
FPS-164 IBM/CMS
FRONT-END COMPUTER

MANUAL

(RELEASE Fj

860-7494-004A

by FPS Technical Publications Staff

FPS-164 IBM/CMS
FRONT-END COMPUTER

MANUAL

IDCI CA~C C\
, ... _._._'""'_._ I I

860-7494-004A

NOTICE

Publication No. 860-7494-004A
February, 1985

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright@) 1985 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

REVISION HISTORY

This manual is the FPS-164 IBM/CMS Front-end Computer Manual,
860-7494-004. The last four characters ·shown under the revision number
column indicate the part number change for each revision. The last
entry is the latest revision to this manual.

REV. NO.I DESCRIPTION

-004A Original issue.

NOTE: For revised manuals, a vertical line "I" outside the left
margin of the text signifies where changes havg been made.

DATE

2/85 I
I
I
I
I
I
i
I
I
l
I
I

. I
I
I
I
I
I
I
I
I
l
I
I
I
l

I
I
I
I
I
I
I
I
l
I

I
I

· ... ~ ..

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE
l.2 SCOPE
1.3 CONVENTIONS
1.4 RELATED PUBLICATIONS

CHAPTER 2 PROGRAM DEVELOPMENT

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.S
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2

INTRODUCTION
TOOLS NECESSARY FOR PROGRAM DEVELOPMENT

PDS Command Line Syntax
Default CMS Naming Conventions
Interpretation of Error Messages
Accessing SC Software
Program Development Software Programs

SJE PROGRAM DEVELOPMENT AND EXECUTION
.SJE Prograin Development
Execution Using SJE
Executing an SJE Job in CMS Batch Mode
SJE User Attention Lommand

APEX64 PROGRAMMING
UDC/ADC FEC Programs
Program Development for APEX64

CHAPTER 3 IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.4
3.5
3.6

3.6.2
3.7

INTRODUCTION
ALLOCATION OF AN SC

The Role of the APMGR
Number of Users
Selecting an SC
Releasing and Detaching an SC
SC Device Address 0
Force-Release Processing

ROLL-IN/ROLL-OUT (RIRO)
I/O TO FEC FILES
USING PRESERVE AND RESTORE
SJE DATA CONVERSION UTILITIES

FEC Data File to SC Data File Conversion
Procedure

APFTN64 File to FEC File Conversion Procedure
LINKING TO FEC-SPECIFIC LIBRARY ROUTINES

FPS 860-7494-004A

CONTENTS

Page

1-1
1-1
1-2
1-3

2-1
2-1
2-1
2-3
2-5
2-6
2-7
2-16
2-17
2-18
2-26
2-27
2-28
2-28
2-36

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-5
3-6
3-8

3-11
3-15
3-19

Page iii

CONTENTS

CHAPTER 4 IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM Page ~
4.1 INTRODUCTION 4-1
4.2 HARDWARE FOR FEC/SC COMMUNICATION 4-1
4.2.1 The Role of the IBM CPU 4-2
4.2.2 The Role of the Channel 4-2
4.2.3 The Role of the HISP 4 ... 3
4;2.4 The Role of the SC CPU 4~3

4.2.5 The Role of the Formatter 4-4
4.3 THE SC'S FEC INTERFACE INTERNAL STRUCTURE 4-4
4.3.1 Host Adapter 4-4
4.3.2 FEC Interface Support Processor 4-4
4.3.3 Formatter 4-4
4.4 IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM 4-6
4.4.1 Address Recognition 4-6
4.4.2 Channel Interface Protocol 4-6
4.4 .. 3 Channel Commands 4-7
4.4.4 Sense Bytes 4~8

4.4.5 Sense I/O Type Conunand 4-12
4.4.6 Unit Check Mask 4-12
4.4.7 Channel Interrupts 4-13
4.4.8 Interface Busy Conditions . 4-15
4.4.·9 Format Conversion 4-15
4.4.10 FEC/SC Interconnect Hardware 4-20
4.4.11 Configuring The Host Adapter Board 4-20

APPENDIX A FEC COMMAND AND STATUS REGISTER
A.1 FEC COMMAND AND STATUS REGISTER (HCSR) A-1
A.1.1 HCSR(u): Interrupt Control and HISP Commands A-1
A.1.2 HCSR(l): Error Flags A-3

APPENDIX B FEC-SPECIFIC ERROR MESSAGES

APPENDIX C RESERVED ROUTINE NAMES

INDEX

Page iv FPS 860-7494-004A

Figure No.

1-1

3-1
3-~

3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

4-9
4-10

4-11

4-12

4-13
4-14

A-1
A-2

Table No.

1-1
1-2
1-3

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-9

ILLUSTRATIONS

Title

FPS-164 Manuals Group

FEC File to SC File Conversion Steps
FEC Data File to SC Data File Conversion Logic
APFTN64 File to FEC File Conversion Logic

Interface Hardware Block Diagram
Interface Sense Byte Format
Bytes Returned by Sense I/O Type Command
Unit Check Mask Bit Fields
IBM Integer*4 to and From SC Integer
IBM Integer*4 to and From SC Long Integer
IBM Integer*8 to and From SC Long Integer
IBM Integer*4 to and From SC Integer Halfword

Packed Integer
IBM Unformatted*8 to and From SC Word Type
IBM Real*4 to and From SC Floating-point

Number
IBM Real*8 to and From SC Floating-point

Number
Dual IBM Real*4 to and From SC Halfword

Floating-packed Number
IBM Logical*4 to and From SC Logical
SC I/O Panel

HCSR(u): Interrupt Control and HISP Commands Format
HCSR(l): Error Flags Format

TABLES

Title

Related FPS Publications
Related IBM Publications
Related ANSI Publications

Default CMS Filetypes, Record Formats, and Block
APAL64 Options
APFTN64 Options
APLIBR64 Options
APLINK64 Options·
APDBUG64 Options
SJE Option_s
JDL Control Statements
JDL Service Request Statements
JDL Service Request Statements

FPS 860-7494-004A

CONTENTS

Page

1-5

3-10
3-13
3-17

4-5
4-9
4-12
4-12
4-16
4-16
4-16

4-17
4-17

4-18

4-18

4-19
4-19
4-20

A-1
A-3

Page

1-3
1-4
1-4

2-4
2-8
2-9
2-10
2-11
2-13
2-14
2-20
2-21
2-22

Page v

CONTENTS

Table No.

3-1

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

4-9

A-1
A-2

Page vi

TABLES (cont.)

Title

FEC File Prefixes

Channel Commands
Interface Sense Byte 0 Fields
Interface Sense Byte 1 Fields
Interface Sense Byte 2 Fields
Interface Sense Byte 3 Fields
Unit Status Field Bits
Configuration Mode Switch States
Configuration Mode Switch States

and 5)

(Switches 1 and
(Switches 3, 4,

Page

3-5

4-7
4-9
4-10
4-11
4-11
4-13

4-22
Configuration Mode Switch States (Switches 6, 7,

and 8) 4-23

HCSR(u): Interrupt Control and HISP Commands Fields A-2
HCSR(l): Error Flags Fields A-3

FPS 860-7494-004A

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual explains how to use an FPS-164 Scientific Computer (SC)
that is connected to an IBM Front-end (FEC) computer. The FEC can be
an IBM 370, 33XX, 43XX, or 308X mainframe running the VM/SP-CMS
operating system (referred to as "CMS" in this manual). The manual
provides program development and execution examples that illustra_te use
of the System Job Executive (SJE) and the SC Executive (APEX64). The
SJE and APEX64 software allow users to run programs on the FPS-164.
This manual also provides FEC-specific software, FEC-specific hardware,
and FEC-specific error information.

1.2 SCOPE

The following list shows the organization of this manual.

Chapter 1 This chapter explains the purpose, scope, conventions, and
related publications for this manual.

Chapter 2 This chapter describes the necessary tools for SJE and
APEX64 program development. Chapter 2 also provides
examples of SJE and APEX64 program development and
execution.

Chapter 3 This chapter describes IBM/CMS-specific software features.

Chapter 4 This chapter describes IBM/CMS-specific hardware features·.
Chapter 4 also provides the FEC/SC conversion formats
supported.

Appendix A This appendix describes the FEC command and status
register (HCSR) ..

Appendix B This appendix lists the AP Manager (APMGR) trace messages,
their causes, and suggested corrective action.

Appendix C This appendix lists DAPEX (Dependent Advances Processes
Executive) error messages, causes, and the corrective
action the user is advised to take.

Appendix D This appendix discusses the convention for naming
subroutines and common blocks.

FPS 860-7494-004A Page 1 1

INTRODUCTION

Where appropriate, this manual refers the reader to other publications
for more detailed information on how to operate individual components
of the FPS-164 hardware and software.

1.3 CONVENTIONS

The following list presents_ conventions used in this manual.

• The term SC means the FPS-164 Scientific Computer.

• The term "FEC" (front-end computer) or "host" means the IBM
computer to which the SC is attached. Throughout this manual,
the terms "FEC" and "host" are used interchangeably.

• Uppercase parts of keywords (in syntax examples) are the
shortest abbreviation of a command allowed.

• Th · "I" e notation used in syntax examples means " " or .

• Brackets [] used in a syntax example enclose optional items of
the command.

• Ellipses (...) used in a syntax example indicate repetitions
in a command.

• User-supplied parameters for commands are underlined when
shown in a syntax example.

Page 1

• IBM terminology such as filename, filetype, filespec,
filemode, and fileid conforms with its use in the IBM manual
set.

• Asterisks (*) denote default options and modifiers in the
Program Development Software (PDS) command tables listed in
Chapter 2.

• Parentheses used in PDS commands are required in sets around
each user-supplied modifier.

• The optional closing parenthesis is omitted in PDS command
syntax examples and PDS commands.

2 FPS 860-7494-004A

INTRODUCTION

1.4 RELATED PUBLICATIONS

Table 1-1 lists FPS publications, Table 1-2 lists IBM publications and
Table 1-3 lists ANSI publications that the reader can consult for
details of individual components of the FEC/SC system.

•,

Table 1-1 Related FPS Publications

PUBLICATION

FPS-164 & FPS-164/MAX User's Handbook and
Master Index (Release F)

AP~ t\.TH64 Manual

APFTN64 User's Guide (Release F)

APAL64 Programmer's Guide (F Release)

APAL64 Programmer's Reference Manual
(F Release)

APLINK64 Manual

APDEBUG64 Manual (Release F)

APLIBR64 Manual

FPS-164 Operating System Manual Set
Volumes 1, 2, and 3

Volume 1 SJE (Release F)
Volume 2 APEX64 (Release F)
Volume 3 File and Memory

Management (Release F)

FPS-164 System Manager's/Operator's
Man~al (Release F)

FPS 860-7494-004A

PUBLICATION NO.

860-7481-003

860-7482-000

860-7479-002

860-7506-008

860-7506-009

860-7486-000

860-7489-002

860-7488-001

861-7491-002

860-7491-007
860-7491-008

860-7491-009

860-7478-002

Page 1

INTRODUCTION

Table 1-2 Related IBM Publications

PUBLICATION PUBLICATION NO.

VM/SP CMS Command and Macro Reference SC19~6209

VM/SP CMS User's Guide SC19-6210

VM/SP CP Command Reference for General Users SC19-6211

VM/SP System Programmer's Guide SC19-6203

IBM System 370 Principles of Operation GA22-7000

Table 1-3 Related ANSI Publications

PUBLICATION

American National Standard
Programming Language FORTRAN

PUBLICATION NO.

ANSI X3.9-1978

Figure 1-1 depicts the manual relationships in the FPS-164 manuals set
as it applies to the IBM/CMS user.

Page 1 4 FPS 860-7494-004A

fP5e164/ttAX
IBM SITE PREPARATION

HANDBOOK
860-7506-oc>lt

FPS-164
SYSTEM MAIAGER'S/

OPEAATOA'S f!tAHUAt.
860-7478-002

FPS·164
DIAGHOSTIC SYSTEM

MANUAL
86o-7496-011

FPS-064
DIAGNOSTIC
SUPPLEMENT

86o-7500-013
FPS-164

IM DIAGNOSTIC
SOFTWAR! SUPP\.£MEMT

860-7496-013

FPS 860-7494-004A

FPS•164 USER'S HANDBOOK
ANO MASTER INOEX

860-7"81-002

INTRODUCTION

SPECIAL
APPLICATIONS PROGRAMMER

FORTRAN PROGRAMMER

APFTN64
USER'S GUIDE
860-7479-002

FPS-16.f+
OPERATING SYSTEJ1 MANUAL'

VOL.1 SJE
860-7491-007
VOL.2 APEX64
860-74,1-008

FPS-164
IBM/CHS

FRONT EMO COMPUTER
MANUAL

860-7494-005

APt.INK64 MANUAL
860-7486-000

APt.18R64 MANUAL
860-7t.88-001

APMATH6lt P1ANUAL
860-7482-000

BCSLIB USER'S MANUAL
860-7503-006

APOEBUG64
MANUAL

860-7'489-002

-5172-

APAL64 PROGRAMMER'S
GUIDE

860-7506-008
APAL64 PROGR.Afifil£R'S

REFERENCE MANUAL
86o-7506-009

J;
rn-164

OPERATING SYSTEl1 MANUAL
VOLo3 FILE & MEJ10RY

rwtAGEMEHT
860-7491-0°'

AP1"1ATH64 MANUAL
860-7482-000

8CSL18 USER'S MANUAL
·860-7503-006

Figure 1-1 FPS-164 Manuals Group

Page 1 5

PROGRAM DEVELOPMENT

CHAPTER 2

PROGRAM DEVELOPMENT

2.1 INTRODUCTION

Chapter 2 provides the user with the informati~n needed to develop and
execute jobs that run on the SC. This chapter contains three main
sections. Section 2.2 lists the tools needed for program development
and explains how to use them. Section 2.3 discusses program
development and job execution for the System Job Executive (SJE)
programmer. Section 2.4 discusses program development and job
execution for the SC Executive (APEX64) programmer.

2.2 TOOLS NECESSARY FOR PROGRAM DEVELOPMENT

For successful program development, the user must know the following:

• how to gain access to PDS software

• how to run program development software (PDS) programs

• how to interpret PDS command error messages

• the default CMS filetype naming conventions

• the PDS commands and options

2.2.1 PDS Command Line Syntax

The command line syntax used with the SC program development software
closely resembles the syntax used with CMS commands and compilers.
Enhancements added to the SC program development software result in
minor differences between the two. This section documents those
differences, including most of the differences between standard C~S and
FPS command line syntax. Sample uses of the SC program development
software can be found in Section 2.2.5.2.

2.2.1.1 General Form of Commands

This manual uses a standard notation to describe the command syntax
used to operate FPS system software. Use the following rules to
construct commands:

1. Use delimiters, uppercase letters, and uppercase words exactly
as shown in the command description. The command syntax uses
spaces, commas, and parentheses as delimiters.

FPS 860-7494-004A Page 2 1

PROGRAM DEVELOPMENT

2. Replace lowercase letters and words by following the rules
given in the descriptions.

3. Brackets [] surround optional parts of commands.

4. Use options followed by ellipses(...) more than once if
necessary.

5. End each command entered on a terminal with a carriage return.

The following is an example of a command description:

LOGON user

This command identifies a virtual machine user to the operating system.
An appropriate value can replace the underline~ word in this command
format:

user = the virtual machine user identification

The following example shows the general form of a command:

APLINK64 filespec[,filespec ...][(options[)]]

The forms of a filespec and option, respectively, are as follows:

filespec =filename [filetype [filemode]]

option= option [(value[,value] ...)]

Option values can also be filespecs.

2.2.1.2 Command Line Options

The user has several powerful options available on the command line.
These options are the $UPCASE, $FM, $BS, and CO options. The $UPCASE
option allows the user to force lowercase output into uppercase.

The $FM option allows the user to set the default file mode. The $BS
option allows the user to set the default binary file blocksize.
Section 2.2.5.2 contains examples of these options.

The CO statement allows the user to continue the command line. CO
causes the parser to prompt the user with ENTER ADDITIONAL PARMS:. Any
number of continuation lines are allowed as long as the line ends with
CO. Once the user enters a line of parameters without terminating it
with CO, the line is considered ended and control returns to the FEC.

Within a CMS EXEC the user can continue command lines using CO and the
standard EXEC &BEGSTACK or &STACK facility. Command input is
redirected to a file by ending the command line with

CO (filename. [filetype [filemode]]))

Page 2 2 FPS 860-7494-004A

PROGRAM DEVELOPMENT

Filetype defaults to TXT and filemode defaults to * if not specified.
A * for f ilemode causes all accessed CMS disks to be searched for the
first occurrence of the designated file. The parser treats additional
lines as though they were terminal input. Continued lines within such
indirect files must still end with a CO.

Users running a program from an EXEC should note that line
continuations are read off the stack within the EXEC if no filename is
provided after CO. Thus, a typical EXEC file might be set up as
follows:

&BEGSTACK
PROG4, PROG5, (IM(MYPROG), CO
UDC (MYHAS I)
&END
APLINK64 PROGl, PROG2, PROG3, CO

In the above EXEC file 7 the stack provides the additional parameters
which are PROG4, PROG5, an IMAGE file option, and a UDC option. Thus,
when the APLINK64 statement is executed, the parameters provided in the
stack are used when the parser reaches the symbol CO.

2.2.2 Default CMS Naming Conventions

Every CMS file must have a filename, filetype, and filemode. The user
must always explicitly specify the filename. When the filemode is not
specified on input files, all accessed CMS disks are searched in
standard CMS search order until the file is found. When the filemode
is not specified for output files, an attempt is m~de to use.the same
filemode as the major input file of the command. For example, the
object file output from a compiler is placed on the same disk as the
source input file if the disk can be written on. Otherwise, the
filemode defaults to Al or the first read/write disk found. When the
filetype is not specified, it defaults to those listed in Table 2-1
below.

FPS 860-7494-004A Page 2 3

PROGRAM DEVELOPMENT

Table 2-1 Default CMS Filetypes, Record Formats, and Block Sizes

CMS RECORD BLOCK
FILETYPE FORMAT SIZE USE

(terminal) v 130 console I/O

TEMPTIIT v 121 scratch file text

TEMPBIN F scratch binary file

TXT v 121 miscellaneous text

BIN F miscellaneous binary

APAL64 v 121 APAL source input

APFTN64 F 80 APFTN source input

APTXT64 F SC object module

APLIBR64 .F SC object library

APIMG64 F APLINK output load module image

APAL64 v 121 APAL source output by APFTN

LISTING v 121 general listing with carriage control

APERR64 v 121 error report

APLOG64 v 121 APDBUG log file

FORTRAN F 80 AP LINK output interface between FEC & SC
(HASI) (input to IBM compiler)

APSMB64 F APLINK output symbols file

APMAP64 v 121 AP LINK output load map

APIMG64 F APDBUG image save file

APDAT64 F APDBUG APEX dat save file

APOVL64 v 121 APLINK input overlay descriptor file

Page 2 4 FPS 860-7494-004A

PROGRAM DEVELOPMENT

NOTE

APAL64 assembler input, APFTN64 compiler input, and
APOVL64 overlay descriptor linker information ·input
can have either a variable or fixed record format and
can have any logical record length. The values
listed in the table above are default values, not
requirementso

The default blocksize for all FPS binary files depends on the blocksize
of the CMS minidisk where the file is written, ie. The FPS binary file
blocksize will be the same as the CMS minidisk blocksize.

NOTE

To achieve maximum data transfer rates on SJE
COPYIN/binary and COPYOUT/binary, the user should
format their CMS minidisks with a blocksize of 4096
bytes (4K).

2.2.3 Interpretation of Error Messages

When the FPS command line interpreter detects a syntax error, it echoes
at the termi~al the line containing the error. A dollar sign appears
under the first erroneous character, and the interpreter returns an
explanation to the user. Common utility failures result in simple
informative messages, such as OUT OF SPACE ON DISK or ATTEMPT TO WRITE
ON READ-ONLY DISK, detailing the cause of the error. Subtle or
uncommon errors result in a message that contains a fileid and file
system macro. This fileid and return code is documented in the VM/SP
CMS Command and Macro Reference publication (refer to Table 1-2).

The SC program development software sets the condition return code
according to the highest severity error encountered during program
execution. The interpretation of this code is as follows:

0 normal
4 warning
8 error
12 severe error
16 terminal error

FPS 860-7494-004A Page 2 5

PROGRAM DEVELOPMENT

2.2.4 Accessing SC Software

Typically, all FPS software resides on one system minidisk, though
multiple minidisk configurations are possible as well. Before
developing and running FPS software, the user must CP LINK to the
minidisk containing the FPS software and access the minidisk through
the ACCESS command. The data center manager should be able to give the
user the name(s) of the minidisk(s) containing the FPS software.

Before running some FPS software, the user may need to redefine the
amount of virtual storage dedicated to the user's virtual machine. To
do this, issue the following command:

CP DEFINE STORAGE 2M

In some cases, the user may.receive the following message:

MAXIMUM STORAGE EXCEEDED

If this happens, the user must have the data center manager reconfigure
the user's virtual machine to allow it to define two megabytes of
virtual storage (occasionally, three megabytes is needed). Once
storage is redefined to two megabytes, the user must enter the
following initial program load (IPL) code:

IPL CMS

To use the FPS TXTLIB'S (namely APEX64 TXTLIB, UTIL64 TXTLIB, and
APDBUG64 TXTLIB) the user must include them in the GLOBAL TXTLIB
statement before loading the program. For example:

GLOBAL TXTLIB APEX64 UTIL64 CMSLIB VFORTLIB ...

If the program halts and the prograinmer receives the message

CP ENTERED; CMSZER - SHARED PAGE xxxxxx ALTERED

it sometimes means that the virtual machine has too little memory
configured into it. One approach to handling this problem is to
reconfigure the virtual machine with one more megabyte of memory (refer
to the DEFINE STORAGE command in Section 2.2.4) and run an IPL C~1S (the
CMS initial program load). The user can then attempt to run the
program again.

Page 2

CAUTION

The user must not call any of the APIMG64 files by
the name SUM APIMG64, since this name indicates the
SC's Single User Monitor as a whole. During SC
initialization, APEX64 sometimes needs to reload the
SUM APIMG64 into the SC. During this reloading,
APEX64 searches all accessed disks in the standard
CMS search order, using the first SUM APIMG64 file it
finds.

6 FPS 860-7494-004A

PROGRAM DEVELOPMENT

2 .. 2. 5 Program Development Software Programs

The SC program development software provides tools for writing,
debugging, and maintaining SC programs. W'ith these tools the user can
convert source modules into object modules, store the object modules in
libraries, selectively link the modules together, and debug the
modules. The following text describes the program development software
tools. APFTN64 is an FEC-resident, FORTRAN-77-optimizing
cross-compiler. It accepts a superset of ANSI FORTRAN-77 statements
and produces an SC object module. APFTN64 provides a convenient means
for converting FEC FORTRAN programs into microcode that can run on the
SC. For more information on APFTN64, refer to the APFTN64 User's Guide
listed in Table 1-1.

APAL64 is an FEC-resident cross-assembler. It accepts programs written
in SC Asse~bly Language (APAL64) and produces an SC object module.
Programs written in APAL64 can take full advantage of the hardware
features of the SC. For more information on APAL64, refer to the
APAL64 Programmer's Guide or the· _A_P_A_LJ;_..,_4_P_r_o_g..._r_::ll_mt'ft_ ... _.e_r_'_s_P_,e_f_e_r_e_ri_ ... c_e_t-1_ _~ri_ .. 1_J._a_l,
listed in Table 1-1.

APLINK64 is the relocating linker._ It links together specified object
modules and referenced library members to form a load module, build the
interface between the FEC and the SC (HASI) when running APEX64
applications, and build symbol files used in debugging. For more
information on APLINK64, refer to the APLINK64 Manual, listed in Table
1-1.

APLIBR64 creates, modifies, lists, and maintains libraries of SC object
modules. APLIBR64 maintains a directory of object module information
to enable APLINK64 to operate efficiently. For more information on
APLIBR64, refer to the APLIBR64 Manual, listed in Table 1-1.

APDBUG64 helps a programmer debug SC programs. APDBUG64 allows a
programmer to symbolically debug programs on the SC (that is, set
breakpoints, examine variables, etc.). APDBUG64 is available as a
stand-alone program or as an FEC subroutine library or while running
under SJE. This flexibility allows the user to debug in a stand-alone
mode or within an SC program environment. For more information on
APDBUG64, refer to the APDEBUG64 Manual, listed in Table 1-1.

Program development procedures demonstrating all of the SC program
development software are shown in Section 2.3 and Section 2.4.2.

2.2.5.1 SC Software Options

This section provides a quick reference to the SC Program Development
Software (PDS) options. Tables 2-2 through 2-6 list all of the options
available with each PDS program. Asterisks indicate default options or
modifiers. Underlining indicates user-supplied values. Uppercase
letters indicate the shortest allowed abbreviations. Note the
following differences from the usual IBM/CMS command line option
conventions:

FPS 860-7494-004! Page 2 7

PROGRAM DEVELOPMENT

• The LIST/NOLIST option of APFTN64 -controls listing of the
source code. Listing of generated object code is accomplished
by the CODE option.

• The OBJECT/NOOBJECT option controls production of an object
(binary) file. There are no modifers for the options
LOAD/NOLOAD and DECK/NODECK.

The APAL64 command is entered using the following form:

APAL64 srcfile (option (modifier) option (modif ierl , modif ier2)

Table 2-2 lists the options available with APAL64.

Page 2

Table 2-2 APAL64 Options

APAL OPTION MODIFIER

(srcfile
List (ls t file)

* NOList
* Object(objfile)

NOObject
* ~00~-~r~--~~1~' '""' \.~~···•"WiJ

NOERRors
* HEXadecimal

OCTAL
NAMes(modifier)

SHow(modifier[,modifier] ...)

* NOSHow(modifier[,modifier] ...)

DIAGnostics(level)

FAILure(level)

8

* GLOBAL
LOCAL
UNREF

SUBR
COND
UNREF
ALL

* SUBR

* COND

* UNREF

* ALL

* WARNing
ERRor
SEVERE
TERMinal

WARNing
* ERRor

SEVERE
TERMinal

FPS 860-7494-004A

PROGRAM DEVELOPMENT

The APFTN64 command is entered using the following form:

APFTN64 srcf ile (option (modifier) option (modif ierl , modif ier2)

Table 2-3 lists the options available with APFTN64.

Table 2-3 APFTN64 Options

APFTN64 OPTION MODIFIER

(srcfile
List (lstfile)

* NOList

* Object(objfile)
NOObject
APAL(apalfile)

9#': NOAPAL

* ERRors(errfile)
NOERRors
OPTimize(level) 0

* 1
2
3
4

LIN en um

* NOLINenum
H4

* HB
DEBUG
SUBchk

* NOSUBchk
CODE

* NOCODE
DCLchk

--': NODCLchk
"!: HEXadecimal

OCT al
NAMes(level)

REF
ATT

.l:\.l..IJ..!

* NONAMes
MAP(level)

REF
ALL

FPS 860-7494-004A Page 2 9

PROGRAM DEVELOPMENT

Table 2-3 APFTN64 Options (cont.)

APFTN64 OPTION

* NOMAP
DIAGnostics(level)

FA!Lure (level)

MODIFIER

* WARNing
.ERRor
SEVERE
TERMinal

WARNing
* ERRor

SEVERE
TERMinal

The APLIBR64 command is entered using the following form:

APLIBR64 libfile (option (modifier) option (modifier!~ modifier2)

Table 2-4 lists the options available with APLIBR64.

Table 2-4 APLIBR64 Options

APLIBR64 OPTION MODIFIER

(filename
REplace(objfile[,objfile] ...)
INsert(objfile(,objfile] ...)
DELete(objfile(,objfile ...)
OUTput (libfile)
List (lstf ile)

* NOList
SHow=[(]modifierl[, ... modifiern)]

PSECT
ENT
EXT

* NOSHow[(]modifierl[, ... modifiern)]

* PSECT

* ENT
* EXT

Page 2 10 FPS 860-7494-004A

PROGRAM DEVELOPMENT

Table 2-4 APLIBR64 Options (cont.)

APLIBR64 OPTION

DIAGnostics(level)

* ERRors(errfile)
NOERRors
FAILure(level)

MODIFIER

* WARNing
ERRor
SEVERE
TERMinal

WARNing
* ERRor

SEVERE
--- -------- - - TERHiD.ar --- - ---- ----- ----------- ------ -- --- ------ --- ----

The APLINK64 command is entered using the following form:

APLINK64 txtfilel [,txtfilen] ... (option (modifier) option
(modifier!, modifier2)

Table 2-5 lists the options available with APLINK64.

Table 2-5 APLINK64 Options

APLINK64 OPTION MODIFIER

(filename[,filename] ...
* LIBrary

NOLIBrary
FORCe(name)
OVERlay (filename)

* NOOVErlay
MDBase(address)

MDLIMit(address)

PSBase(address)

PSLIMit(address)

STACKSIZe(size)

FPS 860-7494-004A

* 0

* FFFFFF

* 0

* FFFFFF

.... 0

(hex)

(hex)

Page 2 11

PROGRAM DEVELOPMENT

Table 2-5 APLINK64 Options (cont.)

APLINK64 OPTION MODIFIER

STACKBase(address)
*· next address

after user s
MD text

* HASI (hasifile)
NOHASI

* ADC(name[,name] ...) -- --
UDC(~[,~] .••)

* DISK(dskf ile)

* the IMAGE
file
specification

MEM
* !Mage(imgfile)

NOIMage
SUBRoutine
FAILure(level)

WARNing
..... ERR or ...

SEVERE
TERMinal

* List (lstfile)
NO List
SHow(modifier[,modifier] ...)

* OBJ

* PSECT

* NAME
VALUE
XREF
UNREF

NOSHow(modifier[,modifier] ...)
OBJ
PSECT
NAME

* VALUE

* XREF

* UNREF

* HEXadecimal
OCTAL
DIAGnostics(level)

* WARNing
ERRor
SEVERE
TERMinal

Page 2 12 FPS 860-7494-004A

PROGRAM DEVELOPMENT

Table 2-5 APLINK64 Options (cont.)

APLINK64 OPTION MODIFIER

SYMbols (symf ile;)
* NOSYMbols

SYMOut(objname[,objname] ...)
LMBSize(size)

DDBSIZE (size)

* ERRors
NOERRors

* 2048

* 256

The APDBUG64 command is entered using the following form:

APDBUG64 imgf ile

Table 2-6 lists the options available with APDBUG64.

Table 2-6 APDBUG64 Options

APDBUG64 OPTION MODIFIER

(filename
List (lstfile)

* NOList
SYMbols(symfile)

* NOSYMbols
APnum(number)
PSize (n)
MDsize (n)
Wait

.. NOWait
TMram

* NOTMram

FPS 860-7494-004A

* 0
* 4096
* 4096

Page 2 13

PROGRAM DEVELOPMENT

The System Job Executive (SJE) command is entered using the following
form:

SJE [(options[)]]

Table 2-7 lists the options available with SJE.

Table 2-7 SJE Options

SJE OPTION MODIFIER

APnum(number)

CONTinue
NOCONTinue
ECHo
INput=(n)
OUTput=(n)
TIME

* 0
(Note that
0 indicates
any SC.)
None
None
None
n=file_specifier
n=file_specifier
None

SJE also allows for various utility options, for example, "($FM(D)",
which forces all output files created during this execution of SJE to
be placed on disk D. These options are demonstrated in the following
section.

2.2.5.2 Examples of Invoking PDS Programs

This section presents examples showing use of the PDS programs. These
examples assist the user in learning to use the SC program development
software, and also demonstrate some of its less obvious capabilities.

The first example shows how to assemble an APAL64 source file called
MYCODE. The assembler searches all accessed disks for the file MYCODE
with a filetype of APAL64:

APAL64 MYCODE (LIST FAIL(SEVERE)

This code generates an SC object module file (APTXT64) called MYCODE
which goes into the same minidisk a~ the source, assuming that disk is
accessed read/write. If not, APAL64 puts the APTXT64 file on the first
read/write disk it finds. The listing file .created by the list option
defaults to MYCODE with a filetype of LISTING.

Page 2 14 FPS 860-7494-004A

PROGR~1 DEVELOP~IBNT

The FPS command line interpreter parses the command line into groups
~ontaining a filename, filetype, and filemode (specifies the CMS disk
on which the file resides). The following example demonstrates this
parsing:

APFTN64 MYFORT APF Bl (LIST(MYFORT MAP C)

This example compiles the file, MYFORT, which has a filetype of APF and
is on disk Bl. The listing created by the LIST option is placed in the
file MYFORT, which has a filetype of MAP and is on disk C. Note that
the user has overridden both the APFTN64 source and the listing file
output default file types. Any default file type can be overridden in
this manner.

The command line interpreter also allows the user to override defaults
and minimize terminal activity, even while working with multiple files.

Consider the following example:

APLINK64 MYFIRST MYOBJ , MYSECOND (ADC(MYFIRST , MYSECOND)

This command links SC object code in MYFIRST MYOBJ with the object code
in the file MYSECOND APTXT64.

NOTE

The blank-surrounded commas cause the parser to
interpret MYSECOND as a second file name rather than
the disk for MYFIRST. The IBM DMSSCN routine, which
parses the line once before giving it to the FPS
command line interpreter, requires the blanks on both
sides of the comma.

Three command line switches, besides the command currently being used,
control CMS file activity. These switches are $FM (file mode), $BS
(block size), and $UPCASE. With $FM the user can direct all output
files created by the command to a particular minidisk, as in the
following example:

APFTN64 CONVOLUT (NAf1ES (ALL) $FM(D)

Here, APFTN64 compiles the source in CONVOLUT APFTN64, placing the
object code in CONVOLUT APTXT64 on disk D.

The default block size for SC object code and load module files is the
same as the blocksize disk D was formatted as. (refer to Table 2-1),
which the user can override through the $BS option, as in the following
example:

APLIBR64 (INSERT(MYCODE) OUTPUT(MYLIB) $BS(2048)

FPS 860-7494-004A Page 2 15

PROGRAM DEVELOPMENT

This command creates a library (MYLIB APLIBR64) with a block size of
2048 from the object code in MYCODE APTXT64. Any block size which is a
multiple of eight is valid as input. The $BS option is needed only
when creating new binary files with a nonstandard block size.

NOTE

Changing the default blocksize may cause
COPYIN/binary and COPYOUT/binary to be slower.

By using $UPCASE, the user guarantees that all text
output files cr~ated by the command contains .
uppercase characterso Without using $UPCASE,
lowercase characters within;, text output files remain
lowercase.

Consider the following example:

APFTN64 SUBONE (LIST(UPONE) $UPCASE

This command compiles the SC subroutine SUBONE and creates a listing
file called UPONE. Because the option $UPCASE is included in the
command, the file UPONE will contain only uppercase characters.

,.
wQ.U override the $FM specification

command line, as in the following example:
any time, even in the same

APLINK64 FIFFT (HASI(FIFFT FORTRAN B) IM LIST $FM(C)

This command places the interface between FEC and SC (HASI) on disk B,
but puts the image and list files on disk C.

When executed, an ADC HAS! automatically searches, not just disk C, but
all accessed disks for the user's load module image file, FIFFT
APIMG64. The file mode associated with a particular minidisk can
change in the interval between the creation of the image file and the
time that file is opened and loaded into the AP for execution. Such
changes in file mode do not jeopardize execution.

2.3 SJE PROGRAM DEVELOPMENT AND EXECUTION

An SJE job executes entirely on the SC. The user develops a job,
copies it over to the SC, executes it, and copies results back to the
FEC.

This section provides information for the SJE programmer. Section
2.3.1 discusses program development for an SJE job, while Section 2.3.2
discusses job execution under SJE.

Page 2 16 FPS 860-7494-004A

PROGRAM DEVELOPMENT

· 2.3.1 SJE Program Development

SJE program development involves three major steps. These steps are as
follows:

• provide the files for the job

• compile or assemble user-supplied files

• create the executable image load module using the PDS routine
APLINK64

Th~ following sections describe these steps.

2.3.1.1 Providing the Files for the Job

Files for an SJE job come from two different sources: user-supplied
files and FPS-supplied files. User-supplied files can be mainline
source programs or subroutines written in either APFTN64 or APAL64.
User-supplied files can also be object modules that reside in user
libraries. FPS-supplied files come from FPS libraries, such as
APMATH64 or UTIL64. APMATH64 contains a set of high-speed arithmetic
routines, while UTIL64 contains data conversion utilities.

If during compilation or assembly the user fails to provide a· file type
as part of an input file, the compiler or assembler expects the
appropriate file type. For example, the APFTN64 compiler expects its
input files to have a file type of APFTN64, while the APAL64 assemble·r
expects its input files to have a file type APAL64.

The files used in this SJE program development and execution example
are a mainline program called SJEXMPLE that calls the subroutines
DOUBLE and DISPLAY, and the APMATH64 library routine VIADD. SJEXMPLE,
DOUBLE, and DISPLAY all have a CMS file type of APFTN64. VIADD is an
FPS-supplied object module in the library APMATH64.

2.3.1.2 Compilation or Assembly of Source Files

After collecting the files necessary for a job, the user must compile
or assemble the user-supplied source files. If the source files used
in the job are written in APFTN64, then the user must compile them
using the APFTN64 compiler. If any source files are written in APAL64,
then they must be assembled using the assembler APAL64. Compi~ing or
assembling source code creates SC object modules with a file type of
APTXT64.

FPS 860-7494-004A Page 2 17

PROGRAM DEVELOPMENT

The following commands invoke the APFTN64 compiler to compile the
source code routines SJEXMPLE, DOUBLE, and DISPLAY:

APFI'N64 SJEXMPLE (APAL OCT LIST
APFTN64 DOUBLE (APAL OCT LIST
APFTN64 DISPLAY (APAL OCT LIST

If, after each APFTN64 command is entered, the file compiles correctly~
SJE returns a message that indicates correct compilation. If the user
encounters errors during compilation or assembly, the files must be
corrected and recompiled.

Each of the above commands include PDS.options. The_APAL option causes
the compiler to produce the APAL64 source files SJEXMPLE APAL64, DOUBLE
APAL64, and DISPLAY APAL64. The OCT option causes the listing.Jiles
produced by the LIST option to contain APAL64 code exp-ressed with an
octal radix.

2.3.1.3 Creating the Image Load Module Using APLINK64

After compilation or assembly produces the object modules (having a
file type of APTXT64), the user must create an image load module. The
image load module is a collection of object files linked together to
form one module to pe.rform one job. APLINK64 uses the object modules
created during compila~ion or assembly as input fileso T- ..,,:i,:i_:..__: __ .__

J.J.1 Q.UU"'-'-"'-VU \.U

these object modules, APLINK64 automatically includes FPS-supplied
object modules that are referenced by user-supplied files. Thus, for
this example, APLINK64 links the APMATH64 routine VIADD into the job
without the user specifically supplying the file's name.

The following command creates the image load module for this example:

APLINK64 SJEXMPLE, DOUBLE, DISPLAY

The image load module created by this command is SJEXMPLE with a
default CMS file type of APIMG64.

2.3.2 Execution Using SJE

Under SJE the entire job executes on the SC. Once the image load
module exists, the job is ready to execute. To execute the job, the
user must use the Job Definition Language (JDL) to interact with SJE
and do the following:

Page 2 18 FPS 860-7494-004A

PROGRAM DEVELOPMENT

• Invoke SJE.

• Attach to an available SC.

• Copy the image load module for the job and any related data
files over to the SC. This step is not necessary if the user
is going to execute the APIMG64 file from the FEC.

• Execute the job either from the S.C or the FEC.

• Perform SJE interaction (if any) during the execution.

• Copy the results ba~k to the FEC.

• Exit SJE.

2.3.2.1 JDL Command Overview

The SJE user controls and executes SC jobs through JDL commands. JDL
is an interpretive command language that can be used to gain exclusive
access to an SC, transfer files between the SC and the FEC, and run and
debug programs in the SC.

JDL statements divide into two classes: control statements and service
request statements. JDL control statements allow the user to gain
access to an SC, release the SC, abort SC programs, gain attention of
SJE, continue execution of an interrupted program, debug SC programs
using APDBUG64, and exit from SJE. JDL service request statements
allow the user to copy files in and out of the SC file system, execute
SC load modules that reside in the SC file system, and manipulate and
examine permanent files and directories on the D64.

Permanent files are identified by names that are listed in directories.
Each user can have a p~ivate directory of permanent files, or several
users can share a directory.

Directories form a five-level hierarchy, with the System Directory as
the top level and user directories at subsequent levels. Files may
reside in the System Directory or in user directories and can contain
programs or data. Directories are not considered to be files and
cannot be opened, closed, read, or written.

Table 2-8 and Table 2-9 give the syntax for each available JDL
statement and briefly describe its use. ror more 1nrorma~1on on the
JDL command options, refer to Volume 1 of the FPS-164 Operating System
Manual Set, listed in Table 1-1.

FPS 860-7494-004A Page 2 19

PROGRAM DEVELOPMENT

NOTE

When using either the JDL command COPYIN or COPYOUT,
text files on the FEC can have a maximum record
length of 1024 bytes. The COPYOUT command splits
records longer than 1024 bytes into multiple records.
The COPYIN command truncates records longer than 1024
bytes. SJE gives no notice when splitting or
truncation of records ·occurs.

Table 2-8

COMMAND

ATrach [/Wait] [/TMram] [~]
[/Priority=n)

ABort

CONtinue

DEBug [/Now I /Defer]

DETach

Quit

Page 2 20

JDL Control Statements

DESCRIPTION

Allows the user to wait for
an SC if an SC is unavail
able.

Terminates the executing SC

Resumes execution of an
interrupted SC program.

Invokes the FPS Interactive
Symbolic Debugger (refer to
The APDEBUG64 Manual listed
in Table 1-1.

Allows the user to release
the SC.

Allows the user to quit
interacting with SJE and
return to the FEC command
level.

FPS 860-7494-004A

PROGRAM DEVELOPMENT

Table 2-9 JDL Service Request Statements

COMMAND DESCRIPTION

ACcess <directory-name>

CHange (/options] <file-name>

CLEAR [/MM=value] [/TM=value]
~LALL]

COpy [/options] <source-name>
<dest-name>

COPYin [/Binary]
[/DRi ves= [(] XY [, ...)]]
<source-name> [,<dest-name>]

COPYOut [/Binary] <source-filename>
[,<dest-filename>]

CReate [/options] <file-name>

DElete [/ALI] [/Directory]
<file-name-1>, ... <file-name-n>

Directory [/option]
[<file-name>, ...]

HELP [command]

FPS 860-7494-004A

Sets the current directory
allowing access to it and
the files in the directory.

Changes the attributes of
a file on the_ D64.

Allows the user to
initialize the main memory
or table memory RAM (TMRAM)
to the specified value.

Copies files and/or
directories from one place
to another in the SC file
system.

Allows the user to copy a
text or binary file from the
FEC file system to the SC
file system.

Allows the user to copy
text or binary files from
the SC file system to the
FEC file system.

Creates files or directories
in the SC file system.

Removes the specified files
or directories from the
SC file system.

Lists information
concerning the specified
files.

Allows the user to display
information on how to use
a specific JDL command.

Page 2 21

PROGRAM DEVELOPMENT

Table 2-9 JDL Service Request Statements (cont.)

COMMAND DESCRIPTION

HOST ['] host_command ['] Allows the user to execute
one FEC operating system
command without terminating
SJE execution.

PREserve [/paramenters] Saves one or more SC files
[<input-specifier>] in one FEC file on the

FEC.

REName [/RKey=key] [/OKey=key] Changes the name and/or read
<old-name> [<new-name>] and owner keys of the

specified file or directory.

RES tore [/paramenters] Restores FMS files and
[<output-specifier>] directories from a preserve

file on the FEC created by
the PRESERVE command.

SEt [/options] Sets certain characteristics
of the user job.

SH ow [./options] Reports information such as
the currently accessed
directory, the status of the
disks, and the SC CPU limit
time to the user.

Type <file-name>> Prints a text file to the
terminal.

The JDL HOST command allows users to execute most CMS SUBSET commands
from within SJE. The user can also use the HOST command to execute all
control program (CP) commands. The following list contains the CMS
SUBSET commands not allowed by the HOST command.

HX

START

LOAD

FLIST

NUCXDROP

Page 2 22 FPS 860-7494-004A

PROGRAM DEVELOPMENT

The following examples show use of the HOST command.

R;
sje
SJE-I-WELCOME, SJE REL F00-000 VER 1.0
SJE>
att 2
DEV 160 ATTACHED
AP Job Number = 29.

02/15/85 15:20

The SUM currently executing 'is: F00-000.
SJE-I-ATTACH, Assigned AP number 2, priority=
SJE>

3, jobnum= 29 ..

host query time
APCMS SUBSET
TIME IS 15:21:38 PDT FRIDAY 02/15/85
CONNECT= 00:09:20 VIRTCPU 000:01.84 TOTCPU= 000:06.15
SJE>
host access i91 a
APCMS SUBSET
DMSACC724I ;191~ REPLACES
SJE>

A (500)

2.3.2.2 Executing an SJE Job from the SC

This section presents the SJE execution process from the SC for the
sample job developed in Section 2.3.2. Input supplied by the user is
underlined. First, the user invokes SJE:

SJE
SJE-I-WELCOME, SJE REL xxx-yyy VER zzz mm/dd/yy hh:mm
SJE>

NOTE

The values within the SJE welcome response are
defined as follows:

xxx-yyy is the SJE release invoked

zzz is the SJE version invoked

mm/dd/yy is the current month, day,
anrl vp,q,.-___ J ---

hh:mm is the current hour and minute
of the day

FPS 860-7494-004A Page 2 23

PROGRAM DEVELOPMENT

The user now attaches specifically to SC number three:

where:

SJE>
ATI' 3
DEV 160 ATTACHED
SJE-I-ATTACH, Assigned AP number 3, Priority=n, Jobnum=xxx

xxx is the AP job number used if the user wants to display
information about the job from the AP operator (APOPR).

N is the priority queue the user was placed in.

Next, the user copies the image load module 'SJEXMPLE' and the
related data file DFILEl to the SC:

SJE>
COPYIN/BINARY 'SJEXMPLE APIMG64' , SJEXMPLE
SJE-I-COPYIN, File copied in.
COPYIN/BINARY DFILEl,DFILEl
SJE-I-COPYIN, File copied in.

Note that the IBM file name must be in single quotes in COPYIN/binary
and COPYOUT/binary commands unless the file has a file type of BIN
(binary file).
the file name. If the user wants to COPYIN or COPYOUT text files
without putting the file spec in quotes, the text file must have a
filetype of "TXT". Also, the user can enter filenames in either
uppercase or lowercase. At this point, the user executes the program
by typing in its SC file name:

SJE>
SJEXMPLE

After program execution begins, several things can .occur. The job can
call for interactive statements as required input. The job can also
display results to the user's terminal, and transfer program results
into a separate file. Once program results are in a file, the user can
enter the JDL command COPYOUT to transfer the file over to the FEC. In
any case, after the job completes, SJE displays the following exit
message:

SJE-I-EXIT, Program exit.

Finally, the user detaches the SC and quits SJE:

Page 2

SJE>
DETACH
SJE-I-DETACH, AP detached.
SJE>
QUIT
SJE-I-QUIT, SJE stopped.

24 FPS 860-7494-004A

PROGRAM DEVELOPMENT

2.3.2.3 Executing an SJE Job From the FEC

This section presents the SJE execution process from the FEC for the
sample job developed in Section 2.3.2. Input supplied by the user is
underlined.

First, the user invokes SJE:

SJE
SJE-I-WELCOME, SJE REL xxx-yyy VER zzz mm/dd/yy hh:mm

SJE>
The user now specifically attaches to SC number three:

SJE>
ATI 3
DEV 160 ATTACHED
SJE-I-ATTACH, Assigned AP Number 3, Priority= n, Jobnum=xxx

Next, the user copies the related data file DFILEl to the SC:

SJE>
COPYIN/BINARY DFILEl,DFILEl
SJE-I-COPYIN, File copied in.

Note that the IBM file name (DFILEl) is given the same file name when
it is copied into the SC. Note that DFILEl must have a filetype of TXT
to use COPYIN in this manner. Also, the user can enter file names in
either uppercase or lowercase. At this point, the user executes the
program by_typing in its IBM file name preceeded by :HOST:.

SJE>
' : HOST: SJEXMPLE AP H1G64 '

After program execution begins, several things can occur. The job can
call for interactive statements as required input. The job can display
results to the user's terminal, and transfer program results into a
separate file to be copied back to the FEC. In any case, after the job
completes, SJE displays the following exit message:

SJE-I-EXIT, Program exit.

Finally, the user detaches the SC and quits SJE:

S.JE>
DETACH
SJE-I-DETACH, AP detached.
SJE>
QUIT
SJE-I-QUIT, SJE stopped.

FPS 860-7494-004A Page 2 25

PROGRAM DEVELOPMENT

2.3.3 Executing an SJE Job in CMS Batch Mode

To execute an SJE job using CMS batch, the user creates an EXEC command
file that contains all of the FEC and SJE commands.

For example, an EXEC command file can appear as shown below:

*
* * COMMAND FILE FOR SJE BATCH JOB
* SJEXMPLE

*
*
APFTN64 SJEXMPLE APFTN64
APFTN64 DOUBLE APFTN64
APFTN64 DISPLAY APFTN64
APLINK64 SJEXMPLE, DOUBLE, DISPLAY
&BEGSTACK

ATTACH/WAIT·
COPYIN/BINARY 'SJEXMPLE APIMG64' ,SJEXMPLE
COPYIN/BINARY DFILEl,DFILEl
SJEXMPLE

statements (if any)

COPYOUT/BINARY DFILEl,DFILEl
COPYOUT 'LFILE LISTING' ,LFILE
DETACH
QUIT

&END
SJE

In the above example, the three APFTN64 commands compile the source
code files into object modules. The APLINK64 command then takes the
object modules and produces an executable image load module. The EXEC
command file then invokes SJE. When SJE is invoked, it uses the JDL
commands supplied in the command stack located before the actual SJE
command. The first command in the stack attempts to attach to an
available SC. Upon successfully attaching to an SC, SJE copies the
image load module and the data file into the SC. ~ext, the EXEC
instructs the SC to execute the program. If the job requires user
interaction during execution, the user also supplies these interactive
commands or data in the stack. The EXEC then instructs SJE to retrieve
the resulting files. Finally, the EXEC instructs SJE to detach from
the SC and to quit.

For information on how to submit an EXEC command file for execution,
refer to VM/SP CMS User's Guide, listed in Table 1-2.

Page 2 26 FPS 860-7494-004A

PROGRAM DEVELOPMENT

2.3.4 SJE User Attention Command

To interrupt an SC program execution under SJE, the user must issue an
attention interruption at the terminal, as described in the IBM VM/SP
CMS User's Guide (refer to Table 1-2). Once the attention command is
issued, SJE can take up to 15-20 seconds to get the SC's attention and
interrupt the executing program. After the interrupt occurs, SJE
prompts the user for the next command, which must be one of the
following JDL c·ommands: ABORT, DEBUG/NOW, or GONTINUE.

NOTE·

When a user's job is temporarily transferred from the
SC to the disk subsystem (rolled out), and the user
is executing under SJE, an attention interrupt acts
the same as it does when the job is executing.
However, the attention interrupt is not processed
until the job is transferred back to the SC from the
disk subsystem (rolled in). Consequently, the wait
can be much longer than 15·20 seconds.

Sometimes the user can experience difficulty interrupting SJE or APEX64
and returning to the SJE or CMS co.mmand level. When this difficulty
occurs, the user can stop a run on the SC by entering the following
command at the virtual console:

#CP EXT 1

NOTE

This assumes the user's terminal line end is set to
the default "#". Terminal line end is set using the
CP TERM LINEND command.

This command results in an external interrupt that
has an interrupt code of 1. An external interrupt
handler intercepts the interrupt and terminates all
I/O to t~e SC by issuing a HALT DEVICE instruction to
the device address through which the user
communicates with the SC. This external interrupt
immediately releases and detaches the SC, aborts
APEX64 or SJE, and returns the user directly to the
IBM/CMS operating system.

If #CP EXT 1 fails to return the user to the ens
environment, it may be necessary to abor~ the AP job
using #CP IPL CMS. This command will always abort
the AP jobs and return the user to the C~1S

environment. However, aborting a job in this manner
will cause some 6£ the AP accounting data to be lost
and therefore should only be used if the prior two
steps fail.

FPS 860-7494-004A Page 2 27

PROGRAM DEVELOPMENT

2.4 APEX64 PROGRAMMING

This section explains APEX64 FEC programs that use auto-directed calls
(ADC) and user-directed calls (UDC). Following the discussion on FEC
programs, this section also provides detailed information on APEX64
program development and execution.

2.4.1 UDC/ADC FEC Programs

A FEC mainline program can employ either the ADC method or the UDC
method. Although UDC maximizes user control of operations, it is more
complex to program with than ADC.

ADC programming is synchronous, causing the SC to wait while the FEC is
running, and the FEC to wait while the SC is running.

Using UDC enables the FEC main program and the SC subroutine to run at
the same time. The user's program on the FEC manages data transfers
between the FEC and the SC. The user's FEC program also controls when
SC subroutine execution begins.

Whether the ADC or UDC method is used, APEX64 can execute in one of
four modes: step, substep, chain, and automatic. Automatic mode is
the default, and chooses between chain, step, and substep mode. The
choice between modes is based on the size of the load module and the
size of the data arrays referenced by the load module. The FEC FORTRAN
program can call the APEX64 routine APMODE to set the APEX64 execution
mode. APEX64 execution modes optimize the use of FEC real memory in
virtual memory machines. For more information on execution modes,
refer to Volume 2 of the FPS-164 Operating System Manual Set listed in
Table 1-1.

2.4.1.1 Using Auto-directed Calls (ADC)

The following code is a sample FORTRAN program that executes on the
FEC. The numbers appearing on the right in this sample are not part of
the statements, but are line numbers added here for the reader's
convenience. This program calls subroutines for execution on the SC,
and uses the ADC programming method to call APEX64 subroutines. This
code demonstrates how to attach to and initialize an SC, how to perform
calls to subroutines that execute on the SC, and one of two methods for
releasing the SC.

c
c
c

Page 2

FILE ADCXMPLE APFTN64
INTEGER APNUM, ACTION, FOURK, ASSGN, STAT

28

1

5

FPS 860-7494-004A

c

program initialization
and flow

FOURK = 4096
APNUM = 0
ACTION = 0

C APNUM ATTACHES TO ANY AVAILABLE SC
C ACTION WAITS IF THE SC(S) ARE BUSY
C FOURK ALLOCATES 4K FOR MD AND PS ON THE SC
c

PROGRAM DEVELOPMENT

10

CALL APINIT (APNUM,ACTION,FOURK,FOURK,ASSGN,STAT) 20
c
C HANDLES A FAILURE TO ASSIGN
c

c

IF.(ASSGN .EQ. 0) CALL APSTOP (STAT)
CALL DOUBLE (A,B,C,N)

C CALL APROUTINE VECTADD WHICH CALLS VIADD
c

c
c
c

CALL VECTADD (A,B,C,N,ONE)

RELEASE THE SC AND DISPLAY RESULTS

CALL APRLSE
CALL DISPLAY (A,B,C,N)
END

25

30

35

The FEC program first uses the CALL APINIT statement (line 20 in the
above code) to call the APEX64 routine that initializes an SC and
assigns it to the user. Then the FEC program uses the CALL DOUBLE and
CALL VECTADD statements (lines 25 and 29 in the above code) to call SC
subroutines. Control does not return to the FEC program until the SC
subroutines have finished executing. When DOUBLE and VECTADD have
finished execution on the SC, the program calls the APEX64 routine
APRLSE (line 33 in the above code). This call releases the SC and
makes it available to other users. The ADC user can also call APIBMR
to release the SC. (APIBMR is described in Section 2.4.1.2.) Finally,
the program calls the FEC subroutine DISPLAY. Note that when using
ADC, the FEC program calls subroutines that execute on the FEC in the
same manner that calls are made to subroutines that execute on the SC.

FPS 860-7494-004A Page 2 29

PROGRAM DEVELOP~NT

2.4.1.2 Using User-directed Calls (UDC)

The UDC method gives the user more control over SC operation. With
UDC, the user calls APEX64 routines to explicitly control data
transfers between the FEC and the SC. The user can also control when
subroutines start executing on the SC. Because of this control, a
programmer can cause SC routines to execute simultaneously with FEC
subroutines, and SC subroutines to exec~te while the data for another
SC subroutine is being transferred to the SC.

The following code is a sample FORTRAN program na~ed UDCXMPLE that
demonstrates programming with UDC. This program contains the APEX64
calls that control data transfers and SC execution that are not
necessary when programming under ADC. The numbers appearing on the
right in this sample are not part of the statement, but are line
numbers added here for the reader's convenience.

This program also demonstrates simultaneous execution of SC subroutines
and FEC subroutines, placing the SC in chain mode, and placing the SC
in step mode.

c
C FILE UDCXMPLE
c
c

c
c

INTEGER SUM,CHAIN,step,MCP,ANY,WAIT,FOURK,ASSGN,STAT
INTEGER N,ONE,FMTI,FROMAP,TOAP,AADR,BADR,CADR,NADR

1

INTEGER STADR,DDBLEN,NOINT,DDB1(50),DDB2(50) 10

c
INTEGER A(lOO),B(lOO),C(lOO),D(lOO)

DATA DDBLEN,CHAIN,step,MCP,FMTI /50,1,2,1,0/.
DATA NOINT,FROMAP,TOAP,ONE,N,ANY /0,0,1,1,100,0/
DATA WAIT,FOURK /0,4096/ ·15

c
C LOADING VECTOR ARRAYS
c

DO 10 I=ONE,N
A(I)=I
B(I)=I+lO
C(I)=If20
D(I)=I+30

10 CONTINUE
c
C ESTABLISHING TRANSFER ADDRESS IN THE SC
c

c

Page 2

AADR=SO
BADR=AADR+N
CADR=BADRtN
NADR=CADR+oNE
STADR=NADR+ONE

30

20

25

30

FPS 860-7494-004A

PROGRAM DEVELOP~1ENT

C INITIALIZING THE SC
c

CALL APINIT .(ANY,WAIT,FOURK,FOURK,ASSGN,STAT) 40
IF (ASSGN .EQ. 0) CALL APSTOP (STAT)

c
C SETTING SC EXECUTION MODE
c 35

CALL APMODE (CHAIN)
c
C SPECIFIES DATA TRANSFER TO THE SC
c

c

CALL APIDB (DDBl,DDBLEN)
CALL APPUT (DDBl,A,AADR~N,FMTI)

CALL APPUT (DDBl,B,BADR,N,FMTI)
CALL APPUT (DDBl,N,NADR,ONE,FMTI)
CALL APPUT (DDBl,ONE,STADR,ONE,FMTI)
CALL APXDDB (DDBl,NOINT,TOAP)

C CALLS A VECTOR INTEGER ADD ROUTINE
c

CALL VIADD (AADR,STADR,BADR,STADR,CADR,STADR,NADR)
c
C START THE CHAINED MAIN CHANNEL PROGRAM EXECUTING
c

c
c
c

c
c
c
c
c

c
c
c
c
c
c

c

CALL APSTIO (MCP)

CALL A FEC SUBROUTINE FOR EXECUTION

CALL HOSTSUB (D,N,SUM)

CAUSE THE FEC TO POSTPONE EXECUTION UNTIL THE
MAIN CHANNEL PROGRAM IS FINISHED EXECUTING

CALL APWR
PLACE THE SC INTO step MODE

BUILD AND EXECUTE THE DATA DESCRIPTOR BLOCK
THAT GOVERNS THE TRANSFER OF THE RESULTS FROM
THE SC TO THE HOST

CALL APMODE (step)
CALL APIDB (DDB2,DDBLEN)
CALL APGET (DDB2,C,CADR,N,FMTI)
CALL APXDDB (DDB2,NOINT,FROMAP)

C RELEASE THE SC
c

CALL APWD
CALL APRLSE

45

50

55

60

65

70

75

80

FPS 860-7494-004A Page 2 - 31

PROGRAM DEVELOPMENT

The following steps explain the general p£ocedure needed for an FEC
FORTRAN program that uses UDC. The steps use statements from the above
file UDCXMPLE to explain the various APEX64 calls. The line numbers
shown to the right of the APEX64 calls are not part of the executable
statements; these numbers correspond to the code in the sample file
UDCXMPLE just cited. The user can use these numbers as an aid in
locating the statement under discussion. For more ~xplicit information
on APEX64 commands and their parameters, refer to Volume 2 of the
FPS-164 Operating System Manual Set, listed in Table 1-1.

1. Unlike an ADC program, the UDC program must specifically
designate where data is placed and kept in SC memory during
and after a data transfer.· The user accomplishes this task by
designating relative SC addresses for the blocks of data being
used in an SC subroutine. The file UDCXMPLE designates five
addresses in the SC, by using the following statements:

AADR=SO
BADR=AADR+N
CADR=BADR+N
NADR=CADR+N
STADR=NADR+oNE

30

The variables AADR, BADR, CADR, NADR, and STADR represent the
beginning addresses in SC memory in which the data arrays
A,B,C and data elements N and ONE reside, respectively.

2. The user can determine the mode in which the SC executes. If
the user does not specify an SC execution mode the SC defaults

Page 2

- to automatic mode. When the SC is executing in automatic
mode, APEX64 chooses one of the following modes to operate in:
CHAIN or step. The choice is based on load module size and
the size of the data areas specified in the data descrip~or
block (DDB). Refer to Volume 2 of the FPS-164 Operating
System Manual Set listed in Table 1-1 for more information on
SC mode selection.

The file UDCXMPLE first calls APMODE to place the SC into
chain mode. Chain mode is selected to demonstrate how the SC
subroutine VIADD and the FEC subroutine HOSTSUB execute
simultaneously. After the SC is put into mode, subsequent
calls to APPUT, APXDDB, and SC subroutines do not execute
immediately, but are chained together for future execution.
UDCXMPLE uses the following call statement to place the SC
into chain mode. To specify chain mode, the parameter CHAIN
must be equal to 1.

CALL APMODE (CHAIN) 36

32 FPS 860-7494-004A

PROGRAM DEVELOPMENT

3. Before the SC can execute, the user must assign and initialize
an available SC. Initialization is performed exactly as it is
when programming with ADC. The user calls the APEX64 routine
APINIT. UDCXMPLE uses the following statement to assign and
initialize an SC:

CALL APINIT (APNUM,ACTION,FOURK,FOURK,ASSGN,STAT) 40

4. After SC initialization occurs, the FEC_program begins
preparing for an FEC-to-SC data transfer. To accomplish the
data transfer the FEC must build a description of the transfer
in a data descriptor block (DDB). The DDB is built by first
calling APIDB to initialize the DDB in which the transfer
information is placed. Next, calls to APPUT describe the data·
to be tran~ferred from the FEC to the SC. The parameters
within the APPUT calls specify where to get the data in FEC
memory, where to place the data in the SC, how much data is
being sent, and the type of data being transferred. The APPUT
calls do not initiate the data transfer; the calls add
information to the FEC-resident DDB. The DDB stores the
information for the APPUT'calls until the FEC main program
executes APXDDB. UDCXMPLE uses the following code for its
first DDB build:

CALL APIDB (DDBl,DDBLEN)
CALL APPUT (DDBl,A,AADR,N,FMTI)
CALL APPUT (DDBl,B,BADR,N,F~ITI)

CALL APPUT (DDBl,N,NADR,ONE,FMTI)
CALL APPUT (DDBl,ONE,STADR,ONE,FMTI)

45

When executed, DDBl transfers array A, array B, the variable
N, and the variable ONE to the relative addresses AADR, BADR,
NADR, and STADR in SC memory.

5. After a DDB has all the descriptions for a transfer, the
transfer can be made. The FEC program calls the APEX64
routine APXDDB to execute a DOB and start the data transfer.
APXDDB uses the information in the DOB to build an FEC channel
program that transfers the data to the SC.

The moment the transfer actually occurs depends on the mode in
which the SC is executing. If the SC is in step mode, the
call to APXDDB executes the transfer immediately. If the SC
is in chain mode (refer to the UDCX:-1PLE in this section),
~xecution of the transfer is delayed. In ~ne aeiayed case,
the call to APXDDB is chained into the main channel program
(MCP) and executed later by a call to the APEX64 routine
APSTIO. UDCXMPLE uses the following statement to chain APXDDB
for execution:

CALL APXDDB (DDBl,NOINT,TOAP) 50

FPS 860-7494-004A Page 2 33

PROGRAM DEVELOPMENT

6. After the transfer of data for· an SC subroutine is either
complete or chained into the MCP, the FEC program can call the
SC subroutine. This call transfers the subroutine code to the
SC. The code transferred is in the form of a UDC HASI file.
(Refer to Section 2.4.2.4 for information on creating HASI
files during APEX64 program development.) Unlike an ADC HASI
file, a UDC HASI file contains no data transfer information.
A UDC HAS! file contains only the information needed to
transfer the subroutine itself. The data the subroutine
operates on is transferred through calls to APIDB, APPUT, .. and
APXDDB. When the FEC program calls this HASI file, it uses SC
main memory addresses to refer to all the parameters used by
the SC subroutine. UDCXMPLE uses the following statement to
call the SC subroutine VIADD:

CALL VIADD (AADR,STADR,BADR,STADR,CADR,STADR,NADR) 54

Again, because UDCXMPLE has placed the SC in chain mode, the
call to VIADD does not execute immediately. The call is
chained into the MCP following the APXDDB call that was
chained into the MCP during step 5.

7. At this point, UDCXMPLE has built its MCP. The FEC subroutine
HOSTSUB and the SC subroutine VIADD can now execute
simultaneously, and the FEC can perform functions that do not
interfere with the subroutine running in the SC. Although
this example does not demonstrate it, the FEC can also
transfer data to or from that the SC
is not using while an SC subroutine executes.

To start execution of the MCP, UDCXMPLE calls the APEX64
routine APSTIO. This call executes the MCP from beginning to
end. For UDCXMPLE, APSTIO first executes the APXDDB that
performs the data transfer described by DDBl in step 4 and
then executes the call to VIADD. UDCXMPLE uses the following
statement to begin MCP execution. To specify MCP execution,
the variable MCP must be equal to 1.

CALL APSTIO (MCP) 58

After the MCP execution has begun, the FEC is free to execute
FEC-related tasks. UDCXMPLE immediately calls HOSTSUB to
demonst~ate that a FEC subroutine can execute at the same time
an SC subroutine executes.

8. When the FEC program needs the results of an executing SC
subroutine, it calls the APEX64 routine APWR. APWR causes the
FEC main program to suspend further FEC action until the SC
finishes execution of an SC subroutine. In this example,
UDCXMPLE calls APWR to ensure the SC has finished executing
VIADD before attempting to transfer results back to the FEC.
The call statement used is shown below:

CALL APWR 67

Page 2 34 FPS 860-7494-004A

PROGRAM DEVELOPMENT

9. At this point, UDCXMPLE places the SC into step mode for
execution. While in step mode, the SC executes DDBis and SC
subroutines at the time the calls to A?XDDB and the
subroutines are made. Thus, no chaining together of commands
occurs while the SC is in step mode. UDCXMPLE uses the
following call to place the SC into step mode, where step must
be equal to 2:

CALL APMODE (step) 75

10. When the FEC program is ready to retrieve data from the SC,
the program initializes a DOB by calling APIDB and performing
APGET calls. Like APPUT calls, APGET calls do not actually
cause SC-to-FEC data transfers, but place descriptions of the
transfers in FEC-resident DDB's .. UDCXMPLE uses the following
statements to build the DOB that controls the data transfer:

CALL APIDB (DDB2,DDBLEN) 76
CALL APGET (DDB2~C,CADR,N,FMTI)

When executed, DDB2 transfers N elements of the resulting sum
array beginning from the relative SC address CADR to the FEC
array C.

11. After DDB2 is built, the FEC program calls APXDDB. to perform
the data transfer described by DDB2. UDCXMPLE uses the
following statement to begin the data transfer:

CALL APXDDB (DDB2,NOINT,FROMAP) 78

Because the SC is now in step mode, the call to APXDDB begins
the data transfer.

12. When the transfer begins, the FEC program calls the APEX64
routine APWD. APWD causes the FEC to suspend further
execution ~ntil the current data transfer is complete.
UDCXMPLE uses the following statement to suspend execution:

CALL APWD 82

13. Once the FEC finishes using the SC, the program releases it by
calling either APRLSE or APIBMR. UDC:01PLE uses the following
statement to release the SC:

CALL APRLSE 83

FPS 860-7494-004A Page 2 35

PROGRAM DEVELOPMENT

2.4.2 Program Development for APEX64

This section provides an APEX64 program development example.

The text uses actual FEC commands that run PDS programs, build IBM
object modules, and build executable load modules. The commands
operate on a· fictitious set of files, which includes:

• an FEC FORTRAN program called MYJOB that uses UDC

• two SC subroutines APJOBl and APJOB2 that are coded in APFTN64

• the subroutine HOSTSUB that executes on the FEC

• APMATH64 library routine VIADD that executes on the SC with
APJOBl and APJOB2

Although this example assumes an FEC program that uses UDC, the
development process for a job that uses ADC is identical to a job that
uses UDC, with one exception that is explained in Section 2.4.2.4.

An APEX64 program is developed in eight steps. Some of these steps are
not necessary, such as building libraries with APLIBR64 and invoking
APDBUG64. However, these steps are included in this example for users
who wish to employ them.

The following list summarizes the program development process:

Page 2

• Supply the necessary files for the job. These files include
the FEC program, all subroutines executing on the FEC and the
SC, and any routines used from· libraries.

• Compile or assemble subroutine code for execution. The PDS
compiler APFTN64 is used for subroutines written in AP
FORTRAN, while APAL64 is used for subroutines written in SC
Assembly Language.

• Using APLIBR64, combine subroutines that excute on the SC into
libraries. This optional step makes handling of files easier.

• Create an Host/SC Software Interface (HASI) file using
APLINK64 for the assembled or compiled object files.

• Invoke APDBUG64 to debug SC subroutines as they execute on an
S.C. This step is optional.

• Create FEC object modules for the FEC program and SC
subroutine HASI files by compiling or assembling them using
FEC facilities.

36 FPS 860-i494-004A

PROGRAM DEVELOPMENT

• Create an FEC-executable load module using the GLOBAL command
to link the object modules and necessary text libraries
together. APDBUG64 can be included in the load module. to
allow for job debugging.

• Execute the FEC program.

2.4.2.1 Supplying the Files

To begin APEX64 program development, the user must provide the
necessary files. Several types of files can be involved in an APEX64
joo. These file types include: a user-supplied FEC program,
user-supplied subroutines that execute on the SC, user-supplied
subroutines that execute on the FEC, and FPS-supplied library routines
that execute on the SC.

The FEC program, which makes· calls to APEX64 routines and subroutines,
can be written in either FEC FORTRAN, FEC assembler language, or any
other language that uses FORTRAN calling structures. If the FEC
program is written in FORTRAN, its CMS file type must be FORTRAN'. If
the FEC program is written in FEC assembler language, its C~S file type
must be ASSEMBLE.

The subroutines can execute on either the FEC or the SC. Subroutines
that execute on th~ FEC are also written in either FEC FORTRAN, FEC
assembler, or any other language that uses FORTRAN calling structures.
The CMS file type for these higher-level subroutines is FORTRAN, while
the CMS file type for subroutines written in FEC assembler is ASSEMBLE.

Similarly, the subroutines that execute on the SC are written in either
APFTN64 (a superset of FORTRAN 77) or APAL64. For more information on
FORTRAN 77, refer to the American National Standard Programming
Language of FORTRAN, listed in table 1-3. The CMS filetype needed for
subroutines written in SC FORTRAN (APFTN64), while the filetype is
APAL64 for subroutines written in APAL64.

A third set of files can be used in an APEX64 job; these files are
routines from FPS-supplied libraries. These libraries include a set of
high-speed arithmetic routines in the library APMATH64, a set of data
conversion utilities in the library UTIL64, and a set of lower-level
FORTRAN I/O routines in the libraries APRLIB64 and APSLIB64. Some
restrictions do exist in using the FPS-supplied routines. The data
conversion utilities in UTIL64 are called from FEC FORTRAN programs.
The routines in APnATH64 can be called from either an FEC FORTRAN
program or a subroutine executing on the SC. The APRLIB64 and APSLIB64
routines are explicitly called only from subroutines coded in APAL64
executing on the SC.

FPS 860-7494-004A Page 2 37

PROGRAM DEVELOPMENT

2.4.2.2 Compilation or Assembly for SC Subroutines

After the user supplies the files for a job, the user must compile or
assemble the subroutines that execute on the SC. The user must use
APFTN64 to compile subroutines written in FORTRAN, and use APAL64 to
assemble subroutines written in APAL64.

For this sample job, the user must compile the source files APJOBl and
APJOB2. The user enters the following commands to perform this
compilation:

APFTN64 APJOBl APFTN64 (LIST (AJOBlLIS) DEBUG
APFTN64 APJOB2 (LIST (AJOB2LIS)

The above commands create two object modules with file types of APTXT64
from the files APJOBl and APJOB2. The first APFTN64 command compiles
the file APJOBl using the LIST and DEBUG options. The LIST option
causes the compiler to provide a listing file of APJOBl in a file
called AJOBlLIS that has a file type of LISTING. The DEBUG option
prepares APJOBl for a debugging session by causing the compiler to save
all the local symbols in the object module, provide line numbers in
error abort traceback, and run the APFTN64 compiler at an optimization
level of 0. The second APFTN64 command similarly compiles the file
APJOB2 while using the LIST option.

2.4.2.3 Building Libraries

At this point, the user can place the object modules of SC subroutines
into libraries. Combining subroutines into libraries enables a user to
reference just the library instead of numerous files during the
APLINK64 step. For example, consider an ADC mainline program that
calls seven individual subroutines for execution on the SC. If these
subroutines are not in a library, the APLINK64 statement must reference
each subroutine by name. On the other hand, if a library contains the
seven subroutines, APLINK64 need only reference that library name to
gain access to all seven subroutines.

A library can contain SC subroutines that are not used in the job.
APLINK64 uses only the subroutines referenced by the mainline program.

This sample job uses the following APLIBR64 statement to add SC
subroutines to an existing library:

APLIBR64 LIBAP APLIBR64 (INSERT (APJOBl , APJOB2)

This command places the two SC subroutine object modules APJOBl and
APJOB2 into the existing liqrary LIBAP.

Page 2 38 FPS 860-7494-004A

PROGRAM DEVELOPMENT

2.4.2.4 Creating the HAS! File Using APLINK64

After the user-supplied files that execute on the SC are compiled or
assembled, the user uses APLINK64 to produce HAS! files from object
modules.

The image file is an SC load module that contains SC-ex·ecutable
microcode. The HASI controls FEC-to-SC transfers for the subroutines
that are to be executed on the SC. If the calling program employs UDC,
calls to APEX64 within the FEC program control when SC subroutine data
is transferred to the SC, and where SC subroutine data is transferred
in the SC. UDC FEC programs also control when SC routines are
executed. (RefeT to Section 2.4.1.2 for detailed UDC information.)

If APDBUG64 is to be used in testing SC subroutines, the user may also
use the APLINK64 option SYM to create symbol tables.

This example uses three routines ~hat execu~e on the SC. These
routines are APJOBl, APJOB2, and the APMATH64 routine VIADD. APLINK64
must create UDC type HASI file(s) for each of these routines. TI1is
sample job uses the following APLINK64 statements to build the HASI
files:

APLINK64 LIBAP (UDC (APJOBl , APJOB2) SYM (APSYMS)
APLINK64 (UDC (VIADD)

The first APLINK64 statement produces a UDC-type HASI for APJOBI and
APJOB2. The next APLINK64 statement creates a UDC-type HAS! for the
FPS-supplied APMATH64 routine VIADD.

NOTE

The APLINK64 statement mentions the files APJOBl and
APJOB2 because this sample job uses UDC mod~. In ADC
mode such files need not be mentioned. By providing
the library name only, APLINK64 _automatically
includes all· subroutines referenced by the ADC
routines or any routines including APROUTINE or
APFUNCTION declarations.

2.4.2.5- Debugging SC Subroutines

At this point, the user can invoke APDBUG64 to verify SC subroutines.
Invoking APDBUG64 enables the user to debug SC subroutines on an actual
SC.

To use a file with APDBUG64, certain options can be included during the
compilation or assembly and APLINK64 steps. For subroutines written in
FORTRAN, the DEBUG option can be included during the compilation step.
For subroutines written in APAL64, the NAMES (UNREF) option and
modifier can be included during the assembly step. During the APLINK64
step, the user can include the "sYM option.

FPS 860-7494-004A Page 2 39

IBM/GMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

CHAPTER3

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

3.1 INTRODUCTION

This chapter presents additional software information that describes
the allocation of an SC, shared SC execution time, and communicating
with FEC files from the SC. The text assumes that the reader is an
experienced CMS system user and is already familiar with how an SC
operates. When in doubt about how to use an element of the SC
software, the reader can consult the appropriate publication listed in
Table 1-1.

3.2 ALLOCATION OF AN SC

This section discusses SC allocation. Included topics are the role of
the FPS-164 Scientific Computer Manager Program (APMGR), number of
users able to attach to an SC, selection of the SC, releasing and
deta~hing the SC, and forced release processing.

Although this section primarily discusses topics that are functionally
invisible to the user, some user-visible SC allocation commands are
included.

3.2.1 The Role of the APMGR

Since the SC and FEC communicate as though the SC were an I/O device,
an I/O path must exist between the SC and the C~lS virtual machine that
is attempting to access the SC through APEX64 or the SJE. The CP
ATTACH command allows the user to make one of the device addresses
recognized by the SC become part of the user's virtual machine
configuration, and establishes the needed I/O path. However, since C~S
users seldom possess the CP command privilege allowing them to execute
the ATTACH command directly from their own virtual machine, an AP~GR
virtual machine executes the CP ATTACH command on their behalf. The
APMGR virtual machine· runs continuously in a disconnected state,
communicating with CMS users through the virtual machine communication
facility (v11CF).

To gain access to an SC, the APEX64 user calls APINIT and the SJE user
issues the SJE ATTACH command (not to be confused with CP ATTACH). The
user can specify either that a specific SC be attached or that any SC
be attached. If the user specifies a particular SC, and if at least
one of the addresses recognized by that SC is available (refer to
Section 4.4.1), then the APMGR issues a CP ATTACH command for the first

FPS 860-7494-004A Page 3 1

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

available address and dedicates that address to the user's virtual
machine. This procedure establishes the needed data path between the
SC and the CMS virtual machine.

APEX64 completes the assignment process after the SC is attached by
executing an assign channel program to the SC. The SC's Host Interface
Support Processor (HI~P) (refer to Section 4.2.3)- interprets the assign
channel program and grants the user's virtual machine access to the SC.
If another user has assigned the SC, the user can wait for it to become
available. In this case, the APMGR places the ·user'into one of its
internal priority queues. When the user reaches the head of the queue
and no other users are waiting at a higher priority, the APMGR issues
the CP ATTACH command to attach an AP device address to the user's
virtual machine. The APMGR then sends a VMCF message to the waiting
user to wake him up and tell him he now has access to the AP.

3.2.2 Number of Users

The number of users that can simultaneously wait for.access to a given
SC depends on the number of real device addresses physically configured
for that SC and the MAXusers values set in the APMGR. An SC can be
configured to recognize a range with a maximum of 8, 16, or 32 device
addresses. Note that configuring the hardware for only one device
address is no longer supported by the software. SC's reserve the first
address for special APMGR processing. Note that the MAXusers values in
the APMGR must not total more than the number of (addresses -1)
configured in the hardware. See the ,AP Operator manual for a
description of setting the MAXusers values for each priority queue of
an AP.

Once a user has initially attached to an SC, the user shares.SC
execution time with other attached users. The MAXusers parameter set
within the site parameter file controls the number of users able to
share SC execution time. Section 3.3 describes the site parameter file
and sharing of SC execution time.

3.2.3 Selecting an SC

Requesting that any available SC be assigned causes the APMGR to attach
to the user's machine the first available SC in the system. The APEX64
user issues a call to APINIT, while the SJE user enters the JDL command
ATTACH to assign and initialize an SC. If all SC' s are busy, the APMGR
places the user in the "wait queue". The user waits in that queue
until an SC becomes available, provided the user requested that he
wanted to wait.

The APMGR determines how many SC's are part of the system and what real
device addresses are available to each SC. When the APMGR issues a CP
ATTACH command to attach the SC to a user's virtual machine, the
command must specify both a real device address and a virtual device
address. The APMGR selects the real address from APCN64. This address
is the address through which the real hardware communicates with the
SC.

Page 3 2 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFTWARE OF.>THE FEC/SC SYSTEM

The virtual device address is the address through which the user's
virtual machine communicates with the SC. When an I/O communication
with the SC is requested through the virtual address, this request is
automatically directed to the correct real address. APEX64 uses a
virtual device address of 160 for SC communication. If a virtual
device address 160 is currently in use by the virtual machine, it is
detached before requesting the attach function from the APMGR.

3.2.4 Releasing and Detaching an SC

When the user finishes with the SC, it must be released and detached
for other SC users to access. The APEX64 user performs these
operations with a call to APRLSE (or APIBMR, discussed in Section
2.4.1.2). The SJE user simply issues the SJE DETACH command (not to be
confused_ with CP DETACH). The releas.e is accomplished by sending a
release VMCF message to the APMGR and then executing a release channel
program to the SC, which informs the HISP that the SC is now available
to the next user. After release, the SC is detached from the user's
virtual machine through a CP DETACH command.

3.2.5 SC Device. Address 0

The first device address in the range configured for each SC is used by
the APMGR for special processing. Attempts to attach the first address
in the range for each AP to itself. The APMGR needs the first address
in the range to perform AP Operator (APOPR) ABORT processing. If for
some reason the APMGR can not attach the first device address in the
range, it will attempt to attach any available device address in the
range. If this happens, the APMGR will function correctly but the
APOPR ABORT command will fail to abort users currently assigned to that
AP.

3.2.6 Force-Release Processing

If a user's APEX64 or SJE job ends for any reason before APRLSE or
APIBMR is called, the APMGR force releases the SC. This involves
detaching the SC device address from the user's virtual machine and
executing the release channel program to the SC. ~ote that when the
APMGR has to perform force release processing, the accounting data,
that is normally passed to the APMGR by APRLSE, is lost.

The APMGR will still write an accounting record for the offending user,
but the account name field (set by the SJE set/account command), the
SC/CPU time field, the SC disk I/O field, and the host I/0 field will
be missing.

FPS 860-7494-004A Page 3 3

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

3.3 ROLL-IN/ROLL-OUT (RIRO)

The ~all-in/roll-out (RIRO) feature allows the SC to divide its
processing time between multiple jobs according to their priority.

Under RIRO control, one job executes o~ the SC at a time. After a,
specified execution time interval, the job is rolled out to the disk
and is placed on a queue of waiting jobs.

Up to 10 wait queues can be active at the same time, each with a
different RIRO priority. After the current job is rolled out to the
appropriate queue, the next job on the highest priority queue is rolled
in and run for the time interval specified for that priority queue.

The wait queues can hold up to 31 jobs at a time. However, the number
of jobs allowed in each queue can be limited by the MAXusers site
parameter for that queue. Note that the total number users allowed in
all active queues must not be greater than the number of real device
addresses minus 1 configured for the SC. The queues are maintained in
a round-robin fashion, with the most recently rolled-out job placed on
the bottom of the queue. Depending on the priority scheme, which is
system-dependent, an SC job assumes a default priority or a
user-defined priority. The priority determines in which queue the job
is placed. The queue determines how soon the job is rolled back in and
how long the job runs before it is again rolled out. SJE jobs, both
batch and int.eractive, and APEX64 jobs are treated equally within a
queue.

The number and priority of queues, the SC CPU time interval and maximum
number of jobs for each queue, and the default priori~y for different
types of jobs are variable and are set at each installation. Refer to
the FPS-164 System Manager's/Operator's Manual, listed in Table 1-1,
for information on setting up RIRO queues.

NOTE

In SJE, if the user is idle for more than three
minutes when attached to the SC, the user is rolled
out if someone is waiting to use the SC.

The following example shows how to initiate the FPS-164 Operator
Pr.ogram (APOPR) :

APO PR
APO PR>

Once the "APOPR>" prompt appears, enter any APOPR command. (See the
FPS-164 System Manager's/Operator's Manual.)

Page 3 4 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFlVARE OF THE FEC/SC SYSTEM

3.4 I/0 TO FEC. FILES

The user of an SC can gain access to FEC files directly from an
executing SC program. Access can be accomplished by using the file
name prefixes :HOST: and :HOSTCHAR:, which are placed directly in front
of the file specifier as it appears-in the calling program. The prefix
:HOST: is used when the file specified is an SC-formatted binary file
or a character file, while the prefix :HOSTCHAR: is used when the file
specified is an FEC-formatted character file.

In general, the SC cannot gain access to an FEC magnetic tape device.
However, under SJE the JDL commands PRESERVE and RESTORE do allow such
access. Refer to Section 3.5 for FEC-specific examples of using
PRESERVE and RESTORE.

No data format translation occurs for I/O performed to FEC-resident
files that include the :HOST: prefix. These files must already be in
the proper SC format for I/O to occur. Properly formatted SC files
include those created by program development software (PDS) routines,
by the SJE COPYOUT/BINARY command, or by an FEC program using the data
conversion utilities.

Data format translations occur for I/0 performed to the FEC terminal,
and also for I/O performed to FEC character format files that include
the :HOSTCHAR: prefix.

Use of the :HOSTCHAR: prefix is limited only to APFTN64 formatted I/0
operations. APFTN64 programs cannot issue unformatted (binary) I/0
statements to FEC-formatted files. The :HOST: prefix is used for I/O
performed to all SC-formatted files on the FEC. Table 3-1 below
presents these ·four combinations of file and data formats. How to gain
access to the file from both the SC and the FEC is also shown.

Table 3-1 FEC File Prefixes

FILE TYPE PREFIX SC ACCESS FEC ACCESS

FEC binary none not allowed unformatted FEC
FORTRAN

FEC character :HOSTCHAR: formatted formatted FEC
AP1'TN64 FORTRAN

SC binary :HOST: unformatted FEC program with
APFTN64 data conversion

utilities

SC character :HOST: formatted FEC program with
APFTN64 data conversion

utilities

FPS 860-7494-004A Page 3 5

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

To gain access to an SC-formatted FEC file from a program executing on
the SC, the user must specify the FEC file using the following format:

':HOST: f"ilename filetype [filemode]'

If the user wants to gain access to an FEC charaGter format file from a
program executing on the SC, the user must specify the FEC file using
the format:

':HOSTCHAR:filename filetype [filemode]'

Because the file specifier contains blanks between filename, filetype,
and filemode, the entire string must be enclosed within single quotes.
If the string is not quoted, the SC terminates the line at the first
space encountered. The following lines of code demonstrate a sample
write operation to an FEC file within an executing program:

OPEN (6,FILE=':HOST:FILEA APTXT64 A')
WRITE (6,lO)A,B,C

10 FORMAT (F5.3,2X,F5.3,2X,FS.3)

3.5 USING PRESERVE AND RESTORE

Both PRESERVE and RESTORE are JDL commands that operate under SJE. The
PRESERVE comma~d allows the user to store a copy of one or more .files
under the SC file management system on an FEC disk or tape unit.
Conversely, the RESTORE command restores back to the SC system any file
or set of files previously saved by a PRESERVE command. Both binary
and text files can be preserved under the same save file.

For information on the options available with PRESERVE and RESTORE,
refer to Volume 1 of the FPS-164 Operating System Manual Set listed in
Table 1-1.

To use the PRESERVE and RESTORE commands, the user must be attached to
an SC and be operating under SJE.

The following examples illustrate two uses of PRESERVE and RESTORE.

In the first example, ail SC files are saved on magnetic tape using
PRESERVE and then restored using RESTORE. These commands assume the
virtual address of the tape drive to be 281.

ACCESS (system_password):
PRESERVE /TAPE=:HOST:281/ID=JAN.01.1983/TREE/UNIVERSAL

ACCESS (system_password):
RESTORE /TAPE=~HOST:281/ID=JAN.01.1983

Page 3 6 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

NOTE

It is more efficient to attach the tape drive to a
different virtual channel than the one to which the
SC is attached. APEX64 always attaches the SC to
channel 1. If the SC and the tape. drive must be on
the same virtual channel, the channel should be
defined as a block multiplexer to the virtual
machine. The tape I/O during PRESERVE or RESTORE is
overlapped with I/O to the SC. Using a block
multiplexer or separate virtual channels saves APEX64
from.the processing required to handle channel busy
conditions.

In the above PRESERVE example, the ACCESS command establishes rights to
the system directory. The JDL command ACCESS is necessary when
attempting to preserve or restore files ~hat require passwords or keys.
The TREE parameter specifies the currently accessed directory (in this
case the entire file system) of the SC FMS to be saved, including all
subdirectories. PRESERVE assigns the ID "JAN.01.1983" to the saved
files (the preserve file) on the tape unit at virtual address 281. The
ID "JAN.01.1983" is kept in the preserve file header for identification
in a RESTORE operation.

The /UNIVERSAL option supports copying files between different FEC's.

NOTE

The tape drive at the indicated virtual address
should already be attached to the virtual machine
before starting SJE. If the .tape drive is not
attached and ready when the PRESERVE command is
issued, the FEC prompts the user to attach and ready
the drive while program execution is delayed. Since
the wait for an available tape drive is usually many
times longer than the wait for an available SC, wait
for the tape drive outside of SJE. The default tape
density is 1600 BPI and the default sequence number
is 1, the first savefile on the tape. Tapes used for
the PRESERVE and RESTORE commands must be 9-track
unlabled tapes.

In the above RESTORE e~ample, the ACCESS command again establishes
rights to the system directory. The RESTORE command interfaces with
the tape drive at virtual address 281. For this example, the first
file on this tape must have an ID of "JAN. 01.1983" or RESTORE aborts.
All SC file system files and directories contained in the preserve file
will be created and restored if they no longer exist.

FPS 860-7494-004A Page 3 7

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

NOTE

If a user wishes to replace existing SC files with
those found in a PRESERVE file, include the REPLACE
option in the RESTORE command.

In the second example, several SC files are saved in a .file on disk A.
The following code demonstrates this process:

PRESERVE/FILE= 9 :HOST:PRSERVE1 DAT A'/ID=MYFILES &
/LIST=':HOSTCHAR:PRSERVEl LIS' FILEA,FILEB,FILEC,FILED

RESTORE/FILE=':HOST:PRSERVEl DAT'/ID=MYFILES &
/REPLACE FILED

The file "PRSERVEl DAT A" is a preserve file ha,ling "MYFILES" for an ID
and containing the four SC files FILEA, FILEB, FILEC, and FILED. The
FEC character fil~ "PRSERVEl LIS" created by the /LIST option is
written on disk A in the user's default directory on the FEC. This
file contains information for the PRESERVE command issued, such as the
name of the PRESERVE file, the ID for the PRESERVE file, and
information about each file saved.

The above RESTORE command replaces the SC file FILED with the FILED
found in "PRESERVEl DAT A".

NOTE

The ampersand symbol ("&") in an SJE command line is
the continuation mark.

3.6 SJE DATA CONVERSION UTILITIES

This Section discusses the library of data and file conversion
utilities available to SJE users as FEC-FORTRAN-callable subroutines
and functions. These utilities perform data conversion between FEC and
SC data formats and permit the creation and retrieval of
APFTN64-compatible file records. The data formats are shown in Section
4.4.9.

SJE supports the transfer of both text and binary files. Text files
are converted between FEC and SC formats automatically during their
transfer. Binary files are transferred without any conversion.

Page 3 8 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFTWARE OF THE ~EC/SC SYSTEM

Data conversion utilities are necessary only if the user wants to
perform both of the foilowing operations one after another.

• transfer (between the FEC and SC file systems) files
containing binary (machine format) data written using FORTRAN
unformatted WRITE statements

• read the file on the destination system using the matching
FORTRAN unformatted READ statements

The user can combine program calls to these utilities with FEC I/0
services to creat~ FEC files that SJE can transfer as binary files.
Once these files reside on the SC file system, APFTN64 programs can
access them using standard FORTRAN 77 I/O. After retrieving a file
from the SC file system, the user can use the data conversion utilities
along with FEC I/O services to create FEC files that can be read by FEC
FORTRAN programs.

File conversion routines convert FORTRAN unformatted file records
between FEC and SC formats. The data conversion routines convert to
and from the following types of data:

• FEC integers to and from SC integers

• FEC real (floating-point) numbers to and from
SC real (floating-point) numbers

• FEC double-precision numbers to and from SC
real (floating-point) numbers

• FEC logical numbers to and from SC logical numbers

• FEC characters to and from SC characters

A file to be transferred can contain various types of data within a
single record. Because the FEC and SC have different file record
formats, each record within the file requires a separate record
conversion.

Figure 3-1 illustrates the use of the data and file conversion routines
to transfer an FEC binary file to an SC binary file.

FPS 860-7494-004A Page 3 9

IBM/CMS SPECIFIC SOFTWARE QF THE FEC/SC SYSTEM

FEC FORTRAN
UNFORMATTED READ

STATEMENTS

FEC - INTEGER
TO AP-INTEGER

ROUTINE
PUT RECORD

ROUT I.HE

COPYIN/8
OPERATION

...
- ..

FEC
FILE

FEC
INTEGER

DATA

FEC
FLT-PT.

DATA

I I
I I
I I
T I

I I
I I
I I
I 1

I I
I I
I I

SC _..:
INTEGER ri

DATA

SC
._ .. FLT-PT.

DATA

FEC FLOATING-POINT
TO SC FLOATING-POINT

RCUTINE

I I
I I
I I
f I

I I
I I
I I
I I
I I
I I
I I
I I

_.
-.,

..... ...

PUT RECORD
ROUTJNE

OUTPUT .. --BUFFER

Figure 3-1 FEC File to SC File Conversion Steps

I
I

SC I
FILE _J_ ~

T
IN I FEC

I
I

Assuming the existence of an FEC. file written with FORTRAN unformatted
WRITE statements, the user must write an FEC FORTRAN program that reads
an FE~ file record into memory using the appropriate FORTRAN
unformatted READ operations. For each variable (or array of variables
of identical type) now in memory, the program calls the appropriate
data conversion routine to convert from FEC to SC data formats. The
result of each data conversion must be stored contiguously in an
intermediate buffer with all other converted data that constitutes the
record. The program then calls the put record (PUTUR) routine to move
the converted data from the intermediate buffer into a utility-managed
buffer. During this movement, the PUTUR routine creates an SC-format
record header and includes it in the buffer with the data. The PUTUR
routine also takes care of writing the utility-managed buffer to an FEC
file when it becomes full.

Once all of the data in the FEC-format file is processed in the above
manner, the user ·has a new FEC fiie that contains SC-format data and
file records. The user can then transfer the file to the SC file
system using the SJE COPYIN/BINARY command. An APFTN64 program can
read this file using FORTRAN unformatted READ statements identical to
those used to read the original FEC file.

Page 3 10 FPS 860-7494-004A

SC
FILE

IN
SC

-5173-

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

3.6.1 FEC Data File to·sc Data File Conversion Procedure

The detailed processing steps in a program for converting an FEC
FORTRAN data file into an equivalent FEC-resident APFTN64 data file
are:

1. The user provides an 8208-byte data area (buffer) for use by
the file conversion utilities.

2. The user then calls the initialize output buffer (INITOB)
function, passing it the 8208-byte buffer, the name of the
file to receive the APFTN64 records, and the file name length.
The.8208-byte data area contains a 16-byte header and an
8192-byte (8K) buffer in which SC file records are built. The
header contains information used by the file conversion
utility duri~g the file-building process. The INITOB function.
initializes the header and spreads zeros throughout the 8K
buffer.

3. The user calls the data conversion utilities to convert all
the data in the FEC FORTRAN record into SC format data. The
following code demonstrates how to call conversion utilities:

READ (HSTFILE) REAL,INT1,I~2,DOUBLE
CALL FPHR2R (REAL,TEMP(l),1)
CALL FPHIZI (INT1,TEMP(3),l,4)
CALL FPHI2I (INT2,TEMP(5),l,4)
CALL FPHDZR (DOUBLE,TEMP(7),l)

In this example, the program reads the data items REAL, INTl,
INT2, and DOUBLE from one record in the file unit HSTFILE.
Each type of data word is then converted by calling the
appropriate conversion utility. As each data item is
converted, it is placed in the array TE~P.

4. The user calls the put unformatted record (PUTt:R) routine to
create an SC FORTRAN record and buffer it into the BK-word
buffer. For example, the following statement places the array
TEMP (created in step 3) into a temporary buffer called BCFF:

STATUS= PUTUR (BUFF·, TEMP, 24)

Because PUTUR places the four data items of TEMP into one
record, the SC program can retrieve the converted data with a
READ statement identical to one that reads the data from the
FEC file.

FPS 860-7494-004A Page 3 11

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

When the SK-word buffer becomes full, PUTUR automatically
writes the entire SK-word block into the output data file.
The conversion of data in each record and the caliing of PUTUR
repeats until the entire output aata file is complete.

5. The user calls the put endfile (PUTEF) routine. PUTEF writes
an end-of-file record in.the buffer, writes the buffer into
the output data file, and closes the output file.

NOTE

The PUTUR routine continues to store the APFTN64
records in the SK-word buffer until the buffer is
full or the PUTEF routine is called. The routine
then writes this BK-word buffer to the output data
file. The routine also saves enough information
about a record that crosses the BK-word block
boundary to permit the record to continue in the next
SK-word buffer. Thus, the resulting FEC data file
contains an image of a APFTN64 file that is blocked
in BK-byte records.

Figure 3-2 shows the logical flow for a program that performs the FEC
to SC data file conversion.

Page 3 12 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

ROVIOE AN 8208-BYTE
DATA BUFFER

CALL INITIOB TO IN
ITIALIZE THE 82~8-
BYTE DATA BUFFER &
OPEN AN OUTPUT DATA
FILE

CONVERT DATA USING
DATA CONVERSION

UTILITIES

CALL PUTUR TO CREATE
AN SC FORTRAN RECOR
ANO PLACE IT IN THE

8208-BYTE DATA BUFFER

CALL PUTEF TO WRITE
THE LAST BUFFER ANO
THE E.O.F.RECORD INTO
THE OUTPUT DATA FIL

CLOSE THE OUTPUT
DATA FILE

-5174-

Figure 3-2 FEC Data File to SC Data File Conversion Logic

FPS 860-7494-004A Page 3 13

IBM/CMS. SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

The following program is an example of the above steps:

c
C THIS PROGRAM CONVERTS 10 FEC INTEGERS TO 10 SC INTEGERS
c AND 5 FEC FLOATING-POINT (REAL) NUMBERS TO s·sc FLOATING-POINT
C NUMBERS. THEN THE PROGRAM WRITES THE SC NUMBERS INTO THE
C FEC FILE SJEDATA BIN IN THE FORM OF APFTN64 UNFORMATTED
C RECORDS. .
c
C : .. . \ :., .\ .\..\A:.,.\,,\ A A J .. A: .. .\ A le lt, .\ .\ ,'.. :.,, J.. A J:. J.. ! .. • \A k·A Al..\. A A A! .. lrlrlrirl:-!~':-;\ : • .! .. • \ .':._':-l~'~'rlrl:·J:-.':-;,':*._'~':-;':**-

C
c
C DEFINE THE 8208-BYTE OUTPUT BUFFER TO BE USED BY THE CONVERSION
C UTILITIES
c

c

DOUBLE PRECISION SJEDAT(1024)
DOUBLE PRECISION BUFFER(1026)

C SET UP TEMPORARY STORAGE FOR THE FEC-FORMAT AND SC-FORMAT NUMBERS
C AND OTHER PROGRAM VARIABLES
c

c

INTEGER*4 HSTINT(lO)
REAL*4 HOSTRL(5)
INTEGER~\-4 STATUS ,NAMLEN
INTEGER~._.4 FILNAM(3)
DATA FILNAM/4HSJED,4HATA ,4HBIN I

C INITIALIZE THE UTILITY-MANAGED OUTPUT BUFFER AND OPEN THE OUTPUT
C FILE 'SJEDATA BIN'.
c

c

c

NAMLEN = 12
STATUS = INITOB (BUFFER,FILNAM,NAMLEN)
IF (STATUS .NE. 0) GO TO "process error condition"

Now read the 10 FEC integers into the array HOSTINT
and the 5 FEC real numbers into the array HOSTRL .

. .

C CONVERT THE 10 FEC INTEGERS TO SC INTEGERS USING THE FPHI2I
C CONVERSION ROUTINE
c

CALL FPHI2I (HSTINT,SJEDAT,10,4)
c
C WRITE THE SC INTEGERS INTO THE UTILITY-MANAGED OUTPUT BUFFER USISG
C THE PUTUR ROUTINE
c

STATUS = PUTUR(SJEDAT,BUFFER,80)
c

Page 3 14 FPS 860-7494-004A

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

C CONVERT THE 5 FEC REAL NUMBERS TO SC REAL NUMBERS USING THE
C FPHR2R ROUTINE
c

CALL FPHR2R (HOSTRL, SJEDAT, 5)
c
C WRITE THE SC -REAL NUMBERS INTO THE OUTPUT BUFFER USING PUTUR
c

STATUS = PUTUR (SJEDAT, BUFFER, 40)
c
C WRITE THE END-OF-FILE RECORD TO THE OUTPUT BUFFER.
c

c
STATUS = PUTEF (BUFFER)

STOP
END

3.6.2 APFTN64 File to FEC File Conversion Procedure

The conversion of an APFTN64 file into a FEC file is performed as the
·reverse of the process described in Section 3.6.1. The processing
steps are:

1. The user provides .an 8208-byte data area for use by the file
conversion utilities.

2. The user then calls the initialize input buffer (I~ITIB)
function, passing it the 8208-byte data area, the name of the
file to receive the APFTN64 records, and the file name length.
The 8208-byte data area contains a 16-byte header and an
8192-byte (BK-byte) buffer into which SC file blocks are read.
The header contains information used by the file conversion
utilities during the APFTN64 record-reading process. The
INITIB function initializes the header and spreads zeros
throughout the 8K-byte buffer.

3. The user calls the get unformatted record (GETUR) function to
fill the BK-byte buffer with APFTN64 records (if necessary)
and get a record from the BK-byte buffer. The record is
placed into an area in FEC memory specified in the GETGR call.
For example, the following statement retrieves the data record
crea~ed in Section 3.6.1 with PCTUR.

STATUS= GETUR (BUFF, TE~P, 24)

This statement places a record from BUFF into the FEC array
TEMP.

4. The user calls the data conversion utilities to convert the SC
record obtained by GETUR into FEC data. The following code
reconverts the data in the array TEMP to a FEC-cornpatible
form:

FPS 860-7494-004A Page 3 15

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

CALL FPR2HR (TEMP(l),REAL,1)
CALL FPI2HI (TEMP(3),INT1,l,4)
CALL FPI2HI (TEMP(S),INT2,1,4)
CALL FPR2HD (TEMP(7),DOUBLE,1)

Subsequent APFTN64 records are obtained and conv.erted by
calling GETUR and the conversion routines until either the
end~of-data indicator is encountered or the user decides to
stop.

5. The user closes the input file.

NOTE

The GETUR routine performs all read operations on the
input SC file. A read transfers 8K-bytes from the SC
file to the BK-bytes buffer if the buffer is empty.
This routine also moves the contents of the next
available APFTN64 record in the 8K-bytes buffer to
the area specified by the routine call. The APFTN64
record header information determines the length of
the move. Subsequent calls to GETUR retrieve
additional records from the 8K-bytes buffer. When
the buffer becomes emptied of records, the GETUR
routine performs an additional read of the SC file to
refill the buffer.

Figure 3-3 shows the logical flow for a program that performs the SC to
FEC data file conversion.

Page 3 16 FPS 860-7494-004A

YE"i

IBM/qMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

PROVIDE AN 8208-BYTE
DATA BUFFER

CALL INITIB TO·
INITIALIZE THE 8208-
BYTE BUFFER ANO OPEN
THE INPUT FILE THAT
HAS THE DATA TO READ

CALL GETUR TO READ
A RECORD FROM THE

!NPUT F!LE

IS THE
RECORD THE

F
NO

CONVERT THE RECORD
USING DATA CONVERSION

UTILITIES

ARE THERE MORE
ECOROS TO READ?

CLOSE THE INPUT
DATA FILE

YES

-5175-

Figure 3-3 APFTN64 File to FEC File Conversion Logic

FPS 860-7494-004A Page 3 17

IBM/CMS SPECIFIC SOFTWARE OF THE FEC/SC SYSTEM

The following program is an example of the above steps:

c .
C THIS PROGRAM READS TWO APFTN64 UNFORMATTED RECORDS FROM THE FEC
C FILE 'SJEDATA BIN'. THE FIRST RECORD.CONTAINS 10 SC INTEGERS
C AND THE SECOND RECORD CONTAINS 5 SC FLOATING-POINT (REAL) NUMBERS.
C THE PROGRAM CONVERTS THE NUMBERS FROM SC TO FEC DATA FORMATS.
c

c
C DEFINE THE 8208-BYTE INPUT RECORD BUFFER TO BE USED BY THE CONVERSION
C UTILITIES
c

t

DOUBLE PRECISION BUFFER(1026)
DOUBLE PRECISION SJEDAT(l024)

C SET UP TEMPORARY STORAGE FOR THE FEC-FORMAT AND SC-FORMAT NUMBERS
C AND OTHER PROGRAM VARIABLES
c

c

INTEGER*4 HSTINT(lO)
REAL*4 HOSTRL(S)
INTEGER*4 STATUS,RECLEN
INTEGER~'r4 EOF
INTEGER*4 NAMLEN
INTEGER*4 FILNAM(3)
DATA FILNAM/4HSJED,4HATA ,4HBIN /
DATA EOF/-1/

C INITIALIZE THE UTILITY-MANAGED INPUT BUFFER AND OPEN THE INPUT FILE.
c

NAMLEN = 12
STATUS = INITIB (BUFFER,FILNAM,NAMLEN)
IF (STATUS .NE. 0) GO TO "process end of file"

c
C READ THE FIRST APFTN64 UNFORMATTED RECORD INTO THE ARRAY "SJEDAT"
c

c
c

STATUS= GETUR (BUFFER, SJEDAT,RECLEN)
IF (STATUS .EQ. EOF) GO TO "process end of file"

C CONVERT THE SC FORMAT INTEGERS TO FEC FORMAT INTEGERS USING FPI2HI
c

CALL FPI2HI (SJEDAT, HSTINT, 10, 4)
c
C READ THE NEXT APFTN64 UNFORMATTED RECORD
c

c
c
c

STATUS = GETUR (BUFFER, .SJEDAT,RECLEN)
IF (STATUS .EQ. EOF) GO TO "process end of file"

C CONVERT THE SC REAL NUMBERS TO FEC REAL NUMBERS CSING FPR2HR
c

Page 3 18 FPS 860-7494-004A

IBM/CMS SPECIFIC.SOFTWARE OF THE FEC/SC SYSTEM

CALL FPR2HR (SJEDAT, HOSTRL, 5)

The array HOSTIN! now contains the 10 FEC-format
integers and the array HOSTRL contains the 5
FEC-format real numbers.

STOP
END

3.7 LINKING TO FEC-SPECIFIC LIBRARY ROUTINES

To link to routines located in an FEC-specif ic library such as the
UTIL64.0LB library, the user must perform the following general
procedures:

1. Build the main FORTRAN program.

2. Build any required FORTRAN subroutines.

3. Compile the main program.

4. Declare global libraries.

5. Compile the subroutines.

6. Load the main program and subroutines.

The following example illustrates the steps involved in linking the
main FORTRAN (MAIN) to one FORTRAN subroutine (SUBl) and the UTIL64
library:

GLOBAL TXTLIB VFORTLIB CMSLIB APEX64 APDBG64 UTIL64
FORTVS MAIN
FORTVS SUBl
LOAD MAIN SUBl
START

FPS 860-7494-004A Page 3 19

IBM/CMS FEC-SPECIFIC HARDWARE OF TJIB FEC/SC SYSTEM

CHAPTER4

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.1 INTRODUCTION

Chapter 4 provides IBM/CMS-specific hardware of the FEC/SC system.
This chapter contains three main sections. The first section discusses
FEC/SC communication. The second section provides a functional
description of the SC's FEC interface. The third section presents
hardware inf~rmation that is unique to the FEC/SC system.

4.2 HARDWARE FOR FEC/SC COMMUNICATION

The Host Interface Support Processor (HISP) manages the details of data
and command transfers between the FEC and the SC. It relieves the FEC
and SC of much of the computational overhead involved with FEC/SC
communication.

The following list includes the hardware elements involved with the
operation of the HISP:

• the IBM CPU

• the SC CPU

• the IBM channel

• the SC's FEC interface, containing the HISP, the Formatter,
and the Host Adapter

IBM systems have channels that perform I/O for the IBM CPU's. A
channel only interrupts the IBM CPU when it must signal completion of a
channel program or alert the FEC to an exceptional condition on the
channel.

The IBM channel follows its usual protocol when communicating with the
SC. It does not know that the SC is actually a separate computer.·

The HISP plays the same kind of role for the SC as the channel plays
for the FEC. It manages I/O.transactions for the SC, interrupting the
SC only when directed by APEX64 software on the FEC.

The IBM CPU, the IBM channel, the HISP, and the SC CPU thus divide the
work of communication in a way that combines efficient data transfer
with minimal CPU overhead. Sections 4.2.1 through 4.2.4 expand the
discussion in this section by listing and describing the tasks that
each interface element performs.

FPS 860-7494-004A Page 4 1

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.2.1 The Role of the IBM CPU

The IBM CPU runs a mainline program that contains calls to APEX64
routines. The APEX64 routines establish communication between the FEC
and the SC. The mainline program also contains calls to subroutines
that run in the SC. The SC object code for the subroutines is stored
in data structures in FEC main storage or in the FEC file system.

When the program calls an SC subroutine, the interface between the host
and SC (HASI) is invoked. The HASI calls certain APEX64 routines that
transfer the requested SC subroutine to the SC and then cause the SC to
execute it. Specifically, APEX64 routines do the following:

• build data descriptor blocks (DDB's) to send to the SC's FEC
interface

• write IBM channel programs into FEC main storage

• direct the IBM channel to start executing the channel programs

The IBM CPU therefore limits its I/0-related activities to executing
subroutines that program the IBM channel.

SJE is responsible for making calls to APEX64 to perform the job.

4.2.2 The Role of the Channel

The channel executes a channel program by sending commands and data to
the HISP. It sends commands and data in the following order:

1. channel commands that prepare the interface to receive data
from or transmit data to the channel

2. DDB's that describe the form of the upcoming data transfer

3. data to be transferred to the SC

A DDB consists of a series of data descriptors (DD's). Each DD
specifies a single contiguous data array, its direction of transfer,
its format, and its destination (PS or MD).

The channel also generates interrupts upon request from the SC. The SC
notifies the HISP, and the HISP signals the channel to interrupt the
FEC.

Page 4 2 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SQ SYSTEM

4.2.3 The Role of the HISP

The HISP does the following:

• It responds whenever the channel sends a channel command word
(CCW) to the SC.

• It manages the SC end of the data and command transfer
protocol on the channel.

• It accepts and stores DDB's sent by the channel.

• It interprets and executes the DDB's.

The data descriptors contained in the DDB's direct the HISP to do the
following:

• transfer data between the channel and SC main memory

• communicate with the SC CPU via data transfers to the Virtual
Front Panel (VFP) of the SC

In addition, the HISP generates interrupts as directed by the SC and
transla~es them into channel status bytes. It also generates channel
interrupts to notify the FEC of any abnormal conditions that occur
during a data or command transfer. When an interrupt is generated, it
is accompanied by status information that identifies it as a normal or
abnormal channel program completion. An abnormal completion can refer
to an error condition detected by the HISP (such as the SC physically
halting) or an exceptional condition detected by the SUM (such as a
floating-point underflow or the execution of a FORTRAN PAUSE statement
by the user's SC program).

4.2.4 The Role of the SC CPU

The SC CPU runs the Single User Monitor (SUM) program. The SUM program
does the following:

•

•

It informs the HISP of the specific regions of SC memory that
the SUM has allocated to the user.

It directs the HISP to generate the appropriate FEC I/O
interrupt when the user's program wishes to return control to
the FEC.

FPS 860-7494-004A Page 4 3

IBM/CMS FEC-SPECIFIC HARDWARE OF ~ FEC/SC SYSTEM

4.2.5 The Role of the Formatter

For jobs done in APEX64, the Formatter Gonverts data between the FEC
and the SC representations of fixed-point," floating-point, and logical
data. The Formatter simply acts as a path for data during S~ jobs.
The Data Conversion Utilities (refer to Chapter 3) perform data
conversions during SJE jobs.

4.3 THE SC'S FEC INTERFACE INTERNAL STRUCTURE

The three main hardware elements of the SC's FEC interface are the Host
Adapter, the Formatter, and the HISP. Figure 4-1 is a block diagram o~
the SC's FEC interface used with IBM mainframes. Sections 4.3.1
through 4.3.3 describe these hardware elements of the SC's FEC
interface.

4.3.1 Host Adapter

The Host Adapter is located in the SC I/O chassis. It converts signals
on the interconnect cable from the channel into instructions and data
that it sends to the HISP and the Formatter. The Host Adapter also
connects to the SC diagnostic microprocessor (DMP). This connection
allows the DMP to test most interface functions by simulating the
actions of the FEC.

4.3.2 FEC Interface Support Processor

The HISP controls all interface operations. The major elements of the
HISP are the microcode control store and control unit, the arithmetic
and logic unit, the SC I/O bus interface, and the data file. The HISP
communicates with the SC using the I/0 bus interface. The data file
holds DDB's passed from the FEC and parameters passed from the SC
memory management monitor. The HISP passes control signals to the
other sections of the interface over the operand bus.

The HISP maintains a 64-bit data element called the FEC command and
status register (HCSR) for each user task. The HCSR stores commands
and contains condition bits that indicate the status of the interface.
The ·channel program can read and write the HCSR to determine the status
of the HISP and send it commands.

4.3.3 Formatter

The Formatter performs format conversions of FEC and SC data words. It
has an interface to the SC I/O bus, an input buffer, an output buffer,
logic that performs format conversions, and a control section that
interacts with both the Host Adapter and the HISP. The Host Adapter,

Page 4 4 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

the SC I/O bus, and the HISP can be sources or destinations for the
Formatter. Data normally travels between the Host Adapter and the SC
I/O bus. The connection to the HISP is mainly for Formatter control
purposes. Figure 4-1 shows an interface block diagram.

TO/FROH SC 1/0 PORT SC 1/0 BUS

r--- ----, r .-.. __ ...
I I

I

I

"'s' CONTROL
STORE

CONTROL
UNIT

L"~ -

1/0 BUS
INTERFACE

OPERAND BUS

I

FORt1ATTER
CONTROL

LOGIC

INPUT BUFFER

I l)ATA I
~

,,_ ____________ _.

I L
_J

FORMATTER

TO/FROM
DIAGNOSTIC

IUCROPROCESSOR

r
I

18" 1/0 INTERFACE TAG IN ._ ___ _._ _ _,

TAG OUT ------a1
BUS IN ._ ___ ..._ _ _.

BUS OUT

DHP
INTERFACE

HOST
ADAPTER
CONTROL

LOGIC

DATA
DAI VERS.

RECEIVERS
AND

BUFFERS

-,

utOU. AQAPTU _ _ _ ~

Figure 4-1 Interface Hardware Block Diagram

FPS 860-7494-004A Page 4 5

-,

I
J

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SY~TEM

4.4 IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Section 4.4 presents the hardware information a user: needs to run an SC
from an IBM FEC. In particular, the chapter discusses'characteristics
of the SC's FEC interface hardware that can influence the way a
programmer codes software for the FEC/SC system. The text assumes that
the user is experienced with the CP and CMS systems and is already
familiar with the operation of the SC. When in doubt about proper use
of the SC hardware, consult the publications listed in Table 1-1.

4.4."l Address Recognition

The FEC interface can recognize a range of device addresses.

At installation time, FPS Customer Service engineers adjust the
interface address recognition hardware to recognize one of the
following address combinations:

•

•

•

•

one address (address mode 0)

one range of eight consecutive addresses beginning at an
address that is a multiple of eight (address mode 1)

one range of 16 consecutive addresses beginning at an address
that is a multiple of 16 (address mode 2)

two ranges of 16 consecutive addresses, each range beginning
at an address th~t is a multiple of 16 (address mode 3)

Note that address mode 0 (one address) is not supported by the FOO
release APMGR. The in~erface must be configured for at least 8
addressed for the software to function correctly.

The FPS-164 Scientific Computer Manager Program (APMGR) assigns each
user process (virtual machine) running in the SC a unique device
address in the SC. The APEX64 software running in the FEC manages
access to the SC The HISP remembers which device address has been given
control of the interface.

An interface that recognizes several addresses sends a busy or command
retry signal to the channel if it is busy with a process running
through one address when the channel .initiates an I/O request at a
second address.

4.4.2 Channel Interface Protocol

The FEC interface connects to an IBM block multiplexer channel. The
interface can use any combination of the extended bus, high-speed
transfer, and da~a-streaming options.avallable with these channels.
Manual switches inside the interface enable these features. The
interface reports the settings of the switches in its response to a
sense command from the channel.

Page 4 6 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.4.3 Channel Commands

Table 4-1 lists and describes the channel commands to which the FEC
interface responds.

OPERATION

write HCSR

read HCSR

write

read

no
operation

set unit
check mask

sense unit
check mask

dump

assign
with wait

HEX CODE

09

OA

01

02

03

11

14

24

07

FPS 860-7494-004A

Table 4-1 Channel Commands

I

COMMAND DESCRIPTION

Directs the interface to store the next eight
data bytes in the host command and status
register (HCSR) of the HISP, and to execute the
resulting command.

Directs the interface to send the contents of
the HCSR to the FEC.

Directs the interface to receive data from the
FEC. The FEC must send either a WRITEP or a
READTP command to the HCSR before sending this
command. The interface expects a DOB to follow
a write command. If the HCSR contains a WRITEP
command, the interface expects data words to
follow the DOB. If the HCSR contains a READTP
command, the interface disconnects from the
channel after receiving the DDB.

Directs the interface to send data to the FEC.
A WRITEP HCSR command and a WRITE command
specifying the DDB must precede this command.

Directs the interface to disconnect from the
channel.

Transfers the four-byte unit check mask
from the FEC to the interface.

Transfers the four-byte unit check mask
from the interface to the FEC.

Transfers the contents of all alterable storage
in the HISP to the FEC. Does not alter the
contents.

Assigns the SC to the unit address at which
the command arrives; delays channel program
completion until the SC becomes available.

Page 4 7

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-1 Channel Commands (cont.)

OPERATION HEX CODE COMMAND DESCRIPTION

assign
immediate

release

release
waiting
address

sense

sense I/0
type

OF

OB

63

04

E4

4.4.4 Sense Bytes

Assigns the SC to the unit address at which it
arrives; produces a "unit exception" interrupt
if the SC is already assigned to another unit
address. (For information on the unit
exception interrupt, refer to Section 4.4.7.)

Releases the SC for assignment to another unit
address.

Removes a waiting unit address from the assign
with wait command queue.

Directs the interface to send status
information to the FEC. The sense bytes
contain error condition codes and other
condition codes that describe the s~atus of the
interface and the SC. The IBM device protocol
specifies the condition codes that correspond
to the first six bits of the first sens~ byte
(byte 0). Figure 4-2 describes the sense bytes
format. Table 4-2 lists and describes the
condition codes.

Returns seven bytes identifying the type
of the SC, the HISP firmware revision level,
and any optional features installed in the SC.
(For further information, refer to Section
4.4.5.)

Figure 4-2 illustrates the format of the sense b.ytes, which provide
various condition codes used in representing the status of the SC and
the interface. The specific condition codes are described in Table 4-2
through Table 4-5.

Page 4 8 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

BYTE 0 BYTE I

0 J 2 3 4 5 6 7 0 I 2 3 4 5 6 7

c:I' z z .., ~ ~ :;) .., ~ c,:, w a: ::> u u a: LA.I u U1 a: 0 a.. < a: a: U1 < < CURUSER Q. en I- LU U1 Q .:t' m :I r z ::> el < :> u z '° Q a: u - m LA.I Q 0 :: m >< Q

8-YTE 2 BYTE 3

0 2 3 4 5 6 7 0 2 3 4 5 6 7

MOOE SWITCHES

.ii OF
Q AOORS A B I.A.I

> :: > x "" Q 0: I a: u a: <(~ I.A.I z I.A.I I.A.I ca Q.. I: 8 LA.I >- U1 a: i- V1 a: U1 I.A.I i- x - 2: 16 u < a: V1 ""' ::
3:32

-5177-

Figure 4-2 Interface Sense Byte Format

Table 4-2 Interface Sense Byte 0 Fields

BIT MNEMONIC MEANING

0 CMDREJ

1 INT REQ

2 BUSOUT

FPS 860-7494-004.A

Command reject. The interface has received a
command it is not designed to execute, or an
illegal sequence of commands.

Intervention required. Not used.

Bus output check. Parity error in a data byte,
command word, or on the mark-out tag lines.

Page 4 9

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-2 Interface Sense Byte 0 Fields (cont.)

BIT MNEMONIC MEANING

3 EQIPCK Equipment check. Equipment malfunction; detail
bits in the rest of the sense bytes indicate the
type of malfunction.

4 DAT ACK Oat a check. Error not involving interface parity.

5 OVERRUN Overrun. Not used.

6 HCSREJ HCSR rejected. Indicates HISPCD, HISPCR, APCRJ,
and TIMEOUT errors in HCSR(l), as well as command
sequence errors detected after one or more· bytes
have been transferred.

7 BNDSCK Bounds check. Indicates memory protect violations
during the processing of transfer packets, as well
as oversize DDB's.

Table 4-3 Interface Sense Byte 1 Fields

BIT MNEMONIC MEANING

0 X64ASN SC assigned. Indicates that the user identified by
the CURUSER field has the SC assigned.

1 DDB Data descriptor block. Indicates that a DDB is
being processed.

2 TRWAIT Indicat:es that at least one TRWAIT condition is
outstanding.

3 -7 CUR USER User ID of currently "active " physical I/O address
(not necessarily the same as the address which is
executing this sense command).

Page 4 10 FPS 860-7494-004A

BIT

0

1

2

3

4

5

6&7

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-4 Interface Sense Byte 2 Fields (Image of the Unit
Address Switches on the Adapter)

BIT MNEMONIC MEANING

0-3 A· Setting of address switch A.

4-7 B Setting of address switch B.

Table 4-5 Interface Sense Byte 3 Fields (Image of the Eight
Mode Switches on the Adapter)

MNEMONIC MEANING

CRETRY Report HISP busy as command retry (or control unit
busy).

ASYNCH Enable asynchronous posting of TASKDN and TASKIN
(or wait for next CCW). This option must always be
disabled. Allowing the HISP to post interrupts
asynchronously causes AP jobs to hang intermitantly
because the IBM hardware or software sometimes
looses the interrupt.

<reserved>

STREAM Enable use of streaming handshake feature if
supported by channel.

EXTBUS Enable use of extended bus feature if supported by
channel.

HI SPED Enable use of high speed ·transfer feature if
supported by channel.

·of addrs Number of unit addresses recognized by the Adapter.

NOTE

Regarding the remaining sense byte fields (4-15), the
sense command transmits a reserved byte (byte 4), the
last SC memory address read or written during DDB
processing (bytes 5-7), and the HCSR (bytes 8-15).

FPS 860-7494-004A Page 4 11

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.4.5 Sense I/O Type Command

The Sense I/0 Type Command (the hexadecimal E4 shown in Table 4-1)
returns seven bytes identifying the type and model of the device and of
its control unit. Figure 4-3 shows the data format defined by IBM
convention.

BYTE 0 1 2 3 4 5 6

CONTENT ALWAYS CONTROL CONTROL DEVICE TYPE DEVICE
FF (HEX} UNIT TYPE. ~NIT MODEL MODEL

-5178-

~igure 4-3 Bytes Returned by Sense I/O Type Command

For the SC, the hexadecimal values of the seven bytes returned are as
follows:

FF FO 64 rr Fl 64 mm

Two of the seven bytes are parameters that can vary from SC to SC, as
follows:

rr = HISP firmware revision level
mm = optional features installed in the SC

(for a standard product, mm = 0)

4.4.6 Unit Check Mask

Figure 4-4 describes the unit check mask.

00 15 16

FORMATTER

N """' N N .:t' .:t' <...> RESERVED """' U"'\ """' """' '° '° x Q
i.. !;&.. U.A a::
> :> :> % ::> % I- a::
0 0 0 ~ 0 ~ ~ ~ t- t- I- I- t- a.. Q
z z Q. a.. a.. a.. z Q - - - %:

25 26 31

OMP HISP

a::
a::
i..u -, -' a:: 0
% <...> -a.. .:t' ::>
%: '° a..
Q x %:

-5179-

Figure 4-4 Unit Check Mask Bit Fields

Page 4 12 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

A two-bit field is assigned to each condition. The following list
defines the coding:

0 no unit check for this condition

1 unit check upon completion of DDB

2-3 immediate unit check, abort DDB

4.4.7 Channel Interrupts

The IBM channel can interrupt the IBM CPU to send it information on the
status of the channel. It presents the CPU with a 64-bit channel
status word that in4icates the reason for the interrupt and the status
of the interrupting device.

The SC supplies status information to the channel in the unit status
field of the channel status word. Table 4-6 lists and explains the

·meaning of each bit in the unit status field.

Table 4-6 Unit Status Field Bits

BIT DESIGNATION

0 Attention

1 Status Modifier

2 Control Unit End

3 Busy

FPS 860-7494-004A

MEANING

The user's SC subroutine has completed
execution and is returning to the FEC program.

Modifies the meaning of other status bits:
with unit check and channel end bits set it
invites the channel to retry a command as
explained in Section 4.4.8; with device end
and without unit check bits set, it tells the
channel processor to skip the next CCW in the
channel program; with busy bit set, it
indicates that the interface is busy with a
process that originated at another channel
address.

The interface can now respond.to another
channel command.

The interface is busy and cannot respond to a
new channel command; the interface sets this
bit in response to an initial selection
sequence from the channel that occurs when the
interface is busy doing a data transfer for
another channel program. The HISP does not
interrupt the channel to report this
condition: it merely sets this bit in the
channel status word when the channel attempts
commUnication with the interface.

Page 4 13

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-6 Unit Status Field Bits (cont.)

BIT DESIGNATION

4 Channel.End

5 Device End

6 Unit Check

7 Unit Exception

Page 4 14

MEANING

The interface is finished with the data
transfer portion of an operation, but not yet
ready to execute another channel command.

The interface is finished with all processing
required by the last command it received, and
is ready to execute another command.

The interface has .detected an error condition;
the channel terminates any data transfer in
progress and interrupts the IBM CPU. In
general, the IBM CPU then executes a sense
operation to determine the nature of the
error.

The interface has detected one of the four
following conditions, which probably
constitutes an error.

• The SC CPU has interrupted the HISP with
a TASKIN interrupt.

An assign immedia~e charmei program was
executed while the SC was already
assigned to another user.

• A HALT DEVICE instruction was executed
while the user was in the assign-wait
queue. During this action, the user
also removed himself from the queue.

• A Release Waiting Address channel
program was executed through userid 0.
Userid 0 is represented by the first
address in the range of device addresses
recognized by the SC. If the Release
Waiting Address executes through other
than userid 0, a unit check occurs.

Upon recognizing one of the above four
conditions, the channel terminates the current
operation and interrupts the IBM CPU.

FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.4.8 Interface Busy Conditions

The interface is busy when it is involved in either of the following
operations:

• presenting the SC with an interrupt to which it has not yet
responded

• transferring data

While it is busy, the interface can send a·signal that invites the
channel processor to retry a comman~ after the busy condition ends.
The interface signals command retry by setting the channel end, unit
check, and status modifier bits in the unit status byte and notes
internally that command retry has bee~ indicated to the user. When the
interface finishes what it is doing, it scans all the addresses to see
if it has s;._;i.gnaled command retry to any of them. If it finds an ·
address that has received a command retry signal it sends a device end
signal t.o the channel at that address to signal that it is ready to
have the command tepeated.

4.4.9 Format Conversion

The Formatter converts data words to and from FEC and SC data formats
as they pass through the interface. It can convert the formats of
words passing in either direction. The HISP loads format conversion
instructions into the Formatter control registers to tell the Formatter
hardware which conversions are required.

The Formatter in the IBM interface performs nine types of format
conversion. It also flags underflow and overflow errors. This Section
presents descriptions of these format conversions. The numbers above
the word diagrams in the descriptions refer to bit positions in the
words used by the SC and the IBM FEC.

Figure 4-5 shows the conversion between an IBM integer"'':4 and an SC
integer (format type 0).

0

IGNORED

10 II

SC INTEGER

31 32

SAME AS BIT 32 TWO'S COMPLEMENT INTEGER

I BM I NTEGER~':4

0

TWO'S COMPLEMENT INTEGER

Figure 4-5 IBM Integer*4 to and From SC Integer*4

63

3 I

-5181-

FPS 860-7494-004A Page 4 15

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Figure 4-6 shows the conversion between an IBM integer*4 and an SC long
integer (format type 1).

SC LONG INTEGER

0 10 II 63

IGNORED I . T'WO'S COMPLEMENT INTEGER

I BM I NTEGER:':4

0 31

TWO'S COMPLEMENT INTEGER

-5182-

Figure 4-6 IBM Integer*4 to and From SC Long Integer

conversion TOM
.I. .UL~ and an SC , -- -l.UU(;

integer (format type 2).

SC LONG INTEGER
'() 10 11 63

IGNORED T'WOi S COMPLEMENT ·1 NTEGER

I BM I NTEGER:':8

0 63

TWO'S COMPLEMENT INTEGER

-5183-

Figure 4-7 IBM Integer*8 to and From SC Long Integer

Page 4 16 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Figure 4-8 shows the conversion between an IBM integer*4 and an SC
halfword ~packed integer (format type 3) .

0

0

SC HALFWORD PACKED INTEGER

31 32

TWO'S COMPLEMENT INTEGER T'WO'S COMPLEMENT INTEGER

DUAL IBM INTEGER*4

31 0

NO'S COMPLE~NT INTEGER TWO'S COMPLEMENT INTEGER

63

31

-5184-

Figure 4-8 IBM Integer*4 to and From SC Integer Halfword Packed
Integer

Figure 4-9 shows the conversion between an IBM load module and an SC
word type (format ~ype 4).

SC WORD TYPE

0

64 BITS OF UNINTERPRETED DATA

I BM UNFORMATTEo~·:S

0 63

8 CONTIGUOUS BYTES OF UNINTERPRETED DATA

-5185-

Figure 4-9 IBM Unformatted•':8 to and ·From SC Word Type

FPS 860-7494-004A Page 4 17

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Figure 4-10 shows the conversion between an IBM Rea1~:4 and an SC
floating-point number (format type 5).

SC FLOATING-POINT

0 10 11 63

EXCESS 1024
EXPONENT

0 I

z EXCESS 64
<.:I HEXADECIMAL -c.n EXPONENT

7 8

TWO'S COMPLEMENT NORMALIZED
MANTISSA (52 BITS PLUS SIGN)

I BM REAL;':4

31

SIGNED MAGNITUDE
MANTISSA (HEXADECIMAL

NORMALIZED)

.. 5186-

Figure 4-10 IBM Real*4 to and From SC Floating-point Number

Figure 4-11 shows the conversion between an IBM Real*8 and an SC
floating-point number (format type 6).

0

0

z
<.,:, -V1

EXCESS" I 024
EXPONENT

10 11

7 8

EXCESS 64
HEXADECIMAL

EXPONENT

SC FLOAT I NG-PO I NT

TWO'S COMPLEMENT NORMALIZED
MANTISSA (52 BITS PLUS S!GN)

I BM REAV:8

SIGNED MAGNITUDE
MANTISSA (HEXADECIMAL NORMALIZED)

63

63

-5187-

Figure 4-11 IBM Real*8 to and From SC Floating-point Number

Page 4 18 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Figure 4-12 shows the conversion between a dual IBM Real*4 and an SC
halfword floating packed number (format type 7).

SC HALFWORD FLOATING PACKED

0 7 8 31 32 39 40 63

EXCESS 128 TWO'S COMPLEMENT EXCESS 128 TWO'S COMPLEMENT
NORMALIZED MANTISSA EXPONENT NORMALIZED MANTISSA

·o i 8

DUAL I BM REAL:':4

31 0 I 7 8 31

EXCESS 64 SIGNED MAGNITUDE EXCESS 64 SIGNED MAGNITUDE
~ ~EXADEC IMAL MA.HT I SSA

I ;;; I EXPON.ENT I (HEXADECIMAL
NORMALIZED)

~HEXADECIMAL MANTISSA

I ;;; I EXPONENT I (HEXADECIMAL
NORMALIZED}

-5188-
F igure 4-12 Dual IBM Real*4 to and From SC Halfword Floating packed

Number

Figure 4-13 shows the conversion between an IBM Logica1~·:-4 and an SC
logical (format type 8).

0 10 11 12

FEC LOGICAL

31 32 33

I GNORED I ~~1
IBM LOGICAL*4

0

63

IGNORED

31

IGNORE

-5189-

Figure 4-13 IBM Logical*4 to and From SC Logical

FPS 860-7494-004A Page 4 19

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

4.4.10 FEC/SC Interconnect Hardware

The FEC I/O channel interconnect cables attach to the SC at its I/O
panel. The SC I/O panel is at the bottom left rear (as viewed from the
front) of the left SC cabinet bay. Figure 4-14 shows the I/O panel.

JlA J18 J2A At J28 j A J 8

D
-519Q-

Figure 4-14 SC I/0 Panel

The three connectors labeled JlB, J2B, and J3B in Figure 4-2 accept the
IBM BUSO IN, TAG IN and BUSi OUT cables, respectively. Those labeled
JlA, J2A, and J3A accept the BUSO OUT, TAG OUT, and BUSI OUT Note the
inverted number order of the connectors. The plate labeled Al is a
door that provides access to the select-in/select-out jumper.

4.4.11 Configuring The Host Adapter Board

The mode switch at position 6-A on the IBM Host Adapter Board
configures the SC. Switch numbers 1 and 2 select the addressing mode.
Switch numbers 3, 4, and 5 select the bus mode. Switch 6 is reserved,
swi~ch 7 controls posting of TASKDN and TASKIN interrupts, and switch 8
controls the reporting of HISP busy. Table 4-7 explains the switch
settings in detail.

Page 4 20 FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-7 Configuration Mode Switch States (Switches 1 and 2)

SWITCH 1 SWITCH 2

CLOSED CLOSED

OPEN CLOSED

CLOSED OPEN

OPEN I OPEN

ADDRESSING
MODE NAME

MODEO

MODEl

.. 4'?

MODE2

MODE3

MODE DESCRIPTION

The SC responds to one address;
address = SWA, SWB

The SC responds to eigh~ addresses;
the address range equals the SWA
and MSB of the SWB. For example,
the address range defined by SWA=3
and SWB=F is 38 through 3F

I (hexadecimal) .

The SC responds to 16 addresses;
SWA indicates range, while SWB is
ignored. For example, the address
range defined by SWA=3 and SWB=F
is 30 through 3F (hexadecimal).

I I The SC responds to two ranges of 16
, addresses (32 total): SWA indicates

I the first range, SWB indicates the
second range.

NOTES

1. SWA is the hexadecimal switch at position 3-A on the
IBM Host Adapter Bo~rd. SWA is for the four ~SB's.

2. SWB is the hexadecimal switch at position 4-A on the
IBM Host Adapter Board. SWB is for the LSB's.

FPS 860-7494-004A Page 4 21

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-8 explains the switch settings for switches 3, 4, and 5.

Table 4-8 Configuration Mode Switch States (Switches 3, 4, and 5)

ADDRESSING
SWITCH 3 SWITCH 4 SWITCH 5 MODE NAME

CLOSED CLOSED I CLOSED NORMAL

OPEN CLOSED CLOSED HIGH SPEED

CLOSED OPEN CLOSED EXTENDED

OPEN OPEN CLOSED HIGH SPEED/
EXTENDED

OPEN CLOSED I OPEN DATA STREAM

Page 4 22

•

MODE DESCRIPTION

Service only, data
handshake.

Service/Data, data
handshake.

BUSO and BUSl, service
only, data handshake.

BUSO and BUS 1,
service/data handshake.

Data streaming protocol
is used with read c~

I
write; otherwise high

_ speed is used.

FPS 860-7494-004A

IBM/CMS FEC-SPECIFIC HARDWARE OF THE FEC/SC SYSTEM

Table 4-9 explains the switch settings for switches 6, 7, and 8.

Table 4-9 Configuration Mode Switch States (Switches 6, 7, and 8)

SWITCH

6

7

8

ADDRESSING
SWITCH STATE MODE NAME MODE DESCRIPTION

OPEN RESERVED

CLOSED RESERVED a.;~,,.

I OPEN ASYNCH Enable asynchronous posting
of TASKDN and TASKIN.

CLOSED NOT ASYNCH Wait for next CCW to post
TASKDN and TASKIN. (Refer
to note)

OPEN CRETRY Report HISP busy as command
RETRY.

CLOSED NOT CRETRY Report HISP busy as control
unit busy.

NOTE

This option must always be closed.
Table 4-5.

See ASYNCH in

FPS 860-7494-004A Page 4 23

FEC COMMAND AND STATUS REGISTER

APPENDIX A

FEC COMMAND AND STATUS REGISTER

A.l FEC COMMAND AND STATUS REGISTER (HCSR)

The host command and status register (HCSR) is used for communication
between the FEC and the·Host interface support processor (HISP). The
HCSR is transferred from the FEC to the HISP by the WRITE HCSR CCW, and
from the HISP to the FEC by t~e READ HCSR ~CW or the SENSE CCW.

A.1.1 HCSR(u): Interrupt Control and HISP Commands

Figure A-1 describes the HCSR interrupt control and HISP commands
format. Table A-1 defines the HCSR interrupt control and HISP commands
fields.

0
0

HISP
Cl10

0 0
1 2

CMTRL
BITS

u 3
u :c
x x
L&.I L&.I z z
::I ::I

HISP
COMMAND

CODE
OO:NOOPER
01 :WRITEP
02:READTP
03: IHTAP
04:SETUCC
OS:CLRUCC
06:TRWAIT
07:SETHIE
08:DGNLBK
09:DTALBK
10: INIT

0 0
7 8

Q
1.4.1
> a::
I.I.I

"' 1.4.1
a::

1 1
5 6

z
Q
~
en
<

z
Q
0.
en -:c

FEC
INTERRUPT

LINES

Q
z z LM - - >
~ 0. a::
en en l..i.I
< - "' I- :c LU

a::

2 2
3 4

z
Q
z
I.lo.I

FEC
INTERRUPT

ENABLES

Q
z I-

~
LM

z >
Q a::
:c

~ ~
:z: z "' I.lo.I I.lo.I w 1.1.J

a::

3
1

-5191-

Figure A-1 HCSR(u): Interrupt Control and H!SP Commands Format

FPS 860-7494-004! Page A 1

FEC COMMAND AND STATUS REGISTER

Table A-1 HCSR(u): Interrupt Control and HISP Commands Fields

BITS I MNEMONIC

00 UNEXCC

01 UNEXHW

· 02-07 COMMAND

!

08-15

16 TASKDN

17 HISPDN

18 TASK IN

19 HI SPIN

20-23 None

24 ! ENTDIN

25 ENHDIN

26 ENT INT

27 ENHINT

28-31 None

Page A 2

MEANING

Unconditional execution bit. UNEXCC is set aqd
cleared by commands to the HISP.

Unconditional· execution bit. UNEXHW is set by the
HCSR written by the FEC.

HISP command code. This field contains the FEC
command that the HISP is to execute. Valid commands
are as follows:

0 ' no operation
1 write transfer packet
2 read transfer packet
3 interrupt SC
4 set UNEXCC
5 clear UNEXCC
6 wait for SC task completion
7 set FEC interrupt enable lines
A ~~~onnc~~r lnnn h~r~ - ---o··....., ~""" t' ..,,

9 data loop back
10 HISP initialize
11-63 <reserved for future expansion>

<Reserved by FPS.>

Task done FEC interrupt line (attention).

HISP done FEC interrupt line (device end).

Task interrupt FEC interrupt line (unit except ion) .

HISP interrupt FEC interrupt line (unit check).

<Reserved by FPS.>

Task done FEC interrupt enable line.

HISP done FEC interrupt enable line.

Task im:errupt FEC interrupt enable line.

HISP interrupt FEC interrupt enable line.

<Reserved by FPS.>

FPS 860-7494-004A

FEC COMMAND AND STATUS REGISTER

A.1.2 HCSR(l): Error Flags

Figure A-2 describes the HCSR error flags format. Table A-2 defines
the HCSR error flag fields.

32 40 41 47 48 63

HISP OHP FORMATTER

RESERVED

-5180-
Figure A-2 HCSR(l): Error Flags Format

Table A-2 HCSR(l): Error Flags ·Fields

BITS MNEMONIC MEAN.ING

32 MPVIOL Memory protection violation.

33 HISPCD HISP commands disabled.

34 HISPCR HISP command reject.

35 APCRJ SC Command Reject

36 CSEQER Command Sequence Error

37 CPUHALT SC CPU Halt

38 BIGDDB DOB Too Large for Available Buffer Space in HISP

39 TIMEOUT HISP Time-out Waiting for SC Response to INT AP

40 None <reserved>

41 DMPNFERR DMP Nonfatal Error

FPS 860-7494-004A Page A 3

FEC COMMAND AND STATUS REGISTER

Table A-2 HCSR (1): Error Flags Fields (cont.)

BITS MNEMONIC MEANING

42 DMPFERR DMP Fatal Error

43 BUS OUT Channel Bus Out Parity Error

44 CHTIMOUT Channel Time-out (streaming only)

45 <reserved>

46 CHNEQ Channel out Tags not Equal to Channel in Tags
(streaming only)

47 FRLSE Operation Aborted by Force Release CCW

48 INTOVF32 32-bit Integer Overflow

49 INTOVF53 53-bit Integer Overflow

50 FPTOVF32 32-bit Floating-point Overflow

51 FPTUNF32 32-bit Floating-pc int Underflow

52 FPTOVF64 64-bit Floating-point Overflow

53 t FPTUNF64 64-bit Float fog-point Underflow

54 INPUTEXC Nonzero Unnormalized Input Value Encountered

55 MDDERRD Main Data Double Bit Error Detected

56-63 None <reserved>

Page A 4 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

APPENDIX B

FEC·SPECIFIC ERROR MESSAGES

B.1 APMGR ERROR MESSAGES

This section contains IBM/CMS·specif ic APMGR error messages and
provides information to help the user interpret them and respond
appropriately. The format of the messages follows standard GP and CMS
message formats and is subject to the setting of the CP.EMSG command.
The EMSG setting determines whether a message is displayed at the
virtual console and what parts of the message are displayed. Refer to
the IBM manual VM/SP CP Command Reference for General Users listed in
Table 1·2 for a complete description. The information in each message
is printed in the form "FPSmmmnnns text", where:

•

•

•

•

The expression "FPS" identifies the message as originating in
the FPS UTIL64 or APEX64 software.

The expression "mmm" indicates the component from which the
message was issued. "MGR" indicates an AP~GR message. The
APEX64 user does not see APMGR messages, but those who .
maintain the APMGR can see them. The messages optionally
appear at any combination of the APMGR's virtual coqsole,
virtual printer, or disk log file.

The expression "nnn" contains the message serial number (by
which the messages are ordered in the description below).

The expression "s" identifies the type of message, where:

E = error message
I = information message
w = warning message
R = response message
s = severe message
T = terminal message

• The text of the message includes an explanation of the
message, the system action to be expected, and the appropriate
operator and/or programmer response. Each APMGR message is
dated in the form mm/dd/yy hh:mm:ss, where:

mm = the month
dd = the day
yy = the year
hh = the hours

~ the minutes (this is the second II mm") mm
SS = the seconds

FPS 860-7494-004A Page B 1

FEC-S~ECIFIC ERROR MESSAGES

FPSMGRSOOI mm/dd/yy hh:mm:ss I~ITIALIZATION OCCURRED SUCCESSFULLY.

Explanation: The APMGR performed its initialization process
successfully.

System Action: The APMGR waits for requests through the virtual
machine communication facility (VMCF), which allows
two virtual machines to communicate with each other.

Programmer None.
Response:

FPSMGR501I mm/dd/yy hh:mm:ss REQUEST FROM uuuuuuuu TO ATTACH ANY AP.
NEW RQN = n.

Explanation: The virtual machine with a userid of uuuuuuuu
requested that any available SC be attached. N is the
job request number (RQN) assigned to the new job.

System Action: The APMGR attempts to attach the first available SC.

Programmer None.
Response:

FPSMGR502I mm/dd/yy hh:mm:ss REQUEST FROM uuuuuuuu TO ATTACH AP nn NEW
RQN = K.

Explanation: The virtual machine with a userict of uuuuuuuu
requested that the SC whose logical unit number is nn
be attached. K is th~ job request number (RQN)
assigned to the new job.

System Action: The APMGR attempts to attach the first available
address of the specified SC.

Programmer None.
Response:

FPSMGR510I mm/dd/yy hh:mm:ss TERMINATION OCCURRED.

Explanation: The APMGR has received an external interrupt code of
1, which is a request to terminate.

System Action: The APMGR discontinues processing and returns to the
CMS operating system.

Programmer None.
Response:

Page B 2 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

FPSMGRSllI mm/dd/yy hh:mm:ss ADDRESS cuu OF AP nn ATTACHED TO uuuuuuuu
AS VIRTUAL .ADDRESS vuu.

Explanation: The APMGR successfully attached real address cuu of
logical. SC number nn to virtual address vuu of the
virtual machine whose userid is uuuuuuuu.

System Action: The APMGR continues with the current request or; if
finished, waits for the next request to occur.

Programmer None.
Response:

FPSMGR520W mm/dd/yy hh:mm:ss UNSUPPORTED EXTERNAL INTERRUPT CODE nnnn
RECEIVED.

Explanation: The APMGR virtual machine received an external
interrupt with a code of nnnn, which is not one of the
external interrupt types used by the APMGR.

System· Action: The APMGR ignores the interrupt and waits for the next
request.

Programmer None.
Response:

FPSMGR521W mm/dd/yy hh:mm:ss UNSUPPORTED VMCF CODE nnnn RECEIVED.

Explanation:

System Action:

Programmer
Response:

An external interrupt sent as a result of a virtual
machine communication facility (VMCF) request from the
virtual machine whose userid is uuuuuuuu contained a
VMCF subfunction code nnnn that was not among those
the APMGR uses.

If the VMCF subfunction code nnnn specifies a VMCF
SEND request, the APMGR issues the VMCF REJECT
function against the request so that it does not
remain outstanding. The APMGR ignores the invalid
VMCF request and waits for the next request.

If the virtual machine originating the request
attempted to communicate with the AP~1GR, it used the
wrong VMCF protocol. If the request was made by
APEX64, then the VMCF parameter list used by APASGN is
probably destroyed. This situation usually occurs
following an unintentional memory modification; e.g.,
an out-of-range subscript. The VM/SP System
Programmer's Guide contains a complete list of VMCF
subfunction codes.

FPS 860-7494-004A Page B 3

FEC-SPECIFIC ERROR MESSAGES

FPSMGR523W mm/dd/yy hh:mm:ss FORCE RELEASE OCCURRED FOR ADDRESS cuu UID

Explanation:

System Action:

Programmer
Response:

mm OF AP nn. .

The APMGR found that the SC with a logical unit number
of nn was assigned to logical userid mm through real
address cuu, but cuu was not attached to any virtual
machine.

The APMGR attaches the address, halts any outstanding
I/O with a halt device instruction followed by a test
I/O instruction, then executes a release channel
program to free up the SC for subsequent use.

The APEX64 user must always remember to release
the SC with a call to APRLSE.

FPSMGR530E mm/dd/yy hh:mm:ss ERROR CODE nnnn FROM VMCF RECEIVE FOR
uuuuuuuu.

Explanation: Error code nnnn was received from the virtual machine
communication facility (VMCF) when the AP:1GR attempted
'to issue the VMCF RECEIVE subfunct:i.on for the virtual
machine with a userid of uuuuuuuu. The purpose of the
RECEIVE was to obtain the data describing the virtual
machine's APMGR request,

System Action:

Programmer
Response:

The VMCF RECEIVE attempt did not complete. The APMGR
discontinues processing for the current request and
waits for the next request.

If nnnn is 5, then the virtual.machine making the
request has terminated VMCF processing before the
APMGR could finish the request. The requesting
virtual machine terminated VMCF processing either by
issuing the VMCF UNAUTHORIZE subf~nction or by logging
off. If nnnn is not 5~ then the APMGR incorrectly
issued the RECEIVE or an error occurred in CP during
VMCF processing. Refer to the IBM manual VM/SP Svstem
Programmer's Guide listed in Table 1-2 for a complete
descrip~ion of VMCF error codes. If the error code
indicates an apparent APMGR error, contact FPS
Customer Service.

FPSMGR531E mm/dd/yy hh:mm:ss ERROR CODE nnnn FROM VMCF REPLY OR
SEND/RECV FOR uuuuuuuu .

. Explanation: Error code nnnn was received from virtual machine
communication facility (VMCF) when the APMGR attempted
to issue the VMCF REPLY subfunction to the virtual
machine whose userid is uuuuuuuu. The purpose of the
REPLY was to send the virtual machine the results of
its attach request.

Page B 4 FPS 860-7494-004A

System Action:

Programmer
Response:

FEC-SPECIFIC ERROR MESSAGES

The VMCF'REPLY attempt did not complete. The APMGR
discontinues processing for the current request and
waits for the next request.

If nnnn is 5, then the virtual machine that made
the request terminated VMCF processing before the
APMGR could finish the request. The requesting
virtual machine terminated VMCF processing either by
issuing the VMCF UNAUTHORIZE ·subfunction or by· logging
off. If nnn is not 5, then the APMGR incorrectly
issued the REPLY or an error occurred in CP during
VMCF processing. Refer to the IBM manual VM/SP Svstem
Programmer's Guide listed in Table 1-2 for a complet~
description of VMCF error codes. If the error code ·
indicates an apparent APMGR error, contact FPS
Customer Service.

FPSMGR532E mm/dd/yy hh:mm:ss REQUEST FROM uuuuuuuu WAS OF INCORRECT
LENGTH.

Explanat1on: The virtual machine with the userid of uuuuuuuu made a
request to the APMGR, but the data sent to the AP~GR
to define the request was incorrect in length.

System Action: The APMGR sends a reply indicating the error condition
to the virtual machine and discontinues processing of
the current request, waiting for the next request to
occur.

Programmer
Response:

Correct the request data and retry the request.
If the requester was APEX64, then the virtual machine
communication facility (VMCF) parameter list used to
communicate with the APMGR is probably destroyed.
This situation usually occurs due to an unintentional
memory modification; e.g., from an out-of-range
subscript.

FPSMGR533E mm/dd/yy hh:mm:ss INVALID REQUEST TYPE xxxx RECEIVED FROM
uuuuuuuu.

Explanation: The virtual machine with a userid of uuuuuuuu made a
request to the APMGR, but the data sent to the AP~GR
defining the request contained a request type that is
unknown to the APMGR.

System Action: The APMGR sends a reply indicating the error condition
to the virtual machine, and the AP~GR discontinues
processing of the current request, waiting for the

·next request to occur.

FPS 860-7494-004A Page B 5

FEC-SPECIFIC ERROR MESSAGES

Programmer
Response:

Correct the request d~ta and retry the request. If
the requester was APEX64, then the data sent to the
APMGR through the vir~ual machine communication
facility (VMCF) interface is probably destroyed. This
situation usually occurs due to an unintentional
memory modification; e.g., from an out-of-range
subscript.

FPSMGR534E mm/dd/yy hh:mm:ss UNABLE TO OBTAIN SENSE DATA FROM AP nn AT
REAL ADDRESS cuu SIOCC c CSW uucc.

Explanation: The APMGR attempted to obtain sense data from device
address cuu of the ·sc whose logical unit number is nn.
The APMGR wanted to obtain the sense to determine if
forced release processing was necessary for the SC,
but the channel program used to obtain the sense
failed. The condition code from the start I/O
instruction used to initiate the sense was c. The

System Action:

Programmer
Response:

-unit- status and- channel status fields of the channel
status word that was returned as a result of the
failing channel program was uucc.

The APMGR continues precessing. It will attempt force
release processing again for this SC at a later time.

If the start I/0 condition code c was 2 or 3,
the AP is off-line or nonexistent. If the condition
code was 0 or 1, then the unit and channnel status
fields uucc are valid. The unit status field contains
unit and channel status values (uu and cc
respectively). The bit settings corresponding to the
uu portion can be found in Table 4-6. The cc values
can be found in the IBM manual IBM System 370
Principles of Operation, listed in Table 1-2.

FPSMGR535E mm/dd/yy hh:mm:ss UNABLE TO ATTACH REAL ADDRESS cuu OF AP nn
DURING FORCED RELEASE PROCESS ING. COMPLETION CODE
CCC.

Explanation: The APMGR decermined 'that the SC with a logical unit
number of nn ~as assigned through device address cuu,
but the user who assigned it gave up the SC without
first releasing it for subsequent use. Tnerefore, the
APMGR attempted to force release the SC, but could not
attach address cuu to itself so as to execute the
release channel program. The CP ATTACH command used
to perform the attempted attach finished with a
completion code of ccc.

Page B 6 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

System Action: The APMGR continues processing. It will attempt force
release processing again for the SC at a later time.

Message FPSMGR536E is issued along with this Programmer
Response: message and gives the actual text of the reply that CP

made to the failing ATTACH command. Correct the
problem described by FPSMGR536E. Often, the SC is
off-line at the address through which it is still
assigned.

FPSMGR537E mm/dd/yy hh:mm:ss FORCED RELEASE FAILED FOR AP nn AT REAL
ADDRESS cuu SIOCC c CSW uucc.

Explanation: The APMGR determined that the SC with a logical unit
number of nn had been assigned through device address
cuu, but the user who assigned it had given up the SC
without first releasing it for subsequent use.
Therefore, the APMGR attempted to force release the
SC. The channel program used to perform the release,
_however, failed. The condition code from the start
I/O instruction used to initiate the release channel
program was c. The unit status and channel status
fields of the channel status word returned as a result
of the failing channel program was uucc.·

System Action: The APMGR continues processing. It will attempt force
release processing again for this SC at a later time.

Programmer
Response:

If the start I/O condition code c was 2 or 3, the
SC address cuu is off-line or nonexistent. If the
condition code is 0 or 1, then the unit and channel
status fields uucc are valid. The unit status field
contains uni~ and channel status values (uu and cc
respectively). The bit settings corresponding to the
uu portion can be found in Table 4-6. The cc values
can be found in the IBM manual IBM Svstem 370
Principles of Operation (listed in Table 1-2).

FPSMGR540S mm/dd/yy hh:mm:ss UNABLE TO WRITE TO LOG FILE filename.
FSWRITE RETURN CODE nnnn

Explanation: The APMGR attempted to write a message to its log
file, but did not receive a return code of zero from
FSWRITE. The return code received is nnnn. <fileid>
is the file name, file type, and file mode of the log
file.

System Action: The APMGR attempts to write the failing message to its
virttial console so that the message is saved. Message
logging to the disk is stopped. If the failing
message is the initialization message (FPSMGRSOOI), ·
then the APMGR terminates.

FPS 860-7494-004A Page B 7

FEC-SPECIFIC ERROR MESSAGES

Programmer
Response:

The FSWRITE return codes are f o~nd in the
IBM manual VM/SP CMS Command and Macro Reference
(listed in Table 1-2). The most common failures
involve insufficient space available on the disk
containing the log file or an illegal file ID for the
log file. If the problem cannot be resolved
immediately, the APMGR can be restarted without disk
file logging enabledo

FPSMGR550T mm/dd/yy hh:mm:ss INVALID COMMAND LINE OPTIONSo

Explanation: The command line entered to start the APMGR contains a
syntax error.

System Action: The APMGR terminates immediately.

Programmer
Response: Restart the APMGR with a valid command line.

FPSMGR551T mrn/dd/~ hh:mm:ss UNABLE TO ALLOCATE STORAGE FOR AP
CONFIGURATION DATA.

Explanation: During its initialization process, the APMGR attempted
to dynamically allocate storage via a DMSFREE request
to CMS, but the allocation request failed. The APMGR
was trying to obtain storage to build the internal
data structures required to manage access to the SC's
under its control.

System Action:

Programmer
Response:

The APMGR terminates immediately.

Make sure that the APMGR has virtual storage
sufficient for initialization. If it does not, the SC
configuration data within module APCN64 could be
invalid, causing the APMGR to calculate incorrectly
the amount of storage needed.

FPSMGR552T mm/dd/yy hh:mm:ss VMCF AUTHORIZE UNSUCCESSFUL. RETCRN CODE
nnnn.

Explanation: The APMGR attempted to request permission to perform
virtual machine communication facility (VMCF)
processing, but execution of the VMCF ACTHORIZE
subfunction (required to gain authorization) failed
with return code nnnn.

System Action: After freeing dynamically allocated storage, the AP~1GR
terminates.

Page B 8 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

Programmer
Response:

The IBM manual VM/SP System Programmer's Guide (refer
to Table 1-2) contains a complete description of VMCF
return codes. Either this is an APMGR error or the
user is running a VM/370 system prior to release 6.0.
Contact FPS Customer Service if the problem cannot be
resolved.

FPSMGR553E mm/dd/yy hh:mm:ss SNDMSG FAILED-CMS USERID = uuuuuuuu -VMCF
ERROR CODE = nnnn.

Explanation: The APMGR encountered an error while attempting to
send a VMCF message to user uuuuuuuu. The IBM manual
VM/SP System Programmer's Guide contains a complete
description of VMCF return codes.

System Action: The APMGR continues processing. The APMGR will
attempt to force release the offending user and remove
him from the APMGR's internal priority queues.

Programmer
Response:.

If nnnn is a 5, the user uuuuuuuu terminated VMCF
processing before the APMGR could finish the request.
The requesting virtual machine terminated VMCF
communication by issuing a VMCF unauthorize
subfunction or by logging off, HXing, or re-IPled.CMS.
If nnnn indicates an apparent AP~GR error, call
Customer Service.

FPSMGR554E inm/dd/yy hh:mm:ss AP~DFT:INTERNAL ERROR - DEADCSER ARRAY
OVERFLOW.

Explanation: An internal APMGR array that should never overflow.

System Action: The APMGR terminates

Programmer You should never see this message. Call
Response: Customer Service.

FPSMGR560I mm/dd/yy hh:mm:ss V~CF MESSAGE RECEIVED FROM uuuuuuuuRQN =
nn ~ITYPE = K .

Explanation: The APMGR received A V~CF message from user ID
uuuuuuuuu, ~un number nn. ~ is ~he message type
defined in the routine header for APSMSG.

System Action: The APMGR continues processing.

Programmer
Response: None.

FPS 860-7494-004A Page B 9

FEC-SPECIFIC ERROR MESSAGES

FPSMGR561I mm/dd/yy hh:mm:ss SENDING VMCF MESSAGE TO '1Uuuuuuu . RQN =
n MTYPE = K.

Explanation: The APMGR sent a VMCF message to user ID uuuuuuuu. nn
is the AP job number. K is the message type defined
in the routine header for SNDMSG.

System Action: The APMGR continues processing.

Programmer
Response: None.

B.2 APMGR ERROR MESSAGES

The following APMGR error messages may be displayed on the VM
operator's console.

FPS300W mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO OPEN FPS ACCOUNTING
FILE.

Explanation: Tne APMGR encountered an error while attempting to
open the FPS accounting file.

System Action:

Programmer
Response:

The APMGR continues but
records.

...,,....,..,....,,,_.,.; __
Cl.'-'-VUUl....L.UO

Make sure the APMGR has an available R/W disk
accessed that is not full and restart the AP~GR. The
APMGR's console log file may contain additional
messages that can be used to determine the cause of
the failure.

FPS301W mm/dd/yy hh:mm:ss AP MA~AGER UNABLE TO WRITE TO FPS ACCOC~TING
FILE.

Explanation: The AP~GR encountered an error writing an accounting
record.

System Action: The APMGR continues but accounting data is lost.

Programmer
Response:

Page B 10

Make sure the APMGR's disk is accessed R/W
and. is not full. Then restart the APMGR. The AP~1GR' s
console log file may contain additional messages that
can be used to determine the cause of the failure.
the cause of the failure.

FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

FPS302W mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO OPEN LOG .FILE.

Explanation: The APMGR encountered an error opening the APMGR log
file.

System Action:

Programmer
Response:

The APMGR continues but does not write log numbers.

Make sure the APMGR has an available R/W disk
accessed that is not full and ·restart the APMGR.- The
APMGR's console log file may contain additional
messages that can be used to determine the cause of
the failure.

FPS303W mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO WRITE TO LOG FILE.

Explanation: The APMGR encountered an error while writing to the
log file.

System Action: The APMGR continues processing but log file data is
lost.

Programmer
Response:

Make sure the APMGR has an available R/W disk
accessed that is not ful 1 and restart the AP~1GR. The

0 APMGR's console log file may contain additional
messages that can be used to determine the cause of
the failure.

FPS 304I mm/dd/yY hh:mm:ss AP MANAGER UNABLE TO SEND VMCF MESSAGE TO AP
OPERATOR.

Explanation: The APMGR detected an er~or condition when attempting
to send a VMCF message to a user running the APOPR
program.

System Action:

Programmer
Response:

The APMGR continues processing.

The user probably logged off, re-ipled CMS, or HX'ed
out of the APOPR. Enter EXIT or quit to terminate
APOPR execution.

FPS305E mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO ASSIGN AN AP TO JOB nnn
:HEX.

Explanation: The APMGR could not attach an AP device address to the
user's virtual machine.

System Action: The APMGR continues processing but the offending RQN
nnn may need to be'aborted using the APOPR ABORT
command.

FPS 860-7494-004A Page B 11

FEC-SPECIFIC ERROR MESSAGES

Programmer
Response: Make sure the AP device addressed are varied online.

Make sure the sum of the max users values for the AP
is not greater than the number of configured device
addressed minus 1.

FPS306E mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO DEASSIGN AN AP FROM JOB
HEX.

Explanation:

System Action:

Programmer
Response:

The APMGR could not de-assign an AP from job nnn.

The APMGR continues processing but the of fending job
nnn may need to be aborted using the APOPR ABORT
command.

Examine the status of job nnn with the APOPR. If it
still exists, use the APOPR ABORT command to abort the
job.

FPS 307T mm/dd/yy hh:mm:ss AP.MANAGER INITIALIZATION FAILED.

Explanation:

System Action:

Programmer
Response:

An error was detected during APMGR initialization.

The APMGR terminates

Examine the APMGR's console log file to determine the
cause of the failure. Correct the problem described
in the console log file and re-start the AP~GR.

FPS308I mm/dd/yy hh:mm:ss AP MANAGER/DAPEX COMMCNICATION BREAKDOWN -
FORCE RELEASE IN PROGRESS FOR AP JOB nnn HEX.

Explanation:

System Action:

Programmer
Response:

Page B 12

The user job nnn ended without calling APRLSE. The
APMGR sttempts to do force release processing for the
offending job.

The APMGR continues processing but the job nnn may
need to be aborted u5ing the APOPR ABORT command.
Also, some of the accounting data for job nnn was
lost.

CALL APRLSE or APIBMR to release the SC. Do not HX,
IPL CMS, or logoff while the SC is assigned.

FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

FPS310W mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO READ' FPS SITE PARAMETER
FILE.

Explanation:

System Action:

Programmer
Response:

The APMGR detected an error while reading the site
parameter file.

The APMGR continues but uses default site parameters.

Examine the APMGR's console log file to determine the
cause of the failure. Correct the problem and restart
the APMGR.

FPS311W mm/dd/yy hh:mm:ss AP MANAGER UNABLE TO WRITE FPS SITE PARAMETER
FILE.

Explanation:

System Action:

Programmer
Response:

The APMGR detected an error attempting to write to the
site parameter file "PARAMS APIMG64 11

The APMGR continues but the site parameters are not
saved in ."PARAMES APIMG64"

Examin~ the console log file to determine the cause of
the failure. Correct the problem and restart the
APMGR.

FPS312W mm/dd/yy hh:mrri:ss AP MANAGER UNABLE TO READ AP OPERATOR NAMES
FROM SITE PARAMETER FILE.

Explanation:

System Action:

Programmer
Response:

The APMGR detected an error while reading the site
parameter file.

The APMGR continues but uses default site parameters.

Examine the APMGR's console log file to determine the
cause of the failure. Correct the problem and restart
the APMGR.

FPS ·860-7494-004A Page B_ 13

FEC-SPECIFIC ERROR MESSAGES

FPS313S mm/dd/yy hh:mm:ss INTERNAL AP MANAGER 'ERROR - NO RQNS
AVAILABLE.

Explanation: A severe internal APMGR error occured. The APMGR was
unable to find a free job number to assign to a new
job. This should never happen.

System Action: The APMGR terminates.

Programmer
Response: Re-start the APMGR. Contact.Customer Service.

B.3 DAPEX ERROR MESSAGES

This section contains IBM-specific APEX64 error messages and provides
information to help the user interpret them and respond appropriately
to them. The information is presented in the following order:

1. SC standard condition code in unpacked format (severity,
message number, originator) followed by its 32-bit decimal
representation. The messages are ordered by message number.

2. The APMSG message corresponding to the condition code.

3. A brief explanation of the code.

4. The normal corrective action.

5. A severity rating.

--.'drl:-!rlrl: 7 1024 200 -536050688

TERMINAL: Nonzero unnormalized value encountered (APHERR -1024).

Explanation: Bit 54 (the INPUTEXC bit) is set in the FEC
control and status register (HCSR). This
indicates a format error in either the input or
output data. The terminal severity of this error
indicates that the Unit Check ~ask is set up to
terminate DDB processing as soon as the error is
detected. This message is accompanied by another
message identifying the FEC virtual address of the.
bad data.

Corrective Action: This user error must be traced by the user.

Page B 14 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

*~AAAA 2 1024 200 1074562048

WARNING: Nonzero unnormalized value encountered (APHERR -1024).

Explanation: Bit 54 (the INPUTEXC bit) is set in the HCSR.
This condition indicates a format error in either
the input or output data. The warning severity of
this error message indicates that the unit check
mask is set up to report the error at the end of
DDB processing and continue processing the
program, unless the user has called APERR to
terminate on warning messages.

Corrective Action: This user error must be traced by the user.

AAA•':*-/: 7 1026 200 -536050686

TERMINAL: Undefined error detected (bit 8 of HCSR(l) on) (APHERR
-1026).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This error message indicates a
hardware, Host Interface Support Processor (HISP)
firmware, or APEX64 software malfunction.

Corrective Action:· Contact FPS Customer Service.

***~rirl: 7 1030 200 -536050682

TERMINAL: Bus Out Parity Error detected (bit 11 of HCSR(l) on) (APHERR
-1030).

Explanation: This condition results from either an SC interface
error or an ·IBM channel error. If the same error
occurs with other devices on the channel, it is
probably a channel error. Otherwise, it is an SC
error.

Corrective Action: Run. the program again. If the error persists,
contact FPS Customer Service.

FPS 860-7494-004A Page B 15

FEC-SPECIFIC ERROR MESSAGES

~·:Jdd.:rn 7 1031 200 -536050681

TERMINAL: Channel Time-out error detected (bit 12 of HCSR(l) on)
(APHERR -1031).

Explanation: Channel error during data streaming. If another
data streaming device on the channel has the same
problem, it is a channel problem. Otherwise, it
is an SC problem.

Corrective Action: Run the program again. If the error persists,
contact FPS Customer Service.

AAAA/rn 7 1032 200 -536050680

TERMINAL: Sequencer parity error (bit 13 of HCSR(l) on) (APHERR
-1032).

Explanation: Severe Host Adapter malfunction.

Corrective Action: Contact FPS Customer Service.

AAAk-1~: 7 1033 200 -536050679

TERMINAL: Channel not equal (bit 14 of HCSR(l) on) (APHERR -1033).

Explanation: The Host Adapter detected a channel error during
data streaming. Out responses from the channel do
not equal responses sent by the SC to· the channel.

Corrective Action: Contact FPS Customer Service.

-/:~·:~~*-1:-.': 7 1034 200 -536050678

TERMINAL: Force Release CCW (bit 15 of HCSR(l) on) (APHERR -1034).

Explanation: The AP~1GR executed the "Force Release" CCW to
unassign the SC which was assigned to this job.
This condition is HXpected only when the job is
aborted by issuing the APOPR ABORT command.

Corrective Action: None

Page B 16 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

AAA~~rl: 7 1035 200 -536050677

TERMINAL: Undefined error detected (bit 24 of HCSR(l) on) (APHERR
-1035).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

1:+.-lrlrlrl: 7 1036 200 -536050676

TERMINAL: Undefined error detected (bit 25 of HCSR(l) on) (APHERR
-1036).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

*~AA.h~ 7 1037 200 -536050675

TERMINAL: Undefined error detected (bit 26 of HCSR(l) on) (APHERR
-1037).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This represents either a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

****~'rl: 7 1038 200 -536050674

TERMINAL: Undefined error detected (bit 27 of HCSR(l) on) (APHERR
-1038).

The APEX64
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

FPS 860-7494-004A Page B 17

FEC-SPECIFIC ERROR MESSAGES

****** 7 1039 200 -536050673

TERMINAL: Undefined error detected (bit 28 of HCSR(l) on) (APHERR
... 1039).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

AAAAA~ 7 1040 200 -536050672

TERMINAL: Undefined error detected (bit 29 of HCSR(l) on) (APHERR
-1040).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware? or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

*'1.AA.'rl: 7 1041 200 -536050671

TERMINAL: Undefined error detected (bit 30 of HCSR(l) on) (APHERR
-1041).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 software
malfunction.

Corrective Action: Contact FPS Customer Service.

~'r*~:~'r** 7 1042 200 -5360506 70

TERMINAL: Undefined error detect:ed (bit 31 of HCSR(l) on) (APHERR
-1042).

Explanation: The APEX64 routine APHERR found an undefined bit
on in the HCSR. This condition indicates a
hardware, HISP firmware, or APEX64 soft~are
malfunction.

Corrective Action: Contact FPS Customer Service.

Page B 18 FPS 860-7494-004A

FEC-SPECIFIC ERROR MESSAGES

AAA/:** 7 1505 200 -536050207

TERMINAL: Requested AP is off-line (APASGN -1505).

Explanation: APEX64 attempted to gain access to an (or any) SC·
by a request to the APMGR, but the requested SC
(or all SC's if the request was for any SC) was
off-line.

Corrective Action: Ensure that the desired SC is working and on-line,
then retry the request.

AAAA/n~ 7 1506 200 -536050206

TERMINAL: AP manager is not available (APASGN -1506).

Explanation: APEX64 attempted to gain access to an SC by a
request to the APMGR~ but the APMGR did not
respond to the request because the APMGR was not
running.

Corrective Action: Re-start the APMGR. (See the installation
instructions for details.)

FPS 860-7494-004A Page B 19

RESERVED ROUTINE NAMES

APPENDIX C

RESERVED ROUTINE NAMES

APEX64 uses a standard convention for naming subroutines and common
blocks: the letters "AP" are used as the first two letters of every
subroutine or common block name. · To avoid conflicts with APEX64, users
must not give their subroutines names that begin with "AP". This
appendix is an alphabetical list of the subroutines whose names do not
follow the standard naming convention of beginning a subroutine name
with the letters "AP". To avoid conflicts, users must not use these
names when naming their own subroutines.

AlTOSl F32TOR MGRUID S4TOS1
A4TOS1 F64TOH MUL128 SCLF64
A tl~"C'~/. F64TOR MUL32 SEEKF ~.uu.1.: v~

ADD31 F64TOS MUL64 SETBRK
ADD64 FTI32R MULCPX SHF128.
AD DC PX FTOF32 MULF64 SHF32
ADDF64 FTOF64 NAMEF SHF64
AND32 FTOI32 NEG32 SIZEMD
AND64 GETPS NEG64 SIZEPS
CL! GETREG NEGF64 SIZ:!EM
CLOSEF HADR NOT32 STOF64
CLRBRK HMEM NOT64 STOI32
CMP32 HTOF64 OPENF STOI64
CHP64 HTOI32 OR32 SUB32
CMPF64 HTOI53 OR64 SUB64
CPTlME HTOU64 PNLCLR SUBCPX
DATE64 I32DAT PNLCMD SUBF64
DB HD LR I32TOF PUTREG TELLF
DBRNLP I32TOH RCPF64 TIME64
DBUG64 I32TOI RDBlNF U64TOH
DGASGN I32TOS RDLINF UC~1P32

DIV32 I53TOH RDPRMF cc:tP64
DIV64 I53TOI REWNDF WTBINF
DIVCPX I64TOS RTOF32 WTDMA
DIVF64 ITOI32 RT0Fq4 WTLINF
EXITF ITOI53 RUN AP WTPAGF
EXP32 L64TOL RUND MA WTRUN
EXP64 LOAD BT SlTOAl XOR32
EXPCPX LOAD PS S1TOA4 XOR64
EXPF64 LTOL64 S1TOS4

FPS 860-7494-004A Page C 1

$BS 2-2
$FM 2-2
:HOST: 3-5,6
:HOSTCHAR: 3-5,6

Accessing SC software 2-6
ADC (auto-directed calls)

2-28
ADC FEC program 2-28
Address recognition 4-6
Allocating an SC 3-1
APAL64 2-7,8
APAL64 options 2-8
APCRJ A-3
APDBUG64 2-7,13
APDBUG64 options 2-13
APEX error messages, IBM-specific

B-14
A T'\,...'U'.f'. f ~ ~(')

arl:.AO'+ "'-"'o

HAS! file creation 2-38
job compilation or assembly

2-37
library building 2-38
necessary job files 2-37
program development 2-36
program execution 2-41
programming 2-28

APEX64 program execution 2-28
APEX64 programming 2-28
APFTN64 2-7,8,9,26
APFTN64 file to FEC file

conversion logic 3-17
APFTN64 file to FEC file

conversion procedure 3-15
APFTN64 options 2-9
APLIBR64 2 - 7 , 10
APLIBR64 options 2-10
APLINK64 2-7,11,26
APLINK64 options 2-11
APMGR error messages B-1,10
APMGR, role of 3-1
Auto-directed calls (ADC)

2-28

Batch mode execution of an
SJE job 2-26

BIGDDB A-3
Building libraries 2-38
Bytes returned by sense I/O

type command 4-12

Channel command word (CCW)
4-3

Channel commands 4-7

FPS 860-7494-004A
.,

INDEX

Channel interface protocol
4-6

Channel interrupts 4-13
Channel, role of 4-2
Channels, IBM 4-1
CHNEQ A-3
co 2-3
Codes, condition 2-5
Command A-2
Commapd and status register

(HCSR), host A•l
Command construction rules

2-1
Command description example

2-2
Command line options 2-2
Command line syntax 2-1
Command options, syntax 2-2
Command retry 4-15
Commands, channel 4-7
Commands, general form of

2-2
Commands, SJE JDL 2-.19
Compilation files in the SJE

job 2-17
Compilation or assembly for

SC subroutines 2-38
Compilation or assembly of

source files 2-17
Compiling or assembling f.iles

in an APEX64 job 2-37
Compiling/assembling using

FEC facilities 2-40
Condition codes 2-5
Configuration mode switch

states (switches 1 and
2) 4-21

Configuration mode switch
states (switches 3, 4,
and 5) 4-22

Configuration mode switch
states (switches 6, 7,
and 8) 4-23

Configuring the Host Adapter
Board 4-20

Configuring the IBM Host Adapter
Board 4-20

Control and HISP commands
format A-1

Conventions used in manual
1-2

Conventions, default CMS naming
2-3

Conversion utilities, data 3-8

Page INDEX 1

INDEX

Conversion utilities, ex~mple
3-14

Conversion utilities, how
to use 3-9

Conversion utilities, processing
steps 3-11, 15

CPU, IBM, role of 4-2
CPUj SC, role of 4-3
CPUHALT A-3
Creating the executable load

module 2-40
Creating the HAS! file using

APLINK64 2-39
Creating the image load module

using APLINK64 2-18
CSEQER A-3

DAPEX error messages B-14
Data and file conversion routines

3-9
Data conversion utilities

3-8
conversion steps 3-15
example 3-14,18
logic flow 3-16
processing s~eps 3-11
when necessary to use 3-9

Data conversion, FEC/SC 3-8
Data descriptor block (DDB)

4-2
Debugging SC subroutines 2-39
Default CMS filetypes, record

formats, and block sizes
2-4

Default naming conventions,
CMS 2-3

Delimiters, conventions for
use of 2-2

Detaching an SC 3-3
Development of programs under

APEX64 2-36
DMPFERR A-3
DMPNFERR A-3
ENHDIN A-2
ENHI~'T A-2
ENTDIN A-2
ENTINT A-2
Error flags A-3
Error message interpretation

2-5

Error messages, APEX,
IBM-specific B-14

Error messages, APMGR B-1

Page INDEX 2

Examp~le: p;rogrcmir: us.age 2-14
Examples of invoking PDS programs

~.-:1!+
Executing an SJE job from

the:· rEO·· iioo 25
Executing an SJE job from

the SC 2-23
Executing an SJE job in CMS

batch mod~ ,2-26
Executing the SJE job 2-18
Execution 2-41
Execution from the FEC 2-25
Execution of-the APEX64 load

module 2-41
Execution·using SJE 2-18
Extended bus~4-6

FEC command and status register
(HCSR) A-1

FEC compilation/assembly during
the APEX64 job 2-40

FEC data file to SC data file
conversion logic 3-13

FEC data file to SC data file
conversion procedure 3-11

FEC
FEC file to SC file conversion

steps 3-10
FEC interface support processor

4-4
FEC progr.arn 2-28

ADC 2-28
UDC 2-29

FEC to SC file conversion
steps 3-10

FEC/SC interconnect hardware
4-20

File conversion, SC data to
APFTN64 unformatted record
3-8

Files for an APEX64 job 2-37
Files for an SJE job 2-17
Flags format A-3
Forced-release processing 3-3
Format conversion 4-4,15
Formatter 4-4
Formatter, role of 4-4
FPS~l64 manuals, table showing

relations of 1-5
FPTOVF32 A-3
FPTOVF64 A-3
FPTUNF32 A-3
FPTUNF64 A-3

FPS 860-7494-004A

Hardware for FEC/SC communit~tion
4-1 · · .- . . ·: ;·~s: .: ... · · ·

Hardware specific tei IB~;·FEO· · . .::
computers 4-6 :·· .: !? ..

HAS! file creation, APEX64r.' ::-.
2-38 ';/ "

HCSR (host command and: status
register) 4-4; Ar~1·· -~ ('

HCSR(l) ·· ~

error flags A-3 ··
error flags fields A-3

HCSR(u)
Interrupt control and HISP

commands fields A .. 2; ·.· · · ·
Interrupt control and HISP

commands fields format
A-1

Interrupt control and HISP
commands A-1

H1gh-speed streaming 4-6
High-speed transfer 4-6
HISP (host interface support

processor) 4-1,4,15; A-1
HISP command and interrupt

control fields A-2
HISP, role of 4-3
HISPCD A-3
HISPCR A-3
HISPDN A-2
HISPIN A-2
Host Adapter 4-4
Host command and status register

(HCSR) 4-4; A-1
Host interface support processor

(HISP) 4-4

I/O to FEC files 3-5
IBM CPU, role of 4-2
IBM Host Adapter Board,

configuring 4-20
IBM integer*4 4-15
IBM integer*4 format 4-17
IBM integer*4 to and from

SC integer*4 4-15
IBM integer~':4 to and from

SC long integer 4-16
IBM integer*8 4-16
IBM integer*8 to and from

SC ·long integer 4-16 ,
IBM logical*4 format 4-19
IBM logical*4 to and from

SC logical 4-19

FPS 860-7494-004A ··,·:

INDEX

IBM real*4 format 4-18,19
IBM real*4 to and from SC

floating-point number
4-18

IBM real*8 format 4-18
IBM real*8 to and from SC

floating-point number
4-18

IBM unformatted*8 to and from
SC word type 4-17

IBM-specific APEX error messages
B-14

IBM/CMS FEC-specif ic qardware
of the FEC/SC sysiem 4-6

Image load module for the
SJE job 2-17

INPUTEXC A-3
Interconnect hardware, FEC/SC

4-20
Interface busy conditions

4-15
Interface hardware block diagram

4-5
Interface sense byte 0 fields

4-9
Interface sense byte 1 fields

4-10
Interface sense byte 2 fields

(image of the unit address
switches on the adapter) 4-11

Interface sense byte 3 fields
(image of the eight mode
switches on the adapter) 4-11

Interface sense byte descriptions
4-9,10,11

Interface sense byte format
4-9

Interpretation of error messages
2-5

Interrupt control and HISP
command fields A-2

Interrupts, channel 4-13
INTOVF32 A-3
INTOVF53 A-3

JDL command overview 2-19
JDL commands, SJE 2-19
JDL control statements 2-20
JDL service request statements

2-21

Library building under APEX64
2-38

Line syntax, command 2-1

Page INDEX 3

INDEX

Linking to FEG-specif ic library
routines 3-19

Load module creation under
APEX64 2-40

Load module format 4-17
LOGON, use of 2-2

Manuals, FPS-164, table showing
relations of 1-5

MDDERRD A-3
Messages, APMGR error B-1
Messages, error, IBM-specific

B-14
Messages, error, interpretation

of 2-5
MPVIOL A-3

Naming conventions, default
CMS 2-3 .

Number of users 3-2

Options, command line
'·$BS 2-2
$FM 2-2

Options, SC software 2-7

PDS command line syntax 2-1
PDS commands and options 2-7

APAL64 2-8
APDBUG64 2-13
APFTN64 2-9
APLIBR64 2 -10
APLINK64 2 -11
SJE 2-14

PDS programs, examples 2-14
PRESERVE 3-6
Program development for APEX64

2-36
Program development software

programs 2-7
Program development, SJE 2-16
Program development, tools

necessary for 2-1
Programming under APEX64 2-28
Programs, example usage 2-14
Protocol, channel interface

4-6
Providing the files for the

job 2-17
Punctuation, as delimiters

in command language 2-2

Release channel program 3-3
. Releasing an SC 3-3

Page INDEX 4

Releas~~g. aptj..,<l~~afhing an
. SC 3- ~f '· . ,- .

Restore 3~~' .. '. ·'"'z:: ~1 -, ..•

Roll-in/roll-ou~ ... 5RIRO) 3-4
..... ("' (' -

SC allocati~~-j-1
SC CPU, role of 4-3
SC device address 0 3-3
SC floating:-po~~t format 4-18
sc halfw~r~ f ~oating packed

format_~: i~C. ·
SC halfword packed integer

format 4:-). 7 '.
SC I/0 paJJ.~L 4~,20
SC integer·:'~;.,lS·
sc logic~l fo~mat 4-19
sc long integer 4-15,16
SC selection process 3-2
SC software options 2-7
SC word type format 4-17
SC's FEC interface internal

structure 4-4
SC, releasi~g and detaching

3-3
SC

accessing software 2-6
debugging subroutines 2-39
software options 2-7

Selecting an SC 3-2
Sense bytes 4-8
Sense I/0 type command 4-12
SJE 2-16
SJE data conversion utilities

3-8
SJE JDL commands 2-19
SJE options 2-14
SJE program development 2-17
SJE program development and

execution 2-16
SJE user attention command

2-27
batch mode execution 2-26
creating the image load

module 2-17
execution from the FEC 2-25
execution from the SC 2-23
job compilation 2-17
job execution 2-18
necessary job files 2-17
program development 2-16

Software options, SC 2·7
Software, accessing 2-6
Status register (HCSR), host

command and A-1

FP~.J.~60- 7 494-004A

.. • ,;., ·'. ({ .- ; '-'

Subroutine naming: cotiventic;>tis _>
C-1

SUM APIMG64, name reserv~d:. ~-~ .·.: i-.·.,

for SC' s SUM 2-6'"··:·: ~ ~ -~. ' - .

Supplying the files ?-37
,, tL~! J .. ; :._: ;.) ~~ ~· .: ;.

TASKDN A-2
TASKIN A-2

t;:.• •• :

The role of the .APMGR _'3~1 ·
('.

The role of the chann~l 4~2 ,,· ' .. '
The

The
The
The
The

role
4-4
role
role
role
SC's

of the formatter:

of the HISP 4:.3
of the IB~·CPU 4:2
of the SC C~V 4-j ;
FEC interf a2e 'fnternal

structure 4-4 .
TIMEOUT A-3
Tools necessary for program

development 2-i"·

UBRAER A-3
UDC (user-directed calls)

2-29

.•:

FPS 860- 7 494-004A'>:

UDC FEC program 2-29
UDC/ADC FEC programs 2-28
UNEXCC A-2
UNEXHW A-2 .
Unit check mask 4-12
Unit check mask bit fields

4-12
Unit status field bits 4-13
User attention command 2-27
User-directed calls (UDC)

2-29
Users, maximum number of 3-2
Using auto-directed calls

(ADC) 2-28
Using preserve and re~tore

3 ... 6
Using user-directed calls

(UDC) 2-30
Utilities, data conversion

3-8

Virtual Front Panel (VFP)
4-3

Page INDEX

INDEX

5

Your comments will help us improve the quality and usefulness of our publications. Please fill
out and return this form to: Floating Point Systems, the mailing address is on the back.

Title of document----------------------------

Name/Title----------------------- Date ____ _
Firm __________________ Department----------

Address --------------------------------
Telephone ______________________________ _

I used this manual ...

D as an introduction to the subject
D as an aid for advanced training
D to instruct a class
D to learn operating procedures
Das a reference manual
D other _____________ _

I found this material ...

ace u rate I complete
written clearly
well illustrated
well indexed

Yes No
D D
D D
D D
D D

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if
you would have liked more information on a certain subject.

•

I~~ FLOATING POINT
~ SYSTEMS, INC.
... the world leader in array processors

CALL TOLL FREE (800) 547-1445
Ex. 4999. P.O. Box 23489 (S 500),
Portland, OR 97223 (503) 641-3151,
TLX: 360470 FLOATPOIN BEAV

