CP/M
C Softvvare Manual







Section:

Table Of Contents

CP/M 2.2

CP/M 2 User's Guide

1‘
2.
30
4.
5.
6.
7.
8.
9.
10.

Section:
An
T.
2.

3.
4.

5.
6.

7.
8.

An Overview of CP/M 2.0 FacilitieSceesceossl
User Interfacl.ccesescscssccocsscsscscscssel
Console Command Processor (CCP) Interface..4
STAT Enhancemntsit‘..‘......'.‘.....Q...'COS
PIP EnhancementsS.coeccecescssescesvccsanccasssd
ED EnhancementsS.escececsccsssesscscscasscnsall
The XSUB FunCtiON.eececsocscesscoscesscssnsll
BDOS Interface ConventionSesceececsccescessll
CP/M 2.0 Mmeory OrganizatioNeescecsaccsseel?
BIOS DifferencesSceecscsscecsccoscesssscsnoeell

introduction To CP/M Features and Facilities

IntroductioONececcceascecccscssnscccscsossan3d
Functional Description Of CP/Mececssceeeses3’
2.1 General Command Structur€ececesccocese3’
2.2 File ReferenceSeevescccoscscssssoccsesld?
Switching DiskSeseesoeessrecssscsscsncsnsesasdl
The FOl‘m Of Built"'n COﬂl‘ﬂandS......».......41
1 ERA afn cr...l.000000000000‘00000000041
2 DIR 8fN Claecesooccsssccossosncncsssscd
3 REN ufn1=ufn2 Creecesceccccscsccnsccsecd?
4 SAVE n UfN Cleceeecssecaccasscssnsesedl
5 TYPE UfD Clecececcocscccascoscnnnsssedl
Line Editing And Output Control.cccecocesad5
Transient CommandsS.cecsescacccscoscncscsssncescdb
6.1 STAT Cleceecccsassocecsscssscccsnsnsseeecd?
602 ASM Ufn Cr-..........................50
6.3 LOAD ufn Clfeceeserscscscsncsccescsasesedl
6e4 PIP Cleceesecosocscsncsscsssscscsscssnsasesd2
6.5 ED uUfn Creceessceascacccessssansosnseeed?
6.6 SYSGEN Crececssocevcccccsscsoscscncesebdl
6.7 SUBMIT ufn parm#1 parmin Clecseeeecsab2
6.8 DUMP UfN Clececesoncsossccscsnnsccnsssdcbd
6.9 MOVCPM Crlececccccccoscscsssencsscsncssabd,
BDOS Error MessageSceeocevoccssosesscvoseseb/
Operation Of CP/M On The MDS..ceeeecreesscb9




Section:
CP/M Assembler (ASM): User's Guide

e
£

s’

1. Introductioneieecccecsccccssscoscscanscsscnss/]
2., Program FOrmateececescscsosccnscassacsssossnsse/2
3. Forming The Operandicvecescescccccsccscecs/4d
3.1 LabelsSeeseeveseenncnsnnsencnsascasaseld
Numeric ConstantsSeeesssscoscsscscscsscsel/d
Reserved Words.ceeeceocesosanccscensns?5
String CoONStantSeeecsscesssccssscscseslb
Arithmetic and Logical Operators.....76
Precedence Of Operators.cececcscscess??
mbler DirectiveSeeeescssesesscsccssssas/B
The ORG Directivesceesssesssassasssaas/B
The END Directiveesosssssessseescesssse?9
The EQU Directiveeseseseecsoscsseseee?9
The SET Directiveeecescceossssssssassdd0
The IF And ENDIF DirectiveSeeeesceesas80
The DB Directiveseeeesssasssccsossesaldl
The DW DirectiVeeeeseceescecosesssaessB2
ation CodeSeeveesnscsnscsconssssasancssaB2
Jumps, Calls And ReturnseeceesscessseB3
Immediate Operand Instructionsesee...84
Increment and Decrement
INStruCtioNSeesesessscescsccscesssensdsBd
5.4 Data Movement InstructionSecesescssess.84
5.5 Arithmetic Logic Unit Operations.....85
5.6
r

o o
oo

w e

4. A

0 . .
WINw=a OV WNDOW

5. O

L]

DT bbb bbddbnwwwww
.

Control INstrucCtionNSecescececcesccoceasdb
6. E rof Messages.lO.......Q.O..O.‘.....0.0.086
7. A Sam’e Session......'....0’.....0‘......87

Section:
ED: A Content Editor For The CP/M Disk System:
User's Manual

1o ED Tutorialesecceeeecessscansosssnsosccsnssesd3

1.1 Introduction to EDeecevocsscnccnsaesasd3
1.2 ED OperatioONececescccscsssssssnsosssesedl
1.3 Text Transfer FunctionSeeseecsceceeeaadld
1.4 Memory Buffer Organizationeeeseseesse97
1.5 Memory Buffer Operation.eeeccecesseeed?
1.6 Command SrrinNgSeeecesccesscscsscnseedd9
1.7 Text Search and Alterationeeeceseses.100
1.8 Source Librariescesseceesccesccceees103

1.9 Repetitive Command Execution........104
2. ED Error ConditionSesececscnssosssssvsossssl0S
3. Control Characters And CoomandS.cessscee.106




Section:

CP/M Debugging Too! (DDT): User's Guide

e
it.

'ntroduction..O.............00.0"....0..111
wT Cmands..o..;o‘-...-o.o......b'l000000113

1. The A (Assemble) Command.cceescccceeell3
2, The D (Display) Coomande.cececeoess..114
3. The F (Fill) Commandeceeccecscessecaasaclld
4. The G (Go) Commandeececesscessossnssalld
5. The | (input) Command.sceccoecssscssslls
6. The L (List) Comandecececosscccsscosecsllb
7. The M (Move) Cmndeco‘-oo'oooooo0oo116
8. The R (Read) Corm\and-......-.........‘lilﬁ
9. The S (set) Cmmand...".'...........117
10.The T (Trace)'Cand...‘.."..'.....117
11.The U (Untrace) Command. .ccocecsocess118

12. The X (Examine) Command...cecse0eses.118

ll'olmplemntation NOteSeeeesecoesscsosssessselll

1v.

Section:

An Examle..........OO’.I....O...‘.......‘120

CP/M 2.2 Interface Guide

1.
2.
3.
4.
5.
6.

Section:

INtroduCtioNeceeessesacsssocaacansosscesst3l
Operating System Call Conventions.cces...133
A Sample File-To~-File Copy Program.......159
A Sample File Dump Utility.coceeeseeeees.164
A Sample Random Access Programeeeeceessss167
System Function Summaryeceececsscsccesscsesal?b

CP/M Alteration Guide

1.
2.
3.
40
5.
6.
7.
8.
9.
10.
11.
12.

IntroductioNeececeecececcsccancscccsonnenncsel??
First Level System Regenerative..eeceee..178
Second Level System Generationecececcoese182
Sample Getsys And Putsys Programs........186
Diskette OrganizatioNeececescecsscsencances188
The BIOS Entry PointScececcescscsnccsesessl90
A Sample BIOS..ccieeeecccencrnscsnacanseald?
A Sample Cold Start Loadefr.cccecececacees198
Reserved Locations In Page Zeroeeeceesesea199
Disk Parameter TableSecceoecececeronnnsas20l
The DISKDEF Macro Libraryeeeseeceseeessss206
Sector Blocking And Deblockinge.ceveessea210
AppendiX Acecesssesccssssconssossessaseana2l
AppendiX Besceooessoccscoosonescccsaseaalls
AppendiX Cevervvecoessccnccsoscnssossnsesallb
AppendiX Deceeeerescasnscsacosssroncssneeall2
AppendiX Eeveeevecrenvencsosossonsasssnsnesl3S
AppendiX Fuoceeeonsosossescsacseccoannnanlld?
Appendix Geceveoeovesonecssossssscnnscsconss2d?




Section: )
Exidy Systems' CBIOS User's Guide:
Version 1.0 For CP/M 2.2

1 INtroductioNeeceeccescesssesncsscascssenseld9
2. Configuration and System Ceneration......251
A. Hardware for the DDS and the FDS.....251
B. System GeneratioNeececescessscocsensasl52
Co OptioNS.eeessseneessascssscasasssnees253
D. IncompatibilitiesSeeesccescosscccecsea2bd
E. Sector Skew PatterNececcessossscccess2’d
F. Special Video Display Interface......255
3. FeaturesSceicscsccecsscsesssersssesscessnseecesl’b
A Error ReCOvVeryYesesesossssessesssoseecsesal56
B. CP/M Programmingeececsecsccescssssseseal’?
4, Error MesSSageSeeesoscsocssessssssnassssses2d9

Section:
Exidy Systems' Excopy User's Guide: Version 2.0

1. IntroductioONeceeesssecsessssccssssssccacslbb2
2. US@eeoeetsssssvsssosassssssrssessescnsessesl2B3
3. Samplie RuUN:cccssersonscssssosssscscscseasaslbd
A. Excopy With Two Multiple Drives......264
B. Excopy With One Driveeseeseeesnesssses2bd
C. Format Only.ceceenrseesosscocacssseaasslbh
4, Error MesSageSeessscncssssscsssssscsssseslBdb
A. Can Not Format, Try AgaiNecsececvsseces2bb
B. Destination Is Write Protected.......266
C. Write Error On Track #XXeveeoeoooseee2b7
D. Read Back Error On Track #XXeveeeoees267
E. Additional MessageSeeesesssoocsesseselb?
5. RECOVEIYeceesosecnssssescnsssocsecscoscscseslb8




AT

e,
. 5

CP/M 2 USER'S GUIDE




COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94@86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content herecf without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.




»"FWMK

CP/M 2 USER'S GUIDE

PRI




COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample

programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

(




VR

CP/M 2 TUSER'S GUIDE

Cooyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

An Overview of CP/M 2.0 rFacilities . .

User Interface . . . . . « ¢ ¢ ¢ ¢ ¢ o o &
Console Command Processor (CCP) Interface
STAT Enhancements . . . ¢« ¢ ¢« o o o o
PIP Enhancements . . . . « ¢ o« « o« o &
ED Enhancements . . . . . . . . .
The X508 Function . . . . « « ¢ o« o &
3D0S Interface Conventions . , . .

CP/M 2.6 Memory Organization ., . , . .

3I0S Differences . . ¢ ¢ « o &

(2l » NN ¥ B - S P R

12
27

28







—

1, AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/# 2.8 is a high-performance single-console operating system
which uses table driven technigues *o0 allow field reconfiguration to
match a wide variety of disk capacities, All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1., Features of CP/M 2.6 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capaonility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.8 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. prowerful relative-record random access
functions are present in CP/M 2.8 which provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS~-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro 1library
provided with CP/M 2.8. The end user need only specify the maximum
numper of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the 1logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided which aids in assembly or disassembly of sector sizes
which are multiples of the fundamental 128 byte data unit, and the
system alteration manual includes general-purpose subroutines which
use the tnis deblocking information to take advantage of larger sector
sizes., Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.9 truly a universal data management
system,

File expansion is achieved by providing up to 512 1logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.8 is structured, however, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.8 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unigue data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward compatible from earlier
versions to the full .eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.8's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.6 facilities,

Several CP/M 2.8 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login” -

(All Information Contained Herein is Proprietary to Digital Research.)

1




function to change from one user area to anotner. The CCpP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy device in its enhanced 1line editing
functions. :

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.8, witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals,
Additional information dealing with CP/M 2.8 I/0 system alteration is
presented in the Digital Research manual "CP/M 2.8 Alteration Guide."

(All Information Contained Hderein is Proprietary to Digital Research.)

2

e
{
A




2. USER INTERFACE,

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
simultaneously depressed):

rub/del removes and ecnoes last character
ctl-C reboot when at beginning of line

ctl-E physical end of line

ctl-H Dpackspace one cnaracter position¥*

ctl=J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl-R retype current line after new line
ctl=U remove current line after new line
ctl-X Dbackspace to beginning of current line¥*

In particular, note that ctl-fl produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3




3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional differences between CP/M 1.4 and CP/M -
2.0 at the console command processor (CCP) level, The CCP now !
displays directory information across the screen (four elements vper
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *_.*" and
“SAVE* commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 9 to 15. Upon c¢old start,
the operator is automatically "logged” into user area number ¥, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory, Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number 1is maintained until changed by a
subsequent USER command, or until a cold start operation when user @
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect, 1In version 1.4,
this command can be used to erase a directory whicn has “garbage"
information, verhams resulting from use of a diskette under another
operating system (heaven forbia!). In 2.6, however, the ERA *.,*
command affects only the current user numoer., Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory 1image due to
directory operations following extent boundary changes., Version 2.3,
nowever, does not perform directory operations 1in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4




"

/V‘A

4. STAT ENHANCEMENTS,

The STAT program has a number of additional functions which

allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temo R/O Disk: d:=R/0

Set Indicator: d:filename.typ $R/O $R/w $SYS $DIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

(list of possible assignments)

*

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.typ $S

wnere "d:" is an optional drive name, and "filename.typ“" 1is an

unampiguous or ambiguous file name, produces the output display
format:

Size Recs B8ytes Ext Acc

43 48 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
65536 128 2k 2 R/W A:X.DAT

where tne $S parameter causes the “Size"” field to be displayed
(without the §$S, the Size field is skipped, but the remaining fields
are displayed). The Size field 1lists the virtual file size in
records, while the "Recs” field sums the numpber of virtual records in
each extent, For files constructed seguentially, the §Size and Recs
fields are identical. The “Bytes" field lists the actual number of
bytes allocated to the corresponding file, The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation fiqure. 1In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "holes” even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K pytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

‘he "Acc" field gives the R/0O or R/W access mode, which is
changed using the commands shown below, Similarly, the parentheses
(All Intormation Contained Herein is Proprietary to Digital Research.)

5




shown around the PIP.COM file name indicate that it has the “system"”
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename,typ $R/0
STAT d:filename.typ $R/W
STAT d:filename.typ $SY¥S
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/0 status is recorded in the
directory .with tne file so that it remains R/0 through intervening
cold start operations, The R/W indicator places the file in a
permanent read/write status, The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “filename.typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" |is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

Bdos Err on d: File R/O

The B00OS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range ¢, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
8: Checked Directory Entries
1824: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where “d:” is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes, The directory size is 1listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start, For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start, The number of records per extent determines the
addressing capacity of each directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research,)

6

] ]
Niguisi”

N

o

F



VAN

128K in the example above). The number of records per block shows the
pasic allocation size (in the example, 128 records/plock times 128
bytes per record, or 16K bpytes per block). The listing is then
followed by the number of physical sectors per track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

oroduces a drive characteristics tapble for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is: .

Active User : @
Active Files: 4 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a 1list of user numbers
scanned from the current directory. In the above case, the active
user number is § (default at cold start), with three user numbers
which have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging=-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level

(All Information Contained Herein is Proprietary to Digital Research.)

7




5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of cCcp/M 2.0, All three functions take the form of file parameters
which are enclosed in square brackets follow1ng the appropriate file
names., The commands are:

Gn Get File from User number n
(n in the range 4 - 15)

W Write over R/O files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.

Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4, The
command

PIP A:=A:*_*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially covied to a
user area (so that subsequent files can be copied) using the SAVE
command., The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 3 login user 9

DDT pPIP.COM load PIP to memory
(note PIP size s)

G8 return to CCP

USER 3 login user 3

SAVE s PIP.COM

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1D98, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subseguent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers,

Under normal operation, PIP will not overwrite a file which |is

set to a permanent R/0 status. If attempt is made to overwrite a R/O
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

oo,

2

%KWW




TN
I

NPFSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character "y* then the
file is overwritten. Otherwise, the response

** NOT DELETED *¥*

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence, 1In order to avoid the prompt and response
in the case of R/O file overwrite, the command line can include the W
parameter, as shown below

. PIP A:=B:*_ COM[W]
which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process. If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.,DAT,F:NEW.DAT,G:OLD.DAT([W]

Files.with the system attribute can be included in PIP transfers

" if the R parameter is included, otherwise system files are not

recognized. The command line

pIP ED,COM

B:ED,COM[R]

for example, reads the ED.COM file from the B drive, even if it has
been marked as a R/O and system file, The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
8. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it wmay be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/M 2.0 Alteration Guide,"” and refer to Section 18 which
describes BIOS differences). '

(All Information Contained Herein is Proprietary to Digital Research,)

9




6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities

in the 2.0 release. Experience has shown that most operators use the

relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v* command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the £D user’s guide, where the "v" command is
described.

ED also takes file attributes into account,. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **
appears at the console., The file can be 1loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the “system®” attribute set, the message
“SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted, Again,
the STAT program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above,.

(All Information Contained Herein is Proprietary to Digital Research.)

19

i
§ 3
{ |

& i
S
s

£

{ i
S

o



7. THE XSUB FUNCTION.,

An additional utility program is supplied with version 2.8 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor., The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 18) receive
their input directly from the submit file, For example, the file
SAVER,.SUB could contain the submit lines:

XsuB

DDT

IS1.HEX

R

G8

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream, The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX®" *R" and “G@" thus returning to the CCP. The final command
“SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subseguent
submit command streams do not require the XSUB, unless an intervening

cold start has occurred., Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously,

(All Information Contained Herein is Proprietary to Digital Research.)
11




8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 68085H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0, Note that a zero value 1is returned for
out-of range function numbers,

g System Reset 19* Delete File

1 Console Input 20 Read Segquential

2 Console Qutput 21 Write Seguential

3 Reader Input 22* Make File

4 Punch Output 23* Rename File

5 List Qutput 24* Return Login Vector

6* Direct Console 1I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

Y9 Print String 28* wWrite Protect Disk
10* Read Console Buffer 29* Get Addr(R/0 Vector)
11 Get Console Status 38* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console 1/0.

Direct Console I/O 1is supported under Cp/M 2.8 for those
applications where it 1is necessary to avoid the BDOS console I/0
operations., Programs whicn currently perform direct I/0 through the
BIOS should be changed to use direct I/0 under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FP, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 3§
if no character is ready, otherwise A contains the next console input
character.

If the input value in £ is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

12

{

. |
K«x«%wy



Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console 1line editing 1is supported, as described in Section 2., Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left

margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number.

Function 12 has been redefined to vorovide information which
allows version-independent programming (this was previously the "lift
head" function which returned HL=00668 in version 1.4, but performed no
operation)., The value returned by function 12 is a two-byte value,
with H = 80 for the CP/M release (H = 61 for MP/M), and L = 089 for all
releases previous to 2.0, Cp/M 2.0 returns a hexadecimal 20 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is regquired.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file 1is accessed randomly. The default file control block
normally located at 995CH can be used for random access files, since
bytes ©@87DH, 9B7EH, and @07FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research,)

13




0 AU W IR GAD 4D W VD G AN HAP G P G G D D N WD YHS AN GNP SND G SER TND W RS GNP S CHD G S D GED G G S P S D WUD AUD D AN GER S T D N A WD W N W W W

00 01 02 ... 686 69 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr

fl...£8

tl,t2,t3

ex

sl

s2

rc

dad...dn

cr

réd,rl,r2

drive code (0 - 16)

# => use default drive for file
1 => auto disk select drive a,
2 => auto disk select drive B,

LI

16=> auto disk select drive P,

in ASCII
bit = 0

contain the file name
upper case, with high

contain the file type in ASCII
upper case, with high bit = @
£l’, t2', and t3' denote the

bit of these positions,

tl’ 1 => Read/Only file,

£2* 1 => SYS file, no DIR list

contains
normally
in range

the current extent number,
set to 98 by the user, but
@ - 31 during file I/0

reserved for internal system use

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

record count for extent "ex,"
takes on values from 8 - 128

filled-in by CP/M, reserved for
system use

current record to read or write in
a seguential file operation, normally
set to zero by user

optional random record number in the
range #-65535, with overflow to r2,
rf,rl constitute a 16-bit value with
low byte rd, and high byte rl

Function 15: Open File,

Tne Open File operation is identical to previous

with the
previous versions of CP/M defined this

byte

as

exception that byte s2 is automatically zeroed.

zero,

definitions,

but made

Note that

no

(All Information Contained Herein is Proprietary to Digital Research.)

14

%




checks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First,

Search First scans the directory for a match with the file given
by the FCB addressed by DE, The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to #,
1, 2, or 3 is returned indicating the file is present, In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from £1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This 1latter function is not normally used by
application programs, put does allow complete flexibility to scan all
current directory values., If the dr field is not a question mark, the
s2 byte is automatically zeroed.

function 18: Search for Next.

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions, ‘

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15




Function 22: Make File.

The Make File operation is identical to previous versions of

CP/M, except that byte s2 is zeroed upon entry to the BDOS.

Function 23: Rename File,

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returned.

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write protect function provides temvorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector,

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bpit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Fﬁnction 38: Set File Attributes,

The Set. . File Attributes function allows programmatic
manipulation of permanent indicators attached to files, In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

~

D)
\%w?’/

| ;
S’




match, and changes the matched directory entry to contain the selected
inaicators., 1Indicators fl1' through f4' are not voresently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' tnrough f£8' and t3' are reserved for future system
exoansion,

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display ana space .computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, apolication
programs will not require this facility.

Function 32: Set or Get User Code,

An application program can change or interrogate the currently
active user number by calling function 32, If register E = FF
nexadecimal, then the value of the current user number is returned 1in
register A, where the value is in the range 8 to 31. 1If register E is
not FF, then the current user number is changed to the value of E
{(modulo 32),

Function 33: Read Random.

The Read Random function is similar to the sequential file read
operation of vprevious releases, except that the read overation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 bpits 1is stored with least significant pyte first (rd), middle
byte next (rl), and high byte last (r2). CP/M release 2.8 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

Thus, in version 2.6, the r#,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from @ to 65535, providing access to any particular
record of the 8 megabyte file., In order to process a file using
random access, the base extent (extent #) must first be opened.
Although the base extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests, The selected record number is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record., Uvpon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17




error code, as listed below, or the value 40 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Upon each random read operation, the logical extent and current.

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that 1in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write operation. You can, of course, simply advance
the random record vosition following each random read or write to
obtain the effect of a sequential I/0 overation.

Error codes returned in register A following a random read are
listed below.

8l reading unwritten data

g2 (not returned in random mode)
#3 cannot close current extent

94 seek to unwritten extent

85 (not returned in read mode)

06 seek past physical end of disk

grror code 61 and 44 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected., Error code 86 occurs whenever byte r2
is non-zero under the current 2,0 release, Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete,

Function 34: Write Randonm.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspvond to the random record which is
being written, Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

J“‘mw”k\x
{ !

§
N’




N

switch as it does 1in seguential mode under either CP/M 1.4 or CP/M
2.”.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which
indicates that a new extent cannot be created due to directory
overflow.

function 35: Compute File Size,

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is d1, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r® 1is the 1least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written seqguentially, If, instead, the file was created
in random mode and "holes” exist in the allocation, then the file may
in fact contain fewer records than the size indicates. I1f, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BD0OS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As

"each key is encountered, function 36 is called to compute the random

record position for the data corresponding to this key., If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19




involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM,.COM, the CCpP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this varticular case) and, if found, proceeds to prompt the
console for input., If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, resvectively, If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n, If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The orogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “"ready" where the individual commands are interpreted. The

default file control block at 885CH and the default buffer at 9080H
are used in all disk operations., The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

)
,,»\4/\’”?




which contain the principal inout 1line processor, called *“readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development,

;*t*************************************************

« % . ®x
;* sample random access program for cp/m 2.8 *
ok *
. ;***************************t***********************
2100 org l28h :base of tpa
80480 = reboot equ | @0006h ssystem reboot
8ags5 = bdos egu 8865h :bdos entry point
H
v001 = coninp equ 1 ;console input function
gB2 = conout equ 2 ;console output function
8669 = pstring equ 9 sprint string until *'$°
g6pa = rstring equ 19 sread console buffer
gdpvc = version egu 12 ;return version number
20Bf = openf equ 15 :file open function
0410 = closef equ 16 :close function
8816 = makef equ 22 ;make file function
d¥2l1 = readr equ 33 ;read random
4922 = writer eaqu 34 ;write random
4d5¢c = %cb equ #35ch ;default file control block
097é = ranrec egu fcb+33 ;random record position
b87f = ranovi equ fcb+35 ;high order (overflow) byte
088 = buff equ " 9886h sbuffer address
;
ggvd = cr egu gdh ;carriage return
gopa = 1f eqgu dah :line feed
;***************************************************
X %*
:* load SP, set-up file for random access *
% *
;*********t****************tt***********************
21906 31bco 1xi sp,stack
: version 2,0?
0163 debc mvi c,version
8185 cduvsey call bdos
8108 fe2d cpi 23h ;version 2,0 or better?
¥lda 42166 jnc versok
: bad version, message and go back
gl19d 111bd 1xi d,badver
8118 cdda@ call print
8113 c3040 jmo reboot
; :
versok:
H correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21




8l16
118
8llb
Blle
d11f

8122
9124
4127
g1l2a
2120

312e
8131
9134

8137
#l3a
913d
0140
9142
0144

8147
8149
8l4c
91l4af
2150
p153

8156
158

#15b
d1l5e

(All Information Contained Herein is Proprietary to Digital Research,)

fedf
115cH
cdgse
3¢
c2378

deld
115cd
cdéssd
3c
c2379

113ad
cddagd
c3039

cdeb5d
22740
217£0
3600
fe51
c2568

geld
115cd
cdeso
3c
cab9d
c3d089

fes57
c2898

11449
cddad

mvi c,openf ;open default fcb

1xi d,fcb

call bdos

inr a ;err 255 becomes zero

jnz reaay
;
: cannot open file, so create it

mvi c,makef

1xi d,fcb

call bdos

inr a ;err 255 becomes zero

jnz ready
H
: cannot create file, directory full

1xi d,nospace

call orint

jmp reboot ;back to ccp
H
;*t**************t**********************t***********
;* *
:* loop back to “ready" after each command *
o X *
;***t***t**tkt****t**t*******************#**********
: .
ready:
: file is ready for processing
:

call readcom ;read next command

shld ranrec ;store input record#

1xi h,ranovf

mvi m,d ;clear high byte if set

cpi 'Q* ;quit?

jnz notg
H .
; quit processing, close file

mvi c,closef

1xi d,fcb

call bdos

inr a ;err 255 becomes #

jz error ;error message, retry

jmp reboot ;back to ccp
;***********************************t****t**********
;* *
;* end of quit command, orocess write *
'S *
’
;*t******************t*******************ttt**tk****
notqg:
; not the guit command, random write?

cpi ‘W'

jnz notw
i ,
; this is a random write, f£ill buffer until cr

1xi d,datmsg

call print ;data prompt

22




o
N

2161 Pe7f mvi c,127 ;up to 127 characters

8163 21800 1xi h,buff ;destination
rloop: ;read next character to buff
#l166 c5 push b ; Save counter
8167 e5 push h snext destination
v168 cdc2d call getchr j;character to a
416b el pop h srestore counter
vl6c cl POD b jrestore next to fill
0l6ed fedd - cpi cr send of line?
p16f ca780 jz erloop
: not end, store character
8172 77 mov m,a
8173 23 inx h snext to £fill
¥174 04 dcr c ;counter goes down
8175 c2669 jnz rloop :end of pbuffer?
erloop:
: end of read loop, store g8
8178 3600 mvi m,o
’
: write the record to selected record number
Bl7a Ve22 mvi c,writer
#l7c 115c8 1xi d,fchb
817f cdese call bdos
8182 b7 ora a ;error code zero?
9183 c2b9%¥d jnz error ;message if not
2186 c3372 jmp ready ;: for another record
;*********tt****************************************
« %k *
[
;* end of write command, process read *
' x
;***************************************************
notw:
: not a write command, read record?
8189 fe52 cpi 'R’
#18b c2b9g jnz error :skip if not
’
: read random record
d18e fe2l mvi c,readr
8190 115cH 1xi d,fchb
#1933 cdaese call bdos
2196 b7 ora a sreturn code 96?
8197 c2b9%d jnz error
’
: read was successful, write to console
#19a cdcfte call crlf :new line
8194 de8d mvi c,128 smax 128 characters
619f 21800 1xi h,buff ;next to get
wloop:
Bla2 7e mov a,m ;next character
8la3 23 ‘ inx h ;next to get
g1lad e67f ani 7fh imask parity
8la6 ca37@ jz ready s for another command if @0
flad c5 push b ; save counter
Blaa e5 push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23




dlab
dlaa
d1bd
d1bl
d1b2
d1b3
d1b6

A1lby

@1lbc
91bf

glc2
d1c4
81c?

glc8
Plca
d1lcb
Blce

B1lcf
914l
d1d4
9146
#2149

81lda
81db
d1lde
dlaf
flel
gled

(All Information Contained Herein is Proprietary to Digital Research.)

fe2d
d4c84d
el

cl

9d
c2a29
c3378

11598
cddaéd
c3379

dedl
cdg50
c9

gedd2

cddsgd
cY

3edd
cdc8g
Jefla
cdc8g
c9

as
cdcfd
dl
6ed9
cagseg
c9

cpi sgraphic?

cnc putchr ;skip output if not

pop h

pop b

dcr c ;count=count-1

jnz wloop

jmp ready
2222222222222 222t Rt s 2222 a2 A Riti 2222 k2222 s X

*

end of read command, all errors end-uo here *

*
222 AREE R R R RRRRRRERRRLR R 22 R 2 £ 2]

® %8 we we we Ne we
* % % * %

]
error:

1xi d,errmsqg

call print

jmp ready
;****t**********t*****************t*****************
;* *
;* utility subroutines for console i/o *
'S *
;************************************t**tt*********t
getchr:

sread next console character to a

mvi c,coninp

call pdos

ret
i
putchr:

;write character from a to console

mvi c,conout

mov e,a ;character to send

call bdos ;send character

ret
;
crlf:

;send carriage return line feed

mvi a,cr ;carriage return

call putchr

mvi a,lf :line feed

call putchr

ret
;
print:

;print the buffer addressed by de until §

push d

call crlf

pop d ;new line

mvi c,pstring

call bdos ;print the string

ret ‘
H
readcom:

24

e
& ﬁ
7 i

(.




sjread the next command line to the conbuf

8le5 116bd 1xi d,prompt
. fle8 cdda#d call print ;command?
""" @leb Befa mvi c,rstring
fled 117a¢ 1xi d,conbuf :
.91£f8 cdss56 call bdos sread command line
: command line is present, scan it
01£3 21000 1xi h,? ;start with 0000
B1£f6 117cH 1xi d,conlin;command line
61£f9 1la readc: ldax d shext command character
d41fa 13 inx d ;to next command position
8lfb b7 ' ora a ;cannot be end of command -
glfc c8 rz
: not zero, numeric?
- Blfd 4639 sui ‘9’
P1ff fela cpi 10 scarry if numeric
82681 42139 jnc endrd
: add-in next digit
8204 29 dad h e %2
9285 44 mov c,l
0206 44 mov b,h tbc = value * 2
8287 29 dad h 1 %4
0268 29 dad h : %8 .
8289 09 dad b 1%2 + *8 = *1¢
92da 85 adad 1l ;+digit
¥290 6L mov l,a
B26c G2f98 jnc readc ;for another char
d20f 24 inr h soverflow
#2109 c3£99 jmp readc ; for another char
' endrd:
: end of read, restore value in a
8213 c639 adi 'He s command
9215 febl cpi ‘a’ ;translate case?
3217 as rc
: lower case, mask lower case bits
0218 e65f ani 101$1111b
g2la c9 ret
;*************************************k*************
s R *
’
:+* string data area for console messages *
o *
;********************#***********************t******
, - badver:
¥21b 536£79 db 'sorry, you need cp/m version 2§°
nospace:
023a 4e6£29 db ‘no directory spaces$’
datmsg: ,
8244 5479780 db ‘type data: $°
errmsg:
2259 457272 db ‘error, try again.$'
prompt:
826b 4e6570 db ‘next commandg? $°

’

(A1l Information Contained Herein is Proprietary to Digital Research.)

25




;******t*********t******t*****t****t*****t**********

oW ®
;* fixed and variable data area *
«® *
;*t*************************t******t**t*t***********
827a 21 conbuf: db conlen ;length of console buffer
827b consiz: ds 1 sresulting size after read
g27c conlin: ds 32 ;length 32 buffer
9821 = conlen equ $-consiz
;
329¢c ds 32 ;16 level stack
stack:
d2bc ' end

.
&

(All Information Contained Herein is Proprietary to Digital Research.)..

26




o,
)

9, Cp/M 2.0 MEMORY ORGANIZATION,

Similar to earlier versions, CP/M 2.8 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
cep 34091 44000 6400H A400H  E400H
BDOS 3CodH 4CO0H 6Co0oH ACOdH EC@0H
BIOS 4A00H 5A002H 7A004 BAGOH FAQB2H

Top of Ram  4FFFH SFFFH TFFFi BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-888 with standard IBM 8" floppy disk drives. The disk
layout is shown below:

Sector Track 960 Module Track #41 .Module
1 (Bootstrap Loader) 4080H BDOS + 480H
2 34928 CCp + 000H 4160H BDOS + 500H
3 34308 CCp + 0809H 4186H BDOS + 580H
4 35208 CCP + 100H 42604 BDOS + 608H
5 3580H CCp + 18dH 4238YH BDOS + 689H
6 3606H CCp + 200H 43808 BDOS + 786H
7 36808 CCp + 288PH 438¢H BDOS + 788H
8 370vH CCp + 3004 44088 BDOS + 886H
9 37804 CCP + 3808H 44808 BDOS + 88#8H

19 38p8H CCp + 40906H 450pH BDOS + 906H
11 3886H CCP + 430H 4580H BDOS + 989H
12 39008 CCP + 500H 46494 BDOS + A@GH
13 3980H CCP + 588H 4680H BDOS + A80H
14 3A00H CCP + 600H 47080H BDOS + B@OH
15 3A80H CCP + 688H _4780H BDOS + B8@H
16 3B@gH CCp + 7086H 48060H BDOS + CO8H
17 3B80H CCP + 780H 4880H BDOS + C8#H
18 3C80H BDOS + 000H 49008 BDOS + DB@H
19 . 3C80H BDOS + 080H 4980H BDOS + D8@H
20 3DpgBH BDOS + 100H 4A06H BIOS + 0PBH
21 3pgPH BDOS + 180H 4A80H BIOS + 086H
22 3EB8H BDOS + 208H 4B86H BIOS + 100H
23 3E80H BDOS + 280H 4B80H BIOS + 18#H
24 3Fd6H BDOS + 396H 4C@0PH BIOS + 200H
25 3F88H BDOS + 380H 4C86H BIOS + 28#H
26 4000 BDOS + 446H 4D60OH BIOS + 38#0H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track #1. Thus, the CCP is 8UPH (2048
decimal) bytes in length, the BDOS is E80H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.0, the BIOS portion contains the standard subroutines of

1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27




1d. BIOS DIFFERENCES.

The CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined, The skeletal form of these
changes are found in the program shown below,

1: org 4000h

2: maclip diskdef

3: jmp boot

4: ; PN

5: = jmp listst ;list status

: jmp sectran ;sector translate

7: disks 4

8: ; large capacity drive

9: bpb equ 16*1824 ;bytes per block

18: rpb equ bpb/128 ;records per block

11: maxb equ 65535/rpb ;max block number
12: diskdef 4,1,58,3,bpb,maxb+1,128,8,2
13: diskdef 1,1,58, ,bpb,maxb+1,128,0,2
14: diskdef 2,0
15: diskdef 3,1
16: ;
17: boot: ret ;nop
13: ;

19: listst: xra a ; nop
29: ret

21: ;

22: seldsk:

23: ;drive number in c

24: 1xi h,d ;0089 in hl produces select error
25: mov a,c :a is disk number 84 ... ndisks-l
26: cpi ndisks ;less than ndisks?

27: rnc ;return with HL = 0038 if not
28: ; proper disk number, return dpb element address
29: mov l,c

39: dad h 1*2

31: dad h 1 %4

32: dad h :*8

33: dad h :*16

34: 1xi d,dpbase

35: dad d ;HL=.dpb

36: ret

37:

38: selsec:

39: ;sector number in ¢

49: 1xi h,sector

4]1: nov m,c

42: ret

43: ;

44: sectran:

45: stranslate sector BC using table at DE
46: xchg sHL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

Y
*««‘\\ws/é




/

48: ; ~ @ad b again if double precision tran

49: mov l,m sonly low byte necessary here
50: ; fill both H and L if double vrecision tran
51: ret sHL = ?7?8s

52: ;

53: sector: ds 1

54: endef

55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements), The 1last two elements provide access to the
“"LISTST" (List Status) entry point for DESPOOL, The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1,4 release, It should be noted that
the 1.4 DESPOOL ovrogram will not operate under version 2.8, but an
update version will be available from Digital Research in the near
future,

The “SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine, This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the 1listing, called DISKDEF,
included on 1line 2, and referenced 1in 12-15., Although it is not
necessary to use the macro lipbrary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all Cp/M 2.8 distribution disks., (See the CP/M 2.0
Alteration Guide for formulas which vyou can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following segquence of
macro statements:

MACLIB DISKDEF
6iéKS n
DISKDEF 0,...
DISKDEF 1,...

e 8 &0 06

DISKDEF n-1

* & & 60

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

. (A1l Information Contained Herein is Proprietary to Digital Research.)

29




fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your B8I0S 1is defined following the

DISKDEF macros, with the ENDEF macro call immediately preceding the

END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, # to n-1
fsc is the first physical sector number (8 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 924
(0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 8 or 1. The “lsc* 1is the last
numbered sector on a track. When present, the "“skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created 1if the

skf parameter is omitted (or equal to 8). The "bls" parameter.

specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16334, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The “"dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The wvalue of “dir* 1is the total number of
directory entries which may exceed 255, if desired. The *“cks”
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening c¢old or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data 1is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
‘is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically #, since the probability
of changing disks without a restart is quite low. The "ofs" value
determines the number of tracks to skip when this particular drive |is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

5
S




N

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [8] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions, Normally, this parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,J

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF 8,
DISKDEF 1,
DISKDEF 2,
DISKDEF 3,

.26,6,1024,243,64,64,2

e e

ENDEF

with all disks having the same parameter values of 26 sectors vper
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M.
2.0. All disks have identical parameters, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks,"” starting at
address DPBASE which 1is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU §

DPE@: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBS,CSVE ,ALVH
DPEl: DW XLT@,0000H,0000H,08000H,DIRBUF,DPB@,CSV]1,ALV1
DPE2: DW XLT®,0000H,0000H,06000H,DIRBUF,DPBE,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,08000H,DIRBUF,DPBS,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive #
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.8 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT#O,
which is the translation vector for drive 8 in the above example),

(A1l Information Contained Herein is Proprietary to Digital Research,)

31




followed - by three 16-bit “scratch* addresses, followed by the
directory buffer address, disk parameter block address, check vector

address, and allocation vector address, The check and allocation

vector addresses are dgenerated by the ENDEF macro in the ram area

following the BIOS code and tables. ™
The SELDSK function is extended somewhat in version 2.8. In

particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.4,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE@, DPEl, DPE2, or DPE3, in the
above example) in register HL, If SELDSK returns the value HL =
@08PH, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal., Program lines 22 through 36 give
a sample CP/M 2.8 SELDSK subroutine, showing only the disk parameter
header address calculation,

The subroutine SECTRAN is also included in version 2.8 which
performs the actual 1logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read, Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.8, Thus, the BDOS sends
- sequential sector numbers to SECTRAN, starting at sector number 4,
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the 8DOS. The B8DOS
subseguently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
‘is omitted in the macro call, and SECTRAN simply returns the same
value which it receives, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified 1n the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = @8 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT@ in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate tapnle, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL,

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research,)

32




(N

which is loaded upon cold start, but must be available between the
BIOS and the end of memory, The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro., For a
standard four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)
4DBD = ENDDAT EQU $
813C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB¥UH-1, and occupies 913CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.4 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes, Information is provided by the BDOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take place at the
BIOS level.

See the "CP/M 2.8 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33







AN INTRODUCTION TO CpP/M FEATIRES AND FACILITIES

.
.

e
4 EY




COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the ©prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94#86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.




AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

-
// kY

£




COPYRIGHT

Copyright (c) 1986 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94g#86.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's

programs.
DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any

implied warranties of merchantibility or €fitness for any"

particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.




1.
2.

3.

5.
" 6.

/£

7.
8.

N

Table Of Contents

An Introduction To CP/M Features and Facilities

INtroductioONeceescscecasscsssccoscacacocansld
Functional Description Of CP/Meeicscaceseal?
2.1 General Command Structur€ceececcsceese3d?
2.2 File ReferencesSeeesesecscseacsccccscceald?
Switching DiskSeeeeeocessesvocscssecsceseedl
The Form Of Built-in Commands.eececececacecedl
4.1 ERA afn Clecececoscsncsnssessssssssccsseidl
4‘2 D‘R afn cr..............Q......O..“.42
4-3 REN ufn1=ufn2 Cr....ooooooo00000.000042
4.4 SAVE D UfN Cleseecccscsncscscscascscsd3
4.5 TYPE UfN Cleceecosesesssccaccsscscscasasd3
Line Editing And Output Controlececsccecssed5

Transient CommandsSeeccescescocscssscccsesesdb

6.1 STAT cr‘.OC.l....000000000000000‘000047
ZASM ufn cr..OQ.......O.........I..O.QSO
3 LOAD ufn Crecececocescccncsscsscassseedl
4 P‘P cr...............‘....0..........52
5 ED Ufn Cr......O..........'..'.......59
6 SYSGEN Clocesocscsecssscancssscsssanssscsschl
7 SUBMIT ufn parm#1 parm#n Crececeseea62
8 DUMP UfN Clececscasesssesscscccosccassbd

6.9 MOVCPM cr..'.....l...'.......‘...'...64
BDOS Error MessageSeccesescoscseccsscssonesab?
Operation Of CP/M On The MDScccesecscscess69







S

1.  INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-campatible flexible disks for backup storage, Using a computer
mainframe based upon Intel’s 8088 microcomputer, CP/M provides a general
envirorment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-808) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives, A
detailed discussion of the modifications regquired for any particular hardware
enviromment is given in the Digital Research document entitled "CP/M System
Alteration Guide."” Although the standard Digital Research version operates on
a single-density Intel MIS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a
camprehensive file management package, The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-campatible macro assembler, symbolic debugger, along with wvarious
high-level languages, When coupled with CP/M’s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

cCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware enviromment by "patching® this portion of
CP/M, The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files, The

35




BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

"CLOSE Close a file after processing.

RENAME Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers, The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
(TPA), The TPA holds programs which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be “"overlayed" by an executing program, That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A “"bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the coamplete CP/M
monitor is reloaded fram disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
enviromment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

36

Seggu®



o~

2, FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console, In general, the CCP

_addresses one of several disks which are online (the standard system addresses

up to four different disk drives)., These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk, In
order to clearly indicate which disk is the currently logged disk, the CCP
always prampts the operator with the disk name followed by the symbol *>"
indicating that the CCP is ready for another cammand, Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version rnumber, All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient command), Following system
signon, CP/M automatically logs in disk A, prampts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk “A"), and waits for a
command, The caonmands are implemented at two levels: built-in cammands and
transient cammands,

2.1, GENERAL COMMAND STRUCTURE,
Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA fram disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory,

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files, The
form of a file reference is specified below,

2.2, FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M, These file references can be either
“unambigwus” (ufn) or ‘“ambiguwous” (afn). An unambigwus file reference
uniguely identifies a single file, while an ambiguwous file reference may be

37




satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "AM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a “." as shown below:

PPPPPPPP. SSS
where ppprppppp represents the primary name of eight characters or less, and

sss is the secondary name of no more than three characters, As mentioned
above, the name

DPPPPPPP
is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiguwus file reference
cannot contain any of the special characters

<> = 2% []
while all alphanumerics and remaining special characters are allowed,

An ambiguwus file reference is used for directory search and pattern
matching, The form of an ambiguous file reference is similar to an
unambiguwus reference, except the symbol "?" may be interspersed throughout
the rimary and secondary names, In various cammands throughout CP/M, the “?*
symbol matches any character of a file name in the "?" position, Thus, the
ambiguwous reference

X?Z2.,C2M

is satisfied by the unambiguwous file names
XYz .QOM

and
X3z ,CAM

Note that the ambiguwous reference

* %

is equivalent to the ambiguous file reference
22222222,22?
while

38

S



' PPPPPPPP. *
and :
* 588
are abbreviations for

PPPPPPPP. 77?2
?7?2?22772.888

and

respectively, As an exahple,
DIR * *

is interpreted by the CCP as a command to list the names of all\ disk files in
the directory, while

DIR X,Y

searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk vhich satisfy
this ambiguwous reference,

The following file names are valid unambiguwous file references:
X XY2 GAMMA
X.Y XYz ,0OM GAMMA,1
As an added coawenience, the programmer can generally specify the disk
drive nave along with the file name, In this case, the drive name is given as
a letter A through Z followed by a colon (:)., The specified drive is then
*logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:
AX.Y B:XYZ C:GAMMA
2 :XYZ ,QOM B:X.,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCp, :

39




3. SWITCHING DISKS,

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput, Thus, the sequence of prompts and cammands shown below might
occur after the CP/M system is loaded fram disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,

SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B,

B>DIR *,ASM List all "AsM" files on B.

DUMP ASM

FILES ASM

B>A: Switch back to A, O

40




N
£

4. THE FORM (F BUILT-IN COMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in caommands, In the description
below, assume the following abbreviations:

ufn - mambiguwus file reference
afn - ambiguous file reference
cr - carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally, Thus, lower case alphabetics are treated as if
they are upper case in canmand names and file references,

4,1 ERA afn cor

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the *>*), The files
which are erased are those which satisfy the ambiguous file reference afn,
The following examples illustrate the use of ERA: A

ERA X.Y The file named X.Y on the currently logged disk
is removed fram the disk directory, and the space
is returned,

ERA X,* All files with primary name X are removed fram
the current disk,

ERA * ASM All files with secondary name ASM are removed
fram the current disk,

ERA X?Y,C?M All files on the current disk which satisfy the
ambiguwous reference X?Y,C?M are deleted,

ERA * * Erase all files on the current disk (in this case
the CCP prampts the console with the message
*ALL FILES (Y/N)?"
which requires a Y response before files are
actually removed),

ERA B:* ,PRN All files on drive B which satisfy the ambiguous

reference 2?2?7227 .PRN are deleted, independently
of the currently logged disk,

41




4.2, DIR afn cr

The DIR (directory) cammand causes the names of all files which satisfy
the ambigwus file name afn to be listed at the console device, As a special
case, the cammand

DIR

lists the files on the currently logged disk (the cammand “DIR* is equivalent
to the canmand "DIR *,**), Valid DIR cammands are shown below,

DIR X.Y

DIR X?Z.C?M

DIR ?2.Y

Similar to other CCP cammands, the afn can be rreceded by a drive name,

The following DIR cammands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X.Y

DIR B:*,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message "NOT FOUND” is typed at the console,

4,3, REN ufnl=ufn2 cr

The REN (rename) cammand allows the user to charnge the names of files on
disk. The file satisfying ufn2 is changed to ufnl, The currently logged disk
is assumed to contain the file to rename (ufnl), The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character, Examples of the REN command are

REN X,Y=Q.R The file Q.R is changed to X.Y.
REN X¥Z ,Q0M=XYZ , XXX The file XYZ .XXX is changed to XYZ.COM,
The operator can precede either ufnl or ufn2 (or both) by an optional
drive address, Given that ufnl is preceded by a drive name, then ufn2 is
assuped to exist on the same drive as ufnl, Similarly, if ufn2 is preceded by

a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl ard ufn2 are preceded by drive names, then the same drive must be

42




I

»«,\

e

specified in both cases, The following REN cammands illustrate this format,

REN A:X,ASM = Y ASM The file Y.ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=Z0T.RAS The file ZOT,BAS is changed to ZAP,BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A.BAK is renamed to A.ASM on
drive B,

If the file ufnl is already present, the REN command will respond with
the error “FILE EXISTS" and not perform the change, If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND* is printed at the
console,

4,4, SAVE n ufn cr
The SAVE canmand places n pages (256-byte blocks) onto disk fram the TPA
and names this file ufn, In the CP/M distribution system, the TPA starts at
160H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area fram 1@PH through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:
SAVE 3 X,00M Copies 160H through 3FFH to X,00M,
SAVE 460 O Copies 10@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal),
SAVE 4 X,Y Copies 160H through 4FFH to X,Y.

The SAVE command can also specify a disk drive in the afn portion of the
cammand, as shown below.

SAVE 10 B:Z0OT,0OM Copies 10 pages (166H through @AFFH) to
the file 20T.OOM on drive B,

4.5. TYPE ufn cr
The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

43




TYPE X.PIM

sew«wn %\

TYPE XXX
The TYPE cammand expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X,PRN The file X.PRN fram drive B is displayed.

44




5. LINE EDITING AND OUIPUT CONTROL.

‘
- The CCP allows certain line editing functions while typing command lines.
rubout Delete and echo the last character typed at the
console,
ctl-U Delete the entire line typed at the console,
ctl-X (Same as ctl-U)
ctl-R Retype current cammand line: types a “clean line* fol-
lowing character deletion with rubouts,
ctl-E Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.,
ctl-C CP/M system reboot (warm start)
ctl-2 End input from the console (used in PIP and ED),
The control functions ctl-P and ctl-S affect console output as shown below,
ctl-p Copy all subsequent console output to the currently
assigned list device (see the STAT cammand), Output
is sent to both the list device and the console device
(H until the next ctl-P is typed,

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S), This feature is
used to stop ocutput on high speed consoles, such as
CRI''s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key seguences shown above are obtained by depressing the
control and letter keys simultaneously, Further, CCP cammand lines can

generally be up to 255 characters in length; they are not acted upon until the
carriage return key is typed.

45




6. TRANSIENT COMMANDS,

Transient cammands are loaded fram the currently logged disk and executed
in the TPA, The transient camands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD cammand definition) .

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk,

LQAD Load the file in Intel “hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new canmand under the CCPp),

pDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of cammands for batch processing,

DUMP Dump the contents of a file in hex,

MOVCPM quenetate the CP/M system for a particular memory
size,

Transient cammands are specified in the same manner as built-in commands, and
additional cammands can be easily defined by the user, As an added
convenience, the transient canmmand can be preceded by a drive name, which
causes the transient to be loaded fram the specified drive into the TPA for
execution, Thus, the cammand

B:STAT

causes CP/M to temporarily "log in®" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing,

46

N



The basic transient commands are listed in detail below,
6.1, STAT cr

The STAT command provides general statistical information about file

storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT “cammand line* cr

Special forms of the "conmand line” allow the current device assignment to be
examined and altered as well, The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty cammand line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

X: R/W, SPACE: nnnk
or o
x: R/O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x' is ngen
in kilobytes by nnn,

STAT x: cr If a drive name is given, then the drive is
selected before the storage is computed, Thus,
the command "STAT B:* could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT, The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppprp.sss

where rrrr is the mmber of 128-byté records

47




allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1924),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
preppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name, After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the afn, In this case, the specified
drive is first selected, and the form “STAT afn*
is executed,

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place, When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT cammand also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals “CP/M Interface
Guide* and "CP/M System Alteration Guide"), In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

QON: The system console device (used by CCP

for cammunication with the operator)
| RDR: The paper tape reader device
PUN: The paper tape punch device
LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M, Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape, In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

43

e
0




TV Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:,
output goes to current LST: device)

UCl: o User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: : User-defined reader $2

PTP: Paper tape punch (high speed punch)

UP1: User—defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply., That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes,
The exact correspordence and driving subroutine is defined in the BIOS portion
of CP/M, In the standard distribution wversion of CP/M, these devices
correspord to their names on the MDS 808 development system,

The possible logical to physical device assignments can be displayed by
typing '
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

QON. = : CRT: BAT: UCl:
RDR: = TIY: PIrR: URl: UR2:
PIN: = s PI'P: UPl: UP2:
IST: = TTY: CRT: LPT: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

49




which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

1388

The current logical to physical device assignment can be changed by typing a
STAT canmand of the form

- STAT 1d1 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1dl through ldn are logical device names, and pdl through pdn are
campatible physical device names (i.e., 1di and pdi appear on the same line in

the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

6.2, AM ufn cr
The ASM command loads and executes the CP/M 8880 assembler, The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM cammands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X PRN
where x is the primary name specified in the ASM command, The PRN file
contains a listing of the source trogram (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any, The PRN file can be listed

50

7




at the console using the TYPE conmand, or sent to a peripheral device using
PIP (see the PIP cammand structure below), Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 colums (program addresses and hexadecimal
machine code, for example), Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator’s guide) by renovmg the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro” cammand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

x.HEX

is also produced which contains 8888 machine language in Intel “hex” format
suitable for subseguent loading and execution (see the LOAD command), For
camplete details of CP/M’s assembly language program, see the “CP/M Assembler
Language (ASM) User ‘s Guide,”

Similar to other transient commands, the source file for assembly can be
taken fram an a.ternate disk by prefixing the assembly language file name by a
disk drive name, Thus, the camnand

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the
source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case.

6.3, LAAD ufn cr

The LOAD cammand reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed, The file name ufn is assumed to be of the form

x .HEX |

and thus only the name x need be specified in the command, The LOAD command
creates a file named

x,COM
vhich marks it as containing machine executable code, The file is actually
loaded into memory and executed when the user types the file name X
immediately after the prampting character ">* printed by the CCP,
In general, the CCP reads the name x following the prampting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

51




x . OOM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent® new cammands in the CCP, (Initialized disks contain the
transient commands as (OM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

LOAD B:BETA

brings the LOAD program into the TPA fram the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA,HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read, Thus,
LOAD must be used only for creating CP/M standard "OOM" files which operate in
the TPA., Programs which occupy regions of memory other than the TPA can be
loaded under DDT,

6.4. PIP cr

PIP is the CP/M Peripheral Intercharge Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and cambine
disk files, The PIP program is initiated by typing one of the following forms

{1) PIP cr
(2) PIP “command line* cr

In both cases, PIP is loaded into the TPA and executed, In case (1), PIP
reads cammand lines directly from the console, prompted with the ®**
character, wntil an empty cammand line is typed (i.,e., a single carriage
return is issuved by the operator), Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP cammand is equivalent to the first, except that the single command
line given with the PIP cammand is automatically executed, and PIP terminates
immediately with no further prampting of the console for input command lines,
The form of each cammand line is

destination = source#l, source#2, ... , source#n cr

where “"destination* is the file or peripheral device to receive the data, and

52

o

o

2N
L
\‘%‘Mo/




P

*source#l, ..., sourcefn” represents a series of one or more files or devices
which are copied fram left to right to the destination, '

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability, Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total cammand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width),

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored, Wwhen
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condition arises). The following cammand lines (with explanations to the
right) are valid as input to PIP:

X=Yecr Copy to file X from file Y,
where X and Y are wmambiguous
file names; Y remains uncharnged,

X=Y,2 cr Concatenate files Y and Z and
copy to file X, with Y and 2
unchanged,

X ASM=Y ASM,Z . ASM,FIN.ASM cr Create the file X.ASM from the

concatenation of the Y, Z, and
FIN files with type ASM,

NEW,.20T = B:OLD,ZAP cr Move a copy of OLD,Z2AP fram drive
B to the currently logged disk;
name the file NEW,ZOT,

B:A,U = B:B.V,A:C.W,D.X cr Concatenate file B,V fram drive B
) with C.W from drive A and D.X.
fram the logged disk; create
the file A.U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

53




PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the souyrce for the copy is drive y (y = A...
Z). The third form is eguivalent to the cammand "PIP ufn=y:ufn cr" which
copies the file given by ufn fram drive y to the file ufn on drive x, The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases, If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied, If a file exists by the same name as the
destination file, it is removed upon successful campletion of the copy, and
replaced by the copied file,

The following PIP cammands give examples of wvalid disk-to-disk copy
operations:

B:=*,0OM cr Copy all files which have the
secondary name "COM" to drive B
from the current drive,

A:=B:ZAP.* cr Copy all files which have the
primary name “ZAP" to drive A
fram drive B,

ZAP ,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT,(OM=A: cr Equivalent to B:Z0T,COM=A:Z0T,COM
B:=GAMMA,BAS cr Same as B:GAMYA,BAS=GAMMA,BAS
B:=A:GAMMA _BAS cr Same as B:GAMMA _BAS=A:GAMMA BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system., The device names are the same as given under the
STAT cammand, along with a number of specially named devices, The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

54

5

| —




£

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PIR: (reader), URl: (reader), UR2: (reader)
(pnch) , UPl: (punch), UP2:" (punch)

(list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assigrnment
is used only to indicate that the RDR: and LST: devices are to be used for
console imput/output,)

The RDR, IST, PUN, and OON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular 1/0 system,
(The current physical device mapping is defined by IOBYTE; see the "“CP/M
Interface Guide” for a discussion of this function), The destination device
must be capable of receiving data (i.e,, data cannot be sent to the punch),

-and the source devices must be capable of generating data (i.e,, the LST:
~device cannot be read). .

The additional device names which can be used in PIP cammands are

NUL: Send 48 "nulls” (ASCII 8°s) to the device
(this can be issued at the end of punched output).
ECF: Send a CP/M end~of-file (ASCII ctl-Z) to the .

destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be *"patched®
into the PIP program itself: PIP gets the input
data character-by~character by CALLing location
163H, with data returned in location 109H (parity
bit must be zero).

OUr: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
1068 with data in register C for each character
to transmit, ‘Note that locations 169H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DIT operator s manual),

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP cammands, In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated fram left to right until the last data source has been

55




read, The destination device or file is written using the data fram the
source files, and an end-of-file character (ctl-2) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension *“COM*
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices), PIP will respond with the message "ABORTED"
to indicate that the coperation was not campleted, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT commard,

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader, In this case, the PIP program checks to ensure that the.rsource
file contains a properly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches), Wwhen the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read, If the
tape position cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed, For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard, If ctl-Z is typed at the keyboard, then the read operation is
terminated normally,

valid PIP cammands are shown below,

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program,.

PIP cr Start PIP for a sequence of
cammands (PIP prampts with "**),

*(ON:=X,ASM,Y,ASM,2 ,ASM cr Concatenate three ASM files and
copy to the CON device,

*X . HEX=CON: ,Y . HEX,PTR: cr Create a HEX file by reading the
CON (until a ctl-Z is typed), fol-
lowed by data from Y,HEX, followed
by data from PTR until a ctl-2 is
encountered,

*cr Single carriage return stops PIP,

56

{ i




o,

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 46 nulls to the punch device;
then copy the X.,ASM file to the
punch, followed by an end-of-file
(ct1-Z) and 48 more mull charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right sgquare brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device., Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are
exceptions), The valid PIP parameters are listed below,

B Block mode transfer: data is buffered by PIP until an ASCII
x~-off character (ctl-S) is received from the source device,
This allows transfer of data to a disk file fram a continuous
reading device, such as a cassette reader, Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
imput data, The amount of data which can be buffered is de~
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device,

E Echo all transfer operations to the console as they are being
performed,
F Filter form feeds from the file, All imbedded form feeds are

removed, The P parameter can be used smultaneously to
insert new form feeds,

H Hex data transfer: all data is checked for proper Intel hex
file format, Non-essential characters between hex records
are removed during the copy operation., The console will be
prampted for corrective action in case errors occur,

I Ignore “:88" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case,

N - Add line numbers to each line transferred to the destination

starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon, If N2

is specified, then leading zeroes are included, and a tab is
inserted following the number, The tab is expanded if T is

57




Set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject), If n=1 or is excluded altogetber, page ejects
occur every 68 lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

0sfz Quit copying fram the source device or file when the
string s (terminated by ctl-Z) is encountered,

Ss?z Start copying fram the source device when the string s is
encountered (terminated by ctl-Z), The S and Q parameters
can be used to “abstract” a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways ‘included in the copy operation,

NOTE - the strings following the s and g parameters are

translated to upper case by the CCP if form (2) of the

PIP canmand is used., Form (1) of the PIP invocation, how-

ever, does not perform the automatic upper case translation, P
(1) PIP cr \
(2) PIP "cammand line® cr

Tn Expand tabs (ctl-I characters) to every nth colum during the
transfer of characters to the destination fram the source,

U Translate lower case alphabetics to upper case during the
the copy operation,

v Verify that data has been ¢opied correctly by rereading
after the write operation (the destination must be a disk
file),

z Zero the parity bit on irmpat for each ASCII character.

The following are vaHd PIP commands which specify parameters in the file
transfer:

PIP X, ASM=B:[v] cr Copy X.ASM fram drive B to the current drive
and verify that the data was properly copied,

PIP LPT:=X,AM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth colum, and
translate lower case alphabetics to upper

58




‘Z‘,MM»»\;

s

p—
£ s
{ b

PIP PWN:=X,HEX[i],Y.20T[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.20T, which contains hex records, including
any ":008" records which it contains,

PIP X.LIB = Y.ASM [ sSUBRl:Tz qJMP 137z ] cr  Copy from the file Y.ASM
into the file X,LIB, Start the copy when the
string "SUBR1:" has been found, and quit copy-
ing after the string “JMP L3" is encountered,

PIP PRN:=X,ASM([p50] Send X.ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 56th line, Note that
nt8p6d is the assumed parameter list for a PRN
file; p50 overrides the default value,.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M enviromment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System,” In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence), There is no
practical restriction on line length (no single line can exceed the size of
the working memory), wvhich is instead defined by the number of characters
typed between cr’s, The ED program has a mumber of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M., Although the CP/M has a
limited memory work space area (approximately 50088 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area,

Upon initiation, ED creates the sgpecified source file, if it does not
exist, and opens the file for access, The programmer then “appends" data from
the source file into the work area, if the source file already exists (see the
A cammand), for editing, The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command),
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.AM cr

59




the ED program creates an intermediate work file with the name

X.$$9

to hold the edited data during the ED run, Upon campletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM, Thus, the X,BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent wversion, and
renaming the previous wversion, Suppose, for example, that the current X,ASM
file was improperly edited; the seguence of CCP cammand shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X.ASM Erase most recent version,

REN X.ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q cammand) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to “ping-pong“ the source and create
backup files between two disks, The form of the ED cammand in this case is

ED ufn d:

where ufn is the nare of a file to edit on the currently logged disk, and 4 is
the nare of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive 4, using the name ufn. Upon campletion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following cemmand is valid:

ED X.AM B:

which edits the file X.ASM on drive A, creating the new file X.$$S on drive
B. Upon campletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit., Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file., In this case, the operator must first ERAse the existing file
and then restart the edit operation,

60

PN




P

Similar to other transient cammands, editing can take place on a drive
different fram the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.,ASM on drive A, with
new file and backup on drive A,

ED B:X.,ASM A: Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X.ASM
on drive B to X,BAK, and change X.$$$
on drive A to X, ASM,

6.6. SYSGEN cr

The SYSGEN transient cammand allows generation of an initialized diskette

containing the CP/M operating system, The SYSGEN program prompts the console
for canmands, with interaction as shown below,

SYSGEN cr ' Initiate the SYSGEN program.
SYSGEN VERSION m,m SYSGEN sign-on message,

SOURCE IRIVE NAME (OR RETURN TO SKIP)
Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only., Typing a drive name
x will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
x (x isone of A, B, C, or D),
Answer with cr when ready,

FUNCTION COMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
If a diskette is being ini-
tialized, place the new disk
into a drive and answer with
the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
x will cause SYSGEN to prampt

61




with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION (OMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-campatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate OOM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files fram an existing diskette by typing the PIP
command

PIP B: = A: * *[v] cr

which copies all files fram disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds, :

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ,.. parmin cr

The SUBMIT cammand allows CP/M caommands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB.* The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype cammands, and, if no errors occur, the file of
substituted canmands are processed sequentially by CP/M,

62

g




-
P

The prototype cammand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the mumber of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parmin are paired with the formal parameters
$1 ... $n in the prototype cammands, If the mumber of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted cammands with the name '

$$5.SUB

on the logged disk, When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console, If the SUBMIT function is performed on any disk other than
drive A, the conmands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort command processing at
any time by typing a rubout when the canmand is read and echoed, 1In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the cammands, Programs which execute under CP/M can abort processing of
canmand files when error conditions occur by simply erasing any existing
$8$.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type

a "$$" which reduces to a single "$" within the command file, Further, an

up-arrow symbol *** may precede an alphabetic character x, which ;xoduces a
single ctl-x character within the file,

The last command in a SUB file can initiate another SUB file, thus
allowing chained batch cammands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
AM $1
DIR $1.*
ERA * BAK
PIP $2:=$1,PRN
ERA $1.PRN

and the cammand
SJBM;TAS&BLXPRNcr

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

‘smbstituting "X" for all occurrences of $1 and “PRN" for all occurrences of

$2, resulting in a $$$.SUB file containing the commands

63




AM X

DIR X.*

ERA * BAK

PIP PRN:=X,PRN
ERA X.PRN

which are executed in sequence by the CCp,

The SUBMIT function can access a SUB file which is on an alternate drive
by mreceding the file name by a drive name, Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the left of each 1line in
hexadecimal, Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the "CP/M
Interface Guide” as an example of a program written for the CP/M envirorment,)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size, Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is amitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguwous RAM in the host system (starting aat 0#009H), If
the second parameter is amitted, the system is executed, but not permanently
recorded; if “** is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 189H), Upon com-
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 804,

64




MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above,

MOVCPM * * cr Construct a relocated memory image for
, the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN" OR
“SAVE 32 CPMxx,COM"

is printed at the console upon campletion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr Start the system generation,

SOURCE [RIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION IRIVE NAME (OR RETURN T@ REBOOT)
Respond with B t0 write new system
to the diskette in drive B, SYSGEN
will prampt with:

DESTINATION ON B, THEN TYPE RETURN

Ready the fresh diskette on drive
B and type a return when ready,

Note that if you respond with "A* rather than "B" above, the system will be
written to drive A rather than B, SYSGEN will continue to type the prampt:

DESTINATION [RIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

65




N
§ %

SYSGEN program with a system reboot,

The user can then go through the reboot process with the old or new
diskette, 1Instead of performing the SYSGEN operation, the user could have

typed
~ SAVE 32 CPMxx,COM

at the campletion of the MOVCPM function, which would place the CP/M memory
" image on the currently logged disk in a form which can be “patched.” This is
necessary when operating in a non~-standard environmment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide,”

Valid MOVCPM cammands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recording; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48,C00M"

PO
7

MOVCPM * * cr Construct a maximum memory version of CP/M
and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

66




o
H 3

7. BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System

intercepts during- file processsing, Wwhen one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and "error” is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The “BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media, You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-808 controller, for example,
requires two bytes of one’s following the data CRC byte, which is not reguired
in the IBM format, As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MIS, In any case, recovery fram this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette inteqgrity if the operation is a directory
write, so make sure you have adequate backups in this case,

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range, In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, 1In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are chamged., If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold-
start, but internally marks the drive as read-only. The status of the drive
is subsequently changed to read/write if a warm or cold start occurs, Upon
issuing this message, CP/M waits for imput from the console, An automatic
warm start takes place following any imput,

67




8. OPERATION OF CP/M ON THE MIS,

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed,

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled 4 through 3 on the MIS,
corresponding to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in sequence, The interrupt 2 light should go on at this point, The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates)., The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prampt, The user can then issue the various resident and transient
canmands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 8 switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT', in which case the DDT program gets control instead,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only,*

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation aain,

) Termination of a CP/M session requires no special action, except that it
1s necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.,

It should be noted that factory-fresh IBM-campatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS "FORMAT* operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

68




than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 808 controller to reformat with
sequential sector numbering (1-26) on each track,

-——_—

Note: "MIS 88" and "ISIS" are registered trademarks of Intel Corporation.'

69







g,
A,

o
& 4

£

CP/M ASSEMBLER (ASM): USER'S GUIDE




COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the ©purposes of inclusion within the reader's
programs.,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.




CP/M ASSEMBLER (ASM): USER'S GUIDE




COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.




2.
3.

6.
7.

Table Of Contents

CP/M Assembler (ASM): User's Guide

‘ntroduct‘on.l“l..l..l.000000.00000000'0071
Program Format‘..l'....‘."...............72
Forming The Operand.iccececscsccccccscasaaeZd

3.1

N b W

A

o ¢ o o Ve e s o
o

Hbh bbby WWWWW
WN G OU WK -

O

U TY S~
e s O o

L d

v
o e
L% -8

5.6

Labels...D.O.'.....C..00000000‘10000074
Numeric ConstantSeeecseceecccscossscesse?d
Reserved Words............‘.‘.....-.-..75
String ConstantSeeecescestassscsccnses/b
Arithmetic and Logical Operators.....76
Precedence Of OperatorSeecscesccccscee??

mb'er Directives.....0...0......‘.'.0.78

The ORG Directiveeeceesceerasscecncseaas?B
The END Directiveeesosesescssossacoccese??
The EQU Directivecececceeoocnvescecss’9
The SET Directiveeeeccecssocecscencees80
The |F And ENDIF DirectiveSceceesseee80
The DB DirectiveeiecesecasesecencsnacasBl
The DW Directiveeiceeaeescssssseccsseal

ation Codesoouooo...0....00-'00-00000082

Jumps, Calls And Returns.cecseseasceeB3
Immediate Operand Instructions.c.....84
Increment and Decrement

INStruUCtiONSceseesscscessensncscnnsecBd
Data Movement INstruCtionSeecesscesssB84
Arithmetic Logic Unit Operations.....85
Control InstructioONSessscecccsccsceces86

Error MesSageSeceocsesccsssscscscancesncesccdb
Asam‘e Session..‘.O...O..'...........'.087







CP/M Assembler User s Guide

1. INTRODUCTION.

The CP/M assembler reads assembly language source files fram the diskette,
and produces 8888 machine language in Intel hex format. The CP/M assembler is

initiated by typing

AM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename .ASM

which contains an 8080 assembly language source file., The first and second
forms shown above differ only in that the second form allows parameters to be
passed to the assembler to control source file access and hex and mrint file
destinations,

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.,n is the current wersion munber. In the case of the first cammard,
the assembler reads the source file with assumed file type “ASM* and creates
two output files

filename .HEX
and
filename .,PRN

the "HEX" file contains the machine code corresponding to the original program
in Intel hex format, and the “PRN"” file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second command form can be used to redirect input and output files
fram their defaults. 1In this case, the "parms® portion of the command is a
three 1letter group which specifies the origin of the source file, the
glestination of the hex file, and the destination of the print file. The form
is

filename.plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., Y designates the disk name which contains

71



the source file

p2: A,B, ..., ¥ designates the disk name which will re-
ceive the hex file

2 skips the generation of the hex file
p3: A,B, ..., Y designates the disk name which will re-
ceive the print file
X places the listing at the console
2 skips generation of the print file
Thus, the command
ASM  X,AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A,
This form of the command is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command

is equivalent to
AM X
The command
AM X,ABX
indicates that the source file is to be taken from disk A, the hex file is

placed on disk B, and the listing file is to be sent to the console. The
command

AM X,.BZ2Z

takes the source file from disk B, and skips the generation of the hex and
print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
assenbler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below.

2. PROGRAM FORMAT,

An assembly lanquage program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand  ;comment

where any or all of the fields may be present in a particular instance. Each

72




~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,

multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line4 is an optional decimal integer value representing the source
program 1line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name., Further, all lower case
alphabetics become are treated as if they were upper case., Note that the “:"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X yxl: longer $named$data:
X1y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8880 machine operation code. The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical

operations on these elements. Again, the complete details of properly formed
expressions are given below.

The camment field contains arbitrary characters following the *;" symbol
until the next real or logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comment statements,

which are listed and ignored in the assembly process. Note that the Processor

73




Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. . This causes an ambiguous
situation when attempting to be compatible with Intel’s language, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ;" before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement., All statements
following the END are ignored by the assembler,

3. FORMING THE CPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements, Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 1l6-bit value during the assembly., Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be 2zero, The

restrictions on the expression significance is given with the individual
instructions. :

3.1. Lamls.

As discussed above, a label is an identifier which occurs on a particular
statement. 1In general, the label is given a value determined by the type of
statement which it precedes. If the 1label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.,

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and operators
to form the operand field for a particular instruction,

3.2, Numeric Constants.

A numeric constant is a 16-bit value in one of several bases, The base,

called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
0 octal constant (base 8)

74

y
Sagg?




Q octal constant (base 8)
D decimal constant (base 18)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is
easily confused with the digit 6. Any mumeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a seqguence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix. That is binary constants must be composed of § and 1 digits, octal
constants can contain digits in the range # - 7, while decimal constants
contain decimal digits., Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1¢p), B (11p), C (12p), D (13D), E (14D), and F
(15D) . Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234 1234D 11008  11115000051111$0000B
1234 OFFEH 33770 33778220
33770 #fe3h 12348 offffh

3.3. Reserved Words.

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
Sp 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. 1In the case of instructions which require
operands, vwhere the specific operand becomes a part of the binary bit pattern

75




oF +he instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

when the symbol "$* occurs in the operand field (not inbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contamed withing the
current logical line.

3.4. String Constants,

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (7). All
strings must be fully contained within the current physical 1line (thus
allowing “!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes “’), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be .represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are
‘A ‘AB
‘Walla Walla Wash.’

‘She said "‘Hello”~ to me.’
‘I said "Hello" to her,’

4 -

3.5. Arithmetic and Logical Operators.

The operands described above can be combined in normal algebraic notation
using any cambination of ©properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+hb unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)

b unary minus (identical to @ - b)

b unsigned magnitude multiplication of a and b

b unsigned magnitude division of a by b

MOD b remainder after a / b

NOT b logical inverse of b (all 8°s become 1°s, 1's

become @°s), where b is considered a 16-bit value

76



"aBANDb bit-by-bit logical and of a and b
aORDb bit-by-bit logical or of a and b
a XORb bit-by-bit logicl exclusive or of a and b
a SHL b the value which results from shifting a to the
left by an amount b, with zero fill
a SHR b the value which results from shifting a to the
- right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 16h+37Q 11 /3 (L2+4) SHR 3
(a” and 5£h) + “@° ("B°4+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+l))

Note that all camputations are performed at assembly time as 16-bit unsigned
operations, Thus, -1 is camputed as @1 which results in the value @ffffh
(i.e., all 1°s). The resulting expression must fit the operation code in
which it is used. 1If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI =1" produces an error message (-1
becomes Bffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFH" is accepted by the assembler since the "AND" operation 2zeroes the
high order bits of the expression.

3.6. Precedence of Operators,

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a*b+c (@a*b) +c
aMDb * cSHL 4 ((a MODb) * ¢) SHL 4

77



aORDbAND NOT ¢ +d SHL e aOR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to overr_ide the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(aORDb) AND (NOT c) +d SHL e
resulting in the assumed parentheses
{a ORb) AND ((NOT ¢) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assmbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation” which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin

END end program, optional start address
BQU numeric “equate”

SET numeric “set"

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

s define data storage area

The individual pseudo operations are detailed below
4.1. The ORG directive.
The ORG statement takes the form
label ORG expression

where “"label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression., There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas, Note that most programs written for
the CP/M system begin with an ORG statement of the form

ORG 100H

78



which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2, The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subseguent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000, Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assenbly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 10@0H (beginning of the transient
program area).

4.3, The EQU directive.

The EQU (eguate) statement is used to set up synonyms for particular
numeric values. the form is

lJabel BEQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a more human-oriented manner. Further, this name is used
throughout the program to “parameterize® certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence, The series of eguate statements could be used to define these ports
for a particular hardware environment

TIYBASE BQU 1@H ;BASE FORT NUMBER FOR TTY
TTYIN BQU TTYBASE ;TTY DATA IN
TIYOUT  EQU  TTYBASE+l;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

79




IN TTYIN ;READ TTY DATA TO REG-A

our TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute i/o ports had been
used. Further, if the hardware enviromment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only be
changed to

TIYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4,4, The SET Directive,
The SET statement is similar to the EQU, taking the form
label  SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the point where the label occurs on the next SET statement, The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4,5, The IF and ENDIF directives.

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement$2
statementién
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement)., If the expression evaluates to a non-zero value, then
statement#l through statement#n are assembled; if the expression evaluates to
Zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" program which includes a number of
possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a program which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

80

O

S

.
N




s"wﬂm\%

TRUE EQU  @FFFFH ;:DEFINE VALUE OF TRUE
FALSE BQU NOT TRUE ;DEFINE VALUE CF FALSE
Y BEQU TRUE ;TRUE IF TTY, FALSE IF CRT
'i'IYBASE BQU 1@H ;BASE OF TTY I/0 FORTS
CRTBASE EQU  20H ;BASE OF CRT 1/0 FORTS

IF TTY ;ASSEMBLE RELATIVE TO TTYBASE
(ONIN EQU TIYBASE sOONSOLE INPUT
CONOUT EQU  TTYBASE+l ;OONSOLE OUTPUT

ENDIF

IF NOT TTY ;ASSEMBLE RELATIVE TO CRTBASE
CONIN BEQU CRIBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;OONSOLE OUTPUT

ENDIF

IN QONIN ;READ CONSOLE DATA

our oonNouT ;WRITE CONSOLE DATA

. In this case, the program would assemble for an environment where a Teletype

is connected, based at port 1#H. The statement defining TTY could be changed
to

TY BQU FALSE
and, in this case, the program would assemble for a CRT based at port 20@H.
4.6. The DB Directive,

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

F

label DB e#l, e$2, ..., ein

vhere e#l through e#n are either expressions which evaluate to 8-bit wvalues
(the high order eight bits must be 2zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line, The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the cammas), Note that ASCII characters are always placed in memory
with the parity bit reset (@). Further, recall that there is no translation
fram lower to upper case within strings, The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

81




valid DB statements are

dataz: DB 6,1,2,3,4,5
DB data and 0ffh,5,377Q,1+2+3+4
signon: DB ‘please type your name’,cr,lf,0
DB °‘AB° SHR 8, 'C°, 'DE” AND 7FH

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ..., €in

where e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strmgs
longer than two characters disallowed. In all cases, the data storage is
consistent with the 8888 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte,
Examples are

doub: DW @ffefh,doub+4,signon-$,255+255
DN ‘a’, 5, ‘ab”, ‘CD°, 6 shl 8 or 1lb

4.8, The DS Directive,

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subseqguent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement ,

label: EQU § ;;LABEL VALUE IS CURRENT CODE LOCATION
ORG §$+expression  ;MOVE PAST RESERVED AREA

5. OPERATION QODES.

Assenbly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction, In
general, ASM accepts all the standard mnemonics for the Intel 8084
microcomputer, which are given in detail in the Intel manual "8086 Assembly
Lanquage Programming Manual.” Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed breifly in the

82

.
I,M 9,

S,

g



£y

following sections for campleteness, although it is understood that the Intel
manuals should be referenced for exact operator details., In each case,

e3 represents a 3-bit value in the range -7
which can be one of the predefined registers
A' B, C' D’ E' H' L' M' SP' Or PSW.

e8 represents an 8-bit value in the range @-255
elé represents a 16-bit valve in the range #-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a specific example, with a short explanation and
special restrictions.

5.1, Jumps, Calls, and Returns.
The Jump, Call, and Return instructions allow several different forms

which test the condition flags set in the 8080 microcomputer CPU. The forms
are

JMP el6 JMP L1 Jump unconditionally to label
JNZ el6 JMP L2 Jump on non zero condition to label
JZ elé6 JMP 100H Jump on zero condition to label
JNC el6 INC L1+4 Jump no carry to label

JC elé JC L3 Jump on carry to label

JFO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label
JM  el6 JM al Jump on minus to label

CALL el6 CALL S1 Call swbroutine unconditionally
NZ el6 MNZ s2 Call subroutine if non zero flag

Cz el6 CZ 106H Call subroutine on zero flag
NC  el6 NC  S1+4 Call subroutine if no carry set

CC el6 CC s3 Call subroutine if carry set
CRO el6 CPO $+48 Call subroutine if parity odd
CPE el6 CPE 54 Call swroutine if parity even

CP elé6 ce GAMA Call subroutine if positive result
CM el6 CM  blsc2 Call subroutine if minus flag

RST e3 RST @ Programmed “restart”, eguivalent to
CALL 8*e3, except one byte call

83




RET Return from subroutine

RNZ Return if non zero flag set
RZ Return if zero flag set
RNC Return if no carry

RC Return if carry flag set
RPO Return if parity is odd
RPE Return if parity is even
RP Return if positive result
M Return if minus flag is set

5.2. Immediate Operand Instructions,

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8 MVI B,255 Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
ADI e8 ADI 1 Add immediate operand to A without carry
ACI e8 ACI @FFH 'Add immediate operand to A with carry
SUTI e8 SUI L+ 3 Subtract from A without borrow (carry) ™
SBI e8 SBI L AND 11B Subtract from A with borrow (carry)
ANI e8 ANI $ AND 7FH Logical "and” A with immediate data
XRI e8 XRI 1111509000B “Exclusive or" A with immediate data
ORI e8 ORI L AND 1+1 Logical “or" A with immediate data
CPI e8 CPI ‘a’ Compare A with immediate data (same

as SUI except register A not changed)
IXI e3,el6 IXI B,100H Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions,

Instructions are provided in the 8080 répetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3 INR E Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
ICR e3 ICR A Single precision decrement register (e3
moduces one of A, B, C, D, E, H, L, M)
INX e3 INX spP Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
DCX e3 ICX B Double precision decrement register pair

(e3 must be equivalent to B,D,H, or SP)

g

5.4, Data Movement Instructions.

84




Instructions which move data from memory to the CPU and fram CPU to
memory are given below

MOV e3,e3 MOV A,B Move data to leftmost element from right-
most element (e3 produces one of A,B,C
D,E,H,L, or M), MOV M,M is disallowed
LDAX e3 LDAX B Load register A from camputed address
(e3 must produce either B or D)
STAX e3 STAX D Store register A to computed address
(e3 must produce either B or D)
LHLD el6 LHLD L1 Load HL direct from location el6 (double
precision load to H and L)
SHLD el6 SHLD L5+x Store HL direct to location el6 (double
precision store from H and L to memory)
LDA el6 LDA Gamma Load register A from address el6
STA el6 STA X3-5 Store register A into memory at elé
POP e3 FOP PSW Load register pair from stack, set SP
{e3 must produce one of B, D, H, or PSW)
PUSH e3 PUSH B Store register pair into stack, set SP
: (e3 must produce one of B, D, H, or PSW)
IN e8 IN @ Load register A with data from port e8
( OUTr e8 our 255 Send data from register A to port e8
o XTHL Exchange data from top of stack with HL
PCHL Fill program counter with data from HL
SPHL Fill stack pointer with data from HL
XCHG

Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations,

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

ADC e3 ADC L Add register to A with carry, e3 as above

SUB e3 SUB H Subtract reg e3 from A without carry,
e3 is defined as above

SBB e3 SBB 2 Subtract register e3 from A with carry,
e3 defined as above

ANA e3 ANA 1+1 Logical "and" reg with A, e3 as above

XRA e3 XRA A *Exclusive or” with A, e3 as above

ORA e3 ORA B Logical "or" with A, e3 defined as above

CMP e3 CMP H Compare register with A, e3 as above

DAA Decimal adjust register A based upon last

L arithmetic logic unit operation
cMa Complement the bits in register A
STC ‘Set the carry flag to 1

85




MW

cMe Complement the carry flag

RILC RFotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)

RRC Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)

RAL Rotate carry/A register to left (carry is

~ involved in the rotate)
RAR Rotate carry/A register to right (carry

is involved in the rotate)
DAD e3 DAD B Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)
S5.6. Control Instructions,

The four remaining instructions are categorized as control instructions,
and are listed below

HLT Halt the 8088 processor

DI Disable the interrupt system
EI Enable the interrupt system
NCP No operation

6. ERROR MESSAGES.

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present, The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

0 Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: label does not havé the same value on
two subsequent passes through the program

86




£,

o,
)

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed
Several error message are printed which are due to terminal error
corditions

NO SOURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SOURCE FILE NAME ERROR Improperly formed ASM file name (e.g., it
; is specified with *?" fields)
SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

OUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected

7. A SAMPLE SESSION.

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

87




ASH SORT,

CP/N ASSEMBLER - VER

pi5c et frez addvess
BO3H USE FACTOR 94 of
END OF ASSEMBLY

1.0

assexble SopT.ASM

—tzlle used 00 o FF C&mdem;d)

DIR SORT. %,
SORT ASH Soue 'Rlz( it
SORT BAK lonckup ask odt
SORT PRN Vut-{jlrc CCM‘ﬂMS'H- chasachers)
SORTY HEX wackuwe code
A>TYPE SORT.PKN,
Souni& (w..
vt cole. Vocahn SORT PROGRAN IN CP/M ASSEMBLY LANGUAGE
wachuwe 0 ; START AT THE BEGINNING OF THE TRANSIENT PROGRAN AR
0100 ORG 188H
wachng Code
0108 214681470 SOKRT.  LKI H, W ;ADDRESS SWITCH TOGGLE
2103 3681 MY I M, 1 ;SET TO 1 FOR FIRST ITERATION
8105 214781 LK1 H, 1 ;ADDRESS INDEX
0108 3600 MY 1 M, 0 i1 =@
F]
; COMPARE I WITH ARRAY SIZE
@107 ?7E COMP. MOV A, M ;A REGISTER = 1
@188 FER9 cPl N-1 ;CY SET IF 1 < (N-1)
@16D D21981 JNC CONT ;CONTINUE IF 1 (= (N-2)
H
; END OF ONE PASS THROUGH DATA
@110 214681 LX1 H, SU ;CHECK FOR ZERO SWITCHES
9113 7EB7C20081 MOV A,M! DRA A! JNZ SORT FEND OF SORT IF SW=@
H
8118 FF RST 7 ;60 TO THE DEBUGGER INSTEAD 0F REF
; “‘“k“courluus THIS PASS
H ADDRESSING 1, SO LOAD AYC(1) INTD REGISTERS
0119 SF16882148BCONT.: MOV E,A! MYI D,08t LXYI H,AVY! DADd D! DAD D
8121 4E?92346 . MOV C.H! MOV A, Ct INX H! MOV B.M
; LOWY DRDER BYTE IN A AND C, HIGH ORDER BYTE IN B
; MOY H AND L TQ RDURESS AV(I+1)
8125 23 18X H
H
; COMPARE VALUE WITH REGS CONTAINING AV(D)
8126 965778239E SUB M! MOV D, Al MOV A, B! INX H! SBB #  ;SUBTRACT
; BORROW SET IF AV(I+1) > AVCI)
@128 DA3FB1 JC INCI ;SKIP IF IN PROPER ORDER
; CHECK FOR ERUAL VALUES
P12E B2CA3FOL ORA DI JZ THCI SKIP 1F AV(l) = AVY{(]1+1)D

88




8132 56702BSE MOV D.M! MOV M, B! DCX H! MOV E.M

8136 712B722873 MOV M.C! DCK H! MOV M, D! DCX H! MOV M, E
i
i INCREMENT SWITCH COUNY

8138 21460134 LX1 H.SU! INR N

;
i INCREMENT 1
B13F 21478134C3INCI; LK1 H, 1! INR M! JMP COMP

’

. ; DATA DEFINITION SECTION

2146 00 Sy. DB @ s RESERYE SPACE FOR SWITCH COUNT
8147 I: S 1 ;SPACE FOR 1NDEX

8148 0SBOG40BIEAY: 7 5, 180,36, 50, 20,7, 1800, 360, 108, -32767

80BA = EQU ($-aY)/2 ;COMPUTE N INSTEAD OF PRE
815¢ i—-q«mle walue END

AYTYPE SORT.HEX,

.10018008214601360121478136007EFEBS9D2190140

1 1061186821468617EB7C20PB1FFSF16002148011988 . .
. 10812808194 E79234623965778239EDA3FB1B2CAA7 | “w‘%““‘“d““
. 180138083F0156702B5E712B7226732146813421C7 | HEX Tawat
.07014000470134C36AB10B0O6E

1 10614800050064R01E0B3200140007P0ESR32C018B

. 0481580064000 180BE

. 02600 EEB0E

A>DDT SORT.HEXy strt dduq vun

16K DDT VER 1.0

25?:‘: o:ga defankt address (no addvess on B’Ds-&{wwwﬂ')
—XP‘)
P=00@0 180 c\.a..y?c-!v(oo
2 4
vac bort wodhr
-—UFFFFJ wdme'ﬁw £5%3S Sleps »

COZeMBEQI® A=PO B=6000 D=0008 H=0AMO® S=0100 P=0100 LX] H,0146+81060

Coz6MBEGI® A=BL B2800O D=8000 H=0146 S=01006 P=0188 LXI H.8146
CoZeMBEGI® A=P! B=80BG D=BOBB H=0146 S=08180 P=6183 MVI N,B81
CoZoMBEG]® A=B] B=0000 D=BOOO H=0146 S=0100 P=B165 LXI H,8147
COZ6MBEQI® A=l B=8000 D=B0OD H=0147 S=01060 P=01868 MYl M,80
CoZBMBEG]IO® A=D1 B=00DO® D=B00B H=0147 S=0100 P=018A MOV A.M
CoZeMDERI® A=00 B=0008 D=0008 H=0147 S=0100 P=016B CPI1 89
C1Z8MiEQI® A=P0 B=60P0 D=P00B H=0147 S=0160 P=016D JNC 8119
C1ZBNIEG]I® A=006 B=00B0 D=0608 H=0147 S=0100 P=0116 LX] H,6146
C1ZBMIEQGI® A=00 B=B0BO D=B0OOB H=8146 S=0100 P=@113 MOV a,M
C1Z6MIEBI® A=B) B=80B08 D=BOGE H=0146 S5S=0100@ P=0114 ODRA A
COZOMPERI® A=0] P=B000 D=B00B H=0146 S=0100 P=9115 UNZ 0100
COZOMREGI® A=B) B=00BO D=POOB H=0146 S=0100 P=B180 LXI H,0146
COZBMBEQI® A=D1 B=00BD D=B0OOB H=0146 S=0100 P=8183 MVI M,01
COZBMBEO]® A=B1 B=PBOO D=POOD H=0146 S=0100 P=0105 LXI H,08147
C62ONPERIO A=B)1 B=B0BDO D=BBOG H=0147 S=0100 P=0188 MYl M,00

CO20MBEGIO A=D1 B=2Q00 D=BOOB H=0147 S=0180 P=B10A MOV A,N+B10B
~AléD

3”3 )Jc 19, cwﬁrfo “J“‘i’"""""{‘j ) sbp;::(-.)
89



-XP,

P=0108B 100 Y!S&‘(’ ’?voyaw. Counlr b&‘L‘b Bdﬁmmnj cf?fﬂjmm

I
-Tte, *trace executon

‘J

cezensceole
CeZoMnBESIG
cezeMBEQIO
CezZonecele
CezZonBEBI S
CoZoMBEOGI®
CiZeNniEelo
Cl1ZeM1EG]IO
Cizenitcoleo
CizeniEele
Ci1Zenieoele
‘fOZBN1EQ] O

eZeMnitceled
cezZenieole
CezeMiE®l®
CezeniEole®

A=00
A=80
A=0880
A=00
A=08
A=09
A=08a
A=60
A=80
A=88
A=00O
A=08
A=0e
A=88
A=8S5
A=89

8=9600
B=080800
B=06080
B=6oobe
B=noBo
B=06060
B=6080
B=@go080
B=g@B0
B=geB@
8=0089
B=06008
g=g80@
B=8@8S
B=8085
B=8@8s

£or (04 skps

D=80060
D=B806@8
D=BBQA6
D=08800
D=8068
D=8008
D=8600
D=8600
D=8608
D=8008
D=pg0oo
D=80o8
h=8aes
D=g8da0
D=8000
D=B8008

H=0147
H=8146
H=8146
H=0147
H=0147
H=0147
H=0147
H=08147
H=0147
H=0147
H=0148

H=4148

H=@148
H=9148
H=8148
H=0149

$=010@
$=0100
S=01080
$=61a8
$=06100
5=0i080
§5=01890
$=08100
$=08i068
¢=0100
$=08100
$=0109
S=efae
$=09180
S$=0100
$=0100

P=81680
P=8183
P=81635
P=8188
P=818A
P=@1868B
P=818D
P=8119
P=@liA
P=811C
P=811F
P=08129
P=at2t
P=2122
P=@123
P=08124

LX1I
Myl
LX1
MVI
MOV
crl
JC
Moy
nvl
LX1
DAbd
DAD
Hov
nov
INX
Mov

-LIOOR

LXI
MVI
LXI

8100
01083
81085
p1e8

NYI _
810 MOV {\5{- sowme <ode
8108

a.H
CPI 89 ?
8100 JC 8119 frou 100K
8118 LXI H, 8146
8113 MOV A, M

8114 ORA A
8115 JNZ @t1ee  J

-L;
8its
8119

H,.8146
M, 01
H. 8147
N.80

Automahic
brmkyon&f

RST @7

MOV E.A
8ilA MYI D,e0
OllC LX1 H.8148

- Ghovt (6t Lt rubact
-C. 118, &hrt?nvuuu4amw

list more

H,08146
M.,81

H,8147
M.80 g“t

A. N
)
9119
E.R
D.bo
H,B148
b

D

.o
H, L
H
B

s HeB 123

curvek P (0250) avd Ywe 1 veal +me o 118H

i
&

€0127 s-lowed wth aw exdevnal w:kwup‘(‘ 7 -Fm-f Ml?uel (Pr%muuxs
"”‘2 look ot (m?m‘., Program w voce mode } \WF"'g !
Co20MPED]I® A=38 B=0064 D=BB06 H=8156 S=01080 P=0127 MOV D.A
COZ8MAED]I® A=38 B=p064 D=23806 H=0156 S=0100 P=9128 MOV A,B
CoZoMOEOIO A=00 B=0064 D=3806 H=8156 S=010808 P=0129 INX H
Co6ZoMOEBI® AR=00 B=0064 D=3806 H=0157 S=0100 P=B12A SEB M=*6128B
-D148

k)" data & Sorted, but Program doesat 54»:?
8148 85 00 07 69 14 00 IE 00
81506 32 B0 64 08 64 BO 2C 81 EB @3 31 80 99 09 06 88 2.D.D.,.. .. ... ..
81606 0 60 00 00 00 PO 0O 0@ 00 Ly PO PG PO 68 9B BO ... .. .. ..

90




-&f, return o CP/M

| DDT SORT.HEX , reload the menwy 1m¢ﬁg

16K DDT VER 1.0

NEXT PC
815C P006
-XP

P=0000 100 set PC o 5%‘."“‘.‘3 "W’"ﬁm
-t103, ot bed opcode

218D JNC 0119/
8118 LX1 H,08146

= abort it wtn rubout

-a10D) assewlle new peode

e1ep JC 119‘).

011%2

..ngg; Lot slwhna sechon of ‘{Nﬂm

8166 LX1 H,8146
81863 MVl n.,061

. 8185 LXI H,8147

' 9188 MVl M, @0

AbM (\ﬁ{‘ wt‘H‘ Nl’ﬂd'
-A103) chowe SWr"dA weheltatom o gy

8183 MVI M, 0)

Ul@ﬁ)
e yebwap /M witn efl-C (6 woks as well)

SAVE 1 SORT.COM, save 1 poge (256 logtes, frown 100H-DAFFH) on disk v case

we have Vv veleoad |oder
A>BDT SORT.COM, rehnrt OOT mu«
Saved memovy umoqc
16K DDT VER 1.9

NEXT PC
206 8108 COM" file always sterts wetls address 100K

=G, runthe proyawm Lrom PC=100K
v 2
«8118 froqrowwmed skop (2sT7) enesuntered

~D148
8148 05 0@ 07 08 14 BO 1E 0O

8156 32 60 64 0B 64 BB 2C @1 EB 03 81 80 00 00 @6 88 2.D.D...... ...
9160 PO 00 GO 0B 00 B8 B0 00 0P OO b6 oo 0O OB 66 2B . ... ...

0170 B0 B0 680 ¢ 0P BO OO 9O 02 6O BO GO 00 68 00 88 ... . .. ... .. ... .

‘Gl; return 4o 0P/IM
91



ED.SORT.ASH, moke clanags o myé»l progawe

C‘“'z . \ Pt
N o Jorry fud ned " )
MVl M, 8 i1 = @
.- (...'; .' dext
g one e H, 1 ;ADDRESS INDEX
- mu&ulut
i Myl 1 ;SET TD 1 FOR FIKST ITERATION
KT, Kl Lae and fype next tine-
Xl H, 1 JADDRESS INDEX
t&}\hﬂﬂ ww hm,
nv1 N, 0 ;ZERD SW
L
LXI H, 1 ;ADDRESS INDEX
enuncCer
INCeT
CONT®  CONTINUE IF 1 <= (N-2)
«-201cCpLT,
Je CONT ;CONTINUE IF I <= (N-2)
sk ) [wcjnm d(!l A

ASM SORT.AAZ sk-gmm

CP/M ASSEMBLER - VER 1.8

g15c wak addmes b assandde
Ba3H USE FACTOR gﬁ%
END OF ASSEMBLY .

ODT SORT.HEX, tst projuasw cliarges

16K DDY VER 1.0
NEXT PC

8150 booo
-Gl@%;

9118

~D148
s /\Jahs«u
9148 85 9O 97 08 14 B0 IE 00

8158 32 88 64 88 64 #0 2C 091 EB 03.01 8o 08 88 8 88.2.D.D..,.... ... ..
816e Do 60 80 0 06 PG @O 0O OB 00 bG BO @Y 6B 60 Bo

- obovt weth rubad

-ce, redrato Pl - proyaun Cleds o.

92



M

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL




COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any 1language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warrani .« . th
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

~
L/




Ay

P

G

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL



COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94886.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

£

g




Table Of Contents

ED: A Content Editor For The CP/M Disk System:
User's Manual

D Tutorialeceseeececoesscsesnsessccsssnsnssedl
1.1 Introduction t0 EDiceccesscrocscnsesedl
1.2 ED Operationesceccoscccccsccosssccccescsdl
1.3 Text Transfer FunctionSeeeceecseccaseasd3l
1.4 Memory Buffer OrganizationNeceeeeecsese97
1.5 Memory Buffer Operationeeccscccecccees9d7
1.6 Command SrringSeeeeecccscscsssccossesedd
1.7 Text Search and Alteration.ecceeceesecss100
1.8 Source Libraries.ccececeerscsscnceceecssl03

1.9 Repetitive Command ExecutioNeessees.104
2. ED Error ConditionSeeesceccscacacsaseecsesel0S
3. Control Characters And CommandS.cceacees106



{

-




e
&

P

ED USER'S MANUAL

1. ED TUTORIAL
l.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

<filename>
ED
<filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> . <filetype> into central memory,
where the file is manipulated by the operator, and subse-
quently written back to disk after alterations. 1If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

"ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions
Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text

from the source file through the memory buffer to the tem-
porary (and evengually final) file:

93



Figure 1. Overall ED Operation

O

Source
Libraries

O
U

. et
Source Append (R) Write Temporary

File (A)\ / (W) File

X.Y x.$$8$ /

(

Memory Buffer

€

After
Edit

After T
gait | (B) O
Insert

Type X
(1) (T)
Backup New
File Source
File

X.BAK

)

(
@

Note: the ED program accepts both lower and upper case ASCII
characters as input from the consocle. Single letter commands
can be typed in either case. The U command can be issued to

cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.

Characters are echoed as typed without translation, however.
The -U command causes ED to revert to "no translation” mode.

ED starts with an assumed -U in effect.



Figure 2.

Source File

1| First Line.

2| \"Appended |

2| * Buffered )|

Memory Buffer

. First Line®

PO ¥ -\‘ NN \
3| . Lines -~ - Text -
—:- \Qs\\- N N ‘\\
SP [T NTTN N —_—
| | mpefs s s N
l.\\~____.
: Unprocessed' NexE : Free : NexT
‘ Source | Append | Memory | Write
' Lines : | Space '
U ' R ..!
Figure 3.

Memory Buffer

TP

Memory Buffer Organization

Temporary File

\ First Line\

\ Processed \\

TN Text NN\
— \

« VN

NN NN

N
.

Free File

]

1

I Space :
i

Logical Organization of Memory Buffer

first

line <er><1f>
-------- <cr><1lf>

current

line CL ----<cr><1f>

last

line <cr><1f>

95




nA<cr>'

append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> ~ end the edit. Copy all buffered text
to temporary file, and copy all un-
processed source lines to the temporary
file. Rename files as described
previously.

H<cr> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

& 4

O<cr> - return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the source file. The
effects of the previous editing commands
are thus nullified.

Q<cr> - quit edit with no file alterations,
return to CP/M.

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. 1In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage~return key

96




commands are provided as a convenience. The command 0A fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require-
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

l.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carriage-
return (<cr>) and line-feed (<1£f>) characters, and
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
ATETT———. :
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the Eines directly from the console
with the insert command ’

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <1f> is supplied automatically),
until a control-z (denoted by 4z is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>

NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

97



NOW IS THE<cr><1lf>
TIME FOR<cr><1lf>

ALL GOOD MEN<cr><lf> .2

Various commands can then be issued which manipulate the CP

or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by

+, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,

then n=1 is assumed. Finally, if a plus sign is optional,

but none is specified, then + is assumed.

$B<cr> - move CP to beginning of memory buffer
if +, and to bottom if -.

tnC<cr> - move CP by *n characters (toward front
of buffer if +), counting the <cr><1lf>
as two distinct characters

tnD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

tnK<cr> - kill (ie remove) tn lines of source text
: using CP as the current reference. If
CP is not at the beginning of the current
line when K is issued, then the charac-
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

tnL<cr> - if n=0 then move CP to the beginning of
the current line (if it is not already
there) if n#0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified. !

98




[,wmw\)

+nT<cr> - If n=0 then type the contents of the
current line up to CP. If n=1 then
type the contents of the current line
from CP to the end of the line. If
n>1 then type the current line along
with n-1 lines which follow, if +
is specified. Similarly, if n>l1 and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

tn<cr> - equivalent to *nLT, which moves up or
down and types a single line

l.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command :

Rubout remove the last character
Control-U delete the entire line
Control-C re-initialize the CP/M System
Control-E return carriage for long lines

without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String Effect Resulting Memory Buffer
1. B2T<cr> move to beginning NOW IS THE<cr><lf>
of buffer and type
2 lines: TIME FOR<cr><1lf>
"NOW IS THE ALL GOOD MEN<cr><lf>
TIME FOR"
2. ScCOT<cr> move CP 5 charac- NOW I s THE<cr><1f>
ters and type the
beginning of the
line
"NOW 1"

99



3. 2L-T<cr> move two lines down NOW IS THE<cr><lf> §:?
and type previous TIME FOR<cr><1lf>

line
"TIME FOR" | ALL GOOD MEN<cr><lf>
4. -L#K<cr> move up one line, NOW IS THE<cr><lf>
delte 65535 lines
which follow
5. 1I<ecrx> insert two lines NOW IS THE<cr><lf>
TIME TO<cr> of text
INSERT<cr> TIME TO<cr><l1lf>
tz INSERT<cr><lf>
6. =-2L#T<cr> move up two lines, NOW IS THE<cr><lf>
and type 65535 :
lines ahead of CP TIME TO<cr><1f>
"NOW IS THE" " INSERT<cr><1£>
7. <cr> move down one line NOW IS THE<cr><lf>
and type one line
" INSERT" TIME T0<cr><lf>[§§3 .
INSERT<cr><1£> ("

1.7. Text Search and Alteration

ED also has a command which locates strings within the
memory buffer. The command takes the form

<cr
nF cl 2...ck }

where c; through cx represent ghe characters to match followed
by either a <cr> or control -z . ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is

moved directly after the character c If the n matches are
not successful, the CP is not moved rom its initial position.
Search strings can include™ +1 (control-l), which is replaced
by the pair of symbols <cr><1f>.

*The control-z is used if additional commands will be typed
following the +z.

100




{m
Y
¢ i

The following commands illustrate the use of the F
command :

Command String Effect Regsulting Memory Buffer
1. B#T<cr> move to beginning NOW IS THE<cr><1lf>
and type entire

ALL GOOD MEN<cr><lf>

2. FS T<cr> find the end of NOW IS T HE<cr><1f>
the string "S T"

3. FIitz0TT find the next "1" NOW IS THE<cr><lf>
and type to the
CP then type the TI ME FOR<cr><1£>
remainder of the ALL GOOD MEN<cr><lf>
current line:
"TIME FOR"

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

I cicz... cn+z or

I clcz... cn<cr>

where c; through c, are characters to insert. If the inser-
tion string is terminated by a *+z, the characters c; through
Cp are inserted directly following the CP, and the CP is
moved directly after character c,. The action is the same.
if the command is followed by a <cr> except that a <cr><1£>
is automatically inserted into the text following character
cn. Consider the following command sequences as examples
o? the F'and I commands:

Command String Effect Resulting Memory Buffer
BITHIS IS +tz<cr> 1Insert "THIS IS " THIS IS NOW THE <cr><1f>
at the beginning
of the text

TIME FOR<cr><1lf>
ALL GOOD MEN<cr><1f>

101



PN

FTIME+z-4DIPLACE+z<cr> THIS IS NOW THE<cr><l£> ( |

find "TIME" and delete  FLACE f3) FOR<er><lf>
it; then insert "PLACE" ALL GOOD MEN<cr><1lf£>

3FO0+2-3DSDICHANGES t<cr> THIS IS NOW THE <cr><1lf>

find third occurrence PLACE FOR<cr><lf>

of "0" (ie the second ALL CHANGES‘s§<cr><1f>
*O0" in GOOD), delete

previous 3 characters;

then insert "CHANGES"

-8CISOURCE<cr> move back 8 characters THIS IS NOW THE<cr><l1lf>
and insert the line PLACE FOR<cr><lf>

"SOURCE<cr><1l£f>"
ALL SOURCE<cr><lf>

CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

<er>
n s clcz...ckfz dldz"'dm{ iz
and has exactly the same effect as applying the command string

cr>

<
F clcz...cku—kDIdldz...dm '{ ‘z

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub-
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

cr
n AN clcz...ck {"}

which searches the entire source file for the nth occurrence
of the string cjcjy...cx (recall that F fails if the string e
cannot be found in the current buffer). The operation of the J

102




M
P

il command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

<¢cr>
ndJ clcz...ck‘rz dldz...dm+z elez...eq {u}

with the following action applied n times to the memory buffer:

search from the current CP for the next occurrence of the
string cjcg...c . If found, insert the string dydj...,dn,,

and move C to follow dy. Then delete all characters following

CP up to (but not including) the string e;,e, ,...e , leaving
CP directly after dyp. If ej;,ep,...e cannot Snd, then
no deletion is made. If the current line is

NOW IS THE TIME<cr><1lf>

Then the command
JW 4+zZWHAT+4z4l<cr>
Results in

NOW WHA'I‘ <cr><lf>

(Recall that 41 represents the pair <cr><1lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries
ED also allows the inclusion of source libraries during

the editing process with the R command. The form of this
command is

103



R flfz..fn#z or

R flfz..fn<cr>

where f;£;..£f, is the name of a source file on the disk with
as assume fiYetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac-
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com-
mands together for repeated evaluation. The M command takes

the form:
<er>
nM °1°2"‘ck {1‘2}

where cjcj...Cx represent a string of ED commands, not inclu-
ding another M command. ED executes the command string n
times if n>1l. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).
As an example, the following macro changes all occur-
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMA+z-5DIDELTA+z0TT<cr>

or equivalently

MSGAMMA+zDELTA+2z0QTT<cr>

104

o,



2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or 8
strings too long.

# cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on

subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where 4 is the currently selected drive (A,B,...). The oper-
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con-
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>
and renaﬁe the BAK file:

REN X.y=Xx.BAK<cr>

The file can then be re-edited, starting with the previous
version.

105



3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character Function
‘e system reboot
te physical <cr><1£> (not
actually entered in
command)
+1 ' logical tab (cols 1,8,
15,...)
+1 logical <cr><1lf> in
search and substitute
strings
4u line delete
4z string terminator .
(L
rubout character delete e
break discontinue command

(e.g., stop typing)

106




P

tnP

ns
inT
ty
nwW
nZ

tn<cr>

Function
append lines
begin bottom of buffer
move character positions
delete characters

end edit and close files
{normal end)

find string

end edit, clcse and reopen
files

insert characters

place strings in juxtapositidn
kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to original file
move and print pages

quit with no file changes
read library file
substitute strings

type lines

translate lower to upper case if U,
no translation if -U

write lines
sleep

move and type (:nLT)

107






£

Appendix A: ED 1.4 Enhancements

The ED context editor contains a8 number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command :

408T

is interpreted as "type from the current line number through the line whose absolute
number is 468." Combining the two line reference forms, the command

345::400T
for example, is interpreted as "move to absolute line 345, then type through absolute
line 4M6." Note that absolute line references of this sort can precede any of the
standard ED commands.

¢ A special case of the V command, "8V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal), and "total”
is the size of the memory buffer.

108



ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)

command. The form
nX
transfers the next n lines from the current line to a temporary file called
X$$$3$$58.L1B

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

).4
is provided, however, to empty the transferred line file,

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas-
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT ¢

where X is the error character, and ¢ is the command where the error occurred.

109




CP/M DYNAMIC DEBUGGING TOOL (DDT): USER'S GUIDE



COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the ’'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research,

{/«m%

gl



P

CP/M DYNAMIC DEBUGGING TOOL (DDT): USER'S GUIDE



COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted

to reproduce or abstract the example procedures and sample.

programs for the 'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

.



P
{

CP/M Debugging Tool

Table Of Contents

l. IntrodUCtionoooooo.00.lo..oo...'.o.i.....111
ll. wT Comnds.‘..“.'.0.......'.'..'.‘....113

1. The
2. The
3. The
4, The
5. The
6. The
7. The
8. The
9. ‘The
10.The
11.The

C-WMABZTr-=00mM0 >

(Assemble) Command.ceseeveceessallld
(Display) Command..csceeseccecell4
(Fill) Comand.eececcesescenseslld
(Go) Command.scecscscesscsessealld
(Input) Commandecsceescesccccassalls
(List) Coomand.scceceoeassscsceesllb
(Move) Command..ccesecseccecsaellb
(Read) Command..cvscecssccaccesallb
(Set) Command.cceecescsesrsecscall?
(Trace) Commandeccsecssasonsesell?
(Untrace) Commandecescsccscecaecssll8

12. The X (Examine) Command.ccscoscesess118B
Ill.implementation NOteSeceoscocorenosensaessll9
lVQ An Exam‘e'IQ....'...‘.‘.‘.‘..'..‘.....O.120

(DDT): User's Guide



St
J




P
£

CP/M Dynamic Debugging Tool (DDT)
User “s Guide

I. Introduction.

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment., The debugger is initiated by
typing one of the following cammands at the CP/M Console Command level

DoTr
DDr filename HEX
DOT filename,OOM

where “"filename" is the name of the program to be loaded and tested. 1In both
cases, the DDT program is brought into main memory in the place of the Console
Command Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of .CP/M. The BDOS starting address, which is located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or (OM file, The action is identical to the seqguence of
commands

por
Ifilename HEX or ifilename.COM
R

where the I and R commands set up and read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DDT prints a sign-on message in the format
nnkK DDI-s VER m.m

where nn is the memory size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

Digital Research standard version
MDS version .

IMSAI standard wversion

Omron systems

Digital Systems standard version

nNno-HRL
11

and m.m is the revision number.

11



Following the sign on message, DDT prompts the operator with the character
*-» and waits for input commands from the console. The operator can type any
of several single character commands, terminated by a carriage return to
execute the cammand. Each line of input can be line-edited using the standard
CP/M controls

rubout remove the last character typed
ctl-U remove the entire line, ready for re-typing
ctl-C system reboot

Any cammand can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character), where the first character determines the
command type

enter assembly language mnemonics with operands
display memory in hexadecimal and ASCII

fill memory with constant data

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

examine and optionally alter the CPU state

XOCHLYIE~OMO P

- The cammand character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by cammas or single blank characters.
All DOT numeric output is in hexadecimal form. 1In all cases, the commands are
not executed until the carriage return is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT
using either a ctl-C or G# (jmp to location @@0PH), and save the current
memory image using a SAVE command of the form

SAVE n filename,COM

where n is the number of pages (256 byte blocks) to be saved on disk. The
nunber of blocks can be determined by taking the high order byte of the top
load address and converting this mumber to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal, Thus the operator could type a ctl-C durmg
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory i.rqaqe is saved as X.COM on the diskette, and can be directly
executec} by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

112




W\,»
PN

DDT X.COM

which reloads previously saved program from loaction 180H through page 18
(12FFH) . The machine state is not a part of the OOM file, and thus the
program must be restarted from the beginning in order to properly test it.

11, DDT COMMANDS.

The irdividual commands are given below in some detail. In each case, the
operator must wait for the prompt character (~) before entering the command.
If control is passed to a program under test, and the program has not reached
a breakpoint, control can be returned to DDT by executing a RST 7 from the
front panel (note that the rubout key should be used instead if the program is
executing a T or U command). In the explanation of each command, the command
letter is shown in some cases with mmbers separated by cammas, where the
numbers are represented by lower case letters. These numbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right). ‘

Many of the cammands operate upon a “CPU state” which corresponds to the
program under test. The CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the program counter (P) and stack pointer (S), which default to 100H., The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands) .

1. The A (Assemble) Command. DIT allows inline assembly language to be
inserted into the current memory image using the A command which takes the
form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prampts the console with the address of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Ianguage Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each sucessive
load address is printed before reading the console. The A command terminates
when the first empty line is input from the console.

Upon campletion of assembly language input, the operator can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program responds
with an error condition when the A and L commands are used (refer to Section
Iv).

113



2, The D (Display) Command. The D command allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 106H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cceccececcecceccee

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c¢’'s), where non-graphic
characters are printed as a period (.) symbol., Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

The second form of the D canmand shown above is similar to the first,
except that the display address is first set to address s. The third form
causes the display to continue from address s through address f. In all
cases, the display address is set to the first address not displayed in this
command, so that a continuing display can be accomplished by issuing
successive D canmands with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command, The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and ¢ is a
hexadecimal byte constant. The effect is as follows: DIT stores the constant
¢ at xddress s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated., Thus, the
£fill cammand can be used to set a memory block to a specific constant value.

4, The G (Go) Command. Program execution is started using the G comand,
with up to two optional breakpoint addresses. The G command takes one ot the
forms :

G

Gs
Gs,b

114

%, F
e




P

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counter in the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7 execution). The
current program counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at 1location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. BEncountering either
breakpoint causes execution to stop, and both breakpoints are subsequently
cleared. The last two forms take the program counter fraom the current machine
state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not reach
a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints which
differ from the program counter address at the beginning of the G command,
Thus, if the current program counter is 1234H, then the commands

G,1234
and
G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

5 The 1 (Input) Command. The I command allows the operator to insert a
file name into the default file control block at 5CH (the file control block
created by CP/M for transient programs is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the program under test
as if it had been passed by the CP/M Console Processor, Note that this file
name is also used by DDT for reading additional HEX and COM files. The form
of the I camand is

Ifilename
or

115



Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

6. The L (List) Command. The L command is used to list assembly language
mnemonics in a particular program region. The forms are

L
Ls
Is,f

The first cammand lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then
lists twelve lines of code. The last form lists disassembled code from s
through address f. 1In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakpoint, the list address is set to the current
value of the program counter (see the G and T cammands)., Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Command, The M command allows block movement of program
or data areas fram one location to another in memory. The form is

Ms'f'd

where s is the start address of the move, £ is the final address of the move,
and 4 is the destination address. Data is first moved fram s to 4, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
command to read COM and HEX files fraom the diskette into the transient program
area in mreparation for the debug run. The forms are

R
2 o]

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters fram #00H through OFFH (i.e., the first page of memory). If
b is amitted, then b=000@8 is assumed. The R command requires a previous I
command, specifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, while an assumed load
address of 100H is taken for COM files. Note that any number of R commands
can be issued following the I command to re-read the program under test,

116



S

assuming the tested program does not destroy the default area at S5CH.
Further, any file specified with the filetype "OOM" is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command
DOT filename.filetype
which initiates the DDT program is equivalent to the commands

3)3)
~Ifilename.filetype
-R "

Whenever the R command is issued, DDT responds with either the error indicator
*2* (file cannot be opened, or a checksum error occurred in a HEX file), or
with a load message taking the form

NEXT PC
nnnn  pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (18PH for COM files, or taken fram the last record if
a HEX file is specified).

9. The S (Set) Command. The S command allows memory locations to be
examined and optionally altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of
memory. DDI responds with a mumeric prompt, giving the memory location, along
with the data currently held in the memory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the prompted address. In either case, DDT continues to
prampt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected.

1. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
™

In the first case, the CPU state is displayed, and the next program step is
executed, The program terminates immediately, with the termination address

117



displayed as
*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of H and L, and the list address (used in the L
command) is set to hhhh. The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint is occurs. A breakpoint can be forced in the trace mode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in
the X cammand,

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test, Thus, CP/M
functions which access I/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDI' gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that commands which use the breakpoint facility
(G, T, and U) accamplish the break using a RST 7 instruction, which means that
the tested program cannot use this interrupt location. Further, the trace
mode always runs the tested program with interrupts enabled, which may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DDT during trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate program steps are not displayed. The untrace mode
allows fram 1 to 65535 (OFFFFH) steps to be executed in monitored mode, and is
used mincipally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
commanrd,

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test, The forms are

X
Xr

where r is one of the 8088 CPU registers

C Carry Flag (8/1)
2 Zero Flag (8/1)

118




Minus Flag (8/1)
Even Parity Flag (8/1)
Interdigit Carry (0/1)
Accumulator (0-FF)
BC register pair  (@-FFFF)
DE register pair (@-FFFF)
HL register pair (B~FFFF)
Stack Pointer (@~-FFFF)
Program Counter (@-FFFF)

YN O WP HmE

-In the first case, the CPU register state is displayed in the format
CE£ZEMFEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where £ is a @ or 1 flag value, bb is a byte value, and 43dd is a double byte
quantity corresponding to the register pair. The "inst* field contains the
disassembled instruction which occurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, %2, M, E, I, A, B, D, H, S, or
P)e In each case, the flag or register valve is first displayed at the
console., The DOT program then accepts input from the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register valve is altered.
Note that BC, IE, and HL are displayed as register pairs. Thus, the operator
types the entire register pair when B, C, or the BC pair is altered.

ITII. IMPLEMENTATION NOTES.

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs., The DDT program consists of two parts: the DDT nucleus and the
assembler/disassembler module. The DDT nucleus is loaded over the Console
Cammand Processor, and, although 1loaded with the DDT nucleus, the
assembler/disasserbler is overlayable unless used to assemble or disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location SH) is modified by DDT to address the base location of
- the DDT nucleus which, in turn, contains a JMP instruction to the BDOS., Thus,
programs which use this address field to size memory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BDOS.

The assenbler/disassembler module resides directly below the DDT' nucleus
in the transient program area. If the A, L, T, or X commands are used during
the debugging process then the DDT program again alters the address field at
6H to include this module, thus further reducing the logical end of memory.
If a program loads beyond the beginning of the assembler/disassenbler module,
the A and L cammands are lost (their use produces a “"?" in response), and the

119



trace and display (T and X) cammands list the “inst* field of the display in
hexadecimal, rather than as a decoded instruction,

IV. AN EXAMPLE,

‘ I3 * le
The followi example shows an edit, asseuble_, and debug for a simpl
program which regs a set of data values and determines the 1arge§t va“lue 1?
the set. The largest value is taken from the vector, and stored into "LARGE
at the termination of the program

ED SCANM. ﬁSﬂ.)
J’H M 'M l(k‘
A

;START OF TRANSIENT AQRESQ

(XX B.LEH LENGTH OF YECTOR 10 SCAN, 4
VI  C.8  LARGER-RST VALUE S0 FAR,
LQQP_.P_0_0.L LXI W 