% v-.FF.Q.-.dcouoirmrr A oos

ER-KA670-UP-001

KA670 Technical Manual Update

This document provides updated information for the KA670 CPU Modulé Technical
Manual, EK-KA670-TM—-001.

SSC Configuration Register, Bits <18:16>
(Page 128)

The third sentence in the bit description for bits <18:16> (Halt Protect Space) should
read “These bits should be set to 101,...”

Setting these register bits to 1109 allows the SSC to protect 512 Kbytes. This is
unnecessary, because the EPROM contains only 256 Kbytes.

Network Interface SGEC Revision 4.0
(Pages 148 to 198)

The SGEC revision 4.0 needs a code patch if the virtual addressing mode (SVAPTE or
PAPTE) is used for addressing the transmit buffers.

To apply this patch, perform the following steps:

1. Set the following diagnostic descriptor in the transmit descriptor list (page 178), to
download the code into the SGEC internal memory. This descriptor must be placed
before the setup_frame descriptor (page 184) with <IC> set, or must be followed by
an end_of_list (descriptor owned by the host) to be able to synchronize the code load
completion on NICSR5<TI> interrupt.

Diagnostic descriptor format:
DDES0<31:0> = 80000000;¢ OW = 1.
DDES1<31:0> = 308000005 DT =3, WD=1,ST=0.
DDES2<31:0> - = 000B22AA;¢ load size = 11 code words,
SGEC load address = 22AA;6.
DDES3<31:0> = Buffer physical ‘must be word-aligned.
address

The buffer pointed to by DDES3 must contain the following data:
D8541E79:¢

FF7FDA5346
C0195E79;¢
D951C0184¢
C3575E79;¢
0000031C,¢

2. After setting NICSR5<ID> (page 155) and before starting the receive or transmit
process, perform the following steps:

¢ Load the host address of the diagnostic descriptor in NICSR4 (page 153).

¢ Write the following command in NICSR6 (page 160):

<EI>=0 To disable the SGEC interrupts to the host.

<OM> =3 To enter diagnostic mode.

<ST>=1 To precede the diagnostic descriptor (and eventually the setup
descriptor).

¢ Poll on NICSR5<TI> to wait for the completion of the code load.
* Write A2AA03691¢ in NICSR14 (page 170) to initialize the breakpoint.
¢ Poll on NICSR5<DN> to wait for the completion of the NICSR14 write.

At this point, the code patch is initialized and the normal initialization sequence can go
on.

Console BOOT Command
(Page 275)

Format
BOOT [qualifier] [{boot_device} [,{boot_device}]...]

Description

The console initializes the processor and transfers execution to VMB. VMB attempts to
boot the operating system from the specified device or the default boot device, if none is
specified.

If a list of devices is specified, VMB attempts to boot from each device in turn. VMB
transfers control to the first successfully booted image. Network devices should always
be placed last in a list, since network bootstraps only terminate if a fatal hardware error
occurs or an image is successfully loaded.

Console SET Command
(Page 299)

SET BOOT
When using the console SET BOOT command, you may also specify a device list.

Copyright © by Digital Equipment Corporation 1990
All Rights Reserved. Printed in the U.S.A.

dlilg|iltlal |8

is a trademark of Digital Equipment Corporation.

ER-KA670-UP—001

KA670 Technical Manual Update

This document provides updated information for the KA670 CPU Module Technical
Manual, EK-KA670-TM-001.

SSC Configuration Register, Bits <18:16>
(Page 128)

The third sentence in the bit description for bits <18:16> (Halt Protect Space) should
read “These bits should be set to 101,...”

Setting these register bits to 1109 allows the SSC to protect 512 Kbytes. This is
unnecessary, because the EPROM contains only 256 Kbytes.

Network Interface SGEC Revision 4.0
(Pages 148 to 198)

The SGEC revision 4.0 needs a code patch if the virtual addressing mode (SVAPTE or
PAPTE) is used for addressing the transmit buffers.

To apply this patch, perform the following steps:

1. Set the following diagnostic descriptor in the transmit descriptor list (page 178), to
download the code into the SGEC internal memory. This descriptor must be placed
before the setup_frame descriptor (page 184) with <IC> set, or must be followed by
an end_of_list (descriptor owned by the host) to be able to synchronize the code load
completion on NICSR5<TI> interrupt.

Diagnostic descriptor format:
DDES0<31:0> = 800000006 owW=1.
DDES1<31:0> = 30800000;¢ DT=3, WD=1,ST=0.
DDES2<31:0> - = 000B22AA 6 load size = 11 code words,
SGEC load address = 22AAs6.
DDES3<31:0> = Buffer physical must be word-aligned.
address

The buffer pointed to by DDES3 must contain the following data:
D8541E79,¢

FFTFDA53:¢
C0195E79,¢
D951C018;¢
C3575E79:¢
0000031C,¢

2. After setting NICSR5<ID> (page 155) and before starting the receive or transmit
process, perform the following steps:

* Load the host address of the diagnostic descriptor in NICSR4 (page 153).

* Write the following command in NICSR6 (page 160):

<EI> =0 To disable the SGEC interrupts to the host.

<OM> =3 To enter diagnostic mode.

<ST> =1 To precede the diagnostic descriptor (and eventually the setup
descriptor).

¢ Poll on NICSR5<TI> to wait for the completion of the code load.
¢ Write A2AA0369:¢ in NICSR14 (page 170) to initialize the breakpoint.
¢ Poll on NICSR5<DN> to wait for the completion of the NICSR14 write.

At this point, the code patch is initialized and the normal initialization sequence can go
on.

Console BOOT Command
(Page 275)

Format
BOOT [qualifier] [{boot_device} [,{boot_device}]...]

Description

The console initializes the processor and transfers execution to VMB. VMB attempts to
boot the operating system from the specified device or the default boot device, if none is
specified.

If a list of devices is specified, VMB attempts to boot from each device in turn. VMB
transfers control to the first successfully booted image. Network devices should always
be placed last in a list, since network bootstraps only terminate if a fatal hardware error
occurs or an image is successfully loaded.

Console SET Command
(Page 299)

SET BOOT

When using the console SET BOOT command, you may also specify a device list.

Copyright © by Digital Equipment Corporation 1990
All Rights Reserved. Printed in the U.S.A.

dlilaliltial |

is a trademark of Digital Equipment Corporation.

KA670 CPU Module Technical Manual

Order Number EK-KA670-TM-001

digital equipment corporation
maynard, massachusetts

First Edition, April 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under z license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright © Digital Equipment Corporation 1990

All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX RV20
DECmate PDP ThinWire
DECnet P/OS TQKS0
DECUS Professional ULTRIX
DECwriter Q-bus UNIBUS
DEQNA Q22-bus VAX
DIBOL Rainbow VAXstation
DSSI RRD50 VMS
LPVi1SA RSTS VT
MASSBUS RSX Work Processor
MicroPDP RT

dlilgiltlal1

This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

Contents

About This Manual xxi
Overview and Installation

1 Overview

1.1 KA67T0CPU Module e, 3
1.1.1 Module Componentsttt 4
12 Central Processing Subsystem 6
1.2.1 Central Processing Unit (P-Chip (DC529)) 6
1.2.2 Floating Point Accelerator (F-Chip (DC523))................... 7
123 TheCache..... e 7
1.3 System Support Subsystem 7
1.3.1 System Support Chip (SSC (DC511))coviieia. ... 7
1.3.2 Firmware ROMs it 8
1.3.3 Boot and Diagnostic Register 8
1.3.4 Station Address ROM i, 8
14 TFO Subsystem. it e 8
14.1 DSSI Mass Storage Interface (SHAC (DC542)) 8
142 Ethernet Interface (SGEC(DC541)), 9
1.4.3 Q22-bus Interface (CQBIC (DC527))o i ittt it e e ieeeeene. 9
1.5 Memory Support Subsystem, 9
1.5.1 Memory Controller/Bus Adapter (G-Chip (DC561)).............. 9
1.6 MS670MemoryModule i, 10
1.7 H3604 Console Module i, 1
2 Installation and Configuration
2.1 Installing the KA670 and MS670 Memory Modules 13
2.2 Module Configurationand Naming 14
2.3 Mass Storage Configuration, 15
2.3.1 Changingthe NodeName 15
2.3.2 Changingthe DSSIUnit Number........................... 16

iv. Contents

2.3.3

23.3.1

24
2.5

Accessing RF-series Firmware in VMS, Through DUP

Allocation Class ittt ettt

DSSI Cabling, Device Identity, and Bus Termination

KA670 Connectors

Architecture

3

...

Central Processor and Floating Point Unit

3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.2
3.1.3
3.1.4
3.1.5
3.1.5.1
3.1.5.2
3.1.6
3.1.6.1
3.1.6.2
3.1.6.3
3.1.6.4
3.1.6.5
3.1.6.6
3.1.7
3.1.7.1
3.1.7.2
3.1.8
3.1.9
3.1.8.1
3.1.9.2
3.1.9.3

3.2

3.2.1
3.2.2
3.2.3
3.2.4

Central Processor

Processor State

..

...

General-Purpose Registers
Processor Status Longword,
Internal Processor Registers
Process Structure i e e

Data Types . ..
Instruction Set

...

...

Memory Managementc.00iiiiiitrnnrnnnnn.
Translation Buffer........
Memory Management Control Registers

Interrupts and Exceptions.,

Interrupts . .
Exceptions. .

...

...

Information Saved on a Machine Check Exception
Machine Check Error Register MCESR)IPR38
System Control Block (SCB)
The Hardware Halt Procedure
System Identification
System Identification Register
System Identification Extension Register (20040004)
Accelerator Control and Status Register (ACCS) IPR40..........

CPU References

..

Instruction-Stream Read References
Data-Stream Read References.ttt innnnn
Write References cov ittt i e ieeeananen

KA670 Floating Point Acceleratorcovun..
Floating Point Accelerator Data Types

Floating Point Accelerator Instructions.
Operand and Result Transfer ciiiiiiiiennnnn

Power-Up State

...

17
18

18
18

21
21
21
22
23
29
30
30
31
31
32
33
34
36
38
43
43
46
48
48
49
49
50
51
51
51

52
52
52
52
53

Contents v

Cache and Main Memory

41 KAB70Cache Memory.0 ittt ineannn. 54
4.1.1 Cacheable References e 54
4.1.2 Primary Cache Overview iiiiiinan.. 55
4.1.2.1 Primary Cache Organization............................. 55
4122 Primary Cache Address Translation 56
41.2.3 Primary Cache Data Block Allozation 58
4.1.24 Primary Cache Behavioron Writes 58
4.1.25 Primary Cache Internal Processor Registers................. 58
4.1.2.6 Writing and Reading the Primary Cache Tag Array 64
4.1.2.7 Primary Cache Error Recovery 64
4.1.2.8 Primary Cache Initialization. e 65
4129 Primary Cache Diagnostics 65
4.1.2.10 Error Handling by the Primary Cache 65
413 Backup Cache Overview innennnn. 68
4.1.3.1 Backup Cache Organization 69
4.1.3.2 Backup Cache Address Translation........................ 69
4.1.3.3 Backup Cache Data Block Allocation 71
4.1.34 Backup Cache Behavioron Writes 71
4.1.3.5 Backup Cache External Processor Registers 71
4.1.3.6 Maintaining Primary Cache Consistency 83
4.1.3.7 Use of the C-ChipRegistersciiiii.... 86
4.2 KA670Main Memory System ittt 87
42.1 G-Chip Memory Controller iviiinn.. 87
4211 G-Chip Port. i i 87
4212 G-ChipWrite Buffers, 87
4213 G-ChipRegisters. ittt einenneeennnanns 88
4.2.14 Bus Timeout and Nonexistent Addresses 98
4.2.15 Peripheral Port (CPPort)0 iiiiieienann. 99
4.2.16 GMI Port. ittt it ettt 100
4.2.1.7 Transactions and Port Interactions 104
4.2.1.8 ExXceptions.ttt it i i et 108
The Console Line, TOY Clock, and Bus System

51 KA670Console Serial Lineciiiuitiiinnnreencennns 110
5.1.1 ConsoleRegisters it iiiiiiiiineeennnn 110
5.1.1.1 Console Receiver Control/Status Register - (IPR32)........... 110
5.1.1.2 Console Receiver Data Buffer—(IPR33) 111
5.1.13 Console Transmitter Control/Status Register—(IPR34) 113
5114 Console Transmitter Data Buffer—(IPR35) 114
5.1.2 Break ReSpomSe.ooniuititiinnenennenencnenenennnns 114
513 BaudRate............ ... ittt i ittt 114
5.1.4 Console Interrupt Specificationsc.ivineenn. 115

52 KAGTOTOYClockandTimerscouieuieeennnneannacnns 115

vi Contents

5.2.1 Time-of-Year Clock (TODR)—EPR27 115
5.2.2 Interval Timer (ICCS)—EPR24 i, 116
5.2.3 Programmable Timers. it iniiiiiiinennnnnens 116
5.2.3.1 Timer Control Registers TCROand TCRD.................. 117
5.2.3.2 Timer Interval Registers (TIROand TIR1) 118
5.2.3.3 Timer Next Interval Registers (TNTROand TNIR1) 118
5.2.3.4 Timer Interrupt Vector Registers (TIVR0 and TIVR1) 118
53 KAGTOBusOverviewcciiiiiintinnnrnnnnnnnnnns 119
531 RDAL BUS.........0iiitiiiiiiiiiiiiiitiinneeneinnens 119
532 TheCP BuUSiiiiitiitiineiitinetnnrenenneenns 120
5.3.2.1 The CCLOCK Chipciiiiii ittt it iiiiiieennens 120
5.3.2.2 CPBusArbiter0 iiiiiiiiiiiiiiiennennnenn 120
533 GMIBUS........0iiiiiiiiitiiittatat ettt 120

6 KA670 Boot and Diagnostic Facility

6.1 Boot and Diagnostic Register (BDR)c.cooint. 121
6.2 Diagnostic LED Register (DLEDR) oot 123
6.3 EPROM Memory..........cciittiiiineieeenarecnnnennnnnns 124
6.3.1 EPROMAddressSpace..............ccvvnvun.. e 124
6.3.2 KA670 Resident Firmware Operation: 125
6.3.2.1 Power-UpModesiiiitiiiiennerneneaanennns 125
6.4 BatteryBacked-Up RAM¢c0tiitirrennnnnneeennnns 125
6.5 KA670Initialization00ttt 126
6.5.1 Power-Up Initialization.ottt nneeenns 126
6.5.2 HardwareReset0ttt iiinnennnnnnns 126
6.5.3 I/O Bus Initialization0 iiiiinrneennns 126
6.5.3.1 /O Bus Reset Register IPR55)cocvviinnne. 126
6.5.4 Processor Initialization i it 126
6.5.4.1 Configuring the Local /OPagecooivinn 127
6.5.5 SSC Base Address Register (SSCBR)coiunn... 127
6.56 BDR Address Decode Match Register (BDMTR) 127
6.5.7 BDR Address Decode Mask Register (BDMKR) 128
6.5.8 SSC Configuration Register (SSCCR)ciivnn, 128
6.6 CP Bus Timeout Control Register (CBTCR)ccovvenn.n. 130

7 Interface Subsystems

7.1 KA670Q22-busInterfaceccoiiererrerreennnneenenns 132
7.1.1 Q22-bus to Main Memory Address Translation................. 133
7.1.11 Q22-bus Map Registers(QMR)ccciiiiiiiannn. 134
7.1.12 Accessing the Q22-bus Map Registers.co0utn 135
7.1.13 The Q22-bus MapCachecciiiiiiiiiinnneeenns 136

7.1.2 CPto Q22-bus Address Translationcccieeereeeans 137

Contents vii

7.1.3 Interprocessor Communications Facility 137
7.1.3.1 Interprocessor Communication Register IPCR) 138
7.1.3.2 Interprocessor Doorbell Interrupts 139
7.14 Q22-bus Interrupt Handling 139
7.1.5 Configuringthe Q22-bus Mapcvvviuinennn.. 139
7.1.5.1 Q22-bus Map Base Address Register (QBMBR) 140
7.1.6 System Configuration Register (SCR) 140
7.1.7 Error-Reporting Registers, 141
7.1.7.1 DMA System Error Register (BDSER) 142
7.1.7.2 Q22-bus Error Address Register (QBEAR) 143
7.1.7.3 DMA Error Address Register (DBEAR). 144
7.1.8 ErrorHandling o..... e 145
7.2 KA670 Network Interface uirinn.n. 146
721 Ethernet Overview00ttt 146
7.22 NI Station Address ROM (NISAROM) 147
7.3 Programming the Ethernet Controller Chip (SGEC) 148
7.3.1 Programming Overviewc.cciiiiimnneenn... 148
7.3.2 Command and Status Registers 149
7.3.3 Host Access to NICSRs ittt 149
7.3.3.1 Physical NICSRs i e i i een 149
7.3.3.2 Virtual NICSRs i i it 149
7.3.4 Vector Address, IPL, Sync/Asynch (NICSRO). 150
7.3.5 Transmit Polling Demand (NICSR1) ‘151
7.3.6 Receive Polling Demand (NICSR2) 152
7.3.7 Descriptor List Addresses (NICSR3,NICSR4) 153
7.3.8 Status Register (NICSR5) ittt 155
7.3.8.1 NICSR5Status Report00t innnn. 159
7.3.9 Command and Mode Register (NICSR6) 160
7.3.10 System Base Register (NICSR7) oLt 166
7.3.11 Reserved Register (NICSR8), 167
7.3.12 Watchdog Timers (NICSR9) iiiiiiiiinnnnnn 167
7.3.13 Revision Number and Missed-Frame Count (NICSR10) 168
7.3.14 Boot Message (NICSR11,12,13)ot iineernnnnnn 169
7.3.15 Diagnostic Registers NICSR14,15)ttt 170
7.3.15.1 Diagnostic Breakpoint Address Register NICSR14) 170
7.3.152 Monitor Command Register (NICSR15) 171
7.3.16 Descriptors and Buffers—Format 172
7.3.17 Receive Descriptors.c.iiiitiriierenneneeeannoannns 173
73171 RDESOWord.ciittititittneeneeereannnnnnns 173
73172 RDESIWord...........ciiuitiiinieiieeenneeenonenanns 175
73173 RDESZWord.t itiiiiiitineneneeeeanannanns 176
73174 RDES3Word.........cciiitiiiireeennnnnenaannnnnns 177

7.3.175 Receive Descriptor Status Validity 177

viii Contents

7.3.18 Transmit Descriptorscc.cuiitiiuinrnnennennn.. 178
7.3.181 TDESOWord00t iiiiiiiiiiiiiiinnennnn. 178
73182 TDES1Word....................... st e e 180
73183 TDES2Wordttt 181
73184 TDES3word 00 iiiiiiiiiinn e, 182
7.3.18.5 Transmit Descriptor Status Validity 182
7.3.19 SetupFrame 0.0ttt 183
7.3.19.1 FirstSetupFrame i 183
7.3.19.2 Subsequent Setup Frame 183
7.3.19.3 Setup Frame Descriptorcoiiiiininrinn..n. 184
7.3.19.4 Perfect Filtering Setup Frame Buffer 185
7.3.19.5 Imperfect Filtering Setup Frame Buffer 187
7.3.20 Hardware and SoftwareResetcocvin... 191
7321 Interruptsttt 192
7.3.22 StartupProcedure.............. .0ttt 192
7.3.23 Reception Process0ttt imenneneennnnn 193
7.3.24 Transmission Processccoiutereneernneeennnns 194
7.3.25 Loopback Operationscc0iiriiinnenneennnn. 196
7.3.26 Support for DNA CSMA/CD Countersand Events 197
74 KA670 Mass Storage Interface., 198
7.41 SHAC Overviewiiiniiiieiiieeeaiinieennnns 199
742 CI-DSSIOvVerview.ciiiitttnneineennneeenns 201
743 SHACRegistersttt ianeeennnnn 203
74.3.1 ClPort Registersc.iiiuiiiiiinnnnnnnnnnns 203
7.4.3.2 SHAC-Specific Registersccciiiiiiineinn.. 211

8 KAG670 Error Handling

8.1 Error Handling—SCB Entry Points 214
8.1.1 Error Categories for SCBEntry Points 215
8.1.2 Macrocode Error Handlingand Recovery 216
8.1.2.1 Error StateCollection i, 217
8.1.2.2 ErrorAnalysis.ciiiiiitiiiinennnnnnennnns 217
8.1.2.3 Error Recoveryiiiiuiiiiiiiiiennnecnnnanens 218
8.1.24 Special Considerations for Cache and Memory Errors 218
8.1.25 ErrorRetryot e i e 220
8.2 Console Haltand HaltInterrupt...............cciiiirennnan. 220
8.3 Machine Check Exceptionciiiiriiiinnenrneeeaannns 221
8.3.1 Machine Check Stack Frame ccvvuvven. 221
83.2 MachineCheck ParseTreeccoiiieinininnennns 224
83.3 MCHK_FP_PROTOCOLERRORccciviviennnnnn 227
834 MCHK_FP_ILLEGAL OPCODE............cciiiiinrnencnns 228
83.5 MCHK_FP_OPERAND_PARITY............... e eeceae e 228
83.6 MCHK_FP_UNKNOWN_STATUSccciiitiinrnnnnnes 229
837 MCHK FP_RESULT PARITY..........ccoviiiinunnennnnnnnn 229

838 MCHK TBM_ACV TNViiiiniiiiiinenenennanenns . 229

Contents ix

839 MCHK_ TBH ACV_ TNV i 229
8.3.10 MCHEK_ INT_ID VALUE 230
8.3.11 MCHEK _MOVC _STATUS e 230
8.3.12 MCHK UNKNOWN_IBOX TRAP, 230
8.3.13 MCHK BUSERR_READ PCACHE............ 230
8.3.13.1 Primary Cache Tag Parity Error on D-Stream Read Hit. 231
8.3.13.2 Primary Cache Data Parity Error on D-Stream Read Hit. 231
8.3.14 MCHK BUSERR READ DAL 231
8.3.14.1 Data Parity Erroron D-Stream Read 231
83.142 BusErroronD-Stream Read 232
8.3.15 MCHK BUSERR WRITE DALccivui... 233
8.3.16 MCHK _UNKNOWN_BUSERR TRAP........................ 233
8.3.17 MCHK UNKNOWN_CS_ADDRcctiiiiiiiiinnnn. 233
84 Power-Faillnterrupt............. 0 iiiiiiiiinno... 234
85 HardErrorInterrupts............ 0.ttt 234 .
8.5.1 Parse Tree for a Hard Error Intercupt 234
8.5.2 RDAL Data Parity Error on Memory Write 236
8.5.3 Uncorrectable Main Memory Error on Masked Write 236
854 Main Memory Nonexistent Write 236
855 IO Nonexistent Writet iimmiinnnnnn. 236
8.5.6 CPBusTimeoutona Writeccuiiiiennnn. 236
8.5.7 Q22-bus NXM/NOSACKonaWriteciiiueunn.. 237
858 Q22-bus NOGRANTonaWritecciiuunn... 237
8.5.9 Q22-bus Device Parity ErroronaWrite 237
86 Soft ErrorlInterrupts 237
8.6.1 Parse Tree for Soft Error Interrupts 237
8.6.2 CacheorMemoryErrors........... cciiiiinnn. 239
8.6.2.1 Primary Cache Errors 239
8.6.2.2 RDALData ParityErrors, 239
8.6.2.3 Bus ErroronI-Stream Read 240
8.6.3 Cache Fill Errors on the Nonrequested Quadword of a Read 240
8.6.4 C-Chip Errorsot e et e e 240
8.6.4.1 C-Chip Backup Tag Store Parity Error 241
8.6.4.2 C-Chip Primary Tag Store Parity Error 241
8.6.4.3 C-Chip Bus Protocol Error ciiiuunn.-. 241
8.7 Kernel Stack Not Valid Exception 241
8.8 Errors Without Notification. 242
8.8.1 Parity Generation and Detection Phllosophy 242
8.8.2 Microcode-Detected Error Summary 242

8.8.3 Errors Detectedby Self-Testsot 243

x Contents

Firmware
9 Firmware

9.1 Firmware Capabilities 248
9.2 Firmware Overviewttt 248
9.3 Halt Entry, Exit,and Dispatch 249
9.3.1 Halt Entry—Saving Processor State 249
9.3.2 Halt Dispatch i i, 250
9.3.2.1 External Halts i, 251
9.3.3 Halt Exit—Restoring the Processor State e 252
94 Power-Up e e e 252
9.4.1 Identifying the Console Device 252
9.4.1.1 Mode Switch SettoTest, 253
9.4.1.2 Mode Switch SettoQuery. 253
94.1.3 Mode Switch SettoNormal 254
9.4.2 LED Codesoiiiiiei ittt e e e ettt e et 255
9.5 Operating System Bootstrapc.virirernrnranennnn. 256
9.5.1 Preparing for the Bootstrap 256
9.5.1.1 Boot Deviceso e e e e 258
9.5.1.2 Boot Flagso oot e e e 260
9.5.2 Primary Bootstrap, Virtual Memory Boot 260
9.5.3 Device-Dependent Bootstrap Procedures 263
9.5.3.1 Disk and Tape Bootstrap Procedure 263
9.5.3.2 PROM Bootstrap Procedure 264
9.5.3.3 Network Bootstrap Procedure 264
9.6 Operating System Restart. itieninnn .. 265
9.6.1 Locating the Restart Parameter Block 266
9.7 ConsSole Serviceciiii it ittt e e 266
9.7.1 Console Control Characters.cciiiiiiennnnen.. 267
9.72 Console Command Syntax.ccoietiiiniueennnennn 268
9.7.3 Console Command Keywordsccciiiuieinnnn. 268
9.7.4 Console Command Qualifiers, 270
9.74.1 Command Address Specifiersciiiiennnnnn. 270
9.7.5 References to Processor Registers and Memory. 274
98 ConsoleCommands.............c.iiuiiiteeierernnnaennnennn 274

270 1 1 U 275

CONFIGURE i i ettt it ieaanenenns 277

CONTINUE i i ittt ittt eiaaenannn 279

DEPOSIT ettt e e 280

EXAMINE ittt ittt e e 282

FIND ...ttt ettt ettt i 285

5 - I 286

HELP . .. ittt ittt eettetteanaaenan s 287

Contents xi

INITIALIZE i e et e e e e 289
MOVE .. e 291
NEXT . e 293
REPEAT e 295
SEARCH 296
SET . 299
SHOW .. e e e e 303
START e 307
ST . e 308
UNJAM 311
X e e e 312
b e 314
9.8.1 Command Summaryuuui .. 315
9.9 DIagnostiCso e e 318
9.9.1 Error Reporting. 319
9.9.2 Diagnostic Interdependencies 320

Q22-bus Specification

Al Introduction 321
A.11 Master/Slave Relationship 322
A2 Q22-busSignal Assignments. 322
A3 DataTransferBusCycles 325
A3.1 BusCycleProtocol 326
A32 Device Addressing............... .., 327
A4 Direct Memory AcCessottt it it e 334
A41 DMAProtocol e 334
A42 Block Mode DMA 336
A421 DATBIBusCycle 338
A422 DATBOBusCycle........ s 340
A43 DMAGuidelines e 341
A5 Interrupts i e 341
AS51 Device Priority ittt 342
A52 InterruptProtocol, 342
A53 Q22-bus Four-Level Interrupt Configurations 345
A6 Control Functions it 346
A6l Halt.. i e e e 346
A6.2 Inmitialization i e 346
AB63 Power Status..............c.iiiiiiiiti i e e 346
A7 Q22-bus Electrical Characteristics 346
A.7.1 Signal Level Specifications 347
AT72 LoadDefinition0 iiiiiiiiiiiieninnnnnns 3417
A73 120-0hmQ22-bust e e 347
AT4 BusDrivers.coiiiiiitiiitentittneeeaneaenaans 347

A.75 Bus Receivers e e . 348

Xii

Contents
A76 BusTermination0. ittt .. 348
A77 Bus InterconnectingWiring oL, 349
A7.7.1 Backplane Wiring it e 349
A772 Intrabackplane Bus Wiring 349
A7.73 PowerandGround 349
A8 System Configurationst 350
A81 PowerSupply Loading 353
A9 Module Contact Finger Identification 353
Specifications
B.l Dimensionsttt e 361
B.1.1 KA670 Console Connector (J2) 361
B2 DCPowerConsumptionc.ouuuniuereunnnnnnn.. 364
B3 BusLoadsottt 365
B.4 Battery Backup Specifications. 365
B.5 . Operating Conditionsc.. it nnnnnnnnn. 365
B.6 Nonoperating Conditions (Less Than 60 Days) 365
B.7 Nonoperating Conditions (Greater than 60 Days) 366
Address Assignments
C.1 KA670 General Local AddressSpace Map 367
C.2 KA670 Detailed Local Address SpacelMap 368
C.3 External, Internal Processor Registers 371
C.4 Global Q22-bus Address Space Mapc.ciiiiininnnnn. 372
VAX Instruction Set
Dl Symtax.iii e e e 373

Machine State on Power-Up

E.1 Main Memory Layout and State e 384
E.1.1 ReservedMainMemoryccuiiiurieennnennnnnnn 385
E.11.1 Page Frame Number (PFN)Bitmap 385
E.1.1.2 Scatter/Gather Map ittt iiinnnnnnnnn. 385
E.1.1.3 Firmware Scratch Memory 386
E.12 Contentsof Main Memory.c.c.iitutrrennnnnnn. 386
E.2 Memory Controller Registers 386
E.21 Primary(On-Chip)Cachecciiiininnn.. 386
E22 TranslationBuffer.......... 386

E.23 Halt-Protected Space. ittt 386

Contents xiii

F Maintenance Operation Protocol (MOP) Support

F.1 Network Listening it 387
F2 MOPCountersciuitimmmi ittt 392
G ROM Partitioning
G.1 Firmware EPROM Layout 396
G.1.1 Call-Back EntryPoints 397
G111 CPSGETCHAR_R4 397
G.1.1.2 CPSMSG_OUT_NOLF R4.......... 398
G.1.1.3 CPSREAD_ WTH_PRMPT R4 398
G.1.2 BootInformation Pointers................................. 399
H RAM Partitioning
H.1 SSCRAM Layoutttt 401
H.1.1 PublicData Structures 401
H.1.2 Console Program Mailbox (CPMBX) 402
H.13 FirmwareStack 403
H.1.4 DiagnosticState i, 403
H.1.5 User Areat e e ettt d e 403
| Data Structures
I.1 Halt Dispatch State Machine 404
1.2 Restart Parameter Block(RPB) 407
I3 VMBArgumentList 409
J Error Messages
J.1 HaltCodeMessagesiiiiiiiitiiinenneeeneeennn. 411
J.2 VMBError Messagescc.ouiiieineeeneneeneennaennn 413
J.3 Console Error Messagesccuuiieneueeeenoaenaneneans 414

Glossary

Index

xiv Contents

Examples

2-1
2-2
7-1
7-2
73
9-1

Figures
1-1
1-2
1-3
14
1-5
2-1
3-1
3-2
3-3 .
34
3-5
3-6
3-7

4-10
4-11
4-12
4-13
4-14
4-15

Changinga DSSI Node Nameciiiiiiiin...
Changinga DSSI Unit Number v,
Perfect Filtering Buffer. i,
Imperfect Filtering Buffer. oL,
Creating an Imperfect Filtering Setup Frame Buffer (C Program)

Diagnostic Register Dump.

KA670 CPUModulettt iiiiiaeeennnn.
KA670 CPU Module Block Diagram
KA670 CPU Module Component Side
MS670 Memory Modulettt
H3604 Console Module (Front View).
Backplane i e e et e e
General-Purpose Register
Processor Status Longword i,
Translation Buffer Tag (TBTAG)—IPR 4710 2Fg)
Translation Buffer Data (TBDATA)—(IPR 59193B 1) .-
Interrupt Priority Level Register (IPLR)— (IPR 1819 121¢)
Software Interrupt Request Register (SIRR)— (IPL 20,0 1436)
Software Interrupt Summary Register (SISR)— (IPL 211 15:¢)
Information Saved on a Machine Check Exception
Machine Check Error Register (MCESR)— (IPR 3830 261¢)
System Control Block Base Register (SCBB)}— (IPL 1749 113¢)
Console Saved PC (SAVPC)— (IPR42102A16)o i i,
Console Saved PSL (SAVPSL)— (IPR43102Byg)ccvvvvnn ..
System Identification Register (SID)— (IPR 6219 3E4g)
System Type Register (SYS_TYPE)............. ... v,
Accelerator Control and Status Register (ACCS)—(IPR 4030 283¢)
Primary Cache Dataand TagLayout
Primary Cache TagEntry,
Primary Cache DataEntrycoiiiiininnnnnnn
Primary Cache Physical Address Translation
Primary Cache Status Register (PCSTS)— (IPR 12749 TF16)........
Primary Cache Error Address Register (PCERR)—(IPR 12649 7TE¢). .
Primary Cache Index Register (PCIDX)—(IPR 12539 7TDyg).........
Primary Cache Tag Array Register (PCTAG)— (IPR 124, 7Cy)
Primary Cache Detectable Single Errors.
Primary Cache Detectable Double Errors
Tag and Valid Bits as They Correspond to Backup Cache Data
Backup Cache Physical Address Translation.....................
Backup Cache Backup Tag Store Register (BCBTS)— (EPR 11340716)
The Primary Cache Tag Store—C-ChipCopy

VAX Physical Address in C-Chip’s Primary Tag Store Addressing (EPR
Operations)cciiiitiiinneeeennaneneeeenanneennnns »

10
1
14
21
22
33
33
36
36
36
38
43
43
46
46
48
49
49
55
55
56
57
59

64
67
68
69
70

7

74

4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29

5-1
5-2

54

5-6
5-7

5-9
5-10
6-1

DREPIPAD QN

7-2
73
74
7-5
7-6
7-17
7-8
7-9
7-10
7-11
7-12
7-13
7-14

Contents xv

Data Bus Format to Access the Primary Tag Store (C-Chip Copy) 74
C-Chip Refresh Register (BCRFR)—EPR 11619 7416) - - -« -« 75
Backup Cache Index Register as Used for Backup Cache Tag Store . . . 76
Backup Cache Index Register as Used for Primary Cache Tag Store .. 77
Backup Cache Status Register (BCSTS)— (EPR 11819 7615) 78
Backup Cache Control Register (BCCTL)— (EPR 11919 7716) 81
Backup Cache C-Chip Error Address Register —(EPR 120, 783¢) ... 84
Backup Cache Flush Backup Tag Store Register —(EPR 12197946) . . 85
Backup Cache Flush Primary Tag Store Register —(EPR 1225 7A;4) 86
G-Chip System Error Status Register MEMCSR32) 89
G-chip Memory Error Address Register MEMCSR33) 92
G-Chip I/0 Error Address Register MEMCSR 34) 93
CP bus Error Address Register (MEMCSR35) 93
G-Chip Mode Control and Diagnostic Status Register MEMCSR 36).. 94
32-Bit Modified Hamming Code 102
Console Receiver Control/Status Register— (IPR 3235 2036) 111
Console Receiver Data Buffer - (IPR 3319 2136), 111
Console Transmitter Control/Status Register—(IPR 34,9 2216). 113
Console Transmitter Data Buffer— (IPR 3510 2346) 114
Time-of-Year Clock (TODR) - (EPR 2739 1Byg) oo i oo oo 115
Interval Timer (ICCS) — (EPR 2410 1816) . -+« e v et v e ee e 116
Timer Control Registers (TCROand TCR1). 117
Timer Interval Registers (TIROand TIR1) 118
Timer Next Interval Registers (TNIRO and TNIR1) 118
Timer Interrupt Vector Registers (TIVROand TIVR1) 119
Boot and Diagnostic Register (BDR) 121
Diagnostic LED Register (DLEDR) 124
SSC Base Address Register (SSCBR) 127
BDR Address Decode Match Register BDMTR) 128
BDR Address Decode Mask Register (BDMKR) 128
SSC Configuration Register (SSCCR) 128
CP Bus Timeout Control Register (CBTCR) 131
Q22-bus Address Translationc....... 133
Q22-bus Map Register Format 135
Q22-bus Map Cache Entry Format 136
Interprocessor Communication Register IPCR) 138
Q22-bus Map Base Address Register (QBMBR) 140
System Configuration Register (SCR) 140
DMA System Error Register (DSER) 142
Q22-bus Error Address Register (QBEAR) 144
DMA Error Address Register (DBEAR). 144
Ethernet Packet Format 146
Vector Address, IPL, Sync/Asynch (NICSRO). 150
Transmit Polling Demand NICSR1) 152
NICSR2 Formatttt iiiinninennnnns 152
Descriptor List Addresses Format. 154

XVi

Contents

7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
730
731
7-32

7-33

734
7-35
7-36
7-37
738

LLLE

A-1

NICSRE Format ittt i 155
NICSR6 Format ittt 160
NICSR7 Formatii ittt i 166
NICSRI Formatttt e 167
NICSRIO Formatoiiiiiiiiiit e, 168
Boot Messagec0 ittt 169
NICSRI4 Format0ttt 170
NICSRISG Formatiiiiiiiiiiii it inneannnan, 171
Receive Descriptor Format 173
Transmit Descriptor Format 178
Setup Frame Descriptor Format 184
Perfect Filtering Setup Frame Buffer Format.................... 186
Imperfect Filtering Setup Frame Format 188
Relationship of the DSSIto SCAandCI........................ 200
Port Queue Block Base Register (PQBBR) 203
Port Queue Block Base Register (PQBBR) After Reset 204
Port Status Register (PSR)Bits, 205
Port Error Status Register (PESR) Bits 207
Port Failing Address Register (PFAR) 207
Port Parameter Register (PPR) 208
Port Control Registers. i, 208
Port Maintenance Control and Status Register (PMCSR) 211
SHAC Software Chip Reset (SSWCR) 212
SHAC Shared Host Memory Address (SSHMA) 212
Stack Frame for Machine Check Exception...................... 222
Machine Check Parse Tree iiineunenn.. 225
Parse Tree for a Hard Error Interrupts 235
Soft Error Interrupt Parse Tree, 238
KA670 Firmware Structural Components 248
Language Selection Menu it iiiiininnnnnnnnn 254
Normal Diagnostic Countdown, 255
Abnormal Diagnostic Countdown 255
Console Boot Display With No Default Boot Device 255
Memory Layout Before VMBEntry., 258
VMB Boot Flags (/R5:)ciiiiiiiiiiiiiniinnnnnns 260
Memory Layoutat VMBExit iiiinna.. 262
Boot Block Format ittt ieiinnnnnnnn 263
DATI Bus Cycle.ttt it i ittt et e eieinannn 328
DATIBusCycle Timingttt nnnnnnnnnnns 329
DATO or DATOBBusCycle ittt 330
DATO or DATOB Bus CycleTiming 331
DATIO or DATIOBBusCycleottt i 332
DATIO or DATIOBBusCycle Timingciiiiinneennnn. 333
DMA Protocol0iini ittt ettt tateaeanaaaaaas 335
DMA Request/Grant Timingttt ienennennnnn 336
DATBI BusCycle Timingt iiiiiininennnnnn. . 337

Tables
1
3-1
3-2
3-3
34
3-5
3-6
3-7

Contents xvii

DATBO Bus Cycle Timing. cciinii i 338
Interrupt Request/Acknowledge Sequence. 343
Interrupt Protocol Timing 344
Position-Independent Configuration 345
Position-Dependent Configuration. 346
Bus Line Terminations 348
Single-Backplane Configuration cciuuuoo... 350
Multiple Backplane Configuration 352
Typical Pin Identification System 353
Quad-Height Module Contact Finger Identification 354
Typical Q22-bus Module Dimensions. 355
Memory Layout After Power-Up Diagnostics 384
KABTO0 EPROM Layout it 396
KA670 SSCBBU RAM Layoutt 401
NVRO (20140400) : Console Program Mailbox (CPMBX) 402
NVRI1 (20140401) 402
NVR2 (20140402) e 403
Conventions it e xx1i1
General-Purpose Register Descriptions 22
Internal Process Register Descriptions 23
KA670 Internal Processor Registers 24
Category 1 Internal Processor Registers 28
Category 2 Internal Processor Registers 29
Interrupt Priority Levels 34
Exception Classes ittt it e 37
Floating Point Errors o .. 39
Memory Management Errors 39
Interrupt Errors e e 40
Microcode Errors. 40
Read Errors e e 41
Write Errors e 41
RDAL BusErrors i 41
Internal State Information Field. 42
The System Control Block Format 43
CPU State AfteraHalt......... iiia.. 46
HALT Codes ovnit it ittt ettt eteeie s 47
System Identification Register (SID), 48
System Type Register (SYS_TYPE). 49
Accelerator Control and Status Register Bit Definitions 50
Primary Cache Internal Processor Registers. 58
Primary Cache Status Register 59
Backup Cache External/Internal Processor Registers 71
Backup Cache Backup Tag Store Register Bits 72
Tag Store Subblock Numbers 73

XViii

Contents

4-6

4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
5-1
5-2

53

54
5-5
5-6
5-7
5-8
6-1

6-2
63
64
6-5
7-1
7-2
7-3
74
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-14
7-15
7-16

Primary Tag Store Register Bits 75
C-Chip Refresh Register Bits 76
Backup Cache Index Register as used for Backup Cache Tag 76
Backup Cache Index Register as Used for Primary Cache 77
Backup Cache Status Register Bits. 78
Status Bits Loaded in BCSTS During C-Chip Transactions 80
Backup Cache Control Register Bits 81
Reenabling a Turned-Off Tag Store 84
Backup Cache C-Chip Error Address Register Bits 85
G-Chip Registers. ittt e 88
G-Chip System Error Status Register Bits 89
Memory Error Address Regiister Bits 92
G-Chip I/0 Error Address Register Bits. 93
CP Bus Error Address Register Bits 93
G-Chip Mode Control and Diagnostic Status Register Bits 95
Syndrome Examples i i, 102
GMIPort Priority ittt 104
System Requirements for Buffered Writes and Invalidates.......... 107
Console Registers ittt 110
Console Receiver Control/Status Register Bits 111
Console Receiver Data Buffer Bits 112
Console Transmitter Data Buffer 113
Console Transmitter Data Buffer Bits. 114
Baud Rate Selection i i i e 115
Interval Timer Bits it 116
Timer Control Register Bits 117
Boot and Diagnostic Register Bits. 122
Diagnostic LED Register Bits 124
Power-Up Modes ittt ittt i eieeennn 125
SSC Configuration Register Bits 129
CP Bus Timeout Control Register Bits 131
Q22-bus Map Register Addressesc.iuuinnn. 134
Q22-bus Map Register Bits 135
Q22-bus Map Cache Entry Bit Description 137
Interprocessor Communication Register Bits 138
System Configuration Register Bits 141
DMA System Error Register Bits 142
Bit Access Modes it iniiinnnneneenns 149
NICSRO Bitsottt ittt it ittt ittt ttaeteeaeenenns 151
NICSRL Bits . ..o ittt i i et et anaeaaaanns 152
NICSR2 Bits . .. iiiii ittt ittt it ettt seeeneannnaaasenn 153
Descriptor List Address Bitst iiiernnenn. 154
NICSRS Bits ... iiiiii ittt ittt ittt i teeeeeeenenaanannnnns 155
NICSRE Bitsottt ittt ittt teeeeennnnaneenes 160
NICSRT Bitsttt ittt ittt it i ieeannennnnnns 166

NICSRI Bitsii i ittt iiieca e eninnnn . 167

7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
731
7-32
7-33
7-34
735
7-36
737
7-38
7-39
740
741
8-1

8-2

85

8-17

8-9
9-1
9-2
9-3

9-5

9-7
A-1
A-2
A3
A4
A-5

Contents xix

NICSRIO Bits . ..ottt i e e s 169
NICSRIL12,13Bitscuiitt ittt i, 170
NICSRI4 Bitsot it ettt e e, 170
NICSRIS Bits vttt et e e e 171
RDESO Bits.ottt i e 173
RDESI Bits.o i e et e e 176
RDES2 Bits.ottt et e e 176
RDESS Bits. . ..o ittt e e e e e e 177
Receive Descriptor Status Validity 177
TDESO Bits. i i e e 178
TDESL Bits. it ittt e e 180
TDESZ Bits.ot it e e 182
TDESS Bits.........iii i e 182
Transmit Descriptor Status Validity 183
Setup Frame Descriptor Bits. 184
NICSR Field Values After Reset 191
Reception Process State Transitions 194
Transmission Process State Transitions 195
CSMA/CD Countersc.cuiuuuiiieemmnen e, 197
Port Queue Block Base Address Register (PQBBR) Bits 204
Port Queue BLock Base Address Register Bits 204
Port Status Register Bits 205
Port Error Status Register (PESR)Bits 207
Port Parameter Register (PPR)Bits 208
Port Maintenance Contrel and Status Register (PMCSR) Bits 211
CPU Internally Generated SCB Entry Points 214
Error Summary Based on SCB Entry Points 215
Console Halt Codes 220
Interrupt State Format 222
AT (Address-Type) Codescuiiiimneennenn. 223
DataLength (DL)Codes i, 223
Machine Check Fault Codes 224
MCHK_FP_PROTOCOL_ERROR e 227
MCHK_FP_OPERAND_PARITY i, 228
Halt Action Summary ittt 250
LED Codesoiiiiiiiii ittt ettt 256
KA670 Supported Boot Devices, 259
Command, Parameter, and Qualifier Keywords 269
Console Symbolic Addresses 270
Console Command Summaryc0ieieieeeeeenn. 315
Console Qualifier Summary i, 317
Data and Address Signal Assignments 322
Control Signal Assignmentsc.0itiemenneeeeerennn 323
Power and Ground Signal Assignments 324
Spare Signal Assignments.00i ittt 325
Data Transfer Operations ciiiiiiernnnnnens . 325

xx Contents

A-6

I-1
-2
I3
J-1
J-2
J=3

Bus Signals for Data Transfers 326
Bus Pin Identifiers it 355
KA670 Console Connector (J2) Pinout 361
Integer Arithmetic and Logical Instructions 374
Address Instructionsttt e e 371
Variable Length Bit Field Instructions 377
Control Instructions00ttt innnnnen.. 377
Procedure Call Instructions, 378
Miscellaneous Instructions 378
Queue Instructions e 379
Operating System Support Instructions 379
Floating Point Instructions, 380
Microcode-Assisted Emulated Instructions 382
KA670 Network Maintenance Operations Summary............... 388
Supported MOP MesSSagesviiminenenteennenennnnnnn 389
Ethernet & IEEE 802.3 Packet Headers 391
MOP Multicast Addresses and Protocol Specifiers 391
MOPCounter Block 392
" Firmware State Transition Table 405
Restart Parameter Block Fields 407
VMB Argument List i 410
HALT MeSSageSt v ittt ittt eiii e iiieeenee e, 412
VMB Error Messagescouiiiniiitnnenneeennennannn 413

Console Error Messagesc..cuiiiiiiiiienneeeannnnann 414

About This Manual

The KA670 CPU Module Technical Manual documents the functional, physical, and
environmental characteristics of the KA670 CPU module. The manual also includes
information on the MS670 memory expansion modules.

There are two versions of the KA670 CPU module, KA670-AA and KA670-BA. This
manual covers both versions. The KA670-BA CPU module is designed for use with
workstations and servers. The KA670-BA is functionally equivalent to the KA670-AA,
except that it does not support multiuser VMS and ULTRIX operating system licenses.

Audience

This manual is intended for a design engineer or applications programmer who is familiar
with Digital’s extended LSI-11 bus (Q22-bus) and the VAX instruction set. This manual
should be used along with the VAX Architecture Reference Manual as a programmer’s
reference to the module.

Organization
The manual is divided into three parts.
Overview and Installation

¢ Chapter 1, “Overview,” introduces the KA670 CPU module, the MS670 memory
module, and the H3604 console module, including module features and specifications.

e Chapter 2, “Installation and Configuration,” describes the procedures for installing
and configuring the CPU, memory, and console modules in the Q22-bus backplanes
and system enclosures.

Architecture

e Chapter 3, “Central Processor and Floating Point Unit,” describes the functions of the
central processing unit (P-chip) and the floating point unit (F-chip).

e Chapter 4, “Cache and Main Memory,” describes the operation of the KA670 CPU
module’s cache memory as well as the feature of main memory.

¢ Chapter 5, “The Console Line, TOY Clock, and Bus System,” describes the console
serial line and the time-of-year clock. The chapter also provides an overview of the
KA670 bus system.

e Chapter 6, “KA670 Boot and Diagnostic Facility,” describes the boot and diagnostic
registers, EPROM memory, battery backed-up RAM and hardware initialization.

e Chapter 7, “Interface Subsystems,” describes the interfaces the KA670 CPU module
uses for the Q22-bus, Ethernet, and mass storage bus.

xXi

xXii

About This Manual

Chapter 8, “KA670 Error Handling,” describes unexpected KA670 system error
exceptions and interrupts, from the macrocoder’s point of view.

Firmware

Chapter 9, “Firmware,” describes the entry dispatch code, boot diagnostics, device
booting sequence, console program, and console commands.

Appendices

Appendix A, “Q22-bus Specification,” describes the low-end member of Digital’s bus
family. All of Digital’s microcomputers, such as the MicroVAX 3500, MicroVAX 3600,
and MicroPDP-11, use the Q22-bus.

Appendix B, “Specifications,” describes the physical, electrical, and environmental
characteristics of the KA670 CPU module.

Appendix C, “Address Assignments,” provides a map of VAX memory space.

Appendix D, “VAX Instruction Set,” is a list of the VAX instructions, provided for
reference only.

Appendix E, “Machine State on Power-Up,” describes the state of the KA670 after a
power-up halt.

Appendix F, “Maintenance Operation Protocol (MOP) Support,” describes the
maintenance operation protocol (MOP) support features in the KA670 firmware.

Appendix G, “ROM Partitioning,” describes the public ROM partitioning and
subroutine entry points that are guaranteed to be compatible over future versions
of the KA670 firmware.

Appendix H, “RAM Partitioning,” describes how the KA670 firmware partitions the 1
kilobyte of battery backed-up RAM.

Appendix I, “Data Structures,” describes the global data structures used by the
KA670 firmware.

Appendix J, “ Error Messages ,” provides a list of the expected responses to error
conditions that may be encountered during various transactions on the KA670
module.

The glossary defines many of the acronyms and new terms used in this manual.

Conventions

The following conventions are used in this manual:

About This Manual xxiii

Table 1 Conventions

Convention Meaning

<xy> Represents a bit field, a set of lines, or a set of signals, ranging from x through y.
gc())r example, RO <7:4> Indicates bits 7 through 4 in a general-purpose register

[x:y] Represents a range of bits, from y through x.

2014 0030 Eight-digit numbers in this document are hexadecimal longwords, typically
representing VAX-32 bit addresses or data.

45649, 1216 In sections where octal, decimal, and hexadecimal numbers may appear, the
radix of a number is included to avoid ccnfusion.

Return Keys or switches that are labeled on the equipment appear in a box.

Ctri For key sequences that begin with the key, hold down and press the
second key.

Caution Contains information to prevent damage to equipment.

Note Contains general information.

variable The names of variable command parameters and options appear in italics.

{ Encloses a required part of a console command.

{1 Encloses an option to a console command.
Represents a list command elements.

Related Documents
The following documents are related to the KA670 CPU:

KA670 CPU System Maintenance Manual EX-347AA-MG
MicroVAX Maintenance Kit QZ-K19AA-GZ130
VAX Architecture Handbook EB-26115-46

VAX Architecture Reference Manual EY-3459E-DB

You can order these documents by phone or mail.
Continental USA and Puerto Rico
Call 800-258-1710 or mail to:

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

New Hampshire, Alaska, and Hawaii
Call 1-603-884-6660.
Outside the USA and Puerto Rico Mail to:

Digital Equipment Corporation
Attn: Accessories and Supplies Business Manager
¢/o Local Subsidiary or Digital-Approved Distributor

Overview and Installation

* Chapter 1, Overview

* Chapter 2, Installation and Configuration

1

Overview

This chapter describes the KA670 CPU module, MS670 memory module, and H3604
console module.

1.1 KA670 CPU Module

The KA670 (Figure 1-1) is a quad-height VAX processor module for the Q22-bus.
The KA670 is designed for use in high-speed, real-time applications and in multiuser,
multitasking environments. The KA670 uses a cache memory to maximize performance.

¥ £

PEventul 3

Figure 1-1 KA670 CPU Module

The KA670 is used in the MicroVAX 4000-300 system, which is housed in the BA440
enclosure. There are no jumpers or switches to configure. Fuses are located on the
H3604 console module.

The KA670 can be configured only as an arbiter CPU on the Q22-bus, where it arbitrates
bus mastership and fields bus interrupt requests and any on-board interrupt requests.

4 Overview

The KA670 uses a 100-pin ribbon cable to communicate with thé H3604 CPU console
module. The module contains configuration switches, Ethernet and DSSI connectors, and
a LED display. Section 1.7 describes the H3604 module.

A single KA670 CPU module can support up to four MS670 memory modules. The KA670
and MS670 modules mount in dedicated backplane slots in the BA440 enclosure. The
KA670 CPU module communicates with the MS670 memory modules across a memory
interconnect located on a 270-pin backplane connector. The backplane connector also
connects the subsystem with the Q22-bus and one DSSI bus. Together, the CPU and
memory modules form a VAX subsystem that uses the DSSI bus to communicate with
mass storage devices and the Q22-bus to communicate with I/O devices. Figure 1-2 is a
block diagram of the subsystem major functions.

Backplane Interconnect

Serial Line

DSSI Bus #1 9 g? DSSI Bus #2) To Mass Storage Slots
i 3 :‘_ﬂ'\ |
H3604 : X3 KA670 N
Console nggf: i) CPU < oK Q22-bus) To Q22-bus Slots
Module 53 Module 58
@ 3
Q [+]
5] Q
-]

GMI Bus

hNY

——
S

MS670 Memory Modules
(1 minimum/4 maximum)

R —

MLO-003895

Figure 1-2 KA670 CPU Module Block Diagram

1.1.1 Module Components

The KA670 CPU is a quad-height module that mounts in a dedicated CPU backplane slot.
The MS670 memory modules mount in four dedicated memory backplane slots. The CPU
module is fingerless and uses a 270-pin high-density, right-angle connector to connect to
the backplane.

KA670 CPU module includes the following major hardware components. Figure 1-3
shows chip locations, using the chip identification numbers.

¢ DC520 (P-chip): VAX central processor with a 143 MHz clock
¢ DC523 (F-chip): Floating point accelerator
¢ DC592 (C-chip): Two-level cache and its bank of associated RAM chips

Overview 5

* DC561 (G-chip): Main memory controller

e DC521: Clock

¢ DC527 (CQBIC): Q22-bus interface

* DC541 (SGEC): Ethernet interface

¢ DC542 (SHAC): DSSI interface chips (2)

* DC511 (SSC): System support chip

¢ DC509: Clock

* Two firmware ROMs: 256 kilobytes (Each is 128 kilobytes by 8.)

¢ 100-pin connector to the H3604 console module

e 270-pin connector to the backplane carrying signals for the Q22-bus, the DSSI bus,

and the memory interconnect

Console Connector

L ! | R A } L B
,_., (I'[]—U_"'n" 5 Firmware
‘ ROMs
DC541 DC542
DC511
DC523 DC592
DC521
1
DC520 DCS6 DC527 DC542
g -
p 4
Backplane Connector / MLO-003894

Figure 1-3 KA670 CPU Module Component Side

The KA670 CPU is designed for use in high-speed, real-time applications and in
multiuser, multitasking environments. The KA670 CPU incorporates a two-level cache to
maximize system performance. Estimated compute performance for the KA670-AA CPU
is 8.0 times that of a VAX 11/780 system.

Functionally, the KA670-AA CPU module is divided into four major areas:

* Central processing subsystem

6 Overview

System support subsystem
I/O subsystem

Main memory controller

1.2 Central Processing Subsystem

The central processing subsystem contains a CPU chip, a floating point accelerator (FPA)
chip, the cache RAMs, and a cache controller chip.

1.2.1 Central Processing Unit (P-Chip (DC520))

The CPU chip is the heart of the KA670 module. The CPU executes the 181 instructions
in the MicroVAX chip subset of the VAX instruction set. It is implemented by the CPU
chip (REX520, DC520), which is in a 224-pin surface-mount package. The CPU chip
achieves a 28 ns microcyle at an operating frequency of 143 Mhz. The processor also
supports full VAX memory management with demand paging and a 4 gigabyte virtual
address space.

The central processor supports the MicroVAX instruction set with the following string
instructions:

e CMPC3

¢ CMPC5

e LOCC

e SCANC

¢ SKPC

* SPANC

The central processor provides the following subset of the VAX data types:
¢ Byte

e Word

* Longword

¢ Quadword

* Character string

¢ Variable-length bit field
¢ Absolute queues

¢ Self-relative queues

¢ F-floating
¢ G-floating
e D-floating

Support for the remaining VAX data types can be provided through macrocode emulation.

Overview 7

1.2.2 Floating Point Accelerator (F-Chip (DC523))

The floating point accelerator is implemented by the F-chip, which executes the VAX
f_, d_, and g_ floating point instructions. The F-chip receives opcode information from
the P-chip, and receives operands directly from memory or the P-chip. The result of the
floating point is always returned to the P-chip.

The floating point accelerator executes 61 floating point instructions and 2 longword-
length integer multiply instructions in the VAX base instruction group. The F-chip is in
a 224-pin surface mount package.

1.2.3 The Cache

The KA670 processor module uses a two-level cache to maximize CPU performance. The
first level is the primary cache, consisting of 2 kilobytes on the central processing chip
(P-chip). The second level is the backup cache, consisting of 24 16K-by-4 static RAMs and
a cache controller chip.

The cache controller chip is implemented with the backup cache chip, (C-chip, DC592),
which is in a 224-pin surface mount package. The C-chip contains the tag store and the
control logic for the backup cache RAMs, as well as a copy of the primary cache tag store
to guarantee primary cache coherence between memory and processor. The chip also
provides an additional bus interface for invalidate filtering, to improve performance.

1.3 System Support Subsystem

The system support subsystem handles the basic functions required to support the
console in a system environment. This subsystem contains the system support chip
(SSC), the firmware ROMs, the boot and diagnostic register, and the station address
ROM.

1.3.1 System Support Chip (SSC (DC511))

The SSC chip is in an 84-pin CERQUAD* surface mount package. The SSC chip provides
console and boot code support functions, operating system support functions, timers, and
the following features:

* Word-wide ROM unpacking

¢ 1 kilobyte of battery backed-up RAM

¢ Halt-arbitration logic

¢ Console serial line

¢ Interval timer with 10 ms interrupts

¢ VAX standard time-of-year clock with battery backup

¢ JIORESET register

¢ Programmable CDAL bus timeout (CPU data/address lines)
¢ Two programmable timers

* A register to control the diagnostic LEDs

* A ceramic-body device with leads on four sides.

8 Overview

1.3.2 Firmware ROMs

Resident firmware ROM is on two 128 Kbyte by 8 EPROM chips. The firmware gains
control when the CPU halts. The firmware contains programs that provide the following
services:

¢ Board initialization
* Power-up self-testing of the KA670 and MS670 modules

* Emulation of a subset of the VAX standard console (auto or manual bootstrap, auto or
manual restart, and a simple command language for examining or altering the state
of the processor)

¢ Booting from supported Q22-bus devices
¢ Multilingual translation of key system messages
See Chapter 9 for details on KA670 firmware.

1.3.3 Boot and Diagnostic Register

The boot and diagnostic register (BDR) allows the firmware and the operating system to
read KA670 configuration bits.

1.3.4 Station Address ROM

The station address ROM contains the network address of the system. This is
implemented in a 32-byte by 8-bit ROM (6331).

1.4 /O Subsystem
The /O subsystem contains the following:

¢ 2 DSSI mass storage interfaces
¢ Ethernet interface
* @22-bus interface

1.4.1 DSSI Mass Storage Interface (SHAC (DC542))

The two single-host adapter chips (SHAC) implement the DSSI bus interfaces. One
SHAC interfaces to the KA670 system console module, while the other SHAC interfaces
to the KA670 backplane. The DSSI interface allows each DSSI bus on the KA670 to
transmit packets of data to, and receive packets from, up to seven other DSSI devices.
These devices include the RF-series integrated storage elements (ISEs), a KFQSA
module, a second KA670 module, or a KA640 module.

Each SHAC is in a 164-pin CERQUAD package. The SHAC facilitates scatter and gather
mapping along with internal FIFO buffering.

The DSSI bus improves system performance, because it has a higher transfer rate than
the Q22-bus and it relieves the Q22-bus of disk traffic. The DSSI bus has eight data
lines, one parity line, and eight control lines. The ISEs have built-in controllers, so many
functions can be handled without host or adapter intervention.

Overview 9

1.4.2 Ethernet Interface (SGEC (DC541))

The Ethernet interface handles communications between the CPU module and other
nodes on the Ethernet. The interface is implemented with the second generation
Ethernet controller chip (SGEC, DC541) on-board network interface. Used in connection
with the H3604 console module, the SGEC allows the KA670 to connect to either a
ThinWire or standard Ethernet. The SGEC supports the Ethernet data link layer and
the CP bus parity protection. The SGEC chip is in a 84 pin package. The chip facilitates
scatter and gather mapping along with dual internal FIFO buffering.

1.4.3 Q22-bus Interface (CQBIC (DC527))

The KA670 includes a Q22-bus interface that allows communication between the
KA670 and other devices on the bus. It is implemented with the CP bus to Q22-bus
asynchronous adapter chip (CQBIC, DC527). The CQBIC is in a 132-pin CERQUAD
surface mount package. The KA670 does not provide Q22-bus termination. The
backplane provides the termination resistors. The Q22-bus interface supports the
following functions:

¢ Programmable and direct mapping functions

¢ Masked and unmasked longword reads and writes from CPU to the Q22-bus memory
and I/O space and to the interface registers

¢ Up to 16-word, block mode writes from Q22-bus to main memory
¢ Up to 2-word, block mode transfers between the CPU and Q22-bus devices
* Transfers from CPU to local Q22-bus memory space

1.5 Memory Support Subsystem

This subsystem provides support for the KA670 memory subsystem. The memory support
subsystem contains a memory controller, a bus adapter, and a G-chip interface.

1.5.1 Memory Controller/Bus Adapter (G-Chip (DC561))

The memory controller and bus adapter are implemented by the memory controller chip
(G-chip, DC561). The G-chip is a dual-ported ECC memory controller and a bus adapter.
As a memory controller, the G-chip controls transactions between the GMI, RDAL bus,
and the CP bus. In addition, the G-chip is responsible for assisting with maintaining
primary and backup cache coherency with the memory system.

The G-chip controls communication among the P-chip, the CQBIC, and the SGEC and
SHAC chips. The G-chip controls and passes data to or from one, two, three, or four
buffered memory modules.

As a bus adapter, the G-chip controls transactions between the higher performance
RDAL bus and the lower performance CP bus. The CP bus port to the G-chip provides a
peripheral bus for direct memory access (DMA) by peripheral functions. The CP bus is a
peripheral bus on the KA670 and does not support the P-chip on this system.

The G-chip is in a 332-pin, high-performance tape package (HPTP). The tape package is
a surface mountable chip carrier with 12.5 mil lead spacing.

10 Overview

1.6 MS670 Memory Module

The MS670-BA is a 32 Mbyte, double-sided board, with an access time of 100 ns in a
39-bit-wide array (32 bits of data and 7 bits of error correction code) implemented with a
1 Mbyte dynamic RAM in SOJ surface mount packages.

The module mounts in a dedicated memory backplane slot. The module is fingerless
and uses a 150-pin, high-density, right-angle connector to connect to the backplane.
Figure 14 is a photograph of the MS670 memory module.

MA-0349-90

Figure 1-4 MS670 Memory Module

Overview 11

1.7 H3604 Console Module

The H3604 console module (Figure 1-5) allows the KA670 CPU module to interface to a
serial line console device, a DSSI bus, and the Ethernet. The H3604 is wide enough to
cover the five slots dedicated to the KA670 and its four MS670 modules. Five adhesive
tags are included for the user to name the modules in the respective slots.

Language
Inquiry Switch —— Modified
Modular Jack
Baud Rate
Select Switch
Halt Enable/
HEX Display Disable Switch
Bus Node ID Plugs
DsSI Ethernet Connector
Connectors \ Switch
Standard Ethernet
Connector

ThinWire Ethernet
Connector

MLO-003896

Figure 1-5 H3604 Console Module (Front View)

The H3604 module contains the following connectors to allow CPU communication:

A console serial line (with baud rate switch)
Two Ethernet connectors (with switch)

Two 50-ping DSSI connectors that allow daisy-chaining of one DSSI bus, terminators
for both DSSI connectors, and two bus node ID plugs

The H3604 module also has four feature selection switches:

L]

Baud rate select switch for the serial console line
Power-up mode switch

Break enable/disable switch from the console keyboard key (default) or [Ctrl] [P}
depending on the state of SSCCR <15>. If used, B must be reset after each halt
action. If this switch is set to the enable position (1), the system does not autoboot on
power-up. Instead, the system enters console /O mode and displays the >>> prompt.

Ethernet connector switch to selects the following:

* A 15-conductor connector for a standard Ethernet cable

¢ A male BNC connector for a ThinWire Ethernet coaxial cable

LEDs indicate the selected connector and valid +12 Vdc for that connector.

12 Overview

In addition, the H3604 module contains the following features:

Console serial line drivers and receivers
Hexadecimal display

Battery charger and low voltage detection
25.6 kHz TOY clock oscillator

-9 V dc/de converter

Ethernet serial transceiver chip (SIA)

Fused current surge protection

Inside the door of the H3604 module are a DSSI circuit fuse and two jumpers. The fuse
prevents shorts from the accidental grounding of the DSSI cable power pin. The jumpers
must be in place to give the bus node number 7 to both of the SHAC DSSI bus controllers
on the CPU board. (The two DSSI buses are separate.)

There are two connectors from the H3604 module to the internal BA440. One is a 4-pin
power connection to a small printed circuit card that inserts next to the KA670 CPU in
the backplane. The other is the 100-pin connector to the KA670 CPU module.

2

Installation and Configuration

This chapter describes how to install the KA670C in a system. The chapter discusses the
following topics:

* Installing the KA670 and MS670 modules
* Configuring the KA670
¢ KA670 connectors

2.1 Installing the KA670 and MS670 Memory Modules

NOTE
You can use the KA670 and MS670 modules only in BA440 system enclosures
that use high-density backplane connector slots.

The KA670 CPU module and the MS670 memory modules must be installed in the five
rightmost backplane slots. Note that the KA670 module installs in backplane slot J5,
and the memory modules install in slots J4 through J1.

To install the KA670 and MS670 modules:
1. Install the KA670 CPU in slot J5 of the Q22-bus/CD backplane.
2. Install MS670 memory modules in slots J4 through J1 next to to the KA670 CPU.

* If you only use one memory module , you can install it in any of the slots J4
through J1.

* If you use more than one memory module, you must install the first memory
module in J4, the second in J3, and so on. Do not leave a gap between memory
modules.

3. Install a 100-pin ribbon cable between the KA670 CPU and the console module.

Figure 2-1 shows the positions of the KA670 CPU and the memory modules in the
backplane.

13

14 Installation and Configuration

Mass Storage DSSI/SCSI Devices J23
J30 o
J28 o J217 J21 J31 J20 o
o o o o o o
J29 (<) o o [<)] (<)
[<) o SCSI o (<] o o
[} o o o o o
o o o o o o
DSSI (<] o [} <] o
Slot Slot
12 11 10 9 8 7 6 5 4 3 2 1
KA670 CPU
J19 J17 JlS J13 Jll J9 37 J5
* * * * !*i
* * * * * * * }*| DSSI
* * * * * * * | % J25
* * * * * * * 1% J26
* * *x x x % * |*] MS670 Memory
* Q22% Q22*Q22*Q22*Q22* Q22 * Q22 |¥*| Modules o
* * * * * * *]*x] J4 J3 J2 Jl1 o
x* * * * * * * '*' ‘*‘ I*l ‘*l I*' o
* * * * * * * l*l ‘*' !t‘ I*' '*[o
* * * * * * * l*' ‘*' |*| l*‘ '*‘ o
I*1 1*p |I*] I*] |*] o
X 1* 1*) > 1 *|
* * * o ox ox X * | * |GMI*|GMI|GMI|GMI| o
* *x * * * * * |*i l*l I*l !*' l*l o
* * * * * x * |*l t*l l*l '*l |t' o
* C/D* C/D*C/D*C/D*C/D* C/D * I*1 1*P 1*) i*p [*] o
* * * * * * * '*! ‘*l l*l '*' l*l o
* *x * * * * * '*I !*l l*‘ I*l |*' o)
* * * * * * * 1 %1 o
* * * * * * * | * | Power
* * * * * * * 1% J24 Ssupply
* * * * * * * [% o
Jig Jlé J14 J12 J10 J8 J6 o Console
o Power
J22
Fan
Power

Figure 2-1 Backplane

2.2 Module Configuration and Naming

Each module in a system must use a unique device address and interrupt vector. The
device address is also known as the control and status register (CSR) address. Most
modules have switches or jumpers for setting the CSR address and interrupt vector
values. The value of a floating address depends on what other modules are housed in the
system.

Set CSR addresses and interrupt vectors for a module as follows:

1. Determine the correct values for the module with the CONFIGURE command at the
console I/O prompt (>>>). The CONFIG utility eliminates the need to boot the VMS
operating system to determine CSRs and interrupt vectors. Enter the CONFIGURE'
command, then HELP for the list of supported devices:

Installation and Configuration 15

>>> CONFIG
Enter device configuration, HELP, or EXIT
Device, Number? HELP

Devices:

LPV1l KXJ11 DLV11J DZQ11 DZV11l DFAO1
RLV21 TSVOS RXV21 DRV11W DRV11B DPV11
DMV11 DELQA DEQNA RQDX3 KDAS0 RRD50
RQC25 KXXXX-DISK TQKS50 TQK70 TUSB1E RV20
KXXXX-TAPE KMV1l IEQ11 DHQ11 DHV11 CXAl6
CXB1l6 CXYO08 VCBO02 QDSS DRV11J DRQ3B
vsv21 IBRQO1 IDV11A IDV11B IDv1ic IDV11D
IAV11A IAV11B MIRA ADQ32 DTCO04 DESQA
IGQ11

The LPV11-SA has two sets of CSR address and interrupt vectors. To determine
the correct values for an LPV11-SA, enter LPV11,2 at the DEVICE prompt for one
LPV11-SA, or enter LPV11,4 for two LPV11-SA modules.

2. See the KA670 CPU System Maintenance Manual for switch settings and CSR and
interrupt vector jumper settings for supported options.

2.3 Mass Storage Configuration

There is space for four mass storage devices—either three integrated storage elements
(ISEs) and one TK70 tape drive, or four ISEs. The ISEs are part of the Digital storage
system interconnect (DSSI) bus.

The DSSI bus is part of the backplane. The ISEs are of the RF series, and they plug into
the backplane to become part of the bus. Each ISE must have its own unique I'SSI node
ID. The ISE receives its node ID from a plug on the operator control panel (OCP) on the

front panel.

The VMS operating system creates DSSI disk device names according to the following
scheme:

nodename $ DIA unit number

For example,

SUSANSDIA3

You can use the device name for booting, as follows:

>>> BOOT SUSANSDIA3

You can access local programs in the RF-series ISE through the MicroVAX diagnostic
monitor (MDM), or through the VMS operating system (version 5.0) and console 'O
mode SET HOST/DUP command. This command creates a virtual terminal connection
to the storage device and the designated local program using the diagnostic and utilities
protocol (DUP) standard dialog. Section 2.3.3 describes the procedure for accessing DUP
through the VMS operating system.

2.3.1 Changing the Node Name

Each ISE has a node name that is maintained in EPROM onboard the controller module.
This node name is determined in manufacturing from an algorithm based on the drive
serial number. You can change the node name of the DSSI device to something more
meaningful by following the procedure in Example 2-1. In the example, the node name
for the ISE at DSSI node address 1 is changed from R3YBNE to DATADISK.

16 Installation and Configuration

>>> SHO DsS1
DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3YBNE) !The node name for this drive will be
-DIAl (RF71) 'changed from R3YBNE to DATADISK.
DSSI Node 7 (*)

>>>

>>> SET HOST/DUP/DSSI 1

Starting DUP server...

Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 5-NOV-1988 15:33:06

DRVTST V1.0 5-NOV-1988 15:33:06

HISTRY V1.0 5-NOV-1988 15:33:06

ERASE V1.0 5-NOV-1988 15:33:06

PARAMS V1.0 5-NOV-1988 15:33:06

DIRECT V1.0 5-NOV-1988 15:33:06

End of directory

Task Name? params

Copyright 1988 Digital Equipment Corporation

PARAMS> SHO NODENAME

lvBvlviviiviv)

Parameter Current Default Type Radix

NODENAME R3YBNE RF71 String Ascii B

PARAMS> SET NODENAME DATADISK

PARAMS> WRITE 'This command writes the change
'to EEPROM.
Changes require controller initialization, ok? [Y/(N)] ¥

Stopping DUP server...
>>> SHO DSSI
DSSI Node 0 (MDC)

-DIAO (RF71)
DSSI Node 1 (DATADISK) !The node name has changed from
-DIAl (RF71) 'R3YBNE to DATADISK.

DSSI Node 7 (*)

Example 2-1 Changing a DSSI Node Name

2.3.2 Changing the DSSI Unit Number

By default, the ISE drive assigns the disk’s unit number to the same value as the DSSI
node address for that drive.

Example 2-2 shows how to change the unit number of a DSSI device. This example
changes the unit number for the RF71 drive at DSSI node address 2 from 1 to 50
(decimal). You must change two parameters: UNITNUM and FORCEUNI. Changing
these parameters overrides the default, which assigns the unit number the same value as
the node address.

Installation and Configuration 17

>>> SHO DSS1I
DSSI Node 0 (MDC)

-DIAO (RF71)

DSSI Node 1 (R3QJNE) !The unit number for this drive will be
-DIA1l (RF71) 'changed from 1 to 50 (DIAl to DIASO).
DSSI Node 7 (*)

>>>

>>> SET HOST/DUP/DSSI 1
Starting DUP server...
Copyright 1988 Digital Equipment Corporation

DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST V1.0 5-NOV-1988 15:33:06
HISTRY V1.0 5~-NOV-1988 15:33:06

D
. D
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS V1.0 D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory

Task Name? PARAMS
Copyright 1988 Digital Equipment Corporation
PARAMS> SHO UNITNUM

Parameter Current Default Type Radix

UNITNUM (¢} 0 Word Dec U
PARAMS> SHO FORCEUNI

Parameter Current Default Type Radix

FORCEUNI 1 1 Boolean 0/1 U
PARAMS> SET UNITNOUM 50
PARAMS> SET FORCEUNI 0
PARAMS> WRITE 'This command writes the changes to EEPROM.

PARAMS> EX
Exiting...

Task Name?

Stopping DUP server...
>>>

>>>SHO DSSI

DSSI Node 0 (MDC)
-DIAO (RF71)

DSSI Node 1 (R3QJNE) 'The unit number has changed
-DIASO (RF71) '‘and the node ID remains at 1.

DSSI Node 7 (*)

Example 2-2 Changing a DSSI Unit Number

2.3.3 Accessing RF-series Firmware in VMS, Through DUP

You can also access the RF-series ISE firmware utilities from the VMS operating system
as well as through the console commands.

Use the VMS operating system to access the ISE firmware if you want to look up or view
parameter settings, but not change them. To change ISE parameter settings, enter the
ISE firmware through the console 'O mode SET HOST/DUP command.

18 Installation and Configuration

Load the FYDRIVER using the following commands in SYSGEN:

$ MCR SYSGEN

SYSGEN> LOAD FYDRIVER/NOADAPTER
SYSGEN> CONNECT FYAO/NOADAPTER
SYSGEN> EXIT

$

You can then access the ISE firmware utilities by using the following VMS command:

$ SET HOST/DUP/SERVER=MSCP$DUP/TASK=PARAMS nodename

2.3.3.1 Allocation Class

When a KA670 system containing ISEs is configured in a cluster, either as a boot node or
a satellite node, you must assign the allocation class in VMS SYSGEN and for the ISE
matching nonzero values. To change the allocation class of the ISE, use the following
commands:

>>> SET HOST/DUP/DSSI <DSSI node number> PARAMS
Starting DUP server..

PARAMS> SET ALICLASS <allocation class value>

PARAMS> WRITE
Changes require controller initialization, ok? [Y/N] Y

Stopping DUP server..
>>>

2.4 DSSI Cabling, Device ldentity, and Bus Termination

The ISEs in one particular BA440 enclosure are connected to the system backplane
and communicate internally over the backplane. There are no internal DSSI cables.
Externally, a 50-pin ribbon cable connects the DSSI bus to other devices, either hosts or
expanders.

There are two DSSI ports in the KA670 system. One DSSI port is routed along the
backplane and exits the enclosure at the left edge, from a connector near the ISE slots.
The other DSSI port is configured by means of the DSSI connector on the H3604 panel.
If unused, DSSI connectors must be terminated.

There is no terminator on the KA670. The near-end termination is contained on the
backplane for the internal DSSI bus, and provided by the pluggable connectors for the
external bus.

All DSSI devices on the same bus must have unique identifiers. On the face of the H3604
console medule, you can see the two DSSI bus ID plugs (Figure 1-5). These ID plugs
provide an identity for each DSSI bus. Because the DSSI buses are separate, the two ID
plugs may be identical.

2.5 KA670 Connectors

The KA670 CPU module uses two connectors, J1 and J2. J1 is a 270-pin connector that
mates with the backplane. J2 is the connector for the 100-pin ribbon cable that goes
to the console module. Users configure the KA670 through the H3604 console module.
Figure 1-3 shows the location of the connectors on the KA670 module.

Architecture

Chapter 3, Central Processor and Floating Point Unit
Chapter 4, Cache and Main Memory

Chapter 5, The Console Line, TOY Clock, and Bus System
Chapter 6, KA670 Boot and Diagnostic Facility

Chapter 7, Interface Subsystems

Chapter 8, KA670 Error Handling

3

Central Processor and Floating Point Unit

This chapter describes the functions of the central processing unit (P-chip) and the
floating point unit (F-chip).

3.1 Central Processor

The central processor of the KA670 supports the MicroVAX chip subset (plus six
additional string instructions) of the VAX instruction set and data types, as well as

full VAX memory management. The central processor is implemented with a single VLSI
chip called the P-chip (REX520).

3.1.1 Processor State

The processor state is that portion of the state of a process which is stored in processor
registers rather than in memory. The processor state is composed of 16 general-purpose
registers (GPRs), the processor status longword (PSL), and the internal processor
registers (IPRs).

Nonprivileged software can access the GPRs and the processor status word (bits <15:00>
of the PSL). Only privileged software can access the IPRs and bits <31:16> of the PSL.
The IPRs are explicitly accessible only by the move to processor register (MTPR) and
move from processor register (MFPR) instructions, which can be executed only while
running in kernel mode.

3.1.1.1 General-Purpose Registers

The KA670 implements 16 general-purpose registers as specified in the VAX Architecture
Reference Manual. These registers are used for temporary storage, accumulators, and as
base and index registers for addressing. The general-purpose registers are R0 to R15.
The bits of a register are numbered from the right, <0> to <31>. Figure 3-1 shows the
format of a general-purpose register. Table 3—1 describes the registers.

3
1 0

Figure 3-1 General-Purpose Register
Some of these registers have been assigned special meaning by the VAX-11 architecture:

21

22 Central Processor and Floating Point Unit

Table 3-1 General-Purpose Register Descriptions

Register Register Name Mnemonic Description

R15 Program counter PC The PC contains the address of the next
instruction byte of the program.

R14 Stack pointer Sp The SP contains the address of the top of
the processor-defined stack.

R13 Frame pointer FP The VAX-11 procedure call convention
builds a data structure on the stack,
called a stack frame. The FP contains
the address of the base of this data
structure.

R12 Argument pointer AP The VAX-11 procedure call convention
uses a data structure termed an
argument. The AP contains the address
of the base of this data structure.

Consult the VAX Architecture Reference Manual for more information on the operation
and use of these registers.

3.1.1.2 Processor Status Longword

The KA670 processor status longword (PSL) is implemented as specified in the VAX
Architecture Reference Manual . See that manual for a detailed description of this
register’s operation.

The PSL is saved on the stack when an exception or interrupt occurs, and is saved in
the process control block (PCB) on a process context switch. Nonprivileged software
can access bits <15:00>, but only privileged software can access bits <31:16>. Processor
initialization sets the PSL to 041F 0000,5. Figure 3-2 shows the format of the processor
status longword. Table 3-2 lists the bits and definitions.

3 3222222 2222 11

i 0 9 87 6 543210 6 5 8 765 43210
F M

CI|T P! |CUR|PRV |B D{F I

MIPIMBZ|D|S|MOD|MOD|2Z IPL MBZ VIUJV]TIN]Z}V|C

Figure 3-2 Processor Status Longword

NOTE
VAX compatibility mode instructions can be emulated by macrocode, but the
emulation software runs in native mode, so the CM bit is never set.

Table 3-2 explains the properties of each internal process register:

Central Processor and Floating Point Unit 23

Table 3-2 Internal Process Register Descriptions

PSL

Data

Bit Name Definition

<31> CM Compatibility mode. This bit always reads as zero, loading a one into this
bit is a NOP.

<30> TP Trace pending

<29:28> MBZ Must be written as zero

<27> FPD First part done

<26> IS Interrupt stack

<25:24> CUR Current mode

<23:22> PRV Previous mode

<21> MBZ Must be written as zero

<20:16> IPL Interrupt priority level

<15:8> MBZ Must be written as zero

<7> DV Decimal overflow trap enable This read/write bit has no effect on KA670
hardware; the bit can be used by macrocode that emulates VAX decimal
instructions.

<6> FU Floating underflow fault enable

<5> v Integer overflow trap enable

<4> T Trace trap enable

<3> N Negative condition code

<2> Z Zero condition code

<1> A% Overflow condition code

<0> C Carry condition code

3.1.1.3 Internal Processor Registers
The KA670 internal processor registers (IPRs) can be accessed by using the MFPR and
MTPR privileged instructions. Each IPR falls into one of the following five categories:

1. Implemented by KA670 as specified in the VAX Architecture Reference Manual .

2. P-chip implementation that is unique or different from that specified in the VAX
Architecture Reference Manual.

3. Not implemented by KA670. Read as zero, NOP on writes.

4. Not implemented by KA670. Access causes a reserved operand fault.
5. Not fully implemented by KA670. Access causes unpredictable results.
Table 3-3 provides information on each IPR.

There are different categories of IPRs. Section 3.1.1.3.1 lists category 1 IPRs and the
section where they are described. Section 3.1.1.3.2 lists category 2 IPRs and the section
where they are described.

24 Central Processor and Floating Point Unit

Table 3-3 KAG670 Internal Processor Registers

Decimal Hex. Register Name MnemonicType Scope Impl. Init? Category

0 0 Kernel stack KSP RW PROC REX520 1
pointer

1 1 Executive stack ESP RW PROC REX520 1
pointer

2 2 Supervisor stack SSp RW PROC REX520 1
pointer

3 3 User stack pointer uUspP RW PROC REX520 1

4 4 Interrupt stack ISP RW CPU REX520 1
pointer

5-7 5-7 Reserved 3

8 8 PO base register POBR RW PROC REX520 1

9 9 PO length register POLR RW PROC REX520 1

10 A P1 base register P1BR RW PROC REX520 1

1 B 1 length register PiLR RW PROC REX520 1

12 C System base SBR RW CPU REX520 1
register

13 D System length SLR RW CPU REX520 1
register

14-15 E-F Reserved

16 10 Process control PCBB RW PROC REX520 1
block base '

17 11 System control SCBB RW CPU REX520 1
block base

18 12 Interrupt priority IPL RW CPU REX520 Yes 1
level

19 13 AST level ASTLVL RW PROC REX520 Yes 1

20 14 Software SIRR w CPU REX520 1
interrupt request
register

Type

R —Read-only register

W —Write-only register

RW—Read/write register
Scope —Processor register’s scope

CPU —CPU-wide register
PROC—Per-process register
Impl. —Chip in which the processor register is implemented.

REX520 —REX520 chip (P-chip)

SSC —System support chip

C-chip —C-chip
Init? —Initialized on module RESET (power-up, or negation of DCOK)
Category—Processor register category

Central Processor and Floating Point Unit 25

Table 3-3 (Cont.) KA670 Internal Processor Registers

Decimal Hex. Register Name MnemonicType Scope Impl. Init? Category

21 15 Software SISR RW CPU REX520 Yes 1
interrupt
summary register

22-23 16-17 Reserved 3

24 18 Interval counter ICCS RW CPU 'REX520 2
control status

25-26 19-1A Reserved 3

27 1B Time-of-year TODR RW CPU SSC 1
register

28 1C Console storage CSRS RW CPU SSC Yes 5
receiver status

29 1D Console storage CSRD R CPU SsC Yes 5
receiver data

30 1E Console storage CSTS RW CPU SsC Yes 5
transmitter status

31 1F Console storage CSTD w CPU SSC Yes 5

) transmitter data

32 20 Console receiver RXCS RW CPU SSC Yes 2
control/status

33 21 Console receiver RXDB R CPU SsC Yes 2
data buffer

34 22 Console transfer TXCS RW CPU SSC Yes 2

: control/status

35 23 Console transfer TXDB w CPU SsC Yes 2
data buffer

36-37 24-25 Reserved 3

38 26 Machine check MCESR w CPU REX520 2
error register

39 27 Reserved 3

40 28 Accelerator ACCS RW CPU REX520 Yes 2
control and status
register

Type

R —Read-only register

W —Write-only register

RW-—Read/write register
Scope —Processor register’s scope

CPU —CPU-wide register
PROC—Per-process register
Impl. —Chip in which the processor register is implemented.

REX520 —REX520 chip (P-chip)

SSC —System support chip

C-chip —C-chip
Init? —Initialized on module RESET (power-up, or negation of DCOK)
Category—Processor register category

26 Central Processor and Floating Point Unit

Table 3-3 (Cont.) KA670 Internal Processor Registers

Decimal Hex. Register Name MnemonicType Scope Impl. Init? Category
41 29 Reserved 3
42 2A Console saved PC SAVPC R CPU REX520 2
43 2B Console saved SAVPSL R CPU REX520 2
PSL
4446 2C-2E Reserved 3
47 2F Translation buffer TBTAG w CPU REX520 2
tag
48-54 30-36 Reserved 3
55 37 1/O system reset IORESET W CPU SSC 2
register
56 38 Memory MAPEN RW CPU REX520 Yes 1
management
enable
57 39 Translation buffer TBIA w CPU REX520 1
invalidate all
58 3A Translation buffer TBIS w CPU REX520 1
‘ invalidate single
59 3B Translation buffer TBDATA W CPU REX520 2
data
60-61 3C-3D Reserved 3
62 3E System SID R CPU REX520 1
identification
63 3F Translation buffer TBCHK w CPU REX520 1
check
64-111 40-6F Reserved 3
112 70 Backup cache BC112 RW CPU C-chip 5
reserved register
113 71 Backup cache tag BCBTS RW CPU C-Chip 2
store
114 72 Backup cache P1 BCPI1TS RW CPU C-Chip 2
tag store
Type
R —Read-only register
W —Write-only register
RW-—Read/write register
Scope —Processor register’s scope
CPU —CPU-wide register
PROC—Per-process register
Impl. —Chip in which the processor register is implemented.
REX520 —REX520 chip (P-chip)
SSC —System support chip
C-chip —C-chip

Init? —Initialized on module RESET (power-up, or negation of DCOK)
Category—Processor register category

Table 3-3 (Cont.) KAG670 Internal Processor Registers

Central Processor and Floating Point Unit 27

Decimal Hex. Register Name MnemonicType Scope Impl Init? Category

115 73 Backup cache P2 BCP2TS RW CPU C-Chip 2
tag store

116 74 Backup cache BCRFR RW CPU C-Chip 2
refresh register

117 75 Backup cache BCIDX RW CPU C-Chip 2
index register

118 76 Backup cache BCSTS RW CPU C-Chip Yes 2
status register

119 7 Backup cache BCCTL RW CPU C-Chip Yes 2
control register

120 78 Backup cache BCERR R CPU C-Chip 2
error register

121 79 Backup cache BCFBTS w CPU C-Chip 2
flush backup tag
store

122 7A Backup cache BCFPTS w CPU C-Chip 2
flush primary tag

) store

123 7B Vector interface VINTSR RW CPU C-Chip 2
error status
register

124 7C Primary cache tag ~ PCTAG RW CPU REX520 2
store

125 7D Primary cache PCIDX RW CPU REX520 2
index register

126 7E Primary cache PCERR RW CPU REX520 2
error address
register

127 7F Primary cache PCSTS RW CPU REX520 Yes 2
status register

128- 80-FF Reserved 3

255

>255 >FF Reserved 4

Type

R —Read-only register

W —Write-only register

RW—Read/write register
Scope —Processor register’s scope

CPU —CPU-wide register
PROC—Per-process register

Impl. —Chip in which the processor register is implemented.

REX520 —REX520 chip (P-chip)
SSC —System support chip
C-chip —C-chip

Init? —Initialized on module RESET (power-up, or negation of DCOK)

Category—Processor register category

28 Central Processor and Floating Point Unit

ACCESS TO CATEGORY 3 REGISTERS

Category 3 processor registers in the previous table are passed to the RDAL by
the P-chip. Since these registers are not implemented by the KA670 module, the
SSC terminates the EPR read or write transaction after the period specified by
the SSC bus timeout control register.

During this time, the CPU does not execute any other instructions, and no other
DAL transactions are possible. Therefore, category 38 processor registers should
not be referenced during normal system operation, as this may cause device or
CPU timeouts to occur.

3.1.1.3.1 KA670 VAX Standard Internal Processor Registers

Internal Processor Registers (IPRs) that are implemented as specified in the VAX
Architecture Reference Manual are classified as category 1 IPRs. See the VAX Architecture
Reference Manual for details on the operation and use of these registers.

The category 1 registers listed in Table 3—4 are also referenced in other sections of this
manual:

Table 3-4 Category 1 Internal Processor Registers

Number’

Decimal Hex Register Name Mnemonic Section

18 12 Interrupt priority level IPL 3.1.6.1

20 14 Software interrupt request SIRR 3.1.6.1

21 15 Software interrupt SISR 3.1.6.1
summary .

27 1B Time-of-year clock TODR Section 5.2

56 38 Memory management MAPEN 3.1.52
enable

57 39 Translation buffer TBIA 3.1.5.2
invalidate all

58 3A Translation buffer TBIS 3.1.5.2
invalidate single

62 3E System identification SID Section 3.1.7

63 3F Translation buffer check TBCHK 3.1.5.2

3.1.1.3.2 KA670 Unique internal Processor Registers

Internal processor registers (IPRs) that are implemented uniquely on the KA670 are
classified as category two IPRs. For example, category 2 IPRs are not contained in, or
do not fully conform to, the VAX Architecture Reference Manual. Category 2 IPRs are
described in detail in this manual. See the sections listed in Table 3-5 for a description
of these registers:

Central Processor and Floating Point Unit 29

Table 3-5 Category 2 internal Processor Registers

Number
Decimal Hex Register Name Mnemonic Section
24 18 Interval clock control/status ICCS 5.2.2
32 20 Console receiver control/Status RXCS 5.1.1.1
33 21 Console receiver data buffer RXDB 5.1.1.2
34 22 Console transmit control/status TXCS 5.1.1.3
35 23 Console transmit data buffer TXDB 5.1.1.4
38 26 Machine check error register MCESR 3.164
40 28 Accelerator control and status ACCS 3.18
42 2A Console saved PC SAVPC 3.1.6.6
43 2B Console saved PSL SAVPSL 3.16.6
47 2F Translation buffer tag TBTAG 3.15.2
55 37 /O system reset register IORESET 6.5.3.1
59 3B Translation buffer data TBDATA 3.15.2
113 o Backup cache tag store BCBTS 4.1.35.1
114 72 Backup cache P1 tag store BCPITS 4.1.35.2
115 73 Backup cache P2 tag store BCP2TS 4.1.35.2
116 74 Backup cache refresh register BCRFR 4.1.3.5.3
117 75 Backup cache index register BCIDX 4.1354
118 76 Backup cache status register BCSTS 4.1.35.5
119 77 Backup cache control register BCCTL 4.1.35.6
120 78 Backup cache error register BCERR 4.1.36.1
121 79 Backup cache flush backup tag store BCFBTS 4.1.3.6.2
122 7A Backup cache flush primary tag store BCFPTS 4.1.36.3
123 7B Vector interface error status register VINTSR -
124 7C Primary cache tag store PCTAG 4.1.254
125 7D Primary cache index register PCIDX 4.1.25.3
126 7E Primary cache error address register PCERR 41252
127 7F Primary cache status register PCSTS 4.125.1

3.1.2 Process Structure

A process is a single thread of execution. The context of the current precess is contained
in the process control block (PCB), which is pointed to by the process control block
base register (PCBB). The KA670 implements these structures as defined in the VAX
Architecture Reference Manual. See that manual for a description of the PCB and the
PCBB.

30 Central Processor and Floating Point Unit

3.1.3 Data Types
The KA670 CPU supports the following subset of the VAX data types:

* Byte

¢ Word

¢ Longword
¢ Quadword

* Character string
* Variable-length bit field
¢ Absolute queues

* Self-relative queues

¢ F floating
¢ G_floating
¢ D_floating

Support for the remaining VAX data types can be provided by macrocode emulation.

3.1.4 Instruction Set

The KA670 CPU implements the following subset of the VAX instruction set types in
microcode:

¢ Integer arithmetic and logical

e Address
* Variable length bit field
e Control

¢ Procedure call
e Miscellaneous
* Queue*

* Character string (MOVC3, MOVC5, CMPC3*, CMPC5*, LOCC*, SCANC*, SKPC*,
SPANC*)

* Operating system support

¢ F_floating
¢ G_floating
e D_floating

The P-chip (REX520) provides special microcode assistance to aid the macrocode
emulation of the following instruction groups:

* Character string (except MOVC3, MOVCS5, CMPC3*, CMPC5*, LOCC*, SCANC*,
SKPC*, SPANC*)

¢ Decimal string

* These instructions were in the microcode-assisted category on the KA630-A (MicroVAX II) and
therefore had to be emulated.

Central Processor and Floating Point Unit 31

e CRC
* EDITPC

The following instruction groups are not implemented, but may be emulated by
macrocode:

* OQOctaword
¢ Compatibility mode instructions

Appendix D lists the entire KA670 instruction set. The appendix indicating which
instructions are implemented in the floating point accelerator (FPA) and which
instructions have microcode assists to speed up macrocode emulation.

3.1.5 Memory Management

The KA670 implements VAX Memory Management in full, as defined in the VAX
Architecture Reference Manual. System space addresses are virtually mapped through
single-level page tables, and process space addresses are virtually mapped through two-
level page tables. See the VAX Architecture Reference Manual for descriptions of the
virtual-to-physical address translation process, and the format for VAX page table entries
(PTEs).

3.1.5.1 Translation Buffer

To reduce the overhead associated with translating virtual addresses to physical
addresses, the P-chip employs a 64-entry, fully associative, translation buffer for caching
VAX PTEs. Each entry can store a PTE for translating virtual addresses in either the
VAX process space, or VAX system space. The translation buffer is flushed whenever the
following actions are performed:

* Memory management is enabled or disabled (for example, by writes to IPR 56).

* Any page table base or length registers are modified (for example, by writes to IPRs
13 to 8).

¢ IPR 57 (TBIA) or IPR 58 (TBIS) is written to.

Each entry is divided into two parts—a 24-bit tag register and a 27-bit PTE register.
The tag register stores the virtual page number (VPN) of the virtual page that the
corresponding PTE Register maps, and a valid bit (TB.V) that indicates the tag contains
a valid VPN. The PTE register stores the 21-bit page frame number (PFN) field, the
PTE.V bit, the PTE.M bit, and the 4-bit PROT field from the corresponding VAX PTE.

During virtual-to-physical address translation, the contents of the 64 tag registers are
compared with the virtual page number field (bits <31:9>) of the virtual address of the
reference. If there is a match with one of the tag registers and the TB.V bit indicates
the entry is valid, then a translation buffer “hit” has occurred. The contents of the
corresponding PTE register are used for the translation.

If there is no match, the translation buffer does not contain the necessary VAX PTE
information to translate the address of the reference, and the PTE must be fetched
from memory. Upon fetching the PTE, the translation buffer is updated by replacing
the entry selected by the replacement pointer. Since this pointer is moved to the next
sequential translation buffer entry whenever it is pointing to an entry that is accessed,
the replacement algorithm is not last used (NLU). This pointer is called the NLU pointer.

32 Central Processor and Floating Point Unit

3.1.5.2 Memory Management Control Registers
There are four IPRs that control the memory management unit (MMU):

IPR 56 (MAPEN)
IPR 57 (TBIA)
IPR 58 (TBIS)
IPR 63 (TBCHK)

Memory management can be enabled or disabled through IPR 56 (MAPEN). Writing a
0 to this register with a MTPR instruction disables memory management. Writing a 1
to this register with a MTPR instruction enables memory management. Writes to this
register flush the translation buffer. To determine whether or not memory management
is enabled, IPR 56 is read using the MFPR instruction.

Translation buffer entries that map a particular virtual address can be invalidated by
writing the virtual address to IPR 58 (TBIS), using the MTPR instruction. Whenever
software changes (1) a valid page table entry for the system or current process region,
or (2) a system page table entry that maps any part of the current process page table,
all process pages mapped by the page table entry must be invalidated in the translation
buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57 (TBIA) using
the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation for a
particular virtual page, by using the MTPR instruction to write a virtual address within
that page to IPR 63 (TBCHK) . If the translation buffer contains a valid translation
for the page, the condition code V bit (bit<1> of the PSL) is set. The TBIS, TBIA, and
TBCHK IPRs are write only. The operation of an MFPR instruction from any of these
registers is undefined.

There are three pairs of base and length registers that specify the base and length of the
PO, P1, and SO spaces:

* [IPR 8 (POBR) and IPR 9 (POLR)
¢ IPR 10 (P1BR) and IPR 11 (P1LR)
¢ PR 12 (SBR) and IPR 13 (SLR)

The base and length of the PO, P1, and SO page tables may be changed by writing the
appropriate address or length to any of the following registers:

IPR 8 (POBR)
IPR 9 (POLR)
IPR 10 (P1BR)
IPR 11 (P1LR)
IPR 12 (SBR)
IPR 13 (SLR)

Whenever the location or size of the system map is changed by changing the SBR

(IPR 12) or SLR (IPR 13), the entire translation buffer must be cleared. The P-chip
accomplishes this by flushing the TB on any change to SBR and SLR, or to POBR, P1BR,
POLR, and P1LR.

When a process context is loaded with the LDPCTX instruction, all TB entries that map
process-space pages are automatically cleared. System-space mappings are preserved.

Central Processor and Floating Point Unit 33

Two IPRs are used by diagnostic software to test the translation buffer:

IPR 47 (TBTAG)(Format shown in Figure 3-3.)
IPR 59 (TBDATA)(Format shown in Figure 3—4.)

9 8 0

—

Virtual Page Number (Write Only) MBZ ‘TBTAG

Figure 3-3 Translation Buffer Tag (TBTAG)—(IPR 47,5 2F)

3 2 22
1 7 10 0

(o201 V)
N

3
0

MBZ PTE.PFN (Write Only) :TBDATA

| 1 L
PTE.M {Write Only)

PTE.PROT (Write Only)
PTE.V (Write Only)

Figure 3-4 Translation Butfer Data (TBDATA)—(IPR 59,4 3B 4)

Diagnostic software may use IPR 47 (TBTAG) and IPR 59 (TBDATA) to test the operation
of the translation buffer. A write to TBTAG writes bits <31:9> of the source data into
the VPN field of the current tag location and clears the TB.V bit. A subsequent write

to TBDATA interprets the source data as a PTE; writes PTE.V, PTE.M, PTE.PROT, and
PTE.PFN into the current PTE location; sets the TB.V bit; and increments the NLU
pointer.

These registers are provided for diagnostic purposes only and should not be written
during normal operation. Writes to these registers must be done under very controlled
conditions to achieve the desired results. Specifically, the following restrictions apply:

* The NLU pointer must be in a known state. A TBIA will initialize the NLU pointer
to the first location in the array.

¢ Memory management must be enabled during the use of TBTAG and TBDATA,
because writing to MAPEN implicitly does a TBIA and resets the NLU pointer.

¢ Data- and instruction-stream references during the use of TBTAG and TBDATA must
not be allowed to change the NLU pointer.

NOTE

The TBIS, TBIA, TBCHK, TBTAG, and TBDATA IPRs are write only. An MFPR
instruction used to read any of these registers will cause the P-chip (REX520) to
initiate a reserved operand fault.

3.1.6 Interrupts and Exceptions
Both interrupts and exceptions divert execution from the normal flow of control.

An interrupt is caused by some activity outside the current process and typically transfers
control outside the process (for example, an interrupt from an external hardware device).
An exception is caused by the execution of the current instruction and is typically handled

by the current process (for example, an arithmetic overflow).

34 Central Processor and Floating Point Unit

3.1.6.1 Interrupts
Interrupts can be divided into two classes: nonmaskable and maskable. For more
information on error recovery and analysis, see Chapter 8.

Nonmaskable interrupts cause a halt through the hardware halt procedure. The
hardware halt procedure does the following:

¢ Saves the PC, PSL, MAPEN<0O> and a halt code in IPRs.
¢ Raises the processor IPL to 1F.
¢ Passes control to the resident firmware.

- The firmware dispatches the interrupt to the appropriate service routine, based on the
halt code and hardware event indicators. Nonmaskable interrupts cannot be blocked
by raising the processor IPL, but can be blocked by running out of the halt protected
address space. The exception is nonmaskable interrupts that generate a halt code of 3.

Nonmaskable interrupts with a halt code of 3 cannot be blocked, because this halt code is

generated after a hardware reset.
Maskable interrupts cause the following:
¢ The PC and PSL is saved.

¢ The processor IPL is raised to the priority level of the interrupt (except for Q22-bus,
mass storage, and network interface interrupts, where the processor IPL is set to 17
independent of the level at which the interrupt was received.)

e The interrupt is dispatched to the appropriate service routine through the system
control block (SCB).

Table 3-6 lists the various interrupt conditions for the KA670, along with their associated

priority levels and SCB offsets.

Table 3-6 Interrupt Priority Levels

Priority Level Interrupt Condition SCB Offset
Nonmaskable BDCOK and BPOK negated, then asserted on Q22-bus *
(power up)

BDCOK negated, then asserted while BPOK asserted on 1
Q22-bus (power up)

BHALT asserted on Q22-bus t
BREAK generated by the console device

1F Unused

1E BPOK negated on Q22-bus 0oC

1D Ux;c(;rrectable main memory errors (MASKED writes 60
only

Main memory NXM errors on writes
RDAL data parity errors on writes
CP bus NXM/TIMEOUT on a write
Q22-bus NXM/NOSACK on a write

238388

*These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
{These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

Central Processor and Floating Point Unit 35

Table 3—6 (Cont.) Interrupt Priority Levels
Priority Level Interrupt Condition SCB Offset
Q22-bus NOGRANT on a write 60
1C:1B Unused
1A Correctable main memory errors 54
Uncorrectable main memory errors (I-Stream) 54
RDAL data parity errors on [-stream or nonrequest 54
D-stream
Primary cache tag parity errors (writes or I-Stream) 54
Primary cache data parity errors (I-Stream) 54
CP Bus NXM/TIMEOUTS errors (I-Stream) 54
19:18 Unused
17 BR7 L asserted Q-bus vector
plus 2006
16 Interval timer interrupt Co
BR6 L asserted Q-bus vector
plus 2006
15 BR5 L asserted Q-bus vector
plus 200;¢
14 Console terminal F8,FC
Programmable timers 78,7C
Mass storage interface 1 (DSSI port 1) (external) 108
Mass storage interface 2 (DSSI port 2) (internal) 104
Network interface 10C
Interprocessor doorbell 204
BR4 L asserted Q-bus vector
plus 2006
13:10 Unused
0F:01 Software interrupt requests 84-BC
NOTE

Because the Q22-bus does not allow differentiation between the four bus grant
levels (for example, a level 7 device could respond to a level 4 bus grant), the
KA670 CPU raises the IPL to 17 after responding to interrupts generated by the
assertion of either BR7 L, BR6 L, BR5 L, or BR4 L. The KA670 maintains the IPL
at the priority of the interrupt for all other interrupts.

The interrupt system is controlled by three IPRs:

* PR 18, the interrupt priority level register (IPLR) (Figure 3-5)
Used for loading the processor priority field in the PSL (bits<20:16>).

¢ IPR 20, the software interrupt request register (SIRR) (Figure 3-6)
Used for creating software interrupt requests.

¢ [PR 21, the software interrupt summary register (SISR) (Figure 3-7)
Records pending software interrupt requests at levels 1 to 15.

36 Central Processor and Floating Point Unit

See the VAX Architecture Reference Manual for more information on these registers.

3
1 54 0

Ignored, Returns 0 PSL<20:16>} :IPLR

Figure 3-5 Interrupt Priority Level Register (IPLR)— (IPR 18,5 124¢)

1 43 0

Ignored Request] :SIRR

Figure 3-6 Software Interrupt Request Register (SIRR)— (IPL 20,9 144¢)

-
o -
0N -

Pending Software Interrupts
:SISR

NDmZ Jo

FEDCBAS 8 7 6 5 4 3 2 1

Figure 3-7 Software Interrupt Summary Register (SISR)— (IPL 21;¢ 15+¢)

3.1.6.2 Exceptions
Exceptions can be divided into three types: trap, fault, and abort.

A trap is an exception that occurs at the end of the instruction that caused the exception.
After an instruction traps, the PC saved on the stack is the address of the next
instruction that normally would have been executed, and the instruction can be restarted.

A fault is an exception that occurs during an instruction. A fault leaves the registers
and memory in a consistent state, so eliminating the fault condition and restarting the
instruction gives correct results. After an instruction faults, the PC saved on the stack
points to the instruction that faulted.

An abort is an exception that occurs during an instruction, leaving the value of registers
and memory unpredictable. That is, the instruction cannot necessarily be correctly
restarted, completed, simulated, or undone. After an instruction aborts, the PC saved
on the stack points to the instruction that was aborted. The aborted instruction may or
may not be the instruction that caused the abort. The instruction may or may not be
restarted, depending on the class of the exception and the contents of the parameters
that were saved.

Exceptions can be divided into six classes. Table 3—7 lists exceptions by class. All the
exceptions listed (except machine check) are described in greater detail in the VAX
Architecture Reference Manual.

Central Processor and Floating Point Unit 37

Table 3-7 Exception Classes

Exception Class Type SCB Offset
Arithmetic Exceptions

Integer overflow Trap 34
Integer divide by zero Trap 34
Subscript range Trap 34
Floating overflow Fault 34
Floating divide by zero Fault 34
Floating underflow Fault 34
Memory Management Exceptions

Access control violation Fault 20
Translation not valid Fault 24
Operand Reference Exceptions

Reserved addressing mode Fault 1C
Reserved operand fault or abort 18
Instruction Execution Exceptions

Reserved/privileged instruction Fault 10
Emulated instruction Fault C8,CC
Change mode Trap 404C
Breakpoint Fault 2C
Tracing Exception

Trace Fault 28
Serious System Failure Exceptions

Console error halt Abort ¢
Interrupt stack not valid Abort *
Kernel stack not valid Abort 08
Machine checks consisting of the following: Abort 04

P-cache tag and data parity errors (D-stream reads)
B-cache data parity errors (D-stream reads)

RDAL data parity errors (nonrequested bytes only)
Main memory uncorrectable errors (D-stream)
Main memory read NXM errors

CP bus read parity errors

Q22-bus NXM/NOSACK errors (D-stream reads)
Q22-bus read device parity errors

Q22-bus read NO GRANT errors

CP bus timeout/NXM read errors

°Dispatched by resident firmware rather than through the SCB.

Exceptions save the PC and PSL. In some cases, exceptions also save one or more
parameters on the stack. Most exceptions do not change the IPL of the processor or cause
the exception to be sent to the appropriate service routine through the SCB.

38 Central Processor and Floating Point Unit

However, exceptions in the Serious System Failure class set the processor IPL to 1F.
The interrupt stack not valid exception and exceptions that occur while an interrupt or

another exception is being serviced are sent to the appropriate service routine by the
resident firmware.

3.1.6.3 Information Saved on a Machine Check Exception

In response to a machine check exception, the following information is pushed onto the
stack as shown in Figure 3-8:

* Contents of the processor status longword
¢ Contents of the program counter

¢ Eight parameters

* A byte count
3 11
1 6 5 0
Byte Count :SP
R Machine Check Code SP +4
Contents of VA Register SP +8
Contents of VIBA Register SP + 12
ICCS Register Bit <6> Contents SISR <15:0> ‘SP + 16
Internal State Information :SP + 20
Contents of the Shift Count (SC) Register SP + 24
Contents of the Program Counter (PC) :SP + 28
Contents of the Process Status Longword (PSL) :SP + 32

Figure 3-8 Information Saved on a Machine Check Exception
The following paragraphs explain the diagram of the stack pointer.
Byte Count

The byte count is <31:0> (000000186, 241¢) The byte count value indicates the number
of bytes of information that follow on the stack, excluding the PC and PSL.

VAX Restart Bit (R)

Bit <31> of the longword at (SP)+4 after a machine check is the VAX restart bit (R). If R
is 1, no state was by the instruction executing when the error was detected. If R is 0, the
state was changed by the instruction.

Machine Check Code Parameter

Bits <15:0> of the longword at (SP)+4 after a machine check contain the machine check
parameter code. This code value indicates the type of machine check that occurred. A list
of the possible machine check codes (in hexadecimal) and their associated causes follows:

* Floating Point Errors (Table 3-8)

These codes indicate that the FPA or CPU chips detected an error during the
execution of a floating point instruction.

Central Processor and Floating Point Unit 39

There are two most likely cause of these types of machine checks:

A problem internal to the P-chip or FPA chips
A problem with the interconnect between the two chips

Machine checks due to floating point errors may be retried, depending on the state
of the VAX restart bit of the longword at (SP)+4, and the FIRST PART DONE flag
(captured in PSL <27>). The error may be retried only if the VAX restart bit is set
and the FIRST PART DONE flag is cleared. Otherwise, the error is unrecoverable;
depending on the current mode, the current process or the operating system should
be terminated, or the FPA should be disabled. The information pushed on the stack
by this type of machine check is from the instruction that caused the machine check.

Table 3-8 Floating Point Errors

Hex Code Error Description

01

02
03
04
05

A protocol error was detected by the FPA chip during an F-chip operand/result
transfer.

An illegal opcode was detectéd by the FPA chip.
The FPA chip detected an operand parity error.
Unknown status was returned by the FPA chip.
The returned FPA chip result had a parity error.

Memory Management Errors (Table 3-9)

These codes indicate that the microcode in the P-chip detected an impossible situation
while performing functions associated with memory management. The most likely
cause of this type of a machine check is a problem internal to the P-chip. Machine
checks due to memory management errors may be retried. Depending on the current
mode, either the current process or the operating system should be terminated. The
state of the POBR, POLR, P1BR, P1LR, SBR, and SLR registers should be logged.

Table 3-9 Memory Management Errors

Hex Code Error Description

08

09

A memory management error occurred while the P-chip was handling an access
control violation/translation not valid fault. The READ/WRITE that caused the
error missed the translation buffer. This error may be retried if the VAX restart bit
or the FIRST PART DONE flag is set.

A memory management error occurred while the P-chip was handling an access
control violation/translation not valid fault. The READ/WRITE that caused the

error hit the translation buffer. This error may be retried if the VAX restart bit
or the FIRST PART DONE flag is set. The fact that the errant reference hit the
translation butfer means that the P-chip is the most likely cause of the error.

Interrupt Error (Table 3-10)

This code indicates that the interrupt controller in the P-chip requested a hardware
interrupt at an unused hardware IPL. The most likely cause of this type of a machine
check is a problem internal to the P-chip. Machine checks due to unused IPL errors
may be retried. A nonvectored interrupt generated by a serious error condition

40

Central Processor and Floating Point Unit

(memory error, power failure or processor halt) has probably been lost. The operating
system should be terminated.

Table 3-10 Interrupt Errors

Hex Code Error Description

0A

A hardware interrupt was requested at an unused interrupt priority level (IPL).
This error may be retried if the VAX restart bit or the FIRST PART DONE flag is
set.

Microcode Errors (Table 3-11)

These codes indicate that the microcode detected an impossible situation while

the instruction was executing. Note that most erroneous branches in the P-chip
microcode will cause random microinstructions to be executed. The most likely cause
of this type of machine check is a problem internal to the P-chip. Machine checks
due to microcode errors may be retried. Depending on the current mode, either the
current process or the operating system should be terminated.

Table 3-11 Microcode Errors

Hex Code Error Description

0B

0C

0D

An impossible state (for example, an undefined state bit combination in the
microsequencer) was detected during a MOVC3 or MOVCS5 instruction (not move
forward, move backward, or fill). This error may be retried if the FIRST PART
DONE flag is set.

An undefined trap code was produced by the P-chip. This error may be retried if
the VAX restart bit is set and the FIRST PART DONE flag is cleared.

An undefined control store address was reached by the microsequencer. This error
may be retried if either the VAX restart bit or the FIRST PART DONE flag is set.

Read Errors (Table 3-12)

These codes indicate that an error was detected while the P-chip was trying to read
from either the primary cache, backup cache, main memory, or Q22-bus. The most
likely cause of this type of machine check is determined from the state of the PCSTS,
PCERR, BCSTS, BCERR DSER, MEMCSR32, MEMCSR33, and MEMCSR34.

Machine checks due to read errors may be retried depending on the state of the VAX
restart flag, the FIRST PART DONE flag, and the PCSTS<trap2> double-error bit. If
either the FIRST PART DONE flag or VAX RESTART flag is set, and PCSTS<trap2>
are cleared, then the error may be retried. Otherwise, the error is unrecoverable;
depending on the current mode, either the current process or the operating system
should be terminated.

The information pushed on the stack by this type of machine check is from the
instruction that caused the machine check.

Central Processor and Floating Point Unitk 41

Table 3—-12 Read Errors

Hex Code Error Description
10 A primary cache tag or data parity error occurred during a read.
11 An RDAL bus (error terminated cycle) or data parity error occurred during a read.

* Write Error (Table 3-13)

This code indicates that an error was detected while the P-chip was trying to write
to either the primary cache, backup cache, or main memory. This is an unexpected
MCHK abort response in the KA670, because ERR L should never be accepted on a
write cycle.

Table 3—-13 Write Errors

Hex Code Error Description

12 An RDAL bus error (for example, ERR L terminated cycle) occurred on a write or
clear write buffer.

¢ RDAL Bus Errors (Table 3-14)

This code indicates that the P-chip detected that the RDAL bus was in an undefined
state. This machine check is not recoverable.

Table 3-14 RDAL Bus Errors

Hex Code Error Description

13 An undefined RDAL bus state was detected by the P-chip.

Contents of the P-Chip’s Internal Virtual Address (VA) Register

After a machine check, the location at (SP)+8 captures the contents of the P-chip’s VA
register at the time of the machine check. After a machine check of 10 or 11, the (SP)+8
location represents the virtual address of the memory location that was being read when
the error occurred.

After a machine check of 12 (an RDAL bus error write or clear), the (SP)+8 location
represents the virtual address of a location that was being referenced either during or
after the error. Therefore, the contents of this field cannot be used for error recovery if
the machine check occurred on a write operation.

Contents of the P-Chip’s Internal VIBA Register

After a machine check, the location at (SP)+12 captures the contents of the P-chip’s VIBA
register at the time of the machine check. After a machine check, this field represents
the virtual address of the last I-stream fetch plus four.

ICCS Register Bit<6> Contents

After a machine check, the location at (SP)+16 bit<22> captures the contents of the P-
chip’s interval clock control and status (ICCS) register’s bit<6> the interrupt enable (IE)
at the time of the machine check.

42 Central Processor and Floating Point Unit

SISR Register Bits<15:0> Contents

After a machine check, the location at (SP)+16 bits<15:0> captures the contents of the P-
chip’s software interrupt summary register’s (SISR) bits<15:0> at the time of the machine
check.

Internal State information
The internal state information field is divided into five subfields (Table 3-15).

Table 3-15 Internal State Information Field

Bits Description

<31:24> Delta PC (PC -backup PC)

<20:18> The access Type (AT) at machine check time. The 3-bit code is interpreted as
follows:

<000> — Read access
<001> — Write access
<010> — Modify access
<101> — Address access
<110> — Variable bit access
<111> — Branch access

<17:16> The data length (DL) at machine check time. The 2-bit code is interpreted as
follows:

<00> — Byte long
<01> — Word long
<10> — Longword long
<11> — Quadword long

<15:8> Opcode— This field captures the opcode of the instruction being read or executed
at the time of the machine check.

<3:0> Register Number (RN) —This field captures the number of the register that
was the destination of the instruction being executed at the time of the machine
check.

Contents of the Shift Count (SC) Register

After a machine check, the location at (SP)+24 captures the contents of the P-chip’s shift
count (SC) register at the time of the machine check. The P-chip uses this register in
different ways, depending on the instruction being executed.

Contents of the Program Counter (PC)

PC<31:0>—After a machine check, the location at (SP)+ 28 captures the virtual address
of the start of the instruction being executed at the time of the machine check.

Central Processor and Floating Point Unit 43

Contents of the Process Status Longword (PSL)

After a machine check, the location at (SP)+ 32 captures the contents of the PSL at the
time of the machine check.

NOTE
The software must acknowledge machine checks by writing a 0 to the MCESR
(IPR 38).

3.1.6.4 Machine Check Error Register (MCESR) IPR 38

The machine check error register (IPR 38, MCESR) provides the mechanism by which
software acknowledges receipt of a machine check. MCESR is a write-only register and
has the format shown in Figure 3-9:

3
1 0

Write Only

Figure 3-9 Machine Check Error Register (MCESR)— (IPR 38, 26+¢)

When the P-chip microcode invokes the software machine check handler, it sets a
MACHINE CHECK IN PROGRESS flag. If a machine check or memory management
exception occurs while this flag is set, the microcode initiates a console double-error halt.

Software should clear the MACHINE CHECK IN PROGRESS flag in the machine check
handler as soon as possible , by writing a 0 to IPR MCESR. Doing so re-enables normal
machine check and memory management exception reporting.

3.1.6.5 System Control Block (SCB)
The system control block (SCB) consists of two pages in main memory that contain the
vectors used to send interrupts and exceptions to the appropriate service routines. The
SCB is pointed to by IPR 17, the system control block base register (SCBB). Figure 3-10
shows the format of the system control block format, and Table 3—-16 describes the
format.
3 32
1 09

MBZ Physical Longword Address of SCB MBZ

Figure 3-10 System Control Block Base Register (SCBB)— (IPL 1749 114¢)

Table 3-16 The System Control Block Format

Number
SCB Interrupt/Exception’ of
Offset Name Type Params Notes
00 Passive release Interrupt 0 IPL is raised to request
IPL.
04 Machine check Abort 6 Parameters reflect

machine state.

44 Central Processor and Floating Point Unit

Table 3-16 (Cont.) The System Control Block Format

Number
SCB Interrupt/Exception of
Offset Name Type Params Notes
08 Kernel stack not valid Abort 0 Must be serviced on
interrupt stack.
oc Power fail Interrupt IPL is raised to 1E.
10 Reserved/privileged Fault
instruction
14 Customer reserved Fault 0 XFC instruction.
instruction
18 Reserved operand Fault/Abort 0 Not always recoverable.
1C Reserved addressing mode Fault 0
20 Access control Fault 2 Parameters are virtual
violation/vector alignment address, status code.
fault
24 Translation not valid Fault 2 Parameters are virtual
address, status code.
28 Trace pending (TP) Fault
2C Breakpoint instruction Fault
30 Unused - - Compatibility mode in
other VAX machines.
34 Arithmetic Trap/Fault 1 Parameter is type code.
38-3C Unused - -
40 CHMK Trap 1 Parameter is sign-
extended operand word.
44 CHME Trap 1 Parameter is sign-
extended operand word.
48 CHMS Trap 1 Parameter is sign-
extended operand word.
4C CHMU Trap 1 Parameter is sign-
extended operand word.
50 Unused - -
54 Memory soft error Interrupt 0 IPL is 1A.
notification (corrected read
error)
58-5C Unused - -
60 Memory hard error Interrupt 0 IPL is 1D.
notification
64 Unused - -
68 Vector unit disabled Fault 0 Vector instructions.
6C-74 Unused - -
78 Programmable timer 0 Interrupt 0 IPL is 14.
7C Programmable timer 1 Interrupt 0 IPL is 14.

Central Processor and Floating Point Unit 45

Table 3-16 (Cont.) The System Control Block Format

Number

SCB Interrupt/Exception of

Offset Name Type Params Notes

80 Unused -

84 Software level 1 Interrupt

88 Software level 2 Interrupt 0 Ordinarily used for AST
delivery.

8C Software level 3 Interrupt 0 Ordinarily used for process
scheduling.

90-BC Software levels 4-15 Interrupt

Cco Interval timer Interrupt 0 IPL is 16.

C4 Unused - -

C8 Emulation start Fault 10 Same mode exception,FPD

' = 0; parameters are

opcode, PC, specifiers.

CcC Emulation continue Fault 0 Same mode exception,FPD
= 1: no parameters.

108 Mass storage interface 1 Interrupt 0 IPL is 14.

(DSSI PORT 1)
104 Mass storage interface 2 Interrupt 0 IPL is 14.
(DSSI PORT 2)

D8-DC Unused - -

Fo Network interface Interrupt 0 IPL is 14.

F4 Unused - -

F8 Console receiver Interrupt 0 IPL is 15.

FC Console transmitter Interrupt 0 IPL is 15.

204 Interprocessor doorbell Interrupt 0 IPL is 14.

Vectors in the range of 100 to FFFC are used to directly vector interrupts from the
external bus. The SCBB vector index is determined from bits <15:2> of the value
supplied by external hardware.

The new PSL priority level is determined by either the external interrupt request level
that caused the interrupt or by bit <0> of the value supplied by external hardware.

If bit<0> is 0, the new IPL level is determined by the interrupt request level being
serviced. IRQ<3> sets the IPL to 17,5; IRQ<2>, 16;6; IRQ<1>, 15;¢ ; and IRQ<0>, 14,¢.
If bit<0> of the value supplied by external hardware is 1, then the new IPL is forced to
1716.

The ability to force the IPL to 17,6 supports an external bus, such as the Q22-bus, that
cannot guarantee that the device generating the SCBB vector index is the device that
originally requested the interrupt.

For example, the Q22-bus has four separate interrupt request signals that correspond to
IRQ<3:0>, but only one signal to daisy chain the interrupt grant. Furthermore, devices
on the Q22-bus are ordered so that higher priority devices are electrically closer to the

46 Central Processor and Floating Point Unit

bus master. If an IRQ<1> is being serviced, there is no guarantee that a higher priority
device will not intercept the grant.

Software must determine the level of the device that was serviced and set the IPL to the
correct value. Only device vectors in the range of 100 to FFFC;g should be used, except
by devices emulating console storage and terminal hardware.

3.1.6.6 The Hardware Halt Procedure
The hardware halt procedure is the method used by the hardware to assist the firmware

in emulating a processor halt. The hardware halt procedure saves the following from IPR
42 (SAVPC) and IPR 43 (SAVPSL):

IPR 42 Current value of the PC

(SAVPC)

IPR 43 Current value of the PSL, MAPEN<0>, a halt code, and the valid bit
(SAVPSL)

Figure 3-11 and Figure 3-12 show the formats for (SAVPC) and (SAVPSL), respectively.

SAVPSL<14> (valid bit) is set to 0 if the PSL is valid, and set to 1 if the PSL is invalid.
The valid bit is undefined after a halt caused by a system reset.

3
1 : 0

Saved PC (Read Only) :SAVPC

Figure 3-11 Console Saved PC (SAVPC)— (IPR 42, 2A6)

3

1 1
1 6 3 8 7 0

(3, 1073
H -

PSL<31:16> Halt Code PSL<7:0> :SAVPSL

p
P
t

MAPEN<0>
Valid Bit (Valid if 0)

Figure 3-12 Console Saved PSL (SAVPSL)— (IPR 43, 2B1¢)

The current stack pointer is saved in the appropriate internal register. The PSL is set
to 041F 0000 ;¢ (IPL=1F, kernel mode, using the interrupt stack), and the current stack
pointer is loaded from the interrupt stack pointer. Control is then passed to the resident
firmware at physical address 2004 0000 ;5. Table 3—17 shows the state of the CPU after
a halt.

Table 3—-17 CPU State After a Halt

Register New Contents
SAVPC Saved PC
SAVPSL<31:16,7:0> Saved PSL<31:16,7:0>
SAVPSL<15> Saved MAPEN<0>

SAVPSL<14> Valid PSL flag (unknown for halt code of 3)

Central Processor and Floating Point Unit 47

Table 3-17 (Cont.) CPU State After a Halt

Register New Contents

SAVPSL<13:8> Saved halt code

SP Current interrupt stack (IPR 4)

PSL 041F 0000 4¢

PC 2004 0000 ¢

MAPEN 0

ICCS 0 (for a halt code of 3)

SISR 0 (for a halt code of 3)

ASTLVL 0 (for a halt code of 3) (asynchronous system traps level register)
All else Undefined

The firmware uses the halt code in combination with hardware event indicators to send
the interrupt or exception responsible for the halt to the appropriate firmware routine
(either console emulation, power-up, reboot, or restart). Table 3—18 lists the interrupts
and exceptions that can cause a halt, along with their corresponding halt codes and event
indicators.

Table 3—-18 HALT Codes

Halt Code Interrupt Condition Event Indicator

Halt Codes for Unmaskable Interrupts
2 External Halt (P-chip HALT_L pin asserted).
BHALT asserted on the Q22-bus. DSER<15>

BDCOK negated and asserted on the Q22-bus while DSER<14>
BPOK stays asserted (Q22-bus reboot/restart).

BREAK generated by the console. RXDB<11>
3 Hardware Reset (P-chip RESET pin negated)

BDCOK and BPOK negated then asserted on the Q22- -
bus (power-up).

BDCOK negated and asserted on the Q22-bus while -
BPOK stays asserted (Q22-bus reboot/restart).

Halt Codes for Exceptions

6 Halt instruction executed in Kernel Mode.

Halt Codes for Exceptions that Occur While Serving an Interrupt or Exception
4 Interrupt stack not valid during exception.

5 Machine check: during normal exception.

7 SCB vector bits<1:0>= 11.

8 SCB vector bits<1:0>= 10.

A CHMx executed while on interrupt stack.

48 Central Processor and Floating Point Unit

Table 3-18 (Cont.) HALT Codes

Halt Code Interrupt Condition Event Indicator

10 Access violation (ACV) or translation not valid (TNV)
during machine check exception.

11 ACV or TNV during kernel stack not valid exception.

12 Machine check during machine check exception.

13 Machine check during kernel stack not valid exception.

19 PSL<26:24>= 101 during interrupt or exception.

1A PSL<26:24>= 110 during interrupt or exception.

1B PSL<26:24>= 111 during interrupt or exception.

1D PSL<26:24>= 101 during REI.

1E PSL<26:24>= 110 during REIL.

1F PSL<26:24>= 111 during REI

3F Power-up self-test failed in the P-chip (microcoded).

3.1.7 System Identification

The KA670 firmware and operating system software references two registers to determine
the processor on which they are running. The first register is the system identification
(SID) register , an internal processor register. The second register is the system
identification extension (SIE) register, a firmware register in the KA670 EPROM.

3.1.7.1 System Identification Register

The system identification (SID) register (IPR 62) is a 32-bit, read-only register
implemented in the CPU chip. The SID register is used to identify the processor type
and its microcode revision level. The SID longword is read from IPR 62, using the MFPR
instruction. This longword value is processor-specific. Figure 3—13 shows the format of
the SID register. Table 3—19 lists the bit definitions.

3 22
1 43 87 0

CPU Type Reserved Microcode Rev.

Figure 3-13 System Identification Register (SID)— (IPR 62;¢ 3E+g)

Table 3-19 System Identification Register (SID)

Field Name RW Description

<31:24> CPU type RO The CPU type is the processor-specific identification code.
<23:8> Reserved RO Reserved for future use.

<7:0> Version RO Version of the microcode.

Central Processor and Floating Point Unit 49

3.1.7.2 System Identification Extension Register (20040004)

The system identification extension (SIE) register is an extension of the SID register,
used to further differentiate between hardware configurations. The SID register identifies
which CPU and microcode is executing, and the SIE register identifies what module and
firmware revision are present. Note that the fields in this register depend on the CPU
type in SID<31:24>.

By convention, all MicroVAX systems implement a longword at physical location
20040004 in the firmware EPROM for the SIE register. This 32-bit, read-only register
is implemented in the KA670 ROM. Figure 3—14 shows the format of the SIE register.
Table 3-20 lists the definitions of the register bits.

3 22 11
1 43 65 87 0

Sys_Type Rev. Level Sys_Sub_Type Reserved

Figure 3—-14 System Type Register (SYS_TYPE)

Table 3-20 System Type Register (SYS_TYPE)
Field Name RW Description

31:24 Sys_type RO This field identifies the type of system for a specific processor.
01 : Q22-bus single-processor system.

23:16 Version RO This field indentifies the resident version of the firmware EPROM,
encoded as two hexadecimal digits. For example, if the banner
displays V5.0, then this field is 50;s.

15:8 Sys_sub_ RO This field indentifies the particular system subtype.
type 01 : KA650
02 : KA640
03 : KA655
04 : KA670
7:0 Reserved This field is reserved.

3.1.8 Accelerator Control and Status Register (ACCS) IPR 40

The accelerator control and status register (IPR 40, ACCS) provides the FPU with the
ability to generate bad data parity on write operations. Figure 3—15 shows the format of
the ACCS. Table 3-21 lists the register bit definitions.

33
10 210
M82 0

L —T A
Write Even Parity FPU Present

Must be 0 ——————=d

Figure 3-15 Accelerator Control and Status Register (ACCS)—(IPR 40,9 284¢)

50 Central Processor and Floating Point Unit

NOTE

The M bit should be set in any PTE that maps pages to be written while write
even parity is enabled. Failure to do so may result in a PTE being written with
bad parity during an M bit update.

Table 3-21 Accelerator Control and Status Register Bit Definitions

Data Bit

Definition

<31>

<30:2>

<1l>

<0>

Name Type
Write even parity Write only
Reserved

FPU present Read/write
Must be zero -

This bit enables the generation of bad
data parity for write operations. If the
bit is set to 1, all subsequent cache
or memory writes and F-chip operand
transfers are done with bad data
parity on all bits. This bit is used for
diagnostics only, and should never be
set during normal operations.

The write even parity bit is
automatically cleared if ACCS is
read with an MFPR instruction.

Also, the write-even-parity state is
cleared at the start of any interrupt,
exception, or console halt, to prevent
an exception stack frame from being
written with bad data parity. The
write even parity bit is cleared during
a reset.

Must be read as 0.
This bit enables use of the F-chip.

If the FPU present bit is set to 1,
floating point and longword-length
integer multiply instructions are

passed to the F-chip for execution.

If the FPU present is set to 0,
the execution of a floating point
instruction results in a reserved
instruction fault.

Since an F-chip is included on every
KA670 module, the FPU present

bit should be set during normal
operation. If an F-chip error is
detected, the F-chip may be disabled
if the operating system emulation
software is loaded. This bit is cleared
during a reset.

Reserved. Must be read as 0.

3.1.9 CPU References
CPU references are divided into three groups:

¢ Request instruction-stream read references

e Demand data-stream read references

* Write references

Central Processor and Floating Point Unit 51

3.1.9.1 Instruction-Stream Read References

The CPU has an instruction prefetcher for prefetching program instructions from either
cache or main memory. The prefetcher uses a 16-byte (4-longword) instruction prefetch
queue (IPQ). Whenever there is an empty longword in the IPQ, and the prefetcher is not
halted due to an error, the instruction prefetcher generates an aligned quadword, request
instruction-stream (I-stream) read reference.

3.1.9.2 Data-Stream Read References

Whenever the CPU needs data immediately to continue processing, a demand data-
stream (D-stream) read reference is generated. Demand D-Stream references are
generated on the following references:

¢ Operand

¢ Page table entry (PTE)

e System control block (SCB)
* Process control block (PCB)

When interlocked instructions such as branch on bit set and set interlock (BBSSI) are
executed, a demand D-stream read-lock reference is generated.

All data read references are translated into an appropriate combination of masked
and unmasked, aligned quadword read references. The reasons for the translation are
that (1) the CPU does not impose any restrictions on data alignment other than the
aligned operands of the add aligned word interlocked (ADAWI) and interlocked queue
instructions, and (2) memory can only be accessed one aligned quadword at a time.

If the required datais ... Then the following is generated ...

A byte, a word within a quadword, or an A single, aligned quadword, demand D-stream rea

aligned quadword reference :

A word that crosses a quadword boundary Two successive, aligned quadword, demand D-

or an unaligned quadword stream read references

Larger than a quadword The data is divided into a number of successive,
aligned quadword, demand D-stream reads, with no
optimization.

3.1.9.3 Write References

Whenever data is stored or moved, a write reference is generated. All data write
references are translated into an appropriate combination of masked and unmasked,
aligned quadword write references. The reason for the translation is that (1) the CPU
does not impose any restrictions on data alignment (other than the aligned operands of
the ADAWI and interlocked queue instructions), and (2) memory can only be accessed one
aligned quadword at a time.

If the required data is ... Then the following is generated ...
A byte, a word within a quadword, or an A single, aligned quadword, write reference
aligned quadword

A word that crosses a quadword boundary ~ Two successive, aligned quadword, write references
or an unaligned quadword

52 Central Processor and Floating Point Unit

If the required data is . . . Then the following is generated ...

Larger than a quadword The data is divided into a number of successive,
aligned quadword writes

3.2 KAG670 Floating Point Accelerator

The KA670 module includes a floating point accelerator (FPA) chip to enhance the
performance of floating point and certain integer calculations. These functions are
implemented by the F-chip.

3.2.1 Floating Point Accelerator Data Types

The KA670 floating point accelerator supports the following data types:
* F_floating

¢ D_floating

e G_floating

* Byte (conversion to and from floating formats)

e Word (conversion to and from floating formats)

* Longword (conversion to and from floating formats and multiply)

3.2.2 Floating Point Accelerator Instructions
The KA670 FPU chip processes the following VAX instructions:

* F_floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBF, EMODF, and POLYF are emulated, not processed by the FPU
chip.

¢ D_floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBD, EMODD, and POLYD are emulated, not processed by the FPU
chip. A

* G_floating add, subtract, multiply, divide, convert, move, compare, negate, and test
instructions. ACBG, EMODG, and POLYG are emulated, not processed by the FPU
chip.

* Longword-length integer multiply instructions.
If the FPU chip is absent or disabled, the execution of a floating point instruction results

in a reserved instruction exception. The execution of a longword-length integer multiply
instruction is done by the FPU chip microcode.

3.2.3 Operand and Result Transfer

The CPU and FPU chips work together to execute instructions accelerated by the FPU
chip. The CPU parses the opcode and instruction specifiers, then sends opcode and
operands to the FPU.

Operands from the GPRs, the instruction stream, and the primary cache are explicitly
transferred from the CPU to the FPU. Floating point short literals are transferred in
unexpanded form; it is the FPU’s responsibility to expand them to the correct format. .

Central Processor and Floating Point Unit 53

Operands from the backup cache or from memory are returned to both the CPU and the
FPU simultaneously—they are not received by the CPU and rebroadcast to the FPU.

When the FPU receives the last operand for an instruction, the FPU begins to compute
the result. In parallel, the CPU completes any instruction setup (for example, parsing a
destination specifier). The CPU then requests the result from the FPU and stalls until
the result is returned. Finally, the CPU stores the result in GPR or memory and sets the
PSL condition codes. ’

The FPU tests for exception conditions and reports them to the CPU, in response to the
request for the result. Detected exceptions include reserved operands, floating divide by
zero, floating overflow, floating underflow, and data parity errors.

3.2.4 Power-Up State

At power-up, the CPU microcode disables the FPU as part of the chip initialization
process. Until the FPU is enabled, the execution of any floating point instruction results
in a reserved instruction exception. The console should enable the FPU by setting bit <1>
of the accelerator control and status (ACCS) processor register, then test the operation of
the FPU. If the FPU fails these tests, the console should clear ACCS<1> again.

Console Programmer’s Note

The FPU does not accept memory operands in I/O space. Because the FPU executes
longword-length integer multiply instructions as well as floating point instructions, it
may not produce correct results or report operand parity errors if it is enabled during the
execution of the console code from the boot ROM.

Therefore, the FPU should be disabled on any console entry, by writing a 0 to bit 1 of the
ACCS processor register. This action causes the CPU to execute the integer instructions
in microcode and invoke a reserved instruction fault for the floating point instructions.

The FPU is normally tested during the power-up self-test. In this case, it is the
responsibility of the console programmer to understand the restrictions involved and
perform the test in a controlled manner.

4

Cache and Main Memory

This chapter describes the operation and features of the KA670’s cache memory and main
memory controller.

4.1 KA670 Cache Memory

To maximize CPU performance, the KA670 incorporates a two-level cache hierarchy. The
primary cache consists of 2 kilobytes of memory contained entirely in the CPU chip. The
backup cache consists of the C-chip and twenty-four 16K x 4 static RAMs. The C-chip
contains the tag store and the control logic for the backup cache RAMs. The backup
cache is a 128-kilobyte cache used in combination with the CPU to provide a performance
boost for the system.

The C-chip also serves to filter invalidates that may come from a memory controller,

so not all invalidates have to be broadcast on the data and address lines. To filter
invalidates, the C-chip maintains a copy of the primary cache tag store and uses

an invalidate bus (I-bus). The I-bus can be used by DMA devices to determine if a
memory location is cached in either cache. Using the I-bus eliminates the need to run
an invalidate cycle of the RDAL for every DMA. Therefore, only those DMAs that hit in
either cache cause an invalidate cycle saving RDAL bandwidth.

4.1.1 Cacheable References

Any reference stored by the primary or backup cache is called a cacheable reference. The
primary and backup caches store CPU read references to the VAX memory space (bit
<29> of the physical address equals 0) only. They do not store references to the VAX
I/0 space or DMA references by the Q22-bus interface. Two types of CPU references
are stored—request instruction-stream read references and demand data-stream read
references other than read-lock references.

If the CPU generates ... Then ...

A noncacheable reference or a cacheable A single quadword reference of the same type is
reference not stored in the primary cache generated on the RDAL bus.

A cacheable reference stored in the No reference is generated on the RDAL bus.

primary cache

54

Cache and Main Memory 55

4.1.2 Primary Cache Overview

The primary cache is a 2-kilobyte cache, directly mapped, with a quadword fill and
allocate (block) size. The cache is read-allocate, no-write-allocate, and write-through. The
primary cache tag store contains one tag and one valid bit for each primary cache block.
There are 256 tags mapping 256 quadword data blocks. Each tag entry includes an 18-bit
tag, 1 valid bit, and 1 parity bit. Each data block contains 8 data bytes and 8 parity bits,
one for each data byte.

4.1.2.1 Primary Cache Organization
The primary cache is arranged in 64 rows, with 4 quadwords and 4 tag entries per row.
Figure 4-1 shows the format.

r¢————— Data Array

Y
A

Tag Array ==

Qw 3 Qw 2 Qw 1 Qw o Tag3 | Tag2 | Tagt | TagO 64 Rows

Figure 4-1 Primary Cache Data and Tag Layout
Each tag entry of the memory is organized as shown in Figure 4-2.

|—— Physical Address<28:11> ——3
111
987 0

Tag
A

Tag
Parity bit

(as computed over just the tag)
Valid bit

Figure 4-2 Primary Cache Tag Entry

56 Cache and Main Memory -

The tag consists of bits <28:11> of the physical address (PA). The tag parity bit is the odd
parity computed over 18 address bits, PA<28:11>. It is computed by the primary cache.
The valid bit is used to indicate whether or not the corresponding entry in the primary
cache is valid. The valid bit is not included in the tag parity calculation.

The data array has each quadword logically arranged as shown in Figure 4-3.

P7| Byte 7 |P6| Byte 6 |P5| Byte 5 |P4| Byte 4 |P3]| Byte 3 |P2] Byte 2 |P1| Byte 1 |PO| Byte O

Figure 4-3 Primary Cache Data Entry

Each primary cache entry consists of one quadword. Odd parity information is
maintained separately for each byte. The primary cache neither generates nor checks
parity cn data; the primary cache only stores parity information. The CPU (P-chip) bus
interface unit (BIU) takes the responsibility of checking parity for the data. If a parity
error is detected on the data coming from or written into the primary cache, the primary
cache may be flushed or switched off by the resulting microtrap routine.

4.1.2.2 Primary Cache Address Translation

The physical addresses supplied to the primary cache consist of 28 bits (address<29:2>).
Bit <2> of the physical address selects a longword out of the quadwords of the primary
cache. Bits <8:3> select one of the rows of the primary cache memory. Because there are
four tag entries in each row, two bits of the address (bits <10:9>) are used to select one of
the four columns. Bits <28:11> are stored as tags in the primary cache. Bit <29> of the
address specifies /O space. I/O space addresses are not cached.

Whenever the CPU requires an instruction or data, the contents of the primary cache are
checked to determine if the referenced location is stored there. The cache contents are
checked by translating the physical address as shown in Figure 4-4.

On noncacheable references, the reference is never stored in the cache. So a primary
cache miss occurs, and a single quadword reference is generated on the RDAL bus.

Cache and Main Memory 57

3322 11
1098 1098 3210
Tag
A L A t-
1/O Space Cache Index Unused
Column Select
Unused
Cache
Index =
Row Longword Select ——
Select
Y
QW3 | Qw2 Qw 1 Qwo Tag3 || Tag2 |} Tag1 || TagO

Y

Cached Data —
Valid Bit — - Stored

Tag

b —

T

\' Match?

Data

Figure 4-4 Primary Cache Physical Address Translation

58 Cache and Main Memory

4.1.2.3 Primary Cache Data Block Allocation

Cacheable references that miss the primary cache initiate a quadword read to on the
RDAL bus. When the requested quadword is supplied by the backup cache or the main
memory controller, the requested quadword is passed on to the CPU; a data block is
allocated in the cache to store the quadword.

Since the KA670 supports 512 megabytes (64 mega-quadwords) of physical memory,
up to 1 mega-quadwords share each row (four data blocks) of the cache. Contiguous
programs larger than 2 kilobytes and noncontiguous programs separated by 2 kilobytes
will overwrite themselves when cache data blocks are allocated.

4.1.2.4 Primary Cache Behavior on Writes

On CPU-generated write references, the primary cache is write-through. For all CPU
write references that hit the primary cache, the contents of the referenced location in
main memory is updated as well as the copy in the cache.

On DMA write references that hit the primary cache, the cache entry containing the copy
of the referenced location is invalidated.

4.1.2.5 Primary Cache Internal Processor Registers

The primary cache includes four registers that may be accessed using IPR reads (move
from processor register, MFPR) and writes (move to processor register, MTPR). These
four registers are used for controlling the primary cache operation, storing status, and
diagnostics and error recovery. Table 4—1 lists the four registers.

Table 4-1 Primary Cache Internal Processor Registers

IPR Number
Register Name Mnemonic Hex Decimal Type
Primary cache tag array PCTAG 7C 124 Read/write
Primary cache index register PCIDX 7d 125 Read/write
Primary cache error address PCERR 7E 126 Read/write
register
Primary cache status register PCSTS 7F 127 Read/write

4.1.2.5.1 Primary Cache Status Register (PCSTS)—IPR 127

The primary cache status register (PCSTS) is used to control the primary cache’s mode
of operation, flush the cache, and maintain information about all errors detected by the
CPU (not only primary cache errors). The PCSTS register is considered locked to errors
that result in an interrupt, if the interrupt bit (PCSTS<5>) or trapl bit (PCSTS<7>) is
set. For errors that result in a trap, this register is considered locked only if trapl is set.

Figure 4-5 shows the format of the status register. Table 4-2 lists bit definitions.

11
32

Cache and Main Memory 59

11
109876543210

mBz

¥ muunuuuuut
Force_Hit

Enable_PTS

‘———— Flush_Cache
Enable_Refresh
P_Cache_Hit
Interrupt

Trap2

Trapt
Tag_Parity_Error
RDAL_Data_Parity_error
P_Data_Parity_error
Bus_Error

B_Cache_Hit

Figure 4-5 Primary Cache Status Register (PCSTS)— (IPR 127, 7F¢)

Table 4-2 Primary Cache Status Register

Data Bit

Name

Definition

<31:13>

<12>

<11>

MBZ

B_cache_hit

Bus_error

Must be zero. Always read as 0s. Writes have no
effect.

Backup cache hit (read only). This bit indicates that
the error condition causing the primary cache status
register to lock was a reference that hit in the backup
cache. For RDAL parity errors, this bit can be used

to determine who was driving the the RDAL bus. If
B_cache_hit is set, the source was the backup cache. If
B_cache_hit is clear, the memory subsystem was the
source.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. B_cache_hit is cleared on reset.

Bus error (read only). This bit is set when an RDAL
read, write, or clear-write-buffer command results in
an error.

If the RDAL command was an I-stream read, the
interrupt bit (PCSTS<5>) is also set. The error is
reported as an IPL 1A 5 soft error interrupt.

If the RDAL command was a D-stream read, write

or clear-write-buffer, trapl (PCSTS<7>) or trap2
(PCSTS<6>) is also set. The error results in a machine
check.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. Bus_error is cleared on reset.

60 Cache and Main Memory

Table 4-2 (Cont.) Primary Cache Status Register

Data Bit Name Definition

<10> P_data_parity Primary cache data error (read only). This bit is
set when a read hits in the primary cache and the
requested data has a parity error.

If the RDAL command was an I-stream read, the
interrupt bit (PCSTS<5>) is also set. The error is
reported as an IPL 1A ¢ soft error interrupt.

If the RDAL command was a D-stream read, write
or clear-write-buffer, trapl (PCSTS<7>) or trap2
(PCSTS<6>) is also set. The error results in a machine

check.

This bit is updated for any reference that has an
associated error, if the primary cache status register is
not already locked. P_data_error is cleared on reset.

<9> RDAL_data_parity RDAL data parity error (read only). This bit is set
when the data returned in response to a non-I/O space
RDAL read has a parity error.

If the error is detected on the nonrequested longword of
a D-stream read, or on either longword of an I-stream
read, the interrupt bit (PCSTS<5>) is also set. The
error is reported as an IPL 1A 16 soft error interrupt.

If the RDAL data parity error is detected on the
requested longword of a D-stream read, trapl
(PCSTS<7>) or trap2 (PCSTS<6>) is also set. The
error results in a machine check.

This bit is updated for any reference that has an
associated error, if the primary cache status register
is not already locked. RDAL_data_parity is cleared on

reset.

<8> Tag_parity_error Primary cache tag parity error (read only). This bit
is set if a primary cache tag parity error is detected
during a read, write, or invalidate reference, providing
the PCSTS register has not been not locked by a

previous error.

If tag_parity_error is set, the interrupt bit (PCSTS<5>)
is also set. The error is reported as an IPL 1A ;¢ soft
error interrupt.

If the reference was a D-stream read that hit, trapl
(PCSTS<7>) or trap2 (PCSTS<6>) is also set. The error
results in a machine check.

This bit is updated for any reference that has an
associated error, if the primary cache status register
is not already locked. Tag_parity_error is cleared on

reset.

Cache and Main Memory 61

Table 4-2 (Cont.) Primary Cache Status Register

Data Bit

Name

Definition

<7>

<6>

<5>

<4>

<3>

Trapl

Interrupt

P_cache_hit

Enable_refresh

Write one to clear. This bit is set when an error
detected by the CPU results in a machine check.
PCSTS<12:8> and the primary cache error address
register (PCERR IPR 126), are latched until trapl

is cleared. If this bit is set, the primary cache is not
automatically flushed. However, it is automatically
disabled (although enable_PTS PCSTS<1> is not
changed). Trapl is cleared on reset and by writing 1 to
it with an MTPR instruction.

Write one to clear. This bit is set when an error
detected by the CPU results in a machine check and
trapl (PCSTS<7>) is already set.

When trap?2 is set, it indicates that a nested error
occurred and that PCSTS<12:8> and the primary
cache error address register (PCERR IPR 126) contain
information about the first error that set trapl. This
should be considered a fatal error condition.

If trap?2 is set, the primary cache is not automatically
flushed. However, it is automatically disabled
(although enable_PTS (PCSTS<1>) is not changed).
Trap2 is cleared on reset and by writing 1 to it with an
MTPR instruction.

Write one to clear. This bit is set when an error
detected by the CPU results in an interrupt at IPL 1A
16. PCSTS<12:8> are latched unless the interrupt bit
or trapl (PCSTS«7>) was previously set; they remain
latched until the interrupt bit is cleared or another
error sets trapl.

If the interrupt bit is set, the primary cache is
automatically disabled (although enable_PTS
(PCSTS<1>) is not changed). The interrupt bit is
cleared on reset and by writing 1 to it with an MTPR
instruction.

Primary cache hit (read only). This bit is the latched
output value of the tag comparator. This bit is updated
for all D-stream reads, writes, or invalidate cycles. It
may be used to test the primary cache hit logic. P_
cache_hit is cleared on reset and should be used for
diagnostic purposes only.

Enable refresh (read/write). When this bit is set, the
automatic refresh of the primary cache take place and
the refresh counter increments. When this bit is a
cleared, refresh is disabled, the refresh counter does
not increment, and the refresh timer logic is disabled.
This bit should be set during normal primary cache
operations. Enable_refresh is cleared on reset.

62 Cache and Main Memory

Table 4-2 (Cont.) Primary Cache Status Register

Data Bit

Name

Definition

<2>

<1>

<0>

Flush_cache

Enable_PTS

Force_hit

Flush primary cache (write only). This bit is used

to clear all valid bits in the primary cache tag array.
If this bit is written with a 1, the primary cache is
flushed. The hardware then clears this bit in the next
cycle, so that it is always read as a 0.

NOTE

The state of the primary cache is unpredictable
if enable_PTS is 0 (PCSTS<1>). Therefore, the
primary cache should be flushed before it is
enabled. This may be done as a separate IPR
write of flush_cache before enable_PTS is set in
the primary cache status register. It may also be
done by setting flush_cache and enable_PTS in
the same IPR write to the primary cache status
register.

Enable primary cache (read/write). This bit enables
or disables normal operation of the primary cache. If
the bit is set, both I-stream and D-stream references
are cached, and primary cache tag and data parity
errors are reported. I/O references are never cached.
If the bit is cleared, all references (read, write, and
invalidate) result in a miss. enable_PTS is cleared on
reset.

Force a primary cache hit (read/write) When this

bit is set, the primary cache forces a hit for all
memory references. Memory write requests still

go to the external memory. /O references are not
affected (they are not cached). When this bit is set,
the following are disabled: primary cache tag parity
error reporting associated with D-stream reads, writes,
and invalidates, and primary cache data parity errors
associated with D-stream reads.

RDAL errors (parity errors associated with the data
present on the RDAL or bus errors) are not affected
by this bit. Force_hit should not be used to satisfy
I-stream reads, since primary cache tag or data parity
errors detected during I-stream reads may cause a
loop. Force_hit may be used to initialize the primary
cache data array. Force_hit is cleared on a reset. This
bit is for diagnostics only and should be cleared during
normal operation.

NOTE
When the primary cache is off (enable_PTS = 0)

and force_hit is set, the operation of the primary
cache is unpredictable.

4.1.2.5.2 Primary Cache Error Address Register (PCERR)—IPR 126

For read commands, the primary cache error address register (PCERR) latches and
holds the physical address of an error that causes trapl (PCSTS<7>) to set. Since
write errors are asynchronous to the instruction pipeline, the address latched for write
commands is not the address of the error. For write commands, no address is available.
The PCERR register remains locked until trapl is cleared in the primary cache status
register (PCSTS).

Cache and Main Memory 63

The PCERR register also provides visibility into the refresh counter and refresh timer.
An IPR write (MTPR) to the PCERR register updates the refresh counter and timer. An
IPR write to the PCERR register loads the refresh counter with bits <8:3> of the data,
and the refresh timer with bits <15:9> of the data.

An IPR read (MFPR) of the primary cache error address register (PCERR) reads the error
address out if trapl (PCSTS<7>) is set. If trapl is not set, an IPR read is used to read
the refresh timer in bits <15:9> and the value of the refresh counter in bits <8:3>.

Access to the refresh counter and refresh timer is provided for diagnostics only.

Figure 4-6 shows the format for the primary cache error address register.

Read Format if TRAP1 Is Set

3 32
109 0

MBZ Error Physical Address

Read Format if TRAP1 Is Not Set;
Write Format Regardiess of TRAP1 Setting

11
1 6 5 9 8 3 2 0

MBZ Refresh Timer - Counter MBZ

Figure 4-6 Primary Cache Error Address Register (PCERR)—(IPR 126, 7E+¢)

If enable_refresh (PCSTS<3>) is set, a read of the refresh timer and counter (through the
PCERR register) following an IPR write to the timer and counter will result in a different
value than the value written. The reason is as follows.

When the enable_refresh (PCSTS<3>) bit is set, the refresh counter is incremented for
every NOP operation. The refresh timer is incremented for every cycle during which
the operation is not a NOP or an IPR write to the PCERR register. Due to the internal
latency involved in the execution of MxPRs, the count values of the refresh counter and
timer may change.

To keep the count values of the refresh counter and timer unchanged, the enable_refresh
(PCSTS<3>) bit should be cleared.

4.1.2.5.3 Primary Cache Index Register (PCIDX)—IPR 125

The primary cache index register (PCIDX) provides the mechanism for reading and
writing the tag array of the primary cache. During IPR (MTPR) writes to the primary
cache tag array register (PCTAG) (Section 4.1.2.6), the contents of the PCIDX register
are used to index the desired tag entry in the array. Therefore, the PCIDX register must
be written with the desired index before performing an IPR write (MTPR) to the PCTAG
register.

Figure 4-7 shows the format of this register.

64 Cache and Main Memory

3 11
1 10 32 0O

MBZ Tag Array Index | MBZ

Figure 4-7 Primary Cache Index Register (PCIDX)—(IPR 125;9 7D+¢)

4.1.2.5.4 Primary Cache Tag Array Register (PCTAG)—IPR 124
The primary cache tag array register (PCTAG) is a 32-bit logical register that provides
the mechanism for reading and writing the tag array of the primary cache.

Figure 4-8 shows the format for this register.

3322
1098

AA t_
MBZ

bt Parity Bit
Valid Bit

O -
o

Tag MBZ

Figure 4-8 Primary Cache Tag Array Register (PCTAG)— (IPR 124,45 7Cy¢)

4.1.2.6 Writing and Reading the Primary Cache Tag Array

During an IPR read/write of the primary cache tag array register (PCTAG), the primary
cache index register (PCIDX) supplies the index for the tag entry to be accessed. To
write a tag entry in the primary cache, first the index of the tag entry is written in the
PCIDX register by issuing an MTPR. Then an MTPR is issued for the primary cache
tag array register (PCTAG), with the desired value of the valid bit, parity bit, and tag
address<28:11> in data bits<31:30> and <28:11>.

In order to read a tag entry in the primary cache, the index of the tag entry is written in
the PCIDX register by issuing an MTPR instruction. Then an MFPR instrcution is issued
for the primary cache tag array register (PCTAG).

4.1.2.7 Primary Cache Error Recovery

When an error is detected in the primary cache, the primary cache latches error
information in the PCSTS and PCERR registers, then becomes disabled. The exact
type of error can be determined from the information in the PCSTS register and the way
the error was reported.

If the error was a tag parity error, the entire tag store must be written with “invalid tag
with good parity.” The PCERR register contains the address of the tag in error only if the
tag parity error is reported as a machine check.

For all other errors, the primary cache should simply be flushed by writing 1 to the
flush_cache bit in the primary cache status register (PCSTS<2>).

To complete error recovery, the primary tag store in the C-chip should be flushed and the
error bits should be cleared in the PCSTS. The primary cache should be enabled if the
error rate is such that the primary cache would remain disabled. The primary tag store
in the C-chip must also be disabled.

Cache and Main Memory 65

The following is the recommended sequence for bringing the primary cache back to
normal operation:

1. Save the primary cache status register.

2. Save the primary cache error address register.

3. Ifthe error was a tag parity error, write all tags in the primary cache, as follows:
1. Write the primary cache index register with the next index.

2. Write the primary cache tag array register with tag = 0 (arbitrarily chosen),
parity = 0 (odd parity for chosen tag value), and valid = 0.

4. Flush the primary tag store in the C-chip by writing a 0 to the backup cache flush
primary tag store (BCFPTS) register (IPR 122).

5. Logically OR the flush_cache bit (<2>) into the saved value of the primary cache
status register, then write the resulting value back into the primary cache status
register. This step clears any error bits that were set, flushes the cache, and enable
its if it was enabled before.

4.1.2.8 Primary Cache Initialization

At power-up, the primary cache must be initialized. The console firmware should load
the primary cache status register (PCSTS) with the desired values for the force_hit,
enable_PTS, and enable_refresh bits. The firmware should clear the interrupt, trap1, and
trap2 bits in the PCSTS register. The firmware should also invalidate the entire primary
cache by issuing an IPR write (MTPR) to PCSTS, writing a 1 in bit <2> (flush_cache).
Then each tag store entry should be loaded with an invalid tag with good parity. Each
entry may be written with a write to PCIDX, followed by a write to PCTAG.

4.1.2.9 Primary Cache Diagnostics

The primary cache may be tested by reading and writing tags with PCIDX and PCTAG.
Error detection may be tested by constructing an error and then reading the state from
PCSTS and PCERR. The primary cache refresh counter and timer may be tested by
reading and writing the primary cache error register (PCERR).

4.1.2.10 Error Handling by the Primary Cache
The primary cache is responsible for latching any error signals that occur for the
following:

* Primary cache tag parity error
e Primary cache data parity error
e RDAL data parity error

e RDAL bus error

® F-chip result parity error

The latter four errors are detected by the CPU (P-chip). Errors are reported in one of two
ways: as a soft error interrupt at IPL 1A 4, or as a machine check.

When an error is detected, the primary cache sets trapl, trap2, or the interrupt bit in the
primary cache status register (PCSTS) and conditionally latches other bits to indicate the
type of error. When trapl, trap2, or the interrupt biut are set in the PCSTS register, the
primary cache is automatically disabled.

66 Cache and Main Memory

Primary cache tag parity errors are reported if a tag parity error is detected during a
read, write, or invalidate reference; and if the primary cache status register has not been
already locked by a previous error (for example, enable_PTS = 1, trapl = 0, trap2 = 0,
interrupt = 0, and force_hit = 0). Tag parity errors are always reported as an interrupt.
If the reference was a D-stream read that hit, the error is also reported as a machine
check.

Primary cache data parity errors are reported if a data parity error is detected during a
read reference that hit in the primary cache (unless force_hit (PCSTS<0>=1). Primary
cache data parity errors are reported as a machine check if the reference was a D-
stream read. If the reference was an I-stream read, primary cache data parity errors are
reported as an interrupt.

RDAL data parity errors are reported if a data parity error is detected during a non-
1/O space read reference that missed in the primary cache. RDAL data parity errors
detected on the requested longword of a D-stream read are reported as a machine check.
RDAL parity errors detected on the nonrequested longword of a D-stream read, or on
either longword of an I-stream read, are reported as an interrupt.

RDAL bus errors are reported if a read, write, or clear write buffer command is
terminated with an error (RDAL bus signal ERR_L asserted). Bus errors detected
during D-stream read, write, or clear write buffer commands are reported as a machine
check. Bus errors detected during an I-stream read are reported as an interrupt.

NOTE

RDAL bus errors may also be reported for an EPR read or read interrupt vector
command that is terminated with the RDAL signal ERR_L. In those cases,
however, the PCSTS register does not lock and the CPU processes the error
entirely by microcode, with no error reported to the software.

F-chip result parity errors are reported if a data parity error is detected during a

result transfer from the F-chip. Result parity errors are always reported as a machine
check. :

Errors reported as interrupts do the following:
e Set the interrupt bit (PCSTS<5>).
* Update bits PCSTS<12:8> with information describing the error.

However, if either interrupt or trapl is already set when the error is detected, bits
PCSTS<12:8> are not updated. Bits PCSTS<12:8> reflect the first error detected.

Errors reported as a machine check do three things:

¢ Set trapl in the primary cache status register (PCSTS).
¢ Update bits PCSTS<12:8>.

¢ Load the primary cache error address register (PCERR).

However, if trapl is already set when the error is detected, trap2 is set and neither bits
PCSTS<12:8> nor the PCERR register are updated. This causes bits PCSTS<12:8> and
the PCERR register to reflect the first error detected. Note that the state corresponding
to the machine check overwrites any information latched due to a previous interrupt.
It is assumed that errors reported as a machine check are more important than those
reported as an interrupt.

Cache and Main Memory 67

In the CPU, primary cache data parity errors are reported only if the read reference hits

in the cache. However, primary cache tag parity errors are reported whenever the error
is detected. The following are two reasons for this inconsistency:

1

Primary cache tag entries can be directly written without any side effects, using
MTPR macro instructions. There is no direct and easy way of writing the primary
cache data array.

If primary cache tag parity errors are reported only under hits, there is a possibility
that a stuck-at fault in the tag array might not get detected for a long time.
Meanwhile, the system will run at degraded performance. This is undesirable.

Figure 4-9 shows the resulting status register values for each error type.

Error Conditions Resulting PCSTS Register Values
. <IDS<> <10> <9> B> <T> <5> <> 2> <l
Error Command LW PChit? BCH BER PDP DDP PTP TRl TR2 INT HIT RFF! FLS PO; H-IT
PRIMARY CACHE TAG D-READ X YES o o o o 1 1 o X 1 o 1 o
PARITY ERROR
PRIMARY CACHE TAG D.READ X NO 6 o0 o0 o0 1 0 0 1 X 1 o0 1 ©
PARITY ERROR
PRIMARY CACHE TAG I-READ X YES o © ¢ o0 1 0 0 1 X 1 0 1 o0
PARITY ERROR
PRIMARY CACHE TAG L.READ X NO o o o0 o 1 9 0 I X 1 0 1 0
PARITY ERROR
PRIMARY CACHE TAG WRITE X X 0 6o © o0 1 0 6 ! X 1 6 1 o
PARITY ERROR
PRIMARY CACHE TAG INVAL X X o o o o 1 0 0 1 X 1 6 1 0
PARITY ERROR
6
PRIMARY CACHE TAG OTHER X X 0 o o ©6 o0 o0 06 0 X 1 ©6 X o
PARITY ERROR
PRIMARY CACHE DATA D-READ X YES o o 1 o o ! 0 0 X 1 o0 1 0
PARITY ERROR
PRIMARY CACHE DATA I-READ X YES] [1 [] o 0 o0 M X 1 ¢ 1 0
PARITY ERROR .
PRIMARY CACHE DATA OTHER X X 0 o 0o 0o © 6 0 8 X 1 0 X 0
PARITY ERROR
RDAL DATA PARITY ERROR D-READ 1 NO BCH o o 1 o ! 0 0 X T 0 X0
RDAL DATA PARITY ERROR D-READ 2 NO BCH o o 1 ¢ © © 1 X 1 o X 0
RDAL DATA PARITY ERROR 1-READ X NO BCH o o 1 o 0 0 1 X 1 0 X 0
6
RDAL DATA PARITY ERROR OTHER X X ¢ o o o o 0 0 ° X 1 0o X o
RDAL BUS ERROR D-READ X NO BCH 1 o o o 1.0 0 X 1 0 X °
RDAL BUS ERROR .READ X NO BCH 1 o o o 0 0 1 X 1 o0 X o
RDAL BUS ERROR WRITE X X BCH 1 o o o ! 0 0o X 1 o0 X 0
RDAL BUS ERROR CL WR BUE X X BCH + ¢ ¢ o ! 0 0o X 1 0 X O
3
RDAL BUS ERROR OTHER X b3 c 0o o © 6 0 0 0 X 1 0 X O
P.CHIP RSLT PARITY ERROR RD RSLT X X o 6 0 0 0 3 o 0 X 1 0 X 0O

Figure 4-9 Primary Cache Detectable Single Errors
Notes:

1

In all of these cases, it is assumed that enable_refresh (PCSTS<3>) is set to 1 and
force_hit (PCSTS<0>) is set 0. This is the normal state of the cache, and other states
may change the way errors are reported.

The primary cache must be enabled to get a primary cache tag or data parity error.
The primary cache may or may not be enabled when a DAL data parity error, RDAL
bus error, or an F-chip result parity error is detected.

68 Cache and Main Memory

3. Primary cache tag parity errors always cause an interrupt request. If the error was
the result of a D-stream read that hit, a microtrap is also started.

4. If a read transaction is terminated by ERR_L, data parity is ignored. Therefore, the
RDAL data parity error bit in the status register is never set for a read terminated in
ERR_L.

5. B_cache_hit is always loaded when an error is detected. However, primary cache
tag and data parity errors are detected as part of a primary cache reference, so the
B_cache_hit is always be a 0 for those errors.

6. Commands that have error detection inhibited do not set trapl, trap2, and the
interrupt bit in the primary cache status register. For example, tag parity errors are
inhibited for commands that do not access the tag store. Similarly, RDAL bus errors
are not reported for EPR read, EPR write, or read interrupt vector transactions
terminated by ERR_L; those commands are handled specially by the microcode.

The resulting values shown in Figure 4-9 assume that trapl, trap2, and the interrupt
bit are all 0 when the error is detected. In that case, bits PCSTS<12:8> are updated as
shown. If trapl, trap2, or the interrupt bit are 1 when the error is detected, bits are
updated as shown in Figure 4-10.

STATE BEFORE STATE AFTER ERROR
ERROR
7 6. S 7 6 S LOADj LOCK ERROR| _ DISABLE
TR1 TR2 INT TYPE | TRI TR2 INT__ <128> | ADDR _REG | PRIMARY CACHE?| NOTES:
0 0 0 INT 0o 0 1 YES NO YES SINGLE INTERRUPT
0 0 1 INT 00 1 NO NO YES MULTIPLE INTERRUPT
01 0 INT o1 1 YES NO YES POSSIBLE BUT NOT LIKELY
01 1 INT 01 1 NO NO YES POSSIBLEBUT NOT LIKELY
1 0 0 INT 1 0 1 NO NO YES INTERRRUPT AFTER TRAP
10 1 INT 1 0 1 NO NO YES MULTIPLE INTERRUPT AFTER TRAP
i1 0 INT 1o NO NO YES INTERRUPT AFTER MULTIPLE TRAP
11 1 INT 111 NO NO YES MULTIPLE INTERRUPT AFTER MULTIPLE TRAP
0 0 0 TRAP 10 0 YES YES YES SINGLE TRAP
0 0 1 TRAP 10 1 YES YES YES TRAP AFTER INTERRUPT
0 1 0 TRAP 11 0 YES YES YES POSSIBLE BUT NOT LIKELY
0 i 1 TRAP 11 1 YES YES YES POSSIBLE BUT NOT LIKELY
1 0 0 TRAP 11 0 NO NO YES DOUBLE TRAP
1 0 1 TRAP 111 NO NO YES DOUBLE TRAP AFTER INTERRUPT
1 1 0 TRAP 11 0 NO NO YES MULTIPLE TRAP
1 1 1 TRAP 111 NO NO YES MULTIPLE TRAP AFTER INTERRUPT

Figure 4-10 Primary Cache Detectable Double Errors

4.1.3 Backup Cache Overview

The backup cache is 128 kilobytes, direct-mapped, quadword access size, with an
octaword fill (subblock) size, and a 4-octaword allocate (block) size. The cache is read-
allocate, no-write-allocate, and write-through.

Because the data bus (D_BUS) is 8 bytes wide, the cache RAMs are organized as 8 bytes
wide by 16K locations deep. There are also 8 bits of parity (1 bit corresponding to each
data byte). Fourteen bits of address are needed to access the cache. Bits <16:3> of the
VAX physical address are used as the cache index.

Cache and Main Memory 69

When returning data to the primary cache, the backup cache returns a quadword. This
is the fill size of the primary cache.

4.1.3.1 Backup Cache Organization

The backup cache tag store is organized such that one tag and four valid bits
correspond to each four-octaword block of the cache. Each valid bit corresponds to
one octaword subblock. When a cache tag miss occurs on a read, a block is allocated,
a subblock is filled, and the corresponding valid bit is set. When a cache tag compare
is successful but the valid bit is not set, a subblock is filled from memory, and the
corresponding valid bit is set. Figure 4-11 shows the backup cache organization.

Tag —r—> | FirstValid Bit —r— Quadword 0 ?
One Subblock
O Quadword 1 (Fill Size)
' v
—» 1 Second Valid Bit | ————1—3 Quadword 2
e Quadword 3 One Data
(Allocation
—» 1 Third Valid Bit | ——————g——d> Quadword 4 Size)
— Quadword 5
- | Fourth Valid Bit | ————————p———i Quadword 6
s Quadword 7

Figure 4-11 Tag and Valid Bits as They Correspond to Backup Cache Data

4.1.3.2 Backup Cache Address Translation

The physical addresses supplied to the backup cache consist of 28 bits (address<29:2>).
Bits <5:4> of the physical address select one of the four valid bits that cover two
quadwords in a backup cache row, as shown in Figure 4-11.

There are 16K quadwords of data. Fourteen bits of the address (<16:3>) select one
quadword. Because there are 2K tag entries (one tag covers 8 quadword data entries),
11 bits of the address (<16:6>) are used to select one tag. Bits <28:17> are stored as tags
in the backup cache. Bit <29> of the address specifies /O space; this bit is not used,
because I/0 space addresses are not cached.

On noncacheable references, the reference is never stored in the cache. Therefore, a
backup cache miss occurs and an octaword reference is generated on the RDAL bus.

Whenever the CPU requires an instruction or data not found in the primary cache, the
contents of the backup cache is checked to determine if the referenced location is stored
there. The cache contents are checked by translating the physical address as shown in
Figure 4-12.

70 Cache and Main Memory

Physical Address: 3 3}2j}2 111
1 0|9}8 716 6}5 4132 o0
l— 110 L- Unused
Space B-Cache Row —
Index Valid Bit
Unused Index
12-Bit Cache
Entry Tag B-Cache —
Ram Index
Tag Store Valid Y Bits Data Array
> Tag 1 —————p=tv3|v2]v1{VvO Quadword 1
Tag 2 Quadword 2
Tag 3 > Quadword 3 -
~ ~ = Quadword 4
Quadword 5
Quadword 6

Tag 2046 —3=iv3|v2|Vvi|{Vv0

Tag 2047 |——3{v3|v2|vi}vO

Tag 2048 |——3qv3|v2|vi]Vv0

Quadword 16383

Quadword 16384

R

— Valid Bit Cached Data j

—.l\

/

'

Data (Quadword)

Figure 4-12 Backup Cache Physical Address Translation

Cache and Main Memory 71

4.1.3.3 Backup Cache Data Block Allocation
On cacheable references that miss the primary cache, a quadword read is initiated on the
RDAL bus. If the requested quadword cannot be found in the backup cache:

* An octaword is provided by the main memory controller.

¢ Both caches allocate a data block for storing the data. (The primary cache allocates
and fills a quadword; the backup cache allocates 4 octawords but only fills 1 octaword.

¢ The requested quadword is passed on to the CPU.

Since the KA670 supports 512 megabytes (32 mega-octawords) of physical memory, up
to 4K octawords share each data block (8 quadwords) of the cache. Contiguous programs
larger than 128 kilobytes, or noncontiguous programs separated by 128 kilobytes, will
overwrite themselves in the backup cache when cache data blocks are allocated.

4.1.3.4 Backup Cache Behavior on Writes

On CPU-generated write references, the backup cache is write through. All CPU write
references that hit the backup cache cause the contents of the referenced location in main
memory to be updated as well as the copy in the cache.

On DMA write references that hit the cache, the cache entry containing the copy of the
referenced location is invalidated.

4.1.3.5 Backup Cache External Processor Registers

Several C-chip registers may be accessed using EPR reads (MFPRs) and EPR writes
(MTPRs). The following sections detail the structure of the registers and how the access
of the registers is accomplished. During the EPR access, RDAL address bits <10:3> tell
which EPR is being accessed.

The C-chip contains some vector registers that are not used on the KA670 module, since
it does not have a vector processor. This manual discusses only one of these registers
briefly, the vector interface error status register (VINTSR). Table 4-3 lists the C-chip
EPR registers and their numbers.

Table 4-3 Backup Cache External/internal Processor Registers

Register Name Mnemonic EPR Number Type

Hex Decimal

C-Chip Nonvector Registers

Backup cache tag store BCBTS 71 113 Read/write
Primary tag store, first half BCP1TS 72 114 Read/write
Primary tag store, second half BCP2TS 73 115 Read/write
Refresh register BCRFR 74 116 Read/write
Index register BCIDX 75 117 Read/write
Status register BCSTS 76 118 Read/write
Control register BCCTL 71 119 Read/write
Error address register BCERR 78 120 Read only
Flush backup tag store BCFBTS 79 121 Write only

Flush primary tag store BCFPTS 7A 122 Write only

72 Cache and Main Memory

The following sections show the contents of each register.

4.1.3.5.1 Backup Cache Backup Tag Store (BCBTS)—EPR 113

The backup cache backup tag store (BCBTS) register is used to access the backup cache
tag store, valid bits, and parity bits. The tag store tag, valid bits, and parity may be
written explicitly using an EPR write (MTPR) of the BCBTS register; they may be read
using an EPR read (MFPR) of the BCBTS register.

Figure 4-13 shows the format for the register. Table 44 lists bit descriptions.

On an EPR read of the BCBTS register, the C-chip responds according to the format

in the figure. The backup tag store row and column index fields in the backup cache
index (BCIDX) register bits <16:6> are used as the index to the tag array. So the BCIDX
register must have been previously written using an EPR write (MTPR), to ensure
predictable results from the EPR read (MFPR) of the BCBTS register.

On an EPR write of the BCBTS register, the C-chip writes the data into the tag store
according to the format shown in the next figure. The backup tag store row and column
index fields of the BCIDX register are used as the index to the tag array. So the BCIDX
register must have been previously written using an EPR write (MTPR), to ensure
predictable results from the EPR write (MFPR) of the BCBTS register.

3 322 11
1098 - 7 6 6 5 210
MBZ B-Cache Tag Entry MBZ MBZ

T— Parity Bit L Four Valid Bits (V4:V1)

Figure 4-13 Backup Cache Backup Tag Store Register (BCBTS)— (EPR 113,4714¢)

Table 44 Backup Cache Backup Tag Store Register Bits

Data Bit Name Description

<31:30> MBZ Read as 0. Writes ignored.

<29> Parity bit Read/write. The parity bit corresponding to the odd parity, as
calculated on the tag.

<28:17> B-cache tag Read/write. Backup cache entry tag. The tag portion of the tag
store entry.

<16:6> MBZ Read as 0. Writes ignored.

<5:2> Four valid bits Read/write. The four valid bits of the tag store entry.

<0:1> MBZ Read as 0. Writes ignored.

Table 4-5 shows the correspondence between bits BCBTS<5:2>, the valid bit selected by
physical address bits <5:4>, and the subblock number in the tag store.

Cache and Main Memory 73

Table 4-5 Tag Store Subblock Numbers

BCBTS Bit Set Address <5:4> Subblock Number
2 00 1
3 01 2
4 10 3
5 11 4

4.1.3.5.2 C-Chip’s Primary Cache Tag Store Access, Using BCP1TS and BCP2TS, EPR
114 and 115

Figure 4-14 defines the format of the C-chip’s copy of the primary cache tag store.

Row Decoder Primary Tag Store —- First Half —— BCP1TS
1 Valid Bit 18-Bit Tag Parity Bit Entry 32
A_BUS_H<28:11> .
RDAL<8:4> >
r-b' Tag Store Enl}y 0
4x1 Valid Bit 4x18-Bit Tags 4x1 Parity Bit
RDAL<10:9> —— | — <—| J 4-t0-1 Multiplexer |]
‘ One Valid Bit ‘ One 18-Bit Tag & One Parity Bit
FLUSH - |
Primary Tag Store -- Second Half -- BCP2TS
1 Valid Bit 18-Bit Tag Parity Bit Entry 32
= A_BUS_H<28:11> .
Tag Store Ent}y 0
4x1 Valid Bit 4x18-8Bit Tags 4x1 Parity Bit
——DI I 4-t0-1 Multiplexer I l
‘ One Valid Bit ‘ One 18-Bit Tag * One Parity Bit

Figure 4-14 The Primary Cache Tag Store—C-Chip Copy

The backup cache primary tag store contains one tag and one valid bit for each quadword
block in the primary cache. There are 256 quadword blocks in the primary cache, so the
primary tag store contains 256 entries of 20 bits each. Each entry consists of an 18-bit
tag (bits <28:11> of the physical address), one valid bit, and one parity bit.

Figure 4-15 defines the format of the VAX physical address as used in the C-chip’s
primary tag store addressing during external processor operations. The C-chip copy of
the primary tag store is organized in two banks, with 32 rows and 4 columns each. The
tag store row is indexed using bits <8:4> of the address. The tag store column is indexed
using bits <10:9> of the address. On a primary tag store access, both halves of the tag
store are accessed and a hit is calculated separately in each half.

74 Cache and Main Memory

3322222222221111111111
10987654321098765432109876543210
Primary Cache Entry Tag Col Row Unused

A A A A A

Not Used

Index 1 of 32 Rows
Index 1 of 4 Columns
Cache Entry Tag

110 Space, Not Cached
Not Used

Figure 4-15 VAX Physical Address in C-Chip’s Primary Tag Store Addressing (EPR
Operations)

The tag store tag, valid bit, and parity may be written explicitly using an EPR write
(MTPR) of the tag store; they may be read using an EPR read (MFPR) of the tag store.

EPR 114 (BCP1TS) is the access to the first bank of the C-chip’s copy of the primary tag
store. EPR 115 (BC2TS) is the access to the second bank.

On an EPR read (MFPR) of the C-chip’s copy of the primary tag store, the C-chip
responds by driving the data bus according to the format shown in Figure 4-16. The
primary cache tag store row and column index fields of the backup cache index (BCIDX)
register, bits <10:4>, are used as the index to the tag array. So the BCIDX register must
have been previously written using an EPR write (MTPR), to ensure predictable results
from the EPR read (MFPR) of the tag store.

On an EPR write (MTPR) of the C-chip’s copy of the primary tag store, the C-chip writes
the contents of the data bus into the tag store according to the format in the next figure.
Again, the primary cache tag store row and column index fields of the BCIDX register
are used as the index to the tag array. So the BCIDX register must have been previously
written using an EPR write (MTPR), to ensure predictable results from the EPR write
(MTPR) of the tag store. Table 4—6 lists the bit descriptions of the primary tag store
register.

3 3222222222211 11111111
109876565 4321098765432109876543210

MBZ Primary Cache Entry Tag MBZ MBZ| :BCPnTS

T
o

Valid Bit

Parity Bit

Figure 4-16 Data Bus Format to Access the Primary Tag Store (C-Chip Copy)

Cache Entry Tag

Cache and Main Memory 75

Table 46 Primary Tag Store Register Bits

Data bit Name Description

<31:30> MBZ Read as 0. Write as 0.

<29> Parity bit The parity bit corresponding to the odd parity as
calculated on the tag.

<28:11> Cache entry tag The tag portion of the tag store entry.

<10:3> MBZ Read as 0. Write as 0.

<2> Valid bit The valid bit of the tag store entry.

<1:0> MBZ Read as 0. Write as 0.

4.1.3.5.3 Backup Cache Refresh Register (BCRFR)—EPR 116

The backup cache refresh pointer register (BCRFR) contains separate addresses to
refresh the backup tag store and the primary tag store. Bits BCRFR<16:9> contain the
backup tag store refresh address, which corresponds to the backup tag store row index.
Bits BCRFR<8:4> contain the primary tag store refresh address, which corresponds to
the primary tag store row index. Both tag stores are refreshed at the same time, when
the contents of the register is written with an MTPR. Figure 4-17 shows the format for
the BCRFR register. Table 4-7 lists bit descriptions.

When the enable_refresh status bit (BCCTL<3>) is set and a refresh is done, each refresh
address field is incremented separately. In this manner, the C-chip’s primary tag store is
completely refreshed after 32 refresh microcycles, and the backup tag store is completely
refreshed after 256 refresh microcycles.

When the enable_refresh bit (BCCTL<3>) is not set, the refresh addresses are only
changed explicitly through an EPR write (MTPR). The tag store rows are only refreshed
when they are accessed explicitly through reads, writes, EPR reads, or EPR writes. In
addition, the BCRFR register is used instead of the backup cache index (BCIDX) register
to access the backup tag store and the C-chip’s primary tag store during EPR operations
on those registers.

The BCRFR register may be written using an EPR write (MTPR) or read using EPR read
(MFPR). If enable_refresh (BCCTL<3>) is set when the EPR operation is done, the result
of the operation is unpredictable.

3222222222211 111 11111
0087654321098765432109876543210

MBZ mBZ

I t— PTS Refresh Address

BTS Refresh Address

Figure 4-17 C-Chip Refresh Register (BCRFR)—EPR 116,9 7446)

76 Cache and Main Memory

Table 4-7 C-Chip Refresh Register Bits

Data Bit Name Description
<31:17> MBZ Read as 0. Write as 0.
<16:9> Backup cache tag store This field contains the row address of the backup
refresh address tag store. The field is incremented each time a
refresh is done, if enable_refresh (BCCTL<3>) is
set.
<8:d> Primary cache tag store This field contains the row address of the primary
refresh address cache tag store. The field is incremented each time

a refresh is done, if enable_refresh (BCCTL<3>)
is set. Note: both halves of the C-chips’ primary
cache tag store are refreshed.

<3:0> MBZ Read as 0. Write as 0.

4.1.3.5.4 Backup Cache Index Register (BCIDX)—EPR 117

The backup cache index register (BCIDX) is used to access the backup tag store and the
C-chip’s copy of the primary tag store through EPR reads (MFPR) and writes (MTPR).
When the backup tag store is accessed, the bits that correspond to the backup tag store
index are used. When the primary tag store is accessed, the bits that correspond to
the primary tag store index are used. Figures 4-18 and 4-19 show the formats for the
backup and primary tag store registers, respectively. Tables 4-8 and 4-9 list the bit
descriptions.

The entire BCIDX register may be read using an MFPR, while writes (MTPR) to BCIDX
only modify bits <16:4>.

3
1

~
O ~—

98 65 0

Unused Unused
A

—— Backup Tag Store Column Index
Backup Tag Store Row Index

Figure 4-18 Backup Cache Index Register as Used for Backup Cache Tag Store

Table 4-8 Backup Cache index Register as used for Backup Cache Tag

Data Bit Name Description
<31:17> Unused Read as 0. Writes ignored.
<16:9> Backup tag store row index This field is used as the backup tag store row

index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (through the

use of BCBTS (EPR 113)).
<8:6> Backup tag store column This field is used as the backup tag store column
index index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (though the
use of BCBTS (EPR 113)).

<5:0> Unused Read as 0. Writes ignored.

Cache and Main Memory 77

3322222222221111111111
10987654321098766432109876543210

Unused Unused
A A

‘—— Primary Tag Row Store Index
Primary Tag Column Store Index

Figure 4-19 Backup Cache Index Register as Used for Primary Cache Tag Store

Table 4-9 Backup Cache Index Register as Used for Primary Cache

Data Bit Name Description
<31:11> Unused Read as 0. Writes ignored.
<10:9> Primary tag store column This field is used as the primary tag store column
index index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (through the
use of BCP1TS or BCP2TS).
<8:4> Primary tag store row index This field is used as the primary tag store row

index during an EPR read (MFPR) or an EPR
write (MTPR) of the backup tag store (through the
use of BCP1TS or BCP2TS).

<3:0> Unused Read as 0. Writes ignored.

4.1.3.5.5 Backup Cache Status Register (BCSTS}—EPR 118

The backup cache status (BCSTS) register may be read using an EPR read (MFPR).

All bits are writable only by hardware, with the exception of status_lock (BCSTS<0>
which may be cleared using an EPR write (MTPR). Figure 4-20 shows the format for the
BCSTS register. Table 4-10 lists bit descriptions.

During normal operation, the BCSTS register is loaded during every memory read or
memory write RDAL transaction, when the backup tag store is accessed and parity is
calculated. The BCSTS register is loaded during DMA transactions recognized by the
C-chip—specifically, DMA cache fill and memory write. In addition, the BCSTS register
is loaded during every microcycle used to service an invalidate bus (I bus) request.

The BCSTS register load is disabled when the status_lock (BCSTS<0>) bit is set. In
addition, the error address register load is disabled and both tag stores are disabled
when the status_lock bit is set. The status_lock bit is set if one of the tag stores produces
a parity error or if a RDAL bus error occurs. This allows the CPU to examine the state
the C-chip was in when the error occurred. The status_lock (BCSTS<0>) bit is only
cleared through an EPR write (MTPR) of the BCSTS register.

78 Cache and Main Memory

3322
1098

2
7

2222222111
6543210987

1
6

1
5

1
4

1
3

111
2109876543210

MBZ

MBZ

A ' AArAA

AAAn t
Status_Lock

——— BTS_Parity_Err
P1TS_Parity_Err
P2TS_Parity_Err
Bus_Err

BTS_Compare

BTS_Hit

P1TS_Hit

P2TS_Hit

RDAL_Cmd<3:0>

IBUS_Cycle

PRED_Parity

Figure 4-20 Backup Cache Status Register (BCSTS)— (EPR 118,y 764¢)

Table 4-10 Backup Cache Status Register Bits

Data Bit

Name

Description

<31:27>
<26>

<25>

<24:21>

<20>

<19>

<18>

<17>

<16:5>

MBZ
Pred_parity

Ibus_cycle

RDAL_cmd<3:0>

P2TS_hit

P1TS_hit

BTS_hit

BTS_compare

MBZ

Read as 0. Writes ignored.

Predicted parity. The output of the predicted
parity generator is loaded into this bit whenever
the BCSTS register is loaded.

Invalidate bus cycle. This bit is set when the
BCSTS register is loaded during a microcycle
dedicated to servicing an invalidate bus (I-bus)
request.

RDAL bus command type. This field stores the
last non-EPR RDAL command. The field is
unpredictable if the IBUS_CYCLE (<25>) bit is
set.

Primary tag store 2nd bank hit. This field stores
the result of the hit calculation from the last access
of the second half of the primary tag store.

Primary tag store 1st bank hit. This field stores
the result of the hit calculation from the last access
of the first half of the primary tag store.

Backup tag store hit. This field stores the result of
the backup tag store hit calculation from the last
backup tag store access.

Backup tag store. This field stores the result of
the tag comparison from the last backup tag store
access.

Read as 0. Writes ignored.

Cache and Main Memory 79

Table 4-10 (Cont.) Backup Cache Status Register Bits

Data Bit

Name

Description

<4>

<3>

<2>

<1l>

<0>

BUS_ERR

P2TS_parity_err

P1TS_parity_err

BTS_parity_err

Status_lock

RDAL bus error. This bit is set when an error
occurs on the RDAL that may corrupt the cache
RAM data. These errors may occur during read
miss, write, or fill transactions. Such an error
would not happen during a read to /O space. See
the section on Errors for more detail.

When bus_err is set, status_lock (BCSTS<0>) is
also set, which disables the backup tag store and
the primary tag store copy. bus_err is cleared
when the status_lock bit is cleared through an
EPR write (MTPR), and also during reset.

Primary tag store 2nd bank parity error. This bit
is set when a parity error occurs in the second half
of the primary tag store. The bit is not loaded into
the status register unless enable_PTS (BCCTL<2>)
is set. When P2TS_parity_err is set, status_lock
(BCSTS<0>) is also set. P2TS_parity_err is cleared
when the STATUS_LOCK bit is cleared through an
EPR write (MTPR), and also during reset.

Primary tag store 1st bank parity error. This bit
is set when a parity error occurs in the first half
of the primary tag store. The bit is not loaded into
the status register unless enable_PTS (BCCTL<2>)
is set. When P1TS_parity_err is set, status_lock
(BCSTS<0>) is also set. P1TS_parity_err is cleared
when the STATUS_LOCK bit is cleared through an
EPR write (MTPR), and also during reset.

Backup tag store parity error. This bit contains
the result of the last access of the backup tag
store. The bit is set when a parity error occurs in
the backup tag store. The bit is not loaded into the
BCSTS register, unless enable_BTS (BCCTL<1>)
is set and force_Bhit (BCCTL<0>) is not set. When
BTS_parity_err is set, status_lock (BCSTS<0>)

is also set. BTS_parity_err is cleared when the
status_lock bit is cleared through an EPR write
(MTPR), and also during reset.

This bit is set by hardware when a parity error
occurs in either the backup tag store or the
primary tag store, or when an RDAL bus error
occurs. Setting this bit locks the BCSTS register
and the backup cache error address register
(BCERR) against further modification until status_
lock is cleared. Both tag stores are disabled when
the status_lock bit is set.

The bit is cleared by an EPR write (MTPR) of

the BCSTS register, using the format shown in
Figure 4-20. A 1 must be written to the status_
lock location in order to clear this bit. The status_
lock bit is the only externally-writable bit in the
register. When the status_lock bit is cleared,
bus_err, BTS_parity_err, P1TS_parity_err and
P2TS_parity_err are cleared as well. status_lock is
cleared during reset.

80 Cache and Main Memory

The following list provides some information on interpreting the contents of the status
register:

¢ JIbus_cycle bit is set: The RDAL command field (BCSTS<24:21>) is unpredictable
since an RDAL command is not necessarily being processed during an invalidate bus
cycle. The hit and error fields show the results from the access of the backup and
primary tag stores.

e RDAL_cmd is a memory read or write: The results of the backup cache tag store
access are given by BTS_parity_err, BTS_hit, and BTS_compare. The results of the
primary tag store access are given by P1TS_hit and P2TS_hit. The primary tag store
error bits have no meaning and are 0, because parity is not calculated on the contents
of the primary tag store copy during these transactions; thus, the primary tag store
error bits are not loaded. '

e RDAL_cmd is a DMA cache fill or memory write with DMG asserted: The
results of the read of both tag stores are contained in the status bits.

Note that it is not possible to tell if DMG was asserted using the contents of the
BCSTS register.

Table 4-11 summarizes which bits are loaded during each C-chip transaction.

Table 4-11 Status Bits Loaded in BCSTS During C-Chip Transactions

Cycle Type Loaded BTS Error Bit Loaded PTS Error Bit Loaded gﬂft her
Read Yes No Yes
Write Yes No Yes
DMA fill Yes Yes Yes
DMA write Yes Yes Yes
I-bus Yes Yes Yes
EPR read/write No No No

4.1.3.5.6 Backup Cache Control Register (BCCTL)—EPR 119

The backup cache control register (BCCTL) contains several control bits that allow logic
external to the C-chip to control the actions of the C-chip. The register may be read using
an EPR read (MFPR). The register may be written using an EPR write (MTPR). All the
bits are written at once, so all bits must contain valid data when the EPR write is issued.

Three bits of the register are hardware-writable: enable_BTS (BCCTL<1>), enable_
PTS(BCCTL<2>), and force_Bhit(BCCTL<0>). The bits are only written by hardware
when RESET L is asserted; they are written as shown in Figure 4-21. Table 4-12 lists
the bit descriptions.

Cache and Main Memory 81

3
1 543210
MBZ
AAAA L

Force_Bhit
Enable_BTS
Enable_PTS
Enable_Refresh

Two_Cycle_RAMs

Figure 4-21 Backup Cache Control Register (BCCTL)— (EPR 119, 774)

Table 4-12 Backup Cache Control Register Bits

Data Bit Name Description
<31:5> MBZ Read as 0. Write as 0.
<4> Two_cycle_RAMs This bit indicates the speed of the cache RAMs, so the

C-chip knows how many microcycles are needed to access
the RAMs. For the KA670, the console macrocode should
set this bit to 0, which means it does not take extra
microcycles to access the backup cache RAMs. For
example, no slip cycles are needed. When the backup
cache is enabled, two_cycle_RAMs should be the same
in the C-chip control register and the memory interface.
(See Section 4.2.1.3.6)

<3> Enable_refresh When this bit is 1, the automatic refresh proceeds
normally; each time a refresh is done, the refresh counter
is incremented. When the bit is 0, automatic refreshing
of the tag stores is disabled, and the backup cache refresh
register (BCRFR) incrementer is disabled. The refresh
register may drive the invalidate address bus (IA bus,
internal to the C-chip), but the refresh counter will never
be incremented. This enables explicit control of the
BCRFR register through EPR writes (MTPR).

Beware that tag store data may be corrupted if each

row of each tag store is not refreshed at least once every
millisecond. In addition, if enable_refresh (BCCTL<3>) is
not set, the BCRFR register is used instead of the backup
cache index (BCIDX) register during EPR accesses of the
primary tag store and the backup tag store. This feature
allows testing of the path from the BCRFR to the tag
stores.

82 Cache and Main Memory

Table 4-12 (Cont.) Backup Cache Control Register Bits

Data Bit Name Description

<2> Enable_PTS Enable primary tag store. When this bit is clear, the
C-chip copy of the primary tag store is disabled. Primary
cache tag store parity errors are not loaded into the
backup cache status (BCSTS) register and do not cause
the assertion of SERR_IRQ _L as normal.

Enable_PTS is cleared by hardware only when RESET_L
is asserted. Enable_PTS must be set when the CPU’s
primary cache is enabled, to ensure proper invalidate
filtering. While the primary tag store is disabled, its
contents may change as a result of RDAL operations.

If the primary tag store has been disabled, it must be
flushed through an EPR write (MTPR) of the backup
cache flush primary tag state (BCFPTS) register before
it is reenabled, to ensure correct operation. The CPU
primary cache must also be flushed.

<1l> Enable_ BTS Enable backup tag store. When this bit is clear, the
backup cache is disabled. All reads produce a cache miss;
no writes are done. When the bit is clear, the backup
tag store does not contribute to the calculation of an
invalidate hit on the I-bus; in other words, only the access
of the primary cache produces an invalidate hit. Backup
cache tag store parity errors are not loaded into the
backup cache status (BCSTS) register and do not cause
the assertion of SERR_IRQ _L as normal.

Enable_BTS is cleared (reset to 0) by hardware only
when RESET L is asserted. Enable_BTS should not

be reset to 0 during normal operation. If force_Bhit
(BCCTL<0>) is set and enable_BTS (BCCTL<1>) is clear,
the response of the backup tag store is unpredictable.
While the backup tag store is disabled, its contents may
change as a result of RDAL operations. If the backup tag
store has been disabled, it must be flushed through an
EPR write (MTPR) of the backup cache flush backup tag
store (BCFBTS) before it is reenabled, to ensure correct
operation.

Cache and Main Memory 83

Table 4-12 (Cont.) Backup Cache Control Register Bits

Data Bit Name Description

<0> Force_Bhit Force backup hit. When this bit is set, all non-I/O space
backup tag store accesses produce a cache hit, including
read_lock accesses. Backup cache tag store parity errors
are not reported. All I-bus requests result in an invalidate
hit, regardless of the contents of the backup tag store.

If enable_BTS (BCCTL<1>) is clear and force_Bhit
(BCCTL<0>) is set, the backup tag store response is
unpredictable. If a primary tag store parity error occurs,
causing status_lock (BCSTS<0>) to be set, the backup
cache is not disabled as normal; the force_Bhit condition
overrides the status_lock condition. Similarly, the backup
cache is not disabled if a bus_err (BCCTL<4>) occurs,
causing status_lock to be set; the force_Bhit condition
overrides the status_lock condition.

When the C-chip is in force_Bhit mode, the cache RAM
data is written for each non-I/O space memory write and
read on every non-I/O space memory read. The state of
the backup tag store, however, is unpredictable; it must be
flushed before it is returned to normal mode. The backup
tag store must also be initialized, if this has not occurred
yet. Force_Bhit is cleared during reset and should be set
to 1 by diagnostics only.

4.1.3.6 Maintaining Primary Cache Consistency

Any state change to the primary cache must be reflected in the C-chip copy of the
primary tag store. During normal operation, this is done automatically by the C-chip
when a cacheable read occurs. If the CPU copy of the primary cache is flushed, the
C-chip copy of the primary tag store should also be flushed.

When the primary cache is turned off, the state of the C-chip copy of the primary tag
store is irrelevant. If the C-chip copy is enabled, some I-bus requests may generate
invalidates on the RDAL as a result of valid bits that were set in the C-chip copy of the
primary tag store. Those invalidates are inconsequential to the CPU, since the primary
cache is turned off and will be flushed when turned back on.

If the C-chip copy is disabled, accessing the primary tag store copy never causes an I-bus
invalidate hit. As a result, the memory interface does not generate any invalidates for
the primary cache on the RDAL. Thereiore, the state of the C-chip copy of the primary
tag store is irrelevant when the primary cache is turned off, although less RDAL traffic
is generated if the primary cache copy is also disabled.

Table 4-13 is a matrix showing the proper sequence of events for reenabling a disabled
tag store. The matrix assumes that each tag store has been properly initialized. It also
assumes that status_lock (BCSTS<0>) is not set. If status_lock is set, the sequence in
Chapter 8 should be followed.

84 Cache and Main Memory

Table 4-13 Reenabling a Turned-Off Tag Store

Bits <2:1>

in the
BCCTL CPU Primary Cache Off CPU Primary Cache On
AEnable_BTS, Everything is off: Illegal if the I-bus is being used.
AEnable_PTS Flush backup tag store. Primary tag store must be on if the primary
Flush primary tag store. cache is on.
Write enable_BTS, enable_PTS. If the I-bus is not being used, take the
Flush and turn on primary actions in the following box.
cache.
AEnable_BTS, Backup tag store and primary Backup tag store is off:
Enable_PTS cache are off: Flush the backup tag store.
Flush backup tag store. Write enable_BTS.
Flush primary tag store.
Write enable_BTS.
Flush and turn on primary
cache.
Enable_BTS, Primary tag store and primary Illegal if the I-bus is being used.
Enable_PTS cache are off: Primary tag store must be on if the primary
Flush primary tag store. cache is on.
Write enable_PTS. If the I-bus is not being used, take the
Flush and turn on primary actions in the previous box.
cache.
Enable_BTS, Primary tag store is on, and Normal state.
Enable_PTS primary cache is off:

Flush primary tag store.
Flush and turn on primary
cache.

4.1.3.6.1 Backup Cache Error Address Register (BCERR)—EPR 120

The backup cache error address register (BCERR) is a read-only register. It is loaded by
hardware every time the backup cache status (BCSTS) reigster is loaded. The BCERR
register contains the address of the current transaction. The first error causes the
status_lock (BCSTS<0>) bit to be set; this action locks the BCERR register against
further writes, regardless of subsequent errors, until the status_lock bit is cleared.

The error address register may be read using an EPR read (MFPR) according to the
format shown in Figure 4-22. Table 4-14 lists the bit descriptions.

3
1

32222
09876

2 2
5 1

00 -

2 2 2 2 1
4 3 2 09

1111 11 11
7654321098765 43210

MBZ

>

Error Address

mBZ

Figure 422 Backup Cache C-Chip Error Address Register —(EPR 120, 784¢)

Cache and Main Memory 85

Table 4-14 Backup Cache C-Chip Error Address Register Bits

Data Bit Name Description

<31:30> MBZ Read as 0.

<29:3> Error address This field contains the physical address of the
current transaction.

<2:0> MBZ Read as 0.

When the BCERR register is loaded during an I-bus transaction, bits BCERR<29> and
BCERR<3> are both 0s. This is because the I-bus only uses bits <28:4> of the physical
address. The other bits are 0 by default.

The BCERR register is not microcode-writable. If an EPR write (MTPR) of the BCERR
register is attempted, the RDAL cycle completes as normal but does not write the
register. For example, writes of the BCERR register are ignored.

The address contained in the BCERR register when a BUS_ERR (BCSTS<4>) occurs is
unpredictable. The RDAL error may occur several cycles after the address corresponding
to the transaction was driven onto the bus. In the meantime, the BCERR register may
have been overwritten by an I-bus transaction.

4.1.3.6.2 Backup Cache Flush Backup Tag Store Register (BCFBTS)—EPR 121
The backup cache flush backup tag store (BCFBTS) register is a write-only register.
Figure 423 shows the register’s format.

An EPR write (MTPR) of the BCFBTS register clears all the valid bits in the backup tag
store. The C-chip ignores the contents of the RDAL data bus during the transaction. The
write to the register causes an immediate flush of all the valid bits in the backup tag
store.

An EPR read of the BCFTS register causes the C-chip to complete the normal RDAL
cycle for an EPR read (MFPR). For example, reads of the BCFBTS register return
unpredictable data.

Writes: Doesn’'t Matter Reads: Unpredictable

Figure 4-23 Backup Cache Flush Backup Tag Store Register —(EPR 121,9794¢)

4.1.3.6.3 Backup Cache Flush Primary Tag Store Register (BCFPTS)—EPR 122
The backup cache flush primary tag store (BCFPTS) register is a write-only register.
Figure 4-24 shows the format.

An EPR write (MTPR) of the BCFPTS register clears all the valid bits in the primary tag
store. The C-chip ignores the contents of the RDAL data bus during the transaction. The
write to the register causes an immediate flush of all the valid bits in the C-chip’s copy of
the primary cache tag store.

86 Cache and Main Memory

An EPR read of the BCFPTS register causes the C-chip to complete the RDAL cycle as
normal for an EPR read (MFPR). For example, reads of the BCFPTS register return
unpredictable data.

Writes: Doesn't Matter Reads: Unpredictable

Figure 4-24 Backup Cache Flush Primary Tag Store Register —(EPR 122,o 7A+)

4.1.3.7 Use of the C-Chip Registers

The 10 registers implemented by the C-chip provide full control over the backup cache
tag store and the primary tag store in the C-chip. Access to these registers is with the
MTPR and MFPR instructions, which require kernel-mode privilege.

4.1.3.7.1 Control of the Cache

Normal operational control of the backup cache and primary tag store in the C-chip
is provided through writes to the backup cache control (BCCTL) register. Bits in this
register enable the use of backup cache and primary tag store.

The backup cache and primary tag store may be flushed during normal operation by
writing a 0 to the BCFBTS and BCFPTS registers, respectively.

4.1.3.7.2 Error Recovery

When the C-chip detects an error, the C-chip latches error information. This information
is available by reading the BCSTS and BCERR registers. Status_lock (BCSTS<0>) may
be written to tell the C-chip that the error information has been read, and to enable it to
detect subsequent errors.

If the error was a tag parity error in one of the tag stores, the error may be corrected by
creating a new tag entry. The new entry is created with a write to the BCIDX register,
followed by a write to the BCBTS, BCP1TS, or BCP2TS register.

See Chapter 8 for a detailed discussion of error recovery procedures.

4.1.3.7.3 Cache Initialization

At power-up, the backup cache tag store and primary tag store must be initialized by
writing eack entry with an invalid tag with good parity. Each entry may be written with
a write to the BCIDX register, followed by a write to the BCBTS, BCP1TS, or BCP2TS
register.

As part of cache initialization, cache refresh must be enabled, and the cache RAM speed
must be specified by writing to the backup cache control (BCCTL) register. The console
macrocode sets the RAM speed for 1 cycle.

4.1.3.7.4 Diagnostics

The tag stores and the backup cache data RAMs may be tested by reading and writing
cache tags with the BCIDX, BCBTS, BCP1TS, and BCP2TS registers. Cache refresh may
be tested by reading and writing the BCRFR register. Error detection may be tested by
constructing an error, then reading the state from the BCSTS and BCERR registers.

Cache and Main Memory 87

4.2 KA670 Main Memory System

The KA670 includes a main memory controller implemented as part of a VLSI chip called
the G-chip. The KA670 main memory controller communicates with the MS670 memory
boards over the MS670 memory interconnect, which uses the G-chip memory interconnect
(GMI) for the address, control, and data lines. The contoller supports up to four MS670
memory boards.

4.2.1 G-Chip Memory Controlier

As a two-port memory controller, the G-chip interfaces the RDAL bus and the CP bus to

a memory subsystem over a private interconnect, the GMI. It also serves as an adapter
between the RDAL bus and the CP bus.

4.2.1.1 G-Chip Port

The G-chip port interfaces with the CPU, the C-chip, and the backup cache. The G-chip
port also supports the defined synchronous protocols for DMA. The following sections
describe the main features of the port.

4.2.1.1.1 G-Chip CPU Port Addressing

The G-chip regards all addresses from the RDAL bus with bit<29> equal to 0 and a
non-EPR read or write command, as memory addresses. The G-chip responds to all
/O addresses from the RDAL bus. Transactions with address bit <29> equal to 1 are
transferred to the CP bus by the G-chip if the address does not correspond to any of its
internal registers.

4.2.1.1.2 G-Chip EPR decoder

The G-chip supports EPR reads and writes to the system support chip (SSC) on the CP
bus. These are the only EPRs the G-chip responds to. For EPR addresses that are not
in the SSC set, G-chip implements a timeout function. The G-chip decodes SSC EPR
numbers from the RDAL address bus for the TOY clock register, the I/O reset register,
the console storage registers, and the console registers; it performs the corresponding
operations on the CP bus.

If the EPR address passed to the CP bus is not available, the EPR transaction will
timeout on the CP bus and the RDAL error signal is asserted to abort the CPU
transaction. For this exception, no error flags are set and no addresses are saved. The
G-chip supports EPRs 27 to 35 and 55,9 on the CP bus.

4.2.1.2 G-Chip Write Butfers

The G-chip improves write performance of the RDAL bus with a write buffer or queue.
The queue consists of a 4-quadword element ring buffer, each with an address tag. Each
element stores valid data that corresponds to the valid byte masks.

The address tags are content-addressable memories (CAMs). The content of CAMS is
used to look up and compare with a memory read address, to determine if the data to be
read is an element in the queue. If the address hits in the queue, then all the elements
that matched are flushed to memory before the read of memory. No CPU-to-CPU-memory
write transaction data packing is supported by the queue, because the GMI continuously
scans the queue for elements to retire.

Data is loaded sequentially into the queue and is unloaded by the GMI port in the
same order. To ensure coherent operation of the system, the queue is flushed under the
following circumstances:

* A clear write buffer transaction by the CPU (P-chip)

88 Cache and Main Memory

* A read lock by a device on the CP bus

¢ An IO write to an address on the CP bus

¢ An EPR write to a register on the CP bus

* A memory read address that hits in the queue

¢ An interrupt vector read from a device on the CP bus

The queue is cleared when RESETL asserts. For example, all the valid entries are

invalidated.

4.2.1.3 G-Chip Registers

The G-chip has control and status registers (CSRs) that can be read or written only
from the port (by the CPU). They are all initialized on power-up reset, unless otherwise
mentioned. This is the only type of reset that the G-chip responds to. It does not respond
to /O_RESET (EPR 55) writes to invoke an internal reset. Table 415 lists the register
names, desciptions, and addresses.

Table 4-15 G-Chip Registers

Register/s Description Address

MEMCSR32 Error status register 2008 0180

MEMCSR33 Memory error address register 2008 0184

MEMCSR34 I/O error address register 2008 0188

MEMCSR35 DMA memory error register 2008 018C

MEMCSR36 Mo@e control and diagnostic 2008 0190
register

4.2.1.3.1 G-Chip Register Addressing

Because there is one G-chip for each CPU, the addresses for all MEMCSRs are fixed.
Write operations to read-only registers do not cause a CPU machine check and are
responded to as a normal operation. However, the operation does not alter the contents
of any G-chip registers.

4.2.1.3.2 G-Chip System Error Status Register (MEMCSR32)

The G-chip reports error information in the MEMCSR32 register. The error flags are
cleared by writing a 1 to the respective bits in MEMCSR32. MEMCSR32 is initialized
only during power-up reset. Figure 4-25 shows the format. Table 4-16 lists the bit
descriptions.

- W
oW
@
~N N
onN
wanN
EN\V)
[A NN
N

Cache and Main Memory 89

MBZ

lﬂlh

Memory Error Syndrome
Lost Correctable Memory Error
Lost Hard Memory Error
Correctable Memory Error
Uncorrectable Memory Error
Bus Parity Error
Nonexistent Memory

Lost /O Error

/0 Error

Nonexistent I/O

CP-bus Memory Error Syndrome

CP-bus Lost Correctable Memory Error

CP-bus Lost Hard Memory Error

CP-bus Correctable Memory Error

CP-bus Uncorrectable Memory Error

CP-bus Parity Error

/0O Address: 2008 0180
Longword Read/Write Access

Error Summary

Figure 4-25 G-Chip System Error Status Register (MEMCSR32)

Table 4-16 G-Chip System Error Status Register Bits

MEMCSRS32

Data Bit Name Description

<31> Error summary This read-only bit is set when any error is
detected and logged in this register by the G-
chip. A 0 is returned when this bit is read, if all
the other error bits in this register are 0.

<30:28> MBZ Read as 0. Writes have no effect.

<27> CP bus parity error This read/write bit is set when a CP bus DAL

parity error is detected on a CP bus DMA
memory write transaction, if the error address
can be saved in MEMCSR35. This bit is cleared
by writing a 1.

NOTE
The CQBIC is the only CP bus DMA device

that does not generate or check parity on
the CP bus.

90 Cache and Main Memory

Table 4-16 (Cont.) G-Chip System Error Status Register Bits

MEMCSRS32
Data Bit

Name

Description

<26>

<25>

<24>

<23>

<22:16>

<15>

CP bus uncorrectable
memory error

CP bus correctable memory
error

CP bus lost hard memory
error

CP bus lost correctable
memory error

CP bus memory error
syndrome

G-chip nonexistent I/O

This read/write bit is set to 1 by an uncorrectable
ECC error that occurs during a CP bus DMA
memory read or masked write transaction , if the
error address can be saved in MEMCSR35. An
octaword read is always performed in response to
a DMA read request, and this bit may set even if
the data is not returned to the CP bus. This bit
is cleared by writing a 1.

This read/write bit is set to 1 when a correctable
(single-bit) error is detected during a CP bus
DMA memory read or masked write transaction,
if the error address can be saved in MEMCSR35
and if MEMCSR36<11> is set. This bit is cleared
by writing a 1.

This read/write bit is set to 1 when an
uncorrectable ECC error or a CP bus DMA
parity error occurs on a transaction initiated by
a CP bus DMA master while either <27,26> was
set (indicating that MEMCSR35 could not be
used). This read/write bit is cleared by writing a
1. When this bit is set, the error and the address
of the error are lost.

This read/write bit is set to 1 when a correctable
ECC error occurs on a transaction initiated by
a CP bus DMA master while <25> was set and
MEMCSR36<11> was set or MEMCSR36<11>
was cleared (indicating that MEMCSR35 could
not be used). This read/write bit is cleared by
writing a 1. When this bit is set, the error and
the address of the error are lost.

NOTE
Only one of MEMCSR32 bits 27, 26, and 25

can be set at any time, since MEMCSR35 can
save only the first error address.

This read-only field stores the memory error
syndrome. The field is loaded when an ECC
memory error is detected from CP bus initiated
transactions. The priority for logging the
syndrome is first error-logged. Subsequent
memory error syndromes are not logged until

the associated error bits are cleared. This

field contains valid data while a correctable

or uncorrectable CP bus error bit is set. Writes to
this field have no effect.

This read/write bit is set if <14> is cleared for
G-chip originated I/O transactions to the CP
bus which do not respond (and hence signal

- timeout abort errors after the G-chip internal

timer overflows). The error address is saved in
MEMCSR34. This bit is cleared by writing a 1.

Cache and Main Memory 91

Table 4-16 (Cont.) G-Chip System Error Status Register Bits

Description

MEMCSRS32

Data Bit Name

<14> G-chip /O error

<13> G-chip lost /O error

<12> G-chip nonexistent memory
address

<11> G-chip bus parity error

<10> G-chip uncorrectable
memory error

<9> G-chip correctable memory
error

<8> G-chip lost hard memory
error

This read/write bit is set if <15> is cleared for
transactions from the G-chip bus to the CP bus
which are terminated by the CPERR signal

or by a read parity error, and not by a G<hip
timeout abort error. The error address is saved in
MEMCSR34. This bit is cleared by writing a 1.

This read/write bit is set when transactions from
the G-chip bus to the CP bus terminate in error,
while either the G-chip /O or nonexistent /O
error bits are set (indicating that MEMCSR34
could not be used). This bit is cleared by writing
al

NOTE

Only one of MEMCSR32 bits 15 or 14 can be
set at any time, since MEMCSR34 can save
only the first error address.

This read/write bit is set if the error address
for G-chip bus transactions to invalid memory
addresses can be saved in MEMCSR33. This bit
is cleared by writing a 1.

This read/write bit is set if the error address for
a RDAL parity error from a G-chip memory write
transaction can be saved in MEMCSR33. RDAL
parity errors are not reported for /O and external
processor register (EPR) write transactions. This
bit is cleared by writing a 1.

This read/write bit is set if the error address for
an uncorrectable ECC error from a memory read
or masked write transaction initiated from the
G-chip bus can be saved in MEMCSR33. This bit
is cleared by writing a 1.

This read/write bit is set if the error address can
be saved in MEMCSR33 and if MEMCSR36<11>
is set for a correctable (single-bit) error from

a memory read or masked write transaction
initiated from the G-chip bus. This bit is cleared
by writing a 1.

This read/write bit is set when either a
nonexistent, bus parity, or uncorrectable ECC
error occurs as a result of a G-chip bus-initiated
transaction while <12, 11, or 10> was set. This
read/write bit is cleared by writing a 1. If this bit
is set, the address of the error could not be saved
in MEMCSR33.

92 Cache and Main Memory

Table 4-16 (Cont.) G-Chip System Error Status Register Bits

MEMCSR32
Data Bit Name Description

<7> G-chip lost correctable This read/write bit is set when a correctable ECC
memory error error occurs from a bus-initiated transaction

while <9> and MEMCSR36<11> was set, or while
MEMCSR36<11> was cleared (indicating that
MEMCSR33 could not be used). This read/write
bit is cleared by writing a 1. If this bit is set,
the address of the error could not be saved in
MEMCSR33.

NOTE

Only one of MEMCSR32 bits 12, 11, 10, and
9 can be set at any time, since MEMCSR33
can save only the first error address.

<6:0> G-chip error syndrome This read-only field stores the error syndrome
and is loaded when a G-chip memory error is
detected. The priority for logging the syndrome
is first error-logged. Subsequent memory error
syndromes are not logged until the associated
error bits are cleared. This field contains valid
data only when a correctable or uncorrectable
G-chip bus error bit is set. Writes to this field
have no effect.

4.2.1.3.3 Memory Error Address Register (MEMCSR 33)

MEMCSR33 contains the octaword error address from bus-initiated memory transactions.
The address is loaded by the first memory error and is not changed until that error bit
is cleared in MEMCSR32. This register is read-only and has valid content only while

a corresponding error bit (<12:9>) is set. Figure 4-26 shows the format of the register.
Table 4-17 lists the bit descriptions.

3 22
1 @88 43 c
MBZ Error Address MBZ

/0 Address: 2008 0184
Longword Read-Only Access

Figure 4-26 G-chip Memory Error Address Register (MEMCSR33)

Table 4-17 Memory Error Address Register Bits

MEMCSR33

Data Bit Name Description

<31:29> MBZ Read as 0. Writes have no effect.

<28:4> Error address Octaword address of the first memory error.

<3:0> MBZ Read as 0. Writes have no effect.

Cache and Main Memory 93

4.2.1.3.4 I/O Error Address Register (MEMCSR 34)

MEMCSR34 contains the longword error address of initiated /O transactions. The
address is loaded by the first /O or nonexistent I/O error and is not changed until
that error bit is cleared. This register is read-only and has valid content only while a
corresponding error bit (<15:14>) is set.

Note, that since the address is in /O space, address bit <29> is 1, even though
MEMCSR34’s bit <29> does not reflect this. Figure 4-27 shows the format. Table 4-18
lists the bit descriptions.

3 2 2
1 9 8 210

MBZ Error Address MBzZ

I/0 Address: 2008 0188
Longword Read-Only Access

Figure 4-27 G-Chip 1/0 Error Address Register (MEMCSR 34)

Table 4-18 G-Chip I/0 Error Address Register Bits

MEMCSR34

Data Bit Name Description

<31:29> MBZ Read as 0. Writes have no effect.

<28:2> Error address Longword address of first initiated IO error.
<1:0> MBZ Read as 0. Writes have no effect.

4.2.1.3.5 CP bus Error Address Register (MEMCSR 35)

MEMCSR35 contains the octaword error address of DMA-initiated transactions from the
CP bus. The address is loaded by the first memory error. This address is not changed
until that error bit is cleared and another error is logged. This register is read-only and
has valid content only while a corresponding error bit (<27:25>) is set. Figure 4-28 shows
the format of the register. Table 419 lists the bit descriptions.

3 22
1 98 4 3 0
MBZ Error Address MBZ

1/0 Address: 2008 018C
Longword Read-Only Access

Figure 4-28 CP bus Error Address Register (MEMCSR 35)

Table 4-19 CP Bus Error Address Register Bits

MEMCSR35
Data Bit Name Description

<31:29> MBZ Read as 0. Writes have no effect.

94 Cache and Main Memory

Table 4-19 (Cont.) CP Bus Error Address Register Bits

MEMCSR35

Data Bit Name Description

<28:4> Error address Octaword address of first DMA-initiated memory
error.

<3:0> MBZ Read as 0. Writes have no effect.

4.2.1.3.6 G-Chip Mode Control and Diagnostic Status Register (MEMCSR 36)

The bits in this register control G-chip operating modes. This register also stores
diagnostic status information. The MEMCSR36 bits are read/write and are cleared
asynchronously with the assertion of RESETL at power-up. Figure 4-29 shows the
format of the register. Table 4-20 lists the bit descriptions.

- w
ow

©on
N

1111111
65432109876543210

w N

A AAAARAR AAA

L A A A
Force Refresh Request
Disable Refresh
‘- Force CP-bus Owner
Force Wrong Parity
b Force Write Buffer Hit
e Fiush Write Buffers
Disable Page mode
Disable Memory ErrorDetect
Refresh Requested
EPR Timeout Prescaler
Enable Soft Error Logging
Timer Count Select
Cache RAM Speed
FDM Second Pass
Fast Diagnostic Test mode
Memory/Diagnostic Check Bits
Memory Check Bits
Must Be Zero
Diagnostic Check Bits Mode

/0 Address: 2008 0190
Longword Read/Write Access

Figure 4-29 G-Chip Mode Control and Diagnostic Status Register (MEMCSR 36)

Cache and Main Memory 95

Table 4-20 G-Chip Mode Control and Diagnostic Status Register Bits

Description

MEMCSR36

Data Bit Name

<31> Diagnostic check mode
<30> Must be zero

<29:23> Memory check bits
<22:16> Memory/diagnostic check

bits

When set to 1 by a write, this read/write bit
enables the contents of MEMCSR36<22:16>

to be passed as check bits during a memory
write transaction, instead of the normal ECC
check bits. This is true unless an RDAL parity
error occurred on the write. If an RDAL parity
error occurred, the low three check bits of
this field are inverted as they are written to
memory. When this bit is a 0, the contents of
MEMCSR36<22:16> are ignored during memory
write transactions. MEMCSR36<22:16> should
be written along with this bit.

Read as 0. Writes have no effect.

Regardless of the diagnostic check mode bit, the
contents of MEMCSR36<29:23> are loaded from
ECC check bits for the unaligned longword
during a G-chip memory read or a second
signature read transaction prior to a MEMCSR36
read. The read check bits for a masked memory
write transaction are not latched. When loaded,
this bit field is held until the register is read.
These bits are read-only and are undefined until
a second signature read or any memory read
transaction is complete.

When diagnostic check mode is enabled, this
write field substitutes for the check bits
generated by the ECC generation logic during
memory masked or unmasked write transactions.
If a RDAL parity error occurs, the low three
check bits are inverted as they are written to
memory. If diagnostic check mode is not enabled,
the contents of MEMCSR36<22:16> are ignored
during memory write transactions.

This read field is loaded with the check bits from
the ECC check bits for the requested aligned
longword of the requested quadword, or for the
first of two signature read transactions following
a read of MEMCSR36. When loaded the bits are
held until the register is read.

NOTE

The two fields MEMCSR36<29:23> and
MEMCSR36<22:16> have a load control
pointer that is initialized to point to
MEMCSR36<22:16> by a chip reset or

by a MEMCSR36 read. The pointer is
incremented by the internal memory
sequencer for a signature read, or for each
returned longword of a G-chip memory
octaword read (not a masked write).
Therefore, the programmer is responsible
for alignment of this pointer during memory
diagnostics.

96 Cache and Main Memory

Table 4-20 (Cont.) G-Chip Mode Control and Diagnostic Status Register Bits

MEMCSR36
Data Bit

Name

Description

<15>

<14>

<13>

<12>

<11>

<10:9>

Fast diagnostic test mode

FDM second pass

Cache RAM speed

Timer count select

Enable soft error logging

EPR timeout prescaler

This read/write bit provides a mechanism for
speeding up the initial diagnostic testing of
memory. Writing a 1 to this bit causes the G-chip
to set the MODESEL<1> GMI port output signal,
indicating to the GMX that it is in fast diagnostic
test mode.

In systems with more than four bank pairs of
memory per module, the memory test in fast
diagnostic mode has to be done in two passes.
This read/write bit (cleared at power-up) should
be set, and a second pass of the test should be
run. This enables testing of modules with more
than four banks. This bit has no effect unless
MEMCSR36<15> is set.

On the KA670, this bit should be set to 0,
indicating that no extra cycles are needed when
accessing the backup cache. When cleared,

this bit indicates that the system is using

fast, one-cycle cache RAMs. When this bit is

a 1, it indicates the system is using two-cycle
RAMs. This bit is cleared on power-up. G-chip’s
interface alters its response behavior by one
cycle, depending on the state of this bit.

This read/write bit enables the timers in the chip
to be used over a G-chip clock cycle range of 20 ns
to 40 ns. When set, this bit increases the count
value of all the G-chip interface timers. The CP
bus timers are not affected. When the cycle time
is 28 ns or less, this bit should be a 1. For a
cycle time greater than 28 ns, this bit should be
cleared to 0.

When this read/write bit is 0, correctable (single-
bit) errors are corrected by the ECC logic, but the
SERRIRQL output is not asserted, the associated
error addresses are not logged in MEMCSR33

or MEMCSRS35, the error syndrome fields of
MEMCSR32 are not loaded, and <25, 9> are not
set. <23, 7> is set by correctable errors to signal
these lost correctable errors.

When this bit is a 1, correctable errors are
corrected by the ECC logic and reported on the
SERRIRQL output. Correctable as well as other
error addresses and syndromes are logged in
MEMCSR33 or MEMCSR35. Also, <25, 9> are
set when errors are detected. This makes it
easier to reserve the error-logging information for
uncorrectable, NXM, or parity errors when soft
error reporting is disabled.

On the KA670, this field should be set to 113.
This field scales the EPR timeout counter up to to
make it easier to access slow-access C-chip EPR
registers. Field values: 11 = 1.5 ps, 10 = 12 ps,
01 =32 ps, 00 = 910 ps.

Cache and Main Memory 97

Table 4-20 (Cont.) G-Chip Mode Control and Diagnostic Status Register Bits

MEMCSR36
Data Bit

Name

Description

<8>

<7>

<6>

<5>

<4>

<3>

Refresh requested

Disable memory error
detection

Disable page-mode

Flush write buffers

Force write buffer hit

Force wrong parity

This read-only flag is set when a refresh
transaction is selected as the current operation.
This implies that the refresh interval counter has
counted to the overflow condition. This flag is
cleared by reading MEMCSR36.

When this bit is a 1, memory error detection
and correction are disabled. All memory-related
error logging in MEMCSR32, MEMCSR33, and
MEMCSR35 is disabled. No memory-related
error reporting occurs by asserting the ERRL,
CPERRL, HERRIRQL or SERRIRQL output pins.

When set, this bit disables page-mode memory
transactions. It causes the G-chip to deassert
RASTIME after every memory transaction. This
function is for test purposes only. If this bit is
set during normal system operation, memory
performance is degraded.

When written to a 1, this read/write bit initiates
a flush of the QUEUE, the CPQUE, and hence
the invalidate QUE. The G-chip delays the
assertion of the G-chip ready signal for this
MEMCSR36 write until the flush completes.
When this bit is set, subsequent writes to
MEMCSR36 result in the stall of the ready
signal until all queues are flushed. A write of 0
clears this bit and disables the stall conditions.

When set, this read/write bit forces a memory
read address from a corresponding G-chip bus
or CP bus port to hit any valid element in the
write queues, regardless of the address tag.
This ensures that all write queue elements and
associated invalidate hit addresses are retired to
memory prior to the completion of the pending
read. This bit should be set only for diagnostic
purposes. If this bit is set during normal system
transactions, there is a performance degradation
on memory reads that follow memory writes.

When set to 1, this read/write bit forces the
result of the CP bus and the G-chip bus parity
checkers to be inverted. This results in a parity
check failure. This action is used to emulate an
RDAL or a CP DAL parity error during memory
read or write transactions and G-chip to CP bus
transactions. DAL parity is ignored for G-chip
bus I/O transactions. This bit is for test purposes
only and should not be set during normal system
operation.

98 Cache and Main Memory

Table 4-20 (Cont.) G-Chip Mode Control and Diagnostic Status Register Bits

Description

MEMCSRS36

Data Bit Name

<2> Force CP bus owner
<1l> Disable refresh

<0> Force refresh request

When set to 1, this read/write bit forces the G-
chip to request CP bus mastership by asserting
CPDMRL. The write that sets this bit is stalled
on the G-chip bus until CPDMGIL is received.
G-chip gives up the mastership of the CP bus
when this bit is cleared. This bit is set to 1 when
RESET L asserts, so the G-chip attempts to be
the owner of the CP bus following a power-up
reset.

When set, this read/write bit disables

memory refresh (regardless of the state of
MEMCSR36<0>) and clears the refresh address
counter and interval counter to 0. This function
is for test purposes only. The bit should not be
set during normal transactions or while the force
refresh request bit is set.

When cleared, this read/write bit allows the
refresh control logic to operate normally. This
bit is set at power-up only if the TESTMODE
pin is asserted as RESET negates. When

set on power-up or by writing a 1 with the
TESTMODE pin asserted, this bit forces

the G-chip to do continuous memory refresh
transactions, incrementing the refresh address on
each transaction. A pending memory operation
takes precedence over the continuous refresh
transactions.

If the TESTMODE pin is negated, the G-chip
ignores the state of this bit and behaves as if
this bit were cleared. The bit can be cleared by
writing a 0 and by deasserting the TESTMODE
pin at power-up. This behavior facilitates a
power-up functional test for probing.

RESTRICTION

This bit should be used for test purposes
only. If TESTMODE is selected and this bit
is set during normal system operation,
memory operations result in severe
performance degradation. Also, memory
array power consumption increases. This
bit should never be set while the disable
refresh bit is set.

4.2.1.4 Bus Timeout and Nonexistent Addresses
The G-chip prevents the bus from hanging if a nonexistent device is addressed in the
following ways, depending on the type of transaction:

¢ On CPU-to-memory read transactions to nonexistent or invalid locations, the G-chip
responds with ERRL, sets the nonexistent memory bit <12>, and logs the address in
the memory error address register (MEMCSR33).

* On CPU memory write transactions to nonexistent or invalid locations, the G-chip
asserts HERRIRQL, sets the nonexistent memory bit <12>, and logs the address in’
the memory error address register (MEMCSR33).

Cache and Main Memory 99

¢ EPR transactions, read interrupt vector transactions, and I/O read/write transactions
that are recognized as for G-chip bus to CP bus adapter reaction are transferred to
CP bus transactions. If no device responds to these CP bus master transactions, the
CP bus master times out, aborts, and informs the slave of the exception.

For the read transaction exceptions (EPR, /O, or interrupt), the G-chip responds
with ERRL. For /O (not EPR) write transaction exceptions, the G-chip asserts
HERRIRQL. The I/O error bit <14> is set on I/O reads and I/O writes that time out;
the address is loaded in the I/O error address register (MEMCSR34). The G-chip does
not log any information for EPR or interrupt vector transaction exceptions.

¢ In all the above cases, the G-chip terminates the transaction by asserting RDYL or
ERRL, thus preventing the system from hanging.

The G-chip does not recognize EPR transactions as for transfer to the CP bus. EPR
transactions are timed by the G-chip, according to the time limit established by
MEMCSR36<10:9>. The timeout mechanism is the nonexistent EPR timeout counter,
which serves to terminate EPR transactions that have not been responded to by a
bus device. The G-chip aborts the transaction by asserting ERRL, but does not log
any information. This timeout counter starts counting with the assertion of ASL. The
counter is is cleared with the assertion of RDYL, ERRL, or RTYL.

4.2.1.5 Peripheral Port (CP Port)
The CP port of the G-chip interfaces with the G-chip port and the GMI port. Sections
4.2.1.5.1 through 4.2.1.5.4 describe the main features of the CP port.

4.2.1.5.1 Addressing

The G-chip, as bus slave, does not respond to I/O transactions initiated from peripheral
bus (CP bus) DMA devices. Any transaction whose I/O or memory address does not
match the programmed and validated values in the G-chip shadow registers is regarded
as a no-operation request. The SSC timeout counter is assumed to cause this transaction
to abort, so the G-chip does not respond.

4.2.1.5.2 Multiple-Transfer Transactions and Address Alignment

The CP port supports longword (2-word), quadword (4-word), hexword (6-word), and
octaword (8-word) memory transactions; and only longword I/O transactions. It maintains
quadword alignment on quadword transactions, and octaword alignment on hexaword
and octaword transactions. Quadword alignment is preserved by complementing bit<2>
of the address for accessing the second longword. Octaword alignment is preserved by
incrementing (modulo-4) bits <3:2> of the address for accessing subsequent longwords.

4.2.1.5.3 Write Buffers

The G-chip improves write performance of the CP bus with the help of a write buffer,
called the CPQUE. The CPQUE consists of two octaword buffer elements. Each element
has an address tag and can store up to an octaword of data with the corresponding byte
masks. The address tags are CAMs; a tag compare (lookup) occurs on CP bus to memory
reads, to check if the data to be read is a CPQUE element. If the address compares (hits)
in the CPQUE, then both elements are flushed to memory before the memory read is
performed. Write data is loaded sequentially into the CPQUE and unloaded by the GMI
port in the same order.

To ensure correct operation of the system, the CPQUE is flushed under the following
circumstances:

¢ Read lock on the G-chip bus
e CPU I/O or EPR read to an address on the CP bus

100 Cache and Main Memory

¢ CPU read interrupt vector transaction
¢ CP bus memory read address that hits in the CPQUE

The CPQUE is cleared when RESET L asserts during power-up. For example, all the
valid elements are invalidated.

4.2.1.5.4 CP Bus Timeout

The G-chip provides a timeout mechanism on the CP bus, to prevent G-chip initiated CP
bus transactions to nonexistent I/O or EPR addresses, and to prevent interrupt vectors
from hanging the bus. This is done with a CP bus cycle counter that has a fixed cycle
count whose absolute time scales with the CP bus clock. The timeout is triggered by the
assertion of the CP bus data strobe (CPDSL); it is cleared by the assertion of the CP bus
ready or error signals (CPRDYL or CPERRL), or by the negated state of the no response
abort (CPNRA) signal after the counter overflows.

The CPNRA signal is a NOR function of the “not me” signals of the DMA devices on the
CP bus. If this signal is deasserted, it indicates that one of the DMA devices is going to
respond to the current transaction.

If there is no response on the CP bus and the counter overflows, the G-chip looks at the
state of CPNRA and reacts as follows:

e If CPNRA is asserted, terminate the transaction by deasserting CPDSL and CPASL.
If the aborted transaction was a read (IO read, EPR read, or an interrupt vector
read), return ERRL to the CPU. If the aborted transaction was a write (I/O write),
assert HERRIRQL. On I/O read and write transactions that are aborted by timer
overflow, the G-chip sets the nonexistent /O bit <15> and logs the address in
MEMCSR34. On EPR reads/writes and interrupt vector reads, the G-chip does
not log any information.

e If CPNRA is deasserted, the G-chip waits for CPRDYL or CPERRL from the CP bus.
In the extreme case that a device deasserts its “not me” signal and fails to respond,
the SSC’s CP bus timeout counter should overflow and abort the transaction, thus
preventing the system from hanging. This counter can be set to a very high value,
about 15 ms.

4.2.1.6 GMi Port
The GMI port of G-chip supports up to 32 banks of memory. The port provides 7-bit error
checking and correction (ECC) for a 32-bit memory data bus.

4.2.1.5.1 Memory Addressing
The G-chip can control up to 32 banks (16-bank pairs) of DRAM, with each bank
consisting of 32 data bits and 7 bits of ECC code. These banks are addressed as follows :

¢ Each bank pair has a base address register value resident in the G-chip and CP
(shadow register) ports, with either 4 or 6 significant bits (depending on the bank’s
RAM size).

* Bit <29> of the address is a 0 (memory address space).

¢ When a validated base address register value matches the address from the address
bus or the CP bus, the bank pair at that address is selected for either reading or
writing. Two banks are enabled for every base address match. Bit <2> of the address
further selects one of the two enabled bank pairs.

— If the RAM size is 1 megabyte, the base address maps to bits <28:23> of the
address, the row address maps to bits <22:13> of the address and the column
address maps to bits <12:3> of the bus address.

Cache and Main Memory 101

— If the RAM size is 4 megabytes, the base address maps to bits <28:25>, the row
address to bits <24,22:13>, and the column address to bits <23,12:3> of the bus
address.

4.2.1.6.2 Support for Pagemode

The GMI port of G-chip supports extended pagemode to improve the GMI bandwidth.
Addresses within the same physical memory page—for example, addresses whose bits
<28:13> are the same—can be accessed at a faster rate than addresses that are not in the
same page. This is done by keeping the row address the same and changing the column
address only.

The GMI port provides a timeout counter for pagemode, since DRAMs have a restriction
on the time that transactions can be done in page mode. In order to keep the pagemode
timeout interval from varying with the G-chip clock cycle times, the count value can be
changed by setting the timer count select bit MEMCSR36<12>. This bit should be set
at cycle times greater than 28 ns and cleared at cycle times less than or equal to 28
ns. Except for refresh, all transactions are done in page mode as long as the previous
and current bank and row address match, and the page mode timeout counter has not
overflowed. The page mode timeout counter overflows after 8 ps.

4.2.1.6.3 Memory Error Detection and Correction

On memory write transactions, the source of the memory data comes from the the
corresponding write buffer, together with 7 check bits generated from an ECC generator.
On memory read transactions, ECC is generated from the memory data inputs and
compared to the check bits. The ECC logic uses a 32-bit modified Hamming code to
encode the 32-bit data longword into seven check bits.

When an error is detected, the syndrome is loaded into <22:16> or <6:0>, depending on
whether the transaction was requested by the G-chip port or the CP port. The G-chip
ECC logic detects and corrects single-bit errors in the memory data. Single-bit errors in
the check bit field are detected and reported. Double-bit errors are detected and reported,
but not corrected.

Modified Hamming Code

Figure 4-30 shows the modified Hamming code. The data bits marked with an X in each
row are Exclusive-ORed together to generate the corresponding check bit. In a memory
read transaction, a non-zero syndrome indicates an error. If the syndrome generated
matches a column of X bits, the error is correctable and the column number corresponds
to the corrected bit. If a syndrome value does not match any value in Figure 4-30, it
indicates an uncorrectable error. Table 4-21 shows the syndromes from Figure 4-30 that
can be read from <22:16> or <6:0>.

102 Cache and Main Memory

S G-Chip Data Bus <31:0> G-Chip Data Bus <32:38>
y
n
d
r Generated Check Bits
o Byte 3 Byte 2 Byte 1 Byte 0 C1C2C4C8C16 C32 CT
m |3 212 i1 3 3 3 3 3 3 3
e |1 413 615 817 0 2 3 4 5 6 7 8
S1 XXXX XXXX XXXX XXXX X
S2 XXXX XXXX XXXX XXXX X
S4 X XX X X XX X X XX X X XX X X
S8 | XXXXXXXX XXXXXXXX I XXXXXXXX X
S16 | XXXXXXXX | XXXXXXXX XXXXXXXX X
S32 | XXXXXXXX I XXXXXXXX | XXXXXXXX X
ST | X XXX XXX X] XXX X} XXX X X

Even Parity - C1, C2, CT

Odd Parity

- C4,C8,C16, C32

Error_Syndrome<N> = (Generated CB<N> XOR Memory CB<N>)

Figure 4-30 32-Bit Modified Hamming Code

Table 4-21 Syndrome Examples

MEMCSR32<22:16>

MEMCSR32<6:0> Bit Position in Error

0000000 No error detected.
Data Bits (0 to 31,)

1011000 0

0011100 1

0011010 2

1011110 3

0011111 4

1011011 5

1011101 6

0011001 7

1101000 8

0101100 9

0101010 10

1101110 11

0101111 12

Cache and Main Memory 103

Table 4-21 (Cont.) Syndrome Examples
MEMCSR32<22:16>

MEMCSR32<6:0> Bit Position in Error

1101011 13

1101101 14

0101001 15

1110000 16

0110100 17

0110010 18

1110110 19

0110111 20

1110011 21

1110101 22

0110001 23

0111000 24

1111100 25

1111010 26

0111110 27

1111111 28

0111011 29

0111101 30

1111001 31
Check Bits (32 to 38;¢)

0000001 32

00000190 33

0000100 34

0001000 35

0100000 37

0000111 Result of incorrect check bits written on detection of a RDAL or
CP bus parity error.

All others Multibit errors

Forcing Incorrect Check Bits

When a data parity error is detected from the RDAL during a memory write transaction,
incorrect check bits are generated and loaded into memory to force an uncorrectable error
for detection on a subsequent memory read. The algorithm for generating incorrect check
- bits is to complement the generated check bits<2:0> output and pass the generated check
bits<6:3> unchanged. This would generate an error syndrome of 0000111.

104 Cache and Main Memory

4.2.1.6.4 Memory Refresh

The G-chip GMI controls DRAMs that must be refreshed at a fixed interval. The G-chip
has an internal refresh interval timer. The timer initiates a refresh transaction every
480 cycles if the timer count select bit in MEMCSR36 is cleared (at cycle times less than
or equal to 28 ns), and every 336 cycles if the timer count select bit in MEMCSR36 is set
(at cycle times greater than 28 ns).

4.2.1.6.5 GMI priority

The GMI port has to arbitrate between the CP port and the G-chip port for memory
accesses. The GMI port has a priority-based arbitration scheme to help sustain CPU and
I/O performance and latency. The GMI port gives a higher priority to the CP port than
the G-chip port. However, when a G-chip read or write request is pending, the GMI port
services a maximum of three consecutive CP write requests before servicing one pending
G-chip request. After the pending G-chip request is serviced, the “three CP transactions”
counter is reset until the condition of CP write service and pending G-chip request occurs.
Then the “three CP transactions” counter begins.

From the CP port’s perspective, five consecutive writes may occur before the G-chip
service interruption is observed. This is a result of the two write buffers and one GMI
operation buffer. If a G-chip port request is not pending, there is no restriction on the
number of consecutive CP writes serviced by the GMI. CP reads are always given the
highest priority, unless the read address matches the address of a buffered CP write. In
that case, the write is completed before the read is serviced. Table 4-22 indicates the
GMI priority based on the three consecutive CP writes serviced counter while a G-chip
port request is pending.

Table 4-22 GMI Port Priority

GMI Priority GMI Transactions GMI Transactions
Number of CP Writes < 3 Number of CP Writes = 3

1 Refresh Refresh

2 Signature Read Signature Read

3 CP Port Read CP Port Read

4 CP Port Write G-chip Port Read

5 G-chip Port Read G-chip Port Write

6 G-chip Port Write CP Port Write

4.2.1.7 Transactions and Port Interactions
This section describes how the three ports of the G-chip interact with each other.

4.2.1.7.1 Support for Cache invalidates

Because DMA is done on the CP bus, invisible to the G-chip bus, the G-chip provides

a mechanism to invalidate cache entries that have been written to by DMA devices.
Cache entries are invalidated by doing an octaword DMA write protocol on the G-chip
bus. The G-chip supports octaword cache invalidates only; it does not support quadword
invalidates. The G-chip, with some external CP bus address latches (I-latch), provides a
mechanism to reduce the number of invalidates that have to be done on the G-chip bus
by doing an address lookup on a separate invalidate lookup bus.

Cache and Main Memory 105

invalidate Lookup

In order to support the invalidate lookup protocol, the G-chip requires the module to
have external latches of the CP bus address that drive the C-chip invalidate lookup bus.
The CP bus address is latched by the I-latch whenever a transaction is initiated on the
CP bus. If the transaction is a write and the address is valid (and the CPQUE is not
full, then the address is loaded into the CPQUE. At the same time, the G-chip asserts a
lookup request signal to the C-chip, indicating that the lookup address is valid. The CP
bus write transaction does not complete until the result of the lookup is received from the
C-chip. If the address hits in one or both of the cache tag stores, an invalidate hit bit is
set in the corresponding CPQUE element; this indicates the address has to be invalidated
on the G-chip bus when the data is retired to memory.

There is an additional constraint if cache lookups are initiated when a memory read
transaction is in progress on the G-chip bus—the result of the lookup may be misleading
if the leokup address is in the same octaword block as the current G-chip read. The
G-chip does not stall CP bus writes to avoid this problem. Invalidate lookups take place
as usual. However, if a CP bus write occurs simultaneously with a G-chip port memory
read, the invalidate hit tags in the CPQUE are set forcibly until the read and its cache
fill complete. This action ensures that even if the data returned on the RDAL is not
up-to-date and the result of the lookup for that address was a miss, but the G-chip fill
just caused it be validated in the cache, an address "+ill be invalidated as the write data
is written to memory.

Invalidate Hits

Addresses that hit in either the primary cache tag store or the backup cache tag store
have to be invalidated on the G-chip bus. The G-chip has two invalidate hit address
buffers that are loaded by the GMI port when the current address marked as having hit
is taken from the CPQUE. As soon as one of these buffers is loaded, the G-chip requests
the G-chip bus by asserting DMRL. The write transaction on the GMI does not complete
until the address is loaded in an invalidate hit buffer. The following transactions are not
allowed to complete until both invalidate hit buffers are flushed :

¢ Memory read

¢ Memory read lock

¢ CP bus EPR or IO read
¢ Read interrupt vector

The G-chip may retry the following G-chip bus transactions to perform invalidates that
prevent deadlocks :

¢ 1/O write to G-chip MEMCSR

* Memory write, SSC EPR write, or an /O write to the CP bus, that are stalled for any
reason

4.2.1.7.2 /O Transactions

On an I/O read or write transaction initiated by the CPU, the G-chip decodes the address.
If the address does not match any of its internal MEMCSRs, the G-chip does that read
or write on the CP bus. The G-chip generates a longword address from the quadword
address and byte masks provided on the G-chip bus. All /O transactions are either byte,
word, or longword. On an EPR read or write transaction, the G-chip decodes the EPR
number; if the number corresponds to an SSC EPR number, the G-chip does the read o
write on the CP bus. '

106 Cache and Main Memory

The G-chip port to CP port interface is made up of an address, data, and operation buffer.
The G-chip port loads information about the transaction into this buffer. The CP port
master continually monitors and unloads the buffer when the buffer has an operation in
it. If the buffer is full when the G-chip port needs to load an operation, that transaction
stalls on the G-chip bus. This buffer is used for all transactions initiated by the CPU and
performed on the CP bus:

¢ 1/O read

¢ T/O read lock

s VO write

¢ 1/O write unlock
* EPR read

e EPR write

e Interrupt vector read
¢ Memory read lock
¢ Memory write unlock

On read transactions (except the memory read lock) where the G-chip port waits for a
response from the CP bus, the G-chip slave controller monitors the state of the data
buffer for valid data.

4.2.1.7.3 Loading and Unloading Write Queues

The organization of the CPQUE and the QUEUE are different, but their operation is the
same. Elements of a queue are loaded and a valid bit is set by the corresponding port
controller. Note that transaction-to-tranzaction data packing is not done by the write
queues, since the GMI continuously unloads any valid elements following the previously
described operation priority.

If at least one of the buffers in a queue is valid, a write request is made to the GMI port
by the corresponding port. The GMI then services the writes according to its priority
scheme.

Note that each element in the queue implements a valid bit. If a valid bit is set, the GMI
port regards the element as full and does the memory write. The GMI port does not keep
data waiting in the buffers in order to fill the buffer or pack longwords. Writes are done
whenever the GMI can service them. When all valid bits for the elements of a queue are
set, a full signal is sent to the port controller. Also, when all valid bits for the elements
of a queue are clear, an empty signal is sent to the port controller.

The G-chip supports interlocked read transactions from the CPU to memory and the

CP bus, and from the CP bus to memory. Any device (CPU or CP bus DMA) that does

a locked transaction, has to be master of the CP bus and the Q22-bus (in a Q22-bus
system). The address and cycle status code for the lock is broadcasted on the CP bus,
allowing the CQBIC (if present) to retry the transaction if it is not master of the Q22-bus.
The read from memory takes place only after there are no more retries from the CQBIC.

The read lock is regarded as successful if there are no uncorrectable errors in the
requested read data. Under normal circumstances, when there are no DAL parity
errors on the returned data, the G-chip expects that the next transaction on the bus
(that initiated the read lock) is a write unlock. The lock is regarded as completed when
another transaction is initiated on that bus. If the transaction is not a write unlock, it is
assumed that write unlock is lost and will not happen.

Cache and Main Memory 107

If the read lock is initiated on the G-chip bus, a lost write unlock causes the G-chip to do
a dummy write unlock on the CP bus. This unlocks the Q22-bus and clears the lock.

If the read lock is initiated on the CP bus, then any transaction on the CP bus — even a
G-chip master transaction—can clear the lock.

4.2.1.7.4 Interrupts

The G-chip interrupts the CPU with one hard error interrupt and one soft error interrupt.
The G-chip does not have any vectored interrupts; however, it does support reading
interrupt vectors from the CP bus. All interrupt vector read transactions from the CPU
are transferred through the G-chip to CP bus interface. The vector that is read from the
interrupting device is provided to the CPU on the RDAL, without any modifications. The
G-chip does ensure that the CPQUE and the invalidate hit buffer addresses are flushed
before the vector is returned on the RDAL.

4.2.1.7.5 Transaction Summary
Table 4-23 indicates whether the write buffers or invalidate hit buffers are flushed on
various G-chip bus and CP bus transactions, before the transactions complete.

Table 4-23 System Requirements for Buffered Writes and Invalidates

Buffered Writes
Stall G-
Until Chip cp Invali-
Transactions Retired Port Port dates Remarks
G-chip memory read Yes No No Yes All the CP writes that have
(no lock) been retired to memory
have to be invalidated
before the read completes.
G-chip memory read - No Yes Yes It is important to retire CP
(lock) writes here, so the CPU
gets the most current data
from /O devices.
G-chip IO read (no - No Yes Yes It is important to retire CP
lock and lock) writes here, so the CPU
gets the most current data
from /O devices.
G-chip memory write No No No No
G-chip I/O write - Yes No No The I/O device should

get the data written by
the CPU. Here the CPU
communicates with the /O
device through CSRs.

G-chip IAK - No Yes Yes On interrupts, the CPU
issues a clear write buffer
command, and G-chip
writes can be flushed at
that conmand. The CP
writes and their invalidates
have to be flushed.

G-chip EPR - Yes Yes Yes
read/write (write) (read) (read)

108 Cache and Main Memory

Table 4-23 (Cont.) System Requirements for Buffered Writes and Invalidates

Buffered Writes
Stall G-
Until Chip cp Invali-
Transactions Retired Port Port dates Remarks
G-chip clear write - Yes No No No CPU transaction should
buffer be allowed to happen until
the G-chip write buffers are
flushed.
CP read lock Yes Yes No No The I/O device should get
up-to-date data.
CP memory read (no Yes No No No Stall until hit element is
lock) retired
CP memory write No No No No

4.2.1.8 Exceptions

The G-chip responds to exceptions and errors by terminating transactions with an error
signal on either bus and/or by interrupting the CPU.

Exception

G-Chip Response

G-chip memory write
transactions with RDAL
parity errors

An uncorrectable memory
error on the read portion
of a masked write from the

QUEUE

G-chip memory reads with
uncorrectable memory
errors in the first quadword
of data

G-chip memory transactions
with invalid memory
addresses

G-chip I/O read transactions
that terminate in an error
on the CP bus

G-chip I/O write
transactions that terminate
in an error on the CP bus

G-chip I/O read/write
transactions that time
out on the CP bus

The G-chip interrupts the CPU by asserting HERRIRQL. The
G-chip does the write to memory, but forces an uncorrectable
memory error in that location by complementing the three
least significant check bits. The G-chip bus parity error bit is
set in MEMCSR32<11>, and the octaword address is logged in
MEMCSR33.

The G-chip asserts HERRIRQL. The G-chip uncorrectable memory
error bit is logged in MEMCSR32<10>, and the octaword address
of that location is loaded in MEMCSR33. In this case, the write is
not completed.

The G-chip terminates the transaction with error. On G-chip
quadword memory reads with uncorrectable memory errors in the
second (unrequested) quadword, the G-chip does not do a cache fill.
In all cases, the G-chip logs the G-chip uncorrectable memory error
bit in MEMCSR32<10>, and the octaword address in MEMCSR33.

The G-chip asserts ERRL (on memory reads) or HERRIRQL
(on memory writes), sets the G-chip nonexistent memory bit in
MEMCSR32<12>, and logs the octaword address in MEMCSR33.

The G-chip asserts ERRL, logs the G-chip IO error bit in
MEMCSR32<14>, and logs the longword /O address in
MEMCSR34.

The G-chip asserts HERRIRQL, logs the G-chip I/O error bit in
MEMCSR32<14>, and logs the longword address of the error in
MEMCSR34.

The G-chip asserts ERRL (on reads) or HERRIRQL (on writes),
and logs the nonexistent IO bit in MEMCSR32<15>.

Cache and Main Memory 109

Exception

G-Chip Response

G-chip interrupt vector
reads or EPR reads that
time out on the CP bus

G-chip EPR writes that
timeout on the CP bus

CP bus initiated memory
read transactions with
uncorrectable memory
errors

CP bus memory write
transactions with DAL
parity errors

An uncorrectable memory
error occurs on the read
portion of a masked write
from the CPQUE

The G-chip asserts ERRL, but does not log any error bits in
MEMCSR32 or addresses in in MEMCSR34.

The G-chip does not notify the CPU by asserting HERRIRQL, and
no errors are logged.

The G-chip responds by terminating the transaction with
CPERRL. Multiple-transfer read transactions (CP bus quad,
hexa, or octa) are aborted on uncorrectable errors in the earlier
transfers.

For example, if a CP bus octaword read has an uncorrectable
error in the second transfer, the third and fourth transfers are
aborted by the G-chip and the G-chip expects the master device
to terminate the transaction. If there is an uncorrectable memory
error in an unrequested longword, the G-chip does not interrupt
the CPU.

In all the cases, the G-chip sets the CP bus memory correctable
error bit in MEMCSR32<25> or the CP bus uncorrectable error bit
in MEMCSR32<26>, and logs the octaword address of the error in
MEMCSR35.

The G-chip interrupts the CPU by asserting a HERRIRQL. The G-
chip does the write to memory, but forces an uncorrectable memory
error in that location by complementing the three least significant
check bits. The CP bus parity error bit is set in MEMCSR32<27>,
and the octaword address is logged in MEMCSR35.

The G-chip asserts HERRIRQL. The CP bus uncorrectable memory
error bit is logged in MEMCSR32<26>, and the octaword address
of that location is loaded in MEMCSR35. In this case, G-chip does
not do the write.

If there is a correctable error on any memory read or masked memory write transaction,

the G-chip:

1. Asserts SERRIRQL.

2. Logs the CRD error bit corresponding to the port (G-chip or CP) that requested the

transaction.

3. Logs the address in the corresponding memory error address register, MEMCSR33 (f
the error occurs on a G-chip transaction) or MEMCSR35 (if the error occurs on a CP

bus transaction).

4. Writes the correct data back to main memory.

5]

The Console Line, TOY Clock, and Bus System

This chapter describes the console serial line and the time-of-year (TOY) clock. The
chapter also provides an overview of the KA670 bus system.

5.1 KA670 Console Serial Line

The console serial line provides the KA670 processor with a full-duplex, RS-423 EIA,
serial line interface that is also RS-232C compatible. The only data format supported is
8-bit data with no parity and one stop bit. The four internal processor registers (IPRs)
that control the operation of the console serial line are a superset of the VAX console
serial line registers described in the VAX Architecture Reference Manual .

5.1.1 Console Registers

There are four registers associated with the console serial line unit. They are
implemented in the SSC chip and are accessed as IPRs 32 to 35. Table 5-1. lists the
registers.

Table 5-1 Console Registers

IPR Number Register Name Mnemonic
Decimal Hex

32 20 Console receiver control/status RXCS

33 21 Console receiver data buffer RXDB

34 22 Console transmit control/status TXCS

35 23 Console transmit data buffer TXDB

5.1.1.1 Console Recelver Control/Status Register - (IPR 32)

The console receiver control/status register (RXCS), internal processor register 32, is used
to control and report the status of incoming data on the console serial line. Figure 5-1
shows the format of the register. Table 5-2 lists the bit descriptions.

110

The Console Line, TOY Clock, and Bus System 111

8765 0

MBZ

MBZ

RX Done
RX IE

Figure 5-1 Console Receiver Control/Status Register— (IPR 32;¢ 204¢)

Table 52 Console Receiver Control/Status Register Bits

Description

Data Bit Name
<31:8> MBZ
<T7> RX done
<6> RX IE
<5:0> Unused

These bits read as 0s. Writes have no effect.

Receiver done (read-only). Writes have no
effect. This bit is set when an entire character
has been received and is ready to be read from
the RXDB register. This bit is automatically
cleared when the RXDB register is read. The
bit is also cleared on power-up or the negation
of DCOK.

Receiver interrupt Enable (read/write). When
set, this bit causes an interrupt to be requested
at IPL14 with an SCB offset of F8 if RX done is
set. When cleared, interrupts from the console
receiver are disabled. This bit is cleared on
power-up or the negation of DCOK.

These bits read as 0s. Writes have no effect.

5.1.1.2 Console Receiver Data Buffer—(IPR 33)

The console receiver data buffer (RXDB), internal processor register 33, is used to buffer
incoming data on the serial line and capture error information. Figure 5—2 shows the
format of the register. Table 5-3 lists the bit descriptions.

3

1111111
1 6543210 87 0

MBZ

MBZ

ERR
OVR ERR
FRM ERR
MBZ
RCV BRK

Received Data Bits

AAA A

Figure 5-2 Console Receiver Data Buffer — (IPR 33, 214¢)

112 The Console Line, TOY Clock, and Bus System

Table 5-3 Console Receiver Data Buffer Bits

Data Bit

Name

Description

<31:16>

<15>

<14>

<13>

<12>

<11>

<10:8>

<7:0>

MBZ

ERR

OVR ERR

FRM ERR

MBZ

RCV BRK

These bits always read as 0. Writes have no
effect.

Error (read-only). Writes have no effect. This
bit is set if RBUF <14> or <13> is set. The

bit is clear if these two bits are clear. This bit
cannot generate a program interrupt. The bit is
cleared on power-up or the negation of DCOK.

Overrun error (read-only). Writes have no
effect. This bit is set if a previously received
character was not read before being overwritten
by the present character. The bit is cleared by
reading the RXDB, on power-up or the negation
of DCOK.

Framing error (read-only). Writes have no
effect. This bit is set if the present character
did not have a valid stop bit. The bit is cleared
by reading the RXDB, on power-up or the
negation of DCOK. Error conditions are
updated when the character is received,
and it remains present until the character
is read. At that point, the error bits are
cleared.

This bit always reads as 0. Writes have no
effect.

Received break (read-only). Writes have no
effect. This bit is set at the end of a received
character for which the serial data input
remained in the space condition for 20 bit
times. The bit is cleared by reading the RXDB
register, power-up, or the negation of DCOK.

These bits always read a as 0. Writes have no
effect.

Received data bits (read-only). Writes have
no effect. These bits contain the last received
character.

The Console Line, TOY Clock, and Bus System 113

5.1.1.3 Console Transmitter Control/Status Register—(IPR 34)

The console transmitter control/status register (TXCS), internal processor register 34,
is used to control and report the status of outgoing data on the console serial line.
Figure 5-3 shows the format of the register. Table 54 lists the bit descriptions.

3
1 8765 3210

MB2Z MBZ
Y [T K

TX RDY
TXIE
MAINT
MBZ
XMIT BRK

Figure 5-3 Console Transmitter Control/Status Register—(IPR 34,3 22¢)

Table 54 Console Transmitter Data Buffer

Data Bit Name Description
<31:8> . MBZ These bits read as 0s. Writes have no effect.
<7> TX RDY Transmitter ready (read-only). Writes have

no effect. This bit is cleared when TXDB is
loaded and set when TXDB can receive another

character. This bit is set on power-up or the
negation of DCOK.

<6> TX IE Transmitter interrupt enable (read/write).
When set, this bit causes an interrupt request
at IPL14 with an SCB offset of FC if TX RDY is
set. When cleared, interrupts from the console
receiver are disabled. This bit is cleared on
power-up or the negation of DCOK.

<5:3> MBZ Read as 0s. Writes have no effect.

<2> MAINT Maintenance (read/write). This bit is used to
facilitate a maintenance self-test. When MAINT
is set, the external seiial output is set to mark
and the serial output is used as the serial input.
This bit is cleared on power-up or the negation

of DCOK.
<1l> Unused This bit reads as 0. Writes have no effect.
<0> XMIT BRK Transmit break (read/write). When this bit

is set, the serial output is forced to the space
condition after the character in TXDB<7:0> is
sent. While XMIT BRK is set, the transmitter
operates normally, but the output line remains
low. Thus, software can transmit dummy
characters to time the break. This bit is cleared
on power-up.

114 The Console Line, TOY Clock, and Bus System

5.1.1.4 Console Transmitter Data Buffer—(IPR 35)

The console transmitter data buffer (TXDB), internal processor register 35, is used to
buffer outgoing data on the serial line. Figure 5—4 shows the format of the register.
Table 5-5 lists the bit descriptions.

3
1 87 (]

Transmitted Data Bizs——t

Figure 5-4 Console Transmitter Data Buffer— (IPR 35,9 234¢)

MBZ

Table 5-5 Console Transmitter Data Buffer Bits

Data Bit Name Description
<31:8> MBZ Read as 0. Writes have no effect.
<7:0> Transmitted data bits Write only. These bits load the character to be

transmitted on the console serial line.

5.1.2 Break Response

The console serial line unit recognizes a break condition that consists of 20 consecutively
received space bits. If the console detects a valid break condition, the RCV BRK bit is
set in the RXDB register. If the break was the result of 20 consecutively received space
bits, the FRM ERR bit is also set. If halts are enabled, the KA670 halts and transfers
program control to UVROM location 2004 0000;¢ when the RCV BRK bit is set. RCV
BRK is cleared by reading RXDB. Another mark, followed by 20 consecutive space bits,
must be received to set RCV BRK again.

5.1.3 Baud Rate

The receive and transmit baud rates are always identical. They are controlled by the
SSC configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select signals that are
received from an external 8-position switch mounted on the console module (H3604).
The KA670 firmware reads this code from boot and diagnostic register bits <6:4>,
complements and loads the code into SSC configuration register bits <14:12>.

Table 5-6 lists the baud rate selections, the corresponding codes as read in the boot
and diagnostic register bits <6:4>, and the inverted code that should be loaded into SSC
configuration register bits <14:12>.

The Console Line, TOY Clock, and Bus System 115

Table 5-6 Baud Rate Selection

Baud Rate BDR<6:4> SSC<14:12>
300 111 000
600 110 001
1200 101 010
2400 100 011
4800 011 100
9600 010 101
19200 001 110
38400 000 111

5.1.4 Console Interrupt Specifications

The console serial line receiver and transmitter both generate interrupts at IPL 14. The
receiver interrupts with a vector of F8g, while the transmitter interrupts with a vector
of FC 16-

5.2 KA670 TOY Clock and Timers

The KA670 clocks include the time-of-year clock (TODR), a subset interval clock (subset
ICCS), as defined in the VAX Architecture Reference Manual, and two additional
programmable timers modeled after the VAX standard interval clock.

5.2.1 Time-of-Year Clock (TODR)—EPR 27

The KA670 time-of-year clock (TODR) forms an unsigned 32-bit binary counter that
is driven from a 100 Hz oscillator. The least significant bit of the clock represents a
resolution of 10 milliseconds, with less than 0.0025 percent error. The register counts
only when it contains a nonzero value. This register is implemented in the SSC chip.
Figure 5-5 shows the format.

3
1 0

Time of Year Since Setting

Figure 5-5 Time-of-Year Clock (TODR) — (EPR 279 1B1¢)

During a power failure, the time-of-year clock is maintained by battery backup circuitry
that interfaces through the external connector to a set of batteries mounted on the CPU
console module. The clock remains valid for greater than 162 hours when using the

NiCad battery pack (3 batteries in series) mounted on the I/O distribution insert panel .

The SSC configuration register contains a battery low (BLO) bit. If this bit is set after
initialization, the TODR is cleared remains at 0 until software writes a nonzero value
into it.

NOTE
After writing a nonzero value into the TODR, software should clear the BLO bit
by writing a 1 to it.

116 The Console Line, TOY Clock, and Bus System

5.2.2 Interval Timer (ICCS)—EPR 24

The KA670 interval timer (ICCS), internal processor register 24, is implemented
according to the VAX Architecture Reference Manual. The interval clock control/status
(ICCS) register is implemented as the standard subset of the standard VAX ICCS in the
CPU chip. NICR and ICR are not implemented. Figure 5-6 shows the format or the
ICCS register. Table 5-7 lists the bit descriptions.

3
1 765 o]

mBZ MBZ

Figure 5-6 Interval Timer (ICCS) — (EPR 24,9 184¢)

Table 5-7 Interval Timer Bits

Data Bit Name Description

<31:7> MBZ v Read as 0s. Must be written as
0Os.

<6> IE Interrupt enable (read/write).

This bit enables and disables the
interval timer interrupts. When
the bit is set, an interval timer
interrupt is requested every 10
msec, with an error of less than
0.01 percent. When the bit is
clear, interval timer interrupts
are disabled. This bit is cleared
on power-up.

<5:0> MBZ Read as 0s. Must be written as
0s.

Interval timer requests are posted at IPL 16 with a vector of C0. The interval timer is
the highest priority device at this IPL.

5.2.3 Programmable Timers

The KA670 features two programmable timers. Although modeled after the VAX
standard interval clock, the timers are accessed as I/O space registers rather than as
internal processor registers. Also, an added control bit stops the timer upon overflow. If
so enabled, the timers will interrupt at IPL 14 upon overflow. The interrupt vectors are
programmable, and are set to 78 and 7C by the firmware.

Each timer is composed of four registers:

Timer n control register

Timer n interval register

Timer n next interval register
Timer n interrupt vector register

The Console Line, TOY Clock, and Bus System 117

n represents the timer number (0 or 1).

5.2.3.1 Timer Control Registers (TCRO and TCR1)

The KA670 has two timer control registers—one for controlling timer 0 (TCRO0), and one
for controlling timer 1 (TCR1). TCRO is accessible at address 2014 0100,¢, and TCR1 is
accessible at 2014 0110,6. These registers are implemented in the SSC chip. Figure 5-7
shows the format. Table 5-8 lists the bit descriptions.

33
10 876543210
MBZ
T_ IR NN NN AL
ERR RUN
L— MBZ
STP
MBZ
XFR
SGL
IE
INT
Figure 5-7 Timer Control Registers (TCR0 and TCR1)
Table 5-8 Timer Control Register Bits
Date Bit Name Description
<31> ERR Error (read/write to clear). This bit is set whenever the timer

interval register overflows and the INT bit is already set. Thus,
the ERR bit indicates a missed overflow. Writing a 1 to this bit
clears the bit. ERR is cleared on power-up.

<30:8> MBZ Read as 0s. Must be written as 0s.

<7> INT Interrupt (read/write to clear). This bit is set whenever the
timer interval register overflows. If IE is set when INT is set,
an interrupt is posted at IPL 14. Writing a one to this bit clears
the bit. INT is cleared on power-up.

<6> IE Interrupt enable (read/write). When this bit is set, the timer will
interrupt at IPL 14 when the INT bit is set. IE is cleared on
power-up.

<5> SGL Read/write. Setting this bit causes the timer interval register to

be incremented by 1 if the RUN bit is cleared. If the RUN bit is
set, then writes to the SGL bit are ignored. SGL is always read as
0. SGL is cleared on power-up.

<4> XFR Transfer (read/write). Setting this bit causes the timer next
interval register to be copied into the timer interval register. XFR
is always read as 0. XFR is cleared on power-up.

<3> MBZ Read as 0s. Must be written as 0s.

<2> STP Stop (read/write). This bit determines whether the timer stops
after an overflow, when the RUN bit is set. If the STP bit is set at
overflow, the RUN bit is cleared by the hardware at overflow and
counting stops. STP is cleared on power-up.

<1> MBZ Read as 0s. Must be written as 0s.

118 The Console Line, TOY Clock, and Bus System

Table 5-8 (Cont.) Timer Control Register Bits

Date Bit Name Description

<0> RUN Run (read/write). When set, the timer interval register is
incremented once every microsecond. The INT bit is set when
the timer overflows. If the STP bit is set at overflow, the RUN bit
is cleared by the hardware at overflow and counting stops. When
the RUN bit is clear, the timer interval register is not incremented
automatically. RUN is cleared on power-up.

5.2.3.2 Timer Interval Registers (TIR0 and TIR1)
The KA670 has two timer interval registers—one for timer 0 (TIR0), and one for timer 1
(TIR1). TIRO is accessible at address 2014 01044, and TIR1 is accessible at 2014 0114,¢.

The timer interval register is a read-only register containing the interval count. When
the RUN bit is 0, writing a 1 increments the register. When the RUN bit is 1, the register
is incremented once every microsecond.

When the counter overflows, the INT bit is set; an interrupt is posted at IPL14 if the
IE bit is set. Then, if the RUN and STP bits are both set, the RUN bit is cleared and
counting stops. Otherwise, the counter is reloaded. The maximum delay that can be

specified is approximately 1.2 hours. This register is cleared on power-up. Figure 5-8
shows the format of the registers.

Timer Interval Register

Figure 5-8 Timer Interval Registers (TIRO and TIR1)

5.2.3.3 Timer Next interval Registers (TNIRO and TNIR1)

The KA670 has two timer next interval registers—one for timer 0 (TNIR0), and one for
timer one (TNIR1). TNIRO is accessible at address 2014 0108,6, and TNIR1 is accessible
at 2014 0118;¢. These registers are implemented in the SSC chip. Figure 5-9 shows the
format of the registers.

These read/write registers contain the value written into the timer interval register after
overflow or in response to a 1 written to the XFR bit. The timer next interval registers
are cleared on power-up.

Timer Next interval Register

Figure 5-9 Timer Next interval Registers (TNIRO and TNIR1)

5.2.3.4 Timer Interrupt Vector Registers (TIVRO and TIVR1)

The KA670 has two timer interrupt vector registers—one for timer 0 (TIVRO), and one for
timer 1 (TIVR1). TIVRO is accessible at address 2014 010C,¢, and TIVR1 is accessible at
2014 011Cy¢. These registers are implemented in the SSC chip. The resident firmware
sets TIVRO to 78,6 and TIVR1 to 7Cy¢. Figure 5-10 shows the format.

The Console Line, TOY Clock, and Bus System 119

These read/write register contain the timer’s interrupt vector. Bits <31:10> and <1:0> are
read as 0 and must be written as 0. When TCRn<6> (IE) and TCRn<7> (INT) transition
to 1, an interrupt is posted at IPL 14. When a timer’s interrupt is acknowledged, the
content of the interrupt vector register is passed to the CPU, and the INT bit is cleared.
Interrupt requests can also be cleared by clearing either the IE or INT bit. The timer
interrupt vector registers are cleared on power-up.

3
1 10 9 210

MBZ Interrupt Vector MBzZ

Figure 5-10 Timer Interrupt Vector Registers (TIVRO and TIVR1)

NOTE

Note that both timers interrupt at the same IPL as the console serial line
unit, IPL 14. When multiple interrupts are pending, the console serial line has
priority over the timers, and timer 0 has priority over timer 1.

5.3 KA670 Bus Overview
The KA67O has three major buses:

¢ Data address lines (RDAL)

¢ Peripheral (CP)

e G-chip memory interconnect (GMI)

5.3.1 RDAL Bus

The RDAL bus connects the CPU, FPA, and backup cache chip to the memory controller.
The KA670 supports the following components on the RDAL bus:

¢ Four of the five core chips (plus memory controller):

— CPU chip (P-chip)

— Clock chip (CLK-chip)

— Floating point accelerator chip (F-chip)

— Backup cache controller chip (C-chip)

— Memory controller chip (G-chip)
The KA670 does not support the following components on the RDAL bus:
¢ System support chip (SSC)

¢ Any other peripheral components

120 The Console Line, TOY Ciock, and Bus System

5.3.2 The CP Bus

The CP bus connects the I/O subsystem to the memory controller. The KA670 depends on
and supports the following components on the CP bus:

¢ Clock chip (CCLOCK DC509)

¢ Q22-bus adapter chip (CQBIC DC527)

¢ Second-generation Ethernet controller chip (SGEC DC541)

* Single host adapter chip (SHAC DC542)

e System support chip (SSC DC511)

¢ CP bus arbiter (ARB chip)

The KA670 does not support the following components on the CP bus:
* 90 ns memory controller (CMCTL DC357)

¢ 60 ns memory controller (CMCTL DC557)

 CPU chip (DC341)

¢ Graphics and system support chip (GSSC)

5.3.2.1 The CCLOCK Chip

This chip generates the precision MOS clock signals needed to operate the the G-chip and

other core peripheral chips in synchronization with the CP bus. In addition, the CCLOCK

chip provides two synchronizers for synchronizing asynchronous DMA functions to the
CP bus.

5.3.2.2 CP Bus Arbiter

The CP bus arbiter (ARB chip) controls which peripheral device is granted CP bus
mastership. The CP bus does not support DMA grant daisy-chaining, so the ARB chip
receives separate requests from each device and issues a separate grant to each device.
The arbiter must give the CQBIC the highest priority. Then the G-chip must be given the
second highest priority. The third highest priority goes to the SGEC. The arbiter then
uses a round-robin priority mechanism for the two SHACs.

5.3.3 GMI Bus

The GMI bus creates a path between the memory controller and main memory. There are
two chips that support the memory subsystem:

¢ Memory controller chip (G-chip DC561)
¢ G-chip memory interface chip (GMX DC562)

6

KA670 Boot and Diagnostic Facility

The KA670C boot and diagnostic facility features two registers, 256 kilobytes of erasable
programmable read only memory (EPROM) and 1 kilobyte of battery backed up RAM.
The EPROM and battery backed up RAM may be accessed with longword, word, or byte
references.

The 256 kilobytes of EPROM contain the resident firmware. If this EPROM is
reprogrammed for special applications, the new code must initialize and configure the
board, and provide halt and console emulation, as well as boot diagnostic functions.

6.1 Boot and Diagnostic Register (BDR)

The boot and diagnostic register (BDR) is a longword-wide register, located in the VAX
1/0 page at physical addresses 2008 4000 to 2008 407C;¢. The register is implemented
uniquely on the KA670. The register can be accessed by KA670 software, but not by
external Q22-bus devices. The BDR allows the boot and diagnostic firmware as well as
the operating system to read various KA670 configuration bits.

The low byte and upper word of the BDR present the same information in each of the 32
successive longwords. The second byte (bits <15:8>) provides a byte of the LAN station
address in each successive longword. Note that only the first 8 bytes contain the station
address. The next 24 bytes are for testing purposes. Figure 6-1 shows the format for the
boot and diagnostic register. Table 6-1 lists the bit descriptions.

3 2 2 2 2 11

1 9 7 4 1 109876543210

| T_
BDR_CD

3 22 2 2 211111111
0 6 5 32 098765432

DSS!t | Undefined | DSSI2] Station_Address
A A A

Must Be One
Man_Test_Mode
BRS_CD
HLT_ENB
—— Undefined
Cable_OK
Ether_Boot
1/0 Addresses: 2008 4000 - 2008 407C

Longword Read-Only Access

Figure 6-1 Boot and Diagnostic Register (BDR)

121

122 KA670 Boot and Diagnostic Facility

Table 6-1 Boot and Diagnostic Register Bits

Data Bit

Name

Description

<31>

<30>

<29:27>
<26:24>

<23:19>
<18:16>

<15:8>

<>

Ether_boot

Cable_OK

Undefined
DSSI1

Undefined
DSSI2

Station_address

HLT ENB

Enable Ethernet remote boot. This bit reflects
the current setting of the enable Ethernet
remote boot jumper on the console module
(H3604). If the setting is 0, remote Ethernet
boots are enabled. If this bit is 1, remote
Ethernet boots requests are ignored.

Console module cable okay. When this bit

is 0, there is a high probability that the
console module cable is functioning correctly.

If this bit is 1, the console module cable is
either malfunctioning or plugged in the wrong
orientation. This bit is determined by sending a
signal to the console module over one path and
reading it back over another path on the cable.

Should not be read or written.

This field contains the DSSI node number for
the external DSSI bus (the bus that is accessed
through the console module).

Should not be read or written.

This field contains the DSSI node number for
the internal DSSI bus (the bus that is accessed
through the backplane connector).

The KA670’s hardware LAN station address
EPROM is accessed by reading the BDR several
times at successive addresses. The encoding for
the station address is as follows:

BDR + 00: SA byte 0
BDR + 04: SA byte 1
BDR + 08: SA byte 2
BDR + 0C: SA byte 3
BDR + 10: SA byte 4
BDR + 14: SA byte 5
BDR + 18: Checksum byte 0
BDR + 1C: Checksum byte 1

The last 24 bytes are for testing purposes.

Halt enable (read-only). Writes have no effect.
This bit reflects the state of the BREAK
ENABLE switch on the console module (H3604).
When asserted, this signal enables the halting
of the CPU upon detection of a console break
condition.

On a power-up, the KA670 resident firmware
reads the HLT ENB bit to decide whether to
enter the console emulation program (HLT ENB
set) or to boot the operating system (HLT ENB
clear). When a HALT instruction is executed in
kernel mode, the resident firmware reads the
HLT ENB bit to decide whether to enter the
console emulation program (HLT ENB set) or to
restart the operating system (HLT ENB clear).

KAB670 Boot and Diagnostic Facility 123

Table 6-1 (Cont.) Boot and Diagnostic Register Bits

Data Bit Name Description

<6:4> BRS CD Baud rate select (read-only). Writes have no
effect. These three bits originate from the
console module’s (H3604) baud rate select
switch. They reflect the baud rate setting, as
listed in the following table:

BDR<6:4> Baud Rate

111 300
110 600
101 1200
100 2400
011 4800
010 9600
001 19200
000 38400
<3> Man_test_mode Manufacturing test mode (read-only). Writes

have no effect. When set, the KA670 is in
normal run mode. When set (by grounding a
test point on the backplane), the KA670 is in
manufacturing test mode. In this mode, special
diagnostic test script on run.

<2> MBO Must be one (read-only). Writes have no effect.

<1:0> BDG_CD Boot and diagnostic code (read-only). Writes
have no effect. This 2-bit field reflects the
setting of the power-up mode switch on the
console module (H3604). The KA670 firmware
programs use BDG_CD <1:0> to determine the
power-up mode, as listed in the following table:

BDR<1:0> Power-Up Mode

11 Run

10 Language inquiry
01 Test

00 Unused

6.2 Diagnostic LED Register (DLEDR)

The diagnostic LED register (DLEDR), address 2014 0030,¢, is implemented in the SSC
chip. The register contains four read/write bits that control the external LED display. A
0 in a bit turns on the corresponding LED. All four bits are cleared on power-up or the
negation of DCOK, to provide a power-up lamp test. Figure 6-2 shows the format of the
register. Table 6-2 lists the bit descriptions. '

124 KA670 Boot and Diagnostic Facility

mBz DSPL

10 Address: 2014 0030
Longword Read/'\Write Access

Figure 6-2 Diagnostic LED Register (DLEDR)

Table 6-2 Diagnostic LED Register Bits

Data
Bit Name Description

<31:4> MBZ Read as 0s. Must be written as 0s.

<3:0> DSPL Display (read/write). These four bits update an external LED display.
Writing a 0 to a bit turns on the corresponding LED. Writing a 1 to a bit
turns the LED off. The display bits are cleared (all LEDs are turned on) on
power-up or the negation of DCOK.

6.3 EPROM Memory

The KA670 has 256 kilobytes of EPROM memory for storing code for board initialization,
VAX standard console emulation, board self-tests, and boot code. EPROM memory may
be accessed through byte, word, and longword references. EPROM read accesses take 250
ns. The EPROM is organized as a 128K x 8-bit array. CP bus parity is neither checked
nor generated on EPROM references.

NOTE

The EPROM size must be set in the SSC configuration register before
attempting to reference outside the first 8-kilobyte block of the local EPROM
space. (2004 0000 to 2004 1FFF,g)

6.3.1 EPROM Address Space

The entire 256-kilobyte boot and diagnostic EPROM can only be read in the 256-kilobyte
halt protect EPROM space (2004 0000 to 2007 FFFFyg).

NOTE

There is no concept of halt unprotect space on the KA870 (as used on previous
Q22-bus MicroVAX systems).

Any I-stream read from the EPROM space places the KA670 in halt mode. The Q22-
bus SRUN signal is deasserted, which turns off the front panel RUN light. The CPU is
protected from further halts.

Writes and D-stream reads to any address space have no effect on the run mode/halt
mode status.

NOTE

The KA670 logic that controls halt mode/run mode cannot detect I-stream
read references that hit the primary cache. Therefore, halt mode/run mode
is unaffected by these cache hits.

KA670 Boot and Diagnostic Facility 125

6.3.2 KA670 Resident Firmware Operation

The KA670 CPU module’s 256-kilobyte EPROM contains the resident firmware. The
firmware can be entered by transferring program control to location 2004 0000,¢.

Section 9.3.1 lists the various halt conditions that cause the KA670 to transfer program
control to location 2004 0000,¢.

When running, the resident firmware provides the services expected of a VAX-11 console
system. In particular, the following services are available:

¢ Automatic restart or bootstrap following processor halts or initial power-up

¢ An interactive command language that allows the user to examine and alter the state
of the processor

* Diagnostic tests run at power-up to check out the CPU, the memory system, and the
Q22-bus map

* Support of video or hardcopy terminals as the console terminal

6.3.2.1 Power-Up Modes
The boot and diagnostic EPROM programs use boot and diagnostic code <1:0>
(Section 9.9) to determine the power-up modes listed in Table 6-3.

Table 6-3 Power-Up Modes

Code Power-Up Mode Description

11 Run (factory setting) If the console terminal supports the DEC multinational
character set, the user is prompted for a language if the
time-of-year clock battery backup has failed, or SSC RAM
is corrupted or unintialized (first power-up). Full startup
diagnostics are run.

01 Language inquiry If the console terminal supports the DEc multinational
character set, the user is prompted for a language on
every power-up and restart. Full startup diagnostics are
run.

10 Test EPROM programs run wraparound serial line unit (SLU)
tests.

00 Unused.

6.4 Battery Backed-Up RAM

The KA670 contains 1 kilobyte of battery backed-up static RAM (found in the SSC), for
use as a console scratchpad. This RAM supports byte, word, and longword references.
Read operations take 700 ns to complete. Write operations require 600 ns. The RAM is
organized as a 256 x 32-bit (one-longword) array. The array appears in a 1-kilobyte block
of the VAX I/O page, at addresses 2014 0400 to 2014 07FF;¢. This array is not protected
by parity; CP bus parity is neither checked nor generated on reads or writes to this RAM.

126 KA670 Boot and Diagnostic Facility

6.5 KAG670 Initialization

The VAX architecture defines three kinds of hardware initialization:
¢ Power-up initialization
* I/O bus initialization

¢ Processor initialization

6.5.1 Power-Up Initialization

Power-up initialization is the result of restoring power. Initialization includes a hardware
reset, processor initialization, I/O bus initialization, and the initialization of several
registers defined in the VAX Architecture Reference Manual.

6.5.2 Hardware Reset

A KA670 hardware reset occurs on power-up or the negation of DCOK. A hardware
reset initiates the hardware halt procedure (Section 3.1.6.6) with a halt code of 03. The
hardware reset also initializes some IPRs and most I/O page registers to a known state.
Those IPRs affected by a hardware reset are noted in Section 3.1.1.3. The description for
each I/O space register describes the effect of a hardware reset on that register.

6.5.3 /O Bus Initialization

An /O bus initialization occurs on power-up, the negation of DCOK, or as the result of
an MTPR to IPR 55 (IORESET) or console UNJAM command. An /O bus initialization
clears the interprocessor communication (IPCR) and DMA system error (DSER) registers.
It also causes the Q22-bus interface to acquire both the CP bus and Q22-bus, then assert
the Q22-bus BINIT signal. The assertion of BINIT on the Q22-bus does not effect the
KA670.

6.5.3.1 /O Bus Reset Register (IPR 55)

The I/O bus reset register (IORESET), IPR 55,¢ is implemented in the SSC chip. An
MTPR of any value to the IORESET register causes an /O bus initialization. Note that
the second generation Ethernet controller chip (SGEC) and single host adapter chip
(SHAQC) are not reset by MTPRs to IPR 55.

6.5.4 Processor Initialization

A processor initialization occurs

¢ On power-up

¢ On the negation of DCOK

¢ As the result of a console INITIALIZE command
* After a halt caused by an error condition

In addition to initializing those registers defined in the VAX Architecture Reference
Manual, the KA670 firmware must also configure main memory, the local I/O page, and
the Q22-bus map during a processor initialization.

KAB670 Boot and Diagnostic Facility 127

6.5.4.1 Configuring the Local /O Page

The following registers control the configuration of the KA670 local /O page. They
are unique to CPU designs that use the system support chip (SSC), and they must be
configured by the firmware during a processor initialization.

¢ SSC base address register
* BDR address decode match register
¢ BDR address decode mask register
¢ SSC configuration register

* CP bus timeout register

6.5.5 SSC Base Address Register (SSCBR)

The SSC base address register, address 2014 000046, controls the base addresses of a
2-kilobyte block of the local /O space that includes the the following:

¢ Battery backed-up RAM

* Registers for the programmable timers

* BDR address decode match and mask registers
* Diagnostic LED register

* CP bus timeout register

* A set of diagnostic registers that allow several EPRs to be accessed using I/O page
addresses.

This read/write register is set to 2014 0000, on power-up or the negation of DCOK.
Bits SSCBR<31:30,10:0> are unused. They read as 0s, and must be written as Os.
SSCBR<29> is read as 1 and must be written as 1. This register should also be set

to 2014 0000, by firmware during processor initialization. Figure 6—3 shows the format
of the SSCBR register.

33 22 11
1 0 9 8 10 0
MBZ| 1 Base Address Bits <28:11> MBZ

Figure 6-3 SSC Base Address Register (SSCBR)

6.5.6 BDR Address Decode Match Register (BDMTR)

The BDR address decode match register, address 2014 0140, controls the base address
of the BDR. This read/write register is cleared on power-up or the negation of DCOK.
BDMTR<31:30,1:0> are unused. They read as 0s, and must be written as 0s. This
register should be set to 2008 4000y by firmware during processor initialization.
Figure 6—4 shows the format of the BDMTR register.

128 KA670 Boot and Diagnostic Facility

- W

2 10

ow
(7o] V]

MBZ Base Address Match Bits <29:2> MBZ

Figure 6-4 BDR Address Decode Match Register (BDMTR)

6.5.7 BDR Address Decode Mask Register (BDMKR)

The BDR address decode mask register, address 2014 0144 ¢, controls the range of
addresses that the BDR responds to. An example is the number of copies of the BDR that
appear in the physical address space.

This read/write register is cleared on power-up or the negation of DCOK. Bits
BDMKR<31:30,1:0> are unused. They read as 0s, and must be written as 0s. This
register should should be set to 0000 007C ¢ (32 copies of the BDR) by firmware during
processor initialization , because successive bytes of the KA670’s LAN station address are
read using the BDR. Figure 6-5 shows the format of the BDMKR register.

332
109 210

MBZ Base Address Mask Bits <29:2> MBzZ

Figure 6-5 BDR Address Decode Mask Register (BDMKR)

NOTE

The KA670 uses only one of the SSC’s address strobes. The other strobe’s control
registers (located at 2014 0130, and 2014 0134,¢) are reserved; they should not
be accessed, because they could cause unpredictable behavior.

6.5.8 SSC Configuration Register (SSCCR)

The SSC configuration register, address<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>