APMATH64 MANUAL
VOLUME 2 OF 4
MODELS M64/40, M64/50, M64/60
860-7482-001C

FLOATING POINT SYSTEMS,
INC.

APMATH64 MANUAL

VOLUME 2 OF 4
MODELS M64/40. M64/50, M64/60

860-7482-001C
by FPS Technical Publications Staff

NOTICE

The information in this publication is subject to change without notice.

Floating Point Systems, Inc. accepts no liability for any loss, expense, or damage resulting from the use of any information appearing in this publication.

Copyright © 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may be reproduced in any form without written permission from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document requests the user's critical evaluation to assist in preparing and revising future documents.

This manual is the APMATH64 Manual, Volume 2, 860-7482- $0 \varnothing 1$. The letter shown under the revision number column indicates the portion of the part number that changes for each revision. The last entry is the latest revision to this manual.

NOTE: For revised manuals, a vertical line "|" outside the left margin of the text signifies where changes have been made.

This is the second volume of the APMATH64 Manual. Volume 2 is comprised of part 2 of Appendix A. Note that Appendix A continues through Volumes 1, 2, and 3. The page numbers are listed consecutively through the volumes.

The APMATH64 Manual has three indices located at the end of Volume 3 and two at the end of Volume 4. The first index (Appendix I) is a list of the APMATH64 routines in page order by type. The second index (Appendix J) is an alphabetical list of all the APMATH64 routines. The third index is a key word index of the APMATH64 routines. The fourth index (Appendix L) is an alphabetical list of the APMATH64/MAX routines. The fifth index is a key word index of the APMATH64/MAX routines.

CONTHENHS (VOLUNE 2)

APPENDIX A APMATH64 ROUTINES
ADVANCED MATH LIBRARY Ā-233
SIGNAL PROCESSING LIBRARY A-263
IMAGE PROCESSING LIBRARY A-303
LINPACK BLAS LIBRARY A-325
SIMULATION LIBRARY A-362
GEOPHYSICAL LIBRARY A-402
SPARSE LINEAR SYSTEM LIBRARY A-422
ILLUSTRATIONS
Figure No. Title Page
A-1 Correlation A-309
A-2 Convolution A-309

APMATH64 ROUTINES (VOLUME 2)

 ADVANCED MATH LIBRARY```
DESCRIPTION: This routine first calls HTRIDI to reduce A to a
real symmetric tridiagonal matrix using unitary
similarity transformations. IMTQL2 is then called to
determine the eigenvalues and eigenvectors of the
real tridiagonal matrix. IMTQL2 uses the implicit QL
meihod to compuite the eigenvalues and accumulates the
QL transformations to compute the eigenvectors.
Finally, HTRIBK is called to backtransform the eigen-
vectors to those of the original matrix.
If N is less than or equal to zero, then IERR is set to
999999. If N is greater than NM, then IERR is set to
l\varnothing*N. If more than 3\varnothing iterations are required to
determine an eigenvalue, the subroutine terminates
with IERR set equal to the index of the eigenvalue
for which the failure occurs. In this case, the
eigenvalues in W should be correct for indices
1, 2,.... IERR-1, but no eigenvectors are computed.
If all of the eigenvalues are determined within 3X
iterations, then IERR is set to zero.
The function selector, MATZ, may be made functional
in a future release as follows: If MATZ = \varnothing, then
only the eigenvalues will be determined; otherwise,
both the eigenvalues and eigenvectors will be
determined.
With the exception of error code 999999 and the nonfunctionality of the selector flag, this routine is functionally the same as the FORTRAN routine of the same name found in the "Matrix Eigensystem Routines EISPACK Guide", 2nd edition, by B.T. Smith, et al., Springer-Verlag (1976). For further information, refer to pages 235-239 of the EISPACK Guide.
The execution time for this routine is highly data dependent.
```

EXAMPLE:

## Input:

$$
\begin{aligned}
& \mathrm{NM}=4 \\
& \mathrm{~N}=4
\end{aligned}
$$

AR : $3 . \varnothing$ 1.ø $\quad \varnothing . \varnothing \quad \varnothing . \varnothing$

| $1 . \varnothing$ | $3 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ |
| :--- | :--- | :--- | :--- |
| $\varnothing . \varnothing$ | $0 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |
| $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |



EXAMPLE:

```
NM = 5
N}=
A : 5.\varnothing 4.\varnothing 1.\varnothing 1.\varnothing
 4.0}50.\varnothing 1.\varnothing 1.\varnothing
 1.\varnothing
 1.\varnothing
 \varnothing.\varnothing Ø.\varnothing Ø.\varnothing Ø.\varnothing
D : 1.\varnothing 2.\varnothing 5.\varnothing 1\varnothing.\varnothing
```



PURPOSE: To form the eigenvectors of a complex Hermitian matrix, A, by back transforming those of the corresponding real symmetric tridiagonal matrix determined by the routine HTRIDI.

CALL FORMAT: CALL HTRIBR(NM, N, AR, AI, TAU, M, ZR, ZI)
PARAMETERS: $N M$ = Integer input scalar Row dimension of the matrices
$\mathrm{N}=$ Integer input scalar Order of matrix A and column dimension of the matrices. $N$ must be less than or equal to NM.
 The strict lower triangle of the first $N$ rows contains information about the unitary transformations used in the reduction by HTRIDI. The remaining elements are ignored.
AI $=$ Floating-point $N M$ by $N$ input matrix The full lower triangle of the first $N$ rows contains information about the unitary transformations used in the reduction by HTRIDI. The remaining elements are ignored.
TAU $=$ Floating-point 2 by $N$ input matrix Contains the remaining information about the unitary transformations.
$M$ = Integer input scalar Number of eigenvectors to be back transformed.
ZR = Floating-point NM by $N$ input/output matrix On input, the columns of ZR contain the eigenvectors to be back transformed in their first $N$ elements. On output, the first $M$ columns and $N$ rows contain the real parts of the transformed eigenvectors.
ZI = Floating-point $N M$ by $N$ output matrix The first M columns and $N$ rows contain the imaginary parts of the transformed eigenvectors.


PURPOSE: To reduce a complex Hermitian matrix, $A$, to a real symmetric tridiagonal matrix using unitary similarity transformations.

CALI FORMAT: CALL HTRIDI(NM, N, AR, AI, D, E, E2, TAU)

PARAMETERS: NM = Integer input scalar
Row dimension of the matrices
$\mathrm{N}=$ Integer input scalar Order of matrix A and column dimension of the matrices. N must be less than or equal to NM.
$A R=$ Floating-point $N M$ by $N$ input/output matrix On input, the first $N$ rows of AR contain the real parts of the elements of $A$. The last NM - N rows are ignored. Only the full lower triangle of AR need be supplied. On output, the strict lower triangle of AR contains information about the unitary transformations used in the reduction. The full upper triangle of $A R$ is unaltered.
AI = Floating-point NM by $N$ input/output matrix On input; the first $N$ rows of AI contain the imaginary parts of the elements of $A$. The last NM - N rows are ignored. Only the strict lower triangle of AI need be supplied. On output, the full lower triangle of AI contains information about the unitary transformations used in the reduction. The strict upper triangle of AI is unaltered.
$D \quad=$ Floating-point output vector of length $N$ Contains the diagonal elements of the tridiagonal matrix.
$\mathrm{E}=$ Floating-point output vector of length N Contains the subdiagonal elements of the tridiagonal matrix in its last $\mathrm{N}-1$ elements. The element $E(1)$ is set to zero.
E2 = Floating-point output vector of length $N$ Contains the squares of the corresponding elements of E .
TAU = Floating-point 2 by $N$ output matrix Contains the remaining information about the unitary transformations.



| ***** | ** |
| :---: | :---: |
|  |  |
| RS | -- real stmaetric eigensystem Solver - * RS |
|  |  |
| ********** | *** |
| PURPOSE: | To determine the eigenvalues and eigenvector of a real symmetric matrix, A. |
| CALL FORMAT: | CALL RS(NM, N, A, W, MATZ, Z, FV1, FV2, IERR) |
| PARAMETERS: | ```NM = Integer input scalar Number of rows of matrices A and Z``` |
|  | $\mathrm{N}=$ Integer input scalar <br> Order of matrix A and column dimension of matrices $A$ and $Z$. $N$ must be less than or equal to Na . |
|  | $\mathrm{A} \quad=$ Floating-point $N M$ by N input matrix <br> The first N rows contain the matrix and the last NM - N rows are ignored. Only the full lower triangle of the matrix need be supplied. |
|  | $=$ Floating-point output vector of length N Contains the eigenvalues of $A$ in ascending order. |
|  | ```MATZ = Integer input scalar MATZ is not currently used.``` |
|  | Z = Floating-point $N M$ by $N$ output matrix The first $N$ elements of the $j$-th column of $z$ is the eigenvector that corresponds to the $j$-th eigenvalue in $w$. The last $N M$ - $N$ elements in each column are not altered. |
|  | FV1 = Floating-point work area vector of length N |
|  | FV2 = Floating-point work area vector of length N |
|  | IERR = Integer output scalar <br> Error code as described below. |
| DESCRIPTION: | This routine first calls TRED2 to reduce $A$ to a |
|  | symmetric tridiagonal matrix using and accumulating orthogonal similarity transformations. IMTQL2 is |
|  | then called to determine the eigenvalues and eigen- |
|  | vectors of the original matrix from the symmetric tridiagonal matrix. IMTOL2 uses the implicit $0 L$ |
|  | method to compute the eigenvalues and accumulates the QL transformations to compute the eigenvectors. |
|  | If $N$ is less than or equal to zero, then IERR is set |
|  | 999999. If $N$ is greater than NM, then IERR is set to $10 * \mathrm{~N}$. If more than $3 \varnothing$ iterations are required to |
|  | determine an eigenvalue, the subroutine terminates with IERR set equal to the index of the eigenvalue for which |
|  | IERR set equal to the index of the eigenvalue for which the failure occurs. |

##  <br> t <br> * SIMPLE * <br> * $t$ <br> 

PURPOSE: To solve a linear programming problem that is in the standard form:
maximize $Z=C ' * X$
subject to $A * X=B$
and $\quad X(j)>=\varnothing$, for $j=1$ to $N$
where $\quad B(i)>=\varnothing$, for $i=1$ to $M$

## 

* 
* SIMPLE *



Where
CALL SIMPLE(M,N,MP2,NPI,KI,NS,S,IRN,ICP,B,C,WRK, $X, Y, Z, I B, K O)$

PARAMETERS: $M$ = Integer input scalar Number of constraints (rows in A).
$\mathrm{N}=$ Integer input scalar Number of variables (columns in A).
MP2 = Integer input scalar $M P 2=M+2$
NP1 = Integer input scalar NPl = N + l
$K I=$ Integer input vector of length $1 \varnothing$ Contains the program control parameters. If any of these parameters is less than or equal to zero, then a default value is supplied for that parameter. The parameters are:
$K I(1)=$ Input basis flag. $K I(I)>\varnothing$ indicates that an initial basis is supplied in IB. Default $=$ No initial basis.
$K I(2)=$ Iteration limit. Default $=4 * N+1 \varnothing$
$\mathrm{KI}(3)=$ Inversion interval. Default $=M / 2+5$
KI(4) = Zero tolerance exponent. The zero
tolerance value $=\varnothing .5$ ** $\mathrm{KI}(4)$.
Default $=20$.
$K I(5)=$ Partial pricing step size.
Default $=\min (N, \max (2 \emptyset, N / 2 \emptyset))$.
NOTE: The default value is also used if $K I(5)>N$ and a value of $2 \varnothing$ is used if $\emptyset<K I(5)<2 \varnothing$. $K I(6)$ to $K I(1 \varnothing)$ are reserved for future use.
NS $=$ Integer input scalar Number of nonzero elements in A.
$S=$ Floating-point input array of length NS Contains the nonzero elements of A stored by columns.
IRN $=$ Integer input array of length $N S$ Contains the row numbers (in A) that correspond to the nonzero elements in $S$.

The problem must be stated in the standard form:

```
 maximize Z = C'* X
 subject to A * X = B
 and }\quadX(j)>=\varnothing, for j = l to
 where B(i) >= \varnothing, for i = l to M
Therefore, it is the responsibility of the user to:
(a) Convert a minimization problem to a maximization problem by replacing \(C\) with \(-C\).
(b) Convert inequality constraints to equality constraints by adding a slack variable or subtracting a surplus variable.
(c) Ensure that \(B(i)>=\varnothing\) by multiply the \(i-t h\) constraint by \(-1 . \varnothing\) if \(B(i)<\varnothing\).
(d) Ensure that the decision variables are constrained to be nonnegative. If \(X(j)\) is unconstrained in sign then replace it by the difference of two new nonnegative variables.
In this variation of the two phase, revised simplex method, a composite problem is formed (virtually) in SIMPLE that includes both the actual (phase 2) objective equation and the artificial (phase 1) objective equation as constraints making a total of MP2 constraints. The variables for the internal composite problem are:
X(X) - The actual objective; i.e., Z
X(I) to \(X(N)\) - The actual decision variables \(X(N+1)\) - The artificial objective \(\mathrm{X}(\mathrm{N}+2)\) to \(\mathrm{X}(\mathrm{N}+\mathrm{M}+1)\) - The artificial variables where \(X(N+1+i)\) is the artificial variable for the i-th constraint.
```

The variables $X(\varnothing)$ and $X(N+1)$ to $X(N+M+1)$ are virtual variables and, thus, do not use any storage space.
$X(\varnothing)$ must always be a basic variable and IB(1) must always be zero. $X(N+1)$ must be a basic variable during phase one and $I B(2)$ must equal $N+1$ whenever $X(N+1)$ is basic. At least one artificial variable (including $X(N+1)$ ) must always be basic. During phase two, any artificial variables in the basis will have a value of zero. Generally, during phase two, only one artificial variable will be basic and it will be $X(N+1)$; however, this need not be the case.

Given a problem in standard form where

$$
\begin{aligned}
& \text { A: 1. 2. 3. Ø. Ø. Ø. Ø. Ø. 1. Ø. Ø. Ø. Ø. } \\
& \text { Ø. Ø. Ø. 3. 1. 2. Ø. ø. ø. 1. Ø. ø. ø. } \\
& \text { 2. 3. Ø. 2. Ø. Ø. 2. Ø. Ø. Ø. 1. Ø. Ø. } \\
& \text { ø. ø. 3. Ø. 5. Ø. 2. 3. ø. ø. Ø. 1. ø. } \\
& \text { 3. Ø. Ø. Ø. Ø. 3. Ø. 1. Ø. Ø. Ø. ø. 1. }
\end{aligned}
$$

the inputs are:

```
M=5
N = 13
MP2 = 7
NP1 = 14
KI : \varnothing, \varnothing, \varnothing, \varnothing
NS = 22
```

$\mathrm{S}: 1 ., 2 ., 3 ., 2 ., 3 ., 3 ., 3 ., 3 ., 2 ., 1 ., 5 ., 2 .$,
3., 2., 2., 3., 1., 1., 1., 1., 1., 1.
IRN : $1,3,3,1,3,1,4,2,3,2,4,2$,
5, 3, 4, 4, 5, 1, 2, 3, 4, 5
ICP : 1, 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21,
22, 23
B : 14., 25., 21., 30., 34.

Ø., Ø., Ø., Ø.
IB : Don't care since $K I(1)=\varnothing$
The outputs are:

$\varnothing ., \varnothing$.

where $\mathrm{y}^{6}$ and $\mathrm{y}^{7}$ not of interest (scratch)
$\bar{z}=177 . \varnothing$
IB : $\varnothing, 14,9,2,8,4,6$
KO : Ø, 7, 7, Ø, 7, 4

## EXAMPLE:

$\left.\begin{array}{lllllll}\text { A(INPUT) }= & 13 . \varnothing \varnothing \varnothing & 4 . \varnothing \varnothing \varnothing & 1 . \varnothing \varnothing \varnothing & 9 . \varnothing \varnothing \varnothing & 7 . \varnothing \varnothing \varnothing \\ & \varnothing . \varnothing \varnothing \varnothing & -3 . \varnothing \varnothing \varnothing & 8 . \varnothing \varnothing \varnothing & -2 . \varnothing \varnothing \varnothing & -7 . \varnothing \varnothing \varnothing\end{array}\right)$

## EXAMPLE:

Input:

$$
\begin{aligned}
& \overline{\mathrm{N}}=5 \\
& \mathrm{NM}=5
\end{aligned}
$$

$$
\begin{array}{rrrrr}
A:-1 . \varnothing & \varnothing . \varnothing & 2 . \varnothing & 4 . \varnothing & \varnothing . \varnothing \\
\varnothing . \varnothing & 2 . \varnothing & 3 . \varnothing & \varnothing . \varnothing & -1 . \varnothing \\
2 . \varnothing & 3 . \varnothing & 5 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing \\
4 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & -2 . \varnothing & \varnothing . \varnothing \\
\varnothing . \varnothing & -1 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & 1 . \varnothing
\end{array}
$$

Output:
D : $\begin{array}{lllll}-2 . \varnothing & -1 . \varnothing & 5 . \varnothing & 2 . \varnothing & 1 . \varnothing\end{array}$
$\mathrm{E}: \quad \varnothing . \varnothing-4 . \varnothing \quad-2 . \varnothing \quad-3 . \varnothing \quad-1 . \varnothing$
E2: Ø. $\begin{array}{llllll} & 16 . \varnothing & 4 . \varnothing & 9 . \varnothing & 1 . \varnothing\end{array}$


EXAMPLE:
$\mathrm{N}=5$

A(input) : $5 . \varnothing$ 4.ø $-\varnothing .5-1 . \varnothing 8 . \varnothing$
$A$ (output) : $-1 . \varnothing-\varnothing .5 \quad 4 . \varnothing \quad 5 . \varnothing \quad 8 . \varnothing$

| ******** | ******** |
| :---: | :---: |
|  |  |
| * vSORT | -_ VECTOR SORT WITH INDICES -- * VSORT |
|  |  |
| ********** | *** |
|  |  |
| PURPOSE: | To sort a vector into an ascending vector of algebraic values using Quicksort. When the elements of the A vector are swapped, corresponding elements of the $P$ vector are also swapped. Typical use of the P vector is to record the original indices of the sorted vector. |
| CALL FORMAT: | CALL VSORT(A,I, P, J,N) |
| PARAMETERS: | ```A = Floating-point vector to be sorted in place I = Integer element step for A P = Integer or real vector of starting indices J = Integer element step for P N = Integer element count``` |
| DESCRIPTION: | VSORT sorts elements of a vector into an ascending vector of algebraic values by the method of Quicksort (Hoare's partition-exchange sort) in place. The procedure iteratively partitions the vector creating two subvectors, one whose values are less than or equal to the value initially at the middle location, and the other with elements greater than or equal to that value. This chosen value ends up in its true (post-sorted) position between the two subvectors. The half-way location was chosen for initial trial comparison in order to speed the sort when the original vector is already partly ordered. <br> After each partition, first and last locations of the larger subvector are stored in a pointer stack, which can accumulate no more than $\log 2(\mathrm{~N})$ pairs, and the process of partitioning is continued on the smaller subvector. The process of comparison and partitioning is continued until no subvectors remain. The vector is then completely sorted. |



EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=3 \\
& \mathrm{M}=5
\end{aligned}
$$

| $A=$ | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ | $4 . \varnothing$ | $5 . \varnothing$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $C$ | $:$ | $55 . \varnothing$ | $4 \varnothing . \varnothing$ | $26 . \varnothing$ |  |


| ＊せれあtt＊＊＊＊ |  | ＊＊＊t＊＊＊＊＊＊ |
| :---: | :---: | :---: |
| ＊＊ |  | ＊＊ |
| ＊BLKMAN＊ | －＿BLACKMAN WINDOW MULTIPLY－－ | ＊BLKMAN＊ |
| ＊＊ |  | ＊＊ |
|  |  | ＊＊＊＊＊＊＊＊＊＊ |
| PURPOSE： | To multiply a vector by a Blackman window． |  |
| CALI FORMAT： | CALL BLKMAN（ $A, I, C, K, N$ ） |  |
| PARAMETERS ： | $A=F l o a t i n g-p o i n t ~ i n p u t ~ v e c t o r ~$ |  |
|  | $I=$ Integer element step for $A$ |  |
|  | $C=F l o a t i n g-p o i n t ~ o u t p u t ~ v e c t o r ~$ |  |
|  | $K=$ Integer element step for $C$ |  |
|  | $N=$ Integer element count（a power of 2） |  |
| DTSCRIPTION： | $C(m)=A(m) *(0.42-a x .50 * \operatorname{COS}((m-1) *(2 * P I / N))$ |  |
|  | $+\varnothing . \varnothing 8 * \operatorname{COS}((m-1) *(4 * P I / N))$ ） |  |
|  | for $m=1$ to N |  |
|  | Multiplies the elements of the vector $A$ by |  |
|  | an $N$ element Blackman window function，and stores the results in the vector $C$ ．$N$ must | be |

## EXAMPLE：

$$
\begin{aligned}
& I=1 \\
& K=1 \\
& N=8
\end{aligned}
$$

| $A:$ | $1 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
|  | $1 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |
|  |  |  |  |  |
| $C$ | $\varnothing . \varnothing \varnothing \varnothing$ | $\varnothing . \varnothing 66$ | $\varnothing .34 \varnothing$ | $\varnothing .774$ |
|  | $1 . \varnothing \varnothing \varnothing$ | $\varnothing .774$ | $\varnothing .34 \varnothing$ | $\varnothing . \varnothing 66$ |

THLINC $=$ Floating-point input scalar containing the phase increment threshold (used to obtain more confident phase estimates near sharp zeros)
THLCON $=$ Floating-point input scalar containing the phase consistency threshold
WMD $=$ Integer work area vector of length 39 used for various software stacks during phase unwrapping
IXCXST $=$ Integer input scalar $X$ and $C X$ input status:
$\emptyset$ if $X$ is provided as input and
CX is not provided as input
1 if $X$ is not provided as input and
CX is provided as input
2 if both $X$ and $C X$ are provided as input
IAUXST $=$ Integer input scalar AUX input status:
$\varnothing$ if AUX is not provided as input I if AUX is provided as input
IPHWST = Integer input scalar phase unwrapping only status:
$\varnothing$ if complex cepstrum is desired 1 if phase unwrapping only is desired
NOTE: For APFTN64 calls to CCEPS, the dimension of arrays $X, C X$, and $A U X$ must be greater than or equai to NFFT2 and the dimension of array WMD must be greater than or equal 39.
DESCRIPTION: See "Programs for Digital Signal Processing", IEEE Press, 1979.

1) Input parameters are checked for out of range conditions. If any errors are detected, then SSUC gets the appropriate error code (2.ø - 9.ø) and CCEPS returns.
2) If IXCXST= $\varnothing$ then $X$ is used to compute $C X$.
3) If IXCXST=1 then $C X$ is used to compute $X$. Note that in this case the vector $X$ will occupy NFFT2 words in Main Memory but only the first NX elements of $X$ will be used in further calculations.
4) If IAUXST=ø then $X$ is used to compute AUX.
5) Each of the NFFT2 elements of CX and AUX are divided by $2 . \varnothing$ to match IEEE formulation.
6) If the first element of $C X$ is less than $\varnothing . \varnothing$ then SNX $=-1 . \varnothing$ else $\operatorname{SNX}=+1 . \varnothing$.
7) The magnitude of the spectrum is computed and stored in the real positions of AUX; the phase derivative of the spectrum is computed and stored in the imaginary positions of AUX; and twice the linear phase estimate (mean of the phase derivative) is computed for use in the phase unwrapping computation.

| CX(OUT) : | -1.6639 | $\varnothing .000 \square$ | -5.9134 | 0.7447 |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.9543 | 1.4085 | 3.6149 | 6.7278 |
|  | 3.5771 | $\varnothing . \varnothing \varnothing \varnothing \square$ |  |  |
| AUX(OUT) : | 0.0359 | -2.6140 | Ø. 0000 | 5.5523 |
|  | 6.7434 | -2.7728 | 415.6262 | -2.9137 |
|  | 1279.4929 | -2.9325 |  |  |

SNX $=1 . \varnothing \varnothing \varnothing \varnothing$
$\mathrm{SFX}=-2.1 \varnothing \varnothing \varnothing$
SSUC $=0 . \varnothing \varnothing \varnothing \varnothing$

```
#########*
* CCORT * * CROSS-CORRELATION (TIME-DOMAIN) -- m
```



```
PURPOSE: To perform a cross-correlation operation on two
 vectors using time-domain techniques.
CALL FORMAT: CALL CCORT(A,B,C,N,M)
PARAMETERS: A = Floating-point input vector (operand)
 B = Floating-point input vector (operator)
 C = Floating-point output vector
 N = Integer element count for C (number of lags)
 M = Integer element count for A and B
 (Note vector elements occupy consecutive
 addresses.)
DESCRIPTION: C(m)=SUM(A(m+q-1)*B(q));
 for q=1 to M-m+1
 and m=1 to N
 CCORT uses time-domain techniques (compare with CCORF) to
 compute the cross-correlation function. This routine
 needs less storage than CCORF, and runs faster when N
 and/or M is small.
```

EXAMPLE:
$\mathrm{N}=3$
$M=4$

| A : | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ | $4 . \varnothing$ |
| ---: | ---: | ---: | ---: | ---: |
| B $:$ | $1 \varnothing . \varnothing$ | $2 \varnothing . \varnothing$ | $3 \varnothing . \varnothing$ | $4 \varnothing . \varnothing$ |
| C : | $3 \varnothing \varnothing . \varnothing$ | $2 \varnothing \varnothing . \varnothing$ | $11 \varnothing . \varnothing$ |  |


| ********** |  | ********** |
| :---: | :---: | :---: |
| * * |  | * |
| * COHER * | -- COHERENCE FUNCTION -- | * COHER |
| * * |  | * * |
| ********** |  | ********** |
| PURPOSE: | To compute the coherence function, given the auto-spectra of two signals and the cross-spectrum between them. |  |
| CALL FORMAT : | CALL COHER (A, B, C, D, N) |  |
| PARAMETERS: | $A=$ Floating-point input vector (Auto-spectrum) |  |
|  | B = Floating-point input vector (Auto-spectrum) |  |
|  | $C=$ Complex-floating-point input vector (Cross-spectrum) |  |
|  | D = Floating-point output vector <br> (Coherence function) |  |
|  | $\mathrm{N}=$ Integer element count (Note vector elements occupy consecutiv addresses.) |  |
| DESCRIPTION: | $D(m)=(R(C)(m)) * * 2+I(C(m)) * * 2) /(A(m) * B(m)) ;$ | for $m=1$ to $N$ |

EXAMPLE:
$\mathrm{N}=3$
A: $1 . \varnothing$
2.0
3.0
B : $4 . \varnothing$
$5 . \varnothing$
6.0
C : (1.ø.2.ø)
(3.0.4.0)
(5.6.6.0)
$\begin{array}{llll}\mathrm{D}: 1.25 & 2.5 & 3.39\end{array}$



```
##########
```



```
* ENVEL * --- ENVELOPE DETECTIOR --- E ENVEL
* *
*****れ##れ*
PURPOSE: To obtain the envelope of a vector X(t).
CALL FORMAT: CALL ENVEL(X,E,N)
PARAMETERS: X = Floating-point input vector
 E = Floating-point output envelope vector
 N = Integer element count (a power of 2)
DESCRIPTION: E(t) = SQRT { X(t)**2 + H{X(t)}**2 } for t=1 to N
 where: H{X(t)} = Hilbert transform of X(t).
 For references see any standard text on
 communication theory, viz. "Communications Systems
 and Techniques," M.Schwartz, W.Bennet, & Stein,
 McGraw Hill.
 This routine starts by obtaining the Hilbert
 transform of the input vector. The formula shown
 above is then used to extract the envelope.
```

EXAMPLE：

$$
N=8
$$

| $X$ | 2.7 | 1.6 | 8.3 | 4.2 | 9.7 | 14.1 | 3.6 | 0.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


$\mathrm{E}:$|  | 2.72 | 4.32 | 8.82 | $4.3 \varnothing$ | 11.33 | 14.73 | 9.21 | 0.85 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=4 \\
& F=\varnothing
\end{aligned}
$$



```
PURPOSE: To obtain the Hilbert transform of an analytic
 signal.
CALL FORMAT: CALL HLBRT(X,H,N)
PARAMETERS: X = Floating-point input vector
 H = Floating-point output Hilbert transformed vector
 N = Integer element count (a power of 2)
DESCRIPTION: F{H{X(t) = -J * F{X(t)} for t=1 to N
 where: F{X(t)} = Fourier transform of X(t).
 H{X(t)} = Hilbert transform of X(t).
 J = SQRT(-1)
(1) A real to complex FFT of \(X(t)\) is obtained.
(2) Real components of the result are multiplied by -1.
(3) Positions of the real and imaginary components are switched.
(4) A complex to real inverse FFT is performed on the results of step 3 .
```

EXAMPLE:

$$
\mathrm{N}=8
$$

$\begin{array}{llllllll}\mathrm{X}: & 2.7 & 1.6 & 8.3 & 4.2 & 9.7 & 14.1 & 3.6\end{array} 0.5$
$\begin{array}{lllllllll}\mathrm{H}: & 0.4 & -4 . \varnothing & -3 . \varnothing & -\varnothing .9 & -5.9 & 4.3 & 8.5 & \varnothing .7\end{array}$

EXAMPLE:

| $\mathrm{N}=128$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $M=1 \varnothing$ |  |  |  |  |
|  | : $1 \varnothing$ * SIN(i * $1 \varnothing$ * $2 * P I / 128)+$ |  |  |  |
|  | 20 * SIN(i * 20 * 2*PI/128) + |  |  |  |
|  | $3 \varnothing$ * SIN(i * 3ø * 2*PI/128) |  |  |  |
|  | for $i=1$ to 128 |  |  |  |
| j | RC(j) | A(j) | $A L$ (j) | R(j) |
| 1 | - 0.2847 | $1.0 \varnothing \square \square$ | 89599.9 | 89599.9 |
| 2 | Ø. 8183 | -Ø. 8897 | 82335.4 | 25512.8 |
| 3 | -Ø.5200 | 1.8404 | 27198.6 | -60112.8 |
| 4 | $\varnothing .5403$ | - 0.2509 | 19844.6 | -37858.5 |
| 5 | 2.1853 | 7.1024 | 14251.1 | 32208.9 |
| 6 | -0.2451 | 0.2085 | 13563.2 | 24552.1 |
| 7 | -Ø. 0955 | $\emptyset .1145$ | 12748.7 | -30017.1 |
| 8 | $\varnothing .3127$ | 0.0661 | 12632.4 | -18969.6 |
| 9 | $\varnothing .4627$ | 0.1081 | 11397.1 | 35262.2 |
| 16 | $\varnothing .3054$ | 0.1478 | 8957.3 | 18797.9 |
| 11 |  | $\emptyset .3654$ | 8121.7 | -52577.9 |

EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=8 \\
& \mathrm{NP}=5 \\
& \mathrm{R}=4.00 \\
& \text { MODE }=1 \\
& A: \begin{array}{llllllll}
A . \varnothing & 1 \varnothing . \varnothing & 2 \varnothing . \varnothing & 3 . \varnothing & 4 . \varnothing & 5 \varnothing . \varnothing & 6 . \varnothing & 7 \varnothing . \varnothing
\end{array} \\
& B: 20 . \varnothing \quad 3 . \varnothing \quad 5 \varnothing . \varnothing \quad 6 . \varnothing \\
& \text { C : } 3 . \varnothing \quad 4 . \varnothing \quad 6 . \varnothing \quad 7 . \varnothing \\
& R=4 . \varnothing
\end{aligned}
$$

```
Inverse transform:
x(k) = SUM { X((r-l)*df-Fl*df) *
 EXP(j*2*pi*(r-1)*df*(k-1)*dt) }
 for r = 1 to NF
 where dt = 1/XM.
Thus the same formula used for the forward transform
may be used for the inverse transform if here
W = -2*pi*(k-1)/XM and Fl and NF replace Tl and
NT respectively. If the r=l component X(l) is
input, it must have an imaginary part equal to }\varnothing\mathrm{ .
The DFT is produced by the modified Goertzel algorithm
as described in
(1) A.V. Oppenheim and Schafer, "Digital Signal
 Processing," Prentice Hall, 1975
and
(2) F. Bonzanigo, "An improvement of Tribolet's
 phase unwrapping algorithm," IEEE Trans. ASSP,
 Feb. 1978, pp. 104-105
Additionally, an exponential factor has been used
to account for any offset of the input values from
zero (Tl or Fl).
Inverse times are approximately double for forward
times after the NT and NF values are interchanged.
```

EXAMPLE:

```
F1 \(=\varnothing . \varnothing\)
\(T 1=1 . \varnothing\)
\(\mathrm{NT}=8\)
\(\mathrm{NF}=4\)
\(X M=8 . \varnothing\)
\(I=1\)
A(INPUT) : 1.ø \(\varnothing . \varnothing-1 . \varnothing \quad \varnothing . \varnothing 1 . \varnothing \quad \varnothing . \varnothing-1 . \varnothing \quad \varnothing . \varnothing\)
B(OUTPUT) : (ø. Ø, Ø. \()(\varnothing . \varnothing, ~ \varnothing . \varnothing)(\varnothing . \varnothing,-4 . \varnothing)(\varnothing . \varnothing, ~ \varnothing . \varnothing)\)
\(\mathrm{Fl}=2 . \varnothing\)
\(T 1=\varnothing . \varnothing\)
\(\mathrm{NT}=8\)
\(\mathrm{NF}=2\)
\(X M=8 . \varnothing\)
\(I=-1\)
```



```
\(A(O U T P U T): 8 . \varnothing \quad \varnothing . \varnothing-8 . \varnothing \quad \varnothing . \varnothing \quad 8 . \varnothing \quad \varnothing . \varnothing-8 . \varnothing \quad \varnothing . \varnothing\)
```



```
PURPOSE: To perform an in-place real-to-complex forward or
 a complex-to-real inverse fast Fourier transform (FFT)
 including the case of N=64K via quarter interpolation
 in the 4K cosine table.
CALL FORMAT: CALL RFTII(C,N,F)
PARAMETERS: C = Floating-point input/output vector
 N = Integer input element count (power of 2)
 F = Integer input direction flag:
 +l for forward
 -1 for inverse
DESCRIPTION: See RFFT.
```

EXAMPLE:

```
N = 4
F = l (Forward)
C(IN):10.0 10.0 10.0 10.0
C(OUT) : (8\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
N = 4
F = -l (Inverse)
C(IN) : (8\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
C(OUT) : 80.0 80.\varnothing 80.\varnothing 80.\varnothing
```



```
PURPOSE: To perform a post-tapered convolution or correlation
 operation on two vectors.
CALL FORMAT: CALL TCONV(A,I,B,J,C,K,N,M,L) for correlation
 CALL TCONV(A,I,B(N),J,C,K,N,M,L) for convolution
PARAMETERS: A = Floating-point input vector (operand)
 I = Integer element step for A (>ø)
 B = Floating-point input vector (operator)
 J = Integer element step for B (< | => Convolution)
 C = Floating-point output vector
 K = Integer element step for C
 N = Integer element count for C
 M = Integer element count for B
 L = Integer element count for A
FORMULA: }\quadC(m)=SUM(A(m+q-1)*B(q))
 for }q=1\mathrm{ to }
 and m=l to N
 where:
 R=MIN(M,L-M+1)
DESCRIPTION: TCONV performs either a correlation (I and J positive) or
 a convolution (I positive and J negative) operation
 between the L-element operand (trace) vector A and the
 M-element operator (kernel) vector B. The N-element
 result vector is stored in C. TCONV automatically
 inserts zeros into the calculation if N+M-1 exceeds the
 operand length L, thus saving storage and zeroing of
 N+M-l-L extra operand elements. (Compare with CONV.)
```

EXAMPLE:

$$
\begin{aligned}
& N=4 \\
& M=2 \\
& L=4
\end{aligned}
$$

## CORRELATION:

| A | $:$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $3 . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
| B | $=$ | $2 . \varnothing$ | $1 . \varnothing$ |  |
| C | $=$ | $1 . \varnothing$ | $5 . \varnothing$ | $11 . \varnothing$ |
|  | $1 \varnothing . \varnothing$ |  |  |  |



EXAMPLE:
$\mathrm{N}=3$

| $\mathrm{A}:$ | $:$ | $1 . \varnothing$ | $2 . \varnothing$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{B}:$ | $(1 . \varnothing, 2 . \varnothing)$ | $(3 . \varnothing, 4 . \varnothing)$ | $(5 . \varnothing, 6$ |
| $\mathrm{C}:$ | $(1 . \varnothing, 2 . \varnothing)$ | $(1.5,2 . \varnothing)$ | $(1.67,2 . \varnothing)$ |



```
PURPOSE: To update the linear average of a sequence of vectors
 to include a new vector.
CALI FORMAT: CALL VAVLIN(A,I,B,C,K,N)
PARAMETERS: A = Floating-point input vector
 I = Integer element step for A
 B = Floating-point input scalar
 (Number of vectors included in current average)
 C = Floating-point input/output vector
 K = Integer element step for C
 N = Integer element count
DESCRIPTION: }C(m)=C(m)*B/(B+1.\varnothingD)+A(m)/(B+1.\varnothing\sigma); for m=1 to
```

EXAMPLE:

$$
N=5
$$

| A | $5.00 \square$ | 10.000 | 20.000 | $25.0 \varnothing \square$ | 30.000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | 5.000 |  |  |  |  |
| C (INPUT) | :10.000 | 10.000 | 10.006 | 10.000 | 10.069 |
| C(OUTPUT) | 9.167 | $10.0 \square \varnothing$ | 11.667 | 12.500 | 13.3 |



```
PURPOSE: To multiply a vector with the sine and cosine
 of a linearly increasing argument with a given
 initial phase.
CALL FORMAT: CALL VXCS(A,C,R,F,P,N)
PARAMETERS: A = Floating-point input vector to be multiplied by
 the sine and cosine functions
 C = Complex floating-point output vector
 K = Integer input element step for C
 (K >= 2)
 F = Floating-point input scalar frequency
 P = Floating-point input scalar phase at t=ø
 = Floating-point output scalar initial phase value
 for next frame
 N = Integer element count
```

DESCRIPTION: $\operatorname{Re}(C(m))=A(m) * \operatorname{COS}((m-1) * F+P)$
$\operatorname{Im}(C(m))=A(m) * \operatorname{SIN}((m-1) * F+P)$
for $m=1$ to $N$
NOTE: The arguments for $C O S$ and $S I N$ are expected
to be in radians.
This routine multiplies vector A with a sine and
cosine function defined by frequency $F$ and initial
phase P. Straight ROM table lookup is used for
generating the sine and cosine values and thus this
routine has limited precision. The initial phase
value for the next frame is returned in $P$.
NOTE: $K$ should be greater than or equal to 2
so as not to destroy part of the resultant vector
$C$ as it is generated.

EXAMPLE:

$$
\begin{aligned}
& \mathrm{K}=2 \\
& \mathrm{~F}=\varnothing .5 \\
& \mathrm{P}=3.1415927 \\
& \mathrm{~N}=8
\end{aligned}
$$

$A:$|  | $\varnothing . \varnothing$ | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ | $4 . \varnothing$ | $5 . \varnothing$ | $6 . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $7 . \varnothing$ |  |  |  |  |  |  |  |


| ******** | * |
| :---: | :---: |
| + |  |
| * WIENER * | -- WIENER LEVINSON ALGORITHM -- * WIENER |
| * * |  |
| ********** | ****** |
| PURPOSE: | To solve a system of single channel normal equations which arise in least squares filtering and prediction problems. |
| CALL FORMAT: | CALL WIENER(LR,R,G,F,A,ISW,IERR) |
| PARAMETERS: | $\mathrm{LR}=$ Integer filter length |
|  | $\mathrm{R}=\begin{aligned} & \text { Floating-point input vector (Auto-correlation } \\ & \text { coefficients) }\end{aligned}$ |
|  | $\mathrm{G} \quad=\begin{aligned} & \text { Floating-point input vector (Cross } \\ & \text { correlation) }\end{aligned}$ |
|  | $\mathrm{F}=\begin{aligned} \text { Floating-point output vector (Filter } \\ \text { weighting coefficients) }\end{aligned}$ |
|  | A = Floating-point output vector <br> (Prediction error operator) |
|  | ```ISW = Integer input (algorithm switch) = spike deconvolution l = general deconvolution``` |
|  | IERR $=$ Integer output scalar (failure flag) |
| DESCRIPTION: | WIENER solves: |
|  | 1. The following set of $L R$ equations for $F$; |
|  | SUM $[F(p) * R(m-p+1)=G(m) ;$ |
|  | for $p=1$ to $L R$ and $m=1$ to $L R$ |
|  | 2. The following set of LR equations for $A$; |
|  | SUM $[A(p) * R(m-p+1)=V * D ;$ |
|  | for $p=1$ to $L R$ and $m=1$ to $L R$ |
|  | where, $A(1)=1 . \varnothing$ |
|  | $\mathrm{D}=1.8$ when $\mathrm{m}=1$ |
|  | $\mathrm{D}=\varnothing . \varnothing$ when m not $=1$ |
|  | $\mathrm{V}=\mathrm{A}(1) * \mathrm{R}(1)+\ldots+\mathrm{A}(\mathrm{LR}) * \mathrm{R}(\mathrm{LR})$ |
|  | $\mathrm{R}(-\mathrm{i})=\mathrm{R}(\mathrm{i})$ |
|  | If the algorithm is successful IERR is set to $\varnothing$; else it is set to the pass number at which the failure occurred. |

IMAGE PROCESSING LIBRARY

```
N1 = 4
N2 = 4
F = -l (Inverse)
C(IN) : (4.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
 (4.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing,\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
 (4.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
 (4.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
C(OUT) : (16.\varnothing.\varnothing.\varnothing) (16.\varnothing.\varnothing.\varnothing) (16.\varnothing.\varnothing.\varnothing) (16.\varnothing.\varnothing.\varnothing)
 (\varnothing.\varnothing,\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing,\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
 (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing,\varnothing.\varnothing)
 (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing) (\varnothing.\varnothing.\varnothing.\varnothing)
```

```
IR = Integer input scalar flag:
 non-zero for correlation
 for convolution
DESCRIPTION: C((i+IC-1),(j+JC-1))=
 SUM(A((i+IA+k-2-irbias),(j+JA+l-2-icbias))*B(k,l))
 where i=l to M
 j=1 to N
 for k=1 to MB
 l=1 to NB
 and IBl=MB*NB-IBl+1 for convolution
 icbias=(IB1-1)/MB
 irbias=(IBl-1)-MB*icbias
 (row and column biases are from the
 initial B(1,1) position.
 CONV2D correlates or convolves a two-dimensional
 operand submatrix A' of A with a two-dimensional
 operator matrix B, and stores the result in
 submatrix C' of C. A one-to-one correspondence
 exists between the elements of A' and C'.
 This routine does not do boundary testing.
 Therefore care must be taken when choosing values
 for IA, JA, and IBl for given values of M, N, MB,
 NB, and IR to avoid using data outside of A when
 computing C'.
```

EXAMPLE:

$$
\begin{aligned}
\mathrm{MA} & =9 \\
\mathrm{IA} & =1 \\
\mathrm{JA} & =1 \\
\mathrm{M} & =7 \\
\mathrm{~N} & =7 \\
\mathrm{MB} & =3 \\
\mathrm{NB} & =3 \\
\mathrm{MC} & =9 \\
\mathrm{IC} & =1 \\
\mathrm{JC} & =1
\end{aligned}
$$

| A | Ø. 0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\varnothing .0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0 | 1.0 | 1.0 | 1.0 | 4.0 | 4.6 | 8.0 | 0.0 | 0.0 |
|  | $\varnothing .0$ | 1.0 | 1.0 | 1.0 | 4.0 | 4.8 | $8 . \varnothing$ | 0.0 | 0.0 |
|  | $\varnothing . \varnothing$ | 1.0 | 1.0 | 1.0 | 4.0 | 4.6 | 8.0 | $\varnothing .0$ | 0.0 |
|  | 0.0 | 1.0 | 1.0 | 1.0 | 4.0 | 4.8 | 8.0 | 0.0 | 0.0 |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\varnothing .0$ | 0.0 | 0.0 |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\varnothing . \varnothing$ | 0.0 | 0.0 |
|  | O. $0^{0}$ | D. 0 | D. 0 | P. ${ }^{2}$ | 2. ${ }^{\text {d }}$ | D. 0 | $\mathscr{O} . \not 0$ | D. $0^{\text {D }}$ | $\mathscr{D} .0$ |
|  | 0.0 | $0 . \varnothing$ | 0.0 | 0.0 | $\varnothing . \varnothing$ | 0.0 | $\varnothing .0$ | $\varnothing . \varnothing$ | 0.0 |



Here the operator, B, is positioned for processing the initial point in A'.
-5455-

Figure A-1 Correlation


Here the operator, 3 , is positioned for processing the initial point in A'.

Figure $\bar{A}-2$ Convoiution

$$
\begin{aligned}
M A & =8 \\
I A & =2 \\
J A & =2 \\
M C & =8 \\
I C & =2 \\
J C & =2 \\
M & =6 \\
N & =6
\end{aligned}
$$

A: $\begin{array}{lllllllll}\varnothing . \varnothing & \varnothing . \varnothing\end{array}$ $\begin{array}{llllllll}\varnothing . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$ $\begin{array}{llllllll}\varnothing . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$ Ø. Ø $1 . \varnothing 1 . \varnothing \quad 2 . \varnothing \quad 2 . \varnothing 1 . \varnothing 1 . \varnothing \quad \varnothing . \varnothing$ $\begin{array}{llllllll}\varnothing . \varnothing & 1 . \varnothing & 1 . \varnothing & 2 . \varnothing & 2 . \varnothing & 1 . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$ $\begin{array}{llllllll}\varnothing . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$
 $\varnothing . \varnothing \quad \varnothing . \varnothing$
$C: U \quad U$ $\begin{array}{llllllll}U & 2 . \varnothing & 3 . \varnothing & 3 . \varnothing & 3 . \varnothing & 3 . \varnothing & 2 . \varnothing & U\end{array}$ $\begin{array}{llllllll}U & 3 . \varnothing & 1 . \varnothing & 2 . \varnothing & 2 . \varnothing & 1 . \varnothing & 3 . \varnothing & U\end{array}$ $\begin{array}{llllllll}U & 3 . \varnothing & 2 . \varnothing & 2 . \varnothing & 2 . \varnothing & 2 . \varnothing & 3 . \varnothing & U\end{array}$ $\begin{array}{llllllll}\mathrm{U} & 3 . \varnothing & 2 . \varnothing & 2 . \varnothing & 2 . \varnothing & 2 . \varnothing & 3 . \varnothing & \mathrm{U}\end{array}$ $\begin{array}{llllllll}\mathrm{U} & 3 . \varnothing & 1 . \varnothing & 2 . \varnothing & 2 . \varnothing & 1 . \varnothing & 3 . \varnothing & \mathrm{U}\end{array}$ $\begin{array}{cccccccc}U & 2 . \varnothing & 3 . \varnothing & 3 . \varnothing & 3 . \varnothing & 3 . \varnothing & 2 . \varnothing & U \\ U & U & U & U & U & U & U & U\end{array}$
(U indicates unchanged elements of $C$ )

This routine differs from GRAD2D in that it can perform testing for image boundaries, substituting zeros for values that are needed outside the boundary. The routine runs somewhat more slowly than GRAD2D.

If testing is employed, zeros are substituted for those elements in the formula which fall outside of $A$. This is useful in preventing wrap-around and incorrect processing of the columns and rows on the borders of $A$. However, the testing adds processing time and is unnecessary when there is a border of width one around $A$ ' which lies totally within A.

If boundary testing is not employed (i.e. $B=\varnothing$ ) and if a boundary of $A^{\prime}$ coincides with all or part of a boundary of $A$, then boundary effects will be observed in the computation of $C^{\prime}$. In the cases of JA=I or $J A+N-1=N A$ these boundary effects may not be predictable since data stored adjacent to $A$ may not be predictable.

EXAMPLE:

$$
\begin{aligned}
& M A=8 \\
& N A=8 \\
& I A=1 \\
& J A=1 \\
& C=64 \\
& M C=8 \\
& N C=8 \\
& I C=1 \\
& J C=1 \\
& M=8 \\
& N=8 \\
& B=1
\end{aligned}
$$

| A | $1 . \varnothing$ | 1.8 | 1.6 | 1.6 | 1.0 | 1.0 | 1.0 | 1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 . \varnothing 1$ | 1.8 | $1 . \square$ | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|  | $1 . \varnothing$ | 1.0 | 1.6 | 1.6 | 1.0 | 1.0 | $1 . \varnothing$ | 1.8 |
|  | 1.8 | 1.0 | 1.0 | 2.0 | 2.8 | 1.8 | 1.0 | 1.0 |
|  | 1.6 | 1.6 | 1.6 | 2.6 | 2.6 | 1.0 | 1.6 | 1.0 |
|  | 1.6 | 1.0 | 1.0 | 1.8 | 1.6 | 1.0 | 1.0 | 1.0 |
|  | 1.0 | 1.0 | 1.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
|  | 1.8 | 1.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.6 | 1.0 |




```
PURPOSE: To filter images for edge enhancement by applying
 a two-dimensional Laplacian operator. This
 routine does special boundary testing.
CALL FORMAT: CALL LPL2DB(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX,B)
PARAMETERS: A = Floating-point input matrix
 (column ordered)
 MA = Integer number of rows of A
 NA = Integer number of columns of A
 IA = Integer initial row of the submatrix A' of A
 to be processed (1 < or = IA < or = MA)
 JA = Integer initial column of the submatrix A' of A
 to be processed (}1<\mathrm{ or = JA < or = NA)
 C = Floating-point output matrix
 (column ordered)
 MC = Integer number of rows of C
 NC = Integer number of columns of C
 IC = Integer initial row of C which locates the
 submatrix C', where C' will be the processed A'
 (1 < or = IC < or = MC)
 JC = Integer initial column of C which locates the
 submatrix C' (l < or = JC < or = NC)
 M = Integer number of rows in A'
 (l < or = M < or = MA)
 N = Integer number of columns in A'
 (l < or = N < or = NA)
 IX = Integer distance to filter side from center of
 square: side S=2*(IX+1); filter area = S**2
 B = Integer input scalar which is \varnothing if no boundary
 testing is desired; if not = \varnothing, values needed
 outside of A are evaluated as zeros
DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q)
 +A'(p,q-IX)+A'(p,q+IX)
```

Each of the elements in $C^{\prime}$ is calculated according to the above formula, which adds to a bias of 128 a weighted combination of each pixel and its 4 horizontal and vertical neighbors at distance IX.

This routine differs from LAPL2D in that it can perform testing for image boundaries, substituting zeros for values that are needed outside the boundary. The routine runs somewhat more slowly than LAPL2D.






To add a scalar multiple of one complex floating-point vector to añother complex floating-point vector iv times, complex floating-point scalar. The first vector is a subset of the vector $X$, and the second is a subset of the vector $Y$. The scalar is an element of the vector $A$.
ISW = Integer input scalar. ISW is a function
selector switch and is treated as a bit
string with the bits numbered from the
least significant bit (bit Ø). If a given
bit is set (equal to 1), then the function
option that corresponds to that bit is selected.
All options are independent of each other and
Bit $\varnothing$ : Negate $A$ * X .
Bit 1: Not used.
Bit 2: Use conjugate of $A$.
All other bits are ignored.
Integer input scalar. Number of $A * X+Y$
operations, i.e., outer loop count.
Integer input scalar. Number of elements in
each A * X + Y operation, i.e., inner loop
count.
scalars.
increment for A.
input vector.
increment for X .
increment for X .
Second input vector on input. Output vector on
output.
IYI = Integer input scalar. Inner loop element
iñcement for y.
increment for $Y$.

## EXAMPLE:

```
Input: }\quad\mathrm{ ISW = Ø
 N}=
 M = 3
 IAO = 1
 IXI = I
 IXO = Ø
 IYI = 1
 IYO = 3
 A : (3.\varnothing,-1.\varnothing) (2.\varnothing, Ø.\varnothing)
 X:(Ø.\varnothing, 1.\varnothing) (2.\varnothing, 1.\varnothing) (-1.0, Ø.\varnothing)
 Y : (-1.\varnothing, 2.\varnothing) (\varnothing.\varnothing, \varnothing.\varnothing) (2.\varnothing. \varnothing.\varnothing)
 (1.\varnothing,-3.\varnothing) (-2.\varnothing,-1.\varnothing) (\varnothing.\varnothing,-2.\varnothing)
Output: Y : (\varnothing.\varnothing, 5.\varnothing) (7.\varnothing, 1.\varnothing) (-1.\varnothing, 1.\varnothing)
 (1.\varnothing,-1.\varnothing) (2.\varnothing, 1.\varnothing) (-2.\varnothing,-2.\varnothing)
```

| ********** | ********** |
| :---: | :---: |
| * * |  |
| * cdotc | -- COMPLEX INNER PRODUCT --- |
| * * | * * |
| ********** | ********** |
| PURPOSE: | To sum conjugates of first complex vector times elements of second complex vector. |
| CALL FORMAT: | $\mathrm{CW}=\operatorname{CDOTC}(\mathrm{N}, \mathrm{CX}, \mathrm{I}, \mathrm{CY}, \mathrm{J})$ |
| PARAMETERS: | $\mathrm{N}=$ Integer element count |
|  | CX $=$ First complex floating-point input vector <br> I = Integer element step for CX |
|  | $\mathrm{CY}=$ Second complex floating-point input vector |
|  | $J=$ Integer element step for $C Y$ |
|  | $\mathrm{CW}=$ Complex fioating-point output value |
| DESCRIPTION: | ```CW = SUM((R(CX(m))-I(CX(m)))*(R(CY(m))+I(CY(m)))); for m=l to N``` |
|  | $C W=(\varnothing . \varnothing . \varnothing . \varnothing)$ if $\mathrm{N}<1$. |

EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathrm{I}=1 \\
& \mathrm{~J}=1 \\
& C X:(\varnothing .3 \varnothing, \varnothing .4 \varnothing) \\
& C Y:(\varnothing . \varnothing \varnothing, 1 . \varnothing \varnothing) \\
& C W:(9.3 \varnothing, \varnothing .4 \varnothing) \\
& C W:(8 . \varnothing \varnothing, 9 . \varnothing \varnothing)
\end{aligned}
$$

```
 Z = Complex floating point input/output vector.
 An input only if bit l of ISW is set.
 IZO = Integer input scalar. Element increment
 for Z.
DESCRIPTION:
NOTES:
Z(jz)=r * Z(jz) + s * SUM[X(ix) * Y(iy), i=1,M] j=1,N
where: ix = (j-I) * IXO + (i-1) * IXI + I
 iY = (j-1) * IYO + (i-I) * IYI + I
 jz = (j-1) * IZO + I
 s = 1. |, if ISW[\varnothing]=\varnothing
 = -1.\varnothing, if ISW[\varnothing] = 1
 r = Ø.\varnothing, if ISW[1]=\varnothing
 = 1.ø, if ISW[1] = l
 X = X, if ISW[2] = \varnothing
 = Conjg(X), if ISw[2] = i
 Y = Y, if ISW[3]=\varnothing
 = Conjg(Y), if ISW[3] = l
 Z = Z , if ISW[4]=\varnothing
 = Conjg(Z), if ISW[4] = 1
and ISW[k] = bit k of ISW.
If IZO \(=\varnothing\), then CDOTN will set \(Z(1)\) equal to the accumulated sum of all N dot products. If ISW[1] \(=1\) also, then input \(Z(1)\) will be added to this sum.
Memory words occupied by \(X\) may intersect those occupied by \(Y\). In fact, \(X\) and \(Y\) may coincide. However, memory occupied by \(Z\) should not, in general, intersect that occupied by \(X\) or \(Y\).
If \(N<1\), CDOTN returns with no action taken.
If \(M<1\) and \(\operatorname{ISW}[1]=1\), CDOTN returns with no action taken.
If \(M<1\) and \(\operatorname{ISW}[1]=\varnothing\), CDOTN returns with \(Z(j)=\varnothing . \varnothing\) for \(j=1\) to \(N\).
In general, \(M<1\) implies a zero sum of products.
```



```
PURPOSE: To compute the inner (unconjugated) product
 of two complex vectors.
CALL FORMAT: CW = CDOTU(N,CX,I,CY,J)
PARAMETERS: N = Integer element count
 CX = First complex floating-point input vector
 I = Integer step for CX
 CY = Second complex floating-point input vector
 J = Integer step for CY
 CN = Complex floating-point scalar output result
DESCRIPTION: CW = SUM(CX(m)*CY(m)); for m=1 to N
 CW = (\varnothing.\varnothing.\varnothing.\varnothing) if N<1.
```

EXAMPLE:

```
N = 2
I = 1
J = 1
CX : (\varnothing.3\varnothing.\varnothing.4\varnothing) (\varnothing.\varnothing\varnothing.1.\varnothing\varnothing)
CY : (\varnothing.3\varnothing,-.4\varnothing) (8.0\varnothing.9.\varnothing\varnothing)
CW : (-8.75,8.\varnothing\varnothing)
```



```
PURPOSE: To multiply each component of a vector
 by a complex scalar.
CALL FORMAT: CALL CSCAL(N,CA,CX,I)
PARAMETERS: N = Integer element count
 CA = Complex floating-point scalar multiple
 CX = Complex floating-point input/output vector
 I = Integer step increment for CX
DESCRIPTION: CX(m) = CA*CX(m); fOI m=1 to N
```

EXAMPLE:

$$
\begin{aligned}
& N=3 \\
& I=1
\end{aligned}
$$




```
PURPOSE: To multiply the elements of a complex vector
 by a real scalar.
CALL FORMAT: CALL CSSCAL(N,SA,CX,I)
PARAMETERS: N = Integer element count for CX
 SA = Floating-point input scalar multiple
 CX = Complex floating-point input/output vector
 I = Integer element step increment for CX
DESCRIPTION: CX(m) = SA*CX(m); for m=I to N
```

EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=3 \\
& \mathrm{I}=1
\end{aligned}
$$

| SA | $: \varnothing .5$ |  |  |
| :--- | :--- | :--- | :--- |
| CX(INPUT) | $:(2 . \varnothing, 4 . \varnothing)$ | $(6 . \varnothing, 8 . \varnothing)$ | $(\varnothing . \varnothing, 1 . \varnothing)$ |
| CX(OUTPUT) $:(1 . \varnothing, 2 . \varnothing)$ | $(3 . \varnothing, 4 . \varnothing)$ | $(\varnothing . \varnothing . \varnothing .5)$ |  |

```
#********* n
PURPOSE: To calculate the index of the complex
 element of largest real plus imaginary magnitude.
CALL FORMAT: IMAX = ICAMAX(N,CX,I)
PARAMETERS: N = Integer element count
 CX = Complex floating-point input vector
 I = Integer step increment for CX
 IMAX = Integer value of index with largest components
DESCRIPTION: cmag(CX(IMAX)) = MAX(cmag(CX(m)); m=1 for N
 where cmag(C) = ABS(R(C))+ABS(I(C)),
 with l < = IMAX < = N. If N < I, IMAX = Ø.
```

EXAMPLE:
$\mathrm{N}=3$
$I=1$

CX: ( $3 . \varnothing, 3 . \varnothing)(5 . \varnothing,-9 . \varnothing)(\varnothing . \varnothing .13 . \varnothing)$
IMAX : 2


EXAMPLE:
$\mathrm{N}=3$

SX:-1.ø Ø.ø 5.ø
SW : $6 . \varnothing$


PURPOSE: To add a scalar multiple of one floating-point vector to another floating-point vector $N$ times, each time for a different pair of vectors and a different scalar. The first vector is a subset of the vector $X$, and the second vector is a subset of the vector $Y$. The scalar is an element of the vector $A$.

CALL SAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)
ISW = Integer input scalar. ISW is a function selector switch and is treated as a bit string with the bits numbered from the least significant bit (bit $\varnothing$ ). If a given bit is set (equal to l), then the function option that corresponds to that bit is selected. Only bit $\varnothing$ is used in SAXPYN.

Bit $\varnothing$ : Negate the product term A * X before adding to $Y$. That is, compute - A * $X+Y$ instead of A * X + Y.
All other bits are ignored.
$\mathrm{N}=$ Integer input scalar. Number of $A * X+Y$ operations; i.e.. outer loop count.
$M \quad=$ Integer input scalar. Number of elements in each A * X + Y operation, i.e., inner loop count.
A $=$ Floating point input vector. Array of scalars.
IAO = Integer input scalar. Outer loop element increment for A.
$X \quad=$ Floating point input vector. First input vector.
IXI = Integer input scalar. Inner loop element increment for X .
IXO = Integer input scalar. Outer loop element increment for X.
$Y \quad=$ Floating point input/output vector. Second input vector on input. Output vector on output.
IYI = Integer input scalar. Inner loop element increment for $Y$.
IYO $=$ Integer input scalar. Outer loop element increment for $Y$.

$$
\begin{aligned}
& \text { A : } 3 . \varnothing \text {-1. } \varnothing \quad 2 . \varnothing \\
& x: 2 . \varnothing 3 . \varnothing \\
& Y: 7 . \varnothing 6 . \varnothing \\
& 2 . \varnothing 3 . \varnothing \\
& 5 . \varnothing 6 . \varnothing \\
& \text { Output: } Y \text { : 13.ø 15.ø } \\
& \varnothing . \varnothing \varnothing . \varnothing \\
& 9 . \varnothing 12 . \varnothing
\end{aligned}
$$


PURPOSE: To compute the square root of sum of squares
PURPOSE: To compute the square root of sum of squares
of elements of a complex floating-point vector.
of elements of a complex floating-point vector.
SW = SCNRM2(N,CX,I)
SW = SCNRM2(N,CX,I)
PARAMETERS: N = Integer element count
PARAMETERS: N = Integer element count
CX = Complex floating-point input vector
CX = Complex floating-point input vector
I = Integer step increment
I = Integer step increment
SW = Floating-point scalar output result
SW = Floating-point scalar output result
DESCRIPTION: SW = SQRT(SUM(R(CX(m))**2 + I(CX(m))**2));
DESCRIPTION: SW = SQRT(SUM(R(CX(m))**2 + I(CX(m))**2));
for m=1 to N
for m=1 to N

EXAMPLE:

```
N = 2
I = l
CX : (\varnothing.\varnothing,3.\varnothing) (4.\varnothing.\varnothing.\varnothing)
SW : 5.\varnothing
```



EXAMPLE:

$$
N=3
$$

| SX : | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ |
| :--- | :--- | :--- | :--- |
| $S Y:$ | $4 . \varnothing$ | $\varnothing .5$ | $\varnothing . \varnothing$ |
| SW : | $5 . \varnothing$ |  |  |

```
DESCRIPTION: Z(jz) = r * Z(jz) + s * SUM[X(ix) * Y(iy), i=l,M] j=1,N
 where: ix = (j-1) * IXO + (i-1) * IXI + l
 iY = (j-1) * IYO + (i-1) * IYI + I
 jz=(j-1) * IZO + 1
 s = 1.\varnothing, if ISW[\varnothing] = \emptyset
 = -1.\varnothing, if ISW[\varnothing] = 1
 r = \varnothing.\varnothing. if ISW[l] = \varnothing
 = 1.\varnothing, if ISW[l] = 1
and ISW[k] = bit k of ISW.
NOTES:
If IZO = \varnothing, then SDOTN will set Z(l) equal to
the accumulated sum of all N dot products. If
ISW[I] = 1 also, then input Z(1) will be added
to this sum.
Memory words occupied by X may intersect those
occupied by Y. In fact, X and Y may coincide.
However, memory occupied by Z should not, in
general, intersect that occupied by X or Y. For
sample applications, see Sections D.4.9 and D.4.11.
If iN < I, SDOTN returns with no action taken.
If M< l and ISW[l] = l, SDOTN returns with no
action taken.
If M< l and ISW[1]= }\varnothing\mathrm{ , SDOTN returns with
Z(j) = \varnothing.\varnothing for j = 1 to N.
In general, M < l implies a zero sum of products.
```


## EXAMPLE:

```
Input: ISW = \varnothing
 N}=
 M=3
 IXI = 2
 IXO = 1
 IYI = 1
 IYO = Ø
 IZO = 1
 X : 3.\varnothing 2.\varnothing -1.\varnothing 1.\varnothing Ø..\varnothing -2.\varnothing
 Y: 1.\varnothing 2.\varnothing 3.\varnothing
Output: Z : 1.0 -2.\varnothing
```



EXAMPLE:
$\mathrm{N}=3$

| C | : 2.3 |  |  |
| :---: | :---: | :---: | :---: |
| S | : 0.4 |  |  |
| SX(INPUT) | : 1.0 | $2 . \varnothing$ | 3.0 |
| SY (INPUT) | : $\varnothing . \varnothing$ | 1.0 | 2.6 |
| SX(OUTPUT) | : 0.3 | $1 . \square$ | 17.0 |
| SY(OUTPUT) | : -6.4 | -5.0 | -6.ø |


| ********** | ********** |
| :---: | :---: |
| * * | * * |
| * SROTM * | -- MODIFIED GIVENS ROTATIONS -- * SROTM |
| * * | * * |
| ********** | ********** |
| PURPOSE: | To perform two-dimensional rotations using the rotation matrix constructed from a parameter vector according to the modified Givens scheme. |
| CALL FORMAT: | CALL SROTM (N,SX,INCX,SY,INCY, PARAM) |
| PARAMETERS: | $\mathrm{N} \quad=$ Integer element count |
|  | $\begin{aligned} S X \quad= & \text { Floating-point input/output vector } \\ & \text { of first components }\end{aligned}$ |
|  | INCX = Integer element step for SX |
|  | $\begin{aligned} S Y= & \text { Floating-point input/output vector } \\ & \text { of second components } \end{aligned}$ |
|  | INCY = Integer element step for SY |
|  | ```PARAM = Five element floating-point input vector used to construct the rotation matrix H}=\textrm{Hll Hl2 H21 H22.``` |
| DESCRIPTION: | $S X(m)=H 11 * S X(m)+H 12 * S Y(m)$ |
|  | $S Y(m)=H 21 * S X(m)+H 22 * S Y(m)$, for $m=1$ to $N$, where H11, H12, H21, H22 = |
|  | $\operatorname{PARAM}(2), 1.0,-1.0, \operatorname{PARAM}(5)$ or |
|  | 1.ø, PARAM (4), PARAM(3), $1 . \emptyset 1$ |
|  | PARAM(2), PARAM(4), PARAM(3), PARAM(5) according to whether $\operatorname{PARAM}(1)=1 . \varnothing$ or $\varnothing . \varnothing$ or $-1 . \varnothing$, respectively. |
|  | If PARAM(1) is not equal to zero, one, or minus one, the routine returns with no action performed. This is equivalent to having the identity matrix as the rotation matrix. |

EXAMPLE:

```
N = 5
SX(input) : Ø.\varnothing 1.\varnothing -2.\varnothing 2.\varnothing-4.\emptyset
SY(input) : Ø.\varnothing Ø.\varnothing 2.\varnothing -2.\varnothing -2.\varnothing
PARAM : -1.\varnothing 1.\varnothing -1.\varnothing 1.\varnothing 1.\varnothing
SX(output) : Ø.\varnothing 1.\varnothing Ø.\varnothing Ø.\varnothing -б.\varnothing
SY(output) : Ø.\varnothing -1.\varnothing 4.\varnothing -4.\varnothing 2.\emptyset
```

Rescaling continues until D1 and D2 are within the window.

Output parameters $\operatorname{PARAM}(1,2,3,4,5)=$ ( $-1.0, \mathrm{H} 11, \mathrm{H} 21, \mathrm{H} 12, \mathrm{H} 22$ ) and $\mathrm{D} 1, \mathrm{D} 2, \mathrm{Bl}$ are updated according to the scaling factors above.

EXAMPLE:

| D1,D2,B1,B2 (input) : | $4 . \varnothing \varnothing \varnothing$ | $3 . \varnothing \varnothing \varnothing$ | $2 . \varnothing \varnothing \varnothing$ | $1 . \varnothing \varnothing \varnothing$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| D1,D2,B1 | (output) : | 3.368 | 2.526 | 2.375 |  |  |
| PARAM | (output) $:$ | $\varnothing . \varnothing \varnothing \varnothing$ | $\varnothing . \varnothing \varnothing \varnothing ~$ | $-\varnothing .5 \varnothing \varnothing$ | $\varnothing .375$ | $\varnothing . \varnothing$ |

```

* *
* SSWAP *
* *
```



```
PURPOSE: To interchange elements of two real vectors.
CALL FORMAT: CALL SSWAP(N,SX,I,SY,J)
PARAMETERS: N = Integer element count
 SX = Floating-point first vector for swap
 I = Integer element step for Sx
 SY = Floating-point second vector for swap
 J = Integer element step for SY
DESCRIPTION: SX(m) :=: SY(m); for m=1 to N
```

EXAMPLE:

```
N = 3
```

| SX (INPUT) | $:$ | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
| SY (INPUT) | $:$ | $9 . \varnothing$ | $8 . \varnothing$ | $7 . \varnothing$ |
| SX (OUTPUT) | $:$ | $9 . \varnothing$ | $8 . \varnothing$ | $7 . \varnothing$ |
| SY (OUTPUT) | $:$ | $1 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ |



PURPOSE: $\quad$| To solve an initial value problem for a set of |
| :--- |
| ordinary differential equations, using a first |
|  |
| order predictor (Euler's) method. |

CALL FORMAT: CALL ABPl(N,H,Y,F,YP)

PARAMETERS: $N=$ Integer element count, number of equations

$Y=$ Floating-point input vector of dependent variables $Y(t)$
$F=$ Floating-point input vector of derivative elements $d Y / d t=F(t, Y(t))$
YP = Floating-point output vector of predicted variables $Y(t+H)$

DESCRIPTION: FOr the system of equations $d Y / d t=F(t, Y(t))$, the solution at $t^{\prime}=t+H$ is given by
$Y P(m)=Y(m)+H * F(m) ;$ for $m=1$ to $N$

This provides an explicit first order solution to the initial value problem for a given function at time $t^{\prime}=t+H$, given the values of the function and its derivative at time $t$. The evaluation of the next derivative, corresponding to $F(t+H, Y(t+H))$ at the new time point, $t^{\prime}=t+2 * H$ follows similarly.

EXAMPLE:

```
N = 3
H=\varnothing.1
Y : 1.\varnothing 2.\varnothing 3.\varnothing
F: : 1.\varnothing 1.\varnothing 1.\varnothing
YP : 1.1 2.1 3.1
```



```
PURPOSE: To solve an initial value problem for a set of
 ordinary differential equations, using Adams' third
 order predictor method.
```

CALL FORMAT: CALL ABP3(N,H,Y,F,F1,F2,YP)
PARAMETERS: $N=$ Integer element count, number of equations
H = Floating-point input scalar step size for $t$
$Y=$ Floating-point input vector of dependent variables $Y(t)$
$F=$ Floating-point input vector of derivative elements $\mathrm{dY} / \mathrm{dt}=\mathrm{F}(\mathrm{t}, \mathrm{Y}(\mathrm{t}))$
Fl $=$ Floating-point input vector of derivative functions at preceeding time $t=t-H$
F2 $=$ Floating-point input vector of derivative functions at preceeding time $t 2=t-2 H$
$Y P=$ Floating-point output vector of predicted variables $Y(t+H)$

DESCRIPTION: FOr the system of equations $d Y / d t=F(t, Y(t))$, the solution at $t^{\prime}=t+H$ is given by
$Y P(m)=Y(m)+(H / 12) *(23 * F(m)-16 * F 1(m)+5 * F 2(m)) ;$
for $m=1$ to $N$
This provides an explicit third order solution to the initial value problem for a given function at time $t^{\prime}=t+H$, given the values of the function and its derivative at $t$ and its derivatives $F 1$ and $F 2$ at $t$ imes $t l=t-H$ and $t 2=t-2 H$, respectively. Evaluation of the next derivative, corresponding to $F(t+H, Y(t+H))$ at the new time point, $t^{\prime}=t+2 * H$ follows similarly.

EXAMPLE:

| $Y$ | : | 1.0 | 2.6 | 3.0 |
| :---: | :---: | :---: | :---: | :---: |
| F | : | 3.0 | 3.0 | 3.0 |
| F1 | : | 2.0 | 2.0 | 2.0 |
| F2 | : | 1.0 | 1.0 | 1.0 |
| YP | : | 1.35 | 2.35 | 3.35 |

EXAMPLE:

| $Y$ | : | 1.6 | 2.0 | 3.6 |
| :---: | :---: | :---: | :---: | :---: |
| F | : | 3.0 | 3.0 | 3.0 |
| Fl | : | $2 . \varnothing$ | 2.0 | 2.0 |
| F2 | : | 1.00 | 1.0 | 1.0 |
| F3 | : | 4.8 | 4.0 | 4.6 |
| YP | : | 1.2 | 2.2 | 3.2 |

```
DESCRIPTION: This routine integrates a set of N first order
 differential equations from t=A to t=B, given
 the initial values }Y(t)\mathrm{ and the values of the
 derivative functions dY/dt=F(t,Y(t)) calculated
 in the user supplied routine DFUNF(T,N,Y,F). The
 step size H is regulated to keep the maximum
 local error less than EPS. The maximum number of
 steps taken per call is limited by MAXIT. The
 maximum step size is limited by HMAX. Error
 return codes are provided to monitor the progress
 of the algorithm.
REFERENCE: Burden,R.L., Faires,J.D., and Reynolds,A.C.,
 "Numerical Analysis", Prindle, Weber & Schmidt, Inc.,
 Boston, 1978: "Adams Variable Step-size Predictor-
 Corrector" Algorithm 6.5
```

EKAMPIE:

```
DFUNF (user supplied APFTN64 subroutine):
 SUBROUTINE DFUNF(T,N,Y,F)
C
C *** DFUNF *** SAMPLE APFTN64 ROUTINE ***
C
 DIMENSION Y(N), F(N)
C
 DO 10 I=1,N
 F(I) = -Y(I) + T + I.\emptyset
 10 CONTINUE
C
C CORRESPONDS TO SOLUTIONS OF THE FORM
C
C Y(T) = Y\varnothing * EXP(-T) + T
C
```

        RETURN
        END
    INPUT:

| A | $=\varnothing . \varnothing$ |
| :--- | :--- |
| B | $=3 . \varnothing$ |
| N | $=5$ |
| HMAX | $=\varnothing .2$ |
| MAXIT | $=10 \varnothing$ |
| EPS | $=1 . \varnothing \mathrm{E}-6$ |

$Y(1,1), \ldots, Y(5,1):$
$1 . \varnothing \quad 2 . \varnothing \quad 3 . \varnothing \quad 4 . \varnothing \quad 5 . \varnothing$

```
\begin{tabular}{|c|c|c|}
\hline ********** & & ********** \\
\hline * & & * * \\
\hline * AMCl & ADAMS-MOULTON CORRECTOR (ORDER 1) -- & * AMCl * \\
\hline * & & * * \\
\hline ********** & & ********** \\
\hline
\end{tabular}
```

```
PURPOSE: To solve an initial value problem for a set of
```

PURPOSE: To solve an initial value problem for a set of
ordinary differential equations, using a first order
ordinary differential equations, using a first order
corrector (backward Euler) method.
corrector (backward Euler) method.
CALL FORMAT: CALL AMC1(N,H,Y,FP,YP)
CALL FORMAT: CALL AMC1(N,H,Y,FP,YP)
PARAMETERS: N = Integer element count, number of equations
PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for t
H = Floating-point input scalar step size for t
Y = Floating-point input vector of dependent
Y = Floating-point input vector of dependent
variables Y(t)
variables Y(t)
FP = Floating-point input vector of derivative
FP = Floating-point input vector of derivative
elements dY/dt=F(t+H,Y(t+H))
elements dY/dt=F(t+H,Y(t+H))
YP = Floating-point output vector of predicted
YP = Floating-point output vector of predicted
variables Y(t+H)
variables Y(t+H)
DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
solution at t'=t+H is given by
solution at t'=t+H is given by
YP(m)=Y(m) + H*FP(m); for m=1 to N
YP(m)=Y(m) + H*FP(m); for m=1 to N
This provides an implicit first order solution
This provides an implicit first order solution
to the initial value problem for a given function
to the initial value problem for a given function
at time t'=t+%,H, given the values of the function and
at time t'=t+%,H, given the values of the function and
its derivative at time t. The evaluation of the next
its derivative at time t. The evaluation of the next
derivative, corresponding to F(t+H,Y(t+H)) at the
derivative, corresponding to F(t+H,Y(t+H)) at the
new time point, t'=t+2*H follows similarly.

```
 new time point, t'=t+2*H follows similarly.
```

EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=3 \\
& \mathrm{H}=\varnothing .1
\end{aligned}
$$

$Y: \quad 1 . \varnothing \quad 2 . \varnothing$ 3.ø
$\mathrm{FP}: 1 . \varnothing$ 1.0 $1 . \varnothing$
YP : 1.1 2.1 3.1


```
PURPOSE: To solve an initial value problem for a set of
 ordinary differential equations; using Adams' third
 order corrector method.
CALL FORMAT: CALL AMC3(N,H,Y,F,FI,FP,YP)
PARAMETERS: N = Integer element count, number of equations
 H = Floating-point input scalar step size for t
 Y = Floating-point input vector of dependent
 variables Y(t)
 F = Floating=point input vector of derivative
 elements dY/dt=F(t,Y(t))
 FI = Floating-point input vector of derivative
 functions at preceeding time tl=t-H
 FP = Floating-point input vector of derivative
 functions estimated for t'=t+H
 YP = Floating-point output vector of predicted
 variables Y(t+H)
DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the
 solution at t'=t+H is given by
 YP(m)=Y(m) + (H/12)*(8*F(m)-Fl(m)+5*FP(m));
 for m=l to N
 This provides an implicit third order solution
 to the initial value problem for a given function
 at time t'=t+H, given the values of the function and
 its derivative at t, as well as, its derivatives at
 times tl=t-H and t'=t+H, corresponding to Fl and FP.
 Evaluation of the next derivative, corresponding to
 F(t+H,Y(t+H)) at the new time point, t'=t+2*H
 follows similarly.
```

EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=3 . \\
& \mathrm{H}=\varnothing .1
\end{aligned}
$$

| Y | $:$ | $1 . \varnothing$ | $2 . \emptyset$ | $3 . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- |
| F | $:$ | $2 . \varnothing$ | $2 . \varnothing$ | $2 . \varnothing$ |
| Fl | $:$ | $1 . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |
| FP | $:$ | $3 . \varnothing$ | $3 . \varnothing$ | $3 . \varnothing$ |
| YP | $:$ | 1.25 | 2.25 | 3.25 |

## EXAMPLE:

$$
\begin{aligned}
& \mathrm{N}=3 \\
& \mathrm{H}=\varnothing .1 \\
& \mathrm{Y}
\end{aligned}: \begin{array}{llll} 
& & & \\
\mathrm{F} & : & 1 . \varnothing & 2 . \varnothing \\
\mathrm{FI} & : & 2 . \varnothing & 3 . \varnothing \\
\mathrm{F} 2 & : & 1 . \varnothing & 3 . \varnothing \\
\mathrm{FP} & : & 4 . \varnothing & 1 . \varnothing \\
& & & 1 . \varnothing \\
\mathrm{YP} & : & 4 . \varnothing \\
& 1.35 & 3.35 & 3.35
\end{array}
$$

$\operatorname{BRK}(N, 2)=\varnothing . \varnothing$
and an input coordinate value $x$, BIN uses a binary

1. The index IX that locates $x$ within the coordinate value breakpoint table such that
$x(I X)<=x<x(I X+1)$
2. The product $D R=D(I X) * R(I X)$ where
$D(I X)=x(I X)-x$
$R(I X)=1 /(x(I X+1)-x(I X))$
When a program makes repeated calls to a breakpoint search routine (i.e., BIN or STEP), BIN should be used if it is suspected that the input coordinate $x$ varies rapidly with respect to the values in the coordinate value breakpoint table. In this case, the binary (successive interval halving) search employed by BIN is more efficient than the step (nearest neighbor) search used by STEP.

Refer to the function generation in Appendix $E$ for additional information.

EXAMPLE:

$$
N=3
$$

| BRK | $=1 . \varnothing$ | $2 . \varnothing$ | $7 . \varnothing$ | $1 . \varnothing$ | $\varnothing .2$ | $\varnothing . \varnothing$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $X$ | $=$ | .1 |  |  |  |  |
| $I X$ |  |  |  |  |  |  |
| $D R$ | $=-\varnothing . \varnothing 2$ |  |  |  |  |  |

NOTE

```
If }x<=x(1) then IX = 1
If x >= x(N) then IX = N-I
```

DESCRIPTION: $I(I+1)$, for $I=\varnothing$ to $N-1$, is the value of the $I t h$ modified Bessel functions of the first kind evaluated at the point $X$. Refer to equation 9.6.3 of Abramowitz and Stegun for the defining equation.
$K(I+1)$, for $I=\varnothing$ to $N-1$, is the value of the $I t h$ modified Bessel functions of the second kind evaluated at the point $X$. Refer to equation 9.6.4 of Abramowitz and Stegun for the defining equation.

Warnings and errors are reported to the calling routine via IERR. If CBEIK completes normally, then IERR is set to zero.

Warning condition codes are all between 1 and 99 inclusive. The possible warning values and their meanings are as follows:

IERR $=1 \quad N$ is too large for computation of outputs. In most instances, ABS(X) < 4øø. $\varnothing$; this means that the Nth order outputs exceed the dynamic range of the machine. A suitable $N$ is calculated, the Bessel function values are computed up to this new $N$, and the new $N$ value is returned.

Error condition codes are all greater than or equal to 1øø. The possible error values and their meanings are as follows:

IERR $=1 \varnothing \varnothing$ ISTEP and/or KSTEP are equal to $-1, \varnothing$, or 1 .
IERR $=101 \quad \mathrm{X}$ does not lie within the boundary of ( $+/-6 \varnothing \varnothing$, $+/-6 \varnothing \varnothing i$ ).
IERR $=102 \quad \mathrm{~N}$ is equal to $1 . \mathrm{N}$ must be greater than or equal to 2 .

References: Abramowitz, M., and Stegun, I., "Handbook of Mathematical Functions", Ninth printing, pp.358-360.

Mason, J.P., "Cylindrical Bessel Functions for a Large Range of Complex Arguments", Computer Physics Communications, 30(1983), pp.1-11.


PURPOSE:

To compute the complex Bessel functions of integer order of the first kind, second kind, and one of the Hankel functions at a point $X$.

CALL FORMAT: CALL CBEJYH (X, N, J, JSTEP, Y, YSTEP, H, HSTEP, IERR)
PARAMETERS: $X \quad=$ Complex input scalar The point at which to evaluate all functions. This is restricted to the portion of the complex plane bounded by ( $+/-6 \varnothing \varnothing,+/-600 \mathrm{i})$. It can take on the values $(+/-5 \not \subset X,+/-5 \not D X i)$.
$\mathrm{N} \quad=$ Integer input/output scalar
On input, the number of function values to evaluate. If $N<=\varnothing$, then this routine returns with no action. If $N=1$, then an error is reported. Note that the zero order function values are stored in the first elements of the complex output vectors.
On output, the actual number of Bessel functions computed. The input value of $N$ is modified only in the case where $\operatorname{IERR}=1$, if too many function values were requested. If IERR is not equal to l. then $N$ is not modified on return to the calling routine.
JSTEP = Integer input scalar
Element step for J. This can be any value except $-1, \varnothing$, or 1 . This is the number of words to skip between complex elements.
YSTEP = Integer input scalar Element step for $Y$. This can be any value except $-1, \varnothing$, or 1 . This is the number of words to skip between complex elements.
HSTEP = Integer input scalar
Element step for $H$. This can be any value except $-1, \varnothing$, or 1 . This is the number of words to skip between complex elements.
$\mathrm{J} \quad=$ Complex output vector The function values of functions $\varnothing$ through N-1 for Bessel functions of the first kind.
$Y \quad=$ Complex output vector
The function values of functions $\varnothing$ through N-1 for Bessel functions of the second kind.
H $\quad$ Complex output vector
The function values of functions $\varnothing$ through N-1 for one of the Hankel functions. If the sign of the imaginary part of $X$ is positive, then the
Note：If the second Hankel function is desired when the imaginary part of $X$ is nonnegative，it can be computed with the following equation：

$$
\text { H2 }=\mathrm{J} \text {-iY }
$$

Similarly，the first Hankel function can be computed when the imaginary part of $X$ is negative by the following equation：
Hl $=\mathrm{J}+\mathrm{iY}$
References：Abramowitz，M．，and Stegun，I．，＂Handbook of Mathematical Functions＂，Ninth printing， pp．358－36ø．
Mason，J．P．，＂Cylindrical Bessel Functions for a Large Range of Complex Arguments＂， Computer Physics Communications，30（1983）， pp．1－11．

EXAMPLE：

| N | $=3$ |  |
| :---: | :---: | :---: |
| JSTEP | $=2$ |  |
| YSTEP | $=2$ |  |
| HSTEP | $=2$ |  |
| J |  | － $0.496529947609122 E+\not \subset X 0)$, |
|  | （ Ø．61416Ø334922904E＋øØD， | $\varnothing .365 \varnothing 28 \varnothing 28827 \varnothing 88 \mathrm{E}+\varnothing \varnothing \varnothing)$ ， |
|  | （ Ø．415798869439622E－ØØ1， | $\emptyset .247397641513306 \mathrm{E}+\varnothing \varnothing \varnothing)$ |
| $Y$ | $: \quad(\quad .445474488934634 \mathrm{E}+\varnothing \varnothing \varnothing$ ， | Ø．71Ø158582Øø1505E＋Øø毋）， |
|  | （－Ø．657694535589279E＋øØØ， | Ø．629801øø3990907E＋Ø0¢）， |
|  | （－Ø．473368ø2ø533ø07E＋øøø， | $\varnothing .577336957578681 \mathrm{E}+\varnothing \varnothing \varnothing)$ |
| H | ：（ Ø．2274498948ø4525E＋ØØП， | －Ø．510554586744886E－Ø01）， |
|  | （－Ø．15640669ø68øø27E－ØØ1， | －$\varnothing$ ．292666506762191E＋øø毋）， |
|  | （－Ø．535757Ø7ø634719E＋ØøØ， | －Ø．22597ø379Ø1970ØE＋ØØ〇） |
| IERR | $=\varnothing$ |  |

## See Appendix $E$ for function generation.

```
F(x)=F(x(i))+(F(x(i+1))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))
where
x(i) = x-coordinate value at the i-th
 x-coordinate breakpoint
x(i+l) = x-coordinate value at the (i+l)-th
 x-coordinate breakpoint
x = Input x-coordinate value where the
 interpolated function value is desired
F(x(i)) = Function value at x(i)
F(x(i+1)) = Function value at x(i+1)
F(x) = Interpolated function value at }
 and x(i) <= x < x(i+l)
```

desired functions, storing them in FVAL. Refer to the function generation in Appendix $E$ for additional information.

```
F(x)=F(x(i))+(F(x(i+1))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))
where
x(i) = x-coordinate value at the i-th
 x-coordinate breakpoint
x(i+1) = x-coordinate value at the (i+1)-th
 x-coordinate breakpoint
x = Input x-coordinate value where the
 interpolated function value is desired
F(x(i)) = Function value at x(i)
F(x(i+l)) = Function value at x(i+l)
F(x) = Interpolated function value at x
 and }x(i)<= x<x(i+1
```

EXAMPLE:
See in Appendix $E$ on function generation.

```
DESCRIPTION: FUN4 uses the indexes IX, IY, IZ and IW from the
breakpoint searches and the values NX, NY, NZ, and NW
to find the first function value pairs in the function
value breakpoint table. It then performs a linear
interpolation between them by applying the formula
given below eight times over the x-axis, four times
over the y-axis, twice over the z-axis, and once
over the w-axis. FUN4 repeats the process for all the
desired functions, storing the computed function
values in FVAL. Refer to the function
generation in Appendix E for additional information.
F(x)=F(x(i))+(F(x(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i))
where
x(i) = x-coordinate value at the i-th
 x-coordinate breakpoint
x(i+1) = x-coordinate value at the (i+1)-th
 x-coordinate breakpoint
x = Input x-coordinate value where the
 interpolated function value is desired
F(x(i)) = Function value at x(i)
F(x(i+l)) = Function value at x(i+1)
F(x) = Interpolated function value at }
 and }x(i)<= x<x(i+1
```

EXAMPLE:
See Appendix E for function generation.
C.W.Gear, "Numerical Initial Value Problem in Ordinary Differential Equations", Prentice-Hall, 1971.

RKGIL performs integration for given time, step size, and integration steps. The right-hand subroutine DFUN can be coded in either APFTN64 or APAL64. The parameter-passing method employed by RKGIL requires that DFUN be coded in APFTN64. As such, RKGIL relies on assumed procedure entry conventions, because APFTN64 automatically generates code using this convention. If DFUN is written in APAL64, the user must resolve the parameters correctly.

At output, vector $V$ contains the numerical solutions while $T \emptyset$ contains the new value of the independent variable; i.e., $T \boldsymbol{\sigma}=T \boldsymbol{\sigma}+\mathrm{M} * \mathrm{H}$.

Repeated calls to RKGIL can cause stability problems. So the user must be on guard against instability and must take care specifying the $H$ parameter.

EXAMPLE:

Solve the following second-order differential equation $Y^{\prime \prime}=-4 . \varnothing^{*} Y$
with initial conditions
$Y(0, O)=1.0 .0$
$Y^{\prime}(\varnothing . \varnothing)=\varnothing . \varnothing$
starting at $T \varnothing=\varnothing . \varnothing$ with $H=\varnothing .1$ for 32 iterations.
An equivalent system of first-order differential equations can be written in the form
$D V(1)=V(2)$
$D V(2)=-4.06 *(1)$
with initial conditions at the point $\varnothing . \varnothing$ of

$$
V(1)=1.0
$$

$V(2)=\varnothing . \varnothing$

| ******t*** |  |
| :---: | :---: |
| * * | * * |
| $\begin{gathered} \text { * RKGTF * } \\ \text { * } \end{gathered}$ | - R-R-GILI-THOMPSON INTEG. (ORDER 4) - * * * * |
|  |  |
| PURPOSE: | To solve an initial value problem for a set of ordinary differential equations, using the fourth order Runge-Kutta-Gill method as described by Thompson. |
| CALL FORMAT: | CALL RKGTF (T,N,Y,F,Q,H,M) |
| PARAMETERS : | $T=$ Floating-point input scalar independent variable, initial value of $t$ |
|  | $\mathrm{N}=$ Integer input element count, number of equations, dimension of $Y, F$ and $Q$ |
|  | $Y=$ Floating-point input/output vector of dependent variables ( $Y(t)$ ) |
|  | $F=$ Floating-point working vector of derivative functions $d Y / d t=F(t, Y(t))$ |
|  | $Q=$ Floating-point working vector used for temporary storage (must have length $N$ ) |
|  | H = Floating-point input scalar step size for $t$ <br> $M=$ Integer input scalar number of integration steps to be performed |
| DESCRIPTION: | For the system of equations $d Y / d t=F(t, Y(t))$, the solution at each step is given by |
|  | $\begin{aligned} Y(m)= & Y(m) \\ & +(H / 6) *(k l+(2-\operatorname{sqrt}(2)) * k 2+(2+\operatorname{sqrt}(2)) * k 3+k 4) \end{aligned}$ |
|  | for $m=\emptyset$ to $N-1$, where |
|  | $k 1=F(T, Y)$ |
|  | $k 2=F(T+H / 2, Y+\emptyset .5 * H * k 1)$ |
|  | $\mathrm{k} 3=\mathrm{F}(\mathrm{T}+\mathrm{H} / 2, Y+\varnothing .5 *(-1+\operatorname{sqrt}(2)) * \mathrm{H} * \mathrm{kl}$ |
|  |  |
|  | $\mathrm{k} 4=\mathrm{F}(\mathrm{T}+\mathrm{H}, \mathrm{Y}-\varnothing .5 * \operatorname{sqrt}(2) * \mathrm{H} * \mathrm{k} 2$ |
|  | + $\left.0.5 *(2+\operatorname{sqrt}(2)) * \mathrm{H}^{*} \mathrm{k} 3\right)$ |
|  | while the independent variable is advanced by $H$ until $T=T+M * H$. |




```
PURPOSE: To rapidly calculate the cosine and sine of an
 angle(radians) using values stored in TMPOM.
CALL FORMAT: CALL SCSI(A,CA,SA)
PARAMETERS: A = Floating-point input scalar angle(radians)
 CA = Floating-point output scalar cosine(A)
 SA = Floating-point output scalar sine(A)
DESCRIPTION: CA = COS(A), SA = SIN(A)
 by interpolation of values stored in TMROM
 using a first order Taylor's series approximation.
 The returned values are accurate to approximately
 seven decimal digits.
 NOTE: For l5 decimal digits of accuracy at a slight
 decrease in speed, see the routine SINCOS.
```

EXAMPLE:
$\mathrm{A}=1 . \boldsymbol{x}$
$C A=\varnothing .5403023$
$S A=\varnothing .841471 \varnothing$

An input coordinate value $x$, and the index IX from a previous call to STEP or BIN, STEP uses a step search to determine the following:

1. The index IX that locates $x$ within the coordinate value breakpoint table such that
$x(I X)<=x<x(I X+1)$
2. The product $D R=D(I X) * R(I X)$ where
$D(I X)=x(I X)-X$
$R(I X)=1 /(X(I X+1)-x(I X))$

When a program makes repeated calls to a breakpoint search routine (i.e., BIN or STEP), STEP should be used if it is suspected that the input coordinate $x$ varies siowly with respect to the values in the coordinate value breakpoint table. STEP's nearest neighbor searching is more efficient than the binary (successive interval halving) search used by BIN.

At the outset, if no a priori knowledge of the value of $x$ is available, the first call to STEP should set $I X=N / 2$. An alternative strategy is to make the first call to BIN, which initializes IX, and then make subsequent calls to STEP.

Refer to the function generation in Appendix $E$ for additional information.

EXAMPLE:

```
N = 3
BRK = 1.\varnothing 2.\varnothing 7.\varnothing 1.\varnothing Ø.2 Ø.\varnothing
X = 2.1
IX = 2
DR = -\varnothing.ø2
```

NOTE

```
If }x<=x(l) then IX = 1
If x >= x(N) then IX = N-I
```





```
PURPOSE: To find the k-th smallest element of a vector.
CALL FORMAT: CALL KSMLV(A,N,K,W,C)
PARAMETERS: A = Floating-point input vector
 N = Integer element count for A
 K = Order of the element to be selected; K=1
 will select the smallest element; K=N will
 select the largest element; K=INT((N+1)/2)
 will select the median element.
 w = work-space vector; the size of the work
 space must be equal to N
 C = Floating-point output scalar
DESCRIPTION: C = k-th smallest element of A(m), ml to N.
 The k-th smallest element of the vector stored
 in Main Memory starting at location A is found
 using an application of the divide and conquer
 strategy. The algorithm implemented is as described
 by Aho, Hopcroft, and Ullman: THE DESIGN AND
 ANALYSIS OF COMPUTER ALGORITHMS, Addison-Wesley,
 1974, pp. 97-99. The resultant element is stored
 into Main Memory at location C. The original
 contents of the input vector are lost.
 The speed of this routine is data dependent.
```

EXAMPLE:

$$
\mathrm{N}=8
$$

$$
K=3
$$

$A: \begin{array}{llllllll}A . \varnothing & 5 . \varnothing & 2 . \varnothing & -1 . \varnothing & 3 . \varnothing & -3 \varnothing .6 & 1 \varnothing .7 & 5 . \varnothing\end{array}$
C: $1 . \varnothing$

EXAMPLE:

$$
\begin{aligned}
& \mathrm{SR}=2 . \varnothing \\
& \mathrm{N}=2 \varnothing \\
& \text { NNMO }=14 \\
& \text { C: } \\
& \begin{array}{llllllllll}
1 . \varnothing & 2 . \varnothing & 3 . \varnothing & 4 . \varnothing & 5 . \varnothing & 6 . \varnothing & 7 . \varnothing & 8 . \varnothing & 9 . \varnothing & 1 \varnothing . \varnothing
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { D: (input) . }
\end{aligned}
$$

$$
\begin{aligned}
& 33 . \varnothing 36 . \varnothing 39 . \varnothing \quad \varnothing . \varnothing \\
& \text { D: (output) } \\
& \begin{array}{llllllllll}
2.5 & 4 . \varnothing & 5.5 & 7 . \varnothing & 8.5 & 1 \varnothing . \varnothing & 9.5 & 7 . \varnothing & 5.5 & 4 . \varnothing
\end{array}
\end{aligned}
$$

## EXAMPLE:

$$
\begin{aligned}
& \mathrm{SR}=2 . \varnothing \\
& \mathrm{N}=2 \varnothing \\
& \text { NNMO }=14
\end{aligned}
$$

|  |  |
| :---: | :---: |
| * RESNMO * | -- RESIDUAL NORMAL MOVEOUT -- * RESNMO |
| * | * |
| ********** ********** |  |
| PURPOSE: | To stretch or squeeze a seismic trace via linear interpolation. |
| CALL FORMAT: | CALL RESNMO(A, B, C, NI, SR, D, NO, NNMO) |
| PARAMETERS: | ```A = Floating-point input vector; source trace of sample values.``` |
|  | $\begin{aligned} \mathrm{B}= & \text { Floating-point input vector of input } \\ & \text { control times (ms). } \end{aligned}$ |
|  | ```C = Floating-point input vector of output control times (ms).``` |
|  | $N \mathrm{~N}=$ Integer element count for $B$ and $C$. |
|  | SR = Floating-point input scalar; sample rate (ms). |
|  | ```D = Floating-point output trace vector of sample values.``` |
|  | NO = Integer element count for D. |
|  | NNMO $=$ Integer output scalar; index of initial sample of zero-fill in destination trace $D$. |
| DESCRIPTION: | The normal moveout computation is described in seismic signal processing references, such as: |
|  | ```"Introduction to Geophysical Prospecting" Dobrin, M.B., McGraw-Hill, Inc.,``` |
|  | New York, N.Y., 1976, pp. 201-254. |
|  | "Geophysical Signal Analysis" |
|  | Robinson, E.A and Treitel, S., |
|  | Prentice-Hall, Inc., |
|  | Englewood Cliffs, N.J., 1980, |
|  | pp. 1-35. |
|  | Using a stretching/squeezing function as defined by $B, C$, and $S R$, source trace $C$ is converted into destination trace $D$. |
|  | The initial sample value of zero-fill in the destination trace is returned in parameter NNMO. A value of $\mathrm{N}+\mathrm{l}$ for NNMO indicates no zero-fill. |
|  | The speed of this routine is data dependent. |




PURPOSE: To produce an output vector of $\varnothing$ 's and l's

CALL FORMAT: CALL VØI(A,I,B,J,N,NPTS)
PARAMETERS: A $=$ Floating-point input vector
I = Integer element step for $A$
B . = Floating-point output vector
$J \quad=$ Integer element step for $B$
$N \quad=$ Integer element count for $A$ and $B$
NPTS $=$ Number of points of source to be considered in creating a destination point

DESCRIPTION: $B(m)=\varnothing . \varnothing$ if $(A(m-N P T S+1) . E Q . \varnothing . \varnothing)$.AND. (A(m-NPTS+2) .EQ. Ø. Ø) .AND.

- . . . . .
(A(m).EQ. Ø. Ø) )
$B(m)=1 . \not 0$ otherwise
for $m=$ NPTS to $N$
(Note that $B(1)=\ldots=B($ NPTS-1) $=1 . \varnothing$ )
The vector A is scanned. If the current point of $A$ and the last NPTS-1 points of $A$ are $\varnothing$, then the current point of $B$ is set to zero. Otherwise the current point of $B$ is set to 1.0 . The resultant vector $B$ is useful in stacking operations.

EXAMPLE:

```
N}=1
NPTS = 3
```

$A: \begin{array}{llllllll}1 . \varnothing & 2 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & 5 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing\end{array}$
Ø. $\quad 1 \varnothing . \varnothing 11 . \varnothing 12 . \varnothing 13 . \varnothing \quad \varnothing . \varnothing \quad \varnothing . \varnothing \quad \varnothing . \varnothing$
B : $\begin{array}{llllllll}1 . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$
$\begin{array}{llllllll}\varnothing . \varnothing & 1 . \varnothing & \varnothing . \varnothing\end{array}$
$A(I)$ should be equal to $\varnothing . \varnothing$, and all other values of $A(i)$ and $B(i)$, for $i=1$ to $N C$, should be greater than Ø.ø.

The initial sample value of zero-fill in the destination trace is returned in parameter NNMO. A value of $\mathrm{N}+1$ for $N \mathrm{NMO}$ indicates no zero-fill.

Routine NMOLI (linear interpolation) or NMOQI (quadratic interpolation) is generally called subsequent to routine VARNMO.

The speed of this routine is data dependent.

EXAMPLE:

```
NC = 4
N = 10%0
SR = 3.\varnothing
X = 1\varnothing0.\varnothing
A: Ø.\varnothing 75.\varnothing 1\varnothing\varnothing.\varnothing 2\varnothing\varnothing.\varnothing
B: 5\varnothing\varnothing\varnothing.\varnothing 6ø\varnothing\varnothing.\varnothing 70\varnothing\varnothing.\varnothing 850\varnothing.\varnothing
NNMO = 68
D(1) D(2) D(3) D(4) D(5) D(6) D(7)
20.0\varnothing 20.07 20.59 21.53 22.83 24.44 26.30
\begin{tabular}{rrrrrr}
\(\mathrm{D}(65)\) & \(\mathrm{D}(66)\) & \(\mathrm{D}(67)\) & \(\mathrm{D}(68)\) & \(\mathrm{D}(69)\) & \\
192.39 & 195.38 & 198.37 & \(\varnothing . \varnothing \varnothing\) & \(\varnothing . \varnothing \varnothing\) & \(\ldots\). \\
\hline \(1 \varnothing \varnothing)\) \\
\(\varnothing . \varnothing \varnothing\)
\end{tabular}
```



EXAMPLE:
$N=2 \varnothing$

| $A=$ | $1 . \varnothing$ | $1 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $1 . \varnothing$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $1 . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ |
| $B=$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $1 . \varnothing$ | $2 . \varnothing$ | $2 . \varnothing$ | $3 . \varnothing$ | $4 . \varnothing$ | $5 . \varnothing$ | $5 . \varnothing$ | $5 . \varnothing$ |
|  | $5 . \varnothing$ | $6 . \varnothing$ | $7 . \varnothing$ | $8 . \varnothing$ | $9 . \varnothing$ | $1 \varnothing . \varnothing$ | $1 \varnothing . \varnothing$ | $11 . \varnothing$ | $12 . \varnothing$ | $12 . \varnothing$ |



Thus the superposition of $L$ and $D$ with the diagonal elements of $D$ replaced by their reciprocals is

```
* (\varnothing.5,-\varnothing.5)
(\varnothing.\varnothing, \varnothing.\varnothing) (\varnothing.5, \varnothing.5)
(2.\varnothing,-1.\varnothing) (\varnothing.\varnothing. \varnothing.\varnothing) (\varnothing.2,-\varnothing.4)
(\varnothing.\varnothing, \varnothing.\varnothing) (1.\varnothing. 1.\varnothing) (\varnothing.\varnothing, \varnothing.\varnothing) (-\varnothing.25,\varnothing.25)
(\varnothing.\varnothing,\varnothing.\varnothing) (\varnothing.\varnothing,\varnothing.\varnothing) (\varnothing.\varnothing, \varnothing.\varnothing) (\varnothing.\varnothing. 1.\varnothing) (\varnothing.25.\varnothing.\varnothing)
```


(1) Solve Lz=b for $z$ (forward elimination)
(2) Solve Dy=z for $y$
(3) Solve L'x=y for $x$ (backward substitution)

This routine supercedes CSFS and differs from it in two important respects. First, CSFS2 is much faster than CSFS. Second, CSFS2 does not check to ensure that fill-in has been provided for properly; whereas, CSFS does.

The scratch parameter WRK is not used in the current release of this routine; however, it has been retained for compatibility with CSFS. Thus, a scalar may be used in place for a vector for WRK.

For a more detailed discussion, refer to Appendix C.
The execution time for this routine is data dependent.

EXAMPLE: Let $A$ be the complex, symmetric matrix

| (1.0, 1. 0 ) | (0.0, ø. 0 ) | $(3.0,1.0)$ | (0.0, 0.0$)$ | (0.0. $0 . \varnothing)$ |
| :---: | :---: | :---: | :---: | :---: |
| ( $0.0, \varnothing . \varnothing)$ | (1.0,-1.0) | ( $0 . \varnothing, \varnothing . \varnothing)$ | (2.0, ø. 0 ) | (0.0, 0.0$)$ |
| ( $3.0,1.0)$ | ( $0 . \varnothing, \varnothing . \varnothing)$ | (8.0, 1.0) | (0.0, ø. 0 ) | ( $0 . \varnothing, \varnothing . \varnothing)$ |
| ( $0.0, \varnothing . \varnothing)$ | (2.0, 0.0$)$ | (0.0, ø. $)$ | (0.0, ¢.0) | $(2.8,-2.8)$ |
| ( $0.0, \varnothing . \varnothing)$ | (0.0, Ø. $)$ | (0.0, 毋. 0 ) | (2.6,-2.0) | (6.0, 2.0) |
| N | It is known <br> element <br> (4 | priori | sill-in | rs in |



This routine supercedes CSSV.
For a more detailed discussion, refer to Appendix $C$.

The execution time for this routine is data dependent.


The output parameters are:

$$
\begin{aligned}
\mathrm{S}= & \varnothing .5,-\varnothing .5,3 . \varnothing, 1 . \varnothing, \varnothing .5, \varnothing .5,2 . \varnothing, \varnothing . \varnothing, \\
& 2 . \varnothing,-1 . \varnothing, \varnothing .2,-\varnothing .4,1 . \varnothing, 1 . \varnothing,-\varnothing .25, \varnothing .25, \\
& 2 . \varnothing,-2 . \varnothing, \varnothing . \varnothing, 1 . \varnothing, \varnothing .25, \varnothing . \varnothing \\
\text { IERR }= & \varnothing
\end{aligned}
$$

Thus the superposition of $L$ and $U$ with the diagonal elements of $L$ replaced by their reciprocals is

| $(\varnothing .5,-\varnothing .5)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing,-1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing .5, \varnothing .5)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(1 . \varnothing, 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| $(3 . \varnothing, 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing .2,-\varnothing .4)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(-\varnothing .25, \varnothing .25)$ | $(\varnothing . \varnothing, 1 . \varnothing)$ |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing,-2 . \varnothing)$ | $(\varnothing .25, \varnothing . \varnothing)$ |

DESCRIPTION: First CUFR2 is called to factor A into LU where $L$ is a lower triangular matrix and $U$ is an upper triangular matrix with ones on its diagonal. The factorization is performed without any row or column interchanges. $L$ and $U$ are superpositioned by suppressing the ones on the diagonal of $U$; i.e., if the superposition of $L$ and $U$ is denoted by $C$, then $C=L+U-I$. The sparse elements of the superposition of $L$ and $U$ are stored in the corresponding locations of $S$ with the diagonal elements of $L$ replaced by their reciprocals. $L$ and $U$ may contain nonzero elements where $A$ contains zero elements. Collectively called "fill-in", these zeros must be included in $S$ as input sparse elements of $A$. Failure to properly provide for fill-in results in undetermined action by this routine.
Next, CUSV2 is called to solve the system in two steps:
(1) Solve Ly=b for $y$ (forward elimination)
(2) Solve $U x=y$ for $x$ (backward substitution)
This routine supercedes CUFS and differs from it in two important respects. First, CUFS2 is much faster than CUFS. Second, CUFS2 does not check to ensure that fill-in has been provided for properly; whereas, CUFS does.
For a more detailed discussion, refer to Appendix C.
The execution time for this routine is data dependent.

EXAMPLE:
Let $A$ be the complex matrix

| $(1 . \varnothing, ~ 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(3 . \varnothing, 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(1 . \varnothing,-1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| $(3 . \varnothing, 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(8 . \varnothing, 1 . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing,-2 . \varnothing)$ |
| $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(\varnothing . \varnothing, \varnothing . \varnothing)$ | $(2 . \varnothing,-2 . \varnothing)$ | $(6 . \varnothing, 2 . \varnothing)$ |

NOTE: It is known apriori that fill-in occurs in element (4,4).

Let $b$ be the complex vector

$$
\begin{array}{r}
(\varnothing . \varnothing, ~ \varnothing . \varnothing) \\
(3 . \varnothing, \\
(-7 . \varnothing,-9 . \varnothing) \\
(4 . \varnothing, \\
(12 . \varnothing, \\
(12 . \varnothing)
\end{array}
$$



| ********** | ********** |
| :---: | :---: |
| * * |  |
| * RSFR2 * | - SPARSE REAL SYMMETRIC FACTOR - * RSFR2 |
| * * |  |
| ********** | ********** |
| PURPOSE: | To perform an LDL' factorization of a real, symmetric matrix $\bar{A}$, where $A$ is sparse and is represented in packed form. |
| CALL FORMAT: | CALL RSFR2(N,NS, S,ICP, IRN, Z (TOL, WRR, IERR) |
| PARAMETERS: | ```N = Integer input scalar Order of the matrix A (must be greater than 1)``` |
|  | ns <br> = Integer input scalar <br> Number of sparse elements (i.e., nonzero and fill-in elements) in the lower triangle of $A$ |
|  | $S \quad=$ Floating-point input/output array of length NS On input, $S$ contains the sparse elements of the lower triangle of $A$ in column order. On output, $S$ contains the superposition of $L$ and D with the diagonal elements reciprocated. |
|  | ICP $=$ Integer input array of length $\mathrm{N}+1$ Contains pointers into $S$ to the first sparse element of each column with ICP(N+1) = NS + 1 |
|  | IRN $=$ Integer input array of length NS Contains the row numbers that correspond to the elements in $S$ |
|  | ```ZTOL = Floating-point input scaiar Zero tolerance value``` |
|  | WRK = Floating-point scratch vector of length N |
|  | IERR $=$ Integer output scalar |
|  | Error code whose values are: <br> ø - Normal termination |
|  | 1 - Routine aborted because a diagonal <br> element was computed to be zero (i.e., |
|  | its absolute value was less than or equal to ZTOL ) |
|  | 2 - Routine aborted because $\mathrm{N}<2$ |

## Then the input parameters are:

$$
\begin{aligned}
& \mathrm{N}=1 \varnothing \\
& \text { NS }=22 \\
& \mathrm{~S}=8 . \varnothing \text {, 8. } \quad \text {, 16. } 0,16 . \varnothing, 32 . \varnothing, 8 \varnothing . \varnothing, 16 . \varnothing \text {, } \\
& \text { 24.ø, 16.ø, 8.ø, 24.ø, 8.ø, 4.ø, 16.ø, } \\
& \text { 32.ø, 16. } . ~ 8 \varnothing . \varnothing, ~ 4 \varnothing . \varnothing, ~ 8 . \varnothing, ~ 4 . \varnothing, ~ \varnothing . \varnothing, ~ \\
& -1.25 \\
& \text { ICP }=1,2,4,6,8,11,14,17,20,22,23
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8, 1ø, 7, 8, 9, 8, 9, 10, 9, 10, 1ø }
\end{aligned}
$$

ZTOL $=1.0 \mathrm{E}-6$

The output parameters are:
$\mathrm{S}=\varnothing .125, \varnothing .125,2 . \varnothing, \varnothing . \varnothing 625,2 . \varnothing, \varnothing . \varnothing 625,1 . \varnothing$, Ø.125, 2. Ø, 1. Ø, - .125, 1. Ø, - . 5, Ø. Ø625, 2.Ø, 1.Ø, Ø.Ø625, Ø.5, Ø.25, -Ø. Ø625, Ø.125, $-6.03125$
IERR $=\varnothing$

Thus the superposition of $L$ and $D$ with the diagonal elements of $D$ replaced by their reciprocals is



EXAMPLE:
Let $A$ be the symmetric matrix

| 8.0 | ø. 0 | $\varnothing . \varnothing$ | $\varnothing .0$ | 0.0 | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 8.6 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | $\varnothing .0$ | 16.0 |
| 0.0 | 0.0 | 16.0 | 32.6 | 6.0 | 6. 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 32.0 | 80.6 | 16.0 | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ |
| $\varnothing .0$ | 0.0 | $\varnothing . \varnothing$ | 16.0 | 24.0 | 16.0 | 0.0 | $8 . \square$ | $\varnothing .0$ | $\varnothing .0$ |
| 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 24.0 | 0.0 | 8.6 | 0.0 | 4.0 |
| 2. 0 | x. ${ }^{8}$ | D. ${ }^{\text {D }}$ | D. 0 | 2. 2 | W. 0 | 16.2 | 32.0 | 16.0 | 2. ${ }^{\text {a }}$ |
| 0.0 | 0.0 | 9.0 | 0.0 | 8.0 | 8.6 | 32.0 | 80.0 | 40.0 | 8.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | $\varnothing .0$ | $\varnothing . \varnothing$ | 16.0 | 40.0 | 4.0 | 0.0 |
| 0.0 | 16.0 | 0.0 | 6.0 | 0.0 | 4.0 | 9.0 | 8.0 | $\varnothing . \varnothing$ | -1.25 |

> Thus the superposition of $L$ and $D$ with the diagonal elements of $D$ replaced by their reciprocals is

```
0.125
\varnothing.\varnothing Ø.125
\varnothing.\varnothing Ø.\varnothing Ø.Ø625
\varnothing.\varnothing Ø.\varnothing 2.\varnothing Ø.Ø625
\varnothing.\varnothing \varnothing.\varnothing Ø.\varnothing 1.\varnothing Ø.125
\varnothing.\emptyset Ø.\emptyset Ø.\varnothing Ø.\varnothing 2.\emptyset -\varnothing.125
```



```
\varnothing.\varnothing}\mp@code{\varnothing.\varnothing
```



```
\varnothing.\varnothing 2.\varnothing Ø.\varnothing }0.\varnothing0\mp@code{\varnothing.\varnothing
 and the solution vector, }x\mathrm{ , is
 3.0
 1.0
 4.0
 1.0
 5.6
 9.0
 \varnothing.\varnothing
 0.\varnothing
 7.0
 \varnothing.\varnothing
```


## EXAMPLE：

Let $A$ be the symmetric matrix

| 8.8 | $\varnothing .0$ | 0.0 | $\varnothing .0$ | $\varnothing .0$ | $\varnothing . \varnothing$ | | | | |
|---|---|---|---|---|---|---|---|---|---|
| $\varnothing . \varnothing$ | 8.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \square$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 |
| $\varnothing .0$ | $\varnothing . \varnothing$ | 16.0 | 32.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing .0$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ |
| 0.0 | $\varnothing . \varnothing$ | 32.0 | 80.0 | 16.0 | $\varnothing . \varnothing$ |
| 0.0 | 0.0 | $\varnothing . \varnothing$ | 16.0 | 24.0 | 16.0 | 0.0 | 8.8 | $\varnothing . \varnothing$ | $\varnothing .0$ |
| Ø．$\varnothing$ | $\varnothing . \varnothing$ | 0.0 | Ø． 0 | 16.0 | 24.0 | $\varnothing . \varnothing$ | 8.6 | $\varnothing . \varnothing$ | 4.0 |
| Ø．$\varnothing$ | Ø． 0 | $\ddot{\square} .0$ | Ø． 0 | 6.6 | Ø． 6 | 16.01 | 32.6 | 16.0 | 0.6 |
| $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 8.0 | 8.0 | 32.0 | 80.0 | 40.0 | 8.0 |
| $\varnothing . \varnothing$ | 0.0 | 9.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 | 40．ø | 4.8 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 16.0 | $\varnothing .0$ | 毋．0 | Ø．$\varnothing$ | 4.0 | ø．$\varnothing$ | 8.8 | Ø．$\varnothing$ | －1． 25 |

Then the superposition of $L$ and $D$ with the diagonal elements of $D$ replaced by their reciprocals is
0.125
$0 . \varnothing 0.125$
$\varnothing . \varnothing$ Ø．ロ Ø．Ø625
$\varnothing . \varnothing \quad \varnothing . \varnothing \quad 2 . \varnothing \quad 0.0625$
$\varnothing . \varnothing \quad \varnothing . \varnothing \quad \varnothing . \varnothing \quad 1 . \varnothing \quad \varnothing .125$
$\begin{array}{llllll}\varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & 2 . \varnothing & -\varnothing .125\end{array}$
$\varnothing . \varnothing \quad \varnothing . \varnothing 625$
$\begin{array}{llllllll}\varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & 1 . \varnothing & 1 . \varnothing & 2 . \varnothing & \varnothing . \varnothing 625\end{array}$

| $\varnothing . \varnothing$ | $1 . \varnothing$ | $\varnothing .5$ | | | | | |
|---|---|---|---|---|---|---|---|
| $. \varnothing . \varnothing 625$ |  |  |  |  |  |  |  |

$\begin{array}{llllllllll}\varnothing . \varnothing & 2 . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & \varnothing . \varnothing & -\varnothing .5 & \varnothing . \varnothing & \varnothing .25 & \varnothing .125 & -\varnothing . \varnothing 3125\end{array}$
Let $b$ be the vector

$$
\begin{array}{r}
24 . \varnothing \\
8 . \emptyset \\
96 . \varnothing \\
288 . \varnothing \\
28 \varnothing . \emptyset \\
296 . \varnothing \\
112 . \varnothing \\
392 . \varnothing \\
28 . \varnothing \\
52 . \varnothing
\end{array}
$$

Then the input parameters are：

$$
\begin{aligned}
& \mathrm{N}=10 \\
& \text { NS }=22 \\
& \mathrm{~S}=\varnothing .125, \varnothing .125,2 . \varnothing, \varnothing . \varnothing 625,2 . \varnothing, \varnothing . \varnothing 625,1 . \varnothing \text {, } \\
& \text { Ø.125, 2.ø, 1. Ø, - .125, 1. Ø, - .5, Ø. Ø625, } \\
& \text { 2.Ø, 1.Ø, Ø. Ø625, Ø.5, Ø.25, -Ø.ø625, Ø.125, } \\
& \text { - } 0.03125 \\
& \operatorname{ICP}=1,2,4,6,8,11,14,17,20,22,23 \\
& \text { IRN }=1,2,1 \varnothing, 3,4,4,5,5,6,8,6 \text {, } \\
& \text { 8, 10, 7, 8, 9, 8, 9, 10, 9, 10, 10 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 392.0. 28. 日, 52.0 }
\end{aligned}
$$



| PURPOSE: | To perform an LU factorization of a real, unsymmetric |
| :--- | :--- |
| matrix $A$, where $A$ is sparse and is represented in |  |
|  | packed form. |

CALL FORMAT: CALL RUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR)

PARAMETERS: $N \quad=$ Integer input scalar Order of the matrix A (must be greater than 1)
NS = Integer input scalar Number of sparse elements (i.e., nonzero and fili-in elements) in $A$
$S \quad=$ Floating-point input/output array of length NS On input, $S$ contains the sparse elements of $A$ in column order. On output, $S$ contains the sparse elements of the superposition of $L$ and $U$ with the diagonal elements reciprocated.
ICP = Integer input array of length $\mathrm{N}+\mathrm{I}$
Contains pointers into $S$ to the first sparse element of each column with $\operatorname{ICP}(\mathrm{N}+1)=\mathrm{NS}+1$
IRN = Integer input array of length NS Contains the row numbers that correspond to the elements in $S$
IDP = Integer input array of length $N$ Contains pointers into $S$ to the diagonal elements
2TOL = Floating-point input scalar Zero tolerance value

WRK $=$ Floating-point scratch vector of length $N$
IERR = Integer output scalar
Error code whose values are:
Ø - Normal termination
1 - Routine aborted because a diagonal element was computed to be zero (i.e., its absolute value was less than or equal to ZTOL)
2 - Routine aborted because $\mathrm{N}<2$

Then the input parameters are:

```
N = 10
NS = 34
S = 8.0, 8.0, 16.0, 16.\varnothing, 32.\varnothing, 32.0, 80.0,
 16.\varnothing, 16.\varnothing, 24.\varnothing, 16.\varnothing, 8.\varnothing, 16.\varnothing, 24.\varnothing,
 8.\varnothing, 4.\varnothing, 16.\varnothing, 32.\varnothing, 16.\varnothing, 8.\varnothing, 8.\varnothing,
 32.\varnothing, 8\varnothing.\varnothing, 4\varnothing.\varnothing, 8.\varnothing, 16.\varnothing, 4\varnothing.\varnothing, 4.\varnothing,
 \varnothing.\varnothing, 16.\varnothing, 4.\varnothing, 8.\varnothing, \varnothing.\varnothing, -1.25
ICP = i, 2, 4, 6, 9, 13, 17, 200, 26, 30, 35
IRN = 1, 2, 10, 3, 4, 3, 4, 5, 4, 5, 6,
 8, 5, 6, 8, 10, 7, 8, 9, 5, 6, 7,
 8, 9, 10, 7, 8, 9, 10, 2, 6, 8, 9, 10
IDP = 1, 2, 4, 7, 10, 14, 17, 23, 28, 34
ZTOL = 1.ØE-6
```

The output parameters are:

```
S = Ø.125, Ø.125, 16.\varnothing, \varnothing.\varnothing625, 32.\varnothing, 2.\varnothing, Ø.\varnothing625,
 16.\varnothing, 1.\varnothing, \varnothing.125, 16.\varnothing, 8.\varnothing, 2.\varnothing, -\varnothing.125,
 -8.\varnothing, 4.\varnothing, Ø.\varnothing625, 32.\varnothing, 16.\varnothing, 1.\varnothing, 1.\varnothing, 2.\varnothing,
 \emptyset.\emptyset625, 8.\varnothing, 4.\varnothing, 1.\varnothing, Ø.5, -\varnothing.\varnothing625, -2.\varnothing,
 2.\varnothing, -\varnothing.5, \varnothing.25, Ø.125, -\varnothing.\varnothing3125
IERR = Ø
```

Thus the superposition of $L$ and $U$ with the diagonal elements of $L$ replaced by their reciprocals is

| 0.125 | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing .0$ | D.0 | $\varnothing . \varnothing$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.125 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \square$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 2.0 |
| Ø. $\square$ | Ø. $\square$ | 0.0625 | $2 . \square$ | $\varnothing . \emptyset$ | $\varnothing . \square$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\square . \square$ | Ø. $\varnothing$ |
| $\varnothing . \varnothing$ | $\square .0$ | 32.0 | 0.0625 | 1.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 0.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 0.0 | Ø. $\varnothing$ | 16.0 | 0.125 | 2.6 | $\varnothing . \varnothing$ | 1.0 | 0.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 8.0 | $\varnothing .0$ | $\varnothing . \varnothing$ | 16.0 | - 0.125 | Ø. 0 | 1.0 | $\varnothing . \square$ | $-8.5$ |
| $\varnothing . \varnothing$ | 0.0625 | 2.0 | 1.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $8 . \varnothing$ | -8.0 | 32.8 | 0.0625 | $\varnothing .5$ | 0.25 |
| 0.0 | $6 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $0 . \varnothing$ | 16.0 | 8.0 | - 0.0625 | 0.125 |
| $\varnothing . \varnothing$ | 16.0 | 0.0 | 0.0 | 0.0 | 4.6 | 0.0 | 4.0 | -2.0 | - 0.03125 |


(1) Solve $L y=b$ for $y$ (forward elimination) (2) Solve Ux=y for $x$ (backward substitution)

This routine supercedes RUFS and differs from it in two important respects. First, RUFS2 is much faster than RUFS. Second, RUFS2 does not check to ensure that fill-in has been provided for properly; whereas, RUFS does.

For a more detailed discussion, refer to Appendix C.
The execution time for this routine is data dependent.

## EXAMPLE: Let $A$ be the matrix

| 8.6 | Ø. $\varnothing$ | $\varnothing . \varnothing$ | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| $\varnothing . \varnothing$ | 8.6 | $\varnothing . \varnothing$ | $\varnothing .6$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 |
| 0.0 | Ø. $\varnothing$ | 16.0 | 32.0 | Ø. $\varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing .0$ |
| 0.0 | 0.0 | 32.0 | 80.0 | 16.6 | $\varnothing . \varnothing$ |
| D. 0 | D. 0 | 9. $\varnothing$ | 16.0 | 24.0 | 16.8 | Ø. $\varnothing$ | 8.8 | Ø. $\varnothing$ | ¢. 0 |
| 0.0 | Ø. 0 | 0.6 | $\varnothing . \varnothing$ | 16.0 | 24.0 | $\varnothing . \varnothing$ | 8.0 | $\varnothing . \varnothing$ | 4.0 |
| $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 0.0 | $0 . \varnothing$ | 16.0 | 32.8 | 16.0 | $\varnothing . \varnothing$ |
| $\varnothing .0$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | 8.8 | 8.0 | 32.0 | 80.0 | 40.0 | 8.0 |
| 0.0 | $\varnothing . \varnothing$ | 0.0 | 0.0 | 0.0 | $\varnothing . \varnothing$ | 16.0 | $40 . \varnothing$ | 4.0 | $\varnothing . \square$ |
| $\varnothing . \varnothing$ | 16.0 | 0.0 | 0.0 | $\varnothing . \varnothing$ | 4.0 | 0.0 | $8 . \varnothing$ | 毋. $\varnothing$ | -1.25 |
|  | NOT | It is known apriori that fill-in occurs in elements $(10,9)$ and $(9,10)$. |  |  |  |  |  |  |  |

Thus the superposition of $L$ and $U$ with the diagonal elements of $L$ replaced by their reciprocals is

| 0.125 | 0.0 | ¢. $\varnothing$ | Ø. $\varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing .0$ | ¢. 0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.125 | $\varnothing . \varnothing$ | 0.0 | $\varnothing .0$ | $0 . \varnothing$ | ロ. $\varnothing$ | $\varnothing .0$ | 0.0 | 2.0 |
| 0.0 | $\varnothing . \varnothing$ | 0.0625 | 2.0 | $\varnothing . \varnothing$ | $\varnothing .0$ |
| 0.0 | $\varnothing .0$ | 32.0 | 0.0625 | 1.0 | $\varnothing .0$ | $\varnothing .0$ | 0.0 | 0.0 | 0.0 |
| 0.0 | 8.0 | $\varnothing .0$ | 16.0 | 0.125 | 2.0 | $\varnothing . \varnothing$ | 1.0 | 8.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | Ø. $\varnothing$ | $\varnothing .0$ | 0.0 | 16.0 | - 0.125 | $\varnothing . \varnothing$ | 1.0 | $\varnothing .6$ | - 0.5 |
|  | $\tilde{y} \cdot \tilde{x}$ |  | 6. 0 | $\tilde{0} . \square$ | б. 0 | 6. 0625 | 2.0 | 1. 6 | $\mathscr{0} . \tilde{0}$ |
| $\varnothing . \varnothing$ | Ø. $\varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $8 . \varnothing$ | -8.0 | $32 . \varnothing$ | Ø.0625 | 0.5 | $\varnothing .25$ |
| 0.0 | $\varnothing .0$ | $\varnothing .0$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 | 8.0 | - 0.0625 | 0.125 |
| 0.0 | 16.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 4.8 | 8.8 | 4.0 | -2.ø | - 0.03125 |

and the solution vector, $x$, is
3.0
1.0
4.6
$1 . \varnothing$
5.6
9.0
$\varnothing .6$
$\varnothing . \varnothing$
7.0
$\varnothing . \varnothing$

The execution time for this routine is data dependent.

| EXAMPLE: | Let $A$ be the matrix |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | $\varnothing . \varnothing$ | 0.6 | $\varnothing . \varnothing$ | $\emptyset . \varnothing$ |
| $\varnothing . \varnothing$ | 8.0 | $\varnothing .0$ | $\varnothing .0$ | Ø. $\varnothing$ | $\varnothing .0$ | Ø. 0 | 0.0 | $\varnothing . \varnothing$ | 16.0 |
| $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 | 32.0 | $\varnothing . \varnothing$ |
| 0.0 | $\varnothing . \varnothing$ | 32.0 | $80 . \varnothing$ | 16.0 | $0 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing .0$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ |
| ロ. 0 | ஜ. $\boldsymbol{\varnothing}$ | ¢์. | 16.6 | 24.0.0 | 16.8 | 0.0 | 8.0 | $\underset{0}{0}$ | $\mathscr{x} .0$ |
| 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 | 24.0 | $\varnothing . \varnothing$ | 8.6 | $\varnothing . \varnothing$ | $4 . \varnothing$ |
| $\varnothing . \varnothing$ | 16.0 | $32 . \varnothing$ | 16.0 | $\varnothing . \varnothing$ |
| Ø. $\varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $8 . \varnothing$ | 8.0 | 32.0 | 80.0 | 40.0 | 8.0 |
| $\varnothing . \varnothing$ | $0 . \varnothing$ | Ø. $\varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 16.0 | 40.0 | 4.6 | $\varnothing . \varnothing$ |
| 0.0 | 16.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing .0$ | 4.0 | $\varnothing .0$ | 8.0 | 0.0 | -1.25 |

Then the superposition of $L$ and $U$ with the diagonal elements of $L$ replaced by their reciprocals is

| $\varnothing .125$ | 0.0 | Ø. $\varnothing$ | 0.0 | 0.0 | ø.0 | $\varnothing .0$ | 0.0 | 8.0 | $\varnothing . \varnothing$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varnothing . \varnothing$ | 0.125 | Ø.ø | $\varnothing . \varnothing$ | $2 . \varnothing$ |
| 0.0 | $\varnothing .0$ | 0.0625 | $2 . \varnothing$ | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 0.0 | 32.0 | 0.0625 | $1 . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | $\varnothing .0$ | $\varnothing .0$ | 16.0 | $\varnothing .125$ | $2 . \varnothing$ | $\varnothing . \varnothing$ | 1.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 0.6 | 0.0 | 0.6 | 16.0 | -Ø. 125 | $\varnothing . \varnothing$ | 1.0 | 9.0 | -0.5 |
| $\varnothing . \varnothing$ | 6.6 | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0625 | 2.0 | 1.0 | $\varnothing . \varnothing$ |
| $\varnothing . \varnothing$ | 0.0 | 0.0 | 0.0 | 8.0 | -8.0 | 32.0 | Ø. 0625 | 0.5 | 0.25 |
| $\varnothing . \varnothing$ | 0.0 | $\varnothing .0$ | 0.0 | $\varnothing . \varnothing$ | 0.0 | 16.0 | 8.0 | - 0.0625 | 0.125 |
| $\varnothing . \varnothing$ | 16.0 | 0.0 | 0.0 | $\varnothing . \varnothing$ | 4.0 | Ø. 0 | 4.8 | -2.0 | -Ø.03125 |

Let $b$ be the vector
$24 . \varnothing$
$8 . \varnothing$
$96 . \varnothing$
288.0
288. 0
296.0
112.0
$392 . \varnothing$
28.0
52.0

Then the input parameters are:
$\mathrm{N}=16$
NS $=34$
$\mathrm{S}=\varnothing .125, \varnothing .125,16 . \varnothing, \varnothing . \varnothing 625,32 . \varnothing, 2 . \varnothing, \varnothing . \varnothing 625$, $16 . \varnothing, 1 . \varnothing, \varnothing .125,16 . \varnothing, 8 . \varnothing, 2 . \varnothing,-\varnothing .125$,
 Ø.Ø625, 8.ø, 4.ø, 1.Ø, Ø.5, -Ø.Ø625, -2.ø, $2 . \varnothing,-\varnothing .5, \varnothing .25, \varnothing .125,-\varnothing . \varnothing 3125$


PURPOSE: To calculate the dot product of a column of $A$ with another vector, $B$, given a real, sparse matrix, $A$, that is in packed format.

CALL FORMAT: CALL SDOTPR(M,NP1,NS,S,IRN,ICP,IC,B,J,C)

PARAMETERS:
M = Integer input scalar Number of rows in A.
NPI = Integer input scalar Number of columns in A plus one.
NS = Integer input scalar Number of nonzero elements in $A$.
$S \quad=$ Floating-point input array of length NS Contains the nonzero elements of A stored by columns.
IRN $=$ Integer input array of length NS Contains the row numbers (in A) that correspond to the nonzero elements in $S$.
ICP $=$ Integer input array of length NPI Contains pointers to the elements in $S$ that are the first nonzero elements in each column of $A$. ICP(NPl) = NS + 1 .
IC = Integer input scalar Number of the column in $A$ that is to be used. $B \quad=$ Floating-point input vector of length $M$ $J \quad=$ Integer input scalar Element step for B. $C$ = Floating-point output scalar

DESCRIPTION: $C=\operatorname{Sum}[B(\operatorname{IRN}(k)) * S(k) ; k=I C P(I C)$ to ICP(IC+1)-1]

| EXAMPLE: | Let A : | 1.0 | D. $D$ | D. $\varnothing$ | 4.0 | D. $D$ | 1.0 | D. $\varnothing$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | -1.0 | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | $\square .0$ |
|  |  | 0.0 | -4.0 | $\varnothing .0$ | $\varnothing . \varnothing$ | 5.0 | $\varnothing .0$ | 2.0 |
|  |  | 2.0 | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | $\varnothing .0$ | $\varnothing . \varnothing$ | $\varnothing .0$ |
|  |  | $\varnothing . \varnothing$ | $\varnothing . \varnothing$ | 0.0 | $\varnothing . \varnothing$ | -2.0 | $\varnothing . \varnothing$ | -3.0 |
|  |  | $\varnothing . \varnothing$ | $\varnothing .0$ | $\varnothing .0$ | -3.0 | 3.0 | $\varnothing . \varnothing$ | $\varnothing .0$ |



PURPOSE: To solve a real, sparse, linear system $A$ * $X=B$, where $A$ is in packed, row-order format.

CALL FORMAT: CALL SITSOL(N,NS,S,ICN,IRP,B,W,ZTOL,NCUT,IFLG, X,ITER,IERR)

PARAMETERS: $N \quad=$ Integer input scalar Order of A.
NS = Integer input scalar Number of nonzero elements in A.
$S \quad=$ Real input array of length NS Contains the nonzero elements of $A$ stored in row order.
ICN = Integer input array of length NS Contains the column numbers (in A) of the corresponding elements in $S$.
IRP $=$ Integer input array of length $N+1$ Contains pointers to the first element of each row of $A$ in $S$ with $\operatorname{IRP}(N+1)=N S+1$.
$B \quad=$ Real input vector of length $N$ Contains the right-hand side.
$\mathrm{W} \quad={ }^{\text {R Real }}$ input scalar Over relaxation coefficient. If $\bar{w}=i . \tilde{x}$, then the Gauss-Seidel method is used to solve the system. Otherwise, the successive over relaxation (SOR) method is used with a coefficient of $W$.
ZTOL = Real input scalar
Zero tolerance value. The solution is considered to have converged when every element of $X$ is within ZTOL of its value on the previous iteration.
NCUT = Integer input scalar Iteration limit. The routine will return after NCUT iterations if the solution has not converged.
IFLG = Integer input scalar Input flag:
$\varnothing$ - Normal input
1 - X contains an initial solution
2 - The routine is being reentered to perform additional iterations and the vectors $S$, ICN, IRP, $B$, and $X$ contain the values that they had on return from a previous call to SITSOL.

EXAMPLE: Given the linear system $A * X=B$, where


## EXAMPLE: Input:

```
ITYPE = 3
M = 4
N}=
NS = 7
A: 5.\varnothing 6.\varnothing \varnothing.\varnothing 4.\varnothing \varnothing.\varnothing
 \varnothing.\varnothing Ø.\varnothing Ø.\varnothing 3.\varnothing Ø.\varnothing
 9.0 0.0 \varnothing.\varnothing \varnothing.\varnothing \varnothing.\varnothing
 \varnothing.\varnothing Ø.\varnothing Ø.\varnothing Ø.\varnothing \varnothing.\varnothing
```

    Output:
    NS $=5$
S: $5 . \varnothing$ 9.ø $6 . \varnothing \quad 4 . \varnothing$ 3.ø
IN: $\begin{array}{llllll}1 & 3 & 1 & 1 & 2\end{array}$
$\begin{array}{lllllllllll}I P: & 1 & 3 & 4 & 4 & 6 & 2 & 1 & \varnothing & 2 & \varnothing\end{array}$
IERR $=9$

```
EXAMPLE: Input:
ITYPE = 1
M = 4
N = 3
NS = 5
S: 5.\varnothing 6.\varnothing 3.\varnothing 2.\varnothing 4.\varnothing
IN: }
IP: }1
Output:
A: 5.\varnothing 6.\varnothing Ø.\varnothing 3.\varnothing Ø.\varnothing \varnothing.\varnothing \varnothing.\varnothing \varnothing.\varnothing 2.\varnothing Ø.\varnothing Ø.\varnothing 4.\varnothing
IERR = Ø
```

Then the input is

```
M=6
NP1 = 8
NS = 12
```


$\begin{array}{lllllllllllll}\text { IRN } & : & 1 & 4 & 3 & 2 & 1 & 6 & 3 & 5 & 6 & 1 & 3\end{array}$
$I C P: \begin{array}{llllllll}1 & 3 & 4 & 5 & 7 & 1 \varnothing & 11 & 13\end{array}$
$I C=4$
$\begin{array}{lllllll}\text { B } & 5 . \varnothing & -2 . \varnothing & 1 . \varnothing & 6 . \varnothing & 4 . \varnothing & 2 . \varnothing\end{array}$
$\begin{array}{llllll}-1 . \varnothing & -7 . \varnothing & 8 . \varnothing & 3 . \varnothing & 2 . \varnothing & 2 . \varnothing\end{array}$
$\begin{array}{llllll}4 . \varnothing & 2 . \varnothing & 3 . \varnothing & -5 . \varnothing & 6 . \varnothing & 3 . \varnothing\end{array}$
$N C=3$

Output:

$$
C=14.0-10 . \varnothing \quad 7.0
$$

```
Then the input is
M = 6
NPI = 8
NS = 12
S : 1. 2. -4. -1. 4. -3. 5. -2. 3. 1. 2. -3.
```



```
ICP : 1 llllllllll
IC = 5
B : bl b2 b3 b4 b5 b6
 where bl to b6 are the existing values in B
Output:
B : bl b2 5. b4 -2. 3.
```

```
Output:
NS = 3
IERR = Ø
S : 1.5 1.25 -4.375
IEN : 2 7 7 1\varnothing
```


## Please detach cards along perforations.

Your comments will help us improve the quality and usefulness of our publications. Please fill out and return this form. (The mailing address is on the back.)

Title of document:


I used this manual. . .
I found this material. . .
as an introduction to the subject
as an aid for advanced training
to instruct a class
to learn operating procedures
as a reference manual
other

|  | Yes | No |
| :--- | :---: | :---: |
| accurate | $\square$ | $\square$ |
| complete | $\square$ | $\square$ |
| written clearly | $\square$ | $\square$ |
| well illustrated | $\square$ | $\square$ |
| well indexed | $\square$ | $\square$ |

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if you would have liked more information about a certain subject.


ARRAY is an independent society of people who use FPS products. Membership is free and includes a quarterly newsletter. There is an annual conference, as well as other activities. If you are interested in becoming an ARRAY member, please fill out and return this form. (The mailing address is on the back.)

Your Name and Title:
Date: $\qquad$
Firm: $\qquad$ Department: $\qquad$
Address:
City: $\qquad$ State: $\qquad$ Zip Code: $\qquad$
Telephone Number: $\qquad$ $\underline{ }$ Extension: $\qquad$


ISI $\varepsilon$-Itgicos: 12 I

'ONI 'SWJISAS
INIOd SNIIVOT」

