APMATH64 MANUAL

VOLUME 3 OF 4

MODELS M64/40, M64/50, M64/60

860-7482-001C

FLOATING POINT SYSTEMS, INC.

APMATH64 MANUAL

VOLUME 3 OF 4

MODELS M64/40, M64/50, M64/60

860-7482-001C

by FPS Technical Publications Staff

Publication No. 860-7482-001C December, 1987

NOTICE

The information in this publication is subject to change without notice.

Floating Point Systems, Inc. accepts no liability for any loss, expense, or damage resulting from the use of any information appearing in this publication.

Copyright © 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may be reproduced in any form without written permission from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document requests the user's critical evaluation to assist in preparing and revising future documents.

REVISION HISTORY

This manual is the APMATH64 Manual, Volume 3, $86\emptyset-7482-\emptyset\vartheta$ 1. The letter shown under the revision number column indicates the portion of the part number that changes for each revision. The last entry is the latest revision to this manual.

REV. NO.	DESCRIPTION	DATE
-ØØlA	The revision history begins with this manual.	8/86
-ØØ1B	Deleted Utilities Library, deleted the LPSPFI subroutine, added internal subroutine information, and added 16 new routines.	1/87
-ØØlC	Added routines to Basic Math Library Double Precison Library, and Matrix Algebra Accelerated Math Library.	12/87

NOTE: For revised manuals, a vertical line "|" outside the left margin of the text signifies where changes have been made.

NOTE TO READER

This is the third volume of the APMATH64 Manual. It is comprised of part 3 of Appendix A and Appendix B through Appendix J. Note that Appendix A continues through Volumes 1, 2, and 3. The page numbers are listed consecutively through the volumes.

The APMATH64 Manual has three indices located at the end of Volume 3 and two at the end of Volume 4. The first index (Appendix I) is a list of the APMATH64 routines in page order by type. The second index (Appendix J) is an alphabetical list of all the APMATH64 routines. The third index is a key word index of the APMATH64 routines. The fourth index (Appendix L) is an alphabetical list of the APMATH64/MAX routines. The fifth index is a key word index of the APMATH64/MAX routines.

CONTENTS (VOLUME 3)

APPENDIX A APMATH64 ROUTINES

TABLE MEMORY RAM LIBRARY	A-475
SPECIAL UTILITIES LIBRARY	A-5Ø3
DATA FORMATTING LIBRARY	A-5Ø7
DOUBLE PRECISION LIBRARY	A-528
FORTRAN SUPPORT LIBRARY	A-538

APPENDIX B DATA REPRESENTATIONS FOR STORING SPARSE VECTORS AND MATRICES

B.1	INTRODUCTION	B-1
B.2	SPARSE VECTOR STORAGE	B-1
в.3	SPARSE MATRIX STORAGE	B-2
B.3.1	Matrix Format Type I (COL_ORDER PTRS_ONLY)	B-3
B.3.2	Matrix Format Type II (ROW_ORDER PTRS_ONLY)	B-4
B.3.3	Matrix Format Type III (COL_ORDER PTRS_SUMS)	B-5
B.3.4	Matrix Format Type IV (ROW_ORDER PTRS_SUMS)	B-6

APPENDIX C SPARSE LINEAR SYSTEM ROUTINES

C.1	INTRODUCTION	C-1
C.2	SUMMARY OF VERSION 2 FEATURES	C-2
C.3	MATHEMATICAL BACKGROUND	C-2
C.3.1	LU Theorem	C-4
C.3.2	LDU Theorem	C-5
C.4	FILL-IN	C-5
C.5	DATA FORMAT	C-8
C.6	NUMERICAL STABILITY	C-1Ø

APPENDIX D BASIC LINEAR ALGEBRA SUBPROGRAMS

D.1	INTRODUCTION	D-1
D.2	DATA STRUCTURES FOR VECTORS AND ARRAYS	D-2
D.3	ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS	D-3
D.3.1	Subroutine CAXPY(N,CA,CX,INCX,CY,INCY)	D-4
D.3.2	Subroutine CCOPY(N,CX,INCX,CY,INCY)	D-4
D.3.3	Complex Function CDOTC(N,CX,INCX,CY,INCY)	D-4
D.3.4	Complex Function CDOTU(N,CX,INCX,CY,INCY)	D-5
D.3.5	Subroutine CROTG(CA,CB,SC,CSIN)	D-5
D.3.6	Subroutine CSCAL(N,CA,CX,INCX)	D-5
D.3.7	Subroutine CSSCAL(N,SA,CX,INCX)	D-5
D.3.8	Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS)	D-5
D.3.9	Subroutine CSWAP(N,CX,INCX,CY,INCY)	D-5
D.3.1Ø	Integer Function ICAMAX(N,CX,INCX)	D-5
D.3.11	Integer Function ISAMAX(N,SX,INCX)	D-5
D.3.12	Real Function SASUM(N,SX,INCX)	D-5
D.3.13	Subroutine SAXPY(N,SA,SX,INCX,SY,INCY)	D-6

CONTENTS

.

APPENDIX G	LIST OF SUPERSEDED ROUTINES	Page
APPENDIX H	EXCEPTIONS ENABLED ROUTINES INFORMATION AND INTERNAL SUBROUTINES	
H.1 H.2	EXCEPTIONS ENABLED ROUTINES INFORMATION INTERNAL SUBROUTINES	H-1 H-1
APPENDIX I	APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE	

APPENDIX J APMATH64 ROUTINES IN ALPHABETICAL ORDER

APMATH64 KEY WORD INDEX

ILLUSTRATIONS

Figure No.	. Title		
E-1 Ex.	ample Coordinate and Function Value Breakpoint Tables	E-3	

TABLES

Table No.	Title	Page
B-1	Format Types and Attributes	B-2

APMATH64 ROUTINES (VOLUME 3) TABLE MEMORY RAM LIBRARY

.

********** * * * MMTMUL * * *	**************************************
PURPOSE:	To multiply the elements of two vectors in Main Memory and store the resultant vector in Table Memory.
CALL FORMAT:	CALL MMTMUL(A,I,B,J,ITMC,K,N)
PARAMETERS:	<pre>A = Floating-point Main Memory input vector I = Integer element step for A B = Floating-point Main Memory input vector J = Integer element step for B ITMC = Integer base address of TM output vector C K = Integer element step for C N = Integer element count</pre>
DESCRIPTION:	MMTMUL multiplies N elements of the vector A with N elements of the vector B, where A and B are in Main Memory, and stores the results in a vector with base address ITMC and increment K in Table Memory. NOTE: Writable Table Memory begins at address 8192.
EXAMPLE:	N=3 I=J=K=1 ITMC = 8192
	A: $1.\emptyset$ $2.\emptyset$ $3.\emptyset$ B: $3.\emptyset$ $4.\emptyset$ $5.\emptyset$

N-3						
I=J=	I=J=K=1					
ITMC	=	8192				
A	:	1.Ø	2.Ø	3.Ø		
В	:	3.Ø	4 .Ø	5.Ø		
-						
TMLOC: 8192 8193 8194						
С	:	3.Ø	8.Ø	15.Ø		

VECTOR MOVE WITH INCREMENT (MD TO TM)	* MTIMOV * * * ****
To move elements of a vector from Main Memory to Table Memory, where the increments between elements are specified.	the
CALL MTIMOV(A,I,ITMC,K,N)	
<pre>A = Floating-point Main Memory input vector I = Integer element step for A ITMC = Integer base address of TM output vecto K = Integer element step for C N = Integer element count</pre>	
MTIMOV moves the elements of an input vector A increment I in Main Memory to an output vector base address ITMC and increment K in Table Memory base address writable Table Memory begins at address	with ory.
$N = 3$ $K = 2$ $ITMC = 8192$ $A : 1.\emptyset 2.\emptyset 3.\emptyset$ $TMLOC: 8192 8193 8194 8195 8196 8197$ $C : 1.\emptyset X 2.\emptyset X 3.\emptyset X$	
	To move elements of a vector from Main Memory to Table Memory, where the increments between elements are specified. CALL MTIMOV(A,I,ITMC,K,N) A = Floating-point Main Memory input vector I = Integer element step for A ITMC = Integer base address of TM output vector K = Integer element step for C N = Integer element count MTIMOV moves the elements of an input vector A increment I in Main Memory to an output vector base address ITMC and increment K in Table Mem NOTE: Writable Table Memory begins at address N = 3 K = 2 ITMC = 8192 A : 1.0 2.0 3.0 TMLOC: 8192 8193 8194 8195 8196 8197

X represents unchanged values.

********** * * * MTMMUL * * *	VECTOR MULTIPLY (MD*TM TO MD)	********* * * * MTMMUL * * *
PURPOSE:	To multiply elements of a vector in Main Memory by elements of a vector in Table Memory and store the products in Main Memory. CALL MTMMUL(A,I,ITMB,J,C,K,N)	X
PARAMETERS:	<pre>A = Floating-point Main Memory input vector I = Integer element step for A ITMB = Integer base address of TM input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count</pre>	В
DESCRIPTION:	MTMMUL multiplies N elements of the vector A in Memory by N elements of the vector with base ad ITMB in Table Memory, and stores the products elements of the vector C in Main Memory.	ddress

EXAMPLE:

N=3				
I=J=	=K=1			
ITME	3=81	92		
А	:	1.Ø	2.Ø	3.Ø
TMLC	х:	8192	8193	8194
в	:	2.Ø	3.Ø	4.Ø
С	:	2.Ø	6.Ø	12.Ø

-

********** * * * MTMSUB * * *	**************************************
PURPOSE:	To subtract the elements of a vector in Table Memory from the elements of a vector in Main Memory and store the results in a vector in Main Memory.
CALL FORMAT:	CALL MTMSUB(A,I,ITMB,J,C,K,N)
PARAMETERS:	<pre>A = Floating-point Main Memory input vector I = Integer element step for A ITMB = Integer base address of TM input vector B J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count</pre>
DESCRIPTION:	MTMSUB subtracts N elements of a vector with base address ITMB in Table Memory from N elements of the vector A in Main Memory, and stores the results in N elements of the vector C in Main Memory.
EXAMPLE:	N=3 I=J=K=1 ITMB = 8192

T.I.WE	5 =	8192		
A	:	3.Ø	4.Ø	5 . Ø
TMLC B			8193 1.Ø	
с	:	1.Ø	3.Ø	4.Ø

********* * * * MTTMUL * * * *	VECTOR MULTIPLY (MD*TM TO TM)	********* * * * MTTMUL * * *
PURPOSE:	To multiply the elements of a vector in Main Memory by the elements of a vector in Table Memory and store the products in a vector in Table Memory.	
CALL FORMAT:	CALL MTTMUL(A,I,ITMB,J,ITMC,K,N)	
PARAMETERS:	<pre>A = Floating-point Main Memory input vector I = Integer element step for A ITMB = Integer base address of TM input vector J = Integer element step for B ITMC = Integer base address of TM output vecto K = Integer element step for C N = Integer element count</pre>	В
DESCRIPTION:	MTTMUL multiplies N elements of the vector A i Memory by N elements of the vector with base a ITMB in Table Memory, and stores the products elements of a vector with base address ITMC in Memory. NOTE: Writable Table Memory begins at address	ddress in N Table
EXAMPLE:	N=3 I=J=K=1 ITMB = 8192 ITMC = 8292 A : 3.Ø 4.Ø 5.Ø TMLOC: 8191 8193 8194	

B: 2.Ø 1.Ø 3.Ø TMLOC: 8292 8293 8294 C: 6.Ø 4.Ø 15.Ø

********* * * * * TMDOT * * *	REAL DOT-PRODUCT (TM AND MD)	********* * * * TMDOT * * *
PURPOSE:	Computes the real dot-product of two vectors where one vector is stored in Main Memory and the other vector is stored in Table Memory. Both vectors are assumed to be stored compactly	у.
CALL FORMAT:	CALL TMDOT (ITMA, B, C, N)	
PARAMETERS:	<pre>ITMA = Integer base address of TM input vector B = Floating-point Main Memory input vector C = Floating-point Main Memory output scala N = Integer element count</pre>	
DESCRIPTION:	TMDOT computes the real dot-product of N element the vector with base address ITMA in Table Memor N elements of the vector B in Main Memory, and the resultant scalar in Main Memory.	ory with
	Formula: C = A(1)*B(1) + A(2)*B(2) + + A(N)*B(N) C = Ø.Ø, if N < 1	
EXAMPLE:	N = 3 ITMA = 8192	
	TMLOC: 8192 8193 8194 A : 1.Ø 2.Ø 3.Ø	
	B : 3.Ø 4.Ø 5.Ø	
	$C = 26.\emptyset$	

********* * * * TMMM * * *	**************************************
PURPOSE:	Multiplies two matrices A and B in Main Memory to form a matrix C in Main Memory. This routine uses a workspace in Table Memory to achieve high speed.
CALL FORMAT:	CALL TMMM (A,B,C,MC,NC,NA,ITMW)
PARAMETERS:	 A = Floating-point Main Memory input matrix B = Floating-point Main Memory input matrix C = Floating-point Main Memory output matrix MC = Integer number of rows in output matrix C (and input matrix A) NC = Integer number of columns in output matrix C (and input matrix B) NA = Integer number of columns in input matrix A (and number of rows of input matrix B) ITMW = Integer base address of TM work area of length NA
DESCRIPTION:	TMMM computes the product of the MC-row by NA-column matrix A and the NA-row by NC-column matrix B (both in Main Memory) and stores the result in the MC-row by NC-column matrix B in Main Memory. This routine uses a workspace of length NA in Table Memory to achieve high speed. All matrices are assumed to be stored in column order. NOTE: Writable Table Memory begins at location 8192.

•

EXAMPLE:

 $A = \begin{vmatrix} 1.\emptyset & 2.\emptyset \\ 3.\emptyset & 4.\emptyset \end{vmatrix} \quad B = \begin{vmatrix} 2.\emptyset & 6.\emptyset & 9.\emptyset \\ 3.\emptyset & 7.\emptyset & 4.\emptyset \end{vmatrix}$

.

PURPOSE: To subtract the elements of a vector in Main Memory from the elements of a vector in Table Memory and store the results in a vector in Main Memory. CALL FORMAT: CALL TMMSUB(ITMA,I,B,J,C,K,N) PARAMETERS: ITMA = Integer base address of TM input vector A I = Integer element step for A B = Floating-point Main Memory input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count DESCRIPTION: TMMSUB subtracts N elements of the vector B in Main Memory from N elements of the vector with base address ITMA in Table Memory, and stores the differences in the vector C in Main Memory. EXAMPLE: N=3 I=J=K=1 ITMA=8192	********* * * * TMMSUB * * *	**************************************
<pre>PARAMETERS: ITMA = Integer base address of TM input vector A I = Integer element step for A B = Floating-point Main Memory input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count DESCRIPTION: TMMSUB subtracts N elements of the vector B in Main Memory from N elements of the vector with base address ITMA in Table Memory, and stores the differences in the vector C in Main Memory.</pre>	PURPOSE:	Memory from the elements of a vector in Table Memory and store the results in a vector in
<pre>I = Integer element step for A B = Floating-point Main Memory input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count DESCRIPTION: TMMSUB subtracts N elements of the vector B in Main Memory from N elements of the vector with base address ITMA in Table Memory, and stores the differences in the vector C in Main Memory. EXAMPLE: N=3 I=J=K=1</pre>	CALL FORMAT:	CALL TMMSUB(ITMA,I,B,J,C,K,N)
Memory from N elements of the vector with base address ITMA in Table Memory, and stores the differences in the vector C in Main Memory. EXAMPLE: N=3 I=J=K=1	PARAMETERS:	<pre>I = Integer element step for A B = Floating-point Main Memory input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C</pre>
N=3	DESCRIPTION:	Memory from N elements of the vector with base address ITMA in Table Memory, and stores the differences in the
TMLOC: 8192 8193 8194	EXAMPLE:	I=J=K=1 ITMA=8192 TMLOC: 8192 8193 8194
A : $3.\emptyset$ 4. \emptyset 5. \emptyset B : 1. \emptyset 3. \emptyset 2. \emptyset		

C : 2.Ø 1.Ø 3.Ø

FPS 86Ø-7482-ØØ1C

********* * * * TMVLC2 *	VECTOR LINEAR COMBINATION	********* * * * * TMVLC2 *
* 1MVLC2 *	VECTOR DINEAR COMBINATION	* 144162 *
********		********
PURPOSE:	To compute the linear combination of two vect one in Table Memory and the other in main mem and store the resultant vector in main memory	ory,
CALL FORMAT:	CALL TMVLC2 (S1, ITMA, S2, B, J, C, K, N)	
PARAMETERS:	Sl = Floating-point scalar coefficient for the TM input vector A ITMA = Integer base address of the TM input	
	vector A	
	S2 = Floating-point scalar coefficient for the MD input vector B	
	<pre>B = Floating-point MD input vector</pre>	
	<pre>J = Integer element step for B</pre>	
	<pre>C = Floating-point MD output vector</pre>	
	K = Integer element step for C	
	N = Integer element count	
DESCRIPTION:	C(m) = S1 * A(m) + S2 * B(m); for $m = 1$	to N
	Where A is in Table Memory, and B, S1, S2, and	d C
	are in main memory.	
EXAMPLE:		······································
	N = 3	
	$S1 = -1.\emptyset$	
	S2 = 2.0	
	J = 1 $K = 1$	
	r = 1 ITMA = 8192	
	11MA - 0192	
	TMLOC: 8192 8193 8194	
	A : 1.Ø 2.Ø 3.Ø	
	B : 4.Ø Ø.5 Ø.Ø	
	C : 7.Ø -1.Ø -3.Ø	

.

********		********
* *		* *
* TTMADD *	VECTOR ADD (TM+TM TO MD)	* TTMADD *
* *		* *
********		*******
PURPOSE:	To add the elements of two vectors in Table	
	Memory and store the sums in Main Memory.	
CALL FORMAT:	CALL TTMADD(ITMA,I,ITMB,J,C,K,N)	
PARAMETERS:	ITMA = Integer base address of TM input vector	A
	I = Integer element step for A	
	ITMB = Integer base address of TM input vector	В
	J = Integer element step for B	
	C = Floating-point Main Memory output vecto	r
	<pre>K = Integer element step for C</pre>	
	N = Integer element count	
DESCRIPTION:	TTMADD adds N elements of the vector with base	address
	ITMA in Table Memory to N elements of the vect	or with
	base address ITMB in Table Memory, and stores	the sums
	in N elements of the vector C in Main Memory.	
		
EXAMPLE:		
	N-2	

N=3			
I=J=K=	1		
ITMA =	8192		
ITMB =	8292		
TMLOC:	8192	8193	8194
A :	1.Ø	2.Ø	3.Ø
TMLOC:	8292	8293	8294
в :	4.Ø	5.Ø	6.Ø
с:	5.Ø	7.Ø	9.Ø

********** * * * TTMSUB * * *	VECTOR SUBTRACT (TM-TM TO MD)	********* * * * TTMSUB * * * *
PURPOSE:	To subtract the elements of two vectors in Tab Memory and store the differences in a vector i Main Memory.	
CALL FORMAT:	CALL TTMSUB(ITMA,I,ITMB,J,C,K,N)	
PARAMETERS:	<pre>ITMA = Integer base address of TM input vector I = Integer element step for A ITMB = Integer base address of TM input vector J = Integer element step for B C = Floating-point Main Memory output vector K = Integer element step for C N = Integer element count</pre>	В
DESCRIPTION:	TTMSUB subtracts N elements of the vector with address ITMB in Table Memory from N elements or vector with base address ITMA in Table Memory, stores the resulting differences in a vector C Memory.	f the and
EXAMPLE:		
	I=J=K=1 ITMA = 8192	
	ITMB = 8292	
	TMLOC: 8192 8193 8194	
	$A : 3.\emptyset 4.\emptyset 5.\emptyset$	
	TMLOC: 8292 8293 8294	
	B : 2.Ø 1.Ø 1.Ø	

C : 1.Ø 3.Ø 4.Ø

4

•

********** * * * TTTMUL * * *	****** VECTOR MULTIPLY (TM*TM TO TM) * TTTM * *	* MUL * *
PURPOSE:	To multiply the elements of two vectors in Table Memory and store the resulting products in a vector in Table Memory.	
CALL FORMAT:	CALL TTTMUL(ITMA, I, ITMB, J, ITMC, K, N)	
PARAMETERS:	<pre>ITMA = Integer base address of TM input vector A I = Integer element step for A ITMB = Integer base address of TM input vector B J = Integer element step for B ITMC = Integer base address of TM output vector C K = Integer element step for C N = Integer element count</pre>	
DESCRIPTION:	TTTMUL multiplies N elements of the vector with base address ITMA in Table Memory by N elements of the vector with base address ITMB in Table Memory, and stores the resultant products in the vector with base address ITMC in Table Memory. NOTE: Writable Table Memory begins at address 8192.	2
EXAMPLE:	N=3 I=J=K=1 ITMA = 8192 ITMB = 8292 ITMC = 8392	

ITMC =	8392		
TMLOC:	8192	8193	8194
A :	1.Ø	2.Ø	3 . Ø
TMLOC:	8292	8293	8294
в :	3.Ø	4.Ø	5.Ø
TMLOC:	8392	8393	8394
с:	3.Ø	8.Ø	15 . Ø

		APPEND
********* * * * TTVLC2 * * *	VECTOR LINEAR COMBINATION	****** * * TTVL *
PURPOSE:	To compute the linear combination of two v one in Table Memory and the other in main and store the resultant vector in Table Me	memory,
CALL FORMAT:	CALL TTVLC2 (S1, ITMA, S2, B, J, ITMC, N)	
PARAMETERS :	<pre>Sl = Floating-point scalar coefficient f TM input vector A ITMA = Integer base address of the TM inpu vector A S2 = Floating-point scalar coefficient f MD input vector B B = Floating-point MD input vector J = Integer element step for B ITMC = Integer base address of the TM outp vector C N = Integer element count</pre>	t or the
DESCRIPTION:	<pre>C(m) = Sl * A(m) + S2 * B(m); for m = 1 Where A and C are in Table Memory, and B, and S2 are in main memory. Note: Writable Table Memory begins at add</pre>	S1,
EXAMPLE:	N = 3 $S1 = -1.\emptyset$ $S2 = 2.\emptyset$ J = 1 ITMA = 8192 ITMC = 8195 TMLOC: 8192 8193 8194 $A : 1.\emptyset 2.\emptyset 3.\emptyset$	
	B : 4.Ø Ø.5 Ø.Ø	

SPECIAL UTILITIES LIBRARY

.

********		**	*****	**
* *		*		*
* PEEK *	MEMORY FETCH	*	PEEK	*
* *		*		*
*******		**	*****	**
PURPOSE:	To fetch the contents of a specified memor	уw	ord.	
CALL FORMAT:	Function Value = PEEK(Addr)			
PARAMETERS:	Function Value = The unformatted contents specified memory location		the	
	Addr = An integer specifying the to be accessed	ad	dress	
DESCRIPTION:	The specified memory location is accessed contents returned as the function-value ou output is the unformatted word. That is, conversion is performed by the function.	tpu	t. Th	
EXAMPLE:				

(Assuming location 1000 contains 01 23 34 56 78 9A BC DE (hex))

Addr : 1000 Function Value : 01 23 34 56 78 9A BC DE DATA FORMATTING LIBRARY

,

********* * * * VIFIX * * *	VECTOR INTEGER FIX	******** * * VIFIX * *	* * *
PURPOSE:	To fix to 53-bit integers the elements of a floating-point vector.		
CALL FORMAT:	CALL VIFIX(A,I,C,K,N,F)		
PARAMETERS:	<pre>A = Floating-point input vector I = Integer element step for A C = Long-integer output vector K = Integer element step for C N = Integer element count F = Integer flag (Ø to round, 1 to truncate)</pre>	e)	
DESCRIPTION:	C(m)=FIX(A(m)); for m=1 to N		

EXAMPLE:

.

N = 4 $F = \emptyset$ A : 1.7 -1.5 -3.2 3.5 $C : 2 -2 -3 4.\emptyset$ N = 4 F = 1 A : 1.7 -1.5 -3.2 3.5 $C : 1 -1 -3 3.\emptyset$

********* * VPK16 * * *	**************************************
PURPOSE:	To pack each four 64-bit floating-point numbers into one destination word as 16-bit quarter words.
CALL FORMAT:	CALL VPK16(A,I,C,K,N,F)
PARAMETERS:	<pre>A = Floating-point input vector I = Integer element step for A C = Signed-quarterword-integer output vector K = Integer element step for C N = Integer element count (destination words) F = Integer flag (Ø to round, 1 to truncate)</pre>
DESCRIPTION:	VPK16 fixes and packs four floating-point numbers fro vector A into 16-bit quarter words in a single word o
	vector C, packing an array of positive integers with values from \emptyset to 65535, or an array of signed two's complement integers with values from -32768 to 32767, but does not check for out-of-range values.
EXAMPLE:	vector C, packing an array of positive integers with values from \emptyset to 65535, or an array of signed two's complement integers with values from -32768 to 32767,
EXAMPLE:	vector C, packing an array of positive integers with values from \emptyset to 65535, or an array of signed two's complement integers with values from -32768 to 32767,
EXAMPLE:	<pre>vector C, packing an array of positive integers with values from Ø to 65535, or an array of signed two's complement integers with values from -32768 to 32767, but does not check for out-of-range values. N = 2</pre>
EXAMPLE:	vector C, packing an array of positive integers with values from \emptyset to 65535, or an array of signed two's complement integers with values from -32768 to 32767, but does not check for out-of-range values. N = 2 F = \emptyset
EXAMPLE:	vector C, packing an array of positive integers with values from \emptyset to 65535, or an array of signed two's complement integers with values from -32768 to 32767, but does not check for out-of-range values. N = 2 F = \emptyset A : 8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1
EXAMPLE:	<pre>vector C, packing an array of positive integers with values from Ø to 65535, or an array of signed two's complement integers with values from -32768 to 32767, but does not check for out-of-range values.</pre> N = 2 F = Ø A : 8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1 C : ØØØ8FFF8ØØØ6ØØØ6 ØØØ4ØØØ3FFFEØØØ1

-

********** * * * VPRI32 * * * *	**************************************						
PURPOSE:	To pack each two 32 bit halfword integer source words into one destination word as halfword-integers-packed.						
CALL FORMAT:	CALL VPKI32(A,I,C,K,N)						
PARAMETERS:	<pre>A = Halfword integer input vector I = Integer element step for A C = Halfword-integer-packed output vector K = Integer element step for C N = Integer element count (destination words)</pre>						
DESCRIPTION:	<pre>C(m) bits Ø to 31 = A(2m-1) bits 32 to 63 C(m) bits 32 to 63 = A(2m) bits 32 to 63 for m=1 to N (Bits are numbered Ø-63 from left to right). VPKI32 packs two halfword integers from vector A into 32-bit halfwords in a single word of vector C. It packs an array of positive integers with values from Ø to 4294967295, or an array of signed 2's complement integers with values from -2147483648 to 2147483647. VPKI32 does not check for values out of range.</pre>						
EXAMPLE:	<pre>N = 3 I = 2 K = 3 (XXX indicates 'undefined') A: 80C0000000000000 80A000000000000 80800000000</pre>						

********* * VSCALE * * *	VECTOR SCALE AND FIX	********** * VSCALE * * *
PURPOSE:	To scale the elements of a vector by a pow that a selected scalar will just fit into integer bit width, and then fix the scaled to integers.	a specified
CALL FORMAT:	CALL VSCALE(A,I,B,C,K,N,NB,IEXP)	
PARAMETERS:	<pre>A = Floating-point input vector I = Element step for A B = Floating-point input scalar C = Long-integer output vector K = Element step for C N = Element count NB = Long-integer input scalar (Desired width, 2 to 28 bits, of inter IEXP = Long-integer output scalar</pre>	gers)
DESCRIPTION:	<pre>C(m) = FIX (A(m)*{2**IEXP}) for m=Ø to N-1 where IEXP=NB-E-1, and B = FRAC*(2**E). VSCALE scales by a power of 2 every elemen vector A so that the scalar B will just fi NB-bit width integer, and then fixes the scalar stores them in vector C. IEXP is set factor chosen. If the scalar is larger in than any element of A, no fixing overflows</pre>	t of the t into an caled elements to the scale magnitude

(with N=5, NB=12) B : 1Ø.Ø A : 1Ø.Ø 5.Ø Ø.2 -4.Ø Ø.Ø1 C : 128Ø 64Ø 25 -512 1 IEXP : 7

********		******	**
* *		*	*
* VSHFX *	VECTOR SHIFT AND FIX	* VSHFX	*
* *		*	*
PURPOSE:	To shift (multiply by a power of 2) and the fix (truncate) to integers the elements of	en	
	floating-point vector.	_	
CALL FORMAT:	CALL VSHFX(A,I,C,K,N,NS)		
PARAMETERS:	<pre>A = Floating-point input vector I = Integer element step for A C = Long-integer output vector K = Integer element step for C N = Integer element count NS = Integer power of 2 (May be negative)</pre>		
DESCRIPTION:	C(m)=FIX{A(m)*(2**NS)}; for m=1 to N		
EXAMPLE:			

•

N = 3 NS = 2 A : 1.Ø 2.Ø 3.2 C : 4 8 12

-

********		***	****	**	
* *		*		*	
* VUP8 *	VECTOR 8-BIT BYTE UNPACK	*	VUP8	*	
* *		*		*	
********		***	*****	**	
PURPOSE:	To unpack eight 8-bit unsigned bytes from source word and store them in eight destin words as 64-bit floating-point numbers.				
CALL FORMAT:	CALL VUP8(A,I,C,K,N)				
PARAMETERS:	A = Unsigned-byte-integer input vector				
	I = Integer element step for A				
	C = Floating-point output vector				
	K = Integer element step for C				
	N = Integer element count (source words)				
DESCRIPTION:	Unpacks eight 8-bit bytes from a single we	ord of			
	vector A storing them as eight floating-point numbers				
	in vector C. The unpacked bytes have value	les fr	om Ø	to	
	255.				

N	=	2							
A	:	Ø8Ø7	Ø6Ø5Ø	4ø3ø2	Ø1 Ø	8Ø7Ø6	Ø5Ø4Ø	3Ø2Ø1	
С	:			6.Ø 6.Ø					

********		********				
* *		* *				
* VUP32 *	VECTOR 32-BIT BYTE UNPACK	* VUP32 *				
* *		* *				
PURPOSE:	To unpack two 32-bit unsigned halfwords from each source word and store them in					
	two destination words as 64-bit floating-po	int				
	positive numbers.	1110				
CALL FORMAT:	CALL VUP32(A,I,C,K,N)					
PARAMETERS:	A = Unsigned-halfword-integer input vector					
	I = Integer element step for A					
	C = Floating-point output vector					
	K = Integer element step for C					
	N = Integer element count (source words)					
DESCRIPTION:	VUP32 unpacks two 32-bit halfwords from a s word of vector A, storing them as two posit floating-point integers in vector C. The us halfwords have values from Ø to 4294967295.	ive 64-bit				

N = 4

.

A : ØØØØØØØØ8ØØØØØØ7 ØØØØØØØ60ØØØØØ6 ØØØØØØØ40ØØØØØ3 ØØØØØØØ2ØØØØØØ1

C: 8.Ø 7.Ø 6.Ø 5.Ø 4.Ø 3.Ø 2.Ø 1.Ø

7

********* * * * VUPS8 * * *	VECTOR 8-BIT SIGNED BYTE UNPACK	******** * * VUPS8 *	* * *
PURPOSE:	To unpack eight 8-bit signed bytes from each source word and store them in eight des words as 64-bit floating-point numbers.	stination	
CALL FORMAT:	CALL VUPS8(A,I,C,K,N)		
PARAMETERS :	<pre>A = Signed-byte-integer input vector I = Integer element step for A C = Floating-point output vector K = Integer element step for C N = Integer element count (source words)</pre>		
DESCRIPTION:	VUPS8 unpacks eight 8-bit signed bytes from a single word of vector A, storing them as e floating-point numbers in vector C. The unp bytes have values from -128 to 127.	-	

N		2								
A	:	Ø8F9	Ø6Ø5Ø4	FDØ2Ø1	Ø8Ø	7FAØ5	Ø4Ø3FE	Ø1		
С	:			6.Ø -6.Ø						

********* * * * VUPS32 * * *	VECTOR 32-BIT SIGNED BYTE UNPACK	********* * * * VUPS32 * * *
PURPOSE:	To unpack two 32-bit signed two's complement halfwords from each source word and store to in two destination words as signed 64-bit floating-point numbers.	
CALL FORMAT:	CALL VUPS32(A,I,C,K,N)	
PARAMETERS:	<pre>A = Signed-halfword-integer input vector I = Integer element step for A C = Floating-point output vector K = Integer element step for C N = Integer element count (source words)</pre>	
DESCRIPTION:	VUPS32 unpacks two 32-bit signed two's comp halfwords from a single word of vector A, s them as two floating-point numbers in vecto unpacked halfwords have values from -214748 2147483647.	storing or C. The

N = 4

.

A : 00000008FFFFFF9 0000000600000005 FFFFFFFCFFFFFD FFFFFFFE000000001

.

C : 8.Ø -7.Ø 6.Ø 5.Ø -4.Ø -3.Ø -2.Ø 1.Ø

********** * * * VUUI32 * * *	VECTOR 32-BIT UNSIGNED UNPACK	********** * * * VUUI32 * * *				
PURPOSE:	To unpack two 32-bit halfword integers from each source word and store them as two destination words, in unsigned integer format.					
CALL FORMAT:	CALL VUUI32(A,I,C,K,N)					
<pre>PARAMETERS: A = Halfword integer packed input vector I = A address increment C = 32 bit integer output vector K = C address increment N = Integer element count (source words)</pre>						
DESCRIPTION:	<pre>C(2m-1) = A(m) bits Ø to 31 C(2m) = A(m) bits 32 to 63</pre>					
EXAMPLE:	<pre>N = 3 I = 3 K = 2 (XXX indica A: 000000080000007 C: 00000000000 0000000000000 XXXXXXXXXXX 00000000</pre>	XXXXXX 1999997 XXXXXX 1999992 XXXXXX				
	XXXXXXXXXXXX Øøøøøøøffe XXXXXXXXXXXXX Øøøøøøffe	FFFFB (XXXXX				

********* * * * * DADD * * *	DOUBLE TO DOUBLE-PRECISION ADD	********* * * * * DADD * * *
PURPOSE:	To form a double-precision sum of two double-precision numbers.	
CALL FORMAT:	CALL DADD(XDBLE,YDBLE,ZDBLE)	
PARAMETERS:	<pre>XDBLE = Real vector input (double precision) YDBLE = Real vector input (double precision) ZDBLE = Real vector output (double precision (A double-precision value is stored 2-element real array. First element high word, second element contains 1</pre>) in a t contains
DESCRIPTION:	Adds the double-precision number in XDBLE to double-precision number in YDBLE and stores word of the double-precision sum in ZDBLE(1) low word in ZDBLE(2).	the high

********		******	t i
* *		*	
* DADOT *	DOUBLE ACCUMULATE DOT PRODUCT	* DADOT	
* *		*	
******		******	k:
PURPOSE:	To perform the dot product of two real vector accumulating the result in double precision (and returning the result in single precision	128 bits),	
CALL FORMAT:	SW = DADOT(N,A,I,B,J)		
PARAMETERS:	N = Integer element count		
	A = Real input vector		
	I = Integer element step for A		
	B = Real input vector		
	J = Integer element step for B SW = Real output result		
	SW - Real Output result		
DESCRIPTION:	SW = SUM(A(m) * B(m)) for $m = 1$ to N SW = $\emptyset . \emptyset$ for N < 1		
	If the element increment, INC, of a vector is	negative	,
	then the vector is indexed in reverse order,	i.e	
	element (N-1) * INC + 1 to the first element	(BLAS	
	convention).		

APPENDIX A

********* * * * * DMUL *	DOUBLE TO DOUBLE-PRECISION MULTIPLY	********* * * *
* *		* *
***********	To form a double-precision product of two double-precision numbers.	******
CALL FORMAT:	CALL DMUL(XDBLE,YDBLE,ZDBLE)	
PARAMETERS:	<pre>XDBLE = Real vector input (double precision YDBLE = Real vector input (double precision ZDBLE = Real vector output (double precisio (A double-precision value is stored 2-element real array. First elemen high word, second element contains</pre>) n) in a t contains
DESCRIPTION:	Multiplies the double-precision number in X double-precision number in YDBLE and stores word of the double-precision product in ZDB the low word in ZDBLE(2).	the high

•

.

********** * DNEG * * * *	NEGATE DOUBLE-PRECISION NUMBER	********** * DNEG * * * *
PURPOSE: CALL FORMAT:	To negate a double-precision number. CALL DNEG(XDBLE,ZDBLE)	
PARAMETERS:	<pre>XDBLE = Real vector input (double precision ZDBLE = Real vector output (double precisio (A double-precision value is stored 2-element real array. First elemen high word, second element contains</pre>	n) in a t contains
DESCRIPTION:	Negates the double-precision number in XDBL the high word of the double-precision resul and the low word in ZDBLE(2).	

.

,

APPENDIX A

********* * * DSUBRR * - * *	SINGLE TO DOUBLE-PRECISION SUBTRACT	********* * * * * DSUBRR * * *
PURPOSE:	To form a double-precision difference of two single-precision numbers.	c
CALL FORMAT:	CALL DSUBRR(X,Y,ZDBLE)	
PARAMETERS:	<pre>X = Real scalar input Y = Real scalar input ZDBLE = Real vector output (double precision (A double-precision value is store 2-element real array. First element high word, second element contained</pre>	ed in a ent contains
DESCRIPTION:	Subtracts the single-precision number in Y single-precision number in X and stores the the double-precision difference in ZDBLE(1) word in ZDBLE(2).	high word of

1 1 1	ABS *	REAL NUMBER ABSOLUTE VALUE	****** * * ABS * *	**** * * *
_	PURPOSE:	To compute the absolute value of a real num Function-value = ABS(arg)	ber.	
	PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	-	
. I	DESCRIPTION:	Function-value = arg		

,

********* * * * AINT * * *	TRUNCATE REAL NUMBER	********** * * * AINT * * *
PURPOSE:	To truncate a real number.	
CALL FORMAT:	Function-value = AINT(arg)	
PARAMETERS:	Function-value = Real floating-point scalar Arg = Real floating-point scalar	-
DESCRIPTION:	<pre>Function-value = FLOAT(FIXT(arg))</pre>	

.•

********* * * * * ALOGIØ * * *	REAL NUMBER LOGARITHM	********* * * * * ALOG1Ø * * *
PURPOSE:	To compute the logarithm of a real number.	
CALL FORMAT:	<pre>Function-value = ALOG(arg) or ALOG1Ø(arg)</pre>	
PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	-
DESCRIPTION:	<pre>Function-value = Ln(arg); for ALOG</pre>	

•

********* * * * ANINT * * *	ROUND REAL NUMBER TO NEAREST WHOLE	********* * * * ANINT * * *
PURPOSE:	To round a real number to the nearest whole	number.
CALL FORMAT:	Function-value = ANINT(arg)	
PARAMETERS:	Function-value = Real floating-point scalar Arg = Real floating-point scalar	-
DESCRIPTION:	<pre>Function-value = FLOAT(FIX(arg))</pre>	

-

*******		**:	*****	**
* *		*		*
* ATAN *	ARCTANGENT OF REAL NUMBER	*	ATAN	*
* *		*		*
*******		**:	*****	**
PURPOSE:	To compute the arctangent of a real number or of the ratio of two real numbers.			
CALL FORMAT:	<pre>Function-value = ATAN(argl) or ATAN2(argl,a</pre>	rg2))	
PARAMETERS:	Function-value= Real Floating-point scalarArgl= Real Floating-point scalarArg2= Real Floating-point scalar	ing	put	
DESCRIPTION:	Function-value = ATAN(argl) or ATAN(argl/ar	g2)		

-

Ì

********		**	*****	**
* *		*		*
* CABS *	COMPLEX NUMBER ABSOLUTE VALUE	*	CABS	*
* *		*		*
*******		**	*****	**
PURPOSE:	To compute the absolute value (magnitude) of number.	fa	comple	ex
CALL FORMAT:	<pre>Function-value = CABS(arg)</pre>			
PARAMETERS:	Function-value = Floating-point scalar output Arg = Complex floating scalar in			
DESCRIPTION:	<pre>Function-value = SQRT (R(arg)**2+I(arg)**2)</pre>			

APPENDIX A

*******		**	*****	**
* *		*		*
* CDIV *	COMPLEX/COMPLEX DIVIDE	*	CDIV	*
* *		*		*
******		**	*****	**
PURPOSE:	To divide a complex number into a complex numb	per.		
CALL FORMAT:	Function Value = Arg2/Arg1			
PARAMETERS:	Function Value = Complex Floating scalar outputArgl= Complex Floating scalar inputArg2= Complex Floating scalar input			
DESCRIPTION:	<pre>Function Value = {R(arg2)+I(arg2)}/{R(arg1)+I(</pre>	arg	1)}	

.

.

APPENDIX A

:

********** * CDIVRC * * *	*	CDIVRC	* * *
PURPOSE:	To divide a real number into a complex number.		
CALL FORMAT:	Function Value = Arg2/Arg1		
PARAMETER:	Function Value = Complex Floating scalar output Arg1 = Real Floating-point scalar inpu Arg2 = Complex Floating scalar input	t	
DESCRIPTION:	<pre>Function Value = R(arg(2))+I(arg(2))/arg(1)</pre>		_

********** * CLOG * * *	COMPLEX NUMBER LOGARITHM	********** * CLOG * * * *
PURPOSE:	To compute the natural logarithm of a compl	ex number.
CALL FORMAT:	Function-value = CLOG(arg)	
PARAMETERS:	Function-value= Complex floating scalarArg= Complex floating scalar	-
DESCRIPTION:	R(Function-value) = ALOG((CABS(arg)) I(Function-value) = ATAN(I(arg)/R(arg))	

********* * * * * CONJG * * *	CONJUGATE OF COMPLEX NUMBER	********* * * CONJG * *	** * * *
PURPOSE:	To compute the conjugate of a complex number	r.	
CALL FORMAT:	Function-value = CONJG(arg)		
PARAMETERS:	Function-value = Complex floating scalar out Arg = Complex floating scalar in	-	
DESCRIPTION:	<pre>Function-value = R(arg)-I(arg)</pre>		

********		*******
* *		* *
* COSH *	REAL NUMBER HYPERBOLIC COSINE	* COSH *
* *		* *
*******		*******
PURPOSE:	To compute the hyperbolic sine or cosine of number.	a real
CALL FORMAT:	<pre>Function-value = SINH(arg) or COSH(arg)</pre>	
PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	-
DESCRIPTION:	<pre>Function-value = SINH(arg) or COSH(arg)</pre>	

*******	·	*******	*
* *		*	*
* CPOWCI *	COMPLEX TO INTEGER POWER	* CPOWCI	*
* *		*	*
*******		*******	*
PURPOSE:	To raise a complex number to an integer pow	er.	
CALL FORMAT:	Function Value = Argl**Arg2		
PARAMETERS:	Function Value = Complex Floating scalar ouArg1= Complex Floating scalar inArg2= Integer scalar input	-	
DESCRIPTION:	<pre>Function Value = {R(argl)+I(argl)}**arg2</pre>		

Ŧ

********			*******	*
* *			*	*
* CPOWRC *		REAL TO COMPLEX POWER	* CPOWRC	*
* *			*	*
********			*******	*
PURPOSE:	To raise	a real number to a complex power.		
CALL FORMAT	Function	Value = Argl**Arg2		
PARAMETERS:	Function Argl Arg2	Value = Complex Floating scalar out = Real Floating-point scalar = Complex Floating scalar ing	input	
DESCRIPTION:	Function	Value = argl**(R(arg2)+I(arg2))		

-

*******		******	**
* *		*	*
* CSQRT *	SQUARE ROOT OF COMPLEX NUMBER	* CSQRT	*
* *		*	*
********		******	**
PURPOSE:	To compute the square root of a complex num	ber.	
CALL FORMAT:	Function-value = CSQRT(arg)		
PARAMETERS:	Function-value = Complex floating scalar ou	tput	
	Arg = Complex floating scalar in	put	
DESCRIPTION:	if R(arg) $\geq \emptyset$ R(function value) = F		
	I(function value) = I(arg)	/(2*F)	
	if $R(arg) < \emptyset$ R(function value) = I(arg)	/(2*F)	
	I(function value) = SIGN(I	(arg))*F	
	where F = SQRT((ABS(R(arg))+CABS(arg))/2)		

********		******	**
* *		*	*
* EXP *	EXPONENTIAL OF REAL NUMBER	* EXP	*
* *		*	*
********		******	**
PURPOSE:	To compute the exponential of a real number	•	
CALL FORMAT:	Function-value = EXP(arg)		
PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	-	
DESCRIPTION:	Function-value = Exp(arg)		
	NOTE: arg>709.089 traps with an overflow endition.	rror	

*******		**:	*****	**
* *		*		*
* IDIM *	INTEGER/INTEGER POSITIVE DIFFERENCE	*	IDIM	*
* *		*		*
*******		**:	*****	**
PURPOSE:	To compute the integer positive difference of integers.	two		
CALL FORMAT:	<pre>Function-value = IDIM(argl,arg2)</pre>			
PARAMETERS:	Function-value = Integer scalar output Argl = Integer scalar input Arg2 = Integer scalar input			
DESCRIPTION:	Function-value = MAX((argl-arg2), \emptyset)			

*****		*******
* * * IPOW * * *	INTEGER TO INTEGER POWER	* * * * IPOW * * *
PURPOSE:	To raise an integer number to an integer po	wer.
CALL FORMAT:	Function Value = Argl**Arg2	
PARAMETERS:	Function Value = Integer scalar output Argl = Integer scalar input Arg2 = Integer scalar input	
DESCRIPTION:	Function Value = argl**arg2	

********		***	*****	**
* *		*		*
* MOD *	INTEGER/INTEGER DIVIDE REMAINDER	*	MOD	*
* *		±		*
******		***	*****	**
PURPOSE:	To compute the remainder when one integer by another.	is	divide	ed
CALL FORMAT:	<pre>Function-value = MOD(argl,arg2)</pre>			
PARAMETERS:	Function-value = Integer scalar output Argl = Integer scalar input Arg2 = Integer scalar input			
DESCRIPTION:	<pre>Function-value = Argl-INT(argl/arg2)*arg2</pre>			

,

********* * * * RAN * * *	**************************************
PURPOSE:	To generate one pseudo-random number.
CALL FORMAT:	Function-value = RAN(SEED)
PARAMETERS:	Function-value = Floating-point output scalar Output random number SEED = Integer input/output scalar Input: random number seed Output: last integer generated
DESCRIPTION:	<pre>RAN returns one pseudo-random floating-point number between Ø.Ø and l.Ø. The routine uses a linear congruential generator initialized by SEED to generate an integer, which is then scaled to produce the function-value. SEED is replaced with the integer generated. SEED may be any integer between Ø and 2**26-1. RAN generates the same sequence of integers as VRAND. Thus the two statements C = RAN(SEED) and CALL VRAND(SEED,C,1,1) are equivalent.</pre>

EXAMPLE:

SEED = 1000

RAN(SEED): Ø.8ØØ48494Ø4Ø966Ø3 SEED : 53719635

.

********	-	*******	**
* *		*	*
* RPOW *	REAL TO REAL POWER	* RPOW	*
* *		*	*
******		******	**
CALL FORMAT: Func PARAMETERS: Func Argl Arg2 DESCRIPTION: Func		output input input	

•

********		***	*****	**
* RRCP *	REAL RECIPROCAL	*	RRCP	*
*. *		*		*
*****		**1	*****	** -
PURPOSE:	To divide a real number into a real number or	into	01.	
CALL FORMAT:	Function Value = Arg2/Arg1 or 1.Ø/Arg1			
PARAMETERS:	Function Value = Real Floating-point scalar ouArgl= Real Floating-point scalar inArg2= Real Floating-point scalar in	put	:	
DESCRIPTION:	Function Value = arg2/arg1 for RDIV or 1.0/arg1 for RRCP			

•

APPENDIX A

,

********		*******
* *		* *
* SIGN *	REAL NUMBER SIGN TRANSFER	* SIGN *
* *		* *
*****	·	******
PURPOSE:	To give the magnitude of a real number with of a second real number.	the sign
CALL FORMAT:	<pre>Function-value = SIGN(argl,arg2)</pre>	
PARAMETERS:	Function-value= Real Floating-point scalarArg1= Real Floating-point scalarArg2= Real Floating-point scalar	input
DESCRIPTION:	<pre>Function-value = Sign(arg2)*ABS(argl)</pre>	

********* * * * SINCOS * * *	REAL SINE AND COSINE	********* * * * SINCOS * * *
PURPOSE:	To compute the sine and cosine of a real n	umber.
CALL FORMAT:	CALL SINCOS(A,CA,SA)	
PARAMETERS:	A = Floating-point input scalar CA = Floating-point output scalar SA = Floating-point output scalar	
DESCRIPTION:	CA = COS(A) SA = SIN(A)	
	SINCOS computes both the sine and the cosi about the same time as the SIN function al	
	NOTE: A 32-bit integer overflow exception if the input argument is too large than approximately 8.ØE+5). In thi output result has less than six dec precision.	(greater s case, the
	An added feature of this routine is that i be called as a complex function. If FIF\$P is declared as complex, the call	
	<pre>Function-value = FIF\$PR_SINCOS(A)</pre>	
	returns the complex value	
	<pre>Function-value = CMPLX(COS(A),SIN(A)).</pre>	
	This is convenient for converting polar co to rectangular coordinates.	ordinates

EXAMPLE:

 $A = \emptyset.\emptyset$ $CA = 1.\emptyset$ $SA = \emptyset.\emptyset$

********		*******
* *		* *
* SQRT *	SQUARE ROOT OF REAL NUMBER	* SQRT *
* *		* *
******		*****
PURPOSE:	To compute the square root of a real number	•
CALL FORMAT:	<pre>Function-value = SQRT(arg)</pre>	
PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	-
DESCRIPTION:	Function-value = SQRT(arg)	

١

********* * * * TANH * * *	REAL NUMBER HYPERBOLIC TANGENT	********** * * * * TANH * * *
PURPOSE:	To compute the hyperbolic tangent of a real	number.
CALL FORMAT:	Function-value = TANH(arg)	
PARAMETERS:	Function-value = Real Floating-point scalar Arg = Real Floating-point scalar	•
DESCRIPTION:	Function-value = TANH(arg)	

APPENDIX B

DATA REPRESENTATIONS FOR STORING SPARSE VECTORS AND MATRICES

B.1 INTRODUCTION

This appendix presents information to help the user understand and use the sparse vector and sparse matrix subroutines. It describes the data representations (or formats) both accepted as input and produced as output by these routines. This appendix also spells out parameter naming conventions common to many of these subroutines.

There are four subroutines that convert sparse vectors and matrices between their packed and full representations: Sparse Vector Pack (SVPACK), Sparse Vector Unpack (SVUPCK), Sparse Matrix Pack (SMPACK), and Sparse Matrix Unpack (SMUPCK).

B.2 SPARSE VECTOR STORAGE

An N-dimensional sparse vector V is represented in packed-vector format by N, NS, S, and IEN where:

N a scalar, is the dimension of V.
NS a scalar, is the number of nonzero values in V.
S a vector of length NS, contains the nonzero values of V.
IEN a vector of length NS, contains the location in V of each corresponding element in S [i.e., V(IEN(k)) = S(k) for k=1,NS].

For example, the following sparse vector

[Ø.Ø 3.2 Ø.Ø 7.8 Ø.Ø Ø.Ø Ø.Ø -19.3]

can be represented in packed-vector format as follows:

N: 8 NS: 3 S: [3.2 7.8 -19.3] IEN: [2 4 8]

So, S(1)'s location in V can be found in IEN(1), S(2)'s in IEN(2), ..., S(NS)'s in IEN(NS).

The nonzero values in S are generally ordered as they appear in V. However, they can be ordered differently if the order is compatible with the subroutine to be used. Except for differences in the IP vector, formats I and III are the same, as are formats II and IV.

Each attribute associated with a particular format type and the consequences of using that attribute are explained in detail in the sections that follow.

B.3.1 Matrix Format Type I (COL_ORDER PTRS_ONLY)

A sparse matrix A is represented by M, N, NS, S, IN, and IP, in format I where:

a scalar, is the number of rows in A. I M N a scalar, is the number of columns in A. NS a scalar, is the number of nonzero values in A. a real vector of length NS, contains the nonzero values of A S in column order. IN an integer vector of length NS, contains the row in A of each corresponding value in S [i.e., IN(k) = row in A of S(k)for k=1,NS]. IP an integer vector of length N+1, contains one element for every column in A. Each element indicates the location in S that holds that column's first nonzero value (exception: empty columns). IP's N+1st element is a sentinel.

The sentinel element IP(N+1) holds the number NS+1. In general, IP(i) contains the location in S that refers to A's i-th column, for i=1, N.

If a column in A is empty, then the entry in IP for that column is the same as the entry for the next nonempty column, or if there is no such column, sentinel value in IP(N+1) is used.

The matrix: Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø 4.5 Ø.Ø Ø.2 3.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø 9.9 7.1 5.8 Ø.Ø Ø.Ø Ø.Ø 1.3 Ø.Ø 8.3 Ø.Ø Ø.Ø

as expressed in Type I Format:

5

6

8

M: N: NS:

B.3.3 Matrix Format Type III (COL_ORDER PTRS_SUMS)

A sparse matrix A is represented by M, N, NS, S, IN, and IP, in format III where: M a scalar, is the number of rows in A. a scalar, is the number of columns in A. N NS a scalar, is the number of nonzero values in A. a real vector of length NS, contains the nonzero values of A in S column order. IN an integer vector of length NS, contains the row in A of each corresponding value in S [i.e., IN(k) = row in A of S(k) for k=1,NS]. IP an integer vector of length 2*N, contains two elements for every column in A: (a) the location in S that holds that column's first nonzero value (exception: an empty column). (b) that column's total number of nonzero elements. IP(i) and IP(i+N) always refer to the i-th column in A, for i=1,N. IP(1) to IP(N) holds locations as in (a) above and IP(N+1) to IP(2*N)holds sums as in (b) above. If a column in A is empty, then the (a)-entry in IP for that column is the same as the (a)-entry for the next nonempty column, or if there is no such column, the number NS+1. (Note that the (b)-entry is zero.) ø.ø ø.ø ø.ø ø.ø ø.ø ø.ø The matrix: Ø.Ø 4.5 Ø.Ø Ø.2 3.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø Ø.Ø 9.9 7.1 5.8 Ø.Ø Ø.Ø Ø.Ø 1.3 Ø.Ø 8.3 Ø.Ø Ø.Ø as expressed in Type III Format: 5 M: N: 6 NS: 8 S: [4.5 9.9 1.3 7.1 Ø.2 5.8 8.3 3.Ø] 2 IN: [2 4 5 4 4 5 2] IP: [1 1 4 5 8 9 ø 3 1 3 1 Ø١

Note that lengths of S and IN equal NS (=8); S is in column order; the length of IP equals 2*N (=12); IP contains both locations and sums; IN contains row numbers.

APPENDIX C

SPARSE LINEAR SYSTEM ROUTINES

C.1 INTRODUCTION

This appendix contains information to help the user understand and use the sparse linear system routines in the Advanced Math Library. The sparse linear system routines are APAL64 routines that provide an efficient method for solving the linear system Ax = b where the coefficient matrix is sparse and is stored in packed form.

There are twelve generic sparse linear system routines in all. The name of each routine consists of a four-letter generic name followed by the single digit "2". The first two letters of the name indicate the coefficient matrix type (i.e., the problem domain), and the last two letters indicate its function. The single digit is a version number and is not included on the names of the original routines, which were superseded as of the FØ3 release (see Appendix G).

The types of coefficient matrices are:

- RU A is real.
- RS A is real and symmetric.
- CU A is complex.
- CS A is complex and symmetric.

The functions performed are:

- FR Factor the coefficient matrix.
- SV Solve the system given the factorization of the coefficient matrix.
- FS Factor and solve (combines FR and SV).

In general, the time required to factor the coefficient matrix is much greater than the time required to solve the factored system. Therefore, by having separate routines for each of these functions, the factorization need only be performed once when solving a number of systems that all have the same coefficient matrix.

Denote the determinant of a square matrix A by Det(A). The "not equal" relation will be denoted by the symbol "#".

Assume an n x n lower-triangular matrix L, and n x n upper-triangular matrix U, such that A = LU. Then the system Ax = b is equivalent to LUx = b. Letting Ux = y, where y is an n-dimensional vector, then the system becomes Ly = b. Thus, it is possible to decompose the original system into two triangular systems which, in general, are easier to solve. It is then possible to find the solution to the original system x, by the following two steps:

- 1) Solve Ly = b for y by forward elimination
- 2) Solve Ux = y for x by backward substitution

If there does exist an L and U such that LU = A, then L and U are not uniquely determined unless additional conditions are imposed. One such set of conditions is to require the following:

U(i,i) = 1 for i = 1 to n.

By imposing this restriction on U, the remaining elements of L and U can now be solved obtaining the following:

L(i,j) = A(i,j) - Sum[L(i,k) * U(k,j), k=1,j-1] for i = 1 to n, j = 1 to n, and i >= j eq(la) U(i,j) = (A(i,j) - Sum[L(i,k) * U(k,j), k=1,i-1]) / L(i,i) for i = 1 to n-1, j = 2 to n, and j > i eq(lb)

It is clear from an examination of the expressions above that a unique L and U exist if and only if $L(i,i) \# \emptyset$ for i = 1 to n-1. Letting $A\{k\}$ denote the k-th order principle submatrix of A (i.e., the submatrix formed by the intersection of the first k rows and the first k columns of A), then it follows from equation (1) that $A\{k\} = L\{k\}U\{k\}$. Recall from elementary linear algebra that:

(a) if A = BC, then Det(A) = Det(B)Det(C); and
(b) if T is an n x n triangular matrix,

then Det(T) = Prod[T(i,i), i=1,n].

A common variation of the method of LU factorization involves the further factorization of L into MD where M is a lower-triangular matrix with M(i,i) = 1 for i=1 to n and D is a diagonal matrix. The elements of M and D are found to be:

M(i,j) = L(i,j) / L(j,j) eq(2a) D(i,i) = L(i,i) eq(2b)

Equations (1) and (2) can be used to show that M is the transpose of U if A is symmetric. The LDU theorem can now be stated.

C.3.2 LDU Theorem

If A is an n x n matrix, then there exist unique matrices L, D, and U, where L is lower-triangular with L(i,i) = 1, D is diagonal with D(i,i)# Ø, and U is upper-triangular with U(i,i) = 1 such that A = LDU if and only if $Det(A\{k\})$ # Ø for k = 1 to n. Furthermore, if A = LDU and A is symmetric, then L is the transpose of U.

If A is factored into LDU, then the original system, Ax = b, is equivalent to LDUx = b. Letting Ux = y and Dy = z where y and z are n-dimensional vectors, then the original system decomposes into two triangular systems and a diagonal system that are solved by the following three steps:

- 1) Solve Lz = b for z by forward elimination.
- 2) Solve Dy = z for y.
- 3) Solve Ux = y for x by backward substitution.

Since LDU-factorization requires more work than LU-factorization, the later is preferable unless A is symmetric. In that case, the direct computation and storage of U is unnecessary since U is the transpose of L and the factors are written LDL'.

C.4 FILL-IN

If the coefficient matrix A is sparse, (this is assumed when using the sparse system routines) store only the nonzero elements of A with information about the location of the nonzero elements. (The manner in which this is done is described in Section C.5.) It is very desirable to do this since both storage requirements and execution time can be greatly reduced.

The following algorithm is given in the form of a FORTRAN subroutine for determining fill-in: SUBROUTINE FILLIN(N, A, IA) С С GIVEN AN N BY N MATRIX, A, THIS ROUTINE RETURNS AN N BY С N LOGICAL MATRIX, IA, WHERE IA(I,J) IS TRUE IF A(I,J) IS С A SPARSE ELEMENT AND FALSE OTHERWISE С REAL A(N,N)LOGICAL IA(N,N) С DO 110 I = 1, N IA(I,1) = .FALSE.IA(1,I) = .FALSE.IF(A(I,1) .NE. \emptyset . \emptyset) IA(I,1) = .TRUE. IF(A(1,I) .NE. \emptyset . \emptyset) IA(1,I) = .TRUE. 11Ø CONTINUE С DO 150 J = 2, N DO 14 \emptyset I = 2, N IF(A(I,J) .NE. \emptyset . \emptyset) GO TO 13 \emptyset K2 = MINØ(I,J) -1DO 120 K = 1, K2 IF(IA(I,K) .AND. IA(K,J)) GO TO 13Ø 12Ø CONTINUE IA(I,J) = .FALSE.GO TO 14Ø 13Ø CONTINUE IA(I,J) = .TRUE.14Ø CONTINUE 15Ø CONTINUE RETURN END

The amount of fill-in varies as the rows and columns a A are permuted and algorithms exist to minimize the fill-in. However, any permuting of the rows and columns of A to decrease fill-in may be detrimental to the numerical stability.

Before leaving the subject of fill-in, note that if A is a band matrix, then the superposition of L and U will also be a band matrix and will have the same bandwidth as A. Therefore, if A is a band matrix where the nonzero elements are dense within the band consider every element within the band to be sparse without introducing a great number of unnecessary sparse elements. Finally, if A if unsymmetric, then an additional integer vector IDP of length N is required for pointers into S to the diagonal elements of A. For example,

- If A is real and A(j,j) is stored in S(k), then IDP(j) = k.
- If A is complex and A(j,j) is stored in S(2*k-1) and S(2*k), then IDP(j) = k.

Consider the following example; let A be the real matrix.

2.Ø	ø.ø	ø.ø	4.Ø	ø.ø
ø.ø	1.Ø	ø.ø	ø.ø	2.Ø
ø.ø	Ø.Ø 🕤	-1.Ø	ø.ø	ø.ø
ø.ø	3.Ø	ø.ø	1.Ø	Ø.Ø
ø.ø	ø.ø	ø.ø	ø.ø	5.Ø

Note that A(4,5) is a sparse element since it is a fill-in element.

The vectors S, IRN, ICP, and IDP that are required to represent A are:

WORD	S	IRN	ICP	IDP
1	2.Ø	1	1	1
2	1.Ø	2	2	2
3	3.Ø	4	4	4
4	-1.Ø	3	5	6
5	4.Ø	1	7	9
6	1.Ø	4	1ø	
7	2.Ø	2		
8	ø.ø	4		
9	5.Ø	5		

The output from the factorization routines and the input to the solution routines require these same vectors except that S then contains the sparse elements of the superposition of L and U on A (L', D, and U if A is symmetric) with the diagonal elements replaced by their reciprocals. (See the example above.)

	2.Ø	ø.ø	ø.ø	ø.ø	ø.ø	1.	ø ø.ø	ø.ø	2.Ø	ø.ø
	ø.ø	1.Ø	ø.ø	ø.ø	ø.ø	ø.	Ø 1.Ø	ø.ø	ø.ø	2.Ø
L =	ø.ø	ø.ø	-1.Ø	ø.ø	ø.ø	$\mathbf{U} = \mathbf{\emptyset}$	ø ø.ø	1.Ø	ø.ø	ø.ø
	ø.ø	3.Ø	ø.ø	1.Ø	ø.ø	ø.	ø ø.ø	ø.ø	1.Ø	-6.Ø
	ø.ø	ø.ø	ø.ø	ø.ø	5.Ø	ø.	ø ø.ø	ø.ø	ø.ø	1.Ø

Therefore, the superposition of L and U with the diagonal elements replaced with their reciprocals is

Ø.5	ø.ø	ø.ø	2.Ø	ø.ø
ø.ø	1.Ø	ø.ø	ø.ø	2.Ø
ø.ø	ø.ø	-1.Ø	ø.ø	ø.ø
ø.ø	3.Ø	ø.ø	1.Ø	-6.Ø
ø.ø	ø.ø	ø.ø	ø.ø	Ø.2

APPENDIX D

BASIC LINEAR ALGEBRA SUBPROGRAMS

D.1 INTRODUCTION

This appendix contains information to help the user understand and use the routines, which constitute the basic linear algebra subprograms (BLAS) as implemented within the *LINPACK Users' Guide* Manual, Appendix A. These routines are a subset of the basic linear algebra subprograms developed by Lawson, Hanson, Kincaid, and Krogh (refer to *ACM Trans. Math. Software 5, 3* (Sept. 1979) pp. 324-325) for many of the basic vector operations of numerical linear algebra. The package was intended to be called from FORTRAN programs, and was developed to focus on performance improvements of the well known set of LINPACK routines (refer to the *LINPACK Users' Guide*, Appendix A).

In addition, four routines have been added which are extensions to four of the BLAS routines (real and complex versions of the dot product and scalar times vector plus vector) which provide for repeated invocations with only one subroutine call. These are useful in many applications including matrix multiply and matrix factoring (refer to examples D.4.9, D.4.10, and D.4.11).

Double precision entry points allow the routines to handle standard calls to BLAS double-precision routines. There are no specific double-precision routines implemented, since the single precision routines use the standard 64-bit wide floating-point numbers.

When called from FORTRAN, the BLAS routines perform according to the algorithmic description in Appendix A, *LINPACK User's Guide*. In particular, negative subscript increment specification results in adjustment of the vector base address, as described in Section D.2. (No such base address adjustment needs to take place when the MLSP entries are used. However, when calling the routines from APAL64 base address adjustment is used.)

Much of the information in Sections D.2 and D.4 is taken from Appendix 3 of the NTIS-distributed Sandia National Labs. report, SAND77-0898, Basic Linear Algebra Subprograms for Fortran Usage, by Lawson, Hanson, Kincaid, and Krogh, and is reprinted with their kind permission. Floating Point Systems, Inc., gratefully acknowledges the suggestions given by R. J. Hanson.

D.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS

The names of entities used in BLAS calls conform in general to standard FORTRAN conventions. In particular, names that begin with I or N pertain to integer data types; names that begin with C pertain to complex data types, and names that begin with S (for <u>s</u>calar) pertain to real (floating-point) data types.

The roots of the names pertain to function. The routines with -DOT- as root calculate different versions of the dot product, SDOT calculating the inner product of real vectors, CDOTC and CDOTU calculating complex inner products <u>conjugated</u> and <u>unconjugated</u> respectively.

- COPY Replaces (moves or <u>copy</u>s) elements of a vector with elements of another.
- AXPY Stands for "aX+Y". It is intended to perform the elementary matrix operation of adding to the elements of a vector the scalar multiple of another vector.
- SCAL Multiplies a vector by a scalar.
- SWAP Interchanges (or swaps) elements of two vectors.
- ASUM Calculates the <u>absolute sum</u> of a vector; that is, the sum of the absolute values of each element.
- I-AMAX Calculates the index, or subscript, of the component of a vector of the largest absolute value.
- S-NRM2 Calculates the <u>2-norm</u>, or Euclidean length of a vector. It carefully concerns itself with scaling problems to maintain accuracy and exponent range, by testing each component before adding its square to the accumulating partial sum. Usually it would be appropriate to use SQRT(DOT) for the same operation with greater speed but less robustness.

ROT Rotates a vector of pairs of points.

The parameter names are also standardized. These routines all deal with one or two vectors, usually coming from matrix rows or columns. The first vector is X; the second, -Y. Increments between consecutive elements of a vector are named INCX and INCY. Scalars are named A and -B.

Speed values reflect average values, without regard for vector placement, for typical APFTN64 compilations. Often much improvement is possible by judicious placement of elements among memory modules. Also, initial setup times are not included, only the loop values, which results in a value which is a constant multiple of N, the number of elements in the destination vector.

D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY)

Function value = sum(CX(m)*CY(m)), for the N vector elements indexed by m).

D.3.5 Subroutine CROTG(CA,CB,SC,CSIN)

SC := |CA|/r, CSIN := conjugate(CB)*CA/|CA|/r, CA := CR where: r=sqrt(|CA|**2 + |CB|**2) and SC,CSIN chosen to satisfy

CR = SC*CA+CSIN*CB Ø = CSIN'*CA+ SC*CB.

D.3.6 Subroutine CSCAL(N,CA,CX,INCX)

CX(m) := CA*CX(m), for the N vector elements indexed by m.

D.3.7 Subroutine CSSCAL(N,SA,CX,INCX)

CX(m) := SA*CX(m), for the N vector elements indexed by m.

D.3.8 Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS)

CX(m):= SC*CX(m)+SS*CY(m)
CY(m):=-SS*CX(m)+SC*CY(m), for the N vector elements indexed by m.

D.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY)

CX(m) :=: CY(m), for the N vector elements indexed by m.

D.3.10 Integer Function ICAMAX(N,CX,INCX)

Function value = I such that |Re CX(I)| + |Im CX(I)| is largest of the N values |Re CX(m)| + |Im CX(m)|.

D.3.11 Integer Function ISAMAX(N,SX,INCX)

Function value = smallest I such that |SX(I)| is largest of all N values |SX(m)|.

D.3.12 Real Function SASUM(N,SX,INCX)

Function value = sum(|SX(m)|, for the N values indexed by m).

```
D.3.21 Subroutine SROTM(N, SX, INCX, SY, INCY, PARAM)
```

```
If PARAM(1) = 1.\emptyset then

SX(m) := PARAM(2)*SX(m) + SY(m)

SY(m) := -SX(m) + PARAM(5)*SY(m),

for the N vector elements indexed by m.

If PARAM(1) = \emptyset.\emptyset then

SX(m) := SX(m) + PARAM(4)*SY(m)

SY(m) := PARAM(3)*SY(m) + SY(m),

for the N vector elements indexed by m.

If PARAM(1) = -1.\emptyset then

SX(m) := PARAM(2)*SX(m) + PARAM(4)*SY(m)

SY(m) := PARAM(3)*SY(m) + PARAM(5)*SY(m),
```

for the N vector elements indexed by m.

If PARAM(1) is not 1, \emptyset , or -1, the routine returns without modifying the vector elements. It thus becomes equivalent to an identity transformation.

D.3.22 Subroutine SROTMG(D1, D2, B1, B2, PARAM)

```
If |D1*B1*B1| > |D2*B2*B2| and D2*B2 <> \emptyset then

PARAM(1) := \emptyset.\emptyset

PARAM(3,4) := -B2/B1, D2*B2 / D1*B1, so that the SROTM matrix

becomes (H11,H21,H12,H22) = (1,-B2/B1,D2*B2/D1*B1,1).

D1 := D1/U

D2 := D2/U

B1 := B1*U where U = 1.\emptyset + (D1*B1*B1)/(D2*B2*B2).

If |D1*B1*B1| =< |D2*B2*B2| and D2*B2 <> \emptyset then

PARAM(1) := 1.\emptyset

PARAM(1) := 1.\emptyset

PARAM(2,5) := D1*B1/(D2*B2) , B1/B2 so that the SROTM matrix

becomes (H11,H21,H12,H22) = (D1*B1/D2*B2,-1,1,B1/B2).

D1,D2,B1 := D2/U,D1/U,B2*U where U = 1 + D1*B1*B1/(D2*B2*B2).

If D2*B2 = \emptyset, then

the rotation matrix in SROTM becomes the identity, PARAM(1)

:= -2.\emptyset
```

Memory words occupied by X may intersect those occupied by Y. In fact, X and Y may coincide. However, memory occupied by Z should not, in general, intersect that occupied by X or Y.

If N < 1, SDOTN returns with no action taken.

If M < 1 and ISW[1] = 1, SDOTN returns with no action taken.

If M < 1 and $ISW[1] = \emptyset$, SDOTN returns with $Z(j) = \emptyset.\emptyset$ for j = 1 to N.

In general, M < 1 implies a zero sum of products.

D.3.26 Complex Subroutine CDOTN(ISW,N,M,X,IXI,IXO,Y,IYI,IYO,Z,IZO)

Z(jz) = r * C(jz) + s * SUM[A(ix) * B(iy), i=1,M] j=1,Nwhere: ix = (j-1) * IXO + (i-1) * IXI + 1iy = (j-1) * IYO + (i-1) * IYI + 1jz = (j-1) * IZO + 1s = 1. \emptyset , if ISW[\emptyset] = \emptyset = $-1.\emptyset$, if $ISW[\emptyset] = 1$ r = $\emptyset.\emptyset$, if ISW[1] = \emptyset = $1.\emptyset$, if ISW[1] = 1 X, if $ISW[2] = \emptyset$ A = = Conjg(X), if ISW[2] = 1Y, if $ISW[3] = \emptyset$ B = = Conjq(Y), if ISW[3] = 1C = Z, if $ISW[4] = \emptyset$ = Conjg(Z), if ISW[4] = 1and ISW[k] = bit k of ISW.

ISW is a one word function selector switch and is treated as a bit string with the bits numbered from the least significant bit (bit \emptyset). If a given bit is set (equal to one), then the function option that corresponds to that bit is selected.

If IZO = \emptyset , then CDOTN sets Z(1) equal to the accumulated sum of all N dot products. If ISW[1] = 1 also, then input Z(1) is added to this sum.

Memory words occupied by X may intersect those occupied by Y. In fact, X and Y may coincide. However, memory occupied by Z should not, in general, intersect that occupied by X or Y.

D.3.28 Subroutine CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)

Y(iy) = s * B(ja) * 2(ix) + Y(iy), i=1,M j=1,N where: ja = (j-1) * IAO + 1 ix = (j-1) * IXO + (i-1) * IXI + 1 iy = (j-1) * IYO + (i-1) * IYI + 1 s = 1.Ø, if ISW[Ø] = Ø = -1.Ø, if ISW[Ø] = 1 B = A, if ISW[2] = Ø = Conjg(A), if ISW[2] = 1 Z = X, if ISW[3] = Ø = Conjg(X), if ISW[3] = 1

and ISW[k] = bit k of ISW.

ISW is a one word function selector switch and is treated as a bit string with the bits numbered from the least significant bit (bit \emptyset). If a given bit is set (equal to one), then the function option that corresponds to that bit is selected.

Memory words occupied by A may intersect those occupied by X. However, memory occupied by Y should not, in general, intersect that occupied by A or X.

Furthermore, the user will not get meaningful results when distinct "columns" of Y intersect. For instance, if M = 100, IYI = 1 and IYO = 96, then Y(97,1) = Y(1,2), Y(98,1) = Y(2,2) etc.

However, cases involving IYO = \emptyset produce meaningful results in that the products are accumulated to Y. That is, successive results bound for the same storage location in Y are added together rather than stored over each other. In this case, the calculation is reduced to a single call to CDOTN which executes much faster than the general case speeds given in the routine documentation.

IYI = \emptyset is of no real value and is omitted for speed and simplicity.

If N < 1, CAXPYN returns with no action.

If M < 1, CAXPYN returns with no action.

If IYI = \emptyset , CAXPYN returns with no action.

D.4.5 Set to Identity

Given an N by N matrix A, to set A = the identity matrix and then B = A.

DO 5Ø J=1,N
5Ø CALL SCOPY(N,Ø.EØ,Ø,A(1,J),1)
CALL SCOPY(N,1.EØ,Ø,A,MDA+1)
DO 6Ø J=1,N
6Ø CALL SCOPY(N,A(1,J),1,B(1,J),1)

D.4.6 Matrix Columns Interchange

To interchange the columns of an M by N matrix C, where the column to be interchanged with column J is in a type INTEGER array IP(*), and has the value IP(J).

DO 7Ø J=1,N L=IP(J) IF(J.NE.L) CALL SSWAP(M,C(1,J),1,C(1,L),1) 7Ø CONTINUE

D.4.7 Matrix Transposition

To transpose an N by N matrix A in-place, where MDA is the first dimensioning parameter of the array A(*,*).

IF(N.EQ.1) GOTO 85 DO 8Ø J=1,N-1 8Ø CALL SSWAP(N-J,A(J,J+1),MDA,A(J+1,J),1) 85 CONTINUE

D.4.8 Column Vector Circular Shift

Finally, an inefficient but illustrative code segment which swaps in-place the components of the column vector

(x1, ..., xK, xK+1, ..., xN)

D.4.10 Matrix Factorization Using SAXPYN

This subroutine performs matrix factorization A=LU without pivoting using SAXPYN. L replaces the lower part of A excluding the diagonal. L is assumed implicitly to have 1's on its diagonal. U replaces the upper part of A including the diagonal. A itself is treated as a doubly dimensioned array with first dimension NO. A is assumed to contain an NI x NI matrix stored by rows rather than the usual storage by columns. This storage scheme allows SAXPYN to more efficiently process the current row being used for elimination.

```
SUBROUTINE MFBGE(A,NI,NO)
      REAL A(1)
      INTEGER NI, NO
С
      IF(NI.LE.1) RETURN
      JINV=1
      NOP=NO+1
С
          DO 100 I=1,NI-1
          AINV=1.Ø/A(JINV)
          JC=JINV+NO
С
С
  COMPUTE THE NEXT COLUMN OF L
С
          CALL VSMUL(A(JC), NO, AINV, A(JC), NO, NI-I)
          MN=NI-I
С
С
   PERFORM THE ELIMINATION GETTING A NEW LOWER RIGHT MINOR
С
          CALL SAXPYN(1,MN,MN,A(JC),NO,A(JINV+1),1,Ø,A(JC+1),1,NO)
С
          JINV=JINV+NOP
  100
          CONTINUE
С
      RETURN
      END
```

D.4.11 Matrix Factorization Using SDOTN

This subroutine performs matrix factorization A=LU without pivoting using SDOTN. L replaces the lower part of A excluding the diagonal. L is assumed implicitly to have 1's on its diagonal. U replaces the upper part of A including the diagonal. A itself is treated as a doubly dimensioned array with first dimension NO. A is assumed to contain an NI x NI matrix stored by columns. Doolittle's method is used.

APPENDIX E

APMATH64 FUNCTION GENERATION ROUTINES

E.1 INTRODUCTION

This appendix presents information to help the programmer understand and use the function generation routines of the Advanced Math Library. The function generation routines are APAL64 routines that provide a flexible and efficient way of evaluating functions of one, two, three, or four variables. They do this using table lookup with linear interpolation. Lookup is performed by searching for the breakpoints, using either a binary search (successive interval halving) or a step search (nearest neighbor), depending on whether the user expects the values of the input variables to be rapidly or slowly changing from call to call.

Function generation is described in the following manner:

Given the function F of one input variable x, for which the value of F is known at specific values of x (breakpoints) $(x(1), x(2), \ldots)$, calculate the value of the function for an arbitrary value of x by linearly interpolating between the values of F at the pair of breakpoints $x(i) \le x \le x(i+1)$.

After determining the pair of breakpoints (x(i), x(i+1)), between which the value of x lies, calculate the function by the following formula:

F(x) = F(x(i)) + (F(x(i+1)) - F(x(i))) + (x - x(i)) / (x(i+1) - x(i))

This process is extended to two-variable functions by three applications of the above formula, to three-variable functions by seven applications, and four-variable functions by 15 applications.

The function generation routines are listed below (refer to Appendix A for detailed descriptions):

breakpoint search routines:	BIN STEP
function evaluation routines:	FUN1 FUN2 FUN3 FUN4

2 variable's: X, Y
3 functions: F1(X,Y), F2(X,Y), F3(X,Y)
3 X breakpoints: X1, X2, X3

4 Y breakpoints: Y1, Y2, Y3, Y4

Coordinate value breakpoint tables:

XBRK(1,1)	= X1	YBRK(1,1)	=	Yl
(2,1)	= X2	(2,1)	3	¥2.
(3,1)	= X3	(3,1)	=	Y3
(1,2)	= 1.0/(X2-X1)	(4,1)	2	¥4
(2,2)	= 1.0/(X3-X2)	(1,2)	=	1.0/(Y2-Y1)
(3,2)	= 0.0	(2,2)	=	1.0/(Y3-Y2)
		(3,2)	=	1.0/(Y4-Y3)
X1 < X1	2 < XĴ	(4,2)		0.0

¥1 < ¥2 < ¥3 < ¥4

Taken together, these two breakpoint tables specify a 3 X 4 rectangular grid of points in the X-Y plane.

Function value breakpoint table:

FBRK(1,1,1) = F1(X1,Y1)(2,1,1) = F1(X2,Y1)(3,1,1) = F1(X3,Y1)(1,2,1) = F1(X1,Y2)(2,2,1) = F1(X2,Y2)(3,2,1) = F1(X3,Y2)(1,3,1) = F1(X1,Y3)(2,3,1) = F1(X2,Y3)(3,3,1) = F1(X3,Y3)(1,4,1) = F1(X1,Y4)(2,4,1) = F1(X2,Y4)(3,4,1) = F1(X3,Y4)(1,1,2) = F2(X1,Y1)(3,4,2) = F2(X3,Y4)(1,1,3) = F3(X1,Y1)(3,4,3) = F3(X3,Y4)

-6747-

Figure E-1 Example Coordinate and Function Value Breakpoint Tables

where

XY(1,1) = X coordinate value of the first input point XY(2,1) = Y coordinate value of the first input point . . .

E.3 CALLING APMATH64 FUNCTION GENERATION ROUTINES

The function generation package is used with System Job Executive (SJE) as follows:

APFTN64 <---> Advanced Math driver Library routines

The user must supply the APFTN64 driver, which contains calls to the appropriate Advanced Math Library routines. The coordinate value tables, function value table, and the input points are generated in the APFTN64 driver. The APFTN64 driver routine does the following:

- Generates the coordinate value breakpoint tables.
- Generates the function value breakpoint table.
- Specifies the input points.
- Sets up a loop to process the input points.
- For each input point, determines the appropriate breakpoint pair for each of the coordinates of the input point by calling the BIN or STEP routine for each coordinate. (This feature makes input point data structure arbitrary.)
- Calls the appropriate function evaluation routine (i.e., FUN1, FUN2, FUN3, or FUN4 from the Advanced Math Library).

Refer to the Advanced Math Library documentation and the individual program headers for descriptions of these programs.

The structure of the output function value array FVAL is arbitrary to the extent that each call to the Advanced Math Library function generation routine returns the interpolated values for all of the functions at the given input point in one array. For this reason, FVAL is perhaps most conveniently dimensioned FVAL(NF,NIP).

Lines 35 through 61 load the coordinate value breakpoint tables. In the FUN4 example below, the program assumes the function values to be known (i.e., generated by the user) on the four-dimensional grid of points as specified by the coordinate value breakpoint tables.

Lines 65 through 73 load the function value breakpoint table. In this example, it is done by simply cycling through all possible coordinate value combinations, evaluating the four functions at each point.

Lines 77 through $1\emptyset\emptyset$ specify the input points calling for interpolated values for each of the four functions.

Lines 102 through 120 call the APMATH64 BIN and FUN4 subroutines, pass the tables and other arrays as arguments, and write out the results.

(#355) (#355) (#355) WERK(1,1)=-25.3 (#358) WERK(2,1)=-1.3 (#358) WERK(2,2)=1.3 (#366) WERK(2,2)=1.3 (#366) C LOAD PERK ARRAY (#366) C LOAD FERK ARRAY (#366) DO 139 I4=1,NW (#366) DO 139 I4=1,NW (#367) PERK(11,12,13,14,2)=XBRK(11,1)+YBRK(12,1)+ZBRK(13,1) PERK(11,12,13,14,2)=XBRK(11,1)+YBRK(12,1)+ZBRK(13,1) (#377) PERK(11,12,13,14,3)=XBRK(11,1)+YBRK(14,1)+YBRK(14,1)+YBRK(12,1) (#377) (#37					
(#357) WERK(2,1)==15.5 (#358) WERK(1,2)=1.9/(WERK(2,1)-WERK(1,1)) (#359) WERK(2,2)=1.9/(WERK(3,1)-WERK(2,1)) (#361) WER(2,2)=1.9/(WERK(3,1)-WERK(2,1)) (#365) WER(2,2)=1.9/(WERK(3,1)-WERK(2,1)) (#365) DO 159 I4=1,NW (#366) DO 139 I1=1,NZ (#367) PERK(11,12,13,14,2)=XERK(11,1)+WERK(12,1)+ZERK(13,1) (#371) FBRK(11,12,13,14,4)=XERK(11,1)+WERK(14,1)+YERK(12,1)+ZERK(13,1) (#372) FPERK(11,12,13,14,4)=XERK(11,1)+WERK(13,1)+WERK(14,1)+YERK(12,1) (#373) ISG (#377) X(1)==0.3 (#377) X(1)==0.3 (#378) Y(1)==5.8 (#379) Z(1)==5.1 (#3880) W(1)==1.5 (#3881) Y(2)==3.6 (#3882) Y(2)==3.6 (#3883) Y(2)==3.6 (#3884) Y(3)==9.8					
(#058) WERK(3,1)=0.0 (#059) WERK(1,2)=1.0/(WERK(2,1)-WERK(1,1)) (#0661) WERK(3,2)=0.0 (#0663) C (#0655) DO 109 I4=1,NW (#06664) WERK(1,12,13,14,1)=XERK(11,1)+YERK(12,1)+ZERK(13,1)*WERK(14,1) (#0665) DO 109 I4=1,NW (#06664) DO 109 I4=1,NY (#06765) DO 109 I1=1,NY (#06766) DO 109 I7=1,NY (#06770) FERK(11,12,13,14,1)=XERK(11,1)+YERK(12,1)+YERK(12,1)+ZERK(13,1)*WERK(14,1) (#0770) FERK(11,12,13,14,3)=XERK(11,1)+YERK(12,1)+YERK(12,1)+ZERK(13,1) (#0771) FERK(11,12,13,14,3)=XERK(11,1)+YERK(12,1)+YERK(12,1)+ZERK(13,1) (#0771) FERK(11,12,13,14,4)=XERK(11,1)+YERK(14,1)+YERK(14,1)+YERK(12,1) (#0773) X(1)=-5.5 (#0773) X(1)=-5.8 (#0774) X(1)=-5.9 (#0775) X(1)=-5.1 (#0783) Y(2)=-1.5 (#0784) Y(2)=-2.2 (#0784) Y(2)=-2.2 (#0784) Y(3)=-7.5 (#0784) Y(3)=-7.5 (#0789) Y(3)=-7.5 <t< td=""><td></td><td></td><td></td><td>•</td><td></td></t<>				•	
(859) WBRK(1,2)=1.6/(WBRK(2,1)-WBRK(1,1)) (8066) WBRK(2,2)=1.6/(WBRK(3,1)-WBRK(2,1)) (8061) WBRK(3,2)=6.6 (8065) C (8065) DO 169 I4=1,NW (8066) DO 169 I1=1,NX (8066) DO 169 I1=1,NX (8067) DO 169 I1=1,NX (8067) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I2,1)+ZBRK(I2,1)+ZBRK(I2,1)+ZBRK(I3,1) (8076) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (8071) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I2,1)+YBRK(I4,1)+YBRK(I2,1) (8071) FBRK(II,12,13,14,4)=XBRK(II,1)+YBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (8073) I36 CONTINUE (8075) C LOAD X,Y,Z,W ARRAYS (8075) C LOAD X,Y,Z,W ARRAYS (8077) X(1)=6.3 (8073) Y(2)=-5.6 (8074) Y(2)=-2.2 (8075) C (8083) Y(2)=-3.6 (8094) Y(2)=-7.5 (8075) Y(3)=-9.6 (8093) Y(3)=-9.6 (8093) Y(4)=-5.6	-				•
(3665) WBRK(2,2)=1.5/(WBRK(3,1)-WBRK(2,1)) (3661) WBRK(3,2)=5.5 (3665) C LOAD FBRK ARRAY (3665) DO 167 I4=1,NW (3666) DO 167 I4=1,NY (3666) DO 167 I1=1,NY (3666) FBRK(II,12,13,14,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4,1) (3677) FBRK(II,12,13,14,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1) (3673) FBRK(II,12,13,14,3)=XBRK(I1,1)+YBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (3673) FBRK(II,12,13,14,4)=XBRK(I1,1)+YBRK(I4,1)+YBRK(I4,1)+YBRK(I2,1) (3673) ISS CONTINUE (3674) (3675) C LOAD X,Y,Z,W ARRAYS (3676) (36778) Y(1)=5.5 (3678) Y(1)=5.5 (3678) W(1)=-1.5 (3688) W(1)=-1.5 (3688) W(1)=-1.5 (3688) W(2)=-2.2 (3686) (2)=-2.2 (3686) (2)=-2.2 (3686) (3)=-3.5 (3679) X(3)=-3.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(4)=-5.5 (3679) X(5)=-5.5 (3679) X(4)=-5.5 (3679) X(5)=-5.5 (3679) X(5)=-5.5 (3679) X(5)=-5.5 (3679) X(5)=-7.5 (3679) X(5)=-7.	-				
(#061) WBRK(3,2)=Ø.Ø (#062) (#063) C (#064) (#0666) DO 10Ø I4=1,NW (#0666) DO 10Ø I2=1,NX (#0667) (#067) DO 10Ø I2=1,NX (#0667) DO 10Ø I2=1,NX (#0678) DO 10Ø I2=1,NX (#0679) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I2,1)+YBRK(I2,1)+ZBRK(I3,1) (#0771) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (#0773) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I4,1)+YBRK(I4,1)+YBRK(I2,1) (#0773) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (#0773) FBRK(II,12,13,14,2)=XBRK(II,1)+YBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (#0773) IBØ CONTINUE (#0774) (#0775) X(1)=-5.Ø (#0775) X(1)=-5.Ø (#0776) (#0776) X(1)=-5.Ø (#0776) (#0778) Y(1)=-5.Ø (#0776) (#0781) Y(1)=-1.5 (#0786) (#0779) X(1)=-5.Ø (#0786) (#0781) Y(2)=-2.2 (#0786) (#0784) X(2)=-3.Ø	•				
<pre>(862) (863) C LOAD FBRK ARRAY (8764) (8765) D0 187 T4=1,NW (8766) D0 187 T2=1,NZ (8767) D0 187 T2=1,NX (8768) D0 187 T1=1,NX (8768) FBRK(11,T2,T3,T4,1)=XBRK(T1,1)+YBRK(T2,1)=XBRK(T3,1)*WBRK(T4,1) (8777) FBRR(11,T2,T3,T4,2)=XBRK(T1,1)+WBR(T4,1)+YBRK(T2,1)=XBR(T3,1) (8777) FBRR(11,T2,T3,T4,2)=XBRK(T1,1)+WBR(T4,1)+YBRK(T2,1)=XBR(T3,1) (8777) FBRR(11,T2,T3,T4,4)=XBRK(T1,1)+YBRR(T3,1)+YBRK(T4,1)+YBRK(T2,1) (8773) 187 CONVTINUE (8774) (8775) C LOAD X,Y,Z,W ARRAYS (8776) (8777) X(1)=0.3 (8778) Y(1)=-5.0 (8788) W(1)=-1.5 (8788) W(1)=-1.5 (8788) W(1)=-1.5 (8788) Y(2)=-2.2 (8788) Y(2)=-2.2 (8788) Y(2)=-2.2 (8788) Y(2)=-2.2 (8788) Y(3)=-9.0 (8788) Y(3)=-9.0 (8788) Y(3)=-13.8 (8797) X(4)=-6.8 (8799) W(3)=-13.8 (8797) X(4)=-5.9 (8793) Y(4)=-5.9 (8793) Y(4)=-5.9 (8793) Y(4)=-5.9 (8793) Y(4)=-5.8 (8794) X(3)=-7.5 (8795) W(4)=-15.8 (8795) W(4)=-15.8 (8795) W(4)=-15.8 (8795) W(4)=-15.8 (8795) Y(5)=-7.5 (8796) Y(5)=-7.5 (8796) Y(5)=-7.5 (8797) X(5)=-7.5 (8797) X(5)=-7.5 (8798) Y(5)=-7.5 (8799) Y(5)=-7.5 (8799) Y(5)=-7.5 (8799) Y(5)=-7.5 (8791) CALL BIN(YBRK,Y(11),TX,DRY,NX) (8145) CALL BIN(YBRK,Y(11),TX,DRY,NX) (8145) CALL BIN(YBRK,Y(11),TY,DRY,NY) (8145) CALL BIN(YBRK,Y(T1),TY,DRY,NY) (8145) CALL BIN(YBRY,YT1),TY,DRY,NY) (8145) CALL BIN(YBR</pre>					
(\$\$63) C LOAD FBRK ARRAY (\$\$64) (\$\$65) D0 1\$\$5 14=1,NW (\$\$66) D0 1\$\$5 13=1,NZ (\$\$66) D0 1\$\$5 11=1,NX (\$\$66] D0 1\$\$5 11=1,NX (\$\$66] FBRK(11,12,13,14,1)=XBRK(11,1)+YBRK(12,1)+ZBRK(13,1)*WBRK(14,1)) (\$\$77] FBRK(11,12,13,14,2)=XBRK(11,1)+YBRK(12,1)+ZBRK(13,1) (\$\$77] FBRK(11,12,13,14,4)=XBRK(11,1)+YBRK(14,1)+YBRK(12,1)+ZBRK(13,1) (\$\$773] 1\$\$ (\$\$775] C LOAD X,Y,Z,W ARRAYS (\$\$775] (\$\$775] C LOAD X,Y,Z,W ARRAYS (\$\$776] (\$\$777] X(1)=5.1 (\$\$779] 2(1)=5.1 (\$\$883] W(1)=-1.5 (\$\$883] Y(2)=-3.5 (\$\$884] Z(2)=4.6 (\$\$883] Y(2)=-2.2 (\$\$884] Z(2)=-2.2 (\$\$886] W(3)=-2.2 (\$\$886] Y(3)=-3.5 (\$\$888] Y(3)=-3.5 (\$\$899] X(3)=-3.5 (\$\$899] X(4)=-15.5 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(4)=-5.6 (\$\$899] Y(5)=-7.5 (\$\$199] Y(5)=-7.5 (\$\$199] Y(5)=-7.5 (\$\$199] Y(5)=-7.5 (\$\$199] Y(5)=-7.5 (\$\$199] Y(5)=-7.5 (\$\$198] Y(5)=-7.5 (\$\$198] Y(5)=-7.5 (\$\$198] Y(5)=-7.5 (\$\$198] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y(11),IX,DRY,NX) (\$\$187] CALL BIN(YBRK,Y,NZ,NW,NFIX,IY,IZ,IW,	-				$WBRK(3,2) = \emptyset \cdot \emptyset$
(354) (365) DO 135 14=1,NW (365) DO 135 12=1,NZ (365) DO 135 12=1,NX (365) DO 135 12=1,NX (365) FBRR(11,12,13,14,1)=XBRK(11,1)*VBRR(12,1)+ZBRK(13,1)*WBRK(14,1) (367) FBRR(11,12,13,14,3)=XBRK(11,1)*VBRR(12,1)+ZBRR(12,1) (367) FBRR(11,12,13,14,3)=XBRK(11,1)*VBRR(12,1)+ZBRR(12,1) (367) FBRR(11,12,13,14,4)=XBRK(11,1)*ZBRK(13,1)+WBRK(14,1)*YBRR(12,1) (367) FBRR(11,12,13,14,4)=XBRK(11,1)*ZBRK(13,1)+WBRK(14,1)*YBRR(12,1) (367) FBRR(11,12,13,14,4)=XBRK(11,1)*ZBRK(13,1)+WBRK(14,1)*YBRR(12,1) (367) C LOAD X,Y,Z,W ARRAYS (367) (367) (1)=5.3 (367) (2)1=5.1 (3683) W(1)=-1.5 (3683) W(1)=-1.5 (3683) (2)=-3.6 (3684) (2)=-3.6 (3684) (2)=-3.6 (3685) (2)=-2.2 (3686) (3685) (2)=-2.2 (3686) (3687) X(3)=-9.6 (3689) Z(3)=-7.5 (3689) (2)=-1.5 (3689) (2)=-1.5 (3689) (2)=-1.5 (3699) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5 (3690) (2)=-1.5	-	-			
(\$\u03e955) D0 1\u03e9 [4=1,NW (\$\u03e966) D0 1\u03e9 [3=1,NZ (\$\u03e966) D0 1\u03e9 [1=1,NZ (\$\u03e968) FBRK(11,12,13,14,1)=XBRK(11,1)+YBRK(12,1)+ZBRK(13,1)*WBRK(14,1) (\$\u03e976) FBRK(11,12,13,14,2)=XBRK(11,1)*WBRK(14,1)+YBRK(12,1)+ZBRK(13,1) (\$\u03e9771) FBRK(11,12,13,14,3)=XBRK(11,1)+WBRK(14,1)+YBRK(12,1)+ZBRK(12,1) (\$\u03e973) 1\u03e9 CONTINUE (\$\u03e9771) Y(1)=\u03e3,3 (\$\u03e9776) (\$\u03e9776) X(1)=\u03e3,3 (\$\u03e9776) (\$\u03e9776) X(1)=\u03e3,4 (\$\u03e884) (\$\u03e9776) X(1)=\u03e3,4 (\$\u03e884) (\$\u03e9770) X(1)=\u03e3,4 (\$\u03e884) (\$\u03e9770) X(1)=\u03e3,4 (\$\u03e884) (\$\u03e884) Y(2)==-3.0 (\$\u03e884) Y(2)==-3.0 (\$\u03e884) Y(2)==-3.0 (\$\u03e884) Y(2)==-3.0 (\$\u03e884) Y(3)==-0.0 (\$\u03e884) Y(3)==-0.0 (\$\u03e884) Y(3)==-0.0 (\$\u03e884) Y(3)==-0.0 (\$\u03e884) Y(3)==-0.0 (\$\u03e884) Y(3)==-0.0<	(ØØ63)	С	LOAD	FBRK ARRAY
(\$\$66) D0 1\$\$7 13-1,N2 (\$\$67) D0 1\$\$7 12-1,NY (\$\$69) FBRK[1,I,Z,I3,I4,1)=XBRK[11,1)+YBRK[12,1)+ZBRK[13,1)*WBRK[14,1) (\$\$79) FBRK[1,I2,I3,I4,2)=XBRK[11,1)+WBRK[14,1)+YBRK[12,1)+ZBRK[13,1) (\$\$77] FBRK[1,I2,I3,I4,2)=XBRK[11,1)+WBRK[14,1)*YBRK[12,1)+ZBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1)+WBRK[14,1)*YBRK[12,1)+ZBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1)+WBRK[14,1)*YBRK[12,1)+ZBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1)*ZBRK[13,1)+WBRK[14,1)*YBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1)+WBRK[14,1]*YBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1) (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1] (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1] (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1] (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1] (\$\$77] FBRK[1,I2,I3,I4,4]=XBRK[11,1]*ZBRK[13,1]+WBRK[14,1]*YBRK[12,1] (\$\$78] Y(1)==5.5 (\$\$\$78] Y(1)==-1.5 (\$\$78] Y(2)==-2.2 (\$\$78] Y(3)==-9.5 (\$\$\$78] Y(3)==-9.5 (\$\$\$79] Y(3)==-9.5 (\$\$\$79] Y(4)==-6.5 (\$\$\$79] Y(4)==-6.5 (\$\$\$79] Y(4)==-5.5 (\$\$\$79] Y(4)==-5.5 (\$\$\$79] Y(4)==-5.5 (\$\$\$79] Y(5)==-5.5 (\$\$\$79] Y(5)==-7.5 (\$\$\$79] Y(5)==-5.5 (\$\$\$79] Y(5)==-5.5 (\$\$\$79] Y(5)==-5.5 (\$\$\$79] Y(5)==-5.5 (\$\$\$70] Y(5)==-5.5 (\$\$\$70] Y(5)==-5.5 (\$\$\$70]	•	•			
(\$\mathcal{G}\$7\$) D0 1\$\mathcal{G}\$12=1,NX (\$\mathcal{G}\$6\$) FBRK(I1,I2,I3,I4,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4,1); (\$\mathcal{G}\$7\$) FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)*WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1); (\$\mathcal{G}\$7\$) FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1); (\$\mathcal{G}\$7\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(I2,1); (\$\mathcal{G}\$7\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(I2,1); (\$\mathcal{G}\$7\$) CLOAD X,Y,2,W ARRAYS (\$\mathcal{G}\$7\$) C(1)=\mathcal{G}\$.3 (\$\mathcal{G}\$7\$) C(1)=\mathcal{G}\$.3 (\$\mathcal{G}\$7\$) C(1)=\mathcal{G}\$.3 (\$\mathcal{G}\$7\$) C(1)=\mathcal{G}\$.3 (\$\mathcal{G}\$7\$) C(1)=\mathcal{G}\$.3 (\$\mathcal{G}\$7\$) C(2)=-1.5 (\$\mathcal{G}\$8\$) V(2)=-3.0 (\$\mathcal{G}\$8\$) V(2)=-2.2 (\$\mathcal{G}\$8\$) V(2)=-2.2 (\$\mathcal{G}\$8\$) V(2)=-2.2 (\$\mathcal{G}\$8\$) V(3)=-9.0 (\$\mathcal{G}\$8\$) V(3)=-9.0 (\$\mathcal{G}\$8\$) V(4)=-13.0 (\$\mathcal{G}\$8\$) V(4)=-15.0 (\$\mathcal{G}\$8\$) V(4)=-15.0 </td <td>-</td> <td></td> <td></td> <td></td> <td>DO 100 I4=1,NW</td>	-				DO 100 I4=1,NW
(\$\mathfrac{9}{683}\$) D0 1\mathfrac{9}{7} II=1,NX (\$\mathfrac{9}{683}\$) FRRK(I,I,I2,I3,I4,2)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1) (\$\mathfrac{9}{671}\$) FRRK(I,I,I2,I3,I4,2)=XBRK(I1,1)+WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (\$\mathfrac{9}{671}\$) FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)+WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+ZBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1)+ZBRK(I2,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+ZBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+ZBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+ZBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+ZBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1)+YBRK(I2,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+YBRK(I3,1)+WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (\$\mathfrac{9}{677}\$) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)+YBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1) (\$\mathfrac{9}{677}\$) K(1)==5.\mathfrac{0}{677}\$ (\$\mathfrac{9}{678}\$) K(1)==5.\mathfrac{0}{678}\$ (\$\mathfrac{9}{678}\$) K(2)==-2.2 (\$\mathfrac{9}{678}\$) K(2)==-2.2 (\$\mathfrac{9}{678}\$) K(3)==-7.5 (\$\mathfrac{9}{678}\$) K(4)==-1.\mathfracccccccccccccccccccccccccccccccccccc	(ØØ66)			
(##69) FBRK(I1,I2,I3,I4,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4,1) (##70) FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)*WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (##71) FBRK(I1,I2,I3,I4,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1) (##72) FBRK(I1,I2,I3,I4,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1) (##73) 1## (##73) 1## (##74) CONTINUE (##75) C (##76) (##76) (##77) X(1)=#.3 (##76) (##76) (##77) X(1)=#.3 (##77) X(1)=#.3 (##77) X(1)=#.3 (##78) Y(1)==-5.# (##78) Y(1)==-5.# (##78) Y(1)==-1.5 (##78) Y(1)==-1.5 (##84) X(2)=1.1 (##88) X(2)==1.1 (##88) Y(2)==-2.2 (##88) Y(2)==-2.2 (##88) Y(3)==-9.# (##88) Y(3)==-7.5 (##89) Y(3)==-1.5.# (##99) Y(4)==-6.# (##995) W(4)==-15.# (##995) Y(4)==-6.#<	(ØØ67)			DO 100 I2=1,NY
(ØØ7Ø) FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)*WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1) (ØØ71) FBRK(I1,I2,I3,I4,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1) (ØØ73) 1ØØ CONTINUE (ØØ73) 1ØØ CONTINUE (ØØ73) 1ØØ CONTINUE (ØØ75) C LOAD X,Y,Z,W ARRAYS (ØØ76) X(1)=Ø.3 (ØØ77) X(1)=Ø.3 (ØØ78) Y(1)=-5.Ø (ØØ78) Y(1)=-5.Ø (ØØ78) Y(1)=-1.5 (ØØ88) W(1)=-1.5 (ØØ88) W(2)=-2.2 (ØØ88) W(2)=-2.2 (ØØ86) (2)=-3.Ø (ØØ88) Y(3)=-3.Ø (ØØ88) Y(3)=-3.Ø (ØØ88) Y(3)=-3.Ø (ØØ88) Y(3)=-3.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (Ø992) (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) Y(5)=-7.5 (ØØ93) Z(5)=-4.5 (ØØ99) Z(5)=-7.5	(ØØ68)			DO 100 II=1,NX
(ØØ71) FBRK(I1,12,13,14,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1) (ØØ72) FBRK(I1,12,13,14,4)=XBRK(I1,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(12,1) (ØØ73) IØØ (ØØ73) IØØ (ØØ73) C (ØØ73) C (ØØ74) (ØØ75) (ØØ75) C (ØØ77) X(1)=Ø.3 (ØØ78) Y(1)=-5.0 (ØØ78) Y(1)=-5.1 (ØØ79) X(1)=0.1 (ØØ80) W(1)=-1.5 (ØØ81) (ØØ82) (ØØ83) Y(2)=-3.0 (ØØ84) 2(2)=4.0 (ØØ84) 2(2)=-2.2 (ØØ88) Y(3)=-9.0 (ØØ88) Y(3)=-2.2 (ØØ88) Y(3)=-2.3 (ØØ88) Y(3)=-2.4 (ØØ89) Z(3)=7.5 (ØØ89) X(3)=0.13.0 (ØØ89) X(3)=-13.0 (ØØ91) Y(4)=-6.0 (ØØ92) X(4)=-6.0 (ØØ95) W(4)=-15.0 (ØØ96) Y(5)=-7.5 (ØØ96) Y(5)=-7.5 (Ø100) W(5)=-7.5 <td>(ØØ69</td> <td>)</td> <td></td> <td></td> <td><pre>FBRK(I1,I2,I3,I4,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4,1)</pre></td>	(ØØ69)			<pre>FBRK(I1,I2,I3,I4,1)=XBRK(I1,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4,1)</pre>
(ØØ72) FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(I2,1) (ØØ73) IØØ (ØØ74) (ØØ75) C LOAD X,Y,Z,W ARRAYS (ØØ76) X(1)=0.3 (ØØ77) X(1)=0.3 (ØØ78) Y(1)=-5.0 (ØØ79) X(1)=5.1 (ØØ82) X(2)=1.1 (ØØ82) X(2)=-3.0 (ØØ84) Y(2)=-3.0 (ØØ84) Y(2)=-2.2 (ØØ86) (2)=-2.2 (ØØ88) Y(3)=-9.0 (ØØ88) Y(3)=-9.0 (ØØ89) X(3)=-7.5 (ØØ90) W(3)=-13.0 (ØØ91) (ØØ92) (ØØ93) Y(4)=-6.0 (ØØ94) Z(4)=6.0 (ØØ95) W(4)=-15.0 (ØØ96) Y(5)=-5.0 (ØØ98) Y(5)=-7.5 (Ø103) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø140) CALL BIN(YBRK,X(I1),IX,DRX,NX) (Ø140) CALL BIN(YBRK,X(I1),IX,DRX,NX) (Ø140) CALL BIN(YBRK,X(I1),IX,DRX,NX) (Ø144) CALL BIN(YBRK,X(I1),IX,DRX,NX) (Ø145) <	(ØØ7Ø)			<pre>FBRK(I1,I2,I3,I4,2)=XBRK(I1,1)*WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1)</pre>
(#973) 199 CONTINUE (#974) (9975) C LOAD X,Y,Z,W ARRAYS (9977) X(1)=0.3 (9977) X(1)=-5.0 (9977) X(1)=-5.0 (9979) X(1)=-1.5 (9980) W(1)=-1.5 (9980) W(1)=-1.5 (9980) Y(2)=-3.0 (9988) Y(2)=-2.2 (9986) (9988) Y(2)=-2.2 (99886) (9988) Y(3)=-9.0 (9988) Y(3)=-13.0 (9990) W(3)=-13.0 (9990) W(3)=-13.0 (9991) (9992) X(4)=-6.0 (9991) Y(4)=-6.0 (9995) W(4)=-15.0 (9995) W(4)=-15.0 (9996) (9995) Y(5)=-5.0 (9996) (9996) Z(5)=-5.0 (9996) Z(5)=-5.0 (9996) Z(5)=-5.0 (9996) Z(5)=-5.0 (9997) X(5)=0.4 (9997) X(5)=0.4 (9997) Z(5)=-7.5 (9100) W(5)=-7.5 (9100) W(5)=-7.5(9100) W(5)=-7.5(9100) W(5)=-7.5 (9100) W(5)=-7.5(9100) W(5)=-7	(ØØ71)			<pre>FBRK(I1,I2,I3,I4,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+ZBRK(I3,1)</pre>
(6074) (6075) C LOAD X,Y,Z,W ARRAYS (6077) X(1)=0.3 (6077) X(1)=-5.0 (6077) Z(1)=-5.1 (6088) W(1)=-1.5 (6088) W(2)=-1.5 (6088) (2)=-2.2 (6088) Y(2)=-2.2 (6088) Y(2)=-2.2 (6088) Y(3)=-9.0 (6088) Y(3)=-9.0 (6088) Y(3)=-13.0 (6099) W(3)=-13.0 (6099) W(3)=-13.0 (6099) W(4)=-15.0 (6099) W(4)=-15.0 (6099) W(4)=-15.0 (6099) Y(5)=-5.0 (6099) Y(5)=-5.0 (6099) Z(5)=-7.5 (61.0 (71.0 (71	(ØØ72)			<pre>FBRK(I1,I2,I3,I4,4)=XBRK(I1,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(I2,1)</pre>
(ØØ75) C LOAD X, Y, Z, W ARRAYS (ØØ76) X(1)=Ø.3 (ØØ78) Y(1)=-5.0 (ØØ79) Z(1)=5.1 (ØØ80) W(1)=-1.5 (ØØ82) X(2)=1.1 (ØØ83) Y(2)=-3.0 (ØØ84) Z(2)=4.0 (ØØ85) W(2)=-2.2 (ØØ86) (2)=-2.2 (ØØ86) (2)=-7.5 (ØØ80) X(3)=0.9 (ØØ80) Y(3)=-9.0 (ØØ80) Y(3)=-13.0 (ØØ90) W(3)=-13.0 (ØØ91) (2)=-5.0 (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.0 (ØØ94) Z(4)=-15.0 (ØØ95) W(4)=-15.0 (ØØ96) Y(5)=-5.0 (ØØ99) Z(5)=4.5 (Ø100) W(5)=-7.5 (Ø100) D0 150 I1=1,NIP	(ØØ73)		1ØØ	CONTINUE
(ØØ75) C LOAD X, Y, Z, W ARRAYS (ØØ76) X(1)=Ø.3 (ØØ78) Y(1)=-5.0 (ØØ79) Z(1)=5.1 (ØØ80) W(1)=-1.5 (ØØ82) X(2)=1.1 (ØØ83) Y(2)=-3.0 (ØØ84) Z(2)=4.0 (ØØ85) W(2)=-2.2 (ØØ86) (2)=-2.2 (ØØ86) (2)=-7.5 (ØØ80) X(3)=0.9 (ØØ80) Y(3)=-9.0 (ØØ80) Y(3)=-13.0 (ØØ90) W(3)=-13.0 (ØØ91) (2)=-5.0 (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.0 (ØØ94) Z(4)=-15.0 (ØØ95) W(4)=-15.0 (ØØ96) Y(5)=-5.0 (ØØ99) Z(5)=4.5 (Ø100) W(5)=-7.5 (Ø100) D0 150 I1=1,NIP	(ØØ74)			
$ \begin{pmatrix} 0076 \\ (0077) & X(1)=0.3 \\ (0078) & Y(1)=-5.0 \\ (0079) & Z(1)=5.1 \\ (0080) & W(1)=-1.5 \\ (0081) \\ (0082) & X(2)=1.1 \\ (0083) & Y(2)=-3.0 \\ (0084) & Z(2)=4.0 \\ (0085) & W(2)=-2.2 \\ (0086) \\ (0086) \\ (0088) & Y(3)=-9.0 \\ (0088) & Y(3)=-9.0 \\ (0088) & Y(3)=-13.0 \\ (0089) & W(3)=-13.0 \\ (0090) & W(3)=-13.0 \\ (0090) & W(3)=-15.0 \\ (0093) & Y(4)=-6.0 \\ (0093) & Y(4)=-5.0 \\ (0093) & Y(4)=-5.0 \\ (0093) & Y(4)=-5.0 \\ (0093) & Y(5)=-5.0 \\ (0093) & Y(5)=-7.5 \\ (0100) & W(5)=-7.5 \\ (0100) & W(5$			С	LOAD	X,Y,Z,W ARRAYS
	-	-			
					$X(1) = \emptyset.3$
(ØØ79) Z(1)=5.1 (ØØ8Ø) W(1)=-1.5 (ØØ80) W(1)=-1.5 (ØØ82) X(2)=1.1 (ØØ83) Y(2)=-3.Ø (ØØ84) Z(2)=4.Ø (ØØ85) W(2)=-2.2 (ØØ86) (ØØ87) (ØØ88) Y(3)=0.9 (ØØ88) Y(3)=0.9 (ØØ88) Y(3)=-0.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (Ø922) (ØØ92) X(4)=2.9 (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (Ø996) (ØØ96) X(5)=-5.Ø (ØØ98) Y(5)=-7.5 (ØØ99) Z(5)=4.5 (Ø100) W(5)=-7.5 (Ø101) (Ø102) (Ø12) DO 15Ø I1=1,NIP (Ø103) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø104) (ALL BIN(XBRK,X(11),IX,DRX,NX) (Ø105) CALL BIN(ZBRK,V(11),IV,DRY,NW) (Ø105) CALL BIN(ZBRK,V(11),IV,DRY,NW) (Ø105) CALL BIN(WERK,W(11),IV,DRY,NW) (Ø106) <td></td> <td></td> <td></td> <td></td> <td></td>					
(ØØ80) W(1)=-1.5 (ØØ81) (ØØ82) (ØØ83) Y(2)=-3.Ø (ØØ84) Z(2)=4.Ø (ØØ85) W(2)=-2.2 (ØØ86) (ØØ87) (ØØ88) Y(3)=Ø.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (Ø993) (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (Ø996) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (ØØ99) Z(5)=4.5 (Ø100) W(5)=-7.5 (Ø101) (Ø102) DO 15Ø I1=1,NIP (Ø103) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø133) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø134) CALL BIN(XBRK,X(11),IY,DRY,NY) (Ø135) CALL BIN(ZBRK,X(11),IY,DRY,NW) (Ø135) CALL BIN(ZBRK,X(11),IY,DRY,NW) (Ø136) CALL BIN(WRK,W(11),IW,DRW,NW) (Ø137) CALL FIN(WRK,W(11),IW,DRW,NW)		-			
(ØØ81) (ØØ82) X(2)=1.1 (ØØ83) Y(2)=-3.Ø (ØØ84) Z(2)=4.Ø (ØØ85) W(2)=-2.2 (ØØ86) (Ø2)=-2.2 (ØØ86) (X(3)=0.9 (ØØ87) X(3)=0.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (ØØ92) (ØØ92) X(4)=2.9 (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (Ø996) (ØØ96) (Ø995) (ØØ96) (Ø990) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (ØIØ6) W(5)=-7.5 (ØIØ1) (Ø192) (Ø182) DO 15Ø I1=1,NIP (Ø183) CALL BIN(VBRK,X(I1),IX,DRX,NX) (Ø184) CALL BIN(VBRK,X(I1),IX,DRX,NX) (Ø185) CALL BIN(VBRK,Z(I1),IZ,DR2,NZ) (Ø186) CALL BIN(VBRK,Z(I1),IZ,DR2,NZ) (Ø186) CALL BIN(VBRK,X(VII),IW,DRW,NW) (Ø187) CALL FUN4(FBR	-	-			
$ \begin{pmatrix} \emptyset \emptyset \emptyset 2 \end{pmatrix} & \chi(2) = 1.1 \\ (\emptyset \emptyset \emptyset 3) & \chi(2) = -3.\emptyset \\ (\emptyset \emptyset \emptyset 3) & \chi(2) = -3.\emptyset \\ (\emptyset \emptyset \emptyset 3) & \chi(2) = -2.2 \\ (\emptyset \emptyset \emptyset 5) & W(2) = -2.2 \\ (\emptyset \emptyset \emptyset 5) & W(2) = -2.2 \\ (\emptyset \emptyset \emptyset 5) & W(2) = -9.\emptyset \\ (\emptyset \emptyset 9) & \chi(3) = -9.\emptyset \\ (\emptyset \emptyset 9) & \chi(3) = -9.\emptyset \\ (\emptyset \emptyset 9) & \chi(3) = -13.\emptyset \\ (\emptyset \emptyset 9) & W(3) = -13.\emptyset \\ (\emptyset \emptyset 9) & \chi(4) = -3.\emptyset \\ (\emptyset \emptyset 9) & \chi(4) = -6.\emptyset \\ (\emptyset \emptyset 9) & \chi(4) = -6.\emptyset \\ (\emptyset \emptyset 9) & \chi(4) = -15.\emptyset \\ (\emptyset \emptyset 9) & \chi(5) = -5.\emptyset \\ (\emptyset \emptyset 9) & \chi(5) = -5.\emptyset \\ (\emptyset \emptyset 9) & \chi(5) = -7.5 \\ (\emptyset 1 \emptyset 0) & W(5) = -7.5 \\ (\emptyset 1 \emptyset 0) & W(5) = -7.5 \\ (\emptyset 1 \emptyset 0) & W(5) = -7.5 \\ (\emptyset 1 \emptyset 4) & CALL BIN(XBRK, X(11), IX, DRX, NX) \\ (\emptyset 1 \emptyset 4) & CALL BIN(YBRK, X(11), IX, DRZ, NZ) \\ (\emptyset 1 \emptyset 5) & CALL BIN(YBRK, Y(11), IY, DRZ, NZ) \\ (\emptyset 1 \emptyset 6) & CALL BIN(YBRK, W(11), IW, DRW, NW) \\ (\emptyset 1 \emptyset 7) & CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, NY, NZ, NW, NY, IX, IY, IZ, IW, CALL FUN4(FBRK, NX, IY, IX, IY, IX, IY, IX, IY, IX, IY, IY, IY, IY, IY, IY, IY, IY, IY, IY$	-	-			
(ØØ83) Y(2)=-3.Ø (ØØ84) Z(2)=4.Ø (ØØ85) W(2)=-2.2 (ØØ86) (Ø987) X(3)=Ø.9 (Ø888) (ØØ87) X(3)=0.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (Ø92) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (Ø95) (ØØ98) Y(5)==5.Ø (ØØ98) Y(5)==-7.5 (ØØ99) Z(5)=4.5 (Ø100) W(5)=-7.5 (Ø101) (Ø162) (Ø163) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø164) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø165) CALL BIN(YBK,Y(I1),IY,DRY,NY) (Ø165) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø166) CALL BIN(WBR,W(I1),IW,DRW,NW) (Ø166) CALL BIN(WBRK,W(X),NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			X(2) = 1.1
(ØØ84) Z(2)=4.Ø (ØØ85) W(2)=-2.2 (ØØ86) (ØØ87) X(3)=Ø.9 (ØØ88) Y(3)=-9.Ø (ØØ89) ØØ89 X(3)=7.5 (ØØ90 W(3)=-13.Ø (ØØ91) (Ø991) (ØØ92) X(4)=2.9 (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ96) (ØØ98) Y(5)=5.Ø (ØØ99) Z(5)=4.5 (ØØ99) Z(5)=4.5 (Ø1Ø1) (Ø1Ø2) (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IZ,DRZ,NZ) (Ø1Ø5) CALL BIN(YBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø5) CALL BIN(YBRK,WII),IW,DRW,NW) (Ø1Ø5) CALL BIN(YBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	•			
(ØØ85) W(2)=-2.2 (ØØ86) (ØØ87) X(3)=Ø.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (ØØ91) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ96) (ØØ98) Y(5)=-5.Ø (ØØ98) Y(5)=-7.5 (Ø100) W(5)=-7.5 (Ø101) DO 15Ø I1=1,NIP (Ø103) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø104) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø105) CALL BIN(YBRK,Y(11),IY,DRY,NY) (Ø105) CALL BIN(YBRK,X(11),IZ,DRZ,NZ) (Ø106) CALL BIN(WBRK,WII),IY,DRW,NW) (Ø106) CALL BIN(WBRK,WI,NY,NZ,NW,NF,IX,IY,IZ,IW,					
(ØØ86) (ØØ87) X(3)=Ø.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ90) W(3)=-13.Ø (ØØ91) (Ø92) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ96) (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1Ø1) (Ø1Ø2) (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø3) CALL BIN(YBRK,Y(11),IY,DRY,NY) (Ø1Ø5) CALL BIN(YBRK,X(11),IX,DRX,NX) (Ø1Ø6) CALL BIN(YBRK,X(11),IX,DRX,NW) (Ø1Ø6) CALL BIN(YBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
(ØØ87) X(3)=Ø.9 (ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ9Ø) W(3)=-13.Ø (ØØ9Ø) W(3)=-13.Ø (ØØ90) W(3)=-13.Ø (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ96) (ØØ98) Y(5)=-5.Ø (ØØ98) Y(5)=-5.Ø (Ø1Ø1) W(5)=-7.5 (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø5) CALL BIN(ZBRK,Z(11),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(11),IW,DRW,NW) (Ø1Ø6) CALL BIN(WBRK,WI1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
(ØØ88) Y(3)=-9.Ø (ØØ89) Z(3)=7.5 (ØØ9Ø) W(3)=-13.Ø (ØØ91) (ØØ91) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (Ø996) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø3) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(2BRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø6) CALL BIN(WBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			X(3)=Ø 9
(ØØ89) Z(3)=7.5 (ØØ9Ø) W(3)=-13.Ø (ØØ91) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1Ø0) W(5)=-7.5 (Ø1Ø1) DO 15Ø I1=1,NIP (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø4) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø4) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø5) CALL BIN(YBRK,Y(11),IY,DRY,NY) (Ø1Ø5) CALL BIN(VBRK,V(11),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(11),IW,DRW,NW) (Ø1Ø6) CALL BIN(WBRK,NY,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			
(ØØ9Ø) W(3)=-13.Ø (ØØ91) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (ØØ99) Z(5)=4.5 (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(11),IX,DRX,NX) (Ø1Ø3) CALL BIN(YBRK,Y(11),IY,DRY,NY) (Ø1Ø4) CALL BIN(YBRK,Y(11),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(11),IW,DRW,NW) (Ø1Ø6) CALL BIN(WBRK,W(11),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,					
(ØØ91) (ØØ92) X(4)=2.9 (ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ97) X(5)=Ø.4 (ØØ98) (ØØ99) Z(5)=4.5 (ØØ99) Z(5)=4.5 (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø5) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
$(\emptyset \emptyset 92)$ $X(4)=2.9$ $(\emptyset \emptyset 93)$ $Y(4)=-6.\emptyset$ $(\emptyset \emptyset 94)$ $Z(4)=6.\emptyset$ $(\emptyset \emptyset 95)$ $W(4)=-15.\emptyset$ $(\emptyset \emptyset 96)$ $(\emptyset 096)$ $(\emptyset \emptyset 97)$ $X(5)=\emptyset.4$ $(\emptyset \emptyset 98)$ $Y(5)=-5.\emptyset$ $(\emptyset \emptyset 99)$ $Z(5)=4.5$ $(\emptyset 1 \emptyset \emptyset)$ $W(5)=-7.5$ $(\emptyset 1 \emptyset 1)$ DO $(\emptyset 1 \emptyset 2)$ DO $(\emptyset 1 \emptyset 3)$ $CALL$ $BIN(YBRK, X(11), IX, DRX, NX)$ $(\emptyset 1 \emptyset 4)$ $CALL$ $BIN(YBRK, Y(11), IY, DRY, NY)$ $(\emptyset 1 \emptyset 5)$ $CALL$ $BIN(WBRK, Z(11), IZ, DRZ, NZ)$ $(\emptyset 1 \emptyset 6)$ $CALL$ $BIN(WBRK, W(11), IW, DRW, NW)$ $(\emptyset 1 \emptyset 7)$ $CALL$ $FUN(YBRK, NX, NY, NZ, NW, NF, IX, IY, IZ, IW, NY)$	-	-			w(3)-15.0
(ØØ93) Y(4)=-6.Ø (ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1Ø0) W(5)=-7.5 (Ø1Ø1) (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,					X/4)-2 Q
(ØØ94) Z(4)=6.Ø (ØØ95) W(4)=-15.Ø (ØØ96) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) OO 15Ø I1=1,NIP (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø3) CALL BIN(XBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-				
(ØØ95) W(4)=-15.Ø (ØØ96) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) DO 15Ø II=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø3) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,					
(ØØ96) (ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) OO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø3) CALL BIN(XBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(YBRK,Y(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			
(ØØ97) X(5)=Ø.4 (ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) 00 (Ø1Ø2) DO 15Ø (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,					W(4)13.0
(ØØ98) Y(5)=-5.Ø (ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) DO 15Ø I1=1,NIP (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	•	•			¥/5)-0 A
(ØØ99) Z(5)=4.5 (Ø1ØØ) W(5)=-7.5 (Ø1Ø1) DO 15Ø I1=1,NIP (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø3) CALL BIN(XBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
(Ø1ØØ) W(5)=-7.5 (Ø1Ø1) W(5)=-7.5 (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
(Ø1Ø1) (Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			
(Ø1Ø2) DO 15Ø I1=1,NIP (Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			w(ɔ)=-/.5
(Ø1Ø3) CALL BIN(XBRK,X(I1),IX,DRX,NX) (Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	•	•			
(Ø1Ø4) CALL BIN(YBRK,Y(I1),IY,DRY,NY) (Ø1Ø5) CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ) (Ø1Ø6) CALL BIN(WBRK,W(I1),IW,DRW,NW) (Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			
(Ø1Ø5)CALL BIN(ZBRK,Z(I1),IZ,DRZ,NZ)(Ø1Ø6)CALL BIN(WBRK,W(I1),IW,DRW,NW)(Ø1Ø7)CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		-			
(Ø1Ø6)CALL BIN(WBRK,W(I1),IW,DRW,NW)(Ø1Ø7)CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,		•			
(Ø1Ø7) CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,	-	-			
• • • • • • • • • • • •	-	-			
(0103) DRX, DRY, DRZ, DRW, FVAL $(1, 11)$	-	-			
	(101108)			DRX, DRY, DRZ, DRW, FVAL(1, I1))

APPENDIX F

SIMULATION LIBRARY ROUTINES

F.1 INTRODUCTION

The Simulation Library contains a set of routines which are useful in modeling various continuous systems. These continuous systems are characterized by ordinary differential equations (ODE) and three-dimensional coordinate transformations of rigid bodies, which simulate physical models.

The methods provided for solving ODE's include Runge-Kutta and Euler explicit methods, which require no previous evaluation of functions or derivatives, as well as multistep Adams implicit and explicit methods, which require previous evaluation of the function and one or more previous derivatives. These multistep methods can be started with lower order methods or with the Runge-Kutta routine. Once started, the multistep routines require only a single evaluation of the derivative functions per call. The fourth order Runge-Kutta method requires four evaluations per time step.

The three-dimensional rotation matrix routine forms a rotation matrix from a sequence of rotational specifications and can be used in conjunction with routine CTRN3 to perform three-dimensional coordinate transformations consisting of rotation plus translation.

An additional utility routine is provided to rapidly calculate the cosine and sine of an angle, both of which are often required in geometric transformations and graphic output.

F.2 SINGLE STEP METHODS

- RKGTF Runge-Kutta-Gill-Thompson: a fourth order single step method to solve a system of ordinary differential equations (ODE's) using Thompson's numerical enhancement of the Runge-Kutta-Gill method. The routine requires an APFTN64 user subroutine to evaluate the derivatives.
- ABP1 Adams-Bashforth predictor order one: a single step predictor method, also known as Euler's method, for solving ODE's.
- AMC1 Adams-Moulton corrector order one: a single step predictor method, also known as the backward Euler method, used for corrections to "stiff" ODE's.

APFTN64 ROUTINE FOR USE WITH RKGTF

```
SUBROUTINE DFUN(T,N,Y,F)
· C
С
    *** DFUN *** SAMPLE APFTN64 ROUTINE ***
С
      DIMENSION Y(N), F(N)
С
      DO 10 I=1,N
         F(I)=Y(I)
   10 CONTINUE
С
С
   CORRESPONDS TO SOLUTIONS OF FORM:
С
С
      Y(I) = Y\emptyset * EXP(T)
С
      RETURN
      END
```

APPENDIX G

LIST OF SUPERSEDED ROUTINES

FØØ RELEASE

OLD ROUTINES

NEW ROUTINES

FMMM32	FMMM or FMMMV
MMUL32	MMUL, FMMM, or FMMMV
ZVABS, VABS	VABS
ZVADD, VADD	VADD
ZVFLT, VFLOAT	VFLOAT
ZVIFIX, VIFIX	VIFIX
ZVMSA, VMSA	VMSA
ZVMUL, VMUL	VMUL
ZVNEG, VNEG	VNEG
ZVRVRS, VRVRS	VRVRS
ZVSADD, VSADD	VSADD
ZVSMA, VSMA	VSMA
ZVSMSA, VSMSA	VSMSA
ZVSMSB, VSMSB	VSMSB
ZVSMUL, VSMUL	VSMUL
ZVSQ, VSQ	VSQ
ZVSUB, VSUB	VSUB
ZVSWAP, VSWAP	VSWAP

The replacement routines for FMMM32 and MMUL32 include the same functionality as FMMM32 and MMUL32 and are also more general.

FØ3 RELEASE

OLD ROUTINES	NEW ROUTINES
AIMAG	AIMAG (APFTN64 intrinsic)
CSFR	CSFR2
CSFS	CSFS2
CSSV	CSSV2
CUFR	CUFR2
CUFS	CUFS2
CUSV	CUSV2
EXTRU	EXTRACT (APFTN64 intrinsic)
FLOAT	FLOAT (APFTN64 intrinsic)
IFIX	IFIX (APFTN64 intrinsic)
INSERT	INSERT (APFTN64 intrinsic)
LOC	LOC (APFTN64 intrinsic)
RSFR	RSFR2
RSFS	RSFS2
RSSV	RSSV2

APPENDIX H

EXCEPTIONS ENABLED ROUTINES INFORMATION AND INTERNAL SUBROUTINES

H.1 EXCEPTIONS ENABLED ROUTINES INFORMATION

Beginning with the G $\tilde{g}\tilde{g}$ Release, all APMATH64 routines report valid exceptions.

H.2 INTERNAL SUBROUTINES

The following routines are used only as internal subroutines by other APMATH64 routines. These routines are listed here to facilitate interpretation of program tracebacks.

	INTERNAL SUBROUTINE	CALLING ROUTINE(S)
	ADV2	CFFT, CFFTB, CFFTI, XCFFT
	ADV4	CFFT, CFFTB, CFFTI, XCFFT
	ALTINP	CCEPS
	BITREV	CFFT, CFFTI
1	CBEAJY	СВЕЈҮН
	CBEDH	RKGTF
	CBEDJ	RKGTF
İ	CBERHY	СВЕЈҮН
1	CBERJS	СВЕЈҮН
	CBERYH	СВЕЈҮН
	CLSTAT	CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,
		HANN, CFFTI, IIRELT, IREALT, XCFFT
	CTOR	RFFT2D
	ENTVAR .	SIMPLE
	FFT2	CFFT, CFFTB, FFT2B, CFFTI, XCFFT
	FFT2B	CFFTB
	FFT4	CFFT, CFFTB, FFT4B, CFFTI
	FFT4B	CFFTB
	IFFT4	CFFTI
		RFTII
	INTEG	СВЕЈҮН
	IREALT	RFFTI, RFTII, IIRELT
	LPSPFI	SIMPLE
	PHAUNW	CCEPS
	PHCHCK	PHAUNW
	REALTR	RFFT, RFFTB, RFFTI, RFTII
ł	RKGTF	INTEG
	RTOC	RFFT2D
		FFT2B, FFT4B
	SPCVAL	PHAUNW
	STSTAT	CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,

APPENDIX I

.

APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE

BASIC MATH LIBRARY (VOLUME 1)

CCMMUL	COMPLEX MATRIX MULTIPLY	A - 2
CDET	COMPLEX MATRIX DETERMINANT	A - 4
CDOTPR	COMPLEX DOT PRODUCT	A - 6
CFFT	COMPLEX-TO-COMPLEX FFT (IN PLACE)	A - 7
CFFTB	COMPLEX-TO-COMPLEX FFT (NOT IN PLACE)	A - 8
CFFTM	MIXED-RADIX COMPLEX FFT (NOT-IN-PLACE)	A - 9
CFFTSC	COMPLEX FFT SCALE	A - 11
CGMMUL	COMPLEX GENERAL MATRIX MULTIPLY	A - 12
CMATIN	COMPLEX MATRIX INVERSE	A - 14
CMDET	COMPLEX MATRIX DETERMINANT	A - 15
CMFACT	COMPLEX MATRIX L/U FACTORIZATION	A - 17
CMMTRC	COMPLEX MATRIX MULTIPLY TRACE	A - 19
CMMUL	COMPLEX MATRIX MULTIPLY	A - 2Ø
CMSOLV	COMPLEX MATRIX EQUATION SOLVER	A - 21
CMTRAC	COMPLEX SUB-MATRIX TRACE	A - 23
CMTRAN	COMPLEX SUB-MATRIX TRANSPOSE	A - 24
CMVML3	COMPLEX 3X3 MATRIX MULT. 3D VECTORS	A - 25
CMVML4	COMPLEX 4X4 MATRIX MULT. 4D VECTORS	A - 26
CONV	CONVOLUTION (CORRELATION)	A - 27
CRMMUL	COMPLEX-REAL MATRIX MULTIPLY	A - 28
CROSSP	COMPLEX 3D CROSS PRODUCT	A - 3Ø
CRVADD	COMPLEX AND REAL VECTOR ADD	A - 31
CRVDIV	COMPLEX AND REAL VECTOR DIVIDE	A - 32
CRVMUL	COMPLEX AND REAL VECTOR MULTIPLY	A - 33
CRVSUB	COMPLEX AND REAL VECTOR SUBTRACT	A - 34
CSOLV	COMPLEX SYSTEM SOLVER	A - 35
CSOLVQ	COMPLEX MATRIX EQUATION SOLVER	A - 36
CTRN2	2-D COORDINATE TRANSFORM	A - 39
CTRN3	3-DIMENSIONAL COORDINATE TRANSFORMATION	A - 4Ø
CVABS	COMPLEX VECTOR ABSOLUTE VALUE	A - 42
CVADD	COMPLEX VECTOR ADD	A - 43
CVCOMB	COMPLEX VECTOR COMBINE	A - 44
CVCONJ	COMPLEX VECTOR CONJUGATE	A - 45
CVEXP	COMPLEX VECTOR EXPONENTIAL	A - 46
CVFILL	COMPLEX VECTOR FILL	A - 47
CVMA	COMPLEX VECTOR MULTIPLY AND ADD	A - 48
CVMAGS	COMPLEX VECTOR MAGNITUDE SQUARED	A - 5Ø
CVMEXP	COMPLEX VECTOR MULTIPLY EXPONENTIAL	A - 51
CVMOV	COMPLEX VECTOR MOVE	A - 52
CVMUL	COMPLEX VECTOR MULTIPLY	A - 53
CVNEG	COMPLEX VECTOR NEGATE	A - 54
CVRCIP	COMPLEX VECTOR RECIPROCAL	A - 55
CVREAL	FORM COMPLEX VECTOR OF REALS	A - 56

BASIC MATH LIBRARY (C

RMSQV	ROOT-MEAN-SQUARE OF VECTOR ELEMENTS	A - 125
SCJMA	SELF-CONJUGATE MULTIPLY AND ADD	A - 126
SGEFA	REAL GENERAL MATRIX FACTOR	A - 127
SGESL	REAL GENERAL MATRIX SOLVE	A - 129
SGTSL	TRIDIAGONAL MATRIX SOLVER	A - 131
SMMM	SUBMATRIX MULTIPLY	A - 133
SMMMV	SUBMATRIX MULTIPLY	A - 135
SN2	SQUARED DISTANCE BETWEEN TWO VECTORS	A - 137
SOLVEQ	LINEAR EQUATION SOLVER	A - 138
STMM	SUBMATRIX TRANSPOSE & MULTIPLY	A - 14Ø
SVE	SUM OF VECTOR ELEMENTS	A - 142
SVEMG	SUM OF VECTOR ELEMENT MAGNITUDES	A - 143
SVESQ	SUM OF VECTOR ELEMENT SQUARES	A - 144
SVS	SUM OF VECTOR SIGNED SQUARES	A - 145
TRIDIA	TRIDIAGONAL MATRIX SOLVER	A - 146
VAAM	VECTOR ADD, ADD, AND MULTIPLY	A - 147
VABS	VECTOR ABSOLUTE VALUE	A - 148
VACOS	VECTOR ARCCOSINE	A - 149
VADD	VECTOR ADD	A - 15Ø
VAINT	VECTOR TRUNCATE	A - 151
VALG	VECTOR LOGARITHM	A - 152
VALG1Ø	VECTOR BASE 10 LOGARITHM	A - 153
VAM	VECTOR ADD AND MULTIPLY	A - 154
VASIN	VECTOR ARCSINE	A - 155
VASM	VECTOR ADD AND SCALAR MULTIPLY	A - 156
VATAN	VECTOR ARCTANGENT	A - 157
VATAN2	VECTOR ARCTANGENT (2 ARGUMENTS)	A - 158
VCLIP	VECTOR CLIP	A - 159
VCLR	VECTOR CLEAR	A - 16Ø
VCOS	VECTOR COSINE	A - 161
VCOSH	VECTOR COSINE (HYPERBOLIC)	A - 162
VDIV	VECTOR DIVIDE	A - 163
VEUCL2	VECTOR EUCLIDEAN DISTANCE	A - 164
VEXP	VECTOR EXPONENTIAL	A - 165
VEXP1Ø	VECTOR EXPONENTIAL (BASE 10)	A - 166
VFILL	VECTOR FILL	A - 167
VFRAC	VECTOR TRUNCATE TO FRACTION	A - 168
VIABS	VECTOR ABSOLUTE VALUE	A - 169
VIADD	VECTOR INTEGER ADD	A - 17Ø
VICLIP	VECTOR INVERTED CLIP	A - 171
VIDIV	VECTOR INTEGER DIVIDE	A - 172
VIMAG	EXTRACT IMAGINARIES OF COMPLEX VECTOR	A - 173
VIMUL	VECTOR INTEGER MULTIPLY	A - 174
VINDEX	VECTOR INDEX	A - 175
VINEG	VECTOR INTEGER NEGATE	A - 176
VISUB	VECTOR INTEGER SUBTRACT	A - 177
VLAND	VECTOR LOGICAL ADD	A - 178
VLEQV	VECTOR LOGICAL EQUIVALENCE	A - 179
VLIM	VECTOR LIMIT	A - 18Ø
VLMERG	LOGICAL VECTOR MERGE	A - 181

.

BASIC MATH LIBRARY (cont.)	
----------------------------	--

.

.

VTSADD	VECTOR TM SCALAR ADD	A - 23Ø
VTSMA	VECTOR TM SCALAR MULTIPLY AND ADD	A - 231
VTSMUL	VECTOR TM SCALAR MULTIPLY	A - 232

	ADVANCED MATH LIBRARY (VOLUME 2)		
СН	COMPLEX HERMITIAN EIGENSYSTEM SOLVER	A - 234	
EIGRS	REAL SYMMETRIC EIGENSYSTEM SOLVER	A - 237	
HTRIBK	COMPLEX HERMITIAN EIGENVECTORS	A - 239	
HTRIDI	COMPLEX HERMITIAN TRIDIAGONALIZATION	A - 241	
IMTQL1	DIAGONALIZE TRIDIAGONAL MATRIX	A - 243	
IMTQL2	DIAGONALIZE A TRIDIAGONAL MATRIX	A - 245	
RS	REAL SYMMETRIC EIGENSYSTEM SOLVER	A - 247	
SIMPLE	REVISED SIMPLEX	A - 249	
SKYSOL	SKYLINE FORMAT EQUATION SOLVER	A - 254	
TRED1	TRIDIAGONALIZE SYMMETRIC MATRX	A - 256	
TRED2	TRIDIAGONALIZE A SYMMETRIC MATRIX	A - 258	
VASORT	VECTOR SORT ALGEBRAIC VALUES	A - 259	
VISORT	VECTOR SORT INTEGER VALUES	A - 26Ø	
VSORT	VECTOR SORT WITH INDICES	A - 261	

SIGNAL PROCESSING LIBRARY

ACORFAUTO-CORRELATION (FREQUENCY-DOMAIN)A = 264ACORTAUTO-CORRELATION (TIME-DOMAIN)A = 265ASPECACCUMULATING AUTO-SPECTRUMA = 266BLKMANBLACKMAN WINDOW MULTIPLYA = 267CCEPSPHASE UNWRAP AND COMPLEX CEPSTRUMA = 268CCORFCROSS-CORRELATION (FREQUENCY-DOMAIN)A = 272CCORTCROSS-CORRELATION (TIME-DOMAIN)A = 273CFFTICOMPLEX FFT WITH INTERPOLATIONA = 274COHERCOHERENCE FUNCTIONA = 275CSPECACCUMULATING CROSS-SPECTRUMA = 277ENVELENVELOPE DETECTORA = 277ENVELENVELOPE DETECTORA = 280HANNHAMMING WINDOW MULTIPLYA = 281HISTHISTOGRAMA = 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA = 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA = 284PKVALPEAK AND VALLEY PICKINGA = 288RFFTIREAL FFT WITH INTERPOLATIONA = 288RFFTIREAL FFT WITH INTERPOLATIONA = 288			
ASPECACCUMULATING AUTO-SPECTRUMA - 266BLKMANBLACKMAN WINDOW MULTIPLYA - 267CCEPSPHASE UNWRAP AND COMPLEX CEPSTRUMA - 268CCORFCROSS-CORRELATION (FREQUENCY-DOMAIN)A - 272CCORTCROSS-CORRELATION (TIME-DOMAIN)A - 273CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 277HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	ACORF	AUTO-CORRELATION (FREQUENCY-DOMAIN)	A - 264
BLKMANBLACKMAN WINDOW MULTIPLYA - 267CCEPSPHASE UNWRAP AND COMPLEX CEPSTRUMA - 268CCORFCROSS-CORRELATION (FREQUENCY-DOMAIN)A - 272CCORTCROSS-CORRELATION (TIME-DOMAIN)A - 273CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	ACORT	AUTO-CORRELATION (TIME-DOMAIN)	A - 265
CCEPSPHASE UNWRAP AND COMPLEX CEPSTRUMA - 268CCORFCROSS-CORRELATION (FREQUENCY-DOMAIN)A - 272CCORTCROSS-CORRELATION (TIME-DOMAIN)A - 273CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	ASPEC	ACCUMULATING AUTO-SPECTRUM	A - 266
CCORFCROSS-CORRELATION (FREQUENCY-DOMAIN)A = 272CCORTCROSS-CORRELATION (TIME-DOMAIN)A - 273CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 288RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	BLKMAN	BLACKMAN WINDOW MULTIPLY	A - 267
CCORTCROSS-CORRELATION (TIME-DOMAIN)A - 273CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 288RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	CCEPS	PHASE UNWRAP AND COMPLEX CEPSTRUM	A - 268
CFFTICOMPLEX FFT WITH INTERPOLATIONA - 274COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 288RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	CCORF	CROSS-CORRELATION (FREQUENCY-DOMAIN)	A - 272
COHERCOHERENCE FUNCTIONA - 275CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	CCORT	CROSS-CORRELATION (TIME-DOMAIN)	A - 273
CSPECACCUMULATING CROSS-SPECTRUMA - 276DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	CFFTI	COMPLEX FFT WITH INTERPOLATION	A - 274
DECFIRDECIMATIONA - 277ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	COHER	COHERENCE FUNCTION	A - 275
ENVELENVELOPE DETECTORA - 279HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	CSPEC	ACCUMULATING CROSS-SPECTRUM	A - 276
HAMMHAMMING WINDOW MULTIPLYA - 280HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	DECFIR	DECIMATION	A - 277
HANNHANNING WINDOW MULTIPLYA - 281HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	ENVEL	ENVELOPE DETECTOR	A - 279
HISTHISTOGRAMA - 282HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	HAMM	HAMMING WINDOW MULTIPLY	A - 28Ø
HLBRTHILBERT TRANSFORMERA - 283LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	HANN	HANNING WINDOW MULTIPLY	A - 281
LPAUTOLINEAR PREDICTION AUTOCORRELATIONA - 284PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	HIST	HISTOGRAM	A - 282
PKVALPEAK AND VALLEY PICKINGA - 286RDFTREAL DISCRETE FOURIER TRANSFORMA - 288	HLBRT	HILBERT TRANSFORMER	A - 283
RDFT REAL DISCRETE FOURIER TRANSFORM A - 288	LPAUTO	LINEAR PREDICTION AUTOCORRELATION	A - 284
	PKVAL	PEAK AND VALLEY PICKING	A - 286
RFFTI REAL FFT WITH INTERPOLATION A - 290	RDFT	REAL DISCRETE FOURIER TRANSFORM	A - 288
	RFFTI	REAL FFT WITH INTERPOLATION	A - 29Ø

LINPACK BLAS LIBRARY (cont.)

SROT SROTG SROTM	PLANE ROTATION GIVENS PLANE ROTATION MODIFIED GIVENS ROTATIONS	A - 355 A - 356 A - 357
SROTMG	MODIFIED GIVENS PLANE ROTATION SETUP	A - 358
SSCAL	REAL SCALAR TIMES VECTOR	A - 36Ø
SSWAP	INTERCHANGES VECTORS	A - 361

SIMULATION LIBRARY

ABP1	ADAMS-BASHFORTH PREDICTOR (ORDER 1)	A - 363
ABP2	ADAMS-BASHFORTH PREDICTOR (ORDER 2)	A - 364
ABP3	ADAMS-BASHFORTH PREDICTOR (ORDER 3)	A - 365
ABP4	ADAMS-BASHFORTH PREDICTOR (ORDER 4)	A - 366
ADAMS4	ADAMS VARIABLE STEP INTEG.(ORD 4)	A - 368
AMC1	ADAMS-MOULTON CORRECTOR (ORDER 1)	A - 371
AMC2	ADAMS-MOULTON CORRECTOR (ORDER 2)	A - 372
AMC 3	ADAMS-MOULTON CORRECTOR (ORDER 3)	A - 373
AMC 4	ADAMS-MOULTON CORRECTOR (ORDER 4)	A - 374
BIN	BINARY SEARCH	A - 376
CBEIK	COMPLEX BESSEL I AND K	A - 378
CBEJYH	COMPLEX BESSEL J, Y, AND H	A - 381
FUN1	FUNCTION OF ONE VARIABLE	A - 384
FUN2	FUNCTION OF TWO VARIABLES	A - 386
FUN3	FUNCTION OF THREE VARIABLES	A - 388
FUN4	FUNCTION OF FOUR VARIABLES	A - 39Ø
RKGIL	RUNGE-KUTTA-GILL INTEGRATION	A - 392
RKGTF	R-K-GILL-THOMPSON INTEG. (ORDER 4)	A - 395
ROT 3	3D ROTATION MATRIX, 3-ANGLE	A - 397
SCS1	SCALAR COS/SIN, TM INTERP.(ORD 1)	A - 399
STEP	STEP SEARCH	A - 4ØØ

GEOPHYSICAL LIBRARY

CONNMO	NMO WITH CONSTANT VELOCITY	A - 4Ø3
IIR3Ø	RECURSIVE FILTER	A - 4Ø5
KSMLV	K-TH SMALLEST ELEMENT IN VECTOR	A - 4Ø7
NMOLI	NMO LINEAR INTERPOLATION	A - 4Ø8
NMOQI	NMO QUADRATIC INTERPOLATION	A - 41Ø
POST64	POST BITS TO RASTER	A - 412
RESNMO	RESIDUAL NORMAL MOVEOUT	A - 413
TMCONV	CONVOLUTION (CORRELATION)	A - 415
VØl	VECTOR ZERO TRENDS	A - 417
VARNMO	NMO WITH VARIABLE VELOCITY	A - 418
VRNAVG	VECTOR RUNNING AVERAGE	A - 42Ø
VSCANØ	VECTOR SCAN FOR ZEROS	A - 421

.

TABLE MEMORY LIBRARY (cont.)		
TTTSUB	VECTOR SUBTRACT (TM-TM TO TM)	A - 5ØØ
TTVLC2	VECTOR LINEAR COMBINATION	A - 5Ø1
TVCLR	TABLE MEMORY VECTOR CLEAR	A - 5Ø2

SPECIAL UTILITIES LIBRARY

EXTRS	EXTRACT A SIGNED BIT-FIELD	A - 5Ø4
PEEK	MEMORY FETCH	A - 5Ø5
POKE	STORE INTO MEMORY	A - 5Ø6

DATA FORMATTING LIBRARY

VFLOAT	CONVERT INTEGER TO FLOATING-POINT	A - 5Ø8
VIFIX	VECTOR INTEGER FIX	A - 5Ø9
VPK8	VECTOR 8-BIT BYTE PACK	A - 51Ø
VPK16	VECTOR 16-BIT BYTE PACK	A - 511
VPK32	VECTOR 32-BIT BYTE PACK	A - 512
VPKI32	VECTOR 32-BIT INTEGER PACK	A - 513
VPKR32	VECTOR REAL HALFWORD PACK	A - 514
VSCALE	VECTOR SCALE AND FIX	A - 515
VSCSCL	VECTOR SCAN SCALE AND FIX	A - 516
VSHFX	VECTOR SHIFT AND FIX	A - 517
VSMAFX	VECTOR SCALAR MULTIPLY, ADD AND FIX	A - 518
VUP8	VECTOR 8-BIT BYTE UNPACK	A - 519
VUP16	VECTOR 16-BIT BYTE UNPACK	A - 52Ø
VUP32	VECTOR 32-BIT BYTE UNPACK	A - 521
VUPR32	VECTOR HALFWORD REAL UNPACK	A - 522
VUPS8	VECTOR 8-BIT SIGNED BYTE UNPACK	A - 523
VUPS16	VECTOR 16-BIT SIGNED BYTE UNPACK	A - 524
VUPS32	VECTOR 32-BIT SIGNED BYTE UNPACK	A - 525
VUSI32	VECTOR 32-BIT SIGNED INTEGER UNPACK	A - 526
VUUI32	VECTOR 32-BIT UNSIGNED UNPACK	A - 527

DOUBLE PRECISION LIBRARY

DADD	DOUBLE TO DOUBLE-PRECISION ADD	A - 529
DADDRR	SINGLE TO DOUBLE-PRECISION ADD	A - 53Ø
DADOT	DOUBLE ACCUMULATE DOT PRODUCT	A - 531
DDOTRR	DOUBLE DOT PRODUCT REAL REAL	A - 532
DMUL	DOUBLE TO DOUBLE-PRECISION MULTIPLY	A - 533
DMULRR	SINGLE TO DOUBLE PRECISION MULTIPLY	A - 534
DNEG	NEGATE DOUBLE-PRECISION NUMBER	A - 535
DSUB	DOUBLE TO DOUBLE-PRECISION SUBTRACT	A - 536
DSUBRR	SINGLE TO DOUBLE-PRECISION SUBTRACT	A - 537

APPENDIX J

.

APMATH64 ROUTINES IN ALPHABETICAL ORDER

NAME	DESCRIPTION	PAGE
ABP1	ADAMS-BASHFORTH PREDICTOR (ORDER 1)	A - 363
	ADAMS-BASHFORTH PREDICTOR (ORDER 1)	A - 363 A - 364
ABP2 ABP3		A - 364 A - 365
	ADAMS-BASHFORTH PREDICTOR (ORDER 3)	
ABP4	ADAMS-BASHFORTH PREDICTOR (ORDER 4)	A - 366
ABS	REAL NUMBER ABSOLUTE VALUE	A - 539
ACORF	AUTO-CORRELATION (FREQUENCY-DOMAIN)	A - 264
ACORT	AUTO-CORRELATION (TIME-DOMAIN)	A - 265
ACOS	REAL NUMBER ARCCOSINE	A - 54Ø
ADAMS4		A - 368
AINT	TRUNCATE REAL NUMBER	A - 541
ALOG1Ø	REAL NUMBER LOGARITHM	A - 543
ALOG	REAL NUMBER LOGARITHM	A - 542
AMC1	ADAMS-MOULTON CORRECTOR (ORDER 1)	A - 371
AMC2	ADAMS-MOULTON CORRECTOR (ORDER 2)	A - 372
AMC3	ADAMS-MOULTON CORRECTOR (ORDER 3)	A - 373
AMC4	ADAMS-MOULTON CORRECTOR (ORDER 4)	A - 374
AMOD	REAL/REAL DIVIDE REMAINDER	A - 544
ANINT	ROUND REAL NUMBER TO NEAREST WHOLE	A - 545
ASIN	REAL NUMBER ARCSINE	A - 546
ASPEC	ACCUMULATING AUTO-SPECTRUM	A - 266
ATAN2	ARCTANGENT OF RATIO OF REAL NUMBERS	A - 548
ATAN	ARCTANGENT OF REAL NUMBER	A - 547
BIN	BINARY SEARCH	A - 376
BLKMAN	BLACKMAN WINDOW MULTIPLY	A - 267
CABS	COMPLEX NUMBER ABSOLUTE VALUE	A - 549
CAXPY	COMPLEX A * X + Y	A - 326
CAXPYN	NESTED COMPLEX A * X + Y	A - 327
CBEIK	COMPLEX BESSEL I AND K	A - 378
СВЕЈҮН	COMPLEX BESSEL J, Y, AND H	A - 381
CCEPS	PHASE UNWRAP AND COMPLEX CEPSTRUM	A - 268
CCMMUL	COMPLEX MATRIX MULTIPLY	A - 2
CCOPY	COMPLEX VECTOR COPY	A - 33Ø
CCORF	CROSS-CORRELATION (FREQUENCY-DOMAIN)	A - 272
CCORT	CROSS-CORRELATION (TREGUENCI-DOMAIN) CROSS-CORRELATION (TIME-DOMAIN)	
CCOS	COMPLEX NUMBER COSINE	A - 273
CDET		A - 55Ø
	COMPLEX MATRIX DETERMINANT	A - 4
CDIV	COMPLEX/COMPLEX DIVIDE	A - 551
CDIVCR	REAL/COMPLEX DIVIDE	A - 552
CDIVRC	COMPLEX/REAL DIVIDE	A - 553
CDOTC	COMPLEX INNER PRODUCT	A - 331
CDOTN	NESTED COMPLEX DOT PRODUCT	A - 332
CDOTPR	COMPLEX DOT PRODUCT	A - 6
CDOTU	COMPLEX DOT PRODUCT	A - 335

0117700	SPARSE COMPLEX UNSYM FACTOR & SOLVE	3 - 424
CUFS2		A - 434
CUSV2	SPARSE COMPLEX UNSYMMETRIC SOLVE	A - 437
CVABS	COMPLEX VECTOR ABSOLUTE VALUE	A - 42
CVADD	COMPLEX VECTOR ADD	A - 43
CVCOMB	COMPLEX VECTOR COMBINE	A - 44
CVCONJ	COMPLEX VECTOR CONJUGATE	A - 45
CVEXP	COMPLEX VECTOR EXPONENTIAL	A - 46
CVFILL	COMPLEX VECTOR FILL	A - 47
CVMA	COMPLEX VECTOR MULTIPLY AND ADD	A - 48
CVMAGS	COMPLEX VECTOR MAGNITUDE SQUARED	a — 5ø
CVMEXP	COMPLEX VECTOR MULTIPLY EXPONENTIAL	A - 51
CVMOV	COMPLEX VECTOR MOVE	A - 52
CVMUL	COMPLEX VECTOR MULTIPLY	A - 53
CVNEG	COMPLEX VECTOR NEGATE	A - 54
CVRCIP	COMPLEX VECTOR RECIPROCAL	A - 55
CVREAL	FORM COMPLEX VECTOR OF REALS	A - 56
CVSMA	COMPLEX VECTOR SCALAR MULTIPLY AND ADD	A - 57
CVSMUL	COMPLEX VECTOR SCALAR MULTIPLY	A - 58
CVSUB	COMPLEX VECTOR SUBTRACT	A - 59
DADD	DOUBLE TO DOUBLE-PRECISION ADD	A - 529
DADDRR	SINGLE TO DOUBLE-PRECISION ADD	A - 53Ø
DADOT	DOUBLE ACCUMULATE DOT PRODUCT	A - 531
DDOTRR	DOUBLE DOT PRODUCT REAL REAL	A - 532
DECFIR	DECIMATION	A - 277
DEQ22	DIFFERENCE EQUATION, 2 POLES, 2 ZEROS	A - 6Ø
DIM	REAL/REAL POSITIVE DIFFERENCE	A - 566
DMUL	DOUBLE TO DOUBLE-PRECISION MULTIPLY	A - 533
DMULRR	SINGLE TO DOUBLE PRECISION MULTIPLY	A - 534
DNEG	NEGATE DOUBLE-PRECISION NUMBER	A - 535
DOTPR	DOT PRODUCT	A - 62
DSUB	DOUBLE TO DOUBLE-PRECISION SUBTRACT	A - 536
DSUBRR	SINGLE TO DOUBLE-PRECISION SUBTRACT	A - 537
EIGRS	REAL SYMMETRIC EIGENSYSTEM SOLVER	A - 237
ENVEL	ENVELOPE DETECTOR	A - 279
EXP	EXPONENTIAL OF REAL NUMBER	A - 567
EXTRS	EXTRACT A SIGNED BIT-FIELD	A - 5Ø4
FMMM	FAST MATRIX MULTIPLY	A - 63
FMMMV	FAST MATRIX MULTIPLY	A - 64
FUN1	FUNCTION OF ONE VARIABLE	A - 384
FUN2	FUNCTION OF TWO VARIABLES	A - 386
FUN3	FUNCTION OF THREE VARIABLES	A - 388
FUN4	FUNCTION OF FOUR VARIABLES	A - 39Ø
GENTAB	GENERATE TWIDDLE FACTOR TABLE	A - 65
GRAD2D	MAXIMUM GRADIENT FILTER	A - 31Ø
GRD2DB	MAXIMUM GRADIENT FILTER WITH BOUND	A - 312
HAMM	HAMMING WINDOW MULTIPLY	A - 28Ø
HANN	HANNING WINDOW MULTIPLY	A - 281
HIST	HISTOGRAM	A = 281 A = 282
HLBRT	HISTOGRAM HILBERT TRANSFORMER	A - 282 A - 283
HTRIBK	COMPLEX HERMITIAN EIGENVECTORS	A - 283 A - 239
HTRIDI	COMPLEX HERMITIAN EIGENVECTORS	A - 239 A - 241
IABS	INTEGER ABSOLUTE VALUE	A - 241 A - 568
ICAMAX	INTEGER ADSOLUTE VALUE INDEX OF LARGEST COMPLEX ELEMENT	A - 341
IDIM	INDEX OF LARGEST COMPLEX ELEMENT INTEGER/INTEGER POSITIVE DIFFERENCE	A - 541 A - 569
TRIU	ININGEN/INIEGEN FOGILIVE DIFFERENCE	A JUJ

•

PAS3F	RADIX-3 FORWARD COMPLEX FFT PASS	A - 99
PASJI PASJI	RADIX-3 INVERSE COMPLEX FFT PASS	A = 101
		A = 101 A = 103
PAS4F	RADIX-4 FORWARD COMPLEX FFT PASS	
PAS4I	RADIX-4 INVERSE COMPLEX FFT PASS	A - 1Ø5
PASSF	RADIX-5 FORWARD COMPLEX FFT PASS	A - 1Ø7
PAS5I	RADIX-5 INVERSE COMPLEX FFT PASS	A - 1Ø9
PEEK	MEMORY FETCH	A - 5Ø5
PFINV	MATRIX INVERSE (PRODUCT FORM)	A - 111
PKVAL	PEAK AND VALLEY PICKING	A - 286
POKE	STORE INTO MEMORY	A - 5Ø6
POLAR	RECTANGULAR TO POLAR CONVERSION	A - 112
POST64	POST BITS TO RASTER	A - 412
RAN	SCALAR RANDOM NUMBER GENERATOR	A - 575
RCMMUL	REAL-COMPLEX MATRIX MULTIPLY	A - 113
RDFT	REAL DISCRETE FOURIER TRANSFORM	A - 288
RDIV	REAL/REAL DIVIDE	A - 576
RECT	POLAR TO RECTANGULAR CONVERSION	A - 115
RESNMO	RESIDUAL NORMAL MOVEOUT	A - 413
RFFT2D	REAL TO COMPLEX 2-DIMENSIONAL FFT	A - 323
RFFT	REAL-TO-COMPLEX FFT (IN PLACE)	A - 116
RFFTB	REAL-TO-COMPLEX FFT (NOT IN PLACE)	A - 117
RFFTI	REAL FFT WITH INTERPOLATION	A - 29Ø
RFFTM	MIXED-RADIX REAL FFT (NOT-IN-PLACE)	A - 119
RFFTSC	REAL FFT SCALE AND FORMAT	A - 121
RFTII	REAL FFT WITH QUARTER INTERPOLATION	A - 291
RGMMUL	REAL GENERAL MATRIX MULTIPLY	A - 123
RKGIL	RUNGE-KUTTA-GILL INTEGRATION	A - 392
RKGTF	R-K-GILL-THOMPSON INTEG. (ORDER 4)	A - 395
RMSOV	ROOT-MEAN-SOUARE OF VECTOR ELEMENTS	A - 125
ROT3	3D ROTATION MATRIX, 3-ANGLE	A - 397
RPOW	REAL TO REAL POWER	A - 577
RPOWRI	REAL TO INTEGER POWER	A - 578
RRCP	REAL RECIPROCAL	A - 579
RS	REAL SYMMETRIC EIGENSYSTEM SOLVER	A - 247
RSFR2	SPARSE REAL SYMMETRIC FACTOR	A - 439
RSFS2	SPARSE REAL SYMM FACTOR & SOLVE	A - 442
RSORT	RECIPROCAL SQUARE ROOT	A = 442 A = 580
	SPARSE REAL SYMMETRIC SOLVE	A - 446
RSSV2 RUFR2	SPARSE REAL UNSYMMETRIC FACTOR	A = 440 A = 449
	SPARSE REAL UNSYMMETRIC FACTOR SPARSE REAL UNSYM FACTOR & SOLVE	A = 449 A = 452
RUFS2	SPARSE REAL UNSIM FACIOR & SOLVE SPARSE REAL UNSYMMETRIC SOLVE	A = 452 A = 456
RUSV2	SUM OF MAGNITUDES	A - 343
SASUM	REAL A \star X + Y	A = 343 A = 344
SAXPY	NESTED REAL A * X + Y	A - 344 A - 345
SAXPYN	SUM OF REAL AND IMAGINARY MAGNITUDES	A = 345 A = 348
SCASUM		
SCJMA	SELF-CONJUGATE MULTIPLY AND ADD	A - 126
SCNRM2	COMPLEX EUCLIDEAN NORM	A - 349
SCOPY	VECTOR COPY	A - 35Ø
SCS1	SCALAR COS/SIN, TM INTERP.(ORD 1)	A - 399
SDOT	DOT PRODUCT OF REAL VECTORS	A - 351
SDOTN	NESTED REAL DOT PRODUCT	A - 352
SDOTPR	SPARSE DOT PRODUCT	A - 459
SGEFA	REAL GENERAL MATRIX FACTOR	A - 127
SGESL	REAL GENERAL MATRIX SOLVE	A - 129

TTTSUB	VECTOR SUBTRACT (TM-TM TO TM)	A - 500
TTVLC2	VECTOR LINEAR COMBINATION	A - 5Ø1
TVCLR	TABLE MEMORY VECTOR CLEAR	A - 5Ø2
VØl	VECTOR ZERO TRENDS	A - 417
VAAM	VECTOR ADD, ADD, AND MULTIPLY	A - 147
VABS	VECTOR ABSOLUTE VALUE	A - 148
VACOS	VECTOR ARCCOSINE	A - 149
VADD	VECTOR ADD	A - 15Ø
VAINT	VECTOR TRUNCATE	A - 151
VALGIØ	VECTOR BASE 10 LOGARITHM	A - 153
VALG	VECTOR LOGARITHM	A - 152
VAM	VECTOR ADD AND MULTIPLY	A - 154
VARNMO	NMO WITH VARIABLE VELOCITY	A - 418
VASIN	VECTOR ARCSINE	A - 155
VASM	VECTOR ADD AND SCALAR MULTIPLY	A - 156
VASORT	VECTOR SORT ALGEBRAIC VALUES	A - 259
VATAN2	VECTOR ARCTANGENT (2 ARGUMENTS)	A - 158
VATAN	VECTOR ARCTANGENT	A - 157
VAVEXP	VECTOR EXPONENTIAL AVERAGING	A - 296
VAVLIN	VECTOR LINEAR AVERAGING	A - 297
VCLIP	VECTOR CLIP	A - 159
VCLR	VECTOR CLEAR	A - 16Ø
VCOS	VECTOR COSINE	A - 161
VCOSH	VECTOR COSINE (HYPERBOLIC)	A - 162
VDBPWR	VECTOR CONVERSION TO DB (POWER)	A - 298
VDIV	VECTOR DIVIDE	A - 163
VEUCL2	VECTOR EUCLIDEAN DISTANCE	A - 164
VEXPLØ	VECTOR EXPONENTIAL (BASE $1\emptyset$)	A - 166
VEXP	VECTOR EXPONENTIAL	A - 165
VFILL	VECTOR FILL	A - 167
VFLOAT	CONVERT INTEGER TO FLOATING-POINT	A - 5Ø8
VFRAC	VECTOR TRUNCATE TO FRACTION	A - 168
VIABS	VECTOR ABSOLUTE VALUE	A - 169
VIADD	VECTOR INTEGER ADD	A - 17Ø
VICLIP	VECTOR INVERTED CLIP	A - 171
VIDIV	VECTOR INTEGER DIVIDE	A - 172
VIFIX	VECTOR INTEGER FIX	A - 5Ø9
VIMAG		A - 173
VIMUL	VECTOR INTEGER MULTIPLY	A - 174
VINDEX	VECTOR INDEX	A - 175
	VECTOR INTEGER NEGATE	A - 176
VISORT	VECTOR SORT INTEGER VALUES	A - 26Ø
VISUB	VECTOR INTEGER SUBTRACT	A - 177
VLAND	VECTOR LOGICAL ADD	A - 178
VLEQV	VECTOR LOGICAL EQUIVALENCE	A - 179
VLIM	VECTOR LIMIT	A - 18Ø
VLMERG		A - 181
VLNOT	VECTOR LOGICAL NOT	A - 182
VLOR	VECTOR LOGICAL OR	A - 183
VLXOR		A - 184
VMA	VECTOR MULTIPLY AND ADD	A - 185
VMAX	VECTOR MAXIMUM	A - 186
VMAXMG	VECTOR MAXIMUM MAGNITUDE	A = 180 A = 187
VMIN	VECTOR MINIMUM	A - 188
A 1.1 T 1.4	A BOTON LITUTION	u 100

VTSMA VECTOR	TM SCALAR MULTIPLY AND ADD	A - 231
VTSMUL VECTOR	TM SCALAR MULTIPLY	A - 232
VUP16 VECTOR	16-BIT BYTE UNPACK	A - 52Ø
VUP32 VECTOR	32-BIT BYTE UNPACK	A - 521
VUP8 VECTOR	8-BIT BYTE UNPACK	A - 519
VUPR32 VECTOR	HALFWORD REAL UNPACK	A - 522
VUPS16 VECTOR	16-BIT SIGNED BYTE UNPACK	A - 524
VUPS32 VECTOR	32-BIT SIGNED BYTE UNPACK	A - 525
VUPS8 VECTOR	8-BIT SIGNED BYTE UNPACK	A - 523
VUSI32 VECTOR	32-BIT SIGNED INTEGER UNPACK	A - 526
VUUI32 VECTOR	32-BIT UNSIGNED UNPACK	A - 527
VXCS VECTOR	MULTIPLIED BY SIN AND COS	A - 299
WIENER WIENER	LEVINSON ALGORITHM	A - 3Ø1

·

APMATH64 KEY WORD INDEX

This index of APMATH64 routines is sorted by key words that appear in each routine title. Each title can contain more than one key word. The key words are listed alphabetically to the right of the gap running down the center of each page.

To use the key word index, locate a key word that is representative of the desired APMATH64 function. Applicable APMATH64 routine names and titles can be found on the same line with each occurrence of the key word. The routine name appears in brackets ([]). The routine title immediately follows the routine name and continues on the other side of the gap when necessary. The ellipsis (...) is placed directly after the last word in the title if the line wraps around. The page where a particular routine is documented can be found in Appendix J.

1/3 RULE INTEGRATION 1Ø[VEXP1Ø]VECTOR 1Ø LOGARITHM
16-BIT BYTE PACK
16-BIT BYTE UNPACK
16-BIT SIGNED BYTE UNPACK
2-D ROTATION
2-DIMENSIONAL FFT
2-DIMENSIONAL FFT
3-ANGLE
32-BIT BYTE PACK
32-BIT BYTE UNPACK
32-BIT INTEGER PACK
32-BIT SIGNED BYTE UNPACK
32-BIT SIGNED INTEGER UNPACK
32-BIT UNSIGNED UNPACK
3D CROSS PRODUCT
3D VECTORS[CMVML3]COMPLEX
3X3
3X3 MATRIX MULT. 3D VECTORS
4D VECTORS[CMVML4]COMPLEX
4X4
4X4 MATRIX MULT. 4D VECTORS
8-BIT BYTE PACK
8-BIT BYTE UNPACK
8-BIT SIGNED BYTE UNPACK
ABSOLUTE VALUE
ACCUMULATE DOT PRODUCT

[VUP16]VECTOR 16-BIT BYTE UNPACK [VUP32]VECTOR 32-BIT BYTE UNPACK [VUP8]VECTOR 8-BIT BYTE UNPACK [VUPS16]VECTOR 16-BIT SIGNED BYTE UNPACK VUPS32 VECTOR 32-BIT SIGNED BYTE UNPACK [VUPS8]VECTOR 8-BIT SIGNED BYTE UNPACK UNWRAP AND COMPLEX CEPSTRUM...[CCEPS]PHASE [TVCLR]TABLE MEMORY VECTOR CLEAR [VCLR]VECTOR CLEAR [VCLIP]VECTOR CLIP [VICLIP]VECTOR INVERTED CLIP [TMVLC2]VECTOR LINEAR COMBINATION [TTVLC2]VECTOR LINEAR COMBINATION [CVCOMB]COMPLEX VECTOR COMBINE [CFFT2D]COMPLEX TO COMPLEX 2-DIMENSIONAL FFT [RFFT2D]REAL TO COMPLEX 2-DIMENSIONAL FFT [CAXPYN]NESTED COMPLEX A * X + Y [CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM [CDOTN]NESTED COMPLEX DOT PRODUCT [ICAMAX]INDEX OF LARGEST COMPLEX ELEMENT [CFFTM]MIXED-RADIX COMPLEX FFT NOT-IN-PLACE [PAS2F]RADIX-2 FORWARD COMPLEX FFT PASS [PAS21]RADIX-2 INVERSE COMPLEX FFT PASS [PAS3F]RADIX-3 FORWARD COMPLEX FFT PASS [PAS31]RADIX-3 INVERSE COMPLEX FFT PASS [PAS4F]RADIX-4 FORWARD COMPLEX FFT PASS [PAS41]RADIX-4 INVERSE COMPLEX FFT PASS [PAS5F]RADIX-5 FORWARD COMPLEX FFT PASS [PAS51]RADIX-5 INVERSE COMPLEX FFT PASS [CEXP]EXPONENTIAL OF COMPLEX NUMBER [CONJG]CONJUGATE OF COMPLEX NUMBER [CSQRT]SQUARE ROOT OF COMPLEX NUMBER [CPOWRC]REAL TO COMPLEX POWER [CPOW]COMPLEX TO COMPLEX POWER [CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE [CSFR2]SPARSE COMPLEX SYMMETRIC FACTOR [CSSV2]SPARSE COMPLEX SYMMETRIC SOLVE [CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE [CUFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR [CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE [VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR [VREAL]EXTRACT REALS OF COMPLEX VECTOR [CVREAL]FORM COMPLEX VECTOR OF REALS [CSSCAL]REAL TIMES COMPLEXES [CVCONJ]COMPLEX VECTOR CONJUGATE [CONNMO]NMO WITH CONSTANT VELOCITY [POLAR]RECTANGULAR TO POLAR CONVERSION [RECT]POLAR TO RECTANGULAR CONVERSION [VDBPWR]VECTOR CONVERSION TO DB POWER [CONV2D]2-D CONVOLUTION AND CORRELATION [TCONV]POST-TAPERED CONVOLUTION CORRELATION [CTRN2]2-D COORDINATE TRANSFORM [CTRN3]3-DIMENSIONAL COORDINATE TRANSFORMATION [CCOPY]COMPLEX VECTOR COPY

[DNEG]NEGATE DOUBLE-PRECISION NUMBER [DSUBRR]SINGLE TO DOUBLE-PRECISION SUBTRACT [DSUB]DOUBLE TO DOUBLE-PRECISION SUBTRACT [CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER [EIGRS]REAL SYMMETRIC EIGENSYSTEM SOLVER [RS]REAL SYMMETRIC EIGENSYSTEM SOLVER [HTRIBK]COMPLEX HERMITIAN EIGENVECTORS OF LARGEST COMPLEX ELEMENT...[ICAMAX]INDEX [KSMLV]K-TH SMALLEST ELEMENT IN VECTOR [MAXMGV]MAXIMUM MAGNITUDE ELEMENT IN VECTOR [MAXV]MAXIMUM ELEMENT IN VECTOR [MINMGV]MINIMUM MAGNITUDE ELEMENT IN VECTOR [MINV]MINIMUM ELEMENT IN VECTOR [MEAMGV]MEAN OF VECTOR ELEMENT MAGNITUDES [SVEMG]SUM OF VECTOR ELEMENT MAGNITUDES [MEASQV]MEAN OF VECTOR ELEMENT SQUARES [SVESQ]SUM OF VECTOR ELEMENT SQUARES [MEANV]MEAN VALUE OF VECTOR ELEMENTS OF VECTOR ELEMENTS ... [RMSQV]ROOT-MEAN-SQUARE [SVE]SUM OF VECTOR ELEMENTS [VSUM]VECTOR SUM OF ELEMENTS INTEGRATION [LVEQ]LOGICAL VECTOR EQUAL VECTOR GREATER THAN OR EQUAL...[LVGE]LOGICAL [LVNE]LOGICAL VECTOR NOT EQUAL [CMSOLV]COMPLEX MATRIX EQUATION SOLVER [CSOLVQ]COMPLEX MATRIX EQUATION SOLVER [SKYSOL]SKYLINE FORMAT EQUATION SOLVER [SOLVEQ]LINEAR EQUATION SOLVER [DEQ22]DIFFERENCE EQUATION, 2 POLES, 2 ZEROS [VLEQV]VECTOR LOGICAL EQUIVALENCE [VEUCL2]VECTOR EUCLIDEAN DISTANCE [SCNRM2]COMPLEX EUCLIDEAN NORM [VPOLY]VECTOR POLYNOMIAL EVALUATION [VLXOR]VECTOR LOGICAL EXCLUSIVE OR [CVEXP]COMPLEX VECTOR EXPONENTIAL VECTOR MULTIPLY EXPONENTIAL... [CVMEXP]COMPLEX [VEXP]VECTOR EXPONENTIAL [VAVEXP]VECTOR EXPONENTIAL AVERAGING [VEXP1Ø]VECTOR EXPONENTIAL BASE 1Ø COMPLEX SYMMETRIC FACTOR...[CSFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR...[CUFR2]SPARSE [RSFR2]SPARSE REAL SYMMETRIC FACTOR [RUFR2]SPARSE REAL UNSYMMETRIC FACTOR [SGEFA]REAL GENERAL MATRIX FACTOR [CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE [CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE [RSFS2]SPARSE REAL SYMM FACTOR & SOLVE [RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE [GENTAB]GENERATE TWIDDLE FACTOR TABLE [CMFACT]COMPLEX MATRIX L/U FACTORIZATION [LUF]LU MATRIX FACTORIZATION CROUT [PEEK]MEMORY FETCH TO COMPLEX 2-DIMENSIONAL FFT...[CFFT2D]COMPLEX TO COMPLEX 2-DIMENSIONAL FFT...[RFFT2D]REAL

[GRAD2D]MAXIMUM GRADIENT FILTER [GRD2DB]MAXIMUM GRADIENT FILTER WITH BOUND [LVGT]LOGICAL VECTOR GREATER THAN [LVGE]LOGICAL VECTOR GREATER THAN OR EQUAL [VPKR32]VECTOR REAL HALFWORD PACK [VUPR32]VECTOR HALFWORD REAL UNPACK [CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER [HTRIBK]COMPLEX HERMITIAN EIGENVECTORS [HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION [VCOSH]VECTOR COSINE HYPERBOLIC [VSINH]VECTOR SINE HYPERBOLIC [VTANH] VECTOR TANGENT HYPERBOLIC [COSH]REAL NUMBER HYPERBOLIC COSINE [SINH]REAL NUMBER HYPERBOLIC SINE [TANH]REAL NUMBER HYPERBOLIC TANGENT [VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR [SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES [MTIMOV] VECTOR MOVE WITH INCREMENT MD TO TM [TMIMOV] VECTOR MOVE WITH INCREMENT TM TO MD [TTIMOV] VECTOR MOVE WITH INCREMENT TM TO TM [VINDEX]VECTOR INDEX [VSORT]VECTOR SORT WITH INDICES [CDOTC]COMPLEX INNER PRODUCT [RKGTF]R-K-GILL-THOMPSON INTEG. ORDER 4 [ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 REAL NUMBER TO NEAREST INTEGER ... [NINT]ROUND [VIADD]VECTOR INTEGER ADD [VIDIV]VECTOR INTEGER DIVIDE [VIFIX]VECTOR INTEGER FIX [VIMUL]VECTOR INTEGER MULTIPLY [VINEG]VECTOR INTEGER NEGATE [VPKI32]VECTOR 32-BIT INTEGER PACK [CPOWCI]COMPLEX TO INTEGER POWER [IPOW]INTEGER TO INTEGER POWER [RPOWRI]REAL TO INTEGER POWER [VISUB]VECTOR INTEGER SUBTRACT [VFLOAT]CONVERT INTEGER TO FLOATING-POINT [VUSI32]VECTOR 32-BIT SIGNED INTEGER UNPACK [VISORT]VECTOR SORT INTEGER VALUES [RKGIL]RUNGE-KUTTA-GILL INTEGRATION SIMPSON'S 1/3 RULE INTEGRATION...[VSIMPS]VECTOR [VSUM]VECTOR SUM OF ELEMENTS INTEGRATION TRAPEZOIDAL RULE INTEGRATION...[VTRAPZ]VECTOR [SCS1]SCALAR COS/SIN, TM INTERP.ORD 1 [CFFTI]COMPLEX FFT WITH INTERPOLATION [NMOLI]NMO LINEAR INTERPOLATION [NMOQI]NMO QUADRATIC INTERPOLATION [RFFTI]REAL FFT WITH INTERPOLATION [RFTII]REAL FFT WITH QUARTER INTERPOLATION [CMATIN]COMPLEX MATRIX INVERSE [MATINV]MATRIX INVERSE [VRECIP]VECTOR INVERSE [PAS2I]RADIX-2 INVERSE COMPLEX FFT PASS [PAS31]RADIX-3 INVERSE COMPLEX FFT PASS

[CMMTRC]COMPLEX MATRIX MULTIPLY TRACE [SMPACK]SPARSE MATRIX PACK [SGESL]REAL GENERAL MATRIX SOLVE [LUSN]LU MATRIX SOLVE CROUT [SGTSL]TRIDIAGONAL MATRIX SOLVER [TRIDIA]TRIDIAGONAL MATRIX SOLVER [SMUPCK]SPARSE MATRIX UNPACK [SMVMUL]SPARSE MATRIX VECTOR MULTIPLY [ROT3]3D ROTATION MATRIX, 3-ANGLE SYMMETRIC MATRX...[TRED1]TRIDIAGONALIZE [VMAX]VECTOR MAXIMUM [ISAMAX]INDEX OF MAXIMUM ABSOLUTE VALUE [VMAXMG]VECTOR MAXIMUM MAGNITUDE [MMTMUL]VECTOR MULTIPLY MD*MD TO TM [MTMMUL]VECTOR MULTIPLY MD*TM TO MD [MTTMUL]VECTOR MULTIPLY MD*TM TO TM [MMTADD]VECTOR ADD MD+MD TO TM [MTMADD]VECTOR ADD MD+TM TO MD [MTTADD] VECTOR ADD MD+TM TO TM [MMTSUB]VECTOR SUBTRACT MD-MD TO TM [MTMSUB]VECTOR SUBTRACT MD-TM TO MD [MTTSUB]VECTOR SUBTRACT MD-TM TO TM [POKE]STORE INTO MEMORY [TVCLR]TABLE MEMORY VÉCTOR CLEAR [VLMERG]LOGICAL VECTOR MERGE [VMIN]VECTOR MINIMUM [VMINMG]VECTOR MINIMUM MAGNITUDE [CVMOV]COMPLEX VECTOR MOVE [SVMOV]SPARSE VECTOR MOVE [VMOV]VECTOR MOVE [MOVREP]SUB-IMAGE MOVE AND LEVEL REPLACE [MTMOV]VECTOR MOVE MD TO TM [TMMOV]VECTOR MOVE TM TO MD [MTIMOV] VECTOR MOVE WITH INCREMENT MD TO TM [TMIMOV] VECTOR MOVE WITH INCREMENT TM TO MD [TTIMOV] VECTOR MOVE WITH INCREMENT TM TO TM [RESNMO]RESIDUAL NORMAL MOVEOUT [VSMA3]THREE VECTOR SCALAR MULT AND ADD [VSMA4]FOUR VECTOR SCALAR MULT AND ADD [CMVML3]COMPLEX 3X3 MATRIX MULT. 3D VECTORS [CMVML4]COMPLEX 4X4 MATRIX MULT. 4D VECTORS [VXCS]VECTOR MULTIPLIED BY SIN AND COS [BLKMAN]BLACKMAN WINDOW MULTIPLY [CCMMUL]COMPLEX MATRIX MULTIPLY [CGMMUL]COMPLEX GENERAL MATRIX MULTIPLY [CMMUL]COMPLEX MATRIX MULTIPLY [CMUL]COMPLEX MULTIPLY [CRMMUL]COMPLEX-REAL MATRIX MULTIPLY AND REAL VECTOR MULTIPLY...[CRVMUL]COMPLEX [CVMUL]COMPLEX VECTOR MULTIPLY [CVSMUL]COMPLEX VECTOR SCALAR MULTIPLY TO DOUBLE PRECISION MULTIPLY...[DMULRR]SINGLE TO DOUBLE-PRECISION MULTIPLY...[DMUL]DOUBLE [FMMMV]FAST MATRIX MULTIPLY

[VNEG]VECTOR NEGATE [MNAXB]SUB-MATRIX NEGATIVE MULTIPLY NEGATIVE TRANSPOSE MULTIPLY [MNATXB]SUBMATRIX [SCNRM2]COMPLEX EUCLIDEAN NORM [SNRM2]EUCLIDEAN NORM NORMAL MOVEOUT [RESNMO]RESIDUAL [LVNOT]LOGICAL VECTOR NOT [VLNOT]VECTOR LOGICAL NOT [LVNE]LOGICAL VECTOR NOT EQUAL NOT IN PLACE [CFFTB]COMPLEX-TO-COMPLEX FFT [RFFTB]REAL-TO-COMPLEX FFT NOT IN PLACE [CFFTM]MIXED-RADIX COMPLEX FFT NOT-IN-PLACE [RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE [AINT]TRUNCATE REAL NUMBER [ATAN]ARCTANGENT OF REAL NUMBER [CEXP]EXPONENTIAL OF COMPLEX NUMBER [CONJG]CONJUGATE OF COMPLEX NUMBER [CSORT]SQUARE ROOT OF COMPLEX NUMBER [DNEG]NEGATE DOUBLE-PRECISION NUMBER [EXP]EXPONENTIAL OF REAL NUMBER [SQRT]SQUARE ROOT OF REAL NUMBER [ABS]REAL NUMBER ABSOLUTE VALUE [CABS]COMPLEX NUMBER ABSOLUTE VALUE [ACOS]REAL NUMBER ARCCOSINE NUMBER ARCSINE [ASIN]REAL [CCOS]COMPLEX NUMBER COSINE [COS]REAL NUMBER COSINE [RAN]SCALAR RANDOM NUMBER GENERATOR NUMBER HYPERBOLIC COSINE [COSH]REAL [SINH]REAL NUMBER HYPERBOLIC SINE [TANH]REAL NUMBER HYPERBOLIC TANGENT [ALOG1Ø]REAL NUMBER LOGARITHM [ALOG]REAL NUMBER LOGARITHM [CLOG]COMPLEX NUMBER LOGARITHM [SIGN]REAL NUMBER SIGN TRANSFER [CSIN]COMPLEX NUMBER SINE [SIN]REAL NUMBER SINE [TAN]REAL NUMBER TANGENT [NINT]ROUND REAL NUMBER TO NEAREST INTEGER [ANINT]ROUND REAL NUMBER TO NEAREST WHOLE OF RATIO OF REAL NUMBERS...[ATAN2]ARCTANGENT [VRAND]VECTOR RANDOM NUMBERS [FUN1]FUNCTION OF ONE VARIABLE OR [VLOR]VECTOR LOGICAL LOGICAL EXCLUSIVE OR ... [VLXOR]VECTOR VECTOR GREATER THAN OR EQUAL...[LVGE]LOGICAL PREDICTOR ORDER 1...[ABP1]ADAMS-BASHFORTH [AMC1]ADAMS-MOULTON CORRECTOR ORDER 1 PREDICTOR ORDER 2...[ABP2]ADAMS-BASHFORTH [AMC2]ADAMS-MOULTON CORRECTOR ORDER 2 PREDICTOR ORDER 3...[ABP3]ADAMS-BASHFORTH [AMC3]ADAMS-MOULTON CORRECTOR ORDER 3 PREDICTOR ORDER 4...[ABP4]ADAMS-BASHFORTH [AMC4]ADAMS-MOULTON CORRECTOR ORDER 4

[VRAMP]VECTOR RAMP RANDOM NUMBER GENERATOR [RAN]SCALAR [VRAND]VECTOR RANDOM NUMBERS [POST64]POST BITS TO RASTER [ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS [MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS DOT PRODUCT REAL REAL...[DDOTRR]DOUBLE [SAXPYN]NESTED REAL A * X + Y [SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES [SDOTN]NESTED REAL DOT PRODUCT [RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE [VPKR32]VECTOR REAL HALFWORD PACK [AINT]TRUNCATE REAL NUMBER [ATAN]ARCTANGENT OF REAL NUMBER [EXP]EXPONENTIAL OF REAL NUMBER [SQRT]SQUARE ROOT OF REAL NUMBER [NINT]ROUND REAL NUMBER TO NEAREST INTEGER [ANINT]ROUND REAL NUMBER TO NEAREST WHOLE [ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS [CPOWCR]COMPLEX TO REAL POWER [RPOW]REAL TO REAL POWER [DDOTRR]DOUBLE DOT PRODUCT REAL REAL [RSFS2]SPARSE REAL SYMM FACTOR & SOLVE [RSFR2]SPARSE REAL SYMMETRIC FACTOR [RSSV2]SPARSE REAL SYMMETRIC SOLVE [VUPR32]VECTOR HALFWORD REAL UNPACK [RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE [RUFR2]SPARSE REAL UNSYMMETRIC FACTOR [RUSV2]SPARSE REAL UNSYMMETRIC SOLVE [CRVADD]COMPLEX AND REAL VECTOR ADD [CRVDIV]COMPLEX AND REAL VECTOR DIVIDE [CRVMUL]COMPLEX AND REAL VECTOR MULTIPLY [CRVSUB]COMPLEX AND REAL VECTOR SUBTRACT [SDOT]DOT PRODUCT OF REAL VECTORS [CVREAL]FORM COMPLEX VECTOR OF REALS [VREAL]EXTRACT REALS OF COMPLEX VECTOR [CVRCIP]COMPLEX VECTOR RECIPROCAL [RRCP]REAL RECIPROCAL [VRSQRT]VECTOR RECIPROCAL SQUARE ROOT [RECT]POLAR TO RECTANGULAR CONVERSION [AMOD]REAL/REAL DIVIDE REMAINDER [MOD]INTEGER/INTEGER DIVIDE REMAINDER MOVE AND LEVEL REPLACE... [MOVREP]SUB-IMAGE [VRVRS]VECTOR REVERSE ORDERING [MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS [RSORT]RECIPROCAL SQUARE ROOT RECIPROCAL SQUARE ROOT . . . [VRSQRT] VECTOR [VSQRT]VECTOR SQUARE ROOT [CSQRT]SQUARE ROOT OF COMPLEX NUMBER ROOT OF REAL NUMBER [SORT] SQUARE [CROTG]COMPLEX GIVENS ROTATION [CSROT]COMPLEX 2-D ROTATION [SROTG]GIVENS PLANE ROTATION ROTATION [SROT]PLANE

[VSINH]VECTOR SINE HYPERBOLIC [KSMLV]K-TH SMALLEST ELEMENT IN VECTOR COMPLEX SYMM FACTOR AND SOLVE...[CSFS2]SPARSE COMPLEX SYMMETRIC SOLVE...[CSSV2]SPARSE SOLVE...[CUFS2]SPARSE COMPLEX UNSYM FACTOR AND COMPLEX UNSYMMETRIC SOLVE...[CUSV2]SPARSE REAL SYMM FACTOR AND SOLVE...[RSFS2]SPARSE [RSSV2]SPARSE REAL SYMMETRIC SOLVE REAL UNSYM FACTOR AND SOLVE...[RUFS2]SPARSE [RUSV2]SPARSE REAL UNSYMMETRIC SOLVE [SGESL]REAL GENERAL MATRIX SOLVE SOLVE CROUT [LUSN]LU MATRIX HERMITIAN EIGENSYSTEM SOLVER...[CH]COMPLEX MATRIX EQUATION SOLVER...[CMSOLV]COMPLEX MATRIX EQUATION SOLVER...[CSOLVQ]COMPLEX [CSOLV]COMPLEX SYSTEM SOLVER SYMMETRIC EIGENSYSTEM SOLVER...[EIGRS]REAL [RS]REAL SYMMETRIC EIGENSYSTEM SOLVER [SGTSL]TRIDIAGONAL MATRIX SOLVER [SITSOL]SPARSE ITERATIVE SOLVER FORMAT EQUATION SOLVER...[SKYSOL]SKYLINE [SOLVEQ]LINEAR EQUATION SOLVER [TRIDIA]TRIDIAGONAL MATRIX SOLVER [VASORT]VECTOR SORT ALGEBRAIC VALUES [VISORT]VECTOR SORT INTEGER VALUES [VSORT]VECTOR SORT WITH INDICES [VSQ]VECTOR SQUARE [VSSO]VECTOR SIGNED SQUARE [RSQRT]RECIPROCAL SQUARE ROOT [VRSQRT]VECTOR RECIPROCAL SQUARE ROOT [VSQRT]VECTOR SQUARE ROOT VECTOR MAGNITUDE SQUARED...[CVMAGS]COMPLEX [MEASQV]MEAN OF VECTOR ELEMENT SQUARES [SVESQ]SUM OF VECTOR ELEMENT SQUARES [SVS]SUM OF VECTOR SIGNED SQUARES [ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 [CMTRAC]COMPLEX SUB-MATRIX TRACE [CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE AND REAL VECTOR SUBTRACT...[CRVSUB]COMPLEX [CVSUB]COMPLEX VECTOR SUBTRACT TO DOUBLE-PRECISION SUBTRACT...[DSUBRR]SINGLE TO DOUBLE-PRECISION SUBTRACT...[DSUB]DOUBLE [VISUB]VECTOR INTEGER SUBTRACT MULTIPLY, MULTIPLY, AND SUBTRACT...[VMMSB]VECTOR [VMSB]VECTOR MULTIPLY AND SUBTRACT SCALAR MULTIPLY AND SUBTRACT...[VSMSB]VECTOR [VSUB]VECTOR SUBTRACT [VSBM]VECTOR SUBTRACT AND MULTIPLY [VSBSM]VECTOR SUBTRACT AND SCALAR MULTIPLY [MMTSUB]VECTOR SUBTRACT MD-MD TO TM [MTMSUB]VECTOR SUBTRACT MD-TM TO MD [MTTSUB]VECTOR SUBTRACT MD-TM TO TM [TMMSUB]VECTOR SUBTRACT TM-MD TO MD [TMTSUB]VECTOR SUBTRACT TM-MD TO TM

[TTTADD]VECTOR ADD TM+TM TO TM [TMMSUB]VECTOR SUBTRACT TM-MD TO MD [TMTSUB]VECTOR SUBTRACT TM-MD TO TM [TTMSUB]VECTOR SUBTRACT TM-TM TO MD [TTTSUB]VECTOR SUBTRACT TM-TM TO TM MATRIX MULTIPLY TRACE...[CMMTRC]COMPLEX [CMTRAC]COMPLEX SUB-MATRIX TRACE [ISIGN]INTEGER SIGN TRANSFER [SIGN]REAL NUMBER SIGN TRANSFER [CTRN2]2-D COORDINATE TRANSFORM [RDFT]REAL DISCRETE FOURIER TRANSFORM COORDINATE TRANSFORMATION...[CTRN3] [HLBRT]HILBERT TRANSFORMER [CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE [MAXBT]MATRIX A TIMES B TRANSPOSE [MTRANS]MATRIX TRANSPOSE [STMM]SUBMATRIX TRANSPOSE & MULTIPLY [MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY [MNATXB]SUBMATRIX NEGATIVE TRANSPOSE MULTIPLY [MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY [VTRAPZ]VECTOR TRAPEZOIDAL RULE INTEGRATION [VØ1]VECTOR ZERO TRENDS [IMTQL1]DIAGONALIZE TRIDIAGONAL MATRIX [IMTQL2]DIAGONALIZE A TRIDIAGONAL MATRIX [HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION [VAINT]VECTOR TRUNCATE [VFRAC]VECTOR TRUNCATE TO FRACTION [GENTAB]GENERATE TWIDDLE FACTOR TABLE [SMUPCK]SPARSE MATRIX UNPACK [SVUPCK]SPARSE VECTOR UNPACK [VUP16]VECTOR 16-BIT BYTE UNPACK [VUP32]VECTOR 32-BIT BYTE UNPACK [VUP8]VECTOR 8-BIT BYTE UNPACK [VUPR32]VECTOR HALFWORD REAL UNPACK 16-BIT SIGNED BYTE UNPACK...[VUPS16]VECTOR 32-BIT SIGNED BYTE UNPACK...[VUPS32]VECTOR 8-BIT SIGNED BYTE UNPACK...[VUPS8]VECTOR 32-BIT SIGNED INTEGER UNPACK... [VUSI32]VECTOR [VUUI32]VECTOR 32-BIT UNSIGNED UNPACK [VUUI32]VECTOR 32-BIT UNSIGNED UNPACK [CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE [RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE UNSYMMETRIC FACTOR [CUFR2]SPARSE COMPLEX [RUFR2]SPARSE REAL UNSYMMETRIC FACTOR [CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE [RUSV2]SPARSE REAL UNSYMMETRIC SOLVE [CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM [SHPHU]SCHAFER'S PHASE UNWRAPPING [PKVAL]PEAK AND VALLEY PICKING [VASORT | VECTOR SORT ALGEBRAIC VALUES [VISORT]VECTOR SORT INTEGER VALUES [FUN1]FUNCTION OF ONE VARIABLE [ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 [VARNMO]NMO WITH VARIABLE VELOCITY

[SVS]SUM OF	VECTOR SIGNED SQUARES
[CRVSUB]COMPLEX AND REAL	
[CVSUB]COMPLEX	VECTOR SUBTRACT
[CSWAP]COMPLEX	VECTOR SWAP
[SVUPCK]SPARSE	VECTOR UNPACK
3X3 MATRIX MULT. 3D	VECTORS[CMVML3]COMPLEX
	VECTORS[CMVML4]COMPLEX
[SDOT]DOT PRODUCT OF REAL	VECTORS
DISTANCE BETWEEN TWO	VECTORS [SN2] SQUARED
[SSWAP] INTERCHANGES	VECTORS
[CONNMO]NMO WITH CONSTANT	VELOCITY
[VARNMO]NMO WITH VARIABLE	VELOCITY
REAL NUMBER TO NEAREST	WHOLE[ANINT]ROUND
[BLKMAN] BLACKMAN	WINDOW MULTIPLY
[HAMM]HAMMING	WINDOW MULTIPLY
[HANN]HANNING	WINDOW MULTIPLY
[TMMM]MATRIX MULTIPLY TM	WORKSPACE
[CAXPYN]NESTED COMPLEX A *	X + Y
[CAXPY]COMPLEX A *	Х + Ү
[SAXPYN]NESTED REAL A *	X + Y
[SAXPY]REAL A *	Х + Ү
[CAXPYN]NESTED COMPLEX A * X +	Y
[CAXPY]COMPLEX A * X +	Y
[SAXPYN]NESTED REAL A * X +	Y
[SAXPY]REAL A * X +	Y
[VØ1]VECTOR	ZERO TRENDS
EQUATION, 2 POLES, 2	ZEROS[DEQ22]DIFFERENCE
[VSCANØ]VECTOR SCAN FOR	ZEROS

٠

Your comments will help us improve the quality and usefulness of our publications. Please fill out and return this form. (The mailing address is on the back.)

Title of document:					
Your Name and Title:		Date:			
Firm:		Department:			
Address:					
City:	State:	Z	ip Cod	e:	
Telephone Number: ()					
I used this manual		I found this mate			
 as an introduction to the as an aid for advanced transition to instruct a class to learn operating proced as a reference manual other	aining	accurate complete written clearly well illustrated well indexed	Yes		

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if you would have liked more information about a certain subject.

ARRAY is an independent society of people who use FPS products. Membership is free and includes a quarterly newsletter. There is an annual conference, as well as other activities. If you are interested in becoming an ARRAY member, please fill out and return this form. (The mailing address is on the back.)

Your Name and Title:	Date:		
Firm:	Department:		
Address:			
City:	State:	Zip Code:	
Telephone Number: (_)	Extension:	

Telex: 4742018 FLPT UI Telex: 360470 FLOATPOIN BEAV Telex: 360470 FLOATPOIN BEAV Telex: 360470 FLOATPOIN BEAV

SYSTEMS, INC. FLOATING POINT

a sa da marte a da. A sa da marte a da marte da marte da marte da marte a control e control da control da control da la control da

			, sported fortibles
		•	 Providence
			1
			and the second
			di serie istante di serie di s
			an de services Altre de services Altre de services
			L+ .
			and and a second se
1			1
			n i den strate de la service d