T T T e T

] s4sa-wad§fﬂ

GENERAL DESCRIPTIOK

‘
First Edition December, 1976

This manual may be altered without prior notice.

No part of this manual may be reprinted in any form
without permission.

~?

PREFACE

This publication describes the FACOM OS IV/F4 operating system for the M series
of computers, which are manufactured and sold by Fujitsu Limited. OS IV/F4 is the
largest OS furnished for M series in terms of sizes of hardware configurations it sup-
ports, variety of functions it furnishes to users and installation managers, and its
complexity and state-of-art design. OS IV/F4 compares favorably with state-of-art
OS offered by other manufacturers for their large-scale general-purpose computers.

This General Description manual is prerequisite reading for all users and opera-
tors of OS IV/F4. It furnishes a comprehensive but rapid overview of the entire soft-
ware system, although it does not describe M series hardware. The user should
become familiar with various hardware manuals appropriate to his configuration.

Throughout this manual, reference is made to other OS IV/F4 manuals. Some are
recommended for all users; others are required reading for specific programming
languages, 1/O devices, and application areas; others are appropriate primarily for
operators, system programmers, etc. These references should prove useful to
readers of the General Description manual who need full details on these aspects of
M series hardware and OS 1V/F4 software.

This manual is divided into four self-contained parts, each with its own set of .
chapters, figures, and tables. These parts do not cross-reference one another; hence,
all cross-references to chapters, sections (of chapters), figures, and tables are within
the current part unless explicitly directed to another part of this manual.

Part 1 Overview of OS IV/F4

Part 2 Control Program

Part 3 Processing Programs for OS IV/F4
Part 4 TSS(Time Sharing System) '

CONTENTS

Page
PART 1 OVERVIEW OF OS IV/F4 e 1
CHAPTER 1 OBJECTIVES OF OS IV/F4 . i 3
CHAPTER 2 MAJOR FEATURES OF OSIV/F4 . i 4
2.1 Reliability, Availability, and Serviceability i, 4
2.2 OQperator and Installation Management Facilities it 5
2.3 Management of System Resources e 6
2.4 EXpansibility e e e 6
2.5 Convenient Interfaces and Tools for Applications Development 7
2.6 Advanced Information Management System (AIM) oL 7
CHAPTER 3 STRUCTUREbFOSIV/F4..................................- 9
CHAPTER 4 PRINCIPAL COMPONENTS OF OS IV/F4\t 11
4.1 Virtual Storage Management ittt e e 11
4.1.1 Multiple Virtual StOTagesi ittt e 11
4.1.2 Page Management 11
4.1.3 Channel Dynamic Address Translation
(Channel DAT) ..ottt e 12
4.2 JOb Managementt e e 12
4.2.1 Job Entry Subsystem (JES) o.uniitt it e 13
4.2.2 Multiple Console Support (MCS)ttt 13
4.2.3 Efficiency Enhancements i e 13
4.2.4 Installation-Management Enhancements i 14
4.3 Remote Entry Services (RES) ...ttt e e e e 15
4.4 Data Management ittt e 16
4.5 Virtual Storage Access Method (VSAM) ... i e 16
4.6 Data CommMUNICAtIONSo\ttt ittt et ettt et e 17
4.6.1 Virtual Telecommunications Access Method (VTAM) 17
4.6.2 Network Control Program (NCP) it - 17
4.7 Reliability, Availability and Serviceability (RAS) oiiiiii .. 18
4.7.1 System Recovery e e e e e e e 18
4.7.2 System ResStOrationoiuueniint e 18
48 SUPEIVISOr ..t 19
4.8.1 Multiprocessing SUPPOItttt e e 19
482 Automatic Priority Group (APG) 20
4.9 Processing Programs 0. . i 20
4.10 Time Sharing System (TSS) ..., e L2
4.11 Advanced Information Manager (AIM) i i, 22

o I O S 0 17 T T 22
411.2 Architectureof AIM e e 22
4.11.3 Major Components of AIM e 22
4.11.4 Execution Flow i e 24
PART 2 CONTROL PROGRAM .. e 25
CHAPTER 1 VIRTUAL STORAGE i e e 27
1.1 Background of Virtual Storage Systemsttt e iy 27
1.2 The OS IV/F4 Virtual Storage Architecture ittt iiinnennnn. 28
L 2 OVEIVIEW . i e e e e e 28
1.2.2 Virtual Storage Layoutttt e s 28
1.2.3 Storage O1ganizationturiiiieiie ettt 29
1.2.4 Structure of OS IV/F4 Address Spacesc.c.iiiiiiieririiiine i 33
1.2.5 Processing Jobs in Virtual Storaget 35
1.3 Channel Dynamic Address Translation ittt 38
CHAPTER 2 JOB MANAGEMENT ... e et 4]
2.1 OVEIVIEW «.oovoeeeeeeenn... RS 41
2.1.1 Jobs and Job Steps e e e 41
2.1 JOb FlOW .ot e e 41
2.1.3 Components of Job Control i 43
2.2 Job Entry Subsystem (JES)ot 43
2.2] OVEIVIEW Lot t eeeeea 43
2.2.2 Structure of the Spool VolumeE i i e 47
2.2.3 Spooling Performance Optimization 0 i iiiiiiiiniiiannneinnn.. 48
2.2.4 Control and Space Management of Spool Volumes 49
2.2.5 Interfaces between JES and User Programsc.coiiiiiiiniinnennennann. 49
2.2.6 JES Parameters ..ot e 50
2.3 SyStem INPUL . .. 50
2.3.1 Flow of Control. o 50
2.3.2 Startingand Stoppinga Reader i 50
2.3.3 Reading Methodology ...t e e e 50
2.3.4 Transcriptiontothe Input Queue it 51
235 Command Statementsttt ittt e 53
2.3.6 Reader Proceduresttt e e 53
2.4 Job Initiation e 55
281 OVEIVIEW oottt ittt e 55
242 JobQueue Controlo e e 57
243 JobInitiator FUNCHONS e e 57
2.4.4 Execution Batch Scheduling i i 57
2.4.5 Controlling Interpretation and Execution 60
2.4.6 The Initiator Cataloged Procedure it 60
2.5 Allocating Resources to JobS 61
2.5.1 Allocating System ReSOUICESuuur et e P 61
2.5.2 Storage Allocationo, e 61
2.5.3 Specifying Unit Information i, 61
254 VOIUMES ... 64
2.5, Data SES e e 67
25.6 Program Librarieso e 68

ii

2.5.7 Status and Disposition of Data Sets ... 68

2.5.8 Automatic Volume Recognition (AVR) and Volume Setup 72
2.6 JOb EXOCULION .ot i ittt it i e e e e e e 72
2.6.1 Processing Multiple JObSot e 72
2.6.2 Execution of Jobs and Job Steps . ..ottt e e 73
2.6.3 Terminating Job Steps . ..o i it e 75
2.6.4 Conditional Execution of Job Steps i 76
2.6.5 Terminating JobS ...t et 78
2.7 System OUtPUL ittt et e 78
2.7.1 Types of SYSOUT Data ...ttt ettt 79
2.7.2 Special SYSOUT Controls . ..ottt ettt et 83
2.7.3 Demand OUlpUl ...t e e e 83
2.7.4 WIHter ProceduUIesS vttt it ittt e e e s 84
2.8 CheckpOoint/RES At . . ottt ettt e e e e e e 84
2.8] OVEIVIEW . ittt e e e e e 84
2.8.2 Checkpoint/Restart Processingoiiuiiiinirie i it 85
2.8.3 Taking ChecKpoOintsottt ittt et 85
2.8.4 JCL Statements for RestartingaJob i 86
2.9 System Management Facilities (SME) i e e 87
2.9.1 Collecting SMF Datacci i i L, 87
2.9.2 SMF ExXit ROULIMES , ...ttt ittt e e ettt et e 89
2.10 Multiple Console Support (MCS) . ..ottt e e e 91
2.10.1 Operator Commands and MeSSaZESurrtttriiiniirinenenneeeeeeenenenns 92
2.10.2 Display ConSOleS . ..ottt 92
2.10.3 Definition of Multiple Consolesttt 93
2.11 Starting/Stopping OS IV/F4 Operationsooiiniin ittt 95
2. SYStem STt ... i e e 95
2.11.2 Stopping an OS IV/F4 System ot e e 96
2.11.3 System Start and Restart i e 96
2.12 Job Control Statements and Procedures e 97
2121 JOL StatemIentS .. oottt e 97
2.12.2 The JES Statementsttt ettt et e et e e 98
2.12.3 Specifying Job Parameters with JCL Statementsccvvrinn... 99
2.12.4 Examples of JCL Stalementsttt ettt et e 99
2.12.5 Cataloged and In-Stream Proceduresc..viiiiiint it i, 100
CHAPTER 3 REMOTE ENTRY SERVICESt e e 104
3 OVBIVIEW L o 104
3.1.1 Functions and Facilitiesttt e e e 104
3.1.2 Controlling and Output Destinationsvurnnein e trrnnaeeeennnns 104
313 Remote Entry of Jobs ..o 104
3.1.4 System Configurationttt 106
3.2 LOGON and Entering Jobst e e e 108
32,1 Starting a SEeSSiON ... e e 108
3.2.2 Submitting and Controlling Jobst 109
3.3 ProcesSIng JODS 109
3.4 Processing Job OUtPULS e e e 109

341 OutputClasses............... e e e e e e e e 109

342 RoUtNZ OUIPULS ... ittt e iit ittt iii i iiie et 110

3.4.3 Limitations on Rerouting Qutputs ittt 110
3.5 Creating and Receiving Messagesttt 110
3.5.1 Broadcast Data Set (SYSI.LBRODCAST)ttt 110
3.5.2 SEND Commandttt e e e 111
3.5.3 LISTBC Commandottt e e e e 111
3.6 Central Operationsttt 111
3.6.1 Generating RES 111
3.6.2 Starting and Stopping RES 111
3.6.3 Creation and Maintenance of RES System Data Sets 111
3.7 RES COmMMAaNAS ..o oottt ittt ettt et ettt et e e e e e 112
CHAPTER 4 DATA MANAGEMENT i, e 113
4.1 Outline of Data Managementiiniunittit ittt ie it 113
411 TO UNIS oottt et e e e 113
4.2 Programs and Data Sets i e e 114
4.2.1 Linkage between Programs and Data Sets.......... i i, 115
4.3 Volumes and Data Sets it 115
431 Volumes................... S P 115
4.3.2 Data SetS ..ttt e e e 116
4.3.3 Magnetic Tape VolUMES0 i i et 118
434 Direct Access VOIUMESt i i et et e et et et et 120
44 Input/Output................. B 124
4.4.1 Open FUunClion i i e e 124
4.4.2 Close FUNCHON ... oot e e e e e e e e e 124
4.43 EOF/EOD FUnCliont e e e e e e e e e e e e 125
444 Exits to Special Processing Routines P 125
4.5 Buffer Managementttt e 125
4.5.1 Reservation and Releasing of Buffer Pools i ii... 126
4.5.2 Acquiring and Returning of Buffers i 127
4.5.3 Method of Buffering i e 127
4.6 Data Set Access Methodttt e e 128
4.6.1 AccessTechnique v, e e 128
4.6.2 Data Set Organization and Access Techmque 128
4.6.3 Access Method Characteristicsttt it et it ettt 128
4.7 Processing a Sequential Data Set e 128
4.7.1 Structure of a Sequential Data Set i 128
4.7.2 Sequential Access Method i e 130
4.7.3 Optional Functions of the Sequential Access Method 131
4.7.4 Volume SWitchingottt 133
4.8 Partitioned Data Set and Partitioned Access Method ..., 133
4.8.1 Partitioned Data Set StrUCIUIEttt ittt et ettt ettt 134
4.8.2 Partitioned Access Method i e 134
4.9 Direct Data Set and Direct Access Method e 135
4.9.1 Direct Data Set StrUCtUIE oottt ettt ettt e 135
4.9.2 Direct Access Method 136
4.9.3 Optional Functions Utilized in the Direct Access Method 137
iv

4.10 Concatenation of Data Setsttt ittt ittt ettt ettt 137

4.11 Sharing and Exclusive Control of Data Sets i, 138
4.11.1 Shared Use or Exclusive Control of a Data Set by Tasks withina Job Step 139
4.11.2 Sharing and Exclusive Control of a Data Set by Tasks from Different Jobs 140
4.11.3 Sharing and Exclusive Control of a Data Set by Multiple Systems 140
4.11.4 Deadlock of Exclusive Controlciiiiiiiin it iin e iiennaeineeaannn 141

4.12 Space Managementttt e e 141
4.12.1 Space AllOCatIOn .. .ottt e e e e e e 141
4.12.2 Space EXienSION ..ttt e e e 143
4.12.3 Releasing of Unused Space ...ttt e e 144

4.13 Catalog Management ittt ittt e e e 144
4.13.1 Structure of System Catalogcouiiiii i e 144
4.13.2 Cataloging of General Data Sets ittt ittt 145
4.13.3 Cataloging of Generation Data Sets ittt 146
4.13.4 Uncataloging Data Sets i ittt 148
4.13.5 Uncataloging of Generation Data Sets iiiiiiiiiiiiiiiiiinnn... 148

4,14 PasswOrd ProteCtion . ..o vttt et e e e 149
4.14.1 Structure of Password Data Setttt 150
4.14.2 Password Protectipn and User’s Identity Checkcoiiiiiiiin ity 150

415 EXCP C e e e e e e e 151
4.15.1 EXCP-—Usage and Processingccoen.... e 151
4.15.2 EXCP ApPendageottt 152

CHAPTER § VIRTUAL STORAGE ACCESSMETHOD oot 155

S OVEIVIEW ittt e e e 155

5.1 VSAM Highlights . ..o e e e e e e 155
'5.1.2 VSAM Structure SR 157

5.2 VS AM Data SetS ..ottt 157
K0 S o= AP 157
5.2 SHIUCIUIE . oottt ettt e et e e 157
5.2.3 Key Sequenced Data Sets . ..ottt e e 159
524 Entry Sequenced Data Setsttt e 164

5.3 VSAMProcessingccoviiiiiiiiininin. T 164
5.3.1 VSAM Access Techniques OVEIVIEWottt i 164
5.3.2 KSDS Processing e 164
5.3.3 Processing Entry-Sequenced Data Setsttt e 167
5.3.4 Types of Processing Supported by VSAM ot 168
5.3.5 VSAM Macro InStructionsuuiititie e et 168

5.4 VSAM CAtalORottt e e e e e e e e e Vi
5.4 OVeIVIEW .. 171
5.4.2 Contents of the VSAM Catalogoutiitiniiii ittt i eaanenn, 172
543 Usingthe VSAM Catalogottt e e 172

5.5 ISAM Interface ROULINESttt et e e e e i 173
551 OVerVIEW .. N 173
5.5.2 ISAM Interface ProCesSinEo vnn ettt e e e 173
5.5.3 Restrictions of the ISAM Interfacettt it 173

5.6 Shared and Exclusive Control of VSAM Data Sets.......o.ovtiiiieivereinneenenn. ... 174
5.6.1 Sharing by SUDtasKSttt i e e e 174
$5.6.2 SharingbylJobs P 174

5.6.3 Sharing between OS IV/F4 Configurationscoiiiiiiinnneieennennnn. 174

5.7 Data Protection Facilities ittt 174
5.7.1 Data Protectionttt e 174
5.7.2 Datalntegrity Facilitiesttt et ittt 175

5.8 Access Method Services (AMS) ... ittt e e 175
5.8.1 Functional Commands ittt ettt 175
5.82 Modal Commandsoouiriiiit e e 177

CHAPTER 6 DATA COMMUNICATIONS ... ittt ettt 178

6.1 OVEIVIEW ..ottt e e 178
6.1.1 Purpose of VT AM e 178
6.1.2 Usage of VT AM ... e e e e e 179
6.1.3 NetWorK StIUCIUIESttt et et et ettt ettt et e et 179
6.1.4 VTAM Terminalscoii it ettt 179

6.2 VT AM Facilitieso e e e e e e e 180
6.2.1 Sharing Network ReSOUICESttt e e et et e it e i eiaaens 181
6.2.2 Establishing Communications Links il 182
6.2.3 Data TransmisSSiOnvttit ittt ittt e e e 183
6.2.4 SOLICIT Macro InStrucCtionttt e i 183
6.2.5 Network Solicitor A 183
6.2.6 Exit Routines................. P ... 183

6.3 Definition of @ VTAM NetWorK ...ttt e e ettt 184
6.3.1 System Generationoii ittt 184
6.3.2 Generating a Network Control Program (NCP) 185
6.3.3 Defininga VTAM Network i i 185
6.3.4 Initializing and Modifyinga VTAM Network 187

6.4 Operating @a VTAM NetwWorK e e e et 187
6.4.1 Start-up of VT AM ... 187
6.4.2 Starting an Application Program e 189
6.4.3 Connection an Application Programtoa Terminal 191
6.4.4 Data Block Transmission between an Application Program and a Terminal 193
6.4.5 Releasing a Linkage between an Application Program and a Terminal 195
6.4.6 Termination of a VTAM Application Program, 196
6.47 Endof VTAM Operationsuiiiiimiit i, 197

6.5 RAS Facilities for Data Communications P 197
6.5.1 Diagnostic Facilities i 197
6.5.2 Recovery Facilities i 198
6.5.3 Error Recording Faciliti€sttt e e 199

6.6 INCP ... 199
6.6.1 Basic Transmission Units ittt 199
6.6.2 Buffer Management 200
6.6.3 Starting a Network Control Programuuruiieeeeaan ... 200
6.6.4 Ending Network Control ACtivities. iiriiit i, 200
6.6.5 Data Unitsviuitti ittt e 200
6.6.6 SESSION SEIVICE\ttt 201
6.6.7 Block Handling Facilitiesttt e 203

CHAPTER 7 RELIABILITY, AVAILABILITY, AND SERVICEABILITYcooiunn... 205

Tl Outline of RAS ... o i 205

7.2 Recovery Management SUPPOTtttt ettt ettt e 205

7.2.1 Machine Check Handler (MCH) ...ttt it 206

7.2.2 Alternate CPU Recovery (ACR)t it 206
7.2.3 Channel Check Handler (CCH) ..ottt it et e 207
7.2.4 Alternate Path Retry (APR) i i i e i et 207
7.2.5 Missing Interruption Handler (MIH) 0 i, 207
7.2.6 Dynamic Device Reconfiguration (DDR) i, 207
7.2.7 Error Recovery Procedure (ERP) it e 207
7.2.8 LOGREC ReCOTdINEottt ittt et eniaiiaiainaeas 207
7.3 Dynamic Support System (DSS) it e 208
7.4 Service Alds e P 208
7.4.1 Service Aids for Gathering Diagnostic Dataccoiiiiiiiin .., 208
7.4.2 Service Aids for Formatting and Printing Data Sets and Their Elements............ 209
7.4.3 Service Aids for Correcting and Updating Programsooviiiiiiii 209
7.4.4 LOGREC FUnClOonS i it et it ittt it 209
7.5 Independent Utility ProBIams i it im et 210
7.6 Hardware Diagnosis Program e 210
CHAPTER 8 SUPERVISOR\ o\oree e 211
8.l OVeIVIEW L. e e e e e e 211
8.2 Operation............ re et e e e e e e e e e 211
8.2.1 Interruptions e e 211
8.2.2 Tasks, Activities, and Disabled Routines P 212
8.2.3 Flowof Control. o e e 213
8.2.4 Automatic Priority Group (APG) 216
8.2.5 Multiprocessor Configurationsttt iiinee et 217
8.3 Task Management ittt e e 219
8.3.1 Attaching and Detaching Tasks ittt ittt iiiaens 219
8.3.2 Processing Flow for an Abnormal Taskccciiiiiiieiiiniiiiinnn. 222
8.3.3 Status of @ TasKot i e e 223
8.3.4 Other Task-Management Facilities vt 224
8.4 Virtual Storage Managementt e 224
8.5 Real Storage Management ... 225
8.6 Program Managementn.... e e e 225
8.6.1 Program Librarieso i, B 225
8.6.2 Usage Attributesof a Load Module it i i 226
8.6.3 Program Management Macro Instructionsottt 226
8.6.4 Dynamic LinK StrUCtUIESttt i ettt 227
8.6.5 Prototype Control Sections (PSECTS) ..ottt 227
8.6.6 Authorized Program Facility i 228
8.7 Management of Serially Reusable Resourcescoiiiiiiiiieeiiiiniinnnnn.. 228
8.8 Timer Managementottt i ettt e e e e e e 229
8.9 Program Interruption ProCessingoiiiiiiiiriiii it iiiiiiieenn, 230
8.10 Program DUmMPINgt e e 230
CHAPTER 9 SYSTEM GENERATION ... e e 231
28 S 0 = o 1 231
9.2 Flow of System Generationcoiutiiinniveinneeennnnes. e 231
9.3 Resources Required for System Generationcoviir it inieeennnnneeennnn.. 233
0.4 SyStem PalameterSttt ittt i e e e 231

vii

9.5 System Data Setst e e 231

9.6 Systtem Generation Macro Instructionsc.iiiiiiiiiiirieieeniiniaaann. 236
PART 3 PROCESSING PROGRAMS ... ittt ittt ettt eeeeaeeens 239
CHAPTER 1 COBOL ... ittt ettt ettt ittt aaeaiaeaeens 241

|0 S 0 1 7= o7 = P 241

1.2 Outline of FUNCONS i it it ettt et iiaaas 241

1.2.1 Reentrant PrOgrams ouvuitt ittt ittt ittt etieeteeenenaraeeananeannenanan 241
1.2.2 Program LinKagescouiiiiiiiiiiii it e et 241
1.2.3 PrOBIam StTUCHUIES . . . ottt ettt ettt it ittt ee e te e eeiaaeeeanaaannans 241
1.2.4 Optimizationc.iiiiiiiiitiin ittt einnenaanns e 242
1.2.5 Conversational Processingiiuiiniietiiiiiiieie et tennnnananeeanns 242
1.2.6 Communications Interface ittt 242
1.2.7 Extended Source Program Library i 242
1.2.8 Bit PrOCESSIME ... i ittt it e e 243
1.2.9 Character-String Processingoiiiiiiitiiineiiieeiiianiiianennnns 243
1.2.10 File Organizationsottt it ittt et e ttee it 243
1.2.11 Debugging Facilityt i i it ianeaennes 244
1.2.12 Other Featuresiiiiiiiii ittt ittt tieeeiiiaeninaeennn 244

1.3 Required Configuration PP 245
CHAPTER 2 FORTRANottt e, ... 246

2] OVIVIEW ittt ittt e e e e e 246

211 GE ComPiler ...ttt e e e 246
2.1.2 HE Compiler ...ttt e i e e e e 246
2.2 Highlights ... o e 246
2.2.1 Reentrant Programsottt it e e e 246
2.2.2 Linkages with Object Modules from Other Languages 246
2.2.3 Program StIUCIUIESottt t it ittt ettt et e e 247
2.2.4 Optimization Proceduresttt e 247
2.2.5 Conversational Processingcoiiiiiiieiinteiiieiiieeiiiieeanaanns 248
2.2.6 Extended Precision for Real and Complex Arithmetic............................ 248
2.2.7 Automatic Precision Increaseottt e 248
2.2.8 Asynchronous Input/Output Statements e 249
2.2.9 Data Set Organizationsc.oiiitititiiiin ettt 249
2.2.10 Debugging Aidsoiiiiniitii e 249
2.2.11 Miscellaneous Featuresooiiiiiiiiin ittt 249

2.3 Required Unit Configurationttt ittt 249
CHAPTER 3 PL/................ e e e e e e e e 251

3 OVeIVIEW .. it e e e e 251

3.1.1 PL/ISubroutine Librariescoittiiiiiiiir ittt iiieeeans 251
3.2 HighligntS ... 251
3221 Reentrant PrOgramsootin it e e 251
3.2.2 Linkages between PL/I and Other Languagesciiiiinnn. 251
323 PrOBIAM StIUCIUIES\ttt ettt ittt et e e e e et et ioeceae e 251
3.2.4 Multitask Facilitiest e 252
3.2.5 Dynamic Storage Managementuuiiiititt i 252
3.2.6 Optimization Procedurescvunn. PP 252
3.2.7 Conversational Processing e et e 252
3.2.8 The PL/I PreproCesSOr ... oov ittt ittt ettt ettt ettt eiaeaaiaannns 252
viii

3.2.9 Data CoOmmMUIICAtIONSttt t ettt ittt ettt te e teetneieeaeaeieennan. 253

3210 Data SetS .o e e 253
3.2.11 Program Testing Aids e 253
3.2.12 Other Features ...ttt et ettt et et e e e 253
3.3 Required Configurationttt e it et e e 254
CHAPTER 4 ALGOL ... e e e e et e e et 255
4.] OVEIVIBW ittt ittt e e e e 255
4.2 Highlghtso e e e e e e 255
421 Program LinKages i e 255
4.2.2 Standard and Variable Functions ittt it 255
4.2.3 O FaCitiEs ... oottt e e e e 256
4.2.4 Debugging Facilitiest e e 256
4.2.5 Other Featules .. .o ittt ittt e e e 256
4.3 Required Unit Configurationttt it ety 256
CHAPTER 5 SL/I00 . .o e e e 258
5.1 Overview ..., e 258
5.1 L HIghghts . .o 258
5.2 Data Formats B e e e e e e 258
5.2.1 Declarations e e e e e e e e e e 258
522 Types of Operandsoiinn ittt i e 258
5.3 Procedural Statememits ot 259
5.4 Decimal Arithmetic Facilitiest i 260
5.5 Required Configurationottt 260
CHAPTER 6 ASSEMBLER e e 262
6.1 OVEIVIEW L i 262
6.2 Machine INStrucCtionsottt e e 262
6.3 Assembler INSITUCHONS\ttt e e e e 263
6.3.1 Program Sectioningand Linking i 263
6.3.2 AdAIeSSINg 264
6.3.3 Symbol and Data Definitionsottt 265
6.3.4 Assembler Control INStIUCHIONS\ttt 265
6.4 Macro Languagettt 267
6.4.1 Macro InStrUCtiONSottt e e e 267

6.4.2 Macro Definitions oottt 267

6.4.3 Conditional Assembler InStructionsc.ccoiuiiiiriniineninnannn.. 267

6.5 Conversational ProCessinguuutnri e en e 268
6.6 Required Configurationo.uinintnmin e e 270
CHAPTER 7 SORT/MERGE i i 271
7.1 Outline of SOTt/MEIBEot ettt et e e e 271
T11 Sort/Merge Phasesttt e 271
712 Sort Processing Flow i ittt 272
7.1.3 Merge Processing FIOW ittt e 272

7.2 Fur\lction Of SOTt/ MeIBE ... 273

7.2.1 Control Field Comparison Methodoiuumieen e, 273

7.2.2 Input/Output Data Sets and Work DataSets e 274

7.2.3 User Exit RoUtines i it e iieninanaaens 274

7.3 Sort/Merge TechniqQuUeoiutiiiii ittt ittt it iaaenannnaanas 275
CHAPTER 8 LINKAGE EDITOR/LOADERttt et 276
8.1 Outline of the Linkage Editor/Loader0 iiiiiiiiiiieiiiinannnenn, 276
8.2 Functions of the Linkage Editor ittt e 276
8.2.1 Combining Object Modulesand Load Modulescoiiiiiiiienn... 276
8.2.2 Address AllOCationcoit ittt e e et 277
8.2.3 Program Structure Processingc.ciiiiiiiiiiiii it 277

8.3 Time-Sharing Considerationsttt it it iiiaeennn. 278
8.4 Required Unit Configurationttt ittt e innns 279
CHAPTER 9 UTILITY PROGRAMS\ omet e e e 280
0.] OVBIVIBW oottt e e e 280
9.2 System Utility Programsottt e et e 280
9.2.1 Alternate Track Assignment and Recovery—JSGATLAS 280
9.2.2 DASD Initialize, Dump, or Restore—JSGDASDRot 280
9.2.3 Initialize Magnetic Tape Reels—JSGINITT ittt 280
9.2.4 List Data Sets or Control Information—JSGLIST 280
9.2.5 Edit and Print SMF Statistics—JSGSTATRciiiiiiiiinn... v.... 281
9.2.6 Move or Copy a Data Set—JSGMOVEttt 281
9.2.7 Program for VTOC and Catalog Management—JSGPROGM 281

9.3 Data Set Utility Programs P 281
9.3.1 Compare Two Data Sets—JSDCOMPR 281
9.3.2 Copy a Data Set—JSECOPY e e e e e 281
9.3.3 Generate a Test Data Set—JSDDG ...ttt e 281
934 EditalJobStream—JSEEDIT i 281
9.3.5 Generate a New Data Set—JSDGENER i, 281
9.3.6 Print or Punch a Data Set—JSDPTPCHl 281
9.3.7 Update a Source Library—JSEUPDTEt iiiiiiinnn. 281
PART 4 TSS (Time Sharing System)ottt it it ieanns 283
CHAPTER 1 OUTLINEOF TSS ... i IO 285
Ll TS DSigN ..ottt et 285
1.2 TS FeatUresot e e 286
1.3 System Configuration 287
1.3.1 Hardware CONIUIAtiONoentt et e e 287
1.3.2 Software Configuration ittt 287

1.4 Outline of ProcesSingcoiimiiitit e, e 289
1.5 Supervision of System Operation i ittt 290
1.6 Data and Program Protection i i 290
1.7 Service RoOUtinesttt e, 291
CHAPTER 2 TSS COMMAND LANGUAGE i 292
2.1 General ConCeDtS ... o 292
2.2 SystemControlCommandsoiiiiinninnnns. et e, 293

2.3 Session Control Commandsoovvuunn... e e 293
2.4 Program-Development and Data-Entry Commandsoon... 293
2.5 Program Operation Commands ittt 292
2.6 Data Set Management Commandsttt e 294
2.7 Debugging Commandsuuiitmnnnt it 294
2.8 Terminal Control Commandsottt i, 294
2.9 Conversational Remote Job Entry (CRJE) Commandsccoiirireeiiannnn 294
2.10 Miscellaneous COMMEANASoiuuutntitt ettt ettt e e 294
CHAPTER 3 TSSLANGUAGEottt e 295
3.1 COBOL Languageooiiiri it e 295
3.2 FORTRAN LanguUageottt e ettt 295
3.3 P/ Languageo 297
344 Assembler Language 297

”

- ILLUSTRATIONS

Figure Title ' Page
No.

PART 1 OVERVIEW OF OS IV/F4

3.1 Configurationof OSIV/F4.................... e e e 9
3.2 Structure of the Control Program i it e 9
3.3 Types of Processing Programsttt 9
3.4 Representative Types of Application Programs 10
4.1 Correspondence between Real Storage and Multiple Virtual Storages 11
4.2 Remote Maintenanceoiiiiriimin i S 19
4.3 Location of AIM within an OS IV/F4 Configurationcc0iveoi.. 22
4.4 Functional Structure of AIM 23
4.5 Execution Flow of the AIM System it 23

PART 2 CONTROL PROGRAM

1.1 Relationship between Virtual Storage, Real Storage, and External Page Storage 27
1.2 Virtual Storage Layout © e e e e 28
1.3 Segment and Page Tables PP 29
1.4 Dynamic Address Translation Procedure A SO 30
1.5 Page-inProcess P A 31
1.6 Typical OS IV/F4 Address SPaCe oot e e 33
1.7 Address Mapping for the System Area.................. cuu... e 33
1.8 Address Mapping for a Private User Ar€aoiiuiurinnee i e, 34
1.9 Address Structure for the Common Area e e 35
1.10 Overall Addressing of an Address SPace ittt 36
1.11 Creating a New Address Spaceiiiiiiiitt e e et 37
1.12 Loading and Execution of @a Program it 37
1.13 General Flow of Paging Processouuiiinmimi e 38
1.14 Analogies between CPU Program and Channel Program coun. 39
2.1 Outline of Job Execution i 42
2.2 JESI/0 RelationShipsot e 43
2.3 Topics Described under JES e 44
2.4 Configuration of JES i e, 46
2.5 Structure of Spool Volume 48
2.6 Optimization of SpoOIINg 48
2.7 Reader and Procedure Library Si
2.8 Enqueuing JobS 52
2.9 Execution of Command Statements iiiiiiiiieiiiiiinn... e 54
2.10 The RDR Procedure e 54
2.11 Job Queue Control and Initiationt 56
2.12 Allocation of Data Sets.to Program Input/Output Functions 62
2.13 Example of User-Assigned Unit Groupsouuuiiiiiiiiaiinnnn.. e 62
2.14 Summary of Volume Type and Data Set Requestscoiiirniniiieirnnnnn.. 65
2.15 Description of Volume Allocation with Respect to Sharable Requests 66
2.16 Private and Public Volume Requestso.ouinmremnt e .67
2.17 Definition and Use of Dedicated Data Sets...............oouunmuunee .. 68
2.18 Setup Function and Activation of Job e 73
2,19 Jobs and JOb StEPS . ..ottt 74
2.20 Using a Cataloged Procedure e 74
2.21 Example of Multiple Condition Codes e 78
2.22 Relatioqship of SYSOUT Specification to Number of Job Qutput Elements 79

xii

2.23
224
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
3.1
32
33
34
35
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40

SYSOUT Data Set and Spooling e e et 80
Output Class and Writer e 81
Standard Character Sets v i i et e 82
Console Display Unit and Standard Format of Its Screen 92
Example of distributing messages to consoles according to their destination codes 94
Examples of Alternate Console Configuration ot 95
Job Control StatemeNtS e 95
JES Control Statements i e e 97
Examples of Job Control Statementsccovveen.... e 99
Multiple Jobs in One Stream i e 99
Examples of In-Stream Procedures it e 100
Examples of Jobs Using Procedures oottt et 102-103
Remote BatCh Processing o i e e et 104
Flow of Processing in RES i i e e e et 107
Typical RES Configuration i e et 108
Structure of Identifications and Passwords i e 109
OULPUL QUELE SEIUCHUIES . . oo\ttt et e et ettt et e et ettt ettt 109
Example of Destination Control Values........... e 110
Structure of SYST.BROD CAST ... e 111
Data Management SysStem e 113
Linkage between Program and Data Setso 115
Unblocked Records P 116
Blocked RecOords .o i e S 116
Blocking and Deblocking PO 116
V-Format Record P 117
VS-Format Record AR 117
Undefined Length Recordsoorto e e e 117
Data Sets on Magnetic Tape VolUmeso it e 118
Summary of Label Types ... oo e 118
Standard Label Configuration on Magnetic Tapeco it iiiiaeneann. 119
Summary of Standard Data Set Labels i 119
Track FOrmats . ..o 120
Structure of Direct Access Volume i e 121
Volume Label and VT OC e 122
DSCB Concatenationttt e e 123
Position of I/0 Support in Data Management iiiiiiiiiiiiiiinn., 124
DOB MErging ..o 124
Relationship between DCB and Exit Processingccoiiiiiiiineeiinnnnann.n. 125
Structure of Buffer Pool 126
Simple Buffering and Exchange Buffering 127
Data Sets on Magnetic Tape VOIUME i e 129
Data Sets on Direct Access VOIUMEt e e 129
GET/PUT Macro Instructions with Move Mode o ... 130
GET/PUT Macro Instructions with Data Mode 130
GET/PUT Macro Instructions with Locate Modeccooiiiiiiiiiiiiin... 130
GET/PUT Macro Instruction with Substitute Mode i, 131
Structure of a Partitioned Data Set 133
Structure of Directory Field 134
Structure of Direct Data Set 135
F-Format for Direct Data Set e 136
V-Format for Direct Data Set 136
U-Format for Direct Data Set i e 136
VBS Format for Direct Data Sett 136
Concatenation of Data Sets. 138
Shared Use of a Data Set with One DCB i, 139
Shared Use of Data Sets by Several DCBSt e 139
Concept of Shared DASD e 140
Deadlock State e 141
DD Statement Parameters for Requesting Allocation . ..ol 141

xiii

4.41
442
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
517
5.18
5.19
5.20
5.21
5.22
5.23
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

Example of Various Methods of Space Allocationcciiiiiiiiiiiniinnnn. 142

Result of a Split Cylinder Allocation it iiiaanannn.. 143
Example of Suballocation of Spaceo i e 143
Release of Unused DASD] Spacettt it et i eeiaannn 144
Structure of the System Catalog and Its Relationship with Other Control Volumes.......... 144
System Catalog and Its Data Sets ittt it 145
Creatiing and Accessing Cataloged Data Sets ittt 145
Absolute Generation NUMbeEr e e 146
Relationship between Absolute Generation Numbers and System Catalog 146
Relative Generation NUM e it e e et et et e e 146
Relationship between Relative Generation Numbers and the System Catalog............... 147
Cataloging by Absolute Generation Numbers. i, 147
Cataloging by Relative Generation Numbers i iiniinnnnan.. 148
Uncataloging a Data Set........ ... i e e e e e 148
Uncataloging a Generation Data Set i i 149
Structure of the Password Data Set....... i 150
Structure of Password Record. i e 150
Outline of Password Protection and User’s Identity Check 151
EXCP Users and EXCP i e e e 152
Structure of TOS ... e 152
Relationship between Appendages and EXCP 153
Schematic Diagram of VSAM e 156
VSAM Data Space and Data Sets i 156
Control Intervals and Physical Blocks 159
KSDS Structure P 159
Diagram of KS DS 160
Structure of Control Interval e 161
Structure of Index and Data in KSDS 161
Index Record and Control Interval i 161
Structure of an Index Entry e 162
Example of Key Compressiont ettt e 162
Creating a Sequence Setina Data Portion i 163
Space ReUtilization i e e 164
Example of Multiple Simultaneous Insertions/Deletions 165
Sectioning a Control Interval 165
Example of Direct Access by Key ... oo e 166
Direct Access by Key and Skip-Sequential Access........... ...t iiiniinann. 167
Example of Access by RBA 168
Relationship between VSAM Control Blockso i 169
Chained RequUeStS o e 169
OS IV/F4 Catalogs and Data Setsc. i it e e 171
Example of OPEN Macro Instruction and the VSAM Catalogccooon.... 172
Location of the ISAM Interface Routines 173
Schematic Diagram of AMS Commands ittt it 176
VTAM Applications Programso vttt it e e ettt et et 179
VTAM Network Configuration oottt e 180
Types and Components of VTAM Network i 181
Shared Control Units e et e e et e 182
Example of Sharing Lines i 182
Sharing Terminals 182
A Typical EXit ROULINEt 184
LOGON Exit ROUtine e e 184
NCP Generation e e 185
Example of Defininga VTAM Network i ... 188
Example of Starting VTAM et e e 190
LOGON fromaTerminalcco .. e e et 191
LOGON from a Network Consolettt 192
LOGON from Application Program ittt 192
Unilateral Acquisition by an Application Program i, 193
VTAM Control Table Specified by Application Programccociivivininon... 193

xiv

6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
7.1
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
9.1

Receiving Data 194
Transmission of Data e 194
LOGOFF from a Network COnSoleottt e et 195
Release by the Application Program i 196
Terminating a VTAM Application Program 197
TYPES Of TraCInIg . .ottt 197
BTU Categories . ..ot e e 200
Data Units ... 201
Session with a Singledrop Private-Line Terminal i, 202
Session with Multidrop Terminals 203
Outline of RMS . . 206
Timeline of an Interruption e e 212
Enabled/Disabled Fractions of CPU Timec.oiiniiiiiiii i 213
Profile of Multitask CPU Qperation e 214
Example of Dispatching Prioritiest e 215
Processing a WAIT Macro Instruction i e 215
Example of APG Dispatching Priorities oot e 216
Multiprogramming with a Uniprocessor i 217
Multiprogramming with a MUltiprocessorttt e 218
Prefixed Storage Areas and Prefix Registers it s 218
Resource Contention in a MUltiprocessor i e 219
Levels of Tasks in @ Job Step e 220
Attaching and RETURN of Task e 221
Attaching, Terminating and Detaching a Task e 221
STAE and STAI Facilities o 222
Retry ROULING ... i e 222
Task Status Transitions i 223
Example of a Multiple-Events WAIT Macro Instruction v, 224
LOAD, CALL, LINK, XCTL, and ATTACH Macro Instructions 227
Static and Dynamic Link Structures 228
Reentrant Program with/without PSECTS e, 228
Examples of Sharing and Exclusive Requests oottt 229
Program Interruption Exit ROULINE 230
System Generation Flow 232

PART 3 PROCESSING PROGRAMS

W B W RN NN - e et
N et et R =t N WD N = P L0 B

A A AR
N BN

o o
0

Examples of Optimizationt 242
Example of Compiling and Updated Source Program Using ESPL 243
Example of Bit Processingt 243
COBOL Compiler Unit Configuration Diagram i, 245
Example of Communication between Different Languages 247
Examples of Optimization 247
Example of Asynchronous Input/Output Statementsovuenreronreneenenn... 249
FORTRAN HE and GE Compiler Unit Configuration Diagram 250
Example of Using Preprocessor Statementsure e e 252
PL/I Compiler Unit Configuration Diagram e 254
ALGOL Compiler Unit Configuration Diagramo e 257
Types of SL/100 Operandst e 258
SL/100 Compiler Unit Configuration Diagram 0 ii i, 261
Example of the USING Instruction i 265
Example of Using ENTRY and EXTRN InSUrUCtionsouutemnmaneaneann., 265
Example of Macro Definition 267
Example of SETA InStruction e 268
Example of a SETB INsStructiont 269
Example of a SETC InStruction e 269
Example of an AIF Instruction 269
Assembler Unit Configuration Diagram viiiiiiinanniin.. 270

7.1 Sort Unit Configuration Diagram i it 272

7.2 Merge Unit Configuration Diagramottt inaeennnn. 273
7.3 Flow Diagram of Sort/Mergec.oiivunnn.. PP 275
8.1 Source, Object, and Load Modules it 276
8.2 Replacing a Control Sectionina Load Module00, 277
8.3 Conceptual Figure of the Program Structure iiiiiiiniiiiiniineennnns 278
8.4 Linkage Editor Unit Configuration Diagram i iiiiiiiiiiiiananeennnn 279
8.5 Loader Unit Configuration Diagram ittt iiiiiiiin e eeeennns 279
9.1 Tape Format after Initialization iiiiiiii i 280

PART 4 TSS (Time Sharing System)

1.1 Representative Hardware Configuration for Time Sharing 288
1.2 Configuration of TSS Control Program i ittt 288
1.3 TS ArTCRI O UIEttt e e e e e s 289
2.1 MoOde COnVeISION . ..\ttt ittt e e e e e 292
3.1 Flow of Data and Control in FORTRAN i e e 296
Table Title : Page
No.

PART 1 OVERVIEW OF OS IV/F4

4.1 OS IV/F4 Language Processors e e e 20
4.2 Service Programs e o 21

PART 2 CONTROL PROGRAM

2.1 Operator Communication Macro Instructions iiiiiiiiiiiinnnnnn.. 75
2.2 Comparison of the Task Activated by START Command and General Jobs 75
2.3 Checkpoint and Restartttt 85
2.4 Restrictions on Checkpoint Data Setsiuiiiiiiiiiiiii . 86
2.5 R Parametero 86
2.6 Accounting ReCOTdSttt e 87
2.7 Data Set Activity Records i e e 88
2.8 Volume Records 88-89
2.9 System Usage Records i 89
2.10 Characteristics of SMF Exit PoInts it it e 90
2,11 Operator Commandsiiiiunitit et 92
2,12 MesSage PrefiXesot e 92
2,13 Command GroUPSvuti ittt e e e e 93
2.14 Standard OS IV/F4 Destination Codes it 94
2.15 Job Salvage Possibilities During System Warmstartcoiiiiiiiiiiinnennnennn 96
2.16 Format of JOB Statementttt e e 98
2.17 Format of EXEC Statement i it e 98
2.18 Format of DD Statement i 98
3.1 OSIV/F4 Operator Commandsiiiiiiiinitii i 112
4.1 Magnetic Tape Device Specifications it 113
4.2 DASD SpecifiCationsttt 114
4.3 Line Printer Specificationsttt 114
4.4 Card Reader Specifications ittt 114
4.5 Card Punch Specification ittt 114
4.6 Paper Tape SpecifiCationsouiiiuuniiii i e 114
4.7 Characteristics of DSCB 122
4.8 Types of Exits and Their Functions iiiiiiniiiiiiianaannn, 126
4.9 Access Techniques and Data Sets it 128
4.10 Characteristics of Access Methods ittt i 128
4.11 Sequential Data Set/Device Type Attributesc.couiiriiiiiiiiiiiiiiiinnn.. 129

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
5.1
5.2
5.3
5.4
6.1
6.2
7.1
8.1
8.2
9.1
9.2
9.3
9.4
9.5

Constraints Imposed on a Partitioned DataSet i il 133

Attributes of Direct Data Sets ...t e e e 135
Exclusive Control Macro Instructions withOne DCB............ 139
Exclusive Control Macro Instructions with Multipte DCBs 140
Exclusive Control URitS i it e et et e e 140
Exclusive Control Macro Instructions ittt 141
The Space Releasing Boundary for the Different Space Allocation Units................... 144
Method of Password Protection and User’s Identity Check 152
Differences between KSDS and ESDS i e 157
VSAM Access Techniques and Data Sets ... i i i, 164
Types of Processing Supported by VSAM 168
Typical Constraints on Using the ISAM Interface iiiiin.. 173
Macro Instructions to Define an NCP i e 186
Points Where a VTAM Network can be Defined/Modified 187
SEIVICE ALGS ..ottt 208
Types of INterrUptionS e 212
Attributes of SVC ROULINESo e e 216
System Data Set 233-235
Macro Instructions Defining the Hardware Configuration 236
Macro Instructions Defining the Control Program, 236-237
Definitions of User-Generated Routines ittt 237
Definition of System Generation ittt 237

PART 3 PROCESSING PROGRAMS

2.1
4.1
6.1
6.2
7.1
8.1
8.2

Precision Comparison Table e 248
1/0 Procedures R e 256
Machine Instruction Formats 263
Summary of Constants 266
Organization of Sort/Merge Data Sets it 274
Allowable Program Structures ittt 278
USage AT DULES . ..o o 278

PART 4 TSS (Time Sharing System)

1.1
1.2

Terminals Supported by TSS 285
Types of TSS Commands P 287

PART 1
OVERVIEW OF OS IV/F&

CHAPTER 1
OBJECTIVES OF OS IV/F4

During the past three decades, general-purpose
digital computers have been developed rapidly and
utilized in increasingly varied applications. Batch
processing (including remotely-submitted jobs) and
online systems (such as for time-sharing and inqu-
iry) are now utilized worldwide.

Most enterprises need not only more data process-
ing but also more accurate data processing. Com-
putational algorithms must be improved for
accuracy and efficiency. Programming languages
and application program generators need im-
proved flexibility and relevance to the applica-
tions areas where they are used: banking, insurance,
manufacturing, distribution, education, military ser-
vices, government, etc.

OS IV/F4 is one of the most up-to-date and full-
function operating systems ever implemented. It
furnishes highly-efficient local and remote batch
processing. It offers a time sharing system (TSS)
with a maximum set of language and command
facilities as well as excellent responsiveness.

OS IV/F4 offers a wide range of compilers for the
most common programming languages: Assembler,
COBOL, FORTRAN, PL/I, and ALGOL. Some
compilers are designed for program-development
usage, with special attention to convenient entry,

editing, compilation and debugging facilities. Other
compilers are designed to operate in a batch environ-
ment and produce highly-optimized object pro-
grams.

OS IV/F4 provides a full range of service pro-
grams: a Linkage Editor, a Loader, a Sort/Merge
package, a collection of system utility programs for
managing system data sets, and a variety of data set
utility programs for such commonplace needs as
media transcriptions, listing the contents of tape
reels and disk packs, and generating and editing new
data sets.

OS IV/F4 furnishes an advanced information
management system (AIM) to provide state-of-art
data base and data communications facilities. AIM
accepts, organizes, stores, and presents information
which may be highly structured—accessed in a
variety of modes, using several different identifiers
and/or aggregated at several levels of detail. AIM
furnishes an online communications subsystem so
that users of typewriters and display terminals can
directly access AIM data bases. AIM facilitates con-
venient design and implementation of data bases by
computer professionals, while providing simple,
rapid access to data for non-professional users.

CHAPTER 2

MAJOR FEATURES OF FACOM OS 1V/F4

OS IV/F4 furnishes certain features which are

unique (among comparably sized operating systems)

or at least at the state-of-art in terms of their effi-

ciency, user convenience, or level of design:

® high reliability—in conjunction with M series
hardware.

@ useful facilities—in terms of ease of operation and
installation management.

® efficient usage of system resources—delivering
maximum CPU, memory, and 1/0 resources to
user programs, and imposing minimal OS over-
heads.

o &xpansibility —without traumatic hardware/soft-
ware changes.

® convenient interfaces and tools for developing
applications programs.

® 3 state-of-art data base management system.

2.1 RELIABILITY, AVAILABILITY, AND
SERVICEABILITY

As the number and variety of applications on a com-
puter increase —and especially when they must run
concurrently —reliability, availability and ser-
viceability (RAS) increase in importance. Whereas
processing interruptions of an hour were quite
acceptable twenty years ago—and interruptions of 5
minutes ten years ago— the need for non-stop opera-
tion of hardware/software systems is much more cri-
tical nowadays. This need is accentuated by two fac-
tors: long continuous updating operations on large,
complex data bases; and access to computers by
dozens—sometimes hundreds—of online users. To
achieve a high level of RAS, OS IV/F4 has been
designed jointly with M series hardware compo-
nents, so that the total hardware/software system
operates with maximum reliability. Selected hard-
ware and software elements are devoted to maintain-
ing high availability—for example, machine and
channel check handlers (software) and duplicate
hardware elements (e.g., disk packs) which. can
functionally substitute for one another during an
emergency.

M series hardware utilizes large scale integration
(LSI) technology, which has reduced the total com-
ponent count considerably from earlier computers of
comparable power. A particular innovation of M
series is an independent service processor (SVP)
dedicated to detecting faults in the M series
mainframe. RAS features of OS IV/F4 include the
following:

Recovery management support (RMS)

RMS is a collection of software routines which

detect, isolate, and diagnose hardware failures of

mainframes and peripherals. Whenever a heardware

failure occurs, RMS first attempts to recover from

it, so as to maintain continuity of OS IV/F4 opera-

tions. If recovery is feasible, RMS attempts to isolate

the failing device from the remainder of the system

and to continue OS IV/F4 operations with reduced

hardware resources, i.e., without the failing device.

Principal elements of RMS are the following

routines:

® Machine check handler (MCH)—recover from
and diagnose CPU and main-storage failures.

® Alternate CPU recovery (ACR)—in a multi-
processor configuration, one CPU diagnoses and
recovers from hardware failures in the other CPU
(or an associated memory module or channel).

® Channel check handler (CCH) —recover from and
diagnose 1/0 channel failures

-® Alternate path retry (APR)—when two or more

logical paths lead to a device, OS IV/F4 attempts
to use alternate paths if it detects a hardware
failure on the primary path.

® Missing interruption handler (MIH) —if interrup- -
tion necessary for continuing I/O operations is
“‘lost” by hardware or OS IV/F4 software, the lat-
ter will ““time out’’ this interruption and take
remedial measures.

® Dynamic device reconfiguration (DDR)—retry
failing 1/0 operations for a mountable volume on
another tape/disk drivé.

® Error recovery procedures (ERPs)—analyze,
recover, and re-attempt failing I/O operations.

® Logical recording of errors (LOGREC) —record
all unrecoverable errors, plus summary informa-

tion on recoverable errors.

Diagnosis and recovery from hardware failures
OS IV/F4 collects failure information via RMS
routines which is periodically processed by thé
logout analysis program (LOA) and formatted and
printed by a special system utility program. 1/0
devices can be tested for sporadic/solid failures by
the online test control program (OLTEC) furnished
with OS IV/F4,

Diagnosis and recovery from software failures

OS IV/F4 furnishes numerous facilities for debug-
ging user programs and diagnosing residual prob-
lems in the OS IV/F4 control program. These
include JCL and macro-instruction facilities for dis-
playing the contents of virtual storage (storage
dumps), program tracing, and controlled modifica-
tions of production software. Debugging and main-
tenance of the control program are facilitated by a
comprehensive diagnostic support system (DSS).

Improved security and privacy protection

The following facilities help installations to control

maintenance of data sets and access to confidential

data sets, check the validity of user accesses to

OS IV/F4 routines and control blocks, and reduce

operator errors:

® password protection of data sets and of access to
timesharing and remote batch services.

® validation of user authorizations and conformance
to local standards, by means of SMF exit routines.

® central storage of attributes and access authoriza-
tions for time sharing and remote-batch users.

® restricted inquiries and changes t¢ system opera-
tions by auxiliary operator consoles, as selected by
each installation.

Multiprocessor configurations

Some models of M series computers can be con-
figured with two central processors connected to a
pool of main storage modules and peripherals.

OS IV/F4 fully supports uniprocessor and multi-
processor configurations. Its Alternate CPU recov-
ery feature will use one CPU to diagnose hardware
failures of the other CPU and to continue uninter-
rupted operations whenever possible.

2.2 OPERATOR AND INSTALLATION
MANAGEMENT FACILITIES

As computers become larger and increasingly com-
munications oriented, their operation becomes
more complex. Operator errors become more costly,
and it is helpful for the operating system to furnish
commands and other assistance to operators so that
they can work more accurately and efficiently.

OS IV/F4 offers the following facilities to console

MAJOR FEATURES OF FACOM OS IV/F4

operators:

¢ Highly automated processing of batch and interac-
tive tasks, requiring minimal operator interven-
tion.

® Coherent, efficient management of data sets and
volumes.

® Simple but flexible job scheduling.

® System management facilities (SMF), to permit
each installation to measure and tune individual
jobs as well as overall utilization of system
resources.

Automated processing

Operators must perform many routine but important

tasks such as mounting tape reels and disk packs,

submitting card decks and paper forms, changing

print trains, and controlling the flow of job streams

and individual jobs. The following OS IV/F4

facilities assist operators in performing these tasks

efficiently with minimum opportunity for errors:

® Coherent and efficient management of job entry
and output, via the job entry subsystem (JES).

® Support of multiple operator consoles (MCS) for
specialized tasks as well as overall system control.

® Full support of display consoles, including split-
screen information displays, program function
keyboards, and selector pens.

® Automatic recognition of pre-mounted volumes
(AVR) by OS IV/F4, plus efficient requests for
setting up volumes as requested by user job con-
trol statements.

® Self-service operation for installations with large
numbers of users, who can request outputs from
OS IV/F4 on demand.

Management of data sets and volumes

A typical OS IV/F4 installation processes thousands

of different data sets each week. OS IV/F4 assists

installation managers, operators, and users in

cataloging and inquiring about these data sets and as-

sociated volumes, in particular by the following

facilities:

® Centralized management of volumes, data sets,
and generations of data sets.

® Data set security via passwords, retention periods,
authorization levels for terminal users, etc.

® The new and highly efficient virtual storage access
method (VSAM).

Simple, flexible job scheduling

OS IV/F4 processes several batch jobs concurrently,
typically reading and writing job streams from
several local/remote devices simultaneously. Users
are furnished various parameters to influence when
and how their jobs are scheduled automatically.
Operators can use various commands to control
classes of jobs and classes of outputs, so as to meet
delivery schedules while at the same time efficiently
utilizing the system:

® Adjust selection priorities of each job class, sub-

OVERVIEW OF OS IV/F4

ject to aging of each job in the input queue.

e Automatic validation of account codes and other
job-control parameters by locally-furnished SMF
routines.

@ Conditional execution of job steps according to
codes returned by earlier steps.

System management facilities (SMF)

At a large installation, it is important to measure
overall usage of system resources and to report
usage summaries periodically to installation man-
agement. Also, it is helpful to measure the relative
efficiency of large jobs particularly during their
development and testing.

OS 1V/F4 offers SMF—plus a large number of
exit points for installation-furnished routines—to
perform the following tasks:

@ Collect system performance data.

® Collect resource-usage data for each job, for
accounting purposes.

® Intervene in standard OS IV/F4 jobscheduling
algorithms, as determined by each installation.

»

2.3 MANAGEMENT OF SYSTEM
RESOURCES

As computers grow larger and more complex, the

number of expensive hardware and software

resources at typical installations grows. OS 1V/F4

offers many fully automatic facilities for tuning the

software and operating with maximum efficiency:

® CPU management.

® Main- and virtual-storage management.

® Volume and space management for direct access
storage devices.

@ Spooling to unit record devices.

CPU Management

OS 1V/F4 provides many facilities for efficient CPU

management (also called task management of

which the following two are noteworthy:

@ Dispatching of either one or two CPUs, according
to whether the configuration is uniprocessor or
multiprocessor.

® Automatic raising/lowering of the dispatching
priority of each active task, according to whether it
has recently been 1/0 limited or CPU limited.
This optional feature is called the Automatic
priority group (APG).

Main- and virtual-storage management

OS IV/F4 fully supports the virtual-storage architec-

ture of M series, which permits full utilization of

main storage:

® Support of dynamic address translation (DAT)
hardware for the CPU.

® Fuil exploitation of Channel DAT, an M series

innovation which significantly reduces CPU over-
head for I/O services in a virtual-storage system.

® 16 megabytes of address space for each batch or
interactive user, to simplify programming and
maintenance of applications.

® Multiple virtual address spaces—each of 16
megabytes—to permit easy design and implemen-
tation of new applications.

e Efficient paging algorithms, which move lightly-
used pages to/from main storage and page data
sets.

Volume and space management for DASDs

Of particular value to OS IV/F4 installations is the
new and highly-efficient Virtual storage access
method. VSAM provides high processing efficiency,
good utilization of DASD space, convenience and
efficiency for adding and deleting records, and
possibilities for accessing records by several
different techniques.

Another representative efficiency of OS I1V/F4
DASD management is I/0 load balancing, whereby
nonspecific requests for space are distributed over
lightly-loaded channels and devices sq as to level the
overall load.

Spooling to unit record devices

Simultaneous peripheral operations online
(SPOOL) is a widely-used technique for achieving
high throughput from card readers, card punches,
and line printers; convenient presentation of system
inputs for batch processing; efficient processing of
system outputs, likewise; and minimizing overheads
in CPU time, main storage, etc. for managing these
unit record devices. JES provides a state-of-art
spooling capability to OS IV/F4; its counterpart
function, Remote entry services, provides the same
convenience and efficiency to remote terminals.

2.4 EXPANSIBILITY

Many computer installations continue to grow after
installing a major computer, forcing them to
increase the amount of main storage, numbers and
speeds of major peripheral devices, and equipment
needed to support new application areas such as
remote entry of transactions. OS IV/F4 offers the .
following expansibility features:

® number and size of address spaces for users.

® modes of processing jobs.

® communications networks.

Address Spaces

Up to 1536 address spaces—each furnishing 16
megabytes (16,777,216 bytes) of virtual
storage —are available in OS IV/F4 for concurrently
active batch and interactive tasks. Each address
space is sufficiently large to accommodate all pro-

grams and subroutines for any single application.

Processing Modes

Since batch and timesharing facilities of OS IV/F4
use the same compilers, editors, etc., it is easy to
move from one mode to the other. Many programs
can be developed interactively, then compiled for
optimum execution performance in batch mode.

Communications Networks

In a typical communications-oriented configuration,
the numbers of lines and terminals are continually
changing.

OS IV/F4 facilitates changes and reduces their
impact on users by decoupling the overall linkage
between application programs, operating system,
communications access methods, and communica-
tions controllers into distinct corresponding soft-
ware subsystems:
® applications-oriented subsystems such as RES,

TSS, and AIM.
® Virtual Telecommunication$¥ Access Method

(VTAM).
® Network Control Program (NCP), |

Each of these can be independently generated and
subsequently changed with minimum impact on the
others; their interfaces are carefully defined to be
functionally standardized.

2.5 CONVENIENT INTERFACES AND
TOOLS FOR APPLICATIONS DEVELOP-
MENT

Among the more important facilities of OS IV/F4

are a wide variety of language compilers and service

programs:

® COBOL —compatible with ANS COBOL (1972
and 1974 versions).

® FORTRAN —superset to H-level FORTRAN and
conforming to the ANS and ISO standards.

® PL/1—full language.

® ALGOL —compatible with ISO standard.

With these compilers and the OS IV/F4 Assem-
bler, users have the following facilities:
® Generate reentrant programs
From these, a user can create executable programs
which can be used simultaneously by multiple
batch and/or interactive tasks.
® Dynamically link programs to a common reper-
toire of executable subroutines maintained online
in the pagable and fixed link pack areas (PLPA
and FLPA). Since object modules are reentrant,
dynamic linking is meaningful and helps reduce
linkage-editing tasks. It simplifies program pre-
paration considerably.

MAJOR FEATURES OF FACOM OS IV/F4

® Request optimized object modules, for efficient
production.

® Request specialized debugging packets and associ-
ated diagnostic aids for snapshotting, tracing, and
dumping programs.

With the OS IV/F4 Time Sharing System (TSS),
users can create COBOL, FORTRAN, and PL/I pro-
grams interactively, with special assistance from
language prompters and various debugging aids.
Since programs and data sets are interchangeable
between batch and timesharing modes, user pro-
grams can be developed, modified, and tested
interactively, then submitted for batch processing
using optimized object code. Under TSS, users can
rapidly check the syntax of their COBOL or
FORTRAN programs with specialized OS 1V/F4
Syntax Checkers, the . test the programs interac-
tively with first-rate debugging tools.

2.6 ADVANCED INFORMATION MAN-
AGEMENT SYSTEM (AIM)

To manage a complex collection of files—organized
by many different attributes, created in different
formats, and accessed by various users in widely
differing ways—requires enormous amounts of
computer hardware, running time, and associated
professional manpower. During the past decade, a
number of data base management systems have
been developed to address this problem. These
typically have data communications subsystems to
facilitate access by dozens of remote users. Hence,
these software systems are often called data base/
data communications (DB/DC) systems.

AIM is the principal DB/DC system offered with
OS IV/F4. 1t represents the culmination of Fuji-
tsu’s long experience in designing, implementing,
and enhancing DB/DC systems. It fully supports the
major new equipment of M series: larger and higher-
performance DASDs, VTAM and NCP, and the
newest typewriter and display terminals. Likewise,
AIM furnishes interfaces to the most popular
languages for developing programs.

AIM is fully modularized — divided into
subroutines which can be independently generated,
replaced, and aggregated into efficient application-
oriented subsystems. AIM can be generated as a
small data-communications subsystemn dedicated to
one application; it can be generated as a large-scale
DB/DC system for multiple integrated/distinct data
bases accessed by hundreds of terminals; or it can
serve intermediate-size applications with equal cost-
effectiveness.

Noteworthy are the following features of AIM:
® Online network management facilities.
® Management of diverse data structures.

OVERVIEW OF OS IV/F4

© Management of data resources.

o Convenient interfaces for application programs.

® Diverse modes of access.

¢ Independent and private operation by each user or
user group.

e Extensive error-handling and recovery facilities.

® Exclusive control over blocks, data sets, seg-
ments, etc. during updating activities.

Online network management facilities

AIM provides support for diverse configurations of
terminals, modems, multiplexors, concentrators,
and communications lines.

Management of diverse data structures

Either data sets or entire data bases can be accessed
by a universal READ/WRITE interface within AIM.
Hence, programs can be developed for a single data
set, then applied to complex data bases without
reprogramming. Efficiency of AIM is enhanced by
its data base groups (DBGs), exclusive-control
attributes, deadlock-resolving logic, and such
failure-recovery support as device switching and
online error diagnostics. !
Management of data resources

As DB/DC systems become larger and more expen-
sive to manage, it is desirable to revise their struc-
tures and simplify access to segments and.other data
aggregates. To this end, AIM furnishes an. online
Data dictionary/directory System (DD/DS). By
entering attributes about communications networks,
data bases, and processing programs into his DD/
DS, a user can manage his data conveniently by
records, segments, or higher levels of aggregation.
To tune AIM for better performance or a changed
operating environment, the user (or installation
manager) need only change the DD/DS, rather than
modify programs or job control statements.

Convenient interfaces for applications programs
AIM furnishes efficient compilers to generate AIM-
oriented applications programs, which can retrieve,
sort, and generate reports from data retrieved from
AIM segments in either batch or online mode. Pro-
grams can be developed in a special AIM test mode;
programmers and other users can be trained to use
AIM concurrent with production operations without
contaminating permanent data bases. Finally,
system functions can be performed—such as testing
for overloads and displaying summary performance
statistics —with OS IV/F4 support programs such as
the Generalized log writer (GL).

Diverse modes of access

AIM supports access modes ranging from simple

inquiries to full-fledged online program develop-

ment and message processing. Each user chooses the

mode most appropriate to his application, and all

modes are simultaneously available for any AIM

installation:

® single-task structure, for debugging or simple
online inquiries.

® multi-task structure, for a production system ser-
vicing many concurrent requests.

® alternating structure, for servicing small numbers
of requests or infrequent but intense bursts of
requests.

Independent and private operation by each user or
user group

AIM users operate independent of communications
networks and remote terminals. Their programs can
be designed and implemented independent of the
data bases they will ultimately access. The programs
are generally independent of the processing mode.

Extensive error handling and recovery facilities
AIM attempts to continue operation even if it
encounters nontrivial hardware or software failures,
by detecting them as early as possible and making
vigorous attempts to recover from them. In particu-
lar, AIM attempts diagnosis, recovery, and retry of
most local-device or terminal errors, prompting
remote users to resubmit unintelligible commands
and data. If a user program fails, AIM isolates this
program from other users and attempts rapid recov-
ery/retry.

Exclusive control over blocks, data sets, segments,
etc.

When two or more tasks require simultaneous
access to the same data set, segment, etc., AIM
requests exclusive control of individual blocks
rather than entire data sets. This approach mini-
mizes delays and deadlocks, thereby improving
system throughput without exposing data bases to
contamination. In a shared-access configuration,
deadlocks can occur—two or more tasks seize
resources (typically data blocks or DASD access
mechanisms) such that neither can proceed until the
other releases one or more resources. By timing all
resource seizures, AIM can detect when deadlock
has occurred, terminate one task, and resume nor-
mal operation of the surviving tasks.

CHAPTER 3.
STRUCTURE OF OS IV/F4

The primary components of OS IV/F4 are the con-
trol program and various processing programs, the
latter selected from libraries provided by Fujitsu,
purchased from third parties and/or developed at
each installation, as shown in Figs. 3.1, 3.3, and 3.4.
The control program manages all hardware and soft-
ware resources in a configuration, allocates
resources to jobs (or transactions) entering the
system, and controls how they are 'processed, as
shown in Fig. 3.2. '

Control
program
Control program
£ .
g Processing
c
<] rogram
s .9_ g % prog
@ S5 %%
o = 3 o
3 a o 2%
£ aa >
» <

Fig. 3.1 Configuration of OS IV/F4

Control program

Supervisor

Job
management

Data
management

Recovery
management

I

=

AIM

)

Fig 3.2 Structure of the control program

Processing pragrams

Language processing program

- COBOL Compifer

— FORTRAN 1V Compilers
+— PL/I Compiler

— ALGOL Compiter

— SL/100 Compiler

— Assembler

t— BASIC Compiler

“— LISP Compiler

Service programs

Sort/Merge program

Linkage editor and loader
Dsta set utility programs
System utility programs
System generation programs
Independent utility programs
Service aids

Fig. 3.3 Types of processing programs

OVERVIEW OF OS IV/F4

Application programs

Managerial science

Simuiation languages
Mathematical routinas
Statistical routines

- Forecasting packages
Scheduling packages

Scientific and engineering
calculations

Computational algorithms
Mechanical, architectural,

and civil engineering packages
Chemical engineering models

Electrical circuits analysis
programs

Functional packages

Payroll/personnel systems
Accounting packages’
Production control systems

Fig. 3.4 Representative types of application programs

10

€

¢

CHAPTER 4

PRINCIPAL COMPONENTS OF OS IV/F4

This chapter presents the functions and inter-rela-
tionships of the major components of OS IV/F4. For
detailed explanations, the reader should consult cor-
responding chapters in Parts 2 — of this manual,
plus other indicated OS IV/F4 manuals:

® Virtual storage management— Chapters 1 and 8 of
Part 2 of this manual, plus the FACOM OS IV/F4
Job Management Functions and’Facilities and
FACOM OS IV/F4 Supervisor Functions and
Facilities.

® Job management—Chapter 2 of Part 2 of this
manual, plus the FACOM OS IV/F4 Job Man-
agement Functions and Facilities.

® Remote entry services (RES) —Chapter 3 of Part
2 of this manual, plus the FACOM OS IV/F4
Remote Entry Subsystem Operations Guide and
FACOM OS IV/F4 RES Terminal Commands
Reference Manual.

® Data management— Chapter 4 of Part 2 of this
manual, plus the FACOM OS IV/F4 Data Man-
agement Functions and Facilities.

® Virtual storage access method
(VSAM) —Chapter § of Part 2 of this manual, plus
the FACOM OS IV/F4 VSAM Functions and
Facilities.

® Telecommunications management —Chapter 6 of
Part 2 of this manual, plus the FACOM OS IV/F4
VTAM Functions and Facilities and the
FACOM OS 1V/F4 VTAM Generation User’s
Guide.

@ Reliability, availability, and serviceability
(RAS) —Chapter 7 of Part 2 of this manual, plus
the FACOM OS IV/F4 Operator’s Guide and
FACOM OS 1V/F4 A Guide to Debugging.

® Processing programs—Part 3 of this manual, plus
the FACOM OS 1V/F4 Applications General
Description and descriptions of particular applica-
tions packages.

¢ Time sharing system (TSS)~—Part 4 of this
manual, plus the FACOM OS 1V/F4 TSS Com-
mands Reference Manual, and FACOM OS 1V/
F4 TSS Terminal Operator’s Guide.

® Advanced information management system
(AIM) — See the FACOM OS IV/F4 AIM
General Description, FACOM OS IV/F4 AIM

System Design Guide.

4.1 VIRTUAL STORAGE MANAGEMENT

OS IV/F4 provides multiple virtual storages (also
called address spaces), one per active batch or
interactive user. These provide complete independ-
ence of each job from other jobs with respect to the
availability of main storage.

4.1.1 Multiple Virtual Storages

OS IV/F4 allocates 16 megabytes (16,777,216
bytes) of virtual storage to each user as his program
starts executing. Over 1500 such virtual address
spaces can be simultaneously active, although
typically 15 batch users and 100 timesharing users
will fully load a single large OS IV/F4 system, as
shown in Fig. 4.1.

Common area T
16 MB
n
2
Dynamic area User area -
by
System area System area [/ 1536

Real storage Multiple virtual

storages

Fig. 4.1 Correspondence between real storage and multiple
virtual storages
4.1.2 Page Management

Each installation can allocate up to 16 DASDs for
paging, a system activity which stores pages (blocks

OVERVIEW OF OS IV/F4

intervals when they are unused and returns these
pages to main storage as soon as they are re-
referenced. Salient aspects of OS IV/F4 paging are
described in the following paragraphs.

Page management algorithm

OS IV/F4 uses a relatively simple LRU (least
recently used) algorithm to determine which pages
should be paged out of main storage (or discarded,
when unmodified copies of these pages exist on a
paging DASD), according to how recently they have
been referenced —those least recently referenced by
user programs or the OS IV/F4 control program are
removed first.

Page recovery

Often OS IV/F4 will logically remove a particular
page from a user’s address space without overwriting
its page frame (corresponding main-storage block of
4K bytes). If the user then references this page, OS
I1V/F4 is capable of adding the unmodified page back
to the user’s address space; the corresponding page
fault can be satisfied without paging in a fresh copy.
Omission of unnecessary paging o

As noted above, if a page is to be removed from
main storage, and if this page corresponds to an
unmodified copy on DASD, the OS IV/F4 Paging
Supervisor discards this page rather than writing it
out unnecessarily.

Slot sorting

Since pages have fixed lengths (4K bytes), the num-
ber held on each DASD track (of a page data set) is
pre-determined. OS IV/F4 periodically sorts all page
requests outstanding for a particular paging device
and satisfies them in slot sequence (relative posi-
tions on the current cylinder) rather than FIFO
sequence (first in, first out) or any other arbitrary
sequence. This technique maximizes the average
transfer rate of pages to/from DASDs, which allevi-
ates paging bottlenecks.

Paging to different types of DASDs

An installation can allocate devices with different
sizes and speeds to page data sets, for example, a
drum (high transfer rate, small capacity) and several
disk drives (medium transfer rates, large capacities).
The OS IV/F4 Paging Supervisor will utilize the
drum for a small number of frequently-referenced
pages, such as those of the Pagable link pack area
(PLPA), which are shared by all users. The Paging
Supervisor will store infrequently-referenced pages
on disk drives. This overall approach maximizes the
cost-efficiency of paging to different DASDs.

Swapping

Timesharing users often remain inactive for several
seconds — even minutes. The OS IV/F4 Paging
Supervisor detects such inactivity and removes all

12

of 4K bytes) of each program on DASDs during
pages corresponding to these users from main
storage (swapping their address spaces) until these
users resume usage of the CPU.

Fixed pages

For tasks requiring fast response times, such as
inquiry applications, users can request that some/all
pages be fixed in real storage, i.e., ineligible for
paging to DASDs. They can specify
ADDRSPC=REAL on corresponding JCL state-
ments—requesting that all of their pages be fixed in
real storage for the duration of the job or job step
—or they can issue PGFIX (Page fix) macro instruc-
tions to insure that selected pages are fixed for
specific durations. Later (or at the end of the job
step), they can release these pages with PGFREE
macro instructions.

Automatic adjustment of paging rates

If many users compete for main storage by
simultaneously executing programs requiring many
active pages, paging rates often rise rapidly. This
phenomenon characterizes most virtual storage
systems, including OS IV/F4. If the paging rate rises
too high, the system is said to be thrashing and can
perform little useful work. To relieve thrashing as
soon as it occurs, OS IV/F4 automatically suspends
one or more low-priority tasks. Suspension consists
of swapping out active pages for these tasks for a
prolonged period of time—possibly minutes —until
the paging rate subsides and stabilizes. Suspended
tasks are resumed, one at a time, when the paging
rate is satisfactorily low.

4.1.3 Channel Dynamic Address Translation
{Channe! DAT)

Just as the CPU can dynamically translate virtual
addresses to real-storage addresses, Fujitsu M series
1/0 channels can also translate virtual addresses au-
tomatically; this is a unique capability of M series
computers, giving them a significant performance
advantage over prior systems. With Channel DAT,
addresses in channel command words (CCWs) and
associated operand/data areas may refer to virtual
storage. OS IV/F4 fully supports this hardware

feature. '

4.2 JOB MANAGEMENT

OS IV/F4 Job Management is a collection of
routines which accept batch jobs from numerous
input devices, queue them for execution, select and
control their execution, and transcribe their outputs
to appropriate printers, card punches, magnetic
tapes, etc.

4.2.1 Job Entry Subsystem (JES)

JES is a function within OS IV/F4 Job Management
which reads jobs, writes their outputs to appropriate
devices, and operates unit record devices (card
readers, card punches, line printers, etc.) at max-
imum speed. Salient features of OS IV/F4 JES are as
follows:

Centralized management of buffers

A single pool of buffers is used for readers, writers,
and spool devices. This approach reduces the aggreg-
ate real-storage requirements for JES, particularly
since buffers are allocated and formatted to keep
page-fault interruptions to a minimum.

Efficient spooling

Each spool data set is divided into a number of small
equal-size units called logical cylinders. JES allo-
cates spool storage to JES readers and OS IV/F4
initiators in integral logical cylinders for each user.
Logical cylinders are allocated dynamically, based on
which empty logical cylinder is nearest the current
position of the spool-device access mei:hanism. This
technique minimizes delays due to moving these
access mechanisms. Often JES can allocate an empty
logical cylinder from the current physical cylinder,
i.e., corresponding to the current position of the
access mechanism.

Also, JES utilizes spool data sets on several
different devices if the installation has generated
multiple data sets; this improves the probability of
allocating a logical cylinder with little/no delay.

Simple operating procedures

The JCL statements required for a JES reader
or writer are usually prepared by an installation
and stored in the system procedure library
(SYS1.PROCLIB). This approach facilities simple
operator commands for starting readers and writers,
since most parameters can be predetermined. Opera-
tors can override default parameters by specifying
various parameters with their START commands,
which furnishes great operational flexibility.

4.2.2 Multiple Console Support (MCS}

OS IV/F4 utilizes one main console to control the
entire configuration, plus up to 31 auxiliary con-
soles to perform specialized functions and back up
one another and the main console. Consoles can be
keyboard/printers, displays, line printers, and other
appropriate devices.

Functional consoles

Auxiliary consoles can be dedicated to such func-
tions as managing tape reels (displaying which reels
are mounted, to be mounted, finished processing
and to be kept/scratched, etc.), managing disk packs

PRINCIPAL COMPONENTS OF OS IV/F4

(mount and dismount messages), servicing line
printers (requests for chain/train changes, forms
changes, verification of forms positioning, etc.), and
other specialized activities. This MCS facility per-
mits large installations to create functional work
areas and other management efficiencies.

Display consoles

Based on CRT displays, these consoles permit opera-
tors to interact efficiently and accurately with the OS
1V/F4 Master scheduler. Optionally, an installation

-can provide program function keys (PFKs) and a

selector pen to further simplify entry of commands
and responses. The overall internal status of OS 1V/
F4 — or of selected activities within OS IV/F4, such
as particular readers, initiators, writers, TSS, or
executing jobs — can be displayed on command.
Certain dynamic status indicators — such as which
jobs are executing under various initiators — can be
automatically displayed in one area of the display,
changing whenever their status changes or at
periodic intervals.

Hardcopy log

An OS IV/F4 installation can define a hardcopy log
to record all operator commands, corresponding
system actions, and system-issued operator
messages on one chronological listing. The hardcopy
log facilitates operator interventions for emergen-
cies and quick, reliable restarts as necessary.

4.2.3 Efficiency Enhancements

OS 1V/F4 contains several state-of-art facilities for
improving system throughput, simplifying entry of
batch jobs, and providing job turnaround as
expected by users.

Priority aging

In general, each initiator selects jobs according to
class (CLASS parameter) and selection priority
(PRTY parameter). However, this algorithm tends
to keep low-priority jobs on input queues for
prolonged periods, especially if an installation is pro-
cessing a heavy load of high-priority jobs. Priority
aging is an optional OS IV/F4 feature which permits
each initiator to periodically increment the selection
priority of jobs in certain classes. Low-priority jobs
can thereby rise gradually in priority until they are
eligible for selection.

OS IV/F4 furnishes several parameters to control
priority aging, designating which initiators, which
job classes, at what time intervals, and to what upper
limits age increments can be made.

1/0 load balancing

As OS IV/F4 satisfies nonspecific volume requests,
it selects DASDs (and associated channel paths)
which are relatively lightly loaded. Selections are

OVERVIEW OF OS IV/F4

based on statistics maintained internally by the OS
IV/F4 1/0 Supervisor, which show how many users
have allocated data sets to each DASD and aggre-
gate recent activity, in terms of how many 1/0
requests were issued to each device during the pre-
vious n seconds. I/0 load balancing thus levels
DASD activity across all devices and channel paths
for all batch and time sharing users.

Execution batch processing

For each normal job, the OS IV/F4 job initiator per-
forms several non-trivial tasks such as ailocating I/0
devices, allocating volumes and data sets, and
interpreting and processing its JCL statements. The
execution batch facility relieves this overhead con-
siderably for small standardized user jobs such as
compilations, compile-go test jobs, and routine pro-
duction jobs. This facility processes all jobs of a cer-
tain pre-specified class as a single SYSIN stream in
one job step, although the resulting SYSOUT data
sets are segregated by user and returned to local/
remote destinations just as if they had been fully
processed by the OS IV/F4 job initiator. In addition
to reducing the pre-job overhead for initiation func-
tions, the execution batch facility permits ﬁsgrs to
furnish streamlined JCL; typically, a JOB statement
can be immediately followed by SYSIN data, since
EXEC and DD statements are pre-defined for this
class of jobs by a single cataloged procedure.

4.2.4 Installation-management enhancements

In addition to the internal efficiency enhancements
described in the preceding section, OS IV/F4 pro-
vides many facilities to assist programmers, opera-
tors, and installation managers to use the system
more conveniently, such as the following repre-
sentative features.

Demand output

Typically, users of a large computer center deliver
card decks and other inputs to a counter, where they
are received and logged by 1/0-control personnel.
These personnel then submit the inputs to the com-
puter, store the source materials in bins, and await
processing of these jobs. When OS IV/F4 has
finished printing and punching job outputs, the 1/0-
control personnel identify each user’s output and
store it in a bin (often the same as for the corre-
sponding source decks), where the user can subse-
quently claim it.

This set of procedures and manual handling has
several drawbacks. First, the number of 1/0-control
personnel is typically rather large. Second, the user
must interact with these personnel both when sub-
mitting his job decks and when picking up his out-
puts; this imposes unnecessary delays and ineffi-
ciencies. Finally, the overall turnaround time per job
is lengthened as compared to the demand-output

14

procedure, where a large percentage of users can—if
they wish—submit their source decks directly to a
local card reader. Each user claims his outputs by
submitting a single JES statement to this card reader
subsequent to entering his card decks; this
/*OUTPUT statement identifies him and requests
OS IV/F4 to immediately print (and/or punch) all
outputs waiting for him on the demand output
SYSOUT queue.

In summary, demand output is a self-service
facility which can be conveniently used by a large
percentage of local job submitters. Its primary
advantages are reduced efforts by 1/0-control per-
sonnel in handling system inputs and outputs and
faster turnaround for job submitters, who handle
their own card decks and retrieve their printed/
punched outputs on demand.

Anticipatory volume setups

Earlier operating systems often issued volume-
mount messages on demand; a job would commence
executing before the OS issued messages to the
operator requesting that he mount various tape reels
and/or disk packs. An alternative (and supplemen-
tary) approach to demand mounting is anticipatory
setup of volumes, which is supported by OS IV/F4
as follows:

As JES reads source decks from various devices, it
scans JOB and SETUP control statements of the
following format:
//job-name JOB account-number,
programmer-name,
CLASS=...

/*SETUP PAYMST(FP), TIMES,NEWPAY

The contents of each SETUP statement are
immediately displayed on the hardcopy log device,
and OS IV/F4 puts the corresponding job into the
input hold queue; it cannot be selected for execution
until it is explicitly released by the operator.

The operator can retrieve all tape reels and disk
packs required for this job by inspecting the
hardcopy log. He can optionally premount some/all
packs and labelled reels, since the automatic volume
recognition (AVR) feature of OS IV/F4 will recogn-
ize these volumes and record the fact that they are
mounted and ready. The operator then releases the
job, which will issue demand mount messages only
for volumes which are not already mounted. Hence,
it is entirely feasible for the operator to premount all
volumes needed by small jobs, so that they
experience no delays after being released for execu-
tion.

The advantages of this approach are that operators
can retrieve several volumes at one time from the
tape/disk library and bring them to the volume-
setup area in an orderly, preplanned procedure; and
that after OS IV/F4 initiates a job, the initiator (and
resources it controls, such as virtual storage,

devices, and data sets) is delayed minimally for
volume-mounting activities. The overall effect of
anticipatory setups is to smooth operations and to
improve processing efficiency for setup jobs.

System management facilities (SMF)

SMF is an OS 1V/F4 function for collecting sum-
mary statistics on system performance, such as
aggregate usage of CPU time, channels and devices,
main and virtual storage, plus such system events as
initiator start/stop times, reader and writer start/
stop times, volume-mountings, etc. SMF also will
optionally collect and capture on the SMF data set
records of resources used by individual jobs and job
steps, so that installation managers can scrutinize
long-running jobs for possible inefficiencies. SMF
facilitates installation accounting for computer
usage, since it can generate a comprehensive journal
of which jobs used which hardware/software
resources. Periodically, the console operator
transcribes data from the SMF data set to a perma-
nent archive, using a special OS IV/F4 utility pro-
gram. This archieve can be processed and sum-
marized by installation-developed report programs
to develop whatever management reports are
desired.

SMF furnishes many exit points during the JES
Reader, Job Initiator, Step Initiator, Terminator,
and JES Writer routines where each installation can
insert locally-written routines for the following fuc-
tions:
® validate various parameters on user JCL state-

ments.
® impose installation-defined limitations on CPU

times, SYSOUT quantities, etc.
® capture additional data on jobs and their resource
usage.

4.3 REMOTE ENTRY SERVICES (RES)

RES is a facility for remote entry of jobs to OS IV/
F4, furnishing an interface to users and operators of
remote terminals which is essentially identical to the
JES interface for local users. RES provides readers
and writers similar to those of JES, and it merges
remotely-submitted jobs onto the same input queue.
RES provides operator-communication facilities for
remote operators to send messages to central-site
operators and to one another. Under some restric-
tions, RES operators can manage their input streams
just like central operators; they can start and stop
their terminals, communications to the central site,
and associated input readers and output writers.
They can display the status of jobs entered through
their terminals and outputs awaiting return to their
terminals.

Jobs can be eentered remotely via RES and

PRINCIPAL COMPONENTS OF OS IV/F4

printed/punched at the central site via JES, if
requested by the user (or if the job are rerouted by
a local/remote console operator). Likewise, jobs can
be entered via JES and routed to a remote terminal.
Finally, jobs can be entered through on terminal and
their outputs selectively routed to other terminals.

Starting 2 RES session

The remote operator starts a session by establishing
a communications link to the central site, then issu-
ing a LOGON command. Authorization to submit
jobs in various classes and priority levels is verified
by RES, utilizing attributes for terminal users stored
in the SYS1.UADS data set at the central site. Broad-
cast messages accumulated for this terminal at the
central site are displayed to the remote operator
when he logs onto RES.

Job flow
Each job is read from the remote terminal, transmit-
ted block by block over the communications link,
and received at the central site through a com-
munications control processor (CCP) and the virtual
telecommunications access method (VTAM) into
RES, which stores the image of this job on the spool
data set. RES enters a control record into the system
job queue (SYS1.SYSJOBQE data set), merged with
control records for jobs submitted from other ter-
minals and—via JES—through local input devices.
Thereafter, remotely-submitted jobs are queued
and processed just like locally-submitted jobs. Their
outputs normally return to the terminal from which
they were submitted, although—as indicated
above —they can be optionally rerouted. The remote
operator can use his console (or card reader, if the
terminal has no console) to inquire about the overall
OS 1V/F4 operational status, jobs input from his ter-
minal, or the queue of output data sets awaiting
return to his terminal. The remote operator can res-
pond to messages and queries issued by executing
programs previously submitted from his terminal,
he can cancel jobs during input, execution, or after
their outputs have been generated. He can use
WRITER commands to control outputs flowing to
his terminal; change forms, request multiple copies,
forward space the SYSOUT stream, repeat earlier
portions of a SYSOUT data set, and other useful
operator functions.

Messages to/from the central site

At the central site, the broadcast data set
(SYS1.BRODCAST) contains messages for all
remote terminals in the network. Some messages are
issued by central-site operators, others by remote
operators. Since terminals are not necessarily online
when messages are submitted, the latter are queued
on disk until the receiving terminals log on.
Messages may be broadcast to all terminals or
restricted to a single terminal.

UVLIAAVIALY UL U AV /4

4.4 DATA MANAGEMENT

OS IV/F4 data management facilities utilize the M
series virtual-storage and channel-DAT features to
provide state-of-art facilities and unmatched perfor-
mance. Of particular note are OS IV/F4 capabilities
to perform chained scheduling into virtual storage,
support paper-tape equipment comprehensively,
and read several sequential data sets in parallel—the
parallel GET facility. These and other feature
improve system efficiency considerably over prior
systems.

Buffering options

The user can select any of the following buffer tech-

niques, as appropriate to his application:

® Queued sequential access method (QSAM)
Simple, exchange, or dynamic buffering.

® Basic access methods (BSAM, BPAM, and
BDAM)
Simple or dynamic buffering.

BDAM Features

These include DASD address feedback (current
and/or next address after each READ/WRITE
operation), extended searches (for particular
records, over multiple tracks), and exclusive control
of individual blocks within sharable data sets, in
addition to exclusive control of entire data sets.

Space management

Improved allocation/deallocation algorithms have
reduced the CPU overhead for space management
by 20—30% compared to prior systems.

Data set security features

In addition to control passwords used by installation
managers, OS IV/F4 offers secondary passwords
which can be defined and presented by users with
their data set requests. OS IV/F4 checks both
passwords (as appropriate) and denies access to per-
sons unable to furnish correct passwords.

Chained scheduling

Rather than issuing a separate channel program for
each 1/0 request (EXCP macro instruction or
equivalent higher-language verb), OS IV/F4
optionally permits users to dynamiically chain
requests together. The OS IV/F4 1/O Supervisor
performs the chaining and monitors its successful
performance. Chained scheduling serves to reduce
the CPU overhead for issuing I/0 hardwars requests
rapidly and improves the throughput of correspond-
ing devices, since they transmit data continuously
through the channel so long as their chains continue.

Parallel GET

This OS IV/F4 feature permits an assembler-
language user to issue read requests to several data
sets concurrently, accepting corresponding data

16

blocks in any sequence. This facility permits better
CPU utilization, since the job can proceed after any
one of the I/0 operations completes rather than
requiring these operations to complete serially and
synchronously.

4.6 VIRTUAL STORAGE ACCESS
METHOD (VSAM)

VSAM is a relatively new access method and associ-
ated data set organization, developed to supersede
the indexed sequential Access Method (ISAM)
and —in some cases—specialized uses of the sequen-
tial and direct access methods (SAM and DAM).
VSAM data sets may only be created on DASDs, in
one of the two following formats: key sequenced
which are similar to indexed sequential data sets in
format and usage; and entry sequenced, which are
similar to sequential data sets in these respects.

Every VSAM data set is cataloged into the VSAM
catalog, which is a mandatory component of an
OS IV/F4 system and serves as a high-level catalog
manager for non-VSAM data sets as well. For
VSAM data sets, the VSAM catalog contains
numerous format and usage attributes; in this
respect, it differs considerably from non-VSAM
catalog entries, which record for each data set only
the device types and serial numbers of volumes on
which it resides.

Access method services (AMS) is a comprehen-
sive service program designed to handle VSAM data
sets, display their contents, and catalog and
uncatalog non-VSAM data sets.

The following aspects of VSAM are particularly
noteworthy:

High processing efficiency

Skip sequential access to portions of VSAM data sets
is facilitated by a hierarchical indexing structure.
This reduces the need for sequential searching, yet it
provides the efficiencies of sequential processing
once desired records have been located.

Indexes and data blocks can be retained in virtual
storage indefinitely, so long as they are frequently
referenced. This eliminates the ISAM clumsiness in
requiring fixed allocations of real storage for buffers
and various indexes.

On the indexing track of each cylinder, indexes
can be optionally duplicated several times so as to
reduce rotational latency when they are sought by
VSAM.

During key-sequenced access to a VSAM data set,
several consecutive records can be updated in one
virtual storage block prior to updating its DASD
image, in contrast to keyed accesses to ISAM data
sets (where each record updating requires rewriting
the corresponding block). Also, several VSAM
records can be inserted onto a track in one opera-

tion, VSAM reads the image of the entire track,
inserts the new records into the virtual storage
buffer, and rewrites the entire track with one 1/0
request.

Within most VSAM indexes, keys can be com-
pressed by removing unnecessary leading and trail-
ing characters. Key compression serves to reduce
their DASD storage requirement and to increase the
logical content of each block of keys read into main
storage.

Creators of VSAM data sets can preplan expan-
sion space; OS IV/F4 will insert free space
periodically while writing a VSAM data set—as
directed by user parameters — which will help reduce
record movements and track reformatting when new
records are subsequently added to the data set.

Easy management and control
Since the VSAM catalog contains most attributes for
all VSAM data sets, installations can more easily

manage data centrally and consistently. User JCL.

statements for VSAM data sets are typically much
simpler than for other data set organizations. Also,
usage and efficiency statistics are more easily and
reliably collected by VSAM.

Since records are not managed by physical
addresses but rather by their relative byte addresses
(RBAs) from the start of a VSAM data set, device
independence is much more useful and meaningful
than for other data set organizations.

Protection and maintenance of data sets

Four levels of passwords can be assigned to VSAM
data sets, according to various authorizations to
read, update, add, or access the data. Automatic
journaling of transactions can be optionally
requested.

4.6 DATA COMMUNICATIONS

OS IV/F4 furnishes a virtual telecommunications
access method (VTAM) to control all access to ter-
minals, whether used for remote job entry, time
sharing, inquiry applications, or other online func-
tions. VTAM controls not only terminals connected
via communication lines but also local character dis-
plays connected directly via channels. VTAM uses a
new type of programmable communications control
processor (CCP), which operates under its internal
program called the network control program (NCP).
Part of the data communications function previously
performed by the host processor is performed in OS
IV/F4 by the NCP. This architecture distributes pro-
cessing tasks to two or more specialized computers,
achieving higher host-processor efficiency, faster
response times, and greater overall cost-effective-
ness. :

PRINCIPAL COMPONENTS OF OS IV/F4

4.6.1 Virtual Telecommunications Access
Method (VTAM)

VTAM permits application programs to communi-
cate with terminals without any consideration of
intervening control units, communication lines and
moderns, or the CCP. The main functions of VTAM
are to allocate communications resources, establish
communication links to remote terminals, and
transfer records to/from terminals.

Pools of communications resources for multiple
applications

VTAM manages pools of network resources: control
units, lines, and terminals. VTAM permits diverse
application programs to share these network
resources for several different functions
simultaneously. VTAM also permits a single ter-
minal to communicate with different application
programs and online facilities, as chosen by the ter-
minal user.

Establishing communications links

VTAM issues I/0 requests—in conjunction with the
NCP program—which establish network paths for
communication between application programs and
terminals. Application programs may request con-
nection to any appropriate terminal. Requests for
communications links can also be made from the
terminals.

Data transfer

After VTAM has connected an application program
to a terminal, the application program exchanges
data with the terminal. VITAM furnishes macro
instructions corresponding to various types of ter-
minals. Since NCP performs most of the transmis-
sion control functions, application programs may
use these macro instructions (or their higher-level
language equivalents) depending on the types of
lines and terminals. Users present EBCDIC-coded
records to VTAM, ignoring any consideration of
how these data are translated into transmission
codes. On the other hand, records presented by ter-
minals to central site application programs are con-
verted to EBCDIC by the NCP; therefore, no
translation or modification need be performed by
user programs—for example, eliminating line con-
trol characters.

4.6.2 Network Control Program (NCP)

A program operating in a CCP is called a network
control program (NCP); its principal function is to
transmit data received from the host processor (via
VTAM) to terminals, and vice versa. NCP recog-
nizes transmission control characters, assembles and
disassembles characters for controlling line time-
outs, and records and diagnoses errors.

OVERVIEW OF Od1V/F4

The principal advantages of NCP—CCP architec-
ture, compared with prior architectures for com-
munications control, are as follows:
® Since complicated line control characters, line

control procedures, error recovery processing, etc.

are all performed by the NCP inside the CCP, the
host-processor load is reduced, resulting in higher
efficiency for applications programs.

® Terminals and lines with different line control
procedures can be easily expanded without
modifying existing applications.

Y

4.7 RELIABILITY, AVAILABILITY AND
SERVICEABILITY (RAS)

The RAS facilities of OS IV/F4 help prevent and/or
recover from hardware failures. RAS also helps diag-
nose certain software failures, described under
‘“‘Dynamic Support System’’ and ‘‘Generalized
Trace Facility’’ below. RAS comprises a collection of
hardware diagnostic facilities and OS IV/F4 software
routines which operate jointly to produce high levels
of system availability and quick recovery from
failures. '

4.7.1 System Recovery

If a hardware failure occures in an M series con-
figuration, certain recovery actions are attempted
automatically, such as error checking and correction
(ECQ). In case hardware components alone can not
recover from the failure, OS IV/F4 recovery man-
agement support (RMS) software is invoked to
attempt recovery. This multistage recovery strategy
has proven quite successful and cost-effective for
achieving high system availability.

Recovery by RMS

® CPU and main-storage failures
The machine check handler (MCH) analyzes CPU
and main-storage failures; it tries to exactly
restore the machine status preceding these
failures and reattempts corresponding instruc-
tions.)

® Recovery by Means of an Alternate CPU
In case a hardware failure occurs in one CPU of a
multiprocessor system, the alternate CPU recov-
ery (ACR) facility of OS IV/F4 attempts to
recover and continue system operations.

® Channel failures
The OS IV/F4 Channel Check Handler (CCH)
analyzes channel failures and performs recovery
processing when appropriate.

® Retry by alternate channel paths
For 1/0 devices which access main storage
through two or more channel paths, the OS IV/F4

18

alternate path retry facility will reattempt failing
operations on alternate paths.

@ Timing out missed I/0 interruptions
After each I/0 request is issued, the OS IV/F4
missing interruption handler (MIH) tests for com-
pletion of the request at certain intervals; if the
hardware interruption is ‘“‘lost,”” MIH will inter-
vene to permit processing to continue.

® [/OHardware failure analysis
The OS IV/F4 error recovery procedures (ERPs)
analyze failures during I/O operations and per-
form appropriate recovery processing.

4.7.2 System Restoration

OS IV/F4 provides system restoration functions to
detect hardware failures, quickly diagnose their
causes, and thereby reduce preventive-maintenance
and emergency-repair intervals to a minimum.

Diagnosis by the M series service processor (SVP)
Each M series configuration contains an independ-
ent SVP, which ordinarily can continue operation
even if the central CPU or main storage has par-
tially/totally failed. The SVP diagnoses failures
quickly using prestored diagnostics, permitting
rapid resumption of normal operations.

Detailed status of important hardware compo-
nents is continually displayed on the SVP console,
which reduces the time needed for maintenance and
recovery episodes. It also helps maintenance person-
nel to diagnose hardware failures quickly.

Prevention of failures and improved diagnostic
facilities

For any large computer configuration, it is necessary
to continually record the system status, particularly
minor/major failure episodes for hardware and
systems software. Such a record permits mainte-
nance personnel to perform anticipatory mainte-
nance of marginally-operative hardware compo-
nents, as well as to quickly and successfully perform
emergency maintenance when a critical hardware
component malfunctions chronically.

RMS records information about solid/intermit-
tent hardware failures into the LOGREC data set, .
which is a permanent DASD data set. Serious
failures are also logged onto the system hardcopy
console and—if attached—a display console. RMS
collects complete information about location and
probable cause of each failure by interrogating
various hardware registers and main-storage logout
areas. Periodically, a maintenance engineer can pro-
cess the LOGREC data set with a special service aid
which sorts, summarizes and prints reports about all
nontrivial errors during the preceding interval.

Besides RMS, OS IV/F4 furnishes an online test

PRINCIPAL COMPONENTS OF OS IV/F4

r—-—""""—""—" "="7"="=-"=""7"=—— A r——""""—""—"—"—"7"—"—7—7/—7—— n
| | | l
| | [I
| 2 = ! | Maintenance |
I | 82 |cpu| ¢ | | computer |
|| =@ 5 Lo !
| | l |
l | l |
l 1 l I

| l |
: sve Telephone | I Telephone [
| link | | link |
} Modem |- /W T Modem :
| | [l
| 0S IV/F4 Installation | | Remote maintenance center I
- J L _

Fig. 4.2 Remote maintenance

control program (OLTEC) which performs diag-
nostic tests on any designated I/0 control unit or
device. OLTEC can analyze marginal or solid
failures in any M series peripheral device, whether it
is logically online to OS IV/F4 or offline—the only
requirement for OLTEC testing is that the device be
physically online to the central configuration.
OLTEC can also be invoked by the console operator
to verify that some/all peripherals are correctly
functioning, as a routine verification of hardware
status. OLTEC can operate either concurrent with
production operations or stand-alone.

For diagnosing and correcting residual failures in
systems software —the OS IV/F4 control program,
compilers, service aids, etc.—the dynamic support
system (DSS) is particularly efficient and accurate.
The installation system programmer can ask DSS to
suspend system operation at a pre-designated
address and collect various data, specified in the
DSS command language. When appropriate, the
programmer can even use DSS to apply and test
changes to systems software.

The generalized trace facility (GTF) collects data
on performance and status of systems software; it
can also collect similar data on selected user pro-
grams. Summarized data can be printed periodically
to help diagnose software problems and thus
improve maintenance procedures and overall system
reliability. OS IV/F4 offers several service aids to
display detailed and/or summarized trace data.

Remote maintenance of M series computers

Any maintenance procedure which can be per-
formed locally on an M series configuration can be
optionally controlled from a remote maintenance
center operated by Fujitsu Limited. The operator
dials into the remote maintenance center, using one
communications link attached to the service pro-
cessor. The remote maintenance center also fur-

nishes technical assistance via voice telephone to a
local maintenance engineer, and it can thereby fur-
nish rapid, high-quality and consistent maintenance
to remote configurations. OS IV/F4 routines for
remote maintenance are called maintenance assist-
ance by remote telecommunications (MART); they
protect the integrity and privacy of user data sets
fully.

4.8 SUPERVISOR

The supervisor provides fundamental control and
support functions for the entire configuration. High-
lights of the OS IV/F4 Supervisor are the following
features.

4.8.1 Multiprocessing Support

Prior Fujitsu computers offered multiprocessing
support, such as the FACOM 230-55, 230-58,
230-60 and 230-75 systems. The state-of-art
multiprocessing options for OS IV/F4 are derived
from experience with these systems and advanced
features in M series hardware, of which the follow-
ing are representative:

Local locks

A lock is a control block which may be set, reset,
and tested by several unrelated tasks in order to
access a serially-usable resource in an orderly and
non-hazardous sequence. OS IV/F4 contains many
local locks and a few global locks; the former are
used within one address space, the latter are availa-
ble to all tasks in a configuration, whether this con-
figuration contains one or two CPUs. By increasing
the number of locks, and by narrowing the scope of

OVERVIEW OF OS IV/F4

resources controlled by each lock, OS IV/F4
increases system throughput even if two CPUs are
being utilized to access numerous serially-usable
resources.

Minimum disabled state

A CPU is disabled for interruptions when the
OS 1V/F4 supervisor determines that a brief com-
putation must be completed immediately and with-
out interruptions. The OSIV/F4 Supervisor has an
improved design in this respect, compared to prior
systems; most OS IV/F4 tasks run enabled for inter-
ruptions at all times, a few tasks run disabled for
minimum intervals. This approach serves to maxim-
ize responsiveness of the system to I/0O interrup-
tions and other performance critical events and to
minimize the likelihood of deadlock events (neither
CPU can proceed without release of a resource held
by the other).

4.8.2 Automatic Priority Group (APG)

. APG is a feature of the OS 1V/F4 Task Supervisor
which modifies the dispatching priority of certain
user tasks periodically to reflect whether each task
was relatively CPU-limited or I/O-limited during the
preceding time interval. APG raises the priorities of
tasks which received little CPU service during the
previous interval, lowering the priorities of tasks
which received relatively heavy CPU service. The
effect of APG is to raise the overall performance of
I/0 equipment on the system without lowering the
CPU utilization; in turn, this improves overall
system throughput and hardware utilization. APG
can be explicitly/implicitly requested by a user for
each job step; it is the default method for determin-
ing dispatching priorities for batch jobs.

4.9 PROCESSING PROGRAMS

Under OS IV/F4, processing programs comprise
language processors (compilers and the assembler),
service programs, and application programs. The
first two categories are discussed briefly below; addi-
tional details may be found in Part III of this manual
and in the FACOM OS IV/F4 Applications
General Description manual.

The OS IV/F4 language processors are enumer-
ated in Table 4.1 and have the following highlight
features.

Conversational facilities

For several languages, OS IV/F4 furnishes special
syntax-checking facilities and /or prompters and/or
interactive debugging facilites. These tools permit
programmers to create, test, and execute their pro-
grams interactively with great convenience and cost-
effectiveness.

20

Optimization options

For several languages, OS 1V/F4 offers optimizing
options with their compilers, which generate pro-
grams which are smaller than usual and/or execute
faster.

Reentrant object programs

At the user’s option, compiler for the COBOL,
FORTRAN, and PL/I languages can generate re-
entrant object programs, which are useful for multi-
tasking applications and the system link pack.

Dynamic link structure)

The dynamic link structure is a novel OS IV/F4
facility for managing object modules, as an alterna-
tive to the traditional management of object
modules and load modules. Dynamic linking facili-
tates maintenance of rapidly-changing programs.

Debugging tools

0OS IV/F4 furnishes a wide variety of powerful
debugging tools, some of which are specified by
users in their source programs, others selected when
they compile these programs. In several languages,
tracing, snapshotting, and dumping facilities are
easily specified.

Table 4,1 OS IV/F4 Language processors

Features/functions

Most features of the 1974 ANS
standard.
Meets the ANS standard. Used
for developing programs;
contains many debugging
features. Compiler is reentrant.
Meets the ANS standard. Used
for generating optimized
programs.
ALGOL Meets the 1960 1SO standard.
PL/1 Full implementation.
SL/100 Software implementation language
: developed by Fujitsu. High-level
control statements — IF, DO,
GO-TO, etc. — are added to the
assembiler language.
Machine-instruction operation
codes, macro instructions for
sequences of instructions, and
other typical facilities.
BASIC Dartmouth University BASIC plus
character string manipulation,
formatted print-outs, linkage with
FORTRAN programs, etc. Runs
under TSS.
LISP Based on LISP 1.5. Runs batch
or TSS. Suitable for string
processing.

Processor
ANS COBOL

FQRTRAN IV (GE)

FORTRAN IV (HE)

Assembler

The OS IV/F4 service programs comprise the
sort/merge program, the linkage editor, the loader, a
utility program for dumping and restoring volumes,

and various utility programs for generating, copying,
deleting, moving, comparing, and displaying data
sets and their catalogs.

Table 4.2 Service programs

Features/functions

Work files on tape or DASD.
Sort/Merge program is reentrant.
Combines object programs and/or
load modules to create new load
modules. Optionally, load
modules can be (a) reentrant, (b)
structured into overlays, or {c)
structured in various other ways.
Loader Combines object programs and/or
load modules into an executable
program in main storage. Less
CPU and DASD overhead than
the linkage editor.

Copy or move contents of one
volume to another; initialize
volumes; list system control
information; etc.

Process sequential, partitioned, or
system data sets to perform
copying, comparing, displaying,
dumping, restoring, and other
functions. Handlé records or {in
some cases) fields within records.
{nitialize DASD volumes; dump/

Program

Sort/merge

Linkage editor

System utility
programs

Data set utility
programs

Independent utility

programs restore DASD volumes to
magnetic tape reeils or other
DASD volumes.

Service aids Detect, dump, restore, summarize,

report, etc. data accumulated in
the LOGREC, SMF, and other
speciai-purpose data sets.

Selects and combines modules,
assembles parameter tables, and
prepares a customized version of
OS IV/F4.

System generation

4.10 TIME SHARING SYSTEM (TSS)

OS IV/F4 offers a responsive, reliable, high-
performance TSS, which is easy to use for a wide
variety of applications. TSS can be simultaneously
accessed by many users, each using TSS facilities as
if he had exclusive control of a powerful interactive
computer. Outstanding features of OS IV/F4 are
cited below.

Conversational entry of batch jobs

Jobs are entered from a keyboard terminal, using
full TSS facilities for checking and editing source
statements. After a job has been entered, part/all of
it can be compiled for interactive testing. Thereafter,
the job can be submitted for ordinary batch process-
ing by JES and an OS IV/F4 initiator, using special
TSS commands.

PRINCIPAL COMPONENTS OF OS IV/F4

Compatibility with batch mode

All language processors, data-management access
methods, data sets, and data bases used in OS IV/F4
batch processing can be utilized under TSS control.
OS IV/F4 Job Control Language (JCL) can be
entered by TSS users. Programs and data sets cre-
ated under TSS can be executed in batch mode, and
vice versa.

Improved processing efficiency

Jobs are swapped into/out of main storage according
to activity of corresponding terminal users and their
priorities for CPU control relative to one another
and to batch users. CPU time for TSS users is sliced
into relatively short intervals—typically 0.1—1.0
seconds —which are automatically allocated to active
users by the TSS Supervisor. No TSS job can execute
for longer than one time slice without yielding con-
trol to the TSS supervisor, which then decides
whether to let this job continue, to switch control to
another TSS user, or to yield control to a batch job or
other non-TSS task.

Security festures

Since TSS is typically used by many terminals
simultaneously, it must verify the authority of users
to access and/or change programs and data sets.
Authorizations are verified by user entered
passwords as they log onto TSS, corroborated with
their names and other attributes stored in the
attributes data set (SYS1.UADS). During execution
of his programs, each user has sole possession of a
16-megabytes address space; he can neither access
the address spaces of other users nor be accessed by
them. Finally, a user can define multiple levels
of usage and change access protections by issuing
PROTECT commands.

Multiple command processors

Six different command processors operate concur-
rently in TSS, so as to achieve very quick response
times and high system efficiency. Session control
commands start and stop each session. System con-
trol commands are utilized by console operators and
installation managers. Users issue data control com-
mands to generate and edit their data sets, compiler
invocation commands to call various compilers
(including the assembler), program control com-
mands, and batch interface commands.

Prompters

Prompters are offered with certain language pro-
cessors (COBOL, FORTRAN, and PL/I compilers,
plus the assembler) and the linkage editor and
loader. These facilities issue prompting messages to
terminal users when the latter are allocating system
resources to their programs, such as data sets and
devices. Prompting helps reduce programming
errors due to inadvertent omission of necessary
parameters.

OVERVIEW OF OS IV/F4

CCP

LT > 4L

Terminals

=
(e)T

0S (V/F4
Online L-gr -
c
2 Data
: £ | omm
TSS users s |
£
Ne]
o ‘mf g
—‘ Remote batch users
_/

-

Batch users

Fig. 4.3 Location of AIM within an OS IV/F4 configuration

Debugging aids

TSS offers syntax checkers for the FORTRAN and
PL/I languages, which check the syntax of each
source statement as it is entered. Whenever the ter-
minal user submits an incorrectly-structured source
statement, the syntax checker immediately issues a
diagnostic message to his terminal, which permits
him to resubmit a corrected statement at once.
After he has entered his entire program, he typically
requests compilation to locate any residual errors
not detected by the syntax checkers; the checkers do
not validate inter-statement syntax and semantics of
a program.

Du.ring execution of a COBOL, FORTRAN, PL/I
or Assembler-language program under TSS, the ter-
minal user can request various debugging aids, such
as displays of selected statement numbers/labels and
values of selected variables as his program executes.

4.11 ADVANCED INFORMATION MAN-
AGER (AIM)

4.11.1 Overview

AIM is the principal data base/data communications
(DB/DC) subsystem of OS IV/F4. Fig. 4.3 shows
how AIM fits into the hardware/software configura-
tion of a typical OS IV/F4 installation with remote
users. The online data base component of AIM is
accessible to local/remote batch users. Also, AIM
permits several different users (or software sub-
systems) to concurrently access the same data bases.

4.11.2 Architecture of AIM

AIM comprises a large number of different software

22

functions, each relatively independent of the others:
@ data base management.

@ program management.

® message management.

® operational management.

® support management.

@ languages management.

Each installation can generate AIM with functions
relevant to its applications and modes of usage. Each
user selects only the subset of AIM func-
tions — implicitly or explicitly —needed for his partic-
ular application, processing scale, and mode of
access.

4.11.3 Major Components of AiM

Data Base Management

The software component managing a data base in an
operating system is called a data base management
system (DBMS). The OS IV/F4 DBMS manages
ordinary data sets and also data bases, which are
special aggregates of data sets using a consistent and
integrated approach. Hence, all permanent data sets
on DASD are potentially controlled by the DBMS,
whether created by batch, TSS, or other online jobs.

Also, the DBMS supports shared DASD (one or
more DASDs accessed dynamically by two or more
independent configurations) and concurrent access
by two or more independent tasks in a single system.
The OS IV/F4 DBMS provides exclusive control of
physical blocks to users processing shared DASD or
concurrently-accessed data bases. This exclusive
control is transparent to users.

If a deadlock situation or system failure occurs,
the OS IV/F4 DBMS provides facilities for automat-
ically recovering permanent data sets and transac-
tion files in usable form.

Access
control

Alternate
structure
controfl

Management

Multitask
control

Program

management Operation

scheduling

Operational
management

Queue
control

“System definition
management

Message
management

DOD/D
definition

Support

Message meanagement

control

System
design
support

Terminal

System
operation
suppaort

Fig. 4.4 Functional structure of AIM

PRINCIPAL COMPONENTS OF OS IV/F4

In addition to conventional sequential and direct
organizations, DBMS provides list and ring
organizations for data basis; its repertoric of
organizations is quite broad.

Program management

OS IV/F4 AIM contains an application control pro-
gram (ACP) to manage user programs, which can
become quite complex in the AIM environment
with respect to resource management, failure recov-
ery, and other online aspects. ACP controls initia-
tion, termination, and failure recovery indepen-
dently for each user program.

ACP permits each user to initiate his programs
much as he requests batch jobs; he need not change
his program structures, in general. Several ACPs can
operate in a single system, each serving a particular
application; if one fails for any reason, the others
continue uninterrupted.

Message management

The AIM component which manages messages
(data and control statements flowing between ter-
minals and the central site) is the data communica-
tion management subsystem (DCMS). Utilizing
the NCP and VTAM, the OS IV/F4 DCMS deter-

ISMS
:]
Operator Device .
cep Start st_op command management || Recovery/ || Check
— processing interface Failure Restart point N
E point
Message 2' | '\T/ DCMS DBMS &
= c
P A ACP Access contro! g
s =) &
-t o User program 3 ata
sglligk @ 58 o base
S51-183% access
L $E| | ES{=1{reAD |@ module *"@'7—7
e |22 1
®|" & 2o GET -
..\L MODIFY General data
WRITE] set access General
module data
set
L —

@ User program asks DCMS to read message.

@ LOGON command from terminal connects it to DCMS.

Thereafter messages from the terminal flow to DCMS, which edits and translates
them, then presents them to the requested programs.

@ User program asks DBMS to process dats base.

@ DBMS access module reads records via OS IV/F4 Data Management and transmits
them to the requestor. This processing is controlied by the Access Control Module
and optionally journais and/or exclusively controls records.

@ DCMS edits and transiates messages when requested by the user program; when
terminal is ready, DCMS asks VTAM to transmit the messages.

@ VTAM transmits messeges to the terminal via NCP.

Fig. 4.5 Execution flow of the AIM system

OVERVIEW OF OS 1IV/F4

mines which messages go to each terminal and the
central site, furnishing the same interfaces to user
programs as for normal data sets, including the same
higher-language interfaces (COBOL, PL/I, etc.).
Hence, users can write programs without explicit
consideration of AIM or terminals it controls. The
DCMS controls all message queues on a unified
basis.

Operational management

The AIM component for assisting operators is called
the integrity and schedule management subsystem
(ISMS), which provides for starting AIM opera-
tions, restarting after failures, stopping AIM, and
responding to operator commands. ISMS attempts
to automate most scheduling and operational deci-
sions, using a data dictionary/directory (DD/D)
data set to keep records of system resources and
operations. By changing DD/D, ISMS or a user can
modify resources or operating modes without any
changes to application programs.

System definition management

AIM provides a dictionary and directory manage-
ment subsystem (DDMS) to furnish generation and
maitenance facilities for AIM software.

Support Management

AIM provides support utilities to assist installation
managers in designing, generating, operating, and
maintaining system and user programs. Support
utilities provide various facilities for testing new/
revised user programs against AIM data bases and
such tools as a simulator and a performance data log-
ger/analyzer for installation managers to model and
evaluate versions of AIM.

4.11.4 Execution Flow

Communication between terminals and the central
site is depicted in Fig. 4.5 and explained in the
following section.

PART 2
CONTROL PROGRAM

CHAPTER 1
VIRTUAL STORAGE

1.1 BACKGROUND OF VIRTUAL
STORAGE SYSTEMS

Yirtual storage is simply an address range that can
far exceed the actual range of addresses in real
storage (or main storage). To the programmer, vir-
tual storage appears as real storage; therefore, a pro-
grammer is able to write programs for the capacity of
virtual storage, and the frustration of using limited
real storage is greatly diminished.

JOBS8
JOBA
Routine B2
Routine A3 -
Routine 81
Routine A2
Routine A1

Routine A2

Routine B1

Routine A3

| 1
|

In OS IV/F4 virtual storage is an address range of
16,777,216 bytes (16 megabytes). Each
user—whether executing a batch job, interactive
job, or system component—receives his own copy of
virtual storage from OS IV/F4 minus space used for
certain system functions.

Programs are actually stored in auxiliary storage
called external page storage, which is divided into
4K blocks called slots; similarly, programs them-
selves are divided into 4K blocks called pages, and

JOBA and JOBB in virtual storage

JOBA and JOBB have private address spaces. To each user,
it appears that his job exists in contiguous real storage.

JOBA and JOBB in real storage

Pages containing currently-refere(\ced instructions and data
for JOBA and JOBB are in real storage.

JOBA and JOBB in external page storage

Complete images of JOBA and JOBB are retained on auxiliary
storage. Instructions and data are transferred to real storage
as required for execution.

Fig. 1.1 Relationship between virtual storage, real storage, and external page storage

CONTROL PROGRAM

real storage is divided into 4K blocks called frames.
The system transfers pages of programs from exter-
nal page storage to real storage as required during
execution, automatically translating virtual storage
addresses to actual addresses in real storage. The
pages do not ordinarily exist continuously in real
storage. This paging activity is transparent to the
user. Fig. 1.1 illustrates private address spaces in OS
IV/F4 and the relationship between virtual storage,
external page storage, and real storage.

This virtual storage design provides more efficient
multiprogramming (concurrent execution of
several large jobs) and a more diverse mix of
interactive and batch jobs. Also, since each job is
isolated in a private address space, interregion vir-
tual storage fragmentation is eliminated and protec-
tion features are extended.

1.2 THE OS IV/F4 VIRTUAL STORAGE
ARCHITECTURE

1.2.1 Overview

Virtual storage concepts
In any system with virtual storage, the address space
available to programs is limited by the addressing
scheme of the central processor rather than the
amount of real storage available in the configura-
tion. For example, every M series CPU uses a 24-bit
binary address scheme, so an address space as large
as 16,777,216 bytes can be supported.

With this design, a virtual storage system can sup-
port an address space large than the actual amount of
real storage available. To accomplish this, the

OS IV/F4 control program stores the contents of
virtual storage—instructions and data—onto direct
access storage; it brings instructions and data into
real storage (from direct access storage) only when
required by executing programs. Likewise, the con-
trol program returns altered instructions and data to
direct access storage when the real storage they
occupy is needed and they are no longer being used.
Thus, at any time, real storage contains only a por-
tion of the contents of virtual storage.

Virtual storage in OS IV/F4

Virtual storage is divided into address spaces for the
control program and address spaces for user pro-
grams. Each user job (and some system compo-
nents) receives its own private user address space.
That is, OS IV/F4 supports multiple address spaces,
as shown in Fig. 1.2.

The control program creates private address
spaces for the following users and system compo-
nents:
® Each batch job scheduled by an initiator.
® Each logged-on time-sharing job.
® The master scheduler.
® The job entry subsystem (JES).

e The virtual telecommunications access method

(VTAM).
® Every program initiated by a START command.

1.2.2 Virtual Storage Layout
Although each user job is given its own private

address space, it does not have control over all of
it—each ‘address space is divided into the system

igh address
J System queue area Hig res Address spaces
Common J F--"=""—o=ome-- Smsssoesssmoosoeo oo
area | feoccaoal Pageable link pack area = w [
Common service area [
Local system queue
ares
User ivete add
<
area User private ress space ,
User programs
User C
User 8
User A
System _ nucleus
area
\ Low address

Fig. 1.2 Virtual storage layout

http:Thus,.at

area, the user area, and the common area (see Fig.
1.2).

The system area contains the nucleus, which is
fixed in real storage that is mapped into the low
addresses of each user’s address space. The common
area corresponds to the highest addresses of virtual
storage. The common area contains the system
queue area (SQA), the pagable link pack area
(PLPA), the modified LPA (MLPA), the pagable
BLDL list (PBLDL), and the common service area
(CSA). The SQA contains tables and queues relating
to the entire system. The three LPAs contain SVC
routines, access methods and other read-only
system programs, and any reentrant (read-only)
user programs selected by the installation that can be
shared among users of the system. The CSA con-
tains data for communications among the private
user address spaces.

Each user’s private address space begins imme-
diately after the nucleus and extends up to the com-
mon area. Thus, all users have the same amount of
private address space. Fig. 1.2 shows the structure of
the user address space in virtual storage. Space is
assigned to user programs from the low address up.
Space is assigned from the high address down for the
local system queue area (LSQA) which contains
tables and queues associated with the user’s job and
address space. The remainder of the private address
space is available for its user, with space being allo-

Virtual storage

Common area

VIRTUAL STORAGE

" cated from the low address up.

Some user programs must remain in real storage
during execution. These programs are assigned dis-
contiguous real-storage pages, just like other pro-
grams in virtual storage. Hence, their pages are not
written to DASDs during execution. (Each real-
storage execution is specified for the duration of one
job step.) Since M series CPUs and channels utilize
dynamic address translation, real-storage programs
can execute at full speed without any page-fault
interruptions. However, their address spaces are
considerably smaller than 16 megabytes, the stan-
dard size for pagable programs, since they must have
a real-storage page frame for each program page.

1.2.3 Storage Organization

For ease in storage management, virtual storage,
real storage, and direct access storage containing vir-
tual-storage images are divided into contiguous fix-
ed length sections of equal size.

Virtual storage is divided into 64K byte segments.
(A maximum virtual storage of 16,777,216 bytes,
therefore, contains 256 segments.) Each segment of
virtual storage is divided into 4K-byte virtual storage
pages; thus, each segment contains 16 pages.

Real storage is divided into 4K-byte page frames.
Hence, a page frame is a block of real storage that

User D private area

[

User private area

User A private area

System area

Segment table

Segment table

{User A) {user D)
7 7
4 L
Page table Page table
(Segment n) {Segment n)
Plage table Page Table
(Segment 1) {Segment 1)

Fig. 1.3 Segment and page tables

CUNTKUL PRUGRAM

can contain one page at a time.

The direct access storage used to contain virtual
storage contents is called external page storage.
External page storage is divided into physical records
called slots. A slot is 4K bytes long; therefore, each
slot can contain one page at a time.

In summary, a page of data or instructions is
assigned a virtual storage address. The page occupies
a slot when it is in external page storage, a frame
when it is in real storage.

Address translation
When coding a program the user refers to data and
instructions by names or labels without knowing
their physical addresses. In a virtual storage system,
the control program assigns to each name or label a
virtual storage address that can be used to locate the
data or instruction. By comparison, real storage
addresses are actual physical locations in processor
storage where data and instructions can be placed for
processing by the CPU.
A mechanism is required to associate virtual
" storage addresses of data and instructions with their
actual locations in real storage. Transformation of a
virtual storage address to its real storage address is
address translation. In M series computers, the
. dynamic address translation (DAT) hardware
feature in the CPU and channels performs address
transiation.

To translate the addresses, DAT uses tables in real
storage. These tables, which are maintained by the
control program, are the segment table and a num-
ber of page tables. One segment table and a corres-
ponding set of page tables exist for each address
space in the system, as shown in Fig. 1.3.

A segment table contains one entry for each seg-
ment in the address space that the table describes. A
segment table entry defines the numiber of pages
allocated in the segment and points to the real
storage location of the page table for the segment.

There is one page table for each segment in the
address space. A page table contains one entry for
each page in the associated segment. It indicates
which pages are currently in real storage and the real
stoorage locations of these pages. As pages are
transferred between real and external page storage,
the control program changes the corresponding page
table entries.

DAT translates any virtual storage addresses
referenced by an instruction during its execution.
Translation occurs after the 24-bit effective virtual
storage address has been computed, as usual, by
adding base, displacement, and any index values
together. The format of the effective virtual storage
address is included in Fig. 1.4.

The translation process is shown in Fig. 1.4. First,
DAT obtains the address of the appropriate segment
table from a system control register. To this segment

Effective 24-bit virtual storage address

Segment Page Byte displacement
address address from beginning of
bits page
System control register 8 16 20 31

Segment table
address

L

Segment table
Page tabje address

Page tabie

Page table

Page frame address

Page table

Fig. 1.4 Dynamic address translation procedure

1T

Page frame address Displacement

24 bit real storage address

table address, DAT adds the segment address bits
(from the effective virtual storage address), to
obtain the segment table entry. Next, DAT obtains
the page table address from the segment table entry
and adds the page address bits to it in order to obtain
the page table entry. Finally, DAT forms the 24-bit
real storage address by appending the displacement
(from the effective virtual storage address) to the
page frame address in the page table entry.

To reduce the amount of time required for address
translation, DAT retains up to 128 previously-
translated addresses in a translation lookaside
buffer (TLB). Prior to performing a translation
using segment and page tables, DAT searches the
TLB for the required translated address.

Paging
A program interruption occurs during address
translation if DAT attempts to translate a virtual
storage address to a real storage address and the
required page is not in real storage. This interrup-
tion, called a page translation exception or page
fault, alerts the control program that the page must
be loaded from external page storage into a page
frame of real storage. ’

Data and instructions are transferred between
external page storage and real storage as needed,
page by page. This activity is called paging. The con-

Page table External page table

Stot {ocation

External page storage

Page frame table

1
1
1 \)
Frame number) .
] \
1 L
\ 1 Real stora;k
0
[~

Fig. 1.5 Page-in process

VIRTUAL STORAGE

trol program routine responsible for paging is real
storage management.

The transfer of a page into real storage is a page-
in, as shown in Fig. 1.5. When a requested page is
not in real storage (indicated by a bit in its page table
entry), real storage management examines the cor-
responding entry in an external page table. (One
external page table corresponds to each page table in
the system.) The external page table entry gives the
slot location for the page.

Next, storage management selects a frame in real
storage to hold the required page. To do so, it refers
to the page frame table, that indicates which frames
are allocated. Storage management finds an available
frame and brings in the required page from its slot in
external page storage. To complete the page-in pro-
cess, storage management updates the appropriate
pageframe-table entry and page-table entry.

To keep a supply of frames available for page-in,
the OS IV/F4 control program removes pages from
real storage that have not been recently referenced.
Prior to removing a page from a frame, the control
program determines whether its contents were
modified during processing. If so, storage manage-
ment performs a page-out; otherwise, an exact copy
of the page already exists in extemal page storage. A
page-out copies the modified page from its
realstorage frame to a slot in external page storage;
the slot need not be the one that contains the old
version of the page. Storage management need only
update the external page table entry to designate the
new slot.

For various reasons, certain pages should not be
paged out of real storage. For example, pages that
contain 1/0 buffers must remain in real storage
while the buffers are being referenced during an I/0
operation. A page that cannot be paged out is called a
fixed page.

Pages that are fixed for the duration of a job or job
step are long-term fixed. For example, pages that
contain certain control blocks related to a job are
long-term fixed for the duration of the job. Pages
that must be fixed for only a portion of the time they
are in real storage are short-term fixed. For exam-
ple, a page containing an I/0 buffer is fixed prior to
the start of the 1/0 operation; after the I/O opera-
tion is completed, the page is unfixed and is eligible
for page-out. Only the control program can selec-
tively fix user pages. For instance, the control pro-
gram can short-term fix user 1/0 area pages.

The user can fix pages, but not selectively, by cod-
ing ADDRSPC=REAL on his JOB or EXEC state-
ments. Each such job step is allocated a collection of
real-storage page frames, which the DAT and Chan-
nel-DAT features make logically contiguous to each
other and to the nucleus. Since these programs are
not paged, they do not occupy external page storage.
The entire program is loaded into real storage when
it is initiated, and all pages are fixed.

~a

CONIROL PROGKAM

Swapping

If an interactive task remains in Wait state for a long
interval—for example, while a terminal user is
deciding what calculation to perform next—the OS
IV/F4 Supervisor will page out all pages of his
address space (that is, those unshared with other
users). This technique is called program swapping
(or merely swapping). It is no more than anticipa-
tory paging out of all pages held by a user who is
expected to be inactive for several seconds or
minutes.

The same technique is used when a initiated batch
job must await operator invention, for example
when an executing program has issued a Write to
Operator with Reply (WTOR) macro instruction,
COBOL ACCEPT instruction, etc. Since OS IV/F4
knows that the executing program cannot proceed
until the console operator replies, and since several
seconds will typically elapse until the operator enters
the desired response, the OS IV/F4 Supervisor
swaps out this user‘s address space. Similarly, if a
volume must be mounted at the beginning of a job
step or —as requested by a DEFER option in a JCL
UNIT parameter —in the middle of a step, OS IV/F4
will swap out this address space as soon 4s it has
issued the volume-mounting command. :

Swapping immediately furnishes a number of page
frames for allocation to other jobs. Hence, suc-
cessful swapping permits other active jobs to run
with fewer page faults; it even permits OS IV/F4 to
start additional batch jobs.

Levelling paging activity

In OS IV/F4, page frames are not mapped one to
one onto slots, nor are the pages of each active
address space rigidly allocated to slots. Hence, the
OS IV/F4 Supervisor can store a page into any
available slot when page-out becomes necessary.
Since the choice of slots can be delayed until the last
instant, the OS IV/F4 Supervisor can select a lightly-
loaded channel or paging device each time.

Slot sorting

The OS IV/F4 Paging Supervisor issues I/0 requests
to paging devices whenever pages must be transfer-
red to/from main storage. The channel programs as-
sociated with these requests are dynamically
modified by the. Supervisor so long as additional
pages must be read/written to corresponding
devices. Hence, siots on these devices can be chosen
at the last instant. Whenever several input and/or
output requests for pages are outstanding for the
current cylinder on a paging device, OS IV/F4
satisfies them by their physical sequence on the
DASD, rather than by their order of issuance or
another queuing algorithm. (‘‘Physical sequence’’ is
in terms of their angular displacements from the
current position of the DASD read/write mechan-
ism.) This slot sorting technique maximizes the

average transfer rate of pages to/from main storage,

32

which keeps paging bottlenecks to a minimum.

Preventing paging overloads

No matter how efficiently paging is managed, the
Supervisor can only transfer a limited number of
pages per second. If executing programs (including
timesharing and system tasks) request pages faster
than this rate—summed over all paging
devices—their throughput declines. For interactive
tasks, paging overloads can cause drastically longer
response times at terminals. This condition is often
called thrashing.

To prevent thrashing—or to correct it after it
begins—the OS IV/F4 Supervisor will swap out one
or more low-priority batch jobs. By thus suspending
their execution, OS IV/F4 releases their page frames
for use by other tasks. Also, the CPU time and chan-
nel capacity they would have used can be released to
other jobs. If necessary, OS IV/F4 will suspend high-
er-priority batch jobs in order to reduce thrashing.
When thrashing has subsided sufficiently, the OS
IV/F4 Supervisor will swap in one suspended task
after another, in order to keep the paging rate accep-
tably low.

Paging hierarchies

If an installation assigns two or more different
DASDs for paging, OS IV/F4 will use each as
appropriate to its speed and capacity. For example, if
an installation allocates one F6625 Drum and two
F478B Disk drives for paging, the paging supervisor
will utilize the drum fully prior to writing any pages
onto the disk drives. Thereafter, the Supervisor will
write frequently-referenced pages (e.g., from the
Pagable link pack area, which is shared by all users)
onto the drum and infrequently-referenced pages
onto the disk drives. Since the drum is much faster
than the disk drives but has much less storage
capacity, this strategy maximizes the overall paging
rate.

Real-storage regions

For time-dependent programs and other tasks
requiring ultra-fast response times to I/0 requests,
users can request real-storage regions by coding
ADDRSPC=REAL on their JOB or EXEC state-
ments. All pages for such jobs (or job steps) are fix-
ed in main storage throughout execution. Unlike
several prior hardware systems and corresponding’
operating systems, OS IV/F4 utilizes discontiguous
page frames to define a real-storage region; the com-
bination of CPU-DAT and Channel-DAT features
permits all instructions, CCWs, and data areas to be
in virtual storage. The only differences between
real-storage reegions and other virtual-storage
address spaces are that the former are not paged out
or limited in size, since each of their pages requires
one main-storage page frame throughout its job step.
Paging overhead is completely eliminated for real-
storage regions, but typically only a few (if any)

should be allocated at one time since they cause
drastic depletion of the pool of page frames available
to other jobs and the OS IV/F4 control program.

Macro instructions for fixing/freeing pages

For some Assembler language programs, it is useful
to deliberately fix certain pages in main storage for
certain intervals—not necessarily throughout an
entire job step. For example, a program may use a
scatter-storage (hashing) algorithm to sort data or
perform another computational task that requires a
large address space briefly. In this case, the program
can optimize its efficiency by reducing/eliminating
paging of certain program or data areas. The program
requests that these pages be fixed by issuing PGFIX
macro instructions; later, it can free these pages for
paging by issuing PGFREE macro instructions.
PGFIX and PGFREE macro instructions can be
issued only by previously-authorized programs since
they can—if misused —seriously degrade paging per-
formance and system throughput.

1.2.4 Structure of OS IV/F4 Address Spaces

Each address space contains common elements,
which are shared among all address spaces (includ-
ing those for interactive and system tasks). These
elements are the system area and the common area.
The remainder of the address space contains pages
which are uniquely accessible by this address space
so long as it executes. Fig. 1.6 outlines a typical
address space, Figs. 1.7 to 1.10 provide details on
various shared areas in this address space.

VIRTUAL STORAGE

—16M —

System control tables
and work areas for all
address spaces

Pagable SVC routines,
** PLPA standard access methods,
Common and MPLA 1/O error recovery routines
ares reentrant library, etc,
N BLDL Tist of

PBLOL SYS1.LINKLIB

Area for communication
CSA between programs in
different address spaces

SQA High

address

System control infor-
mation for one address
space

LSQA

Remainder of user area
after allocations to
Region and LSQA

Individual
user area

Region Area for user programs

Unpaged BLDL entries

*FBLDL for SYS1.LINKLIB

LINKPAK modules
System **FLPA permanently loaded
area into main storage

Low
address Control program and

Nucleus tables

—0_

* FBLOL and PBLDL are defined exclusive of each other
within a system. Selection of which to use can be made
at the time of IPL.

** Ditto for FLPA, PLPA, and MLPA

Fig. 1.6 Typical OS IV/F4 Address space

SG (n)
N
System
area > SG (2)
SG (1)
SG (0)
Address Segment
space A table A PGT (1)
PGT (0} Contiguous
System pages of real
SG (n) area storage
/_/
System - SG (2) Real storage
area
SG (1)
SG (0)
Address Segment
space B table 8

Fig. 1.7 Address mapping for the system area

CONTROL PROGRAM

System Area
The system area comprises the system nucleus and,
optionally, a fixed link pack area (FLPA) and fixed
BLDL table (FBLDL). The system area is identical
for all address spaces with respect to size and con-
tents. It is contained in contiguous page frames at
the lowest addresses in real storage. The system area
is not paged, and its storage addresses are not transl-
ated into virtual addresses, as illustrated in Fig. 1.7.
The nucleus contains basic control-program
routines which are loaded when OS IV/F4 is initially
started (IPL). The FLPA contains reentrant pro-
grams and read-only tables intensively and
simultaneously used by many tasks; they are a
subset of the total link pack area (LPA), comprising
reentrant load modules which are heaviest used:
® some/all pagable SVC routines.
® some/all standard access method-modules.
® /0 error recovery routines.
® Reentrant libraries used by language processors.
® User-generated reentrant load modules.

The FLPA can be included or excluded each time
OS IV/F4 is loaded.

The FBLDL is the image of part/all of the directo-
ry for the system link library (SYS1.LINKLIB),
which contains the OS IV/F4 Assember, Linkage
editor, Loader, various service aids, and user-writ-
ten programs which are accessed frequently. Each
time OS IV/F4 is loaded, the operator can select
whether to include/exclude an FBLDL area, which
serves to speed up retrieval of LINKLIB members
named in FBLDL. In the common area, a pagable
BLDL table can optionally be created which is com-
plementary to the FBLDL. Neither, either, or both
can be selected by the operator, although he typically
accepts default values for these tables set during OS
IV/F4 system generation.

Private user area

Each private user area comprises a local system
queue area (LSQA) and a region. The LSQA con-
tains control information specific to this address
space such as its segment table, part/all of its page
table, and various control blocks for its tasks, as
shown in Fig. 1.8.

An LSQA is allocated for each address space—an
integral number of segments of 64K bytes
each—when the corresponding initiator is started by
the operator.

The region is the area in each address space where
programs are loaded and executed, plus associated
workspaces. Its size can be optionally limited by the
REGION parameter on a JOB or EXEC statement. If
the user specifies ADDRSPC=REAL on his JOB or
EXEC statement, he must furnish a REGION
parameter unless a default value is assigned by the
associated initiator procedure, by an SMF exit
routine, etc. As discussed in the previous section,
ADDRSPC=REAL selects a real-storage region,
used primarily for time dependent jobs and others
with critical response time requirements.

If the user specifiess ADDRSPC=VIRT (the
OS IV/F4 default value), his region is allocated
pagable storage in integral segments (64K blocks).

Common area

Like the system area, the common area is shared
among all address spaces; unlike the system area, it
is pagable. It contains the system queue area (SQA),
pagable and modified link pack areas (PLPA and
MLPA), pagable BLDL list (PBLDL), and a com-
mon service area. One set of page tables exists for
the common area, shared by all address spaces just as
they share the unique set of page tables for the
system area, this structure is indicated in Fig. 1.9.

Address Segment Page Real
space table tables storage
Common / .
area .
>
LSQA }<}=:> { PGT [MXN
L x
PGT 3
Region } = { . |
\\ PGT |- x
N
System [System
area area
[~ .

Pages not in real storage

i::] page frame allocated to this user

Fig. 1.8 Address mapping for a private user ares

Address Segment Page Real
space A table A table storage
SG (FF)
Common -
area : , —
Py :
PGT /""—i
(FF)
System . /__C;
area
SG (FF) PGT)
Common .

: . {n)
area : . System
SG (n) ares

[page frames for

System common area
area

Address Segment

space B table B

Fig. 1.9 Address structure for the common area

System queue area (SQA) ,

The SQA contains control blocks and tables for the
entire system, rather than for individual address
spaces. When OS IV/F4 is reloaded (IPL), the
Supervisor allocates segments (blocks of 64K bytes)
to SQA, as pre-determined during’system genera-
tion and optionally modified by the console opera-
tor. SQA segments are allocated downward from the
top of each address space (location 16,777,215 for all
virtual-storage regions). Just as it handles the
LSQA, the Supervisor allocates page frames to these
segments only as corresponding addresses are
referenced by active tasks.

Pagable and modified link pack areas (PLPA and
MLPA)

Reentrant load modules used by all address spaces
are retrieved into these LPAs from the system link
pack library (SYS1.LPALIB):

® Pagable SVC routines.

@ Standard access methods.

® /0 error recovery routines.

® Reentrant libraries used by language processors.
® User-generated reentrant load modules.

Designated load modules from SYS1.LPALIB
may optionally be loaded into the FLPA; all others
are loaded into the PLPA, as selected at IPL time.

Pagable bLDL list (PBLDL)

Just as for the Fixed BLDL table, the PBLDL is cre-
ated when OS IV/F4 is reloaded, as an image of part/
all of the directory -for the system link library
(SYS1.LINKLIB). Some (or no) LINKLIB directory
entries may be in FBLDL, some {(or no) directory
entries in the PBLDL, and the remaining entries are
retrieved from DASD as needed.

VIRTUAL STORAGE

Common service area (CSA)

The CSA is used by address spaces to communicate
with one another; this includes such systems tasks as
JES and VTAM as well as user address spaces. CSA
is allocated in integral segments (blocks of 64K
bytes) when OS IV/F4 is reloaded. Address spaces
allocate and release space in CSA by means of
system macro instructions. Page frames are allocated
only as necessary; the CSA is fully pagable.

1.2.6 Processing Jobs in Virtual Storage

This section explains how OS IV/F4 manages
address spaces and jobs prior to/during job process-
ing.

Prior to loading a user program

The console operator starts an initiator with a
START command, to which OS IV/F4 responds by
creating a new address space together with its LSQA.
A page frame is allocated within the new LSQA to
hold the segment table and first page table for this
address space. Other necessary control blocks are
then created in the LSQA, as shown in Fig. 1.11.

Prior to processing a job, the initiator reserves
sufficient external slots to contain all of its pages,
based on explicit REGION parameters of its JOB or
EXEC statements or the default region size for this
initiator. The region is allocated virtual addresses
beginning just above the highest address of the
system area.

The programs named in EXEC statements must
all be members of program libraries, partitioned
data sets in a special format created by the linkage
editor. The directory of each library contains the
names and sizes of all member programs. The
Supervisor first reads the directory, allocates suffi-
cient virtual storage to hold the requested program,
and loads the program into this storage area. If suffi-
cient page frames exist, the entire program can be
loaded into real storage; otherwise, page-out activity
begins while the program is being loaded, as shown
in Fig. 1.12.

Page management during execution _
After a program has been successfully loaded, it
begins execution. Under OS IV/F4, most installa-
tions operate several initiators plus TSS, VTAM ,
AIM, etc. Each initiator may receive virtual-storage
requests exceeding the number of allocatable page
frames; the total of all outstanding requests (and
consequent allocations) of virtual storage typically
exceeds the total real storage of the system by a large
factor, forcing the OS IV/F4 Supervisor to con-
tinually page out inactive pages from one or more
address spaces.

Corresponding to each page of each address space
is a page table entry, one of whose flag bits is the

CONIROL PROGRAM

Common area:
only one in a system

Individual user area:
User mode and content differ

with each address space

System area:

1
i only one in a system
1
1
t

Real storage Virtusl storage
................ :
) i
1 1
SQA i |
! i
PBLDL ; !
P PLPA, MPLA :
—n MB— i CSA LSQA
LSQA
“ LSQA
High - @
position ° :
addresses S 2
&8
2 3
GO Region
tow | Yo
position FLBA, FBLDL ! .
addresses System Fixed [
erea page Nucleus |oeeo-- i
—-08- l - Max. 1536

Segment table

address spaces

Page table group
PGT for common area

Segment entries
for common area

LSQA segment { T paT

PGT PGT

entries

Segment entries b
for regions T

PGT

1 et l 1
GT

Segment entries
for system area

P

SGT SGT

Fig. 1.10 Overall addressing of an address space

invalid bit. Whenever the CPU refererices a virtual
storage address, DAT hardware automatically
references the corresponding page table entry and
tests its invalid bit. If on, there is no page frame cur-
rently allocated to this page, and the DAT hardware
automatically generates a page fault interruption
(or page fault).

36

SGT

PGT l Page tables for systermn area

Whenever a page fault occurs, the OS IV/F4
Supervisor gains control and places the correspond-
ing task into wait state until the page satisfying this
request is brought into a main-storage page frame. If
an unallocated page frame already exists—in the
pool of such frames controlled by the super-
visor—the requested page is read into this frame,

Address Segment Page Real
space A table A table storage
SG (FF)
Common -
area : . A
SG (n) ']
PGT /”’"1 :
(FF)
System : /_:
area .
:
SG (FF) PaT 2
Common : : (n)
area . / System
SG (n) area
[:3 page frames for
System common area
area
Address Segment
space B table B

Fig. 1.9 Address structure for the common area

System queue area (SQA) ,

The SQA contains control blocks and tables for the
entire system, rather than for individual address
spaces. When OS IV/F4 is reloaded (IPL), the
Supervisor allocates segments (blocks of 64K bytes)
to SQA, as pre-determined during system genera-
tion and optionally modified by the console opera-
tor. SQA segments are allocated downward from the
top of each address space (location 16,777,215 for all
virtual-storage regions). Just as it handles the
LSQA, the Supervisor allocates page frames to these
segments only as corresponding addresses are
referenced by active tasks.

Pagable and modified link pack areas (PLPA and
MLPA)

Reentrant load modules used by all address spaces
are retrieved into these LPAs from the system link
pack library (SYS1.LPALIB):

® Pagable SVC routines.

@ Standard access methods.

@ 1/O error recovery routines.

@ Reentrant libraries used by language processors.
® User-generated reentrant load modules.

Designated load modules from SYS1.LPALIB
may optionally be loaded into the FLPA, all others
are loaded into the PLPA, as selected at IPL time.

Pagable bLDL list (PBLDL)

Just as for the Fixed BLDL table, the PBLDL is cre-
ated when OS IV/F4 is reloaded, as an image of part/
all of the directory for the system link library
(SYS1.LINKLIB). Some (or no) LINKLIB directory
entries may be in FBLDL, some (or no) directory
entries in the PBLDL, and the remaining entries are
retrieved from DASD as needed.

VIRTUAL STORAGE

Common service area (CSA)

The CSA is used by address spaces to communicate
with one another; this includes such systems tasks as
JES and VT AM as well as user address spaces. CSA
is allocated in integral segments (blocks of 64K
bytes) when OS IV/F4 is reloaded. Address spaces
allocate and release space in CSA by means of
system macro instructions. Page frames are allocated
only as necessary; the CSA is fully pagable.

1.2.6 Processing Jobs in Virtual Storage

This section explains how OS IV/F4 manages
address spaces and jobs prior to/during job process-
ing.

Prior to loading a user program

The console operator starts an initiator with a
START command, to which OS IV/F4 responds by
creating a new address space together with its LSQA.
A page frame is allocated within the new LSQA to
hold the segment table and first page table for this
address space. Other necessary control blocks are
then created in the LSQA, as shown in Fig. 1.11.

Prior to processing a job, the initiator reserves
sufficient external slots to contain all of its pages,
based on explicit REGION parameters of its JOB or
EXEC statements or the default region size for this
initiator. The region is allocated virtual addresses
beginning just above the highest address of the
system area.

The programs named in EXEC statements must
all be members of program libraries, partitioned
data sets in a special format created by the linkage
editor. The directory of each library contains the
names and sizes of all member programs. The
Supervisor first reads the directory, allocates suffi-
cient virtual storage to hold the requested program,
and loads the program into this storage area. If suffi-
cient page frames exist, the entire program can be
loaded into real storage; otherwise, page-out activity
begins while the program is being loaded, as shown
in Fig. 1.12.

Page management during execution)
After a program has been successfully loaded, it
begins execution. Under OS IV/F4, most installa-
tions operate several initiators plus TSS, VTAM ,
AIM, etc. Each initiator may receive virtual-storage
requests exceeding the number of allocatable page
frames; the total of all outstanding requests (and
consequent allocations) of virtual storage typically
exceeds the total real storage of the system by a large
factor, forcing the OS IV/F4 Supervisor to con-
tinually page out inactive pages from one or more
address spaces.

Corresponding to each page of each address space
is a page table entry, one of whose flag bits is the

CONITROL PROGRAM

Real storage Virtual storage
' !]. Common srea:
H ' e in 8 systemn
- SQA ; ! only on sys
' i
PBLDL i : —
PLPA, MPLA : //
—n MB-— CSA LSQA
LSQA
- LSQA
High - £ Individust user area:
position 2. . User mode and content differ
addresses § é £ with eech address space
X @ —— 2
w2 ;
a ¥ o 'l g ARy & ;
"v_,- . R - Rmﬂ w8 V»-, S
B 952 = f System area:
Low R S , :' only one in a system
position FLBA, FBLDL ! ;
addresses System Fixed [
erea page Nucleus po-oo-o '
-08- L 1. .. L. Max. 15636

Segment table

Segment entries
for common area

address spaces

Page table group
PGT for common area

LSQA segment { T paT
entries

Segment entries 4

for regions 1 PGT

Segment entries
for system area

PGT

mAm
L]

PGT

/

SGT

Fig. 1.10 Overall addressing of an. address space

invalid bit. Whenever the CPU refererices a virtual
storage address, DAT hardware automatically
references the corresponding page table entry and
tests its invalid bit. If on, there is no page frame cur-
rently allocated to this page, and the DAT hardware
automatically generates a page fault interruption
(or page fault).

36

SGT

SGT

PGT I Page tables for system area

Whenever a page fault occurs, the OS IV/F4
Supervisor gains control and places the correspond-
ing task into wait state until the page satisfying this
request is brought into a main-storage page frame. If
an unallocated page frame already exists—in the
pool of such frames controlled by the super-
visor—the requested page is read into this frame,

address space

Virtual stcrage

)

Establishing an

Allocating a
region

VIRTUAL STORAGE

Allocating a
program area

SQA
SYS 1.

LINKLIB [PBLDL Common Common
\/ PLPA area area
> |

° LsQA LSQA LSQA
svs1. — £ [> - [>

LPALIB 2
N < ~ ‘Region Program

< area
<> .Y FeLDL

SYS 1 B \\ FLPA System System
NUCLEUS Nucleus area area

Address space is 0S 1V/F4 aliocates Prior to program
created with its a region and reserves loading, OS IV/F4
LSQA by a START external pages when determines the size
command. starting a job. of the program from
Availability of the directory of its
. sufficient external library; the necessary
pages is confirmed. page frames are
secured inside the
region.
Fig. 1.11

Creating a new address space

Virtual storage

Common area
LSQA
<> a | s | e
C 1 2 3
Program loading
System area
Page
out

Fig. 1.12 Loading and execution of a program

Real storage

System area

Page in

External page

data set
|]
0, 3 :
&=]

37

9

CONTROL PROGRAM

Waiting for release

)

Page 2> of page fault Release of page fauit. Proces- Status of general program
fault sing may be continued.
/ Paging supervisor
Page Successful /
regaining
Real page which
Completion was inuse is
Request for of page out registered as an
eq allocatable page. .
real page Completion of
\\ Completion page-in operation
. of page out
. operation
Adequate N
many aloocatabie 9 External page
data sets .
inadequate
AN
Supplementing -/- ‘
of allocatable Page Page in Procqssmg of C::) Real
page repiacement paging 1/O storage

Taking away of real page whose change bit

i h : Corresponding
| of the storage device key. is ON. 10 each
: d devices
* Allocatiori of || Page || ~ . g
Request for external page out of channel S Slot queue
page-out data sets I sorting
based onload program g v

Fig. 1.13 General flow of paging process

whereupon the supervisor inserts the address of this
page frame into the page table entry for this address
space. Also, the invalid bit for this entry is turned
off. The supervisor then returns to the interrupted
program, which reattempts the instruction causing
the page fault, This sequence is shown in Fig. 1.13.

Should no unallocated page frame be available,
the OS IV/F4 Supervisor must create one or more
empty page frames. (It will typically attempt to
reclaim several frames at once, so as to meet future
page frame needs by this task and others. The reader
should review the preceding subsection on ‘‘Swap-
ping’’ for a discussion of how/why multiple frames
are released.) If an in-use page has not been
referenced for several seconds, it is eligible for page-
out. The OS IV/F4 Supervisor selects one or more
such pages and examines reference bits and change
bits in their corresponding page table entries. If any
page has its reference bit off, this page has not been
recently referenced and is a candidate for page-out.
If it also has its change bit off, the page has not been
altered by a CPU or channel since it was last loaded
into a main-storage page frame. An identical copy of
this page already exists on a paging data set, and the
main-storage copy need not be paged out. In other
words, the current main-storage copy can be dis-

38

carded (its frame allocated to another page); when
AND if this page is again referenced, the identical
copy can be retrieved from the page data set.

When the reference bit for a page is off but its
change bit is on, this page has been previously
altered but not recently referenced. If this page is
selected for paging-out, the OS IV/F4 Supervisor
must copy it to an empty slot, then add its page
frame to the pool of unallocated frames.

In this way, OS IV/F4 uses a combination of dis-
carding unchanged pages and paging out changed
pages to create empty page frames. When a job step
completes, all of its page frames are released to the
pool by the OS IV/F4 Step Terminator. This overall
technique is depicted in Fig. 1.13. .

1.3 CHANNEL DYNAMIC ADDRESS
TRANSLATION

Channel DAT is a feature of M series computers
which considerably advances the state of art for vir-
tual storage systems. OS IV/F4 fully supports this
feature, which facilitates allocation of real-storage
regions (described in Section 1.2.2) to discontiguous

http:f3l_u.1t

page frames. In prior virtual storage operating
systems, real-storage regions often required con-
tiguous page frames with ‘‘virtual addresses’’ identi-
cal to real-storage addresses, so that channels with-
out DAT capability could read/write into main
storage without suffering page faults.

Virtusal-storage addresses for channel programs
A channel program comprises one or more channel
command words (CCWs) chained together. A chan-
nel program is analogous to a CPU program, as
shown in Fig. 1.14,

Just as a CPU accesses virtual storage addresses
and dynamically translates them into real storage
addresses, an M series channel accesses CCWs in
virtual storage, whose operand and data addresses
are also in virtual storage, and dynamically translates
all of these addresses into real storage addresses.

Program Channel
e ¢ Program
o 8
instruction | 5 % | cow i
L] ‘
- s 3
Hardware Instruzct onllys s ccw 2| Hardware
fetches 8 8 fetches
{nstruction § § CCW 3
3 g P
¢§ (7] '
—
@ S = s @
Instruction
Execution n-2 cewi-2 Execution
Inst:t‘c‘:tnon Cewi
Instr:ctcon ccwl

Fig. 1.14 Analogies between CPU program and channel
program

Problems of non-DAT channels

In prior virtual-storage hardware, channels often
lacked DAT features; hence, their CCWs had to be
addressed directly in real storage, and their operand
and data addresses also had to reference real storage.
Furthermore, these real storage addresses often had
to be allocated to corresponding tasks for the dura-
tion of a job step (or interactive session), since chan-
nels could not sense when ‘‘page frames’ were
“‘reallocated’’ to other tasks. CPUs could sense such
reallocations, but channels could not.

Problems in retrieving CCWs

If a channel program were created in virtual storage
by a CPU, it might straddle two or more page
frames. If such frames were reallocated by the con-

VIRTUAL STORAGE

trol program, a non-DAT channel would be unaware
of this reallocation and would try to retrieve CCWs
from an unknown .area, causing an undiagnosable
software error.

A technique often used by recent operating
systems is to fix all page frames containing channel
programs (or parts of channel programs) so that
their contents are guaranteed. This preempts a subs-
tantial number of page frames merely to hold chan-
nel programs.

Problems in referencing addresses within CCWs
Operand and data addresses within CCWs refer to
various page frames. Non-DAT channels are
unable to detect when these frames are reallocated
to other pages, and they would read and write
unknown operands and data if these frames were
reallocated. Hence, operating systems supporting
non-DAT channels have typically been forced to fix
all pages containing operands and data referenced by
CCWs for the duration of a job step — or at least, for
the duration of an entire I/0 request.

Problems in stradding page frames

A further complication for non-DAT channels is
that initial addresses within CCWs do not indicate all
possible page frames into which reading ANDwriting
may take place; a channel may reference two or
more pages when executing a particular CCW.
Hence, a virtual storage operating system supporting
non-DAT channels must investigate all channel pro-
grams to determine how many page frames are
accessed by each CCW.

Typical solutions to problems with non-DAT

channels

Operating systems supporting channels without

DAT capability typically ‘‘solve’’ the above prob-

lems as follows:

® Copy all channel programs from virtual storage to
a page-fixed area controlled by the operating
system.

® Calculate real-storage addresses for all CCWs and
their operands.

® Rewrite CCWs as necessary, so that their data
areas are contiguous and in page-fixed storage.

® Drastically curtail opportunities for chained
scheduling and other performance-enhancing
techniques for modifying channel programs after
they have been issued by users.

The Channel DAT Solution

M series channels accept a special CCW command
code called transfer virtual and lock (TVL). When
issued by the OS IV/F4 1/0 supervisor, a TVL com-
mand causes the channel to interpret subsequent
CCWs as having virtual addresses. The Supervisor
typically issues a TVL command in the system
nucleus, pointing to the user’s channel program in
his virtual storage address space. The channel util-

"W

CONTROL PROGRAM

izes the segment table corresponding to this address
space; OS IV/F4 names this segment table in the
TVL command.

Channel DAT permits CCWs, operands, and data
addresses to be in virtual storage. Furthermore,
pages containing these CCWs, operands, and data
need not be fixed into main-storage frames
throughout entire job steps or interactive sessions.
The OS I'V/F4 1/0 Supervisor short-term fixes chan-

nel program pages at the begining of each I/0 opera-
tion. It also fixes operand areas referenced by the
channel program: control operands and data areas.
Hence, no page-fault interruptions occur during
channel operation. After each 1/0 operation com-
pletes, the 1/0 supervisor unfixes these pages. This
decreases supervisor overhead for 1/0 operations,
and yet allows compatibility with other similar
operating systems.

CHAPTER 2
JOB MANAGEMENT

2.1 OVERVIEW

OS IV/F4 Job Management performs the following

services to user jobs:

® Job scheduling
OS IV/F4 schedules and controls job flow includ-
ing initiation, execution, and termination of all
batch jobs. ,

® Master scheduling :
0OS 1V/F4 controls operator consoles and receives
inputs from operators at any time.

@ System management facilities (SMF)
OS 1V/F4 provides exit routines and other exits at
several points during job initiation, step initiation,
step execution, termination, etc. where each
installation rmay gather statistics about the perfor-
mance of the entire system (or of particular jobs).

In addition, OS IV/F4 provides a job entry sub-
system (JES) and remote entry services (RES),
which manage entry and return of jobs from local
and remote unit record devices, respectively.

JES is described in Section 2.2 of this chapter,
RES in Chapter 3.

2.1.1 Jobs and Job Steps

The basic batch-processing unit in OS IV/F4 is a job,
a connected sequence of processing tasks using a
collection of permanent and temporary data sets.
Each job comprises one or more job steps, single
executions using one set of I/0 devices and associ-
ated data sets. The distinction between ‘‘tasks,”
‘‘job steps,”’ ‘‘jobs,” and ‘‘sequences of related
jobs’’ may seem relatively arbitrary to the user, but
each of these terms is uniquely and formally defined
in OS IV/F4, just as for most other modern operat-
ing systems. These entities and their relationships to
one another are carefully defined in the present sec-
tion.

2.1.2 Job Flow

Input

To bring jobs into OS IV/F4, the console operator
must start one or more JES readers. (Users cannot
directly start JES readers.) Jobs can be read from
local card readers, magnetic-tape or DASD drives,
or—via RES—from remote terminals. JES tem-
porarily stores the image of each job—the collection
of card images—onto the SYS1.SYSPOOL data set.
Job control (JCL) statements are not interpreted
and processed at this time. After JES has suc-
cessfully read an entire job and transcribed it onto
the spool data set (SYS1.SYSPOOL), JES enters a
record for this job into the system job queue
(SYS1.SYSJOBQE data set). At this time, the job is
sorted onto a selection queue according to its
CLASS and PRTY parameters, which take the
values

ABC ...,0
and 0,1,, 13, respectively.

Job initiation

The console operator normally starts one or more
job initiators to process batch jobs from each class
(as designated by CLASS parameters on users’ JOB
statements). To each initiator corresponds one or
more classes, sequenced in priority order. As OSIV/
F4 completes processing a job, the corresponding
initiator picks the next job from the highest-priority
non-empty queue of unprocessed jobs. The initiator
interprets JCL statements for the selected job, allo-
cates system resources to it, and yields control to
this job. For temporary storage of interpreted and
processed JCL, the initiator uses a scheduler work
area data set (SWADS); one SWADS corresponds
to each active initiator.

Job execution

Each active initiator processes exactly one user job
in one virtual address space of 16 million bytes.
Thus, the number of concurrently executing jobs is
at most equal to the number of initiators. JES per-
forms all transcriptions of system input (SYSIN)
and system output (SYSOUT) data sets to unit-

CONTROL PROGRAM

record and other low-speed devices; this process is
usually called spooling of SYSIN and SYSOUT.

Step termination

After the first step of a job completes, the OS IV/F4
step-terminator routine automatically gains control
to perform post-processing of data sets and record-
ing of SMF data. If the job contains additional steps,
the initiator regains control and commences execu-
tion of the second, third, etc. steps. At the conclu-
sion of each step, the step terminator regains control
until no more steps remain in this job. The step ter-
minator decides whether any job steps should be
skipped, based on user-furnished conditions
(COND parameters) for these steps.

Job Termination
After all steps have been processed {or skipped. as

SYS1

appropriate), OS IV/F4 terminates the job. All
system outputs (SYSOUT data sets) are written onto
the spool data set, to await transcription by JES/RES
to their ultimate output devices, typically a line
printer and/or . card punch. SYSOUT is distributed
into classes according to user-furnished SYSOUT
parameters for certain temporary data sets.

Disposition of job outputs

The JES writer processes SYSOUT data sets after the
corresponding job completes, according to which
SYSOUT classes they were directed and the user-
furnished PRTY parameter on the JOB statement.
The operator manages each JES writer according to
the type of device it services, user-furnishes
SYSOUT controls, forms controls, print trains, etc.

Monitoring job execution and collecting usage data

.SYSJOBQE

I Start |
Initiator <> ' Stért l
writer

Modi . -
initiator v qu'fy l
writer
Start reader Stop \—-/ Output
initiator _/ writer

/"
Stop reader L1
[:E // / ~—— I Stop writer I
JES/RES /' Initiator (user) \. JES/RES; Line
[Card reader acdrem /| | address spece address printer
Initiator Initiator)
Magnetic \ / / Card punch
tape) JES inter- s | Jes a
] preter [™ i F i 4
/ reader : Execution Termi- | | writer i
f job t \
TS / Allocstor | OT100SteR L | nater Magnetic
= ST e =
- ' r<’>l WADS
Private " 8YS1. S Remote
Remote PROCLIB PROCLIB terminal
terminal —]

JES
interface
routine

Operator Master
command scheduler

Execution
of
command

N

Job is read into the system via a JES
reader.

JES . JES
reader Initlator writer

LL—" ot
SYSOUT o8t °

Initiator carries out preparation for job
execution or postprocessing.

SYSTEM SPOOL VOLUME(S) Job outputs {SYSOUT) are processed

Fig. 2.1 Outline of Job execution

42

by a JES writer.

SMF provides to each installation a flexible set of
entry points where locally-written routines to vali-
date, summarize, and evaluate resource usage data
— CPU time, channel programs, virtual-storage
pages, etc. — can be inserted. The routines can
monitor activity and efficiency of individual jobs as
well as aggregate system performance. If a particular
user job reaches a pre-selected CPU time limit, a
special installation-supplied routine gains control via
SMF; this routine can — for example — terminate
the job immediately, request a decision by the con-
sole operator, or change the charging rate for CPU
time for this job. With SMF, each OS 1V/F4 installa-
tion can collect perjob data needed for accounting
or charge-back purposes, volume-usage data, dataset
usage data, and the like.

Operator commands

All commands entered from the operator consoles
are accepted and processed by the OS IV/F4 Master
Scheduler. Other operator commands can be pre-
pared by users and entered before/with their JCL
statements. '

2.1.3 Components of Job Control

The three major components of the OS IV/F4 job
control function are job scheduling, master schedul-
ing, and the system management facilities (SMF), as
shown in Fig. 2.2.

Spool volumes

Local card
readers

Local printers and

JOB MANAGEMENT

2.2 Job Entry Subsystem (JES)

JES controls all original inputs and final outputs for
each batch job submitted through OS IV/F4. This
section describes the functions performed by JES,
plus a brief outline of how JES operates internally.
For details on the input-reader and output-writer
components of JES, the reader should study Sec-
tions 2.3 and 2.7, respectively. The present section
describes the following aspects of JES:

® Overview,

® Structure of the spool volume.

® Optimization of spooling performance.

o Contents and space control of spool volumes.

@ Interfaces between JES and user programs.

e JES parameters.

2.2.1 Overview

The job entry subsystem provided with OS IV/F4 is
JES, which serves as the point of entry for all jobs
and the function which produces all hardcopy job
output. To accomplish these functions, JES controls
local job-entry and output devices. A complemen-
tary OS IV/F4 facility, remote entry services (RES),
furnishes comparable facilities for remote batch ter-
minals. A special job entry source, the internal
reader facility, allows OS IV/F4 users to submit
system jobs: started tasks and time-sharing
LOGONSs. Tape and disk input are also supported

Checkpoint volume

Remote card readers

card punches

Remote stations

]
JES - queue RES
e] {Pointers to the
spoo! volumes)
Operator I ; Time Sharing

OS IV/F4

Fig. 2.2 JES I/O Relationships

CONTROL PROGRAM

through the internal reader facility. See Fig. 2.2 for

input/output relationships to the job entry sub-

system and OS IV/F4.

While each job is in OS IV/F4, the JES job queue
residing in pagable storage maintains a record for the
job. Job-related system records plus records related
to job input and output are maintained on external
spool volumes.

The system programmer during JES generation
and initialization— plus the operator during JES pro-
cessing—define and control the configuration of
entry sources and output destinations. JES provides
centralized control of job input, queuing, and out-
put, such that all jobs are controlled in the same
manner whether submitted from local or RJE
(remote job entry) devices, or through the Internal
Reader facility.

Fig. 2.3 outlines this section of the manual. As
" suggested in this figure, jobs that are batched for
execution (execution batch facility) do not go
through the same conversion and execution process
as other jobs. Other functions described below are as
follows:
® Configurations —configurations of local and RJE

devices, generation of JES, and specification of

the internal reader facility and spool volumes.

® Starting and stopping the job entry sub-
system—starting the default (system-generated)
subsystem, and initializing JES automatically via
data sets containing initialization parameters.

@ Controlling job submission and queueing —how to
submit a job to JES, the internal reader facility,
the RDR and RDRT procedures, the role of job
classes and priorities in job queuing, priority
aging, and placing of jobs in HOLD status.

® Controlling conversion and execution — JCL con-
version, scanning the accout number field of the
JOB card, defining a procedure library for the job,
specifying converter parameters, command
authority and recognition for JES and OS IV/F4,
control of initiators, and job monitoring.

® The execution batch facility —establishment of
the facility and writing an execution batch moni-
tor.

® Controlling output and output devices—how out-
put is queued and by what function, data set
enqueuing, device selection, separator pages and
separator cards, overflow, output routing, the
external writer and the XWTR procedure.

Parameters necessary for controlling various JES
functions are described in two manuals: FACOM
OS IV/F4 System Programmer’s Guide and
FACOM OS 1V/F4 System Generation User’s
Guide. These manuals contain detailed descriptions
of the implementation of each parameter. When
groups of parameters are described in this section,
the reader is referred to the system generation
manual or the initialization manual for implementa-
tion details.

44

Controlling Job

Submission and . RJE

Configuration queuing

Considerations

L o
Execution Controlling
batched convarsion
1 and
Jobs execution
Starting and
stopping Miscellaneous
JES

Output Control

XWTR
JES User-
writer Stan_c::'r’d written
wri writer

Fig. 2.3 Topics described under JES

During JES generation and initialization, the
system programmer can specify the configuration of
JES local devices, the JES internal reader facility,
and the JES spool volumes.

JES is created by a process called JESGEN. The
system generation process is designed so that the
operator can generate JES while stage II of SYSGEN
is in progress. Following JESGEN the operator must
issue a START command START JESBLD in order
to linkage edit JES into SYS1.LINKLIB and
SYS1.LPAIB.

Local devices refer to card readers, printers, and
card punches in an OS IV/F4 system for reading jobs
and writing output.

During JES generation, the system programmer
specifies the number of readers and writers to be
controlled by JES via the &NUMRDRS and
&NUMWTRS parameters. It is not possible to assign
additional devices to JES without regenerating the
system.

The system programmer can also specify JES pro-
cessing parameters for each device and indicate
whether a device is to be considered active or inac- .
tive upon completion of JES initialization. An active
(for example, a “‘hot reader’’) device is dynamically
allocated during JES initialization, and processing on
that device begins as soon as work is available. An
inactive device must be activated by the operator via
a JES START command.

During JES initialization, if the system program-
mer does not identify as many devices as were
specified during JES generation, JES selects devices
and dynamically allocates them. Devices are selected
according to lowest device address for each type of
device (reader, printer, punch), until the number

specified during JES generation is obtained or no
devices of that type remain. For a device to be
selected, it must be physically attached to the
system. For devices not identified to JES during JES
initialization, default paremeters established during
JES generation and initialization are used.

During JES processing, devices can be activated
via the JES START command and deactivated via
the JES STOP command resulting in their dynamic
allocation or deallocation.

Role of JES

JES reads two kinds of source statements: JCL state-
ments (including certain operator commands which
may be optionally submitted by users) and system
input (SYSIN) statements. Collectively, a sequence
of jobs—each comprising one or more JCL state-
ments plus associated SYSIN data sets—is called a
job stream or input stream.

JES processes most output data sets from a job
except those which are retained as permanent data
sets on magnetic tape or DASD devices. JES also
processes essentially all diagnostic messages from
language processors, utility programs, and applica-
tion programs. These outputs are written onto line
printers, card punches, and other output devices
intermixed in a precise and pre-defined sequence, so
that they can be easily retrieved and interpreted by
users.

The basic objective of JES is to handle system
inputs and outputs rapidly and efficiently. The tech-
nique of spooling SYSIN and SYSOUT from disk to
lower-speed devices has proven most efficient
among all alternative techniques utilized and evalu-
ated for prior operating systems. Spooling is de-
scribed in the following paragraphs. ‘

System input

JES reads several input streams-—typically
3-10—simultaneously and stores the JCL and
SYSIN data sets in a unique data set (named
““SYS1.SYSPOOL’’) which is permanently allocated
to one or more DASDs at each installation.
Relatively small installations can use part of one disk
drive for SYS1.SYSPOOL; intermediate size
installations may require an entire disk drive, and
large installations may need two or more drives for
spooling functions.

Storage of input streams on DASD is only tem-
porary; later, jobs in these streams are presented to
OS IV/F4 initiators one at a time, in priority
sequence, where they are processed just as if they
were read directly from local card readers, etc.

System output

Likewise, JES transcribes output data sets from
SYS1.SYSPOOL to one or more line printers, card
punches, or other output devices, as indicated by
user JCL. Here too, storage on DASD is only tem-
porary for these data sets.

JOB MANAGEMENT

Optimal speed and efficiency

Although JES requires additional main storage,
DASD space, and CPU overhead, its performance is
generally superior to other job-entry designs; hence,
JES is a mandatory service for each batch job
entered or returned to the user by OS 1V/F4.

Hardware/software components of JES

JES is a collection of OS IV/F4 system routines—for
controlling associated DASD data sets and low-
speed devices, using a substantial address space of
its own — which are divided into two major services:
e JEPS — job entry peripherals service.

e JECS — job entry central service.

JEPS operates all low-speed peripherals, whereas
JECS controls JES overall and allocates and manages
space within the SYS1.SYSPOOL data set. The latter
functions include buffer management and alt JES
interfaces to application programs, these interfaces
are identical among all compilers, assemblers, utility
programs, and user programs.

Contribution to system performance
The following six aspects of system performance are
particularly enhanced by the OS IV/F4 JES:

Unit-Record Device Speeds

JES creates and uses specialized channel programs,
which read ANDwrite multiple records with a single
EXCP macro instruction. This technique permits
these devices to operate close to their top speeds,
and it also reduces their per-record overhead on the
main CPU. These channel programs are efficient in
their usage of multiplexer subchannels and also in
reducing virtual-address manipulations by hard-
ware/software to a minimum.

Unit-record utilization

Since each card reader, card punch, line printer, etc.
can be used for multiple unrelated jobs, OS IV/F4
users need not be assigned specific devices. Essen-
tially any OS IV/F4 job can be submitted to the
system through any appropriate device, with com-
parable flexibility for receiving SYSOUT data sets.
Even if consecutive jobs are submitted on behalf of
different users in a continuous stream, JES operates
associated card readers, printers, etc. at full speed,
creating and maintaining internal job delimiters.

Simplified job scheduling

All JICL and source data sets for a job can be submit-
ted at one time, without concern for when and how
long each job step will run. Hence, card readers, card
punches, and line printers are committed to particu-
lar users only for as long as transcriptions to them
require; they need not be committed during the
execution of corresponding job steps, which can vary
emormously.

Magnetic
tape

" g

Jab queue
control

System inputs

l Start reader 'l
Stop reader 'l

Private
PROCLIB

JECS

Input units

Line printer

Card punch

l Writer 2

Systemn outputs

Start writer

1

Magnetic
tape

Abe v .
At B

Stop writer l'
I Modifiy writer I'

Writer 1

Managemant of spooling

Acquisition
and
relesse
of
buffers

10

operations
0 $poo!
volums

Alfocation
and
release

Entry to the job
queus, and
retrieval

SYS1.5YSJOBQE

JES buffer pool

of spool
space

o
Output units

COMMENTS:

Cancel writer

JES performs spooling for system input/output.

Readers and writers are reentrant modules to minimize their total need for virtual storage.
Prior to writing data to spool volume, equalization of load and optimization of access

are taken into consideration.

Fig. 2.4 Configuration of JES

st svsP00L>

[
SYS1.8YSPOOL

__/

SPOOL VOLUMES

JEPS:

|_—~One buffer

| L ogical cylinder

L/ 1
JES
interface

routing

SEQ,

processing
program

Job Entry Peripheral Service

JECS: Job Entry Central Service

Command
name

Shows operator command

AVEOHO0Ud TOULNOD

Flexible operation of JES readers and writers
Since reading source jobs and processing SYSOUT
data sets are chronologically decoupled from job pro-
cessing, a minimum number of readers can be
started by the console operator even if the number
of initiators is relatively large. Likewise, the number
of output writers can be raised or lowered according
to the available numbers of card punches, line prin-
ters, etc., without considering either the number of
input readers or the number of active or inactive job
initiators.

Minimal number of main-storage page frames
JES operates almost entirely out of virtualstorage
pages which need not be fixed into realstorage page
frames. Since readers and writers are re-entrant,
only one copy of their program logic need be fur-
nished in JES, plus associated 1/0 buffers and work
areas. Furthermore, these reentrant pages need not
be paged out; they are automatically discarded by the
OS IV/F4 Paging Supervisor during periods of light
activity, since they can be retrieved inte}ct from their
DASD library. .
Installation-defined configuration

Each installation can define one or more JES con-
figurations appropriate to its collection of unit-
record equipment, remote terminals, usage intensity
throughout the typical work week, size and speed of
DASD devices for spooling, etc. During each
reloading of OS IV/F4 (IPL), the console operator
can either accept system-generation default values
for JES or override them selectively.

2.2.2 Structure of the Spool Volume

Four elements of the spool volume are defined in
the following section and diagrammed in Fig. 2.5 :
® Spool volume

@ Spool data set

® logical cylinder

® initialization of a spool volume

JES uses the SYSI.SYSPOOL data set on each
spool volume to store all job input, job output, JES
control blocks, and system data such as the job jour-
nal. Spool volumes are identified to JES by their
volume serial numbers. A six-character name iden-
tifying the primary spool volume is specified in the
&SPOOL parameter during JES generation. A
&SPOOL parameter can be used during JES
initialization to override the JES generation
parameter. The primary spool volume must exist
during JES initialization.

Each volume with a volume serial number named
in the SPOLVOL parameter is considered a spool
volume by JES and is searched for a SYS1.SYSPOOL
data set. The maximum number of spool volumes is
also specified during JES generation by the

JOB MANAGEMENT

SPOLVOL parameter.

The system programmer also specifies how tracks
of the volumes are allocated and subdivided into
physical records by the ALOCUNIT and BUFSIZE
parameters. These parameters can be specified only
during JES generation.

JES also requires one system checkpoint data set
on a direct access volume to store a copy of the JES
queue and other information needed for warm start.
This data set must be on the primary spool volume.
See FACOM OS IV/F4 System Generation User’s
Guide for a description of how to allocate this data
set and SYS1.SYSPOOL data sets.

Spool volume

Each volume containing part/all of the
SYS1.SYSPOOL data set is called a spool volume.
Up to 10 DASD devices can be online with spool
volumes, whose mount status must be permanently
resident, i.e., never removed during processing. It is
desirable to keep other high-activity data sets off
spool volumes to avoid excessive contention for as-
sociated channels, control units, and access mechan-
isms.

Spool data set

All SYSIN and SYSOUT data sets for all jobs are
written into and out of the single SYS1.SYSPOOL
data set, which may possibly extend over two or
more volumes. To the user’s application program,
however, it appears that each SYSIN or SYSOUT
data set is directed to an independent DASD.

Logical cylinder

OS IV/F4 allocates space within the
SYS1.SYSPOOL data set by logical cylinders rather
than by blocks, tracks, physical cylinders, etc. Each
logical cylinder is the same size and comprises one
or more complete tracks, depending on the track
length for the corresponding DADS and user-
selected system generation parameters. The default
capacity of an OS IV/F4 logical cylinder is approx-
imately 40K bytes, equal to three tracks of a F478B
or F479B Disk Drive or three tracks of a F6625A
Drum.

The number of tracks per logical cylinder can be
changed during system generation or after any ‘‘cold
start’’ reloading of OS IV/F4 (“‘cold-start IPL"").

If most jobs at a particular installation submit
small SYSIN decks (500 card images = 40K bytes,
for example), most space of SYSIN logical cylinders
may be wasted. However, logical cylinders are also
used to temporarily store SYSOUT data
sets—approximately 500 print lines can be contained
in each 40K logical cylinder. Hence, wastage of logi-
cal cylinders on input must be traded off at each
installation against the CPU ovéerhead for allocating
and managing a larger number of smaller logical
cylinders, e.g., with only one or two tracks apiece.

CONTROL PROGRAM

| Logical cylinder
(3 tracks)

SYSIN data for
7 one job

N S
_/ S ysle“‘
ages

Fig. 2.5 Structure of spool volume

Spool volume initialization ’
Each logical cylinder on a spool volume is for-
matted into one or more fixed-length blocks; the

block size is constant across all spool volumes at a
particular installation, irrespective of device type.,
The default block size is selected during system
generation, subject to overriding by the console
operator during a cold-start IPL. The OS IV/F4
default value is 880 bytes.

During a cold start, all spool volumes are refor-
matted to the indicated block size, and the logical
cylinder maps are zeroed. During a warm start, OS
IV/F4 determines the block size from the pre-
viously-formatted spool volumes, as described in
Section 2.11.3.

2.2.3 Spooling Performance Optimization

As JES reads and writes SYSIN and SYSOUT data,
JCL statements, etc. to spool volumes, it employs
several techniques for balancing this I/0 load across
channels and spool volumes.

Spool space allocation

To allocate fresh logical cylinders — either for
newly-read SYSIN data or for newly-created
SYSOUT data — JES utilizes a special algorithm to
allocate an empty cylinder near the current position
of an available spool volume access mechanism. One

JECS

JES buffer pooi

one buffer
/

Acquisition
and release

of buffer

{/O operation |
to spool
volume

Management
of
spooling

Access arm

Allocation
and
release of
spool space

Logical cylinder
bit map

Fig. 2.6 Optimization of spooling

| Logical cylinder

Spool volumes

bit of the logical cylinder bit map corresponds to
each logical cylinder on each spool volume, as
shown in Fig. 2.6. This bit is turned on whenever the
corresponding logical cylinder is allocated for storing
SYSIN/SYSOUT, it is turned off when this logical
cylinder is released to the unallocated pool, after its
contents have appropriately processed.

Thus, JES uses essentially no references to spool
volume VTOCsS or other tables which are relatively
cumbersome to search.

I/0 Load Balancing

When a fresh logical cylinder must be allocated, JES
selects a spool volume which is relatively lightly
loaded at this instant. (If there is only one spool
volume at this installation, the choice is trivial.) This
choice is based on the average rate of accesses in the
past few minutes to each spool volume.

Having selected a spool volume, the empty logical
cylinder closest to the current access-mechanism
position is allocated for the new SYSIN/SYSOUT
data. In this way, a single SYSIN/SYSOUT data set
may be distributed over several different volumes,
in several discontiguous physical cylinders on each
volume.

JES buffer pool

All main-storage buffers in the JES address space
are centrally controlled, whether they are used for
input card images (input card reader or communica-
tions line), disk spool buffers, operator messages, or
output print/punch images. These buffers comprise
the JES buffer pool; a sufficient number must be
allocated at IPL time (defaulting to a system-genera-
tion parameter) so that no device need be idled due
to exhaustion of the pool. Only buffers actively in
use are page-fixed in real storage; hence, it costs the
installation no additional real storage to allocate a
generously large pool. :

When JES needs a fresh buffer, it attempts to allo-
cate one recently returned to the pool, since this
buffer is unlikely to have been paged out by OS IV/
F4.

2.2.4 Control and Space Management of Spool
Volumes

Contents of spool volumes

JES has total control over the contents of spool data
sets; no other system or :cer routine accesses these
data sets directly. The following data is spooled.

® Data from JES input readers
this includes all JCL and SYSIN data sets.
® Data from Executing Programs
this includes all SYSOUT data sets.
® Data from OS 1V/F4 Routines
this includes all system messages created during
JCL interpretation, program execution, step and

JOB MANAGEMENT

job terminations, plus the system log.

Spool space conservation

JES truncates trailing blanks from each JCL, SYSIN,
or SYSOUT record (or system message) prior to
writing this record into the spool data set. This effec-
tively converts all fixed-length records to variable-
length, although JES reconstructs the original for-
mat prior to presenting these records to application
programs or JES output writers.

Monitoring spool capacity

During routine operation of OS IV/F4, the storage
capacity of spool data sets may become nearly
exhausted. Hence, JES contains an installation-
defined threshold percentage (default of 80%);
when exceeded, the console operator is warned that
spool capacity is nearly reached. Any active JES
input readers are automatically stopped, so as to
avoid accumulating additional SYSIN data.

The console operator should attempt to reduce the
amount of spooled SYSIN and SYSOUT data by
starting as many JES writers as possible and halting
several initiators, so that new loads of SYSOUT
records are not created on the spool volumes.

When the spool-volume utilization has dropped at
least 10% below the threshold value, OS IV/F4
notifies the operator that sufficient spool capacity
now exists to resume normal operation of input
readers and initiators.

If spool volume utilization continues to grow, OS
IV/F4 notifies the operator each time it rises another
5% above the threshold value. If spool capacity is
entirely exhausted, executing jobs must be aborted,
since there is no room for their SYSOUT data, this is
a most undesirable situation and should be avoided
at any cost.

SYSOUT limitation

Most installations impose limits on the amount of
SYSOUT data written by each job. For example, if
an undebugged program enters an endless loop writ-
ing SYSOUT records, it can quickly exhaust spool
capacity. A default limitation SYSOUT for each job
can be defined by each installation. A user can
impose a SYSOUT limitation on a particular data set
by furnishing an QOUTLIM parameter on the corres-
ponding DD statement.

2.2.5 Interfaces Between JES and User Programs

As noted earlier, user programs cannot read/write
spool data sets directly; to read SYSIN data or write
SYSOUT records, they issue requests to JES, which
performs the actual input/output operations. Hence,
user address spaces must communicate with the JES
address space. SYSIN and SYSOUT data are handled
as independent sequential data sets, subject to cer-
tain limitations described in Sections 2.3 and 2.7. As

CONIROL FROGRAM

a job step terminates — normally or abnormally —
any associated SYSIN data sets are automatically
deleted by JES from the spool volumes; likewise,
after a SYSOUT data set has been completely
printed, punched, etc., JES returns all logical cylin-
ders containing this data set to the pool of unallo-
cated logical cylinders.

2.2.6 JES Parameters

Most parameters have default values, which each
installation sets while generating JES. The system
parameter library SYS1.PARMLIB contains a
JESPARA member, which holds these default
values. Whenever the system is reloaded (IPL), the
console operator has the opportunity to change these
parameters selectively. Alternatively, permanent
changes can be made to the JESPARA member with
the JSEUPDTE utility program.
At system generation or thereafter, an installation
can set the following JES parameters:
® number of buffers in the JES pool.
@ maximum number of input readers.
©® maximum number of output writers.
® maximum number of unit records read/written by
each JES channel program, i.e., string of chained
channel command words.
® volume serial number(s) of spool volume(s).
® spool capacity threshold. ‘
@ default limitation on SYSOUT records per job.
® size of a logical cylinder.

2.3 SYSTEM INPUT

Jobs are submitted through the job entry subsystem
and queued in priority order. The system program-
mer can use various parameters and facilities to con-
trol input streams, to control the specification of job
classes and priorities for jobs, to hold or release jobs,
to set the default class and/or priority for a job, and
to change these specifications by altering entries in
the JES job control table, using the JOB statement
SMF exit routine.
Jobs are submitted to JES in three ways:
® through card readers allocated to JES,
® through RJE devices allocated to JES, via remote
entry services,
® through a JES internal reader facility.

The following section describes major aspects of
JES readers:
@ flow of control
® starting and stopping a reader
® reading methodology
® transcription to the input queue
® command statements
® reader procedures.

50

2.3.1 Flow of Control

JES reads JCL statements and SYSIN data sets for
each job. Both types of inputs are stored on spool
volumes, as described in Section 2.2. After an entire
job has been successfully read, JES writes an entry
into the system job queue to indicate the job’s class,
priority, size, and spool-volumes location.
Optionally, the user may have designated the job to
be held on queue until explicitly released by the con-
sole operator or to be merely checked for correct
JCL syntax, rather than actually executed.

Optionally, the user can enter certain operator-
command statements with his jobs either prior to his
JOB statement or imbedded within his JCL state-
ments.

2.3.2 Starting and Stopping a Reader

To start a JES reader, the operator designates the
name of the associated reader procedure in a START
command. This procedure is a collection of control
statements previously entered as a member in the
system procedure library (SYS1.PROCLIB). The
reader procedure may optionally specify the device
address for a card reader, magnetic tape drive, or
DASD; alternatively, the operator can enter this
address with the START command. The operator
can start as many readers as have been generated for
this OS IV/F4 system. Certain readers can be auto-
matically started by OS IV/F4 immediately after the
system has been reloaded (IPL). In this case, corres-
ponding START commands must be included with
the system-startup member of SYS1.PARMLIB.

To stop a JES reader, the console operator enters
an appropriate STOP command. In the case of a
magnetic tape or DASD drive, JES automatically
stops the reader when it encounters an end of file
(EOF) record. In the case of a card reader, the JES
reader enters Wait State when the input hopper is
empty rather than automatically stopping. If addi-
tional jobs are subsequently placed in the hopper and
the device readied, JES resumes input reading; this
facility is called the hot reader function and is com-
monly used by OS IV/F4 installations.

2.3.3 Reading Methodology

This section describes the JES access method, how
JCL statements are read and partially processed, and
how cataloged procedures are merged with JCL
statements.

JES access method (JAM)

JAM is a special access method for reading several
punched cards with one channel program, to achieve
higher device efficiency and reduced system over-
head. JAM may only be used for EBCDIC-punched

cards, not column binary cards.
If an input stream is read from magnetic tape or
DASD, JES uses QSAM rather than JAM.

Reading and processing of JCL statements

JCL statements are not fully processed until the cor-
responding job is initiated by OS IV/F4. JES cannot
fully check JCL while reading source statements,
since this would cause substantial degradation of
reading speed. However, certain parameters of the
JOB statement are needed for scheduling each job;
JES scans, validates, and enters these into the con-
trol block for this job. For omitted parameters, JES
furnishes default values specified by the installation
in the associated reader procedure.

Merging cataloged procedures

Most batch jobs use one or more cataloged pro-
cedures to simplify their JCL statements. If the
operator has allocated SYS1.PROCLIB to the reader,
JES does not copy procedures into the JCL stream at
reader time, deferring this activity until the job has
been initiated. If the operator has allocated a locally-
developed procedure library to this reader, pro-
cedures are copied into the JCL stream at reader
time.

2.3.4 Transcription to the Input Oueue

All jobs are stored on spool volumes by JES while
awaiting execution. A contro! block for each job is
stored in the SYS1.SYSJOBQE data set.

Jobs are classified according to their class (CLASS
parameter of JOB statement), selection priority
(PRTY parameter), and various other attributes.

Nuil statement

f EXEC PGM=B
[execproc=x

-

JOB MANAGEMENT

Job classes are designated by the letters A - O, fif-
teen altogether. Each installation determines the
meaning of its own job classes according to such
attributes as:

@ heavy CPU usage,

e light CPU usage but heavy 1/0 usage,
@ trival length, g

® urgency, etc.

If the CLASS parameter is omitted, the corre-
sponding reader procedure assigns a default job class
to this job.

The JES queue

A job received by JES is enqueued in priority order
on the JES queue residing in the JES address space.
A jobis considered received by JES when it has been
totally read in and its control block placed on the
SYSJOBQE data set.

The queue entry for each job contains its name,
priority, a flag to indicate whether the job is held,
pointers to JES control blocks on the spool volumes,
and the JES process (JCL conversion, execution,
output processing, purge) for which the job is next
eligible. Jobs are selected in priority order for each
JES process. Logically, the overall job queue com-
prises subqueues for each JES process, plus 16 sub-
queues (one for each class) for executing jobs.

A job which is held is not removed from the
queue; instead it is made ineligible to be selected for
any JES processing. A job can be held at any time. If
an executing job is held by the console operator, it is
not eligible for output processing until released. A
job may be held by name, by class, or as a conse-
quence of all jobs being held.

é

JES

reader 1

{ execrem=a

I, Jos
X
Input stream “Procedure
First
private
procedure
library

Fig. 2.7 Reader and procedure library

Second
private
proced
library

Spool voiume

ure

CONTROL PROGRAM

Job class
p
[//As JOB, .. CLASS = A, PRTY = 7
paam
SYS1.5YSPOOL Selection
(/A2 JOB, .. CLASS = A, PRTY =10 A oriority of
ob
8 10 7 5

(//A1 JOB, .. CLASS = A,PRTY =5

e

K/m JOB, .. CLASS =C,PRTY = §

-l
Eoz JOB, .. CLASS = O, PRTY=12

pd

{// 01 JOB, .. CLASS = O, PRTY =3

e

//H JOB, CLASS = BPRTY =3,
TYPRUN = HOLD R

Fig. 2.8 Enqueuing jobs

Job class

There are classes of jobs possible under JES. One
class is used by the system: CRJE for time-sharing
LOGONS. The other 15 classes, (A—Q) are for nor-
mal jobs and can be used to help control the job mix.

The job class is specified on the JOB statement
(CLASS parameter). If not specified, JES assigns it a
default class corresponding to the device through
which the job is entered. All jobs entered through
the internal reader facility are considered to be
entered through a device described by the INTRDR
parameter.

There are no absolute rules for assigning job
classes, and some experimentation is necessary.
Generally, jobs of similar characteristics and with
similar processing requirements should be assigned
to the same class. For example, if several jobs are
time-dependent and must execute in nonpagable
dynamic storage, it may not be desirable to tie up all
of nonpagable dynamic storage by running these
jobs concurrently. These jobs may all be assigned to
class B (or C or D — class names have no inherent
meaning); then, if only one initiator is started that
can handle class B jobs, there will never be more
than one of these jobs executing at once.

Suppose the following assignments are made:

Class B = jobs that are time-dependent.

Class C =jobs with high CPU requirements.

Class D =jobs with high I/0 requirements.
The system programmer can specify initiator

52

{

051 15 input queues
\\\ //A
S— —
{\\\\ N e——— e —— T ’/’
\\\\‘————"”/’//
~ T~ e —— /‘
\\\ —_—— -
—_
____——” //
- -
______,’ —
S~ T —]
S—
L\\\ ~——— —— //
—
\\\ ~— e //j
—
~ T — —

Hold queue

JOB QUEUE

parameters such as:

11 CLASS=BCD

12 CLASS=CDB

I3 CLASS=DCB
If the three initiators are processing jobs with the
same priority and all necessary resources (for exam-
ple, I/0 devices and data sets) are available, then
three jobs — one from each of the three different
classes — run concurrently. If a job within one of the
classes has higher priority than others in its class, it
will be initiated first.

During JES initialization, the system programmer
can assign job classes according to running time,
memory requirements, file resources, and urgency
of jobs in each class. Characteristics of each class can
include some/all of the following:
® JCL conversion parameters.
® Whether a JES job log is to be produced for this -

class. The JES job log is a list of all messages and

replies issued by — or on behalf of — a job.

® Whether a system journal is to be saved for this
job. If it is not saved, the overhead is avoided but
the job may not be automatically restarted in case
of job failure or system restart.

® Whether this class is reserved for the execution

batch scheduling facility. (See Section 2.4.4)
©® Whether output is suppressed for jobs in this class

(e.g., started tasks).
® Define the procedure library (PROCnn).
©® SMF options.

® Whether the job is held.
® Whether JCL statements are to be converted but
not executed.

The system programmer should assign separate
job classes to jobs having distinct execution charac-
teristics such as:
® ratio of CPU to 1/0 processing
® use of special devices
® number of devices used
® use of real storage

Within classes, jobs are selected for initiation
according to their selection priorities designated by
the PRTY parameters of their JOB statements, rang-
ing from 0-—13. If several jobs have the same
CLASS and PRTY parameters, OS IV/F4 selects
them according to time of entry. If the PRTY
parameter is omitted from a JOB statement, JES
assigns a default value from the corresponding
reader procedure.

If the user codes TYPRUN=HOLD on his JOB
statement, the job is automatically held by OS 1V/F4
until released explicitly by the console operator.
When he issues a RELEASE command for this job,
it reenters the normal queue for its job class.

If the user codes TYPRUN=SCAN, OS IV/F4
marely scans the syntax of his JCL statements and
does not execute any job steps. Scanned jobs flow
immediately from JES through the OS 1V/F4 JCL
scanner/interpreter and back to JES for SYSOUT
processing; hence, they provide a convenient and
inexpensive way to validate JCL for long production
runs.

2.3.6 Command Statements

Most commands are entered by console operators
with typewriter or CRT devices. However, batch
jobs may contain the following operator commands:
CANCEL MOUNT START
DISPLAY RELEASE STOP

HOLD REPLY UNLOAD
LOG RESET VARY
MODIFY SET WRITELOG

Interpretation of commands depends on their posi-
tion within an input stream, as shown in Fig. 2.9. If
commands appear prior to a JOB statement but
following the delimiter of a previous job, they are
interpreted and executed at JES reader time, i.e., as
soon as read. If commands follow a JOB statement,
their interpretation and execution are deferred until
this job is initiated.

The JES reader procedure determines whether
each in-stream command should be executed, dis-
played and then executed, displayed and then
executed only. after confirmation by the console
operator, or ignored altogether.

JOB MANAGEMENT

2.3.6 Reader Procedures

JES starts an input reader in response to a START
command specifying a reader procedure. Standard
reader procedures are developed by each installation
and entered into the system procedure library
(SYS1.PROCLIB). For a card reader, the standard
procedure name is RDR; for magnetic tape or
DASD, the standard name is RDRT.

The internal reader facility

An internal reader jobstream is identified to JES by
the fact that an output data set specifying a special
user writer (INTRDR) has been allocated
dynamically, or via SYSOUT = (x,INTRDR) coded
on a DD card. JES recognizes such data sets and
places them in the input stream, thus allowing jobs
and system tasks to enter jobs into the input stream.

A job entered through an internal reader begins
with a //JOB statement and ends with the next //
JOB statement, or /*EOF statement, or by closing
the internal reader data set. Abnormal closing or
closing after a WRITE error causees deletion of the
last job. A/*DEL statement may be used to explicity
delete the last job.

The class to which the internal reader data set is
allocated, e.g., «class X if SYSOUT=
(X,INTRDR),becomes the MSGCLASS for the
submitted job unless the JOB statement contains a
MSGCLASS parameter. If the internal reader data
set is dynamically allocated without a specific class,
the MSGCLASS of the submitting job or TSS user
becomes the default. Two exceptions to this are
time-sharing LOGONSs and started tasks. If specified
for the internal reader allocation, the DEST
parameter becomes the default SYSOUT destination
for all jobs submitted via that internal reader.

JES can accept multiple jobs simultaneously via the
internal reader facility. OS IV/F4 uses it to pass
started tasks, TSS LOGON, and TSS background
jobs to JES. Also, jobstreams can be read from tape
and disk (any QSAM-supported device) and submit-
ted through the internal reader via the RDR pro-
cedure, and any job executing in OS IV/F4 can use
the internal reader facility to pass a job-stream to
JES.

Although the internal reader facility appears to
JES logically as muitiple input devices (maximum
set by the &NUMINRS parameter during JES
generation), the facility is controlled as one entity.
The number (&NUMINRS) of internal readers is
the number of jobs that can be received
simultaneously through this facility.

Characteristics of the facility are specified during
JES initialization as subparameters of the INTRDR
parameter.

The RDR procedure
The OS IV/F4 procedure for using the internal

CONTROL PROGRAM

INPUT
Delimiter _
Command statements
within a job EXEC s
Command ik EXECUTION
statement 4 Job B
EX Ec i l : ;';_:.*
JoB
Command A JES Initiator
statement 3 \ ‘| reader] :
a T - ;
k y on N BTt
i SYS1.SYSPOOL 4 £xecution of | |
by job ste .,
";] Initiator ! P
Delimiter
Interpretor |
Commaeand
statements ! i
statement 2 external & ——
to any job s Allocator [
Command
statement 1

{nput stream

commands executed

Command when corresponding
statement 2 job is initiated.
Command
statement 1 Master | Execution
scheduler of command

Command
statement 3

Commands executed when entered.

Fig. 2.9 Execution of command statements

reader facility to read jobs from tape or disk is named
KDJRDRI. The starter system provides the RDR
procedure in SYS1.PROCLIB to allow the operator
to start the reader (see Fig. 2.10). Basically the same
procedure can be used to read a jobstream from any
QSAM-supported device. The operator uses the
RDR procedure as follows:

//IKDJPROC EXEC PGM=KDIJVMA,

PARM="00600
// 300005010E00011A’
//KDJRDER DD UNIT=F610-2,
/1 LABEL=(,NL),
/! VOLUME=SER=SYSIN,
/1l DISP=OLD,
// DCB= (RELFM=F,
/! LRECL =80)

Fig. 2.10 The RDR procedure

® To read a jobstream from the second file of a tape
named JOBTAP on device 180:

START RDR,180,JOBTAP,LABEL=2,
DSN=JOBS
® To read a jobstream from a cataloged library of
jobs:
START RDR, F478B,
DSN=PRODUCTN(PAYROLL)
® To read a jobstream starting with a specific job on
a tape named JOBTAP, the operator must submit
a job to JES:

//READJOBx JOB

........

/1 EXEC RDR

//RDER DD DSN=JOBS,

/! VOL=SER=JOBTAP,
/1 UNIT=TAPE,

/! DISP=0OLD

//SYSIN DD

/ EDIT START=JOBx

/8 UNIT=

The system programmer can define internal
readers on EXEC statements in such a manner that

http:Fia-2.10

they are started conditionally. This allows the forma-

tion of a set of dependent jobs that can execute with-

out operator intervention. For example:

® To submit Jobs B and C if the first steps of Job A
complete successfully.

//JOBA OB
//STEP1 EXEC

// P PP

//

//

// PR

//STEPS EXEC RDR,

/1 COND=(8,LE)
//JISERDER DD DSN=JOBS(JOBB),
// DISP=SHR

// DD DSN=IOBS(JOBC),
// DISP=SHR

® To submit Job B if Job a terminates normally, Job
C if it terminates abnormally, and Job D in either
case.

//JOBA JoB ,
//STEP1 EXEC

// ..

//

// e

//STEPN EXEC RDR

//JISERDER DD DSN=JOBS(JOBB),
/l DISP=SHR

//STEPNI ~ EXEC RDR,COND=ONLY
//JISERDER DD DSN=JOBS(JOBC),
/1 . DISP=SHR
//STEPN2 EXEC RDR,COND=EVEN
//JISEFDER DD DSN=JOBS(JOBD),
/1 DISP=SHR

Installation-written procedures and programs can
further exploit the intemal reader facility to select
particular jobs, to generate special job streams, and
to allow operator submission of production
jobstreams.

2.4 JOB INITIATION

This section describes how jobs are selected for
execution and processed by OS IV/F4. Allocation of
resources is described in Section 2.5, execution of
jobs in Section 2.6.

2.4.1 Overview

How jobs awaiting execution are controlled by
OS IV/F4 is shown in Fig. 2.11.

As described in Section 2.3, batch jobs are entered
and enqueued for execution by class, priority, and
entry time. The SYS1.SYSJOBQE data set contains,

JOB MANAGEMENT

for each job, all attributes necessary to schedule it
effectively.

Each OS IV/F4 job initiator can process from one
to eight job classes. For example, Initiator N might
process classes C, D, H, B, A, in selection order. If
the following jobs were awaiting execution, with
indicated classes, priorities, and entry times,

Name Class Priority Entrytime

JOE D 3 01:00
SAM A 4 01:30
TOM C 2 01:30
HARRY D 1 02:00
BILL D 12 02:00
DICK D 3 02:30

then their order of selection by Initiator N would be
as follows:
TOM, BILL, JOE, DICK, HARRY and SAM.

To prevent low-priority jobs from remaining
enqueued indefinitely, OS IV/F4 provides a priority
aging facility, whereby the selection priority of each
job increases one level at fixed time intervals. After
a substantial time on queue, even a low-priority job
will gain a sufficiently high selection priority to
bypass a higher-priority job in the same class.

The H,L, and T subparameters of the PRICOND
JES-generation parameter specify, respectively, a
limit above which there is no incrementing, a limit
below which there is no incrementing, and an
integer representing the number of times that the
priority is incremented in a 24-hour period —subject
to the upper limit. The default of zero for the T sub-
parameter specifies no priority aging. ‘

The T subparameter specifies whether the feature - -
is used and, if so, how many times in a 24 hour
period the priority is incremented. For example,
PRICOND = (T =48) specifies a priority increment
of one unit every 30 minutes. The H subparameter
specifies the upper limit; a priority lower than the
value of the L subparameter specifies that the job is
not subject to priority aging.

Within each OS IV/F4 job initiator are the follow-
ing components: JCL interpreter, resources alloca-
tor, job terminator, and others. The JCL interpreter
converts JCL statements into control blocks after
fully validating them against one another and against
installation standards. These control blocks are writ-
ten into the scheduler work area data set (SWADS)
for this initiator.

The resources allocator allocates main storage,
I/0 devices, data sets, and other resources to the job
and its component steps. If dedicated data sets are
available for this initiator, the allocator will attempt
to pair them with user-JCL requests for dedicated
data sets, which serves to reduce the aggregate over-
head for allocating/de-allocating temporary data
sets.

The step terminator reclaims all resources allo-
cated to each job step and issues appropriate system
messages and return codes. The terminator decides

I Start l Starting an initiator
| Modify I Modifying attributes of an initiator

Stopping an initiator

Internal
reader

SYS1.SYSJOBQUE

(/1408, .. CLASS=A I___

(//JOB, .. CLASS=C r—-

Changing classes and/or
priority for an initiator

INTRDR

Holding a job

Displaying queue "
status of a job

Csancelling a job

Input queue

Fig. 2.11 Job queue control and initiation

Initiator g
Job -] User
queue i Initiator [0 TR processing
manager (|- L = program
Interpreter NS ?1_
L' ~--h
,‘,\'] _":
Selection |- Allocator : '\ J': :
of jobs ST
for T
execution
Data
management

Initiator

Terminator

Job
queue
manager

|

JES interface

Dedicated
data set

~ -
~ Se———— T -
S -
~— -
M —_———— -
-~ -
~ -
~ ————— -
~a _-
\\ ~—— _— _
~ -
r N —————T -
b T~ —— e A
S -

Output queue

WVID0¥d TOYLLNOD

http:Fis-2.11

whether subsequent job steps should be executed or
skipped.

To improve efficiency of processing small similar
jobs, OS IV/F4 furnishes an execution batching
facility, which bypasses most functions in job and
step initiation.

Users can optionally direct job outputs to an inter-
nal reader (INTRDR), which converts them to
system inputs including any necessary JCL state-
ments. Hence, one OS IV/F4 job can create one or
more independent jobs, to be executed at a later
time.

2.4.2 Job Queue Control

The SYS1.SYSJOBQE data set contains all data
about each job awaiting execution needed to
schedule it timely and efficiently. This data set con-
tains three principal queues: the input queue, output
queue, and held-jobs queue. The input queue con-
tains control blocks describing jobs awaiting execu-
tion, the output queue describes jobs whose output
is awaiting printing and punching, and the held-jobs
queue contains jobs which have been explicitly
delayed from selection by their submitters or by the
console operator.

Jobs remaining enqueued for several hours rise in
selection priority according to an installation-
defined algorithm. Usually limits are set for each job
class, such that the aging increments to its priority
can not exceed a certain maximum value. Also, the
interval between priority incrementings is defined
by each installation.

The following table indicates which operator com-
mands can be used to control the job queue:
Operator command Functions

DISPLAY Q Display number of jobs on
the input, output, and held-
jobs queues, by job class

DISPLAY N Display names of these jobs

DISPLAY job-name Display the class, current
selection priority, and rela-
tive position on the job
queue of the specified job

HOLD { Job-name} The specified job (or class of

Job-class jobs) is held from execution

Operator Command Functions
RELEASE |Job-name| 1y, specified job (or class of

Job-class [;5hs) is released for execu-
tion.
RESET The class of a job is reset to
its original value
CANCEL The specified job is deleted

and discarded.

JOB MANAGEMENT

2.4.3 Job Initiator Functions

In OS IV/F4, a job initiator prepares jobs for execu-

tion, yields control to individual job steps, and pro-

cesses job outputs destined for local/remote print-

ers, card punches, etc. The specific functions of an

initiator are as follows:

® selection of each job from the queue.

® interpretation of its JCL statements.

@ controlling its virtual storage area.

@ allocating 1/0 devices.

e disposing of its data sets after each step, and after
the entire job completes.

@ issuing volunme-mount messages.

@ initiating job steps.

® termination processing for job steps and the entire
job.

Using the selection algorithm described in Section
2.4.1, (priority aging) each initiator selects the high-
est priority job within the classes for which it is eligi-
ble. Selection occurs immediately after termination
processing for the job previously controlled by this
initiator (if any). If no jobs are enqueued for execu-
tion in classes for which this initiator is eligible, the
latter enters Wait state until an appropriate job
arrives.

If two or more initiators can process the same job
class, each will make its selection decisions indepen-
dent of the other. Of course, when one initiator has
selected a particular job, the latter is immediately
marked ineligible for selection by any other initiator.
If a particular class is not designated for selection by
any initiator on an OS IV/F4 system, any jobs
entered in this class remain enqueued indefinitely.
As soon as an initiator is started which is eligible for
this class, corresponding jobs become available for
processing.

Each initiator (and its stream of jobs) occupy one
address space. Time-sharing jobs also occupy
individual address spaces.

Just prior to executing the first step of a job, the
initiator processes all user-furnished JCL statements
and merges them with associated cataloged and in-
stream procedures. Interpreter routines create cor-
responding control blocks in the scheduler work area
data set (SWADS) for this initiator.

2.4.4 Execution Batch Scheduling

Execution batch scheduling is an extension of nor-
mal job scheduling to provide improved system per-
formance by gathering pseudo-jobs, execution batch
jobs, into a single input stream. Execution batch jobs
are typically submitted to JES one at a time; they
may have different input sources and different print
and punch output routings. Execution batch
scheduling collects related batch jobs into a single
stream and passes them as a single SYSIN data set to
a user-written execution batch processing program.

CONTROL PROGRAM

This reduces overhead associated with setting up
and processing numerous individual jobs and/or job
steps.

Processing programs using execution batch
scheduling represent a wide variety of application
areas such as:
® compile-and-go debugging compilers.

o file inquiry programs.
® hardware or software system emulators.

Typically, a program is suitable for execution
batching if it handles jobs or transactions of
relatively short duration. If not, the reduction in job
management overhead between successive jobs may
not be sufficiently large to justify use of this feature.

At JES initialization, each installation defines
zero, one or more job classes as dedicated to execu-
tion batch scheduling. One or more classes may be
assigned to each type of execution batch processing
program. Subsequently, the user identifies which
program he wishes by the appropriate class.

JES can support more than one execution batch
processing program to process various kinds of batch
jobs. Each execution batch processing program must
be associated with at least one JES initiator:

To determine which jobs are eligible for execution
batch processing, the JES reader scans ali JOB state-
ments. Instead of sending execution batch jobs to an
initiator, JES invokes an appropriate procedure from
PROCLIB to initiate the execution batch processing
program. The job then becomes part of the SYSIN
stream for the execution batch processing program.

For example, consider an order entry system that
requires an inventory update and an invoice for each
order. With standard processing, the normal pro-
cedure would be to batch all orders and submit them
as a data stream at the end of the day to an order
entry system.

However, this causes delay. Alternatively, the
installation could periodically batch together orders
received during a certain time period and run the job
several times a day. By using the execution batch
scheduling facility, orders can be processed as if the
order processing program were scheduled for every
order, but without the overhead of scheduling the
order program for the runs.

To implement this approach, the installation
would designate the order entry program as an
execution batch processing program. Orders would
be submitted as execution batch jobs by prefixing
order data that would have been submitted in batch
with a specialized JOB statement. For an order entry
program designed to read batch jobs at the end of the
day, the only logical changes would be (1) to enter
the input stream via SYSIN (this may be a
ccomplished by JCL in PROCLIB), (2) to recognize
the null statement as an order separator or to estab-
lish other terminators, and (3) to ignore all other
JCL statements. The program should print all infor-
mation relating to one order before processing the

next order, to distinguish one from another. JES
would automatically schedule the order entry pro-
gram sporadically and concatenate all orders into the
input stream, regardless of where they originated.

Submitting input to an execution batch processing
program
A representative input stream follows:

//JOB

JES control statements

input data

To submit data to an execution batch processing pro-

gram, the user should follow certain rules:

_® The first statement of each job must be a standard
JOB statement with the specialized CLASS
parameter. The class identifies which program is
to receive the input. The installation associates
certain classes with the execution batch facility via
the system procedure library. The accounting field
of the JOB statement is interpreted by JES just as
it is for normal jobs.

® All JES control statements are effective with
execution batch jobs, except /«QUTTPUT is
ignored.

@ No other JCL can be furnished. Remaining source
statements comprise the SYSIN data set for the
execution batch processing program, read just as if
they had been placed in a DD-DATA data set and
the execution batch program were invoked by
standard JCL. If the execution batch program
requires it, each transaction can be terminated by
a statement with $$ in columns 1 and 2.

In the order entry system example mentioned
earlier, the user might code the following:
//JOBxx JOB (INVO1,667),CLASS=X
/*ROUTE PRINT RMT47
order 1
order 2

The /*ROUTE statement would cause the invoice to
be printed at the indicated remote location.

Execution batch scheduling operations
Special actions take place when JES recognizes input
for an execution batch program.

If the execution batch program is not already -
active, JES automatically submits an internal job
which uses JCL from SYS1.PROCLIB to invoke the
execution batch processing program, awaiting
availability of an initiator. JES control cards are con-
verted to JCL comment statements. The entire input
stream, plus a JCL null statement added by JES, is
allocated to the execution-batch processing program
as a SYSIN data set.

If the execution batch program is already active
and awaiting another job, JES allocates the SYSIN
data set as above and processing begins immediately,

without any additional use of OS IV/F4 job manage-

ment.

The end of the SYSIN stream can be detected by
the execution batch program when it reads the JCL
null statement added by JES. After writing any
remaining SYSOUT data for the completed job, the
execution batch program attempts to read ahead in
its input file for another transaction. JES detects this
condition, temporarily forces the execution batch
program in to wait state, and performs job termina-
tion actions for the execution batch job (flushes out-
put buffers, releases input spool space, queues the
job for printing, and so forth). The execution batch
program remains active in the OS IV/F4 address
space.

When an execution batch program is waiting, JES
job selection is altered. Instead of scanning for any
class eligible to execute in that address space, JES2
first tries to start an execution batch job which may
be processed by the currently-loaded execution
batch program. If successful, processing can begin
immediately.

If no jobs of the same execution batch class are
awaiting execution, other job classes for this address
space are scanned in order. If a job is found, JES
internally cancels the execution batch processing
program; normal job scheduling then commences.

If no jobs of the other eligible classes are found,
the address space and execution batch processing
program remain idle, awaiting availability of a job in
any eligible class. If a job enters the system whose
class corresponds to the execution batch program
still in the address space, processing begins
immediately.

If an execution batch program ends (ABEND or
normal return to OS IV/F4) JES detects this as a
non-batch termination in the address space.

OS IV/F4 Job Management will again invoke the
batch program when another job for its class is
selected.

In summary, an execution batch processing pro-
gram must have certain characteristics:
® It must read all user input from a single sequential

data set.

® It must recognize a standard JOB statement (or its
own control statement) to determine the begin-
ning of each job.

@ It must recognize a standard null statement (‘*//”’
followed by 78 blanks) or its own control state-
ment to determine the end of a job.

® To ensure system integrity, it should not
dynamically allocate SYSOUT data sets.

The execution batch processing program will
receive an end-of-file condition when a card with $$
in columns 1 and 2 is read while processing a job.
The program may continue to the next logical sub-
file by simply resetting appropriate bits in I/0 con-
trol blocks and continuing reading, or by closing and
reopening the data set to continue reading at the card

JOB MANAGEMENT

following the $$ card.

Execution batch scheduling preparation

Job classes are reserved for execution batch jobs
with the BATCH initialization parameter.
“EXBTCH must be used the first seven characters
of each catalog-procedure name containing JCL
necessary for an execution batch program.

Each batch class should be associated with one
execution batch program. Each batch class should be
made eligible to execute in an OS 1V/F4 address
space by issuing an appropriate START command.

For each combination of batch class and initiator,
there must be a procedure in SYS1.PROCLIB
named ‘‘nnnnncid”’, in which:

e ‘‘nnnnn’’ are the five characters assigned to

&XBATCHN.
® ‘‘c’’ is the particular batch job class set in $$x.
® ““id’’ is the 1- or 2-character initiator identifica-

tion, corresponding to ‘‘nn’’ of the Inn parameter.

These procedures actually call the execution batch
program for each class, and define all data sets other
than the user input data set.

The procedures may be single-step, or they may
have preliminary steps before the step invoking the
execution batch program (stepname GO). The
execution batch program invoked by this step must
read its input from SY2 or the procedure must refer
to DDNAME=SYSIN on a DD statement used for
input by the processing program.

If a given batch class is eligible to be executed by
more than one initiator (the Inn initialization
parameter or $T operator command defines eligible
classes), the requirement for a separate procedure
name for each address space/class combination may
be satisfied by alias names of a single procedure, or
by distinct procedures which specify different work
fields.

The following example shows the internal job that
JES generates to initially load a program to process
batch class X jobs for Initiator 3, assuming a default
setting for &XBATCHN.

//833%8X3 JOB 1, SYS, MSGLEVEL=1

//FAKE EXEC $$38$X3
//GO.SYSIN DD DATA,
// DCB=BUFNO=1

The following is an example of a procedure that an
installation might use for a simple file inquiry pro-
gram that reads inquiry input from SYSIN, checks a
file, and prints responses to SYSPRINT:
//3%%38X3 PROC

//GO EXEC PGM=FINDPART

//SYSPRINT DD SYSOUT=A

//PARTFILE DD DSN=PARTFILE.MASTER,
DISP=SHR

//SYSUDUMP DD SYSOUT=A

CONTROL PROGRAM

The following JCL is for the order entry system

ecample:

//88$88X3 PROC

//MDSE EXEC PGM=0ORDERIN
//IMESSAGE DD SYSOUT=M
//INVOICE DD SYSOUT=(P,,INVC.)
//INVTRY DD DSN=MSTRINVT,
/- DISP=SHR
//ORDERS DD DSN=O0ORDERS,

// DISP=MOD

® //MESSAGE —the installation might identify
class M as a punch class. This will allow the sub-
mitter of the execution batch job to route the
invoices and messages separately, as shown in the
example in ‘‘submitting input to an execution
batch processing program’’ above in this section.

® //INVOICE —defines the specially prepared out-
put.

® //INVTRY —uses a master inventory list as a
base; it is updated as the orders are received.

® //ORDERS —accumulates the day’s orders.
ORDERS has a disposition of MOD because the
execution batch processing program is periodically
started and stopped during the day. ’

® SYSOUT data sets—messages and invoices. *

® SYSIN data sets—batch jobs processed by the
execution batch processing program.

2,45 Controlling Interpretation and Execution

The JCL for a job, LOGON, or started task is passed
through the JCL interpreter and changed into inter-
nal text. The job is then available for execution,
which occurs as soon as an initiator eligible to pro-
cess the job becomes available.

JCL interpretation

A job is eligible for JCL interpretation as soon as it is
placed on the queue. The interpreter is invoked sep-
arately for each job. JES passes to the interpreter
various parameters and a pointer to a procedure libr-
ary.

Procedure library selection

The JES procedure is located in SYS1.PROCLIB. It
defines job-related procedure libraries such as:
//PROC00 DD

//PROCOI DD

//PROCnn DD

// ;anyname DD

If multiple data sets are required they must be
specified as concatenations in the JES cataloged pro-
cedure.

Class-related initialization parameters can specify.
the library as PROCnn. If the procedure is un-
specified or specified but not found, PROCO00 is
used.

Execution control

Execution is controlled by the console operator by
instructing initiators how to process enqueued jobs,
as well as by monitoring each job and issuing com-
mands.

JES associates one logical initiator residing in JES
with each system initiator interfacing with JES. The
number of active logical initiators (subject to this
maximum) is controlled by the operator ($S Inn).
The operator can also associate with logical initiators
the order in which the classes are selected by JES.

Classes are associated with each initiator during
JES initialization, subsequently by the console
operator. During execution, each initiator selects
nonheld jobs in priority order within their classes in
the order specified for that initiator. That is, the
lowest priority job in the first nonempty class is
selected ahead of the highest priority job of the next
class—assuming neither job nor class is held.

Initiators can be automatically started by OS 1V/
F4 when it is reloaded, if the installation fur-
nishes the appropriate command statements in the
corresponding SYS1.PARMLIB member. This
approach is used for the standard batch-processing
streams of most OS IV/F4 installations, plus any
specialized initiators used for timesharing and other
nonterminating subsystems.

Stopping an initiator

The console operator stops an initiator with a STOP
command, which releases any resources it may hold
after the currently executing job—if
any—terminates. Among these resources are the
scheduler work area data set (SWADS) and any
dedicated data sets allocated to this initiator.

Modifying an initiator

To change attributes of an initiator, the console

operator issues a MODIFY command, which may

alter

® job classes: number and priority.

® upper limit for the scheduling priority for each job
class.

® assignment of a uniform scheduling priority with-
in a class, i.e., so that corresponding jobs are
selected FIFO (first in, first out).

2.4.6 The Initiator Cataloged Procedure

One initiator cataloged procedure (INIT) must be
contained in SYS1.PROCLIB for use by JES in

creating address spaces into which system initiators

are initialized. The console operator issues a START

command to create one system initiator for each

active JES logical initiator. The number of active

initiators must be controlled by starting and stopping

JES logical initiators.

Two standard initiator procedures are furnished

with each OS IV/F4 system:

INIT initiator without dedicated data sets

INITD initiator with dedicated data sets corres-
ponding to DD names such as SYSUTI,
SYSUT2, SYSUT3, SYSLIN, and
SYSLMOD.

2.5 ALLOCATING RESOURCES TO JOBS

Various hardware and software resources are
required by each job: virtual storage (when the user
specifies ADDRSPC=REAL, a fixed address
region in real storage), I/0 devices, tape and disk
volumes, data sets, and program libraries. Also de-
scribed in this section are broad aspects of setting up
aod processing data sets.

2.56.1 Allocating System Resources

Each batch job explicitly/implicitly requests an
address space (real or virtual storage), program libr-
aries, and data sets. Several of these requests are fur-
nished on the JOB statement, for example the type
and size of its address space (ADDRSPC and
REGION parameters). Other requests are furnished
on EXEC statements. Program libraries and other
data sets are invariably specified by data definition
(DD) statements.

The 1/0 allocation routines assign units, volumes,
and data sets in response to DD statements at step
initialization. Considerations and rules for coding
DD statements may be found in FACOM OS IV/F4
Job Management Functions and Facilities,
FACOM OS 1IV/F4 Job Control Language
Reference Manual.

The allocation routines attempt to improve system
throughput by satisfying requests in as parallel a
fashion as possible. Two types of serialization must
be considered: the status of devices eligible for
allocation must remain static while they are being
selected, and certain devices must be used in a serial
manner.

The allocation routines try to satisfy requests in
this order, from least serialized to most serialized:
® Allocating data set requests that require no

specific units or volumes; for example, dummy

and SYSIN/SYSOUT data sets. These requests
need not be serialized.

® Allocating data set requests to sharable units, that
is, direct access units with permanently resident or

JOB MANAGEMENT

reserved volumes mounted on them. These
requests need not be serialized.

@ Allocating communications devices.

® Allocating mounted volumes and devices that do
not need volumes. During this processing, the au-
tomatic volume recognition (AVR) function
reads serial numbers of any volumes which have
been premounted on serialized devices.

® Allocating online but unallocated devices that
need volumes mounted by the console operator.

® Allocating all remaining requests, for example,
those that need offline devices and/or devices
allocated to other jobs which can not be used con-
currently.

2.5.2 Storage Allocation

Each job can request an allocation of virtual storage
or real storage, specifying ADDRSPC=VIRT (the
default value) or ADDRSPC=REAL, respectively,
on its JOB or EXEC statements. Main storage is allo-
cated in units of 4096 bytes (4K) called pages. The
total address space is mapped onto external page
storage in units of 65536 bytes (64K).

Virtual storage for a user comprises a collection of
pages in main storage and on one or more paging
devices, specially designated DASDs. Each page
accessed by the user exists either in main storage, on
a paging device, or both. Not all pages needed by the
user are in main storage at once, they are retrieved
as needed from the paging device, as shown in Fig.
1.13.

Real storage for a user comprises a collection of
pages which are all in main storage during execution
of his job. Although the pages may be physically dis-
contiguous {(as shown in Fig. 1.12, dynamic address
translation hardware presents them as a logically
contiguous address space to the user, who need not
be aware of page boundaries, Real-storage regions
are not paged to paging devices, as are virtual-
storage regions; they are assigned at the beginning of
each job step for the duration of the entire step.

2.6.3 Specifying Unit information

The user must explicitly/implicitly provide
OS IV/F4 with information it needs to assign one or
more devices to a data set. To indicate what unit or
type of unit he wants, the user may code one of the
following volumes for the UNIT parameter of the
corresponding DD statement:

® unit address,

® device type (generic name).

® user-assigned group name (esoteric name).

The unit address is a three-character address
comprising the channel, control unit, and unit num-
bers. For example, UNIT =180 indicates channel 1,

CONTROL PROGRAM

Program

0D names

//

COBOL Program

DD statements in the input stream

Oata sets

DD statements

y

SELECT MASTER

ASSIGN TO MS... <7Z__,/:[!/MS DD DSNAME=MST
/TS DD DSNAME=TRN |

: /
SELECT TRANS »,/Jﬁ

ASSING TO TR

—_—

1151 EXEC

‘ /131 JOB ...

Data set names

Fig 2.12 Allocation of data sets to program input/output functions

control unit 8, and unit number 0. Specifying a unit
address, however, limits unit assignments; OS 1V/
F4 can assign only that specific unit. [f the unit is
being used the job must be delayed or canceled.
Unit add- -es should only be specified when
absolutely .iecessary.

A device type corresponds to a particular set of
identical input/output devices. By coding a device
type, the user allows OS IV/F4 to assign any avai-
lable device of this type. For example,
UNIT=F478B indicates that he wants the system to
assign an available F 47 8B disk drive.

Each installation can also define user-assigned
group names during system generation to identify a
group of devices having a common function. By cod-
ing a user-assigned group name, the user allows OS
IV/F4 to assign any available device from the group.
For example, if -~.e group named DISK includes all
F478B and F479B disk drives and the user codes
UNIT=DISK, OS IV/F4 can assign any available
F478B or F478B device.

If a group contains more than one device type or
class (for example, SYSSQ can refer to all tape
drives and DASDs), the user should not code the
group name when defining an existing data set or
requesting. a specific volume. The volume on which
the data set resides may reguire a device different
from the one assigned to it. For example, if the data
set resides on a tape reel, it must be assigned to a
tape drive. *

Requesting more than one unit

To increase operating efficiency, the user can
request multiple units for a multivolume data set or
for a data set that may require additional volumes.
When each required volume is mounted on a sepa-
rate device, execution of the job step is not inter-
rupted to allow the console operator to dismount and
mount volumes. The user should always request
multiple units when the data set can be extended to a
new volume if it currently resides on a permanently-

62

' Magnetic tape DASD
‘ contraol unit control unit
Unit group A
I
' F4798 |

§

Unit group B

F4798

F4798B

Device type name

Fig. 213 Esample of user-assigned unit groups

resident or reserved volume —permanently-resident
and reserved volumes cannot be dismounted in
order to mount a new volume.
The user requests multiple units by:
® furnishing a unit-count subparameter in the UNIT
parameter.
® requesting parallel mounting,.

The user can request parallel mounting when
making a specific or non-specific volume request.
OS 1V/F4 counts the number of volumes requested
(volume serial numbers specified on the DD state-
ment in cataloged or passed data sets). This is com-
pared with the volume count, if it has been
specified, and OS IV/F4 assigns the larger of the
specified number of devices.

When the UNIT parameter is unnecessary

OS IV/F4 can often obtain unit information from

sources other than the UNIT parameter. In these

cases, the user need not code the UNIT parameter.

® When the data set is cataloged. For cataloged data
sets, OS IV/F4 obtains unit and volume informa-
tion from the system catalog. However, if
VOL=SER =serial-number is coded on a DD
statement for a cataloged data set, OS IV/F4 does
not interrogate the catalog. In this case, the user
must code the UNIT parameter.

® When the data set is passed from a previous job
step. For passed data sets, the system obtains unit
and volume information from passed data set
information. However, if VOL=SER =serial-
number is coded on a DD statement for a passed
data set, OS IV/F4 does not interrogate passed
data set information. In this case, the user must
code the UNIT parameter. ’

® When the data set utilizes volumes assigned to
other data sets via VOLUME=REF syntax. In
this case, OS IV/F4 obtains unit and volume
information from an earlier DD statement
specifying the volume serial numbers or from the
catalog.

Determining numbers of volumes/units per
request

Before assigning volumes and units for a job step,
the allocation routines must determine:

® the maximum number of volumes per request.

® the maximum number of units per request.

® the number of units per job step.

The maximum numbers are calculated because
more units than specified may actually be used. The
rules for determining unit requirements are
explained below under ‘‘Units per Job Step””.

Minimum Number of Volumes per request

The maximum number of tape volumes or direct

access volumes required to satisfy any request is the

greater of:

® the volume count specified in the VOLUME
parameter.

@ the number of volumes whose serial numbers are
available.
The number of available volumes is one of the

following:

® The number of volumes whose serial numbers are
specified.

JOB MANAGEMENT

¢ The number of volumes obtained through
VOL =REF (only if VOL=REF was coded).

@ The number of volumes on which the data set
resided when it was passed (only if the request is
for an existing data set that was passed from a
prior step, and neither volume serial number nor
VOL =REF was specified).

e The number of volume serial numbers obtained
from the catalog (only if the request is for an
existing data set not passed from a prior step, and
neither volume serials nor VOL=SER was
specified).

o The number of volume serial numbers minus the
volume sequence number +1 (only if the request
is for an existing data set in which the volume
sequence number specified is not greater than the
number of volume serial numbers). For example,
if 8 volume serial numbers will be needed and a
volume sequence number of 4 is specified, then
the number of volume serial numbers to be allo-
cated would be 5 (=8 — 4 + 1); in this case, the
first three volume serial numbers will be dis-
carded, and the fourth volume would become the
first volume allocated.

¢ The unit count specified in the UNIT parameter
(only if the unit count specified is greater than the
number of volume serial numbers calculated in
the previous statement, or if the request is for a
new nonspecific direct access volume that does
not specify VOLUME=PRIVATE).

When the required number of volume serial num-
bers for a request is greater than the number of
specific volume serial numbers from passed data sets
or from the catalog, the remainder of the volumes
are assumed to be requests for nonspecific vilumes.

Maximum Number of Units per request

The maximum number of tape or direct access units

required to satisfy any request is equal to the greater

of:

® the unit count specified in the UNIT parameter.

@ the total number of volumes required (if parallel
mounting is requested).

When UNIT=AFF is specified, the unit require-
ments are obtained from the referenced request.
The number of units shared with the referenced
request is the number of units used by the
referenced request.

For direct access volumes, the number of units
required to satisfy a request specifying a generation
data group (GDG) name is dependent upon the unit
requirements of each member of that GDG.
Therefore, each member is handled as a single
request.

For direct access volumes, the number of units
required to satisfy a VSAM data set is dependent
upon the unit/volume configuration of the data set.
If the data set spans multiple device types, the total

1

http:infor.ma

CONTROL PROGRAM

number of units required is determined by the
OS 1V/F4 catalog manager additional tables will then
be generated by the scheduler to cause the allocation
of the required number of units. For VSAM data
sets, a specified unit count or parallel mount may be
overridden by the system once the unit require-
ments for the data set are determined.

Number of Units per job step

The number of units required for a job step is not

necessarily the sum of the unit requirements for

each request.
The following rules tend to reduce the total unit

requirements for a step:

® A volume can be allocated only to one unit.
Therefore, if more than one request asks for the
same volume, all requests will be allocated to the
same unit.

® For DASDs, storage and/or public requests can be
allocated to the same volume. Therefore, two or
more such requests may be satisfied with one unit.

The following rules tend to increase the total unit
requirements for a step:
® A permanently resident or reserved volume can-
not be demounted. Therefore, a volume which is
permanently resident or reserved will be assigned
its own unit (where it is mounted) even if,
through JCL specification, it was to share a unit
with one or more other volumes.
® For direct access, when more than one request
within a job step requires the same volume, that
volume must be shared. Therefore, a direct access
volume which is required by more than one
request will be assigned its own unit even if,
through JCL specification, it was to share a unit
with one or more other volumes.
® For direct access, a VSAM data set will require
additional units if the data set resides on more
than one device type.
® For direct access, an additional unit is required for
a private catalog volume if it is associated with
and/or used to retrieve volume information about
a particular data set.
® For direct access, when a GDG name is specified,
additional units may be requested to satisfy the
device type requirements of each individual mem-
ber of the GDG. '
® For tape, when conflicting unit assignments are
specified for tape volumes, the volume involved
in the conflict will be assigned its own unit. For
example, such a conflict would exist for VOLUM?2
in the following DD statements:
//DD1 DD UNIT=TAPE,
VOL=SER=(VOLUM]I,
VOLUME2?)
//DD2 DD UNIT=TAPE,
VOL=SER=(VOLUM2,
VOLUM3)

In this case, three units—one for each
volume—would be assigned. If the user had
requested via unit affinity that the same tape unit be
used for both DD1 and DD2, then only one unit
would have been assigned.

2.6.4 Volumes

A volume is a media unit for data such as a reel of
magnetic tape, a disk pack, or a drum. Each volume
is identified by a volume serial number of 1-6
alphanumeric characters, which is typically written
onto the volume itself in machine-readable form
and also onto an external label to facilitate han-
dling/recognition of the volume by the console
operator.

Yolume attributes
Attributes serve to determine eligibility of a
volume for dismounting and to control which data
sets can be allocated to it. Volume sharing is
defined as usage of a volume for two or more data
sets within one job step or for two or more data sets
accessed by concurrently-executing job steps.
Attributes of magnetic tape and direct-access
volumes are the mount attribute and use attribute.
The nonsharable attribute may be assigned only to
direct access volumes.

Mount and use attributes

Every volume is assigned a mount and use attribute
either when the OS IV/F4 system is loaded (IPL)
viaa VATLST or when the volume is first used by a
job. The mount attribute controls volume
demounting. The use attribute helps control alloca-
tion of mounted volumes to data set requests. The
mount and use attributes are as follows:

Mount

— Permanently resident

— Reserved

— Removable

Use

— Public

— Private

— Storage

— Scratch

A private volume can only be allocated when its
volume serial numbers are explicitly or implicitly
specified. o~

A public volume is a direct-access volume eligi-
ble for allocation of temporary data sets when no
specific volume is requested (and PRIVATE is not
specified).

A storage volume is a direct-access volume eligi-
ble for allocation of both nontemporary and tem-
porary data sets when no specific volume is
requested (and PRIVATE is not specified). Storage
volumes are primarily used for non-temporary data

sets; temporary data sets will be assigned to storage
volumes only if they cannot be assigned to public
volumes.

A magnetic-tape scratch volume is used tem-
porarily within one job. After the latter completes,
the reel is left mounted for use by subsequent jobs.

The following points list the mount attributes and
describe how the mount and use attributes are
assigned to a volume:

@ Permanently resident volumes cannot be dis-
mounted. Only direct access volumes can be per-
manently resident. Although the user may desig-
nate all direct access volumes as permanently resi-

dent in the volume attribute list

(VATLSTxx) in SYSI.PARMLIB, the following

volumes are always permanently resident:

1) volumes that cannot be physically demounted,

such as drum-storage volumes.
2) the IPL volume.

€

JOB MANAGEMENT

3) any volume containing system data sets such as
SYS1.LINKIB and SYS1.PROCLIB.

Any installation can assign to a permanently

resident volume a use attribute of ‘‘public,”” *“pri-
vate,” or ‘‘storage’’ in the VATLST member of
SYS1.PARMLIB; the default attribute is
‘“‘public’’.
Reserved volumes remain mounted until the con-
sole operator issues an UNLOAD command. Both
direct access and tape volumes can be reserved. A
volume becomes reserved as a result of a MOUNT
command or a VATLST entry (for direct access
devices only). A volume is usually designated as
“reserved’’ to avoid repeated mounting and dis-
mounting when used by many jobs.

An installation can designate a reserved direct
access volume as ‘‘public,”” ‘‘private,”’ or
‘“‘storage.”” The use attribute is assigned to the
volume either in the VATLST member of

Volume Temporary Nontemporary
state data set data set How assigned How demounted
Type of volume request
Pubtic/ Nonspecific Specific VATLST entry or by default Always**
Permanently or spacific mounted
resident*
Private/ Specific Specific VATLST entry Always**
Permanently mounted
resident*
Storage/ Nonspecific Nonspecific VATLST entry Always**
Permanently or specific or specific mounted
resident*
Public/ Nonspecific Specific VATLST entry or MOUNT UNLOAD or
Reserved* or specific command VARY OFFLINE
i commands
Private/ Specific Specific VATLST entry or MOUNT UNLGCAD or
Reserved (Tape command VARY OFFLINE
and direct (MOUNT command only for commands
access} tape.)
Storage/ Nonspecific Nonspecific VATLST entry or MOUNT UNLOAD or
Reserved* or specific or specific command VARY OFF LINE
. commands
Public/ Nonspecific Specific VOLUME=PRIVATE is not When unit is
Removabie or specific coded on the DD statement. required by
(Tape and {A nonspecific request and a another volume
direct access) temporary data set for taps
also causes this assignment.)
Private/ Specific Specific VOLUME=PRIVATE is coded At job termination
Removalbe on the DD statement. or when the unit
{Tape and {Specific request or a is required by
direct access) nontemporary data set for another volume.
tape also causes this
assignment.)

+ Direct access volumes only.

<+ Note that VARY OF FLINE effectively accomplishes dismounting.

Fig. 2.14 Summary of volume type and data set requests

CONTROL PROGRAM

SYS1.PARMLIB or in a parameter of the
MOUNT command, depending on how the
volume becomes reserved.

A reserved tape volume is always private.

©® Removable volumes are neither permanently resi-
dent nor reserved. They can be demounted either
after the end of the job in which they are last used
or when the unit on which the volume is mounted
is needed for another volume.

A use attribute of ‘‘private’’ or ‘‘public’’ can be
assigned to a removable direct access volume
when the PRIVATE volume subparameter is
coded or omitted, respectively.

A removable tape volume can be assigned a use
attribute of ‘‘public’’ or ‘‘private’’. The use
attribute of ‘‘public’’ is assigned when the PRI-
VATE subparameter is omitted, a nonspecific
volume request is made, and the data set is tem-
porary (a system-generated data set name or a dis-
position of DELETE). The use attribute of “‘pri-
vate’’ is assigned when the PRIVATE sub-
parameter is coded, a specific volume request is
made, or the data set is nontemporary (a non
system-generated data set name or a disposition
other than DELETE.) '

Fig. 2.14 summarizes the types of volumes that
satisfy specific or .nonspecific volume requests for
temporary or nontemporary data sets; how these
attributes are assigned; and how volumes are
demounted.

Nonsharable attribute

OS IV/F4 assigns the nonsharable attribute to direct
access volumes that may require demounting during
execution of a step. When a volume has the ‘‘non-
sharable’ attribute, it cannot be assigned to any
other data set until the nonsharable attribute is
removed. It is removed at the end of the step that
was using it as nonsharable.

The nonsharable attribute is never assigned to a
permanently-resident or reserved volume. It is
always assigned to a volume used to satisfy any of
the following requests:
® specific volume request that specifies more

volumes than devices.
® a nonspecific volume request if it specifies PRI-

VATE and a volume count greater than the num-
ber of devices.

® a request for unit affinity with an earlier data set
defined in the job step, when the data sets reside
on different volumes.

® arequest for deferred mounting of the volume on
which the data set resides.

Fig. 2.15 shows the OS IV/F4 action for sharable
and nonsharable requests.

To illustrate when the nonshaarable attribute is
set, suppose JOBA has indicated a need for two
volumes but only one unit is specified. In this case,
the operator will later have to mount JOBA’s second
volume. JOBB is willing to share the first volume
mounted. If JOBA were to request mounting of the
second volume while JOBB is executing, JOBB
would fail. To avoid this problem, the system marks
JOBA's volume request as ‘‘nonsharable’’ so that no
other job can use these volumes while JOBA is
executing.

Satisfying specific volume requests

In the following cases, OS IV/F4 can satisfy a

request for a specific volume that is already

mounted:

® The volume is permanently resident or reserved.
The volume is assigned regardless of the
requested use attribute, and the use attribute is
not changed by the allocation.

® The DASD volume is removable, does not have
the nonsharable attribute, and is being used by a
concurrently executing step. If the user’s request
would make the volume nonsharable, OS IV/F4
delays assigning the volume to his job until all
other job steps using the volume have terminated.

® The DASD volume is removable but not allo-
cated. The use attribute (private or public)
assigned to the volume is determined by presence
or absence of a PRIVATE subparameter.

® The tape volume is a scratch volume and is not in
use. The use attribute of private is assigned to the
volume if the request is for a permanent data set
or if PRIVATE is coded.

Fig. 2.16 shows how user requests affect use
attributes.

The request is:

The volume is allocated:

Sharable Nonsharable
Sharable allocate the volume wait*
Nonsharable wait*

+ The operator has the option of deleting the request. The request will always fail if waiting is not allowed.

Fig. 2.15 Description of volume allocations with respect to sharable requests

JOB MANAGEMENT

. The volume is:
The request is: Private Public
Private stays private changes to private
Public stays private stays public

Fig. 2.16 Private and public volume requests

Satisfying nonspecific volume requests

There are four types of nonspecific volume
requests:

® a private volume for a temporary data set

@ a private volume for a nontemporary data set

® a nonprivate volume for a temporary data set

@ a nonprivate volume for a nontemporary data set

OS IV/F4 satisfies these requests as described
below. Since it satisfies the first two types of
requests in the same way, they are described jointly.
o For a nonspecific volume request for a private

DASD or tape volume, OS IV/F4 requests the

console operator to mount a volume. He should

furnish a volume with most/all space available,
giving the user control over all space on the
volume. Once mounted, the volume is assigned
the use attribute of ‘‘private.”’

® For a nonspecific volume request for a non-pri-
vate direct access volume that is to contain a tem-

porary data set, OS IV/F4 attempts to assign a

public or storage volume that is already mounted.

If no space is available, it requests the operator to

mount a removable volume.

If OS IV/F4 selects a mounted volume, its use
attribute remains the same. If a removable
volume is mounted, the system assigns it the use
attribute of ‘‘public.”’

For a nonspecific volume request for a non-pri-
vate tape volume that is to contain a temporary
data set, OS IV/F4 assigns a scratch volume that is
already mounted, or it requests the operator to
mount a tape volume. Once mounted, OS IV/F4
assigns the volume the use attribute of ‘‘public.”

® For a nonspecific volume request for a non-pri-
vate direct access volume that is to contain a non-
temporary data set, OS IV/F4 assigns a storage
volume if one is mounted on an eligible device.

Otherwise, it treats the request as a nonspecific

volume request for a private volume.

For a nonspecific volume request for a non-pri-
vate tape volume that is to contain a nontempor-
ary data set, OS IV/F4 treats the request as a non-
specific volume request for a private volume.

Deferred mounting of volumes

If a job step defines a data set that may not be
needed, depending on conditions determined during
execution, the user can request (using the DEFER

subparameter) that OS IV/F4 not mount volume (s)
containing the data set until the latter is opened.
This can eliminate unnecessary operator mounting
of volumes on direct access devices. No other job
step can use deferred-mount volumes until the job
step specifying DEFER ends. If DEFER is coded for
a new data set which could be placed on a direct
access device, DEFER is ignored.

1/0 load balancing

OS 1V/F4 attempts to satisfy nonspecific volume
requests so as to optimize the balance on channels,
control units, and devices. Whenever the step initia-
tor chooses a device in this situation, it scrutinizes
the current load on each of these 1/0 facilities and
chooses that device and path—among all devices
capable of satisfying the nonspecific request—which
is lightest loaded at present. Loads are estimated
according to intensity of I/O activities on these
devices and paths over a recent fixed-length time
interval.

2.5.6 Data Sets

This section discusses four kinds of data sets: tem-
porary, non-temporary, dummy, and dedicated.
Temporary data sets are created, used, and deleted
within a single job; they are used for intermediate
working storage. Nontemporary data sets are
typically retained between two or more related jobs.
All non-temporary data sets on DASD must have
data set names, identifiers of 1—44 characters
divided into simple names (at most eight
alphanumeric characters) separated by periodes
). '

Dummy data sets are used to bypass 1/0 func-
tions requested by executing programs. If a program
reads a dummy input data set—indicated by a first
operand of “DUMMY"”’ on the corresponding DD
statement — it receives an immediate end-of-file sig-
nal from OS IV/F4. If a program writes a dummy
output data set, output records are automatically dis-
carded by OS IV/F4 data management.

Dedicated data sets may be permanently allocated
to an initiator by the cataloged procedure which
started it. Dedicated data sets are used for the same
functions as temporary data sets; their contents may
not be passed between jobs. The performance

CONTROL PROGRAM

e —
EE e e e PR P N e

PRSP A SN

INITIATOR
SYS1.PROCLIB
Interpreter
Initiator procedure
Allocator

/IWORK 1DD...

R R

.

dd name
WORK 1

//WORK 2 DD ...r____ TP — dd name

\/ : ‘ - ’ :) :;’\(‘: WOHK 2
Enan T PR

Allocation of two ;3\'}».«.;
dedicated data sets

!

b st 2, LRI

B IR D Soawied

o Ste . P
cay Aty ‘s

‘o i OF JOBSTEP |-

R PR ey

] EXECUTION

Input stream

//DS 1 DD DSNAME=
&&WORKI

//DS 2 DD DSNAME=
&&WORK 2

Requests for dedicated data sets

Fig. 2.17 Definition and use of dedicated data sets

advantage of dedicated data sets over temporary data
sets is primarily in reduced CPU overhead and tur-
naround delays. Each time a temporary data set is
allocated or deallocated, OS IV/F4 expends con-
siderable effort in selecting an available unit, read-
ing its VTOC, and allocating space on this volume.
Since dedicated data sets are pre-allocated, most of
this overhead is avoided. Another advantage of
dedicated data sets is that an installation can
deliberately assign them to channels and devices to
achieve balance among these 1/0 facilities:

The user requests a dedicated data set condi-
tionally, since the initiator which selects his job
may/may not have dedicated data sets allocated to it.
If not, his request will be automatically satisfied with
a temporary data set allocated by OS IV/F4. If a cor-
responding dedicated data set exists but is too small
to satis?y his request, an ordinary temporary data set
will be allocated. Hence, the request will be satisfied
with one of the dedicated data sets for this initiator
(if any) only if certain attributes of size and format
match pre-existing attributes of the corresponding
dedicated data set, as shown in Fig. 2.17.

2.5.6 Program Libraries

The system library of executable programs is named
SYS1.LINKLIB; it stores the OS IV/F4 routines,
compilers, Assembler, utility programs, linkage edi-
tor, loader, sort programs, and—at the option of
each installation—frequently-used application pro-
grams. Users need not specify LINKLIB as their pro-
gram library, since it is the default source of
executable programs.

Each installation—or user—can define an arbitr-

ary number of private libraries of executable pro-
grams. A private library must be defined in each job
whre it is used. If it is used in only one or two steps
of a job, it can be defined as a step library by a
STEPLIB DD statement of the following form:
//STEPLIB DD DSN=data-set-name, . ..

A STEPLIB statement must be furnished in each
step where the library is to be used.

A job library is analogous to a step library, except
that it is available for all steps of a job:

//JOBLIB DD DSN=data-set-name, . ..

The JOBLIB statement immdiately follows the
JOB statement, preceding the EXEC statement for
the first job step.

It is possible to furnish both job and step libraries
for a single job. In this case, the directory of the
specified step library is searched first for the
requested program (member of the program library,
which is a partitioned data set). If the requested pro-
gram is not found in the step library, OS IV/F4
searches the directory of the job library (if fur-
nished). If the requested program is in neither the
step nor job library, OS IV/F4 searches for it in
LINKLIB.

A temporary program library can be created,
used, and deleted within a single job. A temporary
library is merely a temporary partitioned data set
used as a program library.

2.6.7 Status and disposition of data sets

Disposing of data sets at the end of a job step is

known as disposition processing. The user requests
disposition processing for a non-VSAM data set by
coding the DISP parameter on the DD statement
defining the data set. (VSAM data sets are handled
differently. For information on VSAM, the user
should refer to the FACOM OS IV/F4 VSAM
Functions and Facilities and FACOM OS 1V/F4
AMS Commands Reference Manuals.) In the DISP
parameter, the user can code the following sub-
parameters:
® Data set status as the first subparameter, indicat-
ing whether the data set is new, old, sharable with
other jobs, or modifiable.
® Normal disposition as the second subparameter,
indicating how the data set should be handled if
the job step terminates normally.
® Conditional disposition as the third subparameter,
indicating how the data set should be handled if
the job step terminates abnormally.

If the user omits any of these subparameters — or
if he omits the DISP parameter entirely —
OS IV/F4 supplies default values, as described
under ‘‘Default Disposition Processing.”’

Data set status

The user indicates the status of a data set by coding

one of the following values:

® NEW — the data set is being created in this job
step.

® OLD — the data set existed before this job step.

o SHR — the data set existed before this job step
and can be read simultaneously by other jobs.

® MOD — the OSIV/F4 assumes the data set exists
and will position the read/write mechanism after
the last record in the data set; if OS IV/F4 cannot
find volume information for the data set, it
assumes the data set will be created in the job step.

By coding SHR, the user permits shared control of
the data set; his access is usually restricted to reading
the data set, as opposed to writing or updating it. By
coding NEW, OLD, or MOD, the user implicitly
requests exclusive control of the data set. Shared
and exclusive control are described in this chapter
under ‘‘Insuring Data Set Integrity”’.

Specifying a disposition for the data set

The user can specify a normal disposition for the
data set, used if the job step terminates normally
(successfully). He can also (or alternatively) specify
its conditional disposition, to be used if the job ter-
minates abnormally.

For normal disposition, the second parameter of
the DISP parameter specifies that the data set be:
® deleted, by coding DELETE;
® kept, by coding KEEP;
® cataloged, by coding CATLG;
® uncataloged, by coding UNCATLG:; or
® passed, by coding PASS.

JOB MANAGEMENT

NOTE: Disposition of a data set depends entirely on
the DISP parameter. However, disposition
of volumes on which the data set resides
also depends on the volume status when the
volume is dismounted.

For conditional disposition (third subparameter of
the DISP parameter), the user can code any of the
above values with the exception of PASS.

Data sets allocated to steps that abnormally termi-
nate and do not allow automatic restart are disposed
of as specified by the conditional disposition. If a job
step abnormally terminates during execution and a
conditional disposition is not specified, OS 1V/F4
follows the normal disposition. If a job step fails dur-
ing step allocation:

@ any data set created in that job step is deleted.
® any data set that existed before that job step is
kept.

Disposition processing differs for data sets on
DASD or magnetic tape volumes. The DASD
volume table of contents (VTOC) contains control
blocks describing non-VSAM data sets and available
space on the volume. How.to manage tape and direct
access volumes when specifying a particular disposi-
tion is described below.

When the user specifies KEEP or PASS for a
cataloged data set, OS IV/F4 assumes that he wants
the data set recataloged if volume information was
obtained from the catalog and if OS IV/F4 deter-
mines that the catalog entry must be updated. If the
job step performs catalog maintenance and the user
wishes to avoid recataloging, he should refer to the
data set by its specific unit and volume serial number
when coding the corresponding DD statement,

Deleting a data set

By specifying DELETE, the user requests that the
data set’s space on the volume be released at the end
of the job step (when coded as the normal disposi-
tion) or if the step abnormally terminates (when
coded as the conditional disposition). If the data set
resides on a public tape volume, OS IV/F4 rewinds
the tape and makes this volume available for use by
other job steps. If the data set resides on a private
volume, the tape is rewound and unloaded, and a
KEEP message is issued. If the data set exists on a
DASD volume, OS IV/F4 removes the control
block describing the data set from the VTOQOC,; its
space on the volume is then available for allocation
to other data sets.

In one case, however, a data set on a direct access
volume will not be deleted, even if the user specifies
DELETE: when the expiration date or retention
period has not expired. The user can specify how
long a data set should be kept by assigning a reten-
tion period or expiration date in the LABEL
parameter on the corresponding DD statement.

If the user wishes to delete a cataloged non-VSAM

CONTROL PROGRAM

data set, the data set entry in the system catalog is
also removed, provided OS IV/F4 obtained volume
information for the data set from the catalog (that is,
its volume serial number was not coded on the DD
statement). If OS IV/F4 did not obtain volume
information from the catalog, the data set is deleted
but its entry in the catalog remains. If OS IV/F4
encounters an error while attempting to delete a data
set, its entry in the catalog will not be removed. (The
data set may or may not be deleted, depending on
where the error occurs). The user can furnish an
access method services DELETE command or the
JSEPROGM UNCATLG command to delete a non-
VSAM entry from the catalog.

DELETE is the only valid conditional disposition
for a data set with no name or a temporary name. If a
disposition other than DELETE is specified,
OS IV/F4 assumes DELETE.

Keeping a data set

By specifying KEEP, the user asks OS [V/F4 to keep
a data set intact until a subsequent job step requests
that the data set be deleted, or until the expiration
date or retention period—indicating the length of
time a data set must be kept— has elapsed. If he does
not specify a time period, OS IV/F4 assumes a reten-
tion period of zero days.

For DASD data sets, the VTOC entry describing
the data set and the data set itself are kept intact. For
data sets on tape, OS 1V/F4 rewinds and unloads the
volume and issues a KEEP message to the operator.

Cataloging a data set

Cataloging allows the user to keep track of and
retrieve data sets. Data sets can be cataloged in the
system master catalog or in user (private) catalogs.
When retrieving a cataloged data set, the user need
not specify volume information; he needs only to
code the DSNAME parameter and a DISP status
other than NEW.

To catalog a non-VSAM data set, the user codes
CATLG for its disposition; OS IV/F4 creates an
entry in the catalog that points to the data set. The
CATLG disposition implies KEEP.

The user can specify a CATLG disposition for an
already-cataloged data set. This should be done
when lengthening the data set with additional output
(MOD) such that the data set may exceed one
volume. If OS IV/F4 obtained volume information
for the data set from the catalog (that is, if the
volume serial number is omitted from the DD state-
ment) and if the user codes DISP
=(MOD,CATLG), OS IV/F4 updates the entry to
include serial numbers for any additional volumes.

A collection of cataloged data sets kept in
chronological order can be defined as a generation
data group (GDG). The entire GDG is stored under
a single data set name; each data set within the
group, a generation data set, is associated with a
generation number that indicates how far removed

70

the data set is from the original generation. For more
information on defining and creating generation
data groups, the user should consult the FACOM
OS 1V/F4 Data Management Functions and
Facilities.

Uncataloging a data set

To remove the entry describing a non-VSAM data
set from the catalog, the user codes UNCATLG for
its disposition. Specifying UNCATLG does not
request the initiator to delete the data set — only the
catalog reference is removed. If the user requests
access to this data set in a subsequent job, he must
include volume information on his DD statement.

Passing a data set

If several steps in a job need the same data set, each
step using the data set can pass it for use by subse-
quent steps. A data set can only be passed within one
job.

To pass a data set, the user codes PASS as its nor-
mal disposition; he cannot specify PASS for a condi-
tional disposition. He continues to code PASS in
each step referencing the data set until the last time
it is used in the job. At this time, he should assign it
a final disposition within this job.

Specifying the name of a passed seet without cit-
ing its volume serial number is called receiving the
data set. Identical data set names (whether or not
they reference the same data set) can be passed at
the same time. Such identical data set names are
received in the same order in which they are passed.
A data set name that has been passed N times can be
received no more than N times. A data set cannot be
passed and received within the same step.

Disposition processing of unreceived passed data

sets

A data set can be passed by a job step and not subse-

quently received by another job step. In such a case,

if the earlier job step terminates abnormally,
unreceived data sets that specified a conditional dis-
position when passed are processed as specified in
their conditional disposition, with four exceptions. If

the conditional disposition requires updating of a

user catalog:

® and CATLG is specified for a data set with a first-
level qualifier of a catalog name or alias, the data
set will not be cataloged.

@ and UNCATLG or DELETE (of a cataloged data
set) is specified for a data set with a first-level
qualifirer of a catalog name or alias, the data set
will not be uncataloged.

@ and CATLG is specified for a data set with no
qualifier or with a qualifier that is not a catalog
name, the data set will be cataloged in the master
catalog.

® and UNCATLG or DELETE (of a cataloged data
set) is specified for a data set with no qualifier or
with a qualifier that is not a catalog name, an

attempt will be made to uncatalog the data set
from the master catalog.

Data sets that do not specify a conditional dis-
position— those specified as (NEW, PASS) in this
job—are deleted; all others are kept.

If no job step abnormally terminates,
unreceived data sets specified with
DISP=(NEW,PASS) are deleted; other
unreceived data sets are kept.

Default disposition processing

If the user omits a DISP parameter altogether—or
omits one or more subparameters—OS IV/F4 fur-
nishes various default values.

If the user omits the status subparameter, OS IV/
F4 assumes a value of NEW. If he omits the second
or third subparameters, OS IV/F4 determines how
the data set should be handled according to its status.
Data sets that existed prior to this job step are auto-
matically kept (data sets for which OLD, SHR, or
MOD is coded and the volume information is availa-
ble). Data sets created during this job step are auto-
matically deleted (data sets for which the user coded
NEW or MOD and volume information was not
available, or for which he did not code a status).

If a step abnormally terminates before it actually
begins execution (for example, during allocation of
units and volumes or direct access space),
OS IV/F4 ignores the disposition furnished by the
user, automatically keeping existing data sets and
deleting new data sets.

For example, if the user codes:

DISP= (,PASS,CATLG)

OS IV/F4 assumes the data set is new. If the job step
abnormally terminates during execution,
OS IV/F4 will catalog the data set, as instructed by
the conditional disposition of CATLG. If the step
abnormally terminates befor it actually begins
execution, OS IV/F4 will delete the data set, since it
is a new data set.

Bypassing disposition processing

If the user defines a data set as a dummy data set, OS
IV/F4 ignores any user-furnished DISP parameter
and omits disposition processing. For details the
reader should consult Sections 2.5.5 and 2.7.2.

Insuring data set integrity

The user can request either exclusive control of
various data sets in his job—allowing no other con-
currently-executing job to access these data sets—or
shared control, allowing them to be concurrently
accessed by other jobs also specifying shared control.
The process of securing control of data sets is called
data set integrity processing.

Data set integrity processing avoids conflicts be-
tween two or more jobs requesting simultaneous
access to the same data set. For example, a job
named READ and another named MODIFY may
simultaneously request the data set FILE. READ

JOB MANAGEMENT

needs to read and copy certain records, MODIFY
deletes some records and changes other records in
the FILE data set. If both jobs access FILE concur-
rently, READ cannot accurately access its
records—cannot be sure of the integrity of the data
set. MODIFY should gain exclusive control of the
data set; READ can share control of FILE with other
jobs needing read-only access to the data set. The
user should indicate the type of control in the DISP
parameter on the DD statement defining the data
set.

Exclusive control of a data set

When a job has exclusive control of a data set, no
other job can use the data set until the controiling
job terminates. A job should acquire exclusive con-
trol over a data set prior to modifying, adding, or
deleting records.

In some cases, the user may not need exclusive
control over the entire data set. He can request
exclusive control of individual blocks by coding
READ, WRITE, and RELEX macro instructions.
These instructions are described in the FACOM OS
1V/F4 Data Management Macro Instructions
Reference Manual.

To request exclusive control of a data set, the user
codes NEW, OLD or MOD as the first DISP sub-
parameter.

Shared control of a data set

A data set on a direct access storage device can be
used concurrently be several jobs; however, none of
the jobs should change the data set drastically. To
request shared control, the user codes SHR as the
first DISP subparameter. If more than one step of
his job needs the data set, he must code SHR every
time he defines it if it is to be available to other con-
currently-executing jobs. Data set integrity process-
ing is performed once per job; a data set has either
shared or exclusive control. If the user codes NEW,
OLD or MOD on any reference to a data set,
OS IV/F4 assigns exclusive control to the data set
for the entire job; a references requesting exclusive
control overrides any number of references permit-
ting shared control.

Example of disposition processing

//DISP JOB .. MSGLEVEL 1
1181 EXEC PGM=JSEBR14

/101 DD DSN =ABC, DISP= (SHR, KEEP)

1102 DD DSN =SYSA, DiSP= (OLD, DELETE,

1 UNCATLG)

/103 DD DSN=SYSB, UNIT= F478B,

1 VOL =SER= F4788B1,

1l SPACE= (CYL, (4,2,1)), -

l DisP = (NEW, KEEP, CATLG)

//D4 DD DSN=8&&SYS1, DISP= (MOD’ PASS),

1 UNIT=F4788, VOL= SER =F478B2,
i SPACE =(TRk, {165,1))

1182 EXEC PGM=JSEBR14

/101 0D DSN =&&SYS1, DISp= (MOD, DELETE),
i UNIT= F4788,
/I VOL= SER= F478B2,

/] SPACE=(TRK, (16 5,1))

CONTROL PROGRAM

1.The JOB statement requests that all JCL state-
ments and system messages be printed.

2.D1 in step S1 defines a data set that already exists
and can be shared with other data sets. It is to be
kept on the volume after this job step.

3.D2in S1 defines a data set that already exists, can-
not be shared with other data sets, is to be deleted
at the end of the job step, and is to be uncataloged
if the program abnormally terminates.

4.D3 in S1 defines a new data set that is to be
assigned a specific volume(F478B1) on a F478B
device. The data set is to be kept on the volume at
the end of this job step if the step terminates nor-
mally, but it is to be cataloged if the program
abnormally terminates.

5.D4 in S1 defines a temporary data set that is to be
created in this job step. It is to be assigned to
volume F478B2 on a F478B device with 15 prim-
ary tracks, S secondary tracks and a directory. This
data set is to be passed to subsequent steps in this
job.

.6.D1 in S1 refers to the temporary data set defined

in D4 of S1, When this step completes, the data
set is to be deleted.

’

¢

2.6.8 Automatic Volume Recognition (AVR) and
Volume Setup

To facilitate smooth and efficient mounting of tape
and DASD volumes, OS IV/F4 furnished AVR and
a JES-based setup facility.

Automatic volume recognition (AVR)

This facility recognizes a volume when the operator
mounts it on a previously-empty drive. Hence, the
operator takes the initiative in selecting and mount-
ing volumes, in contrast to the demand mounting
option, where OS IV/F4 determines which, where,
and when volumes are to be mounted.

Immediately after a labelled volume is mounted,
AVR reads the volume label and enters it into an
internal OS IV/F4 table. If the volume is unlabelled
(necessarily magnetic tape) AVR will unload it after
attempting to read the non - existent label. Other-
wise, AVR will accept standard, JIS, and ANSI
labels, plus most non-standard labels. Each installa-
tion must install its own routines for automatic
recognition of non-standard tape labels.

AVR permits console operators to pre-mount
reels and packs required by jobs requiring setup, as
described below. Since the operator knows in
advance which volumes will be required for each
job, he can premount them on available drives prior
to releasing the job. This reduces delays in setting up
jobs to an absolute minimum.

Setup

The user informs OS IV/F4 which mountable
volumes are needed for his job by furnishing one or

72

more SETUP statements immediately after his JOB
statement;

/*SETUP vol-ser-no-1 [,vol-ser-no-2] [,vol-ser-
no-3]

Each volume serial number should indicate —
explicitly if not implicitly — what type of volume
(tape reel, 100-megabyte disk pack, 200-megabyte
pack, etc.) is required; in case of a tape reel, the user
should indicate whether the file protection ring
should be inserted/removed by the console operator
prior to mounting the reel.

Each job furnishing at least one SETUP statement
is automatically placed onto the hold queue by JES.
After the operator has retrieved requested volumes
from the volume library, he may premount some/all
of them if the OS IV/F4 system includes the AVR
option. Whether he mounts volumes or not, he then
can release the job, since its volumes are either
mounted or available for quick mounting near cor-
responding drives.

2.6 JOB EXECUTION

In a typical OS IV/F4 system, many batch and time-
sharing jobs execute simultaneously most of the
time. Each batch initiator selects, initiates, and ter-
minates jobs non-stop so long as it remains active
(console operator has not issued a STOP command
to it) and at least one class of jobs for which it is
eligible is non-empty.

As jobs execute, individual steps may be executed
or bypassed according to user-furnished conditions
(COND parameter) typically based on the success/
failure of prior steps.

The following subsections describe how
OS IV/F4 processes multiple batch jobs
simultaneously, executes and terminates each job
step, conditionally executes or bypasses steps, and
terminates jobs. .

2.6.1 Processing Multiple Jobs

It is typical to service ten batch streams plus
numerous time-sharing users from a single

OS IV/F4 system. The principal reason for perform-

ing multiple independent computations concur-
rently is to utilize the powerful Fujitsu central pro-
cessing units (CPUs) fully. The speed disparity bet-
ween a typical CPU and a typical file peripheral
(tape or disk drive with its associated channel and
control unit) is quite large. Hence, OS IV/F4 ser-
vices many different jobs with one CPU (two CPUs
in the case of a multiprocessor configuration) and a
large collection of file peripherals. Some file periph-
erals are dedicated to particular users, others are
shared by many users.

One unit of work for a CPU is called a task in OS

JOB MANAGEMENT

SYS1.SYSJOBQE Job N
class
input stream =
A R
Delimiter 'B\—/ i
statement C\———/
L ___/ sar
//EXEC Initiator
System JES :> :
| Vinput | reader — i« Execution of |
/*SETUP VOL=SER=.. [~ '"PY Enqueing || Activation of . Y)
N . Initator user job
® of job LG |
/141 JOB CLASS=N. . o o ‘
Hold queue (J1 interpreter |-
@ @ Magnetic
Job queue Alfocator tape 1>
Job with setup function is Message is issued @
handied as follows. to operator
@ SETUP statement is read Request of
by JES reader. mounting
5 of volume tnput .
@ Job énters the hold queue. RELEASE AVR function
@ Operator is informed by @ command
SETUP statement which Release of job ’
volumes need mounting. —
—

@ Operator mounts required volumes.

@ Operator enters RELEASE command for
this OS job.

@ The job is shifted from the hold queue to

the general input queue. is mounted.

(@ 1nitiator activates the corresponding job.

Volume mounted previously is allocated to
the job automaticatly by the help of AVR
function.

Fig 2.18 Setup function and activation of job

IV/F4. Since OS IV/F4 processes many tasks
simultaneously, it is considered to be a multitask-
ing or multijobbing operating system. If two or
more CPUs share a pool of main storage and periph-
erals, the hardware configuration is called a
multiprocessing or multiprocessor system.

2.6.2 Execution of Jobs and Job Steps

Each job begins with a JOB statement and ends with
a null statement (or, by default, the delimiter state-
ment for the last SYSIN data set or the last JCL
statement). Each job step begins with an EXEC
statement which either names a particular program
to be executed or invokes a cataloged or in-stream
procedure, as shown in Figs. 2.18 and 2.19. Expan-
sion of procedure calls into several EXEC, DD, and
other JCL statements is described in the FACOM

Volume used in the job

OS IV/F4 Job Management Functions and
Facilities.

Job steps and initiators

Each job is fully processed by one initiator, which is
dedicated to this job until it terminates. Each initia-
tor (and the stream of jobs it processes) occupy one
virtual address space of 16 million bytes, which is
defined at the time the console operator starts the
initiator.

Each initiator starts a job step after allocating its
device and data set resources by issuing an
ATTACH macro instruction naming the program
for that step. The first step to be attached in this way
is called the job step task. Ordinarily this is the only
task in this address space; however, the job step task
can issue ATTACH macro instructions to start one
or more subtasks which execute concurrent with
one another, their job step task (parent task), and
job step tasks for other active initiators.

CONTROL FROGRAM

=7

Job step
(User program execution)

Job step)
{link edit).

Fig. 2.19 Jobs and job steps

Null statement

yd
/ EXEC PGM=8 Cataloged procedure
(EXEC PROC=X ibrary

yd
/ EXEC PGM=A

(w08

Input stream

X

Procedure

Nuil statement

EXEC PGM=B
[/ EXEC PGM=Z

i
/’ EXEC PGM=Y

/
(/ EXEC PGM=A

(J08

Actually executed job

Fig. 2.20 Using a cataloged procedure

Dispatching priority

Earlier in this chapter, the concept of job selection
priority was discussed. Dispatching priority is
different from selection priority; it specifies the
relative priority of any task for controlling the CPU.
The user can set the dispatching priority for a par-
ticular job step by furnishing a DPRTY parameter
on the corresponding EXEC statement:

DPRTY =(d,,d,)

74

Job step
(COBOL compile)

where d, is the broad job-step priority and d; is a

refinement of this priority. The priority used by OS

IV/F4is616+d; + d;, 0 £d;£13,05d,£515.
Higher values of the dispatching priority give it

preference over other tasks (from the same or other
address spaces) for gaining control over the CPU. If

d, is omitted, its value defaults to the selection
priority (PRTY parameter) of the entire job. The
default value ford,is 11.

The initiator limits dispatching priorities for all
tasks in its address space. Associated with each job
class processed by this initiator are two limiting
value: the upper limit, and the uniform dispatching
priority. Either of these value—or both—may be
omitted. The upper limit is the maximum value
(between 0 and 13) which d; can take; if omitted, d,
can take any value upto13. The uniform dispatching
priority applies to all jobs in this class processed by
this initiator; it is a constant value for d; which over-
rides any DPRTY values furnished by users.

Automatic priority group (APG)

OS IV/F4 normally chooses dispatching priorities
for all user tasks according to their recent histories
of using the CPU and various 1/0 devices. This
facility is called APG and is based on the following
approach. OS IV/F4 automatically monitors usage of
the CPU and all tape and disk channels. Periodically
(every few seconds), the dispatching priorities of all
tasks operating under APG are changed; tasks which
have recently used the CPU heavily are given tem-
porarily lower dispatching priorities for the next
time period, while tasks which have not heavily used
the CPU are given temporarily higher dispatching
prioroties. Hence, I/0-limited tasks have chronically

higher priorities than compute-limited tasks, the lat-

ter gaining-or-losing dispatching priority in round-
robin sequence.

Jobs not asigned to APG operate altogether higher
or altogether lower than those in APG, and their dis-
patching priorities are not automatically modified by
OS IV/F4. Most jobs will operate most efficiently if
they are assigned to APG, whether they are 1/0-
limited, CPU-limited, or balanced. To select APG,
the user omits DPRTY parameters from corres-
ponding EXEC statement.

Tsable 2.1 Operator communication macro instructions

Macro . Full Name Function
Instruction
WTO Write to Program issues message on
operator one or more consoles, as
indicated by a console-
distination card
WTOR Write to Program issues message on
operator one or more consoles,
with reply then awaits the operator’s
reply, which is read into
a program buffer
QEDIT Queue Program accepts any
adit MODIFY or STOP
command previously
submitted for this job
1 by the operator
WTL Write to Program writes a message
tog onto the system log data
set (SYS1.LOGREC)
DOM Delete Program requests deletion
operator of message currently
message displayed on operator CRT
console, previously issued
by this job step by aWTO
or WTOR macro instruction

JOB MANAGEMENT

Operator Communications

During execution of his job, the user can issue
messages to the console operator using the assem-
bler-language macro instructions described in Table
2.1 (and corresponding verbs in higher-level
languages, such as DISPLAY and ACCEPT in
COBOL).

Initiating tasks by START commands

System tasks may optionally be started by operator
commands, such as readers (START RDR) and
initiators (START INIT). Procedures for these tasks
are predefined in the system procedure library
(SYS1.PROCLIB) and are similar in format to
ordinary cataloged procedures.

Most user jobs are read from JES readers or sub-
mitted through internal readers. A user job can also
be initiated by a START command, whose operand
is the name of a cataloged procedure. This job com-
prises one job step, comparable to processing one
EXEC statement (although the cataloged procedure
can itself invoke several different programs).
Installations can invoke frequently-used system
utility programs in this way.

Although system and user tasks do not require
initiator services when started this way, they each
occupy one address space as usual. Differences be-
tween jobs submitted through JES readers and via
START commands are summarized in Table 2.2.

2.6.3 Terminating Job Steps

When a job step terminates, OS IV/F4 regains con-
trol via its step terminator, which determines
whether the ending was normal or abnormal
(ABEND). Even if a task ends normally, the step

Table 2.2 Comparison of the task activated by START command and general jobs 4

Comparison Time Main-
Item tnput Task] monitoring SME Ch.eck tenance‘ CANCEL
T protac . point/ processing command
ype mode tion key during records restart? itted?
of execution? of data permitte
Task sets
Systemn task Procedure in 0 No Not Impossible Required Impassible.
SYS1.PROC- collected collected except except
LIB invoked for dyring
by START readers, allocation
command writers
and VTAM
Job step Procedure in £O Yes Not Impossible Required Possible
initiated by a SYS1.PROC- collected -
START Command LIB invoked
by START
command
Ordinary job inputted from £0 Yes Collected Possible Required Possible
submitted the input
through JES stream, and
reader reed-in by
JES reader

T BAAN S AV Sl S AR W RN TATS

terminator processes its resources (main and sec-
ondary storage, data sets, etc.) carefully; there is lit-
tle operational distinction between normal and
abnormal termination processing .

A job may be abnormally terminated by a
CANCEL command. Whenever a job terminates
abnormally, the user may receive a formatted
SYSOUT dump of his address space if he has pre-
viously requested this option.

At the termination of each job step, the initiator
releases any resources acquired solely for this step
and passes other resources (e.g., passed data sets) to
subsequent job steps. The initiator determines
whether succeeding steps should be executed based
on return codes issued by current/previous steps
and whether the current step terminated normally.

Normal end

In each compiler or assembler language, facilities

exist for issuing a normal end (“RETURN,”

“EXIT,” etc.) or abnormal end (‘“‘ABEND,’etc.).

In all cases, when the job step task ends (as defined

in Section 2.6.2) the corresponding job step is con-

sidered terminated.

Abnormal end ' :

As noted earlier, an abnormal end (ABEND) is

differentiated from a normal ending by OS IV/F4

primarily in terms of specialized diagnostic pro-
cessing for the former. Typical ABEND -causes are
the following conditions:

® Unrecoverable hardware error.

® Erroneous usage of a system macro instruction.

® Erroneous data-set usage.

@ Exceeding a job or job-step limitation, such as
CPU time, SYSOUT quantity, or protracted
WAIT state.

@ Job cancelled by console operator.

ABEND can be automatically issued by OS IV/F4
or requested by the user program.

For obtaining a partial/complete printout of his
address space (dump), the user should furnish
either a SYSABEND or SYSUDUMP DD statement
at the time he submits his job; these statements
should be included with each step possibly suscepti-
ble to ABEND. A SYSUDUMP statement instructs
OS IV/F4 to print the contents of the user’s virtual
storage plus relevant OS IV/F4 tables and register
save areas. A SYSABEND statement requests the
same information plus a formatted display of the OS
1V/F4 nucleus.

An assembler-language user can regain control
after ABEND occurs with a specialized exit routine.
In some cases, the user program can correct errors
causing ABENDs and resume normal execution.

Execution limits

Each installation can limit four resource utilizations
by user jobs. In addition, each user job can optionally

76

specify more stringent limitations on these
resources:

@ CPU time for the entire job.

® CPU time per step.

® Time in uninterrupted WAIT state.

® SYSOUT quantity.

The JOB-statement TIME parameter limits total
CPU time for the job. The EXEC-statement TIME
parameter limits CPU time for this step (including
all executions within a cataloged procedure), subject
to the overall job limitation on CPU time.

If a job remains in uninterrupted WAIT state for
several minutes, it is likely to be entirely dormant or
erroneously handled; for example, it may have
missed a necessary I/Q interruption, or it may be
awaiting mounting of a tape reel. OS IV/F4 will au-
tomatically cancel such a job, according to an
installation-specified limit for uninterrupted WAIT
state.

‘The quantity of printed/punched records directed
to a SYSOUT device may become excessive during a
job, possibly through a programming error. The user
can prespecify a limitation for a SYSOUT data set
by an OUTLIM parameter on the corresponding DD
statement. Overriding this is the aggregate SYSOUT
limitation specified by the installation for the corres-
ponding initiator.

At the end of each job step (and also at the end of
the job), OS IV/F4 passes control to an SMF
routine. Each installation can add its own exit
routines to SMF in order to capture statistics on
system performance and resources used by particu-
lar jobs.

Releasing resources

At the end of each job step, most of its resources are
reclaimed by OS IV/F4, so that they can be issued to
other users (or to subsequent steps of the same job).
Passed data sets are retained by this initiator for sub-
sequent steps. If a step terminates abnormally, OS
IV/F4 reclaims all resources from the user, whether
these resources are released in an orderly fashion or
not.

2.6.4 Conditional Execution of Job Steps

Normally, steps of a job are processed in their input -
sequence one by one. However, if a job step has an
unsatisfactory termination (either in the OS IV/F4
ABEND sense or due to bad input data), it can seta
return code to prevent needless execution of subse-
quent steps. For example, if a compile-load-go job
encounters a serious source-program error during
the compilation step, it should generally bypass the
“load and go’’ step.

Return codes
Each job step issues a return code — explicitly or

&

implicitly — when it terminates. The return code is
an integer between 0 and 4095, inclusive. By con-
vention, OS IV/F4 compilers, assemblers, utility
programs, and application packages issue return
codes of 0 for normal ending and larger values for
various severities of errors. Subsequent job steps can
test these return codes to determine whether they
should be executed or skipped, using COND
parameters on corresponding EXEC statements:
COND={((condition-code-1,operator-1), (condition-
code-2,operator-2), . ..)

Each condition code is an integer between 0 and
4095, which is compared against return codes from
one or more previously-executed steps. Operators
are the six relational operators: EQ, NE, GT, LT,
GE, and LE, which correspond to ‘‘equal,”‘‘not
equal,”‘‘greater than,”’ etc. Up to eight tests of the
above form — ‘‘(condition-code, operator)’’ — can
be included in one COND parameter, if any of the
tests is satisfied during execution of the job, the step
bearing this COND parameter is skipped by OS IV/
F4. ,

COND parameter on a JOB statement

If the user furnishes a COND parameter on his JOB
statement, he thereby requests that step-skipping
tests be applied to the second and all subsequent
steps, using return codes passed from preceding
steps. Whenever one of the tests is satisfied, all
remaining steps in this job are skipped.

COND parameter on an EXEC statement

The user can furnish a COND test in either/both of

the following formats:

(condition-code,operator) Test condition code
against return codes
from all prior steps

(condition-code, operator, Test condition code

step-name) against the return code
from this particular
prior step.

COND parameter with an abnormal termination

A job step sets a return code only when it terminates
normally. In general, if a step terminates abnor-
mally, all subsequent steps are automatically skipped
by OS IV/F4, However, two special forms of the

COND parameter permit specific job steps to be

executed subsequent to an abnormally-terminating

step:

COND=EVEN This step is executed even if a
prior step has abnormally termi-
nated.

COND=ONLY This step is executed only if a
prior step has abnormally termi-
nated. '

For example, STEP1 of a job updates records in a
data set. If STEP1 abnormally terminates, the user

JOB MANAGEMENT

may want to execute STEP2, which will print the
data set. He should specify that STEP2 should be
executed only if STEP1 abnormally terminates by
coding ONLY in the COND parameter on the EXEC
statement for STEP2.

Specifying return code tests
In the COND parameter, the user may specify tests
to determine if the system should bypass a job step.
If OS IV/F4 determines that a comparison is true,
the job step is skipped (if COND was coded on the
EXEC statement) or all remaining job steps are skip-
ped (if COND was coded on the JOB statement).
For example, if the user codes COND=
((10,GT),(20,LT)) he is asking, “‘Is 10 greater than
the return code, or is 20 less than the return code?
If the return code is 12, neither test is satisfied. no
job step is skipped. All tests the user specifies must
be false if processing is to continue without skipping
any job steps. If the return code is 295, the first test is
still false, but the second test is satisfied: 20 is less
than 25. OS IV/F4 will bypass one job step or all
remaining job steps, depending on whether the
COND parameter was coded on the EXEC state-
ment or on the JOB statement.

Example of routing a job through the system

The purpose of the following job is to execute five
steps to perform an unspecified function. Not all of
the steps will execute because of conditions are
placed on them. See Fig. 2.21.

//ROUTE JOB (D58706), ROEGER, MSGLEVEL=(1,1),
/" CLASS=E

/ISTEP 1 EXEC PGM=JSEBR 14

//0D1 oD SYSOUT=A

//STEP2 EXEC PGM=JSEBR14, COND=EVEN
/1DD2 DD SYSOUT=A

//STEP 3 EXEC PGM=JSEBR14, COND=ONLY
//DD 3 DD SYSOUT=A

//ISTEP4 EXEC PGM=ABENDS06

//IDD4 DD SYQUT=A

/ISTEP5 EXEC PGM=JSEBR14, COND=ONLY
//1DDS 0D SYSOUT=A

1. This job will use the installation-defined priority
default. ’

2. The JOB statement specifies that only JCL state-
ments and messages are to be written, and that the
job is assigned to job class E.

3. All SYSOUT data sets will be directed to output
class A.

4.STEP] will execute normally.

5.STEP2 will execute normally.

6.STEP3 will not execute.

7.STEP4 will execute and will abnormally termi-
nate. (ABEND806 program issues an ABEND
macro instruction).

8.STEPS will execute because a preceding step did
abnormally terminate.

CONTROL PROGRAM

/ISTEP 1 EXEC

No by-pass test

//STEP 2 EXEC

i

//STEP 3 EXEC

i

* COND=(10,GT,6STEP 1)
(20, LT, STEP 2)
By-pass test conditions

Contents of by-pass conditons

Job step 1
(STEP1)

I

Reaturn code=5

T

Job step 2
(STEP 2)

[

Return code
= 15

NO
YES

I NO

Job step 3
(STEP 3)

test at STEP 3 O

Parameter
description {10, GT, STEP 1) (20, LT, STEP 2)

N Return code Return code
Significance 10 > of STEP 1 20< of STEP 2
Test Yes because No because
satisfied? 10>5 20< 15
By-pass
conditions Either of conditions is satisfied? Yes
judgement

When COND parameter in EX EC statement is designated, the exacution of the job
step is based on the completion status (return codes) of the preceding job steps.

Fig. 2.21 Example of multiple condition codes

2.6.6 Terminating Jobs

When the last step of a job has completed, or when
remaining steps have been skipped by OS IV/F4, the
job terminator routine gains control and releases all
resources held by the job. All SYSOUT data sets cre-
ated by the job are entered onto the JES queue,
ready for transcription to printers, card punches, and
— via RES — remote terminals as soon as the latter
are readied and available.

78

2.7<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>