity error occurred during a read.

• Write Error (Table 3-13)

This code indicates that an error was detected while the P-chip was trying to write
to either the primary cache, backup cache, or main memory. This is an unexpected
MCHK abort response in the KA670, because ERR L should never be accepted on a
write cycle.

Table 3-13 Write Errors

Hex Code

12

Error Description

An RDAL bus error (for example, ERR L terminated cycle) occurred on a write or
clear wri te butTer.

• RDAL Bus Errors (Table 3-14)

This code indicates that the P-chip detected that the RDAL bus was in an undefined
state. This machine check is not recoverable.

Table 3-14 RDAL Bus Errors

Hex Code Error Description

13 An undefined RDAL bus state was detected by the P-chip.

Contents of the P·Chlp's Internal Virtual Address (VA) Register

After a machine check, the location at (SP)+8 captures the contents of the P-chip's VA
register at the time of the machine check. After a machine cheek of 10 or 11, the (SP)+8
location represents the virtual address of the memory location that was being read when
the error occurred.

After a machine check of 12 (an RDAL bus error write or clear), the (SP)+8 location
represents the virtual address of a location that was being referenced either during or
after the error. Therefore, the contents of this field cannot be used for error recovery if
the machine check occurred on a write operation.

Contents of the P·Chlp's Internal VIBA Register

After a machine check, the location at (SP)+ 12 captures the contents of the P-chip's VIBA
register at the time of the machine check. After a machine check, this field represents
the virtual address of the last I-stream fetch plus four.

lees Register BiteS> Contents

After a machine check, the location at (SP)+ 16 bit<22> captures the contents of the P­
chip's interval clock control and status (lCCS) register's bit<6> the interrupt enable (IE)
at the time of the machine check.

42 Central Processor and Floating Point Unit

SISR Register Blts<15:0> Contents

After a machine check, the location at (SP)+16 bits<15:0> captures the contents oftheP­
chip's software interrupt summary register's (SISR) bits<15:0> at the time of the machine
check.

Internal State Information

The internal state information field is divided into five subfields <Table 3-15).

Table 3-15 Internal State Information Field

Bits

<31:24>

<20:18>

<17:16>

<15:8>

<3:0>

Description

Delta PC (PC -backup PC)

The access Type (AT) at machine check time. The 3-bit code is interpreted as
follows:

<000> - Read access

<001> - Write access

<010> - Modify access

d01> - Address access

dl0> - Variable bit access

<111> - Branch access

The data length (DL) at machine check time. The 2-bit code is interpreted as
follows:

<00> - Byte long

<01> - Wurd long

dO> - Longword long

<11> - Quadword long

Opcode- This field captures the opcode of the instruction being read or executed
at the time of the machine cheek.

Register Number (RN) -This field captures the number of the registertbat
was the destination of the instruction being executed at the time of the machine
check.

Contents of the Shift Count (SC) Register

After a machine check. the location at (SP)+24 captures the contents of the P-chip's shift
count (SC) register at the time of the machine check. The P-chip uses this register in
different ways, depending on the instruction being executed.

Contents of the Program Counter (PC)

PC<31:0>-After a machine check, the location at (SP)+ 28 captures the virtual address
of the start of the instruction being executed at the time of the machine check.

Central Processor and Floating Point Unit 43

COntents of the Process Status Longword (PSL)

After a machine check, the location at (SP)+ 32 captures the contents of the PSL at the
time of the machine check.

NOTE
The software must acknowledge machine checks by writing a 0 to the MCESR
(lPR 38).

3.1.6.4 Machine Check Error Register (MCESR) IPR 38
The machine check error register (IPR 38, MCESR) provides the mechanism by which
software acknowledges receipt of a machine check. MCESR is a write-only register and
has the format shown in Figure 3-9:

3
1

Write Only

o

Figure 3-9 Machine Check Error Register (MCESR)- (IPR 3810 2616)

When the P-chip microcode invokes the software machine check handler, it sets a
MACHINE CHECK IN PROGRESS flag. If a machine check or memory management
exception occurs while this flag is set, the microcode initiates a console double-error halt.

Software should clear the MACHINE CHECK IN PROGRESS flag in the machine check
handler as soon as possible, by writing a 0 to IPR MCESR. Doing so re-enables normal
machine check and memory management exception reporting.

3.1.6.5 System Control Block (SCB)
The system control block (SCB) consists of two pages in main memory that contain the
vectors used to send interrupts and exceptions to the appropriate service routines. The
SCB is pointed to by IPR 17, the system control block base register (SCBB). Figure 3-10
shows the format of the system control block format, and Table 3-16 describes the
format.

332
1 0 9

Physical Longword Address of SCB

9 8 o

MBZ

Figure 3-10 System COntrol Block Base Register (SCBB)- (IPL 1710 1116)

Table 3-16 The System COntrol Block Format

Number
SeB InterruptJException- of
Offset Name Type Params Notes

00 Passive release Interrupt 0 IPL is raised to request
IPL.

04 Machine check Abort 6 Parameters reflect
machine state.

44 Central Processor and Floating Point Unit

Table 3-16 (Cont.) The System Control Block Fonnat

Number
SCB InterruptiException of
OffBet Name Type Params Notes

08 Kernel stack not valid Abort 0 Must be serviced on
interrupt stack.

OC Power fail Interrupt 0 IPL is raised to IE.

10 Reserved/pri vileged Fault 0
instruction

14 Customer reserved Fault 0 XFC instruction.
instruction

18 Reserved operand Fault/Abort 0 Not always recoverable.

lC Reserved addressing mode Fault 0

20 Access control Fault 2 Parameters are virtual
violationlvector alignment address, status code.
fault

24 Translation not valid Fault 2 Parameters are virtual
address, status code.

28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0

30 Unused Compatibility mode in
other VAX machines.

34 Arithmetic 'l'raplFault 1 Parameter is type code.

38-3C Unused

40 CHMK Trap 1 Parameter is sign-
extended operand word.

44 CHME Trap 1 Parameter is sign-
extended operand word.

48 CHMS Trap 1 Parameter is sign-
extended operand word.

4C CHMU Trap 1 Parameter is sign-
extended operand word.

50 Unused

54 Memory soft error Interrupt 0 IPL is lA.
notification (corrected read
error)

58-5C Unused

60 Memory hard error Interrupt 0 IPL is ID.
notification

64 Unused

68 Vector unit disabled Fault 0 Vector instructions.

6C-74 Unused

78 Programmable timer 0 Interrupt 0 IPL is 14.

7C Programmable timer 1 Interrupt 0 IPL is 14.

Central Processor and Floating Point Unit 45

Table 3-16 (Cont.) The System Control Block Fonnat

Number
SCB InterruptlException of
Offset Name Type Params Notes

80 Unused

84 Software level 1 Interrupt 0

88 Software level 2 Interrupt 0 Ordinarily used for AST
delivery.

8C Software level 3 Interrupt 0 Ordinarily used for process
scheduling.

90-BC Software levels 4-15 Interrupt 0

CO Interval timer Interrupt 0 IPL is 16.

C4 Unused

C8 Emulation start Fault 10 Same mode exception,FPD
= 0; parameters are
opcode, PC, specifiers.

CC Emulation continue Fault 0 Same mode exception,FPD
= 1: no parameters.

108 Mass storage interface 1 Interrupt 0 IPL is 14.
(08SIPORT 1)

104 Mass storage interface 2 Interrupt 0 IPL is 14.
(08SI PORT 2)

D8-DC Unused

FO Network interface Interrupt 0 IPL is 14.

F4 Unused

F8 Console receiver Interrupt 0 IPL is 15.

FC Console transmitter Interrupt 0 IPL is 15.

204 Interprocessor doorbell Interrupt 0 IPL is 14.

Vectors in the range of 100 to FFFC are used to directly vector interrupts from the
external bus. The SCBB vector index is determined from bits <15:2> of the value
supplied by external hardware.

The new PSL priority level is determined by either the external interrupt request level
that caused the interrupt or by bit <0> of the value supplied by external hardware.

If bit<O> is 0, the new IPL level is determined by the interrupt request level being
serviced. IRQ<3> sets the IPL to 1716; IRQ<2>, 1616; IRQ<l>, 1516 ; and IRQ<O>, 1416.
If bit<O> of the value supplied by external hardware is 1, then the new IPL is forced to
1716.

The ability to force the IPL to 1716 supports an external bus, such as the Q22-bus, that
cannot guarantee that the device generating the SCBB vector index is the device that
originally requested the interrupt.

For example, the Q22-bus has four separate interrupt request signals that correspond to
IRQ<3:0>, but only one signal to daisy chain the interrupt grant. Furthermore, devices
on the Q22-bus are ordered so that higher priority devices are electrically closer to the

46 Central Processor and Floating POint Unit

bus master. If an IRQ<l> is being serviced, there is no guarantee that a higher priority
device will not intercept the grant.

Software must determine the level of the device that was serviced and set the IPL to the
correct value. Only device vectors in the range of 100 to FFFC16 should be used, except
by devices emulating console storage and terminal hardware.

3.1.6.6 The Hardware Halt Procedure
The hardware halt procedure is the method used by the hardware to assist the firmware
in emulating a processor halt. The hardware halt procedure saves the following from IPR
42 (SAVPC) and IPR 43 (SAVPSL):
IPR 42
(SAVPC)

IPR 43
(SAVPSL)

Current value of the PC

Current value of the PSL, MAPEN<O>, a halt code, and the valid bit

Figure 3-11 and Figure 3-12 show the formats for (SAVPC) and (SAVPSL), respectively.

SAVPSL<14> (valid bit) is set to 0 if the PSL is valid, and set to 1 if the PSL is invalid.
The valid bit is undefined after a halt caused by a system reset.

3
1 o

~ _______________ s_a_ve_d_p_C ____ (R_e_a_d_O_n_IY_) ________________ ~I:sAVPC

Figure 3-11 Console Saved PC (SAVPC)- (IPR 42to 2A16)

1 1 1 1 3
1 6543 87 0

PSL<31:16> Halt Code PSL<7:0> :SAVPSL

MAPEN<O> _________ ..1

Valid Bit (Valid if 0)

Figure 3-12 COnsole Saved PSL (SAVPSL)- (IPR 43to 2816)

The current stack pointer is saved in the appropriate internal register. The PSL is set
to 041F 000016 (IPL=lF, kernel mode, using the interrupt stack), and the current stack
pointer is loaded from the interrupt stack pointer. Control is then passed to the resident
firmware at physical address 2004 0000 16. Table 3-17 shows the state of the CPU after
a halt.

Table 3-17 CPU State After a Halt

Register

SAVPC

SAVPSL<31:16,7:0>

SAVPSL<15>

SAVPSL<14>

New Contents

Saved PC

Saved PSL<31:16,7:0>

Saved MAPEN<O>

Valid PSL flag (unknown for halt code of 3)

Central Processor and Floating Point Unit 47

Table 3-17 (Cont.) CPU State After a Halt

Register

SAVPSL<13:8>

SP

PSL

PC

MAPEN

ICCS

SISR

New Contents

Saved halt code

Current interrupt stack (lPR 4)

041F 0000 16

20040000 16

o
o (for a halt code of 3)

o (for a halt code of 3)

ASTLVL

All else

o (for a halt code of 3) (asynchronous system traps level register)

Undefined

The firmware uses the halt code in combination with hardware event indicators to send
the interrupt or exception responsible for the halt to the appropriate firmware routine
(either console emulation, power-up, reboot, or restart). Table 3-18 lists the interrupts
and exceptions that can cause a halt, along with their corresponding halt codes and event
indicators.

Table 3-18 HALT Codes

Halt Code Interrupt Condition

Halt Codes for Unmaskable Interrupts

2 External Halt (P-chip HALT_L pin asserted).

3

BHALT asserted on the Q22-bus.

BDCOK negated and asserted on the Q22-bus while
BPOK stays asserted (Q22-bus reboot/restart).

BREAK generated by the console.

Hardware Reset (P-chip RESET pin negated)

BDCOK and BPOK negated then asserted on the Q22-
bus (power-up).

BDCOK negated and asserted on the Q22-bus while
BPOK stays asserted (Q22-bus reboot/restart).

Halt Codes for Exceptions

6 Halt instruction executed in Kernel Mode.

Event Indicator

DSER<15>

DSER<14>

RXDB<1l>

Halt Codes for Exceptions that Occur While Serving an Interrupt or Exception

4

5

7

8

A

Interrupt stack not valid during exception.

Machine check during normal exception.

SCB vector bits<1:0>= 11.

SCB vector bits<1:0>= 10.

CHMx executed while on interrupt stack.

48 Central Processor and Floating Point Unit

Table 3-18 (Cont.) HALT Codes

Halt Code

10

11

12

13

19

lA

IB

ID

1E

IF

3F

Interrupt Condition

Access violation (ACV) or translation not valid (TNV)
during machine check exception.

ACV or TNV during kernel stack not valid exception.

Machine check during machine check exception.

Machine check during kernel stack not valid exception.

PSL<26:24>= 101 during interrupt or exception.

PSL<26:24>= 110 during interrupt or exception.

PSL<26:24>= 111 during interrupt or exception.

PSL<26:24>= 101 during REI.

PSL<26:24>= 110 during REI.

PSL<26:24>= 111 during REI.

Power-up self-test failed in the P-chip (microcoded).

3.1.7 System Identification

Event Indicator

The KA670 firmware and operating system software references two registers to determine
the processor on which they are running. The first register is the system identification
(SID) register, an internal processor register. The second register is the system
identification extension (SIE) register, a firmware register in the KA670 EPROM.

3_1.7.1 System Identification Register
The system identification (SID) register (IPR 62) is a 32-bit, read-only register
implemented in the CPU chip. The SID register is used to identify the processor type
and its microcode revision level. The SID longword is read from IPR 62, using the MFPR
instruction. This longword value is processor-specific. Figure 3-13 shows the format of
the SID register. Table 3-19 lists the bit definitions.

3
1

CPU Type

22
43

Reserved

87 o

I Microcode Rev. I

Figure 3-13 System Identification Register (SIO)- (IPR 6210 3E16)

Table 3-19 System Identification Register (SID)

Field Name

<31:24> CPU type

<23:8> Reserved

<7:0> Version

RW Description

RO The CPU type is the processor-specific identification code.

RO Reserved for future use.

RO Version of the microcode.

Central Processor and Floating Point Unit 49

3.1.7.2 System Identification Extension Register (20040004)
The system identification extension (SIE) register is an extension of the SID register,
used to further differentiate between hardware configurations. The SID register identifies
which CPU and microcode is executing, and the SIE register identifies what module and
firmware revision are present. Note that the fields in this register depend on the CPU
type in SID<31:24>.

By convention, all MicroVAX systems implement a longword at physical location
20040004 in the firmware EPROM for the SIE register. This 32-bit, read-only register
is implemented in the KA670 ROM. Figure 3-14 shows the format of the SIE register.
Table 3-20 lists the definitions of the register bits.

3
1

Sys_Type

2 2
4 3

1 1
6 5 8 7

Rev. Level I Sys_Sub_Type I Reserved

o

Figure 3-14 System Type Register (SYS_TYPE)

Table 3-20 System Type Register (SYS_TYPE)

Field Name

31:24 Sys_type

23:16 Version

15:8 Sys_sub_
type

7:0 Reserved

RW Description

RO This field identifies the type of system for a specific processor.

01 : Q22-bus single-processor system.

RO This field indentifies the resident version of the firmware EPROM,
encoded as two hexadecimal digits. For example, if the banner
displays V5.0, then this field is 5016 .

RO This field indentifies the particular system subtype.

01: KA650
02: KA640
03: KA655
04: KA670

This field is reserved.

3.1.8 Accelerator Control and Status Register (ACCS) IPR 40
The accelerator control and status register (IPR 40, ACCS) provides the FPU with the
ability to generate bad data parity on write operations. Figure 3-15 shows the format of
the ACCS. Table 3-21 lists the register bit definitions.

33
1 0

Write Even Parity

MBZ

210

FPU Present
Must be 0 --~

Figure 3-15 Accelerator Control and Status Register (ACCSHIPR ~o 28-t8)

50 Central Processor and Floating Point Unit

NOTE
The M bit should be set in any PrE that maps pages to be written while write
even parity is enabled. Failure to do so may result in a PrE being written with
bad parity during an M bit update.

Table 3-21 Accelerator Control and Status Register Bit Definitions

Data Bit

<31>

<30:2>

<1>

Name

Write even parity

Reserved

FPU present

Must be zero

3.1.9 CPU References

Type

Write only

Read/write

CPU references are divided into three groups:

• Request instruction-stream read references

• Demand data-stream read references

• Write references

Definition

This bit enables the generation of bad
data parity for write operations. If the
bit is set to I, all subsequent cache
or memory writes and F-chip operand
transfers are done with bad data
parity on all bits. This bit is used for
diagnostics only, and should never be
set during nonnal operations.

The write even parity bit is
automatically cleared if ACCS is
read with an MFPR instruction.
Also, the write-even-parity state is
cleared at the start of any interrupt,
exception, or console halt, to prevent
an exception stack frame from being
written with bad data parity. The
write even parity bit is cleared during
a reset.

Must be read as O.

This bit enables use of the F -chip.

If the FPU present bit is set to I,
floating point and longword-Iength
integer multiply instructions are
passed to the F-chip for execution.

If the FPU present is set to 0,
the execution of a floating point
instruction results in a reserved
instruction fault.

Since an F -chip is included on every
KA670 module, the FPU present
bit should be set during nonnal
operation. If an F -chip error is
detected, the F-chip may be disabled
if the operating system emulation
software is loaded. This bit is cleared
during a reset.

Reserved. Must be read as O.

Central Processor and Floating Point Unit 51

3.1.9.1 Instruction-Stream Read References
The CPU has an instruction prefetcher for prefetching program instructions from either
cache or main memory. The prefetcher uses a 16-byte (4-longword) instruction prefetch
queue (IPQ). Whenever there is an empty longword in the IPQ, and the prefetcher is not
halted due to an error, the instruction prefetcher generates an aligned quadword, request
instruction-stream (I-stream) read reference.

3.1.9.2 Data-Stream Read References
Whenever the CPU needs data immediately to continue processing, a demand data­
stream (D-stream) read reference is generated. Demand D-Stream references are
generated on the following references:

• Operand

• Page table entry (PTE)

• System control block (SCB)

• Process control block (PCB)

When interlocked instructions such as branch on bit set and set interlock (BBSSI) are
executed, a demand D-stream read-lock reference is generated.

All data read references are translated into an appropriate combination of masked
and unmasked, aligned quad word read references. The reasons for the translation are
that (1) the CPU does not impose any restrictions on data alignment other than the
aligned operands of the add aligned word interlocked (ADAWI) and interlocked queue
instructions, and (2) memory can only be accessed one aligned quad word at a time.

If the required data is •••

A byte, a word within a quadword, or an
aligned quadword

A word that crosses a quadword boundary
or an unaligned quadword

Larger than a quad word

3.1.9.3 Write References

Then the following is generated •••

A single, aligned quadword, demand D-stream read
reference

Two successive, aligned quadword, demand D­
stream read references

The data is divided into a number of successive,
aligned quad word, demand D-stream reads, with no
optimization.

Whenever data is stored or moved, a write reference is generated. All data write
references are translated into an appropriate combination of masked and unmasked,
aligned quadword write references. The reason for the translation is that (1) the CPU
does not impose any restrictions on data alignment (other than the aligned operands of
the ADAWI and interlocked queue instructioJ1s), and (2) memory can only be accessed one
aligned quad word at a time.

If the required data is •••

A byte, a word within a quadword, or an
aligned quadword

A word that crosses a quadword boundary
or an unaligned quadword

Then the following is generated •••

A single, aligned quadword, write reference

Two successive, aligned quadword, write references

52 Central Processor and Floating Point Unit

If the required data is •..

Larger than a quad word

Then the following is generated •.•

The data is divided into a number of successive,
aligned quadword writes

3.2 KA670 Floating Point Accelerator
The KA670 module includes a floating point accelerator (FPA) chip to enhance the
performance of floating point and certain integer calculations. These functions are
implemented by the F-chip.

3.2.1 Floating Point Accelerator Data Types

The KA670 floating point accelerator supports the following data types:

• Fjloating

• D_floating

• G_floating

• Byte (conversion to and from floating formats)

• Word (conversion to and from floating formats)

• Longword (conversion to and from floating formats and multiply)

3.2.2 Floating POint Accelerator Instructions
The KA670 FPU chip processes the following VAX instructions:

• F _floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBF, EMODF, and POLYF are emulated, not processed by the FPU
chip.

• D_floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBD, EMODD, and POLYD are emulated, not processed by the FPU
chip.

• G_floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBG, EMODG, and POLYG are emulated, not processed by the FPU
chip.

• Longword-length integer multiply instructions.

If the FPU chip is absent or disabled, the execution of a floating point instruction results
in a reserved instruction exr.eption. The execution of a longword-Iength integer multiply
instruction is done by the FPU chip microcode.

3.2.3 Operand and Result Transfer

The CPU and FPU chips work together to execute instructions accelerated by the FPU
chip. The CPU parses the opcode and instruction specifiers, then sends opcode and
operands to the FPU.

Operands from the GPRs, the instruction stream, and the primary cache are explicitly
transferred from the CPU to the FPU.Floating point short literals are transferred in
unexpanded fomi; it is the FPU's responsibility to expand them to the correct format. .

Central Processor and Floating Point Unit 53

Operands from the backup cache or from memory are returned to both the CPU and the
FPU simultaneously-they are not received by the CPU and rebroadcast to the FPU.

When the FPU receives the last operand for an instruction, the FPU begins to compute
the result. In parallel, the CPU completes any instruction setup (for example, parsing a
destination specifier). The CPU then requests the result from the FPU and stalls until
the result is returned. Finally, the CPU stores the result in GPR or memory and sets the
PSL condition codes. '

The FPU tests for exception conditions and reports them to the CPU, in response to the
request for the result. Detected exceptions include reserved operands, floating divide by
zero, floating overflow, floating underflow, and data parity errors.

3.2.4 Power-Up State

At power-up, the CPU microcode disables the FPU as part of the chip initialization
process. Until the FPU is enabled, the execution of any floating point instruction results
in a reserved instruction exception. The console should enable the FPU by setting bit <1>
of the accelerator control and status (ACeS) processor register, then test the operation of
the FPU. If the FPU fails these tests, the console should clear ACCS<1> again.

Console Programmer's Note

The FPU does not accept memory operands in I/O space. Because the FPU executes
longword-Iength integer multiply instructions as well as floating point instructions, it
may not produce correct results or report operand parity errors if it is enabled during the
execution of the console code from the boot ROM.

Therefore, the FPU should be disabled on any console entry, by writing a 0 to bit 1 of the
ACeS processor register. This action causes the CPU to execute the integer instructions
in microcode and invoke a reserved instruction fault for the floating point instructions.

The FPU is normally tested during the power-up self-test. In this case, it is the
responsibility of the console programmer to understand the restrictions involved and
perfonn the test in a controlled manner.

4
Cache and Main Memory

This chapter describes the operation and features of the KA670's cache memory and main
memory controller.

4.1 KA670 Cache Memory
To maximize CPU performance, the KA670 incorporates a two-level cache hierarchy. The
primary cache consists of 2 kilobytes of memory contained entirely in the CPU chip. The
backup cache consists of the C-chip and twenty-four 16K x 4 static RAMs. The C-chip
contains the tag store and the control logic for the backup cache RAMs. The backup
cache is a 128-kilobyte cache used in combination with the CPU to provide a performance
boost for the system.

The C-chip also serves to filter invalidates that may corne from a memory controller,
so not all invalidates have to be broadcast on the data and address lines. To filter
invalidates, the C-chip maintains a copy of the primary cache tag store and uses
an invalidate bus (I-bus). The I-bus can be used by DMA devices to determine if a
memory location is cached in either cache. Using the I-bus eliminates the need to run
an invalidate cycle of the RDAL for every DMA Therefore, only those DMAs that hit in
either cache cause an invalidate cycle saving RDAL bandwidth.

4.1.1 Cacheable References
Any reference stored by the primary or backup cache is called a cacheable reference. The
primary and backup caches store CPU read references to the VAX memory space (bit
<29> of the physical address equals O) only. They do not store references to the VAX
110 space or DMA references by the Q22-bus interface. Two types of CPU references
are stored-request instruction-stream read references and demand data-stream read
references other than read-lock references.

If the CPU generates ••.

A noncacheable reference or a cacheable
reference not stored in the primary cache

A cacheable reference stored in the
primary cache

54

Then ••.

A single quadword reference of the same type is
generated on the RDAL bus.

No reference is generated on the RDAL bus.

Cache and Main Memory 55

4.1.2 Primary Cache Overview
The primary cache is a 2-kilobyte cache, directly mapped, with a quadword fill and
allocate (block) size. The cache is read-allocate, no-write-allocate, and write-through. The
primary cache tag store contains one tag and one valid bit for each primary cache block.
There are 256 tags mapping 256 quad word data blocks. Each tag entry includes an l8-bit
tag, 1 valid bit, and 1 parity bit. Each data block contains 8 data bytes and 8 parity bits,
one for each data byte.

4.1.2.1 Primary cache Organization
The primary cache is arranged in 64 rows, with 4 quadwords and 4 tag entries per row.
Figure 4-1 shows the format.

Data Array Tag Array

aW3 aW2 aw 1 awo Tag 3 Tag 2 Tag 1 Tag 0 ~ 64 Rows

Figure 4-1 Primary Cache Data and Tag Layout

Each tag entry of the memory is organized as shown in Figure 4-2.

, .. Physical Address<28: 11>
1 1 1
987

I I Tag

t

Figure 4-2 Primary Cache Tag Entry

-,
0

I

Tag
Parity bit

(as computed over just the tag)
Valid bit

56 Cache and Main Memory

The tag consists of bits <28:11> of the physical address (PA). The tag parity bit is the odd
parity computed over 18 address bits, PA<28:1l>. It is computed by the primary cache.
The valid bit is used to indicate whether or not the corresponding entry in the primary
cache is valid. The valid bit is not included in the tag parity calculation.

The data array has each quadword logically arranged as shown in Figure 4-3.

Figure 4-3 Primary Cache Data Entry

Each primary cache entry consists of one quadword. Odd parity information is
maintained separately for each byte. The primary cache neither generates nor checks
parity en data; the primary cache only stores parity information. The CPU (P-chip) bus
interface unit (BIU) takes the responsibility of checking parity for the data. If a parity
error is detected on the data corning from or written into the primary cache, the primary
cache may be flushed or switched off by the resulting microtrap routine.

4.1.2.2 Primary Cache Address Translation
The physical addresses supplied to the primary cache consist of 28 bits (address<29:2».
Bit <2> of the physical address selects a longword out of the quadwords of the primary
cache. Bits <8:3> select one of the rows of the primary cache memory. Because there are
four tag entries in each row, two bits of the address (bits <10:9» are used to select one of
the four columns. Bits <28:11> are stored as tags in the primary cache. Bit <29> of the
address specifies 110 space. 110 space addresses are not cached.

Whenever the CPU requires an instruction or data, the contents of the primary cache are
checked to determine if the referenced location is stored there. The cache contents are
checked by translating the physical address as shown in Figure 4-4.

On noncacheable references, the reference is never stored in the cache. So a primary
cache miss occurs, and a single quadword reference is generated on the RDAL bus.

I

332 2
109 8

I

-
i.--

1/0 Space

Unused

OW3

--
i.....+

1
098

Tag I I

Cache Index -
Column Select

Cache

I Index -
Row

Select

OW2 OW 1 OWO

- - -- - - ------

-
Cached Data -

\
Data

Cache and Main Memory 57

3 2 1 0

I I

l Unused

I
Longword Select -

Tag 3 Tag 2 Tag 1 Tag 0

-- -- -- --- -- -- -

1-

Valid Bit - roo Stored
Tag

'"" -

I I

f_

'Y~~"
L

f

f

Figure 4-4 Primary cache Physical Address Translation

58 Cache and Main Memory

4.1.2.3 Primary cache Data Block Allocation
Cacheable references that miss the primary cache initiate a quadword read to on the
RDAL bus. When the requested quad word is supplied by the backup cache or the main
memory controller, the requested quadword is passed on to the CPU; a data block is
allocated in the cache to store the quadword.

Since the KA670 supports 512 megabytes (64 mega-quadwords) of physical memory,
up to 1 mega-quadwords share each row (four data blocks) of the cache. Contiguous
programs larger than 2 kilobytes and noncontiguous programs separated by 2 kilobytes
will overwrite themselves when cache data blocks are allocated.

4.1.2.4 Primary cache Behavior on Writes
On CPU-generated write references, the primalY cache is write-through. For all CPU
write references that hit the primary cache, the contents of the referenced location in
main memory is updated as well as the copy in the cache.

On DMA write references that hit the primary cache, the cache entry containing the copy
of the referenced location is invalidated.

4.1.2.5 Primary cache Internal Processor Registers
The primary cache includes four registers that may be accessed using IPR reads (move
from processor register, MFPR) and writes (move to processor register, MTPR). These
four registers are used for controlling the primary cache operation, storing status, and
diagnostics and error recovery. Table 4-1 lists the four registers.

Table 4-1 Primary cache Internal Processor Registers

IPRNumber

Register Name Mnemonic Hex Decimal Type

Primary cache tag array PCTAG 7C 124 Read/write

Primary cache index register PCIDX 7d 125 Read/write

Primary cache error address PCERR 7E 126 Read/write
register

Primary cache status register PCSTS 7F 127 Read/write

4.1.2.5.1 Primary Cache Status Register (PCSTS)-IPR 127
The primary cache status register (PCSTS) is used to control the primary cache's mode
of operation, flush the cache, and maintain information about all errors detected by the
CPU (not only primary cache errors). The PCSTS register is considered locked to errors
that result in an interrupt, if the interrupt bit (PCSTS<5» or trapl bit (PCSTS<7» is
set. For errors that result in a trap, this register is considered locked only if trapl is set.

Figure 4-5 shows the format of the status register. Table 4-2 lists bit definitions.

3
1

I MBZ

Cache and Main Memory 59

1 1 1
3 2 098 765 4 3 2 1 0

I I I I I I I I I I I I I I
l

Force Hit
Enable PTS
Flush Cache
Enabie Refresh
P Cache Hit
Interrupt -
Trap2
Trap 1
Tag_ParitLError
RDAL_Data_Parity _error
P _Data_Parity _error
Bus Error
B_Cache_Hit

Figure 4-5 Primary cache Status Register (PCSTS)- (IPR 12710 7F16)

Table 4-2 Primary cache Status Register

Data Bit Name

<31:13> MBZ

<12>

<11>

Definition

Must be zero. Always read as Os. Writes have no
effect.

Backup cache hit (read only). This bit indicates that
the error condition causing the primary cache status
register to lock was a reference that hit in the backup
cache. For RDAL parity errors, this bit can be used
to determine who was driving the the RDAL bus. If
B3ache_hit is set, the source was the backup cache. If
B_cache_hit is clear, the memory subsystem was the
source.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. B_cache_hit is cleared on reset.

Bus error (read only). This bit is set when an RDAL
read, write, or clear-write-buffer command results in
an error.

If the RDAL command was an I-stream read, the
interrupt bit (PCSTS<5» is also set. The error is
reported as an IPL 1A 16 soft error interrupt.

If the RDAL command was a D-stream read, write
or clear-write-buffer, trap1 (PCSTS<7» or trap2
(PCSTS<S» is also set. The error results in a machine
check.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. Bus_error is cleared on reset.

60 Cache and Main Memory

Table 4-2 (Cont.) Primary Cache Status Register

Data Bit Name Definition

Primary cache data error (read only). This bit is
set when a read hits in the primary cache and the
requested data has a parity error.

If the RDAL command was an I-stream read, the
interrupt bit (PCSTS<5» is also set. The error is
reported as an IPL 1A 16 soft error interrupt.

If the RDAL command was a D-stream read, write
or clear-write-buffer, trap! (PCSTS<7» or trap2
(PCSTS<S» is also set. The error results in a machine
check.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. P _data_error is cleared on reset.

RDAL data parity error (read only). This bit is set
when the data returned in response to a non-ItO space
RDAL read has a parity error.

If the error is detected on the nonrequested longword of
a D-stream read, or on either Iongword of an I-stream
read, the interrupt bit (PCSTS<5» is also set. The
error is reported as an IPL !A 16 soft error interrupt.

If the RDAL data parity error is detected on the
requested longword of a D-stream read, trap!
(PCSTS<7» or trap2 (PCSTS<S» is also set. The
error results in a machine check.

This bit is updated for any reference that has an
associated error, if the primary cache status register
is not already locked. RDAL_data_parity is cleared on
reset.

Primary cache tag parity error (read only). This bit
is set if a primary cache tag parity error is detected
during a read, write, or invalidate reference, providing
the PCSTS register has not been not locked by a
previous error.

If tag_parity_error is set, the interrupt bit (PCSTS<5»
is also set. The error is reported as an IPL lA 16 soft
error interrupt.

If the reference was a D-stream read that hit, trapl
(PCSTS<7» or trap2 (PCSTS<6» is also set. The error
results in a machine check.

This bit is updated for any reference that has an
associated error, if the primary cache status register
is not already locked. Tag..parity _error is cleared on
reset.

Cache and Main Memory 61

Table 4-2 (Cont.) Primary cache Status Register

Data Bit Name

<7> Trap 1

Trap2

<5> Interrupt

<4>

Definition

Write one to clear. This bit is set when an error
detected by the CPU results in a machine check.
PCSTS<l2:8> and the primary cache error address
register (PCERR IPR 126), are latched until trap1
is cleared. If this bit is set, the primary cache is not
automatically flushed. However, it is automatically
disabled (although enable_PTS PCSTS<l> is not
changed). '!rap1 is cleared on reset and by writing 1 to
it with an MTPR instruction.

Write one to clear. This bit is set when an error
detected by the CPU results in a machine check and
trap1 (PCSTS<7» is already set.

When trap2 is set, it indicates that a nested error
occurred and that PCSTS<l2:S> and the primary
cache error address register (PCERR IPR 126) contain
information about the first error that set trap1. This
should be considered a fatal error condition.

If trap2 is set, the primary cache is not automatically
flushed. However, it is automatically disabled
(although enable_PTS (PCSTS<l» is not changed).
'!rap2 is cleared on reset and by writing 1 to it with an
MTPR instruction.

Write one to clear. This bit is set when an error
detected by the CPU results in an interrupt at IPL lA
16. PCSTS<l2:S> are latched unless the interrupt bit
or trapl (PCSTS<7» was previously set; they remain
latched until the interrupt bit is cleared or another
error sets trapl.

If the interrupt bit is set, the primary cache is
automatically disabled (although enable_PTS
(PCSTS<l» is not changed). The interrupt bit is
cleared on reset and by writing 1 to it with an MTPR
instruction.

Primary cache hit (read only). This bit is the latched
output value of the tag comparator. This bit is updated
for all D-stream reads, writes, or invalidate cycles. It
may be used to test the primary cache hit logic. P_
cache_hit is cleared on reset and should be used for
diagnostic purposes only.

Enable refresh (read/write). When this bit is set, the
automatic refresh of the primary cache take place and
the refresh counter increments. When this bit is a
cleared, refresh is disabled, the refresh counter does
not increment, and the refresh timer logic is disabled.
This bit should be set during normal primary cache
operations. Enable_refresh is cleared on reset.

62 Cache and Main Memory

Table 4-2 (Cont.) Primary cache Status Register

Data Bit Name

<2>

<1>

Definition

Flush primary cache (write only). This bit is used
to clear all valid bits in the primary cache tag array.
If this bit is written with a 1, the primary cache is
flushed. The hardware then clears this bit in the next
cycle, so that it is always read as a O.

NOTE
The state of the primary cache is unpredictable
if enable_PTS is 0 (PCSTS<1». Therefore, the
primary cache should be flushed before it is
enabled. This may be done as a separate IPR
write of flush_cache before enable_PTS is set in
the primary cache status register. It may also be
done by setting flush_cache and enable_PTS in
the same IPR write to the primary cache status
register.

Enable primary cache (read/write). This bit enables
or disables normal operation of the primary cache. If
the bit is set, both I-stream and D-stream references
are cached, and primary cache tag and data parity
errors are reported. I/O references are never cached.
If the bit is cleared, all references (read, write, and
invalidate) result in a miss. enable_P'rS is cleared on
reset.

Force a primary cache hit (read/write) When this
bit is set, the primary cache forces a hit for all
memory references. Memory write requests still
go to the external memory. I/O references are not
affected (they are not cached). When this bit is set,
the following are disabled: primary cache tag parity
error reporting associated with D-stream reads, writes,
and invalidates, and primary cache data parity errors
associated with D-stream reads.

RDAL errors (parity errors associated with the data
present on the RDAL or bus errors) are not affected
by this bit. Force_hit should not be used to satisfy
I-stream reads, since primary cache tag or data parity
errors detected during I-stream reads may cause a
loop. Force_hit may be used to initialize the primary
cache data array. Force_hit is cleared on a reset. This
bit is for diagnostics only and should be cleared during
normal operation.

NOTE
When the primary cache is off (enable_PTS = 0)
and force_hit is set, the operation of the primary
cache is unpredictable.

4.1.2.5.2 Primary cache Error Address Register (PCERR)-IPR 126
For read commands, the primary cache error address register (PCERR) latches and
holds the physical address of an error that causes trap! (PCSTS<7» to set. Since
write errors are asynchronous to the instruction pipeline, the address latched for write
commands is not the address of the error. For write commands, no address is available.
The PCERR register remains locked until trap! is cleared in the primary cache status·
register (PCSTS).

Cache and Main Memory 63

The PC ERR register also provides visibility into the refresh counter and refresh timer.
An IPR write (MTPR) to the PCERR register updates the refresh counter and timer. An
IPR write to the PCERR register loads the refresh counter with bits <8:3> of the data,
and the refresh timer with bits <15:9> of the data.

An IPR read (MFPR) of the primary cache error address register (PC ERR) reads the error
address out if trap 1 (PCSTS<7» is set. If trap1 is not set, an IPR read is used to read
the refresh timer in bits <15:9> and the value of the refresh counter in bits <8:3>.

Access to the refresh counter and refresh timer is provided for diagnostics only.

Figure 4-6 shows the format for the primary cache error address register.

Read Format if TRAP1 Is Set

332
109

IMBZI

Read Format if TRAP1 Is Not Set:

Error Physical Address

Write Format Regardless of TRAP 1 Setting

3 .
1

MBZ

1 1
6 5 9 8

Refresh Timer

3 2

- Counter

o

MBZ

Figure 4-6 Primary Cache Error Address Register (PCERR)-(IPR 12~o 7E16)

o

If enableJefresh (PCSTS<3» is set, a read of the refresh timer and counter (through the
PCERR register) following an IPR write to the timer and counter will result in a different
value than the value written. The reason is as follows.

When the enable_refresh (PCSTS<3» bit is set, the refresh counter is incremented for
every NOP operation. The refresh timer is incremented for every cycle during which
the operation is not a NOP or an IPR write to the PCERR register. Due to the internal
latency involved in the execution of MxPRs, the count values of the refresh counter and
timer may change.

To keep the count values of the refresh counter and timer unchanged, the enableJefresh
(PCSTS<3» bit should be cleared.

4.1.2.5.3 Primary Cache Index Register (PCIDX)-IPR 125
The primary cache index register (PCIDX) provides the mechanism for reading and
writing the tag array of the primary cache. During IPR (MTPR) writes to the primary
cache tag array register (PCTAG) (Section 4.1.2.6), the contents of the PCIDX register
are used to index the desired tag entry in the array. Therefore, the PCIDX register must
be written with the desired index before performing an IPR write (MTPR) to the PCTAG
register.

Figure 4-7 shows the format of this register.

64 Cache and Main Memory

3
1

MBl

1 1
1 0 320

I Tag Array Index I MBl I

Figure 4-7 Primary Cache Index Register (PCIOX)-(IPR 125to 7016)

4.1.2.5.4 Primary Cache Tag Array Register (PCTAG)-IPR 124
The primary cache tag array register (PCTAG) is a 32-bit logical register that provides
the mechanism for reading and writing the tag array of the primary cache.

Figure 4-8 shows the format for this register.

332 2
109 8

MBZ
Parity Bit
Valid Bit

Tag

1
o

MBl

o

Figure 4-8 Primary Cache Tag Array Register (PCTAG)- (IPR 12~o 7C16)

4.1.2.6 Writing and Reading the Primary Cache Tag Array
During an IPR read/write of the primary cache tag array register (PCTAG), the primary
cache index register (PCIDX) supplies the index for the tag entry to be accessed. To
write a tag entry in the primary cache, first the index of the tag entry is written in the
PCIDX register by issuing an MTPR. Then an MTPR is issued for the primary cache
tag array register (PCTAG), with the desired value of the valid bit, parity bit, and tag
address<28:11> in data bits<31:30> and <28:11>.

In order to read a tag entry in the primary cache, the index of the tag entry is written in
the PCIDX register by issuing an MTPR instruction. Then an MFPR instrcution is issued
for the primary cache tag array register (PCTAG).

4.1.2.7 Primary cache Error Recovery
When an error is detected in the primary cache, the primary cache latches error
information in the PCSTS and PCERR registers, then becomes disabled. The exact
type of error can be determined from the information in the PCSTS register and the way
the error was reported.

If the error was a tag parity error, the entire tag store must be written with "invalid tag
with good parity." The PCERR register contains the address of the tag in error only if the
tag parity error is reported as a machine check.

For all other errors, the primary cache should simply be flushed by writing 1 to the
flush_cache bit in the primary cache status register (PCSTS<2».

To complete error recovery, the primary tag store in the C-chip should be flushed and the
error bits should be cleared in the PCSTS. The primary cache should be enabled if the
error rate is such that the primary cache would remain disabled. The primary tag store
in the C-chip must also be disabled.

Cache and Main Memory 65

The following is the recommended sequence for bringing the primary cache back to
normal operation:

1. Save the primary cache status register.

2. Save the primary cache error address register.

3. If the error was a tag parity error, write all tags in the primary cache, as follows:

1. Write the primary cache index register with the next index.

2. Write the primary cache tag array register with tag = 0 (arbitrarily chosen),
parity = 0 (odd parity for chosen tag value), and valid = O.

4. Flush the primary tag store in the C-chip by writing a 0 to the backup cache flush
primary tag store (BCFPTS) register (lPR 122).

5. Logically OR the flush_cache bit «2» into the saved value of the primary cache
status register, then write the resulting value back into the primary cache status
register. This step clears any error bits that were set, flushes the cache, and enable
its if it was enabled before.

4.1.2.8 Primary Cache Initialization
At power-up, the primary cache must be initialized. The console firmware should load
the primary cache status register (PCSTS) with the desired values for the force_hit,
enable_PTS, and enable_refresh bits. The firmware should clear the interrupt, trap1, and
trap2 bits in the PCSTS register. The firmware should also invalidate the entire primary
cache by issuing an IPR write (MTPR) to PCSTS, writing a 1 in bit <2> (flush_cache).
Then each tag store entry should be loaded with an invalid tag with good parity. Each
entry may be written with a write to PCIDX, followed by a write to PCTAG.

4.1.2.9 Primary cache Diagnostics
The primary cache may be tested by reading and writing tags with PCIDX and PCTAG.
Error detection may be tested by constructing an error and then reading the state from
PCSTS and PC ERR. The primary cache refresh counter and timer may be tested by
reading and writing the primary cache error register (PCERR).

4.1.2.10 Error Handling by the Primary Cache
The primary cache is responsible for latching any error signals that occur for the
following:

• Primary cache tag parity error

• Primary cache data parity error

• RDAL data parity error

• RDAL bus error

• F-chip result parity error

The latter four errors are detected by the CPU (P-chip). Errors are reported in one of two
ways: as a soft error interrupt at IPL 1A 16, or as a machine check.

When an error is detected, the primary cache sets trap1, trap2, or the interrupt bit in the
primary cache status register (PCSTS) and conditionally latches other bits to indicate the
type of error. When trap!, trap2, or the interrupt biut are set in the PCSTS register, the
primary cache is automatically disabled.

66 Cache and Main Memory

Primary cache tag parity errors are reported if a tag parity error is. detected during a
read, write, or invalidate reference; and if the primary cache status register has not been
already locked by a previous error (for example, enable_FrS = I, trapl = 0, trap2 = 0,
interrupt = 0, and force_hit = 0). Tag parity errors are always reported as an interrupt.
If the reference was a D-stream read that hit, the error is also reported as a machine
check.

Primary cache data parity errors are reported if a data parity error is detected during a
read reference that hit in the primary cache (unless force_hit (PCSTS<O>=I). Primary
cache data parity errors are reported as a machine check if the reference was a D­
stream read. If the reference was an I-stream read, primary cache data parity errors are
reported as an interrupt.

RDAL data parity errors are reported if a data parity error is detected during a non-
110 space read reference that missed in the primary cache. RDAL data parity errors
detected on the requested longword of a D-stream read are reported as a machine check.
RDAL parity errors detected on the non requested longword of a D-stream read, or on
either longword of an I-stream read, are reported as an interrupt.

RDAL bus errors are reported if a read, write, or clear write buffer command is
terminated with an error (RDAL bus signal ERR_L asserted). Bus errors detected
during D-stream read, write, or clear write buffer commands are reported as a machine
check. Bus errors detected during an I-stream read are reported as an interrupt.

NOTE
RDAL bus errors may also be reported for an EPR read or read interrupt vector
command that is terminated with the RDAL signal ERR_L. In those cases,
however, the PCSTS register does not lock and the CPU processes the error
entirely by microcode, with no error reported to the software.

F-chip result parity errors are reported if a data parity error is detected during a
result transfer from the F -chip. Result parity errors are always reported as a machine
check.

Errors reported as interrupts do the following:

• Set the interrupt bit (PCSTS<5».

• Update bits PCSTS<l2:8> with information describing the error.

However, if either interrupt or trap 1 is already set when the error is detected, bits
PCSTS<12:8> are not updated. Bits PCSTS<12:8> reflect the first error detected.

ElTOrS reported as a machine check do three things:

• Set trapl in the primary cache status register (PCSTS).

• Update bits PCSTS<l2:8>.

• Load the primary cache error address register (PC ERR).

However, if trapl is already set when the error is detected, trap2 is set and neither bits
PCSTS<12:8> nor the PCERR register are updated. This causes bits PCSTS<12:8> and
the PCERR register to reflect the first error detected. Note that the state corresponding
to the machine check overwrites any information latched due to a previous interrupt.
It is assumed that errors reported as a machine check are more important than those
reported as an interrupt.

Cache and Main Memory 67

In the CPU, primary cache data parity errors are reported only if the read reference hits
in the cache. However, primary cache tag parity errors are reported whenever the error
is detected. The following are two reasons for this inconsistency:

1. Primary cache tag entries can be directly written without any side effects, using
MTPR macro instructions. There is no direct and easy way of writing the primary
cache data array.

2. If primary cache tag parity errors are reported only under hits, there is a possibility
that a stuck-at fault in the tag array might not get detected for a long time.
Meanwhile, the system will run at degraded performance. This is undesirable.

Figure 4-9 shows the resulting status register values for each error type.

Error Conditions Resulting PCSTS Register Values

Error Command LW PC hit? ultJ BI~R p~p o1)p ~ -&'i TfU iifr HiT .8:il ~ ~N!~
PRIMARY CACHE TAO D·READ X YES 0 0 0
PARITY I!lUlOR

PRIMARY CACHE TAO D·READ X NO 0 0 0
PARITY ERROR

PRIMARY CACHE TAO I·READ X YES 0 0 0
PARITY ERROR

PRIMARY CACHE TAG I·READ X NO 0 0 0
PARITY ERROR

PRlMARY CACHE TAG WRI'l1! X X 0 0 0
PARITY ERROR

PRIMARY CACHE TAO INYAL X X 0 0 0
PARITY ERROR

6
PRL'>lARYCACHE TAO allIER x x 0 0 0
PARITY ERROR

PRlMARY CACHE DATA D·READ X YES 0 0 I
PARITY ERROR

PRlMARY CACHE DATA I·READ X YES 0 0 I
PARITY ERROR

6
PRlMARY CACHE DATA OtHER X X 0 0 0
PARITY ERROR

RDALDATAPARITY ERROR D·READ I NO 801 0 0

RDALDATAPARITYERROR D·READ 2 NO DOl 0 0

RDAL OA TA PARITY ERRIll I·READ X NO lICH 0 0
6

RDAL DATA PARITY ERRat OtHER X X C 0 0

RDAL BUS ERROR D·READ X NO 001 I 0

RDAL BUS ERROR I· READ X NO DOl I 0

RDALBUS ERROR WRI'l1! X X BOI I 0

RDAL BUS ERROR a.WRBUI' x x 801 I 0
6

RDAL BUS ERROR OtHER X X 0 0 0

p·CHIP RSL T PARITY atROR RDRSLT X X 0 0 0

Figure 4-9 Primary cache Detectable Single Errors

Notes:

0 I

0 I

0 I

0 I

0 I

0 I

0 0

0 0

0 0

0 0

I 0

I 0

I 0

0 0

0 0

04 0

0 0

0 0

0 0

0 0

I 0 13 X I 0 I 0

0 0 I X I 0 I 0

0 0 I X I 0 I 0

0 0 I X I 0 I 0

0 0 I X I C I 0

0 0 I X I 0 I 0

0 0 0 x I 0 x 0

I 0 0 X I 0 I 0

0 0 : x I 0 I 0

0 0 0 X I 0 X 0

I u U A U A u

0 0 I X I 0 X 0

0 0 I X I 0 X 0

0 0 0 X I 0 X 0

I 0 0 X I 0 X 0

0 0 I X I 0 X 0

I 0 0 X I 0 X 0

I 0 0 X I 0 X 0

0 0 0 X I 0 X 0

I 0 0 X I 0 X 0

1. In all of these cases, it is assumed that enable_refresh (PCSTS<3» is set to 1 and
force_hit (PCSTS<O» is set o. This is the normal state of the cache, and other states
may change the way errors are reported.

2. The primary cache must be enabled to get a primary cache tag or data parity error.
The primary cache mayor may not be enabled when a DAL data parity error, RDAL
bus error, or an F -chip result parity error is detected.

68 Cache and Main Memory

3. Primary cache tag parity errors always cause an interrupt request. If the error was
the result of a D-stream read that hit, a microtrap is also started.

4. If a read transaction is terminated by ERR_L, data parity is ignored. Therefore, the
RDAL data parity error bit in the status register is never set for a read terminated in
ERR_L.

5. B_cache_hit is always loaded when an error is detected. However, primary cache
tag and data parity errors are detected as part of a primary cache reference, so the
B_cache_hit is always be a 0 for those errors.

6. Commands that have error detection inhibited do not set trap1, trap2, and the
interrupt bit in the primary cache status register. For example, tag parity errors are
inhibited for commands that do not access the tag store. Similarly, RDAL bus errors
are not reported for EPR read, EPR write, or read interrupt vector transactions
terminated by ERR_L; those commands are handled specially by the microcode.

The resulting values shown in Figure 4-9 assume that trap1, trap2, and the interrupt
bit are all 0 when the error is detected. In that case, bits PCSTS<12:8> are updated as
shown. If trap1, trap2, or the interrupt bit are 1 when the error is detected, bits are
updated as shown in Figure 4-10.

STATE BEFORE STATE AFTER ERROR
ERROR

7 6 5 7 6 5 LOAD I LOCK ERROR I DISABLE
lll.l nu !NT TYPE TRI lll.2 u.-r <12:8> ADDR REG PRIMARY CACHE? NOTES:

0 0 0 u.-r 0 0 1 YES NO YES SINGLE L"ITERRUPf
0 0 1 !NT 0 0 1 NO NO YES MULTIPLE INTERRUPf
0 1 0 !NT 0 1 1 YES NO YES POSSIBLE BUT NOT LIKELY
0 1 1 !NT 0 1 1 NO NO YES POSSIBLEBUT NOT LIKELY
1 0 0 !NT 1 0 1 NO NO YES INTERRRUPf AFTER TRAP
1 0 I u.-r I 0 I NO NO YES MULTIPLE INTERRUPf AFTER TRAP
1 1 0 !NT I 1 1 NO NO YES INTERRUPT AFTER MULTIPLE TRAP
1 1 1 !NT I I 1 NO NO YES MULTIPLE INTERRUPf AFTERMULnFLE TRAP

0 0 0 TRAP 1 0 0 YES YES YES SINGLE TRAP
0 0 ; TRAP 1 0 I YES YES YES TRAP AFTER INTERRUPf
0 I 0 TRAP 1 1 0 YES YES YES POSSIBLE BUT NOT LIKELY
0 1 1 TRAP 1 I I YES YES YES POSSIBLE BUT NOT LIKELY
I 0 0 TRAP I I 0 NO NO YES DOUBLE TRAP
I 0 1 TRAP I I 1 NO NO YES DOUBLE TRAP AFTER INTERRUPT
I 1 0 TRAP 1 1 0 NO NO YES MULTIPLE TRAP
1 1 1 TRAP 1 1 1 NO NO YES MULTIPLE TRAP AFTER INJERRUPf

Figure 4-10 Primary Cache Detectable Double Errors

4.1.3 Backup Cache Overview

The backup cache is 128 kilobytes, direct-mapped, quadword access size, with an
octaword fin (subblock) size, and a 4-octaword allocate (block) size. The cache is read­
allocate, no-write-allocate, and write-through.

Because the data bus (D_BUS) is 8 bytes wide, the cache RAMs are organized as 8 bytes
wide by 16K locations deep. There are also 8 bits of parity (1 bit corresponding to each
data byte). Fourteen bits of address are needed to access the cache. Bits <16:3> of the
VAX physical address are used as the cache index.

Cache and Main Memory 69

When returning data to the primary cache, the backup cache returns a quadword. This
is the fill size of the primary cache.

4.1.3.1 Backup Cache Organization
The backup cache tag store is organized such that one tag and four valid bits
correspond to each four-octaword block of the cache. Each valid bit corresponds to
one octaword subblock. When a cache tag miss occurs on a read, a block is allocated,
a subblock is filled, and the corresponding valid bit is set. When a cache tag compare
is successful but the valid bit is not set, a subblock is filled from memory, and the
corresponding valid bit is set. Figure 4-11 shows the backup cache organization.

Tag I First Valid Bit I c
I Second Valid Bit I c
I Third Valid Bit I c

Fourth Valid Bit I c

Ouadword 0

Ouadword 1

Ouadword 2

Ouadword 3

Ouadword 4

Ouadword 5

Ouadword 6

Ouadword 7

t
One Subblock

(Fill Size)
v

One Data
(Allocation
Size)

Figure 4-11 Tag and Valid Bits as They Correspond to Backup Cache Data

4.1.3.2 Backup Cache Address Translation
The physical addresses supplied to the backup cache consist of 28 bits (address<29:2».
Bits <5:4> of the physical address select one of the four valid bits that cover two
quadwords in a backup cache row, as shown in Figure 4-11.

There are 16K quadwords of data. Fourteen bits of the address «16:3» select one
quadword. Because there are 2K tag entries (one tag covers 8 quadword data entries),
11 bits of the address « 16:6» are used to select one tag. Bits <28: 17> are stored as tags
in the backup cache. Bit <29> of the address specifies 110 space; this bit is not used,
because 110 space addresses are not cached.

On noncacheable references, the reference is never stored in the cache. Therefore, a
backup cache miss occurs and an octaword reference is generated on the RDAL bus.

Whenever the CPU requires an instruction or data not found in the primary cache, the
contents of the backup cache is checked to determine if the referenced location is stored
there. The cache contents are checked by translating the physical address as shown in
Figure 4-12.

70 Cache and Main Memory

I

Physical Address: 3 3 2 2 1 1
1 0 9 8 7 6 654 3 2 0

L Unused
Space B-Cache Row-L I/O

Index I Valid Bit

Tag Store

Tag

Tag 2

Tag 3

Tag 2046

Tag 2047

Tag 2048

-
-

Unused
~ 12-Bit Cache

Entry Tag

Valid Bits Data Array

:V3 v2 vl \'0 Ouadword 1

I I Ouadword 2 - - r Ouadword 3

Ouadword 4

Ouadword 5 - -
Ouadword 6

- v3 v2 v1 vO

---tl"'v3 v2 v 1 vO

---tl"'v3 v2 v 1 vO

Ouadword 16383

Ouadword 16384

Valid Bit Cached Data

Data (Ouadword)

Figure 4-12 Backup cache Physical Address Translation

Index

B-Cache -
Ram Index

Cache and Main Memory 71

4.1.3.3 Backup Cache Data Block Allocation
On cacheable references that miss the primary cache, a quadword read is initiated on the
RDAL bus. If the requested quad word cannot be found in the backup cache:

• An octaword is provided by the main memory controller.

• Both caches allocate a data block for storing the data. (The primary cache allocates
and fills a quadword; the backup cache allocates 4 octawords but only fills 1 octaword.

• The requested quadword is passed on to the CPU.

Since the KA670 supports 512 megabytes (32 mega-octawords) of physical memory, up
to 4K octawords share each data block (8 quadwords) of the cache. Contiguous programs
larger than 128 kilobytes, or noncontiguous programs separated by 128 kilobytes, will
overwrite themselves in the backup cache when cache data blocks are allocated.

4.1.3.4 Backup Cache Behavior on Writes
On CPU-generated write references, the backup cache is write through. All CPU write
references that hit the backup cache cause the contents of the referenced location in main
memory to be updated as well as the copy in the cache.

On DMA write references that hit the cache, the cache entry containing the copy of the
referenced location is invalidated.

4.1.3.5 Backup cache External Processor Registers
Several C-chip registers may be accessed using EPR reads (MFPRs) and EPR writes
(MTPRs). The following sections detail the structure of the registers and how the access
of the registers is accomplished. During the EPR access, RDAL address bits <10:3> tell
which EPR is being accessed.

The C-chip contains some vector registers that are not used on the KA670 module, since
it does not have a vector processor. This manual discusses only one of these registers
briefly, the vector interface error status register (VINTSR). Table 4-3 lists the C-chip
EPR registers and their numbers.

Table 4-3 Backup cache Externalllnternal Processor Registers

Register Name Mnemonic
EPRNumber Type

Hes: Decimal

C.Chip Nonvector Registers

Backup cache tag store BCBTS 71 113 Read/write

Primary tag store, first half BCPITS 72 114 Readlwrite

Primary tag store, second half BCP2TS 73 115 Read/write

Refresh register BCRFR 74 116 Read/write

Index register BCIDX 75 117 Read/write

Status register BCSTS 76 118 Read/write

Control register BCCTL 77 119 Read/write

Error address register BCERR 78 120 Read only

Flush backup tag store BCFBTS 79 121 Write only

Flush primary tag store BCFPTS 7A 122 Write only

72 Cache and Main Memory

The following sections show the contents of each register.

4.1.3.5.1 Backup Cache Backup Tag Store (BCBTS)-EPR 113
The backup cache backup tag store (BCBTS) register is used to access the backup cache
tag store, valid bits, and parity bits. The tag store tag, valid bits, and parity may be
written explicitly using an EPR write (MTPR) of the BCBTS register; they may be read
using an EPR read (MFPR) of the BCBTS register.

Figure 4-13 shows the fonnat for the register. Table 4-4 lists bit descriptions.

On an EPR read of the BCBTS register, the C-chip responds according to the format
in the figure. The backup tag store row and column index fields in the backup cache
index (BCIDX) register bits <16:6> are used as the index to the tag array. So the BCIDX
register must have been previously written using an EPR write (MTPR),to ensure
predictable results from the EPR read (MFPR) of the BCBTS register.

On an EPR write of the BCBTS register, the C-chip writes the data into the tag store
according to the format shown in the next figure. The backup tag store row and column
index fields of the BCIDX register are used as the index to the tag array. So the BCIDX
register must have been previously written using an EPR write (MTPR), to ensure
predictable results from the EPR write (MFPR) of the BCBTS register.
332 2
1 098

B-Cache Tag Entry

Parity Bit

1 1
7 6

MBZ

6 5 210

L
IMBZI

Four Valid Bits (V4:V1j

Figure 4-13 Backup cache Backup Tag Store Register (BCBTS)- (EPR 11~o7116)

Table 4-4 Backup cache Backup Tag Store Register Bits

Data Bit

<31:30>

<29>

<28:17>

<16:6>

<5:2>

<0:1>

Name

MBZ

Parity bit

B-cache tag

MBZ

Four valid bits

MBZ

Description

Read as o. Writes ignored.

Read/write. The parity bit corresponding to the odd parity, as
calculated on the tag.

Read/write. Backup cache entry tag. The tag portion of the tag
store entry.

Read as O. Writes ignored.

Read/write. The four valid bits of the tag store entry.

Read as O. Writes ignored.

Table 4-5 shows the correspondence between bits BCBTS<5:2>, the valid bit selected by
physical address bits <5:4>, and the subblock number in the tag store.

Cache and Main Memory 73

Table 4-5 Tag Store Subblock Numbers

BCBTS Bit Set

2

3

4

5

Address <5:4>

00

01

10

11

Subblock Number

1

2

3

4

4.1.3.5.2 C·Chlp's Primary Cache Tag Store Access, Using BCP1TS and BCP2TS, EPR
114 and 115

Figure 4-14 defines the format of the C-chip's copy of the primary cache tag store.

Row Decoder Primary Tag Store -- First Hall -- BCP1TS

Parity Bit Entry 32
A_BUS_H<28:11> D 1 Valid Bit 18-Bit Tag

RDAL<8:4> -'--~"-_____ "" _____ ~ ______ "&"' ____ ..,j
_ Tag Store Entry 0

RDAL<10:9>

FlUSH--- -

1 Valid Bit

4x1 Valid Bit 4x18-Bit Tags

4-10-1 Multiplexer

One 18-Bit Tag

Primary Tag Siore -- Second Half -- BCP2TS

18-Bit Tag
A_BUS_H<2B:11>

Tag Store

4x1 Valid Bit 4x18-Bit Tags

4-10-1 Multiplexer

One Valid Bil One 18-Bit Tag

Figure 4-14 The Primary cache Tag Store-C-Chlp Copy

4x1 Parity Bit

One Parity Bit

Parity Bit Entry 32

Entry 0

4x1 Parity Bit

One Parity Bit

The backup cache primary tag store contains one tag and one valid bit for each quadword
block in the primary cache. There are 256 quadword blocks in the primary cache, so the
primary tag store contains 256 entries of 20 bits each. Each entry consists of an l8-bit
tag (bits <28:11> of the physical address), one valid bit, and one parity bit.

Figure 4-15 defines the format of the VAX physical address as used in the C-chip's
primary tag store addressing during external processor operations. The C-chip copy of
the primary tag store is organized in two banks, with 32 rows and 4 columns each. The
tag store row is indexed using bits <8:4> of the address. The tag store column is indexed
using bits <10:9> of the address. On a primary tag store access, both halves of the tag
store are accessed and a hit is calculated separately in each half.

74 Cache and Main Memory

3 3 222 222 222 2 1 1 1 1 1 1 1 1 1 1
1 098 7 6 5 4 321 098 7 6 5 4 321 098 765 4 3 2 1 0

I I I Primary Cache Entry Tag Icoll Row I Unused I

"--- Not Used
Index 1 of 32 Rows
Index 1 of 4 Columns
Cache Entry Tag
1/0 Space. Not Cached
Not Used

Figure 4-15 VAX Physical Address In C·Chlp's Primary Tag Store Addressing (EPR
Operations)

The tag store tag, valid bit, and parity may be written explicitly using an EPR write
(MTPR) of the tag store; they may be read using an EPR read (MFPR) of the tag store.

EPR 114 (BCPITS) is the access to the first bank of the C-chip's copy of the primary tag
store. EPR 115 (BC2TS) is the access to the second bank.

On an EPR read (MFPR) of the C-chip's copy of the primary tag store, the C-chip
responds by driving the data bus according to the format shown in Figure 4-16. The
primary cache tag store row and column index fields of the backup cache index (BCIDX)
register, bits <10:4>, are used as the index to the tag array. So the BCIDX register must
have been previously written using an EPR write (MTPR), to ensure predictable results
from the EPR read (MFPR) of the tag store.

On an EPR write (MTPR) of the C-chip's copy of the primary tag store, the C-chip writes
the contents of the data bus into the tag store according to the format in the next figure.
Again, the primary cache tag store row and column index fields of the BCIDX register
are used as the index to the tag array. So the BCIDX register must have been previously
written using an EPR write (MTPR), to ensure predictable results from the EPR write
(MTPR) of the tag store. Table 4-6 lists the bit descriptions of the primary tag store
register.

3 3 222 2 2 222 2 2 1 1 1 1 1 1 1 111
1 0 9 8 7 6 5 432 1 098 765 4 3 2 1 098 7 6 5 4 321 0

1MBZll Primary Cache Entry Tag I MBZ I I MBzl :BCPnTS

L Valid Bit
Cache Entry Tag
Parity Bit

Figure 4-16 Data Bus Format to Access the Primary Tag Store (C-Chlp Copy)

Cache and Main Memory 75

Table 4-6 Primary Tag Store Register Bits

Data bit Name Description

<31:30> MBZ Read as O. Write as o.
<29> Parity bit The parity bit corresponding to the odd parity as

calculated on the tag.

<28:11> Cache entry tag The tag portion of the tag store entry.

<10:3> MBZ Read as o. Write as o.
<2> Valid bit The valid bit of the tag store entry.

<1:0> MBZ Read as o. Write as o.

4.1.3.5.3 Backup cache Refresh Register (BCRFR)-EPR 116
The backup cache refresh pointer register (BCRFR) contains separate addresses to
refresh the backup tag store and the primary tag store. Bits BCRFR<16:9> contain the
backup tag store refresh address, which corresponds to the backup tag store row index.
Bits BCRFR<8:4> contain the primary tag store refresh address, which corresponds to
the primary tag store row index. Both tag stores are refreshed at the same time, when
the contents of the register is written with an MTPR. Figure 4-17 shows the format for
the BCRFR register. Table 4-7 lists bit descriptions.

When the enable_refresh status bit (BCCTL<3» is set and a refresh is done, each refresh
address field is incremented separately. In this manner, the C-chip's primary tag store is
completely refreshed after 32 refresh microcycles, and the backup tag store is completely
refreshed after 256 refresh microcycles.

When the enableJefresh bit (BCCTL<3» is not set, the refresh addresses are only
changed explicitly through an EPR write (MTPR). The tag store rows are only refreshed
when they are accessed explicitly through reads, writes, EPR reads, or EPR writes. In
addition, the BCRFR register is used instead of the backup cache index (BCIDX) register
to access the backup tag store and the C-chip's primary tag store during EPR operations
on those registers.

The BCRFR register may be written using an EPR write (MTPR) or read using EPR read
(MFPR). If enableJefresh (BCCTL<3» is set when the EPR operation is done, the result
of the operation is unpredictable.

3 3 222 222 2 222 1 1 111 1 1 1 1 1
1 098 7 6 5 4 321 098 765 4 3 2 1 098 7 6 5 4 3 2 1 0

MBZ I MBZ I
t [PTS Rebesh Add .. "
.... - ------ BTS Refresh Address

Figure 4-17 C-Chlp Refresh Register (BCRFRHEPR 116,07416)

76 Cache and Main Memory

Table 4-7 C·Chlp Refresh Register Bits

Data Bit

<31:17>

<16:9>

<8:4>

<3:0>

Name

MBZ

Backup cache tag store
refresh address

Primary cache tag store
refresh address

MBZ

Description

Read as o. Write as O.

This field contains the row address of the backup
tag store. The field is incremented each time a
refresh is done, if enable_refresh (BCCTL<3» is
set.

This field contains the row address of the primary
cache tag store. The field is incremented each time
a refresh is done, if enable]efresh (BCCTL<3»
is set. Note: both halves of the C-chips' primary
cache tag store are refreshed.

Read as o. Write as O.

4.1.3.5.4 Backup cache Index Register (BCIDX)-EPR 117
The backup cache index register (BCIDX) is used to access the backup tag store and the
C-chip's copy of the primary tag store through EPR reads (MFPR) and writes (MTPR).
When the backup tag store is accessed, the bits that correspond to the backup tag store
index are used. When the primary tag store is accessed, the bits that correspond to
the primary tag store index are used. Figures 4-18 and 4-19 show the formats for the
backup and primary tag store registers, respectively. Tables 4-8 and 4-9 list the bit
descriptions.

The entire BCIDX register may be read using an MFPR, while writes (MTPR) to BCIDX
only modify bits <16:4>.

3
1

Unused

1 1
7 6 9 8 6 5 o

Backup Tag Store Column Index
"----- Backup Tag Store Row Index

Figure 4-18 Backup cache Index Register as Used for Backup cache Tag Store

Table 4-8 Backup cache Index Register as used for Backup caChe Tag

Data Bit

<31:17>

<16:9>

<8:6>

<5:0>

Name

Unused

Backup tag store row index

Backup tag store column
index

Unused

Description

Read as O. Writes ignored.

This field is used as the backup tag store row
index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (through the
use of BCBTS (EPR 113».

This field is used as the backup tag store column
index during an EPR read (MFPR) or an EPR
write (MTPR) of the backupt&g store (though the
use of BCBTS (EPR 113».

Read as O. Writes ignored.

Cache and Main Memory n

3322222222221111111111
109 B 7 6 5 4 3 2 1 0 9 B 7 654 321 098 7 6 5 4 3 2 1 0

Unused I I Unused I
r [p"ma" Tag Row Slo," Inde, 1...____ Primary Tag Column Store Index

Figure 4-19 Backup cache Index Register as Used for Primary cache Tag Store

Table 4-9 Backup Cache Index Register as Used for Primary Cache

Data Bit

<31:11>

<10:9>

<8:4>

<3:0>

Name Description

Unused Read as O. Writes ignored.

Primary tag store column This field is used as the primary tag store column
index index during an EPR read (MFPR) or an EPR

write (MTPR) of the backup tag store (through the
use of BCPl TS or BCP2TS).

Primary tag store row index This field is used as the primary tag store row
index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (through the
use of BCP1 TS or BCP2TS).

Unused Read as o. Writes ignored.

4.1.3.5.5 Backup cache Status Register (BCSTS)-EPR 118
The backup cache status (BCSTS) register may be read using an EPR read (MFPR).
All bits are writable only by hardware, with the exception of status_lock (BCSTS<O>
which may be cleared using an EPR write (MTPR). Figure 4-20 shows the format for the
BCSTS register. Table 4-10 lists bit descriptions.

During normal operation, the BCSTS register is loaded during every memory read or
memory write RDAL transaction, when the backup tag store is accessed and parity is
calculated. The BCSTS register is loaded during DMA transactions recognized by the
C-chip-specifically, DMA cache fill and memory write. In addition, the BCSTS register
is loaded during every microcycle used to service an invalidate bus (l bus) request.

The BCSTS register load is disabled when the status_lock (BCSTS<O» bit is set. In
addition, the error address register load is disabled and both tag stores are disabled
when the status_lock bit is set. The status Jock bit is set if one of the tag stores produces
a parity error or if a RDAL bus error occurs. This allows the CPU to examine the state
the C-chip was in when the error occurred. The status_lock (BCSTS<O» bit is only
cleared through an EPR write (MTPR) of the BCSTS register.

78 Cache and Main Memory

3 3 222 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 098 7 6 5 4 3 2 1 098 7 6 543 2 0 9 8 7 6 5 4 3 2 1 0

I MBZ I J I I I I I I MBZ J I I I I I

-
"---

Status Lock
BTS jiuity _Err
P1TS_Parity-Err
P2TS_Parity _Err
Bus Err
BTS-:="Compare
BTS Hit
P1TS Hit
P2TS-Hit
RDACCmd<3:0>
I BUS_Cycle
PRED_Parity

Figure 4-20 Backup cache Status Register (BCSTS)- (EPR 118,0 7616)

Table 4-10 Backup cache Status Register Bits

Data Bit

<31:27>

<26>

<25>

<24:21>

<20>

<19>

<18>

<17>

<16:5>

Name

P2TS_hit

PITS_hit

BTS_hit

BTS_compare

MBZ

Description

Read as O. Writes ignored.

Predicted parity. The output of the predicted
parity generator is loaded into this bit whenever
the BeSTS register is loaded.

Invalidate bus cycle. This bit is set when the
BCSTS register is loaded during a microcycle
dedicated to servicing an invalidate bus (I-bus)
request.

RDAL bus command type. This field stores the
last non-EPR RDAL command. The field is
unpredictable if the mUS_CYCLE (<25» bit is
set.

Primary tag store 2nd bank hit. This field stores
the result of the hit calculation from the last access
of the second half of the primary tag store.

Primary tag store 1st bank hit. This field stores
the result of the hit calculation from the last accesS
of the first half of the primary tag store.

Backup tag store hit. This field stores the result of
the backup tag store hit calculation from the last
backup tag store access.

Backup tag store. This field stores the result of
the tag comparison from the last backup tag store
access.

Read as O. Writes ignored.

Cache and Main Memory 79

Table 4-10 (Cont.) Backup cache Status Register Bits

Data Bit Name

<4>

<2>

<1>

Description

RDAL bus error. This bit is set when an error
occurs on the RDAL that may corrupt the cache
RAM data. These errors may occur during read
miss, write, or fill transactions. Such an error
would not happen during a read to I/O space. See
the section on Errors for more detail.

When bus_err is set, status_lock (BCSTS<O» is
also set, which disables the backup tag store and
the primary tag store copy. bus3rr is cleared
when the status_lock bit is cleared through an
EPR write (MTPR), and also during reset.

Primary tag store 2nd bank parity error. This bit
is set when a parity error occurs in the second half
of the primary tag store. The bit is not loaded into
the status register unless enable_PTS (BCCTL<2»
is set. When P2TS_parity_err is set, status_lock
(BCSTS<O» is also set. P2TS_parity _err is cleared
when the STATUS_LOCK bit is cleared through an
EPR write (MTPR), and also during reset.

Primary tag store 1st bank parity error. This bit
is set when a parity error occurs in the first half
of the primary tag store. The bit is not loaded into
the status register unless enable_PTS (BCCTL<2»
is set. When PITS_parity_err is set, statusJock
(BCSTS<O» is also set. PITS_parity-err is cleared
when the STATUS_LOCK bit is cleared through an
EPR write (MTPR), and also during reset.

Backup tag store parity error. This bit contains
the result of the last access of the backup tag
store. The bit is set when a parity error occurs in
the backup tag store. The bit is not loaded into the
BCSTS register, unless enable_BTS (BCCTL<l»
is set and force_Bhit (BCCTL<O» is not set. When
BTS_parity_err is set, status_lock (BCSTS<O»
is also set. BTS_parity_err is cleared when the
status_lock bit is cleared through an EPR write
(MTPR), and also during reset.

This bit is set by hardware when a parity error
occurs in either the backup tag store or the
primary tag store, or when an RDAL bus error
occurs. Setting this bit locks the BCSTS register
and the backup cache error address register
(BCERR) against further modification until status_
lock is cleared. Both tag stores are disabled when
the status_lock bit is set.

The bit is cleared by an EPR write (MTPR) of
the BCSTS register, using the format shown in
Figure 4-20. A 1 must be written to the status_
lock location in order to clear this bit. The status_
lock bit is the only externally-writable bit in the
register. When the status_lock bit is cleared,
bus_err, BTS_parity_err, PITS_parity_err and
P2TS_parity_err are cleared as well. status_lock is
cleared during reset.

80 Cache and Main Memory

The following list provides some information on interpreting the contents of the status
register:

• Thus_cycle bit is set: The RDAL command field (BCSTS<24:21» is unpredictable
since an RDAL command is not necessarily being processed during an invalidate bus
cycle. The hit and error fields show the results from the access of the backup and
primary tag stores.

• RDAL_cmd is a memory read or write: The results of the backup cache tag store
access are given by BTS...,parity-err, BTS_hit, and BTS30mpare. The results of the
primary tag store access are given by PITS_hit and P2TS_hit. The primary tag store
error bits have no meaning and are 0, because parity is not calculated on the contents
of the primary tag store copy during these transactions; thus, the primary tag store
error bits are not loaded.

• RDAL_cmd is a DMA cache fill or memory write with DMG asserted: The
results of the read of both tag stores are contained in the status bits.

Note that it is not possible to tell if DMG was asserted using the contents of the
BCSTS register.

Table 4-11 summarizes which bits are loaded during each C-chip transaction.

Table 4-11 Status Bits Loaded In BCSTS During C·Chlp Transactions

All Other
Cycle Type Loaded BTS Error Bit Loaded PTS Error Bit Loaded Bits

Read Yes No Yes

Write Yes No Yes

DMA fill Yes Yes Yes

DMA write Yes Yes Yes

I-bus Yes Yes Yes

EPR read/write No No No

4.1.3.5.6 Backup Cache Control Register (BCCTL)-EPR 119
The backup cache control register (BCCTL) contains several control bits that allow logic
external to the C-chip to control the actions of the C-chip. The register may be read using
an EPR read (MFPR). The register may be written using an EPR write (MTPR). All the
bits are written at once, so all bits must contain valid data when the EPR WTite is issued.

Three bits of the register are hardware-writable: enable_BTS (BCCTL<l», enable_
PTS(BCCTL<2», and force_Bhit(BCCTL<O». The bits are only WTitten by hardware
when RESET_L is asserted; they are WTitten as shown in Figure 4-21. Table 4-12 lists
the bit descriptions.

3
1

MBZ

Cache and Main Memory 81

5 4 3 2 1 0

Force_Bhit
Enable BTS
Enable-PTS
Enable-Refresh
Two_ Cycle_RAMs

Figure 4-21 Backup Cache Control Register (BCCTL)- (EPR 11~o 7716)

Table 4-12 Backup cache Control Register Bits

Data Bit

<31:5>

<4>

Name Description

Read as O. Write as 0.

This bit indicates the speed of the cache RAMs, so the
C-chip knows how many microcycles are needed to access
the RAMs. For the KA670, the console macrocode should
set this bit to 0, which means it does not take extra
microcycles to access the backup cache RAMs. For
example, no slip cycles are needed. When the backup
cache is enabled, two_cycle_RAMs should be the same
in the C-chip control register and the memory interface.
(See Section 4.2.1.3.6)

When this bit is 1, the automatic refresh proceeds
normally; each time a refresh is done, the refresh counter
is incremented. When the bit is 0, automatic refreshing
of the tag stores is disabled, and the backup cache refresh
register (BCRFR) incrementer is disabled. The refresh
register may drive the invalidate address bus (IA bus,
internal to the C-chip), but the refresh counter will never
be incremented. This enables explicit control of the
BCRFR register through EPR writes (MTPR).

Beware that tag store data may be corrupted if each
row of each tag store is not refreshed at least once every
millisecond. In addition, if enable_refresh (BCCTL<3» is
not set, the BCRFR register is used instead of the backup
cache index (BCIDX) register during EPR accesses of the
primary tag store and the backup tag store. This feature
allows testing of the path from the BCRFR to the tag
stores.

82 Cache and Main Memory

Table 4-12 (Cont.) Backup Cache Control Register Bits

Data Bit Name

<2>

<1>

Description

Enable primary tag store. When this bit is clear, the
C-chip copy of the primary tag store is disabled. Primary
cache tag store parity errors are not loaded into the
backup cache status (BCSTS) register and do not cause
the assertion of SERR_IRQ...L as normal.

Enable_PTS is cleared by hardware only when RESET_L
is asserted. Enable PTS must be set when the CPU's
primary cache is enabled, to ensure proper invalidate
filtering. While the primary tag store is disabled, its
contents may change as a result of RDAL operations.
If the primary tag store has been disabled, it must be
flushed through an EPR write (MTPR) of the backup
cache flush primary tag state (BCFPTS) register before
it is reenabled, to ensure correct operation. The CPU
primary cache must also be flushed.

Enable backup tag store. When this bit is clear, the
backup cache is disabled. All reads produce a cache miss;
no writes are done. When the bit is clear, the backup
tag store does not contribute to the calculation of an
invalidate hit on the I-bus; in other words, only the access
of the primary cache produces an invalidate hit. Backup
cache tag store parity errors are not loaded into the
backup cache status (BCSTS) register and do not cause
the assertion of SERR_IRQ...L as normal.

Enable_BTS is cleared (reset to 0) by hardware only
when RESET_L is asserted. Enable..,:BTS should not
be reset to 0 during normal operation. If force_Bhit
(BCCTL<O» is set and enable_BTS (BCCTL<l» is clear,
the response of the backup tag store is unpredictable.
While the backup tag store is disabled, its contents may
change as a result of RDAL operations. If the backup tag
store has been disabled, it must be flushed through an
EPR write (MTPR) of the backup cache flush backup tag
store (BCFBTS) before it is reenabled, to ensure correct
operation.

Cache and Main Memory 83

Table 4-12 (Cont.) Backup Cache Control Register Bits

Data Bit Name Description

Force backup hit. When this bit is set, all non-I/O space
backup tag store accesses produce a cache hit, including
read_h'ck accesses. Backup cache tag store parity errors
are not reported. All I-bus requests result in an invalidate
hit, regardless of the contents of the backup tag store.

If enable BTS (BCCTL<l» is clear and force Bhit
(BCCTL<-O» is set, the backup tag store resp~nse is
unpredictable. If a primary tag store parity error occurs,
causing status_lock (BCSTS<O» to be set, the backup
cache is not disabled as normal; the force_Bhit condition
overrides the statusJock condition. Similarly, the backup
cache is not disabled if a bus_err (BCCTL<4» occurs,
causing status_lock to be set; the force_Bhit condition
overrides the statusJock condition.

When the C-chip is in force_Bhit mode, the cache RAM
data is written for each non-I/O space memory write and
read on every non-I/O space memory read. The state of
the backup tag store, however, is unpredictable; it must be
flushed before it is returned to normal mode. The backup
tag store must also be initialized, if this has not occurred
yet. Force_Bhit is cleared during reset and should be set
to 1 by diagnostics only_

4.1.3.6 Maintaining Primary cache Consistency
Any state change to the primary cache must be reflected in the C-chip copy of the
primary tag store. During normal operation, this is done automatically by the C-chip
when a cacheable read occurs. If the· CPU copy of the primary cache is flushed, the
C-chip copy of the primary tag store should also be flushed.

When the primary cache is turned off, the state of the C-chip copy of the primary tag
store is irrelevant. If the C-chip copy is enabled, some I-bus requests may generate
invalidates on the RDAL as a result of valid bits that were set in the C-chip copy of the
primary tag store. Those invalidates are inconsequential to the CPU, since the primary
cache is turned off and will be flushed when turned back on.

If the C-chip copy is disabled, accessing the primary tag store copy never causes an I-bus
invalidate hit. As a result, the memory interface does not generate any invalidates for
the primary cache on the RDAL. Therefore, the state of the C-chip copy of the primary
tag store is irrelevant when the primary cache is turned off, although less RDAL traffic
is generated if the primary cache copy is also disabled.

Table 4-13 is a matrix showing the proper sequence of events for reenabling a disabled
tag store. The matrix assumes that each tag store has been properly initialized. It also
assumes that status_lock (BCSTS<O» is not set. If status_lock is set, the sequence in
Chapter 8 should be followed.

84 Cache and Main Memory

Table 4-13 Reenabllng a Turned-Off Tag Store

Bits <2:1>
in the
BCCTL

AEnable_BTS,
AEnable_PTS

AEnable_BTS,
Enable_PTS

Enable_BTS,
Enable_PTS

Enable_BTS,
Enable_PTS

CPU Primary Cache Off

Everything is off:
Flush backup tag store.
Flush primary tag store.
Write enable_BTS, enable_PTS.
Flush and turn on primary
cache.

Backup tag store and primary
cache are off:
Flush backup tag store.
Flush primary tag store.
Write enable_BTS.
Flush and turn on primary
cache.

Primary tag store and primary
cache are off:
Flush primary tag store.
Write enable_PTS.
Flush and turn on primary
cache.

Primary tag store is on, and
primary cache is off:
Flush primary tag store.
Flush and turn on primary
cache.

CPU Primary Cache On

Illegal if the I-bus is being used.
Primary tag store must be on if the primary
cache is on.
If the I-bus is not being used, take the
actions in the following box.

Backup tag store is off:
Flush the backup tag store.
Write enable_BTS.

Illegal if the I-bus is being used.
Primary tag store must be on if the primary
cache is on.
If the I-bus is not being used, take the
actions in the previous box.

Normal state.

4.1.3.6.1 Backup Cache Error Address Register (BCERR)-EPR 120
The backup cache 'error address register (BCERR) is a read-only register. It is loaded by
hardware every time the backup cache status (BCSTS) reigster is loaded. The BCERR
register contains the address of the current transaction. The first error causes the
status_lock (BCSTS<O» bit to be set; this action locks the BCERR register against
further writes, regardless of subsequent errors, until the status_lock bit is cleared.

The error address register may be read using an EPR read (MFPR) according to the
format shown in Figure 4-22. Table 4-14 lists the bit descriptions.

33222222222211111111
109 8 7 6 5 432 1 098 7 6 5 4 3 2

I MBZ I Error Address

1
098 7 6 5 4 3 2 1 0

MBZ

Figure 4-22 Backup cache C-Chlp Error Address Register --(EPR 120.07816)

Cache and Main Memory 85

Table 4-14 Backup Cache C·Chlp Error Address Register Bits

Data Bit Name Description

<31:30> MBZ Read as O.

<29:3> Error address This field contains the physical address of the
current transaction.

<2:0> MBZ Read as O.

When the BCERR register is loaded during an I-bus transaction, bits BCERR<29> and
BCERR<3> are both Os. This is because the I-bus only uses bits <28:4> of the physical
address. The other bits are 0 by default.

The BCERR register is not microcode-writable. If an EPR write (MTPR) of the BCERR
register is attempted, the ROAL cycle completes as normal but does not write the
register. For example, writes of the BCERR register are ignored.

The address contained in the BCERR register when a BUS_ERR (BCSTS<4» occurs is
unpredictable. The ROAL error may occur several cycles after the address corresponding
to the transaction was driven onto the bus. In the meantime, the BCERR register may
have been overwritten by an I-bus transaction.

4.1.3.6.2 Backup Cache Flush Backup Tag Store Register (BCFBTS)-EPR 121
The backup cache flush backup tag store (BCFBTS) register is a write-only register.
Figure 4-23 shows the register's format.

An EPR write (MTPR) of the BCFBTS register clears all the valid bits in the backup tag
store. The C-chip ignores the contents of the RDAL data bus during the transaction. The
write to the register causes an immediate flush of all the valid bits in the backup tag
store.

An EPR read of the BCFTS register causes the C-chip to complete the normal ROAL
cycle for an EPR read (MFPR). For example, reads of the BCFBTS register return
unpredictable data.

3
1 0

Writes: Doesn't Matter Reads: Unpredictable

Figure 4-23 Backup cache Flush Backup Tag Store Register -(EPR 121107916)

4.1.3.6.3 Backup Cache Flush Primary Tag Store Register (BCFPTS)-EPR 122
The backup cache flush primary tag store (BCFPTS) register is a write-only register.
Figure 4-24 shows the format.

An EPR write (MTPR) of the BCFPl'S register clears all the valid bits in the primary tag
store. The C-chip ignores the contents of the ROAL data bus during the transaction. The
write to the register causes an immediate flush of all the valid bits in the C-chip's copy of
the primary cache tag store.

86 Cache and Main Memory

An EPR read of the BCFPTS register causes the C-chip to complete the RDAL cycle as
normal for an EPR read (MFPR): For example, reads of the BCFPTS register return
unpredictable data.

3
1 0

Writes: Doesn't Matter Reads: Unpredictable

Figure 4-24 Backup cache Flush Primary Tag Store Register -(EPR 122,0 7A16)

4.1.3.7 Use of the C-Chtp Registers
The 10 registers implemented by the C-chip provide full control over the backup cache
tag store and the primary tag store in the C-chip. Access to these registers is with the
MTPR and MFPE. instructions, which require kernel-mode privilege.

4.1.3.7.1 Control of the Cache
Normal operational control of the backup cache and primary tag store in the C-chip
is provided through writes to the backup cache control (BCCTL) register. Bits in this
register enable the use of backup cache and primary tag store.

The backup cache and primary tag store may be flushed during normal operation by
writing a 0 to the BCFBTS and BCFPTS registers, respectively.

4.1.3.7.2 Error Recovery
When the C-chip detects an error, the C-chip latches error information. This information
is available by reading the BCSTS and BCERR registers. Status_lock (BCSTS<O» may
be written to tell the C-chip that the error information has been read, and to enable it to
detect subsequent errors.

If the error was a tag parity error in one of the tag stores, the error may be corrected by
creating a new tag entry. The new entry is created with a write to the BCIDX register,
followed by a write to the BCBTS, BePITS, or BCP2TS register.

See Chapter 8 for a detailed discussion of error recovery procedures.

4.1.3.7.3 cache Initialization
At power-up, the backup cache tag store and primary tag store must be initialized by
writing each entry with an invalid tag with good parity. Each entry may be written with
a write to the BCIDX register, followed by a write to the BCBTS, BCPlTS, or BCP2TS
register.

As part of cache initialization, cache refresh must be enabled, and the cache RAM speed
must be specified by writing to the backup cache control (BCCTL) register. The console
macrocode sets the RAM speed for 1 cycle.

4.1.3.7.4 Diagnostics
The tag stores and the backup cache data RAMs may be tested by reading and writing
cache tags with the BCIDX, BCBTS, BePlTS, and BCP2TS registers. Cache refresh may
be tested by reading and writing the BCRFR register. Error detection may be tested by
constructing an error, then reading the state from the BCSTS and BCERR registers.

Cache and Main Memory 87

4.2 KA670 Main Memory System
The KA670 includes a main memory controller implemented as part of a VLSI chip called
the G-chip. The KA670 main memory controller communicates with the MS670 memory
boards over the MS670 memory interconnect, which uses the G-chip memory interconnect
(GMI) for the address, control, and data lines. The contoller supports up to four MS670
memory boards.

4.2.1 G-Chip Memory Controller

As a two-port memory controller, the G-chip interfaces the RDAL bus and the CP bus to
a memory subsystem over a private interconnect, the GMI. It also serves as an adapter
between the RDAL bus and the CP bus.

4.2.1.1 G-Chlp pon
The G-chip port interfaces with the CPU, the C-chip, and the backup cache. The G-chip
port also supports the defined synchronous protocols for DMA. The following sections
describe the main features of the port.

4.2.1.1.1 G-Chip CPU pon Addressing
The G-chip regards all addresses from the RDAL bus with bit<29> equal to 0 and a
non-EPR read or write command, as memory addresses. The G-chip responds to all
VO addresses from the RDAL bus. Transactions with address bit <29> equal to 1 are
transferred to the CP bus by the G-chip if the address does not correspond to any of its
internal registers.

4.2.1.1.2 G-Chlp EPR decoder
The G-chip supports EPR reads and writes to the system support chip (SSC) on the CP
bus. These are the only EPRs the G-chip responds to. For EPR addresses that are not
in the SSC set, G-chip implements a timeout function. The G-chip decodes SSC EPR
numbers from the RDAL address bus for the TOY clock register, the VO reset register,
the console storage registers, and the console registers; it performs the corresponding
operations on the CP bus.

If the EPR address passed to the CP bus is not available, the EPR transaction will
timeout on the CP bus and the RDAL error signal is asserted to abort the CPU
transaction. For this exception, no error flags are set and no addresses are saved. The
G-chip supports EPRs 27 to 35 and 5510 on the CP bus.

4.2.1.2 G-Chlp Write Buffers
The G-chip improves write performance of the RDAL bus with a write buffer or queue.
The queue consists of a 4-quadword element ring buffer, each with an address tag. Each
element stores valid data that corresponds to the valid byte masks.

The address tags are content-addressable memories (CAMs). The content of CAMS is
used to look up and compare with a memory read address, to determine if the data to be
read is an element in the queue. If the address hits in the queue, then all the elements
that matched are flushed to memory before the read of memory. No CPU-to-CPU-memory
write transaction data packing is supported by the queue, because the GMI continuously
scans the queue for elements to retire.

Data is loaded sequentially into the queue and is unloaded by the GMI port in the
same order. To ensure coherent operation of the system, the queue is flushed under the
following circumstances:

• A clear write buffer transaction by the CPU (P-chip)

88 Cache and Main Memory

• A read lock by a device on the CP bus

• An I/O write to an address on the CP bus

• An EPR write to a register on the CP bus

• A memory read address that hits in the queue

• An interrupt vector read from a device on the CP bus

The queue is cleared when RESETL asserts. For example, all the valid entries are
invalidated.

4.2.1.3 G·Chlp Reg Isters
The G-chip has control and status registers (CSRs) that can be read or written only
from the port (by the CPU). They are all initialized on power-up reset, unless otherwise
mentioned. This is the only type of reset that the G-chip responds to. It does not respond
to I/O_RESET (EPR 55) writes to invoke an internal reset. Table 4-15 lists the register
names, desciptions, and addresses.

Table 4-15 G·Chlp Registers

Register/s Description Address

MEMCSR32 Error status register 20080180

MEMCSR33 Memory error address register 20080184

MEMCSR34 I/O error address register 20080188

MEMCSR35 DMA memory error register 2008018C

MEMCSR36 Mode control and diagnostic 20080190
register

4.2.1.3.1 G·Chlp Register Addressing
Because there is one G-chip for each CPU, the addresses for all MEMCSRs are fixed.
Write operations to read-only registers do not cause a CPU machine check and are
responded to as a nonnal operation. However, the operation does not alter the contents
of any G-chip registers.

4.2.1.3.2 G·Chlp System Error Status Register (MEMCSR32)
The G-chip reports error information in the MEMCSR32 register. The error flags are
cleared by writing a 1 to the respective bits in MEMCSR32. MEMCSR32 is initialized
only during power-up reset. Figure 4-25 shows the fonnat. Table 4-16 lists the bit
descriptions.

Cache and Main Memory 89

3 3 222 2 2 2 2 11111 1
1 0 876 5 4 3 2 6 5 4 3 2 098 7 6 o

II MBZI J J1 J l 111111 " II J

-
'---

1/0 Address: 2008 0180
Longword ReadlWrite Access

- Mem
Lost Corr

ory Error Syndrome
ectable Memory Error

Memory Error Lost Hard
Correctab Ie Memory Error
Uncorrect able Memory Error
Bus Parit y Error
Nonexiste
Lost 1/0 E
1/0 Error
Nonexiste

nt Memory
rror

nt 1/0

CP-b us Memory Error Syndrome
ost Correctable Memory Error
ost Hard Memory Error
orrectable Memory Error
ncorrectable Memory Error
arity Error

CP-bus L
CP-bus L
CP-bus C
CP-bus U
CP-bus P

Error Summary

Figure 4-25 G-Chlp System Error Status Register (MEMCSR32)

Table 4-16 G-Chlp System Error Status Register Bits

MEMCSR32
Data Bit Name

<31> Error summary

<30:28> MBZ

<27> CP bus parity error

Description

This read-only bit is set when any error is
detected and logged in this register by the G­
chip. A 0 is returned when this bit is read, if all
the other error bits in this register are o.
Read as o. Writes have no effect.

This read/write bit is set when a CP bus DAL
parity error is detected on a CP bus DMA
memory write transaction, if the error address
can be saved in MEMCSR35. This bit is cleared
by writing a 1.

NOTE
The CQBIC is the only CP bus DMA device
that does not generate or check parity on
the CP bus.

90 Cache and Main Memory

Table 4-16 (Cont.) G·Chlp System Error Status Register Bits

MEMCSR32
Data Bit Name

<26> CP bus uncorrectable
memory error

<25> CP bus correctable memory
error

<24> CP bus lost hard memory
error

<23> CP bus lost correctable
memory error

<22:16>

<15>

CP bus memory error
syndrome

Gehip nonexistent JlO

Description

This read/write bit is set to 1 by an uncorrectable
ECC error that occurs during a CP bus DMA
memory read or masked write transaction, if the
error address can be saved in MEMCSR35. An
octaword read is always performed in response to
a DMA read request, and this bit may set even if
the data is not returned to the CP bus. This bit
is cleared by writing a 1.

This read/write bit is set to 1 when a correctable
(single-bit) error is detected during a CP bus
DMA memory read or masked write transaction,
if the error address can be saved in MEMCSR35
and if MEMCSR36dl> is set. This bit is cleared
by writing a 1.

This read/write bit is set to 1 when an
uncorrectable ECC error or a CP bus DMA
parity error occurs on a transaction initiated by
a CP bus DMA master while either <27,26> was
set (indicating that MEMCSR35 could not be
used). This read/write bit is cleared by writing a
1. When this bit is set. the error and the address
of the error are lost.

This read/write bit is set to 1 when a correctable
ECC error occurs on a transaction initiated by
a CP bus DMA master while <25> was set and
MEMCSR36<11> was set or MEMCSR36<11>
was cleared (indicating that MEMCSR35 could
not be used). This read/write bit is cleared by
writing a 1. When this bit is set. the error and
the address of the error are lost.

NOTE
Only one of MEMCSR32 bits 27, 26, and 25
can be set at any time, since MEMCSR36 can
save only the first error address.

This read-only field stores the memory error
syndrome. The field is loaded when an ECC
memory error is detected from CP bus initiated
transactions. The priority for logging the
syndrome is first error-logged. Subsequent
memory error syndromes are not logged until
the associated error bits are cleared. This
field contains valid data while a correctable
or uncorrectable CP bus error bit is set. Writes to
this field have no effect.

This read/write bit is set if <14> is cleared for
Gehip originated JlO transactions to the CP
bus which do not respond (and hence signal

. timeout abort errors after the Gehipinternal
timer oveTftows). The error address is saved in
MEMCSR34. This bit is cleared by writing a 1.

Cache and Main Memory 91

Table 4-16 (Cont.) G.Chlp System Error Status Register Bits

MEMCSR32
Data Bit

<14>

<13>

<12>

<11>

Name

G-chip 110 error

G-chip lost 110 error

G-chip nonexistent memory
address

G-chi p bus parity error

G-chip uncorrectable
memory error

G-chip correctable memory
error

G-chip lost hard memory
error

Description

This read/write bit is set if <15> is cleared for
transactions from the G-chip bus to the CP bus
which are terminated by the CPERR signal
or by a read parity error, and not by a G-chip
timeout abort error. The error address is saved in
MEMCSR34. This bit is cleared by writing a 1.

This read/write bit is set when transactions from
the G-chip bus to the CP bus terminate in error,
while either the G-chip 110 or nonexistent 110
error bits are set (indicating that MEMCSR34
could not be used). This bit is cleared by writing
a1.

NOTE
Only one of MEMCSR32 bits 15 or 14 can be
set at any time, since MEMCSR34 can save
only the first error address.

This read/write bit is set if the error address
for G-chip bus transactions to invalid memory
addresses can be saved in MEMCSR33. This bit
is cleared by writing a 1.

This read/write bit is set if the error address for
a RDAL parity error from a G-chip memory write
transaction can be saved in MEMCSR33. RDAL
parity errors are not reported for 110 and external
processor register (EPR) write transactions. This
bit is cleared by writing a 1.

This read/write bit is set if the error address for
an uncorrectable ECC error from a memory read
or masked write transaction initiated from the
G-chip bus can be saved in MEMCSR33. This bit
is cleared by writing a 1.

This read/write bit is set if the error address can
be saved in MEMCSR33 and if MEMCSR36<11>
is set for a correctable (single-bit) error from
a memory read or masked write transaction
initiated from the G-chip bus. This bit is cleared
by writing a 1.

This read/write bit is set when either a
nonexistent, bus parity, or uncorrectable ECC
error occurs as a result of a G-chip bus-initiated
transaction while <12, 11, or 10> was set. This
read/write bit is cleared by writing a 1. If this bit
is set, the address of the error could not be saved
in MEMCSR33.

92 Cache and Main Memory

Table 4-16 (Cont.) G-Chlp System Error Status Register Bits

MEMCSR32
Data Bit Name

<7> G-chip lost correctable
memory error

<6:0> G-chip error syndrome

Description

This read/write bit is set when a correctable ECC
error occurs from a bus-initiated transaction
while <9> and MEMCSR36<11> was set, or while
MEMCSR36<11> was cleared (indicating that
MEMCSR33 could not be used). This read/write
bit is cleared by writing a 1. If this bit is set,
the address of the error could not be saved in
MEMCSR33.

NOTE
Only one of MEMCSR32 bits 12, 11, 10, and
9 can be set at any time, since MEMCSR33
can save only the first error address.

This read-only field stores the error syndrome
and is loaded when a G-chip memory error is
detected. The priority for logging the syndrome
is first error-logged. Subsequent memory error
syndromes are not logged until the associated
error bits are cleared. This field contains valid
data only when a correctable or uncorrectable
G-chip bus error bit is set. Writes to this field
have no effect.

4.2.1.3.3 Memory Error Address Register (MEMCSR 33)
MEMCSR33 contains the octaword error address from bus-initiated memory transactions.
The address is loaded by the first memory error and is not changed until that error bit
is cleared in MEMCSR32. This register is read-only and has valid content only while
a corresponding error bit (<12:9» is set. Figure 4-26 shows the format of the register.
Table 4-17 lists the bit descriptions.

3 2 2
1 9 8 430

I MeZ I Error Address Mez

110 Address: 2008 0184
longword Read-Only Access

Figure 4-26 G-Chlp Memory Error Address Register (MEMCSR33)

Table 4-17 Memory Error Address Register Bits

MEMCSR33
Data Bit Name

<31:29> MBZ

<28:4> Error address

<3:0> MBZ

Description

Read as O. Writes have no effect.

Octaword address of the first memory error.

Read as O. Writes have no effect.

Cache and Main Memory 93

4.2.1.3.4 I/O Error Address Register (MEMCSR 34)
MEMCSR34 contains the longword error address of initiated 110 transactions. The
address is loaded by the first 110 or nonexistent 110 error and is not changed until
that error bit is cleared. This register is read-only and has valid content only while a
corresponding error bit (<15:14» is set.

Note, that since the address is in I/O space, address bit <29> is 1, even though
MEMCSR34's bit <29> does not reflect this. Figure 4-27 shows the format. Table 4-18
lists the bit descriptions.

322
198

MBZ Error Address

1/0 Address: 2008 0188
Longword Read-Only Access

Figure 4-27 G-Chlp 110 Error Address Register (MEMCSR 34)

Table 4-18 G·Chlp 110 Error Address Register Bits

MEMCSR34
Data Bit Name Description

<31:29> MBZ Read as O. Writes have no effect.

2 1 0

<28:2> Error address

<1:0> MBZ

Longword address of first initiated I/O error.

Read as O. Writes have no effect.

4.2.1.3.5 CP bus Error Address Register (MEMCSR 35)
MEMCSR35 contains the octaword error address of DMA-initiated transactions from the
CP bus. The address is loaded by the first memory error. This address is not changed
until that error bit is cleared and another error is logged. This register is read-only and
has valid content only while a corresponding error bit «27:25» is set. Figure 4-28 shows
the format of the register. Table 4-19 lists the bit descriptions.

322
198

I MBZ I Error Address

110 Address: 2008 018C
Longword Read-Only Access

Figure 4-28 CP bus Error Address Register (MEMCSR 35)

Table 4-19 CP Bus Error Address Register Bits

MEMCSR35
Data Bit Name Description

4 3

MBZ

<31:29> MBZ Read as O. Writes have no effect.

o

94 Cache and Main Memory

Table 4-19 (Cont.) CP Bus Error Address Register Bits

MEMCSR35
Data Bit Name

<28:4> Error address

<3:0> MBZ

Description

Octaword address of first DMA-initiated memory
error.

Read as o. Writes have no effect.

4.2.1.3.6 G·Chlp Mode Control and Diagnostic Status Register (MEMCSR 36)
The bits in this register control G-chip operating modes. This register also stores
diagnostic status information. The MEMCSR36 bits are read/write and are cleared
asynchronously with the assertion of RESETL at power-up. Figure 4-29 shows the
format of the register. Table 4-20 lists the bit descriptions.

332
109

I I I

2 2
3 2

I

I/O Address: 2008 0190

11111 1
65432 098 7 6 543 2 1 0

IIJLll 1JI I I I I I I I

'-

--

Longword Read/Write Access

Force Refresh Request
Disable Refresh
Force CP-bus Owner
Force Wrong Parity
Force Write Buffer Hit
Flush Write Buffers
Disable Page mode
Disable Memory ErrorDetect
Refresh Requested
EPR Timeout Prescaler
Enable Soft Error Logging
Timer Count Select
Cache RAM Speed
FDM Second Pass
Fast Diagnostic Test mode
Memory/Diagnostic Check Bits
Memory Check Bits
Must Be Zero
Diagnostic Check Bits Mode

Figure 4-29 G-Chlp Mode Control and Diagnostic Status Register (MEMCSR 36)

Cache and Main Memory 95

Table 4-20 G·Chlp Mode Control and Diagnostic Status Register Bits

MEMCSR36
Data Bit Name

<31> Diagnostic check mode

<30> Must be zero

<29:23> Memory check bits

<22:16> Memory/diagnostic check
bits

Description

When set to 1 by a write, this read/write bit
enables the contents of MEMCSR36<22:16>
to be passed as check bits during a memory
write transaction, instead of the normal ECC
check bits. This is true unless an RDAL parity
error occurred on the write. If an RDAL parity
error occurred, the low three check bits of
this field are inverted as they are written to
memory. When this bit is a 0, the contents of
MEMCSR36<22:16> are ignored during memory
write transactions. MEMCSR36<22:16> should
be written along with this bit.

Read as O. Writes have no effect.

Regardless of the diagnostic check mode bit, the
contents of MEMCSR36<29:23> are loaded from
ECC check bits for the unaligned longword
during a G-chip memory read or a second
signature read transaction prior to a MEMCSR36
read. The read check bits for a masked memory
write transaction are not latched. When loaded,
this bit field is held until the register is read.
These bits are read-only and are undefined until
a second signature read or any memory read
transaction is complete.

When diagnostic check mode is enabled, this
write field substitutes for the check bits
generated by the ECC generation logic during
memory masked or unmasked write transactions.
If a RDAL parity error occurs, the low three
check bits are inverted as they are written to
memory. If diagnostic check mode is not enabled,
the contents of MEMCSR36<22:16> are ignored
during memory write transactions.

This read field is loaded with the check bits from
the ECC check bits for the requested aligned
longword of the requested quadword, or for the
first of two signature read transactions following
a read ofMEMCSR36. When loaded the bits are
held until the register is read.

NOTE
The two fields MEMCSR36<29-.23> and
MEMCSR36<22:16> have a load control
pointer that is initialized to point to
MEMCSR36<22:16> by a chip reset or
by a MEMCSR36 read. The pointer is
incremented by the internal memory
sequencer for a signature read, or for each
returned longword of a G-chip memory
octaword read (not a masked write).
Therefore, the programmer is responsible
for alignment of this pointer during memory
diagnostics.

96 Cache and Main Memory

Table 4-20 (Cont.) G·Chlp Mode Control and Diagnostic Status Register Bits

MEMCSR38
Data Bit Name

<15> Fast diagnostic test mode

<14> FDM second pass

<13> Cache RAM speed

<12> Timer count select

<1b Enable soft error logging

<10:9> EPR timeout prescaler

Description

This read/write bit provides a mechanism for
speeding up the initial diagnostic testing of
memory. Writing a 1 to this bit causes the G-chip
to set the MODESEL<1> GMI port output signal,
indicating to the GMX that it is in fast diagnostic
test mode.

In systems with more than four bank pairs of
memory per module, the memory test in fast
diagnostic mode has to be done in two passes.
This read/write bit (cleared at power-up) should
be set, and a second pass of the test should be
run. This enables testing of modules with more
than four banks. This bit has no effect unless
MEMCSR36<15> is set.

On the KA670, this bit should be set to 0,
indicating that no extra cycles are needed when
accessing the backup cache. When cleared,
this bit indicates that the system is using
fast, one-cycle cache RAMs. When this bit is
a 1, it indicates the system is using two-cycle
RAMs. This bit is cleared on power-up. G-chip's
interface alters its response behavior by one
cycle, depending on the state of this bit.

This read/write bit enables the timers in the chip
to be used over a G-chip clock cycle range of 20 ns
to 40 ns. When set, this bit increases the count
value of all the G-chip interface timers. The CP
bus timers are not affected. When the cycle time
is 28 ns or less, this bit should be a 1. For a
cycle time greater than 28 ns, this bit should be
cleared to o.
When this read/write bit is 0, correctable (single­
bit) errors are corrected by the ECC logic, but the
SERRIRQL output is not asserted, the associated
error addresses are not logged in MEMCSR33
or MEMCSR35, the error syndrome fields of
MEMCSR32 are not loaded, and <25,9> are not
set. <23, 7> is set by correctable errors to signal
these lost correctable errors.

When this bit is a 1, correctable errors are
corrected by the ECC logic and reported on the
SERRIRQL output. Correctable as well as other
error addresses and syndromes are logged in
MEMCSR33 or MEMCSR35. Also, <25, 9> are
set when errors are detected. This makes it
easier to reserve the error-logging information for
uncorrectable, NXM, or parity errors when soft
error reporting is disabled.

On the KA670, this field should be set to 112-
This field scales the EPR timeout counter up to to
make it easier to access slow-access C-chip EPR
registers. Field values: 11 = 1.5)15, 10 = 12 llS,
01 =32)18, 00 = 910)18.

Cache and Main Memory 97

Table 4-20 (Cont.) G-<:hlp Mode Control and Diagnostic Status Register BHs

MEMCSR36
Data Bit

<4>

<3>

Name

Refresh requested

Disable memory error
detection

Disable page-mode

Flush write buffers

Force write butTer hit

Force wrong parity

Description

This read-only flag is set when a refresh
transaction is selected as the current operation.
This implies that the refresh interval counter has
counted to the overflow condition. This flag is
cleared by reading MEMCSR36.

When this bit is a 1, memory error detection
and correction are disabled. All memory-related
error logging in MEMCSR32, MEMCSR33, and
MEMCSR35 is disabled. No memory-related
error reporting occurs by asserting the ERRL,
CPERRL, HERRIRQL or SERRIRQL output pins.

When set, this bit disables page-mode memory
transactions. It causes the G-chip to deassert
RASTIME after every memory transaction. This
function is for test purposes only. If this bit is
set during nonnal system operation, memory
performance is degraded.

When written to a 1, this read/write bit initiates
a flush of the QUEUE, the CPQUE, and hence
the invalidate QUE. The G-chip delays the
assertion of the G-chip ready signal for this
MEMCSR36 write until the flush completes.
When this bit is set, subsequent writes to
MEMCSR36 result in the stan of the ready
signal until all queues are flushed. A write of 0
clears this bit and disables the stall conditions.

When set, this read/write bit forces a memory
read address from a corresponding G-chip bus
or CP bus port to hit any valid element in the
write queues, regardless of the address tag.
This ensures that all write queue elements and
associated invalidate hit addresses are retired to
memory prior to the completion of the pending
read. This bit should be set only for diagnostic
purposes. If this bit is set during normal system
transactions, there is a performance degradation
on memory reads that follow memory writes.

When set to 1, this read/write bit forces the
result of the CP bus and the G-chip bus parity
checkers to be inverted. This results in a parity
check failure. This action is used to emulate an
RDAL or a CP DAL parity error during memory
read or write transactions and G-chip to CP bus
transactions. DAL parity is ignored for G-chip
bus 110 transactions. This bit is for test purposes
only and should not be set during normal system
operation.

98 Cache and Main Memory

Table 4-20 (Cont.) G-Chlp Mode Control and Diagnostic Status Register Bits

MEMCSR36
Data Bit Name

<2> Force CP bus owner

<1> Disable refresh

<0> Force refresh request

Description

When set to 1, this read/write bit forces the G­
chip to request CP bus mastership by asserting
CPDMRL. The write that sets this bit is stalled
on the G-chip bus until CPDMGIL is received.
G-ehip gives up the mastership of the CP bus
when this bit is cleared. This bit is set to 1 when
RESET L asserts, so the G-ehip attempts to be
the owner of the CP bus following a power-up
reset.

When set, this read/write bit disables
memory refresh (regardless of the state of
MEMCSR36<0» and clears the refresh address
counter and interval counter to O. This function
is for test purposes only. The bit should not be
set during normal transactions or while the force
refresh request bit is set.

When cleared, this read/write bit allows the
refresh control logic to operate normally. This
bit is set at power-up only if the TESTMODE
pin is asserted as RESET negates. When
set on power-up or by writing a 1 with the
TESTMODE pin asserted, this bit forces
the G-chip to do continuous memory refresh
transactions, incrementing the refresh address on
each transaction. A pending memory operation
takes precedence over the continuous refresh
transactions.

If the TESTMODE pin is negated, the G-ehip
ignores the state of this bit and behaves as if
this bit were cleared. The bit can be cleared by
writing a 0 and by deasserting the TESTMODE
pin at power-up. This behavior facilitates a
power-up functional test for probing.

RESTRICTION
This bit should be used for test purposes
only. If TESTMODE is selected and this bit
is set during normal system operation.
memory operations result in severe
performance degradation. Also. memory
array power consumption increases. This
bit should never be set while the disable
refresh bit is set.

4.2.1.4 Bus Timeout and Nonexistent Addresses
The G-chip prevents the bus from hanging if a nonexistent device is addressed in the
following ways, depending on the type of transaction:

• On CPU-to-memory read transactions to nonexistent or invalid locations, the G-chip
responds with ERRL, sets the nonexistent memory bit <12>, and logs the address in
the memory error address register (MEMCSR33).

• On CPU memory write transactions to nonexistent or invalid locations, the G-chip
asserts HERRIRQL, sets the nonexistent memory bit <12>, and logs the address in·
the memory error address register (MEMCSR33).

Cache and Main Memory 99

• EPR transactions, read interrupt vector transactions, and I/O read/write transactions
that are recognized as for G-chip bus to CP bus adapter reaction are transferred to
CP bus transactions. If no device responds to these CP bus master transactions, the
CP bus master times out, aborts, and informs the slave of the exception.

For the read transaction exceptions (EPR, I/O, or interrupt), the G-chip responds
with ERRL. For I/O (not EPR) write transaction exceptions, the G-chip asserts
HERRIRQL. The I/O error bit <14> is set on I/O reads and I/O writes that time out;
the address is loaded in the I/O error address register (MEMCSR34). The G-chip does
not log any information for EPR or interrupt vector transaction exceptions.

• In all the above cases, the G-chip terminates the transaction by asserting RDYL or
ERRL, thus preventing the system from hanging.

The G-chip does not recognize EPR transactions as for transfer to the CP bus. EPR
transactions are timed by the G-chip, according to the time limit established by
MEMCSR36<10:9>. The timeout mechanism is the nonexistent EPR timeout counter,
which serves to terminate EPR transactions that have not been responded to by a
bus device. The G-chip aborts the transaction by asserting ERRL, but does not log
any information. This timeout counter starts counting with the assertion of ASL. The
counter is is cleared with the assertion of RDYL, ERRL, or RTYL.

4.2.1.5 Peripheral Port (CP Port)
The CP port of the G-chip interfaces with the G-chip port and the GMI port. Sections
4.2.1.5.1 through 4.2.1.5.4 describe the main features of the CP port.

4.2.1.5.1 Addressing
The G-chip, as bus slave, does not respond to I/O transactions initiated from peripheral
bus (CP bus) DMA devices. Any transaction whose I/O or memory address does not
match the programmed and validated values in the G-chip shadow registers is regarded
as a no-operation request. The SSC timeout counter is assumed to cause this transaction
to abort, so the G-chip does not respond.

4.2.1.5.2 Multiple-Transfer Transactions and Address Alignment
The CP port supports longword (2-word), quadword (4-word), hexword (6-word), and
octaword (8-word) memory transactions; and only longword I/O transactions. It maintains
quadword alignment on quadword transactions, and octaword alignment on hexaword
and octaword transactions. Quadword alignment is preserved by complementing bit<2>
of the address for accessing the second longword. Octaword alignment is preserved by
incrementing (modulo-4) bits <3:2> of the address for accessing subsequent longwords.

4.2.1.5.3 Write Buffers
The G-chip improves write performance of the CP bus with the help of a write buffer,
caned the CPQUE. The CPQUE consists of two octaword buffer elements. Each element
has an address tag and can store up to an octaword of data with the corresponding byte
masks. The address tags are CAMs; a tag compare (lookup) occurs on CP bus to memory
reads, to check if the data to be read is a CPQUE element. If the address compares (hits)
in the CPQUE, then both elements are flushed to memory before the memory read is
performed. Write data is loaded sequentially into the CPQUE and unloaded by the GMI
port in the same order.

To ensure correct operation of the system, the CPQUE is flushed under the following
circumstances:

• Read lock on the G-chip bus

• CPU I/O or EPR read to an address on the CP bus

100 Cache and Main Memory

• CPU read interrupt vector transaction

• CP bus memory read address that hits in the CPQUE

The CPQUE is cleared when RESET L asserts during power-up. For example, all the
valid elements are invalidated.

4.2.1.5.4 CP Bus Timeout
The G-chip provides a timeout mechanism on the CP bus, to prevent G-chip initiated CP
bus transactions to nonexistent I/O or EPR addresses, and to prevent interrupt vectors
from hanging the bus. This is done with a CP bus cycle counter that has a fixed cycle
count whose absolute time scales with the CP bus clock. The timeout is triggered by the
assertion of the CP bus data strobe (CPDSL); it is cleared by the assertion of the CP bus
ready or error signals (CPRDYL or CPERRL), or by the negated state of the no response
abort (CPNRA) signal after the counter overflows.

The CPNRA signal is a NOR function of the "not me" signals of the DMA devices on the
CP bus. If this signal is deasserted, it indicates that one of the DMA devices is going to
respond to the current transaction.

If there is no response on the CP bus and the counter overflows, the G-chip looks at the
state of CPNRA and reacts as follows:

• If CPNRA is asserted, terminate the transaction by deasserting CPDSL and CPASL.
If the aborted transaction was a read (I/O read, EPR read, or an interrupt vector
read), return ERRL to the CPU. If the aborted transaction was a write (I/O write),
assert HERRIRQL. On I/O read and write transactions that are aborted by timer
overflow, the G-chip sets the nonexistent I/O bit <15> and logs the address in
MEMCSR34. On EPR reads/writes and interrupt vector reads, the G-chip does
not log any information.

• If CPNRA is deasserted, the G-chip waits for CPRDYL or CPERRL from the CP bus.
In the extreme case that a device deasserts its "not me" signal and fails to respond,
the SSC's CP bus timeout counter should overflow and abort the transaction, thus
preventing the system from hanging. This counter can be set to a very high value,
about 15 ms.

4.2.1.6 GMI Port
The GMI port of G-chip supports up to 32 banks of memory. The port provides 7 -bit error
checking and correction (ECC) for a 32-bit memory data bus.

4.2.1.6.1 Memory Addressing
The G-chip can control up to 32 banks (16-bank pairs) of DRAM, with each bank
consisting of 32 data bits and 7 bits of ECC code. These banks are addressed as follows:

• Each bank pair has a base address register value resident in the G-chip and CP
(shadow register) ports, with either 4 or 6 significant bits (depending on the bank's
RAM size).

• Bit <29> of the address is a 0 (memory address space).

• When a validated base address register value matches the address from the address
bus or the CP bus, the bank pair at that address is selected for either reading or
writing. Two banks are enabled for every base address match. Bit <2> of the address
further selects one of the two enabled bank pairs.

If the RAM size is 1 megabyte, the base address maps to bits <28:23> of the
address, the row address maps to bits <22:13> of the address and the column
address maps to bits <12:3> of the bus address.

Cache and Main Memory 101

If the RAM size is 4 megabytes, the base address maps to bits <28:25>, the row
address to bits <24,22:13>, and the column address to bits <23,12:3> of the bus
address.

4.2.1.6.2 Support for Pagemode
The GMI port of G-chip supports extended pagemode to improve the GMI bandwidth.
Addresses within the same physical memory page-for example, addresses whose bits
<28:13> are the same-can be accessed at a faster rate than addresses that are not in the
same page. This is done by keeping the row address the same and changing the column
address only.

The GMI port provides a timeout counter for pagemode, since DRAMs have a restriction
on the time that transactions can be done in page mode. In order to keep the pagemode
timeout interval from varying with the G-chip clock cycle times, the count value can be
changed by setting the timer count select bit MEMCSR36<12>. This bit should be set
at cycle times greater than 28 ns and cleared at cycle times less than or equal to 28
ns. Except for refresh, all transactions are done in page mode as long as the previous
and current bank and row address match, and the page mode timeout counter has not
overflowed. The page mode timeout counter overflows after 8 }lS.

4.2.1.6.3 Memory Error Detection and Correction
On memory write transactions, the source of the memory data comes from the the
corresponding write buffer, together with 7 check bits generated from an ECC generator.
On memory read transactions, ECC is generated from the memory data inputs and
compared to the check bits. The ECC logic uses a 32-bit modified Hamming code to
encode the 32-bit data longword into seven check bits.

When an error is detected, the syndrome is loaded into <22:16> or <6:0>, depending on
whether the transaction was requested by the G-chip port or the CP port. The G-chip
ECC logic detects and corrects single-bit errors in the memory data. Single-bit errors in
the check bit field are detected and reported. Double-bit errors are detected and reported,
but not corrected.

Modified Hamming Code

Figure 4-30 shows the modified Hamming code. The data bits marked with an X in each
row are Exclusive-ORed together to generate the corresponding check bit. In a memory
read transaction, a non-zero syndrome indicates an error. If the syndrome generated
matches a column of X bits, the error is correctable and the column number corresponds
to the corrected bit. If a syndrome value does not match any value in Figure 4-30, it
indicates an uncorrectable error. Table 4-21 shows the syndromes from Figure 4-30 that
can be read from <22:16> or <6:0>.

102 Cache and Main Memory

S G ChO 0 t B 310 - Ip aa us < : > G Cho 0 au 32 - Ip ata s< :38>
y
n
d
r Generated Check Bits
0 Byte 3 Byte 2 Byte 1 Byte 0 C1 C2 C4 ca C16 C32 CT
m 3 2 2 1 1 3 3 3 3 3 3 3
e 1 4 3 6 5 a 7 0 2 3 4 5 6 7 8

S1 XXXX XXXX XXXX XXXX X

S2 XXXX XXXX XXXX XXXX X

S4 XXXX XXXX XXXX XXXX X

S8 XXXXXXXX XXXXXXXX XXXXXXXX X

S16 XXXXXXXX XXXXXXXX XXXXXXXX X

S32 XXXXXXXX XXXXXXXX XXXXXXXX X

ST X XXX xxx x xxx x xxx x x

Even Parity - C 1, C2, CT

Odd Parity - C4, ca, C16, C32

Error_Syndrome<N> = (Generated CB<N> XOR Memory CB<N»

Figure 4-30 32-BIt Modified Hamming Code

Table 4-21 Syndrome Examples

MEMCSR32<22:16>
MEMCSR32<6:0> Bit Position in Error

0000000 No error detected.

nata Bits (0 to 3110)

1011000 0

0011100 1

0011010 2

1011110 3

0011111 4

1011011 5

1011101 6

0011001 7

1101000 8

0101100 9

0101010 10

1101110 11

0101111 12

Cache and Main Memory 103

Table 4-21 (Cont.) Syndrome Examples

MEMCSR32<22:16>
MEMCSR32<6:0>

1101011

1101101

0101001

1110000

0110100

0110010

1110110

0110111

1110011

1110101

0110001

0111000

1111100

1111010

0111110

1111111

0111011

0111101

1111001

0000001

0000010

0000100

0001000

0100000

0000111

All others

Bit Position in Error

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Check Bits (32 to 3810)

32

33

34

35

37

Result of incorrect check bits written on detection of a RDAL or
CP bus parity error.

Multibit errors

Forcing Incorrect Check Bits

When a data parity error is detected from the RDAL during a memory write transaction,
incorrect check bits are generated and loaded into memory to force an uncorrectable error
for detection on a subsequent memory read. The algorithm for generating incorrect check

. bits is to complement the generated check bits<2:0> output and pass the generated check
bits<6:3> unchanged. This would generate an error syndrome of 0000111.

104 Cache and Main Memory

4.2.1.6.4 Memory Refresh
The G~chip GMI controls DRAMs that must be refreshed at a fixed interval. The G-chip
has an internal refresh interval timer. The timer initiates a refresh transaction every
480 cycles if the timer count select bit in MEMCSR36 is cleared (at cycle times less than
or equal to 28 ns), and every 336 cycles if the timer count select bit in MEMCSR36 is set
(at cycle times greater than 28 ns).

4.2.1.6.5 GMI priority
The GMI port has to arbitrate between the CP port and the G-chip port for memory
accesses. The GMI port has a priority~based arbitration scheme to help sustain CPU and
110 performance and latency. The GMI port gives a higher priority to the CP port than
the G"chip port. However, when a G-chip read or write request is pending, the GMI port
services a maximum of three consecutive CP write requests before servicing one pending
G-chip request. After the pending G-chip request is serviced, the "three CP transactions"
counter is reset until the condition of CP write service and pending G-chip request occurs.
Then the "three CP transactions" counter begins.

From the CP port's perspective, five consecutive writes may occur before the G-chip
service interruption is observed. This is a result of the two write buffers and one GMI
operation buffer. If a G-chip port request is not pending, there is no restriction on the
number of consecutive CP writes serviced by the GMI. CP reads are always given the
highest priority, unless the read address matches the address of a buffered CP write. In
that case, the write is completed before the read is serviced. Table 4-22 indicates the
GMI priority based on the three consecutive CP writes serviced counter while a G-chip
port request is pending.

Table 4-22 GMI pon Priority

GMI Priority GMI Transactions GMI 'hansactions

Number of CP Writes < 3 Number of CP Writes = 3

1 Refresh Refresh

2 Signature Read Signature Read

3 CP Port Read CP Port Read

4 CP Port Write G-chip Port Read

5 G-chip Port Read G-chip Port Write

6 G-chip Port Write CP Port Write

4.2.1.7 Transactions and pon Interactions
This section describes how the three ports of the G-chip interact with each other.

4.2.1.7.1 suppan for cache Invalidates
Because DMA is done on the CP bus, invisible to the G-chip bus, the G-chip provides
a mechanism to invalidate cache entries that have been written to by DMA devices.
Cache entries are invalidated by doing an octaword DMA write protocol on the G-chip
bus. The G-chip supports octaword cache invalidates only; it does not support quadword
invalidates. The G-chip, with some external CP bus address latches (I-latch), provides a
mechanism to reduce the number of invalidates that have to be done on the G-chip bus
by doing an address lookup on a separate invalidate lookup bus.

Cache and Main Memory 105

Invalidate Lookup

In order to support the invalidate lookup protocol, the G-chip requires the module to
have external latches of the CP bus address that drive the C-chip invalidate lookup bus.
The CP bus address is latched by the I-latch whenever a transaction is initiated on the
CP bus. If the transaction is a write and the address is valid (and the CPQUE is not
full, then the address is loaded into the CPQUE. At the same time, the G-chip asserts a
lookup request signal to the C-chip, indicating that the lookup address is valid. The CP
bus write transaction does not complete until the result of the lookup is received from the
C-chip. If the address hits in one or both of the cache tag stores, an invalidate hit bit is
set in the corresponding CPQUE element; this indicates the address has to be invalidated
on the G-chip bus when the data is retired to memory.

There is an additional constraint if cache lookups are initiated when a memory read
transaction is in progress on the G-chip bus-the result of the lookup may be misleading
if the lookup address is in the same octaword block as the current G-chip read. The
G-chip does not stall CP bus writes to avoid this problem. Invalidate lookups take place
as usual. However, if a CP bus write occurs simultaneously with a G-chip port memory
read, the invalidate hit tags in the CPQUE are set forcibly until the read and its cache
fill complete. This action ensures that even if the data returned on the RDAL is not
up-to-date and the result of the lookup for that address was a miss, but the G-chip fill
just caused it be validated in the cache, an addres~ ·.\,111 be invalidated as the write data
is written to memory.

Invalidate Hits

Addresses that hit in either the primary cache tag store or the backup cache tag store
have to be invalidated on the G-chip bus. The G-chip has two invalidate hit address
buffers that are loaded by the GMI port when the ('urrent address marked as having hit
is taken from the CPQUE. As soon as one of these buffers is loaded, the G-chip requests
the G-chip bus by asserting DMRL. The write transaction on the GMI does not complete
until the address is loaded in an invalidate hit buffer. The following transactions are not
allowed to complete until both invalidate hit buffers are flushed:

• Memory read

• Memory read lock

• CP bus EPR or I/O read

• Read interrupt vector

The G-chip may retry the following G-chip bus transactions to perform invalidates that
prevent deadlocks:

• I/O write to G-chip MEMCSR

• Memory write, SSC EPR write, or an I/O write to the CP bus, that are stalled for any
reason

4.2.1.7.2 1/0 Transactions
On an I/O read or write transaction initiated by the CPU, the G-chip decodes the address.
If the address does not match any of its internal MEMCSRs, the G-chip does that read
or write on the CP bus. The G-chip generates a longword address from the quadword
address and byte masks pro:vided on the G-chip bus. All I/O transactions are either byte,
word, or longword. On an EPR read or write transaction, the G-chip decodes the EPR
number; if the number corresponds to an SSC EPR number, the G-chip does the read or
write on the CP bus.

106 Cache and Main Memory

The G-chip port to CP port interface is made up of an address, data, and operation buffer.
The G-chip port loads information about the transaction into this buffer. The CP port
master continually monitors and unloads the buffer when the buffer has an operation in
it. If the buffer is full when the G-chip port needs to load an operation, that transaction
stalls on the G-chip bus. This buffer is used for all transactions initiated by the CPU and
performed on the CP bus:

• I/O read

• I/O read lock

• I/O write

• I/O write unlock

• EPR read

• EPR write

• Interrupt vector read

• Memory read lock

• Memory write unlock

On read transactions (except the memory read lock) where the G-chip port waits for a
response from the CP bus, the G-chip slave controller monitors the state of the data
buffer for valid data.

4.2.1.7.3 Loading and Unloading Write Queues
The organization of the CPQUE and the QUEUE are different, but their operation is the
same. Elements of a queue are loaded and a valid bit is set by the corresponding port
controller. Note that transaction-to-transaction data packing is not done by the write
queues, since the GMI continuously unloads any valid elements following the previously
described operation priori ty.

If at least one of the buffers in a queue is valid, a write request is made to the GMI port
by the (:ort'esponding port. The GMI then services the writes according to its priority
scheme.

Note that each element in the queue implements a valid hit. If a valid bit is set, the GMI
port regards the element as full and does the memory write. The GMI port does not keep
data waiting in the buffers in order to fill the buffer or pack longwords. Writes are done
whenever the GMI can service them. When all valid bits for the elements of a queue are
set, a full signal is sent to the port controner. Also, when all valid bits for the elements
of a queue are clear, an empty signal is sent to the port controller.

The G-chip supports interlocked read transactions from the CPU to memory and the
CP bus, and from the CP bus to memory. Any device (CPU or CP bus DMA) that does
a locked transaction, has to be master of the CP bus and the Q22-bus (in a Q22-bus
system). The address and cycle status code for the lock is broadcasted on the CP bus,
allowing the CQBIC (if present) to retry the transaction if it is not master of the Q22-bus.
The read from memory takes place only after there are no more retries from the CQBIC.

The read lock is regarded as successful if there are no uncorrectable errors in the
requested read data. Under normal circumstances, when there are no DAL parity
errors on the returned data, the G-chip expects that the next transaction on the bus
(that initiated the read lock) is a write unlock. The lock is regarded as completed when
another transaction is initiated on that bus. If the transaction is not a write unlock, it is
assumed that write unlock is lost and will not happen.

Cache and Main Memory 107

If the read lock is initiated on the G-chip bus, a lost write unlock causes the G-chip to do
a dummy write unlock on the CP bus. This unlocks the Q22-bus and clears the lock.

If the read lock is initiated on the CP bus, then any transaction on the CP bus - even a
G-chip master transaction~an clear the lock.

4.2.1.7.4 Interrupts
The G-chip interrupts the CPU with one hard error interrupt and one soft error interrupt.
The G-chip does not have any vectored interrupts; however, it does support reading
interrupt vectors from the CP bus. All interrupt vector read transactions from the CPU
are transferred through the G-chip to CP bus interface. The vector that is read from the
interrupting device is provided to the CPU on the RDAL, without any modifications. The
G-chip does ensure that the CPQUE and the invalidate hit buffer addresses are flushed
before the vector is returned on the RDAL.

4.2.1.7.5 Transaction Summary
Table 4-23 indicates whether the write buffers or invalidate hit buffers are flushed on
various G-chip bus and CP bus transactions, before the transactions complete.

Table 4-23 System Requirements for Buffered Writes and Invalidates

Buffered Writes

Stall G·
Until Chip CP Invali-

Transactions Retired Port Port dates Remarks

G-chip memory read Yes No No Yes All the CP writes that have
(no lock) been retired to memory

have to be invalidated
before the read completes.

G-chip memory read No Yes Yes It is important to retire CP
(lock) writes here, so the CPU

gets the most current data
from I/O devices.

G-chip I/O read (no No Yes Yes It is important to retire CP
lock and lock) writes here, so the CPU

gets the most current data
from I/O devices.

G-chip memory write No No No No

G-chi p I/O write Yes No No The I/O device should
get the data written by
the CPU. Here the CPU
communicates with the I/O
device through CSRs.

G-chip IAK No Yes Yes On interrupts, the CPU
issues a clear write buffer
command, and G-chip
writes can be flushed at
that command. The CP
writes and their invalidates
have to be flushed.

G-chip EPR Yes Yes Yes
read/write (write) (read) (read)

108 Cache and Main Memory

Table 4-23 (Cont.) System Requirements for Buffered Writes and Invalidates

Buffered Writes

Stall G-
Until Chip CP Invali-

Transactions Retired Port Port dates Remarks

G-chip clear write Yes No No No CPU transaction should
buffer be allowed to happen until

the G-chip write buffers are
flushed.

CP read lock Yes Yes No No The I/O device should get
up-to-date data.

CP memory read (no Yes No No No Stall until hit element is
lock) retired

CP memory write No No No No

4.2.1.8 Exceptions
The G-chip responds to exceptions and errors by terminating transactions with an error
signal on either bus and/or by interrupting the CPU.

Exception

G-chip memory write
transactions with RDAL
parity errors

An uncorrectable memory
error on the read portion
of a masked write from the
QUEUE

G-chip memory reads with
un correctable memory
errors in the first quadword
of data

G-chip memory transactions
with invalid memory
addresses

G-chip I/O read transactions
that terminate in an error
on the CP bus

G-chip I/O write
transactions that terminate
in an error on the CP bus

G-chip I/O read/write
transactions that time
out on the CP bus

G-Chip Response

The G-chip interrupts the CPU by asserting HERRIRQL. The
G-chip does the write to memory, but forces an uncorrectable
memory error in that location by complementing the three
least significant check bits. The G-chip bus parity error bit is
set in MEMCSR32<11>, and the octaword address is logged in
MEMCSR33.

The G-chip asserts HERRIRQL. The G-chip uncorrectable memory
error bit is logged in MEMCSR32<10>, and the octaword address
of that location is loaded in MEMCSR33. In this case, the write is
not completed.

The G-chip terminates the transaction with error. On G-chip
quadword memory reads with uncorrectable memory errors in the
second (unrequested) quadword, the G-chip does not do a cache fill.
In all cases, the G-chip logs the G-chip uncorrectable memory error
bit in MEMCSR32<10>, and the octaword address in MEMCSR33.

The G-chip asserts ERRL (on memory reads) or HERRIRQL
(on memory writes), sets the G-chip nonexistent memory bit in
MEMCSR32<12>, and logs the octaword address in MEMCSR33.

The G-chip asserts ERRL, logs the G-chip I/O error bit in
MEMCSR32<14>, and logs the longword I/O address in
MEMCSR34.

The G-chip asserts HERRIRQL, logs the G-chip I/O error bit in
MEMCSR32<14>, and logs the longword address of the error in
MEMCSR34.

The G-chip asserts ERRL (on reads) or HERRIRQL (on writes),
and logs the nonexistent I/O bit in MEMCSR32<15>.

Exception

Q..chip interrupt vector
reads or EPR reads that
time out on the CP bus

G-chip EPR writes that
timeout on the CP bus

CP bus initiated memory
read transactions with
uncorrectable memory
errors

CP bus memory write
transactions with DAL
pari ty errors

An uncorrectable memory
error occurs on the read
portion of a masked write
from the CPQUE

Cache and Main Memory 109

G.Chip Response

The G-chip asserts ERRL, but does not log any error bits in
MEMCSR32 or addresses in in MEMCSR34.

The G-chip does not notify the CPU by asserting HERRIRQL, and
no errors are logged.

The G-chip responds by terminating the transaction with
CPERRL. Multiple-transfer read transactions (CP bus quad,
hexa, or octa) are aborted on uncorrectable errors in the earlier
transfers.

For example, if a CP bus octaword read has an unoorrectable
error in the second transfer, the third and fourth transfers are
aborted by the G-chip and the G-chip expects the master device
to terminate the transaction. If there is an uncorrectable memory
error in an unrequested longword, the Q..chip does not interrupt
the CPU.

In all the cases, the G-chip sets the CP bus memory correctable
error bit in MEMCSR32<25> or the CP bus uncorrectable error bit
in MEMCSR32<26>, and logs the octaword address of the error in
MEMCSR35.

The G-chip interrupts the CPU by asserting a HERRIRQL. The G­
chip does the write to memory, but forces an uncorrectable memory
error in that location by complementing the three least significant
check bits. The CP bus parity error bit is set in MEMCSR32<27>,
and the octaword address is logged in MEMCSR35.

The G-chip asserts HERRIRQL. The CP bus uncorrectable memory
error bit is logged in MEMCSR32<26>, and the octaword address
of that location is loaded in MEMCSR35. In this case, Q..chip does
not do the write.

If there is a correctable error on any memory read or masked memory write transaction,
the G-chip:

1. Asserts SERRIRQL.

2. Logs the CRD error bit corresponding to the port (G-chip or CP) that requested the
transaction.

3. Logs the address in the corresponding memory error address register, MEMCSR33 (if
the error occurs on a G-chip transaction) or MEMCSR35 (if the error occurs on a CP
bus transaction).

4. Writes the correct data back to main memory.

5
The Console Line, TOY Clock, and Bus System

This chapter describes the console serial line and the time-of-year (TOY) clock. The
chapter also provides an overview of the KA670 bus system.

5.1 KA670 Console Serial Line
The console serial line provides the KA670 processor with a full-duplex, RS-423 EIA,
serial line interface that is also RS-232C compatible. The only data format supported is
8-bit data with no parity and one stop bit. The four internal processor registers (lPRs)
that control the operation of the console serial line are a superset of the VAX console
serial line registers described in the VAX Architecture Reference Manual .

5.1.1 Console Registers
There are four registers associated with the console serial line unit. They are
implemented in the SSC chip and are accessed as IPRs 32 to 35. Table 5-1. lists the
registers.

Table 5-1 Console Registers

IPRNumber
Register Name Mnemonic

Decimal Hex

32 20 Console receiver control/status RXCS

33 21 Console receiver data buffer RXDB

34 22 Console transmit control/status TXCS

35 23 Console transmit data buffer TXDB

5.1.1.1 Console Receiver Control/Status Register - (IPR 32)
The console receiver controllstatus register (RXCS), internal processor register 32, is used
to control and report the status of incoming data on the console serial line. Figure 5-1
shows the format of the register. Table 5-2 lists the bit descriptions.

110

I

3
1

The Console Line, TOV Clock, and Bus System 111

8765 o
MBZ III MBZ I

RX Done -----...
RXIE

Figure 5-1 Console Receiver Control/Status Reglster- (IPR 32to 2016)

Table 5-2 Console Receiver Control/Status Register Bits

Data Bit

<31:8>

<7>

<5:0>

Name

MBZ

RX done

RXIE

Unused

Description

These bits read as Os. Writes have no effect.

Receiver done (read-only). Writes have no
effect. This bit is set when an entire character
has been received and is ready to be read from
the RXDB register. This bit is automatically
cleared when the RXDB register is read. The
bit is also cleared on power-up or the negation
of DC OK.

Receiver interrupt Enable (read/write). When
set, this bit causes an interrupt to be requested
at IPL14 with an SCB offset of F8 if RX done is
set. When cleared, interrupts from the console
receiver are disabled. This bit is cleared on
power-up or the negation of DCOK.

These bits read as Os. Writes have no effect.

5.1.1.2 Console Receiver Data Buffer-(IPR 33)
The console receiver data buffer (RXDB), internal processor register 33, is used to buffer
incoming data on the serial line and capture error information. Figure 5-2 shows the
fonnat of the register. Table 5-3 lists the bit descriptions.

I

3
1

11111 1
65432 087

MBZ I I I I I I MBZ I

ERR
OVR ERR
FRM ERR
MBZ
ReV BRK

Received Data Bits

Figure 5-2 Console Receiver Data Buffer - (IPR 33ao 2116)

o

I

112 The Console line, TOY Clock, and Bus System

Table 5-3 Console Receiver Data Buffer Bits

Data Bit Name

<31:16> MBZ

<15> ERR

<14> OVRERR

<13> FRMERR

<12> MBZ

<11> RCVBRK

<10:8> MBZ

<7:0>

Description

These bits always read as o. Writes have no
effect.

Error <read-only). Writes have no effect. This
bit is set if RBUF <14> or <13> is set. The
bit is clear if these two bits are clear. This bit
cannot generate a program interrupt. The bit is
cleared on power-up or the negation of DCOK.

Overrun error (read-only). Writes have no
effect. This bit is set if a previously received
character was not read before being overwritten
by the present character. The bit is cleared by
reading the RXDB, on power-up or the negation
of DC OK.

Framing error (read-only). Writes have no
effect. This bit is set if the present character
did not have a valid stop bit. The bit is cleared
by reading the RXDB, on power-up or the
negation of DCOK. Error conditions are
updated when the character is received,
and it remains present until the character
is read. At that point, the error bits are
cleared.

This bit always reads as o. Writes have no
effect.

Received break (read-only). Writes have no
effect. This bit is set at the end of a received
character for which the serial data input
remained in the space condition for 20 bit
times. The bit is cleared by reading the RXDB
register, power-up, or the negation of ncOK.

These bits always read a as o. Writes have no
effect.

Received data bits (read-only). Writes have
no effect. These bits contain the last received
character.

The Console Line, TOY Clock, and Bus System 113

5.1.1.3 Console Transmitter Control/Status Reglster-(IPR 34)
The console transmitter control/status register (TXCS), internal processor register 34,
is used to control and report the status of outgoing data on the console serial line.
Figure 5-3 shows the format of the register. Table 5-4 lists the bit descriptions.

3
1 8765 3210

I MBZ I I I MBZ I I I I

TX RDY t
TXIE
MAINT
MBZ
XMIT BRK

Figure 5-3 Console Transmitter Control/Status Reglster-(IPR ~o 2216)

Table 5-4 Console Transmitter Data Buffer

Data Bit

<31:8>

<7>

<5:3>

<2>

Name

MBZ

TXRDY

TXIE

MBZ

MAINT

Unused

XMITBRK

Description

These bits read as Os. Writes have no effect.

Transmitter ready (read-only). Writes have
no effect. This bit is cleared when TXDB is
loaded and set when TXDB can receive another
character. This bit is set on power-up or the
negation of DCOK.

Transmitter interrupt enable (read/write).
When set, this bit causes an interrupt request
at IPL14 with an 8CB offset of FC if TX RDY is
set. When cleared, interrupts from the console
receiver are disabled. This bit is cleared on
power-up or the negation of DCOK.

Read as Os. Writes have no effect.

Maintenance (read/w"'te). This bit is used to
facilitate a maintenance self-test. When MAINT
is set, the external seiial output is set to mark
and the serial output is used as the serial input.
This bit is cleared on power-up or the negation
of DC OR.

This bit reads as O. Writes have no effect.

Transmit break (read/write). When this bit
is set, the serial output is forced to the space
condition after the character in TXDB<7:0> is
sent. While XMIT BRK is set, the transmitter
operates normally, but the output line remains
low. Thus, software can transmit dummy
characters to time the break. This bit is cleared
on power-up.

114 The Console Line, TOY Clock, and Bus System

5.1.1.4 Console Transmitter Data Buffer-(IPR 35)
The console transmitter data buffer (TXDB), internal processor register 35, is used to
buffer outgoing data on the serial line. Figure 5-4 shows the format of the register.
Table 5-5 lists the bit descriptions.

3
1 87 0

MBZ I

Figure 5-4 Console Transmitter Data Buffer- (IPR 35to 2316)

Table &-5 Console Transmitter Data Buffer Bits

Data Bit

<31:8>

<7:0>

Name

MBZ

Transmitted data bits

5.1.2 Break Response

Description

Read as o. Writes have no effect.

Write only. These bits load the character to be
transmitted on the console serial line.

The console serial line unit recognizes a break condition that consists of 20 consecutively
received space bits. If the console detects a valid break condition, the RCV BRK bit is
set in the RXDB register. If the break was the result of 20 consecutively received space
bits, the FRM ERR bit is also set. If halts are enabled, the KA670 halts and transfers
program control to UVROM location 2004 0000].6 when the RCV BRK bit is set. ReV
BRK is cleared by reading RXDB. Another mark, followed by 20 consecutive space bits,
must be received to set ReV BRK again.

5.1.3 Baud Rate
The receive and transmit baud rates are always identical. They are controlled by the
sse configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select signals that are
received from an external 8-position switch mounted on the console module (H3604).
The KA670 firmware reads this code from boot and diagnostic register bits <6:4>,
complements and loads the code into sse configuration register bits <14:12>.

Table 5-0 lists the baud rate selections, the corresponding codes as read in the boot
and diagnostic register bits <6:4>, and the inverted code that should be loaded into sse
configuration register bits <14:12>.

The Console Line, TOY Clock, and Bus System 115

Table 5-6 Baud Rate Selection

Baud Rate BDR<6:4> SSC<l4:12>

300 111 000

600 110 001

1200 101 010

2400 100 011

4800 011 100

9600 010 101

19200 001 110

38400 000 111

5.1.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts at IPL 14. The
receiver interrupts with a vector of F8l6, while the transmitter interrupts with a vector
of FC16.

5.2 KA670 TOY Clock and Timers
The KA670 clocks include the time-of-year clock (TODR), a subset interval clock (subset
ICCS), as defined in the VAX Architecture Reference Manual, and two additional
programmable timers modeled after the VAX standard interval c1ock.

5.2.1 Time-of-Year Clock (TODR)-EPR 27

The KA670 time-of-year clock (TODR) forms an unsigned 32-bit binary counter that
is driven from a 100 Hz oscillator. The least significant bit of the clock represents a
resolution of 10 milliseconds, with less than 0.0025 percent error. The register counts
only when it contains a nonzero value. This register is implemented in the SSC chip.
Figure 5-5 shows the format.

3
1

Time of Year Since Setting

Figure 5-5 Tlme-of-Year Clock (TODR) - (EPR 27101816)

o

During a power failure, the time-of-year clock is maintained by battery backup circuitry
that interfaces through the external connector to a set of batteries mounted on the CPU
console module. The clock remains valid for greater than 162 hours when using the
NiCad battery pack (3 batteries in series) mounted on the 110 distribution insert panel .

The SSC configuration register contains a battery low (BLO) bit. If this bit is set after
initialization, the TODR is cleared remains at 0 until software writes a nonzero value
into it.

NOTE
After writing a nonzero value into the TODK, software should clear the BLO bit
by writing a 1 to it.

116 The Console Line. TOY Clock. and Bus System

5.2.2 Interval Timer {ICCS)-EPR 24
The KA670 interval timer (ICeS), internal processor register 24, is implemented
according to the VAX Architecture Reference Manual. The interval clock controVstatus
(ICeS) register is implemented as the standard subset of the standard VAX Ices in the
CPU chip. NICR and ICR are not implemented. Figure 5-6 shows the format or the
ICCS register. Table 5-7 lists the bit descriptions.

3
1

MBZ

Figure 5-6 Interval Timer (ICCS) - (EPR 2~o 1816)

Table ~7 Interval Timer Bits

Data Bit Name

<31:7> MBZ

IE

<5:0> MBZ

765 o

Description

Read as Os. Must be written as
Os.

Interrupt enable (read/write).
This bit enables and disables the
interval timer interrupts. When
the bit is set, an interval timer
interrupt is requested every 10
msec, with an error of less than
0.01 percent. When the bit is
clear, interval timer interrupts
are disabled. This bit is cleared
on power-up.

Read as Os. Must be written as
Os.

Interval timer requests are posted at IPL 16 with a vector of CO. The interval timer is
the highest priority device at this IPL.

5.2.3 Programmable Timers
The KA670 features two programmable timers. Although modeled after the VAX
standard interval clock, the timers are accessed as I/O space registers rather than as
internal processor registers. Also, an added control bit stops the timer upon overflow. If
so enabled, the timers will interrupt at IPL 14 upon overflow. The interrupt vectors are
programmable, and are set to 78 and 7C by the firmware.

Each timer is composed of four registers:

Timer n control register
Timer n interval register
Timer n next interval register
Timer n interrupt vector register

The Console Line, TOY Clock, and Bus System 117

n represents the timer number (0 or 1).

5.2.3.1 Timer Control Registers (TCRO and TCR1)
The KA670 has two timer control registers-one for controlling timer 0 (TCRO), and one
for controlling timer 1 (TCR1). TCRO is accessible at address 2014 010<>t6, and TCR1 is
accessible at 2014 011016' These registers are implemented in the SSC chip. Figure 5-7
shows the format. Table 5-8 lists the bit descriptions.

3 3
1 0

ERR

876 5 432 1 0

MBZ

RUN
MBZ
STP
MBZ
XFR
SGL
IE
INT

Figure 5-7 Timer Control Registers (TCRO and TCR1)

Table 5-8 Timer Control Register Bits

Date Bit

<31>

<30:8>

<7>

<4>

<1>

Name

ERR

MBZ

INT

IE

SGL

XFR

MBZ

STP

MBZ

Description

Error (read/write to clear). This bit is set whenever the timer
interval register overflows and the INT bit is already set. Thus,
the ERR bit indicates a missed overflow. Writing a 1 to this bit
clears the bit. ERR is cleared on power-up.

Read as Os. Must be written as Os.

Interrupt (read/write to clear). This bit is set whenever the
timer interval register overflows. If IE is set when INT is set,
an interrupt is posted at IPL 14. Writing a one to this bit clears
the bit. INT is cleared on power-up.

Interrupt enable (read/write). When this bit is set, the timer will
interrupt at IPL 14 when the INT bit is set. IE is cleared on
power-up.

Read/write. Setting this bit causes the timer interval register to
be incremented by 1 if the RUN bit is cleared. If the RUN bit is
set, then writes to the SGL bit are ignored. SGL is always read as
O. SGL is cleared on power-up.

Transfer (read/write). Setting this bit causes the timer next
interval register to be copied into the timer interval register. XFR
is always read as O. XFR is cleared on power-up.

Read as Os. Must be written as Os.

Stop (read/write). This bit determines whether the timer stops
after an overflow, when the RUN bit is set. If the STP bit is set at
overflow, the RUN bit is cleared by the hardware at overflow and
counting stops. STP is cleared on power-up.

Read as Os. Must be written as Os.

118 The Console Une, TOY Clock, and Bus System

Table s-a (Cont.) TImer Control Register Bits

Date Bit Name Description

RUN Run (read/write). When set, the timer interval register is
incremented once every microsecond. The !NT bit is set when
the timer overflows. If the STP bit is set at overflow, the RUN bit
is cleared by the hardware at overflow and counting stops. When
the RUN bit is clear, the timer interval register is not incremented
automatically. RUN is cleared on power-up.

5.2.3.2 Timer Interval Registers (TIRO and TIR1)
The KA670 has two timer interval registers-one for timer 0 (TIRO), and one for timer 1
(TIR1). TIRO is accessible at address 2014 010416, and TIR1 is accessible at 2014011416.

The timer interval register is a read-only register containing the interval count. When
the RUN bit is 0, writing a 1 increments the register. When the RUN bit is 1, the register
is incremented once every microsecond.

When the counter overflows, the INT bit is set; an interrupt is posted at IPL14 if the
IE bit is set. Then, if the RUN and STP bits are both set, the RUN bit is cleared and
counting stops. Otherwise, the counter is reloaded. The maximum delay that can be
specified is approximately 1.2 hours. This register is cleared on power-up. Figure 5-8
shows the format of the registers.

3
1

Timer Interval Register

Figure 5-8 Timer Interval Registers (TIRO and TIR1)

5.2.3.3 Timer Next Interval Registers (TNIRO and TNIR1)

o

The KA670 has two timer next interval registers-one for timer 0 (TNIRO), and one for
timer one (TNIRl). TNIRO is accessible at address 2014 010~6' and TNIR1 is accessible
at 2014 OU816. These registers are implemented in the SSC chip; Figure 5-9 shows the
format of the registers.

These read/write registers contain the value written into the timer interval register after
overflow or in response to a 1 written to the XFR hit. The timer next interval registers
are cleared on power-up.

3
1

Timer Next Interval Register

Figure 5-9 TImer Next Interval Registers (TNIRO and TNIR1)

5.2.3.4 TImer Interrupt Vector Registers (TIVRO and TIVR1)

o

The KA670 has two timer interrupt vector registers-one for timer 0 (TIVRO), and one for
timer 1 (TIVR1). TIVRO is accessible at address 2014 01OC16, and TIVR1 is accessible at
20140UC16' These registers are implemented in the SSC chip. The resident firmware
sets TIVRO to 7816 and TIVR1 to 7C16' Figure 5-10 shows the format.

The Console Une, TOY Clock, and Bus System 119

These read/write register contain the timer's interrupt vector. Bits <31:10> and <1:0> are
read as 0 and must be written as O. When TCRn<6> (IE) and TCRn<7> (INT) transition
to 1, an interrupt is posted at IPL 14. When a timer's interrupt is acknowledged, the
content of the interrupt vector register is passed to the CPU, and the INT bit is cleared.
Interrupt requests can also be cleared by clearing either the IE or INT bit. The timer
interrupt vector registers are cleared on power-up.

3
1

MBZ

10 9 2 1 0

Interrupt Vector I MBZ I

Figure 5-10 Timer Interrupt Vector Registers (TIVRO and TIVR1)

NOTE
Note that both timers interrupt at the same IPL as the console serial line
unit, IPL 14. When multiple interrupts are pending, the console serial line has
priority over the timers, and timer 0 has priority over timer 1.

5.3 KA670 Bus Overview
The KA670 has three major buses:

• Data address lines (RDAL)

• Peripheral (CP)

• G-chip memory interconnect (GMI)

5.3.1 RDAL Bus

The RDAL bus connects the CPU, FPA, and backup cache chip to the memory controller.
The KA670 supports the following components on the RDAL bus:

• Four of the five core chips (plus memory controller):

CPU chip (P-chip)

Clock chip (CLK-chip)

Floating point accelerator chip (F-chip)

Backup cache controller chip (C-chip)

Memory controller chip (G-chip)

The KA670 does not support the following components on the RDAL bus:

• System support chip (SSC)

• Any other peripheral components

120 The Console Line, TOY Clock, and Bus System

5.3.2 The CP Bus
The CP bus connects the 110 subsystem to the memory controller. The KA670 depends on
and supports the following components on the CP bus:

• Clock chip (CCLOCK DC509)

• Q22-bus adapter chip (CQBIC DC527)

• Second-generation Ethernet controller chip (SGEC DC541)

• Single host adapter chip (SHAC DC542)

• System support chip (SSC DC511)

• CP bus arbiter (ARB chip)

The KA670 does not support the following components on the CP bus:

• 90 ns memory controller (CMCTL DC357)

• 60 ns memory controller (CMCTL DC557)

• CPU chip (DC341)

• Graphics and system support chip (GSSC)

5.3.2.1 The CCLOCK Chip
This chip generates the precision MOS clock signals needed to operate the the G-chip and
other core peripheral chips in synchronization with the CP bus. In addition, the CCLOCK
chip provides two synchronizers for synchronizing asynchronous DMA functions to the
CP bus.

5.3.2.2 CP Bus Arbiter
The CP bus arbiter (ARB chip) controls which peripheral device is granted CP bus
mastership. The CP bus does not support DMA grant daisy-chaining, so the ARB chip
receives separate requests from each device and issues a separate grant to each device.
The arbiter must give the CQBIC the highest priority. Then the G-chip must be given the
second highest priority. The third highest priority goes to the SGEC. The arbiter then
uses a round-robin priority mechanism for the two SHACs.

5.3.3 GMI Bus
The GMI bus creates a path between the memory controller and main memory. There are
two chips that support the memory subsystem:

• Memory controller chip (G-chip DC561)

• G-chip memory interface chip (GMX DC562)

6
KA670 Boot and Diagnostic Facility

The KA670 boot and diagnostic facility features two registers, 256 kilobytes of erasable
programmable read only memory (EPROM) and 1 kilobyte of battery backed up RAM.
The EPROM and battery backed up RAM may be accessed with longword, word, or byte
references.

The 256 kilobytes of EPROM contain the resident firmware. If this EPROM is
reprogrammed for special applications, the new code must initialize and configure the
board, and provide halt and console emulation, as well as boot diagnostic functions.

6.1 Boot and Diagnostic Register (BDR)
The boot and diagnostic register (BDR) is a longword-wide register, located in the VAX
1/0 page at physical addresses 2008 4000 to 2008 407C1S. The register is implemented
uniquely on the KA670. The register can be accessed by KA670 software, but not by
external Q22-bus devices. The BDR allows the boot and diagnostic firmware as well as
the operating system to read various KA670 configuration bits.

The low byte and upper word of the BDR present the same information in each of the 32
successive longwords. The second byte (bits <15:8» provides a byte of the LAN station
address in each successive longword. Note that only the first 8 bytes contain the station
address. The next 24 bytes are for testing purposes. Figure 6-1 shows the format for the
boot and diagnostic register. Table 6-1 lists the bit descriptions.

3322222 2 2 221 1 1 1 111 111
10976 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 0

Undefined
Cable OK
Ether'=-Boot

1/0 Addresses: 2008 4000
longword Read-Only Access

Station_Address

2008 407C

Figure 6-1 Boot and Diagnostic Register (BDR)

BDR_CD
Must Be One
Man Test Mode
BRS-CD -
Hl T,=-ENB

121

122 KA670 Boot and Diagnostic Facility

Table 6-1 Boot and Diagnostic Register Bits

Data Bit

<30>

<29:27>

<26:24>

<23:19>

<18:16>

<15:8>

<7>

Name

Undefined

DSSIl

Undefined

DSS12

HLTENB

Description

Enable Ethernet remote boot. This bit reflects
the current setting of the enable Ethernet
remote boot jumper on the console module
(H3604). If the setting is 0, remote Ethernet
boots are enabled. If this bit is 1, remote
Ethernet boots requests are ignored.

Console module cable okay. When this bit
is 0, there is a high probability that the
console module cable is functioning correctly.
If this bit is 1, the console module cable is
either malfunctioning or plugged in the wrong
orientation. This bit is determined by sending a
signal to the console module over one path and
reading it back over another path on the cable.

Should not be read or written.

This field contains the DSSI node number for
the external DSSI bus (the bus that is accessed
through the console module).

Should not be read or written.

This field contains the DSSI node number for
the internal DSSI bus (the bus that is accessed
through the backplane connector).

The KA670's hardware LAN station address
EPROM is accessed by reading the BDR several
times at successive addresses. The encoding for
the station address is as follows:

BDR + 00: SA byte 0
BDR + 04: SA byte 1
BDR + 08: SA byte 2
BDR + OC: SA byte 3
BDR + 10: SA byte 4
BDR + 14: SA byte 5
BDR + 18: Checksum byte 0
BDR + lC: Checksum byte 1

The last 24 bytes are for testing purposes.

Halt enable (read-only). Writes have no effect.
This bit reflects the state of the BREAK
ENABLE switch on the console module (H3604).
When asserted. this signal enables the halting
of the CPU upon detection ofa console break
condition.

On a power-up. the KA670 resident firmware
reads the HLT ENB bit to decide whether to
enter the console emulation program (HLT ENB
set) or to boot the operating system (HLT ENB
clear). When a HALT instruction is executed in
kernel mode, the resident firmware reads the
HLT ENB bit to decide whether to enter the
console emulation program (HLT ENB set) or to
restart the operating system (HLT ENB clear).

KA670 Boot and Diagnostic Facility 123

Table 6-1 (Cont.) Boot and Diagnostic Register Bits

Data Bit

<6:4>

<2>

<1:0>

Name

BRSCD

Description

Baud rate select (read-only). Writes have no
effect. These three bits originate from the
console module's (H3604) baud rate select
switch. They reflect the baud rate setting, as
listed in the following table:

BDR<6:4> Baud Rate

111 300

110 600

101 1200

100 2400

011 4800

010 9600

001 19200

000 38400

Manufacturing test mode (read-only). Writes
have no effect. When set, the KA670 is in
nonnal run mode. When set (by grounding a
test point on the backplane), the KA670 is in
manufacturing test mode. In this mode, special
diagnostic test script on run.

Must be one (read-only). Writes have no effect.

Boot and diagnostic code (read-only). Writes
have no effect. This 2-bit field reflects the
setting of the power-up mode switch on the
console module (H3604). The KA670 firmware
programs use BOG_CD <1:0> to detennine the
power-up mode, as listed in the following table:

BDR<l:O> Power-Up Mode

11 Run

10 Language inquiry

01 'lest

00 Unused

6.2 Diagnostic LED Register (DLEDR)
The diagnostic LED register (DLEDR), address 2014 003Ots, is implemented in the SSC
chip. The register contains four read/write bits that control the external LED display. A
o in a bit turns on the corresponding LED. All four bits are cleared on power-up or the
negation of DCOK, to provide a power-up lamp test. Figure 6-2 shows the format of the
register. Table 6-2 lists the bit descriptions.

124 KA670 Boot and Diagnostic Facility

3
1

MBZ

110 Address: 20140030
Longword Read/Write Access

Figure 6-2 Diagnostic LED Register (DLEDR)

Table 6-2 Diagnostic LED Register Bits

Data
Bit Name Description

Read as Os. Must be written as Os.

430

I DSPL I

<31:4>

<3:0>

MBZ

DSPL Display (read/write). These four bits update an external LED display.
Writing a 0 to a bit turns on the corresponding LED. Writing a 1 to a bit
turns the LED off. The display bits are cleared (all LEDs are turned on) on
power-up or the negation of DeOK.

6.3 EPROM Memory
The KA670 has 256 kilobytes of EPROM memory for storing code for board initialization,
VAX standard console emulation, board self-tests, and boot code. EPROM memory may
be accessed through byte, word, and longword references. EPROM read accesses take 250
ns. The EPROM is organized as a 128K x 8-bit array. CP bus parity is neither checked
nor generated on EPROM references.

NOTE
The EPROM size must be set in the sse configuration register before
attempting to reference outside the first 8-kilobyte block of the local EPROM
space. (2004 0000 to 2004 IFFF1S)

6.3.1 EPROM Address Space

The entire 256-kilobyte boot and diagnostic EPROM can only be read in the 256-kilobyte
halt protect EPROM space (2004 0000 to 2007 FFFF1S).

NOTE
There is no concept of halt unprotect space on the KA670 (as used on previous
Q22·bus MicroVAX systems).

Any I-stream read from the EPROM space places the KA670 in halt mode. The Q22-
bus SRUN signal is deasserted, which turns off the front panel RUN light. The CPU is
protected from further halts.

Writes and D-stream reads to any address space have no effect on the run modeJhalt
mode status.

NOTE
The KA670 logic that controls halt mode/run mode cannot detect I-stream
read references that hit the primary cache. Therefore, halt modelrun mode
is unaffected by these cache hits.

KA670 Boot and Diagnostic Facility 125

6.3.2 KA670 Resident Firmware Operation
The KA670 CPU module's 256-kilobyte EPROM contains the resident firmware. The
firmware can be entered by transferring program control to location 2004000016.

Section 9.3.1 lists the various halt conditions that cause the KA670 to transfer program
control to location 2004 000016.

When running, the resident firmware provides the services expected of a VAX-ll console
system. In particular, the following services are available:

• Automatic restart or bootstrap following processor halts or initial power-up

• An interactive command language that allows the user to examine and alter the state
of the processor

• Diagnostic tests run at power-up to check out the CPU, the memory system, and the
Q22-bus map

• Support of video or hardcopy terminals as the console terminal

6.3.2.1 Power-Up Modes
The boot and diagnostic EPROM programs use boot and diagnostic code <1:0>
(Section 9.9) to determine the power-up modes listed in Table 6-3.

Table 6-3 Power-Up Modes

Code Power-Up Mode

11 Run (factory setting)

01 Language inquiry

10 Test

00 Unused.

Description

If the console terminal supports the DEC multinational
character set, the user is prompted for a language if the
time-of-year clock battery backup has failed, or SSC RAM
is corrupted or unintialized (first power-up). Full startup
diagnostics are run.

If the console terminal supports the DEc multinational
character set, the user is prompted for a language on
every power-up and restart. Full startup diagnostics are
run.

EPROM programs run wraparound serial line unit (SLU)
tests.

6.4 Battery Backed-Up RAM
The KA670 contains 1 kilobyte of battery backed-up static RAM (found in the SSe), for
use as a console scratchpad. This RAM supports byte, word, and longword references.
Read operations take 700 ns to complete. Write operations require 600 ns. The RAM is
organized as a 256 x 32-bit (one-Iongword) array. The array appears in a I-kilobyte block
of the VAX 110 page, at addresses 2014 0400 to 2014 07FF16. This array is not protected
by parity; CP bus parity is neither checked nor generated on reads or writes to this RAM.

126 KA670 Boot and Diagnostic Facility

6.5 KA670 Initialization
The VAX architecture defines three kinds of hardware initialization:

• Power-up initialization

• I/O bus initialization

• Processor initialization

6.5.1 Power-Up Initialization

Power-up initialization is the result of restoring power. Initialization includes a hardware
reset, processor initialization, I/O bus initialization, and the initialization of several
registers defined in the VAX Architecture Reference Manual.

6.5.2 Hardware Reset

A KA670 hardware reset occurs on power-up or the negation of DCOK A hardware
reset initiates the hardware halt procedure (Section 3.1.6.6) with a halt code of 03. The
hardware reset also initializes some IPRs and most I/O page registers to a known state.
Those IPRs affected by a hardware reset are noted in Section 3.1.1.3. The description for
each I/O space register describes the effect of a hardware reset on that register.

6.5.3 110 Bus Initialization

An I/O bus initialization occurs on power-up, the negation of DCOK, or as the result of
an MTPR to IPR 55 (IORESET) or console UNJAM command. An I/O bus initialization
clears the interprocessor communication (IPCR) and DMA system error (DSER) registers.
It also causes the Q22-bus interface to acquire both the CP bus and Q22-bus, then assert
the Q22-bus BINIT signal. The assertion of BINIT on the Q22-bus does not effect the
KA670.

6.5.3.1 I/O Bus Reset Register (IPR 55)
The I/O bus reset register (lORESET), IPR 5510 is implemented in the SSC chip. An
MTPR of any value to the IORESET register causes an I/O bus initialization. Note that
the second generation Ethernet controller chip (SGEC) and single host adapter chip
(SHAC) are not reset by MTPRs to IPR 55.

6.5.4 Processor Initialization

A processor initialization occurs

• On power-up

• On the negation of DeOK

• As the result of a console INITIALIZE command

• After a halt caused by an error condition

In addition to initializing those registers defined in the VAX Architecture Reference
Manual, the KA670 firmware must also configure main memory, the local I/O page, and
the Q22-bus map during a processor initialization.

KA670 Boot and Diagnostic Facility 127

6.5.4.1 Configuring the Local 1/0 Page
The following registers control the configuration of the KA670 local I/O page. They
are unique to CPU designs that use the system support chip (SSC), and they must be
configured by the firmware during a processor initialization.

• SSC base address register

• BDR address decode match register

• BDR address decode mask register

• SSC configuration register

• CP bus timeout register

6.5.5 sse Base Address Register (SSCBR)

The SSC base address register, address 2014 000016, controls the base addresses of a
2-kilobyte block of the local 110 space that includes the the following:

• Battery backed-up RAM

• Registers for the programmable timers

• BDR address decode match and mask registers

• Diagnostic LED register

• CP bus timeout register

• A set of diagnostic registers that allow several EPRs to be accessed using 110 page
addresses.

This read/write register is set to 2014 000016 on power-up or the negation of DCOK
Bits SSCBR<31:30,10:0> are unused. They read as Os, and must be written as Os.
SSCBR<29> is read as 1 and must be written as l. This register should also be set
to 20140000 16 by firmware during processor initialization. Figure 6-3 shows the format
of the SSCBR register.

3 3 2 2
1 098

Base Address Bits <28: 11 >

Figure 6-3 SSC Base Address Register (SSCBR)

1 1
1 0

6.5.6 BOR Address Decode Match Register (BDMTR)

o

MBZ

The BDR address decode match register, address 2014 014~6, controls the base address
of the BDR. This read/write register is cleared on power-up or the negation of DCOK
BDMTR<31:30,1:0> are unused. They read as Os, and must be written as Os. This
register should be set to 2008 400016 by firmware during processor initialization.
Figure 6-4 shows the format of the BDMTR register.

128 KA670 Boot and Diagnostic Facility

332
109

IMBzl Base Address Match Bits <29:2>

Figure 6-4 BoR Address Decode Match Register (BoMTR)

6.5.7 BDR Address Decode Mask Register (BDMKR)

210

The BDR address decode mask register, address 2014 0144 16, controls the range of
addresses that the BDR responds to. An example is the number of copies of the BDR that
appear in the physical address space.

This read/write register is cleared on power-up or the negation of DeOK Bits
BDMKR<31:30,1:0> are unused. They read as Os, and must be written as Os. This
register should should be set to 0000 007e 16 (32 copies of the BDR) by firmware during
processor initialization , because successive bytes of the KA670's LAN station address are
read using the BDR. Figure 6-5 shows the format of the BDMKR register.

332
109

Base Address Mask Bits <29:2>

Figure 6-5 BOR Address Decode Mask Register (BOMKR)

NOTE

210

IMBZI

The KA670 uses only one of the sse's address strobes. The other strobe's control
registers (located at 2014 013016 and 2014 013416) are reserved; they should not
be accessed, because they could cause unpredictable behavior.

6.5.8 SSC Configuration Register (SSCCR)

The sse configuration register, address 2014 001Ot6, controls the setup parameters for
the console serial line, programmable timers, EPROM, TOY clock and BDR register.
Figure EH) shows the format of the sse configuration register. Table 6-4 lists the bit
descriptions.

3 3
1 0

B
L
0

MBZ

222 2 2 2 2
8765432

2 1 1
098

1 1 1
654

I M IPL R EPROM M HALT C CT
V B LVL S SIZE B PROT T BAUD
D Z SEL P SEL Z SPACE P SEl

Figure 6-6 SSC Configuration Register (SSCCR)

1
2

MBZ

7 6 5 4 3 2 1 0

BOR
EN MBZ

KA670 Boot and Diagnostic Facility 129

Table 6-4 SSC Configuration Register Bits

Data Bit

<30:28>

<27>

<26>

<25:24>

<23>

<22:20>

<18:16>

<15>

Name

BLO

MBZ

IVD

RSP

HALT
PROT
SPACE

CTP

Description

Battery low (read/write). If the battery voltage goes below threshold
while the module is powered down, this bit is set on power-up, after
the assertion of DC OK after the assertion of POK. Once set, this bit
can only be cleared by software writing it as 1. If this bit is set, then
the TOY clock will be cleared by power-up or the negation of DCOK.

Read as Os. Must be written as Os.

Interrupt vector disable (read/write). When this bit is set, the console
serial line and programmable timers do not respond to interrupt
acknowledge cycles. IVD is cleared on power-up, the negation of
DCOK, or a processor initialization.

Read as Os. Must be written as Os.

IPL level select (read/write). These bits specify the IPL level
of interrupt acknowledge cycle that the console serial line and
programmable timers respond to. These bits must be cleared
(programmed to O~) in order for the console serial line and
programmable timers to respond to interrupt acknowledge cycles
that they generated (IPL 14). These bits are cleared on power-up, the
negation of DCOK, or a processor initialization.

ROM speed (read/write). This bit selects the EPROM access time.
This bit must be set for the KA670 EPROMs to run at maximum
speed. This bit is cleared on power-up or the negation of DCOK. The
bit must be set to 1 by a processor initialization.

EPROM address space size select (read/write). These bits control the
size of the range of addresses that the EPROM responds to. These
bits must be set to 1012 because the KA670 contains 256 Kbytes of
EPROM, yielding an address range of 256 Kbytes (2004 0000 to 2007
FFFF1S). These bits are cleared on power-up or the negation of DCOK,
yielding an address range of 8 Kbytes (2004 0000 -2004 IFFF1S).

These bits must be set to the proper value by a processor initialization.

EPROM halt protect address space size select (read/write). These bits
control the size of the halt mode address range. These bits must be
set to 1102 because the KA670's 256 Kbyte EPROM yields a halt mode
address range of 256 Kbytes (2004 0000-2007 FFFFlS). These bits
are cleared on power-up or the negation of DCOK. These bits must
be set to the proper value by a processor initialization. Note that any
instruction fetch from the EPROM puts the KA670 in halt protect
mode.

Control P enable (read/write). When this bit is set, typing E!TIIPI at
the console will halt the CPU if halts are enabled (BDR<7> set):-'when
this bit is cleared, typing I Brea~ I at the console will halt the CPU if
halts are enabled (BDR<7> set. CTP is cleared on power-up or the
negation of DCOK.

130 KA670 Boot and Diagnostic Facility

Table 6-4 (Cont.) sse COnfiguration Register Bits

Data Bit

<14:12>

<11:7>

<6:4>

<3:0>

NOTE

Name

CT
BAUO
SELECT

MBZ

BOREN

MBZ

Description

Console terminal baud rate select (read/write). These bits select the
baud rate of the console tenninal serial line. They are cleared on
power-up or the negation of OCOK. They should be loaded from the
complement of BOR<6:4> by the processor initialization code. The
codes correspond to selected baud rates, as listed in the following
table:

SSCCR<l4:12> Baud Rate

000 300

001 600

010 1200

011 2400

100 4800

101 9600

110 19200

111 38400

Read as O. Must be written as O.

BOR enable (read/write). These bits enable the BOR. 'lb enable the
BOR, these bits must be set to 1112 by a processor initialization.They
are cleared on power-up or the negation of OCOK.

Read as O. Must be written as O.

The sse baud clock runs about 1.7 percent fast, within the VAX standard
mandated accuracy. This is due to the accuracy of the crystal oscillator.

6.6 CP Bus Timeout Control Register (CBTCR)
The CP bus timeout register, address 2014 002Ots, controls the amount of time allowed
to elapse before a CP bus cycle is aborted by the SSC. Note that the G-chip also has a
CP bus timeout mechanism that will prevent most bus-initiated CP bus transactions to
nonexistent I/O or EPR addresses, or to interrupt vectors, from hanging the bus.

The G-chip's timer uses a NOR of all the CP bus DMA devices "not me" as an indicator
of a pending NXM address. In an extreme case of a broken CP bus DMA device that
says it will respond (does not assert the CP bus "not mej but does not respond, the
CBTCR overflows; this causes a machine check, which prevents the system from hanging.
Figure 6-7 shows the CBTCR format. Table 6-5 lists the bit descriptions.

3 3
1 0

I~
MBZ

RWT
BTO

2 2
4 3

KA670 Boot and Diagnostic Facility 131

o

Bus Timeout Interval

Figure 6-7 CP Bus Timeout Control Register (CBTCR)

Table 6-5 CP Bus TImeout Control Register Bits

Data Bit

<31>

<29:22>

<23:0>

Name

BTO

RWT

MBZ

Bus timeout
interval

Description

CP bus timeout (read/write to clear). This bit is set when the bus
timeout interval set in bits <23:0> has expired during any CP bus
cycle. BTO is cleared by writing a 1, by a power-up, or by the
negation of DCOK.

CP bus read/write timeout (read/write to clear). This bit is set
when the bus timeout interval set in bits <23:0> has expired
during a CPU or DMA read or write cycle on the CP bus. This
bit is cleared by writing a 1, by a power-up, or by the negation of
DCOK.

Read as Os. Must be written as Os.

Read/write. These bits are used to program the desired timeout
period. The available range of 1 to FFFFFF16 corresponds to
a selectable timeout range of 1 microsecond to 16.77 seconds,
in I-microsecond increments. Writing a 0 to this field disables
the bus timeout function. The BTO bit is used to signify that a
bus timeout has occurred. This field is cleared on power-up or
the negation of DCOK. This register should be loaded with 0000
400016 on a processor initialization, for a timeout value of 15
milliseconds.

7
Interface Subsystems

The KA670 module has interfaces for the Q22-bus, the Ethernet, and a mass storage bus.
This chapter describes the three interfaces.

7.1 KA670 Q22-bus Interface
The KA670 includes a Q22-bus interface implemented with a single VLSI chip called the
CQBIC. The chip contains a CP bus to Q22-bus interface that supports the following:

• A programmable mapping function (scatter-gather map) for translating 22-bit, Q22-
bus addresses into 29-bit CP addresses. This function allows any page in the Q22-bus
memory space to be mapped to any page in main memory.

• A direct mapping function for translating 29-bit CP addresses in the local Q22-bus
address space and local Q22-bus 110 page into 22-bit Q22-bus addresses.

• Masked and unmasked longword reads and writes from the CPU to the Q22-bus
memory and 110 space, and to the Q22-bus interface registers. Longword reads and
writes of the local Q22-bus memory space are buffered and translated into 2-word,
block mode transfers on the Q22-bus. Longword reads and writes of the local Q22-bus
110 space are buffered and translated into two single-word transfers on the Q22-bus.

• Up to i6-word, block mode writes from the Q22-bus to main memory. These words
are buffered, then transferred to main memory by using two asynchronous DMA
octaword transfers. For block mode writes of less than 16 words, the words are
buffered and transferred to main memory by using the most efficient combination
of octaword, quadword, and longword, asynchronous DMA transfers. The maximum
write bandwidth for block mode references is 3.3 Mbytesls.

Block mode reads of main memory from the Q22-bus cause the Q22-bus interface to
perform an asynchronous DMA quadword read of main memory and buffer all four
words. So, on block mode reads, the next three words of the block mode read can
be delivered without any additional CP cycles. The maximum read bandwidth for
Q22-bus block mode references is 2.4 Mbytes/s. Q22-bus burst mode DMA transfers
result in single-word reads and writes of main memory.

• Transfers from the CPU to the local Q22-bus memory space that result in the Q22-
bus map translating the address back into main memory (local-miss, global-hit
transactions).

The Q22-bus interface contains several registers for Q22-bus control and configuration,
interprocessor communication, and error reporting.

The interface also contains Q22-bus interrupt arbitration logic that recognizes Q22-bus
interrupt requests BR7 to BR4 and translates them into CPU interrupts at levels 17 to·
14.

132

Interface Subsystems 133

The Q22-bus interface detects Q22-bus NOSACK timeouts, Q22-bus interrupt
acknowledge timeouts, Q22-bus nonexistent memory timeouts, main memory errors
on DMA accesses from the Q22-bus, ar·d Q22-bus device parity errors.

7.1.1 Q22-bus to Main Memory Address Translation

On DMA references to main memory, the 22-bit Q22-bus address must be translated into
a 29-bit main memory address (Figure 7-1.) This translation process is performed by the
Q22-bus interface, using the Q22-bus map. This map contains 8192 mapping registers,
one for each page in the Q22-bus memory space. Each of these registers can map a
page (512 bytes) of the Q22-bus memory address space into any of the 1024K pages in
main memory. Since local I/O space addresses cannot be mapped to Q22-bus pages, the
local I/O page is unaccessible to devices on the Q22-bus. Figure 7-1 shows how Q22-bus
addresses are translated into main memory addresses.

L.Jvl
3
1

I

2
1

Q22=bus Address

Extract to select
map register

Mapping Register

1
9

2
8

9 8

0

0

9 8

Physical Address of Main Memory

Figure 7-1 Q22·bus Address Translation

o

0

At power-up, the Q22-bus map registers (including the valid bits) are undefined. External
access to main memory is disabled as long as the interprocessor communication register's
LM EAE bit is cleared. The Q22-bus interface monitors each Q22-bus cycle and responds
if the following three conditions are met: .

1. The interprocessor communication register's LM EAE bit is set.

2. The valid bit of the selected mapping register is sel

3. During read operations, the mapping register must map into existent main memory,
or a Q22-bus timeout occurs. (During write operations, the Q22-bus interface returns
Q22-bus BRPLY before checking for existent local memory. The response depends
only on conditions 1 and 2 above). If the location pointed to by a valid MAP entry
does not exist, MEMERR on the CP bus is asserted to cause an interrupt at IPL ID.

134 Interface Subsystems

NOTE
In the case of local-miss, global-hit transactions, the state of the LM EAE bit
is ignored. A local-miss, global-hit is defined as follows. A CPU access of Q22-
memory is mapped to main memory (global hit). HoweVer, the map entry for the
Q22 address is not stored in the CQBIC's map cache (local miss). As a result, the
map entry is read in memory before the original access can complete.

If the map cache does not contain the needed Q22-bus map register, then the Q22-
bus interface performs an asynchronous DMA read of the Q22-bus map register before
proceeding with the Q22-bus bus DMA transfer.

7.1.1.1 Q22·bus Map Registers (QMR)
The Q22-bus map contains 8192 registers that control the mapping of Q22-bus addresses
into main memory. Each register maps a page of the Q22-bus memory space into a page
of main memory. These registers are implemented in a 32-kilobyte block of main memory,
but are accessed through the CQBIC chip by using a block of addresses in the 110 page.

The local 110 space address of each register was chosen so that register address bits
<14:2> are identical to Q22-bus address bits <21:9> of the Q22-bus page that the register
maps. Table 7-1 lists the register addresses.

Table 7-1 Q22·bus Map Register Addresses

Register AddJ'e88

20088000

20088004

20088008

2008800C

20088010

20088014

20088018

2008801C

2008 FFFO

2008 FFF4

2008 FFF8

2008FFFC

Q22-bus AddJ'esses

Mapped (Hex)

000000 to 00 01FF

00 0200 to 00 03FF

00 0400 to 00 05FF

00 0600 to 00 07FF

00 0800 to 00 09FF

00 OAoo to 00 OBFF

00 OCOO to 00 ODFF

00 OEOO to 00 OFFF

3F FSOO to 3F F9FF

3F FAOO to 3F FBFF

3F FCOO to SF FDFF

3F FAOO to SF FFFF

Mapped (Octal)

00 000 000 to 00 000 777

00 001 000 to 00 001 777

00 002 000 to 00 002 777

00 003 000 to 00 003 777

00 004 000 to 00 004 777

00 005 000 to 00 005 777

00 006 000 to 00 006 777

00 007 000 to 00 007 777

17774000 to 17774777

17775000 to 17 775 777

17776000 to 17 776 777

17776000 to 17 777 777

Figure 7-2 shows the format of the Q22-bus map registers (QMRs). Table 7-2 lists the
bit descriptions.

3 3
1 0

MBZ

2 1
o 9

Interface Subsystems 135

o
A28 to A9

Figure 7-2 Q22·bus Map Register Format

Table 7-2 Q22·bus Map Register Bits

Data Bit

<31>

<30:20>

<19:0:>

Name

v

Unused

A28 to A9

Description

Valid (read/write). When a Q22-bus map register is
selected by bits <21:9> of the Q22-bus address, the valid bit
determines whether mapping is enabled for that Q22-bus
page. If the valid bit is set, the mapping is enabled; Q22-
bus addresses within the page controlled by the register
are mapped into the main memoty page determined by bits
<28:9>.

If the valid bit is clear, the mapping register is disabled; the
Q22-bus interface does not respond to addresses within that
page. This bit is undefined on power-up or the negation of
DCOK.

These bits always read as 0 and must be written as o.
Address bits <28:9> (read/write). When a Q22-bus map
register is selected by a Q22-bus address, and that
register's valid bit is set, then these 20 bits are used as
main memory address bits. Q22-bus address bits <8:0;:. are
used as main memory address bits <8:0>. These bits are
undefined on power-up or the negation of DCOK.

7.1.1.2 Accessing the Q22·bus Map Registers
Although the CPU accesses the Q22-bus map registers by using aligned longword
references to the local I/O page (addresses 2008 8000 to 2008 FFFC IS), the map actually
resides in a 32-kilobyte block of main memory. The starting address of this block is
controlled by the contents of the Q22-bus map base register. The Q22-bus interface also
contains a 16-entry, fully associative, Q22-bus map cache to reduce the number of main
memory accesses required for address translation.

NOTE
The system software must protect the pages of memory that contain the Q22-bus
map from direct accesses that will corrupt the map or cause the entries in the
Q22-bus map cache to become stale. Either of these conditions will make the
mapping function work incorrectly.

When the CPU accesses the Q22-bus map through the local I/O page addresses, the
Q22-bus interface reads or writes the map in main memory. The Q22-bus interface does
not have to gain Q22-bus mastership when accessing the Q22-bus map. Because these
addresses are in the local I/O space, they are not accessible from the Q22-bus.

On a Q22-bus map read by the CPU, the Q22-bus interface decodes the local I/O
space address (2008 8000 to 2008 FFFC16). If the register is in the Q22-bus map
cache, the Q22-bus interface internally resolves any conflicts between CPU and Q22-
bus transactions (if both are trying to access the Q22-bus map cache entries at the same
time), then returns the data.

136 Interface Subsystems

If the map register is not in the map cache, the Q22-bus interface will force the CPU to
retry, acquire the CP bus, and perform an asynchronous DMA read of the map register.
When the read is complete, the CPU is provided with the data when its read operation is
retried. A map read by the CPU does not cause the register that was read to be stored in
the map cache.

On a Q22-bus map write by the CPU, the Q22-bus interface first latches the data.
On the completion of the CPU write, the interface acquires the CP bus and performs
an asynchronous DMA write to the map register. If the map register is in the Q22-bus
map cache, then the CAM valid bit for that entry is cleared to prevent the entry from
becoming stale. A Q22-bus map write by the CPU does not update any cached copies of
the Q22-bus map register.

7.1.1.3 The 022-bus Map cache
To speed up the process of translating Q22-bus addresses to main memory addresses, the
Q22-bus interface uses a fully associative, 16-entry, Q22-bus map cache implemented in
the CQBIC chip.

The cached copy of the Q22-bus map register is used for the address translation process.
If the required map entry for a Q22-bus address (as determined by bits <21:9> of the
Q22-bus address) is not in the map cache, then the Q22-bus interface uses the contents
of the map base register to access main memory and retrieve the required entry. After
obtaining the entry from main memory, the valid bit is checked. If it is set, the entry is
stored in the cache and the Q22-bus cycle continues.

Figure 7-3 shows the format of a Q22-bus map cache entry. Table 7-3 lists the bit
descriptions.

3 3
3 2

levi Q22-bus ADR<21 :9>

2 1
o 9

Figure 7-3 022-bus Map cache Entry Fonnat

o
A28 to A9

Interface Subsystems 137

Table 7-3 Q22·bus Map cache Entry Bit Description

Data Bit

<33>

<32:20>

<19:0>

Name

CAMValid

QBUSADR

Address bits
A28 toA9

Description

When a mapping register is selected by a Q22-bus address, the
CAMValid bit determines whether the cached copy of the mapping
register for that address is valid. If the CAMValid bit is set, the
mapping register is enabled, and addresses within that page can
be mapped.

If the CAMValid bit is clear, the Q22-bus interface must read
the map in local memory to determine if the mapping register is
enabled. This bit is cleared

• On power-up

• By the negation of DCOK

• By setting the Q22-bus map cache invalidate all (QMCIA) bit
in the interprocessor communication register

• On writes to IPR 55 (IORESET)

• By a write to the Q22-bus map base register

• By writing to the QMR being cached

These bits contain the Q22-bus address bits <21:9> of the page
that this entry maps. This is the content-addressable field of the
16-entry cache for determining if the map register for a particular
Q22-bus address is in the map cache. These bits are undefined on
power-up.

If a mapping register's CAMValid bit is set and the register is
selected by a Q22-bus address, then these 20 bits are used as main
memory address bits 28 to 9. Q22-bus address bits 8 to 0 are used
as local memory address bits 8 to o. These bits are undefined on
power-up.

7.1.2 CP to Q22-bus Address Translation
CP bus addresses within the Local Q22-bus I/O space, addresses 2000 0000 to 2000
1FFF16, are translated into Q22-bus I/O space addresses by using bits <12:0> of the CP
bus address as bits <12:0> of the Q22-bus address and asserting BBS7. Q22-bus address
bits <21:13> are driven as Os.

CP bus addresses within the local Q22-bus memory space, addresses 3000 0000 to 303F
FFFF 16, are translated into Q22-bus memory space addresses by using bits <21:0> of the
CP bus address as bits <21:0> of the Q22-bus address.

7.1.3 Interprocessor Communications Facility
The KA670 can only be configured as a Q22-bus arbiter.

The KA670 interprocessor communication facility allows other processors on the Q22-
bus to request program interrupts from the KA670 without using the Q22-bus interrupt
request lines. It also controls external access to local memory (through the Q22-bus map).

138 Interface Subsystems

7.1.3.1 Interprocessor Communication Register (IPCR)
The interprocessor communication register at address 2000 1F4016 is a 16-bit register
that resides in the Q22-bus YO page address space. This register can be accessed by
any device that can become Q22-bus master (including the KA670 itself). The IPCR
is implemented in the CQBIC chip and is byte-accessible, which means a write byte
instruction can write to either the low or high byte without affecting the other byte.
Figure 7-4 shows the format of the IPCR register. Table 7-4 lists the bit descriptions.

DMAOME
OMCIA
AUX HLT
DBIIE
LM EAE
DBIRO

-

1 1 1 1
543 2

MBZ

1
09876 5 432 1 0

M
B MBZ
Z

Figure 7-4 Interprocessor Communication Register (IPCR)

Table 7-4 Interprocessor Communication Register Bits

Data Bit

<15>

<14>

<13:09>

<8>

<7>

Name

DMAQME

QMCIA

Unused

AUXHLT

Unused

Descriptio.

DMA Q22·bus address space memory en-or (read/write to clear).
This bit indicates that an error occurred while a Q22-bus device
was attempting to read main memory. The bit is set if DMA
system error register bit DSER<4> (main memory error) is set, or
the CP timer expires. The main memory error bit indicates that
an uncorrectable error occurred when an external device (or CPU)
was accessing the KA670 local memory. The CP timer expiring
indicates that the memory controller did not respond when the
Q22-bus interface initiated a DMA transfer.

This bit is cleared by writing a 1 to it, on power-up, by the
negation of DCOK, by writes to IPR 55 (lORESET), and whenever
DSER<4> is cleared.

Q22-bus map cache invalidate all (write-only). Writing a 1 to this
bit clears the CAMValidbits in the cached copy of the map. This
bit always reads as O. Writing a 0 has no effect.

Read as Os. Must be written as Os.

Auxiliary halt (read-only). When set, this bit has no effect on the
operation oftheonboard CPU. This bit is cleared on power-up. by
the negation of neOK, and by writes to IPR 55 (lORESET).

NOTE
This bit should never be set, because the proce880r does not
support auiliary mode.

Read as O. Must be written as O.

Interface Subsystems 139

Table 7-4 (Cont.) Interprocessor Communication Register Bits

nata Bit

<6>

<5>

<4:1>

<0>

Name

DBI IE

LMEAE

Unused

DBIRQ

Description

Doorbell interrupt enable. Read/write when the KA670 is Q22-bus
master. Read-only when another device is Q22-bus master. When
set, this bit enables interprocessor doorbell interrupt requests
through IPCR<O>. This bit is cleared on power-up, the negation of
DCOK, or writes to IPR 55 (IORESET).

Local memory external access enable, Read/write when the KA670
is Q22-bus master. Read-only when another device is Q22-bus
master. When set, this bit enables external access to local memory
(using the Q22-bus map). This bit is cleared on power-up or the
negation of DCOK.

Read as Os. Must be written as Os.

Doorbell interrupt request (read/write). If IPCR<6> (DBl IE) is
set, setting this bit generates a doorbell interrupt request. If
IPCR<6> is clear, setting this bit has no effect. Clearing this
bit has no effect. DBI RQ is cleared when the CPU grants the
doorbell interrupt request. DBI RQ is held clear whenever DBI IE
is clear. This bit is cleared on power-up or the negation of DCOK.

7.1.3.2 Interprocessor Doorbell Interrupts
If the interprocessor communication register DBI IE bit is set, any Q22-bus master can
request an interprocessor doorbell interrupt by writing a 1 into IPCR bit <0>.

The interrupt vector is 20416, and the interrupt priority is 1416. This IPL is the same
as BR4 on the Q22-bus. The interprocessor doorbell is the third highest priority IPL'14
device, directly after the console serial line unit and the programmable timers.

NOTE
Following an interpl'Ocessor doorbell interrupt, the KA670 CPU sets the IPL to
14. The IPL is set to 17 for external Q22-bus BR4 interrupts.

7.1.4 Q22-bus Interrupt Handling
The KA670 responds to interrupt requests BR7 to BR4 with the standard Q22-bus
interrupt acknowledge protocol (DIN followed by IAK). The console serial line unit,
the programmable timers, and the interprocessor doorbell request will interrupt at IPL
14. They have priority over all Q22-bus BR4 interrupt requests. After responding to any
interrupt request BR7 to BR4, the CPU sets the processor priority to IPL 17. All BR7 to
BR4 interrupt requests are disabled, unless software lowers the interrupt priority level.

Interrupt requests from the KA670 interval timer are handled directly by the CPU.
Interval timer interrupt requests have a higher priority than BR6 interrupt reque.sts.
After responding to an interval timer interrupt request, the CPU sets the processor
priority to IPL 16. Thus, BR7 interrupt requests remain enabled.

7.1.5 Configuring the Q22-bus Map
The KA670 implements the Q22-bus map in an 8K longword (32-kilobyte) block of main
memory. This map must be configured by the KA670 firmware during a processor
initialization. The map is configured by writing the base address of the uppermost
32-kilobyte block of good main memory into the Q22-bus map base register. The baEoe of
this map must be located on a 32-kilobyte boundary. .

140 Interface Subsystems

NOTE
This 82·kilobyte block of main memory must be protected by the system
software. The only access to the map should be through local 110 page addresses
2008 8000 to 2008 FFFC 16. '

7.1.5.1 Q22-bus Map Base Address Register (QBMBR)
The Q22-bus map base address register. address 2008 0010 16. controls the main memory
location of the 32-kilobyte block of Q22-bus map registers. This read/write register is
accessible by the CPU on a 10ngword boundary only. Bits <31:29.14:0> are unused and
should be written as O;they will return 0 when read. Figure 7-5 shows the format of the
register.

A write to the map base register will flush the Q22-bus map cache by clearing the
CAMValid bits in all entries.

The contents of this register are undefined on power-up or the negation of DCOK The
contents are not affected by the assertion of BINIT on the Q22-bus.

322
198

IMBZI Map Base

1 1
5 4

Figure 7-5 Q22-bus Map Base Address Register (QBMBR)

7.1.6 System Configuration Register (SCR)

o
MBZ

The system configuration register. address 2008 0000 16. contains the processor number
that determines the address of the IPCR register. a BHALT enable bit. a power okay flag
and an auxiliary flag. Figure 7-6 shows the format of the register. Table 7-5 lists the bit
descriptions.

The system configuration register (SCR) is longword. word. and byte-accessible.
Programmable option fields are cleared on power-up or the negation of DCOK when
SCR<7> is clear.

3 111 111
1 543 2 1 098 7 6 5 4 3 2 1 0

I MBZ I I I I I I I MBZ I I MBZ I I I

POK
BHALT ENB

Must Be Zero
Page Prefetch Disable

Must Be Zero
AUX

Action On DCOK Negation
Doorbell Offset Select

Must Be Zero

Figure 7-6 System Configuration Register (SCR)

Interface Subsystems 141

Table 7-5 System Configuration Register Bits

Data Bit

<31:16>

<15>

<14>

<13>

<12>

<11>

<10>

<9:8>

<7>

<6:4>

<3:1>

<0>

Name

Unused

POK

BHALTEN

Unused

Page Prefetch
Disable

Unused

AUX

Unused

Action on
DCOK
Negation

Unused

Reserved

Unused

Description

Read as o. Must be written as o.
Power okay (read-only). Writes have no effect. This bit is set if the
Q22-bus BPOK signal is asserted and clear if it is negated. This
bit is cleared on power-up or the negation of DCOK.

BHALT enable (read/write). This bit controls the effect of Q22-bus
BHALT signal on the CPU. When the bit is set, asserting the Q22-
bus BHALT signal halts the CPU and assert DSER<15>. When
the bit is cleared, the Q22-bus BHALT signal has no effect. This
bit is cleared on power-up or the negation of DCOK.

Read as o. Must be written as o.
Read/write. This bit should be set on the KA670. When set, this
bit prohibits the CQBIC from prefetching the map when a Q22-
bus transaction address reaches a page boundary. Stopping MAP
prefetching buys back some needed CP bus bandwidth and lowers
the CP devices latency. This bit is cleared on power-up or the
negation of DCOK.

Read as o. Must be written as o.
Auxiliary (read-only). Writes have no effect. This bit defines the
auxiliary and arbiter modes of operation of the KA670. When
read as a 0, arbiter mode is selected. When read as a 1, auxiliary
mode is selected. Because the KA670 can only be configured as an
arbiter, this bit should always read as o.
Read as o. Must be written as o.
Read/write. If DCOK is negated on the Q22-bus, clearing this bit
causes the Q22-bus interface to assert SYSRESET. This action
causes a hardware reset of tl1e board; coptrol is passed to the
resident firmware, using the hardware halt procedure with a halt
code of3.

If DCOK is negated on the Q22-bus, setting this bit causes the
Q22-bus interface to assert HALCYON. This action passes control
to the resident firmware, using the hardware halt procedure with
a halt code of 2. This bit is cleared on power-up or the negation of
DCOK.

Read as o. Must be written as o.
Reserved for use by Digital.

Read as o. Must be written as o.

7.1.7 Error-Reporting Registers
There are three registers associated with Q22-bus interface error reporting:

• DMA system error register (DSER)

• Q22-bus error address register (QBEAR)

• DMA error address register (DBEAR)

These registers are in the local VAX I/O address space. They can only be accessed by the
. local processor.

142 Interface Subsystems

The DSER is implemented in the CQBIC chip. This register logs main memory errors
on DMA transfers, Q22-bus parity errors, Q22-bus nonexistent memory errors, and a
Q22-bus no grant condition.

The QBEAR contains the address of the page in Q22-bus space that caused a parity error
during an access by the local processor.

The DBEAR contains the address of the page in local memory that caused a memory
error during an access by an external device or the processor in a local-miss, global-hit
transaction. Any access by the local processor that the Q22-bus interface maps into main
memory will provide the procesor with (1) error status when the processor does a retry
for a read local-miss, global hit, or (2) an interrupt in the case of a local-miss global-hit
write.

7.1.7.1 DMA System Error Register (DSER)
The DSER, address 2008 000416, is a longword, word, or byte-accessible register available
to the local processor. The bits in this read/write register are cleared to 0 on power-up,
the negation of DCOK or writes to IPR 55 (IORESET). All bits are set to 1, to record the
occurrence of an event. They are cleared by writing a 1. Writing Os has no effect.

Figure 7-7 shows the format of the register. Table 7-6 lists the bit descriptions.

3
1

L MBZ

022-bus BHAL T Detected
022-bus DCOK Negation Detected

Master DMA NXM
Must Be Zero

022-bus PE
Main Memory Error
Lost Error Bit

No Grant
Must Be Zero

1 1 1 1
654 3

I J I
f

-

876543210

MBZ 1 Jo I I I I 10 01

Figure 7-7 DMA System Error Register (DSER)

Table 7-6 DMA System Error Register Bits

Data Bit

<31:16>

<15>

<14>

Name

Unused

Q22-Bus BHALT detected

Q22-bus DCOK negation
detected

Description

Read as o. Must be written as o.
Read/write to clear. This bit is set when the Q22-
bus interface detects that the Q22-bus BHALT line
was asserted and SCR<14> (BHALT ENABLE) is
set. The bit is cleared by writing a 1, writes to IPR
55 (lORE SET), power-up, or the negation of DCOK.

Read/write to clear. This bit is set when the Q22-
bus interface detects the negation of DCOK on the
Q22-bus and SCR<7> (action on DCOK negation) is
set. This bit is cleared by writing a 1, writes to IPR
55 (IORESET), power-up, or the negation of DCOK.

Interface Subsystems 143

Table 7-6 (Cont.) DMA System Error Register Bits

Data Bit

<13:8>

<7>

<6>

<5>

<4>

<2>

<1:0>

Name

Unused

MASTER DMA NXM

Unused

Q22-bus parity error

Main memory error

Lost error

No grant timeout

Unused

Description

Read as O. Must be written as O.

ReadlWrite to clear. This bit is set when the CPU
performs a demand Q22-bus read cycle or wri te cycle
that does not reply after 10)lS. During interrupt
acknowledge cycles or request read cycles, this bit
is not set. The bit is cleared by writing a I, writes
to IPR 55 (IORESET), power-up, or the negation of
DCOK.

Read as O. Must be written as O.

ReadlWrite to clear. This bit is set when the CPU
performs a Q22-bus demand read cycle that returns
a parity error. This bit is not set during interrupt
acknowledge cycles, or request read cycles. The
bit is cleared by writing a I, writes to IPR 55
(IORESET), power-up, or the negation of DCOK.

Read/write to clear. This bit is set if an external
Q22-bus device or local-miss, global-hit receives
a memory errol' while reading local memory. The
IPCR<15> reports the memory error to the external
Q22-bus device. This bit is cleared by writing a
1, writes to IPR 55 (lORESET), power-up, or the
negation of DCOK.

Read/write to clear. This bit indicates that an
error address was lost because DSER<7,5,4,O> was
previously set and a subsequent error of either
type occurred that normally would have captured
an address and set either DSER<7,5,4,O> flag.
The bit is cleared by writing a I, writes to IPR 55
(IORESET), power-up, or the negation of DCOK.

Read/write to clear. This bit is set if the Q22-bus
does not return a bus grant within 10 ms of the
bus request from a CPU demand read cycle or
write cycle. This bit is not set during interrupt
acknowledge or request read cycles . The bit is
cleared by writing a I, writes to IPR 55 (IORESET),
power-up, or the negation of DCOK.

Read as O. Must be written as O.

7.1.7.2 Q22-bus Error Address Register (QBEAR)
The Q22-bus error address register, address 2008 0008 16, is a read-only, longword­
accessible register implemented in the CQBIC chip. Its contents are valid only if
DSER<5> (Q22-bus parity error) is set, or if DSER<7> (master DMA NXM) is set.
Figure 7-8 shows the format of the register.

Reading this register when DSER<5> and DSER<7> are clear will return undefined
results. Additional Q22-bus parity errors that could have set DSER<5> or Q22-bus
timeout errors that could have caused DSER<7> to set, will cause DSER<3> to set.

The QBEAR contains the address of the page in Q22-bus space that caused

• A parity error during an access by the onboard CPU, which set DSER<5>

• A master timeout that set DSER<7>

144 Interface Subsystems

Q22-bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR bits <31:13>
always read as Os.

3
1

MBZ

1 1
32

Q22-bus
Address Bits<21 :9>

Figure 7-8 Q22-bus Error Address Register (QBEAR)

NOTE

o

This is a read-only register. Attempts to write will generate a hard error (IPL
ID).

7.1.7.3 DMA Error Address Register (DBEAR)
The DMA error address register, address 2008 OOOC 16, is a read-only, longword­
accessible register implemented in the CQBIC chip. The register contains valid
information only when DSER<4> (main memory error) is set. Reading this register
when DSER<4> is clear will return undefined data. Figure 7-9 shows the format of the
register.

The DBEAR contains the map-translated address of the page in local memory that caused
a memory error or nonexistent memory error during an access by:

• An external device

• The Q22-bus interface for the CPU, during a local-miss global-hit transaction or
Q22-bus map access

The contents of this register are latched when DSER<4> is set. Additional main memory
errors or nonexistent memory errors have no effect on the DBEAR until software clears
DSER<4> .

Mapped Q22-bus address bits <28:9> are loaded into DBEAR bits <19:0>. DBEAR bits
<31:20> always read as Os.

3
1

MBZ

21
09

Mapped Q22-bus
Address Bits <28:9>

Figure 7-9 DMA Error Address Register (DBEAR)

NOTE

o

This is a read-only register. Attempting a write will generate a hard error (IPL
ID).

7.1.8 Error Handling
Parity

The Q22-bus interface does not generate or check CP parity.

Interface Subsystems 145

The Q22-bus interface monitors Q22-bus signals BDAL<17:16> while reading information
over the Q22-bus, so that parity errors detected by the device being read from are
recognized.

If a parity error is detected by another Q22-bus device on a CPU demand read reference
to Q22-bus memory or I/O space, then DSER<5> is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort is initiated.

If a parity error is detected by another Q22-bus device on a prefetch request read by the
CPU, the prefetch is aborted, DSER<5> is set, anq the address of the Q22-bus page being
accessed is captured in QBEAR<12:0>. However, no machine check is generated.

Memory and 1/0 Space

The Q22-bus interface checks all CPU references to Q22-bus memory and I/O spaces to
ensure only masked and unmasked longword accesses are attempted. Any other type of
reference initiates a machine check abort.

Timers

The Q22-bus interface maintains several timers to prevent incomplete accesses from
hanging the system indefinitely. They include a 10)1s nonexistent memory timer
for accesses to the Q22-bus memory and I/O spaces, a 10)ls NO SACK timer for
acknowledgment of Q22-bus DMA grants, and a 10 ms NO GRANT timer for acquiring
the Q22-bus.

Nonexistent Memory

If there is a nonexistent memory (NXM) error (10)1S timeout) while accessing the Q22-
bus on a demand read reference, bit DSER<7> is set, the address of the Q22-bus page
being accessed is captured in QBEAR<12:0>, and a machine check abort is initiated.

If there is a NXM error on a prefetch read or an interrupt acknowledge vector read, then
the prefetch or interrupt acknowledge reference is aborted. However, no information is
captured and no machine check occurs.

If there is a NXM error on a masked write reference, then DSER<7> is set, the address
of the Q22-bus page being accessed is captured in QBEAR<12:0>, and an interrupt is
generated at IPL 1D through vector 60].6.

Bus Grants

If the Q22-bus interface does not receive an acknowledgment within 10)1s after it has
granted the Q22-bus, the grant is withdrawn, no errors are reported, and the Q22-bus
interface waits 500 ns to clear the Q22-bus grant daisy chain before beginning arbitration
again.

If the Q22-bus interface tries and fails to obtain Q22-bus mastership within 10 ms on a
CPU demand read reference, DSER<2> is set and a machine check abort is initiated.

146 Interface Subsystems

Power Failures

The Q22-bus interface also monitors the backplane BPOK signal to detect power failures.
If BPOK is negated on the Q22-bus, a power flil trap is generated, and the CPU traps
through vector OClS' The state of the Q22-bus BPOK signal can be read from SCR<15>.
The Q22-bus interface continues to operate after generating the power-fail trap, until
DCOK is negated.

7.2 KA670 Network Interface
The KA670 includes a network interface, implemented through the second-generation
Ethernet controller chip (SGEC). When used in conjunction with the H3604 cover
panel, this interface allows the KA670 to be connected to either a ThinWire or standard
Ethernet network. The interface supports the Ethernet data link layer as specified in the
VAX Architecture Reference Manual. The SGEC also supports CP bus parity protection.

7.2.1 Ethernet Overview
Ethernet is a serial bus that can support up to 1,024 nodes, with a maximum separation
of 2.8 kilometers (1.7 miles). Data is passed over the Ethernet in Manchester-encoded
format at a rate of 10 million bits/second in variable-length packets. Each packet has the
format shown in Figure 7-10.

6 Bytes Destination Address - -
- -

6 Bytes Source Address - -
!- -

2 Bytes Type

46 .. 1500 Bytes Data

4 Bytes CRC Check Code
I-- -

Figure 7-10 Ethernet Packet Format

The minimum size of a packet is 64 bytes, which implies a :minimum data length of 46
bytes. Packets shorter than this are called runt packets and are treated as erroneous
when received by the network controller.

All nodes on the Ethernet have equal priority. The technique used to control access to the
bus is called carrier sense, multiple access, with collision detection (CSMAlCD).

• To access the bus, devices must first wait for the bus to clear (no .carrier sensed).

•

•

Interface Subsystems 147

When the bus is clear, all devices that want to access the bus have equal priority
(multiaccess), so they all attempt to transmit.

After starting transmission, devices must monitor the bus for collisions (collision
detection). If no collision is detected, the device may continue with transmission. If a
collision is detected, then the device waits for a random amount of time and repeats
the access sequence.

Ethernet allows point-to-point communication between two devices, as well as
simultaneous communication between multiple devices. To support these two modes
of communication, there are two types of network addresses, physical and multicast.
These two types of addresses are both 48 bits (6 bytes) long.

• Physical address: The unique address associated with a particular station on the
Ethernet. This address should be distinct from the physical address of any other
station on any other Ethernet.

• Multicast address: A multidestination address associated with one or more stations
on a given Ethernet, sometimes called a logical address. There are two kinds of
multicast addresses:

Multicast-group address:

An address associated by higher-level convention with a group of logically related
stations.

Broadcast address: A predefined multicast address that denotes the set of all
stations on the Ethernet.

Bit 0 (the least significant bit of the first byte) of an address denotes the type: it is 0
for physical addresses, and 1 for multicast addresses. In either case, the remaining 47
bits form the address value. A value of forty-eight Is is always treated as the broadcast
address.

The hardware address of the KA670 module is determined at the time of manufacture.
The address is stored in the network interface station address (NISA) ROM. Because
every device that connects to an Ethernet network must have a unique physical address,
the bit pattern blasted into the NISA ROM must be unique for each KA670 . The
multicast addresses that the KA670 will respond to are determined by the multicast
address filter mask in the network interface initialization block.

7.2.2 NI Station Address ROM (NISA ROM)

The network interface includes a byte-wide, 32-byte, socketed ROM called the network
interface station address ROM. One byte of this ROM appears in the second byte of
each of 32 consecutive 10ngwords in the address range 2008 4000 to 2008 407C16. Bytes
one, three, and four of each longword are defined in the boot and diagnostic register
(Section 6.1). The second byte of the first six longwords contain the 48-bit network
physical address (NPA) of the KA670 . The low-order byte in the remaining 26 longwords
is for testing. This address range is read-only. Writes to this address range will complete
with no effect.

148 Interface Subsystems

7.3 Programming the Ethernet Controller Chip (SGEC)
The operation of the second~generation Ethernet controller chip (SGEC) is controlled
by a program in host memory caned the port driver. The SGEC and the port driver
communicate through two data structures:

• network interface command and status registers (NICSRs) located in the SGEC and
mapped in the host I/O address space

• descriptor lists and data buffers, collectively called the host communication area, in
host memory.

The NICSRs are used for initialization, global pointers, commands, and global error
reporting. The host memory resident structures handle the actions and statuses related
to buffer management.

7.3.1 Programming Overview
The SGEC can be viewed as two independent, concurrently executing processes -
receptwn and transmission. After the SGEC completes its initialization sequence, these
two processes alternate between three states:

• Stopped

• Running

• Suspended

State transitions occur as a result of port driver commands writing to a NICSR, or
various external events. Some of the port driver commands require the referenced process
to be in a specific state.

Here is a summary of a simple programming sequence of the chip:

1. After power-up or reset, verify the self-test completed successfully.

2. Write NICSRsto set major parameters such as the system base register, interrupt
vector, address filtering mode, and so on.

3. Create the transmit and receive lists in memory, and write the NICSRs to identify
them to the SGEC.

4. Place a setup frame in the transmit list, to load the internal reception address-
filtering table.

5. Start the reception and transmission processes, placing them in the running state.

6. Wait for SGEC interrupts. NICSR5 contains all the global interrupt status bits.

7. If either the reception or transmission process enters the suspended state, correct the
cause of the suspension:

• Issue a TX POLL DEMAND command to return the transmission process to the
running state. .

• If desired, issue an RX POLL DEMAND command to return the reception process
to the running state.

If the RX POLL DEMAND is not issued, the reception process returns to the
running state when the SGEC receives the next recognized incoming frame.

The following sections contain detailed programming and state transitions information.

Interface Subsystems 149

7.3.2 Command and Status Registers
The SGEC contains 16 command and status registers that the host can acces.

7.3.3 Host Access to NICSRs

The SGEC's NICSRs are located in VAX I/O address space.

The NICSRs must be longword aligned and can only be accessed using longword
instructions. The address of NICSRx is the base address plus 4x bytes. For example,
if the base address is 2000 8000, then the address of NICSR2 is 2000 8008. In the
following paragraphs, NICSRs bits are specified with several access modes. Table 7-7
lists the different access modes for bits.

Table 7-7 Bit Access Modes

Bit Marked

o
1

R

RJW

W

RJWl

Meaning

Reserved for future expansion-ignored on write, read as O.

Reserved for future expansion-ignored on write, read as 1.

Read-only. Ignored on write.

Read/write.

Write-only. Unpredictable on read.

Read, or clear by writing a 1. Writing with a 0 has no effect.

In order to save chip space, but not tie up the host bus for extended periods of time, the
16 NICSRs are divided into two groups:

1. Physical NICSRs-O to 7, 15.

2. Virtual NICSRs-8 to 14.

The group that a NICSR belongs to determines the way the host accesses that NICSR.

7.3.3.1 Physical NICSRs
These registers are physically present in the chip. The host accesses these NICSRs by
a single instruction-for example, MOVL. There is no host-perceivable delay, and the
instruction completes immediately. Most commonly used SGEC features are contained in
the physical NICSRs.

7.3.3.2 Virtual NICSRs
These registers are not physically present in the SGEC and are incarnated by the on-chip
processor. Accesses to SGEC functions implied by these registers may take up to 20 llS.
To avoid tieing up the host bus, virtual NICSR access requires several steps by the host.

The NICSR5<DN> signal is used to synchronize access to the virtual NICSRs. After
accessing the first virtual NICSR access, the SGEC deasserts NICSR5<DN> until it
completes the action.

NOTE
Accessing virtual NICSRs without polling first on the NICSR5<DN> reassertion
will cause unpredictable results.

150 Interface Subsystems

7.3.3.2.1 Virtual NICSR Write
To write to a virtual NICSR, the host takes the foIIowing actions:

1. Issues a write NICSR instruction. The instruction completes immediately, but the
data is not yet copied by the SGEC.

2. Waits for NICSR5<DN>. The host cannot access any SGEC virtual NICSR before
NICSR5<DN> asserts.

7.3.3.2.2 Virtual NICSR Read
To read a virtual NICSR, the host takes the following actions:

1. Issues a read NICSR instruction. The instruction completes immediately, but no valid
data is sent to the host.

2. Waits for NICSR5<DN>. The host cannot access any SGEC virtual NICSR before
NICSR5<DN> asserts.

3. Reissues a read NICSR instruction to the same NICSR as in step 1. The host receives
valid data.

7.3.4 Vector Address, IPL, Syncl Asynch (NICSRO)

During host writes to NICSRs, the SGEC may generate an interrupt on parity errors. For
this reason, the NICSRO register must be the first one written by the host. Figure 7-11
shows the format of the register. Table 7-8 lists the bit descriptions.

Parity Errors

A parity error during a NICSRO host write may cause a host system crash, due to an
erroneous interrupt vector. To prevent such an error, NICSRO must be written as foIIows
while the SGEC's assigned IPL is disabled:

1. Write NICSRO.

2. Read NICSRO.

3. Compare the value read to the value written. If the values do not match, return to
step 1.

4. Read NICSR5 and examine NICSR5<ME> for a pending parity interrupt. If an
interrupt is pending, write NICSR5 to clear it.

3 3 2 2 222 222 2 2 1 1 1 1 1 1 1 1 1 1
1 098 76 5 432 1 098 76"54 3 2 1 098 76 5 432 1 0

Must Be One

SA

1/0 Address: 2000 8000
Longword ReadlWrite Access

IV = Interrupt Vector

Figure 7-11 Vector Address, IPL, Sync/Asynch (NICSRO)

Table 7-8 NICSRO Bits

Bit Name

<31:30>

<29>

<15:00>

NICSRO Access

Value after reset

Read access rules

Write access rules

IP

SA

IV

Access

R/W

R/W

R/W

IFFF000316

None.

Interface Subsystems 151

Description

Interrupt Priority. These bits indicate the
VAX interrupt priority level that the SGEC
will respond to, as follows:

00 14

01 15

10 16

11 17

Although the SGEC has only one interrupt
request pin, that pin might be wired to any
of the four IRQ pins on the host. The value
in IP should correspond to the IPL level
that the pin is wired to.

Synchronous/asynchronous. This bit
detennines the SGEC's operating mode
when it is the bus master. When set, the
SGEC operates as a synchronous device.
When clear, the SGEC operates as an
asynchronous device.

Interrupt vector. During an interrupt
acknowledge cycle for an SGEC interrupt,
these bits contain the value that the SGEC
will drive on the host bus CDAL<31:0>
pins. (CDAL pins <1:0> and <31:16> are
set to 0.) Bits <1:0> are ignored when
NICSRO is written, and set to 1 when read.

The SGEC's assigned IPL must be disabled.

7.3.5 Transmit Polling Demand (NICSR1)

The polling demand NICSR (NICSR1) is used by the port driver to tell the SGEC that it
put a packet on the transmit. Figure 7-12 shows the format of the register. Table 7-9
lists the bit descriptions.

152 Interface Subsystems

3 3 2 2 2 2 2 2 2 222 1 111 1 111
1 098 7 6 543 2 1 0 9 8 7 6 543 2

1/0 Address: 2000 8004
Longword Write-Only Access

Must Be One

Figure 7-12 Transmit Polling Demand (NICSR1)

Table 7-9 NICSR1 Bhs

1
09876 5 4 3 2 1 0

It

Bit Name Access Description

PO

<31:01> MBZ Must be one. This field is reserved for
future expansion. Write as 1.

PD W Tx polling demand. Checks the transmit
list for frames to be transmitted.

NICSR1 Access

Value after reset

Read access rules

Write access rules

Not applicable.

None.

The PD value is meaningless.

Transmission process suspended.

7.3.6 Receive Polling Demand (NICSR2)

The receive polling demand NICSR (NICSR2) is used by the port driver to ten the SGEC
that it put a packet on the receive list. Figure 7-13 shows the format of the register.
Table 7-10 lists the bit descriptions.

3 3 222 222 2 222 1 1 1 1 1 111
1 098 7 6 543 2 1 0 9 8 7 6 5 432

Must Be One

1/0 Address: 2000 8008

Figure 7-13 NICSR2 Format

1
098 7 6 5 4 3 2 1 0

It
PO

Table 7-10 NICSR2 Bits

Bit

<31:01>

00

NICSR2 Access

Value after reset

Read access rules

Write access rules

Name

MBZ

PD

Access

W

Not applicable.

None.

Interface Subsystems 153

Description

Must be 1. This field is reserved for future
expansion. Write as 1.

Rx polling demand. Checks the receive list
for receive descriptors to be acquired.

The PD value is meaningless.

Receive process suspended.

7.3.7 Descriptor List Addresses (NICSR3, NICSR4)

The two descriptor list address registers are identical in function. One is for the transmit
buffer descriptors, and one is for the receive buffer descriptors. In both cases, the
registers serve to point the SGEC to the start of the appropriate buffer descriptor list.

The descriptor lists reside in VAX physical memory space and must be longword
aligned.

For best performance, it is recommended that the descriptor lists be octaword aligned.

TRANSMIT LIST
If the Transmit descriptor list is built as a ring (the chain descriptor points at
the first descriptor of the list), the ring must contain at least two descriptors in
addition to the chain descriptor.

Initially, these registers must be written before the respective start command is given
(Section 7.3.9). Otherwise, the respective process will remain in the stopped state.
New list addresses are only acceptable while the respective process is in the stopped
or suspended states. Addresses written while the respective process is in the running
state, are ignored and discarded.

If the host tries to read any of these registers before ever writing to them, the SGEC
responds with unpredictable values. Figure 7-14 shows the format of the registers.
Table 7-11 lists the bit descriptions.

154 Interface Subsystems

3 3
1 0 2 1 0

~IM_B_Z~I~ ____ s_m_r_t_of_R_e_~ __ iv_e_L_is_t-__ R_B_A ______________________________ ~IM_B_Z~I NICSR3

110 Address: 2000 BOOC
Longword Read/Write Access

3 3
1 0 2 1 0

_IM_B_Z_I~ ____ s_t_a_rt_o_f_Tr_a_ns_m_i_t_Li_st_-_T_B_A ______________________________ ~IM_B_Z_I NICSR4

1/0 Address: 2000 8010
Longword ReadIWrite Ac~ss

Figure 7-14 Descriptor List Addresses Fonnat

Table 7-11 Descriptor List Address Bits

Bit

<31:30>

<29:00>

NOTE

Name

MBZ

RBAorTBA

Access

RIW

Description

Must be 1. Ignored on writes. Read as o.
Address of the start of the :receive list
(NICSR3) or transmit list (NICSR4). This
is a 30-bit VAX physical address.

The descriptor lists must be longword-aligned.

NICSR3 Access

Val ue after reset;

Read access rules:

Write access rules:

NICSR4 Access

Value after reset

Read access rules

Unpredictable.

None.

Receive process stopped or suspended.

Unpredictable.

None.

Write access rules Transmit process stopped or suspended.

After NICSR3 or NICSR4 is written, the new address is readable from the written
NICSR. However, if the SGEC status did not match the related write access rules, the
new address does not take effect and the written information is lost, even if the SGEC
matches the right condition later.

Interface Subsystems 155

7.3.8 Status Register (NICSR5)

This register contains all the status bits the SGEC reports to the host. Figure 7-15
shows format of the register format. Table 7-12 lists the bit descriptions.

3 3 2
109

I I I SS

110 Address:

2 2 2 2 2 2
6 5 432 1

1 1 1 1 1
9 8 765

I TS I RS I MBO I OM I I

2000 8014
Longword Access with:

Bits <31 :16> Read-Only

7 6 5 4 3 2 1 0

MUST BE ONE I I I I I I I I J
1

"--

-
IS
TI
RI
RU
ME
RW
TW
BO
ON
SF
10

Bits < 16:0> Read/Write 1 to Clear

Figure 7-15 NICSR5 Format

Table 7-12 NICSR5 Bits

Bit Name

<31> ID

SF

Access

R

R

Description

Initialization done. When set, this bit
indicates the SGEC has completed the
initialization (reset and self-test) sequences
and is ready for further commands. When
clear, this bit indicates the SGEC is
performing the initialization sequence
and ignoring all commands. After the
initialization sequence completes, the
transmission and reception processes are in
the stopped state.

Self-test failed. When set, this bit indicates
the SGEC self-test has failed. The self-test
completion code bits indicate the failure
type.

156 Interface Subsystems

Table 7-12 (Cont.) NICSR5 Bits

Bit Name Access

<29:26> ss R

<25:24> 1'8 R

<23:22> RS R

Deseription

Self-test status. This field provides the
self-test completion code, according to the
following table. the code is only valid if SF
is set.

Value Meaning

0001 ROM elTor

0010 RAM error

0011 Address filter RAM error

0100 Transmit FIFO error

0101 Receive FIFO error

0110 SeICtest loopback error

The self-test takes 25 ms to complete after
the hardware or software reset.

Transmission process state. This field
indicates the current state of the
Transmission process, as follows:

Value

00

01

10

Meaning

Stopped

Running

Suspended

Section 7.3.24 explains the transmission
process operation and state transitions.

Reception process state. This field indicates
the current state of the Reception process,
as follows:

Value

00

01

10

Meaning

Stopped

Running

Suspended

Section 7.3.23 explains the reception
process operation and state transitions.

Interface Subsystems 157

Table 7-12 (Cont.) NICSR5 Bits

Bit Name Access Description

<18:17> OM R Operating mode. These bits indicate the
current SGEC operating mode, as follows:

Value Meaning

00 Normal operating mode.

01 Internal loopback-Indicates
the SGEC is disengaged
from the Ethernet wire.
Frames from the transmit
list are looped back to the
receive list, subject to address
filtering. Section 7.3.25
explains this mode of
operation.

10 External Loopback-
Indicates the SGEC is
working in full-duplex mode.
Frames from the transmit
list are transmitted on the
Ethernet wire and looped
back to the receive list,
subject to address filtering.
Section 7.3.25 explains this
mode of operation.

11 Reserved for diagnostics.

<16> DN R Done. When set, this bit indicates the
SGEC has completed a requested virtual
NICSR access. After a reset, this bit is set.

<15:8> MBO Must be 1. This field is reserved. Read as
1. Writes are ignored.

<7> BO RlWI Boot message. When set, this bit indicates
that the SGEC has detected a boot_message
on the serial line and has set the external
pin BOOT_L.

<6> TW RlWI Transmit watchdog timer interrupt.
When set, this bit indicates the transmit
watchdog timer has timed out, indicating
the SGEC transmitter was babbling. The
transmission process is aborted and placed
in the stopped state. This is also reported
into the transmission descriptor status
TDESO<TO> flag.

158 Interface Subsystems

Table 7-12 (Cont.) NICSR5 Bits

Bit Name Access Description

<5> RW RlWl Receive watchdog timer interrupt. When
set, this bit indicates the receive watchdog
timer has timed out, indicating that some
other node is babbling on the network.
Current frame reception is aborted and
RDESO<LE> and RDESO<LS> are set. Bit
NICSR5<Rl> is also set. The reception
process remains in the running state.

<4> ME RlWl Memory error. This bit isset when any of
the followings occur:

• SGEC is the CP bus master, and the
ERR_L pin is asserted by external
logic (generally indicating a memory
problem).

• A parity error was detected on a host to
SGEC NICSR write or SGEC read from
memory.

When a memory error is set, the reception
and transmission processes are aborted
and placed in the stopped state.

NOTE
At this point, the port driver must
issue a reset command and rewrite all
NICSRs.

<3> RU RlWl Receive buffer unavailable. When set, this
bit indicates that the next descriptor on
the receive list is owned by the host and
could not be acquired by the SGEC. The
reception process is placed in the suspended
state. Section 7.3.23 explains the reception
process state transitions.

After being set by the SGEC, this bit is
not set again until the SGEC encounters
a descriptor it can not acquire. To
resume processing receive descriptors,
the host must flip the ownership bit of
the descriptor and can issue the Rx: poll
demand command. If no Rx poll demand
is issued, the reception process resumes
when the next recognized incoming frame is
received.

<2> RI RlWl Receive interrupt. When set, this bit
indicates that a frame has been placed
on the receive list. Frame-specific status
information was posted in the descriptor.
The reception process remains in the
running state.

Table 7-12 (Cont.) NICSR5 Bits

Bit Name

TI

IS

NICSR5 Access

Access

R/Wl

R/Wl

0039FFOOI6 .

None.

Interface Subsystems 159

Description

Transmit interrupt. When set, this bit
indicates one of the following:

• Either all the frames in the transmit
list have been transmitted (next
descriptor owned by the host), or a
frame transmission was aborted due to
a locally induced error. The port driver
must scan down the list of descriptors
to determine the exact cause.

The transmission process is placed in the
suspended state. Section 7.3.24 explains
the transmission process state transitions.
To resume processing transmit descriptors,
the port driver must issue the TX poll
demand command.

• A frame transmission completed, and
TDESldC> was set. The transmission
process remains in the running state,
unless the next descriptor is owned
by the host or the frame transmission
aborted due to an error. In the latter
cases, the transmission process is
placed in the suspended state.

Interrupt summary. The logical OR of
NICSR5 bits 1 to 6.

Value after reset

Read access rules

Write access rules NICSR5<07:0b bits cleared by 1, others bits not writeable.

7.3.8.1 NICSR5 Status Report
The NICSR5 status register is divided into two words:

• High word-Contains the global status of the SGEC (as the initialization status), the
OMA and operation mode, and the receive and transmit process states.

• Low word-Contains the status related to the receive and transmit frames.

Any change of the NICSR5 bits <10>, <SF>, <OM>, or <ON> is always the result of a
host command. These changes are reported without an interrupt.

Any process state change initiated by a host command NICSR6<ST> or NICSR6<SR>,
is reported without an interrupt.

In the two cases above, the driver must poll on NICSR5 to get acknowledgement of its
command-for example, polling on <lD, SF> after a reset, or polling on <TS> after a
START_TX. command.

Any process state change initiated by the SGEC activity is immediately followerl by at
least one of the NICSR5<6:1> interrupts and the interrupt_summary NICSR5<1S>.

160 Interface Subsystems

The SGEC 16-bit internal processor updates the 32-bit NICSRS register in two phases:

• The high word is modified first.

• Then the low word is written, which generates an interrupt to the host.

In this case, the driver must scan the NICSRS low word to get the interrupt status, then
scan the NICSR high word to get the related process state. For example, <1'1> interrupt
with <TB> = SUSPENDED reports an end of transmission due to a Tx descriptor
unavailable.

If the host polls on the process state change, it may detect a change without interrupt,
due to the small time window separating the NICSRS high word and low word updates.

Maximum time window: 4 x 7Cycles of the host clock

7.3.9 Command and Mode Register (NICSR6)

This register serves to establish operating modes and issue port driver commands.
Figure 7-16 shows the format of the register. Table 7-14 lists the bit descriptions.

3 3 2 2 2 2 222 2 2 2 1 111 111 1 1
1 098 7 6 543 2 1 0 9 8 7 6 543 2 098 7 6 5 4 3 2 1 0

RI R Bl Must B S R R
E E Be One E E

110 Address: 2000 8018
longword Read/Write Access

R = reserved.

Figure 7-16 NICSR6 Format

Table 7-14 NICSR6 Bits

Bit Name

<31> RE

IE

R

Access

RJW

RJW

R Must S S OM 0 F R R P AF R
Be One T R C C B

Description

Reset command. When this bit is set, the
SGEC will abort all processes and start
the reset sequence. After completing the
reset and self-test sequence, the SGEC sets
bit NICSRS<ID>. Clearing this bit has no
etTect.

NOTE
The NICSR6<RE> value is
unpreclictable 011 reads alter a
hardware reset.

Interrupt enable mode. When this bit is set,
setting NICSRS bits 1 to 6 will generate an
interrupt.

Reserved.

Interface Subsystems 161

Table 7-14 (Cont.) NlCSR6 Bits

Bit Name Access Description

<28:25> BL RIW Burst limit mode. This field specifies the
maximum number of longwords to be
transferred in a single DMA burst on the
host bus.

When NICSR6<SE> is cleared, permissible
values are 1,2,4, and 8. When SE is set, the
only permissible values are 1 and 4. Values
of 2 or 8 are forced to 1 or 4, respectively.

After initialization, the burst limit is set to
1.

<24:21> MaO This field is reserved. Writes are ignored.
Read as 1.

<20> BE RIW Boot message enable mode. When
set, this bit enables the boot message
recognition. When the SGEC recognizes an
incoming boot message on the serial1ine,
NICSR5<BO> is set and the external pin
BOOT_L is asserted for a duration of 6 x
Tcycles of the host clock.

<19> SE RIW Single cycle enable mode. When this bit
is set, the SGEC transfers only a single
longword or an octaword in a single DMA
burst on the host bus.

<18:12> MaO Must be one. This field is reserved. Writes
are ignored. Read as 1.

162 Interface Subsystems

Table 7-14 (Cont.) NICSR6 Bits

Bit Name Access

<11> ST RJW

Description

Start/stop transmission command. When
this bit is set, the transmission process is
placed in the running state. The SGEC
checks the transmit list at the current
position for a frame to transmit-the
address set by NICSR4 or the position
retained when the transmission process
was previously stopped. If it does not find a
frame to transmit, the Transmission process
enters the suspended state.

The start transmission command is honored
only when the transmission process is
in the stopped state. The first time this
command is issued, the NICSR4 must
already been written to. Otherwise,
the transmission process remains in the
stopped state.

When this bit is cleared, the transmission
process is placed in the stopped state after
completing transmission of the current
frame. The next descriptor position in
the transmit list is saved and becomes
the current position after transmission is
restarted.

The stop transmission command is honored
only when the transmission process is in
the running or suspended states.

See Section 7.3.24 for more information.

Table 7-14 (Cont.) NICSR6 Bits

Bit Name Access

SR RJW

Interface Subsystems 163

Description

Start/stop reception command. When this
bit is set, the reception process is placed
in the running state, the SGEC tires to
acquire a descriptor from the receive list
and process incoming frames. Descriptor
acquisition is attempted from the current
position in the list-the address set by
NICSR3 or the position retained when the
reception process was previously stopped. If
no descriptor can be acquired, the Reception
process enters the suspended state.

The start reception command is honored
only when the reception process is in the
stopped state. The first time this command
is issued, NICSR3 must already have been
written to. Otherwise, the reception process
remains in the stopped state.

When this bit is cleared, the reception
process is placed in the stopped state
after completing reception of the current
frame. The next descriptor position in
the receive list is saved and becomes the
current position after reception is restarted.
The stop reception command is honored
only when the reception process is in the
running or suspended states.

See Section 7.3.23 for more information.

164 Interface Subsystems

Table 7-14 (Cont.) NICSR6 Bits

Bit Name Acee •• Description

<9:8> OM RIW Operating mode. These bits determine the
SGEC's main operating mode.

Value Meaning

00 Normal operating mode.

01 Internal loopback-The
SGEC will loop back buffers
from the transmit list. The
data is passed from the
transmit logic back to the
receive logic. The receive
logic treats the looped frame
as it would any other frame,
subjecting it to the address
filtering and validity check
process.

10 Externalloopback-The
SGEC transmits normally
and enables its receive
logic to receive its own
transmissions. The receive
logic treats the looped frame
as it would any other frame,
subjecting it to the address
filtering and validity check
process.

11 Reserved for diagnostics.

<7> DC RIW Disable data chaining mode-When this
bit is set, no data chaining occurs in
receptions. Frames that are longer than
the current receive buffer are truncated.
RDESO<FS,LS> will always be set. The
frame length returned in RDESO<FL> will
be the true length of the nontruncated
frame, while RDESO<BO> will indicate that
the frame has been truncated due to buffer
overflow.

When this bit is clear, frames that are
too long for the current receive buffer are
transferred to the next buffer(s) in the
receive list.

<6> FC RIW Force collision mode-This bit allows the
collision logic to be tested. The chip must
be in intemalloopback mode for Fe to be
valid. If this bit is set, a collision is forced
during the next transmission attempt.
The collision results in 16 transmission
attempts, with excessive collision reported
in the transmit descriptor.

Table 7-14 (Cont.) NICSR6 Bits

Bit Name Access

<5:4> MBO

PB R/W

<2:1> AF R/W

MBO

Interface Subsystems 165

Description

Must be 1. This field is reserved. Writes
are ignored. read as 1.

Pass bad frames mode. When this bit is set,
the SGEC passes frames that have been
damaged by collisions or that are too short
due to premature reception tennination.
Both events should have occurred within
the collision window (64 bytes). Otherwise,
other errors will be reported.

When this bit is clear, these frames are
discarded and never show up in the host
receive buffers.

NOTE
Pass bad frames mode is subject to the
address filtering mode. For e:s:ample, to
monitor the network, this mode must
be set together with the promiscuous
value of address filtering mode.

Address filtering mode. These bits define
the way incoming frames will be address­
filtered:

Value

00

01

10

11

Meaning

N onnal-Incoming frames
are filtered according to
the values of the <HP> and
<IF> bits of the setup frame
descriptor.

Promiscuous-All incoming
frames are passed to the host,
regardless of the <HP> bit
value.

All Multicast-All incoming
frames with multicast
address destinations are
passed to the host. Incoming
frames with physical address
destinations are filtered
according to the <liP> bit
value.

Unused-Reserved.

Must be 1. This field is reserved. Writes
are ignored. Read as 1.

166 Interface Subsystems

NICSR6 Access

Value after reset

Read access rules

Write access rules

• <RE, IE, BE>

• <BL, SE, OM>

• <FC>

• <DC, PB, AF>

• Start receive <SR>=1

• Start transmit <S'r>=1

83EOFOOOts or 03EOF0001S.

None.

Unconditional.

Reception and transmission processes stopped.

Reception and transmission processes stopped, internal loopback
mode

Reception process stopped.

Reception process stopped and NICSRS initialized.

Transmission stopped and NICSR4 initialized.

• Stop receive <8R>=O Reception process running or suspended.

• Stop transmit <ST:>=O Transmission running or suspended.

After NICSR6 is written, the new value is readable from NICSR6. However, if the SGEC
status does not match the related write access rules, the new mode setting and command
do not take effect and the written information is lost, even if the SGEC matches the right
condition later.

7.3.10 System Base Register (NICSR7)

This NICSR contains the physical starting address of the VAX system page table. The
host software must load this register before any address translation occurs, so that
memory is not corrupted. Figure 7-17 shows the format of the register. Table 7-15 lists
the bit descriptons.

332
1 0 9

IMBzl

I/O Address: 2000 801 C

210

System Base Address

Longword Read/Write Access

Figure 7-17 NICSR7 Fonnat

Table 7-15 NICSR7 Bits

Bit

<31:30>

<29:00>

Name

MBZ

SB RJW

Description

Must be O. Read as O. Writes are ignored.

System base address. The physical starting
ad~ss of the VAX system page table. Not
UMd if virtual addressing (VA) is cleared in
all descriptors.

This register should be loaded only
one time after a reset. Subsequent
modifications of this register may
cause unpredictable results.

NICSR7 Access

Unpredictable.

None.

Interface Subsystems 167

Value after reset

Read access rules

Write access rules Writing once after initialization.

7.3.11 Reserved Register (NICSR8)

This register is reserved.

7.3.12 Watchdog Timers (NICSR9)

The SGEC has two timers that restrict the length of time in which the chip can receive
or transmit. Figure 7-18 shows the format of the register. Table 7-16 lists the bit
descriptions.

3
1

Receive Timeout - RT

1/0 Address: 2000 8024
Longword ReadlWrite Access

Figure 7-18 NICSR9 Fonnat

Table 7-16 NICSR9 Bits

Bit Name Access

<31:16> RT RJW

1 1
65 o

Transmit Timeout - TT

Description

Receive watchdog timeout. The receive
watchdog timer protects the host CPU
against babbling transmitters on the
network. If the receiver stays on for RT x
16 cycles of the serial clock, the SGEC will
cut off reception and set the NICSR5<RW>
hit. If the timer is set to 0, it will never
time out.

The value of RT is an unsigned integer.
With a 10 Mhz serial clock, this provides a
range of 72)lS to 100 ms. The default RT
value is 1250, corresponding to 2 ms.

The Rx watchdog timer is programmed only
while the reception process is in the stopped
state.

NOTE
A receive watchdog value between
1 and 44 is forced to the minimum
timeout value of 45 (72 JIB).

168 Interface Subsystems

Table 7-16 (Cont.) NICSR9 Bits

Bit

<15:00>

NICSR9 Access

Value after reset

Read access rules

Write access rules

Name

TT

Access

R/W

0000000016.

None.

Description

Transmit watchdog timeout. The transmit
watchdog timer protects the network
against babbling SGEC transmissions,
in addition to any such circuitry present
in tranceivers. If the transmitter stays on
for Tl' x 16 cycles of the serial clock, the
SGEC wi]] cut off the transmitter and set
the NICSR5<'1W> bit. If the timer is set to
0, it will never time out.

The value of TT is an unsigned integer.
With a 10 Mhz serial clock, this provides
a range of 72 J1S to lOOms. The default TT
value is 1250, corresponding to 2 ms.

The transmit watchdog timer is
programmed only while the transmission
process is in the stopped state.

NOTE
A transmit watchdog value between
1 and 44 is forced to the minimum
timeout value of 45 ('12 Jls).

• Receive watchdog timer

• Tranmit watchdog
timer

Reception process stopped .

Transmission process stopped.

The transmit and receive watchdog timers are enabled by default. These timers are set
to their default values after hardware or software resets.

7.3.13 Revision Number and Missed-Frame Count (NICSR10)

This register contains a missed-frame counter and SGEC identification information.
Figure 7-19 shows the register format. Table 7-17 lists the bit descriptions.

3
1

MBZ

211111
098765

RN

110 Address: 2000 802C
Longword Read-Only Access

Figure 7-19 NICSR10 Fonnat

o

MFC

Table 7-17 NICSR10 Bits

Bit

<31:21>

<20:16>

<15:00>

Name

MBZ

RN

MFC

NICSR10 Access

Access

R

R

0003000016.

Interface Subsystems 169

Description

Must be O. Read as O. Writes are ignored.

Chip revision number. This field stores the
revision number for this particular SGEC.

Missed frame count. This field is the
counter for the number of frames that were
discarded and lost because host receive
buffers were unavailable. The counter is
cleared when read by the host.

Value after reset

Read access rules

Write access rules

Missed-frame counter cleared by read.

Not applicable.

7.3.14 Boot Message (NICSR11, 12, 13)

These registers contain the boot message verification and processor fields. Figure 7-20
shows the format of the registers. Table 7-18 lists the bit descriptions.

3 3 2 2 2 222 2 2 2 2 1 1 1 1 1 1 111 1
1 098 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 098 7 6 5 432 1 0

NICSR11
20000802C

Verification VRF <31 :00> 16

3 3 222 222 2 2 221 111 1 1 1 1 1 1
1 098 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 098 765 432 0

NICSR12
20008030

Verification VRF <63:32> 16

3 3 222 2 2 2 2 2 221 1 1 1 1 1 111 1
1 098 7 6 5 4 3 2 1 098 7 6 5 4 321 098 765 432 1 0

Longword Read/Write Access

Figure 7-20 Boot Message

NICSR13
20008034

16

170 Interface Subsystems

Table 7-18 NICSR11,12,13 BUs

Bit Name Access Description

NICSRll VRF<31:00> RJW Boot message verification field
<31:00> <31:00>

NICSR12 VRF<63:32> RJW Boot message verification field
<31:00> <63:32>

NICSR13 PRC RJW Boot message processor field
<07:00>

NOTE
The least significant bit of the verification field (VRF<O» corresponds to the
first incoming bit of the verification field in the serial boot message.

NICSR11,12,13 Access

Value after reset

Read access rules

Write access rules

0000000016 for each register- NICSRll, NICSRI2, and NICSRI3.

None.

Boot message disabled «NICSR6<BE> = 0.)

7 .3.15 Diagnostic Registers (NICSR14,15)

These registers are reserved for diagnostic features.

7.3.15.1 Diagnostic Breakpoint Address Register (NICSR14)
This register is a virtual CSR. It contains the breakpoint address that causes the
internal CPU to jump to a patch address. Figure 7-21 shows the fonnat of the register.
Table 7-19 lists the bit descriptions. This register can be loaded only in diagnostic mode
(NICSR6 <OM>=<1l».

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Code Restart Address
(CRA)

Figure 7-21 NICSR14 Format

Table 7-19 NICSR14 Bits

Bit Name Type

BE RJW

<30:16> CRA R/W

Breakpoint Address
(BPA)

Description

When this bit is set, the breakpoint is
enabled.

Code restart address. This is the first
address in the internal RAM where the
internal processor will jump to after a
breakpoint occurs.

Table 7-19 (Cont.) NICSR14 Bits

Bit Name Type

<15:0> BPA RIW

NOTE

Intenace Subsystems 171

Description

Breakpoint address. This is the internal
processor address where the program will
halt and jump to the RAM-loaded code.

This register works in conjunction with the diagnostic descriptors to allow software
patches.

NICSR14 Access

Value after reset

Read access rules

Write access rules

0000000016'

None.

Diagnostic mode.

Violation Addressing NlCSR14 while NICSR5<DN> is deasserted.

7.3.15.2 Monitor Command Register (NICSR15)
This register is a physical CSR. It contains the bits that select the internal test block
operation mode. Figure 7-22 shows the format of the register. Table 7-20 lists the bit
descriptions.

3 3 2 2 2 2 2 2 2 2 2
1 0 9 8 7 6 543 2 1

Address/Data

Figure 7-22 NICSR15 Format

Table 7-20 NICSR15 Bits

Bit Name

<31:16> ADDWDATA

<15> ST

2 1 1 1
0 9 8 7

Type

RIW

w

1 1 1 1 1 1 1
6 5 4 3 2 1 0 987 6 5 432 1 0

1~laADI~1 MBZ

Description

Before the examine cycle, this field points to
the location to be read. Three cycles after
the assertion of <ST>, the field contains the
read data.

Start read. When set, this bit starts the
examine cycle-the data addressed by
CSR<31:16> is fetched and stored into the
same register field. This bit is reset by
hardware at the end of the operation.

172 Interface Subsystems

Table 7-20 (Cont.) NICSR15 Bits

Bit Name

<14:13> QAD

<12> BS

<11:0> MBZ

NICSR15 Access

Type

W

W

OOOOOFFFu;.

None.

Description

Quad select bits. This field defines the
specific four bits of the internal data bus
or address bus that are monitored on
the external test pins BM_LtrEST<3:0>.
This field is meaningful only in test mode
(TSM=I).

The 2-bit code is interpreted as follows:

QAD Data Address

00 <03:00> <03:00>

01 <07:04> <07:04>

10 <11:08> <11:08>

11 <15:12> 0, IOP_WR_
L,<13:12>

Bus select. When reset, the internal
data bus is monitored on the external
test pins BM_LlTEST<3:0>. When set,
the monitoring is applied on the internal
address bus. This bit is meaningful only in
test mode (TSM=I).

Must be O.

Value after reset

Read access rules

Write access rules

Violation

Reserved for debugging.

Setting <8T> with arandom SGEC internal address.

7.3.16 Descriptors and Buffers-Format
The SGEC transfers frame data to and from receive and transmit buffers in host memory.
These buffers are pointed to by descriptors that are also resident in host memory.

There are two descriptor lists-one for receive, and one for transmit. The starting
address of each list is written into NICSRs 3 and 4 respectively. A descriptor list is a
(implicitly or explicitly) forward-linked list of descriptors. The last entry may point back
to the first entry, thus creating a ring structure. Explicit chaining descriptors, through
setting xDESl<CA> is called descriptor chaining. The descriptor lists reside in VAX
physical memory address space.

NOTE
The SGEC first reads the descriptors, ignoring all unused bits regardless of
their state. The only word the SGEC writes back is the first word ~DESO) of
each descriptor. Unused bits in xDESO are written as O. Unused bits in xDESl
to xDES3 may be used by the port driver, and the SGEC will never disturb them.

Interface Subsystems 173

A data buffer can contain an entire frame or part of a frame, but it cannot contain
more than a single frame. Buffers contain only data; buffer status is contained in the
descriptor. The term data chaining is used to refer to frames spanning multiple data
buffers. Data chaining can be enabled or disabled in reception, using NICSR6<DC>.
Data buffers reside in VAX memory space, either physical or virtual.

NOTES
The virtual-to-physical address translation is based on the assumption that
PTEs are locked in the host memory for the time the SGEC owns the related
buffer.

For the best performance in virtual addressing mode, PPTE vectors must not
cross a page of the PPTE table.

7.3.17 Receive Descriptors
Figure 7-23 shows the format of receive descriptors. The following sections describe the
words in the descriptor.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 0 9 e 7 6 5 4 3 2 1 0 9 e 7 6 5 4 3 2 o 9 e 7 6 5 4 321 0

a o ROESO
w Frame Length F

C V ROES1
A A U

ROES2
U Butler Size U Page Ollset

U ROES3
U U BUFFER SVAPTE/Physlcal Address

o • SGEC writes as O.
U • Ignored by the SGEC on read. never written.

Figure 7-23 Receive Descriptor Fonnat

7.3.17.1 RDESO Word
The RDESO word contains the status and length of the received frame. This word also
indicates who owns the descriptor-the host or the SGEC. Table 7-21 list the RDESO bit
descriptions.

Table 7-21 RDESO Bits

Bit Name

<31> ow

<30:16> FL

<15> ES

Description

Owner bit. When set, this bit indicates the descriptor is owned
by the SGEC. When cleared, this bit indicates the descriptor is
owned by the host: The SGEC clears this bit after completing
processing of the descriptor and its associated buffer.

Frame length. This field indicates the length in bytes of the
received frame. The field is meaningless if RDESO<LE> is set.

Error summary. This bit is the logical OR of RDESO bits
OF,CE,TN,CS,TL,LE,RF.

174 Interface Subsystems

Table 7-21 (Cont.) RDESO Bits

Bit Name

<14> LE

<13:12> DT

<11> RF

BO

FS

LS

TL

CS

FT

<4> o

Description

Length error. When set, this bit indicates a frame truncation
caused by one of the following:

• The frame segment does not fit within the current buffer,
and the SGEC does not own the next descriptor. The
frame is truncated.

• The receive watchdog timer expired. NICSR5<RW> is
also set.

Data type. Indicates the type of frame the buffer contains, as
follows:

Value

00

01

10

Meaning

Serial received frame

Internally looped back frame

Externally loop~d i>ack frame, serial received
frame.

Runt frame. When set, this bit indicates the frame was
damaged by a collision or premature termination before the
collision window had passed. Runt frames are passed to the
host only if (NICSR6<PB» is set. This bit is meaningless if
RDESO<OF> is set.

Buffer overflow. When set, this bit indicates that the frame
has been truncated due to a buffer that was too small to fit
the frame size. This bit may be set only if data chaining is
disabled (NICSR6<DC> = 1).

First segment. When set, this bit indicates that this buffer
contains the first segment of a frame.

Last segment. When set, this bit indicates that this buffer
contains the last segment of a frame and status information is
valid.

Frame too long. When set, this bit indicates the frame length
exceeds the maximum Ethernet specified size of 1518 bytes.

NOTE
The frame too long bit is only a frame length indication
and does not cause any frame truncation.

Collision seen. When set, this bit indicates the frame was
damaged by a collision that occurred after the 64 bytes
following the SFD.

Frame type. When set, this bit indicates the frame is an
Ethernet type frame (frame length field is> 1500). When
clear, this bit indicates the frame is an IEEE 802.3 type
frame. This bit is meaningless for .Runt frames < 14 bytes.

Table 7-21 (Cont.) ROESO Bits

Bit Name

<03> TN

<02> DB

<01> CE

<00> OF

7.3.17.2 ROES1 Word

Interface Subsystems 175

Description

Translation not valid. When set, this bit indicates that a
translation error occurred when the SGEC was translating
a VAX virtual buffer address. This bit win set only if
RDESl<VA> was set. The reception process remains in
the running state and tries to acquire the next descriptor.

Dribbling bits. When set, this bit indicates the frame
contained a noninteger multiple of 8 bits. This error is
reported only if the number of dribbling bits in the last byte
is greater than 2. This bit is meaningless if RDESO<CS> or
RDESO<RF> are set.

The CRC check is performed independent of this error.
However, only whole bytes are run through the CRC logic.
ConsequentlYt received frames with up to 6 dribbling
bits will have this bit set. But if <CE> (or another error
indicator) is not sett these frames should be considered
valid:

CE

o
o
1

1

DB

o
1

o
1

Error

None

None

CRC error

Alignment error

CRC error. When set, this bit indicates that a CRC error has
occurred on the received frame.

Overflow. When set, this bit indicates that received data in
this descriptor's buffer was corrupted due to internal FIFO
overflow. This action generally occurs if SGEC DMA requests
are not granted before the internal receive FIFO fills up.

The RDESI word contains a chain address and virtual addressing bit that affect the
RDES3 word. Table 7-22 lists the RDESI hit descriptions.

176 Interface Subsystems

Table 7-22 RDES1 Bits

Bit Name

CA

<30> VA

<29> VT

<28:0> u

7.3.17.3 RDES2 Word

Description

Chain address. When this bit is set, RDES3 is interpreted
as another descriptor's VAX. physical address. This allows
the SGEC to process multiple, noncontiguous descriptor lists
and explicitly chain the lists together. Note that contiguous
descriptors are implicitly chained.

In contrast to what is done for a receive butTer descriptor,
the SGEC clears neither the ownership bit RDESO<OW> nor
one of the other bits of RDESO of the chain descriptor after
processing.

'lb protect against an infinite loop, a chain descriptor pointing
back to itself is seen as owned by the host, regardless of the
ownershi p bit state.

Virtual addressing. When this bit is set, RDES3 is interpreted
as a virtual address. The type of virtual address translation is
determined by the RDES1<VT> bit. The SGEC uses RDES3
and RDES2<page offset> to perform a VAX. virtual address
translation process to obtain the physical address of the
butTer. When this bit is clear, RDES3 is interpreted as the
actual physical address of the butTer:

VA

o
1

1

VT

x

o
1

Addressing mode

Physical

Virtual-SVAPTE type

Virtual-PAPTE type

Virtual type. If virtual addressing (RDES1<VA> = 1) is used,
this bit indicates the type of virtual address translation.
When this bit is set, the buffer address RDES3 is interpreted
as a system virtual address of the page table entry (SVAPTE).
When this bit is clear, the buffer address is interpreted as a
physical address of the page table entry (PAPTE). This bit is
meaningful only if RDESl<VA> is set.

This word contains the buffer size of the data buffer, as well as the byte offset of buffer
within the page. Table 7-23 lists the RDES2 bit descriptions.

Table 7-23 RDES2 Bits

Bit

<31>

<30:16>

Name

U

BS

Description

Unused. Ignored by the SGEC on reads. Never written.

Buffer size. The size, in bytes, of the data buffer.

NOTE
Receive buffers size must be an even number of bytes.

Table .7-23 (Cont.) RDES2 Bits

Bit

<15:9>

<08:00>

Name

U

PO

7.3.17.4 RDES3 Word

Interface Subsystems 177

Description

Unused. Ignored by the SGEC on reads. Never written.

Page offset. The byte offset of the buffer within the page. This
field is meaningful only if RDES1<VA> is set.

NOTE
Receive buffers must be word.aligned.

The RDES3 word is interpreted as the address of either the page table entry or the
the buffer, depending on the setting of the RDESI word. Table 7-24 lists the bit
descriptions.

Table 7-24 RDES3 Bits

Bit Name

<31:00> SVIPVIPA

Description

SVAPTEIPAPTElPhysical address. If RDESl<VA> is set.
RDES3 is interpreted as the address of the page table entry
and used in the virtual address translation process. The
setting of RDES1<VT> determines the type of the address­
system virtual address (SVAPTE) or physical address
(PAPTE).

If RDES1<VA> is clear, RDES3 is interpreted as the physical
address of the buffer. When RDES1<CA> is set, RDES3 is
interpreted as the VAX physical address of another descriptor.

NOTE
Receive buffers must be word·aligned.

7.3.17.5 Receive Descriptor Status Validity
Table 7-25 summarizes the validity of the receive descriptor status bits regarding the
Reception completion status:

Table 7-25 Receive Descriptor Status Validity

Reception
Reception Status Report

Status RF TL CS FI' DB CE ES,LE,BO,DT,FS,LS,FL,TN,OF

Overflow M V M V M M V

Collision after 512 bits V V V V M M V

Runt frame V V V V M M V

Runt frame < 14 bytes V V V M M M V

Watchdog timeout V V M V M M V

V = valid.
M = meaningless.

178 Interface Subsystems

7.3.18 Transmit Descriptors
Figure 7-24 shows the format of the transmit descriptors. The following sections describe
each word in the descriptor.

3 3 222 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
1 098 7 6 5 432 1 0 9 8 7 6 5 432

1
09876 543 2 1 0

o
w
C V
A A

u

TOR

u

Buller Si~e u Page Ollset

o
E

TDESO

TOES1

TDES2

TOES3
u u Buller SVAPTE/Physical Address

O. SGEC writes as O.
U • ignored by the SGEC on read, never written.

Figure 7-24 Transmit Descriptor Format

7.3.18.1 TDESO Word
The TDESO word contains the status of the transmitted frame. TDESO also indicates
who owns the descriptor-the SGEC or the host. Table 7-26 lists the bit descriptions.

Table 7-26 TDESO Bits

Bit Name

<31> OW

<29:16> TDR

<15> ES

<14> TO

<13> MBZ

Description

Owner bit. When set, this bit indicates the descriptor is owned
by the SGEC. When cleared, this bit indicates the descriptor is
owned by the host. The SGEC clears this bit upon completing
processing of the descriptor and its associated buffer.

Time domain reflectometer. This field is a count of bit time.
The count is useful for locating a fault on the cable, using the
velocity of propagation on the cable. This field is valid only if
TDESO<EC> is also set. Two excessive collisions in a row and
with the same or similar TDR values (within 20) indicate a
possible cable open.

Error summary. This bit is the logical OR of UF, TN, EC, LC,
NC, LO, LE and TO.

Transmit watchdog timeout. If this bit is set, the transmit
watchdog timer has timed out, indicating the SGEC
transmitter was babbling. The interrupt NICSR5<TW> is
set, and the transmission process is aborted and placed in the
stopped state.

Table 7-26 (Cont.) TDESO Bits

Bit Name

<12> LE

<11> LO

<10> NC

<09> LC

<08> EC

<07> HF

<06:03> CC

<02> TN

Interface Subsystems 179

Description

Length error. When set, this bit indicates one of the following:

• Descriptor unavailable (owned by the host) in the middle
of data-chained descriptors.

• Zero-length buffer in the middle of data-chained
descriptors.

• Setup or diagnostic descriptors (data type TDESl<IYI'> <>
0) in the middle of data-chained descriptors.

• Incorrect order of first-segment TDESl<FS> and last­
segment TDESl<LS> descriptors in the descriptor list.

The transmission process enters the suspended state and sets
NICSR5<Tl>.

Loss of carrier. When set, this bit indicates a loss of carrier
during transmission (possible short circuit in the Ethernet
cable).

This bit is meaningless in internal loopback mode
(NICSR5<OM>=I).

No carrier. When set, this bit indicates the carrier signal from
the transceiver was not present during transmission (possible
problem in the transceiver or transceiver cable).

This bit is meaningless in internal loopback mode
(NICSR5<OM>=I).

Late collision. When set, this bit indicates frame transmission
was aborted due to a late collision. This bit is meaningless if
TDESO<UF>.

Excessive collisions. When set, this bit indicates that the
transmission was aborted because 16 successive collisions
occurred while attempting to transmit the current frame.

Heartbeat fail. When set, this bit indicates a heartbeat
collision check failure. The transceiver failed to return
a collision pulse as a check after the transmission. Some
tranceivers do not generate heartbeat, so they always have
this bit set. If the transceiver does support heartbeat, this
bit indicates a transceiver failure. The bit is meaningless if
TDESO<UF>.

Collision count. This is a 4-bit counter, indicating the
number of collisions that occurred before the transmission
attempt succeeded or failed. This bit is meaningless when
TDESO<EC> is also set.

Translation not valid. When set, this bit indicates that a
translation error occurred when the SGEC was translating a
VAX virtual buffer address. TN may only set if TDESl<VA>
was set. The transmission process enters the suspended state
and s~ts NICSR5<Tl>.

180 Interface Subsystems

Table 7-26 (Cont.) TOESO Bits

Bit Name

UF

DE

7.3.18.2 TOES1 Word

Description

Underflow error. When set, this bit indicates that the
transmitter has truncated a message due to data being late
from memory. UF indicates that the SGEC encountered
an empty transmit FIFO while transmitting a frame. The
transmission process enters the suspended state and sets
NICSR5<Tl>.

Deferred. When set, this bit indicates that the SGEC had to
defer while trying to transmit a frame. This condition occurs
if the channel is busy when the SGEC is ready to transmit.

The TDESI word contains a chain address and virtual addressing bit that affect the
TDES3 word. Table 7-271ists the TOES! bit descriptions.

Table 7-27 TOES1 Bits

Bit Name

<31> CA

VA

Description

Chain address. When this bit is set, TDES3 is interpreted as
another descriptor's VAX physical address. This allows the
SGEC to process multiple, noncontiguous descriptor lists and
explicitly chain the lists. Note that contiguous descriptors are
implicitly chained.

In contrast to what is done for a receive buffer descriptor, the
SGEC does not clear the ownership bit TDESO<OW> or one of
the other bits of the TDESO chain descriptor after processing.

'1b protect against an infinite loop, a chain descriptor that
points back to itself is seen as owned by the host, regardless
of the setting of the ownership bit.

Virtual addressing. When thsi bit is set, TDES3 is interpreted
as a virtual address. The TDESl<VT> bit determines the
type of virtual address translation. The SGEC uses TDES3
and TDES2<page offset> to perform a VAX virtual address
translation process and obtain the physical address of the
buffer. When clear, TDES3 is interpreted as the actual
physical address of the buffer.

VA

o
1

1

VT

x

o
1

Addressing Mode

Physical

Virtual-SVAPTE type

Virtual-PAPTE type

Table 7-27 (Cont.) TDES1 Bits

Bit Name

<29:28> DT

<27> AC

<26> FS

<25> LS

<24> IC

<23> VT

<22:0> U

7.3.18.3 TDES2 Word

Interface Subsystems 181

Description

Data type. This field Indicates the type of data the buffer
contains, according to the following table:

Value

00

10

11

Meaning

Normal transmit frame data

Setup frame (Explained in Section 7.3.19.)

Diagnostic frame

Add CRC disable. When this bit is set, the SGEC does not
append the CRC to the end of the transmitted frame. 'lb take
effect, this bit must be set in the descriptor where FS is set.

NOTE
If the transmitted frame is shorter than 64 bytes, the
SGEC adds the padding field and the CRC regardless of
the <AC> flag.

First segment. When set, this bit indicates the buffer contains
the first segment of a frame.

Last segment. When set, this bit indicates the buffer contains
the last segment of a frame.

Interrupt on completion. When the bit is set, the SGEC sets
NICSR5<TI> after this frame has been transmitted. 'lb take
effect, this bit must be set in the descriptor where LS is set.

Virtual type. If virtual addressing is used (TDESl<VA> =
1), this bit indicates the type of virtual address translation.
When this bit is set, the buffer address TDES3 is interpreted
as a system virtual address of the page table entry (SVAPTE).
When this bit is clear, the buffer address is interpreted as a
physical address of the page table entry (PAPTE). This bit is
meaningful only if TDESl<VA> is set.

This word contains the buffer size of the data buffer, as well as the byte offset of buffer
within the page. Table 7-28 lists the TDES2 bit descriptions.

182 Interface Subsystems

Table 7-28 TOES2 Bits

Bit

<31>

<30:16>

<08:00>

Name

U

BS

PO

7.3.18.4 TOES3 word

Description

Buffer size. The size, in bytes, of the data buffer. If this field
is 0, the SGEC ignores this buffer. The frame size is the sum
of all BS fields of the frame segments (between and including
the descriptors that have TDES1<FS> and TDES1<LS> set.)

NOTE
If the port driver wants to suppress transmission of a
frame, this field must be set to 0 in all descriptors that
make up the frame, before the SGEC acquires them. If
this rule is not adhered to, corrupted frames may be
transmitted.

Page offset. This field is the byte offset of the buffer within
the page. Only meaningful ifTDES1<VA> is set.

NOTE
Transmit buffers may start on arbitrary byte
boundaries.

The TDES3 word is interpreted as the address of either the page table entry or the
the buffer, depending on the setting of the TDESI word. Table 7-29 lists the bit
descriptions.

Table 7-29 TOES3 Bits

Bit Name

<31:00> SVIPVIPA

Description

SVAPTEIPAPTElPhysical address. If TDES1<VA> is set,
TDES3 is interpreted as the address of the page table entry
and used in the virtual address translation process. The
setting of TDES1 <VT> determines the type of the address­
system virtual address (SVAPTE) or physical address
(PAPTE)'

IfTDES1<VA> is clear, TDES3 is interpreted as the physical
address of the buffer. When TDES1<CA> is set, RDEsa is
interpreted as the VAX physical address of another descriptor.

NOTE
Transmit buffers may start on arbitrary byte
boundaries.

7.3.18.5 Transmit Descriptor Status Validity
Table 7-30 summarizes the validity of the transmit descriptor status bits regarding the
transmission completion status:

Interface Subsystems 183

Table 7-30 Transmit Descriptor Status Validity

Transmission
Transmission Status Report

Status LO NC LC EC HF CC (ES,TO,LE,TN,UF,DE)

Underflow M M V V M V V

EMcessive collisions V V V V V M V

Watchdog timeout M V M M M V V

Internal loopback M M V V M V V

V = valid.
M = meaningless.

7.3.19 Setup Frame

A setup frame defines SGEC Ethernet destination addresses. These addresses are to
filter all incoming frames. The setup frame is never transmitted over the Ethernet or
looped back to the receive list. While the setup frame is being processed, the receiver
logic temporarily disengages from the Ethernet wire. The setup frame size is always 128
bytes and must be wholly contained in a single transmit buffer. There are two types of
setup frames:

1. Perfect filtering addresses (16) list

2. Imperfect filtering hash bucket (512) heads + one physical address

7.3.19.1 First Setup Frame
A setup frame must be queued (placed in the transmit list with SGEC ownership) to the
SGEC before the reception process starts. The only exception is when the SGEC operates
in promiscuous reception mode.

NOTE
The self-test completes with the SGEC address filtering table fully set to O. A
reception process that starts before a setup frame is loaded will reject all the
incoming frames except those with a destination physical address of OOOOOOh •

7.3.19.2 Subsequent Setup Frame
Subsequent setup frames may be queued to the SGEC, regardless of the reception process
state. The only requirement for processing these setup frames is that the transmission
process be in the running state. The setup frame is processed after all preceding frames
have been transmitted and the current frame reception (if any) is completed.

The setup frame does not affect the reception process state. However, while the setup
frame is being processed, the SGEC is disengaged from the Ethernet wire.

184 Interface Subsystems

7.3.19.3 Setup Frame Descriptor
Figure 7-25 shows the fonnat of the setup frame descriptor. Table 7-31 lists the bit
descriptions. The following sections describe each word of the descriptor.

3 3 2 2 2 2 2 2 2 2 22' , 1 1 1 1 , ,
1 0 987 6 5 432 1 098 7 6 5 4 3 2

1
098 765 432 1 0

0 I ~ 10 I ~ I W MBZ MBZ
SOESO

o U I OT I u I ~ I ~ I ~ 1 u SOES,

U Buller Size I U
SOES2

SOES3 u I Setup Buller Physical Address lu

o • SGEC writes as O.
U • ignored by 'he SGEC on read. never written.

Figure 7-25 Setup Frame Descriptor Format

Table 7-31 Setup Frame Descriptor Bits

Word Bit Name

SDESO <13> SE

<15> ES

<31> ow

SDESl <24> IC

<25> HP

Description

Setup error. When set, this bit indicates the
setup frame's buffer size is not 128 bytes.

Error summary. This bit is set when SE is
set.

Owner bit. When set, this bit indicates the
descriptor is owned by the SGEC. When
cleared, this bit indicates the descriptor
is owned by the host. The SGEC clears
this bit upon completing processing of the
descriptor and its associated buffer.

Interrupt on completion. When this bit is
set, the SGEC sets NICSR5<T1> after this
setup frame is processed.

HashlPerfect filtering mode. When this bit
is set, the SGEC interprets the setup frame
as a hash table and does an imperfect
address filtering. The imperfect mode
is useful when there are more than 16
multicast addresses to listen to.

When this bit is clear, the SGEC does a
perfect address filter of incoming frames
according to the addresses specified in the
setup frame.

Table 7-31 (Cont.) Setup Frame Descriptor Bits

Word

SDES2

SDES3

Bit

<26>

<29:28>

<30:16>

<29:1>

Name

IF

DT

BS

PA

7.3.19.4 Perfect Filtering Setup Frame Buffer

Interface Subsystems 185

Description

Inverse filtering. When this bit is set, the
SGEC does an inverse filtering. That is,
the SGEC accepts the incoming frames with
a destination address not matching the
perfect addresses, and rejects the frames
with destination address matching one of
the perfect addresses.

This bit is meaningful only for perfect
filtering (SDES1<HP>=O), while
promiscuous and all multicast modes are
not selected (NICSR6<.AF>=O).

Data type. Must be 2 to indicate setup
frame.

Buffer size. Must be 128.

Physical address. The physical address of
the setup buffer.

NOTE
The setup buffer must be word.aligned.

This section describes how the SGEC interprets a setup frame buffer when SDES1<HP>
is clear.

The SGEC can store 16 full 48-bit Ethernet destination addresses. It compares the
addresses of any incoming frame to these stored addresses and rejects frames based on
the status of Inverse_Filtering flag SDES1<1F>:

• If SDES1<1F> = 0, reject addresses that do not match.

• If SDES1<IF> = 1, reject addresses that do match.

The setup frame must always supply all 16 addresses. Any mix of physical and multicast
addresses can be used. Unused addresses should be duplicates of one of the valid
addresses. Figure 7-26 shows the format for addresses.

186 Interface Subsystems

31 16 15

Bytes <3:0>
<7:4>

<123:120>
<127:124>

Perfect Address_0O
xxxxxxxxxxxxxxxi

Perfect Address_01
xxxxxxxxxxxxxxxi

Perfect Address_02
xxxxxxxxxxxxxxxi

Perfect Address_03
xxxxxxxxxxxxxxxi

Perfect Address_04
xxxxxxxxxxxxxxxi

Perfect Address_05

Perfect Address_13
xxxxxxxxxxxxxxxi

Perfect Address_14
xxxxxxxxxxxxxxxi

Perfect Address_15
xxxxxxxxxxxxxxxi

XXXXXX = Don't care.

° Bit

... Physical/Multicast Bit

Figure 7-26 Perfect Filtering Setup Frame Buffer Fonnat

The low-order bit of the low-order bytes is the address's multicast bit.

Example 7-1 shows a fragment of a perfect filtering setup buffer.

Ethernet addresses to be filtered:
• AS-09-65-12-34-76

09-BC-S7-DE-03-1S

Setup frame buffer fragment:
.. 126509AS

00007634
DES7BC09
00001503

• Two Ethernet addresses written for address display.

.. Those two addresses as they would appear in the buffer.

Example 7-1 Perfect Filtering Buffer

7.3.19.5 Imperfect Filtering Setup Frame Buffer

Interface Subsystems 187

This section describes how the SGEC interprets a setup frame buffer when SDESl<HP>
is set.

The SGEC can store 512 bits, serving as hash bucket heads, and one physical 48-bit
Ethernet address. Incoming frames with multicast destination addresses are subjected to
the imperfect filtering. Frames with physical destination addresses are checked against
the single physical address.

Multicast Address For any incoming frame with a multicast destination address, the
SGEC applies the standard Ethernet CRC function to the first 6 bytes containing the
destination address. Then the SGEC uses the most significant 9 bits of the result as a bit
index into the table. If the indexed bit is set, the frame is accepted. If it is cleared, the
frame is rejected.

This filtering mode is called imperfect, because multicast frames not addressed to this
station may slip through, but the filtering still reduces the number of frames present to
the host.

Figure 7-27 shows the format for the hash table and the physical address.

188 Interface Subsystems

31

Bytes <3:0> I
<7:4>

<63:60>

16 15

Hash Filter 00
Hash Filter 01

Hash Filter 14
Hash Filter 15

<67:64> Physical Address
< 71 :68> xxxxxxxxxxxxxxxx I

o

<75:72> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

<127:120> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx = don't care.

Bit

~ Physical/Multicast bit

Figure 7-27 Imperfect Filtering Setup Frame Format

Bits are sequentially numbered from right to left, down the table. For example, if
CRC(destination address}<8:0> = 33, the SGEC examines bit 1 in the second longword.

Example 7-2 shows an imperfect filtering setup frame buffer.

Ethernet addresses to be filtered:
• 2S-00-2S-00-27-00

A3-CS-62-3F-2S-S7
D9-C2-CO-99-0B-82
7D-4S-4D-FD-CC-OA
E7-Cl-96-36-S9-DD
61-CC-2S-SS-03-C7
6B-46-0A-SS-2D-7E

• AS-12-34-3S-76-0S

Setup frame buffer:

• 00000000
10000000
00000000
00000000
00000000
40000000
00000080
00100000

Example 7-2 (Cont.) Imperfect Filtering Buffer

Interface Subsystems 189

00000000
10000000
00000000
00000000
00000000
00010000
00000000
00400000 e 353412A8
00000876

• Ethernet Multicast addresses written according to the DEC STD 134 specification for
address display.

• An Ethernet physical address.

• The first part of an imperfect filter setup frame buffer, with set bits for the •
multicast addresses.

e The second part of the buffer with the. physical address.

Example 7-2 Imperfect Flherlng Buffer
Example 7-3 shows a C program to compute the hash bucket heads and create the
resulting setup frame buffer.

tinclude <stdio>

unsigned int imperfect setup frame[128/4],
/* bytes */- -

address,
crc[33]; /* CRC residue vector */

main ()
{

int i, hash;
*/

/* The setup buffer - 128 */

This program accepts 48-bit Ethernet addresses and builds a setup frame
buffer for imperfect filtering. */

*/

*/
/*
/*
/*
/*
/*
/*
/*
/*

Addresses must be entered in hexadecimal. The multicast bit is the least */
significant bit of the least significant digit of the first 32 bits. */
Nonmulticast addresses are ignored. */

*/
/* Input is terminated by typing CTRL/Z. The program then prints out
/* the buffer. */
/*
main_loop:

*/

/* Prompt user for the Ethernet address */
printf ("\n\n Enter the first 32 bits (HEX) - tt);

if (scanf ("%x", &address [0]) == EOF)

printf ("\n\n Imperfect Setup buffer printout\n");
for (i=O; i < 128/4; i++)

printf("%08X\n", imperfect_setup_frame[i]);
exit(l);

*/

Example 7-3 (Cont.) Creating an Imperfect Filtering Setup Frame Buffer (C Program)

190 Interface Subsystems

printf("\n Enter the rema~n~ng 16 bits (HEX) - "};
scanf("%x",&address[lj);

/* Ignore non multicast addresses
if «address[O] & 1) == 0)

goto main_loop;

*/

/* Compute the hash function */
hash"" address_crc(address[0],addressY3vMfgyY""vbwlm{

/* Set the appropriate bit in the Setup buffer */
imperfect setup frame[hash/32] =

imperfect_setup_frame[hash/32] I 1 « hash%32;

goto main_loop;

int address_crc(unsigned int lsb32 , unsigned int msb16)
{

int j,hash == 0;

/* Set CRC to all l's

for (j=O; j < 33; j++)
crc[j] = 1;

/* Compute the address CRC by

for (j=O; j < 32; j++)
nextstate(lsb32 & l«j ? 1 :

for (j=O; j < 16; j++)
nextstate(msb16 & l«j ? 1 :

*/

running the CRC 48 steps

0);

0);

*/

/* Extract 9 most significant bits from the CRC residue */

for (j=24; j < 33; j++)
hash = hash«l I crc[jj;

return hash;

nextstate(dat)
int dati
{

int i,mean;
mean = crc[32] " dati
for(i=32;i>=2;i--) crc[ij-crc[i-l];
crc[27] = crc[27] A mean;
crc[24] crc[24] A mean;
crc[23] - crc[23] A mean;
crc[17] == crc(17) A mean;
crc[13] - crc[13] A mean;
crc[12] == crc[12] A mean;
cre[ll] _ cre[ll] A mean;
crc[9] == erc[9] A mean;
cre[8] = cre[8] A mean;
crc == erc "mean;
ere[S] a crc[5] A mean;
crc[3] - ere[3] A mean;
cre[2] = cre[2] A mean;
erc[l] == mean;

Example 7-3 Creating an Imperfect Filtering Setup Frame Buffer (C Program)

Interface Subsystems 191

7.3.20 Hardware and Software Reset
The SGEC responds to two types of reset commands-a hardware reset through the
RESET_L pin and a software reset command triggered by setting NICSR6<RE>. In both
cases, the SGEC aborts all ongoing processing and starts the reset sequence. The SGEC
restarts and reinitializes all internal states and registers. No internal states are retained,
no descriptors are owned, and all the host-visible registers are set to 0, except where noted.

NOTE
The SGEC does not explicitly disown any owned descriptor, so the owned bit of
descriptor may be left in a state indicating SGEC ownership.

Table 7-32 lists the NICSR fields that are not set to 0 after a reset.

Table 7-32 NICSR Field Values After Reset

Field Value

NICSR3 Unpredictable

NICSR4 Unpredictable

NICSR5<DN> 1

NICSR6<BL> 1

NICSR6<RE> Hardware reset: unpredictable

Software reset: 1

NICSR7 Unpredictable

NICSR9 RT = TT = 1250

After the reset sequence completes, the SGEC executes the self-test procedure to do basic
checking.

If the self-test completes successfully, the SGEC initializes the SGEC and sets the
initialization done flag NICSR5<1D>.

At the first failure detected in one of the basic tests of the self-test routine, the test is
aborted and the self-test failure NICSR5<SF> bit is set together with the self-test error
status NICSR5<SS> bit. SS indicates the reason for the failure.

NOTE
The self-test takes 25 ms to complete after a hardware or software reset.

If the initialization completes successfully, the SGEC is ready to accept further host
commands. Both the reception and transmission processes are placed in the stopped
state.

Successive reset commands (hardware or software) may be issued. The only restriction
is that SGEC NICSRs should not be accessed during a 1-microsecond period following
the reset. Access during this period will produce a CP bus timeout error. Access to
SGEC NICSRs during the self-test are permitted; however, only NICSR5 reads should be
performed.

192 Interface Subsystems

7.3.21 Interrupts
Interrupts are generated as a result of various events. NICSR5 contains all the status
bits that can cause an interrupt, provided NICSR6<1E> is set. The port driver must clear
the interrupt bits (by writing a 1 to the bit position) to enable further interrupts from the
same source.

Interrupts are not queued. If the interrupting event reoccurs before the port driver has
responded to it, no additional interrupts are generated. For example, NICSR5<RI>
indicates one or more frames were delivered to host memory. The port driver should scan
all descriptors, from its last recorded position up to the first SGEC-owned descriptor.

An interrupt is generated only once for simultaneous, multiple interrupting events. It is
the port driver's responsibility to scan NICSR5 for the interrupt cause(s). The interrupt
is not regenerated, unless a new interrupting event occurs after the host acknowledged
the previous one, and provided the port driver cleared the appropriate NICSR5 bites).

For example, NICSR5<T1> and NICSR5<RI> may both set. The host acknowledges the
interrupt, and the port driver begins executing by reading NICSR5. Now NICSR5<RU>
sets. The port driver writes back its copy of NICSR5, clearing NICSR5<T1> and
NICSR5<RI>. After the host IPL is lowered below the SGEC level, another interrupt
is delivered with the NICSR5<RU> bit set.

If the port driver clears all NICSR5 set interrupt bits before the interrupt has been
acknowledged, the interrupt is suppressed.

7.3.22 Startup Procedure
The port driver must perform the follwoing sequence of checks and commands in order to
prepare the SGEC for operation:

1. Wait for the SGEC to complete its initialization sequence by polling on NICSR5<1D>
and NICSR5<SF> (Section 7.3.8).

2. Examine NICSR5<SF> to find out whether the SGEC passed its self-test. If it did
not, it should be replaced (Section 7.3.8).

3. Write NICSRO to establish system configuration dependent parameters
(Section 7.3.4).

4. If the port driver intends to use VAX virtual addresses, NICSR7 must be written to
identify the system page table to the SGEC (Section 7.3.10).

5. If the port driver wants to change the default settings of the watchdog timers, it must
write to NICSR9 (Section 7.3.12).

6. The port driver must create the transmit and receive descriptor lists, then write to
NICSRa and NICSR4 to provide the SGEC with the starting address of each list. The
first descriptor on the transmit list usually contains a setup frame (Section 7.3.7).

7. Write NICSR6 to set global operating parameters and start the transmission and
reception processes. Both processes enter the running state, then try to acquire
descriptors from the respective descriptor lists and begin processing incoming and
outgoing frames (Section 7.3.9). The Teceptionand transmission processes are
independent of each other, so they can be started and stopped separately.

CAUTION
If address filtering <either perfect or imperfect) is desired, the reception
process should start only after the setup frame has been processed.

Interface Subsystems 193

8. The port driver now waits for any SGEC interrupts. If either the reception or
transmission processes were suspended, the port driver must issue the poll demand
command after it has rectified the suspension cause.

7.3.23 Reception Process

While in the running state, the reception process polls the receive descriptor list,
attempting to acquire free descriptors. Incoming frames are processed and placed in
acquired descriptors' data buffers. Status information is written to the descriptor RDESO
words.

The SGEC always tries to acquire an extra descriptor in anticipation of incoming frames.
Descriptor acquisition is attempted under the following conditions:

• Immediately after being placed in the running state by setting NICSR6<SR>

• When the SGEC begins writing frame data to a data buffer pointed to by the current
descriptor

• At the last acquired descriptor chained (RDESl<CA> = 1) to another descriptor

• When a virtual translation error is encountered RDESO<TN> while the SGEC is
translating the buffer base address of the acquired descriptor

As incoming frames arrive, the SGEC strips the preamble bits and stores the frame
data in the receive FIFO. Concurrently, the SGEC performs address filtering according
to NICSR6 fields AF, HP, and the SGEC's internal filtering table. If the frame fails the
address filtering, the frame is ignored and purged from the FIFO. Frames shorter than
64 bytes, due to collision or premature termination, are also ignored and purged from the
FIFO, unless NICSR6<PB> is set.

After 64 bytes are received, the SGEC begins transferring the frame data to the buffer
pointed to by the current descriptor. If data chaining is enabled (NICSR6<DC> clear), the
SGEC writes any frame data overflowing the current data buffer into successive buffer(s).
The SGEC sets the RDESO<FS> and RDESO<LS> in the first and last descriptors,
respectively, to delimit the frame. Descriptors are released (RDESO<OW> bit cleared) as
their data buffers fill up or after the last segment of a frame is transferred to a buffer.

The SGEC sets RDESO<LS> and the RDESO status bits in the last descriptor it releases
for a frame. After the last descriptor of a frame is released, the SGEC sets NICSR5<RI>.

This process is repeated until the SGEC encounters a descriptor flagged as owned by
the host. After filling up all previously acquired buffers, the reception process sets
NICSR5<RU> and enters the suspended state. The position in the receive list is retained.

Any incoming frames received in this state cause the SGEC to fetch the current
descriptor in the host memory. If the descriptor is now owned by the SGEC, the reception
process re-enters the running state and starts the frame reception.

If the descriptor is still owned by the host, the SGEC increments the missed-frames
counter (NICSRlO<MFC» and discards the frame.

Table 7-33 summarizes the reception process state transitions and resulting actions:

194 Interface Subsystems

Table 7-33 Reception Process State Transitions

From State

Stopped

Running

Running

Running

Running

Suspended

Suspended

Suspended

Event

Start reception.

SGEC tries to acquire a
descriptor owned by the
host.

Stop reception.

A memory or host bus
parity error is encountered.

Reset.

Receive poll demand
or incoming frame and
available descriptor.

Stop reception.

Reset.

7.3.24 Transmission Process

'IbState

Running

Suspended

Stopped

Stopped

Stopped

Running

Stopped

Stopped

Action

Receive polling begins from
the last list position or from
the the list head (if this is the
first start command issued,
or if the receive descriptor
list address (NICSR3) was
modified by the port driver).

NICSR5<RU> is set when
the last acquired descriptor
buffer is consumed. The
position in the list is
retained.

The reception process is
stopped after the current
frame (if any) is completely
transferred to data buffer(s).
The position in the list is
retained.

Reception is cut off and
NICSR5<ME> is set.

Reception is cut off.

Receive polling resumes from
the last list position or from
the list head (if NICSR3 was
modified by the port driver).

None.

None.

In the running state, the transmission process polls the transmit descriptor list for
any frames to transmit. Frames are built and transmitted on the Ethernet wire. After
completing frame transmission (or giving up), status information is written to the TDESO
words. When polling starts, it continues (in sequential or descriptor~chained order)
until the SGEC encounters either a descriptor flagged as owned by the host, or an error
condition. At this point, the transmission process is placed in the suspended state and
NICSR5<TI> is set.

NICSR5<T1> is also set after completing transmission of a frame that has TDES1<1C>
set in its last descriptor. In this case, the transmission process remains in the running
state.

Frames may be data-chained and span several buffers. Frames must be delimited by
TDESl<FS> and TDESl<LS> in the first and last descriptors, respectively, containing
the frame.

As the transmission process starts in the running state, it first expects to find a descriptor
with TDES1<FS> set. Frame data transfer from the host buffer to the internal FIFO is
initiated.

Interface Subsystems 195

At the same time, if the current frame had TDESl<LS> clear, the transmission process
tries to acquire the next descriptor. The process expects either TDESl<FS> and
TDESl<LS> to be clear (indicating an intermediary buffer), or TDESl<LS> to be set
(indicating the end of the frame). After the last buffer of the frame is transmitted, the
SGEC:

• Writes back final status information to the TDESO word of the descriptor having
TDESl<LS> set.

• Optionally sets NICSR5<T1> ifTDESl<lC> was set.

• Repeats the process with the next descriptor(s).

Actual frame transmission begins after at least 72 bytes have been transferred to
the internal FIFO, or a full frame is contained in the FIFO. Descriptors are released
(TDESO<OW> bit cleared) as soon as the SGEC is through processing a descriptor.

Suspended State

Transmit polling suspends under the following conditions:

• The SGEC reaches a descriptor with TDESO<OW> clear. To resume, the port driver
must give descriptor ownership to the SGEC and issue a poll demand command.

• The TDESl<FS> and TDESl<LS> are incorrectly paired or out of order. TDESO<LE>
will be set.

• A frame transmission is given up due to a locally induced error. The appropriate
TDESO bit is set.

The transmission process enters the suspended state and sets NICSR5<TI>. Status
information is written to the TDESO word of the descriptor causing the suspension. In all
the cases listed, the position in the transmit list is retained. The retained position is that
of the descriptor following the last descriptor closed (set to host ownership) by the SGEC.

NOTE
The SGEC does n.ot automatically poll the transmit descriptor list. The port
driver must explicitly issue a transmit poll demand command after rectifying
the suspension cause.

Table 7-34 summarizes the transmission process state transitions:

Table 7-34 Transmission Process State Transitions

From State

Stopped

Running

Event

Start transmission.

The SGEC tries to acquire a
descriptor owned by the host.

To State

Running

Suspended

Action

Transmit polling begins
from the last list
position or from the
head of the list (if
this is the first start
command issued, or if
the transmit descriptor
list address (NICSR4)
was modified by the
port driver.)

NICSR5<T1> is set.
The position in the list
is retained.

196 Interface Subsystems

Table 7-34 (Cont.) Transmission Process State Transitions

From State

Running

Running

Running

Running

Running

Running

Suspended

Suspended

Suspended

Event

Out-of-order delimiting flag
(TDESO<FS> or TDESO<LS»
encountered.

The frame transmission aborts
due to a locally induced error.

Stop transmission.

Transmit watchdog expires.

Memory or host bus parity error
encountered.

Reset.

Transmit poll demand.

Stop transmission.

Reset.

7.3.25 Loopback Operations
The SGEC supports two loopback modes:

• Internal mode

To State

Suspended

Suspended

Stopped

Stopped

Stopped

Stopped

Running

Stopped

Stopped

Action

TDESO<LE> and
NICSR5<T1> are set.
The position in the list
is retained.

Appropriate TDESO and
NICSR5<T1> bits are
set. The position in the
list is retained.

The transmission
process is stopped
after the current frame,
if any, is transmitted.
The position in the list
is retained.

Transmission is cut off
and NICSR5<'lW> ,
TDESO<TO> are set.
The position in the list
is retained.

Transmission is cut off,
and NICSR5<ME> is
set.

Transmission is cut otT.

Transmit polling
resumes from last
list position or from the
list head (if NICSR4
was modified by the
port driver).

None.

None.

This mode is generally used to verify correct operations of the SGEC internal logic.
While in this mode, the SGEC takes frames from the transmit list and loops them
back internally to the receive list. In this mode, the SGEC is disengaged from the
Ethernet wire.

• Externalloopback

This mode is generally used to verify correct operations up to the Ethernet cable.
In this mode, the SGEC takes frames 'from the transmit list and transmits them on
the Ethernet wire. Concurrently, the SGEC listens to the line that carnes its own
transmissions and places incoming frames in the receive list.

Interface Subsystems 197

NOTE
Caution should be exercised in this mode, since transmitted frames are
placed on the Ethernet wire. Furthermore, the SGEC does not check the
origin of any incoming frames, so frames not originating from the SGEC
may make it to the receive buffers.

In either of these modes, all address-filtering and validity-checking rules apply. The port
driver needs to take the fonowing actions:

1. Place the reception and transmission processes in the stopped state. The port driver
must wait for any previously scheduled frame activity to cease. This is done by
polling the TS and RS fields in NICSR5.

2. Prepare appropriate transmit and receive descriptor lists in host memory. These may
follow the existing lists at the point of suspension, or may be new lists. New lists
must be identified to the SGEC by appropriately writing NICSR3 and NICSR4.

3. Write to NICSR6<OM> according to the desired loopback mode. Use start commands
to place the transmission and reception processes in the running state.

4. Respond and process any SGEC interrupts, as in normal processing.

To restore normal operations, the port driver must execute step 1 above, then write the
OM field in NICSR6 with 00.

7.3.26 Support for DNA CSMA/CD Counters and Events

Table 7-35 describes the SGEC features that support the port driver in implementing
and reporting the specified counters and events.

Table 7-35 CSMAlCD Counters

Counter

Time since counter creation

Bytes received

Bytes sent

Frames received

Frames sent

Multicast bytes received

Multicast frames received

Frames sent, initially deferred

Frames sent, single collision

SGEC Feature

Supported by the host driver.

The port driver must add up the RDESO<FL> fields
of all successfully received frames.

The port driver must add up the TDES2<BS> fields
of all successfully transmitted buffers.

The port driver must count the successfully received
frames in the receive descriptor list.

The port driver must count the successfully
transmitted frames in the transmit descriptor list.

The port driver must add up the RDESO<FL> fields
of all successfully received frames with multicast
address destinations.

The port driver must count the successfully received
frames with multicast address destinations.

The port driver must count the successfully
transmitted frames with TDESO<DE> set.

The port driver must count the successfully
transmitted frames with TDESO<CC> equal to
1.

198 Interface Subsystems

Table 7-35 (Cont.) CSMAlCD Counters

Counter

Frames sent, multiple collisions

Send failure-excessive collisions

Send failure--carrier check failed

Send failure-short circuit

Send failure-<)pen circuit

Send failure-remote failure to defer

Receive failure-block check error

Receive failure-framing error

Receive failure-frame too long

Unrecognized frame destination

Data overrun

System buffer unavailable

User buffer unavailable

Collision detect check failed

SGEC Feature

The port driver must count the successfully
transmitted frames with TDESO<CC> greater than
1.

The port driver must count the transmit descriptors
having TDESO<EC> set.

The port driver must count the transmit descriptors
having TDESO<LC> set.

'!\vo successive transmit descriptors with the no
carrier flag TDESO<NC> are set, indicating a short
circuit.

'!\vo successive transmit descriptors with the
excessive collisions flag TDESO<EC> are set
with the same time domain refiectometer value
TDESO<TDR>, indicating an open circuit.

Flagged as a late collision TDESO<LC> in the
transmit descriptors.

The port driver must count the receive descriptors
having RDESO<CE> set with RDESO<DB> cleared.

The port driver must count the receive descriptors
having both RDESO<CE> and RDESO<DB> set.

The port driver must count the receive descriptors
having RDESO<TL> set.

Not applicable.

The port driver must count the receive descriptors
having RDESO<OF> set.

Reported in the Missed-frame counter
NICSRlO<MFC>. (See Table 7-17.)

Not applicable.

The port driver must count the transmit descriptors
having TDESO<HF> set.

CSMAlCD-specified events can be reported by the port driver based on the above table.
The initialization failed event is reported through NICSR5<SF>.

7.4 KA670 Mass Storage Interface
The KA670 contains two DSSI bus interfaces that are implemented with the two single
host adapter chips (SHACs). These interfaces allow the KA670 to transmit packets of
data to, and receive packets of data from, up to 14 other DSSI devices (typically RF­
type disk drives and TF-type streaming tape drives). The two DSSI buses are distinct
from each other, with each supporting seven devices. The SHACs support CP bus parity
protection.

Interface Subsystems 199

7.4.1 SHAC Overview

The single host adapter chip (SHAC) is a single-chip, VLSI version of Digital's
systems communications architecture (SCA) port that uses a DSSI bus as the physical
interconnect. Another SCA realization, CI, has defined a port-driver/port interface which
has been used to connect VAX systems in clusters. DSSI has adopted the same interface,
so the same VMS port driver can drive either a CI port or SHAC. The SHAC can be used
to connect a host to any other device that can communicate through the CI-DSSI protocol.
In particular, the SHAC provides a solution to the following problems:

• Interfacing a group of mass storage device controllers (MSDCs) to a VAX

• Interfacing several VAX systems to a common group of MSDCs and, if higher level
protocols support this option, to one another

Where two or more VAX systems connect to a group of MSDCs (or to one another) through
DSSI, each has a SHAC or another DSSI port. When a group of MSDCs connect to the
DSSI bus, the controllers provide both the bus interface and the intelligent control
required to respond to the CI commands received over the DSSI.

On the I-byte wide DSSI bus, both the MSDCs and the several VAX systems
communicate at high speed, with a 4 to 5 Mbytels burst transfer rate. The SHAC handles
the problem of providing effective, efficient, and reliable interfacing between this DSSI
bus and the CPU that has direct host memory access (DMA) over the host's 32-bit wide,
16 Mbyte/s CP bus. All communications between those connected to the DSSI will follow
the CI protocol, with the DSSI protocols providing handshaking in the transactions.

Structural parameters limit the number of possible combinations that can be realized
with DSSI and SHAC.

• A single DSSI bus has room for eight nodes, which may be partitioned among host
adapters (for example, SRACs) and MSDCs.

• Up to four SHACs can be installed on a single host bus.

• Because there must be a host, there can be up to seven MSDCs on a single DSSI.

The SHAC provides a small amount of buffering (1.2 kilobytes) on the chip to improve
bus utilization on both sides, but SHAC is designed to pass data through from one bus
to the other as rapidly as the two buses permit. DMA services to and from the main
memory reside in the SHAC, which responds to requests for transfers between the host
and the remote nodes.

The SHAC is operated by an on-chip reduced intruction set chip (RISC) that obtains
its code and internal data from on-chip RAM and ROM. The RAM is loaded from main
memory, both during initialization and as circumstances require during normal runtime.
This capability allows the RAM to read in new code and data from the main memory.
so it can adapt its behavior to new circumstances. This feature permits inexpensive
upgrades of SHACs after they are installed in the field. It also allow the SHAC to store
infrequently accessed code in main memory, providing more capability than could be
included in on-chip ROM.

SeA Communications Architecture

The SHAC works under Digital's systems communications architecture (SCA). This
architecture defines four layers (Figure 7-28). The architecture can be realized in
a variety of ways. Two realizations at the lowest two levels, in the diagram are the
computer interconnect (CI) and Digital storage system interconnect (DSSI). They share
the same lowest host layer (CI port driver), but have distinctly different physical

200 Interface Subsystems

interconnects. The layers between the port driver and the DSSI bus can be realized
at both the board and chip level, and products at both levels are in design within Digital.

The SHAC is a chip-level product that connects the host bus to the DSSI bus. The SHAC
is controlled by the CPU through a CI port driver, accepting and delivering CI-defined
packets over the DSSI bus. Layers above the port driver are invisible to SHAC.

SCA

3. 1/0 Applications
(SYSAP)

2. System Communications
(SCS) CI DSSI

1. Port/Port Driver lb. CI Port Driver
(PDP)

la. CI Port 1 a. DSSI Port

O. PhYSical Interconnect Ob. CI Data Link Ob. DSSI Data Link
(PI)

Oa. CI bus Oa. DSSI bus

Figure 7-28 Relationship of the DSSI to SCA and CI

S
H
A
C

The port driver maintains a set of seven queues in its system space. Four of these
contain commands for the SHAC to execute. Command priority is determined by the
queue a command is on; order is determined by the position in the queue. Another queue
contains all of the responses for the host (from the SHAC or the remote nodes). Finally,
there are two queues of empty envelopes for use by the host and SHAC, to stuff with
commands and responses and then queue on the other queues.

These envelopes are simply standard-sized 'queuable blocks of host memory. All
commands and responses are copied into one of these standard-sized blocks. The header
on each block includes a pair of queue pointers (for a doubly linked queue) and various
standard identifiers that specify the contents of the block and how much of the block
represents the actual command or response. To be visible, a block must be on a queue
where pointers from other elements or the queue header show its presence. After a block
is removed from a queue, the block is visible only to the entity that removed it.

The SHAC's principal task is in accepting and delivering "mail" to other nodes.
Externally (for example, on DSSI) the SHAC deals only in standard CI formats.
Internally, the SHAC deals with the envelopes just described and with blocks of data.
Because DSSI deals with bytes and the CP bus deals in longwords, the SHAC must
frequently do byte-alignment tasks during transcription.

The SHAC deals with the port driver in the virtual address mode, unloading from the
CPU the obligation to do virtual-to-physical address translation and to be aware of page
crossings in virtually-contiguous blocks of information. The SHAC supports full virtual
address translation, including the use of global 110 pages (to a depth of 1).

The following section describes a typical set of steps that the SHAC goes through in
serving its role as the CI port, with mail i~ both directions.

Interface Subsystems 201

7.4.2 CI-DSSI Overview

At start-up, the host provides the SHAC with a number of pointers to internal host
structures. One of these structures is the port queue block (PQB), which contains
pointers and data on all the queues that the host maintains for CI. The SHAC uses
this data to carry on its normal business in the following way.

If traffic is not coming in on the DSSI bus, SHAC goes to the highest command queue
that has something enqueued. Choices are CMDQO to CMDQ3, with 3 being most urgent.
SHAC dequeues an entry from the queue and examines the entry's header to see what
it must do with the entry. The entry could be a command for the SHAC or an item to
be delivered to one of the nodes on the DSSI. A command might be an order to deliver a
block of data to a remote node. A deleivery item could be a datagram or a message.

A datagram is a one-sided communication-()ne which is sent without any assurance of
either receipt or reply. One obvious application for a datagram is a request for the party
at the other node to identify itself. If the host does not know if anything at all is out
there, it must transmit its request without expectation. For this or any similar purpose,
the host uses a datagram. All datagrams are of a length guaranteed to fit in a datagram
envelope.

A message is a two-sided communication used when a virtual circuit (an established
formal relationship) between members of the bus exists. After a virtual circuit is
established, the host(s) understand how to make requests of the other side. Such a
request could be an order for a data transfer in either direction. The message itself (moue
data) is contained in a command (deliver this message to ...). All messages are of a length
guaranteed to fit in a message envelope.

Messages are always delivered sequentially to a given node-that is, in the order in
which they were enqueued on a particular queue. The SHAC supports retries if a
message fails to get through. If the command is not delivered before the retry limit is
reached, the SHAC returns the command to the host, marking it as undeliverable; then
the SHAC breaks the virtual circuit to that node.

Sample Transaction

A full transaction might go something like this:

1. The host queues a message for node 3 (for example, a disk controller) to copy a block
of 16 kilobytes from host memory, starting at location X and to be stored in location
Y on disk. The queues are doubly linked, so at the top of every envelope there is a
forward link FLINK and a backward link BL1NK. Enqueuing involves

• Putting link values into the new element's FLINK and BLINK

• Making the last previous element's FLINK and the queue header's BLINK point
to the new element.

2. When this message gets to the head of the queue, the SHAC dequeues it'" , reads the
header and finds that it should dial up node 3. To do this, the SHAC goes through the
DSSI protocols, contending for the DSSI bus. If successful in obtaining the bus, the
SHAC specifies node 3 as the target. These steps are called arbitration and selection .

• Note that the SHAC ends up holding the only pointer to the dequeued block of memory that
constitutes the queue element. The port driver no longer knows where the element is.

202 Interface Subsystems

3. Node 3 responds by asking for the nSS! command (command-out phase). In
this phase, the SHAC tells node 3 how many bytes are coming and repeats the
identification information to confirm a proper selection. Node 3 then tens the SHAC
to switch to the data-out phase. The SHAC sends a pair of CI header bytes to identify
the type of message, then transmits the actual message read from the message block
in host memory.

The step-by-step details of the transfer are handled by hardware in the SHAC that
permits simultaneous, buffered reading and writing on the two buses connected to
the SHAC. After the transmission is successfully completed, node 3 responds with a
i-byte acknowledgment of success (parity and checksum proper, and no other errors).

4. The SHAC is stilI holding the only pointer to the message block in host memory. The
SHAC returns this to the host in one of two ways.

• If the host has requested a return receipt, the SHAC puts the block on the
response queue RSPQ to indicate proper delivery. This is where the port driver
software in the host wilI look for responses.

• Alternatively, the SHAC simply puts the block back on the MFREEQ that holds
the standard envelopes for messages. At this point, the single message has been
delivered, and the message envelope is back in circulation.

5. Node 3 processes the message, then contends for the bus. After obtaining the bus,
the node selects the· SHAC as its target. The node then sends a standard CI message
as above, telling the SHAC to transmit the required data.

In general, the SHAC does not send the data immediately, because it is obliged to
handle traffic according to position in the queue and according to queue priority.
Instead, the SHAC takes an empty envelope from MFREEQ, writes the message into
the envelope, and puts the envelope on the proper CMDQ as specified in the message
it just received.

6. When that message gets to the head of its queue, the SHAC dequeues it again and
carries out the command, possibly interleaving other transmissions of higher priority
to this node or any priority to other nodes, until the last byte is sent. The SHAC
uses transmissions of 4 kilobytes whenever possible. A 4-kilobyte transmission takes
about 1 ms on the DSSI bus. After the SHAC has completed this operation, it returns
the message block to the MFREEQ.

7. Node 3 has put its data on the disk and must report to the host the successful
completion of the transaction. The node again contends for the bus and upon
obtaining it specifies the SHAC as its target. Then the node sends a message to
the port driver through the SHAC, confirming the successful transaction. The SHAC
dequeues another free envelope and writes this message into that block. Then the
SHAC queues the envelope on the host's RSPQ. Except for higher level responses in
the host, that concludes a whole transaction.

The enqueue/dequeue operations represent a considerable part of the effort in delivering
a message or datagram. To minimize this effort, the SHAC caches a small number of the
envelopes (that is, it hangs onto the pointers to the memory blocks) as they become free
in its normal activity. The SHAC only fetches an envelope from the free queues when its
own supply is gone, and it only returns them to the free queues when it has a full supply
(four of a type). By this and other efforts at traffic conservation, the SHAC attempts to
optimize its rate of doing useful work.

Interface Subsystems 203

7.4.3 SHAC Registers

The P-chip communicates directly with the two SHACs through a set of device registers
in each of the SHACs. For each SHAC, these registers occupy a 1-page (512-byte) region
in 110 address space, aligned on a page boundary.

All of the registers are longword registers. They may be accessed only through longword
operations.

In addition to the access restrictions listed for specific registers, no register other than
the SHAC software chip reset (SSWCR) register may be read or written while certain
chip intialization functions are being executed. The results of such an access during the
100 milliseconds following a reset (power-up or a write to SSWCR), or during the 50
microseconds following a MIN-bit (PMCSR<O» reset are unpredictable.

The registers can be divided into two categories:

• The CI port registers

• The SHAC-specific registers

Conventions Used In This Section

The KA670 has two SHACs, one for the internal DSSI bus and one for the external DSSI.
The internal bus is the bus brought out through the backplane connector. The external
bus is the bus brought out through the console module.

For simplicity, the following sections provide a single description of each register for both
SHACs, with 110 addresses given for each SHAC. In these sections:

• SHACI is the SHAC controlling the internal DSSI bus.

SHAC1 registers fall in the 110 addresses range of 20004000 to 2000 41FF16

• SHAC2 is the SHAC controlling the external DSSI bus.

SHAC2 registers fall in the range of 2000 4200 to 2000 43FF16.

7.4.3.1 CI Port Registers
The following registers are based on the CI port architecture.

7.4.3.1.1 Port Queue Block Base Register (PQBBR)
The port queue block base register (PQBBR) contains the uppermost bits of the physical
address for the base of the port queue block (PQB). After a reset, the PQBBR is loaded by
the SHAC with configuration information. This information remains in the PQBBR until
the PQBBR is written with the address of the port queue block. Figure 7-29 shows the
format of the register. Table 7-36 lists the bit descriptions.

PQBBR is writable only when the port is in the disabled or disabled/maintenance state.
The register is readable anytime except during chip intialization.

3
1

MBZ

2 2
1 0

SHAC1 I/O Address: 20004048
SHAC2 I/O Address: 20004248
Longword Read/Write Access.

POB Base <29:9>

Figure 7-29 Port Queue Block Base Register (PQBBR)

o

204 Interface Subsystems

Table 7-36 Port Queue Block Base Address Register (PQBBR) Bits

Data Bit

<31:21>

<20:0>

Name

MBZ
PQB base
<29:9>

Description

Read as o. Must be written as o.
This field contains the uppennost bits of the physical address for
the base of the port queue block (PQB). Note, the PQB must be
page-aligned, so the remaining bits of the address are assumed to
be o.

Following a chip reset, PQBBR contains the configuration shown in Figure 7-30.
Table 7-37 lists the bit descriptions.

3
1

22
43

1 1
65 87

I HW Version I FW Version I SHU Version I Uaint. 10

o

Figure 7-30 pon Queue Block Base Register (PQBBR) After Reset

Table 7-37 Port Queue BLock Base Address Register Bits

Data Bit Name

<31:24> HWversion

<23:16> FWversion.

<15:8> SHWVersion

<7:0> Maint. m

Description

This field contains the SHAC's hardware version, which is greater
than o.
This field contains the SHAC's firmware version, which is greater
than o.
This field contains the SHAC's shared host memory version. This
value is 0 until the shared host memory data area has been read
in; thereafter, the value is greater than o.
This field contains the CI port maintenance ID, which should
always be 2216.

7.4.3.1.2 Port Status Register (PSR)
The port status register (PSR) contains a status report. If interrupts are enabled (for
example, (PMCSR<2» set), the port interrupts the CPU each time that it writes to
this register. After an interrupt is requested by the port, the value of PSR is fixed does
not change until the CPU releases it by writing the port status release control register
(PSRCR). Figure 7-31 shows the format of the port status register. Table 7-38 lists the
bit descriptions.

The PSR register is read-only and may be read anytime by the port driver, except during
chip initialization. The value of PSR following Ii write to it is unpredictable.

3 3
1 0

I I
2221111 1
2 1 098 765

I I I I I I I MBZ

Interface Subsystems 205

8 765 4 321 0

I I I I I I I I I
ROA
MFOE
POC
PIC
OSE
MSE
MTE
MISC

~---------------------------- SHME
~------------------------------ SMPE

ISN
DE

~-------------------------------- ODE
II
ME

SHAC1 1/0 Address: 2000 404C
SHAC2 1/0 Address: 2000 424C
Longword Read-Only Access.

Figure 7-31 Port Status Register (PSR) Bits

Table 7-38 Port Status Register Bits

Data Bit

<30:22>

<21>

<20>

<19>

<18>

Name

ME

MBZ

II

QDE

DE

ISN

Description

Maintenance elTor. When set, the port has detected an
implementation-specific elTor (or hardware status condition).
The source of the elTor may be more accurately determined from
the other bits in the upper word of this register (PSR) and the
contents of other registers. When this bit is set, the port is in the
uninitialized state (not functional). Maintenance errors normally
indicate a severe SHAC hardware or software failure.

Read as o. Writes have no effect.

megal interrupt. When set, this bit indicates a SHAC internal
elTor, detected when the SHAC's microprocessor received an
interrupt from a invalid source. This causes ME (PSR<31» to set
and the port to enter the uninitialized state (not functional).

QUIP-detected error. When set, this bit indicates a SHAC internal
elTor detected when the SHAC's microprocessor (QUIP) was given
an invalid instruction. This causes ME (PSR<31» to set and the
port to enter the uninitialized state (not functional).

Diagnostic error. When this bit is set, an error was detected while
the SHAC was running its internal self-test. This causes ME
(PSR<31» to set and the port to enter the uninitialized state (not
functional).

mega! se~ent number. When set, this bit this indicates a SHAC
internal etTor in which the SHAC attempted to load a nonexistent
external segment from the SHAC shared host memory. This
causes ME (PSR<3l» to set and the port to enter the uninitiolizetl
state (not functional).

206 Interface Subsystems

Table 7-38 (Cont.) Port Status Register Bits

Data Bit

<17>

<15:8>

<7>

<4>

<2>

<1>

Name

SMPE

SHME

MBZ

MISC

ME

MSE

DSE

PIC

PDC

MFQE

RQA

Description

Slave mode parity elTor. This bit is set by the OCCUlTence of a
parity elTor during a CPU access of a SHAC device register. This
causes ME (PSR<31» to set and the port to enter the unini~ialized
state (not functionaI).

Share host memory error. This bit is set by the OCCUlTence of an
elTor involving the SlIAC shared host memory. This causes ME
(PSR<31» to set and the port to enter the uninitialized state (not
functionaI).

Read as O. Writes have no effect.

Miscellaneous. When set, this bit indicates that the port microcode
has detected one of the miscellaneous errors, and the port is about
to enter the disabled I maintenance state. The actual elTOr code is
stored in the port elTor status register.

Maintenance timer expiration. When this bit is set,
the maintenance timer has expired. The port is in the
uninitialized / maintenance state.

Memory system error. When this bit is set, the port has
encountered an uncolTectable data or nonexistent memory
elTor in referencing memory. The port is in the disabled or
disabled I maintenance state. See Section 7.4.3.1.4 for more
information.

nata structure elTor. When this bit is set, the port has
encountered an error in a port data structure (for example, queue
entry, PQB, BDT, or page table). The port is in the disabled or
disabled/maintenance state. See Sections 7.4.3.1.3 and 7.4.3.1.4for
more information. Note that errors in queue structures leave the
queues locked.

port initializtion complete. When this bit is set, the port has
completed internal initialization. The port is in the disabled or
disabled / maintenance state.

Port disable complete. When this bit is set, the port is in the
disabled or disabled I maintenance state.

Message free queue is empty. When set, this bit indicates the port
tried to remove an entry from the Message Free Queue (MFREEQ)
and found the queue empty. The port can continue to process
commands, so the MFREEQ may not be empty at the time the
port driver gets control.

Response queue avail$ble. When set, this bit indicates the port
has inserted an entry on an empty response queue.

7.4.3.1.3 Port Error Status Register (PESR)
The port error status register (PESR) indicates the type of error that caused a port status
register error of DSE (PSR<4» or an MISe (PSR<7» error. Figure 7-32 shows the
format of the PESR register. Table 7-39 lists the bit descriptions.

PESR is read only by the CPU. The register is valid only after a DSE or MISe error. or
after certain ME (PSR<31» and DE (PSR<19» errors. The register's value at any other
time, including after a write to it, is unpredictable.

Interface Subsystems 207

3
1

MEC

SHAC1 1/0 Address: 2000 4050
SHAC2 1/0 Address: 2000 4250
Longword Read-Only Access

1 1
65

Figure 7-32 Pon Error Status Register (PESR) Bits

Table 7-39 Port Error Status Register (PESR) Bits

Data Bit Name Description

o

DEC

<31:16> MEC Miscellaneous error code. This code comprises two fields: bits
<31:24> define the module within the SRAC code where the error
occurred, and bits <23:16> contain the specific error that occurred.
These codes are implementation-specific.

<15:0> DEC Data structure error code.

7.4.3.1.4 pon Failing Address Register (PFAR)
The port failing address register (PFAR) contains the memory address where one of the
following failures occurred: a DSE, MSE, ME, or DE error (as indicated by PSR), or after
a response with buffer memory system error status. The address may be

• The exact failing address

• An address in the same page as the exact failing address

• An address in some part of the data structure (for a DSE error)

For a DSE error, PFAR contains a virtual address or offset. For MSE interrupts and
buffer memory system errors, the PFAR contains a physical address. For ME errors, the
interpretation of the address is error-dependent.

Because the port continues command execution and packet processing after buffer
memory system errors, the PFAR is overwritten if subsequent errors occur. For DSE,
MSE, and ME errors, the PFAR is effectively fixed because the port enters the disabled,
disabled I maintenance, or uninitialized state.

Figure 7-33 shows the format for the port failing address register.

PFAR is read only by the CPU. The register is readable after a DSE, MSE, ME, or DE
error; or after a response with buffer memory system error status. At any other time,
including after a write to the register, the value is unpredictable.

3
1

Failing Address

SHAC1 1/0 Address: 2000 4054
SHAC2 1/0 Address: 2000 4254
Longword Read-Only Access

Figure 7-33 pon Failing Address Register (PFAR)

o

208 Interface Subsystems

7.4.3.1.5 Port Parameter Register (PPR)
The port parameter register (PPR) contains port implementation parameters and the
port number. The value of the PPR is set by the port during initialization and valid after
a PIC (PSR <3» interrupt. The PPR value at any other time, including after a to it,
is unpredictable. PPR is read only by the CPU. Figure 7-34 shows the format of the
register. Table 7-40 lists the bit descriptions.

3 2 2
1 9 8

I C5Z I IBUF _LEN

5HAC1 I/O Address: 2000 4058
5HAC2 I/O Address: 2000 4258
Longword Read-Only Access

1 1 1
654

1501

8 7 o

Figure 7-34 Port Parameter Register (PPR)

Table 7-40 Port Parameter Register (PPR) Bits

Data Bit

<31:29>

<28:16>

<15>

<14:8>

<7:0>

Name

CSZ

MBZ
ISDI

Description

Cluster size. For SHAC, this value is always 0, indicating a
maximum of 16 ports on the DSSI bus. Note that the DSSI
architecture only allows 8 ports on the bus, but 16 is the smallest
size defined for the CSZ field.

Internal buffer length. This field indicates the size of internal
buffers available for message and data transfers. Maximum data
packet = mUF _LEN - 16 bytes. Maximum message or datagram
length = mUF _LEN. For SHAC, the value is 4112 10IOt&.

Read as 0, writes have an unpredictable effect.

Implementation-specific diagnostic information. The bits in
this field contain information about the local adapter's link layer
configuration. For SHAC. the definitions of these bits are read as
o.
Port number. This is the same as the SHAC's DSSI ID.

7.4.3.1.6 Port Control Registers
The port control registers are 32-bit registers which are write-only by the CPU. To invoke
the function provided by any of the control registers, the CPU writes a 1 to the register.

The result of writing any other value to any of these registers is unpredictable. The value
read from any of them is also unpredictable. Figure 7-35 shows the format of the port
control registers.

3
1

Longword .Write-Only Access

Figure 7-35 Port Control Registers

MBZ

1 0 It
MBO

Interface Subsystems 209

7.4.3.1.6.1 Port Command Queue 0 Control Register (PCQOCR)
When the port driver inserts an entry in an empty CMDQO, the port driver writes
PCQOCR to initiate port execution of the command queue. PCQOCR can be written
only when the port is in the enabled or enabled/maintenance state. Writing to PCQOCR
when the port is in any other state has no effect.

SHACl 110 Address: 2000408016
SHAC2 110 Address: 2000 428016

7.4.3.1.6.2 Port Command Queue 1 Control Register (PCQ1CR)
This register is the same as the PCQOCR register, but refers to CMDQ1.

SHACl 110 Address: 2000408416
SHAC2 110 Address: is 2000 428416

7.4.3.1.6.3 Port Command Queue 2 Control Register (PCQ2CR)
This register is the same as PCQOCR, but refers to CMDQ2.

SHACl 110 Address: 2000408816
SHAC2 110 Address: 2000 428816

7.4.3.1.6.4 Port Command Queue 3 Control Register (PCQ3CR)
This register is the same as PCQOCR, but refers to CMDQ3.

SHACl 110 Address: is 2000 408C16
SHAC2 110 Address: is 2000 428C16

7.4.3.1.6.5 Port Datagram Free Queue Control Register (PDFQCR)
If the port driver inserts an entry on the DFREEQ when it is empty, the port driver
writes the PDFQCR register to indicate the availability of DFREEQ entries. PDFQCR
can be written only if the port is in the enabled or enabled/maintenance State. Writing
to PDFQCR when the port is in any other state has no effect.

SHACl 110 Address: is 2000409016
SHAC2 110 Address: is 2000429016

7.4.3.1.6.6 Port Message Free Queue Control Register (PMFQCR)
This register is the same as PDFQCR, but refers to MFREEQ.

SHACl 110 Address: 2000 409416
SHAC2 110 Address: 2000 429416

7.4.3.1.6.7 Port Status Release Control Register (PSRCR)
After the port driver has received an interrupt and read the PSR register, it returns the
PSR to the port by writing the port status release control register (PSRCR).

SHACl 110 Address: 2000 409816
SHAC2 110 Address: 2000429816

7.4.3.1.6.8 Port Enable Control Register (PECR)
The port driver enables the port by writing the port enable control register (PECR).
PECR is ignored if the port is in the uninitialized , uninitialized/maintenance , enabled •
or enabled / maintenance state.

SHACl 110 Address: 2000 409C16
SHAC2 110 Address: 2000 429C16

210 Interface Subsystems

7.4.3.1.6.9 Port Disable tontrol Register (PDCR)
The port driver disables the port by writing the poprt disable control register (PDCR).
When disabled, the port sets PDC (PSR <2» and requests an interrupt, if interrupts are
enabled. PDCR is ignored if the port is in the uninitialized, uninitializedlmaintenance,
disabled, or disabled I maintenance state.

SHAC 1 I/O Address: 2000 40A016
SHAC2 I/O Address: 2000 42A016

7.4.3.1.6.10 Port Initialize Control Register (PICR)
The port driver initializes the port by writing the port initialize control register (PICR).
When the initialization is complete, the port sets PDC (PSR <2» and requests an
interrupt, if interrupts are enabled. As part of the initialization, the maintenance timer
is set to expire in 100 seconds.

SHAC! I/O Address: 200040A416
SHAC2 I/O Address: 2000 42A416

7.4.3.1.6.11 Port Maintenance Timer COntrol Register (PMTCR)
The port driver forces the maintenance timer to reset its expiration time by writing the
port maintenance timer control register (PMTCR). If the PMTCR is not written again
before the expiration time, the port enters the uninitializedlmaintenance state, setting
MTE (PSR <6» and requesting an interrupt if interrupts are enabled. PMTCR is ignored
if the maintenance timer is not running.

SHAC1 I/O Address: 2000 40AB16
SHAC2 I/O Address: 2000 42A816

7.4.3.1.6.12 Port Maintenance Timer Expiration COntrol Register (PMTECR)
The port driver forces a maintenance timer expiration interrupt by writing the port
maintenance timer expiration control register (PMTECR). This register may be
written only while the maintenance timer is enabled and the port is in the enabled,
enabled I maintenance, disabled, or disabled I maintenance state.

SHAC1 I/O Address: is 2000 40AC16
SHAC2 I/O Address: is 2000 42AC16

7.4.3.1.7 Port Maintenance Control and Status Register (PMCSR)
The port maintenance control and status register (PMCSR) is for maintenance-level
control and status reporting. The CI port architecture. defines all but the two least
significant bits. Figure 7-36 shows the format of the PMCSR register. Table 7-41 lists
the bit descriptions.

The bits can be divided into two categories:

• Status bits-The port sets these bits to report various conditions. They are cleared by
maintenance initialization or clearing the condition in another register. PMCSR does
not include any status bits at this time.

• Function control bits-These bits are read and written by the port driver only. They
are cleared by a reset.

There are two types of function control bits:

- Init- This type of bit invokes a function (for example, initialization) by setting it.
The bit always reads as 0, except while the function is active.

I

3
1

Interface Subsystems 211

Enable/disable-:-This type of bit causes an activity or state to exist while the bit
is set. Clearing the bit stops the activity or changes the state. The bit always
reads the most recently written value. The bit is never changed by the port.

543210

Reserved I I 11 J J
4

--
MIN
MTD
IE
SIMP
HAC

SHAC1 I/O Address: 2000 405C
SHAC2 I/O Address: 2000 425C
Longword Read/Write Access

Figure 7-36 Port Maintenance Control and Status Register (PMCSR)

Table 7-41 Port Maintenance Control and Status Register (PMCSR) Bits

Data Bit Name

<31:5> Reserved

<4> HAC

SIMP

IE

<1> MTD

MIN

Description

These reserved bits should not be written. Reads return
unpredictable results.

Host access feature. This bit must be 0, except for diagnostic
purposes. This is an enable/disable class control bit.

Simple SHAC mode. This bit must be 0, except for diagnostic
purposes. This is an enable/disable class control bit.

Interrupt enable. When this bit is set, interrupts from the port to
the CPU are enabled. The power-up state is cleared (interrupts
disabled). This is an enable/disable class control bit.

Maintenance timer disable. This bit is read and written by CPU.
If the bit is set, the maintenance timer is turned off. The timer is
set to the initial value and suspended. If the bit is clear, the timer
works normally. The power-up state is cleared (timer enabled).
This is an enable/disable class control bit.

Maintenance init. Writing a 1 to this bit resets the port. Upon
completion, the port is in the uninitialized state and the MIN bit
is clear. Writing a 0 to this bit has no effect. It always reads as 0,
except while the reset function is active.

Although MIN resets the port, this action is is not equivalent to a
write to the SHAC software chip reset register. In particular, MIN
does not reset the SHAC shared host memory address.

7.4.3.2 SHAC-Speclfic Registers
The following registers are used for additional maintenance level control. They are not
defined in the CI port architecture.

212 Interface Subsystems

7.4.3.2.1 SHAC Software'Chlp Reset (SSWCR)
When the CPU writes FFFF FFFF16 to the SHAC software chip reset (SSWCR) register,
a chip reset is perfonned. The result is equivalent to that of the hardware chip reset
following system power-up, On completion, all device registers are reset to their power­
up state, and the port is in the un initialized state, Figure 7-37 shows the fonnat of the
SSWCR register.

SSWCR is write only by the CPU and may be written to at any time, The register's value
when read is unpredictable. If anything other than FFFF FFFF16 is written to SSWCR,
the result is undefined.

3
1

Must Be One

SHAC1 110 Address: 2000 4030
SHAC2 110 Address: 2000 4230
Longword Write-Only Access

Figure 7-37 SHAC Software Chip Reset (SSWCR)

7.4.3.2.2 SHAC Shared Host Memory Address (SSHMA)

o

Following a chip reset, the CPU writes the physical address of the shared host memory
header into the SHAC shared memory address register (SSHMA). The area must be
octaword-aligned and contiguous in physical memory.

SSHMA is read and written by the CPU, but may be written only when the port is
in the uninitialized state. Writing when the port is in any other state can produce
unpredictable results.

Figure 7-38 shows the fonnat for the SHAC shared host m~emory address.

332
109

IMBzl

SHAC1 1/0 Address: 2000 4044
SHAC21/0 Address: 2000 4244
Longword Read/Write Access

SSHMA<29:4>

Figure 7-38 SHAC Shared Host Memory Address (SSHU)

4 3 0

MBZ I

8
KA670 Error Handling

This chapter describes unexpected KA670 system error exceptions and interrupts, as
seen from the macrocoder's point of view. The chapter is organized with respect to the
system control block (SeB) entry points-vectors pointing to service routines. All error
notifications pass thorugh these entry points.

The chapter describes several primary SeB entry points in detail, in order to
explain KA670-specific information. This information can help the operating system
interface macrocode programmer determine exact errors, console HALT codes, or
interrupt/exceptions.

Table 8-1 lists the CPU's internally generated seB entry points and highlights the
specific points covered in this chapter. The chapter also offers recommendations from
the module and chip designers for error recovery strategies. Section 3.1.6 describes
exceptions and interrupts that are a result of normal system operation.

The chapter provides information on:

• How to discern what error(s) happened, given the SeB point through which the error
was dispatched

• What parameters are pushed on the stack

• What the failure codes are for halt and machine check

• What information exists for each error

• How to clean up the error after determining its cause

• How to restore the state of the machine, and what level of recovery is possible

213

214 KA670 Error Handling

Table 8-1 CPU Internally Generated SCB Entry Points

Mnemonic SCBIndex Description

SCB_MACHCHK· 00416 Machine check
SCB_KSNV· 008 Kernel stack not valid
SCB_PWRFL· OOC Power fail
SCB_RESPRIV 010 Reserved/privileged instruction
SCB_XFC 014 XFC instruction
SCB_RESOP 018 Reserved operand
SCB_RESADD 01C Reserved addressing mode
SCB_ACV 020 Access control violation
SCB_TNV 024 Translation not valid
SCB_TP 028 Trace pending
SCB_BPT 02C Breakpoint trace fault
SCB_ARITH 034 Arithmetic fault
SCB_CHMK 040 Change mode to kernel
SCB_CHME 044 Change mode to executive
SCB_CHMS 048 Change mode to supervisor
SCB_CHMU 04C Change mode to user
SCB_SMERR " 054 Soft error interrupt
SCB_HMERR • 060 Hard error interrupt
SCB_IPLSOFT 080·0BC Software interrupt levels
SCB_INTTIM OCO Interval timer interrupt
SCB_EMULATE OC8 Emulated instruction trap (PSL<FPD>=O)
SCB_EMULFPD OCC Emulated instruction fault (PSL<FPD>=l)

"This entry-point vector is described in detail in this chapter.

8.1 Error Handling-SCB Entry Points
This section provides an overview of the entry points for all levels of hardware-detected
errors, in the order of their severity. Following sections provide details on each error
type.

• Console error halt-A halt to console mode is caused by one of several errors such
as interrupt stack not valid (Table 8-2). For certain halt conditions, the console
prompts for a command and waits for operator input. For other halt conditions, the
console may try to restart or bootstrap the system, as defined by the VAX Architecture
Manual.

• Machine check-A hardware error occurred synchronously with the CPU execution
of instructions. Instruction-level recovery and retry may be possible.

• Power faU-The power supply deasserted the power OK module signal. Soaware
has 20 milliseconds to save processor state.

• Hard error interrupt - A hardware error occurred asynchronously with the
CPU execution of instructions. Usually, this means data was lost or the state was
corrupted, so instruction-level recovery is not possible.

• Soft error interrupt-A hardware error occurred that was not fatal to the pl'OCess
or system. System error software should be able to recover and continue.

KA670 Error Handling 215

• 110 device interrupt- An error occurred while an 110 device was performing DMA
to or from main memory. There are other causes for these interrupts. Therefore,
an 110 device interrupt does not necessarily mean that a hardware error occurred.
System error software should be able to recover and continue.

• Kernel stack not valid- During exception processing, a memory management
exception was encountered while trying to push information on the kernel stack.

8.1.1 Error Categories for sce Entry POints

Table 8-2 lists the various categories of errors, organized by SCB entry point. The section
also describes the basic steps in error handlings and recovery. Separate sections provide
details on how to distinguish errors within each category.

Table 8-2 Error Summary Based on SeB Entry Points

SCB

Index Entry Point

Console halt

04 Machine check

OC Power fail

Error Categories

Interrupt stack not valid
Kernel-mode halt
Double errors
megal SCB vector

Floating point processor-related errors
Memory management errors
Microcode/CPU errors
Primary cache read errors

• Tag parity errors (D-stream only)

• parity errors (D-stream only)

Backup cache read errors

• Data parity errors

Main memory read errors

• RDAL data parity errors (on nonmasked bytes)

• Uncorrectable memory errors (D-stream only)

• Main memory NXM

110 read errors

• CP bus data parity errors

• CP bus NXMItimeouts (D-stream only)

• Q22-bus NXMINOSACK errors

• Q22-bus NOGRANT errors

• Q22-bus device parity errors

216 KA670 Error Handling

Table &-2 (Cont.) Error Summary Based on SeB Entry Points

SCB

Index

54

60

Entry Point

Soft error
interrupt

Hard error
interrupt

08 Kernel stack not
valid

Error Categories

Primary cache read errors

• Tag parity errors (I-stream only)

• nata parity errors (I-stream only)

Primary cache write errors

• Tag parity errors

Backup cache read errors

• Tag parity errors

Main memory read errors

• RDAL data parity errors (on masked bytes or I-stream)

• Correctable main memory errors

• Uncorrectable main memory errors (I-stream only)

Main memory write errors

• Correctable main memory errors

110 write errors

• CP bus NXMItimeouts (I-stream only)

Main memory write errors

• RDAL data parity errors

• Main memory NXM

• Uncorrectable main memory errors (masked writes only)

110 write errors

• CP bus NXMItimeouts

• Q22-bus NXMINOSACK errors

• Q22-bus NOGRANT errors

8.1.2 Macrocode Error Handling and Recovery

This section covers the basic steps in error handling and recovery. All errors (except
those leading to a console halt) go through SCB vector entry points and are handled by
service routines provided by the operating system. A console halt transfers macrocode
execution control directly to the console firmware code.

Error handling and recovery can be divided into the following steps:

• State collection

KA670 Error Handling 217

• Analysis

• Recovery

• Retry

8.1.2.1 Error State Collection
Before error analysis can begin, all relevant states must be collected. The stack frame
provides the program counter/program status longword (PC/PSL) pair for all exceptions
and interrupts. For machine checks, the stack frame also provides details about the
error.
In addition to the stack frame, machine checks and hard and soft. error interrupts usually
require analysis of other registers. In these cases, it is strongly suggested that all of the
following states be read and saved:
PCSTS Primary cache status register

PCERR Primary cache error address register

BCSTS

BCCTL

BCERR

MEMCSR32

MEMCSR33

MEMCSR34

MEMCSR35

DSER

QBEAR

DEAR

SGEC CSRS

PSR

PESR

PFARS
SSCBTR

C-chip status register

C-chip control register

C-chip error address register

G-chi p system error status register

G-chip memory error address register

G-chip I

G-chip CP bus error address register

CQBIC DMA system error register

CQBIC Q22-bus error address register

CQBIC DMA error address register

SGEC status register

SHAC(s) port status register

SHAC(s) error status register

SHAC(s) port falling address register

SSC bus timeout register

For the purposes of the following discussion, assume that each of these registers is saved
in a variable whose name is constructed by prefixing "s_" to the register name. For
example, the BCERR register would be saved in the variable s_bcerr.

8.1.2.2 Error Analysis
After obtaining the error state in the collection process, the error condition can be
analyzed. Analysis of machine checks and hard and soft. error interrupts should be
guided by the parse trees shown in the appropriate sections.

NOTE
If an errors is detected in or by one of the two caches, the cache is usually
disabled automatically. However, to minimize the possibility of nested errors,
it is suggested that error analysis and recovery for memory or cache-related
errors be performed with both caches disabled. To maintain cache coherency,
the primary cache must be disabled before the primary tag store copy in the
C-chip.

218 KA670 Error Handnng

In some cases, a single error is reported in two ways. For example, primary cache tag
parity errors are reported as soft error interrupts and also as machine checks for D­
stream read hits. Software must be prepared to handle error interrupts for which there
is no apparent cause. In the primary cache tag parity error example, the machine check
handler error recovery phase will clean up the error condition, so the error interrupt
handler will not find any error bits set.

8.1.2.3 Error Recovery
Recovering from errors consists of clearing any latched error state and restoring the
system to normal operation. There are special considerations involved in recovering from
cache or memory errors, discussed in the next section.

In some instances, it may be desirable to stop using hardware that is the source of a
large number of errors. For example, if a cache reports a large number of errors, it may
be better to disable the cache. A suggestion is to have software maintain error counts,
which should be compared against error thresholds on every error report. If the count
(per unit time) exceeds the threshold, disable the hardware.

8.1.2.4 Special Considerations for cache and Memory Errors
Cache and memory error recovery requires special consideration:

• Cache and memory error recovery should always be done with both caches disabled:

PCSTS := ENABLE REFRESH+~ENABLE PTS+~FORCE HIT;
BCCTL : = ENABLE =REFRESH+~ENABLE ::)TS+"ENABLE _ BTS+

"FORCE_BHIT;

To maintain cache coherency, the primary cache must always be disabled before the
primary tag store copy in the C-chip. The refresh enable bit should always remain
set.

• The error recovery process should start with the most distant component and work
toward the CPU. In the KA670 system, SHAC, SGEC, and CQBIC errors should be
processed first, followed by SSC errors, C-chip errors, and, finally, primary cache
errors.

• G-chip errors are cleared by writing the write-one-to-clear bits in CSR32 to 35. The
suggested way to do this is to write the values saved during error state collection
back to the registers.

• SSC errors are cleared by writing the write-one-to-clear bits in the SSCBTR register.
The suggested way to do this is to write the value saved during error state collection
back to the register.

• C-chip backup tag store parity errors are recovered by rewriting the tag- using the
error address register:

IF s bcsts<BTS PERR> THEN - -BEGIN
BCIDX :- s bcerr;
BCBTS :- %x20000000; /* Good Parity, Not Valid */
END;

C-chip primary tag store parity errors are recovered by rewriting the tag, using.the
error address register:

KA670 Error Handling 219

IF s bcsts<P1TS PERR> THEN - -BEGIN
BCIDX := s bcerr;
BCP1TS := %x20000000; /* Good Parity, Not Valid */
END;

IF s_bcsts<P2TS_PERR> THEN
BEGIN
BCIDX := s_bcerr:
BCP2TS := %x20000000: /* Good Parity, Not Valid */
END:

C-chip errors are cleared by writing the write-one-to-clear bits in the BCSTS register.
The suggested way to do this is to write the value saved during error state collection
back to the register.

• Primary cache tag parity errors are recovered by rewriting all tags:

IF s-pcsts<TAG_PARITY_ERROR> THEN
FOR i := 0 to 255 DO

BEGIN
PCIDX := i * 8:
PCTAG := %x40000000; /* Good Parity, Not Valid */
END;

Primary cache errors are cleared as part of the process of reenabling the cache,
described in the following paragraphs.

• The primary cache and primary tag store copy in the C-chip must always be in the
same state. If the primary cache is disabled, the C-chip primary tag store should also
be disabled. Conversely, if the C-chip primary tag store is disabled, the primary cache
should also be disabled.

To bring both caches back to normal operation, the following sequence is required:

BCFBTS := 0:
BCFPTS := 0:
BCCTL := ENABLE_REFRESH+ENABLE_PTS+ENABLE_BTS;
PCSTS :- s-pcsts OR

(ENABLE_REFRESH+ENABLE_PTS+FLUSH_CACHE)
AND NOT FORCE_HIT:

Note that either cache may be disabled by clearing the appropriate enable
bits in BCCTL and PeSTS while performing the sequence above. In any case,
BCCTL<ENABLE_Pl'S> and PCSTS<ENABLE_Pl'S> must always be in the same
state.

If one or both caches are disabled, the system operates at reduced efficiency:

Configuration Efficiency

Both caches on 100%

Primary cache off 70%

Backup cache off 50%

Both caches off' 12%

220 KA670 Error Handling

8.1.2.5 Error Retry
Error retries are a function of the error type (machine check or error interrupt) and the
error state. The individual sections in this chapter specify the conditions under which
the instruction stream may be restarted for different errors.

Before attempting a retry, the stack must be trimmed of all parameters except the
PC/PSL pair. This is necessary only for machine checks, because error interrupts do not
provide any additional parameters on the stack. An REI then restarts the instruction
stream and retries the error. Some form of software loop control should be provided to
limit the possibility of an error loop.

If a retry is not attempted, software must determine if the error was fatal to the current
process, the processor, or the entire system, and take the appropriate action.

8.2 Console Halt and Halt Interrupt
A console halt is not an exception, but a transfer of control by the CPU microcode directly
into the boot ROM's console macrocode, at address 2004 000016' Console halts are
initiated at power-up by certain microcode-detected double-error conditions, and by
the assertion of a halt signal. Table 8-3 lists the codes and their meanings.

A halt interrupt is generated when the SSC asserts the CPU's HALT_L pin due to one of
the following actions:

• Pressing I Break I on an unsecured console terminal

• Asserting the SSC's HALT_IN signal

There is no exception stack frame associated with a console halt. Instead, SAVPC and
SAVPSL provide the necessary information (including the halt code). See Section 3.1.6
for the formats of SAVPC and SAVPSL. '

Table 8-3 Console Halt Codes

Code
(Hex) Mnemonic

02 ERR_HLTPIN

03 ERR_PWRUP

04 ERR_INTSTK

05 ERR_DOUBLE

OS ERR_HLTINS

07 ERR_ILLVEC

08 ERR_WCSVEC

OA ERR_CHMFI

10 ERR_MCHK_ACV_TNV

11 ERR_KSNV _ACV _TNV

12 ERR_MCHK_MCHK

13 ERR_KSNV _MCHK

19 ERR_IE_PSL2S_24_101

lA ERR_IE_PSL2S_24_110

Meaning

HALT_L asserted (break, or external haIt).

Initial power-up.

Interrupt stack not valid during exception processing.

Machine check during exception processing.

HALT instruction executed in kernel mode.

SCB vector bits <1:0> = 11.

SCB vector bits <1:0> = 10.

CHMx instruction executed while on the interrupt stack.

ACVITNV during machine check processing.

ACVITNV during kernel-stack-not-valid processing.

Machine check during machine check processing.

Machine check during kernel-stack-not-valid processing.

PSL<2S:24> = 101 during interrupt or exception.

PSL<26:24> = 110 during interrupt or exception.

KA670 Error Handling 221

Table 8-3 (Cont.) Console Halt Codes

Code
(Hex) Mnemonic

1B ERR_IE_PSL26_24_111

1D ERR_RECPSL26_24_101

IE ERR_RECPSL26_24_110

IF ERR_RECPSL26_24_111

3F ERR_SELFTEST_
FAILED

NOTE

Meaning

PSL<26:24> = 111 during interrupt or exception.

PSL<26:24> = 101 during REI.

PSL<26:24> = 110 during REI.

PSL<26:24> = 111 during REI.

(Microcoded) power-up self-test failed in the CPU.

The halt code value is packed into the SAVPSL longword (bits <13:8» before
passing control to the boot ROM console macrocode.

8.3 Machine Check Exception
The machine check exception indicates a serious system error. Under certain
circumstances, the error may be recoverable by restarting the instruction. The ability
to recover depends on the machine check code, the VAX restart bit (R) in the machine
check stack frame, the state of PSL's first p'art done bit <FPD>, and the state of the
double-error bit (PCSTS<trap2».

A machine check results from an internally detected consistency error. For example, the
microcode reaches an impossible state or an externally detected,hardware error such as a
memory parity error occurs.

A machine check is technically a macro instruction ABORT. The CPU microcode tries to
convert the condition to a FAULT by unwinding the current instruction, but there is no
guarantee that the instruction can be properly restarted. As much diagnostic information
as possible is pushed on the stack (Section 8.3.1), and the rest of the error parsing is left
to the operating system.

When the software machine check handler receives control, it must explicitly
acknowledge receipt of the machine check with the following instruction:

MTPR iO, tPRS_MCESR ; PRS_MCESR=38

This acknowledgement should be done early in the software machine check handler to
clear the internal machine-check-in-progress flag.

8.3.1 Machine Check Stack Frame
Information in the machine check stack frame (Figure 8-1) is parsed by the error­
handling macrocode to determine exactly what caused the machine check.

222 KA670 Error Handling

00000018

31 30 16 15
R Undefined MCHK_xxxx

VA

VIBA

ICCS .. SISR

31 24 23 21 20 18 17 16 15 8 7
DELTA-PC Undef. AT DL OPCODE Undef.

SC

PC

PSL

Figure 8-1 Stack Frame for Machine Check Exception

0

4 3 0
RN

:(SP) Byte
Count

Flags (VAX
Restart Bit
<31> Fault
Code)

VA at Time
of Fault

VIBA at Time of fault
of Fault

ICCS .. SISR
at Time of Fault

Internal State
at Time of
Fault

Internal
Register

Backed-Up PC

PSL at Time
of Fault

• Byte count - The size of the stack frame in bytes is 1816 bytes, not including PSL,
PC, and the byte count longword. Stack frame PC and PSL values should always be
referenced using this count as an offset from the stack pointer.

• R (VAX restart bit) - A flag from the hardware and microcode to the operating
system, used in the software equation to determine whether or not the current
macroinstruction is restartable after error cleanup. Other terms include PSL<FPD>,
and PCSTS<trap2> (the primary cache double-error bit).

• Fault code - The type of machine check (Figure 8-2).

• VA - The address being processed by the CPU. This address is not necessarily
relevant; the error handler should check the specific error address corresponding
to the device or mechanism that signaled the error.

• VIDA - The CPU prefetch virtual instruction buffer address at the time of the fault.

• ICCS •• SISR - The interrupt state information format (Table 8-4).

Table 8-4 Interrupt State Format

Bits

<22>

<15:1>

Contents

ICCS<6>

SISR<15:1>

• Delta-PC - Difference in the values of the current incremented PC (at the time
the machine check was detected) and the PC of the instruction opcode. The exact

KA670 Error Handling 223

interpretation of this field requires a detailed knowledge of the internal pipeline
operation of the CPU. This field should not be used by software to make recovery
decisions.

• AT - The current setting of the CPU's E-box address type latch, possibly relating
to the last (or upcoming) memory reference. Table 8-5 lists the values and
interpretation.

Table 8-5 AT (Address-Type) Codes

Value
(Binary) Interpretation

000 Read

001 Write

010 Modify

011 Unassigned, CPU chip error

100 Unassigned, CPU chip error

101 Address

110 Variable bit

111 Branch

• DL - The current setting of the CPU's E-box data length latch, possibly relating
to the last (or approaching) memory reference. Table 8-6 lists the values and
interpretation.

Table 8-6 Data Length (DL) Codes

Value
(Binary)

00

01

10

11

Interpretation

BYTE
WORD

LONG, F _Floating

QUAD, D_Floating, G_Floating

• Opcode - The opcode byte value of the instruction being processed at the time of the
fault. For a 2-byte opcode, the value is the second byte.

• RN - The value of the CPU's E-box RN register at the time of the fault, possibly
indicating the last GPR referenced by the E-box during specifier or instruction flows.

• se - Internal microcode-accessible register.

• PC, PSL - Standard exception stack frame program counter and program status
longword at the time of the fault.

The machine check fault code from the stack frame specifies the type of error and the
conditions under which restart is possible. Table 8-7 lists the possible fault codes.

224 KA670 Error Handling

Table 8-7 Machine Check Fault Codes

Code
(Hes) Mnemonic Meaning

01 MCHK..FP YROTOCOL_ Protocol error during FPU
ERROR operand/result transfer.

02 MCHK..FP_ILLEGAL_OPCODE Illegal opcode detected by FPU.

03 MCHK..FP _OPERAND_PARITY Operand .parity error detected
by FPU.

04 MCHK..FP _UNKNOWN_ Unknown status returned by
STATUS FPU.

05 MCHK..FP _RESULT_PARITY Returned FPU result parity
error.

08 MCH~TBM.ACV _TNV TB miaa status generated in
ACVtrNV microflow.

09 MCH~TBH.ACV _TNV TB hit status generated in
ACVtrNV microflow.

OA MCH~INT_ID_ VALUE Undefined INT.ID value during
interrupt service.

OB MCHKJIOVC..8TATUS Undefined state bit combination
in MOVCx.

OC MC~UNKNOWN_IBOJC Undefined trap code produced
TRAP by the I-box.

OD MCH~UNKNOWN_CS_ADDR Undefined control store addresa
reached.

10 MCHK_BUSERR_READ_ Primary cache tag or data parity
PCACHE error during read.

11 MCHK_BUSERR_READ_DAL DAL bus or data parity error
during read.

12 MCH~USERR_WRITE_DAL DAL bus error on write or clear
write buffer.

13 MC~UNKNOWN_BUSERR_ Undefined bus error microttap.
TRAP

R = the VAX restart bit in the machine check stack frame.
FPD = the CPU PSLcFPD> first part done bit.
TR2 = the CPU PCSTS<trap2> double-error bit.
. = the logical AND operation.
+ = the logical OR operation.

8.3.2 Machine Check Parse Tree

Figure 8-2 shows the machine check parse tree.

(R=1).(FPD=O)

(R=l).(FPD=O)

(R=1).(FPD=0)

(R=1).(FPD=O)

(R= l).(FPD=O)

«R=1)+(FPD=1))

«R=1)+(FPD=1))

«R=1)+(FPD=1))

(FPD=l) [see
description]

(R=l).(FPD=O)

«R=1)+(FPD=1))

«R=l)+(FPD=l)).(TR2=O)

«R=1)+(FPD=1».(TR2=O)

No

No

An error parse tree is a diagram that shows how the progression of an error can be
tracked. Each horizontal line represents a signal. Moving from left to right. each vertical
line represents a deeper level of error. The most nested errors are toward the right side
of the diagram. The least nested errors are toward the left.

--, (Select One)

MCHK FP PROTOCOL_ERROR

MCHK FP ILLEGAL_OPCODE
.....

MCHK FP OPERAND_PARITY

MCHK FP UNKNOWN_STATUS

MCHK FP RESULT_PARITY

MCHK TBM ACV_TNV

MCHK TMH ACV_TNV

MCHK INT ID VALUE -
MCHK MOVC STATUS

MCHK UNKNOWN_IBOX_ TRAP --
MCHK BUSERR_READ_PCACHE

t--1 (Select All)

PCSTS<Tag Parity-Error>

PCSTS<P Data_Parity_Error>

Neither
......

t

Figure 8-2 (Cont.) Machine Check Parse Tree

KA670 Error Handling 225

FPU Protocol Error

FPU Illegal Opcode

FPU Operand Parity Error

FPU Unknown Result Status

FPU Result Parity Error

TB Miss Status During ACVlTNV
Processing

TB Hit Status During ACV/TNV
Processing

Undefined Interrupt 10 Value

MOVCx Status Encoding Error

Unknown I-Box Trap

Primary Cache Tag Parity Error on
D-Stream Read Hit

Primary Cache Data Parity Error on
D-Stream Read Hit

Inconsistent Status (One or both
bits must be set.)

226 KA670 Error Handling

MCHK_BUSERR_READ_DAL
10-

10-

I--

(Select One)

PCSTS<RDAL_Data_Parity _Error>
(Select One)

PCSTS<B_Cache_Hil>

Otherwise

Backup Cache Data Parity Error on
D-Stream Read

RDAl Data Parity Error on
D-Stream Read

PCSTS<Bus_Error>

I--

(Select One)

MEMCSR32<Error Summary>

10-

(Select One)

MEMCSR32<Nonexistent Me mory>
N XM on Main Memory D-Stream

ead R

MEMCSR32<Uncorrectuble Memory Error>
Uncorrectable ECC error on Main Memory
D-Stream Read

MEMCSR32<Nonexistent 110 >
NXM on 110 D-Stream Read

MEMCSR32·:1I0 Error>

CBTCR<Bus Timeout>
CP Bus Timeout

DSER<Master DMA NXM>
022-bus NXMlNOSACK

DSER<No Grant Timeout >
022-bus NOGRANT

DSER<022-bus Parity Error>

Otherwise

Otherwise

022-bus Device Parity Error

CPDAL Data Parity During D-stream Read
of SHAC or SGEC CSRs oNly

Inconsistent Status (MEMCSR32<Error Sum>
set without any other error bits set.)

Otherwise

Inconsistent Status (Machine check
during error interrupt.)

Inconsistent Status (No PesTS error
bits set.)

Figure &-2 (Cont.) Machine Check Parse Tree

KA670 Error Handling 227

MCHK BUSERR WRITE DAL ---- - - -
Otherwise

Inconsistent Status (This cannot
happen on the KA670.)

Unknown Bus Error Trap

t------------------... Unexpected Control Store Address

Otherwise

Key:

Select One

Select All

Otherwise

Neither

Inconsistent Status (Unknown
machine check code.)

- Exactly one case must be true. If zero or more
than one is true, the status is inconsistent.

- More than one case may be true.

- Fall-through case for Select One, if no other
options are true.

- Fall-through case for Select All, if no other
options are true.

Figure &-2 Machine Check Parse Tree

8.3.3 MCHK_FP _PROTOCOL_ERROR

Description: The CPU or FPU detected a protocol error during an operand/result
transfer. During a result return, the cases listed in Table 8-8 cause this machine check.

CPSTA

00

11

10

CPDAT<2:O>

xxx

xxx
000

Detected by

CPU
CPU
FPU

This error is probably due to a bit flipped on the CPSTA or CPDAT lines during an
opcode, operand. or result transfer.

Recovery procedures: No explicit error recovery is required. If the error reoccurs,
disable the FPU by writing a 0 to ACCS<l>.

Restart condition: Because this error is detected during the execution flow of an FPU
instruction, R should always be 1 and PSL<FPD> should always be O.

Retry if:

(R=l) AND (PSL<FPD>-O)

228 KA670 Error Handling

8.3.4 MCHK_FP _ILLEGAL_OPCODE

Description: An illegal opcode was detected by the FPU and reported during result
return. The probably cause is a bit flipped on the CPSTA or CPDAT lines during an
opcode transfer to the FPU.
Recovery procedures: No explicit error recovery is required. If the error reoccurs,
disable the FPU by writing a 0 to ACCS<1>.

Restart condition: Because this error is detected during the execution flow of an FPU
instruction, R should always be 1 and PSL<FPD> should always be O.

Retry if:

(R-l) AND (PSL<FPD>=O)

8.3.5 MCHK_FP _OPERAND_PARITY

Description: The FPU detected a parity error during an operand transfer and reported
the error during a result return. Note that the CPU should also have detected backup
cache or memory parity errors, which would have resulted in a MCHJt.BUSERR_READ_
DAL machine check instead.

The MCHK_FP _OPERAND_PARITY machine check indicates that the parity error was
detected only by the FPU. This implies that the CPU generated bad parity, or the CPU
and FPU saw different operands (or parity) from the backup cache or memory. The error
is a function of the data source listed in Table 8-9 (which cannot be determined from the
machine check).

nata Source

GPR

I-stream

Primary cache

Backup cache

Memory

NOTE

Possible Causes

CPU parity generation error, FPU parity<P> checking error, RDAL bus
error during operand transfer

CPU parity generation error, FPU parity<P> checking error, RDAL bus
error during operand transfer

CPU parity checking error, FPU parity<P> checking error, RDAL bus
error during operand transfer

CPU parity checking error, FPU parity<P> checking error, RDAL bus
error during operand transfer

CPU parity checking error, FPU parity<P> checking error, RDAL bus
error during operand transfer

It is possible to get this machine check if an FPU operand is read from an VO
space location. CPU parity checking is disabled for 110 space reads, but the
FPU checks parity for all operands.
Recovery procedures: No explicit error recovery is required. If the error reoccurs,
disable the FPU by writing a 0 to ACCS<l>.

Restart condition: Because this error is detected during the execution flow of an FPU
instruction, R should always be 1 and PSL<FPD> should always be O.

Retry if:

(R-l) AND (PSL<FPD>=O)

KA670 Error Handling 229

8.3.6 MCHK_FP _UNKNOWN_STATUS

Description: The FPU returned an unassigned status code. This error occurs when
CPSTA=10 and CPDAT<2:0>=111 appear with the returned result (from the FPU to
CPU). The probable cause is a bit flipped on the CPSTA or CPDAT lines during the result
transfer to the CPU.
Recovery procedures: No explicit error recovery is required. If the error reoccurs,
disable the FPU by writing a 0 to ACCS<l>.

Restart condition: Because this error is detected during the execution flow of an FPU
instruction, R should always be 1 and PSL<FPD> should always be O.

Retry if:

(R=l) AND (PSL<FPD>=O)

8.3.7 MCHK_FP _RESULT_PARITY

Description: The CPU detected a result data parity error during an FPU result transfer.
The probable cause is a bit flipped on the RDAL bus or parity lines.

Recovery procedures: No explicit error recovery is required If the error reoccurs,
disable the FPU by writing a 0 to ACCS<l>.

Restart condition: Because this error is detected during the execution flow of an FPU
instruction, R should always be 1, PSL<FPD> should always be O.

Retry if:

(R=l) AND (PSL<FPD>=O)

8.3.8 MCHK_ TBM_ACV _TNV

Description: During ACVITNV microcode processing, the MMGT.STATUS bits specified
a TB-miss status (which should not be possible during ACVtrNV processing). The
probablle cause is an internal error in the memory management hardware or microbranch
logic.
Recovery procedures: No explicit error recovery is required in response to this error.

Restart condition: This error can happen during the microcode processing of an
ACVITNV exception on any virtual memory reference.

Retry if:

«R=l) OR (PSL<FPD>=l»

8.3.9 MCHK_ TBH_ACV _TNV

Description: During ACVITNV microcode processing, the MMGT.STATUS bits specified
a TB-hit status (which should not be possible during ACV/TNV processing). The probable
cause is an internal error in the memory management hardware or the microbranch logic.
Recovery procedures: No explicit error recovery is required.

Restart condition: This error can happen during the microcode processing of an
ACVITNV exception on any virtual memory reference.

Retry if:

(R=l) OR (PSL<FPD>=l)

230 KA670 Error Handling

8.3.10 MCHK_INT_ID_VALUE

Description: During interrupt processing, the microbranch on the contents of the
INT.lD register resulted in an unexpected interrupt ID. The probable cause is a failure in
the interrupt encoding logic or microbranch logic.

Recovery procedures: No explicit error recovery is required.

Restart condition: Because interrupts can only occur between instructions or in the
middle of interruptable instructions, R should always be a 1 unless PSL<FPD> is a 1. If
PSL<FPD> is a 1, PC should point to MOVCx, CMPCx, LOCC, SKPC, SCANC or SPANC.

Retry if:

(R=l) OR (PSL<FPD>-l)

8.3.11 MCHK_MOVC_STATUS

Description: During the execution of MOVCx, the two state bits that encode the state of
the move (forward, backward, fill) were found set to the fourth (illegal) combination. The
probable cause is a failure in the state bit logic or microbranch logic.

Recovery procedures: No explicit error recovery is required.

Restart condition: Because the state bits encode the operation, the instruction cannot
be restarted in the middle of the MOVCx. If software can determine that no specifiers
were overwritten (MOVCx destroys RO to R5 and memory, due to string writes), the
instruction may be restarted from the beginning by clearing PSL<FPD>. This should be
done only if the source and destination strings do not overlap and if:

(PSL<FPD>-l)

8.3.12 MCHK_UNKNOWN_IBOX_TRAP

Description: The I -box requested a microtrap to report an illegal instruction or a
reserved operand fault, but the bits that encode the reason specified an illegal value. The
probable cause is a failure in the l-boxlE-box interface, or in the microsequencer trap
logic.

Recovery procedures: No explicit error recovery is required.

Restart condition: Because this microtrap can only occur at an instruction boundary, R
should be a 1 and PSL<FPD> should be a o.
Retry if:

(R=l) AND (PSL<FPD>-O)

8.3.13 MCHK_BUSERR_READ_PCACHE

This code indicates that one of two errors was detected during a D-stream read that hit
in the primary cache. To get either of these machine checks, the primary cache must be
enabled.

PCSTS<t8g.,.parity_error> and PCSTS<P _data..parity_error> distinguish the cases. If
neither bit is set, the status is inconsistent, and the error should not be retried. In both
cases, PCERR contains the physical address of the error.

KA670 Error Handling 231

8.3.13.1 Primary Cache Tag Parity Error on D-Stream Read Hit
Description: A primary cache tag parity error was detected on a D-stream read hit.
PCSTS<trapb, PCSTS<interrupb, and PCSTS<tag..J)arity_error> should all be set.
This error is also reported by a soft error interrupt.)
Recovery procedures: Write all primary cache tags with good parity and cleared valid
bits. Then perform the full memory error recovery procedures (Section 8.1.2.3). If the
error reoccurs, disable both the primary cache and the primary tag store copy in the
C-chip.

Restart condition:

Retry if:

«R=l) OR (PSL<FPD>=l» AND (PCSTS<trap2>=O).

8.3.13.2 Primary Cache Data Parity Error on D-Stream Read Hit
Description: A Primary cache data parity error was detected on a D-stream read hit.
PCSTS<trapb and PCSTS<P _data_parity_error> should both be set.
Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3), If the error reoccurs, disable both the primary cache and the primary
tag store copy in the C-chip.

Restart condition:

Retry if:

«R=l) OR (PSL<FPD>=l» AND (PCSTS<trap2>=O)

8.3.14 MCHK_BUSERR_READ_DAL

This code indicates that one of two classes of errors was detected during a D-stream read.
PCSTS<RDAL_data_parity_error> and PCSTS<bus_error> distinguish the two classes. If
neither or both bits are set, the status is inconsistent and the error should not be retried.

8.3.14.1 Data ParRy Error on D-Stream Read
A data parity error was detected during a D-stream read. The source of the data parity
error is either the backup cache or memory, distinguished by PCSTS<B_cache_hit>. In
both cases, PCERR contains the physical address of the error.

8.3.14.1.1 Backup cache Data Parity Error on D-Stream Read
Description: A data parity error was detected during a D-stream read hit in the backup
cache. PCSTS<TRAPl>, PCSTS<RDAL_data-parity_error>, and PCSTS<B_cache_hib
should all be set.
Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3). Ifthe error reoccurs, disable the backup cache.

Restart condition:

Retry if:

«R=l) OR (PSL<FPD>=l» AND (PCSTS<trap2>=O).

232 KA670 Error Handling

8.3.14.1.2 Memory Data Parity Error on D-Stream Read
Description: A data parity error was detected during a D-stream read from memory.
Note that an actual memory parity error would have been reported as a bus error (next
section). This error implies that the parity went bad between the G-chip and the CPU.
PCSTS<trap1> and PCSTS<RDAL_data_parity_errol'> should both be set. PCSTS<B_
cache_hib should be cleared.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3).

Restart condition:

Retry if:

«R-l) OR (PSL<FPD>=l» AND (PCSTS<trap2>=O).

8.3.14.2 Bus Error on D-Stream Read
An RDAL D-stream read transaction was terminated with ERR_L. In order for the
BCSTS register to log this error, the backup cache must be on and the reference must be
to a non-I/O space address.

8.3.14.2.1 Memory Error on Requested Quadword of D-stream Read
Description: The G-chip detected an error on a D-stream read. MEMCSR33 must
match (to the closest octaword) PC ERR. Otherwise, the status is inconsistent, and the
error should not be retried. MEMCSR33 and PCERR contain the physical address of the
error.

The source of the error is distinguished by bits in MEMCSR32, as follows:

• MEMCSR32<error summary> - This bit must be set, indicating that an error has
been logged by the G-chip.

• MEMCSR32<nonexistent memory> - The non-I/O octaword address logged
in MEMCSR33 is not mapped by the G-chip, so the address is nonexistent.
PCSTS<trap 1> should be set. If this is a real NXM, a retry will not succeed and
should not be attempted if NXMs are expected. If NXMs are not expected and a retry
is desired, do so under the conditions stated above.

• MEMCSR32<uncorrectable memory error> - The G-chip detected an
uncorrectable ECC error within an octaword at the address logged in MEMCSR33.
PCSTS<trap1> should be set.

• MEMCSR32<nonexistent I/O> - The I/O longword address logged in MEMCSR34
was not responded to by any of the CP bus I/O devices, so the address is considered
nonexistent. PCSTS<trapl> should be set. If this is a real NXM, a retry will not
succeed and should not be attempted ifNXMs are expected. IfNXMs·are not expected
and a retry is desired, do so under the conditions stated above.

• MEMCSR32<1/0> - The I/O longword read whose address is logged in MEMCSR34
had an error. There are five types of CP bus error that can cause this error:

- CBTCR<bus timeout> - This is a CP bus timeout. This bit indicates that a CP
bus I/O device is in an inconsistent state--the device deasserts its NOT_ME line
(indicating the address is for it), but never completes the CP bus cycle with RDY.
The SSC's I5-millisecond watch dog timer expires, terminating the cycle with
ERR. PCSTS<trapl> should be set.

- DSER<master DMA NXM> - This is a Q22-bus NXMINOSACK error. The
Q22-bus address is stored in DMEAR.

KA670 Error Handling 233

- DSER<no grant> - This a Q22-bus NOGRANT error, indicating that the
CQBIC's lO-microsecond NOGRANT timer has expired.

- DSER<Q22-bus parity error> - This a Q22-bus device parity error. The Q22-
bus address is stored in DMEAR.

- None of the above bits set - This indicates that a CP bus parity error occurred
while reading either the SHAC's or SGEC's internal registers.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3).

Restart condition: Unless otherwise stated in the error descriptions, retry if:

«R=l) OR (PSL<FPD>=l» AND (PCSTS<trap2>=O),

8.3.15 MCHK_BUSERR_WRITE_DAL

Description: An RDAL write or clear write buffer transaction was terminated with the
ERR_L terminator. For the BCSTS register to log the error, the backup cache must be
on and the reference must be to a non-II0 space address. The G-chip in the KA670 never
does this, so the error is considered serious and unrecoverable.

8.3.16 MCHK_UNKNOWN_BUSERR_TRAP

Description: The CPU's BIU requested a microtrap to report a cache or bus error, but
the bits that encode the reason specified an illegal value. The probable cause is a failure
in the BIU or microsequencer trap logic.

Recovery procedures: No explicit error recovery is required. .

Restart condition: Because this error may be masking a write error, a retry should not
be attempted.

8.3.17 MCHK_UNKNOWN_CS_ADDR

Description: An unexpected address was reached in the CPU's control store. The
probable cause is a failure in the microsequencer logic or a microcode bug.

Recovery procedures: No explicit error recovery is required.

Restart conditions:

Retry if:

(R=l) OR (PSL<FPD>=l)

234 KA670 Error Handling

8.4 Power-Fail Interrupt
Power-fail interrupts are requested to report imminent loss of power to the module.
Power-fail interrupts are requested at IPL 1~6 and dispatched through SCB vector
OC16·

The stack frame for a power fail interrupt is as follows:

t--------p-c-------..... 1 :(SP)
PSL •

The KA670 system supports the standard Q22-bus time of 20 milliseconds to execute the
software needed to save the processor state.

8.5 Hard Error Interrupts
Hard error interrupts are requested to report any error detected asynchronously with
instruction execution. This results in an interrupt at IPL IDt6, dispatched through SCB
vector 6016. Typically, these errors indicate that machine state is corrupted and that
retry is not possible.

The stack frame for a hard error interrupt is as follows:

t-_______ P_c-_-____ -tl :(SP)

PSL _

8.5.1 Parse Tree for a Hard Error Interrupt
Figure 8-3 shows the parse tree for a hard error interrupt.

-

KA670 Error Handling 235

(S I 0 e ect ne)

MEMCSR32<Error Summary>
r- (Select One)

-

MEMCSR32<Bus Parity Error>
RDAl Data Parity Error on Write

MEMCSR32<Uncorrectabla Mamor y Error>
Uncorrectable Main Memory on Masked
Write

MEMCSR32<Nonexistent Memory Error>
NXM on Main Memory Write

MEMCSR32<Nonexistent 1/0>
NXM on 110 Write

MEMCSR32<1/0 Error>
(Select One)

CBTCR<Bus Timeout>
CP Bu s Timeout on a Write

DSER<Master DMA NXM>
022-b us NXMINOSACK on a Write

DSER<No Grant Timeout>
022-b us NOGRANT on a Write

DSER<022-bus Parity Error>

Otherwise

Otherwise

Q22 -bus Device Parity Error on a Write

Inc onsistent Status (MEMCSR32<1/0 Error>
hout Any Other Error Bits Set Wit

Inconsis tent Status (MEMCSR32<Error Sum>
out Any Other Error Bits Set Set With

Otherwise
Inconsistent State Interrupt Without
Any Errors Bit Set

Key:

Select One

Select All

Otherwise

- Exactly one case must be true. If zero or more
than one is true, the status is inconsistent.

- More than one case may be true.

- Fall-through case for Select One, if no other
options are true.

Figure 8-3 Parse Tree for a Hard Error Interrupts

236 KA670 Error Handling

8.5.2 RDAL Data Parity Error on Memory Write
Description: The G-chip detected a parity error on the RDAL data for a memory write
from the CPU. The probable cause is a bit flipped on the D-bus, or an intentional or
unintentional bad parity generated by the CPU. The GMI is completed with bad ECC.

Recovery procedures: Clear all error bits in MEMCSR32.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.3 Uncorrectable Main Memory Error on Masked Write

Description: The G-chip detected an un correctable error in the read part of a read­
modify-write transaction on a masked memory write from the CPU.The GMI is completed
with bad ECC.

Recovery procedures: Clear all error bits in MEMCSR32.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.4 Main Memory Nonexistent Write
Description: The G-chip detected a NXM error on the RDAL data for a memory write
from the CPU.

Recovery procedures: Clear all error bits in MEMCSR32.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.5 I/O Nonexistent Write
Description: The G-chip detected a NXM error for a 110 write from the CPU.

Recovery procedures: Clear all error bits in MEMCSR32.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.6 CP Bus Timeout on a Write
Description: The SSC's I5-millisecond CP bus watchdog has expired on an 110 write
from the CPU.

Recovery procedures: Clear all error bits in MEMCSR32.

Restart conditions: Because this error indicates a failed write, no retry is possible.

KA670 Error Ha~lirlQ 237

8.5.7 Q22·bus NXM/NOSACK on a Write

Description: The CQBIC has failed while trying to complete a write on the Q22-bus.

Recovery procedures: Clear all error bits in MEMCSR32 and DSER.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.8 Q22·bus NOGRANT on a Write

Description: The CQBIC has failed to be granted the Q22-bus while trying to complete
a write.

Recovery procedures: Clear all error bits in MEMCSR32 and DSER.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.5.9 Q22·bus Device Parity Error on a Write
Description: The CQBIC has been notified of a Q22-bus data parity error while trying
to complete a write.

Recovery procedures: Clear all error bits in MEMCSR32 and DSER.

Restart conditions: Because this error indicates a failed write, no retry is possible.

8.6 Soft Error Interrupts
Soft error interrupts are requested to report errors that were detected but did not affect
instruction execution. This results in an interrupt at IPL lA16, dispatched through SCB
vector 5416.

The stack frame for a soft error interrupt is as follows:

t----------p-c-------..... 1 ,(SP)

PSL •

8.6.1 Parse Tree for Soft Error Interrupts

Figure 8-4 shows the parse tree for soft error interrupts.

238· KA670 Error Handling

- aect (S I All)

PCSTSeINTERRUPT>
~

i-

I.-

(Salacl All)

PCSTSei' _ Taa..Parltr_Error>

PCSTSeP _Data_Parilr_Errof>

PCSTSeRDAl_Data_Paritr_Error>
(SalactOne)

PCSTSeB_Cache_Hlt>

Otherwlsa

PCSTSeBua_Error>
(Salect Ona)

MEMCSR32eError SuIll/llarJ> -

Prlmarr Cache Tao Parlt, Error on Read,
Write, or Invalidate

Primary Cache Data Par., Error on
I-Stream Read Hil

Backup Cache Data Park, Error
on I-Slream Read or Nonrequested
longword of D-Straarn Read

ROAl Data Parltr Error on
I-Stream Read or nonraq ted
longword of O-Straarn Read

MEUCSA32<Correctable Ma morr Error>

MEUCSR32eUlICOI'ractabla Me

MEMCSA32<Nonaxlslt/lt 110>

MEMCSA32ellO Error> n CBTCR<BlO>

Otherwiaa

Otherwise

Main Uemory Correctable Error

mory Error>
Main M_, UlICOI'ractabIe Error
on !-Stream Read Only

110 NXU on l-S1raarn AaacI

CP Bus nmeout on I-S1raam AaacI

Inconslstenl State

Inconslltant State

BcSTSeSlatul lock>
..... (Select Alii

BCSTSc8TS_Parllr_Error>

BCSTS<P1TS_Parttr_Error>

BCSTSeP2TS_Paritr_Error>

BCSTScBus_Err>

0IIIerwIIa

I

Backup Tao Stora ParIIr Error

Prlmar, Tao Store P , Error
III half)

Primer, Tao SIora Partly Error
(2nd half)

RDAL P",,-, Error

SelectOna - Exactly _ case _, be lrue. "z_ or __
than _ Is true. lhe ltatul 1I1n-.1I1ant.

Select AD

OIh_lIa

- Mora than _ ca .. mar be true.

- F I".UOh case lot SeIacI One •• 110
opliona ara lrue.

Figure 8-4 SOft Error Interrupt Parse Tree

All errors reported by this interrupt are soft errors. A retry is always possible after
recovery, unless otherwise stated in the description of an error.

KA670 Error Handling 239

8.6.2 Cache or Memory Errors

A primary cache error, data parity error, or bus error is detected during a memory
reference. PCSTS<interrupt> distinguishes this class from others. At least one of
PCSTS<P _tsLParity _error>, PCSTS<P _data_parity _error>, PCSTS<RDAL_data"parity_
error>, or PCSTS<bus_error> should be set. PCERR does not contain the error address
in this class of errors.
The CPU microcode automatically retries all I-stream errors, using D-stream reads. If
the error is hard, the D-stream read is reported as a machine check with code MCHK_
BUSERR_READ_DAL. If the error is transient, it is reported as a soft error interrupt;
this indicates the retry was successful.

8.6.2.1 Primary cache Errors
Two types of primary cache errors can be detected during an I-stream read, write, or
invalidate. The primary cache must be on to get either error. PCSTS<P _tauarity_
error> and PCSTS<P _data_parity_error> distinguish the two cases.

8.6.2.1.1 Primary cache Tag Parity Error
Description: A primary cache tag parity error was detected during an I-stream read,
a D-stream read miss, a write, or an invalidate. If the error had been detected during
a D-stream read hit, the error would have been reported as a machine check with code
MCHK_BUSERR_READ_PCACHE. PCSTS<P _tauarity_erroD and PCSTS<interrupt>
should both be set.

Recovery procedures: Write all primary cache tags with good parity and cleared valid
bits. Then perform the full memory error recovery procedures (Section 8.1.2.3). If the
error reoccurs, disable both the primary cache and the primary tag store copy in the
C-chip.

8.6.2.1.2 Primary cache Data Parity Error on I-Stream Read Hit
Description: A primary cache data parity error was detected during an I-stream read
hit. If the error had been detected during a D-stream read hit, the error would have been
reported as a machine check with code MCHK_BUSERR_READ_PCACHE. PCSTS<P_
data"parity _error> and PCSTS<interrupt> should both be set.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3). If the error reoccurs, disable both the primary cache and the primary
tag store copy in the C-chip.

8.6.2.2 RDAL Data Parity Errors
An RDAL data parity error can be detected during an I-stream read or on the
nonrequested longword of a D-stream read. If the error had been detected in the
requested longword of a D-stream read, the error would have been reported as a machine
check with code MCHK_BUSERR_READ_DAL. The source of the data parity error is
either the backup cache or memory, distinguished by PCSTS<B_cache_hit>.

8.6.2.2.1 Backup Cache Data Parity Error
Description: A data parity error was detected during an I-stream read or in
the nonrequested longword of a D-stream read that hit in the backup cache.
PCSTS<interrupt>, PCSTS<RDAL_data_parity_error>, and PCSTS<B_cache_hit> should
all be set.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3). If the error reoccurs, disable the backup cache.

240 KA670 Error Handling

8.6.2.2.2 Memory Data Parity Error
Description: A data parity error was detected during an I-stream read or in the
nonrequested longword of a D-stream read from memory. Note that an actual memory
parity error would have been detected by the G-chip and reported as a memory read error
(Section 8.6.2.3.1). This error implies that the parity went bad between the G-chip and
the CPU. PCSTS<interrupt> and PCSTS<RDAL_data_parity_error> should both be set.
PCSTS<B_cache_hit> should be cleared.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3).

8.6.2.3 Bus Error on I-Stream Read
An RDAL I-stream read transaction was terminated with ERR_L. If the error had been
detected during a D-stream read, the error would have been reported as a machine check
with code MCHK_BUSERR_READ_DAL. For the BCSTS register to log the error, the
backup cache must be on and the reference must be to a non-1I0 space address.

8.6.2.3.1 Memory Error I-Stream Read
Description: The G-chip detected an error on an I-stream read. Depending on the type
of error, either MEMCSR33 or MEMCSR34 contains the physical address of the error.

The source of the error is distinguished by bits in MEMCSR32, as follows:

• MEMCSR32<uncorrectable memory error> - An un correctable ECC error was
found in the naturally aligned octaword around the I-stream read. PCSTS<bus_
error>, PCSTS<INTERRUPT>, BCSTS<Bus_err>, and BCSTS<status_Iock> should
all be set.

• MEMCSR32<nonexistent I/O> - The I-stream read from 110 space is nonexistent.
The G-chip detects an 110 NXM. This differs from a CP bus timeout, where the SSC's
watchdog timer detects the timeout. PCSTS<bus_error> and PCSTS<interrupt>,
should also be set.

• MEMCSR32<I/O error> - The I-stream read from 110 space was timed out by the
SSC. The SSC's watchdog timer detected a CP bus timeout. This differs from an 110
NXM, where the G-chip detects the 110 NXM. PCSTS<bus_error>, PCSTS<interrupt>,
and CBTCR<BTO> should all be set.

Recovery procedures: Perform the full memory errol' recovery (Section 8.1.2.3).

8.6.3 cache Fill Errors on the Nonrequested Quadword of a Read
Description: The C-chip detected an RDAL data parity errol' on the non requested fill
quadword of a D-stream or I-stream read.

The source of the error is distinguished by the PCSTS<B_cache_hit> bit. If PCSTS<B_
cache_hit> is set, then the source of the data was the backup cache RAMs. If PCSTS<B_
cache_hit> is clear, then the source on the data is the' G-chip.

Recovery procedures: Perform the full memory error recovery procedures
(Section 8.1.2.3),

8.6.4 C-Chip Errors
The C-chip detected a tag parity error during a tag store access, or a bus protocol error
during an RDAL transaction. The C-chip must be on to detect either of these errors.

KA670 Error Handling 241

8.6.4.1 C-Chlp Backup Tag Store Parity Error
Description: A tag store parity error was detected in the backup tag store during a read,
write, fill, invalidate, or Cbus access. BCSTS<BTS_parity_err> and BCSTS<status_Iock>
should both be set. BCERR contains the physical address of the error.

Recovery procedures: Use the BCERR address to rewrite the tag with good parity
and a cleared valid bit. Then perform the full memory error recovery procedures
(Section 8.1.2.3). If the error reoccurs, disable the backup cache.

8.6.4.2 C-Chlp Primary Tag Store Parity Error
Description: A tag store parity error was detected in one of the primary tag
stores during a fill, invalidate, or Cbus access. Either BCSTS<PITS..,parity_err>,
BCSTS<!"2TS_parity _erT> , or both should be set, along with BCSTS<status_Iock>.
BCERR contains the physical address of the error.

Recovery procedures: Use the BCERR address to rewrite the tag with good parity
and a cleared valid bit. Then perform the full memory error recovery procedures
(Section 8.1.2.4). If the error reoccurs, disable both the primary cache and the primary
tag store copy in the C-chip.

8.6.4.3 C-Chlp Bus Protocol Error
Description: If the cache RAM speed in the C-chip (BCCTL<two_cycle_RAMs» and
the G-chip (MEMCSR36<cache ram speed» are different, the C-chip may detect a
protocol error during memory writes or cache fill operations. BCSTS<bus_err> and
BCSTS<status_Iock> should both be set.

Recovery procedures: Check the cache RAM speeds in the C-chip and G-chip to
make sure that they agree. Then perform the full memory error recovery procedures
(Section 8.1.2.3).

8.7 Kernel Stack Not Valid Exception
A kernel stack not valid exception occurs when a memory management exception is
detected while attempting to push information on the kernel stack during microcode
processing of another exception. A console halt with an error code of ERR_INTSTK
occurs if a memory management exception is encountered while attempting to push
information on the interrupt stack.

The kernel stack not valid exception is dispatched through SCB vector 08].6. The stack
frame is as follows:

I----------p-c---------tl ,(5P)
PSL _

No additional information is provided for this exception.

242 KA670 Error Handling

8.8 Errors Without Notification
There are errors that do not produce explicit notification. These errors only set the error
status bits. The next time the software inspects the register (for other reasons), it may
want to check or log these bits.

8.8.1 Parity Generation and Detection Philosophy

The following list summarizes the parity generation and check characteristics of the
KA670:

• The CPU generates parity on write data and checks parity on read data (for memory
transactions). The CPU does not generate parity on command/address information.

• A CPU I-stream parity error is reported as an interrupt, with the appropriate bits
set in the primary cache status register. The microcode then tries to recover with a
D-stream read, which results in a machine check (MCHK_BUSERR_READ_DAL) if
the error is hard.

• The primary cache (contained in the CPU) supports parity on both the tag and data
store.

• The backup cache supports parity on both the tag and data store. On cache fills and
writes, parity is stored and then checked by the CPU during reads.

• The G-chip detects RDAL data parity errors on writes.

• The FPU generates parity for FPU results and checks parity on RDAL data bus
floating operands.

• The two DSSI interface chips (SHACs) generate parity for all CP bus DMA writes.
The SHACs check parity on DMA reads and internal register reads.

• The network interface chip (SGEC) generates parity for all CP bus DMA writes. The
SGEC checks parity on DMA reads and internal register reads.

• The SSC does not support parity, so the I-kilobyte of internal battery backed-up RAM
and the internal registers are not protected.

• The CQBIC does not support parity on the CP bus, so the bus's DMA activity and
internal registers are not protected by parity. Note, the CQBIC does support parity
on the Q22 bus.

8.8.2 Microcode-Detected Error Summary

The following list shows errors detected (triggered) by microcode checks. All the errors
listed are described in this chapter.

• Console halt

ERR_INTSTK

ERR_DOUBLE

ERR_HLTINS

ERR_ILLVEC

ERR_WCSVEC

ERR_CHMFI

ERR_MCHK..ACV _TNV

ERR_KSNV _ACV _TNV

ERR_MCHK_MCHK

ERR_KSNV _MCHK

ERR_IE_PSL26_24_101

ERR_IE_PSL26_24_110

ERR_IE_PSL26_24_111

ERR_RECPSL26_24_101

ERR_RECPSL26_24_110

ERR_RECPSL26_24_111

ERR_SELFI'EST_FAILED

• Machine check

MCHK_FP _UNKNOWN_STATUS

MCHK_TBM_ACV _TNV

MCHK_TBH_ACV _TNV

MCHK_INT_ID_ VALUE

MCHK_MOVC_STATUS

MCHK_UNKNOWN_IBOX_TRAP

MCHK_UNKNOWN_BUSERR_TRAP

MCHK_UNKNOWN_ VECTOR_STATUS

• Kernel stack not valid

8.8.3 Errors Detected by Self-Tests

KA670 Error Handling 243

There are two levels of self-test errors- power-up CPU microcode self-test, and boot
ROM macrocode self-test.

• A failing microcode self-test produces a halt- to- console elTor code of ERR_
SELFI'EST_FAILED.

• A failing macrocode self-test produces an error message printed at the console. The
system is left at the »> prompt.

(
\

Firmware

• Chapter 9, Firmware

9
Firmware

This chapter describes the KA670 functional firmware. The firmware is VAX-ll code that
resides in EPROM on the KA670 module. The chapter covers the following major topics:

• Firmware capabilities

• Halt entry, halt exit, and halt dispatch

• Power-up

• Operating system bootstrap

• Console service

• Console commands

• Diagnostics

Typically KA670 firmware gains control whenever the onboard CPU halts, or more
precisely, performs a processor restart operation. However, portions of the firmware can
also be invoked by applications through a public subroutine linkage.

When the KA670 firmware is running, it provides services expected of a standard VAX
console subsystem. In particular, the following services are available:

• Automatic restart or bootstrap of customer application images at power-up, on reset,
or conditionally after processor halts.

• Diagnostic tests executed both at power-up and by request, which verify the correct
operation of the CPU and memory modules.

• Operator interface providing complete examination or modification of the processor
state.

A more detailed description of the major components of the KA670 is provided in Section
9.1 and a structural diagram of the KA670 firmware is given in Figure 9-1.

Terms In This Chapter

Firmware
A generic term describing all program code in the KA670 EPROM. Sometimes, firmware
is referred to as either the boot ROM, diagnostics ROM, or console ROM, depending on
context.

Virtual memory boot (VMS) or primary bootstrap
The boot program.

Diagnostic or seN-test
The ROM-based diagnostic program.

247

248 Firmware

Console or console program
The operator interface.

9.1 Firmware Capabilities
The KA670 firmware provides the following services:

• Diagnostics that test all components on the board and verify the module is working
correctly

• Automatic/manual bootstrap of an operating system following processor halts

• Automatic/manual restart of an operating system following processor halts

• An interactive command language that allows the user to examine and alter the state
of the processor

• Support of various terminals and devices as the system console

• Multilanguage support for displaying critical system messages and handling LK201
country-specific keyboards

The following sections describes in detail the functions and external characteristics of the
KA670 firmware.

9.2 Firmware Overview
The KA670 firmware comprises several major functional blocks of code, as shown in
Figure 9-1.

Firmware

Halt Dispatch

I
~

ROM-Based System System Console
Diagnostics Restart Bootstrap Service

Figure 9-1 KA670 Firmware Structural Components

The halt entry code is entered following system halts, resets. or severe e]'fOrs. Basically.
this code is responsible for saving the machine state and transfening control to the
firmware dispatcher. The halt dispatcher determines the nature of the halt, then
transfers control to the appropriate code. The halt exit code is entered whenever a
transition is desired from a halted state to the running state. The halt exit code performs
a restoration of the saved context prior to the transition. Section 9.3 describes the halt
codes.

The ROM-based diagnostics consist of functional component diagnostics invoked by a
diagnostic executive at power-up or by the TEST command from the console. These
functions are described in Sections 9.4 (power-up) and 9.9 on diagnostics.

Firmware 249

Depending on the nature of the halt and the hardware context, the firmware attempts
either an operating system restart (Section 9.6), a bootstrap operation (Section 9.5), or
transitions to console 110 mode (Section 9.7).

9.3 Halt Entry, Exit, and Dispatch
The main purpose of the halt code is to save the state of the machine on halt entry,
invoke the dispatcher, and restore the state of the machine on exit to program 110 mode.

9.3.1 Halt Entry-Saving Processor State
The entry code, at physical address 20040000, is executed whenever a halt occurs. The
processor may halt for a variety of reasons. Table J-l provides a complete list of the halt
reasons and the associated messages.

PR$_SAVPSL< 13:8>(restart_code), IPR 43 stores the reason for the halt. PR$_SAVPC,
IPR 42, contains the value of the PC when the processor was halted. On a powerup,
PR$_SAVPC is undefined.

One of the first actions of the firmware after a halt is to save the current LED code. Then
the firmware writes an "E" to the diagnostic LEDs. This action occurs within the first
several instructions after entering the firmware. The purpose of this action is to let the
user know that at least some instructions have been successfully executed.

The KA670 firmware unconditionally saves the following registers on any halt:

• RO through R15, the general-purpose registers

• PR$_SAVPSL, the saved PSL register

• PR$_SCBB, the system control block base register

• DLEDR, the diagnostic LED register

NOTE
The SSC programmable timer registers are not saved. In some cases, such as
bootstrap, the firmware uses the timers, so the previous time context is lost.

Several registers are unconditionally set to predetermined values by the firmware on any
halt, processor initialization, or bootstrap. This action ensures that the firmware can run
and protects the board from physical damage.

The following registers fall into this category:

• SSCCR, the SSC configuration register

• ADxMCH & ADxMSK, the SSC address match and mask registers

• CBTCR, the CDAL bus timeout control register

• TIVRx., the SSC timer interrupt vector registers

On every halt entry, the firmware sets the console serial line baud rate based on the
value read from the BDR register.

250 Firmware

9.3.2 Halt Dispatch
The action that the firmware takes on a halt depends primarily on the following
information:

• The I Break I enable switch, BDR<7>(halt_enable).

• The console program mailbox, CPMBX<1:0>(halt_action).

• The user-defined halt action (SET HALT).

• The halt code, PR$_SAVPSL<13:8>(restart_code).

In general, the I Break I enable switch governs whether or not the KA670 recognizes a
break condition from the console serial line. The switch also determines the default
action taken on a power-up or other internal halt condition. If breaks are enabled, the
firmware enters the console by default. If breaks are disabled, the firmware attempts a
recovery operation.

Operating systems can use the console program mailbox, CPMBX<1:0>(balt_action)
(Figure H-2) to override the I Break I enable switch setting and instruct the firmware to
enter the console service, attempt to restart the operating system, or reboot the system
following a halt.

The user can also specify a default halt action with the SET HALT console command
«Section 9.8), in case the operating system or user application does not set the console
program mailbox. This command allows users to specify autobooting on power-ups, even
when breaks are enabled. For HALT instructions and error halt conditions. the SET
HALT command is similar in function to the console program mailbox; however. the
command has lower precedence and is only used when the console program mailbox is O.

The halt (or restart) code is automatically deposited in PR$_SAVPSLd3:8>(restart_
code) on any halt condition. This field indicates the cause of the halt and of dispatching
collapses. in three categories:

02: External halts
03: Reset/power-up
xx: HALT instruction and all error halts

Table 9-1 summarizes the action taken on all halt conditions except external halts. which
are described in Section 9.3.2.1. The actual halt dispatch state machine is described in
detail in Section 1.1.

Table 9-1 Halt Action SUmmary

ResetJ
Power­
Up
or Halt

T

Wretl
na e

Switch

1

User­
Defined
Halt
Action

0,1,3

T = a reset or power-up condition.

Operating

System
Mailbox
Halt
Action

x

F = a HALT instruction or error halt condition.
x = don't care.

Action(a)

Diagnostics, console.

Table 9-1 (Cont.) Halt Action Summary

Operating

Reset! User- System
Power- ~retJ Defined Mailbox
Up na e Halt Halt
or Halt Switch Action Action

T 1 2,4 x

T 0 x x

F 1 0 0

F 0 0 0

F x 1 0

F x 2 0

F x 3 0

F x 4 0

F x x 1

F x x 2

F x x 3

T = a reset or power-up condition.
F = a HALT instruction or error halt condition.
x = don't care.

Firmware 251

Action(s)

Diagnostics. If successful, boot. If either
fails, console.

Diagnostics. If successful, boot. If either
fails, console.

Console.

Restart. If this fails, boot. If boot fails,
console.

Restart. If restart fails, console.

Boot. If boot fails, console.

Console.

Restart. If restart fails, boot. If boot fails,
console.

Restart. If restart fails, console.

Boot. If boot fails, console.

Console.

Because the KA670 does not support battery backed-up main memory, an operating
system restart operation is not attempted on a power-up.

9.3.2.1 External Halts
The following conditions can trigger an external halt (PR$_SAVPSL<13:8>(restart_code)
= 2). Different actions are taken, depending on the condition.

• A break condition on the system console serial line, if the ISreakl enable switch is set
to enabled (BDR<7>(halt_enable) = 1). As a result, the console is entered.

NOTE
You can use the S SET CONTROLP ENABLE console command to estabUah
ICtrl1 ~ as the break condition.

• The assertion of the BHALT line on the Q22-bus, if the SCR<14>(BHALT_ENABLE)
bit in the CQBIC is set. As a result, the console is entered.

• Negation of DCOK on the Q22-bus, if the SCR<7>(DCOK_ACTION) bit is set. (By
default this bit is clear.) As a result, the console is entered.

252 Firmware

• Recognition of a valid MOP BOOT message by an appropriately initialized SGEC, if
the remote_boot_enable jumper is in place (BDR<31>(remote_boot_enable) = 1). As a
result, a bootstrap is attempted. If the bootstrap fails, the console is entered.

NOTE
The firmware does not initialize the SGEC for this operation. The operating
system must set up the SGEC to support this feature.

I Restart I Button

Pushing the r-:R::-e~st-art" button typically initiates a power-up sequence and destroys system
state. The Restart button negates DCOK. The negation of DCOK may also be asserted
by the DEQNA sanity timer, or any other Q22-bus module that chooses to implement
the Q22-bus restart/reboot protocol. Since the SCR<7>(DCOK_ACTION) bit is cleared on
power-up, the default action after deasserting DCOK is to generate a processor restart.

9.3.3 Halt Exit-Restoring the Processor State
When the firmware exits, it uses the saved context currently defined. This context is
initially determined by what was saved on entry to the firmware. The context may be
modified by console commands or automatic operations, such as an automatic bootstrap
on power-up.

When restoring the context, the firmware flushes the CPU internal cache (if enabled) and
invalidates all translation buffer entries by using the internal processor register PR$_
TBIA, IPR 57.

In restoring the context, the console pushes the user's PSL and PC onto the user's
interrupt stack, then executes an REI from that stack. This action-implies that the user's
ISP is valid before the firmware can exit. This is done automatically on a bootstrap.
However, it is suggested that the SP be set to a valid memory location before issuing
the START or CONTINUE command. Also, the user should validate PR$_SCBB before
executing a NEXT command, since the. firmware uses the trace trap vector for this
function. At power-up, the user ISP is set to 20016 and PR$_SCBB is undefined.

9.4 Power-Up
This section describes the sequence of events which occurs on power-up. On a power-up,
the KA670 firmware performs a unique set of actions, including locating and identifying
a console device, language query, and the diagnostic countdown. Certain actions depend
on the state of the mode switch on the H3604-SA panel. The switch has three settings:
Test, Query, and Normal.

9.4.1 Identifying the Console Device
The firmware tries to identify the type of console device present, so the device may be
used to display further diagnostic progress. Normally, the console device is the device
attached to the console serial line. In this case, the firmware send outs the device
attributes escape sequence <ESC> [c on the console serial line to determine the type of
terminal attached and the functions it supports. Terminals that do not respond to the
device attributes request correctly are assumed to be hardcopy devices.

After a eonsole device has been identified, the firmware displays the KA670 banner
message, similar to the following:

KA670-A V3.0, VMS 2.11

Firmware 253

The banner message contains the processor name, the version of the firmware, and the
version of VMB. The letter code in the firmware version indicates whether the firmware
is pre-field test (X), field test (T), or an official release (V). The first digit indicates the
major release number, and the trailing digit indicates the minor release number.

Next, if the designated console device supports DEC Multinational Character Set (MCS)
and either the battery failed during power failure or the mode switch is set to Query,
the firmware prompts for the console language. The firmware first displays the language
selection menu (Figure 9-2).

After the language query, the firmware invokes the ROM-based diagnostics and
eventually displays the console prompt.

9.4.1.1 Mode Switch Set to Test
If the mode switch is set to Test, the console serial line external loopback test is executed.
The purpose of this test is to verify that the console serial1ine connections from the
KA670 through the H3604-SA panel are intact.

NOTE
An externalloopback connector should be inserted in the serial line connector
on the H3604-SA panel before cycling power to invoke this test.

During this test, the firmware toggles between two states-active and passive. Each
state lasts a few seconds and displays a different number on the LEOs.

During the active state (about 3 seconds), the LEOs are set to 6. In this state, the
firmware reads the baud rate and mode switch, then transmits and receives a character
sequence. If the mode switch has been moved from the Test position, the firmware exits
the test and continues as if on a normal power-up.

During the passive state (about 7 seconds), the LEOs are set to 3.

If at any time the firmware detects an error (parity, framing, overflow, or no characters),
the firmware hangs and displays a 6 on the LEOs.

9.4.1.2 Mode Switch Set to Query
If the mode switch is set to Query (or the firmware detects that the battery failed during
a power loss), the firmware queries the user for the language used for displaying critical
system messages.

Figure 9-2 shows the language selection menu.

The user may select from one of the 11 supported languages. For those languages that
do not have a unique keyboard, the menu displays supported country-specific keyboard
variants in parentheses. If no response is received within 30 seconds, the language
defaults to English (United States/Canada).

NOTE
The language query occurs only if the console device supports the DEC
Multinational Character Set. Devices that do not support the character set
(such as the VT100 terminal), default to English (United States/Canada).

After this inquiry, the firmware proceeds as if the mode switch were set to Normal.

254 Firmware

1) Dansk
2) Deutsch (Deutschland/Osterreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Espanol
7) Fran9ais (Canada)
8) Fran9ais (France/Belgique)
9) Fran9ais (Suisse)

10) Italiano
11) Nederlands
12) Norsk
13) Portugues
14) Suomi
15) Svenska

(1..15):

Figure 9-2 Language Selection Menu

9.4.1.3 Mode Switch Set to Normal
If the mode switch is set to Normal, then the next step in the power-up sequence is to
execute the bulk of ROM-based diagnostics. In addition to message text, the console
displays a countdown to indicate diagnostic test progress. Figure 9-3 shows a successful
diagnostic countdown.

Firmware 255

Performing normal system tests.
62 .. 61 .. 60 .. 59 .. 58 .. 57 .. 56 .. 55 .• 54 .. 53 .. 52 .. 51. .50 •. 49 .. 48 .• 47 ••
46 .. 45 .. 44 .. 43 .. 42 .. 41 .. 40 .. 39 .. 38 .. 37 •. 36 .• 35 •• 34 •• 33 •• 32 •• 31 ••
30 .. 29 .. 28 •. 27 .. 26 .. 25 .. 24 .. 23 .. 22 .. 21. .20 •• 19 .• 18 •• 17 •• 16 •• 15 ••
14 .. 13 .. 12 .. 11. .10 .• 09 .. 08 .. 07 .. 06 .. 05 .. 04 .• 03 •.
Tests completed.

Figure 9-3 Normal Diagnostic Countdown

In the case of diagnostic failures, a diagnostic register dump is performed, similar to the
example in Figure 9-4. The remaining diagnostics execute, and the countdown continues.
For a detailed description of the register dump, see Section 9.9.

Performing normal system tests.
62 .. 61..60 .. 59 •. 58 •. 57 •. 56 .• 55 .. 54 .. 53 •• 52 .. 51. .50 .• 49 •. 48 .. 47 ••
46 .. 45 .. 44 .• 43 .. 42 .. 41..40 .. 39 •. 38 •• 37 •• 36 •. 35 •• 34 •• 33 •• 32 •• 31..
30 .. 29 .. 28 .. 27 .. 26 .. 25 .. 24 .• 23 •. 22 •. 21. .20 •• 19 •• 18 •• 17 •• 16 •• 15 ••
14 .. 13 .• 12 .. 11 •. 10 .. 09 .. 08 .• 07 •.

?5F 2 OE FF 0000 0000 02

P1=00000000 P2=00000000
P6=00000000 P7=00000000
rO=00000054 r1=20084019
r5=1FFFFFFC r6=C0000003
06 .. 05 .. 04 .. 03 ..

P3=5839FFOO
P8=00000000
r2=00004206
r7=20008000

Normal operation not possible.

Figure 9-4 Abnormal Diagnostic Countdown

P4=00000000 P5=00000000
P9=0000080A P10=00000003
r3=00000000 r4=00000000
r8=00004000 EPC=OOOOOOOO

If the diagnostics have successfully completed and halts are en8bled, the firmware
displays the console prompt and enters console 110 mode.

»>

If the diagnostics have successfully completed and halts are disabled, the firmware tries
to boot an operating system (Figure 9-5).

Loading system software.
No default boot device has been specified.'
Devices:
-DIAO (RF30)
-DIB1 (RF30)
-MUAO (TK70)
-EZAO (08-00-2B-03-82-78)
Device? [EZAOj:

(BOOT/R5: 0 EZAO)

2 ••
-EZAO

Figure 9-5 Console Boot Display With No Default Boot Device

9.4.2 LED Codes
In addition to the console diagnostic countdown, the diagnostic LEDs on the KA670
module and the H3604 console module panel display a hexadecimal value. The purpose
of the LED display is to improve fault isolation when there is no console terminal, or·
when the hardware cannot communicate with the console terminal. Table 9-2 lists all

256 Firmware

LED codes and the associated actions performed at power-up. The LED code is changed
before the corresponding test or action is performed.

Table 9-2 LED Codes

LED
Display Actions

F Initial state on power-up, no code has executed.

E Entered ROM, some instructions have executed.

D Waiting for power to stabilize (POK).

C SSC RAM, SSC registers, and ROM checksum tests.

B Primary cache, interval timer, and virtual mode tests.

A FPA tests.

9 Backup cache, primary cache, and memory tests.

8 G-chip, memory, and 110 interaction tests.

7 CQBIC (Q22-bus) tests.

6 Console loopback tests.

5 SHAC DSSI subsystem tests.

4 SGEC Ethemet subsystem tests.

3 Console 110 mode.

2 Control passed to the VMS.

1 Control passed to the secondary bootstrap.

o Program 110 mode, control passed to the operating system.

9.5 Operating System Bootstrap
Bootstrapping is the process of loading and transferring control to an operating system.
The KA670 supports bootstraping of the following operating systems: VAXlVMS and
VAXELN. The KA670 will also boot MDM diagnostics and any user application image
that conforms to the boot formats described in this manual.

On theKA670, a bootstrap occurs when (1) a BOOT commend is issued at the console, or
(2) when the processor halts and the conditions specified in the.Table 9-1 for automatic
bootstrap are satisfied.

9.5.1 Preparing for the Bootstrap
Before dispatching to the primary bootstrap (VMB), the firmware initializes the system
to a known state. The initialization sequence is as follows:

1. Check CPMBX<2>(BIP). If the bit is set, the bootstrap fails.

2. If this is an automatic bootstrap, print the message Loading system software. on
the console terminal.

3. Validate the boot device name. If none exists, supply a list of available devices and .
prompt the user for a device. If no device is entered within 30 seconds, use EZAO.

Firmware 257

4. Write a form of this BOOT request including the active boot flags and boot device on
the console. For example: (BOOT IRS: a DUAO) .

5. Set CPMBX<2>(BIP).

6. Initialize the Q22-bus scatter/gather map.

a. Set IPCR<8>(AUX_HLT).

b. Ciear IPCR<5>(LMEAE).

c. Perform an UNJAM command.

d. Map all vacant Q22-bus pages to the corresponding page in local memory and
validate each entry if that page is good.

e. Perform an INIT command.

f. Set IPCR<5>(LMEAE).

7. Validate the PFN bitmap. If invalid, rebuild it.

8. Search for a 128-kilobyte contiguous block of good memory, as defined by the PFN
bitmap. If a block cannot be found, the bootstrap fails.

9. Initialize the general-purpose registers:

RO = address of descriptor of the boot device name, or 0 if no device is specified.
R2 = length of PFN bitmap in bytes.
R3 = address of PFN bitmap.
R4 = time of day from PR$_TODR at power-up.
R5 = boot flags.
RIO = halt PC value. .
Rll = halt PSL value (without halt code and map enable).
AP = halt code.
SP = base of the 128-kilobyte good memory block + 512.
PC = base of the 128-kilobyte good memory block + 512.
Rl, R6, R7, RS, R9, FP = O.

10. Copy the VMB image from EPROM to local memory, beginning at the base of the
128-kilobyte good memory block + 512.

11. Exit from the firmware to memory-resident VMB.

On entry to VMB, the processor is running at IPL 31 on the interrupt stack, with memory
management disabled. Also, local memory is partitioned as shown in Figure 9-0.

258 Firmware

o

Potential Bad Memory

Base
Reserved for RPB. Initial Stack

Base +5 12(SP • PC)

VMB Image

Balance of 128 Kbyte Block
-- Used for SCB. stack,
and the Secondary Bootstrap

Unused Memory

PFN Bitmap
PFN Bitmap
(Always on Page Boundary)

Firmware Scratch Memory
(Balance Between Bitmap and QMRs)

OMR Base
022-bus Scatter/Gather Map
(Always on 32 Kbyte Boundary)

Potential Bad Memory

Top of Memory

Figure 9-6 Memory Layout Before VMB Entry

9.5.1.1 Boot Devices

l
256 Pages for VMB
128 Kbyte Block of
Good memory
(Page-Aligned)

J
~

Up To 256 Pages

64 Pages

...-J

The KA670 firmware passes the address of a descriptor of the boot device name to VMB
through RO. The device name used for the bootstrap operation is any of the following:

• The local Ethernet device, EZAO, if no default boot device has been specified

• The default boot device specified at initial power-up or with a SET BOOT command

• The boot device name explicitly specified in a BOOT command line

The device name may be any arbitrary character string, with a maximum length of
17 characters. For longer strings the console prints an error message. Otherwise, the
console makes no attempt at interpreting or validating the device name. The console
converts the string to all uppercase and passes to VMS the address of a string descriptor
for the device name in RO.

Firmware 259

Table 9-3 lists supported devices and their corresponding boot device names used in
BOOT commands.

Table 9-3 KA670 Supported Boot Devices

Boot Name- Controller Type Device Type(s)

Disk:

[node$]DIAn On-board DSSI RF30, RF71

DUen RQDX3MSCP RD52, R053, ROM, RX33, RX50

KDA50MSCP BU\70,EU\80,EU\81,EU\82,EU\90

KFQSAMSCP RF30, RF71

KLESI RC25

DLen RLV12 RLOl, RL02

Tape:

[node$JMIAn On-board DSSI

MUen TQK50MSCP TK50

TQK70 MSCP TK70

KFQSAMSCP

KLESI TU81E

Network:

EZAO On-board Ethernet

XQcn DEQNA

DELQA

DESQA

PROM:

PRAO MRVU

PRBO On-board EPROM

- Boot device names consist of at least a two-letter device code, followed by a single character controller letter
(A ... Z), and ending in a device unit number (0 ... 65535). DSSI device names may optionaIly include a node
prefix, consisting of either a node number (0 ... 7) or a node name (a string of up to 8 characters), endingin with
a $.

NOTE .
Table 9-3 presents a definitive list of boot devices that the KA670 supports.
However, the KA670 wUllikely boot other devices that adhere to the MSCP
standards.

260 Firmware

9.5.1.2 Boot Flags
The action of VMB is qualified by the value passed to it in R5. R5 contains boot flags
that specify conditions of the bootstrap. The firmware passes to VMB either the R5
value specified in the BOOT command or the default boot flag value specified with a SET
BFLAG command.

Figure 9-7 shows the location of the boot flags used by VMB in the boot flag longword.

3 2
1 8 9 8 6 5 4 3 o

I TOPSYS I

Figure 9-7 VMB Boot Flags (IRS:)

Field Name

0 RPB$V_
CONV

3 RPB$V_
BBLOCK

4 RPB$V_DIAG

5 RPB$V_
BOOBPT

6 RPB$V_
HEADER

8 RPB$V_
SOLICT

9 RPB$V_
HALT

31:28 RPB$V_
TOPSYS

Description

Conversational bootstrap.

Secondary bootstrap from bootblock. When this bit is set, VMB reads
logical block number 0 of the boot device and tests it for conformance
with the bootblack format. If in conformance, the block is executed to
continue the bootstrap. No attempt to perform a Files-ll bootstrap is
made.

Diagnostic bootstrap. When this bit is set, the load image requested
over the network is [SYSO.SYSMAINTJDIAGBOOT.EXE.

Bootstrap breakpoint. If this flag is set, a breakpoint instruction is
executed in VMB and control is transferred to XDELTA prior to boot.

Image header. If this bit is set, VMB transfers control to the address
specified by the file's image header. If this bit is not set, VMB transfers
control to the first location of the load image.

File name solicit. When this bit is set, VMB prompts the operator for
the name of the application image file. A maximum of a 39 character
file specification is permitted.

Halt before transfer. When this bit is set, VMB halts before
transffering control to the application image.

This field can be any value from 0 through F. This flag changes the
top level directory name for the system disks with multiple operating
systems. For example, if TOPSYS is 1, the top level directory name is
[SYSl...].

NOTe
This does not apply to network bootstraps.

9.5.2 Primary Bootstrap, Virtual Memory Boot
Virtual memory boot (VMB) is the primary bootstrap for booting VAX processors. On the
KA670, VMB is resident in the firmware. VMB is copied into main memory before control
is transferred to it. VMB then loads the secondary bootstrap image and transfers control
to that image.

Firmware 261

NOTE
In certain cases, such as VAXELN systems, VMB actually loads the operating
system directly. However, for the purpose of this discussion secondary bootstrap
refers to any VMB-Ioadable image.

VMB inherits a well-defined environment and is responsible for further initialization.
The following list summarizes VMB's operation:

1. Initialize a two-page SCB on the first page boundary above VMB.

2. Allocate a three-page stack above the SCB.

3. Initialize the restart parameter block (RPB) (Table 1-2).

4. Initialize the secondary bootstrap argument list (Table 1-3).

5. If not a PROM boot, locate a minimum of three consecutive valid QMRs.

6. Write 2 to the diagnostic LEDs and display 2.. on the console, to indicate that VMB
is searching for the device.

7. Optionally, solicit from the console a Bootfile: name.

S. On the console, write the name of the boot device from which VMB will attempt to
boot. For example: -DUAO.

9. Copy the secondary bootstrap from the boot device into local memory above the stack.
If this fails, the bootstrap fails.

10. Write 1 to the diagnostic LEDs and display 1.. on the console, to indicate that VMB
has found the secondary bootstrap image on the boot device and has loaded the image
into local memory.

11. Clear CPMBX<2>(BIP) and CPMBX<3>(RIP).

12. Write 0 to the diagnostic LEDs and display 0.. on the console, to indicate that VMB
is now transferring control to the loaded image.

13. Transfer control to the loaded image with the following register usage:

R5 = transfer address in secondary bootstrap image.
RIO = base address of secondary bootstrap memory.
Rll = base address of RPB.
AP = base address of secondary boot parameter block.
SP = current stack pointer.

If the bootstrap operation fails, VMB relinquishes control to the console by halting with a
HALT instruction.

VMB makes no assumptions about the location of Q22-bus memory. However, VMB
searches through the Q22-bus map registers (QMRs) for the first QMR marked as valid.
VMB requires a minimum of 3 and a maximum of 129 contiguous valid maps to complete
a bootstrap operation. If the search exhausts all map registers or there are fewer than
the required number of valid maps, a bootstrap cannot be performed. It is recommended
that a suitable block of Q22-bus memory address space be available (unmapped to other
devices) for proper operation.

The following is a sample console display of a successful automatic bootstrap:

262 Rrmware

Loading system software.
(800T/R5:0 DUAO)

2 ••
-DUAO

1 .• 0 .•

After a successful bootstrap operation, control is passed to the secondary bootstrap image,
with the memory lay~ut as shown in Figure 9-8.

o

Base

8ase+512 (SP)

Next Page

Next Page+1024

Next Page+2560

PFN Bitmap

CMR Base

Top of Memory

Potential Bad Memory

RPB

VMB Image

SOB (2 pages)

Stack (3 pages)

Secondary Bootstrap Image
(Potentially Exceeds Block)

Unused Memory

PFN Bitmap
(On a Page Boundary)

Firmware Scratch Memory
(Balance Between Bitmap and QMRs)

Q22-bus Scatter/Gather Map
(Always on 32-Kbyte Boundary)

. Potential Bad Memory

Figure 9-8 Memory Layout at VMS exit

l
256 Pages for VMB
128 Kbyte Block of
Good Memory
(Page-Aligned)

J
-----Up To 256 Pages

64 Pages

~

In the event that an operating system has an extraordinarily large secondary bootstrap
that overflows the 128 kilobytes of good memory. VMB loads the remainder of the image
in memory above the good block. However, if there are not enough contiguous good pages
above the block to load the remainder of the image, the bootstrap fails.

Firmware 263

9.5.3 Device-Dependent Bootstrap Procedures

The KA670 supports bootstrapping from a variety of boot devices. The following sections
describe the various device-dependent boot procedures.

9.5.3.1 Disk and Tape Bootstrap Procedure
The disk and tape bootstrap supports Files-lllookup (supporting only the ODS level 2
file structure) or the boot block mechanism (used in the PROM boot also). Digital's VMS
and ELN operating systems use the Files-ll bootstrap procedure, while the ULTRIX-32
operating system uses the boot block mechanism.

VMB first attempts a Files-ll lookup, unless the RPB$V _BBLOCK boot flag is set. If
VMB determines that the designated boot disk is a Files-ll volume, VMB searches
the volume for the designated boot program-usually [SYSO.SYSEXE]SYSBOOT.EXE.
However, VMB can request a diagnostic image or prompt the user for an alternate file
specification. See Section 9.5.1.2. If the boot image can't be found, VMB fails.

If the volume is not a Files-ll volume or the RPB$V _BBLOCK boot flag was set, the boot
block mechanism proceeds as follows:

1. Read logical block 0 of the selected boot device. (This is the boot block.)

2. Verify that the contents of the boot block conform to the boot block format (Figure
9-9).

3. Use the boot block to find and read in the secondary bootstrap.

4. Transfer control to the secondary bootstrap image, just as for a Files-ll boot.

The format of the boot block must conform to that shown in Figure 9-9.

BB+O:

BB+(2'n)+0:

BB+(2*n)+8:

BB+(2*n)+ 12

BB+(2*n)+ 16

BB+(2*n)+20

3 2 2 1 1
1 43 6 5

n Any Value

Low LBN High LBN

(The next segment is also used as a PROM signature block.)

3 2 2 1 1
1 43 65

CHK I k I 18 (Hex)

Any Value, Most Likely 0

Size in Blocks of the Image

Load Offset

Offset Into Image to Start

Sum of the Previous Three Longwords

Where:
1) the 18 (hex) indicates this is a VAX instruction set.
2) 18 (hex) + k '" the one's complement of CHK.

Figure 9-9 Boot Block Format

0

0

264 Firmware

9.5.3.2 PROM Bootstrap Procedure
The PROM bootstrap uses a variant of the boot block mechanism. VMB searches for
a valid PROM signature block, the second segment of the boot block defined in Figure
9-9. If PRAO is the selected device, then VMB searches through Q22-bus memory on
16-kilobyte boundaries. If the selected device is PRBO, VMB checks the top 4096 byte
block of the EPROM.

At each boundary, VMB :

1. Validates the readability of that Q22-bus memory page.

2. If readable, checks to see if it contains a valid PROM signature block.

If verification passes, the PROM image is copied into main memory and VMB transfers
control to that image at the offset specified in the PROM boot block. If not, the next page
is tested.

NOTE
The boot image does not have to reside in PROM. Any boot image in Q22-bus
memory space with a valid signature block on a IS.kilobyte boundary is a
candidate. Indeed, the auxiliary bootstrap assumes that the image is in shared
memory.

The PROM image is copied into main memory in 127-page chunks, until the entire PROM
is moved. All destination pages beyond the primary 128-kilobyte block are verified
to make sure they are marked good in the PFN bitmap. The PROM must be copied
contiguously; if all required pages cannot fit into the memory immediately following the
VMB image, the boot fails.

9.5.3.3 Network Bootstrap Procedure
Whenever a network bootstrap is selected on a KA670, VMB makes continuous attempts
to boot from the network. VMB uses the DNA maintenance operations protocol (MOP)
as the transport protocol for network bootstraps and other network operations. (Refer
to Appendix F for a complete description of supported MOP functions during bootstrap.)
After a network boot is invoked, VMB turns on the designated network link and repeats
load attempts until one of the following occurs:

• A successful boot.

• Fatal controller error.

• VMB is halted from the operator console.

The KA670 supports the loading of a standard operating system, a diagnostic image, or
a user-designated program, using network bootstraps. The default image is the standard
operating system. However, a user may select an alternate image by setting either the
RPB$V _DIAG bit or the boot flag longword R5 in the RPB$V J;OLICT bit. Note that the
RPB$V_SOUCT bit has precedence over the RPB$V_DIAG bit. Ifboth bits are set, then
the solicited file is requested. (Refer to Figure 9-7 for the use of these bits.)

NOTE
VMS accepts a maximum of a 39-character file specification for solicited boots.
If the network server is running VMS, the following defaults apply to the file
specification:

• The directory is MOM$LOAD:

• The file extension is .SYS

When the defaults are used, the 39-character file specification only needs to
specify the filename.

Firmware 265

The KA670 VMB uses the MOP program load sequence for bootstrapping the module, and
the MOP dump / load protocol type for message exchanges related to loads. Table F-l and
Table F-2 list the MOP message types used in the exchange.

VMB, the requester, starts by sending a RE'LPROGRAM message in the appropriate
envelope (Table F-3) to the MOP dump/load multicast address (Table F-4). It then waits
for a response in the form of a VOLUNTEER message from another node on the network,
the MOP load server. If a response is received, then the destination address is changed
from the multicast address to the node address of the server. The same REQ_PROGRAM
message is retransmitted to the server as an acknowledgement that initiates the load.

Next, VMB begins sending RE'LMEM_LOAD messages in response to any of the
following:

• A MEM_LOAD message, while there is still more to load

• A MEM_LOAD_w_XFER, if it is the end of the image

• A PARAM_LOAD_w_XFER, if it is the end of the image and operating system
parameters are required

The load number field in the load messages serves to synchronize the load sequence. At
the beginning of the exchange, both the requester and server initialize the load number.
The requester only increments the load number if a load packet has been successfully
received and loaded. This forms the acknowledgement to each exchange.

The server resends a packet with a specific load number, until the server sees a request
with the load number incremented. The final acknowledgement is sent by the requester,
wit a load number equivalent to the load number of the appropriate LOAD_w_XFER
message + 1.

,
During the boot sequence, a response must be made to the RE(LPROGRAM message
within the current timeout limit. If not, the timeout limit is increased by 4 seconds, up to
a maximum of about 4 minutes. The initial timeout limit is 8 seconds.

9.6 Operating System Restart
An operating system restart is the process of bringing up the operating system from a
known initialization state following a processor halt. This process is often caned restart
or warmstart, but should not be confused with a processor restart that results in firmware
entry.

On the KA670, a restart occurs if the conditions specified in Table 9-1 are satisfied.

To restart a halted operating system, the firmware searches system memory for the
restart parameter block (RPB), a data structure constructed by VMB for this purpose.
See Table 1-2 for a detailed description of this data structure. If a valid RPB is found,
the firmware passes control to the operating system at an address specified in the RPB.

The firmware keeps a restart in progress (RIP) flag in CPMBX, which it uses to avoid
repeated attempts to restart a failing operating system. An additional restart in progress
flag is maintained by the operating system in the RPB.

The firmware uses the following algorithm to restart the operating system:

1. Check CPMBX<3>(RIP). If it is set, the restart fails.

2. Print the message Restarting system software. on the console terminal.

3. Set CPMBX<3>(RIP).

4. Search for a valid RPB. If none is found, the restart fails.

266 Firmware

5. Check the operating system RPB$L_RSTRTFLG<O>(RIP) flag. If it is set, the restart
fails.

6. Write 0 on the diagnostic LEDs.

7. Dispatch to the restart address, RPB$L_RESTART, with the following:

SP = the physical address of the RPB + 512.
AP = the halt code.
PSL = 041FOOOO.
PR$_MAPEN = O.

If the restart is successful, the operating system must clear CPMBX<3>(RIP).

If the restart fails, the firmware prints Restart failure. on the system console.

9.6.1 Locating the Restart Parameter Block

The RPB is a page-aligned control block that can be identified by the first three
longwords. The following diagram shows the format of the RPB signature. See Table
1-2 for a complete description of the RPB.

RPB: +00 Physical Address of the RPB

+04 Physical Address of the Restart Routine

+08 Checksum of First 31 Longwords of Restart Routine

The firmware uses the following algorithm to find a valid RPB:

1. Search for a page of memory that contains its address in the first longword. If none
is found, the search for a valid RPB has failed.

2. Read the second longword in the page (the physical address of the restart routine). If
it is an invalid physical address or 0, return to step 1. The check for 0 is necessary to
ensure that a page of Os does not pass the test for a valid RPB.

3. Calculate the 32-bit two's complement sum (ignoring overflows) of the first 31
longwords of the restart routine. If the sum does not match the third longword of
the RPB, return to step 1.

4. A valid RPB has been found

9.7 Console Service
The KA670 is, by definition, halted whenever the console program is running and the >>>
prompt is displayed on the console terminal. When halted, the firmware provides most of
the services of a standard VAX console (VAX Architecture Reference Manual) through the
designated system console device. The firmware also implements several eommands not
defined in the VAX Architecture Reference Manual.

Firmware 267

9.7.1 Console Control Characters
Control characters are typed by holding down the E!!I key and pressing the second key.

In console 110 mode, several typed characters have special meanings.
I Return I Ends a command line. No action is taken on a command until after it is

terminated by a carriage return. A null1ine terminated by a carriage return
is treated as a valid, null command. No action is taken, and the console
reprompts for input. The carriage return is echoed as carriage return, line
feed.

<!l (Rubout)

ICtrl1 ~ or the up
arrow (or down
arrow)

ICtr1119

ICtrl1 ©l or left
arrow

ICtr111§

ICtr11 ~ or right
arrow

Wtr~~or
ac space key

1F121
ICtr111Ql

When the operator types a rubout character, the console deletes the
previously typed character. What appears on the console terminal depends
on whether the terminal is a video terminal or a hardcopy terminal.

• For hard copy terminals, the console echoes with a backslash (

Toggles between insertion/overstrike mode for command line editing. By
default, the console powers up in overstrike mode.

Recall previous command(s). Command recall works only if sufficient
memory is available. This function may then be enabled and disabled
using the SET RECALL command.

Causes the console to echo "C and to abort processing of a command. ~trlll9
has no effect as part of a binary load data stream. ICtr1119 clears ICtr11 and
reenables output stopped by Ictrll§.

Moves the cursor left one position.

Moves the cursor to the end of the line.

Moves the cursor right one position.

Moves cursor to the beginning of the line.

Causes the console to throwaway transmissions to the console terminal until
the next !CtrlllQ1 is entered. !CtrlllQl is echoed as "O<CR> when it disables
output, but is not echoed wlien lt reenables output. Output is reenabled if
the console prints an error message, or ifit prompts for a command from the
terminal. Displaying a REPEAT command does not reenable output. When
rutrt is reenabled for reading a command, the console prompt is displayed.
Ctrl I§I also enables output.

Resumes output to the console terminal. AdditionallCtrll19l sequences are
ignored. ICtr11 ~ and !Ctrll § are not echoed.

Stops output to the console terminal untillCtrl1 § is typed. ICtrl1 ~ and ICtrl1
§ are not echoed.

The console echoes AU<CR>, and deletes the entire line. Ifl?rll~is typed
on an empty line, the console echoes "U<CR> and prompts or another
command.

Causes the console to echo <CR><LF> followed by the current command
line. This function can improve the readability of a command line that has
been heavily edited. When ICtr1119 is typed as part of a command line, the
console deletes the line as it does with ICtr111Ql.

268 Firmware

If the console is in console JlO mode, typing I Break I is equivalent to typing
letrll @ and is echoed as AC.

NOTE
If the local console is in program I/O mode and halts are disabled,
I Break I i. ignored.

If the console is in program 110 mode and halts are enabled,IBreakl
causes the processor to halt and enter console 110 mode.

Control characters with an ASCII code less than 3210 or between 128 and 15910 are
unrecognized. If an unrecognized code is typed. it is echoed as a caret (") followed by the
character with ASCII code 64 greater. For example, BEL (ASCII code 7) is echoed as "G,
since capital G is ASCII code 71 (7 + 64 = 71).

When a control character is deleted with rubout, it is echoed the same way. After echoing
the control character, the console processes it like a normal character. Commands with
control characters are invalid (unless they are part of a comment), and the console
responds with an error message.

9.7.2 Console Command Syntax
The console accepts commands that are up to 80 characters in length. It responds
to longer commands with an error message. The count does not include rubbed-out
characters or the carriage return a at the end of a command.

You can abbreviate commands. Abbreviations are formed by dropping characters from
the end of a keyword, as long as the resulting keyword is still unique. Most commands
can be uniquely expressed with their first character.

Multiple a(ljacent spaces and tabs are treated as a single space by the console. Leading
and trailing spaces and tabs are ignored. Tabs are echoed as spaces.

Command qualifiers can appear after the command keyword, or after any symbol or
number in the command. A qualifier is any contiguous set of non-whitespace characters
that starts with a slash (/, ASCII code 4710).

All numbers (addresses, data, and counts) are in hexadecimal. However, note that
symbolic register names number the registers in decimal. The console does not
distinguish between upper and lowercase characters in numbers or in commands; both
are accepted. .

9.7.3 Console Command Keywords
The KA670 firmware implements a variant of the VAX SRM console command set.
The only commands defined in the VAX SRM and not supported by the KA670 are
MICROSTEP, LOAD, and @. The CONFIGURE, HELP, MOVE, SEARCH and SHOW
command have been added to the command set to facilitate system debugging and access
to system parameters. In general, however, the KA670 console is similar to other VAX
consoles.

Table 9-4 lists command and qualifier keywords.

Firmware 269

Table 9-4 Command, Parameter, and Qualifier Keywords

Command Keywords

Processor Control

B*OOT

C*ONTINUE

H*ALT

I*NITIALIZE

N*EXT

S*TART

U*NJAM

Data Transfer

D*EPOSIT

E*XAMINE

M*OVE

SEA*RCH

X

SET and SHOW Parameter Keywords

BO*OT

DS*SI

H*OST

Q*BUS

U*QSSP

Qualifier Keywords

Data Control

IB

!W

IL

IQ

IN:

IST*EP:

/WR*ONG

BF*L(A)G

ET*HERNET

L*ANGUAGE

R*ECALL

VERS*ION

Address Space Control

IG

II

IP

N

1M

/U

Console Control

CONF*IGURE

F*IND

R*EPEAT

SET

SH*OW

T*EST

DE*VICE

HA*LT

M*EMORY

RL*V12

T*RANSLATION

Command Specific

IIN*STRUCTION

INO*T

1R5: or I

IRP*B or IME*M

IF*ULL

IDU*P or IMA*INTEN.A!\lCE

IDS*SI or /U*QSSP

IDI*SK or IT*APE

ISE*RVICE

An asterisk (*) marks the minimal number of characters required to uniquely identify the keyword.

Table ~ at the end of the command descriptions provides a complete summary of the
console commands.

270 Firmware

9.7.4 Console Command Qualifiers
All qualifers in the console command syntax are global. That is, they may appear in any
place on the command line after the command keyword.

All qualifiers have unique meanings throughout the console, regardless of the command.
For example, the IB qualifier always means byte.

Table 9-7 at the end of the command section provides a summary of the qualifers
recognized by the KA670 console.

9.7.4.1 Command Address Specifiers
Several commands take an address or addresses as arguments. In the context of the
console, an address has two components-the address space, and the offset into that
space. The console supports six address spaces:

Physical memory (IP qualifier)
Virtual memory (N qualifier)
General-purpose registers (/G qualifier)
Internal processor registers (II qualifier)
Protected memory (IU qualifier)
PSL (1M qualifier)

The address space that the console references is inherited from the previous console
reference, unless explicitly specified. The initial address space reference is PHYSICAL.

The KA670 console supports symbolic references to addresses. A symbolic reference
simultaneously defines the address space for a given symbol. Table 9--5 lists the symbolic
addresses supported by the console, grouped according to address space.

Table 9-5 Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

IG • General.Purpose Registers

RO 00 R4 04 R8 08 RI2 OC
(AP)

Rl 01 R5 05 R9 09 RI3 OD
(FP)

R2 02 R6 06 RIO OA RI4 OE
(SP)

R3 03 R7 07 Rll OB R15 OF
(PC)

1M • Processor Status Longword

PSL

II • Internal Processor Registers

pr$_ksp 00 pr$_ 10 pr$]xcs 20 30
pcbb

All symbolic values in this table are in hexadecimal.

Firmware 271

Table 9-5 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

II • Internal Processor Registers

pr$_esp 01 pr$_ 11 pr$_ 21 31
scbb rxdb

pr$_ssp 02 pr$_ipl 12 pr$_txcs 22 32
pr$_usp 03 pr$_ 13 pr$_ 23 33

astlv txdb
pr$_isp 04 pr$_sirr 14 pr$_ 24 34

tbdr

05 pr$_sisr 15 pr$_ 25 35
cadr

06 16 pr$_ 26 36
mcesr

07 17 pr$_ 27 pr$_ 37
mser ioreset

pr$_ 08 pr$_iccr 18 pr$_accs 28 pr$- 38
pObr mapen

pr$_pOlr 09 19 29 pr$_tbia 39

pr$_ OA pr$_icr lA pr$_ 2A pr$_tbis 3A
plbr savpc

pr$_pllr OB pr$_todr IB pr$_ 2B pr$_ 3B
savpsl tbdata

pr$_sbr OC IC 2C 3C

pr$_slr OD ID 2D 3D

OE IE 2E pr$_sid 3E

OF IF pr$- 2F pr$- 3F
tbtag tbchk

70 pr$_brfr 74 pr$_ 78 pr$- 7C
bcerr petag

pr$_ 71 pr$_ 75 pr$_ '19 pr$- 7D
bcbts bcidx bctbts pcidx

pr$_ 72 pr$_ 76 pr$- 7A pr$- 7E
bcpIts bests bcfpts peerr

pr$_ 73 pr$_ 77 pr$- 7B pr$_ 7F
bcp2ts beet! vinstr pests

IP • Physical (VAX 110 Space)

qbio 20000000 qbmem 30000000 qbmbr 20080010

rom 20040000 cacr 20084000 bdr 20084004

dscr 20080000 dser 20080004 dmear 20080008 dsear 200SOOOC

iperO 2000 If40 ipcrl 20001f42 ipcr2 2oo01f44 ipcr3 20001f46

272 Firmware

Table 9-5 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

IP· Physical (VAX 110 Space)

ssc_ram 20140400 SSC3r 20140010 ssc_cdal 20140020 ssc_ 20140030
dledr

ssc 20140130 ssc 20140134 ssc_ 20140140 sse 20140144
adOmat adOmsk ad1mat adlmsk

sse_tcrO 20140100 ssc_tirO 20140104 ssc_ 20140108 ssc_ 2014010c
tnirO tivrO

ssc_tcr1 20140110 ssc_tirI 20140114 ssc_ 20140118 ssc_ 2014011c
tnir1 tivrl

memcsrO 20080100 memcsr1 20080104 memcsr2 20080108 memcsr3 2008010c

memcsr4 20080110 memcsr5 20080114 memcsr6 20080118 memesr7 2008011c

memcsr8 20080120 memcsr9 20080124 memcsrl0 20080128 memesr11 2oo8012c

memcsr12 20080130 memcsr13 20080134 memcsr14 20080138 memcsr15 2008013c

memcsr16 20080140 memcsr17 20080144 memcsr18 20080148 memesr19 2008014c

memcsr20 20080150 memcsr21 20080154 memcsr22 20080158 memesr23 2008015c

memcsr24 20080160 memcsr25 20080164 memesr26 20080168 memesr27 2008016c

memcsr28 20080170 memcsr29 20080174 memcsr30 20080178 memcsr31 2008017c

memcsr32 20080180 memcsr33 20080184 memcsr34 20080188 memcsr35 2008018c

memcsr36 20080190

nicsrO 20008000 nicsrl 20008004 20008008 nicsr3 2000800C

nicsr4 20008010 nicsr5 20008014 nicsr6 20008018 niesr7 2000801C

20008020 nicsr9 20008024 nicsrl0 20008028 nicsrll 2000802C

nicsr12 20008030 nicsr13 20008034 nicsr14 20008038 nicsr15 2000803C

sgec_ 20008000 sgec_ 20008004 20008008 sgee_rba 2000800C
setup poll

sgec_tba 20008010 sgec_ 20008014 sgec_ 20008018 sgec_sbr 200OBOIC
status mode

20008020 sgec_ 20008024 sgee_ 20008028 sgec_ 200OB02C
wdt mfc verlo

sgec_ 20008030 sgec_ 20008034 sgec_bpt 20008038 sgec_ 200OB03C
verhi proc cmd

shacl - 20004030 shacC 20004044 shacl_ 20004048 shacC 2000404c
sswcr sshma pqbbr psr

shacl - 20004050 shacC 20004054 shac1_ 20004058 shacl_ 2000405C
pesr pfar ppr pmcsr

shacl_ 20004080 shacl 20004084 shacC 20004088 shacC 2000408C
pcqOcr pcqlcr pcq2cr pcq3cr

Firmware 273

Table 9-5 (Cont.) Console Symbolic Addresses

Symbol Address Symbol Address Symbol Address Symbol Address

IP· Physical (VAX 110 Space)

shac1 20004090 shac1_ 20004094 shael_ 20004098 shae1_ 2000409C
pdfqer pmfqer psrer peer

shac1_
pdcr

shac2_
sswcr

shac2_
pesr

shac2_
pcqOcr

shac2_
pdfqcr

shac2_
pdcr

shac_
sswcr

shac_
pesr

shac_
pcqOcr

shac_
pdfqcr

shac_
pdcr

200040AO shac C
pier

20004230 shac2_
sshma

20004250 shac2_
pfar

20004280 shac2_
pcqlcr

20004290 shac2_
pmfqer

200042A0 shac2_
pier

20004230 shac_
sshma

20004250 shac_
pfar

20004280 shac_
pcqlcr

20004290 shae
pmfq-er

200042A0 shac_
pier

200040A4 shac1_
pmtcr

20004244 shae2
pqbbr

20004254 shac2_
ppr

20004284 shac2_
pcq2er

20004294 shac2_
psrcr

200042A4 shac2_
pmtcr

20004244 shac_
pqbbr

20004254 shac_
ppr

20004284 shac_
pcq2er

20004294 shac_
psrer

200042A4 shac_
pmtcr

200040AS shac1_ 200040AC
pmteer

20004248 shac2_ 2000424c
psr

20004258 shac2_ 2000425C
pmcsr

20004288 shac2_ 2000428C
pcq3er

20004298 shac2_ 2000429C
peer

200042A8 shac2_ 200042AC
pmteer

20004248 shac_ 2000424c
psr

20004258 shac_ 2000425C
pmcsr

20004288 shac_ 2000428C
pcq3er

20004298 shac_ 2000429C
peer

200042A8 shac_ 200042AC
pmtecr

Any Address Space

• (aster­
isk)

+ (plus
sign)

• (hy­
phen)

@

The last location successfully referenced in an EXAMINE or DEPOSIT command.

The location immediately following the last location successfully referenced in an
EXAMINE or DEPOSIT command. For references to physical or virtual memory
spaces, the location referenced is the last address, plus the size of the last reference
(1 for byte, 2 for word, 4 for longword, 8 for quadword). For other address spaces, the
address is the last address referenced plus one.

The location immediately preceding the last location successfully referenced in an
EXAMINE or DEPOSIT command. For references to physical or virtual memory
spaces, the location referenced is the last address minus the size of this reference (1
for byte, 2 for word, 4 for longword, 8 for quadword). For other address spaces, the
address is the last addressed referenced minus one.

The location addressed by the last location· successfully referenced in an EXAMINE or
DEPOSIT command.

274 Firmware

9.7.5 References to Processor Registers and Memory
The KA670 console is implemented by macrocode executing from EPROM. The console
command interpreter cannot modify actual processor registers. When the console is
entered, the console saves the processor registers in console memory. All command
references to the processor registers are directed to the corresponding saved values, not
to the registers themselves.

When the console reenters program I/O mode, the saved registers are restored and
any changes become operative only then. References to processor memory are handled
normally. The binary load and unload command can not reference the console memory
pages.

The following registers are saved by the console. Any direct reference to these registers
is intercepted by the console, directing access to the saved copies.
RO ... RIS General.purpose registers

PR$_IPL Interrupt priority level register

PR$_SCBB System control block base register

Interrupt stack pointer

Memory management enable register

The following registers are also saved, yet may be accessed directly through console
commands. Writing values to these registers may make the console inoperative.
PR$_SAVPC Halt PC

PR$_SAVPSL Halt PSL

ADxMCHlADxMSK

SSCCR

DLEDR

SSC address decode and match registers

SSC configuration register

SSC diagnostic LED register

9.8 Console Commands
The following sections define the commands accepted by the console, when it is in console
I/O mode.

Syntax Conventions

The following conventions are used to describe command syntax:
[] Enclose optional command elements.

{ } Enclose a command element.

Indicates a series of command elements.

The console allows you to override the default radix by using the following commands:
%d Decimal (Far example, %dI234)

%x

%b

Hexadecimal (For eample, %xFEEBFCEA)

Binary (For example, %b1001)

%0 Octal (For example, %01070)

The following is an example of a console EXAMINE command that specifies a decimal
value for the IN qualifier:

»>EX/L/P/N:%dl023 0

BOOT

Format
BOOT [qualifier] [{booCdevlce}[:]]

Qualifiers
IR5:(boot flags}

Console Commands 275
BOOT

The boot flags value is a 32-bit hexadecimal value passed to VMB in R5. The console does
not interpret this value. Figure 9-7 lists the bit assignments of R5. To specify a default
boot flags longword, use the SET BFLAG command. To display the default setting, use
the SHOW BFLAG command.

l(booCflags}
Equivalent to the form above.

Arguments
[{boot device}}
The boot device name may be any arbitrary character string, with a maximum length
of 17 characters. Longer strings cause the console to issue a VAL TOO BIG error message.
Otherwise, the console makes no attempt at interpreting or validating the device name.
The console converts the string to uppercase and passes VMB a string descriptor in RO to
this device name.

To specify a default boot device, use the SET BOOT command. ,To display the name of
the default device, use the SHOW BOOT command. The factory default is the Ethernet
device, EZAO.

Description
The console initializes the processor and transfers execution to VMB. VMB tries to boot
the operating system from the device specified by the BOOT command. If no device is
specified, VMB tries to boot from the default device. The console qualifies the bootstrap
operation by passing a boot {lags value to VMB in R5. See Section 9.5 for a detailed
description of the bootstrap process and how the default bootstrap device is determined.

If you do not specify a device name or qualifiers with the BOOT command, the default
values are used. Explicitly stating the boot flags value or the boot device overrides the
current default value for the current boot request, but d~s not change the default value
stored in battery backed-up RAM (BBU RAM).

There are three ways to set the default boot device and and boot flags value:

• The operating system may write a default boot device and flags into the appropriate
locations in BBU RAM (Appendix H).

• The user may explicitly set the default boot device and boot flags with the console
SET BOOT and SET BFLAG commands.

• Under any of the following conditions, the console prompts the user for the default
boot device

- The power-up mode switch is set to query mode.

276 Console Commands
BOOT

The console detects that the battery failed, which means the contents of BBU
RAM are no longer valid.

The console detects that the default boot device has not been explicitly set by the
user. Either a previous device query timed out and defaulted to EZAO (SGEC) or
neither of the above two methods has been performed. Simply stated, the console
prompts the user for a default boot device at every power-up, until such a request
has been satisfied.

If no default boot device is specified in BBU RAM, the console issues a list of potential
bootable devices at power-up and queries the user for a device name. If no device name
is entered within 30 seconds, EZAO is used. However, EZAO does not become the default
boot device.

Examples

»>SHOW BOOT
DUAO
»>SHOW BFLAG
o
»>B
(BOOT IRS: 0 DUAO)

2 •.
-DUAO

»>BO EnO
(BOOT IRS: 0 EZAO)

2 ••
-EZAO

>>>BOO'r/10
(BOOT/RS:I0 DUAO)

2 ••
-DUAO

»>BOO'r /R5:220 EZAO
(BooT/RS:220 EZAO)

2 ••
-EZAO

Boot using default boot flags and device.

Boot using default boot flags and specified device.

Boot using specified boot flags and default device.

Boot using specified boot flags and device.

CONFIGURE

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 277
CONFIGURE

CONFIGURE is similar to the VMS SYSGEN CONFIG utility. This feature simplifies
system configuration by providing information that is typically available only with a
running operating system.

The CONFIGURE command invokes an interactive mode that permits the user to enter
Q22-bus device names, then generates a table of Q22-bus 110 page device CSR addresses
and device vectors.

Examples

»>configure
Enter device configuration, HELP, or EXIT
Device,Number? HELP
Devices:

LPVll
RLV12
DMVll
RRD50
RV20
CXA16
LNV21
KWVllC
DRQ3B
IDVllD
DESNA
KWV32

Numbers:

KXJll
TSV05
DELQA
RQC25
KFQSA-TAPE
CXB16
QPSS
ADVI1D
VSV21
IAV11A
IGQll
KZQSA

1 to 255, default is 1
Device,Number? KDASO
Device,Number? KFQSA
Device is ambiguous
Device , Number? KFQSA-DISK
Device,Number? KFQSA-TAPE
Device,Number? CXY08
Device,Number? CXA16
Device,Number? EXIT

DLVllJ
RXV21
DEQNA
KFQSA-DISK
KMVll
CXY08
DSVll
AAVllD
IBQ01
IAVllB
DIV32

DZQll
DRV11W
DESQA
TQKSO
lEQ11
VCBOI
ADVllC
VCB02
IDVllA
MIRA
KIV32

DZVll
DRVllB
RQDX3
TQK70
DHQll
QVSS
AAVIIC
QDSS
IDVllB
ADQ32
DTCN5

DFA01
DPVll
KDASO
TU8lE
DHVll
LNVll
AXVllC
DRVIIJ
lDVllC
DTC04
DTC05

278 Console Commands
CONFIGURE

Address/Vector Assignments
-772150/154 KDA50
-760334/300 KFQSA-DISK
-774500/260 KFQSA-TAPE
-760500/310 CXY08
-760520/320 CXA16
»>

CONTINUE

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 279
CONTINUE

The processor begins instruction execution at the address currently contained in the
program counter. The processor is not initialized. The console enters program 110 mode.
Internally, the CONTINUE command pushes the user's PC and PSL onto the user's [SP,
then executes an REI instruction. This action implies that the user's ISP is pointing to
some valid memory.

Examples

»>CONTINUE
»>

280 Console Commands
DEPOSIT

DEPOSIT

Format
DEPOSIT Iqualffler_"stJ {address} {data} [{data} ••• }

Qualifiers
IB

The data size is a byte.

IW
The data size is a word.

IL
The data size is a longword.

/Q
The data size is a quadword.

IG
The address space is the general-purpose register set, RO to R15. The data size is always
long.

II
The address space is the internal processor registers (IPRs). These are the registers
accessible only by the MTPR and MFPR instructions. The data size is always long.

1M
The address space is the processor status longword (PSL).

IP
The address space is physical memory.

N
The address space is virtual memory. All access and protection-checking occurs. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. Virtual space DEPOSITs cause the PTE<M> bit to be set. If
memory mapping is not enabled, virtual addresses are equal to physical addresses.

/U
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. On virtual address writes, the PTE<M> bit is not set if the IU qualifier
is present. This qualifier is not inherited, and must be respecified on each command.

IN:{count}
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address
"-", the succeeding addresses are at larger addresses. The symbolic address specifies only
the starting address, not the direction of succession. For repeated references to preceding
addresses, use the command REPEAT DEPOSIT - <DATA> .

ISTEP:{ size}

Console Commands 281
DEPOSIT

The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

!wRONG
The ECC bits for this data are forced to the value of 3. ECC bits with a value of 3 always
generate a double-bit error).

Arguments
{address}

A long word address that specifies the first location into which data is deposited. The
address can be any legal address specifier as defined in Section 9.7.4.1 and Table 9-5.

{data}
The data to be deposited. If the specified data is larger than the deposit data size,
the console ignores the command and issues an error response. If the specified data is
smaller than the deposit data size, it is extended on the left with Os.

[{data}]
Additional data to be deposited (up to a maximum of six values).

Description
This command deposits the data into the address specified. If you do not specify an
address space or data size qualifiers, the defaults are the last address space and data
size used in a DEPOSIT, EXAMINE, MOVE or SEARCH command. After processor
initialization, the default address space is physical memory, the default data size is a
longword, and the default address is o. If conflicting address space or data sizes are
specified, the console ignores the command and issues an error response.

Examples

»>O/P/B/N:1FF 0 0 Clear first 512 bytes of physical memory.

»>O/V/L/N:3 1234 5 Deposit 5 into four longwords starting at
virtual memory address 1234.

»>O/N:8 RO FFFFFIi'n' Loads GPRs RO through R8 with -l.

»>O/N:200 -
o Starting at previous address, clear 513 bytes.

»>O/L/P/N:l0/S:200 0 8

»>

Deposit 8 in the first longword of
the first 17 pages in physical memory.

282 Console Commands
EXAMINE

EXAMINE

Format
EXAMINE [qualffier_lIstJ [(address))

Qualifiers
IB

The data size is a byte.

/W
The data size is a word.

IL
The data size is a longword.

IQ
The data size is a quadword.

IG
The address space is the general-purpose register set, RO to R15. The data size is always
long.

II
The address sj)ace is the internal processor registers (IPRs). These are the registers
accessible only by the MTPR and MFPR instructions. The data size is always long.

1M
The address space is the processor Status longword (PSL).

IP
The address space is physical memory. Note that when virtual memory is examined, the
address space and address in the response are the translated physical address.

N
The address space is virtual memory. All access and protection-checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. If memory mapping is not enabled, virtual addresses are equal
to physical addresses.

1M
The address space and display are the PSL. The data size is always long.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. This qualifier is not inherited, so it must be respecified with each
command.

IN:{count}
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address
"-", the succeeding addresses are at larger addresses. The symbolic address specifies only

Console Commands 283
EXAMINE

the starting address, not the direction of succession. For repeated references to preceding
addresses, use the command REPEAT EXAMINE - <DATA>.

ISTEP:{size}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this Qualifier. This Qualifier is not inherited.

!WRONG
ECC errors on this read access to main memory are ignored. If specified, the ECC bits
actually read are displayed in parentheses following the data. In the case of Quad word
and octaword data, the ECC bits shown apply to the most significant longword only.

JINSTRUCTION
Disassemble and display the VAX Macro-32 instruction at the specified address.

Arguments
[{address})

A longword address that specifies the first location to be examined. The address can be
any legal address specifier as defined in Section 9.7.4.1 and Table 9-5. If no address is
specified, "+" is assumed.

Description
This command examines the contents of the memory location or register specified by the
address. If no address is specified, "+" is assumed. The display line consists of a single­
character address specifier, the hexadecimal physical address to be examined, and the
examined data also in hexadecimal.

EXAMINE uses the same Qualifiers as DEPOSIT. However, the !WRONG Qualifier
causes EXAMINE to ignore ECC errors on reads from physical memory. EXAMINE
also supports an IINSTRUCTION Qualifier that will disassemble instructions at the
current address.

284 Console Commands
EXAMINE

Examples

»>EX PC
G OOOOOOOF FFFFFFFC

»>EX SP
G OOOOOOOE 00000200

»>EX PSL
M 00000000 041FOOOO

»>E/M
M 00000000 041FOOOO

»>E R4/N:5
G 00000004 00000000
G 00000005 00000000
G 00000006 00000000
G 00000007 00000000
G 00000008 00000000
G 00000009 80109000

»>EX PR$_SCBB
I 00000011 2004AOOO

»>E/P 0
P 00000000 00000000

»>EX /INS 20040000
P 20040000 11 BRB

»>EX /INS/N:5 2004001g
P 20040019 DO MOVL
P 20040024 02 MCOML
P 2004002F 02 MCOML
P 20040036 7D MOVQ
P 20040030 DO MOVL
P 20040044 DB MFPR

»>E/INS
P 20040048 DB MFPR

»>
»>
»> E 0

P 00000000
»> E *

P 00000000

20040019

I~i20140000,@i20140000

@i20140030,@i20140502
S~iOE,@i20140030

RO,@i201404B2
I~i201404B2,R1

S~i2A,B"'44(R1)

S~i2B,B"48(R1)

Examine the pc.

Examine the SP.

Examine the PSL.

Examine PSL another way.

Examine R4 through R9.

Examine the SCBB, IPR 17.

Examine local memory O.

Examine 1st byte of EPROM.

Disassemble from branch.

Look at next instruction.

FIND

Format
FIND [qualifier-list)

Qualifiers
1M EMORY

Console Commands 285
FIND

Search memory for a page-aligned block of good memory, 128 kilobytes in length. The
search looks only at memory that is deemed usable by the bitmap. This command leaves
the contents of memory unchanged.

IRPB
Search all of physical memory for a restart parameter block. The search does not use
the bitmap to qualify which pages are looked at. The command leaves the contents of
memory unchanged.

Arguments
None.

Description
The FIND command has the console search main memory, starting at address 0, for
either a page-aligned, 128-kilobyte segment of good memory or a restart parameter block
(RPB). If the segment or block is found, its address plus 512 is left in SP (R14). If the
segment or block is not found, an error message is issued and the contents of SP are
preserved. If no qualifier is specified, IRPB is assumed.

Examples

»>EX SP
G OOOOOOOE 00000000

»>i'I9D /MEN
»>EX SP

G OOOOOOOE 00000200
»>i'I9D /RPB
?2C FND ERR 00C00004
»>

Check the SP.

Look for a valid 128Kb.
Note where it was found.

Check for valid RPB.
None to be found here.

286 Console Commands
HALT

HALT

Format

Qualifiers
None.

Arguments
None.

Description
The HALT command has no effect. It is included for cornpatability with other consoles.

Examples

»>HALT
»>

Pretend to halt.

HELP

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 287
HELP

The HELP command helps the console operator answer simple questions about command
syntax and usage.

Examples

»>HELP

Following is a brief summary of all the commands supported by the console:

UPPERCASE
I
[]
<>

Valid qualifiers:

denotes a keyword that you must type in
denotes an OR condition
denotes optional parameters
denotes a field that must be filled in
with a syntactically correct value

/B /W /L /Q /INSTRUCTION
/G /1 /V /P /M
/STEP: /N: /NOT
/WRONG /U

Valid commands:
DEPOSIT [<qualifiers>] <address> [<datum> [<datum>]]
EXAMINE [<qualifiers>] [<address>]
MOVE [<qualifiers>] <address> <address>
SEARCH [<qualifiers>] <address> <pattern> [<mask>]
SET BFL(A)G <boot_flags>
SET BOOT <boot device>

SET HALT <halt action>
SET RECALL 011

SET HOST/DUP/DSSI <node_number> [<task>]

SET HOST/DUP/UQSSP </DISK I /TAPE> <controller number> [<task>]
SET HOST/DUP/UQSSP <physical CSR address> [<ta;k>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller number>
SET HOST/MAINTENANCE/UQSSP <physical_CSR_addre;s>
SET LANGUAGE <language_number>

SHOW BFL(A)G
SHOW BOOT
SHOW DEVICE

SHOW DSSI

288 Console Commands
HELP

»>

SHOW ETHERNET
SHOW LANGUAGE
SHOW MEMORY [/FULL)

SHOW HALT

SHOW RLV12
SHOW QBUS
SHOW UQSSP

SHOW SCSI
SHOW TRANSLATION <physical_address>

SHOW VERSION
HALT
INITIALIZE
UNJAM
CONTINUE
START <address>
REPEAT <command>
X <address> <count>
FIND [/MEMORY I IRI?B)
TEST [<test code> [<parameters>])
BOOT [/R5:<boot_flags> I I<boot_flags>] [<boot_device>[:ll
NEXT [count I
CONFIGURE
HELl?

INITIALIZE

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 289
INITIALIZE

The INITIALIZE command performs a processor initialization. The following registers
are initialized, as specified in the VAX Architecture Reference Manual:
PSL 04IFOOOO.

IPL

ASTLVL

SISR

ICCS

RXCS
TXCS

MAPEN

CPU cache

Instruction buffer

Console previous reference

TODR

Main memory

General registers

Halt code

Bootstrap in progress flag

Internal restart in progress flag

IF.

4.

O.

Bits <6> and <0> are clear. The rest are unpredictable.

O.

80.

o.
Flushed.

Unaffected.

Longword, physical, address o.
Unaffected.

Unaffected.

Unaffected.

Unaffected.

Unaffected.

Unaffected.

The KA670 firmware also performs the following initialization tasks:

Initializes the CDAL bus timer.
Initializes the address decode and match registers.
Initializes the programmable timer interrupt vectors.
Reads the BDR registers to determine the baud rate, then configures the SSCCR
register accordingly.
Clears all error status bits.

290 Console Commands
INITIALIZE

Examples

»>1111'1
»>

MOVE-MOVE CMD

Format
MOVE [qualifier-list] {src_address} {descaddress}

Qualifiers
IB

The data size is a byte.

!W
The data size is a word.

IL
The data size is a longword.

IQ
The data size is a quadword.

IP
The address space is physical memory.

N

Console Commands 291
MOVE

The address space is virtual memory. All access and protection-checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. Virtual space MOVE commands cause the destination PTE<M>
bit to be set. If memory mapping is not enabled, virtual addresses are equal to physical
addresses.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. On virtual address writes, the PTE<M> bit will not be set if the
/U qualifier is present. This qualifier is not inherited and must be respecified on each
command.

IN:{count}
The address is the first of a range. The console deposits to the first address, then to the
specified number of succeeding addresses. Even if the address is the symbolic address "-",
the succeeding addresses are at larger addresses. The symbolic address specifies only the
starting address, not the direction of succession.

ISTEP:{size}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

!WRONG
On reads, ECC errors that occur when accessing data in main memory are ignored. On
writes, the ECC bits for this data are forced to the value of 3. ECC bits with a value of 3
always generate a double-bit error.

292 Console Commands
MOVE

Arguments
{src_address}

A longword address that specifies the first location of the source data to be copied.

{clest_address }
A longword address that specifies the destination of the first byte of data. These
addresses may be any legal address specifier, as defined in Section 9.7.4.1 and Table 9-5.
If no address is specified, "+" is assumed.

Description
On a MOVE command, the console copies the block of memory that starts at the source
address to a block beginning at the destination address. Typically, this command is used
with the IN: qualifier to transfer large blocks of data. The destination will correctly
reflect the contents of the source, regardless of the overlap between the source and the
data.

The MOVE command actually performs byte, word, longword, and quadword reads and
writes as needed in the process of moving the data. Moves are only supported for the
physical and virtual address spaces.

Examples

»>EX /B:4 0
P 00000000 00000000
P 00000004 00000000
P 00000008 00000000
P OOOOOOOC 00000000
P 00000010 00000000

»>EX /B:4 200
P 00000200 58000520
P 00000204 585E04C1
P 00000208 00FF8FBB
P 0000020C 5208A800
P 00000210 540CA8DE

»>MOV&: /B: 4 200 0
»>EX /8:4 0

P 00000000 58000520
P 00000004 585E04C1
P 00000008 00FF8FBB
P OOOOOOOC 5208A8DO
P 00000010 540CA80E

»>

Observe the destination.

Observe source data.

Move the data.
Observe the destination.

NEXT

Format
NEXT {count}

Qualifiers
None.

Arguments
{count}

Console Commands 293
NEXT

A value representing the number of macro instructions to execute.

Description
The NEXT command causes the processor to step the specified number of macro
instructions. If no count is specified, a single step is assumed. The console enters
spacebar step mode, as described in the VAX Architecture Reference Manual. In this
mode, subsequent spacebar strokes initiate single steps. A carriage return forces a
return to the console prompt.

The console uses the trace and trace-pending bits in the PSL, and the SCB trace-pending
vector to implement the NEXT command. Therefore, the following restrictions apply to
the use of the NEXT command:

• If memory management is enabled, the NEXT command works only if the first page
in SSC RAM is mapped somewhere in SO (system) space.

• The NEXT command does not work where time-critical code is being executed.

• The NEXT command elevates the IPL to 31 for long periods of time (milliseconds)
while single stepping over commands.

• Unpredictable results occur if the macro instruction being stepped over modifies the
SCBB, or the trace trap entry. This means you cannot use the NEXT command with
other debuggers. This also implies that the user should validate PR$_SCCB before
using the NEXT command.

Examples

»>DEP IL/P 1000 50D650D4
»>DEP IL/P 1004 125005D1
»>DEP IL/P 1008 00FE11F9
»>EX IINSTROCTION IN:5 1000

P 00001000 04 CLRL RO
P 00001002 06 INCL RO
P 00001004 01 CMPL SAtOS,RO
P 00001007 12 BNEQ 00001002
P 00001009 11 BRB 00001009
P 0000100B 00 HALT

»>DEP PR$ SCBB 200
»>DEP SP 1000 1000
»>

Create a simple program.

List it.

Set up a user SCBB ...
... and the stack pointer.

294 Console Commands
NEXT

»>R
p 00001002
P 00001004
P 00001007
P 00001002

»>R 5
P 00001004
P 00001007
P 00001002
P 00001004
P 00001007

»>R 7
P 00001002
P 00001004
P 00001007
P 00001002
P 00001004
P 00001007
P 00001009

»>R
P 00001009

»>

d6 INCL
01 CMI?L
12 BNEQ
06 INCL

01 CMI?L
12 BNEQ
06 INCL
01 CMI?L
12 BNEQ

06 INCL
01 CMI?L
12 BNEQ
06 INCL
01 CMI?L
12 BNEQ
11 BRB

11 BRB

RO
S"'tOS,RO
00001002
RO

S"'tOS,RO
00001002
RO
S"'tOS,RO
00001002

RO
S"tOS,RO
00001002
RO
S"'tOS,RO
00001002
00001009

00001009

Single step •••
SPACEBAR
SPACEBAR
SPACEBAR
CR

••. or multiple step the program.

REPEAT

Format
REPEAT {command}

Qualifiers
None.

Arguments
{command}

A valid console command other than REPEAT.

Description

Console Commands 295
REPEAT

In a REPEAT command, the console repeatedly displays and executes the specified
command. To stop the repeating, type ICtrl! § You can specify any valid console command
to repeat, with the exception of the REPEAT command.

Examples

»>REPEAT EX PR$_TODR
I 0000001B SAFE78CE
I 0000001B SAFE78D1
I 0000001B SAFE78FD
I 0000001B SAFE7900
I 0000001B SAFE7903
I 0000001B SAFE7907
I 0000001B SAFE790A
I 0000001B SAFE790D
I 0000001B SAFE7910
I 0000001B SAFE793C
I 00000018 SAFE793F
I 0000001B SAFE7942
I 0000001B SAFE7946
I 0000001B SAFE7949
I 0000001B SAFE794C
I 0000001B SAFE794F
I 0000001B SAC

»>

Watch the clock.

296 Console Commands
SEARCH

SEARCH

Format
SEARCH {qualifieclistJ (address) (pattern) ((mask)))

Qualifiers
IB

The data size is a byte.

!W
The data size is a word.

IL
The data size is a longword.

10
The data size is a quadword.

IP
The address space is physical memory. Note that when virtual memory is examined, the
address space and address in the response are the translated physical address.

N
The address space is virtual memory. All access and protection-checking occur. If the
access would not be allowed to a program running with the current PSL, the console
issues an error message. If memory mapping is not enabled, virtual addresses are equal
to physical addresses.

IU
Access to console private memory is allowed. This qualifier also disables virtual address
protection checks. This qualifier is not inherited. It must be respecified with each
command.

1N:{count}
The address is the first of a range. The first access is to the address specified, then
subsequent accesses are made to succeeding addresses. Even if the address is the
symbolic address "-", the succeeding addresses are at larger addresses. The symbolic
address specifies only the starting address, not the direction of succession.

ISTEP:(slze}
The number to add to the current address. Normally this defaults to the data size, but is
overriden by the presence of this qualifier. This qualifier is not inherited.

!WRONG
ECC errors on read accesses to main memory are ignored.

INOT
Inverts the sense of the match.

Arguments
{51art_address}

Console Commands 297
SEARCH

A longword address that specifies the first location subject to the search. This address
can be any legal address specifier, as defined in Section 9.7.4.1 and Table 9-5. If no
address is specified, "+" is assumed.

{pattern}
The target data.

[{mask}]
A longword containing the target bits to be masked out.

Description
The SEARCH command finds all occurrences of a pattern, and reports the addresses
where the pattern was found. If you use the !NOT qualifier, the command reports all
addresses where the pattern did not match.

The command accepts an optional mask to specify bits whose setting does not matter.
For example, to ignore bit 0 in the comparison, specify a mask of 1. If the omit the mask
argument, the mask defaults to o.
Conceptually, a match condition occurs if the following condition is true:
(pattern AND NOT mask) EQUALS (data AND NOT mask)

pattern is the target data.
mask is the optional bit mask (which defaults to 0).
data is the data (byte, word, long, quad) at the current address.

The \ NOT qualifier and match condition determine whether or not the SEARCH
command reports the address:

/NOT Qualifier
Used? Match Condition Report the Address?

No True Yes

No False No

Yes True No

Yes False Yes

The address is advanced by the size of the pattern (byte, word, long or quad), unless
overriden by the /STEP qualifier.

298 Console Commands
SEARCH

Examples

»>DEP /P/L/N:1000 0 0
»>
»>DEP 300 12345678
»>DEP 401 12345678
»>DEP 502 87654321
»>

! Clear some memory.

Deposit some "search" data.

»>SEARCH /N:1000 /ST:l 0 12345678 ! Search for all occurances .•.
P 00000300 12345678 ! ... of 12345678 on any byte ...
P 00000401 12345678 ! ... boundary.

»>SEARCH /N:1000 0 12345678 ! Then try on longword •..
P 00000300 12345678 ... boundaries.

»>SEARCH /N:1000 /NOT 0 0 ! Search for all non-zero ...
P 00000300 12345678 ... longwords.
P 00000400 34567800
P 00000404 00000012
P 00000500 43210000
P 00000504 00008765

»>SEARCH /N: 1000 /ST: 1 0 1 nnnlE ! Search for "odd" longwords .•.
P 00000502 87654321 ! ..• on any boundary.
P 00000503 00876543
P 00000504 00008765
P 00000505 00000087

»>SEARCH /N:1000 /B 0 12 ! Search for all occurrences .••
P 00000303 12 ! ... of the byte 12.
P 00000404 12

»>SEARCH /N:1000 /9T:1 IN 0 FEll
»>
»>
»> Note, none found.

Search for all words which •..
.•. could be interpretted as •..

! ... 8 "spin" (10$: brb 10$).

SET

Console Commands 299
SeT

Format
SET {parameter} {value}

Parameters
BFL(A)G

Set the default R5 boot flags. The value must be a hexadecimal number of up to eight
digits.

BOOT
Set the default boot device. The value must be a valid device name as specified in the
BOOT command section.

CONTROLP
Sets ~Ctrll ~ as the console halt condition, instead of a break. Values of 1 or ENABLED set
ICtril as the halt condition. Values of 0 or DISABLED set break as the halt condition. In
either case, the setting of the break enable switch determines whether or not a halt will
occur.

HALT
Sets the user-defined halt action. Acceptable values are 0 to 4 or the keywords
DEFAULT, RESTART, REBOOT, HALT, and RESTART_REBOOT. Refer to Table 9-1.

HOST
Invoke the DUP or maintenance driver on the selected node. Only SET HOST /DUP
accepts a value parameter.

/DUP - Use the DUP protocol to examine/modify parameters of a device on either the
DSSI bus or the Q22-bus. The optional value for SET HOST IDUP is a task name for the
selected DUP driver to execute.

NOTE
The KA670 DUP driver only supports SEND DATA IMMEDIATE messages,
and hence those devices which also support them.
/DSSI node - Select the DSSI node, by number, from 0 to 7.
IUQSSP - Select the Q22-bus device, using one of three methods:

/DISK n - Specify the disk controller number 't, from 0 to 255. (The resulting
fixed address for n=O is 20001468. The floating rank for n > 0 is 26.)
trAPE n - Specify the tape controller number n, from 0 to 255. (The resulting

fixed address for n=O is 20001940. The floating rank for n > 0 is 30.)
csr _address - Specify the Q22-bus 110 page CSR address for the device.

/MAINTENANCE - Use the maintenance protocol to examine and modify KFQSA
EEPROM configuration parameters. Note that SET HOST /MAINTENANCE does not
accept a task value.

IUQSSP -

ISERVICE n - Specify the KFQSA controller number n of a KFQSA in service
mode, from 0 to 3. (The resulting fixed address of a KFQSA in service mode is
20001910+4*n.)

300 Console Commands
SET

C8r_address - Specify the Q22-bus 110 page CSR address for the KFQSA

LANGUAGE
Set the console language and keyboard type. If the current console terminal does not
support the DEC Multinational Character Set (MCS), then this command has no effect
and the console remains in English message mode. Acceptable values are 1 to 15, and
have the following meaning:

1) Dansk
2) Deutsch (DeutschlandlOsterreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Espanol
7) Fran~ais (Canada)
8) Fran~ais (France/Belgique)
9) Fran~ais (Suisse)

10) Italiano
11) Nederlands
12) Norsk
13) Portugues
14) Suomi
15) Svenska

RECALL
Sets the command recall state to either enabled (1) or disabled (0).

Qualifiers

Depends on the parameters used.

Arguments
None.

Description
The SET command sets the specified console parameter to the specified value.

Examples

»>
»>SET BFLAG 220
»>

»>SET BOOT DIAO

»>

»>SET HALT REBOOT
»>

»>SET HOST /OOP /OSSI 0
Starting DUP server ...

DSSI Node 0 (SUSAN)
Copyright e 1988 Digital Equipment Corporation
DRVEXR V1. 0 D 5-JUL-1988
DRVTST V1.0 D 5-JUL-1988
HISTRY V1.0 D 5-JUL-1988
ERASE Vl.O D 5-JUL-1988
PARAMS V1. 0 D 5-JUL-1988
DIRECT V1.0 D 5-JUL-1988
End of directory

Task Name? PARAMS

15:33:06
15:33:06
15:33:06
15:33:06
15:33:06
15:33:06

Copyright e 1988 Digital Equipment Corporation

PARAMS> STAT PATH

ID Path Block

0 PB FF811ECC
6 PB FF811FDO
1 PB FF8120D4
4 PB FF8121D8
5 PB FF8122DC
2 PB FF8123EO
3 PB FF8124E4

PARAMS> EXIT
Exiting ...

Task Name?

Remote Node

Internal Path
KFQSA KFX VI. 0
KAREN RFX V101
WILMA RFX V101
BETTY RFX V101
DSSIl VMS V5.0
3 VMS BOOT

Stopping DUP server ...
»>
»>SET HOST /OOP/OSSI 0 PARAMS
Starting DUP server ...

DSSI Node 0 (SUSAN)

DGS S DGS R

0
0
0
0
0
0
0

Copyright e 1988 Digital Equipment Corporation

PARAMS> SHOW NOOE

Parameter Current
--------- ----------------
NODENAME SUSAN

PARAMS> SHOW ALLCLASS

Parameter Current
--------- ----------------
ALLCLASS

PARAMS> EXIT
Exiting ...

Stopping DUP server ...
»>

1

Default

RF30

Default

0

»>SET HOST /MAINT/UQSSP 20001468
UQSSP Controller (772150)

Type

String

Type

Byte

Console Commands 301
SET

MSGS S MSGS R

0 0
0 0
0 0
0 0
0 0

0
0
0
0
0

0 14328 14328
0 61 61

Radix

Ascii B

Radix

Dec B

302 Console Commands
SET

Enter
Node
o

SET, CLEAR, SHOW, HELP, EXIT, or QUIT
CSR Address Model

772150 21
1 760334 21
4 760340 21
5 760344 21
7 ------ KFQSA ------

? HELP
Commands:

SET <node> /KFQSA
SET <node> <CSR address> <model>
CLEAR <node>
SHOW
HELP
EXIT
QUIT

Parameters:
<node>
<CSR address>
<model>

? SET 6 /KFQSA
? SHOW
Node
o
1
4
5
6

? EXIT

CSR Address
772150
760334
760340
760344

------ KFQSA

Model
21
21
21
21

Programming the KFQSA ••.
»>
»>SET tANGOAGE 5
»>

»>SET RECALL 1
»>

set KFQSA OSSI node number
enable a DSSI device
disable a OSSI device
show current configuration
print this text
program the KFQSA
don't program the KFQSA

o to 7
760010 to 777774
21 (disk) or 22 (tape)

SHOW

Format
SHOW {parameter}

Parameters
BFL(A)G

Show the default R5 boot flags.

BOOT
Show the default boot device.

CONTROLP

Console Commands 303
SHOW

Show the current state oflCtrl1 ~ halt recognition, either ENABLED or DISABLED.

DEVICE
Show a list of all devices in the system.

HALT
Show the user-defined halt action: DEFAULT, RESTART, REBOOT, HALT, or RESTART_
REBOOT. Refer to Table 9-1 for usage.

DSSI
Show the status of all nodes that can be found on the DSSI bus. For each node found,
the console displays the node number, the node name, and the boot name and type of the
device, if available. The command does not indicate if a device is bootable.

The node that issues the command reports a node name of"·".

The device information is obtained from the media type field of the MSCP command GET
UNIT STATUS. If the node is not running, the console displays an MSCP server and no
device information.

ETHERNET
Show the hardware Ethernet address for all Ethernet adapters found. If no Ethernet
adapters are found the response is blank.

LANGUAGE
Show the console language and keyboard type. Refer to the corresponding SET
LANGUAGE command for the meaning.

MEMORY
Show main memory configuration on a board-by-board basis. Also report the addresses of
bad pages, as defined by the bitmap.

/FULL Show the normally inaccessible areas of memory, such as the PFN bitmap
pages, the console scratch memory pages, and the Q22-bus scatter/gather map pages.

aBUS
Show all Q22-bus 110 addresses that respond to an aligned word read. For each address,
the console displays the hexadecimal address in the VAX. 110 space, the octal address as
it would appear in the Q22-bus 110 space, and the hexadecimal word data that was read.

304 Console Commands
SHOW

This command may take several minutes to complete, so the user may want to issue a
ICtr1l19 to terminate the command. The command disables the scatter/gather map for the
duration of the command.

RECALL
Show the current state of command recall, ENABLED or DISABLED.

RLV12
Show all RLOI and RL02 disks that appear on the Q22-bus.

SCSI
Show any SCSI devices in the system.

TRANSLATION
Show any virtual addresses that map to the specified physical address. The firmware
uses the current values of the page table base and length registers to perform its search.
It is assumed that page tables have been properly built.

UQSSP
Show the status of all disks and tapes on the Q22-bus that support the UQSSP protocol.
For each disk or tape, the console displays the controller number, the controller CSR
address, the boot name, and the type of each device connected to the controller. The
command does not indicate if a device is bootable.

The device information is obtained from the media type field of the MSCP command GET
UNIT STATUS. If the node is not running, the console displays an MSCP server with no
device information.

VERSION
Show the current version of the firmware.

Qualifiers

Depends on the specific parameter.

Arguments
None.

Description
The SHOW command displays the setting of the specified console parameter.

Examples

»>
»>SHOW BFLAG
00000220
»>
»>SHOW BOOT

DIAO

»>
»>SHOW DEVICE

DSSI Node 0 (SUSAN)
-DIM (RF30)

DSSI Node 1 (KAREN)
-DIAl (RF30)

DSSI Node 3 (*)

DSSI Node 4 (WILMA)
-DIA4 (RF30)

DSSI Node 5 (BETTY)
-DIA5 (RF30)

DSSI Node 6 (KFQSA)

SCSI Adapter 0 (761300), SCSI ID 7
-DKA100 (DEC RZ3l (C) DEC)
-DKA300 (MAXTOR XT-8000S)

UQSSP Disk Controller 0 (772150)
-DUAO (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC4 (RF30)

UQSSP Disk Controller 3 (760344)
-DUDS (RF30)

Ethernet Adapter
-EZAO (08-00-2B-03-82-78)
»>

»>SHOW DSSI
DSSI Node 0 (SUSAN)
-DIAO (RF30)

DSSI Node 1 (KAREN)
-DIAl (RF30)

DSSI Node 3 (*)

DSSI Node 4 (WILMA)
-DIM (RF30)

DSSI Node 5 (BETTY)
-DIAS (RF30)

DSSI Node 6 (KFQSA)
»>

»>SHOW ETHERNET
Ethernet Adapter
-EZAO (08-00-2B-03-82-78)
»>

»>SHOW HALT
Reboot

»>SHOW LANGUAGE
English (United States/Canada)
»>
»>SHOW MEMORY
Memory 0: 00000000 to 003FFFFF, 4MB, 0 bad pages

Console Commands 305
SHOW

306 Console Commands
SHOW

Total of 4MB, 0 bad pages, 98 reserved pages
»>
»>SHOW MEMORY /FULL
Memory 0: 00000000 to 003FFFFF, 4MB, 0 bad pages

Total of 4MB, 0 bad pages, 98 reserved pages

Memory Bitmap
-003F3COO to 003F3FFF, 2 pages

Console Scratch Area
-003F4000 to 003F7FFF, 32 pages

Qbus Map
-003F8000 to 003FFFFF, 64 pages

Scan of Bad Pages
»>
>>>SHOW QBOS
Scan of Qbus I/O Space
-200000DC (760334) = 0000
-200000DE (760336) OAAO
-200000EO (760340) 0000
-200000E2 (760342) OAAO
-200000E4 (760344) 0000
-200000E6 (760346) OAAO
-20001468 (772150) 0000
-2000146A (772152) OAAO
-20001F40 (777500) = 0020

Scan of Qbus Memory Space
»>
»>SHOW RLV12
»>

»>SHOW SCSI

(300)

(304)

(310)

(154)

(004)

RQDX3/KOA50/RRD50/RQC25/KFQSA-DISK

RQDX3/KOA50/RRD50/RQC25/KFQSA-OISK

RQDX3/KDA50/RR050/RQC25/KFQSA-OISK

RQOX3/KOA50/RR050/RQC25/KFQSA-OISK

IPCR

SCSI Adapter 0 (761300), SCSI 10 7
-DKA100 (DEC RZ31 (C) DEC)
-DKA300 (MAXTOR XT-8000S)
»>
»>SHOW TRANSLATION 1000

V 80001000
»>

»>SHOW OQSSP
UQSSP Disk Controller 0
-DUAO (RF30)

UQSSP Disk Controller 1
-DUB1 (RF30)

UQSSP Disk Controller 2
-DUC4 (RF30)

UQSSP Disk Controller 3
-DUD5 (RF30)
»>

>>>SHOW VERSION

KA670-A V3.0, VMB 2.11

»>

(772150)

(760334)

(760340)

(760344)

START

Format
START [{address}]

Qualifiers
None.

Arguments
[{address}]

Console Commands 307
START

The address at which to begin execution. This is loaded in the user's PC.

Description
The START command tells the console to start executing instructions at the specified
address. If you do not specify an address, the current PC is used. If memory mapping is
enabled, macro instructions are executed from virtual memory and the address is treated
as a virtual address. The START command is equivalent to a DEPOSIT to PC command,
followed by a CONTINUE command. START does not perform an INITIALIZE command.

Examples

»>START 1000

308 Console Commands
TEST

TEST

Format
TEST [(tescnumber) [{tescsrgumentsJJ]

Qualifiers
None.

Arguments
{tesCnumber}

A two-digit hexadecimal number specifying the test to execute.

{test_arguments}
Up to five additional test arguments. The console accepts these arguments, but does not
attach any meaning to them. For the interpretation of these arguments, refer to the test
specification for each test.

Description
The TEST command tells the console to invoke a diagnostic test program specified by the
test number. If you specify test number 0, the power-up script is executed. The console
accepts an optional list of up to five additional hexadecimal arguments.

For a detailed explanation of the diagnostics, see Section 9.9.

Examples

»>
»>
»>
»>TEST 0

Execute the power-up diagnostic script
Warning ... this has the same affect as a power-up!

66 •. 65 .. 64 .. 63 .. 62 .. 61 . . 60 • . 59 •. 58 .. 57 •. 56 .. 55 •. 54 •• 53 •. 52 •. 51. •
50 • • 49 .. 48 .• 47 .. 46 .. 45 .• 44 .. 43 .. 42 .. 41. . 40 • • 39 .. 38 •• 37 •• 36 •. 35 .•
34 •• 33 .. 32 .• 31 . . 30 .. 29 .• 28 • • 27 •. 26 .. 25 .. 24 .. 23 .• 22 •• 21 . • 20 • • 19 .•
18 .• 17 .. 16 .. 15 .• 14 •. 13 .. 12 •. 11 . • 10 .• 09 •• 08 •• 07 • • 06 •• 05 .• 04 • • 03 ••

»>
»>
»>
»>'t 9E

! List all of the diagnostic tests.

Test
t Address

20051000
20051F04

30 2005A688
31 2005A4BO
32 20059F7C
33 20059EFO
34 200535CO
35 20060DAC
36 20061BOO
37 20061EA8
38 2006219F
3F 2005C360
40 2005CDC4
41 2005CF9C
42 2005367C
44 20061750
45 20058A2C
46 200605EC
47 2005CB6C
48 2005BE'94
49 2005BB38
4A 2005B80C
4B 2005B514
4C 2005BOBO
40 2005AF28
4E 2005AD60
4F 2005AABO
51 20062419
52 20053C1E
53 20053EE8
54 2005374E
55 20054097
56 2005EB6C
58 2005F378
59 2005DCB8
SA 20058930
SC 200SE220
SF 200SD06C
60 20058564
62 200S44CC
63 20054648
80 200S7EBO
81 20054133
82 200542FS
83 20055326
84 200569C4
85 200547AO
86 20054C4C
87 20057BFC
90 20053B9F
91 200S3B38
99 2006262E
9A 2005F908
9B 200622ED
9C 20058D78
90 20059CD7
9E 20054108
9F 2006270E
C1 20053271
C2 20053444
C5 20059DEE
C6 200531B8

Name

SCB
De executive
Memory_Init_Bitmap
Memory_Setup_CSRs
G Chip registers
(~Ch ip =powerup
SSC ROM

Parameters

*** mark Hard SBEs

**
*

Console Commands 309
TEST

B_Cache_diag_mode addr incr wait_time_secs extended test *******
B_Cache_w_memory addr incr *********
P_B_Cache_w_memory addr incr *********
G_Chip_timeout ******
Mem FDM Addr shorts *** cont on err ******
Memory_count-pages
Board Reset
Chk_for_Interrupts
P_Cache_w_memory
cache mem cqbic
P_Cache_dIag_mode
Memory_Refresh
Memo ry_Addr_short s
Memo ry_F OM

First board Last bd Soft errs allowed ******* - -
*

addr incr *********
start addr end addr addr incr *******
addr Incr wait-time secs extended test *******
start a end incr cont on err time seconds *****
start=add end_add * c;nt=on_err pat2 pat3 ****
*** cont on err ******

Memo ry_ECC_SBE s
Memory Byte Errors
Memory=ECC_Logic
Memory_Address
Memory_Byte
Memory_Data

start add end add add incr cont on err ****** - - -
start add end add add incr cont on err ******

FPA
SSC_Prog_timers
SSC TOY Clock
Virtual Mode
Interval Timer
SHAC LPBCK
SHAC RESET
SGEC LPBCK ASSIST
R_G_Chip_RDAL
SHAC
SGEC

start add end-add add-incr cont on err - -
start add end add add incr cont on err
start add end add add incr cont on err
~tart add end add add incr cont on err

which timer wait time us *** - --
repeat_test_2S0ms_ea Tolerance

*

dssi_bus port_number time_sees
time secs **

dont report memory bad repeat count *
shac-number-******* -
loopback_type no_ram_tests ******

SSC Console SLU
console_QDSS
QDSS_any
CQBIC_memory
Qbus_MSCP
Qbus_DELQA
KZQSA_LI?BCK1
KZQSA_LPBCK2
KZQSA_memory
KZQSA_DMA
KZQSA_EXTLPBCK

start BAUD end BAUD ******
mark_not-present selftest_rO self te st_r 1
input_csr selftest_rO selftest_r1 ******

IP csr ******
device num addr ****
controller-number ********
controller number *********
incr test_pattern controller number *******
Controller number main mem buf ********
controller-number ****

CQBIC_registers *
CQBIC_powerup **
Flush Ena Caches dis flush primarY dis flush backup
INTERACTION pass_count disable_device ****
Ini t memory 8MB * .
List=CPU_registers *
Utility Expnd_err_msg get_mode init LEOs clr-ps_cnt
List_diagnostics *
Create_AO_Script **********
SSC RAM Data *
SSC RAM Data Addr *
sSc=regIsters *
SSC_powerup *********

310 Console Commands
TEST

Scripts * Description

AO User defined scripts
A1 Powerup tests, Functional Verify, continue on error, numeric countdown
A3 Functional Verify, stop on error, test t announcements
A4 Loop on A3 Functional Verify
A5 Address shorts test, run fastest way possible
A6 Memory tests, mark only multiple bit errors
A7 Memory tests
A8 Memory acceptance tests, mark single and multi-bit errors, call A7
A9 Memory tests, stop on error

»>
»>
»>
»>T FE

Show the diagnostic state.

Bitmap=01FF2000, Length=00002000, Checksum=FFFF, Busmap-OlFF8000
Test number=9E, Subtest=01, Loop Subtest=OO, Error type=FF
Error_vector=OOOO, Last_exception_PC-OOOOOOOO, Severity-02
Total error count=OOOO, Led display=09, Console display-9E, save mchk code-1l
parameter 1~00000000 2=00000000 3=00000000 4=00000000 5-00000000-
parameter-6=00000000 7=00000000 8=00000000 9-00000000 10-00000000
previous_error=OOOOOOOO, 00000000, 00000000, 00000000
Flags=OFFFFC00448E
Return_stack=201406A8, Subtest-pc=20054l25, Timeout=00030D40

»>
»>
»>
»>T 9<:

Display the CPU registers.

SBR=01FB8000 SLR=00002021 SAVPC=800000l1 SAVPSL-80404174 SCSB-20051000
POBR=80000000 POLR=00100A80 P1BR-7FC45400 PILR-00lFFD6F SID-OB000003
TODR-00060BFO ICCS=OOOOOOOO ACCS=OOOOOOOO MAPEN=OOOOOOOO BDMTR-20084 000
TCRO=00000005 TIRO=1AA01F6F TNIRO=OOOOOOOO TIVRO-00000078 BDMKR-0000007C
TCRl=00000001 TIR1=1AA5E858 TNIRI-OOOOOOOF TIVR1-0000007C SCR-OOOODOOO
RXCS=OOOOOOOO RXDB=OOOOOOOD TXCS-OOOOOOOO TXDB-00000030 DSER-OOOOOOOO

PCSTS=0000080A PCERR-0000B520 PCIDX-000007F8 PCTAG-40000000 QBEAR-OOOOOOOF
BCSTS=01800000 BCCTL=OOOOOOOE BCERR=20059238 BCIDX-000007FO DEAR-OOOOOOOO
BCBTS-20000000 BCP1TS-20000000 BCP2TS-20000000 BCRFR-00000420 QBMBR-OIFF8000

BDR=3BFA08AF DLEDR=OOOOOOOC SSCCR-00D55570 CBTCR-00004000 IPCRO-OOOO
DSSI 1=04 (BUS 1) PQBBR 1"03060022 PMCSR 1-00000000 SSHMA 1-00008A20

-PSR 1-00000000 PESR-1-00000000 PFAR-1-00000000 PFR-1-00000000
DSSI 2=05 (BUS 0) PQBBR-2-03060022 PMCSR-2-00000000 SSHMA-2-0 00 0CA2 0

-PSR 2=00000000 PESR-2-00000000 PFAR-2-00000000 PFR-2-00000000
NICSRO=1FFF0003 3,..00004030- 4 .. 00004050 5-8039FFOO 6-83EOFOOO -7-00000000
NICSR9-04E204E2 10-00030000 11-00000000 12-00000000 13-00000000 15-0000FFFF
NISA=08-00-2B-06-10-
42 RDESO-00441300 1-00000000 2-05E£0000 3-000046FO

TDESO-00008C80 1-07000000 2-00400000 3-000040FA
3-81800002
7-00000006

HEM FRU 1
HEM-FRU 2
HEM-FRU 3
HEM FRU 4
RMESR=0044 0044

»>

MCSR 0-80000002 1-80800002 2-81000002
MCSR-4=00000006 5-00000006 6-00000006
MCSR-8=00000006 9-00000006 10-00000006
MCSR12=00000006 13=00000006 14-00000006

RMEAR-OOOOOOOO RIOEAR-00080188 CEAR-OOOOOOOO

11-00000006
15-00000006

MCDSR-3E391700

UNJAM

Format

Qualifiers
None.

Arguments
None.

Description

Console Commands 311
UNJAM

The UNJAM command performs an I/O bus reset. This is implemented by writing 1 to
IPR 55. The command also performs an explicit software reset on the SGEC and SHAC
chips, since PR$_IORESET has no affect on them.

Examples

»>ONJAM
»>

312 Console Commands
X

X-Binary Load and Unload

Format
x {address} {count} <CR> {line_checksum} {data} {data_checksum}

Qualifiers
None.

Arguments
None.

Description
The X command is for use by automatic systems communicating with the console. It is
not intended for use by operators.

The console loads or unloads (writes to or reads from memory) the specified number of
data bytes, starting at the specified address through the console serial line, regardless of
which device is serving as the system console.

If bit 31 of the count is clear, data is to be received by the console and deposited into
memory. If bit 31 of the count is set, data is to be read from memory and sent by the
console. The remaining bits in the count are a positive number indicating the number of
bytes to load or unload.

The console accepts the command upon receiving the carriage return. The next byte the
console receives is the command checksum, which is not echoed. The command checksum
is verified by adding all command characters into an 8-bit register initially set to o.
The command characters include the checksum and separating whitespace, but not the
terminating carriage return, rubouts, or characters deleted by rubout.

• If no errors occur, the result is O.

• If the command checksum is correct, the console responds with the input prompt and
either sends data to the requester or prepares to receive data.

• If the command checksum is in error, the console responds with an error message.
The intent is to prevent inadvertent operator entry into a mode where the console is
accepting characters from the keyboard as data, with no escape mechanism possible.

If the command is a load (bit 31 of the count is clear), the console responds with the input
prompt, then accepts the specified number of bytes of data for depositing to memory, and
an additional byte of received data checksum. The data is verified by adding all data
characters and the checksum character into an 8-bit register initially set to zero. If the
final contents of the register is not 0, the data or checksum are in error and the console
responds with an error message.

If the command is a binary unload (bit 31 of the count is set), the console responds with
the input prompt, followed by the specified number of bytes of binary data. As each byte
is sent it is added to a checksum register initially set to o. At the end of the transmission,
the 2's complement of the low byte of the register is sent.

Console Commands 313
X

If the data checksum is incorrect on a load, or if memory errors or line errors occur
during the transmission of data, the entire transmission is completed and the console
issues an error message.

If an error occurs during loading, the contents of the memory being loaded are
unpredictable.

Echo is suppressed during the receiving of the data string and checksums.

To avoid treating flow control characters from the terminal as valid command line
checksums, all flow control is terminated at the reception of the carriage return
terminating the command line.

It is possible to control the console serial line through the use of the control characters
~Ctrll [9, ICtrli~, and so on) during a binary unload. It is not possible to control the console
serial line during a binary load, because all received characters are valid binary data.

The console must recieve the data being loaded with a binary load command at a rate of
at least 1 byte every 60 seconds. The console must receive the command checksum that
precedes the data within 60 seconds of the carriage return that terminates the command
line. The data checksum must be received within 60 seconds of the last data byte. If any
of these timing requirements are not met, the console aborts the transmission by issuing
an error message and prompting for input.

The entire command, including the checksum, can be sent to the console as a single burst
of characters at the console serial lines's specified character rate. The console is able to
receive at least 4 kilobytes of data in a single X command.

Examples
None.

314 Console Commands

!-Comment

Format

Qualifiers
None.

Arguments
None.

Description
The comment command is used to document command sequences. The ! comment
character can appear anywhere on the command line. All characters following the
comment character are ignored.

Examples

»>! The console ignores this line.
»>

Console Commands 315

9.8.1 Command Summary
Table 9-6 and Table 9-7 summarize the console commands.

Conventions for Table 9-6 and Table 9-7

UPPERCASE denotes the command or qualifier keyword.
{} enclose a mandatory item that must be syntactically correct.
[] enclose an optional item.
! separates optional items.

Parameters

bootJ/ags, count, size, address, and parameters are hexadecimal longword values.
booCdevice is a legal boot device name.
csr _address is a Q22-bus 110 page CSR address.
controller _number is a controller number from 0 to 255.
halt_action is the value of the user-defined halt action, from 0 to 4.
language_type is the language code, from 1 to 15.
command is any console command other than REPEAT.
data, pattern, and mask are hexadecimal values of the current size.
tesCnumber is a hexadecimal byte test number.

Table 9-6 Console Command Summary

Command Qualifiers Argument

BOOT 1R5:{boot-.!lags} l{bootfogs} [{boot_device}]

CONFIGURE

CONTINUE

DEPOSIT IB IW IL IQ - IG II N IP 1M /U {address}
1N:{count} ISTEP:{size} !WRONG

EXAMINE IBIW IL/Q-IGIIN IPIM/U [{address}]
1N:{count} ISTEP:{size} !WRONG
IINSTRUCTION

FIND IMEMIRPB

HALT

HELP

INITIALIZE

MOVE IB IW IL IQ - N IP /U {src_address}
1N:{count} ISTEP:{size} !WRONG

NEXT [{count}]

REPEAT {command}

SEARCH IB IW IL IQ - N IP /U {start_address}
1N:{count} ISTEP:{size} !WRONG
INOT

SETBFL(A)G {bitmap}

SET BOOT {device_string}

SET CONTROLP (Oil)

Other(s)

{data} Hdata}]

{desCaddress}

{pattern} [(mask})

316 Console Commands ,
Table 9-6 (Cont.) Console Command Summary

Command Qualifiers Argument Other(s)

SET HALT {halCaction}

SET HOST IDUP IOSSI IBUS:{O/I} {node_number} [{task}]

SET HOST IOUP IUQSSP {!DISK! /TAPE} {controller _ [{task}]
IDUPIUQSSP number} [{task}]

{csr _address}

SET HOST !MAINTENANCE IUQSSP {controller _
ISERVICE number}
!MAINTENANCE IUQSSP {csr _address}

SET LANGUAGE {language_type}

SET RECALL {OIl}

SHOWBFUA)G

SHOW BOOT

SHOW
CONTROLP

SHOW DEVICE

SHOW DSSI

SHOW
ETHERNET

SHOW HALT

SHOW
LANGUAGE

SHOW MEMORY !FULL

SHOWQBUS

SHOW RECALL

SHOWRLV12

SHOW SCSI

SHOW (phys_address}
TRANSLATION

SHOWUQSSP

SHOW VERSION

START {address}

TEST (tesCnumber} [{parameters}]

UNJAM

X {address} {count}

XDELTA ICONTINUE

Console Commands 317

Table 9-7 Console Qualifier Summary

Data Control

IB

/W

IL

IQ

1N:{countl

ISTEP:{sizel

!WRONG

Byte, legal for memory references only.

Word, legal for memory references only.

Longword, the default for GPR and IPR references.

Quadword, legal for memory references only.

Specify number of additional operations.

Override the default step incrementing size with the value specified for the
current reference.

On writes, use the value of 3, which always generates double bit errors.
Ignore ECC errors on reads of main memory.

Address Space Control

/G

/I

N

IP

IU

1M

Command Specific

/INSTRUCTION

!NOT

IR5:lboot.flags},
l{bootJIagsl

IRPB,IMEM

!DUP, IDSSI,
IUQSSP,
!DISK, trAPE,
IMAINTENANCE,

ISERVICE

/CONTINUE

General-purpose registers

Internal processor registers

Virtual memory

Physical memory, both VAX memory and I/O spaces

Protected memory (ROMs, SSC RAM, PFN bitmap, and so on)

Machine state (PSL)

EXAMINE command only. Disassemble the instruction at address specified.

SEARCH command only. Invert the sense of the match.

BOOT command only. Specify a function bitmap to pass to VMB through R5.
See Figure 9-7 for a bit description of R5. Either form of the command is
acceptable.

FIND command only. Search for valid RPB or good block of memory.

SET HOST command only. Refer to command description for usage.

XDELTA command only. Enter XDELTA step mode at current PC.

318 Firmware

9.9 Diagnostics
The ROM-based diagnostics constitute the bulk of the firmware on the KA670. These
diagnostics run automatically on power-up. You can run one or all of the tests
interactively using the TEST command. This section summarizes the functions of the
diagnositics.

The ROM-based diagnostics have several functions:

1. During power-up, they determine if enough of the KA670 is working to allow the
console to run.

2. During the manufacturing process, they verify that the board was correctly built.

3. In the field, they verify that the board is operational, and they report all detected
errors.

4. They allow sophisticated users and field service technicians to run individual
diagnostics interactively, with the intent of isolating errors to the field replaceable
unit (FRU).

To meet these requirements, the diagnostics have been designed as a collection of
individual parameterized tests. A data structure (called a script) and a program (called
the diagnostic executive) orchestrate the running of these tests in the right order with
the right parameters.

A script is a data structure that points to various tests. There are several scripts-one
for the field, and several for manufacturing, depending on where the board is on the
manufacturing line. Sophisticated users may also create their own scripts interactively.
The script also contain the following infQrmation:

• What parameters need to be passed to the test

• What is to be displayed, if anything, on the console

• What is to be displayed, if anything, on the LED

• What to do on errors (halt, loop, or continue)

• Where the tests may be run from

For example, there are certain tests that can be run only from the EPROM. Other
tests are position-independant code (PIC) that may be run from EPROM or main
memory, in the interests of execution speed.

The diagnostic executive interprets scripts to determine what tests are to be run. There
are several built-in scripts on the KA670 that are used for manufacturing, power-up, and
field service functions. The diagnostic executive automatically invokes the correct script
based on the current environment of the KA670. Any script can be explicitly run with
the TEST command from the console terminal.

The diagnostic executive is responsible for controlling the tests, so errors can be caught
and reported to the user. The executive also ensures the machine is left in a consistent
and well-defined state when the tests are run.

o

Firmware 319

9.9.1 Error Reporting
Before a console is established, the only error reporting is on the KA670 diagnostic
LEDs and any LEDs on other boards. After a console is established, it reports all errors
detected by the diagnostics. When possible, the diagnostics issue an error summary on
the console.

For example, Example 9-1 shows a typical error display.

?9A 2 02 FF' 0000 0000 01 ; SUBTEST_9A 02, DE_INTERACTION.LIS

~ Pl=00000002 P2=00000000 P3=00004000 P4=00008000 P5=0000COOO
~ P6=00000000 P7=00000002 P8=00000002 P9=84004000 PIO=00001FFF e rO=00000054 r1=00000040 r2=00000000 r3=0000C524 r4=00000014
~ r5=30002800 r6=0000C4EO r7=20008000 r8=00004000 EPC=20057BBD

Normal operation not possible.

Example 9-1 Diagnostic Register Dump

o The first line is a test summary, containing six hexadecimal fields.

• ?9A identifies the diagnostic test.

• 2 is the severity level of a test failure, as dictated by the script. Severity level
2 failures display this five-line error printout and halt an autoboot to console va
mode. Severity level 1 errors display the first line of the error printout, but do
not interrupt an autoboot. Most tests have a severity level of 2.

• 02 is a subtestlog number that, in conjunction with listing files, isolates to
within a few instructions where the diagnostic detected the error.

• FF is a de_error code used by the diagnostic executive to signal the diagnostic's
state and any illegal behavior. This field indicates a condition that the diagnostic
expects on detecting a failure. Possible codes:

FF-Normal error exit from diagnostic
FE-Unanticipated exception/interrupt in diagnostic.
FD-Interrupt in cleanup routine
FC-Interrupt in interrupt handler
FB-Script requirements not met
FA-No such diagnostic
EF-Unanticipated exception in executive

• 0000 is the SeB vector (if nonzero) through which an unexpected exception or
interrupt trapped, when the de_error field indicates an unexpected exception or
interrupt (FE or EF).

• 0000 is the count of previous errors.

• 01 is the loop_subtest, an additional subtestlog generated out of the context of
the current test as specified by the current test number and subtestlog. Usually
these logs occur in common subroutines called from a diagnostic test.

• SUBTEST_9A_02 is a subtesCsymbol that identifies the most recent subtestlog
entry in the listing file.

• DE_INTERACTION. LIS is the name of the listing_file that contains the failed
diagnostic.

320 Firmware

• Pl...P5 are the first five longwords of the diagnostic state. This is internal
information that is used by repair personnel.

• P6 ... PIO are the last five longwords of the diagnostic state.

• RO ... R4 are the first five GPRs at the moment the error was detected.

• R5 ... R8 are additional GPRs and ERF is a diagnostic summary longword.

9.9.2 Diagnostic Interdependencies
When running individual tests interactively, be aware that certain tests depend on some
state set up from a previous test. In general, you should not run tests out of order.

A
Q22-bus Specification

A.1 Introduction
The Q22-bus, also known as the extended LSI-ll bus, is the low-end member of Digital's
bus family. All of Digital's microcomputers, such as the MicroVAX I, MicroVAX II,
MicroVAX 3500, MicroVAX 3600, and MicroPDP-ll use the Q22-bus.

The Q22-bus consists of 42 bidirectional and 2 unidirectional signal lines. These form the
lines along which the processor, memory, and 110 devices communicate with each :>ther.

Addresses, data, and control information are sent along these signal lines, some of which
contain time-multiplexed information. The lines are divided as follows:

• 16 multiplexed data/address lines - BDAL<15:00>

• 2 multiplexed address/parity lines - BDAL<17: 16>

• 4 extended address lines - BDAL<21:18>

• 6 data transfer control lines - BBS7, BDIN, BDOUT, BRPLY, BSYNC, BWTBT

• 6 system control lines - BHALT, BREF, BEVNT, BINIT, BDCOK, BPOK

• 10 interrupt control and direct memory access control lines - BIAKO, BIAKI, BIRQ4,
BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR, BSACK, BDMGI

In addition, a number of power, ground, and space lines are defined for the bus. Refer to
Table A-I for a detailed description of these lines.

The discussion in this appendix applies to the general 22-bit physical address capability.
All modules used with the KN210 CPU module must use 22-bit addressing.

Most Q22-bus signals are bidirectional and use terminations for a negated (high) signal
level. Devices connect to these lines by way of high-impedance bus receivers and open
collector drivers. The asserted state is produced when a bus driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point along the line can be
driven or received), certain lines are functionally unidirectional. These lines communicate
to or from a bus master (or signal source), but not both. Interrupt acknowledge (BIAK.)
and direct memory access grant (BDMG) signals are physically unidirectional in a daisy­
chain fashion. These signals originate at the processor output signal pins. Each is
received on device input pins (BIAKI or BDMGl) and is conditionally retransmitted
through device output pins (BIAKO or BDMGO). These signals are received from
higher priority devices and are retransmitted to lower priority devices along the bus,
establishing the position-dependent priority scheme.

321

322 Q22-bu5 Specification

A.1.1MasterISlave Relationship
Communication between devices on the bus is asynchronous. A master/slave relationship
exists throughout each bus transaction. Only one device has control of the bus at any
one time. This controlling device is called the bus master, or arbiter. The master device
controls the bus when communicating with another device on the bus, called the slave.

The bus master (typically the processor or a DMA device) initiates a bus transaction. The
slave device responds by acknowledging the transaction in progress and by receiving data
from, or transmitting data to, the bus master. Q22-bus control signals transmitted or
received by the bus master or bus slave device must complete the sequence according to
bus protocol.

The processor controls bus arbitration, that is, which device becomes bus master at any
given time. A typical example of this master-slave relationship is a disk drive, as master,
transferring data to memory as slave. Communication on the Q22-bus is interlocked so
that, for certain control signals issued by the master device, there must be a response
from the slave in order to complete the transfer. It is the master/slave signal protocol
that makes the Q22-bus asynchronous. The asynchronous operation precludes the need
for synchronizing with, and waiting for, clock pulses.

Since completion of the bus cycle by the bus master requires response from the slave
device, each bus master must include a timeout error circuit that aborts the bus cycle if
the slave does not respond to the bus transaction within 10 }lS. The actual time before
a timeout error occurs must be longer than the reply time of the slowest peripheral 01"

memory device on the bus.

A.2 Q22-bus Signal Assignments
Table A-I lists the data and address signal assignments. Table A-2 lists the control
signal assignments. Table A-3 lists the power and ground signal assignments. Table A-4
lists the spare signal assignments.

Table A-1 Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDALO AU2

BDALl AV2

BDAL2 BE2

BDAL3 BF2

BDAIA BH2

BDAL5 BJ2

BDAL6 BK2

BDAL7 BL2

BDALS BM2

BDAL9 BN2

BDALlO BP2

BDALll BR2

BDALl2 BS2

Table A-1 (Cont.) Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDALl3 BT2

BDALl4 BU2

BDALl5 BV2

BDALI6 ACI

BDALI7 ADI

BDALl8 BCI

BDALI9 BDI

BDAL20 BEl

BDAL21 BFI

Table A-2 Control Signal Assignments

Control Signal

Data Control

BDOUT

BRPLY

BDIN

BSYNC

BWTBT

BBS7

Interrupt Control

BIRQ7

BIRQ6

BIRQ5

BIRQ4

BlAKO

BIAKI

DMA Control

BDMR

BSACK

BDMGO

Pin Assignment

AE2

AF2

AH2

AJ2

AK2

AP2

BPI

ABI

AAI

AL2

AN2

AM2

ANI

BNl

AS2

Q22-bus Specification 323

324 Q22-bus Specification

Table A-2 (Cont.) Control Signal Assignments

Control Signal Pin Assignment

BDMGI AR2

System Control

BHALT API
BREF ARI
BEVNT BRI
BINIT AT2
BDCOK BAI
BPOK BBI

Table A-3 Power and Ground Signal Assignments

Power and Ground Pin Assignment

+5 B (battery) or ASI
+12 B (battery)
+12 B BSI
+5 B AVI
+5 AA2
+5 BA2
+5 BVI
+12 AD2
+12 BD2
+12 AB2
-12 AB2
-12 BB2
GND AC2
GND AJI
GND AMI
GND ATI
GND BC2
GND BJI

GND BMI
GND BTl

Q22-bus Specification 325

Table A-4 Spare Signal Assignments

Spare Pin Assignment

SSparel AEI

SSpare3 AHI

SSpare8 BHI

SSpare2 AFI

MSpareA AKI

MSpareB ALI

MSpareB BKI

MSpareB BLI

PSparel AUI

ASpare2 BUI

A.3 Data Transfer Bus Cycles
Data transfer bus cycles, executed by bus master devices, transfer 32-bit words or 8-
bit bytes to or from slave devices. In block mode, multiple words can be transferred to
sequential word addresses, starting from a single bus address. Table A-5 lists the data
transfer bus cycles.

Table A-5 Data Transfer Operations

Function (with respect to the
Bus Cycle Definition bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write-byte

DATIO Data word input/output Read-modify-write

DATIOB Data word inputlbyte output Read-modify-write byte

DATBI Data block input Read block

DATBO Data block output Write block

The bus signals listed in Table A-6 are used in the data transfer operations described in
Table A-5.

326 Q22-bus Specification

Table A-6 Bus Signals for Data Transfers

Signal

BDAL<21:00> L

BSYNCL

BDINL

BDOUTL

BRPLYL

BWTBTL

BBS7

Definition

22 data/address lines

Bus cycle control

Data input indicator

Data output indicator

Slave's acknowledge of bus
cycle

Writelbyte control

I/O device select

Function

BDAL<15:00> L are used for word and
byte transfers. BDAL<17:16> L are used
for extended addressing, memory parity
error (16), and memory parity error
enable (17) functions. BDAL<21:1S> L
are used for extended addressing beyond
256 Kbytes.

Indicates bus transaction in progress.

Strobe signals

Strobe signals

Strobe signals

Control signals

Indicates address is in the I/O page.

Data transfer bus cycles can be reduced to five basic types: DATI, DATO(B), DATIO(B),
DATBI, and DATBO. These transactions occur between the bus master and one slave
device selected during the addressing part of the bus cycle.

A.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been completed
(BSYNC L negated) and the device must become bus master. The bus cycle can be
divided into two parts - addressing and data transfer.

• During addressing, the bus master outputs the address for the desired slave device,
memory location, or device register. The selected slave device responds by latching
the address bits and holding this condition for the duration of the bus cycle until
BSYNC L becomes negated.

• During the data transfer, the actual data transfer occurs.

Q22-bus Specification 327

A.3.2 Device Addressing

Device addressing of a data transfer bus cycle comprises an address setup and deskew
time, and an address hold and deskew time. During address setup and deskew time, the
bus master does the following operations:

• Asserts BDAL<21:00> L with the desired slave device address bits.

• Asserts BBS7 L if a device in the 110 page is being addressed.

• Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle.

During this time, the address (BBS7 L) and BWTBT L signals are asserted at the slave
bus receiver for at least 75 ns before BSYNC goes active. Devices in the 110 page ignore
the 9 high-order address bits BDAL<21:13>, and instead, decode BBS7 L along with
the 13 low-order address bits. An active BWTBT L signal during address setup time
indicates that a DATO(B) or DATBO operation follows, while an inactive BWTBT L
indicates a DATI, DATBI, or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to clock BDAL address
bits, BBS7 L, and BWTBT L into its internal logic. BDAL<21:00> L, BBS7 L, and
BWTBT L remain active for 25 ns minimum after the BSYNC L bus receiver goes active.
BSYNC L remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way the slave
device responds to BBS7 L. Addressed peripheral devices must not decode address bits on
BDAL<21:13> L. Addressed peripheral device can respond to a bus cycle when BBS7 Lis
asserted (low) during the addressing of the cycle.

When asserted, BBS7 L indicates that the device address resides in the 110 page (the
upper 4K address space). Memory devices generally do not respond to addresses in the
110 page; however, some system applications may permit memory to reside in the 110
page for use as DMA buffers, read-only memory bootstraps, and diagnostics.

DATI

The DATI bus cycle (Figure A-I) is a read operation. During DATI, data is input to the
bus master. Data consists of 16-bit word transfers over the bus. During data transfer of
the DATI bus cycle, the bus master asserts BDIN L 100 ns minimum after BSYNC L is
asserted. The slave device responds to BDIN L active as follows:

• Asserts BRPLY L between 0 ns (minimum) and 8 ns (maximum, to avoid bus timeout)
after receiving BDIN L, and 125 ns (maximum) before BDAL bus driver data bits are
valid.

• Asserts BDAL<21:00> L with the addressed data and error information 0 ns
(minimum) after receiving BDIN, and 125 ns (maximum) after assertion of BRPLY.

328 Q22-bus Specification

BUS MASTER
PROCESSOR OR DEVICE

ADDRESS DEVICE OR MEMORY

ASSERT BDAl <21:00> l WITH
ADDRE$S AND
ASSERT BBS7 IF THE ADDRESS
IS IN THE 1/0 PAGE
ASSERT BSYNC L

REOUEST DATA
REMOVE THE ADDRESS FROM
BDAl <21 :00> lAND
NEGATE BBS7 l
ASSERT BDIN L

-- ---------
,..------
--- ------ -----

SLAVE
MEMORY OR DEVICE

DECODE ADDRESS
STORE DEVICE SE lECTED"
OPERATION

INPUT DATA

PLACE DATA ON BDAl < 15:00> l
__ _ ASSERT BRPL Y L

TERMINATE INPUT TRANSFER
ACCEPT DATA AND RESPOND
BY NEGATING BDIN L

-

--
---- OPERATION COMPLETED TERMINATE BUS CYCLE

NEGATE BSYNC l _ -- -- -- --- NEGATE BRPlY l

Figure A-1 DATI Bus Cycle

When the bus master receives BRPLY L, it does the following:

MR·602'8
MA·1Q'''87

• Waits at least 200 ns deskew time, then accepts input data at BDAL<17:00> L bus
receivers. BDAL <17:16> L are used for transmitting parity errors to the master.

• Negates BDIN L 200 ns (minimum) to 2 JlS (maximum) after BRPLY L goes active.

The slave device responds to BDIN L negation by negating BRPLY L and removing
read data from BDAL bus drivers. BRPLY L must be negated 100 ns (maximum) before
removing read data. The bus master responds to the negated BRPLY L by negating
BSYNC L.

Conditions for the next BSYNC L assertion are as follows:

• BSYNC L must remain negated for 200 ns (minimum).

• BSYNC L must not become asserted within 300 ns of previous BRPLY L negation.

Q22-bus Specification 329

Figure A-2 shows DATI bus cycle timing.

NOTE
When BSYNC L is continuously asserted, the bus master retains control of the
bus and the previously addressed slave device remains selected. This is done
for DATIO(B) bus cycles where DATO or DATOB follows a DATI without BSYNC
L negation and a second device addressing operation. Also, a slow slave device
can hold off data transfers to itself by keeping BRPLY L asserted, which causes
the master to keep BSYNC L asserted.

X'--___ '4' __ _

T $YI\;C

100 .\:$ MIi\IML;V--"':
8 ... S MAXI,V'J~.~ I

i Di!\; !

A R?L Y

150 ns
-, \~'~i~'.i'U./\"i

T8S7 ~ ________ ~ ~ _____________________ '4_' ____________________________ _

T WT8T ~~ ______ ~/,--_____________________ 14_' __________________________ _

RT DAL

R SYNC

R DIN

T RPL Y

R 8S7

R WT8T

TIMING AT MASTER DEVICE

~ R ADDR

! ~ :~)

~1~~\~~,~1
'--~ ________ ~ ~ ___ T_D_A_T_A ____ --'X 141

1"- 100 ns MAXIMUM r- Ons MiNIMUM
125 ns MAXIMUM t Ons_ MINIMUM

75 ns
I\1INIMUf\'

I
I
I

~
75:1s MINIMUM

~ X t 25 ns MINIMUM

i4J

~ I 141

TIMING AT SLAVE DEVICE

NOTES
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. 8US DRIVER OUTPUT ANa BUS RECEIVER INPUT

SUS DRIVER 'NPUTS AND SUS RECEiVER OUTPUTS SIGNAL NAMES INCLUDE A "s" PREFIX

2 SIGNAL NAME PREFIXES ARE DEFINED BELOW 4 DON'T CARE CONDiTION
T, BUS DRIVER INPUT
R ::; BuS RECEIVER OUTPUT

Figure A-2 DATI Bus Cycle Timing

DATOB

DATOB (Figure A-3) is a write operation. Data is transferred in 32-bit words (DATO) or
8-bit bytes (DATOB) from the bus master to the slave device. The data transfer output
can occur after the addressing part of a bus cycle when BWTBT L has been asserted by
the bus master, or immediately following an input transfer part of a DATIOB bus cycle.

330 Q22-bus Specification

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICE/MEMORY
ASSERT BDAl ,2100, l WITH
ADDRESS AND
ASSERT BBS7 l IF ADDRESS IS

IN THE I '0 PAGE
ASSERT BWTBT L IWRITE
CYCLE:
ASSE RT BSYNC l - - - - ---

SLAVE
(MEMORY OR DEVICE)

DECODE ADDRESS
..__- STORE DEVICE SELECTED

___ OPE RA nON

-----------OUTPUT DATA
..-

REMOVe THE ADDRESS FROM
BDAL ',21 DO' lAND NFGATE BBS7 L
NEGATE BWTBT L UNLESS DATOB
PLACEDATADNBDAL,'1500> l
ASSERT BDOUT L ___

TERMINATE OUTPUT TRANSFER -NEGATE BDOUT llANO BWTBT L
IF IN A DATOB BUS CYCLE)

-- --
--

REMOVE DATA FROM BDAl" 15:00> L_ ----

- --

--

TERMINATE BUS CYCLE
NEGATE BSYNC l

Figure A-3 DATO or DATOB Bus Cycle

TAKE DATA

RECEIVE DATA FROM BDAL
LINES
ASSERT BRPLY L

OPERATION COMPLETED
NEGATE BRPL Y l

MA 6029
MA.'D81."

The data transfer part of a DATOB bus cycle comprises a data setup and deskew time
and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the data on
BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWTBT L remains negated for
the length of the bus cycle. If the transfer is a byte transfer, BWTBT L remains asserted.
Ifit is the output of a DATIOB, BWTBT L becomes asserted and lasts the duration of the
bus cycle.

During a byte transfer, BDAL<OO> L selects the high or low byte. This occurs in the
addressing part of the cycle. If asserted, the high byte (BDAL<15:08> L) is selected;
otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL 16 L at this
time forces a parity error to be written into memory if the memory is a parity-type
memory. BDAL 17 L is not used for write operations. The bus master asserts BDOUT
L at least 100 ns after BDAL and BDWTBT L bus drivers are stable. The slave device
responds by asserting BRPLY L within 10 J1s to avoid bus timeout. This completes the
data setup and deskew time.

Q22-bus Specification 331

During the data hold and deskew time, the bus master receives BRPLY L and negates
BnOUT L, which must remain asserted for at least 150 ns from the receipt of BRPLY L
before being negated by the bus master. BDAL<17:00> L bus drivers remain asserted for
at least 100 ns after BDOUT L negation. The bus master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is accepted
and the slave device negates BRPLY L. The bus master responds by negating BSYNC
L. However, the processor does not negate BSYNC L for at least 175 ns after negating
BDOUT L. This completes the DATOB bus cycle. Before the next cycle, BSYNC L must
remain unasserted for at least 200 ns. Figure A-4 shows DATOB bus cycle timing.

T OAL

1 SYNC

i DOJT

;~ tH'LY

T BS7

T WTBT ~ i \ ,\:;SERTlflN OlVT[1--_____ 1._1 ______ _ L '50m J t-,-oo-n-'-i~.-,~-.~.-lU-"--_1----,-00-n-'-J~
MINIMIJM ".'!j(\.IML;fV

TIMING AT MASTER >:>EVICE

R DAL _1._1 _____ ~ __ ---' ~ ____ R _DA_T_A ___ -.-JX 141

~ 25nsMINtMUM

R SyNC

R DOUT

T RPLY

R SS7 1.1

---r-----t-'T""-tr---------'""'\!r 25 ns MINIMUM

R WTST 1.1

TIMING AT SLAVE DEVICE

NOTES,
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW· 4. DON'T CARE CONDITION.
T = SUS DRIVER INPUT
R = SUS RECEIVER OUTPUT

Figure A-4 DATO or DATOS Sus Cycle Timing

332 Q22-bus Specification

DATIOB

The protocol for a DATIOB bus cycle (Figure A-5) is identical to the addressing and data
transfer part of the DATI and DATOB bus cycles. After addressing the device, a DATI
cycle is perfonned as explained in the DATI section; however, BSYNC L is not negated.
BSYNC L remains active for an output word or byte transfer (DATOB). The bus master
maintains at least 200 ns between BRPLY L negation during the DATI cycle and BDOUT
L assertion. The cycle is tenninated when the bus master negates BSYNC L, as described
for DATOB. Figure A.-o shows the DATIOB bus cycle timing.

BUS MASTER
<PROCESSOR OR DE VICE,

ADDRESS DEVICE MEMORY
ASSERT BDAL -.21 00-- L WITH
ADDRESS
ASSERT BBS7 LiF THE
ADDRESS IS IN THE I 0 PAGE
ASSERT BSVNC L

REQUEST DATA
REMove THE ADDRESS FROM
BDAL <.21 00> L
ASSE RT BDIN L

-------.

--­,...- ----

SLAVE
(MEMORY OR DEVICEJ

DECODE ADDRESS
STORE DEVICE SELECTED
OPERATION

----- --- INPUT DATA

TERMINATE INPuT TRANSFER
ACCEPT DATA A"ID RESPOND BY
TERMINATING BDIN L

OUTPUT DATA

- -­.----

PLACE OUTPUT DATA ON BDAl < 1500;> l
(ASSERT BWTBT l IF AN OUTPUT
BYTE TRANSFERI
ASSE RT BDOUT L

PLACE DATA ON BDAl < 15:00 > l
ASSERT BRPLY L

COMPLETE INPUT TRANSFER
REMOVE DATA
NEGATE BRPl Y l

-----TAKE DATA

TERMINATE OUTPUT TRANSFER
REMOVE DATA FROM BDAlllNES
NEGATE BDOUT l

TERMINATE BUS CYCLE
NEGATE BSYNC L
(AND BWTBT l IF Itl
A DATIOe BUS CYCLE;

..,... --

--

Figure A-5 DATIO or DATIOB Bus Cycle

RECEIVE DATA FROM BOAl LINES
ASSERT BRPL Y l

OPERATION COMPLETED
NEGATE BRPlY l

,.. .. 1030
u ... ·'aa2 .. '

Q22-bus Specification 333

r- 0 ns MINIMUM

RIT DAL 141 T DATA (41

T SYNC

T DOUT

200 ns ,

MliJiMUM =J
T DIN

/
R RPL Y

100 ns MlNIMUM 100 ns MINiMUM

(41

TIMING AT MASTER DEVICE

RT'DAL ~ X T DATA x (4) x R O;;TA x (41

.... ~ 25n, I -'1 ~ 25 ns MINIMUM MINIMUM

1~' lOOns ! - f.--I MAX:MUM ~ loons} - ~ 75 ns MINIMUM 25 ns MIt';IMUM_ r, I M!NIMUM
...... 125 ns - 150 ns .-

MAXIMUM / ~ MINIMUM

R SYNC

R DOUT

r- 150 ns MINIMUM_

R DIN

I "") 150n, _ (t- 300ns. ___ r--- MINIMUM MINIMUM

~ ~ T APLY

:j f--- 75 ns MINIMUM

R BS7

I
I- 75 n, MINIMUM ~ I.- 25 n,MINIMUM ... t; 25 ns MINIMUM

I 1
R WT~T (4 1 /

(4~ ASSEoATION BYTE (41

- r.- 25 ns MINIMUM

TIMING AT SLAVE DEVICE

NOTES
TIMING SHOWN ~i REOUESTING DEVICE
BuS DRlliER INPUTS AND BUS RECEivER OUTPUTS

3 BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
SIGNAL NAMES INCLUDE A "B" PREFIX

SIGNAL NAME PREfiXES ARE DEFINED BELOW
T . BUS DRIVER INPUT
R· BUS RECEIVER OUTPUT

4 DON'T CARE CONDITION

Figure A-6 DATIO or DATIOB Bus Cycle Timing

..,1< ',0 I"

MA 106081

334 Q22-bus Specification

A.4 Direct Memory Access
The direct memory access (DMA) capability allows direct data transfer between 110
devices and memory. This is useful when using mass storage devices (for example, disks)
that move large blocks of data to and from memory. A DMA device needs to be supplied
with only the starting address in memory, the starting address in mass storage, the
length of the transfer, and whether the operation is read or write. When this information
is available, the DMA device can transfer data directly to or from memory. Since most
DMA devices must perform data transfers in rapid succession or lose data, DMA devices
are given the highest priority.

DMA is accomplished after the processor (normally bus master) has passed bus
mastership to the highest priority DMA device that is requesting the bus. The processor
arbitrates all requt:sts and grants the bus to the DMA device electrically closest to it.
A DMA device remains bus master until it relinquishes its mastership. The following
control signals are used during bus arbitration:

• BDMGI L DMA grant input

• BDMGO L DMA grant output

• BDMR L DMA request line

• BSACK L bus grant acknowledge

A.4.1 DMA Protocol

A DMA transaction can be divided into the following three phases:

• Bus mastership acquisition phase

• Data transfer phase

• Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests the bus by
asserting BDMR L. The processor arbitrates the request and initiates the transfer of
bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion andBDMGO L assertion is DMA latency.
This time is processor-dependent. BDMGO UBDMGI L is one signal that is daisy­
chained through each module in the backplane.

BDMGO UBDMGI L is driven out of the processor on the BDMGO L pin, enters each
module on the BDMGI L pin, then exits on the BDMGO L pin. This signal passes
through the modules in descending order of priority, until it is stopped by the requesting
device. The requesting device blocks the output of BMDGO L and asserts BSACK L. If
BDMR L is continuously asserted, the bus hangs.

During the data transfer phase, the DMA device continues asserting BSACK L. The
actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns (minimum) after it
received BDMGI L and its BSYNC L bus receiver is negated.

During the bus mastership relinquishment phase, the DMA device gives up the bus by
negating BSACK L. This occurs after completing (or aborting) the last data transfer
cycle (BRPLY L negated). BSACK L can be negated up to a maximum of 300 ns before
negating BSYNC L.

Q22-bus Specification 335

NOTE
If multiple data transfers are performed during this phase, consideration must
be given to the use of the bus for other system functions, such as memory
refresh (if required).

Figure A-7 shows the DMA protocol, and Figure A-8 shows DMA request/grant timing.

PROCESSOR
MEMORY IS SLAVE

GRANT BUS CONTROL

NEAR THE END OF THE
CURRENT BUS CYCLE
(BRPL Y L IS NEGATED)
ASSERT BDMGO LAND

" INHIBI"T NEW PROCESSOR
GENERATED BSYNC L FOUR
THE DURATION OF THE
DMA OPERATION

TERMINATE GRANT .,#

SEQUENCE
NEGATIVE BDMGO LAND
WAIT FOR DMA OPERATION
TO BE COMPLETED

MONITOR TRANSACTION TO
INVALIDATE CACHE IF
CACHE HIT

RESUME PROCESSOR
OPERATION
ENABLE PROCESSOR
GENERATED BSYNC L
(PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED

Figure A-7 DMA Protocol

"-

/

"-
"-

/
/

"-

/

'lit...

BUS MASTER
CONTROLLER

REQUEST BUS
ASSERT BDMR L

ACKNOWLEDGE BUS
MASTERSHIP

~ RECEIVE BDMG
WAIT FOR NEGATION OF
BSYNC LAND BRPLY L
ASSERT BSACK L
NEGATE BDMR L

EXECUTE A DMA DATA
TRANSFER
ADDRESS MEMORY AND

..... TRANSFER UP TO 4 WORDS
..... OF DATA AS DESCRIBED

..... FOR DATI OR DATO BUS

"' CYCLES
RELEASE THE BUS BY
TERMINATING BSACK L

./" (NO SOONER THAN
./ NEGATION OF LAST BRPLY L)

AND BSYNC L

WAIT FOUR uS OR UNTIL
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN

336 Q22·bus Specification

T DMR

R DMG

T SACK

RIT SYNC

R/T RPL Y

;---t------" ,.-,..... r-r-r- r f f 77 f 7 f
/1/11111//;1

t DnsMINIMUM

250 ns MINIMU:I
300 ns MINIMUM1

SECOND
f1EOUEST

~
On' MINIMUM t-o- 100 ns MAXIMUM o ns MINIMUM I

T OAL I
IALSO 8S7. -------------'"

ADDR)(r----O-AT-A---~"

WTST. REFI

NOTES
1 TIMING SHOWN AT REQuESTING D<;VICE BUS DRIVER

INPUTS AND BUS RECEIVER OUTPUTS.

2 SIGNAL NAMF. PREF IXES ARE DEF INE 0 BELOW
T ~ BUS DRIVER INPUT
R ~ BUS RECEIVER OUTPUT

Figure A-8 DMA Request/Grant Timing

A.4.2 Block Mode DMA

J BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
SIGNAL NAMES INCLUOE A "S" PREFIX

For increased throughput, block mode DMA can be implemented on a device for use with
memories that support this type of transfer. In a block mode transaction, the starting
memory address is asserted, followed by data for that address, and data for consecutive
addresses.

By eliminating the assertion of the address for each data word, the transfer rate is almost
doubled.

There are two types of block mode transfers, DATBI (input) and DATBO (output).

• Section A.4.2.l describes the DATBI bus cycle (Figure A-9).

• Section A.4.2.2 describes the DATBO bus cycle (Figure A-lO).

Q22-bus Specification 337

T DMR

R DMG

T SACK

T/R DAL

RIT
SYNC

max
T DIN

R RPLY

R REF

T 8S7

T WTBT ---':\~\-=-\\~\-=\\~---,A\\\\\\\\\ \\\\\\\\\\\\\\\
TIMING AT MASTER DEVICE
T : BUS DRIVER INPUT
R : 8US RECEIVER OUTPUT

R/T DAL-..!\
R ADDR ~~ T DATA X;'-l......l.\\-"-'\"-'-\\X~=:;-T D1OiiATA~\~

,...--==1-+-. __ -...:..I---__ '_7s_n_s _m_ax ______ -+_'_O-"'\.O ns max r
R SYNC ___ ...JI I

R DIN

T RPLY-------'\

T REF

R BS7
__ ---JI \'---------

R WT8T ~'-"-~---JA\\\\\\\\\\\\\\\\\\\\\\\\\~
TIMING AT SLAVE DeVICE

T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

Figure A-9 DATBI Bus Cycle Timing

MA10RHiil

338 Q22-bus Spedfication

T DMR

R OMG

T SACK

T DAL

RIT SYNC

T DOUT

R RPL Y

R REF

,. BS7

,. WTST

\ '"' -.')

\ T ADDR

150 nsj100 ns

~ min

/

I
TIMING AT MASTER DEVICE
,. .• BUS DRIVER INPUT
R ~ SUS RECEIVER OUTPUT

min

\

a ns - mini

T DATA X T DATA

~
I lOOns I ~~ I-1\: 100 I I ns

300ns
max

I
--l1S0ns

min r- I

UNqEFINED

R DAL
--.-A R ADDR X ... __ R_D_A_T_A_-..JX ... __ R_DA_T_A _____ A'-_____ _

R SYNC
__ .-II

R DOUT ______ ---f

T RPLY

T REF

R BS7

R WTST

/
-.I \

TIMING AT SLAVE DEVICE

T = BUS ORIVER INPUT
R 0 BUS RECEIVER OUTPUT

UNDEFINED

Figure A-10 DATBO Bus Cycle Timing

A.4.2.1 DATBI Bus Cycle

\'----

\

MA·1oa.7·87

Before a DATBI block mode transfer can occur, the DMA bus master device must request
control of the bus. This occurs under conventional Q22-bus protocol.

A block mode DATBI transfer is executed as follows:

• Add:ress device memory. The address is asserted by the bus master on
TADDR<21:00> along with the negation of TwrBT. The bus master asserts TSYNC
150 ns (minimum) after gating the address onto the bus.

•

•

•

Q22-bus Specification 339

Decode the address. The appropriate memory device recognizes that it must
respond to the address on the bus.

Request the data. The address is removed by the bus master from TADDR<21:00>
100 ns (minimum) after the assertion of TSYNC. The bus master asserts the first
TDIN 100 ns (minimum) after asserting TSYNC. The bus master asserts TBS7 50
ns (maximum) after asserting TDIN for the first time. TBS7 remains asserted until
50 ns (maximum) after the assertion of TDIN for the last time. In each case, TBS7
can be asserted or negated as soon as the conditions for asserting TDIN are met. The
assertion of TBS7 indicates the bus master is requesting another read cycle after the
current read cycle.

Send the data. The bus slave asserts TRPLY between 0 ns (minimum) and 8000 ns
(maximum, to avoid a bus timeout) after receiving RDIN. The bus slave asserts TREF
concurrent with TRPLY if, and only if, it is a block mode device which can support
another RDIN after the current RDIN. The bus slave gates TDATA<15:00> onto the
bus 0 ns (minimum) after receiving RDIN and 125 ns (maximum) after the assertion
ofTRPLY.

NOTE
Block mode transfers must not cross I6-word boundaries.

• Terminate the input transfer. The bus master receives stable RDATA<15:00> from
200 ns (maximum) after receiving RRPLY until 20 ns (minimum) after the negation
of RDIN. (The 20 ns minimum represents total minimum receiver delays for RDIN at
the slave and RDATA<15:00> at the master.) The bus master negates TDIN 200 ns
(minimum) after receiving RRPLY.

• Operation completed. The bus slave negates TRPLY 0 ns (minimum) after
receiving the negation of RDIN. If RBS7 and TREF are both asserted when TRPLY
negates, the bus slave prepares for another DIN cycle. RBS7 is stable from 125 ns
after RDIN is received until 150 ns after TRPLY negates. If TBS7 and RREF were
both asserted when TDIN negated, the bus master asserts TDIN 150 ns (minimum)
after receiving the negation of RRPLY and continues with the timing relationship
in send data above. RREF is stable from 75 ns after RRPLY asserts until 20 ns
(minimum) after TDIN negates. (The 0 ns minimum represents total minimum
receiver delays for RDIN at the slave and RREF at the master.)

NOTE
The bus master must limit itself to not more than eight transfers, unless it
monitors RDMR. If the bus master monitors RDMR, it may perform up to 16
transfers as long as RDMR is not asserted at the end of the seventh transfer.

• Terminate the bus cycle. RBS7 and TREF were not both asserted when TRPLY
negated, the bus slave removes TDATA<15:00> from the bus 0 ns (minimum) and 100
ns (maximum) after negating TRPLY. If TBS7 and RREF were not both asser.ted
when TDINnegated, the bus master negates TSYNC 250 ns (minimum) after
receiving the last assertion of RRPLY and 0 ns (minimum) after the negation of
that RRPLY.

• Release the bus. The DMA bus master negates TSACK 0 ns after negation of t.he
last RRPLY. The DMA bus master negates TSYNC 300 ns (maximum) after it negates
TSACK The DMA bus master must remove RDATA<15:00>, TBS7, and TwrBT from
the bus 100 ns (maximum) after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic in the
CPU enables processor-generated TSYNC or issues another bus grant (TDMGO) if RDMR
is asserted.

340 Q22-bus Specification

A.4.2.2 DATBO Bus CyCle
Before a block mode transfer can occur, the DMA bus master device must request control
of the bus. This occurs under conventional Q22-bus protocol.

A block mode DATBO transfer is executed as follows:

• Address device memory. The address is asserted by the bus master on
TADDR<21:00> along with the aasertion ofTWTBT. The bus master asserts TSYNC
150 ns (minimum) after gating the address onto the bus.

• Decode address-the appropriate memory device recognizes that it must respond to
the address on the bus.

• Send data. The bus master gates TDATA< 15:00> along with TWTBT 100 ns
(minimum) after the assertion ofTSYNC. TWTBT is negated. The bus master asserts
the first TDOUT 100 ns (minimum) after gating TDATA<15:00>.

NOTE
During DATBO cycles, TBS7 is undefined.

• Receive data. The bus slave receives stable data on RDATA<15:00> from 25 ns
(minimum) before receiving RDOUT until 25 ns (minimum) after receiving the
negation of RDOUT. The bus slave asserts TRPLY 0 ns (minimum) after receiving
RDOUT. The bus slave asserts TREF concurrent with TRPLY if, and only if, it is a
block mode device which can support another RDOUT after the current RDOUT.

NOTE
Block mode transfers must not cross I6-word boundaries.

• Terminate the output transfer. The bus master negates TDOUT 150 ns
(minimum) after receiving RRPLY.

• Operation completed. The bus slave negates TRPLY 0 ns (minimum) after
receiving the negation of RDOUT. If RREF was asserted when TDOUT negated
and if the bus master wants to transfer another word, the bus master gates the new
data on TDATA<15:00> 100 ns (minimum) after negating TDOUT. RREF is stable
from 75 ns (maximum) after RRPLY asserts until 20 ns (minimum) after RDOUT
negates. (The 20 ns minimum represents minimum receiver delays for RDOUT at the
slave and RREF at the master). The bus master asserts TDOUT 100 ns (minimum)
after gating new data on TDATA<15:00> and 150 ns (minimum) after receiving the
negation of RRPLY. The cycle continues with the timing relationship in receive data
above.

NOTE
The bus master must limit itself to not more than eight transfers unless it
monitors RDMR. If the bus master monitors RDMR, it may perform up to 16
transfers as long as RDMR is not asserted at the end of the seventh tran.sfer.

• Terminate the bus cycle. If RREF was not asserted when RRPLY negated or if
the bus master has no additional data to transfer, the bus master removes data on
TDATA<15:00> from the bus 100 ns (minimum) after negating TDOUT. If RREF
was not asserted when TDOUT negated, the bus master negates TSYNC 275 ns
(minimum) after receiving the last RRPLY and 0 ns (minimum) after the negation of
the last RRPLY.

Q22-bus Specification 341

• Release the bus. The DMA bus master negates TSACK 0 ns after negation of the
last RRPLY. The DMA bus master negates TSYNC 300 ns (maximum) after it negates
TSACK The DMA bus master must remove TDATA, TBS7, and TWTBT from the bus
100 ns (maximum) after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic in the
CPU enables processor-generated TSYNC or issues another bus grant (TDMGO) if RDMR
is as serted.

A.4.3 DMA Guidelines

The following is a list of DMA guidelines:

• Systems with memory refresh over the bus must not include devices that perform
more than one transfer per acquisition.

• Bus masters that do not use block mode are limited to four DATI, four DATO, or two
DATIO transfers per acquisition.

• Block mode bus masters that do not monitor BDMR are limited to eight transfers per
acquisition.

• If BDMR is not asserted after the seventh transfer, block mode bus masters that do
monitor BDMR may continue making transfers until the bus slave fails to assert
BREF, or until they reach the total maximum of 16 transfers. Otherwise, they stop
after eight transfers.

A.5 Interrupts
The interrupt capability of the Q22-bus allows an I/O device to temporarily suspend
(interrupt) current program execution and divert processor operation to service the
requesting device. The processor inputs a vector from the device to start the service
routine (handler). Like the device register address, hardware fixes the device vector at
locations within a designated range below location 001000. The vector indicates the first
of a pair of addresses. The processor reads the contents of the first address, the starting
address of the interrupt handler. The contents of the second address is a new processor
status word (PS).

The new PS can raise the interrupt priority level, thereby preventing lower-level
interrupts from breaking into the current interrupt service routine. Control is returned
to the interrupted program when the interrupt handler is ended. The original interrupted
program's address (PC) and its associated PS are stored on a stack. The original PC and
PS are restored by a return from interrupt (RTI or RTI') instruction at the end of the
handler. The use of the stack and the Q22-bus interrupt scheme can allow interrupts to
occur within interrupts (nested interrupts), depending on the PS.

Interrupts can be caused by Q22-bus options or the MicroVAX CPU. Those interrupts that
originate from within the processor are called traps. Traps are caused by programming
errors, hardware errors, special instructions, and maintenance features.

The following Q22-bus signals are used in interrupt transactions:

342 Q22-bus Specification

Signal Definition

BIRQ4 L Interrupt request priority level 4

BIRQ5 L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKIL Interrupt acknowledge input

BIAKOL Interrupt acknowledge output

BDAL<21:00> Data/address lines

BDINL Data input strobe

BRPLYL Reply

A.S.1 Device Priority
The Q22-bus supports the following two methods of device priority:

• Distributed arbitration - priority levels are implemented on the hardware. When
devices of equal priority level request an interrupt, priority is given to the device
electrically closest to the processor.

• Position-defined arbitration - priority is determined solely by electrical position on
the bus. The closer a device is to the processor, the higher its priority.

A.S.2 Interrupt Protocol
Interrupt protocol on the Q22-bus has three phases:

• Interrupt request

• Interrupt acknowledge and priority arbitration

• Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific conditions for
interrupt requests. For example, the device is ready, done, or an error occurred. The
interrupt enable bit in a device status register must be set. The device then initiates
the interrupt by asserting the interrupt request line(s). BIRQ4 L is the lowest hardware
priority level and is asserted for all interrupt requests for compatibility with previous
Q22-bus processors. The level at which a device is configured must also be asserted. A
special case exists for level 7 devices that must also assert level 6. The following list
gives the interrupt levels and the corresponding Q22-bus interrrupt request lines. For an
explanation, refer to Section A.5.3.

Interrupt Level

4

5

6

7

Lines Asserted by Device

BIRQ4 L

BIRQ4 L, BIRQ5 L

BIRQ4 L, BIRQ6 L

BIRQ4 L, BIRQ6 L, BIRQ7 L

Figure A-ll shows the interrupt request/acknowledge sequence.

PROCESSOR

STROBE INTERRUPTS
ASSERT BDIN L

1

I
~

GRANT REQUEST

PAUSE AND ASSER: BIAKO I.

RECEIVE VECTOR AND
TEAMI~ATE Rt:uUEST

INPUT VECQR ADDRESS

NEGATE BDIN LAND BIAKO L

PROCESS THE INTERRUPT

SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION

EXECUTE INTERRUPT SERVICE
ROUTiM FOR THE DEVICE

-- -- --------

- -----

----- --~-

Q22-bus Specification 343

DEVICE

INITIATE REQUEST

ASSERT BIRO L

RECEIVE BDIN L

STORE "INTERRUPT SENDING"
IN DEVICE

RECEIVE 8IAK: L

RECEIVE 81AKI L AND INHIBIT

BIAKO L

PLACE VECTOR ON 8DAl < 15,00:> L
ASSERT 8RPLV L

NEGATE 81 RQ L

COMPLETE VECTOR TRANSFER

REMOVE VECTOR FROM BDAl BUS

NEGATE BR?L Y L

Figure A-ll Interrupt Request/Acknowledge Sequence

The interrupt request line remains asserted until the request is acknowledged.

During the interrupt acknowledge and priority arbitration phase, the processor
acknowledges interrupts under the following conditions:

• The device interrupt priority is higher than the current PS<7:5>.

• The processor has completed instruction execution and no additional bus cycles are
pending.

The processor acknowledges the interrupt request by asserting BDIN L, and 150 'ns
(minimum) later asserting BIAKO L. The device electrically closest to the processor
receives the acknowledge on its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed separately. If the device that
receives the acknowledge uses the four-level interrupt scheme, it reacts as follows:

• If not requesting an interrupt, the device asserts BIAKO L and the acknowledge
propagates to the next device on the bus.

344 Q22-bus Specification

• If the device is requesting an interrupt, it must check that no higher-level device is
currently requesting an interrupt. This is done by monitoring higher-level request
lines. The following table lists the lines that need to be monitored by devices at each
priority level:

Device Priority Level Line(s) Monitored

4

5

6

7

BIRQ5, BIRQ6

BIRQ6

BIRQ7

In addition to asserting levels 7 and 4, level 7 devices must drive level 6. This is done
to simplify the monitoring and arbitration by level 4 and 5 devices. In this protocol,
level 4 and 5 devices need not monitor level 7, because level 7 devices assert level
6. Level 4 and 5 devices become aware of a level 7 request because they monitor the
level 6 request, This protocol has been optimized for level 4, 5, and 6 devices, since
level 7 devices are very seldom necessary.

• If no higher-level device is requesting an interrupt, the acknowledge is blocked by
the device. (BIAKO L is not asserted.) Arbitration logic within the device uses the
leading edge of BDIN L to clock a flip-flop that blocks BIAKO L. Arbitration is won
and the interrupt vector transfer phase begins.

• If a higher-level request line is active, the device disqualifies itself and asserts BIAKO
L to propagate the acknowledge to the next device along the bus.

Signal timing must be considered carefully when implementing four-level interrupts
(Figure A-12).

TIRO

R D'N

R IAt<.1

T RPLY

T DAL

R SYNC

R 8S7

INTERRUPT LATENCY Ii--___ --+ ____

r-- J 1-'00 ft, MAXIMUM

____ ~-----------(-·,---------------JX~----~VE-C-TO-R--~~

fUNASSERTEDI

fUNASSE RTE 01

NOTES
, TIMING SHOWN AT REOUESTING DEVICE BUS DRIvER

INPuTS AND SUS RECEIVER OUTPUTS.

2 SIGNA L NAMe PREF I xes ARE DE FINE 0 BE LOW
T· BUS DRIvER INPUT
R· BUS RECEIVER OUTPUT

3. SUS DRIVER OUTPUT AND BUS RECEIVER INPUT
SIGNAL NAMES INCLUDE A .. s .. PREFIX .

• DON'T CARE CONDITION.

Figure A-12 Interrupt Protocol Timing

Q22-buS Specification 345

If a single-level interrupt device receives the acknowledge, it reacts as follows:

• If not requesting an interrupt, the device asserts BIAKO L and the acknowledge
propagates to the next device on the bus.

• If the device was requesting an interrupt, the acknowledge is blocked using the
leading edge of BDIN L, and arbitration is won. The interrupt vector transfer phase
begins.

The interrupt vector transfer phase is enabled by BDIN Land BIAKI L. The device
responds by asserting BRPLY L and its BDAL<15:00> L bus driver inputs with the vector
address bits. The BDAL bus driver inputs must be stable within 125 ns (maximum) after
BRPLY L is asserted. The processor then inputs the vector address and negates BDIN L
and BIAKO L. The device then negates BRPLY Land 100 ns (maximum) later removes
the vector address bits. The processor then enters the device's service routine.

NOTE
Propagation delay from BIAKI L to BIAKO L must not be greater than 500 ns
per Q22-bus slot. The device must assert BRPLY L within 10 JlS (maximum) after
the processor asserts BIAKI L.

A.5.3 Q22-bus Four-level Interrupt Configurations

If you have high-speed peripherals and desire better software performance, you can
use the four-level interrupt scheme. Both position-independent and position-dependent
configurations can be used with the four-level interrupt scheme.

Figure A-13 shows the position-independent configuration. This allows peripheral
devices that use the four-level interrupt scheme to be placed in the backplane in any
order. These devices must send out interrupt requests and monitor higher-level request
lines as described. The level 4 request is always asserted from a requesting device
regardless of priority. If two or more devices of equally high priority request an interrupt,
the device physically closest to the processor wins arbitration. Devices that use the
single-level interrupt scheme must be modified, or placed at the end of the bus, for
arbitration to function properly.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 4 BIAK LEVEL 6 BIAK LEVEL 5 BIAK LEVEL 7
CPU

DEVICE DEVICE DEVICE DEVICE

BIRO. (LEVEL 4 INTERRUPT REOUEST)

BIRO 5 (LEVEL 5 INTERRUPT REOUEST)

BIRO 6 (LEVEL 6 INTERRUPT REOUEST)

BIRO 7 (LEVEL 7 INTERRUPT REOUEST)

MA·X061$·Da

Figure A-13 Position-Independent Configuration

Figure A-14 shows the position-dependent configuration. This configuration is simpler
to implement. A constraint is that peripheral devices must be inserted with the highest
priority device located closest to the processor, and the remaining devices placed in the
backplane in decreasing order of priority (with the lowest priority devices farthest from
the processor). With this configuration, each device has to assert only its own level and
level 4. Monitoring higher-level request lines is unnecessary. Arbitration is achieved

346 Q22-bus Specification

through the physical positioning of each device on the bus. Single-level interrupt devices
on level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 7 BIAK LEVEL 6
CPU

DEVICE DEVICE

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)
-----------.-----.'--- ~.-

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure A-14 Position-Dependent Configuration

A.6 ControlFunctions
The following Q22-bus signals provide control functions:

Signal

BREFL

BHALTL

BINIT L

BPOKH

BDCOKH

A.6.1 Halt

Definition

Memory refresh (also block mode DMA)

Processor halt

Initialize

Power OK

DC power OK

BIAK LEVEL 5 BIAK LEVEL 4
DEVICE DEVICE

U"'·)[Ol1l-,.

Assertion of BHALT L for at least 25 ns interrupts the processor, which stops program
execution and forces the processor unconditionally into console 110 mode.

A.6.2 Initialization
Devices along the bus are initialized when BINIT L is asserted. The processor can assert
BINIT L as a result of executing a reset instruction as part of a power-up or power-down
sequence. BINIT L is asserted for approximately 10 JlS when reset is executed.

A.6.3 Power Status
Power status protocol is controlled by two signals, BPOK Hand BDeOK H. These signals
are driven by an external device (usually the power supply).

A.7 Q22-bus Electrical Characteristics
Section A 7.1 lists the input and output logic levels for Q22-bus signals.

A.7.1 Signal Level Specifications

The signal level specifications for the Q22-bus are as follows:

Input Logic Level
TTL logical low
TTL logical high

Output Logic Level
TTL logical low
TTL logical high

A. 7.2 Load Definition

0.8 Vdc (maximum)
2.0 Vdc (minimum)

0.4 Vdc (maximum)
2.4 Vdc (minimum)

Q22-bus Specification 347

AC loads make up the maximum capacitance allowed per signal line to ground. A unit
load is defined as 9.35 pF of capacitance. DC loads are defined as maximum current
allowed with a signal line driver asserted or unasserted. A unit load is defined as 210 pA
in the unasserted state.

A. 7.3 120-0hm Q22-bus

The electrical conductors interconnecting the bus device slots are treated as transmission
lines. A uniform transmission line, terminated in its characteristic impedance,
propagates an electrical signal without reflections. Since bus drivers, receivers,
and wiring connected to the bus have finite resistance and nonzero reactance, the
transmission line impedance is not unifonn, and introduces distortions into pulses
propagated along it. Passive components of the Q22-bus (such as wiring, cabling, and
etched signal conductors) are designed to have a nominal characteristic impedance of 120
ohms.

The maximum length of interconnecting cable, excluding wiring within the backplane, is
limited to 4.88 m (16 ft).

A.7.4 Bus Drivers

Devices driving the 120-ohm Q22-bus must have open collector outputs and meet the
following specifications:

DC Specifications

• Output low voltage when sinking 70 rnA of current is 0.7 V (maximum).

• Output high leakage current when connected to 3.8 Vdc is 25 pA (even if no power is
applied, except for BDCOK Hand BPOK H).

• These conditions must be met at worst-case supply temperature, and input signal
levels.

AC Specifications

• Bus driver output pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns.

• Skew (difference in propagation time between slowest and fastest gate) should not
exceed 25 ns.

• Transition time (from 10% to 90% for positive transition-rise time, from 90% to 10%
for negative transition-fall time) must be no faster than 10 ns.

348 Q22-bus Specification

A.7.S Bus Receivers

Devices that receive signals from the 120-ohm Q22-bus must meet the following
requirements:

DC Specifications

• Input low voltage is 1.3 V (maximum).

• Input high voltage is 1. 7 V (minimum).

• Maximum input current when connected to 3.8 Vdc is 80 pA (even if no power is
applied).

These specifications must be met at worst-case supply voltage, temperature, and output
signal conditions.

AC Specifications

• Bus receiver input pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns.

• Skew (difference in propagation time between slowest and fastest gate) should not
exceed 25 ns.

A.7.6 Bus Termination
The 120-ohm Q22-bus must be terminated at each end by an appropriate terminator,
as shown in Figure A-15. This is to be done as a voltage divider with its Thevenin
equivalent equal to 120 ohms and 3.4 V (nominal). This type of termination is provided
by an REVll-A refreshlboot/terminator, BDVll-AA, KPVll-B, TEVll, or by certain
backplanes and expansion cards.

+5 V

178 i!

383 ~l
1%

120 ~!
BUS LINE
TERMINATION

+5 v

330n

S80n

250H
BUS LINE
TERMINATION

MA 6033
MA 1071S1

Figure A-15 Bus line Terminations

Each of the several Q22-bus lines (all signals whose mnemonics start with the letter B)
must see an equivalent network with the following characteristics at each end of the hus:

Bus Termination Characteristic

Input impedance
(with respect to ground)

Open circuit voltage

Capacitance load

Value

120 ohms +5%, -15%

3.4 Vdc +5%

Not to exceed 30 pF

Q22-bus Specification 349

NOTE
The resistive termination can be provided by the combination of two modules.
(The processor module supplies 220 ohms to ground. This, in parallel with
another 220-ohm card, provides 120 ohms.) Both terminators must reside
physically within the same backplane.

A.7.7 Bus Interconnecting Wiring

The following sections give specific infonnation about bus interconnecting wiring.

A.7.7.1 Backplane Wiring
The wiring that connects all device interface slots on the Q22-bus must meet the
following specification s:

• The conductors must be arranged so that each line exhibits a characteristic
impedance of 120 ohms (measured with respect to the bus common return).

• Crosstalk between any two lines must be no greater than 5 percent. Note that worst­
case crosstalk is manifested by simultaneously driving all but one signal line and
measuring the effect on the un driven line.

• DC resistance of the signal path, as measured between the near-end terminator
and the far-end terminator module (including all intervening connectors, cables,
backplane wiring, and connector-module etch) must not exceed 20 ohms.

• DC resistance of the common return path, as measured between the near-end
terminator and the far-end terminator module (including all intervening connectors,
cables, backplane wiring and connector-module etch) must not exceed an equivalent
of 2 ohms per signal path. Thus, the composite signal return path dc resistance must
not exceed 2 ohms divided by 40 bus lines, or 50 milliohms. Note that although this
common return path is nominally at ground potential, the conductance must be part
of the bus wiring. The specified low impedance return path must be provided by the
bus wiring as distinguished from the common system or power ground path.

A.7.7.2 Intrabackplane Bus Wiring
The wiring that connects the bus connector slots within one contiguous backplane is
part of the overall bus transmission line. Owing to implementation constraints, the
nominal characteristic impedance of 120 ohms may not be achievable. Distributed wiring
capacitance in excess of the amount required to achieve the nominal 120-ohm impedance
may not exceed 60 pF per signal line per backplane.

A.7.7.3 Power and Ground
Each bus interface slot has connector pins assigned for the following dc voltages. The
maximum allowable current per pin is 1.5 A. +5 Vdc must be regulated to 5 percent,
with a maximum ripple of 100 mV pp. +12 Vdc must be regulated to 3 percent, with a
maximum ripple of 200 m V pp.

• +5 Vdc - three pins (4.5 A maximum per bus device slot)

• + 12 V dc - two pins (3.0 A maximum per bus device slot)

• Ground - eight pins (shared by power return and signal return)

NOTE
Power is not bused between backplanes on any interconnecting bus cables.

350 Q22-bus Specification

A.8 System Configurations
Q22-bus systems can be divided into two types:

•
•

Systems containing one backplane

Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in the system must
be identified.

•
•

•

Power consumption - +5 Vdc and +12 Vdc are the current requirements.

AC bus loading - The amount of capacitance a module presents to a bus signal line.
AC loading is expressed in terms of ac loads, where one ac load equals 9.35 pF of
capacitance.

DC bus loading-The amount of dc leakage current a module presents to a bus signal
when the line is high (undriven). DC loading is expressed in terms of dc loads, where
one de load equals 210 J1A (nominal).

Power consumption, ac loading, and dc loading specifications for each module are included
in the Microcomputer Interfaces Handbook.

NOTE
The ac and dc loads and the power consumption of the processor module,
terminator module, and backplane must be included in determining the total
loading of a backplane.

Rules for configuring single-backplane systems are as follows:

• When using a processor with 220-ohm termination, the bus can accommodate modules
that have up to 20 ac loads before additional termination is required (Figure A-16).
If more than 20 ac loads are included, the other end of the bus must be tenninated
with 120 ohms. Then, up to 35 ac loads may be present.

• With 120-ohm processor termination, up to 35 ac loads can be used without additional
termination. If 120-ohm bus termination is added, up to 45 ac loads can be configured
in the backplane.

• The bus can accommodate modules up to 20 dc loads (total).

• The bus signal lines on the backplane can be up to 35.6 cm (14 in.) long.

f BACKPLANE WIRE I
IOII"~---- 35.6 CM (14 I N) MAXIM~U"""M-:----·~

PROCESSOR

ONE
UNIT
LOAD

(

3
2

,
I

ONE
UNIT
LOAD

y

5 AC LOADS
o DC LOADS

Figure A-16 Single-Backplane Configuration

1
ONE
UNIT
LOAD

.

OPTIONAL

~ 120n

"::'

+
3.4 V

-

TERM

MR·6034
MA 1072-87

Q22-bus Specification 351

Rules for configuring multiple backplane systems are as follows:

• Figure A-17 shows that up to three backplanes can make up the system.

• The signal lines on each backplane can be up to 25.4 cm (10 in.) long.

• Each backplane can accommodate modules that have up to 22 ac loads. Unused
ac loads from one backplane may not be added to another backplane if the second
backplane loading exceeds 22 ac loads. It is desirable to load backplanes equally, or
with the highest ac loads in the first and second backplanes.

• DC loading of all modules in all backplanes cannot exceed 20 loads.

• Both ends of the bus must be terminated with 120 ohms. This means the first
and last backplanes must have an impedance of 120 ohms. To achieve this, each
backplane can be lumped together as a single point. The resistive termination can be
provided by a combination of two modules in the backplane - the processor providing
220 ohms to ground in parallel with an expansion paddle card providing 250 ohms to
give the needed 120-ohm termination.

Alternately, a processor with 120-ohm termination would need no additional
termination on the paddle card to attain 120 ohms in the first box. The 120-ohm
termination in the last box can be provided in two ways: the termination resistors
may reside either on the expansion paddle card, or on a bus termination card (such
as the BDVll).

• The cable(s) connecting the first two backplanes is 61 cm (2 ft) or more in length.

• The cable(s) connecting the second backplane to the third backplane is 122 cm (4 ft.)
longer or shorter than the cable(s) connecting the first and second backplanes.

• The combined length of both cables cannot exceed 4.88 m (16 ft).

• The cables used must have a characteristic impedance of 120 ohms.

352 Q22-bus Specification

I·

250n

+
3.4 V \

-
':'

PROCESSOR

BACKPLANE
35.6 CM (14

WIRE
in.) MAX

I I I 1
ONE ONE
UNIT UNIT
LOAD LOAD

20AC LO ADS MA~

E WIRE
o IN) MAX

I.-L ___ BACKPLAN
r 25.4CM (1

(
I I

ONE
UNIT
LOAD

CABLE y

20 AC LOADS MAX

-

,

-I
I
I

CABLE
ADDITIONAL
CABLES AND
BACKPLANE I BACKPLANE WIRE I

J.-· ---254CM (lOIN) MAX ----.~

I
I

120n
3.4 V

CABLE I
TERM

I
ONE
UNIT
LOAD

I l
I I

ONE
UNIT
LOAD

20 AC LOADS MAX

NOTES:
1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)

TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAXI.

Figure A-17 Multiple Backplane Configuration

CABLE r---

MR 603~
MA·101387

Q22-bus Specification 353

A.8.1 Power Supply Loading
Total power requirements for each backplane can be determined by obtaining the
total power requirements for each module in the backplane. Obtain separate totals
for +5 V and + 12 V power. Power requirements for each module are specified in the
Microcomputer Interfaces Handbook.

When distributing power in multiple backplane systems, do not attempt to distribute
power through the Q22-bus cables. Provide separate, appropriate power wiring from
each power supply to each backplane. Each power supply should be capable of asserting
BPOK Hand BDeOK H signals according to bus protocol; this is required if automatic
power-faiVrestart programs are implemented, or if specific peripherals require an orderly
power-down halt sequence. The proper use of BPOK Hand BDeOK H signals is strongly
recommended.

A.9 Module Contact Finger Identification
Digital's plug-in modules all use the same contact finger (pin) identification system. A
typical pin is shown in Figure A-18.

/"'~
/ MODULE SIDE

SLOT IROWI IDENTIFIER IDENTIFIER
SLOT B 'SIDE 2 (SOLDER

SIDEI
PIN IDENTIFIER
'PIN E

Figure A-18 Typical Pin Identification System

MH. lti!:lSJ
MA·1054·B7

The Q22-bus is based on the use of quad-height modules that plug into a 2-slot bus
connector. Each slot contains 36 lines (18 lines on both the component side and the
solder side of the circuit board).

Slots, row A, and row B include a numeric identifier for the side of the module. The
component side is designated side 1, the solder side is designated side 2, as shown in
Figure A-19.

354 Q22-bu8 Specification

ROW'

ROW.

Rowe :...... ,.

.' ~ ... : ", 1':

~ ::; .. ' : . ~
~ :.~ •• , <.

.04 ,;','

ROW 0

Figure A-19 Quad-Height Module Contact Finger Identification

Letters ranging from A through V (excluding G, I, 0, and Q) identify a particular pin on
a side of a slot. Table A-7 lists and identifies the bus pins of the quad-height module. A
bus .pin identifier ending with a 1 is found on the component side of the board, while a
bus pin identifier ending with a 2 is found on the solder side of the board.

The positioning notch between the two rows of pins mates with a protrusion on the
connector block for correct module positioning.

Figure A-20 represents the dimensions for a typical Q22-bus module.

Q22-bus Specification 355

NOTES

DIMENSIONS GIVEN IN INCHES
DIMENSIONS DENOTED By • ARE FOR
MAX USEABLE CIRCUll AREA

, 28 orA ~ ~~ HANDLE HOLES

UNLESS OTHERWISE SPECIFIED ALL
DIMENSIONS ARE % 005 ,"

--L
~+~---~+.!~!+~--~+~~:

1 180 TYP

7438·
(EXT LGTt-t

2125 T''I:P ,,7 EOUAL SPACESI

I
BonOM OF FINGERS
10 lOP 0' HANDLE
a 9.4 1 Ole (EXT LGTH)
5 SO < 0'0 (STD LGTH)

MA·l091.B7

Figure A-20 Typical Q22-bus Module Dimensions

Table A-7 Bus Pin Identifiers

Bus Pin Signal

AAl BIRQ5 L

ABl BIRQ6 L

ACl BDALl6 L

ADl BDAL17 L

AEl SSPAREl
(alternate +5 B)

AFl SSPARE2

Definition

Interrupt request priority level 5.

Interrupt request priority level 6.

Extended address bit during addressing protocol; memory
error data line during data transfer protocol.

Extended address bit during addressing protocol; memory
error logic enable during data transfer protocol.

Special spare - Not assigned or bused in Digital's cable
or backplane assemblies. Available for user connection.
Optionally, this pin can be used for +5 V battery (+5 B) back­
up power to keep critical circuits alive during power failures.
A jumper is required on Q22-bus options to open (disconnect)
the +5 B circuit in systems that use this line as
SSPAREI.

Special spare - Not assigned or bused in Digital's cable or
backplane assemblies. Available for user interconnection. In
the highest priority device slot, the processor can use this
pin for a signal to indicate its run state.

356 Q22-bus Specification

Table A-7 (Com.) Bus Pin Identifiers

Bus Pin

AHI

AJI

AKI

ALl

AMI

ANI

API

ARI

ASI

ATI

AUl

AVl

Signal

SSPARE3
SRUN

GND

MSPAREA

MSPAREB

GND

BDMRL

BHALTL

BREFL

+12 B or +5 B

GND

PSPARE 1

+5B

Definition

Special spare - Not assigned or bused simultaneously in
Digital's cable or backplane assemblies; available for user
interconnection. An alternate SRUN signal can be connected
in the highest priority set.

Ground - System signal ground and dc return.

Maintenance spare - Normally connected together on the
backplane at each option location (not a bused connection).

Maintenance spare - Normally connected together on the
backplane at each option location (not a bused connection).

Ground - System signal ground and dc return.

DMA request - A device asserts this signal to request
bus mastership. The processor arbitrates bus mastership
between itself and all DMA devices on the bus. If the
processor is not bus master (it has completed a bus cycle
and BSYNC L is not being asserted by the processor), it
grants bus mastership to the requesting device by asserting
BDMGO L. The device responds by negating BDMR Land
asserting BSACK L.

Processor halt - When BHALT L is asserted for at least 25
J.1S, the processor services the halt interrupt and responds by
halting normal program execution. External interrupts are
ignored but memory refresh interrupts in Q22-bus operations
are enabled ifW4 on the M7264 and M7264-YA processor
modules is removed and DMA request/grant sequences are
enabled. The processor executes the ODT microcode, and the
console device operation is invoked.

Memory refresh - Asserted by a DMA device. This signal
forces all dynamic MOS memory units requiring bus refresh
signals to be activated for each BSYNC lJBDIN L bus
transaction. It is also used as a control signal for block mode
DMA.

CAunON
The user must avoid multiple DMA data transfers
(burst or hot mode) that could delay refresh operation
if using DMA refresh. Complete refresh cycles must
occur once every 1.6 ms if required.

+12 Vdc or +5 V battery back-up power to keep critical
circuits alive during power failures. This signal is not bused
to BSI in all of Digital's backplanes. A jumper is required on
all Q22-bus options to open (disconnect) the backup circuit
from the bus in systems that use this line at the alternate
voltage.

Ground - System signal ground and de return.

Spare - Not assigned. Customer usage not recommended.
Prevents damage when modules are inserted upside down.

+5 V battery power - Secondary +5 V power connection.
Battery power can be used with certain devices.

Q22-bus Specification 357

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

BAI BDCOKH DC power OK - A power supply generated signal that is
asserted when the available dc voltage is sufficient to sustain
reliable system operation.

BBI BPOKH Power OK - Asserted by the power supply 70 ms after
BDCOK is negated when ac power drops below the value
required to sustain power (approximately 75% of nominal).
When negated during processor operation, a power-fail trap
sequence is initiated.

BCI SSPARE4 Special spare in the Q22-bus - Not assigned. Bused in
BDAL18 L 22-bit cable and backplane assemblies. Available for user
(22-bit only) interconnection.

BDl SSPARE5
BDAL19 L
(22-bit only) CAUTION

These pins may be used by manufacturing 8S test
points in some options.

BEl SSPARE6 In the Q22-bus, these bused address lines are address lines
BDAL20 L <21:18>. Currently not used during data time.

BFI SSPARE7 In the Q22-bus, these bused address lines are address lines
BDAL21 L <21:18>. Currently not used during data time.

BHl SSPARE8 Special spare - Not assigned or bused in Digital's cable and
backplane assemblies. Available for user interconnection.

BJI GND Ground - System signal ground and dc return.

BKI MSPAREB Maintenance spare - Normally connected together on the
BLI MSPAREB backplane at each option location (not a bused connection).

BMI GND Ground - System signal ground and dc return.

BNI BSACKL This signal is asserted by a DMA device in response to the
processor's BDMGO L signal, indicating that the DMA device
is bus master.

BPI BIRQ7 L Interrupt request priority level 7.

BRI BEVNTL External event interrupt request - When asserted, the
processor responds by entering a service routine through
vector address 1008. A typical use of this signal is as a line
time clock (LTC) interrupt.

BSI +12 B +12 Vdc battery back-up power (not bused to ASI in all of
Digital's backplanes).

BTl GND Ground - System signal ground and dc return.

BUI PSPARE2 Power spare 2 - Not assigned a function and not
recommended for use. If a module is using
-12 V (on pin AB2), and, if the module is accidentally
inserted upside down in the backplane, -12 Vdc appears on
pin BUI.

BVI +5 +5 V power - Normal +5 Vdc system power_

AA2 +5 +5 V power - Normal +5 Vdc system power.

358 Q22-bus Specification

Table A-7 (Cont.) Bus Pin Identifiers

BUB Pin

AB2

AC2

AD2

AE2

AF2

AH2

AJ2

AK2

AL2

Signal

-12

GND

+12

BDOUTL

BRPLYL

BDINL

BSYNC L

BWTBTL

BffiQ4L

Definition

-12 V power - -12 Vdc power for (optional) devices
requiring this voltage. Each Q22-bus module that requires
negative voltages contains an inverter circuit that generates
the required voltage(s). Therefore, -12 V power is not
required with Digital's options.

Ground - System signal ground and dc return.

+ 12 V power - + 12 V dc system power.

Data output - When asserted, BDOUT implies that valid
data is available on BDAL<0:15> L and that an output
transfer, with respect to the bus master device, is taking
place. BDOUT L is deskewed with respect to data on the
bus. The slave device responding to the BDOUT L signal
must assert BRPLY L to complete the transfer.

Reply - BRPLY L is asserted in response to BDIN L or
BDOUT L and during IAK transactions. It is generated by
a slave device to indicate that it has placed its data on the
BDAL bus or that it has accepted output data from the bus.

Data input - BDIN L is used for two types of bus
operations.

• When asserted during BSYNC L time, BDIN L implies
an input transfer with respect to the current bus master,
and requires a response (BRPLY L). BDIN L is asserted
when the master device is ready to accept data from the
slave device.

• When asserted without BSYNC L, it indicates that an
interrupt operation is occurring. The master device
must deskew input data from BRPLY 1.

Synchronize - BSYNC L is asserted by the bus master
device to indicate that it has placed an address on
BDAL<O:17> L. The transfer is in process until BSYNC
L is negated.

Writelbyte - BWTBT L is used in two ways to control a bus
cycle.

• It is asserted at the leading edge of BSYNC L to indicate
that an output sequence (DATO or DATOB), rather than
an input sequence, is to follow.

• It is asserted during BDOUT L, in a DATOB bus cycle,
for byte addressing.

Interrupt request priority level 4 - A level 4 device asserts
this signal when its interrupt enable and interrupt request
flip-flops are set. If the PS word bit 7 is 0, the processor
responds by acknowledging the request by asserting BDIN L
and BIAKO L.

Q22-bus Specification 359

Table A-7 (Cont.) Bus Pin Identifiers

Bus Pin

AM2
AN2

AP2

AR2
AS2

AT2

AU2
AV2

BA2

BB2

BC2

BD2

Signal

BIAKIL
BIAKOL

BBS7L

BDMGlL
BDMGOL

BINIT L

BDALOL
BDALIL

+5

-12

GND

+12

Definition

Interrupt acknowledge - In accordance with interrupt
protocol, the processor asserts BIAKO L to acknowledge
receipt of an interrupt. The bus transmits this to BIAKI L
of the device electrically closest to the processor. This device
accepts the interrupt acknowledge under two conditions.

• The device requested the bus by asserting BIRQn L
(where n= 4,5,6 or 7)

• The device has the highest priority interrupt request on
the bus at that time.

If these conditions are not met, the device asserts BIAKO
L to the next device on the bus. This process continues
in a daisy chain fashion until the device with the highest
interrupt priority receives the interrupt acknowledge signal.

Bank 7 select - The bus master asserts this signal
to reference the 110 page (including that part of the
page reserved for nonexistent memory). The address in
BDAL<O:12> L when BBS7 L is asserted is the address
within the 110 page.

Direct memory access grant - The bus arbitrator asserts
this signal to grant bus mastership to a requesting device,
according to bus mastership protocol. The signal is passed
in a daisy-chain from the arbitrator (as BDMGO L) through
the bus to BDMGI L of the next priority device (the device
electrically closest on the bus).

This device accepts the grant only if it requested to be
the bus master (by a BDMR L). If not, the device passes the
grant (asserts BDMGO L) to the next device on the bus. This
process continues until the requesting device acknowledged
the grant.

CAUTION
DMA device transfers must not interfere with the
memory refresh cycle.

Initialize - This signal is used for system reset. All
devices on the bus are to return to a known, initial state;
that is, registers are reset to zero, and logic is reset to
state O. Exceptions should be completely documented in
programming and engineering specifications for the device.

Data/address lines - These two lines are part of the 16-line
data/address bus over which address and data information
are communicated. Address information is first placed on the
bus by the bus master device. The same device then either
receives input data from, or outputs data to, the addressed
slave device or memory over the same bus lines.

+5 V power - Normal +5 Vde system power.

-12 V power (voltage not supplied) - -12 Vdc power for
(optional) devices requiring this voltage.

Ground - System signal ground and de return.

+12 V power - +12 V system power.

360 Q22-bus Specification

Table A-7 (Coni.) Bus Pin Identifiers

Bus Pin

BE2
BF2
BH2
BJ2
BK2
BL2
BM2
BN2
BP2
BR2
BS2
BT2
BU2
BV2

Signal

BDAL2L
BDAL3L
BDAIA L
BDAL5L
BDAL6 L
BDAL7L
BDAL8L
BDAL9 L
BDALIOL
BDALll L
BDAL12 L
BDAL13 L
BDAL14L
BDAL15L

Definition

Data/address lines - These 14 lines are part of the 16-line
data/address bus.

Specifications 365

H3604

1.50 A maximum at +5.00 Vdc
500 rnA maximum at +12.0 Vdc

62 rnA maximum at -12.0 Vdc

Fast diagnostic mode (FDM) is run only during power-up ROM diagnostics.

Typical currents are 10 percent less than the specified maximum.

B.3 Bus Loads
The KA670 CPU bus loads are as follows:
DC Loading

The KA670-ANBA module presents a value of less than 1 dc load to the Q22-bus. The
actual maximum value is specified to be 0.57 dc loads.
AC Loading

The KA670-ANBA presents a maximum of 4 ac loads to the Q22-bus.

B.4 Battery Backup Specifications
When dc power is supplied to the KA670 module, it charges the external batteries from
+5 volts through a 240-ohm resistor.

When dc power is removed from the KA670 module, it drains the external batteries at a
rate of 1.0 milliampslhour.

NOTE
These batteries supply power to the KA670 time-of-year clock and sse RAM
only. There is DO battery backup for the memory system.

B.5 Operating Conditions
Temperature

Humidity

Altitude

Airflow

+5° to +60° C (-40° to +1<!0° F), with a rate of change no greater
than 20 :!:2° Clhour (36 :4° Flhour) at sea level. The maximum
temperature must be derated by 1.8° C/1000 meters (1 0 F/1000 feet)
above sea level.

10 to 95% noncondensing, with a maximum wet bulb temperature of
32° C (900 F) and a minimum dew point temperature of 2° C (360 F).

Up to 2,400 meters (8,000 feet), with a rate of change no greater than
300 meters/minute (1000 feet/minute).

The airflow required to meet these specifications is 200 Ifm.

B.6 Nonoperating Conditions (Less Than 60 Days)
Temperature

Humidity

Altitude

-40° to +66° C (-400 to +151 ° F), with a rate of change no greater
than 11 :!:2° Clhour (20 ±4° Flhour) at sea level. The maximum
temperature must be derated by 1.80 C/1000 meters (10 F/1000 feet)
above sea level.

Up to 95% noncondensing.

Up to 4,900 meters (16,000 feet), with a rate of change no greater
than 600 meters/minute (2000 feet/minute).

366 Specifications

B.7 Nonoperating Conditions (Greater than 60 Days)
'Thmperature

Humidity

Altitude

+5° to +60° C (-40 to +140° F), with a rate of change no greater than
20 :1:2° C (36 :1:4° F) per hour at sea level. The maximum temperature
must be derated by 1.8° C/1000 meters (10 F/1000 feet) above sea
level.

10 to 95% noncondensing, with a maximum wet bulb temperature of
32° C (90° F) and a minimum dew point temperature of 20 C (360 F).

Up to 2,400 meters (8,000 feet), with a rate of change no greater than
300 meters/minute (1000 feet/minute).

C
Address Assignments

C.1 KA670 General Local Address Space Map
Address Range

VAX Memory Space

0000 0000 to IFFF FFFF

VAX I/O Space

2000 0000 to 2000 IFFF
2000 2000 to 2003 FFFF
2004 0000 to 2007 FFFF
2008 0000 to 201F FFFF
2020 0000 to 23FF FFFF
2400 0000 to 27FF FFFF
2008 0000 to 2BFF FFFF
2C08 0000 to 2FFF FFFF
3000 0000 to 303F FFFF
3040 0000 to 33FF FFFF
34000000 to 37FF FFFF
3800 0000 to 3BFF FFFF
3COO 0000 to 3FFF FFFF

Contents

Local memory space (512 Mbytes)

Local Q22-bus 110 space (8 Kbytes)
Reserved local 110 space (248 Kbytes)
Local UVROM space
Local register I/O space (1.5 Mbytes)
Reserved local I/O space (62.5 Mbytes)
Reserved local I/O space (64 Mbytes)
Reserved local I/O space (64 Mbytes)
Reserved local I/O space (64 Mbytes)
Local Q22-bus memory space (4 Mbytes)
Reserved local 110 space (60 Mbytes)
Reserved local 110 space (64 Mbytes)
Reserved local I/O space (64 Mbytes)
Reserved local 110 space (64 Mbytes)

367

368 Address Assignments

C.2 KA670 Detailed Local Address Space Map
Contents

Local memory space (up to 512 Mbytes)

Q22-bus map-top 32 Kbytes of main
memory

VAX 110 Space

Contents

Local Q22·bus 110 Space

Reserved Q22-bus lJO space
Q22-bus floating address space
User-reserved Q22-bus lJO space
Reserved Q22-bus lJO space
Interprocessor communication register
Reserved Q22-bus lJO space

Local Register 110 Space

Reserved local register 110 space
SRAC! SSWCR
Reserved local register 110 space
SRAC1 SSHMA
SRAClPQBBR
SRAC1 PSR
SRACl PESR
SRAC1 PFAR
SRAC1 PPR
SRAC1 PMCSR
Reserved local register 110 space
SRACl PCQOCR
SRAC1 PCQ1CR
SRAC1 PCQ2CR
SRAC1 PCQ3CR
SRAC1PDFQCR
SRAC1PMFQCR
SRACl PSRCR
SRAC1PECR
SRAC1PDCR
SRAC1 PICR
SRAC1PMTCR
SRAC1PMTECR
Reserved local register 110 space
SRAC2 SSWCR
Reserved local register 110 space
SHAC2SSHMA
SRAC2PQBBR

Address

0000 0000 to 1FFF FFFF

Address

2000 0000 to 2000 IFFF

2000 0000 to 2000 0007
2000 0008 to 2000 07FF
2000 0800 to 2000 OFFF
2000 1000 to 2000 lF3F
2000 lF40
2000 IF44 to 2000 lFFF

2000 2000 to 2003 FFFF

2000 4000 to 2000 402F
20004030
2000 4034 to 2000 4043
20004044
20004048
2000404C
20004050
20004054
20004058
2000405C
2000 4060 to 2000 407F
20004080
20004084
20004088
2000408C
20004090
20004094
20004098
2000409C
200040AO
200040A4
200040A8
200040AC
2000 40BO to 2000 422F
20004230
200~ 4234 to 2000 4243
20004244
20004248

VAX 110 Space

Contents

Local Register 110 Space

SHAC2 PSR
SHAC2 PESR
SHAC2 PFAR
SHAC2PPR
SHAC2 PMCSR
Reserved local register 110 space
SHAC2 PCQOCR
SHAC2 PCQ1CR
SHAC2 PCQ2CR
SHAC2 PCQ3CR
SHAC2 PDFQCR
SHAC2 PMFQCR
SHAC2 PSRCR
SHAC2 PECR
SHAC2 PDCR
SHAC2 PICR
SHAC2PMTCR
SHAC2 PMTECR
Reserved local register 110 space
NICSRO-Vector add, IPL, sync/async
NICSR1-Polling demand register
NICSR2-Reserved
NICSR3--Receiver list address
NICSR4-Transmitter list address
NICS~tatus register
NICSR6-Command and mode register
NICSR7-System base address
NICSR8-Reserved
NICSR9-Watchdog timers
NICSRIO-Reserved
NICSRll-Revision number and missed frame
count
NICSR12-Reserved
NICSR13-Breakpoint address
NICSRl4-Reserved
NICSR15-Diagnostic mode and status
Reserved local register 110 space

UVROM Space

MicroVAX system type register (in UVROM)
Local UVROM (halt-protected)

Address Assignments 369

Address

2000 2000 to 2003 FFFF

2000 424C
20004250
20004254
20004258
2000 425C
2000 4260 to 2000 427F
20004280
20004284
20004288
2000 428C
20004290
20004294
20004298
2000 429C
2000 42AO
2000 42A4
2000 42A8
2000 42AC
2000 42BO to 2000 7FFF
20008000
20008004
20008008
2000800C
20008010
20008014
20008018
200080lC
20008020·
20008024·
2000 S02S·
2000 S02C·

2000 S030·
2000 S034·
2000 S03S·
2000 S03C
2000 8040 to 2003 FFFF

2004 0000 to 2007 FFFF

20040004
2004 0000 to 2007 FFFF

·These registers are not fully implemented. Accesses yield unpredictable results.

370 Address Assignments

VAX 110 Space

Contents

Local register 110 space

DMA system configuration register
DMA system error register
DMA master error address register
DMA slave error address register
Q22-bus map base register
Reserved local register I/O space
Error status register (Reg. 32)
Memory error address (Reg. 33)
I/O Error address (Reg. 34)
DMA memory error address (Reg. 35)
DMA Mode control and diagnostic status register
(Reg. 36)
Reserved local register I/O space
Boot and diagnostic register (32 copies)
Reserved local register I/O space
Q22-bus map registers
Reserved local register I/O space
SSC base address register
SSC configuration register
CP bus timeout control register
Diagnostic LED register
Reserved local register I/O space

Address

2008 0000 to 201F FFFF

20080000
20080004
20080008
2008000C
20080010
20080014 to 2008 OOFF
20080180
20080184
20080188
2008018C
20080190

20080194 to 2008 3FFF
2008 4000 to 2008 407C
2008 4080 to 2008 7FFF
2008 8000 to 2008 FFFF
2009 0000 to 2013 FFFF
20140000
20140010
20140020
20140030
2014 0034 to 2014 006B

The following addresses allow those KA670 internal processor registers that are implemented in
the SSC chip (external, internal processor registers) to be accessed using the local 110 page. These
addresses are documented for diagnostic purposes only and should not be used by nondiagnostic
programs.
Time-of-year register
Console storage receiver status
Console storage receiver data
Console storage transmitter status
Console storage transmitter data
Console receiver control/status
Console receiver data buffer
Console transmitter control/status
Console transmitter data buffer
Reserved local register I/O space
I/O bus reset register
Reserved local register I/O space
Rom data register
Bus timeout counter
Interval timer
Reserved local register I/O space

2014006C
20140070-
20140074-
20140078-
2014007C·
20140080
20140084
20140088
2014008C
2014 0090 to 2014 OODB
201400DC
201400EO
201400FOt
201400F4t
201400F8t
2014 OOFC to 2014 OOFF

-These registers are not fully implemented. Accesses yield unpredictable results.

tThese registers are internal sse registers used for sse chip teat purpoae8 only. They should not be acceued
by the CPU.

VAX 110 Space

Contents

I..ocal register 110 space

Timer 0 control register
Timer 0 interval register
Timer 0 next interval register
Timer 0 interrupt vector
Timer 1 control register
Timer 1 interval register
Timer 1 next interval register
Timer 1 interrupt vector
Reserved local register 110 space
BDR address decode match register
BDR address decode mask register
Reserved local register 110 space
Battery backed-up RAM
Reserved local register 110 space

Reserved local 110 space

Local Q22-bus memory space

Reserved Local register 110 space

Address

20140100
20140104
20140108
2014010C
20140110
20140114
20140118
2014011C

Address Assignments 371

2014 0120 to 2014 012F
20140130
20140134
2014 0138 to 2014 03FF
2014 0400 to 2014 07FF
20140800 to 201F FFFF

2020 0000 to 2FFF FFFF

3000 0000 to 303F FFFF

3040 0000 to 3FFF FFFF

e.3 External, Internal Processor Registers
Several of the internal processor registers (lPRs) on the KA670 are implemented in the
C-chip or SSC chip rather than the CPU chip. These registers are referred to as external,
internal processor registers and are listed here.

IPR Register Name Abbreviation

27 Time-of-year register TOY

28 Console storage receiver status CSRS*
29 Console storage receiver data CSRD*
30 Console storage transmitter status CSTS*
31 Console storage transmitter data CSDB*

32 Console receiver control/status RXCS
33 Console receiver data buffer RXDB
34 Console transmitter control/status '!'XCS
35 Console transmitter data buffer TXDB

55 110 system reset register IORESET

112 Backup cache reserved register BCU2*
113 Backup cache tag store BCBTS
114 Backup cache PI tag store BCPITS
115 Backup cache P2 tag store BCP2TS
116 Backup cache refresh register BCRFR

372 Address Assignments

IPR

117
118
119
120
121
122
123

Register Name

Backup cache index register
Backup cache status register
Backup cache control register
Backup cache error register
Backup cache flush backup cache tag store
Backup cache flush primary cache tag store
Backup cache reserved register

Abbreviation

BCIDX
BCSTS
BCCTL
BCERR
BCFBTS
BCPBTS
BC123*

C.4 Global Q22-bus Address Space Map
Q22·bus Memory Space

Q22-bus memory space (octal)

Q22·bus I/O Space (BBS7 Asserted)

Q22-bus 110 Space (octal)

Reserved Q22-bus 110 space

Q22-bus floating address space

User-reserved Q22-bus I/O space

Reserved Q22-bus 110 space

Interprocessor communication register

Reserved Q22-bus 110 space

0000 0000 to 1777 7777

1776 0000 to 1777 7777

1776 0000 to 1776 0007

1776 0010 to 1776 3777

1776 4000 to 1776 7777

1777 0000 to 1777 7477

1777 7500

1777 7502 to 1777 7777

D
VAX Instruction Set

The information in this appendix is for reference only.

0.1 Syntax
The standard notation for operand specifiers is

<NAME>.<access type><data type>

Name
is a suggestive name for the operand in the context of the instruction. It is the capitalized
name of a register or block for implied operands.

Access type
is a letter denoting the operand specifier access type.
a = address operand.

b = branch displacement.

m modified operand (both read and written).

r = read only operand.

v if not Rn, same as a, otherwise R£n+l1'R[nl.

w = write-only operand.

Data type
is a letter denoting the data type of the operand.
b = byte.

d = d_floating.

f = Cfloating.

g = g_floating.

I = longword.

q = quadword.

v = field (used only in implied operands).

w = word.

* = multiple longwords (used only in implied operands).

Implied operands
are locations accessed by the instruction, but not specified in an operand. They appear in
curly braces {}.

373

374 VAX Instruction Set

Abbreviations for Condition Codes
* = conditionally set/cleared.

= not affected.

o
1

=
=

cleared.

set.

Abbreviations for Exceptions
rsv =

iov =

idvz =

fov =

fuv =

fdvz =

dov

ddvz =

sub

prv =

Table 0-1

~code

58

80
CO
AO

81
Cl
Al

D8

78
79

8A
CA
AA

8B
CB
AB

88
C8
A8

reserved operand fault.

integer overflow trap ..

integer divide by zero trap.

floating overflow fault.

floating underflow fault.

floating divide by zero fault.

decimal overflow trap.

decimal divide by zero trap.

subscript range trap.

privileged instruction fault.

Integer Arithmetic and logical Instructions

Instruction

ADAWI add.rw, sum.mw

ADOB2 add.rb, sum.mb
ADOL2 add.rl, surn.ml
ADOW2 add.rw, sum.mw

ADOB3 add1.rb, add2.rb, sum.wb
ADOL3 addl.rl, add2.rI, sum.wl
ADOW3 add1.rw, add2.rw, sum.ww

ADWC add.rl, sum.ml

ASHL cnt.rb, src.rl, dst.wl
ASHQ cnt.rb, src.rq, dst.wq

BICB2 mask.rb, dst.mb
BICL2 mask.rl, dst.ml
BICW2 mask.rw, dst.mw

BICB3 mask.rb, src.rb, dst.wb
BICL3 mask.rl, src.rl, dst.wl
BICW3 mask.rw, src.rw, dst.ww

BISB2 mask.rh, dst.mb
BISL2 mask.rl, dst.ml
BISW2 mask.rw, dst.mw

NZVC

***0
***0

**0-
**0-
**0-

**0-
**0-
**0-

**0-
**0-
**0-

Exceptions

iov

iov
iov
jov

JOY

jov
JOY

jov

iov
JOY

VAX Instruction Set 375

Table 0-1 (Cont.) Integer Arhhmetlc and logical Instructions

Opcode Instruction NZVC Exceptions

89 BISB3 mask.rb, src.rb, dst.wb * * 0 -
C9 BISL3 mask.rl, src.rl, dst.wl **0-
A9 BISW3 mask.rw, src.rw, dst.ww * * 0 -

93 BITB mask.rb, src.rb * * 0 -
D3 BITL mask.rl, src.rl * * 0 -
B3 BITW mask.rw, src.rw **0-

94 CLRB dst.wb 01 0 -
D4 CLRL{=F) dst.wl 0 1 0 -
7C CLRQ{=D=G) dst.wq 0 1 0 -
B4 CLRW dst.ww 0 1 0 -

91 CMPB src l.rb, src2.rb **0*
DI CMPL src1.rI, src2.rl **0*
BI CMPW src1.rw, src2.rw **0*

98 CVTBL src.rb, dst.wl **00
99 CVTBW src.rb, dst. wI * * 0 0
F6 CVTLB src.rl, dst.wb ***0 iov
F7 CVTLW src.rl, dst.ww ***0 iov
33 CVTWB src.rw, dst. wb ***0 iov
32 CVTWL src.rw, dst.wl **00

97 DECB dif.mb * * * * iov
D7 DECL dif.ml **** iov
B7 DECW dif.mw **** iov

86 DIVB2 divr.rb, quo.mb ***0 iov,idvz
C6 DIVL2 divr.rl, quo.mI ***0 iov,idvz
A6 DIVW2 divr.rw, quo.mw ***0 iov,idvz

87 DIVB3 djvr.rb, divd.rb, quo.wb * * * 0 iov,idvz
C7 DIVL3 divr.rl, divd.rl, quo.wl ***0 iov,idvz
A7 DIVW3 divr.rw, divd.rw, quo.ww ***0 iov,idvz

7B EDIV divr.rl, divd.rq, quo.wI, rem.wl * * * 0 iov,idvz

7A EMUL mulr.rI, muld.rl, add.rl, prod.wq **00

96 INCB sum.mb **** JOY

D6 INCL sum.ml **** iov
B6 INCWsum.mw **** iov

92 MCOMB src.rb, dst.wb **0-
D2 MCOML sre.rI, dst.wI **0-
B2 MCOMW src.rw, dst.ww **0-

376 VAX Instruction Set

Table 0-1 (Cont.) Integer Arithmetic and Logical Instructions

Opcode Instruction NZVC Exceptions

8E MNEGB src.rb, dst.wb •••• iov
CE MNEGL src.rl, dst.wl •••• iov
AE MNEGW src.rw, dst. ww •••• iov

90 MOVB src.rb, dst.wb ··0-
DO MOVL src.rl, dst.wl ··0-
7D MOVQ src.rq, dst.wq • • 0-
BO MOVW src.rw, dst.ww ··0-

9A MOVZBW src.rb, dst.wb 0·0-
9B MOVZBL src.rb, dst.wI 0·0-
3C MOVZWL src.rw, dst.ww 0·0-

84 MULB2 mulr.rb, prod.mb ···0 iov
C4 MULL2 muIr.rl, prod.ml ···0 iov
A4 MULW2 mulr.rw, prod.mw ···0 iov

85 MULB3 mulr.rb, muld.rb, prod.wb ···0 iov
C5 MULL3 mulr.rl, muId.rl, prod.wl ···0 iov
A5 MULW3 mulr.rw, muld.rw, prod.ww ···0 iov

DD PUSHL src.rl, {..(SP).wl} ··0-

9C ROTL cnt.rh, src.rl, dst.wl ··0-

00 SBWC sub.rl, dif.ml •••• iov

82 SUBB2 sub.rb, dif.mb •••• iov
C2 SUBL2 sub.rl, dif.ml •••• iov
A2 SUBW2 sub.rw, dif.mw * ••• iov

83 SUBB3 sub.rb, min.rb, dif.wb •••• iov
C3 SUBL3 sub.rl, min.rl, dif.wl •••• iov
A3 SUBW3 sub.rw, min.rw, dif.ww •••• iov

95 TSTB src.rb ··00
D5 TSTL src.rl *·00
B5 TSTWsrc.rw ··00

8C XORB2 mask.rb, dst.mb *·0-
CC XORL2 mask.rl, dst.ml ··0-
AC XORW2 mask.rw, dst.mw ··0-
8D XORB3 mask.rb, src.rb, dst. wb ··0-
CD XORL3 mask.rl, arc.rl, dst.wl ··0-
AD XORW3 mask.rw, srC.rw, dst.ww ··0-

VAX Instruction Set 377

Table 0-2 Address Instructions

Opcode Instruction NZVC Exceptions

9E MOVAB sre.ab, dst.wl ··0-
DE MOVAL{=F} sre.al, dst.wl • • 0-
7E MOVAQ{=D=G} sre.aq, dst.wl ··0-
3E MOVAW src.aw, dst.wl * • 0-

9F PUSHAB sre.ab, (-(SP). wl) ··0-
DF PUSHAL{=Fj sre.al, {-(SP).wll **0-
7F PUSHAQ{=D=G) sre.aq, {-(SP).wll • * 0-
3F PUSHAW sre.aw, {-(SP).wl) ·*0-

Table 0-3 Variable Length Bit Field Instructions

Opcode Instruction NZVC Exceptions

EC CMPV pos.rl, size.rb, base. vb, {field.rv}, sre.rl ·*0* rsv
ED CMPZV pos.rl, size.rb, base.vb, {field.rv}, src.rl ·*0* rsv
EE EXTV pos.rl, size.rb, base.vb, {field.rv}, dst.wl **0- rsv
EF EXTZV pos.rl, size.rb, base. vb, {field.rv}, dst.wl * * 0- rsv
FO INSV sre.rl, pos.rl, size.rb, base. vb, {field.wv} rsv
EB FFC startpos.rl, size.rb, base.vb, {field.rv}, 0*00 rsv

findpos.wl
EA FFS startpos.rl, size.rb, base.vb, {field.rv}, 0·00 rsv

findpos.wl

Table D-4 Control Instructions

Opcode Instruction NZVC Exceptions

9D ACBB limit.rb, add.rb, index.mb, displ.bw * * * iov
Fl ACBL limit.rl, add.rl, index.ml, displ.bw * * * iov
3D ACBW limit.rw, add.rw, index.mw, displ.bw * * • iov
F3 AOBLEQ limit.rl, index.ml, displ.bb * * * iov
F2 AOBLSS limit.rl, index.ml, displ.bb * • * iov
IE BCC{=BGEQU) displ.bb
IF BCS{=BLSSU} displ.bb
13 BEQL{=BEQLU} displ.bb
18 BGEQ displ.bb
14 BGTR displ.bb
lA BGTRU disp1.bb
15 BLEQ disp1.bb
IB BLEQU displ.bb
19 BLSS disp1.bb
12 BNEQ{=BNEQU} displ.bb
IC BYe displ.bb
ID BVS disp1.bb

El BBC poul, base.vb, displ.bb, {field.rv} rsv

378 VAX Instruction Set

Table D-4 (Cont.) Control Instructions

Opcode Instruction NZVC Exceptions

EO BBS pos.rl, base.vb, displ.bb, {field.rv} rsv

E5 BBCC pos.rl, base.vb, displ.bb, {field.mv} rsv
E3 BBCS pos.rl, base.vb, displ.bb, {field.mv} rsv
E4 BBSC pos.rl, base.vb, displ.bb, {field.mv} rsv
E2 BBSS pos.rl, base.vb, displ.bb, {field.mv} rsv

E7 BBCCI pos.rl, base.vb, displ.bb, {field.mv} rsv
E6 BBSSI pos.rl, base.vb, displ.bb, {field.mv} rsv

E9 BLBC src.rl, displ.bb
E8 BLBS src.rI, displ.bb

11 BRB displ.bb
31 BRW displ.bw

10 BSBB dispJ.bb, {-(SP).wl}
30 BSBW displ.bw, {-(SP).wI)

8F CASEB selector.rb, base.rb, limit.rb, displ.bw-list **0*
CF CASEL selector.rI, base.rI, limit.rl, displ.bw-list **0*
AF CASEW selector.rw, base.rw, limit.rw, displ.bw-list *·0·

17 JMP dst.ab

16 JSB dst.ab, {-(SP). wI}

05 RSB {(SP)+.rl)

F4 SOBGEQ index.mI, displ.bb ••• iov

F5 SOBGTR index.mI, displ.bb * •• iov

Table 0-5 Procedure Call Instructions

Opcode Instruction NZVC Exceptions

FA CALLG arglist.ab, dst.ab, {-(SP).w·} 0000 rsv

FB CALLS numarg.rl, dst.ab, {..(SP).w*} 0000 rsv

04 RET {(SP)+.r*) •••• rsv

Table 0-6 Miscellaneous Instructions

Opcode Instruction NZVC Exceptions

B9 BICPSW mask.rw •••• rsv

VAX Instruction Set 379

Table D-6 (Cont.) Miscellaneous Instructions

Opcode Instruction NZVC Exceptions

B8 BISPSW mask.rw * * * * rsv

03 BPT {-(KSP). w*} 0000

00 HALT {-(KSP).w*} prv

OA INDEX subscript.rI, Iow.rI, high.rI, size.rI, **00
indexin.rI, sub indexout.wI

DC MOVPSL dst.wI

01 NOP

BA POPR mask.rw, {(SP)+.r*)

BB PUSHR mask.rw, {-(SP).w*)

FC XFC {unspecified operands} 0000

Table 0-7 Queue Instructions

Opcode Instruction NZVC Exceptions

5C INSQHI entry.ab, header.aq 0*0* rsv

5D INSQTI entry.ab, header.aq 0*0* rsv

OE INSQUE entry.ab, pred.ab **0*

5E REMQHI header.aq, addr.wI 0*** rsv

5F REMQTI header.aq, addr.wI 0*** rsv

OF REMQUE entry.ab, addr.wI * * * *

Table D-8 Operating System Support Instructions

Opcode Instruction NZVC Exceptions

BD CHME param.rw, {-(ySP).w*) 0000
BC - CHMK param.rw, {-(ySP). w*} 0000
BE CHMS param.rw, {-(ySP).w*j 0000
BF CHMU param.rw, {-(ySP).w*) 0000

Where y=MINU(x, PSL.:cURREN'UtfODE»

06 LDPCTX {PCB.r*, .(KSP).w*) TSV, prv

380 VAX Instruction Set

Table D-8 (Cont.) Operating System Support Instructions

Opeode Instruction NZVC Exceptions

DB MFPR procreg.rl, dst. wI **0- rsv, pry

DA MTPR src.rl, procreg.rl **0- rsv, pry

OC PROBER mode.rb, len.rw, base.ab 0*0-
OD PROBEW mode.rb, len.rw, base.ab 0*0-

02 REI {(SP)+.r*) **** rsv

07 SVPCTX {(SP)+.r*, PCB.w*} pry

Table 0-9 Floating Point Instructions

Opcode Instruction NZVC Exceptions

These instructions are implemented by the KA670 floating point accelerator.
60 ADDD2 add.rd, sum.md **00 rsv,fov,fuv
40 ADDF2 add.rf, sum.mf **00 rsv,fov,fuv
40FD ADDG2 add.rg, sum.mg ··00 rsv,fov,fuv

61 ADDD3 add1.rd, add2.rd, sum.wd **00 rsv,fov,fuv
41 ADDF3 add1.rf, add2.rf, sum.wf ··00 rsv,fov,fuv
41FD ADDG3 add1.rg, add2.rg, sum.wg ··00 rsv,fov,fuv

71 CMPD src1.rd, src2.rd **00 rsv
51 CMPF sre1.rf, src2.rf **00 rsv
51FD CMPG src1.rg, src2.rg **00 rsv

6C CVTBD sre.rb, dst.wd **00
4C CVTBF src.rb, dst. wf ·*00
4CFD CVTBG src.rb, dst. wg **00
68 CVTDB sre.rd, dst. wb ··*0 rsv, iov
76 CVTDF src.rd, dst.wf *·00 rsv, fov
6A CVTDL src.rd, dst. wI ··*0 rsv, iov
69 CVTDW src.rd, dst. ww ·**0 rsv, iov
48 CVTFB src.rf, dst.wb ·*·0 rsv, iov
56 CVTFD sre.rf, dst. wd *·00 rsv
99FD CVTFG src.rf, dst. wg *·00 rsv
4A CVTFL src.rf, dst. wI ···0 rsv,iov
49 CVTFW sre.rf, dst.ww ***0 rsv, iov
48FD CVTGB sre.rg, dst.wb ***0 rsv, iov
33PO CVTGF src.rg, dst.wf ··00 rsv,fov,fuv
4AF0 CVTGL src.rg, dst.wl ***0 rsv, iov
49FO CVTGW src.rg, dst.ww ·**0 rsv, iov
6E CVTLD sre.rl, dst.wd **00
4E CVTLF src.rl, dst.wf **00
4EFO CVTLG src.rl, dst. wg ··00
60 CVTWD srC.rw, dst.wd ·*00

VAX Instruction Set 381

Table 0-9 (Cont.) Floating Point Instructions

Opcode Instruction NZVC Exceptions

4D CVTWF src.rw, dst.wf **00
4DFD CVTWG src.rw, dst.wg **00

6B CVTRDL src.rd, dst.wl * * * 0 rsv, iov
4B CVTRFL src.rf, dst. wI * * * 0 rsv, iov
4BFD CVTRGL src.rg, dst.wl * * * 0 rsv, iov

66 DIVD2 divr.rd, quo.md **00 rsv,fov,fuv, fdvz
46 DIVF2 divr.rf, quo.mf **00 rsv,fov,fuv, fdvz
46FD DIVG2 divr.rg, quo.mg * * 00 rsv,fov,fuv, fdvz

67 DIVD3 divr.rd, divd.rd, quo.wd **00 rsv,fov,fuv, fdvz
47 DIVF3 divr.rf, divd.rf, quo.wf **00 rsv,fov,fuv, fdvz
47FD DIVG3 divr.rg, divd.rg, quo.wg **00 rsv,fov,fuv, fdvz
72 MNEGD src.rd, dst.wd **00 rsv
52 MNEGF src.rf, dst.wf **00 rsv
52FD MNEGG src.rg, dst.wg **00 rsv

70 MOVD src.rd, dst.wd * * 0- rsv
50 MOVF src.rf, dst.wf * * 0- rsv
50FD MOVG src.rg, dst.wg * * 0- rsv

64 MULD2 mulr.rd, prod.md **00 rsv,fov,fuv
44 MULF2 mulr.rf, prod.mf **00 rsv,fov,fuv
44FD MULG2 mulr.rg, prod.mg **00 rsv,fov,fuv

65 MULD3 mulr.rd, muld.rd, prod.wd **00 rsv,fov,fuv
45 MULF3 muIr.rf, muld.rf, prod.wf **00 rsv,fov,fuv
45FD MULG3 mulr.rg, muld.rg, prod.wg **00 rsv,fov,fuv

62 SUBD2 sub.rd, dif.md **00 rsv,fov,fuv
42 SUBF2 sub.rf, dif.mf **00 rsv,fov,fuv
42FD SUBG2 sub.rg, dif.mg **00 rsv,fov,fuv

63 SUBD3 sub.rd, min.rd, dif.wd **00 rsv,fov,fuv
43 SUBF3 sub.rf, min.rf, dif.wf **00 rsv,fov,fuv
43FD SUBG3 sub.rg, min.rg, dif.wg **00 rsv,fov,fuv

73 TSTD src.rd **00 rsv
53 TSTF src.rf **00 rsv
53FD TSTG src.rg **00 rsv

382 VAX Instruction Set

Table 0-10 Microcode-Assisted Emulated Instructions

Opcode Instruction NZVC Exceptions

The KA670 CPU provides microcode assistance for the macrocode emulation of these instructions.
The CPU processes the operand specifiers, creates a standard argument list, and invokes an
emulation routine to perform emulation.
20 ADDP4 addlen.rw, addaddr.ab, sumlen.rw, * * * 0 rav, dov

sumaddr.ab

21

F8

35

37

OB

F9
36

08
09

24

26

27

38

39

34

2E

2F

25

ADDP6 addllen.rw, add1addr.ab, Add21en.rw,
add2addr.ab, surnlen.rw, sumaddr.ab

ASHP cnt.rb, src1en.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

CMPP3 len.rw, src1addr.ab, st'c2addr.ab * * 0 0

CMPP4 srcllen.rw, src1addr.ab, src21en.rw,
src2addr.ab

CRC tbl.ab, inicrc.rl, strlen.rw, strearn.ab

CVTLP src.rl, dstlen.rw, dstaddr.ab
CVTPL src1en.rw, srcaddr.ab, dst. wI

CVTPS srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
CVTSP srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

CVTPT srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab
CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

DIVP divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab

EDITPC srclen.rw, srcaddr.ab, Pattem.ab,
dstaddr.ab

MATCHC objlen.rw, objaddr.ab, srclen.rw,
srcaddr.ab

MOVP len.rw, srcaddr.ab, dstaddr.ab

MOVTC srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

MOVTUC src1en.rw, srcaddr.ab, esc.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

MULP rnulrlen.rw, mulraddr.ab, muldlen.rw,
muidaddr.ab, prodlen.rw, prodaddr.ab

***0

***0

**00

**00

***0
***0

***0
***0

***0

***0

***0

0*00

**00

**0*

***0

rsv, dov

rav, dov

rav, dov
rav, iov

ray, dov
rav, dov

rsv, dov

rav, dov

rav,dov,ddvz

ray, dov

rav, dov

VAX Instruction Set 383

Table 0-10 (Cont.) MIcrocode-Assisted Emulated InstructIons

Opcode

22

23

Instruction

SUBP4 sublen.rw, sabaddr.ab, diflen.rw, difaddr.ab

SUBP6 sublen.rw, subaddr.ab, minlen.rw,
minaddr.ab, diflen.rw, difaddr.ab

NZVC Exceptions

···0 rsv, doy

···0 rsv, doy

E
Machine State on Power-Up

This appendix describes the state of the KA670 after a power-up halt.

The descriptions in this appendix assume

• The machine has no errors.

• The machine has just been turned on.

• Only the power-up diagnostics have been run.

The state of the machine is undefined after individual diagnostics are run, or during any
other halts other than a power-up halt CSAVPSL<13:8>CRESTART_CODE) = 3).

The following sections describe data structures that are guaranteed to be constant over
future versions of the KA670 firmware. The placement and/or existence of any other
structureCs) is not implied.

E.1 Main Memory Layout and State
Main memory is tested and initialized by the firmware on power-up. Figure E-l shows
how main memory is partioned after diagnostics.

o

PFN Bitmap

OMR base

Top of Memory

Available System Memory
(Pages Potentially Good or Bad)

PFN Bitmap
(4,8,12,16,20,24,28, or 32 Pages
on Next 32 Kbyte Boundary BelowOMRs)

Firmware Scratch Memory
(Balance of Pages Between

PFN Bitmap and OMRs)

022-Bus Scatter/Gather Map
(64 Pages Always on 32 Kbyte boundary)

Potential Bad Memory

Figure E-1 Memory Layout After Power-Up Diagnostics

384

l
First Good

64 Kbyte Block
From the Top

J

Machine State on Power-Up 385

E.1.1 Reserved Main Memory

In order to build the scatter/gather map and the bitmap, the finnware tries to find a
physically contiguous, page-aligned, 176-kilobyte block of memory at the highest possible
address that has no multiple-bit errors. Single-bit errors are tolerated in this section.

Of the 176 kilobytes, the upper 32 kilobytes is dedicated to the Q22-bus scatter/gather
map, as shown in Figure E-l. Of the lower portion, up to 128 kilobytes at the bottom
of the block is allocated to the page frame number (PFN) bitmap. The size of the PFN
bitmap depends on the extent of physical memory. Each bit in the bitmap maps one page
(512 bytes) of memory. The remainder of the block between the bitmap and scatter/gather
map (16 kilobytes minimum) is allocated for the firmware.

E.1.1.1 Page Frame Number (PFN) Bitmap
The page frame number bitmap is a data structure that indicates which pages in memory
are deemed usable by operating systems. The bitmap is built by the diagnostics as a side
effect of the memory tests on power-up. The bitmap always starts on a page boundary.
The bitmap requires 1 kilobyte for every 4 megabytes of main memory:

System Size

8 Mbytes

16 Mbytes

32 Mbytes

64 Mbytes

Main Memory Required for the Bitmap

2 Kbytes

4 Kbytes

6 Kbytes

8 Kbytes

The bitmap does not map itself or anything above it. There may be memory above the
bitmap that has both good and bad pages

Each bit in the PFN bitmap corresponds to a page in main memory. There is a one-to-one
correspondance between a page frame number (origin 0) and a bit index in the bitmap. A
1 in the bitmap indicates that the page is good and can be used. A 0 indicates that the
page is bad and should not be used. By default, a page is flagged as bad if a multiple-bit
error occurs when referencing the page. Single-bit errors, regardless of frequency, will
not cause a page to be flagged as bad.

The PFN bitmap is protected by a checksum stored in the battery backed-up RAM (BBU
RAM). The checksum is a simple byte-wide, two's complement checksum. The sum of all
bytes in the bitmap and the bitmap checksum should result in zero. Operating systems
that modify the bitmap are encouraged to update this checksum to faciliate diagnosis by
service personnel.

E.1.1.2 Scatter/Gather Map
On power-up, the scatter/gather map is initialized by the firmware to map to the
first 4 megabytes of main memory. Main memory pages are not mapped if there is a
corresponding page in Q22-bus memory, or if the pages are marked bad by the PFN
bitmap.

On a processor halt other than power-up, the contents of the scatter/gather map is
undefined and depends on operating system usage.

Operating systems should not move the location of the scatter/gather map. They should
access the map only on aligned longwords through the local IJO space of 20088000 to
2008FFFC, inclusive. The Q22-bus map base register, (QMBR) is set up by the firmware
to point to this area, and should not be changed by software.

386 Machine State on Power-Up

E.l.l.3 Firmware Scratch Memory
Scratch memory is reserved for the firmware. However, scratch memory is used only
after successful execution of the memory diagnostics and initialization of the PFN bitmap
and scatter/gather map. This memory is primarily for diagnostic purposes.

E.1.2 Contents of Main Memory

The contents of main memory are undefined after the diagnostics have run. Typically,
nonzero test patterns are left in memory.

The diagnostics will "scrub" all of main memory, so that no power-up induced errors
remain in the memory system. On the KA670 memory subsystem, the state of the ECC
bits and the data bits are undefined on initial power-up. This can result in single and
multiple-bit errors if the locations are read before being written, because the ECC bits
are not in agreement with their correspsonding data bits. An aligned longword write to
every location (done by diagnostics) eliminates all power-up induced errors.

E.2 Memory Controller Registers
The KA670 firmware assigns bank numbers to the MEMCSRs in ascending order, without
attempting to disable physical banks that contain errors. High-order, unused banks are
set to o. Error loggers should capture the following bits from each MEMCSR register:

• MEMCSR<31> (bank enable bit). As the firmware always assigns banks in ascending
order, knowing which banks are enabled is sufficient information to derive the bank
numbers.

• MEMCSR<l:O> (bank usage). This field determines the size of the banks on the
particular memory board.

Additional information should be captured from registers MEMCSR32, MEMCSR33,
MEMCSR34, MEMCSR35, and MEMCSR36, as needed.

E.2.1 Primary (On-Chip) Cache

The CPU primary (on-chip) cache is tested during the power-up diagnostics, flushed, and
turned off. The cache is again turned on by the BOOT and INIT commands. Otherwise,
the state of the on-chip cache is disabled.

E.2.2 Translation Buffer

The CPU translation buffer is tested by diagnostics on power-up, but not used by the
firmware since it runs in physical mode. The translation buffer can be invalidated by
using PR$_TBIA, IPR 57.

E.2.3 Halt-Protected Space

The KA670 firmware runs mostly in halt-unprotected space. Only the first 8 kilobytes of
the total 256 kilobytes are protected.

F
Maintenance Operation Protocol (MOP) Support

F.1 Network listening
While the KA670 is waiting for a load volunteer during bootstrap, it listens on the
network for other maintenance messages directed to the node. The KA670 identifies
itself periodically at the end of each 8 to 12 minute interval before a bootstrap retry
operation. This listening function supplements the MOP functions of the VMB load
requester typically found in bootstrap firmware. The listening function supports the
following:

• A remote console server that generates

COUNTERS messages in response to RE<LCOUNTERS messages,
Unsolicited SYSTEM_ID messages every 8 to 12 minutes
Solicited SYSTEM_ID messages in response to REQUEST_ID messages
Recognition of BOOT messages.

• A loopback server that responds to Ethernet LOOPBACK messages by echoing the
message to the requester.

• An IEEE 802.2 responder that replies to both XID and TEST messages.

During network operation, the firmware listens only to MOP load/dump, MOP remote
console, and Ethernet loopback assistance message protocols (listed in Table F-4)
directed to the Ethernet physical address of the node. All other Ethernet protocols
are filtered by the network device driver. IEEE 802.3 messages are also processed by the
network listener.

Tables F-·1 to F-4 summarize the MOP functions and message types supported by the
KA670.

387

388 Maintenance Operation Protoml (MOP) Support

Table F-1 KA670 Network Maintenance Operations Summary

Function Role Transmit Receive

MOP Ethernet and IEEE 802.3 Messages 1

Dump Requester

Server

Load Requester REQ... to solicit VOLUNTEER
PROGRAM2

REQ...MEM_ to solicit and MEM_LOAD
LOAD acknowldege

or MEM_LOAD_w_XFER

or P~_LOAD_w_XFER

Server

Console Requester

Server COUNTERS in response to REQ...COUNTERS

SYSTEM_loa in response to REQUEST_ID

BOOT

Loopback Requester

Server LOOPED_
DATA4

in response to LOOP_DATA

IEEE 802.2 Messages5

Exchange Requester
ID

Server XID_RSP in response to XID_CMD

Test Requester

Server TEST_RSP in response to TEST_CMD

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4), until the MOP version
of the server is known. All solicited messages are sent in the format used for the request.

2'l1te initial RE(LPROGRAM message is sent to the dumpload mult.icast address. If an assistance
VOLUNTEER message is received, then the responder's address is used 8.'1 the destination to repeat th~
RE(LPROGRAM message and for all subsequent RE<LMEM_LOAD messages.

3SYSTEM_ID messages are sent out every 8 to 12 minutes to the remote console multiatst address and on
receipt of a REQUEST JD message they are sent. to the initiator.

4 LOOPED_DATA messages are sent out in response to LOOP_DATA messages. These messages are actually
in Ethernet LOOP TEST format, not in MOP format, and when sent in Ethernet frames omit the additional
length field (padding is disabled).

6IEEE 802.2 support of XID and TEST is limited to Class 1 operations.

Maintenance Operation Protocol (MOP) Support 389

Table F-2 Supported MOP Messages

Message
Type

DumplLoad

MEM_LOAD_w_
XFER

MEM_WAD

REQ...
PROGRAM

REQ...MEM_
LOAD

PARM_LOAD_
w_XFER

VOLUNTEER

Remote Console

REQUESTJD

1 MOP V3.0 only.

2MOP x4.0 only.

Message Fields

Code Load # Load addr
00 nn aa-aa-aa-aa

Code Load # Load addr
02 nn aa-aa-aa-aa

Code Device Format
08 05

QNA 01
25 V3
LQA 04 V4
3D
KA640
49
KA670

Code Load # Error
OA nn ee

Code Load 41 Prm
14 nn typ

01
02
03
04
05
06
00 End

Code
03

Code Rsrvd Recpt 41
05 xx nn-nn

Image data Xfer addr
None aa-as-aa-as

Image data
ad-...

Program SWID Procesr Info
3 (Sec SYSTEM_ID.)

02 C-171 00
Sys C-l28 Sys

2

If C(1)
>00
Len
00 No
ID
FFOS
FE
Maint

Prm Prm val Xfer addr
len Target name 1 as-aa-aa-aa
1-16 Target addr 1
1-06 Host name 1

1-16 Host addr 1
1-06 Host time 1

OA Host time 2
08

3Software ID field is loaded from the string stored in the 40-byte RPB$T _FILE field of the RPB on a solicited
boot.

390 Maintenance Operation Protocol (MOP) Support

Table F-2 (Cont.) Supponed MOP Messages

Message
Type Message Fields

Remote Console

REQ..
COUNTERS

COUNTERS

BOOT 4

Loopback

LOOP_DATA

LOOPED_DATA

IEEE 802.2

2MOP x4.0 only.

Code
07

Code
09

Code
OB

Code
06

Skpcnt

nn-
nn

Skpcnt

nn-
nn

Form
81

Rsrvd
xx

Recpt
#I
nn-nn

Recpt
#I
nn-nn
or
00-00

Info type
01-00 Version
02-00 Functions
07-00 HW addr
64-00 Device
90-01 Datalink
91-01 Bufr size

Recpt Counter block
#I
nn-nn

Verification Procesr Control
w-w-w-w-w-vv-
WOw 00 xx

Sys

Skipped bytes Function
bb-... 00-02 Forward

data

Skipped bytes Function
bb-... 00-01 Reply

Class
01

Rx window size (K)
00

Optional data.

Info
len
03
02
06
01
01
02

Dev ID
C-17

Info value
04-00-00
00-59
ee-ee-ee-ee-ee-ee
05, 25, 3D, or 49
01
06-04

SWID Script
3 ID2
(see C-128
REQ..
PROGRAM)

Forward addr Data
ee-ee.ee-ee-ee-ee dd-...

Recpt #I Data
nn-nn dd-...

3Son.ware ID field is loaded from the string stored in the 40-byte RPB$TJ'ILE field of the RPB on a solicited
boot.

4A BOOT message is not verified, since in this context, a boot is already in progress. However, a received BOOT
message will cause the boot hackotT timer to be reset to it's minimum value.

Maintenance Operation Protocol (MOP) Support 391

Table F-3 Ethernet & IEEE 802.3 Packet Headers

Ethernet MOP Message Format (MOP V3)

Dest_address STe_address Prot Len MOPmsg Pad eRe

dd-dd-dd-dd- ss-ss-ss-ss- 60-01 nn- dd-_ .. XX-... cc-cc
dd-dd SS-5S nn

60-02 nn- dd-...
nn

90-00 dd-...

IEEE 802.3 SNAP SAP MOP Message Format (MOP V4)

Dest_address STe_address Len DSAP SSAP Ctl P_ID MOP_ eRe
msg

dd-dd-dd-dd- ss-ss-ss-ss- nn- AA AA 03 08-00-2B-60- dd-... cc-cc
dd-dd ss-ss nn 01

08-00-2B-60-
02
08-00-2B-90-
00

IEEE 802.3 XIDfrEST Message Format (MOP V4)

Dest_address STe_address l£n DSAP SSAP Ctl l Data CRC

dd-dd-dd-dd- ss-ss-ss-5s- nn- aa bb cc tT-tt-ss (XlD) cc-cc
dd-dd ss-ss nn Optional data (TEST)

IXID and TEST messages are identified in the IEEE 802.2 control field with binary 101xl111 and ll1xOOll,
respectively. "x" denotes the PollJFinal bit which gets echoed in the response.

Table F-4 MOP Multicast Addresses and Protocol Specifiers

Function

DumplLoad

Remote Console

Loopback Assistance

IMOP 4.0 only.

2Not used.

Address

AB-00-00-01-00-00

AB-OO-00-02-00-00

CF -00-00-00-00-00
2

IEEE
Prefix 1 Protocol

08-00-2B 60-01

08-00-2B 60-02

08-00-2B 90-00

Owner

Digital

Digital

Digital

392 Maintenance Operation Protocol (MOP) Support

F.2 MOP Counters
The following counters are kept for the Ethernet boot channe1. All counters are unsigned
integers. V4 counters rollover on overflow. All V3 counters latch at their maximum
value to indicate overflow. Unless otherwise stated, all counters include both normal
and multicast traffic. Furthermore, they include information for aU protocol types.
Frames received and bytes received counters do not include frames received with errors.
Table F-5 displays the byte lengths and ordering of all the counters in MOP Versions 3.0
and 4.0.

Table F-5 MOP Counter Block

Byte Length

Name V3 V4 Description

TIME_SINCE_CREATION 2 16 Time since last zeroed

Rx_BYTES 4 8 Bytes received

Tx_BYTES 4 8 Bytes sent

Rx]RAMES 4 8 Frames received

Tx_FRAMES 4 8 Frames sent

Rx_MCAST_BYTES 4 8 Multicast bytes received

Rx_MCAST]RAMES 4 8 Multicast frames received

Tx_INIT_DEFFERED 4 8 Frames sent, initially deferred l

Tx_ONE_COLLISION 4 8 Frames sent, single collision 1

Tx_MULTCCOLLISION 4 8 Frames sent, multiple collisions!

2 Send failure 2

2 Send failure bitmap 2

TxFAIL_EXCESS_COLLS 8 Send failure - 0 Excessive collisions

TxFAIL_CARIER_CHECK 8 Send failure - 1 Carrier check failed

TxFAIL_SHRT_CIRCUIT 8 Send failure - 2 Short ciruit 3

TxFAIL_OPEN_CIRCUIT 8 Send failure - 3 Open Circuit 3

TxFAIkLONG_FRAME 8 Send failure - 4 Frame too lonr

TxFAIL_REMOTE_DEFER 8 Send failure - 5 Remote failure to defe~

2 Receive failure 2

2 Receive failure bitmap 2

RxFAIL_BLOCK_CHECK 8 Receive failure - Block check failure

RxFAIL_FRAMING_ERR 8 Receive failure - Framing error

RxFAIL_LONG_FRAME 8 Receive failure - Frame too lonr

UNKNOWN_ 2 8 Unrecognized frame destination
DESTINATION

DATA_OVERRUN 2 8 Data overrun

lOnly one of these three counters will be incremented for a given frame.

2V3 send/receive railures are collapsed into one counter wit.h bitmap indicating which failures occurred.

3Always o.

Maintenance Operation Protocol (MOP) Support 393

Table F-5 (Cont.) MOP Counter Block

Name

NO_SYSTEM_BUFFER

NO_USER_BUFFER

FAIL_COLLIS_DETECT

3Always o.

Byte Length

va
2

2

V4

8

8

8

Description

System buffer unavailable3

User buffer unavailable 3

Collision detect check failure

The following list describes each of the counters in more detail.

• Time since last zeroed. The time which has elapsed, since the counters were last
zeroed. Provides a frame of reference for the other counters by indicating the amount
of time they cover. For MOP Version 3, this time is the number of seconds. MOP
Version 4 uses the UTe binary relative time format.

• Bytes received. The total number of user data bytes successfully received. This
does not include Ethernet data link headers. This number is the number of bytes
in the Ethernet data field, which includes any padding or length fields when they
are enabled. These are bytes from frames that passed hardware filtering. When the
number of frames received is used to calculate protocol overhead, the overhead plus
bytes received provides a measurement of the amount of Ethernet bandwidth (over
time) consumed by frames addressed to the local system.

• Bytes sent. The total number of user data bytes successfully transmitted. This
does not include Ethernet data link headers or data link generated retransmissions.
This number is the number of bytes in the Ethernet data field, which includes
any padding or length fields when they are enabled. When the number of frames
sent is used to calculate protocol overhead, the overhead plus bytes sent provides a
measurement of the amount of Ethernet bandwidth (over time) consumed by frames
sent by the local system.

• Frames received. The total number of frames successfully received. These are
frames that passed hardware filtering. Provides a gross measurement of incoming
Ethernet usage by the local system. Provides information used to determine the ratio
of the error counters to successful transmits.

• Frames sent. The total number of frames successfully transmitted. This does
not include data link generated retransmissions. Provides a gross measurement of
outgoing Ethernet usage by the local system. Provides information used to determine
the ratio of the error counters to successful transmits.

• Multicast bytes received. The total number of multicast data bytes successfully
received. This does not include Ethernet data link headers. This number is the
number of bytes in the Ethernet data field. In conjunction with total bytes received,
provides a measurement of the percentage of this system's receive bandwidth (over
time) that was consumed by multicast frames addressed to the local system.

• Multicast frames received. The total number of multicast frames successfully
r-eceived. In conjunction with total frames received, provides a gross percentage of
the Ethernet usage for multicast frames addressed to this system.

• Frames sent, initially deferred. The total number of times that a frame
transmission was deferred on its first transmission attempt. In conjunction with
total frames sent, measures Ethernet contention with no collisions.

394 Maintenance Operation Protocol (MOP) Support

• Frames sent, single collision. The total number of times that a frame was
successfully transmitted on the second attempt after a normal collision on the first
attempt. In conjunction with total frames sent, measures Ethernet contention at a
level where there are collisions but the backoff algorithm still operates efficiently.

• Frames sent, multiple collisions. The total number of times that a frame
was successfully transmitted on the third or later attempt after normal collisions
on previous attempts. In conjunction with total frames sent, measures Ethernet
contention at a level where there are collisions and the backoff algorithm no longer
operates efficiently.

NOTE
No single frame is counted in more than one of the above three counters.

• Send failures. The total number of times a transmit attempt failed. Each time the
counter is incremented, a type of failure is recorded. When a read counter function
reads the counter, the list of failures is also read. When the counter is set to 0,
the list of failures is cleared. In conjunction with total frames sent, this provides a
measure of significant transmit problems. All of the problems reflected in this counter
are also captured as events. Following are the possible failures. More information on
their meanings and use can be found in the section on events.

Excessive collisions. Exceeded the maximum number of retransmissions due
to collisions. Indicates an overload condition on the Ethernet.

Carrier check failed. The data link did not sense the receive signal that is
required to accompany the transmission of a frame. Indicates a failure in either
the transmitting or receiving hardware. Could be caused by either transceiver,
transceiver cable, or a babbling controller that has been cut off.

Short circuit. There is a short somewhere in the local area network coaxial
cable or the transceiver or controller/transceiver cable has failed. This indicates a
problem either in local hardware or global network. The two can be distinguished
by checking to see if other systems are reporting the same problem.

Open circuit. There is a break somewhere in the local area network coaxial
cable. This indicates a problem either in local hardware or global network. The
two can be distinguished by checking to see if other systems are reporting the
same problem.

Frame too long. The controller or transceiver cut off transmission at the
maximum size. This indicates a problem with the local system. Either it tried to
send a frame that was too long or the hardware cutoff transmission too soon.

Remote failure to defer. A remote system began transmitting after the
allowed window for collisions. This indicates either a problem with some other
system's carrier sense or a weak transmitter.

• Receive failures. The total number of frames received with some data error.
Includes only data frames that passed either physical or multicast address
comparison. This counter includes failure reasons in the same way as the send
failure counter. In conjunction with total frames received, this provides a measure of
data related receive problems. All of the problems reflected in this counter are also
captured as events. Following are the possible reasons. More information on their
meaning and use can be found in the section on events.

Block check error. A frame failed the CRC check. This indicates several
possible failures, such as, EMI, late collisions, or improperly set hardware
parameters.

Maintenance Operation Protocol (MOP) Support 395

Framing error. The frame did not contain an integral number of 8-bit
bytes. This indicates several possible failures, such as, EMI, late collisions, or
improperly set hardware parameters.

Frame too long. The frame was discarded because it was outside the Ethernet
maximum length and could not be received. This indicates that a remote system
is sending invalid length frames.

Unrecognized frame destination. The number of times a frame was
discarded because there was no portal with the protocol type or multicast address
enabled. This includes frames received for the physical address, the broadcast
address, or a multicast address.

Data overrun. The total number of times the hardware lost an incoming frame
because it was unable to keep up with the data rate. In conjunction with total
frames received, provides a measure of hardware resource failures. The problem
reflected in this counter is also captured as an event.

System buffer unavailable. The total number of times no system buffer
was available for an incoming frame. In conjunction with total frames received,
provides a measure of system buffer related receive problems. The problem
reflected in this counter is also captured as an event. This can be any buffer
between the hardware and the user buffers (those supplied on receive requests).
Further information as to potential different buffer pools is implementation
specific.

User buffer unavailable. The total number of times no user buffer was
available for an incoming frame that passed all filtering. These are the buffers
supplied by users on receive requests. In conjunction with total frames received,
provides a measure of user buffer related receive problems. The problem reflected
in this counter is also captured as an event.

Collision detect check failure. The approximate number of times that
collision detect was not sensed after a transmission. If this counter contains a
number roughly equal to the number of frames sent, either the collision detect
circuitry is not working correctly or the test signal is not implemented.

G
ROM Partitioning

This appendix describes public ROM partitioning and subroutine entry points that are
guaranteed to be compatible over future versions of the KA670 firmware.

G.1 Firmware EPROM Layout
The KA670 uses two 128-kilobyte EPROMs for a total of 256 kilobytes. Unlike previous
Q22-bus based MicroVAX processors, there is no duplicate decoding of the EPROM
into halt-protected and halt-unprotected spaces. The entire EPROM (Figure 0-1) is
halt-protected.

20040000

20040006

20040008

2004000C

20040010

20040014

20040018

2004001c

20040200

20041FFC

20042000

20044000

2007 FOOO

2007FFFF

Figure G-1 KA670 EPROM Layout

Branch Instruction

System Id Extension

CPSGETCHAR_R4

CPSMSG_OUT_NOLF _R4

CPS READ _ WTH_PRMPT _R4

Rsvd Mfg L200 Testing

. Def Boot Dev Dscr Ptr

Def Boot Flags Ptr

Recovery Bootstrap

Fixed Area Checksum

Reserved for Digital

Console, Diagnostic
and Boot Code

Console Checksuin

Reserved for Digital

4096 Bytes Reserved
for Customer Use

The nrst instruction executed on halts is a branch around the system ID extension (SIE)
and the callback entry points. This allows these public data structures to reside in fixed
locations in the EPROM.

396

ROM Partitioning 397

The callback area entry points provide a simple interface to the currently defined console
for VMB and secondary bootstraps. This is documented further in the next section.

The fixed area checksum is the sum of longwords from 20040000 to the checksum
inclusive. This checksum is distinct from the checksum that the rest of the console
uses.

The console, diagnostic and boot code constitute the bulk of the KA670 firmware. This
code is field-upgradeable. The console checksum is from 20044000 to the checksum
inclusive.

The memory between the console checksum and the user area at the end of the EPROMs
is reserved for Digital, for future expansion of the KA670 firmware. The contents of this
area is set to FF.

The last 4096 bytes of EPROM is reserved for customer use and is not included in the
console checksum. During a PROM bootstrap with PRBO as the selected boot device,
this block is the tested for a PROM signature block. Refer to Section Section 9.5.3.2 and
Figure 9--9 for a description of the boot block mechanism.

G.1.1 Call-Back Entry Points

The KA670 firmware provides several entry points that facilitate 110 to the designated
console device. Users of these entry points do not need to be aware of the console device
type, be it a video terminal or workstation.

The primary intent of these routines is to provide a simple console device to VMB and
secondary bootstraps, before operating systems load their own terminal drivers.

These are JSB (subroutine, as opposed to procedure) entry points located in fixed
locations in the firwmare. These locations branch to code that in turn calls the
appropriate routines.

All of the entry points are designed to run at IPL 31 on the interrupt stack in physical
mode. Virtual mode is not supported. Due to internal firmware architectural restrictions,
users are encouraged to only call into the halt-protected entry points. These entry points
are listed below.

CP$GET_ CHAR_R4

CP$MSG_OUT_NOLF _R4

CP$READ_ WTH_PRMPT_R4

G.1.1.1 CP$GETCHAR_R4

20040008

2004000C

20040010

This routine returns the next character entered by the operator in RO. A timeout interval
can be specified. If the timeout interval is zero, no timeout is generated. If a timeout is
specified and if timeout occurs, a value of 18 (CAN) is returned instead of normal input.

Registers RO,Rl,R2,R3 and R4 are modified by this routine, all others are preserved.

398 ROM Partitioning

i---
; Osage with timeout:

movl
jsb
cmpb
beql
; Input

ttimeout_in_tenths_of_second,rO
@tCP$GET_CHAR_R4
rO,it"xlS
timeout_handler
is in RO.

Specify timeout.
Call routine.
Check for timeout.
Branch if timeout.

--,
; Osage without timeout:

clrl
jsb

rO
@itCP$GET_CHAR_R4

; Input is in RO.

Specify no timeout.
Call routine.

;---
G.1.1.2 CP$MSG_OUT_NOLF _R4
This routine outputs a message to the console. The message is specified either by a
message code or a string descriptor. The routine distinguishes between message codes
and descriptors by requiring that any descriptor be located outside of the first page of
memory. Hence, message codes are restricted to values between 0 and 511.

Registers RO,Rl,R2,R3 and R4 are modified by this routine, all others are preserved.

;---
; Osage with message code:

movzbl
jsb

tconsole message code,rO
@#CP$MSG:OUT_NOLF_R4

; Specify message code.
; Call routine.

;---
; Osage with a message descriptor (position dependent).

movaq
jsb

5$:

5$,rO
@#CP$MSG_OUT_NOLF_R4

.ascid !This is a message!

Specify address of desc.
; Call routine.

; Message with descriptor.

;---
; Usage with a message descriptor (position independent).

pushab
pushl
movl
jsb
clrq

5$:
10$:

5$
nO-5
sp,rO
@#CP$MSG_OUT NOLF R4
(sp)+

.ascii !This is a message!

Generate message deac.
on stack.
Pass desc. addr. in RO.
Call routine.
Purge desc. from stack.

; Message.

;---
G.1.1.3 CP$READ_WTH_PRMPT_R4
This routine outputs a prompt message and then inputs a character string from the
console. When the input is accepted, <Xl (delete), ICtr111Q], and ICtr11 ~ functions are
supported.

As with CP$MSG_OUT_NOLF_R4, either a message code or the address of a string
descriptor is passed in RO to specify the prompt string. A value of zero results in no
prompt.

ROM Partitioning 399

A descriptor of the input string is returned in RO and Rl. RO contains the length
of the string and RI contains the address. This routine inputs the string into the
console program string buffer and therefore the caller need not provide an input buffer.
Successive calls however destroy the previous contents of the input buffer.

Registers RO, RI, R2, R3, and R4 are modified by this routine. All other registers are
preserved.

;---
; Usage with a message descriptor (position independent).

pushab
pushl
movl
jsb
clrq

5$:
10$:

10$
#10-5
sp,rO
@iCP$READ_WTH PRMPT R4
(sp)+

.ascii /Prompt> /

Generate prompt desc.
on stack.
Pass desc. addr. in RD.
Call routine.
Purge prompt desc.
Input desc in RO and Rl.

Prompt string.

;---

G.1.2 Boot Information Pointers

Two longwords located in EPROM are used as pointers to the default boot device
descriptor and the default boot flags, since the actual location of this data may change
in successive versions of the finnware. Any software that uses these pointers should
reference them at the addresses in halt-protected space.

20040018 I Def.Boot Dev.Dscr.Ptr. I
J

Class I Type I Desc.Length

Boot Device String Ptr. -: ASCIZ Dev.Name String I

2004001c Def.Boot Flags Ptr. Boot Flags (Longword)

The following macro defines the boot device descriptor format.

400 ROM Partitioning

;-----------------------------~--
; Default Boot Device Descriptor

boot device descriptor::
- base-'" .

· ... base + dscSw length
. word nvrSs_boot_device

• - base + dscSb dtype
• byte dscSk_dtype_z

• = base + dscSb class
.byte dscSk_class_z

• - base + dscSa-pointer
.long nvr_base + nvrSb_boot device

· ... base + dscSs_dscdefl
:--

H
RAM Partitioning

This appendix describes how the KA670 firmware partitions the 1 kilobyte of battery
backed-up (BBU) RAM on the sse chip.

H.1 sse RAM Layout
The KA670 firmware uses the 1 kilobyte of battery backed-up RAM on the sse to store
firmware-specific data structures and other information that must be preserved across
power cycles. This BBU RAM resides in the sse chip, starting at address 20140400
(Figure H-1). The BBU RAM should not be used by the operating systems except as
documented here. The BBU RAM is not reflected in the bitmap built by the firmware.

20140400 Public Data Stuctures
(CPMBX. etc.)

Service Vectors

Firmware Stack

Diagnostic State

201407FC Rsvd.for Customer Use

Figure H-1 KA670 sse BBU RAM Layout

H.1.1 Public Data Structures

This section describes the public data structures in BBU RAM used by the console.

Fields that are desginated as reserved and/or internal use should not be written, since
there is no protection against such corruption.

401

402 RAM Partitioning

H.1.2 Console Program Mailbox (CPMBX)

The console program mailbox (CPMBX) is a software data structure located at the
beginning of BBU RAM (20140400). The CPMBX is used to pass information between the
KA670 firmware and diagnostics, VMB, or an operating system. It consists of three bytes
referred to here as NVRO, NVR1, and NVR2 (Figures H-2 to H-4).

7 6 5 4 3 2 1 0

NVRO Language I RIP I SIP IHLT_ACTI

Figure H-2 NVRO (20140400) : Console Program Mailbox (CPMBX)

Field Name

7:4 Language

3 RIP

2 BIP

Description

This field specifies the current selected language for displaying halt and
error messages on terminals which support MCS.

If set, a restart attempt is in progress. This flag must be cleared by the
operating system, if the restart succeeds.

If set, a bootstrap attempt is in progress. This flag must be cleared by the
operating system if the bootstrap succeeds.

Processor halt action • this field in conjunction with the conditions
specified in Table 9-1 is used to control the automatic restartJbootstrap
procedure. HLT_ACT is normally written by the operating system.

o : Restart; if that fails, reboot; if that fails, halt.
1 : Restart; if that fails, halt.
2 : Reboot; if that fails, halt.
3: Halt.

7 6 5 4 321 0

NVR1

Figure H-3 NVR1 (20140401)

Field Name

2 MCS

1 CRT

Description

If set, indicates that the attached terminal supports DEC Multinational
Character Set. If clear, MCS is not supported.

If set, indicates that the attached terminal is a CRT. If clear, indicates
that the terminal is hardcopy. .

RAM Partitioning 403

7 6 5 4 3 2 0

NVR2 Keyboard

Figure H-4 NVR2 (20140402)

Field Name Description

7:0 Keyboard This field indicates the national keyboard variant in use.

H.1.3 Firmware Stack

This section contains the stack that is used by all of the firmware, with the exception of
VMB, which has its own built in stack.

H.1.4 Diagnostic State

This area is used by the firmware-resident diagnostics. This section is not documented
here.

H.1.S User Area
The KA670 console reserves the last longword (address 201407FC) of the BBU RAM for
customer use. This location is not tested by the console firmware. Its value is undefined.

I
Data Structures

This appendix contains definitions of key global data structures used by the KA670
firmware.

1.1 Halt Dispatch State Machine
The KA670 halt dispatcher determines what actions the firmware will take on halt entry
based on the machine state. The dispatcher is implemented as a state machine, which
uses a single bitmap control word and the transition Table 1-1 to process all halts. The
transition table is sequentially searched for matches with the current state and control
word. If there is a match, a transition occurs to the next state.

The control word is comprised of the following information.

• Halt Type, used for resolving external halts. Valid only if the halt code is 00.

000 : power-up state
001 : halt in progress
010 : negation of Q22-bus DCOK
011 : console BREAK. condition detected
100 : Q22-bus BHALT
101 : SGEC BOOT_L asserted (trigger boot)

• Halt Code, compressed form of SAVPSL<13:8>(RESTART_CODE).

00 : RESTART_CODE = 2, external halt
01 : RESTART_CODE = 3, power-up/reset
10 : RESTART_CODE = 6, halt instruction
11 : RESTART_CODE = any other, error halts

• Mailbox Action, passed by an operating system in CPMBX<I:O>(HALT_ACTION).

00 : restart, boot, halt
01 : restart, halt
10: boot, halt
11 : halt

• User Action, specified with the SET HALT console command.

000: default
001: restart, halt
010 : boot, halt
011 : halt
100 : restart, boot, halt

• HEN, BREAK. (halt) enable switch, BDR<7>

• ERR, error status

404

Data Structures 405

• TIP, trace in progress

• DIP, diagnostics in progress

• BIP, bootstrap in progress CPMBX<2>

• RIP, restart in progress CPMBX<3>

Table 1-1 Flnnware State TransHlon Table

Mailbx
Current Next Halt Halt User HEN·ERR·TIP·DIP·
State State Type Code Action Action BIp·RIP

Perform conditional initialization.
1

ENTRY ->RESET xxx 01 xx xxx x·x-x-x-x-x
INIT

ENTRY ->BREAK 011 00 xx xxx x-x-x-x-x-x
INIT

ENTRY ->TRACE xxx 10 xx xxx x-O-1-x-x-x
INIT

ENTRY ->OTHER xxx xx xx xxx x-x-x-x-x-x
INIT

Perform common initialization. 2

RESET ->INIT xxx xx xx xxx x-x-x-x-x-x
IN IT

BREAK ->INIT xxx xx xx xxx x-x-x-x-x-x
IN IT

TRACE ->INIT xxx xx xx xxx x-x-x-x-x-x
IN IT

OTHER ->INIT xxx xx xx xxx x-x-x-x-x-x
INIT

Check for external halts. 3

INIT ->BOOTSTRAP 010 00 xx xxx O-x-x-x-x-x

IN IT ->BOOTSTRAP 101 00 xx xxx x-x-x-x-x-x

INIT ->HALT xxx 00 xx xxx x-x-x-x-x-x

Check for pending (NEXT) trace. 4

INIT ->TRACE xxx 10 xx xxx x-x-l-x-x-x

TRACE ->EXIT xxx 10 xx xxx x-O-l·x-x-x

1 Perform a unique initialization routine on entry. In particular, power-ups, BREAKs, and TRACEs require
special initialization. Any other halt entry performs a default initialization.

2 After performing conditional initialization, complete common initialization.

3 Halt on all external halts, except.

if DCOK (unlikely) and halts are disabled, bootstrap.
if SGEC remote trigger, bootstrap.

4 Unconditionally enter the TRACE state, if the TIP flag is set and the halt was due to a HALT instruction.
From the TRACE state the firmware exits, if TIP is set and ERR is clear, otherwise it halts.

x = don't care field.

406 Data Structures

Table 1-1 (Cont.) Firmware State Transition Table

Mailbx
Current Next Halt Halt User HEN·ERR·TIP·DIP·
State State Type Code Action Action DIP·RIP

TRACE ->HALT xxx xx xx xxx x-x-x-x-x-x
Check for bootstrap conditions. 6

INIT ->BOOTSTRAP xxx 01 xx xxx 0-0 - 0 - 0 - 0 - 0

INIT ->BOOTSTRAP xxx 01 xx 010 1-0-0-0-0-0
IN IT ->BOOTSTRAP xxx 01 xx 100 1-0-0-0-0-0
IN IT ->BOOTSTRAP xxx Ix 10 xxx x-O-O-O-O-O

INIT ->BOOTSTRAP xxx Ix 00 010 x-O-O-O-O-O

INIT ->BOOTSTRAP xxx Ix 00 100 x-0-0-0-O-1
INIT ->BOOTSTRAP xxx Ix 00 100 x-1-0-0-0-x
INIT ->BOOTSTRAP xxx Ix 00 000 0-0-0-0-0-1

RESTART ->BOOTSTRAP xxx Ix 00 000 0-1-0-0-0-x
Check for restart conditions. 6

IN IT ->RESTART xxx Ix 01 xxx x-O-O-O-O-O

INIT ->RESTART xxx Ix 00 001 x-O-O-O-O-O
INIT ->RESTART xxx Ix 00 100 x-O-O-O-O-O
INIT ->RESTART xxx Ix 00 000 0-0-0-0-0-0

Perform common exit processing, if
no errors. 7

BOOTSTRAP ->EXIT xxx xx xx xxx x-O-x-x-x-x
RESTART ->EXIT xxx xx xx xxx x-O-x-x-x-x

HALT ->EXIT xxx xx xx xxx x-O-x-x-x-x
Exception transitions, just halt. 8

INIT ->HALT xxx xx xx xxx x-x-x-x-x-x
BOOT ->HALT xxx xx xx xxx x-x-x-x-x-x
REST ->HALT xxx xx xx xxx x-x-x-x-x-x

/} Bootstrap,

if powerup and halts are disabled.
if powerup and halts are enabled and user action is 2 or 4.
if not powerup and mailbox is 2.
if not powerup and mailbox is 0 and user action is 2.
if not powerup and restart failed and mailbox is 0 and user action is 0 or 4.

6 Restart the operating system if not power-up and,

if mailbox is l.
if mailbox is 0 and user action is 1 or 4.
if mailbox is 0 and user action is 0 and halts are disabled.

7 Exit after halts, bootstrap or restart. The exit state transitions to program 110 mode.

S Guard block that catches all exception conditions. In all cases, just halt.

x = don't care field.

Data Structures 407

Table 1-1 (Cont.) Firmware State Transition Table

Mailbx
Current Next Halt Halt User HEN·ERR·TIP·DIP·
State State Type Code Action Action BIP·RIP

HALT ->HALT xxx xx xx xxx x-x-x-x-x-x

TRACE ->HALT xxx xx xx xxx x-x-x-x-x-x

EXIT ->HALT xxx xx xx xxx x-x-x-x-x-x

x = don't care field.

A transition to a next state occurs if a match is found between the control word and a
current state entry in the table. The firmware does a linear search through the table
for a match. Therefore, the order of the entries in the transition table is important. The
control longword is reassembled before each transition from the current machine state.
The state machine transitions are shown in Table 1-1.

1.2 Restart Parameter Block(RPB)
VMB typically utilizes the low portion of memory unless there are bad pages in the first
128 kilobytes. The first page in its block is used for the restart parameter block (RPB),
which the VMB uses to communicates with the operating system. Usually, this is page O.

VMB will initialize the restart parameter block as follows (Table 1-2):

Table 1-2 Restart Parameter Block Fields

(Rli)+

00:

04:

08:

OC:

10:

10:

18:

IC:

20:

Field Name

RPB$L_BASE

RPB$L_
RESTART

RPB$L_
CHKSUM

RPB$k
RSTRTFLG

RPB$L_
HALTPC

RPB$L_
HALTPSL

RPB$L_
HALTCODE

RPB$k
BOOTRO

RPB$L_
BOOTRI

Description

Physical address of base of RPB.

Cleared.

-1

Cleared.

RIO on entry to VMB (HALT PC).

PR$_SAVPSL on entry to VMB (HALT PSL).

AP on entry to VMB (HALT CODE).

RO on entry to VMB.

NOTE
The field RPB$W _ROUBVEC, which overlaps the high-order
word of RPB$L_BOOTRO, is set by the boot device drivers to
the SCB offset (in the second page of the SCB) of the interrupt
vector for the boot device.

VMB version number. The high-order word of the version is the major
ID and the low-order word is the minor ID.

408 Data Strudures

Table 1-2 (Cont.) Restart Parameter Block Fields

(RIl)+ Field Name

24: RPB$k
BOOTR2

28: RPB$L_
BOOTR3

2C: RPB$L_
BOOTR4

30: RPB$L_
BOOTRS

34: RPB$L_IOVEC

38: RPB$L_
IOVECSZ

3C: RPB$L_
FILLBN

40: RPB$L_FILSIZ

44: RPB$Q..
PFNMAP

4C: RPB$L_
PFNCNT

50: RPB$k
SVASPT

54: RPB$L_
CSRPHY

58: RPB$L_
CSRVIR

5C: RPB$L_
ADPPHY

60: RPB$L_
ADPVm

64: RPB$W_UNIT

Description

R2 on entry to VMB.

R3 on entry to VMB.

R4 on entry to VMB.

NOTE
The 48 bit booting node address is stored in RPB$L,JIOOTRS
and RPB$L_BOOTR4 for compatibility with ELN VI.I (this field
is only initialized this way when performing a network boot).

R5 on entry to VMB.

Physical address of boot driver's 110 vector of transfer addresses.

Size of BOOT QIO routine.

LBN of secondary bootstrap image.

Size of secondary bootstrap image in blocks.

The PFN bitmap is a array of bits, where each bit has the value 1 if
the corresponding page of memory is valid, or has the value 0 if the
corresponding page of memory contains a memory elTor. Through use
of the PFNMAP, the operating system can avoid memory elTors by
avoiding known bad pages altogether. The memory bitmap is always
page-aligned, and describes all the pages of memory from physical
page #0 to the high end of memory, but excluding the PFN bitmap
itself and the Q-bus map registers.

If the high byte of the bitmap spans some pages available to the
operating system and some pages of the PFN bitmap itself, the pages
corresponding to the bitmap itself will be marked as bad pages. The
first longword of the PFNMAP descriptor contains the number of bytes
in the PFNMAP. The second longword contains the physical address of
the bitmap.

Count of good pages of physical memory, but not including the pages
allocated to the Q22-bus scatter/gather map, the console scratch area,
and the PFN bitmap at the top of memory.

O.

Physical address of CSR for boot device.

O.

Physical address of ADP. (really the address of QMRs - Ax800 to look
like a UBA adapter).

O.

Unit number of hoot device.

Data Structures 409

Table 1-2 (Cant.) Restart Parameter Block Fields

(Rll)+ Field Name

66:

67:

68:

90:

AO:

AI:

BO:

BC:

CO:

104:

108:

RPB$B_
DEVTYP

RPB$B_SLAVE

RPB$T_FILE

RPB$B_
CONFREG

RPB$B_
HDRPGCNT

RPB$W_
BOOTNDT

RPB$L_SCBB

RPB$L_
MEMDSC

RPB$L_
MEMDSC+4

RPB$L_
BADPGS

RPB$B_
CTRLLTR

Description

Device type code of boot device.

Slave number of boot device.

Name of secondary bootstrap image (defaults to
[SYSO.SYSEXE]SYSBOOT.EXE). This field (up to 40 bytes) is over­
written with the input string on a 'solicit' boot.

NOTE
I: For VAXNMS, the RPB$T_FILE must contain the root
directory string SYSn. on a non· network boot-strap. This
string is parsed by SYSBOOT (ie SYSBOOT does not use the
high nibble of BOOTR5). 2 : The RPB$T_Fll..E is over-written
to contain the boot node name for compatibility with ELN
Vl.l (this field is only initialized this way when performing a
network boot).

Array (16 bytes) of adapter types (NDT$_UBO - UNIBUS).

Count of header pages.

Boot adapter nexus device type. Used by SYSBOOT and INIADP (OF
SYSLOA) to configure the adapter of the boot device (changed from a
byte to a word field in Version 12 of VMB).

Physical address of SCB.

Count of pages in physical memory including both good and bad pages.
The high 8 bits of this longword contain the TR #, which is always zero
for KA670.

PFN of the first page of memory. This field is always zero for KA670,
even if page #0 is a bad page.

NOTE
No other memory descriptors are used.

Count of bad pages of physical memory.

Boot device controller number biased by 1. In VAXNMS, this field is
used by INIT (in SYS) to construct the boot device's controller letter. A
zero implies this field has not been initialized, else if initialized, A=l,
B=2, etc. (this field was added in Version 130fVMB).

nn: The rest of the RPB is zeroed.

1.3 VMS Argument List
The VMB code will also initialize an argument list as follows (Table 1-3):

410 Data Structures

Table 1-3 VMB Argument List

(AP)+ Field Name

04:

OC:

10:

14:

lC:

24:

2C:

30:

34:

3C:

44:

4C:

54:

58:

VMB$L_
FILECACHE

VMB$L_LO_
PFN

VMB$L_HC
PFN

VMB$Q...
PFNMAP

VMB$Q...
UCODE

VMB$B_
SYSTEMID

VMB$L_
FLAGS

VMB$L_CI_
HIPFN

VMB$Q...
NODENAME

VMB$Q...
HOSTADDR

VMB$Q...
HOSTNAME

VMB$Q...TOD

VMB$L_
XPARAM

Description

Quadword filename.

PFN of first page of physical memory (always zero, regardless of where
128 Kbytes of good memory starts).

PFN of last page of physical memory.

Descriptor of PFN bitmap. First longword contains count of bytes in
bitmap. Second longword contains physical address of bitmap. (Same
rules as for RPB$Q...PFNMAP listed above.)

Quadword.

A 48-bit (actually a quadword is allocated) booting node address which
is initialized when performing a network boot. This field is copied from
the target system address parameter of the parameters message. (The
DECnet HIORD value is added if the field was 2 bytes.)

Set as needed.

Cluster interface high PFN.

Boot node name which is initialized when performing a network boot.
This field is copied ·from the target system name parameter of the
parameters message.

Host node address (this value is only initialized when booting over the
network). This field is copied from the host system address parameter
of the parameters message.

Host node name (this value is only initialized when performing
a network boot). This field is copied from the host system name
parameter of the parameters message.

Time of day (this value is only initialized when performing a network
boot). The time of day is copied from the first 8 bytes of the host
system time parameter of the parameters message. (The time
differential values are NOT copied.)

Pointer to data retrieved from request of the parameter file.

The rest of the argument list is zeroed.

J
Error Messages

The error messages issued by the KA670 firmware fall into three catgories:

• Halt code messages

• VMB error messages

• Console messages

In general, error messages are in cryptic, to avoid the space requirements of translating
a large number of messages.

J.1 Halt Code Messages
The messages in Table J-l are issued by the firmware whenever the processor halts
(except on power-up, which is not treated as an error condition).

For example:

?06 HLT INST
PC = 80005003

The number preceding the halt message is the halt code This number is obtained from
SAVPSL<13:8>(RESTART_CODE), IPR 43, which is written on any CVAX processor
restart operation.

411

412 Error Messages

Table J-1 HALT Messages

Code

?02

?04

?05

?06

?07

?08

?OA

?OB

?OC

?10

?11

?12

?13

?I9

?1A

?lB

?1O

?1E

?IF

?3F

Message

EXTHLT

ISP ERR

DBLERR

HLT INST

SCB ERRa

SCB ERR2

CHM FRISTK

CHM TO ISTK

SCB RDERR

MCHKAV

KSP AV

DBLERR2

DBLERR3

PSL EXCS'

PSL EXCS'

PSL EXC7'

PSL REIS'

PSL REIS'

PSL REI7'

MICROVERIFY
FAILURE

Description

External halt, caused by either console BREAK condition,
Q22-bus BHALT_L, or DBR<AillCHLT> bit was set while
enabled.

Power-up, no halt message is displayed. However, the
presence of the firmware banner and diagnostic countdown
indicates this halt reason.

In attempting to push state onto the interrupt stack during
an interrupt or exception, the processor discovered that the
interrupt stack was mapped NO ACCESS or NOT VALID.

The processor attempted to report a machine check to the
operating system, and a second machine check occurred.

The processor executed a HALT instruction in kernel mode.

The SCB vector had bits <1:0> equal to 3.

The SCB vector had bits <1:0> equal to 2.

A change mode instruction was executed when PSL<lS> was
set.

The SCB vector for a change mode had bit <0> set.

A hard memory error occurred while the processor was trying
to read an exception or interrupt vector.

An access violation or an invalid translation occurred during
machine check exception processing.

An access violation or translation not valid occurred during
processing of a kernel stack not valid exception.

Double machine check error. A machine check occured while
trying to service a machine check.

Double machine check error. A machine check occured while
trying to service a kernel stack not valid exception.

PSL<2S:24> = 5 on interrupt or exception.

PSL<2S:24> = S on interrupt of exception.

PSL<26:24> = 7 on interrupt or exception.

PSL<2S:24> = 5 on an rei instruction

PSL<2S:24> = S on an rei instruction.

PSL<26:24> = 7 on an rei instruction.

Microcode power-up self-test failed.

'For the last six cases, the VAX architecture does not allow execution on the interrupt stack while in a mode
other than kernel. In the first three cases, an interrupt is attempting to run on the interrupt stack while
not in kernel mode. In the last three cases, an REI instruction is attempting to return to a mode other than
kernel and still run on the interrupt stack.

Error Messages 413

J.2 VMB Error Messages
The following errors are issued by VMB (Table J-2):

Table J-2 VMB Error Messages

Code Message Description

?4O NOSUCHDEV No bootable devices found.

?41 DEVASSIGN Device is not present.

?42 NOSUCHFILE Program image not found.

?43 FILESTRUCT Invalid boot device file structure.

?44 BADCHKSUM Bad checksum on header file.

?45 BADFILEHDR Bad file header.

?46 BADIRECTORY Bad directory file.

?47 FILNOTCNTG Invalid program image format.

?48 ENDOFFILE Premature end of file encountered.

?49 BADFILENAME Bad file name given.

?4A BUFFEROVF Program image does not fit in available memory.

?4B CTRLERR Boot device 110 error.

?4C DEVINACT Failed to initialize boot device.

?4D DEVOFFLINE Device is offline.

?4E MEMERR Memory initialization error.

?4F SCBINT Unexpected SCB exception or machine check.

?50 SCB2NDINT Unexpected exception after starting program image.

?51 NOROM No valid ROM image found.

?52 NOSUCHNODE No response from load server.

?53 INSFMAPREG Invalid memory configuration.

?54 RETRY No devices bootable, retrying.

?55 IVDEVNAM Invalid device name.

?56 DRVERR Drive error.

414 Error Messages

J.3 Console Error Messages
The following error messages are issued in response to a console command that has
error(s) (Table J-3):

Table J-3 Console Error Messages

Code Message Description

?61 CORRUPTION The console program database has been corrupted.

?62 ILLEGAL megal reference. The requested reference would violate
REFERENCE virtual memory protection, the address is not mapped, the

reference is invalid in the specified address space, or tr.e value
is invalid in the specified destination.

?63 ILLEGAL COMMAND The command string cannot be parsed.

?64 INVALID DIGIT A number has an invalid digit.

?65 LINE TOO LONG The command was too large for the console to buffer. The
message is issued only after receipt of the terminating
carriage return.

?66 ILLEGAL ADRRESS The address specified falls outside the limits of the address
space.

?67 VALUE TOO LARGE The value specified does not fit in the destination.

?68 QUALIFIER Qualifier conflict, for example, two different data sizes are
CONFLICT specified for an EXAMINE command.

?69 UNKNOWN The switch is unrecognized.
QUALIFIER

?6A UNKNOWN SYMBOL The symbolic address in an EXAMINE or DEPOSIT command
is unrecognized.

?6B CHECKSUM The command or data checksum of an X command is incorrect.
If the data checksum is incorrect, this message is issued
rather than being abbreviated to I llegal command.

?6C HALTED The operator entered a HALT command.

?6D FIND ERROR A FIND command failed either to find the RPB or 128 Kbytes
of good memory.

?6E TIME OUT During an X command, data failed to arrive in the time
expected (60 seconds).

?6F MEMORY ERROR A machine check occurred with a code of 8016 or 8116,
indicating a read or write memory error.

?70 UNIMPLEMENTED Unimplemented function.

?71 NO VALUE Qualifier does not take a value.
QUALIFIER

?72 AMBIGUOUS There were not enough unique characters to determine the
QUALIFIER qualifier.

?73 VALUE QUALIFIER Qualifier requires a value.

?74 TOO MANY 'Tho many qualifiers supplied for this command.
QUALIFIERS

?75 TOO MANY 'Tho many arguments supplied for this command.
ARGUMENTS

Error Messages 415

Table J-3 (Cont.) Console Error Messages

Code

?76

?77

?78

?79

?7A

?7B

?7C

?7D

Message

AMBIGUOUS
COMMAND

TOO FEW
ARGUMENTS

TYPEAHEAD
OVERFLOW

FRAMING ERROR

OVERRUN ERROR

SOFT ERROR

HARD ERROR

MACHINE CHECK

Description

There were not enough unique characters to determine the
command.

Insufficient arguments supplied for this command.

The typeahead buffer overflowed.

A framing error was detected on the console serial line.

An overrun error was detected on the console serial line.

A soft error occurred.

A hard error occurred.

A machine check occurred.

Glossary

BBU RAM
Battery backed-up RAM. On the KA670, this is 1 Kbyte of battery backed-up RAM on the
SSC.

BFLAG
Boot flags is the longword supplied in the SET BFLAG and BOOT /R5: commands that
qualify the bootstrap operation. SHOW BFLAG displays the current value.

BHALT
Q22-bus HALT signal, usually associated with the halt switch on the front panel.

BIP
Boot in progress flag in CPMBX<2>.

CPMBX
Console program mailbox is used to pass information between operating systems and the
firmware.

COBIC
Q22-bus interface chip.

DCOK
Q22-bus signal indicating dc power is stable. This signal is usually associated with the
restart switch on the front panel.

DNA
Digital network architecture.

EPROM
Erasable programable read only memory. Used on some products to store firmware.
Commonly used synonyms are PROM or ROM. Erasable by using ultraviolet light.

DE
Diagnostic executive. A component of the ROM-based diagnostics responsible for set-up,
execution, and clean-up of component diagnostic tests.

Firmware
Firmware in this document refers to 256 kilobytes of VAX instruction code residing
at physical address 20040000 on the KA670. Functionally, it consists of diagnostics,
bootstraps, console, and halt entry/exit code.

416 Glossary

(

Glossary 417

GPR

General-purpose registers. On the KA670, these are the 16 standard VAX longword
registers, RO through R15. The last four registers, R12 through R15, are also known by
their unique mnemonics AP (argument pointer), FP (frame pointer), SP (stack pointer),
and PC (program counter).

IPL
Interrupt priority level. Ranges from 0 to 31 (0 to IF16).

IPR

Internal processor registers. On the KA670, these are implemented by the CPU chip
set. These longword registers are only accessible with the instructions MTPR (move to
processor register) and MFPR (move from processor register) and require kernel mode
privileges. This document uses the prefix PR$_ when referencing these registers.

KA670
Q22-bus CPU processor module, DSSI port, and Ethernet adapter.

LED
Light emitting diode.

MSCP

Mass storage control protocol. Used in Digital disks and tapes.

MOP
Maintenance operations protocol. Specifies message protocol for network loopback
assistance, network bootstrap, and remote console functions.

ms
Millisecond UOe-3 seconds).

PC
Program counter (RI5).

PCB

Process control block. A data structure pointed to by the PR$_PCBB register. Contains
the hardware context for the current process.

PFN
Page frame number. An index of a page (512 bytes) of local memory. A PFN is derived
from the bit field <23:09> of a physical address.

PR$_ICCS

Interval clock control and status (lPR 24).

PR$_IPL
Interrupt priority level (lPR 18).

PR$_MAPEN
Memory management mapping enable (lPR 56).

PR$_PCBB
Process control block base register (IPR 16).

418 Glossary

PR$_RXCS

R(X)eceive console status (IPR 32).

PR$_RXOB

R(X)eceive data buffer (IPR 33).

PR$_SAVISP

Saved interrupt stack pointer (IPR 41).

PR$_SAVPC
Saved program counter (IPR 42).

PR$_SAVPSL
Saved program status longword (lPR 43).

PR$_SCBB
System control block base register (IPR 17).

PR$_SISR

Software interrupt summary register (lPR 21).

PR$_TOOR

Time-of-day register (IPR 27). Commonly referred to as the time-of-year register or TOY
clock.

PR$_TXCS
T(X)ransmit console status (IPR 34).

PR$_TXOB
T(X)ransmit data buffer (lPR 35).

PSL, PSW

Processor status longword. The VAX extension of the PSW (processor status word). The
PSW (lower word) contains instruction condition codes and is accessible by nonprivileged
users. However, the upper word contains system status information and is accessible by
privileged users.

OBMBR
Q22-bus map base register found in the CQBIC. Determines the base address in local
memory for the scatter/gather registers.

OOSS
Q22-bus video controller for workstations.

ONA
Q22-bus Ethernet controller module.

OMR
Q22-bus map register.

RAM

Random acess memory.

RIP

Restart in progress flag in CPMBX<3>.

Glossary 419

RPB
Restart parameter block. A software data structure used as a communication mechanism
between firmware and the operating system. Information in this block is used by the
firmware to attempt an operating system (warm) restart.

SCB
System control block. A data structure pointed to by PR$_SCBB. THESCB contains a list
of longword exception and interrupt vectors.

SGEC
Second-generation Ethernet chip.

SHAC
Single host adapter chip.

SP
Stack pointer (R14).

SRM

Standard reference manual, as in VAX SRM.

sse
System support chip.

\.IS
Microsecond (lOe-6 seconds).

VMB
Virtual memory boot. The portion of the firmware dedicated to booting the operating
system.

A
abort, 36
Architecture, 19 to 243

B
Backplane wiring, 349
BBURAM

CPMBX, 402
partitioning, 401

Block mode DMA, 336
Boot and diagnostic facility, 121

battery backed-up RAM, 125
boot and diagnostic register, 121
CP bus timeout control register, 130
diagnostic LED register, 123
EPROM memory, 124
initialization, 126

Boot block fonnat, 263
boot devices

names, 258
Boot devices

supported, 259
Boot flags, 260
bootstrap

conditions, 256
device names, 275
disk and tape, 263
initialization, 256
memory layout, 257

Bootstrap
memory layout, 262
network, 264
PROM, 264
sample output, 261

Bus adapter, 9
Bus cycle protocol, 326
Bus drivers, 347
Buses

CP bus, 120
GMI, 120
RDAL, 119

Bus interconnecting wiring, 349
Bus length (DSSI), 18
Bus overview, 119 to 120
Bus receivers, 348

Index

Bus tennination, 348
Byte count, 38

C
Cabling

DSSI, 18
ISE, 18

Cache
backup (second level), 7
primary (first level), 7

C-chip, 7
Central processing unit (CPU), 6, 21 to

52
accelerator control and status register,

49
CPU references, 50
data-stream read, 51
data types, 30
exceptions, 33

classes, 36
infonnation saved on a machine

check, 38
general-purpose registers

See also Registers
halt

codes for exceptions, 47
codes for unmaskable interrupts,

47
console, 220
CPU state after a, 46
hardware procedure, 46

instruction set, 30
internal processor registers, 23,28, 58

See also Registers
internal state infonnation, 42
internal VA register

contents, 41
internal VIBA register, 41
interrupts, 33, 34

priority level, 34
interval counter control status register.

41
intruction-stream read, 51
machine check exception, 221
machine checks, 38

error register contents, 43
floating point errors, 39

Index 1

2 Index

Central processing unit (CPU)
machine checks (cont'd.)

interrupt error, 40
memory management error, 39
microcode error, 40
RDAL bus error, 41
read error, 40
write error, 41

memory management, 31
memory management control register,

32
processor state, 21
processor status longword, 22

contents, 43
process structure, 29
program counter

contents, 42
Program counter

definition of, 22
shift count (SC) register

contents, 42
software interrupt summary register

contents, 42
definition, 35

system control block, 43
format, 43

system identification, 48
translation buffer, 31, 32,33
write references, 51

Central Processing unit (CPU)
exceptions, 36

CI-DSSloverview
arbitration and selection, 201
BLINK, 201
command-out phase, 202
datagram, 201
FLINK, 201
message, 201
move data, 201
RSPQ, 202
undeliverable message, 201

Configuration, 13 to 18
DSSI, 15

CONFIGURE command, 14
Console

serial line, 110
console registers, 110

services, 247
Console connector pins, 361
Console module, 11
Control functions, 346
CQBIC, 9

D
Data transfer bus cycles, 325
DATBI bus cycle, 338
DATBO bus cycle, 340
DC511, 7
DC520, 6
DC523, 7
DC527, 9

DC541, 9
DC542, 8
DC561, 9
DC592, 7
Device addressing, 327
Device priority, 342
Direct memory access, 334
DMA guidelines, 341
DMA protocol, 334
DSSI

E

bus length, 18
bus termination, 18
cabling, 18
configuration, 15
drive order, 15
node ID, 15
node name, changing, 15
unit number, changing, 16

Error handling, 213
console error halt, 214
errors without notification, 242
hard error interrupt, 214, 234
110 device interrupt, 215
kernal stack not valid exception, 241
kernel stack not valid, 215
machine check, 214
notification, 215
power fail, 214
power-fail interrupt, 234
soft error interrupt, 214, 237
summary, 214

Errors
soft

cache or memory, 239
Eternet interface, 9
Ethernet connector, 11
Ethernet overview

F

broadcast address, 147
multicast address, 147
mUlticast-group address, 147
physical address, 147

fault, 36
F-chip, 7
firmware

block diagram, 248
Firmware ROMs, 8
Floating point accelerator, 7, 52 to 53

instructions, 52
Floating point accelerator (FPA)

data types, 52
power-up state, 53

Floating point accelerator (FPU chip)
operand and result transfer, 52

Floating point errors, 38

G
G-chip, 9

H
H3604, 11
Halt, 346
Halt actions

external halt, 251
restoring context, 252
saving context, 249
summary, 250

Hardware components, 4

Imperfect filtering, defined, 187
Initialization, 346
Installation, 13 to 18
Interrupt protocol, 342
IntelTUpts, 341
Interval timer, 116
Intrabackplane bus wiring, 349
Invalidate hits

support for cache invalidates, 105
Invalidate lookup

support for cache invalidates, 105

K
KA670 CPU module

hardware components, 4
overview, 3 to 9
photograph, 3

L
Load definition, 347

M
Machine check code parameter, 38
Machine check stack frame

AT, 223
byte count, 222
delta-PC, 222
DL, 223
fault code, 222
ICCS .. SISR, 222
opcode, 223
PC, PSL, 223
RN, 223
SC, 223
VA, 222
VAX restart bit, 222
VIBA, 222

Manchester-encoded format, 146
Mass storage interface, 8, 198

Mass storage interface (cont'd.)
CI-DSSIOVERVIEW, 201
SHAC registers, 203
single host adapter chip, 199

Memory
backup cache, 54

address translation, 69
backup tag store, 72
behavior on writes, 71

Index 3

C-chip error address register, 84
control register, 80
data block allocation, 71
error address register, 84
external process registers, 71
flush backup tag store register, 85
flush primary tag store register,

86
index register, 76
organization, 69
overview, 68
physical address translation, 69
primary cache tag store C-chip

copy, 73
refresh register, 75
tag and valid bits, correspondence

to data, 69
cache

controlling, 86
internal processor registers, 58

cacheable references, 54
C-chip, 54
error detection

modified Hamming code, 101
error detection and correction, 101
error recovery, 86
G-chip bus timeout, 98
G-chip controller, 87
G-chip GMI port, 100
G-chip Nonexistant addresses, 98
G-chip peripheral (CP port), 99
G-chip port, 87
G-chip registers, 88
G-chip transactions and port

interactions, 104
G-chip write buffers, 87
initialization, 86

diagnostics, 86
main memory system, 87 to 109
pagemode support, 101
primary cache, 54

address translation, 56 .
backup cache tag store C-chip copy,

73
behavior on writes, 58
data and tag layout, 55
data block allocation, 58
data entry, 56
detectable double errors, 68
detectable single errors, 67
diagnostics, 65
error address register, 62
error handling, 65
error recovery, 64

4 Index

Memory
primary cache (cont'd.)

index register, 63
initialization, 65
maintaining consistency, 83
organization, 55
overview, 55
status registers, 58
tag array register, 64
tag entry, 55
writing and reading the tag array,

64
refresh, 104
tag store

reenabling, 83
use of the C-chip registers, 86

Memory controller, 9
Memory error detection

syndrome examples, 102
Memory module, 10
Memory support subsystem, 9
Modified Hamming code

memory error detection, 101
Module

configuration, 14
order, in backplane, 13

Module contact finger identification 353
MOP functions, 388 '
MS670, 10

N
Network interface, 146

Ethernet
overview, 146

station address ROM, 147
Network listening, 387

o
OCP

cabling, 18
120-0hm Q22-bus, 347
Operator console panel

See OCP

P
P-chip, 6
Power status, 346
Power supply loading, 353
Power-up

memory layout, 384
PR$_SAVPC, 249
PR$_SAVPSL, 249
PR$_TBIA, 252
Process

definition of, 29
Programmable timers, 116

Q
Q22-bus electrical characteristics, 346
Q22-bus four-level interrupt configura-

tions, 345
Q22-bus interface, 9, 132

CP translation, 137
DMA error address register, 144
DMA system error register, 142
error address register, 143
error handling, 145
interprocessor communications facility,

137
interrupt handling, 139
main mem~ address translation, 133
map configunng, 139
system configuration register(SCR),

140
Q22-bus signal assignments, 322

R
Registers

general-purpose, 21
internal processor, 21, 23
processor, 21

RF -series disk drive
access to firmware through DUP 17
cabling, 18 '

ROM partitioning, 396
RPB

initialization, 407
Runt packets, 146

S
Setup frame, 183
SGEC, 9

loopback operations, 196
SHAC, 8, 199
Signal level specifications, 347
SSC, 7
Support for cache invalidates

invalidate hits, 105
invalidate lookup, 105

Syndrome examples
memory error detection, 102

System configurations, 350
System support subsystem, 7

T
'lime-of-year clock, 115
trap, 36

V
VAX restart bit (R), 38
VMB

descri ption, 260
procedure, 261

Index 5

KA670 CPU Module Technical Manual
EK-KA670-TM-001

READER'S COMMENTS

1. How did you use this manual? (Circle your response.)

(a) Installation (c) Maintenance (e) Training

(b) Operation/use (d) Programming (f) Other (Please Specify.) ____ _

2. Did the manual meet your needs? Yes 0 No 0 Why? _________ _

3. Please rate the manual on the following categories. (Circle your responses.)

Excellent Good Fair Poor Unacceptable

Accuracy 5 4 3 2 ,
Clarity 5 4 3 2 1

Completeness 5 4 3 2

Table of Contents, Index 5 4 3 2

Illustrations, examples 5 4 3 2

Overall ease of use 5 4 3 2

4. What did you like most about this manual? _____________ _

5. What did you like least about this manual? _____________ _

6. Please list and describe any errors you found in the manuaL

Page Description/Location of Error

7. Which of the following most clearly describes your job? (Circle your response.)

(a) Administrative Support

(b) Manager/Supervisor

(c) Scientist/Engineer

(d) Programmer/Analyst

Name

(e) System Manager

(f) Computer Operator

(g) Software Support

(h) Hardware Support

OPTIONAL INFORMATION

Street

(i) EducationallTrainer

(j) Sales/Marketing

(k) Other (Please specify)

-------------------- -------------------------Company _________________ _ City/State _____________________ _

Departmem _________________ __ Country Postal (ZIP) code (, ____)
Job Title ______________ _ Telephone Number ___ ----------

THANK YOU FOR YOUR COMMENTS AND SUGGESTIONS

Please do not use this form to order manuals. Contact your representative at Digital
Equipment Corporation or (in the USA) call our DECdirect™ department at this toll-free
number: 800-344-4825.

© by Digital Equipment Corporation 1990 MYO

FOLD HERE AND TAPE. DO NOT STAPLE

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD. MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Educational Services/Quality Assurance
12 Crosby Drive BUO/EO~
Bedford. MA 01730-1493

11

FOLD HERE AND TAPE. DO NOT STAPLE

UNITED STATES

