
APMATH64 MANUAL

VOLUME 2 OF 4

MODELS M64/ 40.
M64/50, M64/60

860-7482-001C

FLOATING POINT SYSTEMS, INC.

by FPS Technical Publications Staff

APMATH64 MANUAL

VOLUME 2 OF 4

MODELS M64/ 40.
M64/50, M64/60

860-7482-001C

NOTICE

Publication No. 86g-7492-ge1c
December, 1987

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright cg 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

The postpaid Reader's Comaent Form on the last page of this document
requests the user's critical evaluation to assist in preparing and
revising future documents.

REVISION HISTORY

This manual is the APHATH64 Manual, Volume 2, 860'-7482-0'0'1. The letter
shown under the revision number column indicates the portion of the
part number that changes for each revision. The last entry is the
latest revision to this manual.

R~l. NO.

-0'0'1A

-0'0'1B

-0'0'1C

DESCRIPTION

The revision history begins with this manual.

Deleted Utilities Library, deleted the
LPSPFI subroutine, added internal subroutine
information, and added 16 new routines.

Added new routines to Basic Math Library,
Double Precision Library, and Matrix
Algebra Accelerated Math Library.

•

DATE

8/86

1/87

12/87

NOTE: For revised manuals, a vertical line "I" outside the left
margin of the text signifies where changes have been made.

NOTE TO READER

This is the second volume of the APMATH64 Manual.
Volume 2 is comprised of part 2 of Appendix A. Note
that Appendix A continues through Volumes 1, 2, and
3. The page numbers are listed consecutively through
the volumes.

The APMATH64 Manual has three indices located at the
end of Volume 3 and two at the end of Volume 4. The
first index (Appendix I) is a list of the APMATH64
routines in page order by type. The second index
(Appendix J) is an alphabetical list of all the
APMATH64 routines. The third index is a key word
index of the APMATH64 routines. The fourth index
(Appendix L) is an alphabetical list of the
APMATH64/MAX routines. The fifth index is a key word
index of the APMATH64/MAX routines.

CON'.rEN'l'S (VOLUME 2)

APPENDIX A APMATH64 ROUTINES

Figure No.

A-1
A-2

ADVANCED MATH LIBRARY
SIGNAL PROCESSING LIBRARY
IMAGE PROCESSING LIBRARY
LINPACK BLAS LIBRARY
SIMULATION LIBRARY
GEOPHYSICAL LIBRARY
SPARSE LINEAR SYSTEM LIBRARY

Correlation
Convolution

ILLUSTRATIONS

Title

FPS 86B-7482-SS1C

CONTEN'l'S

A-233
A-263
A-3.0'3
A-325
A-362
A-4.0'2
A-422

A-3.0'9
A-3.0'9

Page iii

•

FPS 86B-7482-BB1C

APMATH64 ROUTINES (VOLUME 2)
ADVANCED MATH LIBRARY

APPENDIX A

Page A - 233

APPENDIX A

DESCRIPTION~ This routine first calls HTRIDI to reduce A to a

EXAMPLE:

real symmetric tridiagonal matrix using unitary
similarity transformations. IMTQL2 is then called to
determine the eigenvalues and eigenvectors of the
real tridiagonal matrix. IMTQL2 uses the implicit QL
method to compute the eigenvalues and accumulates the
QL transformations to compute the eigenvectors.
Finally, HTRIBK is called to backtransform the eigen
vectors to those of the original matrix.

If N is less than or equal to zero, then IERR is set to
999999. If N is greater than NM, then IERR is set to
lH*N. If more than 39 iterations are required to
determine an eigenvalue, the subroutine terminates
with IERR set equal to the index of the eigenvalue
for which the failure occurso In this case, the
eigenvalues in W should be correct for indices
1, 2, ••• , IERR-1, but no eigenvectors are computed.
If all of the eigenvalues are determined within 3g
iterations, then IERR is set to zero.

The function selector, MATZ, may be made functional
in a future release as follows: If MATZ = i, then
only the eigenvalues will be determined: otherwise,
both the eigenvalues and eigenvectors will be
determined.

With the exception of error code 999999 and the
nonfunctionality of the selector flag, this routine is
functionally the same as the FORTRAN routine of the
same name found in the "Matrix Eigensystem Routines -
EISPACK Guide", 2nd edition, by B.T. Smith, et al.,
Springer-Verlag (1976). For further information,
refer to pages 235-239 of the EISPACK Guide.

The execution time for this routine is highly data
dependent.

Input:

NM : 4
N = 4

AR 3.H l.H 0.H H.i
l.i 3.H 0.H i.i
g_g i.H l.H l.H
g_g i.H 1.0 l.i

FPS 86H-7482-BB1C Page A - 235

APPENDIX A

********** **********
* * * *
* EIGRS * REAL SYMMETRIC EIGENSYSTEM SOLVER -- * EIGRS *
* * * *
********** **********

PURPOSE: To determine eigenvalues and eigenvectors of a real
c:ummarri~ m~rriv
- .i ··-·- - - - - ···- - - - •• ~

CALL FORMAT: CALL EIGRS(NM,N,A,O,E,Z,IERR)

PARAMETERS: NM
N
A

D
E

= Integer row dimension of matrices A and z
= Integer order of matrix (N .LEe NM)

= Floating-point input matrix
= Floating-point output vector (eigenvalues)
= Floating-point scratch vector

Z = Floating-point output matrix {eigenvectors;
IERR = Integer error flag set if routine does not converge

within 30 iterations (refer to IMTQL2).

NOTE: The dimension of matrices A and z is NM*N.
The dimension of matrices D and E is N.

DESCRIPTION: EIGRS first reduces the full matrix to tridiagonal

EXAMPLE:

form by Householder's method, diagonalizing the resulting
matrix by the QL algorithm (using implicit origin
shifts). The APAL subroutines used to accomplish this,
TRED2 and IMTQL2, are based on the FORTRAN programs of
the same name found in
EISPACK Guide" by B.T. Smith et al., Springer-Verlag
(1976).

NM = 5
N = 4

A 5 .0 4.0 1.0 1.0
4 • .0' 5 .fr 1..0' 1..0'
1..0' l.fr 4 • .0' 2.fr
1..0' l.fr 2 .0 4 • .0'
fc1 • .0' fc1 .0 fc1 .0 0.fr

D 1..0' 2 • .0' 5 • .0' 1.0' • .0'

Page A - 237

APPENDIX A

********** **********
* * * *
* B'TRIBK * - COMPLEX HERMITIAN EIGENVEC'l'ORS - * H'l'RIBK *
* * * *
********** **********

PURPOSE: To form the eigenvectors of a complex Hermitian matrix,
A, by back transforming those of the corresponding
real symmetric tridiagonal matrix determined by the
routine HTRIDI.

CALL FORMAT: CALL HTRIBK(NM, N, AR, AI, TAU, M, ZR, ZI)

PARAMETERS: NM = Integer input scalar
Row dimension of the matrices

N = Integer input scalar
Order cf matrix A and
the matrices. N must be less than or equal
to NM.

AR = Floating-point NM by N input matrix
The strict lower triangle of the first N rows
contains information about the unitary trans
formations used in the reduction by HTRIDI.
The remaining elements are ignored.

AI = Floating-point NM by N input matrix
The full lower triangle of the first N rows
contains information about the unitary trans
formations used in the reduction by HTRIDI.
The remaining elements are ignored~

TAU = Floating-point 2 by N input matrix
Contains the remaining information about the
unitary transformations.

M = Integer input scalar
Number of eigenvectors to be back transformed.

ZR = Floating-point NM by N input/output matrix
On input, the columns of ZR contain the eigen
vectors to be back transformed in their first N
elements. On output, the first M columns and N
rows contain the real parts of the transformed
eigenvectors.

ZI = Floating-point NM by N output matrix
The first M columns and N rows contain the
imaginary parts of the transformed
eigenvectors.

FPS 86H-7482-9SlC Page A - 239

APPENDIX A

********** **********
* * * *
* HTRIDI * - COMPLEX HERMITIAN TRIDIAGOHALIZATION - * HTRIDI *
* *

PURPOSE:

* *

To reduce a complex Hermitian matrix, A, to a real
symmetric tridiagonal matrix using unitary similarity
transformations.

CALL FORMAT: CALL HTRIDI(NM, N, AR, AI, D, E, E2, TAU)

PARAMETERS: NM = Integer input scalar
Row dimension of the matrices

N = Integer input scalar
Order of matrix A and column dimension of
the matrices . N must be less than or equal
to NM.

AR = Floating-point NM by N input/output matrix
On input, the first N rows of AR contain the
real parts of the elements of A. The last
NM - N rows are ignored. Only the full lower
triangle of AR need be supplied~ On output,
the strict lower triangle of AR contains
information about the unitary transformations
used in the reduction. The full upper
triangle of AR is unaltered.

AI = Floating-point NM by N input/output matrix
On input; the first N rows of AI contain the
imaginary parts of the elements of A. The
last NM - N rows are ignored. Only the strict
lower triangle of AI need be supplied. On
output, the full lower triangle of AI contains
information about the unitary transformations
used in the reduction. The strict upper
triangle of AI is unaltered.

D = Floating-point output vector of length N
Contains the diagonal elements of the
tridi.agonal matrix.

E = Floating-point output vector of length N
Contains the subdiagonal elements of the
tridiagonal matrix in its last N-1 elements.
The element E(l) is set to zero.

E2 = Floating-point output vector of length N
Contains the squares of the corresponding
elements of E.

TAU = Floating-point 2 by N output matrix
Contains the remaining information about the
unitary transformations.

FPS 86g-74a2-gg1c Page A - 241

* *
* IM'l'QLl *
* *

PURPOSE:

- DIAGONALIZE TRIDIAGONAL MATRIX --

To determine the eigenvalues of an N by N
real symmetric tridi~gonal matrix using the
implicit QL method.

APPENDIX A

* *
* IM'l'QLl *
* *

CALL FORMAT: CALL IMTQLl (N, O, E, IERR)

PARAMETERS: N
D

= Integer input order of the matrix
= Floating-point input/output vector

Vector of length N containing the diagonal
elements of the symmetric matrix on input;
vector of length M containing the eigenvalues
on output.

E = Floating-point input vector
Vector of length N containing the subdiagonal
elements of the symmetric matrix. The
subdiagonal is contained in elements E(2)
through E(N); E(l) is arbitrary.

IERR = Integer output error status
IERR = G: No errors encountered, normal

completion.
IERR = -1: The routine received an invalid

input argument, N < 1.
!ERR > g: The routine was unable to finish

because more than 30 iterations
were required to determine an
eigenvalue. IERR is set to the
index of the offending eigenvalue.
The eigenvalues in D are correct
for all preceding indices, but are
unordered.

DESCRIPTION: IMTQLl determines the eigenvalues of a symmetric
tridiagonal matrix using the QL algo(ithm with
implicit origin shifts at each iteration.

Upon convergence, the eigenvalues are ordered in
ascending order.

The vector E is destroyed by this routine.

IMTQLl is based on the FORTRAN program found in
the EISPACK GUIDE: 2nd ed.r B.T. Smith: et al.:
Springer-Verlag, 1976. That program in turn is
based on an Algol procedure discussed by Martin
and Wilkinson, NUM. MATH.,12, 1968, pg. 377.

FPS 86H-7482-H&lC Page A - 243

* *
* IMTQL2 *
* *

PURPOSE:

APPENDIX A

* *

--- DIAGONALIZE A TRIDIAGONAL MATRIX --- * IMTQL2 *
* *

To determine eigenvalues and eigenvectors of a real
~ummPrrir rrini~nnn~l m~rriY_
-.i; ···-- -- -- -- ----~----- -·--- --- -

CALL FORMAT: CALL IMTQL2(NM,N,D,E,Z,IERR)

PARAMETERS: NM
N
D

z

=
=
=

=

IERR =

NOTE:

Integer row dimension of matrices A and Z
Integer order of matrix (N .LE. NM)
Floating-point input/output vector
Diagonal elements on input;
Eigenvalues in ascending order on output
Floating-point input vector
Codiagonal elements
Floating-point input/output matrix
For eigenvectors of sym.tridiag. matrix:
Nth-order identity matrix on input;
Eigenvectors on output
For eigenvectors of full sys. matrix:
Trans.matrix from TRED2 on input;
Eigenvectors on output
Integer index of eigenvalue if convergence not
obtained by 30 iterations, else 0

The dimension of arrays A and Z is NM*N.
The dimension of arrays D and E is N.

DESCRIPTION: IMTQL2 diagonalizes an N-by-N tridiagonal matrix
using the implicit QL algorithm (Martin and Wilkinson,
Num. Math. 12, 377(1968); Dubrulle, Num. Math. 15, 450
(197~)). The initial diagonal begins at D(l), and the
codiagonal at E(2). At each iteration, a ne·w tridiagonal
matrix is formed, is stored by overwriting the previous
result, and continues until convergence, or 30 iterations
have passed. If convergence does not occur by 30
iterations, !ERR is set equal to the index of the sought
eigenvalue, and the routine is exited. Previously
calculated results are valid. The transformation
matrices are accumulated and the results stored in column
order in matrix z.

FPS 86&-7482-SSlC Page A - 245

*
*
*

RS
*
*
*

- REAL SYMMETRIC EIGENSYSTF.M SOLVER -

APPENDIX A

*
*
*

RS
*

*
*

********** **********

PURPOSE: To determine the eigenvalues and eigenvector of a
real symmetric matrix! A.

CALL FORMAT: CALL RS(NM, N, A, W, MATZ, Z, FVl, FV2, IERR)

PARAMETERS: NM

N

= Integer input scalar
Number of rows of matrices A and z

= Integer input scalar
Order of matrix A and column dimension of
matrices A and z. N must be less than or equal

A = Floating-point NM by N input matrix
The first N rows contain the matrix and the
last NM - N rows are ignored. Only the full
lower triangle of the matrix need be supplied.

w = Floating-point output vector of length N

Contains the eigenvalues of A in ascending
order.

MATZ = Integer input scalar
MATZ is not currently used.

z = Floating-point NM by N output matrix
The first N elements of the j-th column of z
is the eigenvector that corresponds to the
j-th eigenvalue in W. The last NM - N
elements in each column are not altered.

FVl = Floating-point work area vector of length N
FV2 = Floating-point work area vector of length N
IERR = Integer output scalar

Error code as described below.

DESCRIPTION: This routine first calls TRED2 to reduce A to a
symmetric tridiagonal matrix using and accumulating
orthogonal similarity transformations. IMTQL2 is
then called to determine· the eigenvalues and eigen
vectors of the original matrix from the symmetric
tridiagonal matrix. IMTQL2 uses the implicit QL
method to compute the eigenvalues and accumulates the
QL transformations to compute the eigenvectors.

If N is less than or equal to zero, then IERR is set to
999999. If N is greater than NM, then IERR is set to
lg*N. If more than 3g iterations are required to
determine an eigenvalue, the subroutine terminates with
IERR set equal to the index of the eigenvalue for which
the failure occurs.

FPS 86B-7482-B&lC Page A - 247

* *
* SIMPLE *
* *

PURPOSE:

APPENDIX A

* *

- REVISED SIMPLEX - * SIMPLE *

* *
****'******

To solve a linear programming problem that is in the
standard form:

maximize Z = C'* X

subject to
and

where

A * X = B
X(j) >= G, for j = l to N

B(i) >= G, for i = 1 to M

CALL FOit.YAT: CALL SIMPLE(M,N,MP2,NP1,KI,NS,S,IRN,ICP,B,C,WRK,

PARAMETERS: M =

N =

MP2 =

NPl =

KI =

X,Y,Z,IB,KO)

Integer input scalar
Number of constraints (rows in A).

Integer input scalar
Number of variables (columns in A) •

Integer input scalar
MP2 = M + 2
Integer input scalar
NPl = N + 1
Integer input vector of length rn
Contains the program control parameterse If
any of these parameters is less than or equal
to zero, then a default value is supplied for
that parameter. The parameters are:
KI(l) = Input basis flag. KI(l) > G indicates

that an initial basis is supplied in
IB. Default = No initial basis.

KI(2) = Iteration limit. Default = 4 * N + ig
KI(J) = Inversion interval. Default = M/2 + 5
KI(4) = Zero tolerance exponent. The zero

tolerance value = 0.5 ** KI(4).
Default = 20.

KI(S) = Partial pricing step size.
Default= min (N, max(20,N/20)).
NOTE: The default value is also used
if KI(5) > N and a value of 20 is
used if 0 < KI(S) < 2g.

KI(6) to KI(lg) are reserved for future use.
NS = Integer input scalar

Number of nonzero elements in A.
S = Floating-point input array of length NS

Contains the nonzero elements of A stored by
columns.

!RN = Integer input array of length NS
Contains the row numbers (in A) that
correspond to the nonzero elements in S.

FPS 86H-7482-9HlC Page A - 249

APPENDIX A

The problem must be stated in the standard form:

maximize z = C' * x

subject to A * x = B
and X(j) >= 0, for j = l to N

where B(i) >= 0, for i = l to M

Thereforei it is the rac:nnnc: i hi 1 i i-u nr i-ho user to: ---r-·o-------,L -- -0·-
(a) Convert a minimization problem to a maximization

problem by replacing C with -c.
(b) Convert inequality constraints to equality con

straints by adding a slack variable or sub
tracting a surplus variable.

(c) Ensure that B(i) >= 0 by multiply the i-th con
straint by -1.0 if B(i) < 0.

(dj Ensure that the decision variables are con
strained to be nonnegative. If X(j) is uncon
strained in sign then replace it by the
difference of two new nonnegative variables.

In this variation of the two phase, revised simplex
method, a composite problem is formed (virtually) in
SIMPLE that includes both the actual (phase 2)
objective equation and· the artificial (phase 1)
objective equation as constraints making a total of
MP2 constraints. The variables for the internal com
posite problem are:

X(~) - The actual objective; i.e., Z
X(l) to X(N) - The actual decision variables
X(N+l) - The artificial objective
X(N+2) to X(N+M+l) - The artificial variables
where X(N+l+i) is the artificial variable for the
i-th constraint.

The variables X(0) and X(N+l) to X(N+M+l) are virtual
variables and, thus, do not use any storage space.

X(0) must always be a basic variable and IB(l) must
always be zero. X(N+l) must be a basic variable
during phase one and IB(2) must equal N+l whenever
X(N+l) is basic. At least one artificial variable
(including X(N+l)) must always be basic. During
phase two, ·any artificial variables in the basis will
have a value of zero. Generally, during phase two,
only one artificial variable will be basic and it
will be X(N+l); however, this need not be the case.

FPS 86H-7482-iSlC Page A - 251

APPENDIX A

EXAMPLE: Given a problem in standard form where

A: l. 2. 3. '1. '1. '1. '1. '1. 1. '1. '1. '1. '1.
'1. '1. '1. 3. 1. 2. '1. '1. '1. l. '1. '1. '1.
2. 3. '1. 2. '1. '1. 2. '1. '1. '1. l. '1. '1.
tr. tr. 3. 0. s. Ji!. 2. 3. '1. {;. {;., l. '1.
3. '1. g. '1. '1. 3. H. l. '1. '1., '1 .. '1. 1.

the inputs a.re:

M = 5
N = 13
MP2 = 7
NP! = 14

KI '1, '1, '1, '1

NS = 22

s 1., 2. , 3., 2., 3 •I 3 .. ' 3. , 3. ' 2. ' 1. ' 5., 2. '
3. ' 2. , 2 0 , 3. ' 1. I 1., 1., 1., 1., l.

IRN 1, 3, 5, 1, 3, 1, 4, 2, 3, 2, 4, 2'
5, 3, 4, 4, 5, 1, 2, 3, 4, 5

ICP 1, 4, 6, 8, lH, 12, 14, 16, 18, 19, 2'1, 21,
22, 23

B 14., 25.' 21., 3'1.' 34.

c 9. ; 9.; 4. i 8.; 7 .. i 6 .. i 8. i
t:; -. ,. a

Al • ;

'1.' '1., '1.' H.

IB Don't care since KI(l) = '1

The outputs are:

x '1., 5. , '1., 3., '1.' 8. ' '1.' 1'1., 4 • I '1., '1.,
g., '1.

y '1. '1'1'1'1' '1.6667, 3. '1'1'1H, 1. 4815, 1.5556, y6, y7
where y6 and y7 not of interest (scratch)

z = 177 .0

IB '1, 14, 9, 2, 8, 4, 6

KO '1, 7, 7, '1, 7, 4

FPS 868-7482-BBlC Page A - 253

APPENDIX A

EXAMPLE:

A(INPUT) = 13.0'0'0' 4.0'0'0' 1.0'0'0' g_ggg 7.fI!JfJ
g_ggg -3 .!J~Jg 8.fififI -2. mrn -7.f!fI{J

A(OUTPUT) = 13.0'0'0' 3.923 f!.!J77 g_ggg 4.70'6
g_ggg -0'.765 1. 7!J6 -xr. 425 -0'. 778

UI TJJt>fTl"fl\ = g_ggg l.ggg f!.f!gfJ fi!. 5!Jfi! tX r:rrxrx
.- \ _,. .. _ -- I A.I. JUllJI.I

MAXA = l 2 4 5 8 11
NN = 5
MA = 3
NWA = HJ
KKK = 3

V(OUTPOT) = -!J.0'43 !J.563 !J.245 !J.40'3 !J.315

FPS 86H-7482-gs1c Page A - 255

APPENDIX A

EXAMPLE:

Input:

N = 5
NM = 5

A : -1..0' .0' • .0' 2 • .0' 4 • .0' .0' • .0'
ff • .0' 2 • .0' 3 • .0' .0' • .0' -L.0'
2 • .0' 3 • .0' 5.0' 0'.0' 0' • .0'
4 • .0' ff • .0' .0'.0' -2.0' ff • .0'
H • .0' -1..0' .0' • .0' .0' • .0' 1..0'

Output:

D -2 • .0' -1..0' 5.0' 2 • .0' 1..0'

E .0'.0' -4 • .0' -2.0' -3.0' -1..0'

E2: .0' • .0' 16 • .0' 4.0' 9.0' 1..0'

FPS 86B-7482-SB1C Page A - 257

APPENDIX A

********** **********

* * * *
* VASORT * - VECTOR SORT ALGEBRAIC VALUES - * VASORT *
* * *

PURPOSE: To sort a vector into an ascending vector
of algebraic values using Quicksort.

CALL FORMAT: CALL VASORT(A,I,N,W)

PARAMETERS: A

I
N
w

=
=
=
=

Floating-point vector to be sorted in place
Integer element step for A
Integer element count
Floating-point vector of at most 2*log2(N) words
of contiguous space for working stack of
pointers

DESCRIPTION: VASORT sorts elements of a vector into an ascending
vector of algebraic values by the method of
Quicksort (Hoare's partition-exchange sort) in
place. The procedure iteratively partitions

EXAMPLE:

the vector creating two subvectors, one whose
values are less than or equal to the value
initially at the middle location, and the other with
elements greater than or equal to that value.
This chosen value ends up in its true
(post-sorted) position between the two subvectors.
The half-way location was chosen for initial trial
comparison in order to speed the sort when the
original vector is already partly ordered.

After each partition, first and last locations of
the larger subvector are stored in a pointer stack,
which can accumulate no more than log2(N) pairs,
and the process of partitioning is continued on the
smaller subvector. The process of comparison and
partitioning is continued until no subvectors
remain. The vector is then completely sorted.

N = 5

A(input)
A(output)

5.H 4.H -g.5 -1.g
-1.H -H.5 4.g s.g

8.0
a.g

*

FPS 861-7482-gBlC Page A - 259

* *
* VSORT *

*

PURPOSE:

APPENDIX A

*

- VECTOR SORT WITH INDICES --- * VSORT *
* *

To sort a vector into an ascending vector of
algebraic values using Quicksort. When the elements
of the A vector are swapped, corresponding elements
of the P vector are also swapped. Typical use of
the P vector is to record the original indices of the
sorted vector.

CALL FORMAT: CALL VSORT(A,I,P,J,N)

PARAMETERS: A = Floating-point vector to be sorted in place
I = Integer element step for A
p = Integer or real vector of starting indices
J = Integer element step for p

N = Integer element count

DESCRIPTION: VSORT sorts elements of a vector into an ascending
vector of algebraic values by the method of
Quicksort (Hoare's partition=exchange sort) in
place. The procedure iteratively partitions
the vector creating two subvectors, one whose
values are less than or equal to the value
initially at the middle location, and the other with
elements greater than or equal to that value.
This chosen value ends up in its true
(post-sorted) position between the two subvectors.
The half-way location was chosen for initial trial
comparison in order to speed the sort when the
original vector is already partly ordered.

After each partition, first and last locations of
the larger subvector are stored in a pointer stack,
which can accumulate no more than log2(N) pairs,
and the process of partitioning is continued on the
smaller subvector. The process of comparison and
partitioning is continued until no subvectors
remain. The vector is then completely sorted.

FPS 86B-7482-H&lC Page A - 261

APPENDIX A

SIGNAL PROCESSING LIBRARY

FPS 866-7482-HBlC Page A - 263

* *
* ACOR'!' *
* *

PURPOSE:

APPENDIX A

* *

- AU'l'O-CORRELATIOH (TIME-DOMAIN) -- * ACORT *
* *

To perform an auto-correlation operation on a vector
using time-domain techniques.

CALL FORMAT: CALL ACORT(A,C,N,M)

PARAMETERS: A =
c =
N =

M =

Floating-point input vector
Floating-point output vector
Integer element count for C
(Number of lags)
Integer element count for A
(Note vector -i----~-'1:'.J.'l:'Ul'l:'lll..QJ occupy
addresses.)

-------·~.: ··-'-UUQJ'l:'l,,;U I.. J. V 'I:'

DESCRIPTION: C(m)=SUM(A(m+q-l)*A(q)),
for q=l to M-m+l

EXAMPLE:

m=l to N

ACORT uses time-domain techniques (compare with ACORF)
to compute the auto-correlation function. This routine
needs less storage than ACORF, and runs faster when N
and/or M is small. The resultant vector C must not
overlay the source vector A.

N = 3
M = 5

A 1.0 2. 0 3. 0 4. 0 5 • .'1
c 55 ··-" 4.'1.0 26.0

Page A - 265

APPENDIX A

********** **********

* * * *
* BLKMAN * BLACKMAN WINDOW MULTIPLY - * BLKMAN *
* * * *
********** **********

PURPOSE: To multiply a vector by a Blackman window.

CALL FORMAT: CALL BLKMAN(A,I,C,K,N)

PARAMETERS:

DESCRIPTION:

EXAMPLE:

A = Floating-point input vector
I = Integer element step for A
C = Floating-point output vector
K = Integer element step for C

N = Integer element count (a power of 2)

("" ,_,
'-' \ lU J = A(m)*(Z.42~Z.5Z*COS((m=l)*(2*PI/N))

+.0' • .0'8*COS((m-1)*(4*PI/N)))
for m=l to N

Multiplies the elements of the vector A by
an N element Blackman window function, and
stores the results in the vector C. N must be
a power of 2.

I = l
K = l
N = 8

A 1..0' 1..0' l.kJ 1..0'
l.kJ 1..0' 1..0' 1..0'

c .0' • .0'.0'.0' ~J. .'166 .0'.34.0' .0'. 774
l.kJ.0'.0' .0'. 774 .0'.34.0' JL kJ66

FPS 866-7482-HBlC Page A - 267

APPENDIX A

THLINC = Floating-point input scalar containing
the phase increment threshold (used to
obtain more confident phase estimates near
sharp zeros)

THLCON = Floating-point input scalar containing
the phase consistency threshold

WMD = Integer work area vector of length 39
used for various software stacks during phase
unwrapping

IXCXST = Integer input scalar X and ex input status:
g if X is provided as input and

ex is not provided as input
l if X is not provided as input and

ex is provided as input
2 if both X and ex are provided as input

IAUXST = Integer input scalar AUX input status:
g if AUX is not provided as input
l if AUX is provided as input

IPHWST = Integer input scalar phase unwrapping
status:
g if complex cepstrum is desired
l if phase unwrapping only is desired

NOTE: For APFTN64 calls to CCEPS, the dimension
of arrays x, ex, and AUX must be greater
than or equal to NFFT2 and the dimension
of array WMD must be greater than or equal
39.

DESCRIPTION: See "Programs for Digital Signal Processing",
IEEE Press, 1979.

1) Input parameters are checked for out of range
conditions. If any errors are detected, then
SSUC gets the appropriate error code (2.g - 9.g)
and CCEPS returns.

2) If IXCXST=g then X is used to compute ex.
3) If IXCXST=l then ex is used to compute x.

Note that in this case the vector X will occupy
NFFT2 words in Main Memory but only the first NX
elements of X will be used in further calculations.

4) If IAUXST=g then X is used to compute AUX.
5) Each of the NFFT2 elements of ex and AUX are

divided by 2.g to match IEEE formulation.
6) If the first element of ex is less than g • .0'

then SNX = -1..0'
else SNX = +1.g •

7) The magnitude of the spectrum is computed and
stored in the real positions of AUX:

FPS 86H-7482-HH1C

the phase derivative of the spectrum is computed
and stored in the imaginary positions of AUX;
and twice the linear phase estimate (mean of the
phase derivative) is computed for use in the
phase unwrapping computation.

Page A - 269

CX(OUT) -1. 6639
fI.9543
3.5771

AUX(OUT): f;.0359
6.7434

1279.4929

SNX = l.ffffffff
SFX = -2.lffffff
ssuc = ff .ffffffff

FPS 86H-7482-BB1C

g_gggg -5.9134
l.4fJ85 3.fJ149
0.};000

-2.6140 0.fJf10f1
-2. 7728 415.6262
-2.9325

APPENDIX A

ff.7447
g 0 7278

5.5523
-2. 9137

Page A - 271

APPENDIX A

********** **********
* * *
* CCOR'l' * - CROSS-CORRELA'l'ION ('l'IME-DOMAIN) - * CCORT *
* * * *
********** **********

PURPOSE: To perform a cross-correlation operation on two
vectors using time-domain techniques.

CALL FORMAT: CALL CCORT(A,B,C,N,M)

A = PARAMETERS: Floating-point input vector (operand)
B =
c =
N =
M =

Floating-point input vector (operator)
Floating-point output vector
Integer element count for C (number of lags)
Integer element count for A and B
(Note vector elements occupy consecutive
addresses.)

DESCRIPTION: C(m)=SUM(A(m+q-l)*B(q));
for q=l to M-m+l

EXAMPLE:

and m=l to N

CCORT uses time-domain techniques (compare with CCORF) to
compute the cross-correlation function. This routine
needs less storage than CCORF, and runs faster when N
and/or M is small.

N = 3
M = 4

A 1..0' 2 • .0' 3 • .0' 4 • .0
B 1.0' .kJ 2~J..0 3.0 • .0 4$3'..0
c 3.0'Iif. IiJ 2IiJiif • .0 11.0 • .0

FPS 86B-7482-BiiflC Page A - 273

APPENDIX A

********** **********
* * * *
* CORER * - COHERENCE FUNCTION - * COHER *
* * * *

PURPOSE: To compute the coherence function, given the
auto-spectra of two signals and the cross-spectrum
between them.

CALL FORMAT: CALL COHER(A,B,C,D,N)

PARAMETERS: A = Floating-point input vector
(Auto-spectrum)

B = Floating-point input vector
(Auto-spectrum)

c = Complex-floating-point input vector
(Cross-spectrum)

D = Floating-point output vector
(Coherence function)

N = Integer element count
(Note vector elements occupy consecutive
addresses.)

DESCRIPTION: D(m)= (R(C(m))**2+I(C(m))**2)/(A(m)*B(m))~ for m=l to N

EXAMPLE:

N = 3

A l.H 2.H 3.H
B 4.H 5 .H 6.H
c (l.H,2.H) (3.H,4.H) (5.H,6.H)
D : l.25 2.5 3.39

FPS 86H-7482-BB1C Page A - 275

APPENDIX A

********** **********
* * * *
* DECFIR * - DECIMATION - * DECFIR *
* * *

PURPOSE: To FIR filter an input vector using a convolution
technique incorporating decimation by a factor D.
Typically, the input vector is a digital signal
requiring low pass filtering and the operator vector
is the array of pre-determined filter coefficients.

CALL FORMAT: CALL DECFIR(A,B,C,D,N,M)

PARAMETERS: A = Floating-point input (undecimated) vector
B = Floating-point input operator vector
C = Floating-point output vector
D = Integer input decimation factor (D > 0)
N = Integer input element count expected for C

when convolving without decimation
(NOTE: the actual size of the output vector

C will be [(N-1)/D]+l)
M = Integer input element count for B

(NOTE: element count for A must be N+M-i)

DESCRIPTION: C(m) = SUM (A(D*(m-l)+q) * B(q) for q=l to M
and m=l to [(N-1)/D]+l

(NOTE: This assumes that the operator array B
is loaded with the elements arranged in
reverse order. Thus:
B(l) = Mth operator point
B(2) = (M-l)th operator point

B(M) = 1st operator point)

For references see:
(1) A. Peled ana B. Liu, "Digital Signal Processing:

Theory, Design and Implementation." John Wiley,
1976.

(2) R. E. Crochiere and L. R. Rabiner, "Optimum FIR
digital filter implementation for decimation,
interpolation, and narrow band filtering," IEEE
Trans. Acoust. Speech Signal Processing,
vol ASSP-23 pp 444-456, Oct. 1975.

This routine performs a convolution on the decimated
operand A with the operator B. The results are
stored in [(N-1)/D]+l elements of vector c.

FPS 86H-7482-HH1C Page A - 277

APPENDIX A

********** **********
* * * *
* ENVEL * - ENVELOPE DETECTOR - * ENVEL *
* * * *
********** **********

PURPOSE: To obtain the envelope of a vector X(t).

CALL FORMAT: CALL ENVEL(X,E,N)

PARAMETERS: X = Floating-point input vector
E = Floating-point output envelope vector
N = Integer element count (a power of 2)

DESCRIPTION: E(t) = SQRT { X(t)**2 + H{X(t)}**2 } for t=l to N
where: H{X(t)} =Hilbert transform of X(t).

EXAMPLE:

For references see any standard text on
communication theory, viz. "Communications Systems
and Techniques," M.Schwartz, W.Bennet, & Stein,
McGraw Hill.

This routine starts by obtaining the Hilbert
transform of the input vector. The formula shown
above is then used to extract the envelope.

N = 8

x 2.7 1.6 8.3 4.2 9.7 14.1 3.6 0.5

E 2.72 4.32 8.82 4.30 11.33 14.73 9.21 0.85

FPS 861-7482-HilC Page A - 279

* *
* BANH * - HANNING WINDOW MULTIPLY -
* *

PURPOSE: To multiply a vector by a Hanning window.

CALL FORMAT: CALL HANN(A,I,C,K,N,F)

PARAMETERS: A
I
c
K
N
F

=
=
=
=
=
=

Floating-point input vector
Integer element step for A
Floating-point output vector
Integer element step for C
Integer element count (a power of 2)
Integer normalization flag
g for unnormalized Hanning window
(peak window value=l • .0')
1 for normalized Hanning window
(peak window value=l.63)

APPENDIX A

* *
* HANN *
* *

DESCRIPTION: N should be a power of 2. If not, HANN sets N to the
next lower power of 2. For further information see
Digital Time Series Analyses, Otnes and Enochsen, John
Wiley '72, page 294.

C(m)=W*A(m)*{l • .0'-COS(2*PI*(m-l)/N); for m=l to N

EXAMPLE:

where:

W = .0'.5 for F=9
W = .0'.8165 for F=l

N = 4
F = .0'

A 1..0' 1..0' 1..0' 1..0'
c .0' • .0' .0'. 5 1..0' .0'. 5

N = 4
F = 1

A 1..0'.0' 1..0'.0' 1..0'.0'
c .0' • .0'.0' .0'.82 1.63

FPS 861-7482-HilC

1..0'.0'
.0'.82

Page A - 281

APPENDIX A

********** **********
* * * *
* BLBRT * - HILBERT TRANSFORMER - * HLBRT *
* * * *
********** **********

PURPOSE: To obtain the Hilbert transform of an analytic
signal.

CALL FORMAT: CALL HLBRT(X,H,N)

PARAMETERS: X = Floating-point input vector
H = .Floating-point output Hilbert transformed vector
N = Integer element count (a power of 2)

DESCRIPTION: F{H{X(t) = -J * F{X(t)} for t=l to N

EXAMPLE:

where: F{X(t)} =Fourier transform of X(t).
H{X(t)} =Hilbert transform of X(t).
J = SORT(-1)

(1) A real to complex FFT of X(t) is obtained.
(2) Real components of the result are multiplied by

-1.
(3) Positions of the real and imaginary components

are switched.
(4) A complex to real inverse FFT is performed on the

results of step 3.

N = 8

x 2.7 1.6 8.3 4.2 9.7 14.1 3.6 0'. 5

H 0'.4 -4.0' -3.0' -0'.9 -5.9 4.3 8.5 0'. 7

FPS 869-7482-SSlC Page A - 283

APPENDIX A

EXAMPLE:

N = 128
M = L0'

X(i) 1.0' * SIN(i * HJ * 2*PI/l28) +
2.0' * SIN(i * 2f! * 2*PI/128) +
3.0' * SIN(i * 3g * 2*PI/128)
for i = l to 128

j RC(j) A(j) ~L(j) R(j)

l -.0'.2847 l • .0'f!.0'.0' 89599.9 89599.9
2 .0'.8183 -.0'.8897 82335 .. 4 25512.8
3 -.0'.52.0'.0' l.f!4.0'4 27198.6 -6.0112. 8
4 .0'.54.0'3 -.0'.25.0'9 19844.6 -37858.5
5 ct i ai:: 'l Cl 1 Cl'> A 1 A etc;. 1 , 322.0'8.9 U • -1.VUJ A.I • .. .u ... , ..-""'Z&.1.J..a. • .-

6 -.0'.2451 .0'. 2.0'85 13563.2 24552.l
7 -.0' • .0'955 .0' .1145 12748.7 -3.0'.0'17. l
8 .0'.3127 0 • .0661 12632.4 -189.0'9.6
9 .0'.4627 .0' .1081 11397.1 35262.2

1.0' .0'. 3054 0.1478 8957.3 18797.9
11 0.3054 8121. 7 -52577. 9

ER = .0'

FPS 861-7482-jjlC Page A - 285

APPENDIX A

EXAMPLE:

N = 8
NP = 5

" = 4 • .0' .t'\

MODE = 1

A : .0' • .0' 1.0' • .0' 2.0' • .0' 3 • .0' 4 • .0' 5.0' • .0' 6 • .0' 7.0' • .0'

B 2.0' • .0' 3 • .0' 5.0' • .0' 6 • .0'
c 3 • .0' 4 • .0' 6 • .0' 7 • .0'

R = 4 • .0'

FPS 868-7482-H&lC Page A - 287

EXAMPLE:

Inverse transform:
x(k) =SUM { X((r-l)*df-Fl*df) *

EXP(j*2*pi*(r-l)*df*(k-l)*dt) }
for r = 1 to NF

where dt = l/XM.

APPENDIX A

Thus the same formula used for the forward transform
may be used for the inverse transform if here
W = -2*pi*(k-l)/XM and Fl and NF replace Tl and
NT respectively. If the r=l component X(l) is
input, it must have an imaginary part equal to .0'.

The DFT is produced by the modified Goertzel algorithm
as described in
(1) A.V. Oppenheim and Schafer, "Digital Signal

Processing," Prentice Hall, 1975
and
(2) F. Bonzanigo, "An improvement of Tribolet's

phase unwrapping algorithm," IEEE Trans.
Feb. 1978, pp. l.0'4-1.0'5

Additionally, an exponential factor has been used
to account for any offset of the input values from
zero (Tl or Fl).

Inverse times are approximately double for forward
times after the NT and NF values are interchanged.

Fl = .0' • .0'
Tl = 1..0'
NT = 8
NF = 4
XM = 8 • .0'
I = 1

A(INPUT) 1..0' .0' • .0' -1..0' .0' • .0' 1..0' .0' • .0' -1..0' .0' • .0'

B(OUTPUT) (.0' • .0', .0' • .0')(.0' . .0', .0' • .0')(.0' • .0',-4 • .0')(.0' • .0', .0' • .0')

Fl = 2 • .0'
Tl - .0' .G
NT = 8
NF = 2
XM = 8 • .0'
I = -1

B(INPUT) (4 • .0', .0' • .0')(.0' • .0', .0' • .0')

A(OUTPUT) 8 • .0' .0' • .0' -a .0 .0' • .0' 8 • .0' .0' • .0' -8 . .0' .0' • .0'

FPS 86H-7482-HH1C Page A - 289

APPENDIX A

********** **********
* * * *
* RF'l'II * - REAL FPT WITH QUARTER INTERPOLATION -- * RFTII *
* * * *

PURPOSE: To perform an in-place real-to-complex forward or
a complex-to-real inverse fast Fourier transform (FFT)
including the case of N=64K via quarter interpolation
in the 4K cosine table.

CALL FORMAT: CALL RFTII(C,N,F)

PARAMETERS: C = Floating-point input/output vector
N =_Integer input element count (power of 2)
F = Integer input direction flag:

+l for forward
-1 for inverse

DESCRIPTION: See RFFT.

EXAMPLE:

N = 4
F = 1 (Forward)

C(IN) HJ.JJ HJ.JJ HJ.JJ
C(OUT) (8i:f.JJ,i:f .JJ) (H.i:f ,i:f .i:f)

N = 4
F = -1 (Inverse)

C(IN) (80.JJ,JJ.H) (H.i:f,JJ.H)
C(OUT) ag.g a0.g ag.g

FPS 86H-7482-iilC Page A - 291

* *
* TCONV *
* *

PURPOSE:

APPENDIX A

* *

POST-TAPERED CONVOLUTION (CORRELATION) - * TCONV *
* *

To perform a post-tapered convolution or correlation
operation on two vectors.

CALL FORMAT: CALL TCONV(A,I,B,J,C,K,N,M,L) for correlation
CALL TCONV(A,I,B(N),J,C,K,N,M,L) for convolution

PARAMETERS: A = Floating-point input vector (operand)
I = Integer element step for A (>0')
B = Floating-point input vector (operator)
J = Integer element step for B (<.0' => Convolution)
~ =

,.., ,..,.,,,.p; .,.,,...._,.. ; .,.,p output vector ""' ,I,; V'W."'°4"'.6~ f:''-'4•.A.W

K = Integer element step for c
N = Integer element count for c
M = Integer element count for B

L = Integer element count for A

FORMULA: C(m)=SUM(A(m+q-l)*B(q));
for q=l to R
and m=l to N

where:

R=MIN(M~L-M+l)

DESCRIPTION: TCONV performs either a correlation (I and J positive) or
a convolution (I positive and J negative) operation
between the L-element operand (trace) vector A and the
M-element operator (kernel) vector B. The N-element
result vector is stored in C. TCONV automatically
inserts zeros into the calculation if N+M-1 exceeds the
operand length L, thus saving storage and zeroing of
N+M-1-L extra operand elements. (Compare with CONV.)

EXAMPLE:

N = 4

M = 2
L = 4

CORRELATION:

A .0' • .0' 1..0' 3 • .0' 5. kl
B 2 • .0' 1..0'
c 1..0' 5 • .0' 11..0' 1.0' • .0'

FPS 868-7482-SSlC Page A - 293

APPENDIX A

********** **********
* * * *
* TRANS * - TRANSFER FUNCTION - * TRANS *

* * * *
********** **********

PURPOSE: To perform a complex transfer function calculation by
niuirfinn rho 1"'1"r"\C:C:-c:norrr11m hu rho ;:a11rn-c::nol"'t-r11m
-- T -----~ -··- -- --- -.c:--- -- -··· -.i -··- ---- -.c:--- -- -····

CALL FORMAT: CALL TRANS(A,B,C,N)

PARAMETERS: A = Floating-point input vector
(Auto-spectrum)

B = Complex-floating-point input vector
(Cross-spectrum)

c = Complex-floating-point output vector
(Transfer function;

N = Integer element count
(Note vector elements occupy consecutive
addresses.)

DESCRIPTION: R(C(m))+I(C(m))=(R(B(m))+!(B(m)))/A(m); for m=l to N

EXAMPLE:

N = 3

2. !J 3.!J
B (l.H,2.G) (3.G,4.G) (5.G,6.G)
C (l.H,2.G) (1.5,2.G) (l.67,2.G)

FPS 869-7482-SSlC Page A - 295

* *
* VAVLIN *
* *

PURPOSE:

APPENDIX A

*

- VEC'l'OR LINEAR AVERAGING -- * VAVLIN *
*

To update the linear average of a sequence of vectors
to include a new vector.

CALL FORMAT: CALL VAVLIN{A,I,B,C,K,N)

PARAMETERS: A

I
B

c
K

N

=
=
=

=
=
=

Floating-point input vector
Integer element step for A
Floating-point input scalar
(Number of vectors included in current average)
Floating-point input/output vector
Integer element step for C
Integer element count

DESCRIPTION: C(m)=C{m)*B/{B+l.fJ) + A{m)/(B+l.fJ); for m=l to N

EXAMPLE:

N = 5

A : 5.fJfJfJ rn.f!.0'.0' 2g .m:rn 25.fJ.0'fJ 3.0'.fJtJtJ
B : s. mrn
C(INPUT) : rn .000 10.0.00 L0'. £HHJ rn = rJrJrJ rn=ggg
C(OUTPUT) : 9.167 HJ.fJ.0'.0' 11. 667 12. 5.0'0' 13.333

FPS 863-7482-BBlC Page A - 297

* *
* vxcs *
* *

PURPOSE:

VECTOR MULTIPLIED BY SIN AND COS
(TABLE LOOKUP)

APPENDIX A

* *
* vxcs *
* *

To multiply a vector with the sine and cosine
of a linearly increasing argument with a given
initial phase.

CALL FORMAT: CALL VXCS(A,C,K,F,P,N)

PARAMETERS: A = Floating-point input vector to be multiplied by
the sine and cosine functions

c = Complex floating-point output vector
K = Integer input element step for C

(K >= 2j

F = Floating-point input scalar frequency
p = Floating-point input scalar phase at t=.0'

= Floating-point output scalar initial phase value
for next frame

N = Integer element count

DESCRIPTION: Re(C(m)) = A(m) * COS((m-l)*F+P)
Im(C(m)) = A(m) * SIN((m-l)*F+P)

for m = 1 to N

EXAMPLE:

NOTE: The arguments for COS and SIN are expected
to be in radians.

This routine multiplies vector A with a sine and
cosine function defined by frequency F and initial
phase P. Straight ROM table lookup is used for
generating the sine and cosine values and thus this
routine has limited precision. The initial phase
value for the next frame is returned in P.
NarE: K should be greater than or equal to 2
so as not to destroy part of the resultant vector
C as it is generated.

K = 2
F = .0'.S
p = 3.1415927
N = 8

A .0'.H 1..0' 2 • .0' 3.H 4 • .0' 5 • .0' 6 • .0' 7 • .0'

FPS 86H-7482-i91C Page A - 299

APPENDIX A

********** **********

* * * *
* WIENER * - WIENER LEVINSON ALGORITHM - * WIENER *
* * * *
********** **********

PURPOSE: To solve a system of single channel normal
equations which arise in least squares filtering
and prediction problems.

CALL FORMAT: CALL WIENER(LR,R,G,F,A,ISW,IERR)

PARAMETERS: LR =
R =

G =

F =

A =

ISW =

IERR =

Integer filter length
Floating-point input vector (Auto-correlation
coefficients)
Floating-point input vector (Cross
correlation)
Floating-point output vector (Filter
weighting coefficients)
Floating-point output vector
(Prediction error operator)
Integer input (algorithm switch)
g = spike deconvolution
1 ~ general deconvolution
Integer output scalar (failure flag)

DESCRIPTION: WIENER solves:

1. The following set of LR equations for F;

SUM [F(p)*R(m-p+l)=G(m);
for p=l to LR and m=l to LR

2. The following set of LR equations

SUM [A(p)*R(m-p+l)=V*D;
for p=l to LR and m=l to LR

where, A(1) =l. '1
D=l.B when m=l
D='1.g when m not = 1
V=A(l)*R(l)+ ... +A(LR)*R(LR)
R(-i)=R(i)

for A;

If the algorithm is successful IERR is set to 0;
else it is set to the pass number at which the
failure occurred.

FPS 869-7482-SSlC Page A - 3Sl

APPENDIX A

IMAGE PROCESSING LIBRARY

FPS 86H-7482-SS1C Page A - 363

Nl = 4
N2 = 4
F = -1 (Inverse)

C(IN) 4 • .0,kJ.kJ)
4.'1,'1.'1)
4 • .0,fJ.fJ)
4 • .0,fJ.fJ)

C(OUT) (16.J:J,fJ.fJ)
(fJ • .0,0.fJ)
(J:J.kf ,J:J • .0)
(.0.k!,k!.k!)

FPS 866-7482-gSlC

J:J.J:J,kJ.kJ)
kJ.'1,iJ.ff)
J:J.J:J,0 • .0)
fJ.fJ,fJ.kJ)

(16 • .0,0 • .0)
(.0 • .0,kJ.fJ)
(J:J.J:J,kJ.kJ)
(J:J.J:J,J:J.J:J)

APPENDIX A

J:J.J:J,J:J • .0) J:J.J:J,J:J.J:J)
ff.kJ,kJ.ff} ff .kJ ,g .ff)
J:J.J:J,fJ.fJ) J:J.J:J,fJ.kJ)
J:J.J:J,iJ.fJ) J:J.J:J,fJ.kJ)

(16.J:J,fJ.fJ) (16.J:J,.0.kf)
(J:J • .0,.0.kJ) (k!.k!,.0 • .0)
(J:J • .0,.0.J:J) (J:J.J:J,kJ.kf)
(J:J.J:J,J:J • .0) (J:J.k!,kJ.kf)

Page A - 3g5

IR = Integer input scalar flag:
, non-zero for correlation

.0' for convolution

APPENDIX A

DESCRIPTION: C((i+IC-1),(j+JC-l))=
SUM(A((i+IA+k-2-irbias),(j+JA+l-2-icbias))*B(k,l))

where i=l to M

EXAMPLE:

j=l to N
for k=l to MB

and IBl=MB*NB-IBl+l for convolution
icbias=(IBl-1)/MB
irbias=(IBl-1)-MB*icbias
(row and column biases are from the
initial B(l,l) position.

CONV2D correlates or convolves a two-dimensional
operand submatrix A' of A with a two-dimensional
operator matrix B, and stores the result in
submatrix C' of C. A one-to-one correspondence
exists between the elements of A' and C'.

This routine does not do boundary testing.
Therefore care must be taken when choosing values
for IA, JA, and !Bl for given values of Mr N, MB,
NB, and IR to avoid using data outside of A when
computing C' •

MA = 9
IA = 1
JA = 1
M = 7

N = 7
MB = 3
NB = 3

MC = 9
IC = 1
JC = 1

A : .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0'

.0' • .0' 1 . .0' 1 . .0' 1 . .0' 4 • .0'

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0'

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0'

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0'

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0'

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0'

z.z z.z
.0' .H .0' .H .0' • .0'

ff .ff 0.ff
4. ff 8 • .0'

4 • .0' 8. ff
4. ff 8. ff
4 • .0' 8 • .0'

ff • .0' ff • .0'

ff • .0' .0' • .0'
z.z z.z
.0'. ff .0' • .0'

.0' • .0'

.0' • .0'
0 • .0'
0 . .0'
.0' • .0'
.0' • .0'
.0' • .0'

ff • .0'
0 • .0'
0 .ff
0 • .0'
.0' .0
0 . .0'
0 • .0'

.0' • .0'

Page A - 3'17

IA

APPENDIX A

JA

I IBl2S

I I

Proc:essinq

A

aere the operator, a, is positioned for proc:essinq the initial
point in A'.

-5455-

Figure A-1 Correlation

JA

I IBl=-5

Proc:essinq

A'

A

aere the operator, a, is positioned for processinq the initial
point in A'.

-5456-

Figure A-2 Convolution

FPS 866-7482-BBlC Page A - 3'19

APPENDIX A

EXAMPLE:

MA = 8
IA = 2
JA = 2
MC = 8
IC = 2
JC = 2
M = 6
N = 6

A : kl. kl kl. kl kl. kl ff .kl ff. ff kl.kl kl.kl ff .kl
ff .H 1..0' 1..0' l.ff l.kl l.kl l.kl ff • .0'
kl • .0' 1..0' 1..0' l.ff l.ff 1..0' 1..0' ff .kl
kl • .0' l.kl 1..0' 2. ff 2 .kl l.kl l.kl ff .kl
kl.H l.kl l.kl 2. ff 2.kl l.kl l.kl ff .kl
kl.kl l.ff l.kl 1..0' l.ff 1..0' l.kl ff .kl
rt rt , rx , rx 1..0' , er l er 1 er rx er
JU• IU JUu ... JU ... JU ••.U JU • .u

kl • .0' ff • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0'

c u u u u u u u u
u 2.kl 3 • .0' 3 • .0' 3 • .0' 3 • .0' 2.kl u
u 3 • .0' 1..0' 2 • .0' 2 • .0' 1..0' 3 • .0' u
u 3 • .0' 2 • .0' 2.H 2 • .0' 2.H 3 • .0' u
u 3 • .0' 2 • .0' 2 • .0' 2. ff 2 • .0' 3 • .0' u
u 3 .H 1..0' 2 • .0' 2 • .0' 1..0' 3 .kl u
u 2 • .0' 3.H 3.H 3 • .0' 3.kl 2.kl u
u u u u u u u u

(U indicates unchanged elements of C)

FPS 86H-7482-H91C Page A - 311

EXAMPLE:

APPENDIX A

This routine differs from GRAD2D in that it can
perform testing for image boundaries, substituting
zeros for values that are needed outside the
boundary. The routine runs somewhat more slowly
than GRAD2D.

If testing is employed, zeros are substituted for
those elements in the formula which fall outside
of A. This is useful in preventing wrap-around
and incorrect processing of the columns and rows on
the borders of A. However, the testing adds pro
cessing time and is unnecessary when there is a
border of width one around A' which lies totally
within A.

If boundary testing is not employed (i.e. B = .0') and
if a boundary of A' coincides with all or part of a
boundary of A, then boundary effects will be observed
in the computation of C'. In the cases of JA=l or
JA+N-l=NA these boundary effects may not be pre
dictable since data stored adjacent to A may not be
predictable.

MA = 8
NA = 8
IA = l
JA = l
c = 64
MC = 8
NC = 8
IC = 1
JC = 1
M = 8
N = 8
B = 1

A 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0 1..0
1..0 1..0' 1..0' 1..0' 1..0' 1..0' 1..0 1..0'
1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0
1..0 1..0' 1..0 2 • .0' 2 • .0' 1..0' 1..0' 1..0'
1..0' 1..0' 1.ff 2 • .0' 2 • .0' 1..0' 1..0' 1..0'
1..0 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0'
1..0' 1..0' 1..0' 1..0 1..0' 1..0' 1..0' l.H
1..0' 1..0' 1..0' 1..0' 1..0 1..0' 1. kJ 1. kJ

FPS 866-7482-BSlC Page A - 313

* *
* LAPL2D *
* *

PURPOSE:

- LAPLACIAN FILTER -

To filter images for edge enhancement by
.::.nnlvinn .::. twn-nim,::an~inn.::.1 T..::.nl.::tt"'!i.::.n -JC'"".--J; ---~ - ---- --------------- __ JC"" ______ _

operator.

APPENDIX A

* *
* LAPL2D *
* *

CALL FORMAT: CALL LAPL2D(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX)

PARAMETERS: A = Floating-point input matrix
(column ordered)

MA = Integer number of rows of A
NA = Integer number of columns of A
IA - Integer initial row of the submatrix A' of A

to be processed (l < or = IA < or = MA)
JA = Integer initial column of the submatrix A' of A

to be processed (l < or = JA < or = NA)
C = Floating-point output matrix

(column ordered)
MC = Integer number of rows of C
NC = Integer number of columns of C
IC = Integer initial row of C which locates the

submatrix C', where C' will be the processed A'
(l < or = IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C' (1 < or = JC < or =

M = Integer number of rows in A'
(l < or = M < or = MA)

N = Integer number of columns in A'
(l < or = N < or = NA)

Mr"'_I

IX = Integer distance to filter side from center of
square: side S=2*(IX+l); filter area= S**2

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q)
+A'(p,q-IX)+A'(p,q+IX)

Each of the elements in C' is calculated according
to the above formula, which adds to a bias of 128
a weighted combination of each pixel and its 4
horizontal and vertical neighbors at distance IX.

If a boundary of A' coincides with all or part of a
boundary of A, then boundary effects will be observed
in the computation of C'. In the cases of JA<=IX or
JA+N-IX>=NA these boundary effects may not be pre
dictable since data stored adjacent to A may not be
predictable. Boundary effects will be predictable
if A' is initially ringed with a known constant,
such as zero.

FPS 86«-7482-«BlC Page A - 315

APPENDIX A

********** **********
* * * *
* LPL2DB * - LAPLACIAN FILTER WITH BOUNDARY TEST - * LPL2DB *
* * * *
********** **********

PURPOSE: To filter images for edge enhancement by applying
a two-dimensional Laplacian operator. This
routine does special boundary testing.

CALL FORMAT: CALL LPL2DB(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX,B)

PARAMETERS: A = Floating-point input matrix
(column ordered)

MA = Integer number of rows of A
NA = Integer number of columns of A
IA = row of the submatrix A' of A

to be processed (1 < or = IA < or = MA)
JA = Integer initial column of the submatrix A' of A

to be processed (1 < or = JA < or = NA)
C = Floating-point output matrix

(column ordered)
MC = Integer number of rows of C
NC = Integer number of columns of C
IC = Integer initial row of C which locates the

submatrix C', where C' will be the processed A'
(1 < or = IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C' (1 < or = JC < or = NC)

M = Integer number of rows in A'
(1 < or = M < or = MA)

N = Integer number of columns in A'
(1 < or = N < or = NA)

IX = Integer distance to filter side from center of
square: side S=2*(IX+l); filter area= S**2

B = Integer input scalar which is g if no boundary
testing is desired; if not = g, values needed
outside of A are evaluated as zeros

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q)
+A'(p,q-IX)+A'(p,q+IX)

Each of the elements in C' is calculated according
to the above formula, which adds to a bias of 128
a weighted combination of each pixel and its 4
horizontal and vertical neighbors at distance IX.

This routine differs from LAPL2D in that it can
perform testing for image boundaries, substituting
zeros for values that are needed outside the
boundary. The routine runs somewhat more slowly
than LAPL2D.

FPS 86B-7482-BB1C Page A - 317

APPENDIX A

********** **********
* * * *
* MED2D * --- MEDIAN FILTER --- * MED2D *
* * *
********** **********

PURPOSE: To filter out noise in images by replacing
each pixel with the
in a square window centered around the pixel.

CALL FORMAT: CALL MED2D(A,MA,IA,JA,C,MC,IC,JC,M,N,IX,H,L)

PARAMETERS: A = Floating-point input matrix
(column ordered)

MA = Integer number of rows of A
(NA= Number of columns.of A)
IA - Integer initial row of the submatrix A'

to be processed (1 < or = IA < or = MA)

JA = Integer initial column of the submatrix
to be processed (1 < or = JA < or = NA)

c = Floating-point output matrix
(column ordered)

MC = Integer number of rows of C
(NC = Number of columns of C)

of A

A' of A

IC = Integer initial :ow of C which locates the
submatrix C', where C' will be the processed A'
(1 < or = IC < O!. = MC)

JC =

M =

N =

IX =

H =

Integer initial column of C which locates the
submatrix C' (l < or ~ < or = NC)
Integer number of rows in A'
(1 < or = M < or = MA)
Integer number of columns in A'
(1 < or = N < or = NA)
Integer distance to median filter side from
center of square: side S=(2*IX)+l;
filter area = S**2; Ix>g
Floating-point vector histogram used as a work
area

L = Integer input scalar length of H =
2**(number of bits per pixel)

DESCRIPTION: C'(p,q)=median of all elements A'(t,u),
p-IX<=t<=p+IX, q-IX<=u<=q+IX

For each of the elements in A' a histogram is
formed from the median of the elements within
+ or - IX row and column distance from the element.
The median is found via a fast algorithm published
in:

Page A - 319

* *
* MOVREP *

* *

PURPOSE:

APPENDIX A

* *

- SUB-IMAGE MOVE AND LEVEL REPLACE -- * MOVREP *
* *

To simply move a sub-image A' of an image A and/or
to replace each pixel value with another value
as specified in the lookup table, vector T, whose
elements are the new values and whose subscripts
are the original pixel val~es + 1.

CALL FORMAT: CALL MOVREP(A,MA,IA,JA,C,MC,IC,JC,M,N,T,NT)

PARAMETERS: A = Floating-point input matrix
(column ordered)

number of rows of A
(NA = Number of columns of A)
IA = Integer initial row of the submatrix A' of A

to be processed (1 < or= IA < or = MA)
JA = Integer initial column of the submatrix A' of A

to be processed (1 < or= JA < or = NA)
C = Floating-point output matrix

(column ordered)
MC = Integer number of rows of C
(NC = Number of columns of C)
IC = Integer initial row of C which locates the

submatrix C' of C; C' will be the processed A'
(1 < or= IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C' of C (1 < or= JC < or = NC)

M = Integer number of rows in A'
(1 < or = M < or = MA)

N = Integer number of columns in A'
(1 < or = N < or = NA)

T = Floating-point input vector pixel replacement
table

NT = Integer input scalar length of vector T =
2**(# of bits per pixel)
(NT = kJ indicates only submatrix move is
desired)

DESCRIPTION: For pixel replacement,
C'(p,q)=T(FIX(A'(p,q))+l)

For submatrix move,
c I (p, q) =A I (p, q)

FPS 866-7482-HBlC Page A - 321

APPENDIX A

********** **********
* * * *
* RFFT2D * -- REAL TO COMPLEX 2-DIMENSIONAL FFT - * RFFT2D *
* * * *
********** **********

PURPOSE: To perform an in-place two-dimensional real-to
complex forward or a complex-to-real inverse fast
Fourier transform (FFT).

CALL FORMAT: CALL RFFT2D(C,Nl,N2,F)

PARAMETERS: C = Floating-point input/output matrix
(column ordered)

Nl = Integer number of rows =
number of real elements per column
(power of 2 < or ; 16384j

N2 = Integer number of columns =
number of real elements per row
(power of 2 < or = 16384)
NOTE: Nl*N2 must be < or = available main data

F = Integer direction flag:
+l for forward
-1 for inverse

DESCRIPTION: Forward: RFFT2D performs a two-dimensional real to
complex forward FFT on the Nl by N2 real array C,
storing the (Nl/2 + 1) by (N2/2 + 1) complex array
result in form
occupying the same Nl by N2 locations of array C:

Let El = Nl/2 and E2 = N2/2

R(l,l)
R(El+l,1)
R(2,l)
!(2,1)

R(El,l)
I(El,l)

R(l,E2+1) R(l,2)
R(El+l,E2+1) R(El+l,2)
R(2,2) R(2,3)
I(2,2) I(2,3)

R(El,2)
I(El,2)

R(El,3)
I(El,3)

I(l,2) R(l,E2) I(l,E2)
I(El+l,2) .. R(El+l,E2)I(El+l,E2)
R(2,4) R(2,N2-l) R(2,N2)
R(2,4) I(2,N2-l) I(2,N2)

R(El,4)
I(El,4)

R(El,N2-l)I(El,N2)
I(El,N2-l)I(El,N2)

The results of a two-dimensional real-to-complex
forward FFT should be multiplied by l/(2*Nl*N2) for
proper scaling.

Page A - 323

APPENDIX A

LINPACK BLAS LIBRARY

FPS a6g-74a2-ss1c Page A - 325

* *
* CAXPYN *
* *

PURPOSE:

APPENDIX A

* *

- NESTED COMPLEX A * X + Y -- * CAXPYN *
* *

To add a scalar multiple of one complex floating-point
vector to another complex floating-point vector N times,
each time for a different pair of vectors and a different
complex floating-point scalar. The first vector is a
subset of the vector X, and the second is a subset of the
vector Y. The scalar is an element of the vector A.

CALL FORMAT: CALL CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)

PARAMETERS: ISW = Integer input scalar. ISW is a function
selector switch and is treated as a bit

N =

M =

A =

!AO =

x =

!XI =

!XO =
y =

!YI =

string with the bits numbered from the
least significant bit (bit g). If a given
bit is set (equal to 1), then the function
option that corresponds to that bit is selected.
All options are independent of each other and
are summarized below.

Bit g: Negate A * X.
Bit l: Not used.
Bit 2: Use conjugate of A.
Bit 3: Use conjugate of X.

All other bits are ignored.
Integer input scalar. Number of A * x + y

operations, i.e., outer loop count.
Integer input scalar. Number of elements
each A * X + Y operation, i.e., inner loop
count.

in

Complex floating point input vector. Array
scalars.
Integer input scalar. Outer loop element
increment for A.
Complex floating point input vector. First
input vector.
Integer input scalar. Inner loop element
increment for x.
Integer input scalar. Outer loop element
increment for x.
Complex floating point input/output vector.
Second input vector on input. Output vector
output.
Integer input scalar. Inner loop element
increment for Y.

of

on

IYO = Integer input scalar. Outer loop element
increment for Y.

FPS 86H-7482-HH1C Page A - 327

APPENDIX A

EXAMPLE:

Input: ISW = .0'
N = 2
M = 3
IAO = 1
IXI = 1
IXO = .0'
IYI = 1
IYO = 3

A 3 • .0',-l..0') 2 • .0', .0' • .0')

x g • .0', 1..0') 2 • .0', 1..0') (-1.fJ, .0' • .0'}

y (-1..0, 2.fJ) (.0' • .0', g • .0') 2 • .0, .0' • .0'}
(l..0',-3.fJ) (-2 • .0',-l..0') fJ • .0',-2 • .0')

Output: y g • .0, 5 0 .0) 7 • .0', 1..0) (-1..0' I 1..0')
1..0,-1..0') 2.kI, 1.kJ) (-2.kJ,-2 • .0')

FPS 86B-7482-B.01C Page A - 329

APPENDIX A

********** **********
* * * *
* COO'l'C * - COMPLEX INNER PRODUCT -- * CDOTC *

* * * *
********** **********

PURPOSE: To sum conjugates of first complex vector
times elements of second

CALL FORMAT: cw = CDOTC(N,CX,I,CY,J)

PARAMETERS: N = Integer element count
ex = First complex floating-point input vector
I = Integer element step for ex
CY = Second complex floating-point input vector
J = Integer element step for CY
Cw = Complex floating-point output value

DESCRIPTION: cw = SUM((R(CX(m))-I(CX(m)))*(R(CY(m))+I(CY(m))));
for m=l to N

cw = (fiLH,H.JCJ) if N<l.

EXAMPLE:

N = 2
I = 1
"T = , .., .&.

ex (!CJ. 3H, !CJ. 4H) (!CJ. gg, 1.0'0')
CY (!CJ. 3kJ, g. 40') (8.0'0',9.0'0')
cw (9.25,-8.kJ)

FPS 86H-7482-HH1C Page A - 331

DESCRIPTION:

NOTES:

APPENDIX A

z = Complex floating point input/output vector.
An input only if bit 1 of ISW is set.

IZO = Integer input scalar. Element increment
for z.

Z(jz) = r * Z(jz) + s * SUM[X(ix) * y (iy) I i=l,M]

where: ix = (j-1) * IXO + (i-1) * IXI + l
iy = (j-1) * IYO + (i-1) * IYI + 1
.; '7 = I.;_, \ * IZO + l .J ... \ .J ""'"I

s = 1.0, if ISW[0] = 0
= -1.fiJ, if ISW(0] = 1

r = IO .0, if ISW[l] = fiI
= 1.0, if ISW[l] = 1

x = x I if ISW(2] = 0
= Conjg(X), if IS-w[2] = l

y = y , if ISW(J] = IO

= Conjg(Y), if ISW(J] = 1

z = z , if ISW(4] = IO
= Conjg(Z), if ISW[4] = 1

and ISW[k] = bit k of ISW.

If IZO = IO, then CDOTN will set Z(l) equal to
the accumulated sum of all N dot products. If

to this sum.

Memory words occupied by X may intersect those
occupied by Y. In fact, X and Y may coincide.
However, memory occupied by z should not, in
general, intersect that occupied by X or Y.

If N < 1, CDOTN returns with no action taken.

If M < 1 and ISW[l] = 1, CDOTN returns with
no action taken.

If M < 1 and ISW[l] = IO, CDOTN returns with
Z(j) = I0.0 for j = l to N.

In general, M < 1 implies a zero sum of
products.

j=l,N

FPS 86B-7482-HH1C Page A - 333

* *
* CDOTO *
* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

APPENDIX A

* *

- COMPLEX DOT PRODUCT --- * CDO'l'U *
* *

To compute the inner (unconjugated) product
of two complex vectors.

cw = CDOTU(N,CX,I,CY,J)

N = Integer element count
ex = First complex floating-point input vector
I = Integer step for ex
CY = Second complex floating-point input vector
J = Integer step for CY
~T' .. T = ,.. ___ , --- floating-point scalar output result "-" \.-UWp..Lt:=X

cw = SUM(CX(m)*CY(m)); for m=l to N

cw = (kJ • .0,fJ • .0) if N<l.

N = 2
I = 1
J = 1

ex (fr. 3.0, fr. 4.0) (.0. gg, 1. .0f1)
CY (.0. 3.0, - • 4.0) (8.f1f1,9.f1f1)
cw (-8.75,8 • .0.0)

FPS 86H-7482-HH1C Page A - 335

* *
* CSCAL *
* *

PURPOSE:

-- COMPLEX SCALING --

To multiply each component of a vector
by a complex scalar~

CALL FORMAT: CALL CSCAL(N,CA,CX,I)

PARAMETERS: N = Integer element count

APPENDIX A

*

* CSCAL *
* *

CA
ex
I

= Complex floating-point scalar multiple
= Complex floating-point input/output vector
= Integer step increment for ex

DESCRIPTION; CX(mj = CA*CX(m); ~-- --1 J..- 11.T J.UJ. w-.J.. t..U J.-,

EXAMPLE:

N = 3
I = l

CA
CX(INPUT)
CX(OUTPUT)

FPS 869-7482-&BlC

(G.G, l.G)
(l.G, 2.G) (3.G, 4.G) (5.G, 6.G)
(-2.G, l.G) (-4.G, 3.G) (-6.G, S.G)

Page A - 337

APPENDIX A

********** **********
* * * *
* CSSCAL * - REAL TIMES COMPLEXES -- * CSSCAL *
* * * *
********** **********

PURPOSE: To multiply the elements of a complex vector
by a real scalar.

CALL FORMAT: CALL CSSCAL(N,SA,CX,I)

PARAMETERS: N
SA
ex
I

=
=
=
=

Integer element count for ex
Floating-point input scalar multiple
Complex floating-point input/output vector
Integer element step increment for CX

DESCRIPTION: CX(m) = SA*CX(m); for m=l to N

EXAMPLE:

N = 3
I = !

SA
CX(INPUT)
CX(OUTPUT)

PPS 86H-7482-HS1C

H.S
(2.H,4.H) (6.H,8.H) (H.H,l.H)
(l.H,2.H) (3.H,4.B) (H.B,H.5)

Page A - 339

APPENDIX A

********** **********
* * * *
* ICAMAX * - INDEX OF LARGEST COMPLEX ELEMENT - * ICAMAX *
* * * *
'!'*********

PURPOSE: To calculate the index of the complex
element of largest real plus imaginary magnitude.

CALL FORMAT: IMAX = ICAMAX(N,CX,I)

PARAMETERS: N
ex
I
IMAX

= Integer
= Complex
= Integer
= Integer

element count
floating-point input vector
step increment for ex
value of index with largest

DESCRIPTION: cmag(CX(IMAX)) = MAX(cmag(CX(m)); m=l for N
where cmag(C) = ABS(R(e))+ABS(I(e)),

EXAMPLE:

with l < = IMAX < = N. If N < l, IMAX = g.

N = 3
I = l

ex
IMAX

(3.g, 3.Z) c s.g,-g_g) c z.g,13.Z)
2

components

Page A - 341

* *
* SASUM *

* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

- SUM OF MAGNITUDES --

To sum magnitudes of elements of a real
vector~

SW = SASUM(N,SX,I)

N = Integer element count
sx = Floating-point source vector
I- = Integer incremental step for sx
SW = Floating-point scalar result

~'f'.T = SUM (ABS (SX (m))) i S:--
__ ,

to N .:>n 1.UL. m-.L

N = 3

SX -1.H H.H 5.H
SW 6.H

FPS 86S-7482-991C

APPENDIX A

* *
* SASUM *
*

Page A - 343

* *
* SAXPYN *
* *

PURPOSE:

APPENDIX A

* *

-- NESTED REAL A * X + Y - * SAXPYN *

*

To add a scalar multiple of one floating-point vector
to another floating-point vector N times: each time
for a different pair of vectors and a different scalar.
The first vector is a subset of the vector X, and the
second vector is a subset of the vector Y. The scalar
is an element of the vector A.

CALL FORMAT: CALL SAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)

PARAMETERS: ISW = Integer input scalar. ISW is a function
selector switch and is treated as a bit
string with the bits numbered from the
least significant bit (bit Z). If a given
bit is set (equal to 1), then the function
option that corresponds to that bit is selected.
Only bit g is used in SAXPYN.

Bit 0: Negate the product term A * X
before adding to Y. That is,
compute - A * X + Y instead of
A * X + Y.

All other bits are ignored.
N = Integer input scalar. Number of A * X + Y

operations. i.e.; outer loop count.
M = Integer input scalar. Number of elements in

each A* X + Y operation, i.e., inner loop
count.

A = Floating point input vector. Array of
scalars.

IAO = Integer input scalar. Outer loop element
increment for A.

X = Floating point input vector. First input
vector.

!XI = Integer input scalar. Inner loop element
increment for x.

IXO = Integer input scalar. Outer loop element
increment for x.

y = Floating point input/output vector. Second
input vector on input. Output vector on
output.

IYI = Integer input scalar. Inner loop element
increment for Y.

IYO = Integer input scalar~ Outer loop element
increment for Y.

FPS 869-7482-BBlC Page A - 345

A

x

y

Output: Y

FPS a6g-74a2-gs1c

3.Z -1.Z 2.Z

2 .z 3 .z

7.Z 6.Z 2.Z 3.g

13.Z 15.Z

APPENDIX A

9.g 12.Z

Page A - 347

APPENDIX A

*******'**'* ********'*'*
* * * '*
'* SCNRM2 * - COMPLEX EUCLIDEAN NORM -- * SCNRM2 *
'* * * *
'*'*'******** **********

PURPOSE: To compute the square root of sum of squares
of elements of a complex floating-point vector.

CALL FORMAT: SW = SCNRM2(N,CX,I)

PARAMETERS: N
ex
I
SW

=
=
=
=

Integer element count
Complex floating-point input vector
Integer step increment
Floating-point scalar output result

DESCRIPTION~ SW= SQRT(SUM(R(CX(m))**2 + I(CX(m))**2));
for m=l to N

EXAMPLE:

N = 2
I = l

ex cg.g,J.g> (4.g,g.g>
SW s.g

Page A - 349

* *
* SOOT * - 001' PRODUCT OF REAL VECTORS --

* *

PURPOSE: To compute the inner (dot) product
of two vectors.

CALL FORMAT: SW = SDOT(N,SX,I,SY,J)

PARAMETERS: N = Integer element count for sx
sx = Floating-point input vector
I = Integer element step for sx
SY = Floating-point input vector
J = Integer element step for SY
SW = Floating-point n11 +-n11 +- value ---r---

DESCRIPTION: SW=SUM(SX(m)*SY(m)); for m=l to N

EXAMPLE:

N = 3

SX
SY
SW

FPS 86W-7482-fffflC

1..0' 2 • .0'
4 • .0' .0'. 5
5 • .0'

3 • .0'
.0' • .0'

and

APPENDIX A

* *
* SOOT *
* *

SY

Page A - 351

DESCRIPTION:

NOTES:

EXAMPLE:

Input:

APPENDIX A

Z(jz) = r * Z(jz) + s * SUM[X(ix) * Y(iy), i=l,M]

where: ix = (j-1) * !XO + (i-1) * IXI + l
iy = (j-1) * IYO + (i-1·) * IYI + 1
jz = (j-1) * IZO + 1

s = 1..0, if ISW[.0] = .0
= -1..0, if ISW[.0] = 1

r = .00.0, if ISW[l] = .0
= 1..0, if ISW[1] = 1

and ISW[k] = bit k of ISW.

If IZO = .0, then SDOTN will set Z(l) equal to
the accumulated sum of all N dot products. If
ISW[l] = l also, then input Z(l) will be added
to this sum.

Memory words occupied by X may intersect those
occupied by Y. In fact, X and Y may coincide.
However, memory occupied by z should not, in
general, intersect that occupied by X or Y. For
sample applications, see Sections D.4.9 and D.4.11.

If N < 1, SDOTN returns with no action taken.

If M < 1 and ISW[l] = 1, SDOTN returns with no
action taken.

If M < 1 and ISW[l] = .0, SDOTN returns with
Z(j) = .0 • .0 for j = l to N.

In general, M < 1 implies a zero sum of products.

!SW = .0
N = 2
M = 3
IXI = 2
IXO = 1
IYI = ,

J.

IYO = .0
IZO = 1

x 3 • .0 2 • .0 -1..0 1..0 .0 • .0 -2 . .0

y 1..0 2 • .0 3 • .0

j=l,N

Output: z 1..0 -2.0

FPS 86&-7482-gBlC Page A - 353

APPENDIX A

********** **********
* * * *
* SROT * - PLANE RO'l'ATION - * SROT *
* * * *
********** **********

PURPOSE: To perform two dimensional rotations.

CALL FORMAT: CALL SROT(N,SX,I,SY,J,C,S)

PARAMETERS: N = Integer count of elements in SX and SY

DESCRIPTION:

EXAMPLE:

SX = Floating-point input vector of first components
= (On output) first components of rotated vector

I = Integer step increment for SX
SY = Floating-point input vector of second components

= (On output) second components of rotated vector
J = Integer step increment for SY
C = Floating-point input scalar cosine
S = Floating-point input scalar sine

SX(m) = C*SX(m)+S*SY(m)
SY(m) =-S*SX(m)+C*SY(m)~ for m=l to N

N = 3

c _g. 3
s .0'. 4
SX(INPUT) 1..0' 2 • .0' 3 • .0
SY(INPUT) .0' • .0' 1..0 2 • .0
SX(OUTPUT) .0'. 3 1..0 17 • .0
SY(OUTPUT) -.0'.4 -5 • .0' -6 • .0'

FPS 86B-7482-991C Page A - 355

APPENDIX A

********** **********
* * * *
* SROTM * - MODIFIED GIVENS ROTATIONS - * SROTM *
* *
********** **********

PURPOSE: To perform two-dim~nsional rotations using
the rotation matrix constructed from a
parameter vector according to the modified
Givens scheme.

CALL FORMAT: CALL SROTM(N,SX,INCX,SY,INCY,PARAM)

PARAMETERS:

DESCRIPTION:

EXAMPLE:

N
sx

INCX
SY

INCY
PARAM

SX(m)
SY(m)

=
=

=
=

=
=

=
=

Integer element count
Floating-point input/output vector
of first components
Integer element step for SX
Floating-point input/output vector
of second components
Integer element step for SY
Five element floating-point input vector
used to construct the rotation matrix
H = Hll Hl2

H21 H22.

Hll*SX(m) + Hl2*SY(m)
H2l*SX(m) + H22*SY(m), for m=l to N, where

Hll, Hl2, H21, H22 =
PARAM(2), 1..0', -1..0', PARAM(S) or

1..0', PARAM(4), PARAM(3), 1..0' or
PARAM(2), PARAM(4), PARAM(3), PARAM(S) according to
whether PARAM(l) = 1..0' or .0' • .0' or -1..0', respectively.

If PARAM(l) is not equal to zero, one, or minus one,
the routine returns with no action performed. This
is equivalent to having the identity matrix as the
rotation matrix.

N = 5

SX(input) .0' • .0 1..0 -2 . .0 2.0 -4.0
SY(input) 0 • .0' .0'. 0 2 • .0' -2. 0 -2.0
PARAM -1..0' 1..0' -1..0' 1..0' 1. 0

SX(output) .0' • .0' 1..0' .0' • .0' .0' • .0' -6 . .0'
SY(output) 0 . .0' -1..0' 4 • .0' -4 . .0' 2.0

FPS 866-7482-SHlC Page A - 357

EXAMPLE:

APPENDIX A

Rescaling continues until 01 and 02 are within the
window.

Output parameters PARAM(l,2,3,4,5) =
(-l.0,Hll,H21,Hl2,H22) and 01,02,Bl are updated
according to the scaling factors above.

Ol,02,Bl,B2 (input)

01,02,Bl
PARAM

(output)
(output)

3.368
fJ .f!f!f!

2.526 2.375
f!.f!f!f! -fJ.SfJfJ 0.375

FPS 86H-7482-WB1C Page A - 359

APPENDIX A

********** **********
* * *
* SSWAP * - INTERCHANGES VECTORS - * SSWAP *
* * * *

PURPOSE: To interchange elements of two real vectors.

CALL FORMAT: CALL SSWAP(N,SX,I,SY,J)

PARAMETERS: N = Integer element count
sx = Floating-point first vector for swap
I = Integer element step for sx
SY = Floating-point second vector for swap
J = Integer element step for SY

DESCRIPTION: SX(m) :=: SY(m) ! for m=l to N

EXAMPLE:

N = 3

SX(INPUT) 1..0' 2 • .0' 3 • .0'
SY{INPUT) 9.0 8 .0 7.0
SX(OUTPUT) 9.0 8 .0 7.0
SY(OUTPUT) 1.0 2.0 3.0

FPS 86&-7482-HBlC Page A - 361

APPENDIX A

********** **********
* * * *
* ABPl * - ADAMS-BASBFORTH PREDICTOR (ORDER 1) - * ABPl *
* * * *
*****~**** **********

PURPOSE: To solve an initial value problem for a set of
ordinary differential equations, using a first
order predictor (Euler's) method.

CALL FORMAT: CALL ABPl(N,H,Y,F,YP)

PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for t
y = Floating-point input vector of dependent

variables Y(t)
F = Floating-point innnr vector of derivative ---c-- -

elements dY/dt =F(t,Y(t))
yp = Floating-point output vector of predicted

variables Y(t+H)

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at t'=t+H is given by

EXAMPLE:

YP(m) = Y(m) + H*F(m); for m=l to N

This provides an explicit first order solution
to the initial value problem for a given function
at time t'=t+H, given the values of the function and
its derivative at time t. The evaluation of the next
derivative, corresponding to F(t+H,Y(t+H)) at the
new time point, t'=t+2*H follows similarly.

N = 3
H = .0'.l

y 1..0' 2. g 3. '1
F 1. .0' l.kJ l. '1

yp 1.1 2.1 3.1

Page A - 363

APPENDIX A

********** **********
* * * *
* ABP3 * - ADAMS-BASHFORTH PREDICTOR (ORDER 3) - * ABP3 *
* *
********** **********

PURPOSE: To solve an initial value problem for a set of
ordinary differential equations, using Adams' third
order predictor method.

CALL FORMAT: CALL ABP3(N,H,Y,F,Fl,F2,YP)

PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for t
y = Floating-point input vector of dependent

variables Y(t)
F = Floating-point input vector of derivative

elements dY/dt=F(t,Y(t))
Fl = Floating-point input vector of derivative

functions at preceeding time tl=t-H
F2 = Floating-point input vector of derivative

functions at preceeding time t2=t-2H
yp = Floating-point output vector of predicted

variables Y(t+H)

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at t'=t+H is given by

EXAMPLE:

YP(m) = Y(m) + (H/12)*(23*F(m)-16*Fl(m)+5*F2(m));

for m=l to N

This provides an explicit third order solution
to the initial value problem for a given function
at time t'=t+H, given the values of the function and
its derivative at t and its derivatives Fl and F2 at
times tl=t-H and t2=t-2H, respectively.
Evaluation of the next derivative, corresponding to
F(t+H,Y(t+H)) at the new time point, t'=t+2*H
follows similarly.

N = 3
H = .0 .1

y 1..0' 2 • .0 3 • .0
F 3 • .0 3 • .0 3 • .0
Fl 2 • .0' 2 • .0 2 • .0
F2 1..0' 1..0' l.iJ

yp 1.35 2.35 3.35

FPS 86B-7482-BB1C Page A - 365

APPENDIX A

EXAMPLE.:

N = 3
H = 0.1

y 1..0 2 • .0 3 • .0
F 3 • .0 3 • .0 3 • .0
Fl 2 • .0 2 • .0 2.kJ
~., , fY , fY , fY
s:" .J.. 1U .J.. 1U .J.. 1fJ

F3 4 • .0 4 • .0 4.kJ

yp 1.2 2.2 3.2

FPS 86H-7482-H&lC Page A - 367

APPENDIX A

DESCRIPTION: This routine integrates a set of N first order
differential equations from t=A to t=B, given

REFERENCE:

INPUT:

the initial values Y(t) and the values of the
derivative functions dY/dt=F(t,Y(t)) calculated
in the user supplied routine DFUNF(T,N,Y,F). The
step size H is regulated to keep the maximum
local error less than EPS. The maximum number of
steps taken per call is limited by MAXIT. The
maximum step size is limited by HMAX. Error
return codes are provided to monitor the progress
of the algorithm.

Burden,R.L., Faires,J.D., and Reynolds,A.C.,
"Numerical Analysis", Prindle, Weber & Schmidt, Inc.,
Boston, 1978: "Adams Variable Step-size Predictor
Corrector" Algorithm 6.5

DFUNF (user supplied APFTN64 subroutine):

SUBROUTINE DFUNF(T,N,Y,F)
c
C *** DFUNF *** SAMPLE APFTN64 ROUTINE ***
c

DIMENSION Y(N), F(N)
c

DO HJ I=l,N
F(I) = -Y(I) + T + l.g

L0 CONTINUE
c
C CORRESPONDS TO SOLUTIONS OF THE FORM
c
C Y(T) = yg * EXP{-T) + T
c

A
B
N
HMAX
MAXIT
EPS

RETURN
END

= II.II
= 3 .g
= 5
= 0 .2
= me
= l.IIE-6

Y(l,l), ••• , Y(5,l):
1.0 2.0 3.II 4.II 5.II

Page A - 369

APPENDIX A

********** **********
* * * *
* AMCl * ADAMS-MOULTON CORRECTOR (ORDER 1) - * AMCl *

* * * *
********** **********

PURPOSE: To solve an initial value problem for a set of
ordinary differential equations, using a first order
corrector (backward Euler) method.

CALL FORMAT: CALL AMCl(N,H,Y,FP,YP)

PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for t
y = Floating-point input vector of dependent

variables Y(t)
FP = Floating-point input vector of derivative

elements dY/dt=F(t+H,Y(t+H))
yp = Floating-point output vector of predicted

variables Y(t+H)

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at t'=t+H is given by

EXAMPLE:

YP(m) = Y(m) + H*FP(m); for m=l to N

This provides an implicit first order solution
to the initial value problem for a given function
-~ .a.!-- •1-•....L.D -.:··-- •lo..- ••-,•·-- --'= .t.'L...- .t= •• _._..._,:.....,_ --..:J. a.1.. 1..iuu: 1,, -1..•or '::f.J.Vcu. 1..uc va...i.uc~ uJ.. 1..u.c J..U.L.Lwl...J.VU. a.uu

its derivative at time t. The evaluation of the next
derivative, corresponding to F(t+H,Y(t+H)) at the
new time point, t'=t+2*H follows similarly.

N = 3
H = tJ.l

y l..kJ 2.'1 3.'1
FP l.'1 l.'1 l.'1

yp 1.1 2.1 3.1

FPS 86B-7482-i91C Page A - 371

APPENDIX A

********** **********
* * * *
* AMCJ * - ADAMS-MOULTON CORRECTOR (ORDER 3) - * AMC3 *
* * * *
********** **********

PURPOSE: To solve an initial value problem for a set of
ordinary differential equations, using Adams' third
order corrector method.

CALL FORMAT: CALL AMC3(N,H,Y,F,Fl,FP,YP)

PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for
y = Floating-point input vector of dependent

variables Y(t)
1:t = Floating=point .:--··.&.. ··--~-- -~ derivative I: ..i.u1:1u.1.. Vl:'\.01..U.L. U.L

elements dY/dt=F(t,Y(t))
Fl = Floating-point input vector of derivative

functions at preceeding time tl=t-H
FP = Floating-point input vector of derivative

functions estimated for t'=t+H
YP = Floating-point output vector of predicted

variables Y(t+H)

t

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at t'=t+H is given by

EXAMPLE:

YP(m) = Y(m) + (H/12)*(8*F(m)-Fl(m)+5*FP(m))~

for m=l to N

This provides an implicit third order solution
to the initial value problem for a given function
at time t'=t+H, given the values of the function and
its derivative at t, as well as, its derivatives at
times tl=t-H and t'=t+H, corresponding to Fl and FP.
Evaluation of the next derivative, corresponding to
F(t+H,Y(t+H)) at the new time point, t'=t+2*H
follows similarly.

N = 3
H = .0' .1

y 1..0' 2 . .0' 3 • .0'
F 2 • .0' 2 . .0' 2. fj
Fl l.kJ 1.kJ 1.fJ
FP 3 .kJ 3 .kJ 3. fj
yp 1.25 2.25 3.25

FPS 86H-7482-S&lC Page A - 373

APPENDIX A

EXAMPLE:

N = 3
H = .0' .1

y 1..0' 2 . .0' 3 • .0'
F 3 • .0' 3 • .0' 3 • .0'
Fl 2 • .0' 2 • .0' 2.G ,...., 1..0' 1..0' 1..0' ...
FP 4 • .0' 4.G 4.G

yp 1.35 3.35 3.35

FPS 86S-7482-SS1C Page A - 375

EXAMPLE:

APPENDIX A

BRK(N,2) = kJ.kJ
and an input coordinate value x, BIN uses a binary

1. The index IX that locates x within the
coordinate value breakpoint table such that

x(IX) <= x < x(IX+l)

2. The product DR = D(IX) * R(IX) where

D(IX) = x(IX)-x

R(IX) = l/(x(IX+l)-x(IX))

When a program makes repeated calls to a breakpoint
search routine (i.e., BIN or STEP), BIN should be used
if it is suspected that the input coordinate x varies
rapidly with respect to the values in the coordinate
value breakpoint table. In this case, the binary
(successive interval halving) search employed by
BIN is more efficient than the step (nearest
neighbor) search used by STEP.

Refer to the function generation in Appendix E for
additional information.

N = 3

BRK = 1.kJ 2.kJ 7.11 1.11 kL2 kl.kl
x = 2.1
IX = 2
DR = -kl.k12

NOTE

If x <= x(l) then IX = 1

If x >= x(N) then IX = N-1

FPS 86H-7482-HB1C Page A - 377

APPENDIX A

DESCRIPTION: I(I+l), for I = g to N-1, is the value of the Ith
modified Bessel functions of the first kind evaluated at
the point X. Refer to equation 9.6.3 of Abramowitz
and Stegun for the defining equation.

K(I+l), for I = g to N-1, is the value of the Ith
modified Bessel functions of the second kind evaluated at
the point X. Refer to equation 9.6.4 of Abramowitz
and Stegun for the defining equation.

Warnings and errors are reported to the calling routine
via IERR. If CBEIK completes normally, then IERR is
set to zero.

Warning condition codes are all between l and 99
inclusive. The possible warning values and their
meanings are as follows:

T'C'T'IT'J - ,
..i.~n - ..i.

lLT .:,.. '-""""'""""- ,_ ... __ &.-...-. _.....__.._••'--..,:-- -J::
"" .1,;:, 1..VV .L.Cl.L.'::fC .1..V.L. vVUlt:JUl..Ql...1.VU V.I..

outputs. In most instances, ABS(X)
< 4gg_g; this means that the Nth order
outputs exceed the dynamic range of the
machine. A suitable N is calculated,
the Bessel function values are computed
up to this new N, and the new N value
is returned.

Error condition codes are all greater than or equal to
igg. The possible error values and their meanings
are as follows:

!ERR = igg !STEP and/or KSTEP are equal to
-1,ff, or l.

!ERR = lff l X does not lie within the boundary of
(+/-6gff, +/-GffkJi).

!ERR = lff 2 N is equal to l. N must be greater
than or equai to 2.

References: Abramowitz, M., and Stegun, I., "Handbook
of Mathematical Functions", Ninth printing,
pp.358-36ff.

FPS 863-7482-SSlC

Mason, J.P., "Cylindrical Bessel Functions
for a Large Range of Complex Arguments",
Computer Physics Communications, 3g(l983),
pp.1-11.

Page A - 379

APPENDIX A

********** **********

* * * *
* CBEJYH * - COMPLEX BESSEL J, Y, AND H -- * CBEJYH *
* * * *
********** **********

PURPOSE:- To compute the complex Bessel functions of integer
order of the first kind, second kind, and one of
the Hankel functions at a point X.

CALL FORMAT: CALL CBEJYH (X, N, J, JSTEP, Y, YSTEP, H, HSTEP, !ERR)

PARAMETERS: x = Complex input scalar
The point at which to evaluate all functions.
This is restricted to the portion of the
complex plane bounded by (+/-6gg,+;-6ggi). It
can take on the values (+/-6HH, +/-6HHi).

N = Integer input/output scalar
On input, the number of function values to
evaluate. If N <= g, then this routine returns
with no action. If N = 1, then an error is
reported. Note that the zero order function
values are stored in the first elements of the
complex output vectors. . .
On output, the actual number of Bessel functions
computed. The input value of N is modified only
in the case where !ERR = 1, if too many function
values were requested. If !ERR is not equal to
lf then N is not modified on return to the
calling routine.

JSTEP = Integer input scalar
Element step for J. This can be any value
except -1, g, or 1. This is the number of
words to skip between complex elements.

YSTEP = Integer input scalar
Element step for Y. This can be any value
except -1, g, or 1. This is the number of
words to skip between complex elements.

HSTEP = Integer input scalar
Element step for H. This can be any value
except -1, g, or 1. This is the number of
words to skip between complex elements.

J = Complex output vector
The function values of functions H through N-1
for Bessel functions of the first kind.

Y = Complex output vector
The function values of functions H through N-1
for Bessel functions of the second kind.

H = Complex output vector
The function values of functions g through N-1
for one of the Hankel functions. If the sign of
the imaginary part of X is positive, then the

FPS 86B-7482-BB1C Page A - 381

EXAMPLE:

N

APPENDIX A

Note: If the second Hankel function is desired when
the imaginary part of X is nonnegative, it can be
computed with the following equation:

H2 = J-iY

Similarly, the first Hankel function can be
computed when the imaginary part of X is negative
by the following equation:

Hl = J+iY

References: Abramowitz, M., and Stegun, I., "Handbook
of Mathematical Functions", Ninth printing,
pp.358-36.0'.

= 3

Mason, J.P., "Cylindrical Bessel Functions
for a Large Range of Complex Arguments!!,
Computer Physics Communications, 30(1983),
pp.1-11.

JSTEP = 2
YSTEP =
HS TEP =

J

y

H

2
2

.0'.6141603349229.0'4E+.0'.0'.0',

.0'.415798869439622E-.0'.0'1,

(.0'.445474488934634E+.0'.0'.0',
(-.0'.657694535589279E+.0'.0'.0',
(-.0'.473368.0'2.0'533.0'.0'7E+.0'.0'.0',

0.365.0'28028827088E+.0'.0'.0'),
.0'.247397641513306E+.0'0.0')

.0'.71.0'158582.0'.0'15.0'5E+0.0'.0'),

.0'.6298.0'1.0'.0'399.0'9.0'7E+.0'.0'.0'),

.0'.577336957578681E+.0'.0'.0')

(.0'.227449894804525E+.0'.0'0, -.0'.510554586744886E-.0'.0'1),
(-.0'.1564.0'669.0'68.0'.0'27E-.0'.0'1, -.0'.292666506762191E+.0'.0'.0'),
(-.0'.535757.0'7.0'634719E+.0'.0'.0', -.0'.22597.0'379.0'197.0'.0'E+0.0'.0')

IERR = .0'

Page A - 383

APPENDIX A

EXAMPLE:
See Appendix E for function generation.

FPS 86H-7482-iilC Page A - 385

EXAMPLE:

APPENDIX A

F(x)=F(x(i))+(F(x(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))

where

x(i)

x(i+l)

x

F(x(i))
F(x(i+l))

F(x)

= x-coordinate value at the i-th
x-coordinate breakpoint

= x-coordinate value at the (i+l)-th
x-coordinate breakpoint

= Input x-coordinate value where the
interpolated function value ls desired

= Function value at x(i)
= Function value at x(i+l)
= Interpolated function value at x

and x(i) <= x < x(i+l)

See Appendix E for function generation.

FPS 86S-7482-SS1C Page A - 387

EXAMPLE:

APPENDIX A

desired functions, storing them in FVAL. Refer to the
function generation in Appendix E for additional
information.

F(x)=F(x(i))+(F(x(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))

where

x(i)

x(i+l)

x

F(x(i))
F(x(i+l))
F(x)

=

=

=

=
=
=

x-coordinate value at the i-th
x-coordinate breakpoint
x-coordinate value at the (i+l)-th
x-coordinate breakpoint
Input x-coordinate value where the
interpolated function value is desired
Function value at x(i)
Function value at x(i+l)
Interpolated function value at x
and x(i) <= x < x(i+l)

See in Appendix E on function generation.

FPS 86H-7482-H&lC Page A - 389

APPENDIX A

DESCRIPTION: FUN4 uses the indexes IX, IY, IZ and IW from the
breakpoint searches and the values NX, NY, NZ, and NW
to find the first function value pairs in the function
value breakpoint table. It then performs a linear
interpolation between them by applying the formula
given below eight times over the x-axis, four times
over the y-axis, twice over the z-axis, and once

EXAMPLE:

over the w-axis. FUN4 repeats the process for all the
desired functions, storing the computed function
values in FVAL. Refer to the function
generation in Appendix E for additional information.

F(x)=F(x(i))+(F(~(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))

where

x(i) =
..., I ~..I.. 1 \ = A\ ... I-" J

x =

F(x(i)) =
F(x(i+l)) =
F(x) =

x-coordinate value at the i-th
x-coordinate breakpoint
x-coordinate value at the
x-coordinate breakpoint

I ~..i..1 '-'-I-.
\ .., r -" J - '- ''

Input x-coordinate value where the
interpolated function value is desired

Function value at x(i)
Function value at x(i+l)
Interpolated function value at x
and x(i) <= x < x(i+l)

See Appendix E for function generation.

FPS 86g-7482-HilC Page A - 391

EXAMPLE:

APPENDIX A

C.W.Gear, "Numerical Initial Value Problem in
Ordinary Differential Equations", Prentice-Hall, 1971.

RKGIL performs integration for given time, step
size, and integration steps. The right-hand subroutine
DFUN can be coded in either APFTN64 or APAL64. The
parameter-passing method employed by RKGIL requires that
DFUN be coded in APFTN64. As such, RKGIL relies on
assumed procedure entry conventions, because APFTN64
automatically generates code using this convention~
If DFUN is written in APAL64, the user must resolve the
parameters correctly.

At output, vector V contains the numerical solutions
while TH contains the new value of the independent
variable; i.e., TH=TH+M*H.

Repeated calls to RKGIL can cause stability problems.
So the user must be on guard against instability
and must take care specifying the H parameter.

Solve the following second-order differential equation

Y'' = -4 .H*Y

with initial conditions

Y' (0.0) = H.H

starting at TH = H.H with H = H.l for 32 iterations.

An equivalent system of first-order differential equations
can be written in the form

DV(1) = V(2)

DV(2) = -4.0*V(l)

with initial conditions at the point 0.0 of

V(l) = 1.0

V(2) = 0.0

FPS 869-7482-&&lC Page A - 393

APPENDIX A

********** **********
* * * *
* RKGTF * - R-K-GILL-THOMPSON INTEG.(ORDER 4) * RKGTF *
* * * *
********** **********

PURPOSE: To solve an initial value problem for a set of
ordinary differential equationsf using the fourth
order Runge-Kutta-Gill method as described by
Thompson.

CALL FORMAT: CALL RKGTF(T,N,Y,F,Q,H,M)

PARAMETERS: T = Floating-point input scalar independent variable,
initial value of t

N = Integer input element count, number of equations,

Y = Floating-point input/output vector of dependent
variables (Y(t))

F = Floating-point working vector of derivative
functions dY/dt=F(t,Y(t))

Q = Floating-point working vector used for
temporary storage (must have length N)

H = Floating-point input scalar step size for t
M = Integer input scalar number of integration steps

to be performed

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at each step is given by

Y(m) = Y(m)

+(H/6)*(kl+(2-sqrt(2))*k2+(2+sqrt(2))*k3+k4)

for m=g to N-1, where

kl=F(T,Y)

k2=F(T+H/2,Y+0.S*H*kl)

k3 = F(T+H/2,Y+0.5*(-l+sqrt(2))*H*kl
+0.5*(2-sqrt(2))*H*k2)

k4 = F(T+H,Y-0.5*sqrt(2)*H*k2
+0.5*(2+sqrt(2))*H*k3)

while the independent variable is advanced by H
until T = T + M*H.

FPS 86H-7482-H&lC Page A - 395

* *
* ROTJ *
* *

PURPOSE:

APPENDIX A

* *

-- 30 ROTATION MATRIX, 3-ANGLE -- * RO'l'3 *
* *
****'******

To form a three-dimentional rotation matrix as a
product of three successive rotations about any three
orthogonal axes.

CALL FORMAT: CALL ROT3(I,A,J,B,K,C,R)

PARAMETERS: I = Integer input scalar axis indicator (plus or
minus l=x, 2=y, J=z)

DESCRIPTION:

A = Floating-point input scalar angle{radians) of
rotation about axis I

J = Integer input scalar axis indicator (plus or
minus l=x, 2=y, 3=z)

B = Floating-point input scalar angle(radians) of
rotation about axis J

K = Integer input scalar axis indicator (plus or
minus l=x, 2=y, 3=z)

C = Floating-point input scalar angle(radians) of
rotation about axis K

R = Floating-point output rotation matrix
(3x3 matrix stored in column order)

This routine calculates a 3x3 matrix as a product
three rotations about any three orthogonal axes:

R(matrix) = R(K,C)xR(J,B)xR{I,A)

where R(l,w) = l fJ H

0 cos(w) sin(w)

0 -sin(w) cos(w)

R(2,w) = cos(w) fJ -sin(w)

fJ
,

fJ .1.

sin(w) fJ cos(w)

and R(3,w) = cos(w) sin(w) 0

-sin(w) cos(w) H

0 fJ 1

of

FPS 869-7482-9SlC Page A - 397

* *
* SCSl *
* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

APPENDIX A

* *

- SCALAR COS/SIN, TM IN'l'ERP. (ORD 1) -- * SCSl *
* *

To rapidly calculate the cosine and sine of an

CALL SCSl(A,CA,SA)

A = Floating-point input scalar angle(radians)
CA = Floating-point output scalar cosine(A)
SA = Floating-point output scalar sine(A)

CA = COS (A), SA = SIN(A)

by interpolation of values stored in TMROM
using a first order Taylor's series approximation.
The returned values are accurate to approximately
seven decimal digits.

NOTE: For 15 decimal digits of accuracy at a slight
decrease in speed, see the routine SINCOS.

= l.Z

CA = .0'. 54.0'3.0'23
SA = .0'. 8414 71.0'

FPS 866-7482-iilC Page A - 399

EXAMPLE:

APPENDIX A

An input coordinate value x, and the index IX from
a previous call to STEP or BIN, STEP uses a step
search to determine the following:

1. The index IX that locates x within the
coordinate value breakpoint table such that

x(IX) <= x < x(IX+l)

D (IX) = x (IX) -x

R(IX) = l/(x(IX+l)-x(IX))

When a program makes repeated calls to a breakpoint
search routine (i.e., BIN or STEP), STEP should be
used if it is suspected that the input coordinate
x varies slowly with respect to the values in the
coordinate value breakpoint table. STEP's
nearest neighbor searching is more efficient than
the binary (successive interval halving) search used
by BIN.

At the outset, if no a priori knowledge of the value
of x is available, the first call to STEP should
set IX = N/2. An alternative strategy is to
make the first call to BIN, which initializes
IX, and then make subsequent calls to STEP.

Refer to the function generation in Appendix E for
additional information.

N = 3

BRK = 1..0' 2 • .0' 7 • .0' 1..0' .0'. 2 .0' • .0'
x = 2.1
IX = 2
DR = -0~02

NOTE

If x <= x(l) then IX = l

If x >= x(N) then IX = N-1

FPS 863-7482-iilC Page A - 4"11

APPENDIX A

********** **********
* * * *
* CONNMO * - NMO WITH CONSTANT VELOCITY - * CONNMO *
* * * *
****"****** ******"****

PURPOSE: To apply normal moveout (NMO), with constant

CALL FORMAT: CALL CONNMO(D,N,X,V,SR,NNMO)

PARAMETERS: D = Floating-point output vector of trace
sample times.

N = Integer input scalar; element count for D.
x = Floating-point input scalar; off set distance

in feet.
v = Floating-point input scalar; velocity in feet.
SR = Floating-point input scalar; sample rate (ms).
NNMO = Integer output scalar; index of initial sample

of zero-fill in destination trace.

DESCRIPTION: The normal moveout computation is described
in seismic signal processing references,
such as:

Mintroduction to Geophysical Prospecting"
Dobrin, M.B.,
McGraw-Hill, Inc.,
New York, N.Y., , f"t...,,..

i:;, 10,

pp. 2.0'1-254.

"Geophysical Signal Analysis"
Robinson, E.A and Treitel, s.,
Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 198.0',
pp. 1-35.

The square-root computation inherent in the
process is accomplished with one iteration of
the Newton-Raphson method.

Using a normal moveout process as defined by X,
V, and SR, destination trace D is filled with
the times from which to interpolate the adjusted
trace values.

The initial sample value of zero-fill in the
destination trace is returned in parameter ~nJMO.
A value of N+l for NNMO indicates no zero-fill.

FPS 86H-7482-SS1C Page A - 4H3

*

* IIR3.9' *
* *

PURPOSE:

A_pPRNI>IX A

* *·

- RECURSIVE FILTER - * IIR3.9' *
*

To perform a recursive digital filter with up to 3.0'
poles and 3Z zeros.

CALL FORMAT: CALL IIR3.0'(A,I,B,C,K,N,NZ,NP)

PARAMETERS: A = Floating-point input vector of length N+NZ.
Contains the data to be filtered. It will be
assumed· that A is indexed from -NZ to N-1.

I = Integer input scalar.
Element step for vector A.

8 = Floating-point input vector of length NZ+NP+l.
Contains the coefficients of the filter. It will
be assumed that 8 is indexed from .0' to NZ+NP.
8(.0') contains the scalar multiple coefficient,
8(1) to 8(NZ) contain the coefficients of the
zeros, and 8(NZ+l) to B(NZ+NP) contain the
coefficients of the poles.

C =Floating-point input/output vector of length·
N+NP.
Contains the filtered data. It will be assumed
that C is indexed from -NP to N-1. On input,
C(-NP) to C(-1) contain the initial values. On
output, the computed values are contained in
C(.0') to C(N-1).

K = Integer input scalar.
Element step for vector C.

N = Integer input scalar.
Element count.

NZ = Integer input scalar.
Number of zeros.

NP = Integer input scalar.
Number of poles.

DESCRIPTION: Performs a recursive (IIR - Infinite Impulse
Response) digital filtering difference equation as
follows:

C(t) = Sum[B(j) * A(t-j), j = '1 to NZ
- Sum[8(m+NZ) * C(t-m), m = l to NP

for t = .0' to N-1

where the dimensions of the arrays are A(-NZ;N-1),
8(.0':NZ+NP), C(-NP:N-1). The second sum equals zero if
NP = .0'.

FPS 86H-7482-Helc Page A - 4g5

APPENDIX A

********** **********
* * * *
* KSMLV * - K-TH SMALLEST ELEMENT IN VEC'l'OR -- * KSMLV *

* * * *
********** **********

PURPOSE: To find the k-th smallest element of a vector.

CALL FORMAT: CALL KSMLV(A,N,K,W,C)

PARAMETERS: A = Floating-point input vector
N = Integer element count for A
K = Order of the element to be selected; K=l

will select the smallest element; K=N will
select the largest element; K=INT((N+l)/2)
will select the median element.

w = Work-space vector; the size of the work
space must be equal to N

c = Floating-point output scalar

DESCRIPTION: c = k-th smallest element of A(m), ml to N.

EXAMPLE:

The k-th smallest element of the vector stored
in Main Memory starting at location A is found
using an application of the divide and conquer
strategy. The algorithm implemented is as described
by Aho, Hopcroft, and Ullman: THE DESIGN AND
ANALYSIS OF COMPUTER ALGORITHMS, Addison-Wesley,
1974, pp. 97-99. The resultant element is stored
into Main Memory at location C. The original
contents of the input vector are lost.

The speed of this routine is data dependent.

N = 8
K = 3

A i.g s.g 2.g -1.g 3.g -3g.6 ig.1 s.g
c i.g

FPS 863-7482-iBlC Page A - 4B7

APPENDIX A

EXAMPLE:

SR = 2.kJ
N = 2kJ
NNMO = 14

C:
l.kJ 2.kJ 3 • .0' 4 • .0' 5 • .0' 6 • .0' 7 • .0' 8 • .'1 9 • .'1 1.0' • .0' , , rr a rr .., rr t:: tr c tr " tr ., tr ., rr , rr rr rr

..&....&.. •llJ u.u I •XI u •llJ .J. u ~.XI ~. XJ '•JO J... JO iO. JO

D: {input)
3 • .0' 6 • .'1 9 • .0' 12 • .0' 15 • .0' 18· • .0' 21..0' 24 • .0' 27.kJ 3.0' • .'1

33 • .0' 36 • .0' 39 • .0' kJ.kJ .0' • .0' .0' • .0' kJ.H .0' .H .0' • .'1 .0'~.'1

D: (output)
2.5 4 • .'1 5.5 7 • .0' 8.5 l.'1 • .'1 9.5 7 • .'1 5.5 4 • .0'
2.5 1..0' kJ • .0' .0' • .'1 .0' • .0' .0' • .'1 g • .0' .0' • .'1 kJ • .'1 .0' • .'1

FPS 86H-7482-iHlC Page A - 4g9

EXAMPLE:

SR = 2.{1
N = 2{1
NNMO = 14

C:
1.0 2.0

lL.0' 8 .. k!

D: (input)

3. '1 4. '1
7 _g 6 .. '1

5 .0 6. '1 7.{1 8 .• 0 9.0 10.0
5 .. ff 4 .. ff 3 .. .0' 2 • .0' L.0' g_g

3.0 6.{1 9.{1 12.{1 15.0 18.{1 21.{1 24 • .0 27 • .0 30 • .0
33.0 36.0 39.{1 '1.'1 '1.'1 '1.'1 '1.{1 .0 • .0 0.0 0.H

D: (output)
2.5 4.'1 5.5 7.{1 8.5 1.0.'1 1.0.'1 7.'1 5.5 4.H
2.5 l.'1 .0 • .0 '1.{1 '1.'1 '1.'1 '1.'1 '1.'1 0.'1 '1.H

APPENDIX A

FPS 86S-7482-BS1C Page A - 411

* *
* RESNMO *
* *

PURPOSE:

APPENDIX A

* *
- RESIDUAL NORMAL MOVEOUT - * RESNMO *

* *

To stretch or squeeze a seismic trace via
linP~r intPrnnl~tinn_ ------- ______ I:" ________ _

CALL FORMAT: CALL RESNMO(A, B, C, NI, SR, D, NO, NNMO)

PARAMETERS: A = Floating-point input vector; source trace
of sample values.

B = Floating-point input vector of input
control times (ms).

c = Floating-point input vector of output
control times (ms j.

NI = Integer element count for B and C.
SR = Floating-point input scalar; sample rate (ms).
D = Floating-point output trace vector

of sample values.
NO = Integer element count for D.
NNMO = Integer output scalar; index of initial sample

of zero-fill in destination trace D.

DESCRIPTION: The normal moveout computation is described
in seismic signal processing references,
such as:

"Introduction to Geophysical Prospecting"
Dobrin, M.B.,
McGraw-Hill, Inc.,
New York, N.Y., 1976,
pp. 2.0'1-254.

"Geophysical Signal Analysis"
Robinson, E.A and Treitel, S.,
Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 198.0',
pp. 1-35.

Using a stretching/squeezing function as defined
by B, C, and SR, source trace C is converted into
destination trace D.

The initial sample value of zero-fill in the
destination trace is returned in parameter NNMO.
A value of N+l for NNMO indicates no zero-fill;

The speed of this routine is data dependent.

FPS 86H-7482-HB1C Page A - 413

APPENDIX A

********** **********
* * * *
* TMCONV * - CONVOLO'.rION (CORRELATION) - * TMCONV *
* * * *
********** **********

PURPOSE: To perform a convolution or correlation
nnc,..;:ii+- inn nn rtJn uar+-n.-C! _ tJi +-}, +-ho ,...,,.,..,,,..,.,,.:i -!:"'------••, .. ., _..,,.,..,, v.._...._"""'.._,_.~, n:r41o'-.;..a. '-'"'4~ ""'.f:"',..,.-..._...,_.._.

in Main Memory and the operator in TM.

CALL FORMAT: CALL TMCONV (A, ITMB, C, N, M)

PARAMETERS: A
ITMB
c
N

=
=
=
=

Floating-point input vector (operand)
Integer address of B in TM
Floating-point output vector
Integer element count for C

M = Integer element count for B
(Integer element count for A = N+M-1)

DESCRIPTION: C(m) = SUM(A(m+q-l)*B(q)):
for q=l to M and m=l to N.

NOTE: For convolution, the elements of operator
vector B must be stored in TM in reverse
order.

TMCONV performs either a correlation or a convolution
operation between the (N+M-1)-element operand (trace)

The N-element result vector is stored in C. The
result vector C may overlay the operand A. Vectors A
and C reside in main data: vector B is in TMRAM.
B must be placed in TMRAM using MTMOV or another
Table Memory Library routine before calling TMCONV.

NOTE: TMCONV is superior to CONV for M greater than
or equal to 128; otherwise, CONV is superior.

Page A - 415

*
*
*

*
vn *

*

PURPOSE:

- VEC'l'OR ZERO TRENDS

To produce an output vector of G's and l's
based on zero trends in the

APPENDIX A

*

*
*

*
ViJl *

*

CALL FORMAT: CALL VGl(A,I,B,J,N,NPTS)

P ARAME'l'ERS : A = Floating-point input vector
I = Integer element step for A
B . - Floating-point output vector
J = Integer element step for B
N = Integer element count for A and B
NPTS = Number of points of source to be

considered in creating a
destination point

DESCRIPTION: B{m) = G.G if ((A(m-NPTS+l) .EQ. fJ.fJ) .AND.
(A(m-NPTS+2) .EQ. fJ.fJ) .AND.

EXAMPLE:

(A(m) .EQ. fJ.Z))
B(m) = l.G otherwise.

for m = NPTS to N
(Note that B(l) = ••• = B(NPTS-1) = l.G)

The vector scanned. If the current
of A and the last NPTS-1 points of A are G, then
the current point of B is set to zero. Otherwise
the current point of B is set to l.G. The
resultant vector B is useful in stacking operations.

N = 16
NPTS = 3

A : l.G 2.G fJ.G G.G 5 .G fJ.fJ G.fJ fJ.fJ
G.G 1'1.G 11.fJ 12.G 13.fJ fJ.G fJ.fJ fJ.fJ

B 1.fJ l.G 1.fJ l.fJ 1..0 1..0 l.fJ fJ.fJ
G.Z l.G 1.fJ 1.0 1.0 l.fJ l. 0 fJ. g

FPS 861-7482-911C Page A - 417

EXAMPLE:

APPENDIX A

A(l) should be equal to fI.fI, and all other values
of A(i) and B(i), for i = 1 to NC, should be greater,
than fO.fJ.

The initial sample value of zero-fill in the
destination trace is returned in parameter NNMO.
A value of N+l for NNMO indicates no zero-fill.

Routine NMOLI (linear interpolation) or NMOQI
(quadratic interpolation) is generally called
subsequent to routine VARNMO.

The speed of this routine is data dependent.

NC = 4
N - , "'"' J.JOJO

SR = 3. fO
x = lfifJ.fO

A: fO. g 75 .fO lHfO .fI 2fifJ.fJ
B: 5fiftHJ .fI 6fifJfI.fI 7 fJfJfJ. fJ 85fff:J. g

NNMO = 68

0(l)

2fJ. fifO
O{ 2)
29.fJ7

0(3)

2f1.59

0(65) 0(66) 0(67)
192.39 195.38 198.37

0(4)

21. 53

0(68)
fJ. fJfO

0(5)

22.83

0(69)
fJ. fJfJ

0(6)

24.44
0(7)

26.39

O(lfJfI)
fO. gg

FPS 86H-7482-HH1C Page A - 419

* *
* VSCANB * - VEC'l'OR SCAN FOR ZEROS

* *

PURPOSE: To scan a source vector and record in
a destination vector a
of the number of zeros encountered.

CALL FORMAT: CALL VSCAN0'(A,B,N)

PARAMETERS: A = Floating-point input vector
B = Floating-point output vector
N = Integer element count for A and B

DESCRIPTION: B(m) =number of ~;s in A(l) tnrough A(mj;
for m = l to N

APPENDIX A

********** .. *
* VSCANB *
* *

Scans the N values of the source vector A.
Records the cumulative total of zero values
in the N elements of vector B. The resultant
vector B is useful as a mute findere

EXAMPLE:

N = 20'

A l. .0' 1.0' 0'. 0' .0'. 0' 1..0' 0'. 0' 0'. 0' 0'. 0' 1.0' 1.0'
1.0' 0'. 0' 0'. 0' 0'. 0' 0'. 0' 0'. 0' 1.0' .0'. 0' 0'. 0' 1.0'

B 0'. 0' 0'. 0' 1.0' 2. 0' 2. 0' 3. 0' 4. 0' 5. 0' 5. 0' 5. 0'
5 • .0' 6 • .0' 7 • .0' 8 • .0' 9. 0' 10' • .0' 10' • .0' 11.0' 12. 0' 12. 0'

FPS 86S-7482-SS1C Page A - 421

* *
* CSFR2 *
* *

PURPOSE:

Jl..PPEND!X A

* *

SPARSE COMPLEX SYMMETRIC FACTOR - * CSFR2 *
*

To perform an LDL' factorization of a complex,
symmetric matrix A, where A is sparse and is
represented in packed form.

CALL FORMAT: CALL CSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar
Number of sparse elements (i.e., nonzero and
fill-in elements) in the lower triangle of A

S = Complex input/output array of length NS
On input, S contains the sparse elements of
the lower triangle of A in column order. On
output, S contains the superposition of L and
D with the diagonal elements reciprocated.

ICP = Integer input array of length N+l
Contains pointers into S to the first sparse
element of each column with ICP(N+l) = NS + 1

IRN = Integer input array of length NS

ZTOL

WRK
IERR

Contains the row numbers that correspond to
the elements in S

= Floating-point input scalar
Zero tolerance value

= Complex scratch vector of length N
= Integer output scalar

Error code whose values are:
g - Normal termination
1 - Routine aborted because a diagonal

element was computed to be zero (i.e.,
its absolute value squared was less than
or equal to ZTOL)

2 ~ Routine aborted because N < 2

DESCRIPTION: This routine factors A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.
L and D are superpositioned by suppressing
the ones on the diagonal of L: i.e., if the
superposition of L and D is denoted by C, then
C = L + D - I. The sparse elements of the super
position of L and D are stored in the corresponding

FPS 86B-7482-sg1c Page A - 423

•

Thus the superposition of L and D with the diagonal
elements of D replaced by their reciprocals is

(.0'. 5, -.0'. 5)
(.0' • .0', .0' • .0')
(2 • .0',-1..0')
(.0' • .0', .0' • .0')
(.0' • .0', .0' • .0')

(.0'.S, .0'.5)
(.0' • .0', .0' • .0')
(1..0', 1..0')
(.0' • .0', .0' • .0')

(.0'. 2, -.0'. 4)
(.0' • .0', .0' • .0') (-.0'.25,.0'.25)
(.0' • .0', .0' • .0') (.0' • .0', 1 • .0') (.0'.25,.0' • .0')

FPS 866-7482-BilC Page A - 425

DESCRIPTION: First CSFR2 is called to factor A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.

EXAMPLE:

(1..kJ 1

(.0 • .kl,

(3 ·",
(.kl.fl,
(.0' • .kl,

L and D are superpositioned by suppressing
the ones on the diagonal of L; i.e., if the
superposition of L and D is denoted by c, then
C = L + D - I. The sparse elements of the super
position of L and D are stored in the corresponding
locations of S with the diagonal elements of D
replaced by their reciprocals. L and D may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, CSSV2 ls called to solve the system in three
steps:

(1) Solve Lz=b for z (forward elimination)
(2) Solve Dy=z for y
(3) Solve L'x=y for x (backward substitution)

This routine supercedes CSFS and differs from it in
two important respects. First, CSFS2 is much faster
than CSFS. Second, CSFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
CSFS does.

The scratch parameter WRK is not used in the current
release of this routine; however, it has been
retained for compatibility with CSFS. Thus, a scalar
may be used in place for a vector for WRK.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

Let A be the complex, symmetric matrix

l..kl) (.kl.0, g. 0) (3.0, l. 0) (0.0, 0 • .0) (.0 • .kl, g. g)

g • .kl) (1..0 ,-1..0) ('1 • .0, .kl.'1) (2 • .0, g • .0) (.0 • .kl, g. g)

1..0') (.0'. g·, .0' • .0) (8 • .kl, l. .0) (.0 • .0, .0 • .0) (.0 • .0, .0 • .kl)
IL .kl) (2. 0, .0. g) (.0.0, .0. g) (.0 • .0, .0 • .0) (2 • .0',-2 • .0)
.kl.fr) (g • .0, fJ • .0') (.0' • .0, fJ • .0) .(2 • .0',-2 • .0) (6 • .0',

NOTE: It is known apriori that fill-in occurs in
element (4,4).

2 • .0')

FPS 863-7482-i&lC Page A - 427

* *
* CSSV2 *
* *

PURPOSE:

APPENDIX A

* *

- SPARSE COMPLEX SYMMETRIC SOLVE - * CSSV2 *
* *

To find the solution to the system Ax = b, where A is
a sparse: complex: symmetric matrix that is LDL'
factored and is represented in packed form.

CALL FORMAT: CALL CSSV2(N,NS,S,ICP,IRN,BX)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar

s

ICP

!RN

BX

Number of sparse elements (i.e., nonzero and
~~,, !- _, ____ ~_, !- ~

.L.L.J..J.-.L.U t::.Lt::Ult::Ul.::;J .LU n

= Complex input array of length NS

=

=

Contains the sparse elements of the super
position of L and D with the diagonal elements
reciprocated. The elements are stored in
column order.
Integer input array of length N+l
Contains pointers into s to the first sparse
element of each column with ICP(N+l) = NS + 1
Integer input array of length NS
Contains the row numbers that correspond to
the elements in S

= rnmn 1 gy ; nn11 r Inn tn11 t- ugrt-nr nf 1 gnni- h N ----·r----- ---r-- _, -- -r-- - . -- --- -- ----:;J -·- -·
On input, BX contains the right-hand side
vector b. On output, BX contains the solution
vector x.

DESCRIPTION: This routine solves the system Ax = b where A is a
sparse, complex, symmetric matrix fhat is factored
into LDL'. L is a lower triangular matrix with ones
on its diagonal, D is a diagonal matrix, and L' is
the transpose of L. L and D are superpositioned
by suppressing the ones on the diagonal
of L~ i.e., if the superposition of Land D
is denoted by c, then C = L + D - I.

The solution process consists of three steps:

(1) Solve Lz=b for z (forward elimination)
(2) Solve Dy=z for y
(3) Solve L'x=y for x (backward substitution)

This routine supercedes CSSV.

For a more detailed discussion, refer to Appendix c.

The execution time for this routine is data dependent.

FPS 86S-7482-H91C Page A - 429

APPENDIX A

********** **********
* * * *
* CUFR2 * -- SPARSE COMPLEX UNSYMMETRIC FACTOR -- * CUFR2 *
* * * *
********** **********

PURPOSE: To perform an LU factorization of a complex,
where

represented in packed form.

CALL FORMAT: CALL CUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar
Number of sparse elements (i.e., nonzero and
fill-in elements) in A

S = Complex input/output array of length NS
On input, 5 contains the sparse elements of A
in column order. On output, S contains the
sparse elements of the superposition of L and
U with the diagonal elements reciprocated.

ICP = Integer input array of length N+l
Contains pointers into 5 to the first sparse
element of each column with ICP(N+l) = NS + 1

IRN = Integer input array of length NS

TT'\n = •~r

ZTOL =

WRK =
IERR =

Contains the row numbers that correspond to
the elements in 5
Ta.. __ .,.._,.., ..: -.. "- array ,,...;: , ---•lo.. 1'..T
... Ul..'C''::f'C'.I.. .J..Ut:''-' ... VJ.. •cuyi..u L'll

Contains pointers into s to the diagonal
elements
Floating-point input scalar
Zero tolerance value
Complex scratch vector of length N
Integer output scalar
Error code whose values are:

fJ - Normal termination
l - Routine aborted because a diagonal

element was computed to be zero (i.e .•
its absolute value squared was less than
or equal to ZTOL)

2 - Routine aborted because N < 2

FPS 86B-7482-9BlC Page A - 431

APPENDIX A

The output parameters are:

s = .0.5, -.0.5, 3 • .0, 1..0, .0.5, .0.5, 2 • .0, .0 • .0,
2 • .0, -1..0', .0'. 2, -.0.4, 1..0'' 1..0', -.0'. 25, .0'. 25,
2 • .0', -2 • .0', .0' • .0', 1..0', .0' • 25 I .0' • .0'

IERR = g

Thus the superposition of L and U with the diagonal
elements of L replaced by their reciprocals is

(.0' • 5 I -.0' • 5) (.0'.IJ, {J • .0') (2.!J,-1..0') (fJ.{J, IJ.!J) (kJ • .0' I kJ.kJ)
(g • .0', g • .0') (.0'. 5, .0'. 5) (.0' • .0', .0' • .0') (1. .0', 1..0') (!J.kJ, kJ.kJ)
(3 • .0', 1..0') (.0'.IJ, .0' • .0') (.0' • 2 I -.0' • 4) (.0' • .0', kJ. .0') (.0' • .0', .0' • .0')
(kJ.kJ, g • .0') (2.!J, .0' • .0') OJ..0', .0' .kJ) (-.0'.25,.0'.25) (.0' • .0', 1..0')
(.0' • .0'' g • .0') (.0' .kl, .0'" .0') (.0' .k!, g .. .0') (2.IJ,-2.IJ) (IJ.25,IJ.IJ)

FPS 869-7482-991C Page A - 433

APPENDIX A

DESCRIPTION: First CUFR2 is· called to factor A into LU where L is
a lower triangular matrix and U is an upper
triangular matrix with ones on its diagonal. The
factorization is performed without any row or column
interchanges. L and U are superpositioned

EXAMPLE:

(1..0',
(.0' • .0',
(3 • .0',
(.0' • .0',
OI.kJ,

by suppressing the ones on the diagonal of U~ i.e.,
if the superposition of L and U is denoted by C, then
C = L + U - I. The sparse elements of the super
position of L and U are stored in the corresponding
, ___ .._,: ___ -.t:: ~ •.• .:4.\.. .._.,..._::1.: __ ..,....,..,.1 .,..,_....,....,.....,..,,_ ,...._4! T
..l..V'l.-Cll. .LV.U;::! V.1.. ~ ff.L 1.U 1...1..n: 'W.LCl'::fVUCl..1.. -=:..1..1::au1:::a;;1..;::i VJ. .I.I

replaced by their reciprocals. L and U may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, CUSV2 is called to solve the system in two
steps:

(1) Solve Ly=b for y
(2) Solve Ux=y for x

(forward elimination)
(backward substitution)

This routine supercedes CUFS and differs from it in
two important respects. First, CUFS2 is much faster
than CUFS. Second, CUFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
CUFS does.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

Let A be the complex matrix

1..0') (.0' • .0', .0' • .0') (3 • .0', 1..0') OJ. .0', .0' • .0') (liI • .0', liI. /iI)
liI • .0') (l.0,-1..0') (liI • .0', liI • .0') (2 • .0', liI. liI) (liI. liI, liI • .0')
1..0') (.0' • .0', .0' • .0') (8 • .0', 1..0') (.0' • .0', .0' • .0') (.0' • .0', .0' • .0')
liI • .0') (2 • .0', .0' • .0') (liI • .0', .0' • .0') (.0' • .0', liI • .0') (2 • .0',-2 • .0')
JCL/iI) (.0' • .0', .0' .. /iI) (kJ .. .'1, .'1.kJ) (2 • .0,-2./iI) (6 .kJ,

NOTE: It is known apriori that fill-in occurs in
element (4,4).

Let b be the complex vector

(JCL.0', .0' • .0')
(3 • .0', 3 • .0')
(~7 .. Z;~9.Z)
(4 • .0', 2 • .0')
(12 • .0', 4 • .0')

2 • ..0')

FPS a6g-74a2-9BlC Page A - 435

APPENDIX A

********** **********
* * * *
* CUSV2 * -- SPARSE COMPLEX UNSYMMETRIC SOLVE - * CUSV2 *
* * * *
********** **********

PURPOSE: To find the solution to the system Ax = b, where A is
a sparse, complex, unSi'mmetric matrix that is LU
factored and is represented in packed formo

CALL FORMAT: CALL CUSV2(N,NS,S,ICP,IRN,IDP,BX)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar
Number of sparse elements (i.e., nonzero and
fill-in elements) in A

S = Complex input array of length NS
Contains the sparse elements of the super
position of L and U with the diagonal elements
reciprocated. The elements are stored in
column order.

ICP = Integer input array of length N+l
Contains pointers into S to the first sparse
element of each column with ICP(N+l) = NS + 1

IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S

= Integer input array of 1 ---~1... 1"T .Leuy 1.u L't

Contains pointers into S to the diagonal
elements

BX = Complex input/output vector of length N
On input, BX contains the right-hand side
vector b. On output, BX contains the solution
vector x.

DESCRIPTION: This routine solves the system Ax = b where A is a
sparse, complex matrix that is factored into LU. L
is a lower triangular matrix and U is an upper
triangular matrix with ones on its diagonal. L and U
are superpositioned by suppressing the ones on the
diagonal of U; i.e., if the superposition of Land U
is denoted by c, then C = L + U - I.

The solution process consists of two steps:

(1) Solve Ly=b for y (forward elimination)
I ., \
\ ... J Solve Ux=y for x (backward substitution)

This routine supercedes CUSV.

For a more detailed discussion, refer to Appendix C.

FPS 86H-7482-BH1C Page A - 437

* *
* RSFR2 *
* *

PURPOSE:

*

- SPARSE REAL SYMMETRIC FACTOR - * RSFR2 *
*

To perform an LDL' factorization of a real, symmetric
matrix A, where A is sparse and is represented in
packed form.

CALL FORMAT: CALL RSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar
Number of sparse elements (i.e., nonzero and
fill-in elements) in the lower triangle of A

S = Floating-point input/output array of length NS

ICP =

IRN =

ZTOL =

WRK =
IERR =

On input, S contains the sparse elements of
the lower triangle of A in column order. On
output, S contains the superposition of L and
D with the diagonal elements reciprocated.
Integer input array of length N+l
Contains pointers into S to the first sparse
element of each column with ICP(N+l) = NS + 1
Integer input array of length NS
Contains the row numbers that correspond to
the elements in S
Floating-point input scalar
Zero tolerance value
Floating-point scratch vector of length N
Integer output scalar
Error code whose values are:

~ - Normal termination
l - Routine aborted because a diagonal

element was computed to be zero (i.e.,
its absolute value was less than or
equal to ZTOL)

2 - Routine aborted because N < 2

FPS 866-7482-HHlC Page A - 439

.0'.125

.0' 0 .0' .0' .125

.0' • .0' .0' 0 .0'

.0' • .0' .0'. g

.0' • .0' .0' • .0'

.0' 0 .0' .0' 0 .0'
fJ. fJ fJ. fJ
g • .0' .0' • .0'
.0' • .0' fJ • .0'
.0' • .0' 2 • .0'

Jl..PPENDIX

Then the input parameters are:

N = HJ
NS = 22
s = 8 • .ff, 8. ff' 16 o.0' I 16 • .0', 32 • .0', 8.fJ • .0', 16 • .0',

24 • .0'' 16 • .0', 8 • .0', 24 • .0', 8 • .0', 4 • .0', 16 • .0',
32 • .0', 16 • .0', 8.0' • .0', 4.0' • .0', 8 • .0', 4 • .0', .0' • .0',
-1.25

ICP = 1, 2, 4, 6, 8, 11, 14, 17, 2.0', 22, 23
IRN = 1, 2, HJ, 3, 4, 4, 5, 5, 6, 8, o,

8, 1.0', 7, 8, 9, 8, 9, l.fJ, 9, 1.0', 1.0'
ZTOL = l..fJE-6

The output parameters are:

s = .0'.125, .0'.125, 2.fJ, .0'.fJ625, 2.fJ, .0' • .0'625, 1 • .0',
fJ.125, 2 • .0', 1 • .0', -.0'.125, 1 • .0', -.0'.5, .0' • .0'625,
2 • .0', 1 • .0', .0' • .0'625, fJ.S, .0'.25, -fJ • .0'625, .0'.125,
-.0' • .0'3125

!ERR = .0'

Thus the superposition of L and D with the diagonal
elements of D replaced by their reciprocals is

.0' • .0'625
2. g .0' • .0625
.0' • .0' 1..0' .0' .125
.0' • .0' .0'. kJ 2 • .0' -.0' .125
g .fJ g .fJ fi.fJ fJ .fJ fJ.fJ625
.0' • .0' .0' • .0' 1..0' 1..0' 2 0 .0' .0' • .0'625
.0' • .0' .0'. fJ .0'. fJ .0'. fJ 1. .0' .0'. 5 -.0' • .0'625
.0' • .0' .0'.0 .0' • .0' -.0'.5 g • .0' .0'.25 .0' .125 -.0' • .0'3125

A

Page A - 441

APPENDIX A

DESCRIPTION: First RSFR2 is called to factor A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.

EXAMPLE:

8 • .0'
.0' • .0'
.0' • .0'
.0' • .0'
.0' • .0'
.0' • .0'
r:r r.t
IC • ;u

.0' • .0'

.0' • .0'

.0' .0

L and D are superpositioned by suppressing
the ones on the diagonal of L; i.e., if the
superposition of L and D is denoted by C, then
C = L + D - I. The sparse elements of the super
position of L and D are stored in the corresponding
locations of S with the diagonal elements of D
replaced by their reciprocals. L and D may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, RSSV2 is called to solve the system in three
steps:

(1) Solve Lz=b for z (forward elimination)
(2) Solve Dy=z for y
(3) Solve L'x=y for x (backward substitution)

This routine supercedes RSFS and differs from it in
two important respects. First, RSFS2 is much faster
than RSFS. Second, RSFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
RSFS does.

The scratch parameter WRK is not used in the current
release of this routine; however, it has been
retained for compatibility with RSFS. Thus, a scalar
may be used in place for a vector for WRK.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

Let A be the symmetric matrix

0 • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' .0 .0' • .0'
8 . .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' .0 16 • .0'
0 • .0' 16 • .0' 32 • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0'
.0' • .0' 32 • .0' 80 • .0' 16 • .0' .0' • .0' 0.0 0.0 .0' .0 .0' • .0'
.0' • .0' .0' • .0' 16 • .0' 24 • .0' 16.0 .0' .0 8.0 .0' • .0' ~:1. 0
.0' • .0' .0' • .0' 0 • .0' 16 • .0' 24.0 .0' • .0' 8 • .0' .0' • .0' 4 • .0'
rx r:r fl IT z.z IT r:r IT r:r 16.Z .., ., r.r , t:: r.t r:r r:r
JU • :u JU • :u :u • x.; x.; • JU ~ L.. J{J ~u.u x.; • :t,)

.0'.0 .0' • .0' .0' • .0' 8 • .0' 8 • .0' 32 • .0' 8.0' • .0' 4.0' • .0' 8 • .0'

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 16 • .0' 4.0' • .0' 4 • .0' .0' • .0'
16 • .0' .0' • .0' 0 • .0' .0' • .0' 4 .0 .0' • .0' 8 • .0' .0' • .0' -1.25

FPS 86H-7482-i&lC Page A - 443

f(J .125
f(J. g f(J .125
g. g f(J. g
g. g f(J. g
f(J. f(J f(J. g
f(J. g g. g
fJ.;; fJ. fJ
g .kJ f(J. f(J

f(J. g f(J .kJ
g .kJ 2.kJ

APPENDIX A

Thus the superposition of L and D with the diagonal
elements of D replaced by their reciprocals is

f(J .kJ625
2 .kJ kJ.fiJ625
f(J. g l.kJ kJ.125
g. g g. f(J 2 .l! -kJ.125
g .;; f1. f1 f1 .fJ 1¥ IY IY IY'--t.~

JO. JO iO.JOO~;J

l!.kJ g .f(J l.fiJ l.fiJ 2.l!
f(J .kJ g .l! kJ.l! g_g l.l!
g_g g .ff fJ.kJ -ff .5 ff .ff

and the solution vector, x, is

3 • .fiJ
l.kJ
4.kJ
l..fiJ
5.ff
9.kJ
ff .kJ
ff .If
7.J!
kJ.J!

f(J • .062 5
fiJ.5 -ff.ff625
fiJ.25 f!.125 -ff .ff3125

Page A - 445

EXAMPLE:

8 .JI
.0' • .0'
.0' • .0'
.0' .JI
.0'. fJ
JI.JI
fj. fj

.0'. fI

.0' • .0'

.0' • .0'

.0' 0125
fI • .0' fI .12 5
.0' • .0' JI • .0'
.0' • .0' .0' • .0'
.0' • .0' .0' • .0'
.0' • .0' .0' • .0'
.0' • .0' .0' • .0'
.0' • .0' .0' • .0'
.0' • .0' .0' • .0'
fI • .0' 2 • .0'

APPENDIX A

Let A be the symmetric matrix

JI.JI JI.JI JI • .0' .0' • .0' .0' .JI .0' .JI .0' .JI JI.JI .0' .JI
8.JI .0' • .0' JI • .0' .0' • .0' .0' .JI .0' • .0' .0' .JI .0' .JI 16 • .0'
JI • .0' 16.JI 32.JI JI.JI .0' .H .0'.JI .0'.H JI.JI g • .0'
JI.JI 32.fI BfI. fI 16.fI fJ • .0' .0'. fJ fJ .H .0'. fJ fL.0'
fJ. fI fJ. fI 16.JI 24.fI 16 .fJ fI. fI 8 .fJ fI. fI fJ .JI
JI.JI JI.JI .0'. fJ 16.fI 24 .fJ fI. fJ 8 .fJ fI. fI 4 .fI
fj. fj fj. fj ff. fj fj. ff ff. ff 16 • .0' 32 • .0' 16 • .0" ff .J
fI. fI fI • .0' .0' • .0' 8. fI 8. fI 32 • .0' BfJ.JI 4fI • .0' 8. fI
fI. fJ fI.fI .0' 0 .0' fI • .0' fI • .0' 16 • .0' 4.0' .JI 4 ofJ .0' 0 .0'

16.JI .0' • .0' .0' • .0' .0' 0 .0' 4.JI .0' .JI 8 .JI .0' .fJ -1.25

Then the superposition of L and D with the diagonal
elements of D replaced by their reciprocals is

.0'.fI625
2.JI .0' • .0'625
.0' .JI 1..0' .0' .12S
.0' • .0' .0' • .0' 2 • .0' -.0'.125
.0' • .0'
.0'. fJ
.0' • .0'
fI • .0'

Let b

24 • .0'
8. fI

96. fI
288 • .0'
28.0' • .0'
296 • .0'
112 • .0'
392 • .0'

28 • .0'
52 • .0'

.0' • .0'

.0' • .0'
fI. fI
fI. fI

be the

.0' • .0' fI • .0' .0'.fJ625
1..0' 1..0' 2. fJ
.0' • .0' fI • .0' 1..0'
fJ. fI -.0'. 5 fI • .0'

vector

Then the input parameters are:

N = Hf
NS = 22

.0'.XJ625

.0'.5 -.0' • .0'625
fI.25 .0'.125 -fI • .0'3125

s = fI.125, .0'.125, 2 • .0', .0' • .0'625, 2 • .0', .0' • .0'625, 1 • .0',
.0'.125, 2 • .0', 1 • .0', -.0'.125, 1 • .0', -.0'.5, .0' • .0'625,
2.fI, 1 • .0', .0' • .0'625, .0'.5; .0'.25, -.0' • .0'625, .0'.125,
-.0'.0'3125

ICP = l, 2, 4, 6, 8, 11, 14, 17, 2ff, 22, 23
IRN = 1, 2, 1.0', 3, 4, 4, 5, 5, 6, 8, 6,

8, 1.0'' 7, 8, 9, 8, 9, 1.0', 9, 1.0', 1.0'
BX = 2 4 • .0', 8. 0', 96 • .0', 288 • .0', 28.0' • .0', 296 • .0', 112 • .0',

392.0', 28 • .0', 52 • .0'

FPS 868-7482-SSlC Page A - 447

APPENDIX A

********** **********
* * * *
* RUFR2 * - SPARSE REAL UNSYMME'l'RIC FACTOR * RUFR2 *
* * *
********** **********

PURPOSE: To perform an LU factorization of a real, unsymmetric
matrix
packed form.

CALL FORMAT: CALL RUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)

NS = Integer input scalar
Number of sparse elements (ioe., nonzero and
fill-in elements) in A

S = Floating-point input/output array of length NS
On input, S contains the sparse elements of A

in column order. On output, S contains the
sparse elements of the superposition of L and
U with the diagonal elements reciprocated.

ICP = Integer input array of length N+l
Contains pointers into S to the first sparse
element of each column with ICP(N+l) = NS + 1

!RN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S

IDP ~ Integer input array cf length N
Contains pointers into S to the diagonal
elements

ZTOL = Floating-point input scalar
Zero tolerance value

WRK = Floating-point scratch vector of length N
IERR = Integer output scalar

Error code whose values are:
0 - Normal termination
1 - Routine aborted because a diagonal

element was computed to be zero (i.e.,
its absolute value was less than or
equal to ZTOL)

2 - Routine aborted because N < 2

FPS 863-7482-SSlC Page A - 449

APPENDIX A

Then the input parameters are:

N = HJ
NS = 34
s = 8. fi1, 8. fi1, 16 • .0', 16 • .0', 32 • .0', 32 • .0', 8.0' • .0',

16.JJ, 16.JJ, 24.JJ, 16 • .0'' 8 • .0'' 16 • .0', 24 • .0',
8. fi1, 4. fi1, 16 .JJ' 32 • .0', 16 • .0', 8 • .0', 8 • .0,

32 .JJ' 8.0. fi1, 4fi1 • .0'·, 8 • .0'' 16 • .0'' 4.0' • .0', 4 • .0,
.0 • .0', 16 • .0', 4 • .0', 8 • .0', .0' • .0'' -1.25

ICP = 1, 2, 4, 6, 9, 13, 17, Ui, 26, 3fi' 35
IRN = 1, 2' 1.0', 3, 4, 3, 4, 5, 4, 5, 6,

8, 5, 6, 8, 1.0'' 7, 8, 9, 5, 6, 7,
8, 9, lJJ, 7, 8, 9, lJJ, 2, 6, 8, 9, lJJ

IDP = 1, 2' 4, 7, 1.0' I 14, 17, 23, 28, 34
ZTOL = l..0'E-6

The output parameters are:

s = .0'.125, .0.125, 16 • .0', .0' • .0'62 5, 32 • .0'' 2 .JJ, .0.JJ625,
16 .JJ, 1..0', .0.125, 16 • .0' I 8 • .0', 2 • .0', -.0'.125,
-8.JJ, 4 • .0', .0' • .0'625, 32 • .0' I 16 • .0' I 1..0', 1..0', 2 • .0''
.0' • .0'625, 8 • .0', 4 • .0', l.JJ, .0. 5, -.0 • .0'625, -2.JJ,
2 • .0', -.0'. 5, .0'.25, .0'.125, -.0' • .0'3125

IERR = fi1

Thus the superposition of L and U with the diagonal
elements of L replaced by their reciprocals is

.0'.125 .0'.JJ fi1 • .0' .0'. fi1 .0'. fi1 fi1 • .0' .0 • .0' fi1 • .0' .0'. fi1 fi1 • .0'
fi1. fi1 fi1 .125 fi1 • .0' .0' • .0' .0'. fi1 fi1. fi1 f(J. .0' J;L.0' fi1. fi1 2. fi1
fJ .JO fJ.fJ fJ.J0625 2.fJ JO. fJ JO. JO JO .fJ fJ. IO IO. 0 JO .0
fi1 • .0' .0' • .0' 32 • .0' .0' • .0'625 l.JJ fi1. fi1 fi1 • .0' .0'. fi1 fi1. fi1 fi1. fi1
.0' • .0' JJ.JJ .0. fi1 16 • .0' .0' .125 2.0 fi1. fi1 l.fJ fi1. fi1 fi1 .JJ
fi1. fi1 .0'. fi1 fi1 • .0' .0'. fi1 16.JJ -fi1 .125 fi1. fi1 1..0' fi1. fi1 -fi1. 5
.0' • .0' .0' .JJ .0' • .0' .0'. fi1 fi1. fi1 fi1 • .0' JJ.JJ625 2. fi1 l.fJ fi1. fi1
.0 • .0' .0' • .0' .0' • .0' .0'. fi1 8 • .0' -8 • .0' 32 • .0' .0' • .0'625 fi1. 5 fJ.25
.0' • .0' .0'.JJ .0' • .0' .0'. fi1 fi1. fi1 fi1 • .0' 16 • .0' 8 • .0' -fJ • .0'625 fJ.125
fi1 • .0' 16 • .0' .0' • .0' .0'. fi1 fi1 • .0' 4 • .0' fi1 • .0' 4. fi1 -2.fJ -.0' • .0'3125

FPS 86B-7482-BS1C Page A - 451

DESCRIPTION: First RUFR2 is called to factor A into LU where L is
a lower triangular matrix and U is an upper
trian9ular matrix with ones on its diagonal. The
factorization is performed without any row or column
interchanges. L and U are superpositioned

EXAMPLE:

8 • .0'
kl • .0'
kl • .0'
{I.kl
.0' • .0'
.0' • .0'
.0' • .0'
.0' • .0'
.0' .0
.0' • .0'

by suppressing the ones on the diagonal of U; i.e.,
if the superposition of L and U is denoted by C, then
C = L + U - I. The sparse elements of the super
position of L and U are stored in the corresponding
locations of S with the diagonal elements of L
replaced by their reciprocals. L and U may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, RUSV2 is called to solve the system in two
steps:

(1) Solve Ly=b for y
(2) Solve Ux=y for x

(forward elimination)
(backward substitution)

This routine supercedes RUFS and differs from it in
two important respects. First, RUFS2 is much faster
than RUFS. Second, RUFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
RUFS does.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

Let A be the matrix

g • .0' g • .0' g_g .0' • .0' .0' .kl kl.kl .0' .kl kl.kl .0' .0
8 • .0' kl • .0' 0.kl .0' • .0' kl.kl kl • .0' kl.kf 0 .0 16.0
g • .0' 16.kl 32.kl .0' .kl 0.kl kl.kl kl.kf 0 • .0' 0. 0
.0' • .0' 32 • .0' 80.kl 16.kl kl.kl .0' .kl .0' .0 0. 0 0 .kl
ff • .0' ff • .0' 16 • .0' 24 • .0' 16 . .0' {J.fJ 8. ff .0'. ff .0' • .0'
0 • .0' 0 • .0' 0 • .0' 16 • .0' 24 • .0' 0. 0 8. 0 .0' • .0' 4 • .0'
0 • .0' .0' • .0' .0' • .0' .0' .0 0 • .0' 16.kl 32 • .0' 16.0 0 • .0'
0 • .0' 0 • .0' 0 • .0' 8 • .0' 8 • .0' 32 • .0' 8.0' • .0' 4.0' • .0' 8.0
.0' • .0' .0' .0 0 • .0' .0' • .0' .0' • .0' 16.0 4.0' • .0' 4.0 0 • .0'

16 • .0' 0 • .0' .0' • .0' .0' • .0' 4 • .0' .0' .0 8 • .0' .0' .0 -1.25

NOTE: It is known apriori that fill-in occurs in
elements (lfJ,9) and (9, 1.0') •

FPS 86H-7482-gHlC Page A - 453

ff .125 ff .ff
k!.ff ff .125
ff .H ff. 0
ff .ff ff .ff
g • .0 .0 .H
.0 .ff .0 • .0
J.J g.,;;;
0 • .0 .0 .H
ff. ff .0 .H
ff .H 16.H

Thus the superposition of L and U with the diagonal
elements of L replaced by their reciprocals is

ff .ff 0.ff 0.0 ff .0
ff .ff 0.0 f!.ff ff .ff
ff .H625 2.ff ff. ff 0.ff

32 • .0 0.ff625 1.0 ff • .0
g_g 16.ff .0 .125 2.ff
g_g .0 .ff 16.ff -kr.125

.kf.G G.G ;r. ff G.G
.0 • .0 0.ff 8. ff -8.0
ff. ff g .ff ff. ff ff .ff
ff .H ff. ff ff .k! 4 .H

and the solution vector,

3.k!
1..0'
4 0 .0'
1.kr
5 • .0'
9 .ff
fJ.ff
ff • .0'
7 .ff
ff. ff

ff .0
ff .0
ff .0
ff .ff
ff. ff
ff .ff
l'Y l'Y,.""" r.
JOoJOO.i;:J

32.0
16. ff
ff. ff

x, is

ff .k!
ff .k!
.0. ff
ff. ff
l.ff
l.ff

fJ.fJ fJ.fJ
ff.ff 2.fJ
ff .ff ff .ff
ff .ff ff .ff
k!.ff ff .ff
ff. ff -ff. 5
, IV IV f'Y
.LoXl' JOoJO

ff .ff625 fJ.5 ff .25
8.ff -ff .ff625 fJ.125
4.fJ -2.ff -fJ.ff3125

Page A - 455

EXAMPLE:

8.kJ
.0'. ff
ff. ff
.0' .kJ
fj. fj

.0'. ff

.0'. ff

.0' 0 ff

.0'. f!

.0'.kJ

.0'.125 g • .0'
g • .0' kJ.125
g • .0' g • .0'
.0' .'1 .0.'1
.0 • .0' .0 • .0'
fJ • .0' .0 • .0'
g • .0' .0' • .0'
.0' • .0' .0 • .0'
.0' • .0' .0.'1
.0'. ff 16 • .0'

The execution time for

Let A be the matrix

kJ.kJ .0' • .0' .0'.kJ .0'.kJ
8. ff .0'. ff ff • .0' kJ.kJ
g .ff 16. ff 32. ff .0' .ff
ff • .0' 32. ff 8ff • .0' 16 .ff
fj. fj

,.., ,.., , ,.. l"L ., A l"L
JO. JO J..O •JO ~"i .10

ff. ff .0' • .0' .0' • .0' 16 • .0'
ff • .0' .0'. ff fJ.kJ ff • .0'
ff. ff .0'. ff ff. ff 8 .kJ
ff • .0' .0' • .0' .0'. ff .0' .. kJ

16 • .0' .0' • .0' g .ff ff .ff

Then the superposition
elements of L replaced

ff 0 .0' .0' • .0' .0'. ff '1 • .0
g • .0' .0' .'1 .0' • .0' .0' • .0'
.0' • .0'625 2 • .0' .0' .'1 '1 • .0

32 • .0' .0' • .0'625 1..0 g • .0'
ff • .0' 16 • .0' ff.125 2 • .0

APPENDIX A

this routine is data dependent.

kJ.kJ .0' • .0' kJ.kJ ff • .0' kL.0'
ff. ff ff • .0' ff • .0' .0' • .0' 16 .ff
ff. ff ff • .0' .0' • .0' ff • .0' ff • .0'
.0' • .0' .0'. ff g .ff ff • .0' ff • .0'

, e l"L l"L rr 0 rr rr rr rr rr
.J..O .JO JO. JO 0 .u XJ • ICI ICI • JCJ

24.kJ .0'. ff 8 • .0' .0' • .0' 4 • .0'
ff. ff 16 .ff 32 • .0' 16 • .0' .0' 0 .0'
8.kJ 32 .ff Bff • .0' 4g • .0' 8 • .0'
ff .. kJ 16 .ff 4-'J .ff 4 • .0' g • .0'
4.kJ .0'. ff 8 • .0 .0 .. .0' -1.25

of L and U with the diagonal
reciprocals is by their

.0'. ff kJ • .0' .0' • .0 .0 • .0

.0' .kJ .0 • .0' .0' • .0' 2 • .0'

.0 .ff kJ • .0' .0' • .0' '1 • .0'
ff • .0' '1 • .0' .0' • .0' '1.ff
.0' • .0' 1 • .0' '1.'1 fJ.'1

11.G .0' • .0' 16 • .0' -fi.125 g .fI 1 . .0' .0'.'1 -.0'.5
.0 .ff
.0' • .0'
.0 • .0'
.0.kJ

Let b

24.kJ
8.kJ

96.kJ
288.'1
28kJ.kJ
296.'1
112 • .0'
392 • .0'

28 • .0
52 • .0'

.0 • .0'

.0' .'1

.0' • .0'

.0' .kJ

be the

.0 • .0 .0' • .0' .0' • .0625 2 • .0' l.'1 fJ • .0'
8 • .0' -8 • .0' 32 • .0' '1 • .0'625 fJ.5 '1.25
.0' • .0' '1 • .0 16 • .0' 8.ff -.0'.'1625 fJ.125
'1.kJ 4.kJ .0' • .0' 4.kJ -2.kJ -kJ • .0'3125

vector

Then the input parameters are:

N = lkJ
NS = 34
s = f!.125, '1.125, 16 • .0', .0' • .0'625, 32 • .0, 2 • .0', '1 • .0'625,

16 • .0', 1 • .0', .0'.125, 16 • .0', 8.kJ, 2 • .0', -kJ.125,
-8.Z, 4.3, Z.Z625, 32.Z; 16.Z, l.Z, l.Z, 2.Z,
.0' • .0'625, 8 • .0', 4 • .0', 1 • .0, '1.5, -'1 • .0'625, -2 • .0',
2.fJ, -kJ.5, kJ.25, '1.125, -kJ • .0'3125

FPS 863-7482-SSlC Page A - 457

* *
* SDOTPR *
* *

PURPOSE:

* *

- SPARSE DOT PRODUCT - * SDO'l'PR *
* *

To calculate the dot product of a column of A
with another vector, B, given a real, sparse matrix, A,
that is in packed format.

CALL FORMAT: CALL SDOTPR(M,NPl,NS,S,IRN,ICP,IC,B,J,C)

PARAMETERS:

DESCRIPTION:

EXAMPLE:

M = Integer input scalar
Number of rows in A.

NPl = Integer input scalar
Number of columns in A plus one.

NS = Integer input scalar
Number of nonzero elements in A.

S = Floating-point input array of length NS
Contains the nonzero elements of A stored by
columns.

IRN = Integer input array of length NS
Contains the row numbers (in A) that correspond
to the nonzero elements in S.

ICP = Integer input array of length NPl

IC

B
J

c

c =

Let

=

=
=

=

Contains pointers to the elements in S that are
the first nonzero elements in each column of A.
ICP(NPl) = NS + 1.
Integer input scalar
Number of the column in A that is to be used.
Floating-point input vector of length M
Integer input scalar
Element step for B.
Floating-point output scalar

Sum[B(!RN(k)) * S(k); k=ICP(IC) to ICP(IC+l)-1]

A 1..0' .0' • .0' fiJ. .0' 4 • .0' iL.0' 1..0' .0'. f(J

f(J .kJ f(J .kJ -1.kf f(J. f(J f(J. f(J f(J. f(J f(J. f(J

f(J .kJ -4.kJ f(J. f(J f(J .kJ 5.kJ g .0 2. f(J

2. f(J f(J. f(J f(J .kJ f(J. 0 .0' • .0' g .kJ g .f(J

kJ .H .0' • .0' .0' .kJ H. fJ -2. fJ fJ • .0' -3.0
0 • .0' 0.kJ 0 • .0' -3.kf 3 • .0' .0' • .0' .0' .0

FPS 869-7482-SkJlC Page A - 459

*

* SITSOL *
* *

PURPOSE:

* *

SPARSE ITERATIVE SOLVER - * SITSOL *
* *

To solve a real, sparse, linear system A * X = B,
where A is in packed, row-order format.

CALL FORMAT: CALL SITSOL(N,NS,S,ICN,IRP,B,W,ZTOL,NCUT,IFLG,
X, ITER, IERR)

PARAMETERS: N = Integer input scalar
Order of A.

NS = Integer input scalar
Number of nonzero elements in A.

s = Real input array of length NS
Contains the nonzero elements of A stored in
row order.

ICN = Integer input array of length NS
Contains the column numbers (in A) of the
corresponding elements in s.

IRP = Integer input array of length N+l
Contains pointers to the first element of each
row of A in S with IRP(N+l) = NS+l.

B = Real input vector of length N
Contains the right-hand side.

W =·Real input scalar
Over relaxation coett1c1ent. If W = l.H, tnen
the Gauss-Seidel method is used to solve the
system. Otherwise, the successive over
relaxation (SOR) method is used with a
coefficient of W.

ZTOL = Real input scalar
Zero tolerance value. The solution is
considered to have converged when every
element of X is within ZTOL of its value on
the previous iteration.

NCUT = Integer input scalar
Iteration limit. The routine will return
after NCUT iterations if the solution has not
converged.

IFLG = Integer input scalar
Input flag:

0 - Normal input
1 - X contains an initial solution
2 - The routine is being reentered to

perform additional iterations and the
vectors S, ICN, IRP, B, and X contain
the values that they had on return from a
previous call to SITSOL.

FPS 86H-7482-HH1C Page A - 461

EXAMPLE: Given the linear system A * X = B, where

A 4. g g. g
g. g 8. g
3. g g. g
g • .0' -3 • .0'
g. g g. g
g. g g. g

2. g g. g
.0' • .0' 3 • .0'
8 • .0' .0' • .0'
.0' • .0' 8 • .0'
5 . .0' -2 • .0'
fJ • .0' -2 • .0'
fj. fJ fJ .ff

.0'.H

.0'.H
1.kr
l.H

16 . .0'
4.H
,.,, ,.,,
JO. JO

kr • .0'
.0' • .0'
kr.H
2.kr
3.kr

-8.kr

.0'.kr
kr.kr
.0'.kr
.0'.kr
4.kr
.0'.kr

A_pPENDIX A

.0' • .0'

.0' • .0'
kr • .0'
.0' • .0'
.0' • .0'
1..0'

2 • .0' .0' • .0' 4 • .0'

and

B 8 • .0' -5 • .0' 7.0 18.kr 31.kr -22.kr
then the inputs are

N = 8
NS = 23

s

ICN

4.kJ, 2.kJ, 8.kr,
8.kr, 1.kr, 2 • .0',

-2 • .0', 4 • .0', -8 • .0',

1,
4,
4,

3,
5,
5,

2,
6,
6,

3 • .0', 3 • .0', 8.kr,
5 • .0', -2.kJ, 16 • .0',
1..0', 2.kr, 2 • .0',

4,
3,
8,

l,
4,
7,

3'
5,
6,

4.kr 6 • .0'

l.fJ, -3 • .0',
3 • .0', 4 • .0',
4 . .0'

5,
6,
8

2,
7,

IRP 1, 3, 5, 8, 12, 17, 21, 22, 24

w = 1 . .0'
ZTOL = .0' • .0'0.0'1
NCUT = 2.0'
IFLG = .0'

and the outputs are

x 2 • .0'.0'.0'kr, -1 • .0'.0'.0'.0',
1 . .0'.0'.0'.0', 3.gggg,

ITER = 8
IERR = .0'

FPS 86H-7482-BB1C Page A - 463

EXAMPLE: Input:

I TYPE = 3
M = 4
N = 5
NS = 7

A: 5.0' 6.0' fJ. g 4 • .0 fJ. fJ
g .H g .H g .H 3 .H JO .0'
9.kf .0 .0' 0'.0' '1.kI g. '1
g_g '1. g kf .kf '1 • .0 kf .0'

Output:

NS = 5

S: 5 .kf 9. 0' 6. 0' 4 .0' 3. 0'

IN: l 3 1 1 2

IP: 1 3 4 4 6 2 1 2

IF.RR = kI

FPS 86g-7482-9&1C Page A - 465

APPENDIX A

EXAMPLE: Input:

I TYPE = l
M = 4
N = 3
NS = 5

S: 5 .0 6.0 3.0 2.0 4 .0

'T'-T -
, .., A , A

.L.L'i. .L "" "ll ~ "I!

IP: l 4 4 6

Output:

IERR = fcJ

FPS 863-7482-HHlC Page A - 467

'111.nTH:ranTv JI.
C1.IC"".C".a:.a&.,.u~.n. ~

Then the input is

M = 6
NPl = 8
NS = 12

s 1. 2. -4. -1. 4c -3. 5. -2. 3. 1. 2. -3.

!RN l 4 3 2 l 6 3 5 6 l 3 5

ICP l 3 4 5 7 HJ 11 13

IC = 4

B 5 • .0' -2 • .0' 1..0' 6 • .0' 4 • .0' 2 . .0'
-1..0' -7 • .0' 8 • .0' 3 • .0' 2 • .0' 2 • .0'

4 • .0' 2 • .0' 3 • .0' -5 • .0' 6 • .0' 3 . .0'

NC = 3

Output:

c = 14 . .0' -HJ . .0' 7 • .0'

FPS 868-7482-BBlC Page A - 469

Jl..PPENDIX A

Then the input is

M = 6
NPl = 8
NS = 12

s 1. 2. -4. -1. 4. -3. 5. -2. 3. 1. 2. -3.

IRN 1 4 3 2 1 6 3 5 6 1 3 5

ICP 1 3 4 5 7 1.0' 11 13

IC = 5

B bl b2 b3 b4 bS b6
where bl to b6 are the existing values in B

Output:

B : bl b2 5. b4 -2. 3.

FPS 868-7482-HHlC Page A - 471

Output:

NS = 3
IERR = g

s 1.5 1.25 -4.375

IEN 2 7 lf!

FPS 86H-7482-BB1C Page A - 473

Please detach cards along perforations.

---· ----~

UJ -o:=

Your comments wiii heip us improve the quality and usefulness of our publications. Please fill ;
out and return this form. (The mailing address is on the back.)

Title of document: --------------------------~~-
Your Name and Title: Date: ------------------ -------
Firm: -----------------Department: ===~~~------
Address:

--------------------------------~
City: ___________ State:---------- Zip Code:------

Telephone Number: Extension: ----------

I used this manual. .

0 as an introduction to the subject

0 as an aid for advanced training

0 to instruct a class

0 to learn operating procedures

0 as a reference manual

0 other -----------

I found this material.

accurate

complete

written clearly

well illustrated

well indexed

Yes
0
0
0
0
0

No
0
0
0
0
0

~ Please indicate below, listing the pages, any errors you found in the manual. Also indicate if
~ you would have liked more information about a certain subject.

<
~ o:=

>
ID
n:
n:
m

ARRAY is an independent society of people who use FPS products. Membership is free
and includes a quarterly newsletter. There is an annual conference, as well as other
activities. If you are interested in becoming an ARRAY member, please fill out and
return this form. (The mailing address is on the back.)

Your Name and Title:------------------ Date:-----
Finn: ----------------~Department:-----------

Address: --------~~-------------------------------
City: ---------- State: ---------- Zip Code: -----
Telephone Number: Extension:---------

L1 .Id-E ;-~ UZ:;-... :: :::~;:;~;;~

.\Vd:H KIOdlVOll JL t09t :x2rd._;_,
ISH>1t9/EOS :Fu,

ri~'7 J ,- r1n9."-:~, ·n:T".1t11n T 1 rr:...L..01""'1 "I_,.,.-..,,...,, • ·~ ,,.
t..Lti..:..f"J ~\...14.10..4.i'-i t-'uut~""Vd. o~ Vt,G vtl -'-"·a

'8NI 'SV~31SAS
!NlOd 8NllV'Ol~

