
" I

- - - - -- --

[-6~S~:10noEiJ

GENERAL DESCRIPTION

.• . ' . l.· ,,~. .'
~ 1. • • • _ ",

,: .. ~, ;-,~ ':' <,:~: ' ': -', /. ;0 '

;
, ,

:. \
\
\

: \

",~,. , . . ~: , ;
" ' ~ " , -' '--.~

~....,.' ,,, "

First Edition December. 1976

This manual may be altered without prior notice.

No part ofthis manual may be reprinted in any form
without ~ission.

PREFACE

This publication describes the FACOM OS IV IF4 operating system for the M series
of computers, which are manufactured and sold by Fujitsu Limited. OS IV IF4 is the
largest OS furnished for M series in terms of sizes of hardware configurations it sup­
ports, variety of functions it furnishes to users and installation managers, and its
complexity and state-of-art design. OS IV IF4 compares favorably with state-of-art
OS offered by other manufacturers for their large-scale general-purpose computers.

This General Description manual is prerequisite reading for all users and opera­
tors of OS IV IF4 . 1t furnishes a comprehensive but rapid overview of the entire soft­
ware system, although it does not describe M series hardware. The user should
become familiar with various hardware manuals appropriate to his configuration.

Throughout this manual, reference is made to other OS IV IF4 manuals. Some are
recommended for all users; others are required reading for specific programming
languages, I/O devices, and application areas; others are appropriate primarily for
operators, sys,tem programmers, etc. These references shou~d prove useful to
readers of the General Description manual who need full details on these aspects of
M series hardware and OS IV IF4 software.

This manual is divided into four self-contained parts, each with its own set of
chapters, ,figures, and tables. These parts do not cross-reference one another; hence,
all cross-references to chapters, sections (of chapters), figures, and tables are within
the current part unless explicitly directed to another part of this manual.

Part I
Part 2
Part 3
Part 4

Overview of OS IV IF4
Control Program
Processing Programs for OS IV IF4
TSS(Time Sharing System) .

"
/,

I

CONTENTS

Page

PART 1 OVERVIEW OF OS IV/F4

CHAPTER 1 OBJECTIVES OF OS IV IF4 . 3

CHAPTER 2 MAJOR FEATURES OF OS IV IF4 .. 4

2.1 Reliability, Availability, and Serviceability , 4

2.2 Operator and Installation Management Facilities. 5

2.3 Management of System Resources. 6

2.4 Expansibility... 6

2.5 Convenient Interfaces and Tools for Applications Development. 7

2.6 Advanced Information Management System (AIM) 7

CHAPTER 3 STRUCTURE OF OS IV IF4 : 9

CHAPTER 4 PRINCIPAL COMPONENTS OF OS IV/F4 11

4.1 Virtual Storage Management.. 11

4.1.1 Multiple Virtual Storages 11
4.1.2 Page Management ... 11
4.1.3 Channel Dynamic Address Translation

(ChanneIDAT) 12

4.2 Job Management ... 12

4.2.1 Job Entry Subsystem (JES) ... 13
4.2.2 Multiple Console Support (MCS) 13
4.2.3 Efficiency Enhancements ... 13
4.2.4 Installation~Management Enhancements. .. 14

4.3 Remote Entry Services (RES) .. 15

4.4 Data Management .. , 16

4.5 Virtual Storage Access Method (VSAM) .. 16

4.6 Data Communications. .. 17

4.6.1 Virtual Telecommunications Access Method (VT AM) 17
4.6.2 Network Control Program (NCP) ... '. 17

4.7 Reliability, Availability and Serviceability (RAS) 18

4.7.1 System Recovery ~... 18
4.7.2 System Restoration ... 18

4.8 Supervisor... 19

4.8.1 Multiprocessing Support .. 19
4.8.2 Automatic Priority Group (APG) , .. 20

4.9 Processing Programs : , 20

4.10 Time Sharing System (TSS) 21

4.11 Advanced Information Manager (AIM) ... 22

-~-----•.. , ~-~ ---

4.11.1 Overview............. .. 22
4.11.2 Architecture of AIM 22
4.11.3 Major Components of AIM 22
4.11.4 Execution Aow .. 24

PART 2 CONTROL PROGRAM . 25

CHAPTER 1 VIRTUAL STORAGE. .. 27

1.1 Background of Virtual Storage Systems. 27

1.2 The OS IV IF4 Virtual Storage Architecture. .. 28

1.2.1 Overview. 28
1.2.2 Virtual Storage Layout .. 28
1.2.3 Storage Organization 29
1.2.4 Structure of OS IV IF4 Address Spaces 33
1.2.5 Processing Jobs in Virtual Storage 35

1.3 Channel Dynamic Address Translation . 38

CHAPTER 2 JOB MANAGEMENT 41
,

2.1 Overview ~ , 41

2.1.1 Jobs and Job Steps • 41
2.1 .2 Job Flow '" , , 41
2.1.3 Components of Job Control 43

2.2 Job Entry Subsystem (JES) 43

2.2 .1 Overview. 43
2.2.2 Structure of the Spool Volume 47
2.2.3 Spooling Performance Optimization. 48
2.2.4 Control and Space Management of Spool Volumes 49
2.2.5 Interfaces between JES and User Programs 49
2.2.6 JES Parameters . 50

2.3 System Input .. 50

2.3.1 Flow of Control. 50
2.3 .2 Starting and Stopping a Reader :.. 50
2.3.3 Reading Methodology. 50
2.3.4 Transcription to the Input Queue.. 51
2.3.5 Command Statements 53
2.3.6 Reader Procedures. 53

2.4 Job Initiation. .. 55

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6

Overview :
Job Queue Control "
Job Initiator Functions
Execution Batch Scheduling ,
Controlling Interpretation and Execution .:
The Initiator Cataloged Procedure

55
57
57
57
60
60

2.5 Allocating Resources to Jobs " " 61

2.5.1 Allocating System Resources : 61
2.5.2 Storage Allocation : 61
2.5.3 Specifying Unit Information. 61
2.5.4 Volumes. 64
2.5.5 Data Sets 67
2.5.6 Program Libraries '. .. 68

ii

2.5.7 Status and Disposition of Data Sets 68
2.5.8 Automatic Volume Recognition (AVR) and Volume Setup 72

2.6 Job Execution 72

2.6.1 Processing Multiple Jobs 72
2.6.2 Execution of Jobs and Job Steps 73
2.6.3 Terminating Job Steps 75
2.6.4 Conditional Execution of Job Steps 76
2.6.5 Terminating Jobs 78

2.7 System Output 78

2.7.1 Types of SYSOUT Data 79
2.7.2 Special SYSOUT Controls 83
2.7.3 Demand Output , 83
2.7.4 Writer Procedures , 84

2.8 Checkpoint/Restart 84

2.8.1 Overview 84
2.8.2 Checkpoint/Restart Processing 85
2.8.3 Taking Checkpoints 85
2.8.4 JCL Statements for Restarting a Job 86

2.9 System Management Facilities (SMF) 87

2.9.1 Collecting SMF Data, ' 87
2.9.2 SMF Exit Routines~ 89

2.10 Multiple Console Support (MCS) 91

2.10.1 Operator Commands and Messages 92
2.10.2 Display Consoles 92
2.10.3 Definition of MUltiple Consoles 93

2.11 Starting/Stopping OS IV /F4 Operations 95

2.11.1 System Start 95
2.11.2 Stopping an OS IV /F4 System 96
2.11.3 System Start and Restart 96

2.12 Job Control Statements and Procedures , 97

2.12.1 JCL Statements .. . , ' " " 97
2.12.2 The JES Statements 98
2.12.3 Specifying Job Parameters with JCL Statements 99
2.12.4 Examples of JCL Statements . 99
2.12.5 Cataloged and In-Stream Procedures 100

CHAPTER 3 REMOTE ENTRY SERVICES 104

3.1 Overview.. 104

3.1.1 Functions and Facilities " 104
3.1.2 Controlling and Output Destinations 104
3.1.3 Remote Entry of Jobs 104
3.1.4 System Configuration 106

3.2 LOGON and Entering Jobs 108

3.2.1 Starting a Session ' 108
3.2.2 Submitting and Controlling Jobs , 109

3.3 Processing Jobs 109

3.4 Processing Job Outputs 109

3.4.1 Output Classes ' 109

I

3.4.2 Routing Outputs 110
3.4.3 Limitations on Rerouting Outputs ... 110

3.5 Creating and Receiving Messages 110

3.5.l Broadcast Data Set (SYSI.BRODCAST) 110
3.5.2 SEND Command III
3.5.3 LISTBC Command III

3.6 Central Operations 111
I:'"

3.6.1 Generating RES 111
3.6.2 Starting and Stopping RES 111
3.6.3 Creation and Maintenance of RES System Data Sets 111

3.7 RES Commands 112

CHAPTER 4 DATA MANAGEMENT 113

4.1 Outline of Data Management 113

4.1.1 1/0 Units 113

4.2 Programs and Data Sets 114

4.2.1 Linkage between Programs and Data Sets 115

4.3 Volumes and Data Sets , , , 115

4.3.1 Volumes : 115
4.3 .2 Data Sets ~ ' , . , : . .. 116
4.3.3 Magnetic Tape Volumes : 118
4.3.4 Direct Access Volumes 120

4.4 Input/Output ' 124

4.4.1 Open Function 124
4.4.2 Close Function 124
4.4.3 EOF/EOD Function 125
4.4.4 Exits to Special Processing Routines 125

4.5 Buffer Management 125

4.5.1 Reservation and Releasing of Buffer Pools 126
4.5.2 Acquiring and Returning of Buffers 127
4.5.3 Method of Buffering 127

4.6 Data Set Access Method , 128

4.6.1 Access Technique ' 128
4.6.2 Data Set Organization and Access Technique 128
4.6.3 Access Method Characteristics ' 128

4.7 Processing a Sequential Data Set 128

4.7.1 Structure of a Sequential Data Set 128
4.7 .2 Sequential Access Method " " . . . 130
4.7.3 Optional Functions of the Sequential Access Method 131
4.7.4 Volume Switching " 133

4.8 Partitioned Data Set and Partitioned Access Method 133

4.8.1 Partitioned Data Set Structure 13.4
4.8.2 Partitioned Access Method 134

4.9 Direct Data Set and Direct Access Method , 135

4.9.1 Direct Data Set Structure 135
4.9.2 Direct Access Method 136
4.9.3 Optional Functions Utilized in the Direct Access Method 137

iv

4.10 Conca tenation of Data Sets .. 137

4.11 Sharing and Exclusive Control of Data Sets .. 138

4.11.1 Shared Use or Exclusive Control of a Data Set by Tasks within a Job Step 139
4.11.2 Sharing and Exclusive Control of a Data Set by Tasks from Different Jobs 140
4.11.3 Sharing and Exclusive Control of a Data Set by Multiple Systems 140
4.11.4 Deadlock of Exclusive Control .. 141

4.12 Space Management ... 141

4.l2.1 Space Allocation ... 141
4.12.2 Space Extension ... 143
4.12.3 Releasing of Unused Space .. 144

4.13 Catalog Management .. 144

4.13.1 Structure of System Catalog " 144
4.13.2 Cataloging of General Data Sets , ., 145
4.13.3 Cataloging of Generation Data Sets , 146
4.13.4 Uncataloging Data Sets ... 148
4.13.5 Uncataloging of Generation Data Sets .. 148

4.14 Password Protection ... 149

4.14.1 Structure of Password Data Set .. , ... 150
4.14.2 Password Protecti~n and User's Identity Check 150

4.15 EXCP ' .. '" .' 151

4.15.1 EXCP-Usage and Processing ,' 151
4.15.2 EXCP Appendage , , 152

CHAPTER 5 VIRTUAL STORAGE ACCESS METHOD 155

5.1 Overview .. 155

5.1.1 VSAM Highlights .. 155
15.1.2 VSAM Structure .. 157

5.2 VSAM Data Sets ... 157

5.2.1 Type .. 157
5.2.2 Structure '" 157
5.2.3 Key Sequenced Data Sets ... 159
5.2.4 Entry Sequenced Data Sets .. 164

5.3 VSAM Processing .. 164

5.3.1 VSAM Access Techniques Overview .. , 164
5.3.2 KSDS Processing : .. 164
5.3.3 Processing Entry-Sequenced Data Sets ... 167
5.3.4 Types of Processing Supported by VSAM 168
5.3.5 VSAM Macro Instructions ... , .. 168

5.4 VSAM Catalog .. 171

5.4.1 Overview ... 171
5.4.2 Contents of the VSAM Catalog , 172
5.4.3 Using the VSAM Catalog ... 172

5.5 IS AM Interface Routines ... , 173

5.5.1 Overview .. ; 173
5.5.2 ISAM Interface Processing .. 173
5.5.3 Restrictions of the ISAM Interface ... 173

5.6 Shared and Exclusive Control of VSAM Data Sets 174

5.6.1 Sharing by Subtasks .. 174
5.6.2 Sharing by Jobs .. 174

v

5.6.3 Sharing between OS IV IF4 Configurations 174

5.7 Data Protection Facilities , 174

5.7.1 Data Protection 174
5.7.2 Data Integrity Facilities 175

5.8 Access Method Services (AMS) 175

5.8.1 Functional Commands 175
5.8.2 Modal Commands 177

CHAPTER 6 OAT A COMMUNICATIONS 178

6.1 Overview 178

6.1 .1 Purpose of VT AM 178
6.1 .2 Usage of VTAM 179
6.1.3 Network Structures 179
6.1.4 VTAM Terminals 179

6.2 VTAM Facilities '" 180

6.2.1 Sharing Network Resources 181
6.2.2 Establishing Communications Links 182
6.2.3 Data Transmission , 183
6.2 .4 SOLICIT Macro Instruction 183
6.2.5 Network Solicitor , 183
6.2.6 Exit Routines < 183

6.3 Definition of a VT AM Network ' 184

6.3.1 System Generation 184
6.3.2 Generating a Network Control Program (NCP) 185
6.3 .3 Defining a VTAM Network 185
6.3.4 Initializing and Modifying a VTAM Network 187

6.4 Operating a VTAM Network 187

6.4.1 Start-up of VT AM 187
6.4.2 Starting an Application Program 189
6.4.3 Connection an Application Program to a Terminal 191
6.4.4 Data Block Transmission between an Application Program and a Terminal 193
6.4.5 Releasing a Linkage between an Application Program and a Terminal 195
6.4:6 Termination of a VT AM Application Program 196
6.4.7 End of VTAM Operations 197

6.5 RAS Facilities for Data Communications -........ " 197

6.5.1 Diagnostic Facilities . _ . _ _ _ __ 197
6.5.2 Recovery Facilities __ . _ . . . 198
6.5.3 Error Recording Facilities _ 199

6.6 NCP _ _ 199

6.6.1 Basic Transmission Units 199
6.6.2 Buffer Management _ .. . _ 200
6.6.3 Starting a Network Control Program 200
6.6.4 Ending Network Control Activities _ . _ 200
6.6.5 Data Units 200
6.6.6 Session Service 201
6.6.7 Block Handling Facilities 201

CHAPTER 7 RELIABILITY, A V AILABILITY, AND SERVICEABILITY 205

7.1 Outline of RAS : 205

7.2 Recovery Management Support 205

vi
---.------- -------.-

7.2.1 Machine Check Handler (MCH) ... 206
7.2.2 Alternate CPU Recovery (ACR) ... 206
7.2.3 Channel Check Handler (CCH) ... 207
7.2.4 Alternate Path Retry (APR) .. 207
7.2.5 Missing Interruption Handler (MIH) ... 207
7.2.6 Dynamic Device Reconfiguration (DDR) 207
7.2.7 Error Recovery Procedure (ERP) .. 207
7.2.8 LOGREC Recording ... 207

7.3 Dynamic Support System (DSS) .. 208

7.4 Service Aids .. 208

7.4.1 Service Aids for Gathering Diagnostic Data 208
7.4.2 Service Aids for Formatting and Printing Data Sets and Their Elements 209
7.4.3 Service Aids for Correcting and Updating Programs 209
7.4.4 LOGREC Functions .. 209

7.5 Independent Utility Programs•..................... 210

7.6 Hardware Diagnosis Program .. 210

CHAPTER 8 SUPERVISOR ... 211

8.1 Overview .. 211

8.2 Operation ... 211

8.2.1 Interruptions ' ... 211
8.2.2 Tasks, Activities, and Disabled Routines 212
8.2.3 Flow of Control .. 213
8.2.4 Automatic Priority Group (APG) .. 216
8.2.5 Multiprocessor Configurations ... 217

8.3 Task Management ... " 219

8.3.1 Attaching and Detaching Tasks '" 219
8.3.2 Processing Flow for an Abnormal Task ... 222
8.3.3 Status of a Task .. 223
8.3.4 Other Task-Management Facilities ... 224

8.4 Virtual Storage Management ... 224

8.5 Real Storage Management " 225

8.6 Program Management '.' 225

8.6.1 Program Libraries .. 225
8.6.2 Usage Attributes of a Load Module .. 226
8.6.3 Program Management Macro Instructions 226
8.6.4 Dynamic Link Structures ... 227
8.6.5 Prototype Control Sections (PSECfs) .. 227
8.6.6 Authorized Program Facility .. 228

8.7 Management of Serially Reusable Resources ... '228

8.8 Timer Management " 229

8.9 Program Interruption Processing ... 230

8.10 Program Dumping .. 230

CHAPTER 9 SYSTEM GENERATION ... 231

9.1 Overview ... " ... 231

9.2 Flow of System Generation " 231

9.3 Resources Required for System Generation .. 233

9.4 System Parameters ... " 231

______________ ri~_______ ~-----------------------

9.5 System Data Sets 231

9.6 Systtem Generation Macro Instructions ... 236

PART 3 PROCESSING PROGRAMS ... 239

CHAPTER 1 COBOL 241

1.1 Overview. 241

1.2 Outline of Functions 241

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.l2

Reentrant Programs 241
Program Linkages 241
Program Structures 241
Optimization ... 242
Conversational Processing .. 242
Communications Interface 242
Extended Source Program Library 242
Bit Processing 243
Character·String Processing 243
File Organizations 243
Debugging Facility 244
Other Features 244

1.3 Required Configuration I •• • • •• •••• • ••••• • ••••••••• •••••••••• •••• ••••• • ••• 245

CHAPTER 2 FORTRAN ~ 246

i.l Overview , 246

2.1.1 GE Compiler 246
2.1.2 HE Compiler 246

2.2 Highlights 246

2.2.1 Reentrant Programs 246
2.2.2 Linkages with Object Modules from Other Languages 246
2.2.3 Program Structures 247
2.2.4 Optimization Procedures 247
2.2.5 Conversational Processing 248
2.2 .6 Extended Precision for Real and Complex Arithmetic 248
2.2.7 Automatic Precision Increase " , 248
2.2.8 Asynchronous Input/Output Statements 249
2.2.9 Data Set Organizations 249
2.2.10 Debugging Aids 249
2.2.11 Miscellaneous Features 249

2.3 Required Unit Configuration. " .. 249

CHAPTER 3 PL/I '.' 251

3.1 Overview 251

3.1.1 PLII Subroutine Libraries 251

3.2 Highlights 251

3.2.1 Reentrant Programs '.' 251
3.2.2 Linkages between PL/I and Other Languages 251
3.2.3 Program Structures " 251
3.2.4 Multitask Facilities ;. 252
3.2.5 Dynamic Storage Management 252
3.2.6 Optimization Procedures 252
3.2.7 Conversational Processing 252
3.2.8 The PLII Preprocessor ... 252

viii

3.2.9
3.2.10
3.2.11
3.2.12

Data Communications .. 253
Data Sets ... 253
Program Testing Aids .. 253
Other Features ... 253

3.3 Required Configuration ... 254

CHAPTER 4 ALGOL : ... 255

4.1 Overview .. 255

4.2 Highlights ... 255

4.2.1 Program Linkages .. 255
4.2.2 Standard and Variable Functions ... 255
4.2.3 110 Facilities '" ... 256
4.2.4 Debugging Facilities .. 256
4.2.5 Other Features .. 256

4.3 Required Unit Configuration ... 256

CHAPTER 5 SL/IOO .. 258

5.1 Overview .. 258

5.1.1 Highlights ... 258 ,
5.2 Data Formats ' .. ' 258

5.2.1 Declarations '; ... 258
5.2.2 Types of Operands ... 258

5.3 Procedural Statemerits ... 259

5.4 Decimal Arithmetic Facilities .. 260

5.5 Required Configuration ,•......... 260

CHAPTER 6 ASSEMBLER .. 262

6.1 Overview .. 262

6.2 Machine Instructions .. 262

6.3 Assembler Instructions .. 263

6.3.1 Program Sectioning and Linking ... , 263
6.3.2 Addressing .. 264
6.3.3 Symbol and Data Definitions '.' ... 265
6.3.4 Assembler Control Instructions .. 265

6.4 Macro Language .. 267

6.4.1 Macro Instructions ... 267
6.4.2 Macro Definitions ... 267
6.4.3 Conditional Assembler Instructions .. 267

6.5 Conversational Processing ... 268

6.6 Required Configuration ... 270

CHAPTER 7 SORT/MERGE .. 271

7.1 Outline of Sort/Merge :' . 271

7.1.1 Sort/Merge Phases . 271
7.1.2 Sort Processing Flow , 272
7.1.3 Merge Processing Flow ... 272

7.2 Function of Sort/Merge " ... 273 ,
7.2.1 Control Field Comparison Method ... 273

7.2.2 Input/Output Data Sets and Work Data Sets 274
7.2.3 User Exit Routines , , ., 274

7.3 Sort/Merge Technique 275

CHAPTER 8 LINKAGE EDITOR/LOADER 276

8.1 Outline of the Linkage Editor/Loader 276

8.2 Functions of the Linkage Editor ... " , '.' 276

8.2.1 Combining Object Modules and Load Modules " 276
8.2.2 Address Allocation 277
8.2.3 Program Structure Processing 277

8.3 Time-Sharing Considerations 278

8.4 Required Unit Configuration 279

CHAPTER 9 UTILITY PROGRAMS 280

9.1 Overview 280

9.2 System Utility Programs ... 280

9.2.1 Alternate Track Assignment and Recovery-JSGATLAS 280
9.2.2 DASD Initialize, Dump, or Restore-JSGDASDR. 280
9.2.3 Initialize Magnetic Tape Reels-JSGINITT 280
9.2.4 List Data Sets or Control Infbrmation-JSGLIST 280
9.2.5 Edit and Print SMF Statistics-1SGSTATR : 281
9.2.6 Move or Copy a Data Set-JSGMOVE 281
9.2.7 Program for VTOC and Catalog Management-JSGPROGM 281

9.3 Data Set Utility Programs 281

9.3.1 Compare Two Data Sets-JSDCOMPR 281
9.3.2 Copy a Data Set-JSECOPY , 281
9.3.3 Generate a Test Data Set-JSDDG 281
9.3.4 Edit a Job Stream-JSEEDIT 281
9.3.5 Generate a New Data Set-JSDGENER 281
9.3.6 Print or J>unch a Data Set-JSDPTPCH 281
9.3.7 Update a Source Library-JSEUPDTE 281

PART 4 TSS (Time Sharing System) " 283

CHAPTER 1 OUTLINE OF TSS 285

1.1 TSS Design : 285

1.2 TSS Features 286

1.3 System Configuration 287

1.3.1 Hardware Configuration' 287
1.3.2 Software Configuration 287

1.4 Outline of Processing 289

1.5 Supervision of System Operation 290

1.6 Data and Program Protection 290

1.7 Service Routines ... '.' 291

CHAPTER 2 TSS COMMAND LANGUAGE ... 292

2.1 General Concepts 292

2.2 System Control Commands 293

2.3 Session Control Commands ',' 293

2.4 Program-D~velopment and Data-Entry Commands 293

2.5 Program Operation Commands ... 293

2.6 Data Set Management Commands .. 294

2.7 Debugging Commands .. 294

2.8 Terminal Control Commands .. 294

2.9 Conversational Remote Job Entry <CRJE) Commands 294

2.10 Miscellaneous Commands ... 294

CHAPTER 3 TSS LANGUAGE ... 295

3.1 COBOL Language .. 295

3.2 FORTRAN Language ... 295

3.3 PL/I Language , 297

3.4 Assembler Language , ... 297

"

ILLUSTRATIONS

Figure
No.

Title Page

PART 1 OVERVIEW OF OS IV/F4

3.1 Configuration of OS IV /F4 : . 9
3.2 Structure of the Control Program . 9
3.3 Types of Processing Programs : . 9
3.4 Representative Types of Application Programs 10
4.1 Correspondence between Real Storage and Multiple Virtual Storages. .. 11
4.2 Remote Maintenance : :- 19
4.3 Location of AIM within an OS IV /F4 Configuration , 22
4.4 Functional Structure of AIM ... 23
4.5 Execution Flow of the AIM System. .. 23

PART 2 CONTROL PROGRAM

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

Relationship between Virtual Storage, Real Storage, and External Page Storage 27
Virtual Storage Layout ' '.' . . " 28
Segment and Page Tables " .. 29
Dynamic Address ,Translation Procedure ' : 30
Page-in Process ; '. 31
Typical OS IV /F4 Address Space .:. .. 33
Address Mapping for the System Area. .. 33
Address Mapping for a Private User Area. 34
Address Structure for the Common Area :.. 35
Overall Addressing of an Address Space . 36
Creating a New Address Space. .. 37
Loading and Execution of a Program . 37
General Flow of Paging Process 38
Analogies between CPU Program and Channel Program ,. 39
Outline of Job Execution 42
JES I/O Relationships 43
Topics Described under JES .. 44
Configuration of JES : . 46
Structure of Spool Volume. .. 48
Optimization of Spooling. 48
Reader and Procedure Library .. . : , 51
Enqueuing Jobs. 52
Execution of Command Statements ' , .. , .. ' 54
The RDR Procedure :. 54
Job Queue Control and Initiation 56
Allocation of Data Sets to Program Input/Output Functions 62
Example of User-Assigned Unit Groups. .. 62
Summary of Volume Type and Data Set Requests 65
Description of Volume Allocation with Respect to Sharable Requests .. 66
Private and Public Volume Requests 67
Definition and Use of Dedicated Data Sets. .. 68
Setup Function and Activation of Job : ~ 73
Jobs and Job Steps .. 74
Using a Cataloged Procedure. 74
Example of Multiple Condition Codes. 78
Relationship of SYSOUT Specification to Number of Job Output Elements 79

xii

I I
I

..

2.23 SYSOUT Data Set and Spooling .. 80
2.24 Output Class and Writer ... 81
2.25 Standard Character Sets. .. 82
2.26 Console Display Unit and Standard Format of Its Screen 92
2.27 Example of distributing messages to consoles according to their destination codes. 94
2.28 Examples of Alternate Console Configuration. 95
2.29 Job Control Statements .. " 95
2.30 JES Control Statements. .. 97
2.31 Examples of Job Control Statements 99
2.32 Multiple Jobs in One Stream. 99
2.33 Examples of In-Stream Procedures .. 100
2.34 Examples of Jobs Using Procedures .. , 102-103
3.1 Remote Batch Processing .. 104
3.2 Flow of Processing in RES ... 107
3.3 Typical RES Configuration , , 108
3.4 Structure of Identifications and Passwords ... 109
3.5 Output Queue Structures ... 109
3.6 Example of Destination Control Values- 110
3.7 Structure of SYSl.BRODCAST " 111
4.1 Data Management System ... 113
4.2 Linkage between Program and Data Sets ... 115
4.3 Unblocked Records ... 116
4.4 Blocked Records ... 116
4.5 Blocking and Deblocking.: ... 116
4.6 V-Format Record ' .. ' , 117
4.7 VS-Format Record ; .. 117
4.8 Undefined Length Records ... 117
4.9 Data Sets on Magnetic Tape Volumes , , 118
4.10 Summary of Label Types .. 118
4.11 Standard Label Configuration on Magnetic Tape .. 119
4.12 Summary of Standard Data Set Labels ... 119
4.13 Track Formats ... , 120
4.14 Structure of Direct Access Volume .. 121
4.15 Volume Label and VTOC .. 122
4.16 DSCB Concatenation .. 123
4.17 Position of I/O Support in Data Management .. 124
4.18 DCB Merging .. 124

4.19 Relationship between DCB and Exit Processing .. 125
4.20 Structure of Buffer Pool ... 126
4.21 Simple Buffering and Exchange Buffering .. 127
4.22 Data Sets on Magnetic Tape Volume .. 129
4.23 Data Sets on Direct Access Volume ... 129
4.24 GET/PUT Macro Instructions with Move Mode .. 130
4.25 GET/PUT Macro Instructions with Data Mode ... 130
4.26 GET/PUT Macro Instructions with Locate Mode 130
4.27 GET/PUT Macro Instruction with Substitute Mode 131
4.28 Structure of a Partitioned Data Set .. 133
4.29 Structure of Directory Field ... , 134
4.30 Structure of Direct Data Set .. 135
4.31 F-Format for Direct Data Set ... 136
4.32 V-Format for Direct Data Set .. 136
4.33 U-Format for Direct Data Set .. 136
4.34 VBS Format for Direct Data Set ... ; 136
4.35 Concatenation of Data Sets ... 138
4.36 Shared Use of a Data Set with One DCB ... 139
4.37 Shared Use of Data Sets by Several DCBs ... 139
4.38 Concept of Shared DASD .. 140
4.39 Deadlock State " , ., 141
4.40 DO Statement Parameters for Requesting Allocation : 141

xiii

4.41 Example of Various Methods of Space Allocation .. . , 142
4.42 Result of a Split Cylinder Allocation 143
4.43 Example of Suballocation of Space 143
4.44 Release of Unused DASDI Space , , '" " 144
4.45 Structure of the System Catalog and Its Relationship with Other Control Volumes 144
4.46 System Catalog and Its Data Sets 145
4.4 7 Creatiing and Accessing Cataloged Data Sets 145
4.48 Absolute Generation Number 146
4.49 Relationship between Absolute Generation Numbers and System Catalog " 146
4.50 Relative Generation Number 146
4.51 Relationship between Relative Generation Numbers and the System Catalog 147
4.52 Cataloging by Absolute Generation Numbers 147
4.53 Cataloging by Relative Generation Numbers '" 148
4.54 Uncataloging a Data Set " 148
4.55 Uncataloging a Generation Data Set , 149
4.56 Structure of the Password Data Set , " " . . . 150
4.57 Structure of Password Record 150
4.58 Outline of Password Protection and User's Identity Check 151
4.59 EXCP Users and EXCP 152
4.60 Structure of lOS 152
4.61 Relationship between Appendages and EXCP 153
5.1 Schematic Diagram of VSAM 156
5.2 VSAM Data Space and Data Sets 156
5.3 Control Intervals and Physical Blocks 159
5.4 KSDS Structure , 159
5.5 Diagram of KSDS ' 160
5.6 Structure of Control Interval " ' " 161
5.7 Structure of Index and Data in KS DS 161
5.8 Index Record and Control Interval , 161
5.9 Structure of an Index Entry , " 162
5.10 Example of Key Compression 162
5.11 Creating a Sequence Set in a Data Portion 163
5.12 Space Reutilization .. 164
5.13 Example of Multiple Simultaneous Insertions/Deletions 165
5.14 Sectioning a Control Interval .. 165
5.15 Example of Direct Access by Key " 166
5.16 Direct Access by Key and Skip-Sequential Access 167
5.17 Example of Access by RBA 168
5.18 Relationship between VSAM Control Blocks 169
5.19 Chained Requests 169
5.20 OS IV /F4 Catalogs and Data Sets 171
5.21 Example of OPEN Macro Instruction and the VSAM Catalog " 172
5.22 Location of the ISAM Interface Routines 173
5.23 Schematic Diagram of AMS Commands 176
6.1 VT AM Applications Programs , 179
6.2 VT AM Network Configuration 180
6.3 Types and Components of VT AM Network 181
6.4 Shared Control Units ,. 182
6.5 Example of Sharing Lines 182
6.6 Sharing Terminals 182
6.7 A Typical Exit Routine 184
6.8 LOGON Exit Routine , 184
6.9 NCP Generation 185
6.10 Example of Defining a VTAM Network 188
6.11 Example of Starting VT AM : 190
6.12 LOGON from a Terminal 191
6. I 3 LOGON from a Network Console 192
6.14 LOGON from Application Program 192
6.15 Unilateral Acquisition by an Application Program 193
6.16 VT AM Control Table Specified by Application Program .. 193

xiv

6.17 Receiving Data ... 194
6.18 Transmission of Data .. 194
6.19 LOGOFF from a Network Console .. 195
6.20 Release by the Application Program ... 196
6.21 Terminating a VTAM Application Program .. 197
6.22 Types of Tracing .. 197
6.23 BTU Categories ... 200
6.24 Data Units ... 201
6.25 Session with a Singledrop Private-Line Terminal .. 202
6.26 Session with Multidrop Terminals .. 203
7.1 Outline of RMS ... 206
8.1 Timeline of an Interruption .. 212
8.2 Enabled/Disabled Fractions of CPU Time ... 213 I
8.3 Profile of Multitask CPU Operation ... 214
8.4 Example of Dispatching Priorities ... 215
8.5 Processing a WAIT Macro Instruction ... 215
8.6 Example of APG Dispatching Priorities .. 216
8.7 Multiprogramming with a Uniprocessor .. 217
8.8 Multiprogramming with a Multiprocessor .. 218
8.9 Prefixed Storage Areas and Prefix Registers .. 218
8.10 Resource Contention in a Multiprocessor .. 219
8.11 Levels of Tasks in a Job Step ... 220
8.12 Attaching and RETURN of Task .. 221
8.13 Attaching, Terminating and Detaching a Task .. 221
8.14 STAE and STAI Facilities .. : ... 222
8.15 Retry Routine ; .. 222
8.16 Task Status Transitions .. 223
8.17 Example of a Multiple-Events WAIT Macro Instruction 224
8.18 LOAD, CALL, LINK, XCTL, and ATTACH Macro Instructions 227
8.19 Static and Dynamic Link Structures ... 228
8.20 Reentrant Program with/without PSECTs .. 228
8.21 Examples of Sharing and Exclusive Requests ... 229
8.22 Program Interruption Exit Routine , ... , , 230
9.1 System Generation Flow , , 232

PART 3 PROCESSING PROGRAMS

1.1 Examples of Optimization , .. , .. 242
1.2 Example of Compiling and Updated Source Program Using ESPL 243
1.3 Example of Bit Processing , , , 243
1.4 COBOL Compiler Unit Configuration Diagram , , .. , , , , 245
2.1 Example of Communication between Different Languages , . , ' , 247
2.2 Examples of Optimization .. , , .. , ... 247
2.3 Example of Asynchronous 'Input/Output Statements , , ... 249
2.4 FORTRAN HE and GE. Compiler Unit Configuration Diagram 250
3.1 Example of Using Preprocessor Statements .. 252
3.2 PL/I Compiler Unit Configuration Diagram , . , , 254
4.1 ALGOL Compiler Unit Configuration Diagram, , , , 257
5.1 Types of SLl100 Operands , ,., , , 258
5.2 SLIIOO Compiler Unit Configuration Diagram , , 261
6.1 Example of the USING Instruction , .. , , ,., ... 265
6,2 Example of Using ENTRY and EXTRN Instructions .. , 265
6.3 Example of Macro Definition , , , 267
6.4 Example of SETA Instruction , , , 268
6.5 Example of a SETB Instruction , .. , , , 269
6.6 Example of a SETC Instruction , , , . , , 269
6,7 Example of an AIF Instruction ., , , , ... , , .. 269
6.8 Assembler Unit Configuration Diagram ., " , ... , ". 270

7.1 Sort Unit Configuration Diagram 272
7.2 Merge Unit Configuration Diagram 273
7.3 Flow Diagram of Sort/Merge• 275
8.1 Source, Object, and Load Modules 276
8.2 Replacing a Control Section in a Load Module 277
8.3 Conceptual Figure of the Program Structure 278
8.4 Linkage Editor Unit Configuration Diagram 279
8.5 Loader Unit Configuration Diagram 279
9.1 Tape Format after Initialization 280

PART 4 TSS (Time Sharing System)

1.1 Representative Hardware Configuration for Time Sharing 288
1.2 Configuration of TSS Control Program 288
1.3 TSS Architecture 289
2.1 Mode Conversion " 292
3.1 Flow of Data and Control in FORTRAN 296

Table
No.

PART 1 OVERVIEW OF OS IV/F4

Title Page

4.1 OS IV /F4 Language Processors , : , 20
4.2 Service Programs c • ••• • • •••••••••••• •• • • • •• • • •••• • •• •• • • • ••••••• ,. 21

PART2 CONTROL PROGRAM

2.1 Operator Communication Macro Instructions .. 75
2.2 Comparison of the Task Activated by START Command and General Jobs 75
2.3 Checkpoint and Restart. 85
2.4 Restrictions on Checkpoint Data Sets 86
2.5 RD Parameter 86
2.6 Accounting Records. .. 87
2.7 Data Set Activity Records. 88
2.8 Volume Records 88-89
2.9 System Usage Records. .. 89
2.10 Characteristics of SMF Exit Points .. 90
2.11 Operator Commands 92
2.12 Message Prefixes . 92
2.13 Command Groups 93
2.14 Standard OS IV /F4 Destination Codes. 94
2.15 Job Salvage Possibilities During System Warmstart 96
2.16 Format of JOB Statement .. 98
2.17 Format of EXEC Statement .. 98
2.18 Format of DO Statement ; 98
3.1 OS IV /F4 Operator Commands 112
4.1 Magnetic Tape Device Specifications .. 113
4.2 0 ASD Specifications 114
4.3 Line Printer Specifications 114 \
4.4 Card Reader Specifications 114
4.5 Card Punch Specification 114
4.6 Paper Tape Specifications n 4
4.7 Characteristics of DSCB -... 122
4.8 Types of Exits and Their Functions 126
4.9 Access Techniques and Data Sets 128
4.10 Characteristics of Access Methods 128
4.11 Sequential Data Set/Device Type Attributes 129

xvi

4.12 Constraints Imposed on a Partitioned Data Set .. 133
4.13 Attributes of Direct Data Sets ... , 135
4.14 Exclusive Control Macro Instructions with One DCB 139
4.15 Exclusive Control Macro Instructions with Multiple DCBs 140
4.16 Exclusive Control Units ... 140
4.17 Exclusive Control Macro Instructions ... 141
4.18 The Space Releasing Boundary for the Different Space Allocation Units 144
4.19 Method of Password Protection and User's Identity Check 152
5.1 Differences between KSDS and ESDS ... 157
5.2 VSAM Access Techniques and Data Sets , 164
5.3 Types of Processing Supported by VSAM .. 168
5.4 Typical Constraints on Using the ISAM Interface 173
6.1 Macro Instructions to Define an NCP ... 186
6.2 Points Where a VT AM Network can be Defined/Modified 187
7.1 Service Aids . 208
8.1 Types of Interruptions ... 212
8.2 Attributes of SVC Routines .. 216
9.1 System Data Set .. 233-235
9.2 Macro Instructions Defining the Hardware Configuration , 236
9.3 Macro Instructions Defining the Control Program 236-237
9.4 Definitions of User-Generated Routines ... 237
9.5 Definition of System Generation .. 237

PART 3 PROCESSING PROGRAMS

2.1 Precision Comparison Table : 248
4.1 I/O Procedures ; .. 256
6.1 Machine Instruction Formats ... 263
6.2 Summary of Constants .. 266
7.1 Organization of Sort/Merge Data Sets .. '" 274
8.1 Allowable Program Structures .. 278
8.2 Usage Attributes .. 278

PART 4 TSS (Time Sharing System)

1.1 Terminals Supported by TSS ... 285
1.2 Types of TSS Commands ',' 287

'1

1?>fQ\~1r ~

(Q)~~lRlvn~w (Q)/f (0)$ ~v //f~
)

CHAPTER 1
OBJECTIVES OF OS IV /F4

During the past three decades, general-purpose
digital computers have been developed rapidly and
utilized in increasingly varied applications. Batch
processing (including remotely-submitted jobs) and
online systems (such as for time-sharing and inqu­
iry) are now utilized worldwide.

Most enterprises need not only more data process­
ing but also more accurate data processing. Com­
putationa! algorithms must be i,nproved for
accuracy and efficiency. Programming languages
and application program generators need im­
proved flexibility and relevance to the applica­
tions areas where they are used: banking, insurance,
manufacturing, distribution, education, military ser­
vices, government, etc.

OS IV /F4 is one of the most up-to-date and full­
function operating systems ever implemented. It
furnishes highly-efficient local and remote batch
processing. It offers a time sharing system (TSS)
with a maximum set of language and command
facilities as well as excellent responsiveness.
OS IV /F4 offers a wide range of compilers for the
most common programming languages: Assembler,
COBOL, FORTRAN, PLlI, and ALGOL. Some
compilers are designed for program-development
usag~, with special attention to convenient entry,

editing, compilation and debugging facilities. Other
compilers are designed to operate in a batch environ­
ment and produce highly-optimized object pro­
grams.

OS IV /F4 provides a full range of service pro­
grams: a Linkage Editor, a Loader, a Sort/Merge
package, a collection of system utility programs for
managing system data sets, and a variety of data set
utility programs for such commonplace needs as
media transcriptions, listing the contents of tape
reels and disk packs, and generating and editing new
data sets. '

OS IV /F4 furnishes an advanced information
management system (AIM) to provide state-of-art
data base and data communications facilities. AIM
accepts, organizes, stores, and presents information
which may be highly structured-accessed in a
variety of modes, using several different identifiers
and/or aggregated at several levels of detail. AIM
furnishes an online communications subsystem so
that users of typewriters and display terminals can
directly access AIM data bases. AIM facilitates con­
venient design and implementation of data bases by
computer professionals, while providing simple,
rapid access to data for non-professional users.

CHAPTER 2
MAJOR FEATURES OF FACOM OS IV/F4

OS IV /F4 furnishes certain features which are
unique (among comparably sized operating systems)
or at least at the state-of-art in terms of their effi­
ciency, user convenience, or level of design:
• high reliability-in conjunction with M series

hardware.
• useful facilities-in terms of ease of operation and

installation management.
• efficient usage of system resources-delivering

maximum CPU, memory, and 110 resources to
user programs, and imposing minimal OS , over-
heads. .

• lxpansibility-without traumatic hardware/soft­
ware changes.

• convenient interfaces and tools for developing
applications programs.

• a state-of-art data base management system.

2.1 RELIABILITY, AVAILABILITY, AND
SERVICEABILITY

As the number and variety of applications on a com­
puter increase-and especially when they must run
concurrently - reliability, availability and ser­
viceability (RAS) increase in importance. Whereas
processing interruptions of an hour were quite
acceptable twenty years ago-and interruptions of 5
minutes ten years ago-the need for non-stop opera­
tion of hardware/software systems is much more cri­
tical nowadays. This need is accentuated by two fac­
tors: long continuous updating operations on large,
complex data bases; and access to computers by
dozens-sometimes hundreds-of online users. To
achieve a high level of RAS, OS IV /F4 has been
designed jointly with M series hardware compo­
nents, so that the total hardware/software system
operates with maximum reliability. Selected hard­
ware and software elements are devoted to maintain­
ing high availability-for example, machine and
channel check handlers (software) and duplicate
hardware elements (e.g., disk packs) which. can
functionally substitute for one another during an
emergency.

4

M series hardware utilizes large scale integration
(LSI) technology, which has reduced the total com­
ponent count considerably from earlier computers of
comparable power. A particular innovation of M
series is an independent service processor (SVP)
dedicated to detecting faults in the M series
mainframe. RAS features of OS IV /F4 include the
following:

Recovery management support (RMS)
RMS is a collection of software routines which
detect, isolate, and diagnose hardware failures of
mainframes and peripherals. Whenever a heardware
failure occurs, RMS first attempts to recover from
it, so as to maintain continuity of OS IV /F4 opera­
tions. If recovery is feasible, RMS attempts to isolate
the failing device from the remainder of the system
and to continue OS IV /F4 operations with reduced
hardware resources, i.e., without the failing device.
Principal elements of RMS are the following
routines:
• Machine check handler (MCH) - recover from

and diagnose CPU and main-storage failures.
• Alternate CPU recovery (ACR) - in a multi­

processor configuration, one CPU diagnoses and
recovers from hardware failures in the other CPU
(or an associated memory module or channeD.

• Channel check handler (CCH) -recover from and
diagnose 110 channel failures

.• Alternate path retry (APR) -when two or more
logical paths lead to a device, OS IV /F4 attempts
to use alternate paths if it detects a hardware
failure on the primary path.

• Missing interruption handler (MIll) - if interrup- '
tion necessary for continuing I/O operations is
"lost" by hardware or OS IV /F4 software, the lat­
ter will "time out" this interruption and take
remedial measures.

• Dynamic device reconfiguration (DDR) -retry
failing 110 operations for a mountable volume on
another tape/disk drive.

• Error recovery procedures (ERPs) - analyze,
recover, and re-attempt failing I/O operations.

• Logical recording of errors (LOGREC) - record
all unrecoverable errors, plus summary informa-

tion on recoverable errors.

Diagnosis and recovery from hardware failures
OS IV IF4 collects failure information via RMS
routines which is periodically processed by tM
logout analysis program (LOA) and formatted and
printed by a special system utility program. 1/0
devices can be tested for sporadic/solid failures by
the online test control program (OLTEC) furnished
with OS IV IF4.

Diagnosis and recovery from software failures
OS IV/F4 furnishes numerous facilities for debug­
ging user programs and diagnosing residual prob­
lems in the OS IV IF4 control program. These
include JCL and macro-instruction facilities for dis­
playing the contents of virtual storage (storage
dumps), program tracing, and controlled modifica­
tions of production software. Debugging and main­
tenance of the control program are facilitated by a
comprehensive diagnostic support system (DSS).

Improved security and privacy protection
The following facilities help installatiotls to control
maintenance of data sets and access to confidential
data sets, check the validity of user accesses to
OS IV IF4 routines and control blocks, and reduce
operator errors:
• password protection of data sets and of access to

timesharing and remote batch services.
• validation of user authorizations and conformance

to local standards, by means ofSMF exit routines.
• central storage of attributes and access authoriza­

tions for time sharing and remote-batch users.
• restricted inquiries and changes tc system opera­

tions by auxiliary operator consoles, as selected by
each installation.

Multiprocessor configurations
Some models of M series computers can be con­
figured with two central processors connected to a
pool of main storage modules and peripherals.

OS IV /F4 fully supports uniprocessor and multi­
processor configurafions. Its Alternate CPU recov­
ery feature will use one CPU to diagnose hardware
failures of the other CPU and to continue uninter­
rupted operations whenever possible.

2.2 OPERATOR AND INSTALLATION
MANAGEMENT FACILITIES

As computers become larger and increasingly com­
munications oriented, their operation becomes
more complex. Operator errors become more costly,
and it is helpful for the operating system to furnish
commands and other assistance to operators so that
they can work more accurately and efficiently.
OS IV IF4 offers the following facilities to console

MAJOR FEATURES OP FACOM OS IV IF.

operators:
• Highly automated processing of batch and interac­

tive tasks, requiring minimal operator interven­
tion.

• Coherent, efficient management of data sets and
volumes.

• Simple but flexible job scheduling.
• System management facilities (SMF), to permit

each installation to measure and tune individual
jobs as well as overall utilization of system
resources.

Automated processing
Operators must perform many routine but important
tasks such as mounting tape reels and disk packs,
submitting card decks and paper forms, changing
print trains, and controlling the flow of job streams
and individual jobs. The following as IV IF4
facilities assist operators in performing these tasks
efficiently with minimum opportunity for errors:
• Coherent and efficient management of job entry

and output, via the job entry subsystem (JES).
• Support of multiple operator consoles (MCS) for

specialized tasks as well as overall system control.
• Full support of display consoles, including split­

screen information displays, program function
keyboards, and selector pens.

• Automatic recognition of pre-mounted volumes
(A VR) by OS IV IF4, plus efficient requests for
setting up volumes as requested by user job con­
trol statements.

• Self-service operation for installations with large
numbers of users, who can request outputs from
OS IV IF4 on demand.

Management of data sets and volumes
A typical OS IV IF4 installation processes thousands
of different data sets each week. OS IV IF4 assists
installation managers, operators, and users in
cataloging and inquiring about these data sets and as­
sociated volumes, in particular by the following
facilities:
• Centralized management of volumes, data sets,

and generations of data sets.
• Data set security via passwords, retention periods,

authorization levels for terminal users, etc.
• The new and highly efficient virtual storage access

method (VSAM).

Simple, flexible job scheduling
OS IV IF4 processes several batch jobs concurrently,
typically reading and writing job streams from
several local/remote devices simultaneously. Users
are furnished various parameters to influence when
and how their jobs are scheduled automatically.
Operators can use various commands to control
classes of jobs and classes of outputs, so as to meet
delivery schedules while at the same time efficiently
utilizing the system:
• Adjust selection priorities of each job class, sub-

OVERVIEW OF OS IV /F4

ject to aging of each job in the input queue.
• Automatic validation of account codes and other

job-control parameters by locally-furnished SMF
routines.

• Conditional execution of job steps according to
codes returned by earlier steps.

System management facilltles (SMF)
At a large installation, it is important to measure
overall usage of system resources and to report
usage summaries periodically to installation man­
agement. Also, it is helpful to measure the relative
efficiency of large jobs particularly during their
development and testing.

OS IV/F4 offers SMF-plus a large number of
exit points for installation-furnished routines-to
perform the following tasks:
• Collect system performance data.
• Collect resource-usage data for each job, for

accounting purposes.
• Intervene in standard OS IV /F4 jobscheduling

algorithms, as determined by each installation.

2.3 MANAGEMENT OF SYSTEM
RESOURCES

As computers grow larger and more complex, the
number of expensive hardware and software
resources at typical installations grows. OS IV /F4
offers many fully automatic facilities for tuning the
software and operating with maximum efficiency:
• CPU management.
• Main- and virtual-storage management.
• Volume and space management for direct access

storage devices.
• Spooling to unit record devices.

CPU Management
OS IV /F4 provides many facilities for efficient CPU
management (also called task management of
which the following two are noteworthy:
• Dispatching of either one or two CPUs, according

to whether the configuration is uniprocessor or
multiprocessor.

• Automatic raising/lowering of the dispatching
priority of each active task, according to whether it
has recently been I/O limited or CPU limited.
This optional feature is called the Automatic
priority group (APO).

Main- and virtual-storage management
OS IV /F4 fully supports the virtual-storage architec­
ture of M series, which permits full utilization of
main storage:
• Support of dynamic address translation (OAT)

hardware for the CPU.
• Full exploitation of Channel D AT, an M series

6

innovation which significantly reduces CPU over­
head for I/O services in a virtual-storage system.

• 16 megabytes of address space for each batch or
interactive user, to simplify programming and
maintenance of applications.

• Multiple virtual address spaces-each of 16
megabytes-to perrnit easy design and implemen­
tation of new applications.

• Eftlcient paging algorithms, which move lightly­
used pages to/from main storage and page data
sets.

Volume and space management for DASDs
Of particular value to OS IV /F4 installations is the
new and highly-efficient Virtual storage access
method. VSAM provides high processing efficiency,
good utilization of DASD space, convenience and
efficiency for adding and deleting records, and
possibilities for accessing records by several
different techniques.

Another representative efficiency of OS IV /F4
DASD management is I/O load balancing, whereby
nonspecific requests for space are distributed over
lightly-loaded channels and devices sq as to level the
overall load.

Spooling to unit record devices
Simultaneous peripheral operations online
(SPOOL) is a widely-used technique for achieving
high throughput from card readers, card punches,
and line printers; convenient presentation of system
inputs for batch processing; efficient processing of
system outputs, likewise; and minimizing overheads
in CPU time, main storage, etc. for managing these
unit record devices. JES provides a state-of-art
spooling capability to OS IV/F4; its counterpart
function, Remote entry services, provides the same
convenience and efficiency to remote terminals.

2.4 EXPANSIBILITY

Many computer installations continue to grow after
installing a major computer, forcing them to
increase the amount of main storage, numbers and
speeds of major peripheral devices, and equipment
needed to support new application areas such as
remote entry of transactions. OS IV /F4 offers the .
following expansibility features:
• number and size of address spaces for users.
• modes of processing jobs.
• communications networks.

Address Spaces
Up to 1536 address spaces-each furnishing 16
megabytes 06,777 ,216 bytes) of virtual
storage - are available in OS IV /F4 for concurrently
active batch and interactive tasks. Each address
space is sufficiently large to accommodate all pto-

grams and subroutines for any single application.

Processing Modes
Since batch and timesharing facilities of as IV IF4
use the same compilers, editors, etc., it is easy to
move from one mode to the other. Many programs
can be developed interactively, then compiled for
optimum execution performance in batch mode.

Communications Networks
In a typical communications-oriented configuration,
the numbers of lines and terminals are continually
changing.

as IV IF4 facilitates changes and reduces their
impact on users by decoupling the overall linkage
between application programs, operating system,
communications access methods, and communica­
tions controllers into distinct corresponding soft­
ware subsystems:
• applications-oriented subsystems such as RES,

TSS, and AIM.
• Virtual Telecommunication~ Access Method

(VTAM).
• Network Control Program (NCP). .

Each of these can be independently generated and
subsequently changed with minimum impact on the
others; their interfaces are carefully defined to be
functionally standardized.

2.6 CONVENIENT INTERFACES AND
TOOLS FOR APPLICATIONS DEVELOP­
MENT

Among the more important facilities of as IV IF4
are a wide variety of language compilers and service
programs:
• COBOL-compatible with ANS COBOL (1972

and 1974 versions).
• FORTRAN-superset to H-Ievel FORTRAN and

conforming to the ANS and ISO standards.
• PLII - full language.
• ALGOL-compatible with ISO standard.

With these compilers and the as IV IF4 Assem­
bler, users have the following facilities:
• Generate reentrant programs

From these, a user can create executable programs
which can be used simultaneously by mUltiple
batch and/or interactive tasks.

• Dynamically link programs to a common reper­
toire of executable subroutines maintained online
in the pagable and fixed link pack areas (PLP A
and FLP A). Since object modules are reentrant,
dynamic linking is meaningful and helps reduce
linkage-editing tasks. It simplifies program pre­
paration considerably.

MAJOR FEATURES OF FACOM OS IV /F4

• Request optimized object modules, for efficient
production.

• Request specialized debugging packets and associ­
ated diagnostic aids for snapshotting, tracing, and
dumping programs.

With the as IV /F4 Time Sharing System (TSS),
users can create COBOL, FORTRAN, and PLII pro­
grams interactively, with special assistance from
language prompters and various debugging aids.
Since programs and data sets are interchangeable
between batch and timesharing modes, user pro­
grams can be developed, modified, and tested
interactively, then submitted for batch processing
using optimized object code. Under TSS, users can
rapidly check the syntax of their COBOL or
FORTRAN programs with specialized as IV IF4
Syntax Checkers, the. test the programs interac­
tively with first-rate debugging tools.

2.6 ADVANCED INFORMATION MAN­
AGEMENTSYSTEM(AIM)

To manage a complex collection of files-organized
by many different attributes, created in different
formats, and accessed by various users in widely
differing ways-requires enormous amounts of
computer hardware, running time, and associated
professional manpower. During the past decade, a
number of data base management systems have
been developed to address this problem. These
typically have data communications subsystems to
facilitate access by dozens of remote users. Hence,
these software systems are often called data basel
data communications (DB/DC) systems.

AIM is the principal DB/DC system offered with
as IV /F4. It represents the culmination of Fuji­
tsu's long experience in designing, implementing,
and enhancing DB/DC systems. It fully supports the
major new equipment of M series: larger and higher­
performance DASDs, VTAM and NCP, and the
newest typewriter and display terminals. Likewise,
AIM furnishes interfaces to the most popular
languages for developing programs.

AIM is fully modularized - divided into
subroutines which can be independently generated,
replaced, and aggregated into efficient application­
oriented subsystems. AIM can be generated as a
small data-communications subsystem dedicated to
one application; it can be generated as a large-scale
DB/DC system for multiple integrated/distinct data
bases accessed by hundreds of terminals~ or it can
serve intermediate-size applications with equal cost­
effectiveness.

Noteworthy are the following features of AIM:
• Online network management facilities.
• Management of diverse data structures.

OVERVIEW OF OS IV /F4

• Management of data resources.
• Convenient interfaces for application programs.
• Diverse modes of access.
• Independent and private operation by each user or

user group.
• Extensive error-handling and recovery facilities.
• Exclusive control over blocks, data sets, seg­

ments, etc. during updating activities.

Onllne network management facilities
AIM provides support for diverse configurations of
terminals, modems, multiplexors, concentrators,
and communications lines.

Management of diverse data structures
Either data sets or entire data bases can be accessed
by a universal READ/WRITE interface within AIM.
Hence, programs can be developed for a single data
set, then applied to complex data bases without
reprogramming. Efficiency of AIM is enhanced by
its data base groups (OBGs), exclusive-control
attributes, deadlock-resolving logic, and such
failure-recovery support as device switching and
online error diagnostics.

Management of data resources
As DB/DC systems become larger and more expen­
sive to manage, it is desirable to revise their struc­
tures and simplify access to segments and other data
aggregates. To this end, AIM furnishes an online
Data dictionary/directory System (DO/OS). By
entering attributes about communications networks,
data bases, and processing programs into his 00/
OS, a user can manage his data conveniently by
records, segments, or higher levels of aggregation.
To tune AIM for better performance or a changed
operating environment, the user (or installation
manager) need only change the DO/OS, rather than
modify programs or job control statements.

Convenient interfaces for applications programs
AIM furnishes efficient compilers to generate AIM­
oriented applications programs, which can retrieve,
sort, and generate reports from data retrieved from
AIM segments in either batch or online mode. Pro­
grams can be developed in a special AIM test mode;
programmers and other users can be trained to use
AIM concurrent with production operations without
contaminating permanent data bases. Finally,
system functions can be performed-such as testing
for overloads and displaying summary performance
statistics-with OS IV /F4 support programs such as
the Generalized log writer (GL) .

8

Diverse modes of access
AIM supports access modes ranging from simple
inquiries to full-fledged online program develop­
ment and message processing. Each user chooses the
mode most appropriate to his application, and all
modes are simultaneously available for any AIM
installation:
• single-task structure, for debugging or simple .

online inquiries.
• multi-task structure, for a production system ser­

vicing many concurrent requests.
• alternating structure, for servicing small numbers

of requests or infrequent but intense bursts of
requests.

Independent and private operation by each user or
user group
AIM users operate independent of communications
networks and remote terminals. Their programs can
be designed and implemented independent of the
data bases they will ultimately access. The programs
are generally independent of the processing mode.

Extensive error handling and recovery facilities
AIM attempts to continue operation even if it
encounters nontrivial hardware or software failures,
by detecting them as early as possible and making
vigorous attempts to recover from them. In particu­
lar, AIM attempts diagnosis, recovery, and retry of
most local-device or terminal errors, prompting
remote users to resubmit unintelligible commands
and data. If a user program fails, AIM isolates this
program from other users and attempts rapid recov­
ery/retry.

Exclusive control over blocks, data sets, segments,
etc.
When two or more tasks require simultaneous
access to the same data set, segment, etc., AIM
requests exclusive control of individual blocks
rather than entire data sets. This approach mini­
mizes delays and deadlocks, thereby improving
system throughput without exposing data bases to
contamination. In a shared-access configuration,
deadlocks can occur-two or more tasks seize
resources (typically data blocks or DASD access
mechanisms) such that neither can proceed until the
other releases one or more resources. By timing all
resource seizures, AIM can detect when deadlock
has occurred, terminate one task, and resume nor­
mal operation of the surviving tasks.

CHAPTER 3.
STRUCTURE OF OS IV/F4

The primary components of OS IV /F4 are the con­
trol program and various processing programs, the
latter selected from libraries provided by Fujitsu,
purchased from third parties and/or developed at
each installation, as shown in Figs. 3.1, 3.3, and 3.4.
The control program manages all hardware and soft­
ware resources in a configuration, allocates
resources to jobs (or transactions) entering the
system, and controls how they are ' processed, as
shown in Fig. 3.2. •

Control

Processing

~ ______ ~ _____ ~_i __ L-______ ~ ______ ~p'-r·m
Fig. 3.1 Configuration of OS IV/F4

Control program Supervisor

Job
management

Data
management

Recovery
management

TSS

AIM

Fig. 3.2 Stru.cture of the control program

Processi ng programs Language processing program

COBOL Compiler

FORTRAN tV Compilers
PL/I Compiler
ALGOL Compiler

SL/100 Compiler
Assembler

BASIC Compiler
LISP Compiler

Service programs

Sort/Merge program

Linkage editor end loader
Data set utility programs
System utility programs
Sy~tem generation programs
Independent utility programs
Service aids

Fig. 3.3 Types of processing programs

OVERVIEW OF OS IV /F4

Application programs Managerial science

Simulation languages

Mathamatical routines

Statistical routines
Forecasting packages

Scheduling packages

Scientific and engineering
calculations

Computational algorithms

Mechanical, architectural,
and civil angineering packages

Chemical engineering models
Electrical circuits analysis
programs

Functional packages

Payroll/personnel systems

Accounting packages '

Production control systems

Fig. 3.4 Representative types of application programs

10

J

CHAPTER 4
PRINCIPAL COMPONENTS OF OS IV/F4

This chapter presents the functions and inter-rela­
tionships of the major components of as IV IF4. For
detailed explanations, the reader should consult cor­
responding chapters in Parts 2 - of this manual,
plus other indicated as IV IF4 manuals:
• Virtual storage management-Chapters 1 and 8 of

Part 2 of this manual, plus the FACOM OS IV IF4
Job Management Functions and' Facilities and
FACOM OS IV IF4 Supervisor Functions and
Facilities.

• Job management-Chapter 2 of Part 2 of this
manual, plus the F ACOM OS IV IF4 Job Man­
agement Functions and Facilities.

• Remote entry services (RES) -Chapter 3 of Part
2 of this manual, plus the FACOM OS IV/F4
Remote Entry Subsystem Operations Guide and
F ACOM OS IV IF4 RES Terminal Commands
Reference Manual.

• Data management-Chapter 4 of Part 2 of this
manual, plus the FACOM OS IV/F4 Data Man­
agement Functions and Facilities.

• Virtual storage access method
(VSAM) - Chapter 5 of Part 2 of this man ual, plus
the FACOM OS IV/F4 VSAM Functions and
Facilities.

• Telecommunications management -Chapter 6 of
Part 2 of this manual, plus the FACOM OS IV IF4
VTAM Functions and Facilities and the
FA COM OS IV/F4 VTAM Generation User's
Guide.

• Reliability, availability, and serviceability
(RAS) -Chapter 7 of Part 2 of this manual, plus
the FACOM OS IV IF4 Operator's Guide and
FACOM OS IV IF4 A Guide to Debugging.

• Processing programs- Part 3 of this manual, plus
the FACOM OS IV/F4 Applications General
Description and descriptions of particular applica­
tions packages.

• Time sharing system (TSS) - Part 4 of this
manual, plus the FACOM OS IV/F4 TSS Com­
mands Reference Manual, and F ACOM OS IV I
F4 TSS Terminal Operator's Guide.

• Advanced information management system
(AIM) - See the FA COM OS IV/F4 AIM
General Description, FACOM OS IV IF4 AIM

System Design Guide.

4.1 VIRTUAL STORAGE MANAGEMENT

as IV IF4 provides multiple virtual storages (also
called address spaces), one per active batch or
interactive user. These provide complete independ­
ence of each job from other jobs with respect to the
availability of main storage.

4.1.1 Multiple Virtual Storages

as IV IF4 allocates 16 megabytes (16,777,216
bytes) of virtual storage to each user as his program
starts executing. Over 1500 such virtual address
spaces can be simultaneously active, although
typically 15 batch users and 100 timesharing users
will fully load a single large OS IV IF4 system, as
shown in Fig. 4.1.

DynamiC area

System area

Real storage

I
I
Common area

User area

System area

Multiple Virtual
storages

""""
r- 1

n
2

r--

~
J'
536

Fig. 4.1 Correspondence between real storage and mUltiple
virtual storages

4.1.2 Page Management

Each installation can allocate up to 16 DASDs for
paging, a system activity which stores pages (blocks

OVERVIEW OF OS IV /F4

intervals when they are unused and returns these
pages to main storage as soon as they are re­
referenced. Salient aspects of OS IV IF4 paging are
described in the following paragraphs.

Page management algorithm
as IV IF4 uses a relatively simple LRU (least
recently used) algorithm to determine which pages
should be paged out of main storage (or discarded,
when unmodified copies of these pages exist on a
paging DASD), according to how recently they have
been referenced-those least recently referenced by
user programs or the as IV /F4 control program are
removed first.

Page recovery
Often as IV /F4 will logically remove a particular
page from a user's address space without overwriting
its page frame (corresponding main-storage block of
4K bytes). If the user then references this page, OS
IV /F4 is capable of adding the unmodified page back
to the user's address space; the corresponding page
fault can be satisfied without paging in a fresh copy.

Omission of unnecessary paging
As noted above, if a page is to be removed from
main storage, and if this page corresponds to an
unmodified copy on DASD, the OS IV/F4 Paging
Supervisor discards this page rather than writing it
out unnecessarily.

Slot sorting
Since pages have fixed lengths (4K bytes), the num­
ber held on each DASD track (of a page data set) is
pre-determined. OS IV /F4 periodically sorts all page
requests outstanding for a particular paging device
and satisfies them in slot sequence (relative posi­
tions on the current cylinder) rather than FIFO
sequence (first in, first out) or any other arbitrary
sequence. This technique maximizes the average
transfer rate of pages to/from DASDs, which allevi­
ates paging bottlenecks.

Paging to different types of DASDs
An installation can allocate devices with different
sizes and speeds to page data sets, for example, a
drum (high transfer rate, small capacity) and several
disk drives (medium transfer rates, large capacities).
The OS IV /F4 Paging Supervisor will utilize the
drum for a small number of frequently-referenced
pages, such as those of the Pagable link pack area
(PLP A), which are shared by all users. The Paging
Supervisor will store infrequently-referenced pages
on disk drives. This overall approach maximizes the
cost-efficiency of paging to different DASDs.

Swapping
Timesharing users often remain inactive for several
seconds - even minutes. The OS IV /F4 Paging
Supervisor detects such inactivity and removes all

12

of 4K bytes) of each program on DASDs during
pages corresponding to these users from main
storage (swapping their address spaces) until these
users resume usage of the CPU.

Fixed pages
For tasks requiring fast response times, such as
inquiry applications, users can request that some/all
pages be fixed in real storage, i.e., ineligible for
paging to DASDs. They can specify
ADDRSPC=REAL on corresponding JCL state­
ments-requesting that all of their pages be fixed in
real storage for the duration of the job or job step
-or they can issue PGFIX (Page fix) macro instruc­
tions to insure that selected pages are fixed for
specific durations. Later (or at the end of the job
step), they can release these pages with PGFREE
macro instructions.

Automatic adjustment of paging rates
If many users compete for main storage by
simultaneously executing programs requiring many
active pages, paging rates often rise rapidly. This
phenomenon characterizes most virtual storage
systems, including OS IV /F4. If the paging rate rises
too high, the system is said to be thrashing and can
perform little useful work. To relieve thrashing as
soon as it occurs, OS IV /F4 automatically suspends
one or more low-priority tasks. Suspension consists
of swapping out active pages for these tasks for a
prolonged period of time-possibly minutes-until
the paging rate subsides and stabilizes. Suspended
tasks are resumed, one at a time, when the paging
rate is satisfactorily low.

4.1.3 Channel Dynamic Address Translation
(Channel OAT)

Just as the CPU can dynamically translate virtual
addresses to real.storage addresses, Fujitsu M series
I/O channels can also translate virtual addresses au­
tomatically; this is a unique capability of M series
computers, giving them a significant performance
advantage over prior systems. With Channel DAT,
addresses in channel command words (CCWs) and
associated operand/data areas may refer to virtual
storage. OS IV /F4 fully supports this hardware
feature.

4.2 JOB MANAGEMENT

OS IV /F4 Job Management is a collection of
routines which accept batch jobs from numerous
input devices, queue them for e)(ecution, select and
control their execution, and transcribe their outputs
to appropriate printers, card punches, magnetic
tapes, etc.

4.2.1 Job Entry SubsYltem (JES)

JES is a function within OS IV /F4 Job Management
which reads jobs, writes their outputs to appropriate
devices, and operates unit record devices (card
readers, card punches, line printers, etc.) at max­
imum speed. Salient features of OS IV /F4 JES are as
follows:

Centralized management of buffers
A single pool of buffers is used for readers, writers,
and spool devices. This approach reduces the aggreg­
ate real-storage requirements for JES, particularly
since buffers are allocated and formatted to keep
page-fault interruptions to a minimum.

Efficient spooling
Each spool data set is divided into a number of small
equal-size units called logical cylinders. JES allo­
cates spool storage to JES readers and OS IV /F4
initiators in integral logical cylinders for each user.
Logical cylinders are allocated dynamically, based on
which empty logical cylinder is nearest the current
position of the spool-device access mechanism. This
technique minimizes delays due to moving these
access mechanisms. Often JES can allocate an empty
logical cylinder from the current physical cylinder,
Le., corresponding to the current position of the
access mechanism.

Also, JES utilizes spool data sets on several
different devices if the installation has generated
multiple data sets; this improves the probability of
allocating a logical cylinder with little/no delay.

Simple operating procedures
The JCL statements required for a JES reader
or writer are usually prepared by an installation
and stored in the system procedure library
(SYSl.PROCLIB). This approach facilities simple
operator commands for starting readers and writers,
since most parameters can be predetermined. Opera­
tors can override default parameters by specifying
various parameters with their START commands,
which furnishes great operational flexibility.

4.2.2 Multiple Console Support (MCSt

OS IV /F4 utilizes one main console to control the
entire configuration, plus up to 31 auxiliary COD­

soles to perform specialized functions and back up
one another and the main console. Consoles can be
keyboard/printers, displays, line printers, and other
appropriate devices.

Functional consoles
Auxiliary consoles can be de.dicated to such func­
tions as managing tape reels (displaying which reels
are mounted, to be mounted, finished processing
and to be kept/scratched, etc.), managing disk packs

PRINCIPAL COMPONENTS OF OS IV (F4

(mount and dismount messages), servicing line
printers (requests for chain/train changes, forms
changes, verification of forms positioning, etc.), and
other specialized activities. This MCS facility ~r­
mits large installations to create functional work
areas and other management efficiencies.

Display consoles
Based on CRT displays, these consoles permit opera­
tors to interact efficiently and accurately with the OS
IV /F4 Master scheduler. Optionally, an installation

- can provide program function keys (PFKs) and a
selector pen to further simplify entry of commands
and responses. The overall internal status of OS IV /
F4 - or of selected activities within OS IV /F4, such
as particular readers, initiators, writers, TSS, or
executing jobs - can be displayed on command.
Certain dynamic status indicators - such as which
jobs are executing under various initiators - can be
automatically displayed in one area of the display,
changing whenever their status changes or at
periodic intervals.

Hardcopy log
An OS IV /F4 installation can define a hardcopy log
to record all operator commands, corresponding
system actions, and system-issued operator
messages on one chronological listing. The hardcopy
log facilitates operator interventions for emergen­
cies and quick, reliable restarts as necessary.

4.2.3 Efficiency Enhancements

OS IV /F4 contains several state-of -art facilities for
improving system throughput, simplifying entry of
batch jobs, and providing job turnaround as
expected by users.

Priority aging
In general, each initiator selects jobs according to
class (CLASS parameter) and selection priority
(PR TY parameter). However, this algorithm tends
to keep low-priority jobs on input Queues for
prolonged periods, especially if an installation is pro­
cessing a heavy load of high. priority jobs. Priority
aging is an optional OS IV /F4 feature which permits
each initiator to periodically increment the selection
priority of jobs in certain classes. Low-priority jobs
can thereby rise gradually in priority until they are
eligible for selection.
OS IV /F4 furnishes several parameters to control
priority aging, designating which initiators, which
job classes, at what time intervals, and to what upper
limits age increments can be made.

I/O load balanelna
As OS IV /F4 satisfies nonspecific volume requests,
it selects DASDs (and associated channel paths)
which are relatively lightly loaded. Selections are

OVERVIEW OF OS IV /F4

based on statistics maintained internally by the OS
IV/F4 110 Supervisor, which show how many users
have allocated data sets to each DASD and aggre­
gate recent activity, in terms of how many I/O
requests were issued to each device during the pre­
vious n seconds. 110 load balancing thus levels
DASD activity across all devices and channel paths
for all batch and time sharing users.

Execution batch processing
For each normal job, the OS IV /F4 job initiator per­
forms several non-trivial tasks such as allocating 110
devices, allocating volumes and data sets, and
interpreting and processing its JCL statements. The
execution batch facility relieves this overhead con­
siderably for small standardized user jobs such as
compilations, compile-go test jobs, and routine pro­
duction jobs. This facility processes all jobs of a cer­
tain pre-specified class as a single SYSIN stream in
one job step, although the resulting SYSOUT data
sets are segregated by user and returned to local!
remote destinations just as if they had been fully
processed by the OS IV /F4 job initiator. In addition
to reducing the pre-job overhead for initiation func­
tions, the execution batch facility permits users to
furnish streamlined JCL; typically, a JOB statement
can be immediately followed by SYSIN data, since
EXEC and DD statements are pre-defined for this
class of jobs by a single cataloged procedure.

4.2.4 Installation-management enhancements

In addition to the internal efficiency enhancements
described in the preceding section, OS IV /F4 pro­
vides many facilities to assist programmers, opera­
tors, and installation managers to use the system
more conveniently, such as the following repre­
sentative features.

Demand output
Typically, users of a large comput~r center deliver
card decks and other inputs to a counter, where they
are received and logged by 1I0-control personnel.
These personnel then submit the inputs to the com­
puter, store the source materials in bins, and await
processing of these jobs. When OS IV /F4 has
finished printing and punching job outputs, the 1/0-
contro~ personnel identify each user's output and
store it in a bin (often the same as for the corre­
sponding source decks), where the user can subse­
quently claim it.

This set of procedures and manual handling has
several drawbacks. First, the number of 1I0-control
personnel is typically rather large. Second, the user
must interact with these personnel both when sub­
mitting his job decks and when picking up his out­
puts; this imposes unnecessary delays and ineffi­
ciencies. Finally, the overall turnaround time per job
is lengthened as. compared to the demand-output

14

procedure, where a large percentage of users can - if
they wish - submit their source decks directly to a
local card reader. Each user claims his outputs by
submitting a single JES statement to this card reader
subsequent to entering his card decks; this
/.OUTPUT statement identifies him and requests
OS IV /F4 to immediately print (and/or punch) all
outputs waiting for him on the demand output
SYSOUT queue.

In summary, demand output is a self-service
facility which can be conveniently used by a large
percentage of local job submitters. Its primary
advantages are reduced efforts by 1I0-control per­
sonnel in handling system inputs and outputs and
faster turnaround for job submitters, who handle
their own card decks and retrieve their printed!
punched outputs on demand.

Anticipatory volume setups
Earlier operating systems often issued volume­
mount messages on demand; ajob would commence
executing before the OS issued messages to the
operator requesting that he mount various tape reels
and/or disk packs. An alternative (and supplemen­
tary) approach to demand mounting is anticipatory
setup of volumes, which is supported by OS IV /F4
as follows:

As JES reads source decks from various devices, it
scans JOB and SETUP control statements of the
following format:
//job-name JOB account-number,

programmer-name,
CLASS= ...

P A YMST(FP), TIMES,NEWP A Y

The contents of each SETUP statement are
immediately displayed on the hardcopy log device,
and OS IV /F4 puts the corresponding job into the
input hold queue; it cannot be selected for execution
until it is explicitly released by the operator.

The operator can retrieve all tape reels and disk
packs required for this job by inspecting the
hardcopy log. He can optionally premount some/all
packs and labelled reels, since the automatic volume
recognition (A VR) feature of OS IV /F4 will recogn­
ize these volumes and record the fact that they are
mounted and ready. The operator then releases the
job, which will issue demand mount messages only
for volumes which are not already mounted. Hence,
it is entirely feasible for the operator to premount all
volumes needed by small jobs, so that they
experience no delays after being released for execu­
tion.

The advantages of this approach are that operators
can retrieve several volumes at one time from the
tape/disk library and bring them to the volume­
setup area in an orderly, preplanned procedure; and
that after OS IV /F4 initiates a job, the initiator (and
resources it controls, such as virtual storage,

devices, and data sets) is delayed minimally for
volume-mounting activities. The overall effect of
anticipatory setups is to smooth operations and to
improve processing efficiency for setup jobs.

System management facilities (SMF)
SMF is an OS IV /F4 function for collecting sum­
mary statistics on system performance, such as
aggregate usage of CPU time, channels and devices,
main and virtual storage, plus such system events as
initiator start/stop times, reader and writer startl
stop times, volume-mountings, etc. SMF also will
optionally collect and capture on the SMF data set
records of resources used by individual jobs and job
steps, so that installation managers can scrutinize
long-running jobs for possible inefficiencies. SMF
facilitates installation accounting for computer
usage, since it can generate a comprehensive journal
of which jobs used which hardware/software
resources. Periodically, the console operator
transcribes data from the SMF data set to a perma­
nent archive, using a special OS IV /F4 utility pro­
gram. This archieve can be processed and sum­
marized by installation-developed report programs
to develop whatever management reports are
desired.

SMF furnishes many exit points during the JES
Reader, Job Initiator, Step Initiator, Terminator,
and JES Writer routines where each installation can
insert locally-written routines for the following fuc­
tions:
• validate various parameters on user JCL state­

ments.
• impose installation-defined limitations on CPU

times, SYSOUT quantities, etc.
• capture additional data on jobs and their resource

usage.

4.3 REMOTE ENTRY SERVICES (RES)

RES is a facility for remote entry of jobs to OS IV /
F4, furnishing an interface to users and operators of
remote terminals which is essentially identical to the
JES interface for local users. RES provides readers
and writers similar to those of JES, and it merges
remotely-submitted jobs onto the same input queue.
RES provides operator-communication facilities for
remote operators to send messages to central-site
operators and to one another. Under some restric­
tions, RES operators can manage their input streams
just like central operators; they can start and stop
their terminals, communications to the central site,
and associated input readers and output writers.
They can display the status of jobs entered through
their terminals and outputs awaiting return to their
terminals.

Jobs can be eentered remotely via RES and

PRINCIPAL COMPONENTS OF OS IV /F4

printed/punched at tbe central site via JES, if
requested by the user (or if the job are rerouted by
a local/remote console operator). Likewise, jobs can
be entered via JES and routed to a remote terminal.
Finally, jobs can be entered through on terminal and
their outputs selectively routed to other terminals.

Starting a RES session
The remote operator starts a session by establishing
a communications link to the central site, then issu­
ing a LOGON command. Authorization to submit
jobs in various classes and priority levels is verified
by RES, utilizing attributes for terminal users stored
in the SYS 1. UADS data set at the central site. Broad­
cast messages accumulated for this terminal at the
central site are displayed to the remote operator
when he logs onto RES.

Job flow
Each job is read from the remote terminal, transmit­
ted block by block over the communications link,
and received at the central site through a com­
munications control processor (CCP) and the virtual
telecommunications access method (VT AM) into
RES, which stores the image of this job on the spool
data set. RES enters a control record into the system
job queue (SYS1.SYSJOBQE data set), merged with
control records for jobs submitted from other ter­
minals and-via JES-through local input devices.

Thereafter, remotely-submitted jobs are queued
and processed just like locally-submitted jobs. Their
outputs normally return to the terminal from which
they were su bmi tted, although - as indica ted
above-they can be optionally rerouted. The remote
operator can use his console (or card reader, if the
terminal has no console) to inquire about the overall
OS IV /F4 operational status, jobs input from his ter­
minal, or the queue of output data sets awaiting
return to his terminal. The remote operator can res­
pond to messages and queries issued by executing
programs previously submitted from his terminal;
he can cancel jobs during input, execution, or after
their outputs have been generated. He can use
WRITER commands to control outputs flowing to
his terminal; change forms, request mUltiple copies,
forward space the SYSOUT stream, repeat earlier
portions of a SYSOUT data set, and other useful
operator functions.

Messages to/from the central site
At the central site, the broadcast data set
(SYS1.BRODCAST) contains messages for all
remote terminals in the network. Some messages are
issued by central-site operators, others by remote
operators. Since terminals are not necessarily online
when messages are submitted, the latter are queued
on disk until the receiving terminals log on.
Messages may be broadcast to all terminals or
restricted to a single terminal.

~a _____________ - --- ------ ------- ----

V" ~1(" UlW VI' V;) 1" /1'4

4.4 DATA MANAGEMENT

as IV /F4 data management facilities utilize the M
series virtual-storage and channel-OAT features to
provide state-of-art facilities and unmatched perfor­
mance. Of particular note are as IV /F4 capabilities
to perform chained scheduling into virtual storage,
support paper-tape equipment comprehensively,
and read several sequential data sets in parallel- the
parallel GET facility. These and other feature
improve system efficiency considerably over prior
systems.

Buffering options
The user can select any of the following buffer tech­
niques, as appropriate to his application:
• Queued sequential access method (QSAM)

Simple, exchange, or dynamic buffering .
• Basic access methods (BSAM, BPAM, and

BDAM)
Simple or dynamic buffering.

BDAM Features
These include DASD address feedback (current
and/or next address after each READ/WRITE
operation), extended searches (for particular
records, over multiple tracks), and exclusive control
of individual blocks within sharable data sets, in
addition to exclusive control of entire data sets.

Space management
Improved allocation/deallocation algorithms have
reduced the CPU overhead for space management
by 20 - 30% compared to prior systems.

Data set security features
In addition to control passwords used by installation
managers, as IV /F4 offers secondary passwords
which can be defined and presented by users with
their data set requests. as IV /F4 checks both
passwords (as appropriate) and denies access to per­
sons unable to furnish correct passwords.

Chained scheduling
Rather than issuing a separate channel program for
each I/O request (EXCP macro instruction or
equivalent higher-language verb). OS IV /F4
optionally permits users to dynamically chain
requests together. The as IV/F4 I/O Supervisor
performs the chaining and monitors its successful
performance. Chained scheduling serves to reduce
the CPU overhead for issuing I/O hardware requests
rapidly and improves the throughput of correspond­
ing devices, since they transmit data continuously
through the channel so long as their chains continue.

Parallel GET
This OS IV /F4 feature permits an assembler­
language user to issue read requests to several data
sets concurrently, accepting corresponding data

16

blocks in any sequence. This facility permits better
CPU utilization, since the job can proceed after any
one of the I/O operations completes rather than
requiring these operations to complete serially and
synchronously.

4.6 VIRTUAL STORAGE ACCESS
METHOD (VSAM)

VSAM is a relatively new access method and associ­
ated data set organization, developed to supersede
the indexed sequential Access Method (ISAM)
and-in some cases-specialized uses of the sequen­
tial and direct access methods (SAM and DAM).
VSAM data sets may only be created on DASDs, in
one of the two following formats: key sequenced
which are similar to indexed sequential data sets in
format and usage; and entry sequenced, which are
similar to sequential data sets in these respects.

Every VSAM data set is cataloged into the VSAM
catalog, which is a mandatory component of an
as IV /F4 system and serves as a high-level catalog
manager for non-VSAM data sets as well . For
VSAM data sets, the VSAM catalog contains
numerous format and usage attributes; in this
respect, it differs considerably from non-VSAM
catalog entries, which record for each data set only
the device types and serial numbers of volumes on
which it resides.

Access method services (AMS) is a comprehen­
sive service program designed to handle VSAM data
sets, display their contents, and catalog and
uncatalog non-VSAM data sets.

The following aspects of VSAM are particularly
noteworthy:

High processing efficiency
Skip sequential access to portions ofVSAM data sets
is facilitated by a hierarchical indexing structure.
This reduces the need for sequential searching, yet it
provides the efficiencies of sequential processing
once desired records have been located.

Indexes and data blocks can be retained in virtual
storage indefinitely, so long as they are frequently
referenced. This eliminates the ISAM clumsiness in
requiring fixed allocations of real storage for buffers
and various indexes.

On the indexing track of each cylinder, indexes
can be optionally duplicated several times so as to
reduce rotational latency when they are sought by
VSAM.

During key-sequenced access to a VSAM data set,
several consecutive records can be updated in one
virtual storage block prior to updating its DASD
image, in contrast to keyed accesses to ISAM data
sets (where each record updating requires rewriting
the corresponding block) . Also, several VSAM
records can be inserted onto a track in one opera-

tion; VSAM reads the image of the entire track,
inserts the new records into the virtual storage
buffer, and rewrites the entire track with one I/O
request.

Within most VSAM indexes, keys can be com­
pressed by removing unnecessary leading and trail­
ing characters. Key compression serves to reduce
their DASD storage requirement and to increase the
logical content of each block of keys read into main
storage.

Creators of VSAM data sets can preplan expan­
sion space; OS IV /F4 will insert free space
periodically while writing a VSAM data set-as
directed by user parameters-which will help reduce
record movements and track reformatting when new
records are subsequently added to the data set.

Easy management and control
Since the VSAM catalog contains most attributes for
all VSAM data sets, installations can more easily
manage data centrally and consistently. User JCL,
statements for VSAM data sets are typically much
simpler than for other data set organizations. Also,
usage and efficiency statistics are more easily and
reliably collected by VSAM,

Since records are not managed by physical
addresses but rather by their relative byte addresses
(RBAs) from the start of a VSAM data set, device
independence is much more useful and meaningful
than for other data set organizations.

Protection and maintenance of data sets
Four levels of passwords can be assigned to VSAM
data sets, according to various authorizations to
read, update, add, or access the data. Automatic
journaling of transactions can be optionally
requested.

4.6 DATA COMMUNICATIONS

OS IV /F4 furnishes a virtual telecommunications
access method (VT AM) to control all access to ter­
minals, whether used for remote job entry, time
sharing, inquiry applications, or other online func­
tions. VT AM controls not only terminals connected
via communication lines but also local character dis­
plays connected directly via channels. VTAM uses a
new type of programmable communications control
processor (CCP), which operates under its internal
program called the network control program (NCP).
Part of the data communications function previously
performed by the host processor is performed in OS
IV IF4 by the NCP. This architecture distributes pro­
cessing tasks to two or more specialized computers,
achieving higher host-processor efficiency, faster
response times, and greater overall cost-effective­
ness.

PRINCIPAL COMPONENTS OF OS IV /F4

4.6.1 Virtual Telecommunications Access
Method (VTAM)

VT AM permits application programs to communi­
cate with terminals without any consideration of
intervening control units, communication lines and
moderns, or the CCP. The main functions of VT AM
are to allocate communications resources, establish
communication links to remote terminals, and
transfer records to/from terminals.

Pools of communications resources for multiple
applications
VT AM manages pools of network resources: control
units, lines, and terminals. VT AM permits diverse
application programs to share these network
resources for several different functions
simultaneously. VTAM also permits a single ter­
minal to communicate with different application
programs and online facilities, as chosen by the ter­
minal user.

Establishing communications links
VT AM issues I/O requests- in conjunction with the
NCP program -which establish network paths for
communication between application programs and
terminals. Application programs may request con­
nection to any appropriate terminal. Requests for
communications links can also be made from the
terminals.

Data transfer
After VT AM has connected an application program
to a terminal, the application program exchanges
data with the terminal. VT AM furnishes macro
instructions corresponding to various types of ter­
minals. Since NCP performs most of the transmis­
sion control functions, application programs may
use these macro instructions (or their higher-level
language equivalents) depending on the types of
lines and terminals. Users present EBCDIC-coded
records to VT AM, ignoring any consideration of
how these data are translated into transmission
codes. On the other hand, records presented by ter­
minals to central site application programs are con­
verted to EBCDIC by the NCP; therefore, no
translation or modification need be performed' by
user programs-for example, eliminating line con­
trol characters.

4.6.2 Network Control Program (NCP)

A program operating in a CCP is called a network
control program (NCP); its principal function is to
transmit data received from the host processor (via
VT AM) to terminals, and vice versa. NCP recog­
nizes transmission control characters, assembles and
disassembles characters for controlling line time­
outs, and records and diagnoses errors.

OVERVIEW OF OS IV /F4

The principal advantages of NCP-CCP architec­
ture, compared with prior architectures for com­
munications control, are as follows:
• Since complicated line control characters, line

control procedures, error recovery processing, etc.
are all performed by the NCP inside the CCP, the
host-processor load is reduced, resulting in higher
efficiency for applications programs.

• Terminals and lines with different line control
procedures can be easily expanded without
modifying existing applications.

4.7 RELIABILITY, AVAILABILITY AND
SERVICEABILITY (RAS)

The RAS facilities of OS IV /F4 help prevent and/or
recover from hardware failures. RAS also helps diag­
nose certain software failures, described under
"Dynamic Support System" and "Generalized
Trace Facility" below. RAS comprises a collection of
hardware diagnostic facilities and OS IV /F4 software
routines which operate jointly to produce high levels
of system availability and quick recovery from
failures.

4.7.' System Recovery

If a hardware failure occures in an M series con­
figuration, certain recovery actions are attempted
automatically, such as error checking and correction
(ECC). In case hardware components alone can not
recover from the failure, OS IV /F4 recovery man­
agement support (RMS) software is invoked to
attempt recovery. This multistage recovery strategy
has proven quite successful and cost-effective for
achieving high system availability.

Recovery by RMS
• CPU and main-storage failures

The machine check handler (MCH) analyzes CPU
and main-storage failures; it tries to exactly
restore the machine status preceding these
failures and reattempts corresponding instruc­
tions.

• Recovery by Means of an Alternate CPU
In case a hardware failure occurs in one CPU of a
multiprocessor system, the alternate CPU recov­
ery (ACR) facility of OS IV /F4 attempts to
recover and continue system operations.

• Channel failures
The OS IV /F4 Channel Check Handler (CCH)
analyzes channel failures and performs recovery
processing when appropriate.

• Retry by alternate channel paths

18

For 110 devices which access main storage
through two or more channel paths, the OS IV /F4

alternate path retry facility will reattempt failing
operations'on alternate paths.

• Timing out missed I/O interruptions
After each I/O request is issued, the OS IV /F4
missing interruption handler (MIH) tests for com­
pletion of the request at certain intervals; if the
hardware interruption is "lost," MIH will inter­
vene to permit processing to continue.

• I10Hardware failure analysis
The OS IV /F4 error recovery procedures (ERPs)
analyze failures during 110 operations and per­
form appropriate recovery processing.

4.7.2 System Restoration

OS IV /F4 provides system restoration functions to
detect hardware failures, quickly diagnose their
causes, and thereby reduce preventive-maintenance
and emergency-repair intervals to a minimum.

Diagnosis by the M series service processor (SVP)
Each M series configuration contains an independ­
ent SVP, which ordinarily can continue operation
even if the central CPU or main storage has par­
tially/totally failed. The SVP diagnoses failures
quickly using presto red diagnostics, permitting
rapid resumption of normal operations.

Detailed status of important hardware compo­
nents is continually displayed on the SVP console,
which reduces the time needed for maintenance and
recovery episodes. It also helps maintenance person­
nel to diagnose hardware failures quickly.

Prevention of failures and improved diagnostic
facilities
For any large computer configuration, it is necessary
to continually record the system status, particularly
minor/major failure episodes for hardware and
systems software. Such a record permits mainte­
nance personnel to perform anticipatory mainte­
nance of marginally-operative hardware compo­
nents, as well as to quickly and successfully perform
emergency maintenance when a critical hardware
component malfunctions chronically.

RMS records information about solid/intermit­
tent hardware failures into the LOGREC data set,_
which is a permanent DASD data set. Serious
failures are also log,~ed onto the system hardcopy
console and-if attached-a display console. RMS
collects complete information about location and
probable cause of each failure by interrogating
various hardware registers and main-storage logout
areas. Periodically, a maintenance engineer can pro­
cess the LOGREC data set with a special service aid
which sorts, summarizes and prints reports about all
nontrivial errors during the preceding interval.

Besides RMS, OS IV /F4 furnishes an online test

,---------------,
I I
I I
I & 'ii I
I ·~e CPu ~ I
I :i! ~ <5 I
1 I
I I
I 1

1 I
I Telephone I

link
1 I

1

I
I

Modem

I os IV/F4 Installation L _______________ J

Fig. 4.2 Remote maintenance

control program (OLTEC) which performs diag­
nostic tests on any designated 110 control unit or
device. OL TEC can analyze marginal or solid
failures in any M series peripheral device, whether it
is logically online to OS IV/F4 or offline-the only
requirement for OLTEC testing is that the device be
physically online to the central configuration.
OL TEC can also be invoked by the console operator
to verify that some/all peripherals are correctly
functioning, as a routine verification of hardware
status. OLTEC can operate either concurrent with
production operations or stand-alone.

For diagnosing and correcting residual failures in
systems software-the OS IV/F4 control program,
compilers, service aids, etc. -the dynamic support
system (DSS) is particularly efficient and accurate.
The installation system programmer can ask DSS to
suspend system operation at a pre-designated
address and collect various data, specified in the
DSS command language. When appropriate, the
programmer can even use DSS to apply and test
changes to systems software.

The generalized trace facility (GTF) collects data
on performance and status of systems software; it
can also collect similar data on selected user pro­
grams. Summarized data can be printed periodically
to help diagnose software problems and thus
improve maintenance procedures and overall system
reliability. OS IV IF4 offers several service aids to
display detailed and/or summarized trace data.

Remote maintenance of M series computers
Any maintenance procedure which can be per­
formed locally on an M series configuration can be
optionally controlled from a remote maintenance
center operated by Fujitsu Limited. The operator
dials into the remote maintenance center, using one
communications link attached to the service pro­
cessor. The remote maintenance center also fur-

PRINCIPAL COMPONENTS OF OS IV (F4

,---------------,
I I
I I
I I
I 1
1 I
1 1
I 1
1 1
I I
I Telephone I

link
I I
I Modem I

I
I

I Remote maintenance center I
L _______________ ~

nishes technical assistance via voice telephone to a
local maintenance engineer, and it can thereby fur­
nish rapid, high-quality and consistent maintenance
to remote configurations. OS IV /F4 routines for
remote maintenance are called maintenance assist­
ance by remote telecommunications (MART); they
protect the integrity .and privacy of user data sets
fully.

4.8 SUPERVISOR

The supervisor provides fundamental control and
support functions for the entire configuration. High­
lights of the OS IV /F4 Supervisor are the following
features.

4.8.1 Multiprocelling Support

Prior Fujitsu computers offered multiprocessing
support, such as the FACOM 230-55, 230-58,
230-60 and 230-75 systems. The state-of-art
multiprocessing options for OS IV /F4 are derived
from experience with these systems and advanced
features in M series hardware, of which the follow­
ing are representative:

Local locks
A lock is a control block which may be set, reset,
and tested by several unrelated tasks in order to
access a serially-usable resource in an orderly and
non-hazardous sequence. OS IV /F4 contains many
local locks and a few &lobal locks; the former are
used within one address space, the latt.er are availa­
ble to all tasks in a configuration, whether this con­
figuration contains one or two CPUs. By increasing
the number of locks, and by narrowing the scope of

--~------------------------_. ----- - --------

OVERVIEW OF OS IV /F4

resources controlled by each lock, OS IV /F4
increases system throughput even if two CPUs are
being utilized to access numerous serially-usable
resources.

M1~tmum disabled state
A CPU is disabled Jor interruptions when the
OS IV /F4 supervisor determines that a brief com­
putation must be completed immediately and with­
out interruptions. The OSIV /F4 Supervisor has an
improved design in this respect, compared to prior
systems; most OS IV /F4 tasks run enabled for inter­
ruptions at all times, a few tasks run disabled for
minimum intervals. This approach serves to maxim­
ize responsiveness of the system to I/O interrup­
tions and other performance critical events and to
minimize the likelihood of deadlock events (neither
CPU can proceed without release of a resource held
by the other).

4.8.2 Automatic Priority Group (APG)

, APO is a feature of the OS IV /F4 Task Supervisor
which modifies the dispatching priority of certain
user tasks periodically to reflect whether each task
was relatively CPU-limited or I/O-limited during the
preceding time interval. APG raises the priorities of
tasks which received little CPU service .during the
previous interval, lowering the priorities of tasks
which received relatively heavy CPU service. The
effect of APO is to raise the overall performance of
I/O equipment on the system without lowering the
CPU utilization; in turn, this improves overall
system throughput and hardware utilization. APG
can be explicitly/implicitly requested by a user for
each job step; it is the default method for determin­
ing dispatching priorities for batch jobs.

4.9 PROCESSING PROGRAMS

Under OS IV /F4, processing programs comprise
language processors (compilers and the assembler),
service programs, and application programs. The
first two categories are discussed briefly below; addi­
tional details may be found in Part III of this manual
and in the F ACOM OS IV /F4 Applications
General Description manual.

The OS IV /F4 language processors are enumer­
ated in Table 4.1 and have the following highlight
features.

Conversational faclllties
For several languages, OS IV /F4 furnishes special
syntax-checking facilities and lor prompters and/or
interactive debugging facilites. These tools permit
programmers to create, test, and execute their pro­
grams interactively with great convenience and cost­
effectiveness.

Optimization options
For several languages, OS IV /F4 offers optimizing
options with their compilers, which generate pro­
grams which are smaller than usual and/or execute
faster.

Reentrant object programs
At the user's option, compiler for the COBOL,
FORTRAN, and PLII languages can generate re­
entrant object programs, which are useful for multi­
tasking applications and the system link pack.

Dynamic link structure
The dynamic link structure is a novel 6s IV /F4
facility for managing object modules, as an alterna­
tive to the traditional management of object
modules and load modules. Dynamic linking facili­
tates maintenance of rapidly-changing programs.

Debugging tools
OS IV /F4 furnishes a wide variety of powerful
debugging tools, some of which are specified by
users in their source programs, others selected when
they compile these programs. In several languages,
tracing, snapshotting, and dumping facilities are
easily specified.

Table 4.1 OS IV/F4 Language processors

Processor Features/functions

ANS COBOL Most features of the 1974 ANS
standard.

FORTRAN IV (GE) Meets the ANS standard. Usad
for developing programs;
contains many debugging
features. Compiler is reentrant.

FORTRAN IV (HE) Meets the ANS standard. Usad

ALGOL
PL/I
SL/100

Assembler

BASIC

LISP

for generating optimized
programs.
Meets the 1960 ISO standard.
Full implementation.
Software implementation language
developed by Fujitsu. High-level
control statements - IF, DO,
GO-TO, etc. - are edded to the
assembler language.
Machine-instruction operation
codes, macro instructions for
sequences of instructions, and
other typical facilities.
Dartmouth University BASIC plus
character string manipulation,
formatted print-outs, linkage with
FORTRAN programs, etc. Runs
under TSS.
Based on LISP 1.5. Runs batch
or TSS. Suiteble for string
processing.

The OS IV /F4 service programs comprise the
sort/merge program, the linkage editor, the loader, a
utility program for dumping and restoring volumes,

and various utility programs for generating, copying,
deleting, moving, comparing, and displaying data
sets and their catalogs.

Table 4.2 Service programs

Program

Sort/merge

linkage editor

Loader

System utility
programs

Data set utility
programs

Independent utility
programs

Service aids

System generation

Features/functions

Work files on tape or DASD.
Sort/Merge program is reentrant.
Combines object programs and/or
load modules to create new toad
modules. Optionally, load
modules can be (a) reentrant, (b)
structured into overlays, or (c)
structured in various other ways.
Combines object programs and/or
load modules into an executable
program in main storage. Less
CPU and DASD overhead than
the linkage editor.
Copy or move contents of one
volume to another; initialize
volumes; list system control
information; etc.
Process sequential, partitioned, or
system data sets to perform
copying, comparing, displaying,
dumping, restoring, and other
functions. Handle records or (in
some cases) fields within records.
Initialize DASD volumes; dump/
restore DASD volumes to
magnetic tape reels or other
DASD volumes.
Detect, dump, restore, summarize,
report, etc. data accumulated in
the LOGREe, SMF, and other
special-purpose data sets.
Selects and combines modules,
assembles parameter tables, and
prepares a customized version of
OS IV/F4.

4.10 TIME SHARING SYSTEM (TSS)

OS IV IF4 offers a responsive, reliable, high­
performance TSS, which is easy to use for a wide
variety of applications. TSS can be simultaneously
accessed by many users, each using TSS facilities as
if he had exclusive control of a powerful interactive
computer. Outstanding features of OS IV IF4 are
cited below,

Conversational entry of batch Jobs
Jobs are entered from a keyboard terminal, using
full TSS facilities for checking and editing source
statements. After a job has been entered, part/all of
it can be compiled for interactive testing. Thereafter,
the job can be submitted for ordinary batch process­
ing by JES and an OS IV /F4 initiator, using special
TSS commands.

PRINCIPAL COMPONENTS OF OS IV /F4

Compatibility with batch mode
All language processors, data-management access
methods, data sets, and data bases used in OS IV /F4
batch processing can be utilized under TSS controL
OS IV /F4 Job Control Language (lCL) can be
entered by TSS users. Programs and data sets cre­
ated under TSS can be executed in batch mode, and
vice versa.

Improved processing efficiency
Jobs are swapped int%ut of main storage according
to activity of corresponding terminal users and their
priorities for CPU control relative to one another
and to batch users. CPU time for TSS users is sliced
into relatively short intervals-typically 0.1-1.0
seconds-which are automatically allocated to active
users by the TSS Supervisor. No TSS job can execute
for longer than one time slice without yielding con­
trol to the TSS supervisor, which then decides
whether to let this job continue, to switch control to
another TSS user, or to yield control to a batch job or
other non-TSS task,

Security features
Since TSS is typically used by many terminals
simultaneously, it must verify the authority of users
to access andlor change programs and data sets,
Authorizations are verified by user entered
passwords as they log onto TSS, corroborated with
their names and other attributes stored in the
attributes data set (SYS 1. U ADS). During execution
of his programs, each user has sole possession of a
16-megabytes address space; he can neither access
the address spaces of other users nor be accessed by
them. Finally, a user can define multiple levels
of usage and change access protections by issuing
PROTECT commands.

Multiple command processors
Six different command processors operate concur­
rently in TSS, so as to achieve very quick response
times and high system efficiency. Session control
commands start and stop each session. System con­
trol commands are utilized by console operators and
installation managers. Users issue data control com­
mands to generate and edit their data sets, compiler
invocation commands to call various compilers
(including the assembler), program control com­
mands, and batch interface commands.

Prompters
Prompters are offered with certain language pro­
cessors (COBOL, FORTRAN, arId PLII compilers,
plus the assembler) and the linkage editor and
loader, These facilities issue prompting messages to
terminal users when the latter are allocating system
resources to their programs, such as data sets and
devices, Prompting helps reduce programming
errors due to inadvertent omission of necessary
parameters.

~-- --------- ------ --~~~

OVERVIEW OF OS IV /F4

CCP

N
C
P

V
T
A

M

OS IV/F4

AIM

Online

TSS users

Remote batch users

Batch users

.. c ..
i c ..
E

Data
Bases

FiJ. 4.3 Location of AIM within an OS IV/F4 configuration

Debugging aids
TSS offers syntax checkers for the FORTRAN and
PLII languages, which check the syntax of each
source statement as it is entered. Whenever ,the ter­
minal user submits an incorrectly-structured source
statement, the syntax checker immediately issues a
diagnostic message to his terminal, which permits
him to resubmit a corrected statement at once.
After he has entered his entire program, he typically
requests compilation to locate any residual errors
not detected by the syntax checkers; the checkers do
not validate inter-statement syntax and semantics of
a program.

During execution of a COBOL, FORTRAN, PLII
or Assembler-language program under TSS, the ter­
minal user can request various debugging aids, such
as displays of selected statement numbers/labels and
values of selected variables as his program executes.

4.11 ADVANCED INFORMATION MAN­
AGER(AIM)

4.11.1 Overview

AIM is the principal data base/data communications
(DB/DC) subsystem of as IV /F4. Fig. 4.3 shows
how AIM fits into the hardware/software configura­
tion of a typical OS IV /F4 installation with remote
users. The online data base component of AIM is
accessible to local/remote batch users. Also, AIM
permits several different users (or software sub­
systems) to concurrently access the same data bases.

4.11.2 Architecture of AIM

AIM comprises a large number of different software

functions, each relatively independent of the others:
• data base management.
• program management.
• message management.
• operational management.
• support management.
• languages management.

Each installation can generate AIM with functions
rt::levant to its applications and modes of usage. Each
user selects only the subset of AIM func­
tions - implicitly or explicitly - needed for his partic­
ular application, processing scale, and mode of
access.

4.11.3 Major Components of AIM

Data Base Management
The software component managing a data base in an
operating system is called a data base management
system (DBMS). The OS IV/F4 DBMS manages
ordinary data sets and also data bases, which are
special aggregates of data sets using a consistent and
integrated approach. Hence, all permanent data sets
on DASD are potentially controlled by the DBMS,
whether created by batch, TSS, or other online jobs.

Also, the DBMS supports shared DASD (one or .
more DASDs accessed dynamically by two or more
independent configurations) and concurrent access
by two or more independent tasks in a single system.
The OS IV /F4 DBMS provides exclusive control of
physical blocks to users processing shared DASD or
concurrently-accessed data bases. This exclusive
control is transparent to users.

If a deadlock situation or system failure occurs,
the OS IV /F4 DBMS provides facilities for automat­
ically recovering permanent data sets and transac­
tion files in usable form.

PRINCIPAL COMPONENTS OF OS IV /F4

In addition to conventional .sequential and direct
organizations, DBMS provides list and ring
organizations for data basis; its repertorie of
organizations is quite broad.

Program management
OS IV IF4 AIM contains an application control pro­
gram (ACP) to manage' user programs, which can
become quite complex in the AIM environment
with respect to resource management, failure recov­
ery, and other online aspects. ACP controls initia­
tion, termination, and failure recovery indepen­
dently for each user program.

ACP permits each user to initiate his programs
much as he requests batch jobs; he need not change
his program structures, in general. Several ACPs can
operate in a single system, each serving a particular
application; if one fails for any reason, the others
continue uninterrupted.

Message management
Fig. 4.4 Functional structure of AIM The AIM component which manages messages

(data and control statements flowing between ter­
minals and the central site) is the data communica­
tion management subsystem (DCMS), Utilizing
the NCP and VT AM, the OS IV IF4 DCMS deter-

Terminal)-z-

Message

Terminal)-z,

ISMS - -
Start stop

Operator Device
command management Recovery I Check

Failure Restart ~ processing interface point -... management
...

I I DBMS

c
a>

N V E
OCMS ~ C - T c

P A r-- r--
~

Access control 01

®
E

M .. module 01

~ C User program ..
-; ~ .,g> d
.£ E '. DI,_

<D I DB access 1 E~ .~ ~

'3 Xl ~ ~ I- READ ~!I module @) L-
a> c

~ e t--- ~ ® ~ ..
E Q.

@
GET ~

i-=-o MODIFY
.......... General data

L-.. '-- t-- WRITE set access
module

L....- '--

G) User program asks OCMS to read message.

® LOGON command from terminal connects it to OCMS.
Thereafter messages from the terminal flow to OCMS, which edits and translates
them, then presents them to the requested programs.

@ User program asks DBMS to process data base,

@ DBMS access module reeds records via OS IV IF4 Data Management and transmits
them to the requestor. This processing ;s controlled by the Access Control Module
and optionally journals endlor exclusively controls records.

® OCMS edits and tranllates messages when requested by the user program; whan
terminel is ready, OeMS asks VTAM to transmit the massages.

® VTAM transmits messege, to the terminal via NCP.

Fig. 4.5 Execution now or the AIM system

~ Check
point

re=>
Data
base

~:>
General

data
set

---- -- -.~-- ----~ -- - - ---- -- ------ - .. - - .. - ------.-- - ---

OVERVIEW OF OS IV /F4

mines which messages go to each terminal and the
central site, furnishing the same interfaces to user
programs as for normal data sets, including the same
higher-language interfaces (COBOL, PLII, etc.).
Hence, users can write programs without explicit
consideration of AIM or terminals it controls. The
OCMS controls all message Queues on a unified
basis.

Opentlonal management
The AIM component for assisting operators is called
the integrity and schedule management subsystem
(ISMS), which provides for starting AIM opera­
tions, restarting after failures, stopping AIM, and
responding to operator commands. ISMS attempts
to automate most scheduling and operational deci­
sions, using a data clictlonary/directory (DO/D)
data set to keep records of system resources and
operations. By changing 00/0, ISMS or a user can
modify resources or operating modes without any
changes to application programs.

System definition management
AIM provides a dictionary and directory manage­
ment subsystem (DDMS) to furnish generation and
maitenance facilities for AIM software.

Support Management
AIM provides support utilities to assist installation
managers in designing, generating, operating, and
maintaining system and user programs. Support
utilities provide various facilities for testing new/
revised user programs against AIM data bases and
such tools as a simulator and a performance data log­
ger/analyzer for installation managers to model and
evaluate versions of AIM.

4.11.4 Execution Flow

Communication between terminals and the central
site is depicted in Fig. 4.5 and explained in the
following section.

'1

[P)fQ\~1I ~

CC(Q)N1i~(Q)1L ~~(Q)@MM

'il

I , ,

. 1

CHAPTER 1
VIRTUAL STORAGE

1.1 BACKGROUND OF VIRTUAL In OS IV /F4 virtual storage is an address range of
16,777,216 bytes (16 megabytes). Each
user-whether executing a batch job, interactive
job, or system component-receives his own copy of
virtual storage from OS IV /F4 minus space used for
certain system functions.

STORAGE SYSTEMS

Virtual storage is simply an address range that can
far exceed the actual range of addresses in real
storage (or main storage). To the programmer, vir­
tual storage appears as real storage; therefore, a pro­
grammer is able to write programs for tpe capacity of
virtual storage, and the frustration of u~ing limited
real storage is greatly diminished.

Programs are actually stored in auxiliary storage
called external page storage, which is divided into
4K blocks called slots; similarly, programs them­
selves are divided into 4K blocks called pages, and

I JOBB

JOBA

Routine B2
Routine A3

Routine 81
Routine A2

Routine A1

Routine A2 I

I Routine 81

Routine A3 I

JOSA and JOBB in virtual storage

JOBA and JOBS have private address spaces. To each user,
it appears that his job exists in contiguous real Itorage.

JOBA and JOBB in real storage

Pages containing currently·referenced instructions and data
for JOBA and JOBB are in real storage.

JOBA and JOBB in external page storage

Complete images of JOBA and JOBB are retained on auxiliary
storage. I nstructions and data are transferred to real storage
as required for execution.

Fig. 1.1 Relationship between virtual storage, real storage, and external page storage

CONTROL PROGRAM

real storage is divided into 4K blocks called frames.
The system transfers pages of programs from exter­
nal page storage to real storage as required during
execution, automatically translating virtual storage
addresses to actual addresses in real storage. The
pages do not ordinarily exist continuously in real
storage. This paging activity is transparent to the
user. Fig. 1.1 illustrates private address spaces in OS
IV IF4 and the relationship between virtual storage,
external page storage, and real storage.

This virtual storage design provides more efficient
multiprogramming (concurrent execution of
several large jobs) and a more diverse mix of
interactive and batch jobs. Also, since each job is
isolated in a private address space, interregion vir­
tual storage fragmentation is eliminated and protec­
tion features are extended.

1.2 THE OS IV/F4 VIRTUAL STORAGE
ARCHITECTURE

1.2.1 Overview

Virtual storage concepts
In any system with virtual storage, the address space
available to programs is limited by the addressing
scheme of the central processor rather than the
amount of real storage available in the configura­
tion. For example, every M series CPU uses a 24-bit
binary address scheme, so an address space as large
as 16,777,216 bytes can be supported.

With this design, a virtual storage system can sup­
port an address space large than the actual amount of
real storage available. To accomplish this, the

System queue area

OS IV IF4 control program stores the contents ,of
virtual storage - instructions and data -onto direct
access storage; it brings instructions and data into
real storage (from direct access storage) only when
required by executing programs. Likewise, the con­
trol program returns altered instructions and data to
direct access storage when the real storage they
occupy is needed and they are no longer being used.
Thus, . at any time, real storage contains only a por­
tion of the contents of virtual storage.

Virtual storage in OS IV IF4
Virtual storage is divided into address spaces for the
control program and address spaces for user pro­
grams. Each user job (and some system compo­
nents) receives its own private user address space.
That is, OS IV IF4 supports multiple address spaces,
as shown in Fig. 1.2.

The control program creates private address
spaces for the following users and system compo­
nents:
• Each batch job scheduled by an initiator.
• Each logged-on time-sharing job.
• The master scheduler.
• The job entry subsystem (JES).
• The virtual telecommunications access method

(VTAM).
• Every program initiated by a START command.

1.2.2 Virtual Storage Layout

Although each user job is given its own private
address space, it does not have control over all of
it -each address space is divided into the system

High address
Address spaces

Common
area { ---------------------------------------

User
area

System
area {

Pageable link pack area

Common service area

User private address space

nucleus

Fig. 1.2 Virtual ator. layout

Low address

I
I

Local system queue
area

t

t
User programs

....:.....
Use rC

-
User B

User A

http:Thus,.at

VIRTUAL STORAGE

area, the user area, and the common area (see Fig.
1.2).

• cated from the low address up.

The system area contains the nucleus, which is
fixed in real storage that is mapped into the low
addresses of each user's address space. The common
area corresponds to the highest addresses of virtual
storage. The common area contains the system
queue area (SQA), the pagable link pack area
(PLP A), the modified LP A (MLP A), the pagable
BLDL list (PBLDL), and the common service area
(CSA). The SQA contains tables and queues relating
to the entire system. The three LPAs contain sve
routines, access methods and other read-only
system programs, and any reentrant (read-only)
user programs selected by the installation that can be
shared among users of the system. The eSA con­
tains data for communications among the private
user address spaces.

Each user's private address space begins imme­
diately after the nucleus and extends up to the com­
mon area. Thus, all users have the same amount of
private address space. Fig. 1,2 shows the structure of
the user address space in virtual storage. Space is
assigned to user programs from the low address up.
Space is assigned from the high address down for the
local system queue area (LSQA) which contains
tables and queues associated with the user's job and
address space. The remainder of the private address
space is available for its user, with space being allo-

Virtual storage

Common area
-

Some user programs must remain in real storage
during execution. These programs are assigned dis­
contiguous real-storage pages, just like other pro­
grams m virtual storage. Hence, their pages are not
written to DASDs during execution. (Each real­
storage execution is specified for the duration of one
job step.) Since M series CPUs and channels utilize
dynamic address translation, real-storage programs
can execute at full speed without any page-fault
interruptions. However, their address spaces are
considerably smaller than 16 megabytes, the stan­
dard size for pagable programs, since they must have
a real-storage page frame for each program page.

1.2.3 Storage Organization

For ease in storage management, virtual storage,
real storage, and direct access storage containing vir­
tual-storage images are divided into contiguous fix­
ed length sections of equal size.

Virtual storage is divided int064K byte segments.
(A maximum virtual storage of 16,777,216 bytes,
therefore, contains 256 segments,) Each segment of
virtual storage is divided into 4K-byte virtual storage
pages; thus, each segment contains 16 pages.

Real storage is divided into 4K-byte page frames.
Hence, a page frame is a block of real storage that

L User 0 private area
I

User A private area

User private area

System area

/

Fig. 1.3 Segment and Pile tables

Segment table
(User A)

I Page table
(Segment n)

Page table
(Segment 1)

..

...
...

I /

1

Segment table
(user 0)

I Page table
(Segment n)

Page Table
(Segment 1)

\,;UNTKUL PKUtiKAM

can contain one page at a time.
The direct access storage used to contain virtual

storage contents is called external page storage.
External page storage is divided into physical records
called slots. A slot is 4K bytes long; therefore, each
slot can contain one page at a time.

In summary, a page of data or instructions is
assigned a virtual storage address. The page occupies
a slot when it is in external page storage, a frame
when it is in real storage.

Address translation
When coding a program the user refers to data and
instructions by names or labels without knowing
their physical addresses. In a virtual storage system,
the control program assigns to each name or label a
virtual storage address that can be used to locate the
data or instruction. By comparison, real storage
addresses are actual physical locations in processor
storage where data and instructions can be placed for
processing by the CPU.

A mechanism is required to associate virtual
. storage addresses of data and instructions with their

actual locations in real storage. Transformation of a
virtual storage address to its real storage address is
address translation. In M series computers, the

. dynamic address translation (OAT) hardware
feature in the CPU and channels performs address
translation.

To translate the addresses, OAT uses tables in real
storage. These tables, which are maintained by the
control program, are the segment table and a num­
ber of page tables. One segment table and a corres­
ponding set of page tables exist for each address
space in the system, as shown in Fig. 1.3.

A segment table contains one entry for each seg­
ment in the address space that the table describes. A
segment table entry defines the number of pages
allocated in the segment and points to the real
storage location of the page table for the segment.

There is one page table for each segment in the
address space. A page table contains one entry for
each page in the associated segment. It indicates
which pages are currently in real storage and the real
stoorage locations of these pages. As pages are
transferred between real and external page storage,
the control program changes the corresponding page
table entries.

OAT translates any virtual storage addresses
referenced by an instruction during its execution.
Translation occurs after the 24-bit effective virtual
storage address has been computed, as usual, by
adding base, displacement, and any index values
together. The format of the effective virtual storage
address is included in Fig. 1.4 .

The translation process is shown in Fig. 1.4. First,
OAT obtains the address of the appropriate segment
table from a system control register. To this segment

Effective 24-bit virtual storage address

System co ntrol register 8

Segment teble

Pege table address

Page table

Fig. 1.4 Dynamic address translation procedure

30

Segment
address

bits
16

Page
address

bits

Page table

Page frame address
Page table

Page frame address

20

24-bit real storage addreu

Byte displacement
from beginning of

page

Displacement

31

table address, DAT adds the segment address bits
(from the effective virtual storage address), to
obtain. the segment table entry. Next, OAT obtains
the page table address from the segment table entry
and adds the page address bits to it in order to obtain
the page table entry. Finally, OAT forms the 24-bit
real storage address by appending the displacement
(from the effective virtual storage address) to the
page frame address in the page table entry.

To reduce the amount of time required for address
translation, OAT retains up to 128 previously­
translated addresses in a translation lookaside
buffer (TLB). Prior to performing a translation
using segment and page tables, OAT searches the
TLB for the required translated address.

Paging
A program interruption occurs during address
translation if OAT attempts to translate a virtual
storage address to a real storage address and the
required page is not in real storage. This interrup­
tion, called a page translation exception or page
fault, alerts the control program that the page must
be loaded from external page storage into a page
frame of real storage. '

Data and instructions are transferred between
external page storage and real storage as needed,
page by page. This activity is called PSiging. The con-

Page table External page table

, --- ------ Slot location

\

External page storage

Page frame table

1

1 ,
Frame number 0

"" 1
,.

"" 1
Real storag~\ ~ 1

1'---...0
't-

---- I--

Fig. 1.5 Page-in process

VIRTUAL STORAGE

trol program routine responsible for paging is real
storage management.

The transfer of a page into real storage is a page­
in, as shown in Fig. 1.5. When a requested page is
not in real storage (indicated by a bit in its page table
entry), real storage management examines the cor­
responding entry in an external page table. (One
external page table corresponds to each page table in
the system.) The external page table entry gives the
slot location for the page.

Next, storage management selects a frame in real
storage to hold the required page. To do so, it refers
to the page frame table, that indicates which frames
are allocated. Storage management finds an available
frame and brings in the required page from its slot in
external page storage. To complete the page-in pro­
cess, storage management updates the appropriate
pageframe-table entry and page-table entry.

To keep a supply of frames available for page-in,
the OS IV /F4 control program removes pages from
real storage that have not been recently referenced.
Prior to removing a page from a frame, the control
program determines whether its contents were
modified during processing. If so, storage manage­
ment performs a page-out; otherwise, an exact copy
of the page already exists in external page storage. A
page-out copies the modified page from its
realstorage frame to a slot in external page storage;
the slot need not be the one that contains the old
version of the page. Storage management need only
update the external page table entry to designate the
new slot.

For various reasons, certain pages should not be
paged out of real storage. For example, pages that
contain I/O buffers must remain in real storage
while the buffers are being referenced during an I/O
operation. A page that cannot be paged out is called a
fixed page.

Pages that are fixed for the duration of ajob or job
step are long-term fixed. For example, pages that
contain certain control blocks related to a job are
long-term fixed for the duration of the job. Pages
that must be fixed for only a portion of the time they
are in real storage are short-term fixed. For exam­
ple, a page containing an I/O buffer is fixed prior to
the start of the I/O operation; after the I/O opera­
tion is completed, the page is unfixed and is eligible
for page-out. Only the control program can selec­
tively fix user pages. For instance, the control pro­
gram can short-term fix user I/O area pages.

The user can fix pages, but not selectively, by cod­
ing AODRSPC=REAL on his JOB or EXEC state­
ments. Each such job step is allocated a collection of
real-storage page frames, which the OAT and Chan­
nel-OAT features make logically contiguous to each
other and to the nucleus. Since these programs are
not paged, they do not occupy external page storage.
The entire program is loaded into real storage when
it is initiated, and all pages are fixed.

CONTROL PROGRAM

Swapping
If an interactive task remains in Wait state for a long
interval-for example, while a terminal user is
deciding what calculation to perform next-the OS
IV IF4 Supervisor will page out all pages of his
address space (that is, those unshared with other
users). This technique is called program swapping
(or merely swapping). It is no more than anticipa­
tory paging out of all pages held by a user who is
expected to be inactive for several seconds or
minutes.

The same technique is used when a initiated batch
job must await operator invention, for example
when an executing program has issued a Write to
Operator with Reply (WTOR) macro instruction,
COBOL ACCEPT instruction, etc. Since OS IV IF4
knows that the executing program cannot proceed
until the console operator replies, and since several
seconds will typically elapse until the operator enters
the desired response, the OS IV IF4 Supervisor
swaps out this user's address space. Similarly, if a
volume must be mounted at the beginning of a job
step or-as requested by a DEFER option in a JCL
UNIT parameter - in the middle of a step, OS IV IF4
will swap out this address space as soon as it has
issued the volume-mounting command.

Swapping immediately furnishes a number of page
frames for allocation to other jobs. Hence, suc­
cessful swapping permits other active jobs to run
with fewer page faults; it even permits OS IV IF4 to
start additional batch jobs.

Levelllng paging activity
In OS IV IF4, page frames are not mapped one to
one onto slots, nor are the pages of each active
address space rigidly allocated to slots. Hence, the
OS IV IF4 Supervisor can store a page into any
available slot when page-out becomes necessary.
Since the choice of slots can be delayed until the last
instant, the OS IV IF4 Supervisor can select a lightly­
loaded channel or paging device each time.

Slot sorting
The OS IV IF4 Paging Supervisor issues I/O requests
to paging devices whenever pages must be transfer­
red to/from main storage. The channel programs as­
sociated with these requests are dynamically
modified by th~, Supervisor so long as additional
pages must be read/written to corresponding
devices. Hence, slots on these devices can be chosen
at the last instant. Whenever several input and/or
output requests for pages are outstanding for the
current cylinder on a paging device, OS IV IF4
satisfies them by their physical sequence on the
DASD, rather than by their order of issuance or
another queuing algorithm. ("Physical sequence" is
in terrns of their angular displacements from the
current position of the DASD read/write mechan­
ism.) This slot sorting technique maximizes the
average transfer rate of pages to/from main storage,

32

which keeps paging bottlenecks to a minimum.

Preventing paging overloads
No matter how efficiently paging is managed, the
Supervisor can only transfer a limited number of
pages per second. If executing programs (including
timesharing and system tasks) request pages faster
than this rate - summed over all paging
devices-their throughput declines. For interactive
tasks, paging overloads can cause drastically longer
response times at terminals. This condition is often
called thrashing.

To prevent thrashing-or to correct it after it
begins-the OS IV/F4 Supervisor will swap out one
or more low-priority batch jobs. By thus suspending
their execution, OS IV IF4 releases their page frames
for use by other tasks. Also, the CPU time and chan­
nel capacity they would have used can be released to
other jobs. If necessary, OS IV IF4 will suspend high­
er-priority batch jobs in order to reduce thrashing.
When thrashing has subsided sufficiently, the OS
IV IF4 Supervisor will swap in one suspended task
after another, in order to keep the paging rate accep­
tably low.

Paging hierarchies
If an installation assigns two or more different
DASDs for paging, OS IV IF4 will use each as
appropriate to its speed and capacity. For example, if
an installation allocates one F6625 Drum and two
F478B Disk drives for paging, the paging supervisor
will utilize the drum fully prior to writing any pages
onto the disk drives. Thereafter, the Supervisor will
write frequently-referenced pages (e.g., from the
Pagable link pack area, which is shared by all users)
onto the drum and infrequently-referenced pages
onto the disk drives. Since the drum is much faster
than the disk drives but has much less storage
capacity, this strategy maximizes the overall paging
rate.

Real-storage regions
For time-dependent programs and other tasks
requiring ultra-fast response times to 110 requests,
users can request real-storage regions by coding
ADDRSPC= REAL on their JOB or EXEC state­
ments. All pages for such jobs (or job steps) are fix­
'ed in main storage throughout execution. Unlike
several prior hardware systems and corresponding '
operating systems, OS IV IF4 utilizes discontiguous
page frames to define a real-storage region; the com­
bination of CPU-OAT and Channel-OAT features
permits all instructions, CCWs, and data areas to be
in virtual storage. The only differences between
real-storage reegions aJld other virtual-storage
address spaces are that the former are not paged out
or limited in size, since each of their pages requires
one main-storage page frame throughout its job step.
Paging overhead is completely eliminated for real­
storage regions, but typically only' a few (if any)

should be allocated at one time since they cause
drastic depletion of the pool of page frames available
to other jobs and the OS IV /F4 control program.

Macro instructions for fixing/freeing pages
For some Assembler language programs, it is useful
to deliberately fix certain pages in main storage for
certain intervals-not necessarily throughout an
entire job step. For example, a program may use a
scatter-storage (hashing) algorithm to sort data or
perform another computational task that requires a
large address space briefly. In this case, the program
can optimize its efficiency by reducing/eliminating
paging of certain program or data areas. The program
requests that these pages be fixed by issuing PGFIX
macro instructions; later, it can free these pages for
paging by issuing PGFREE macro instructions.
PGFlX and PGFREE macro instructions can be
issued only by previously-authorized programs since
they can - if misused - seriously degrade paging per­
formance and system throughput.

1.2.4 Structure of OS IV /F4 Address Spaces

Each address space contains common elements,
which are shared among all address spaces (includ­
ing those for interactive and system tasks). These
elements are the system area and the common area.
The remainder of the address space contains pages
which are uniquely accessible by this address space
so long as it executes. Fig. 1.6 outlines a typical
address space, Figs. 1.7 to 1.1 0 provide details on
various shared areas in this address space.

},
SG (n)

System
area SG (2)

SG (1)

SG (0)

Address Segment
space A table A

H
SG (n)

System SG (2)
area

SG (1)

SG (0)

Address Segment
space B tibIa B

Fig. 1.7 Address mapping for the system area

VIRTUAL STORAGE

r
-16M-

SOA High
address

• * PLPA
Common and MPLA

System control tables
and work areas for all
address spaces

Pagable sve routines.
standard access methods •
1/0 error recovery routines

area reantrant library. etc:

*PBLDL
BLDL list of
SVS1.LlNKLlB

Area for communication
eSA between programs in

different address spaces

System control infor·
LSQA mation for one address

space

Remainder of user area
Individual after allocations to
user area Region and LSQA

Region Area for user programs

*FBLDL
Unpaged BLDL entries
for SVS1.LlNKLlB

LlNKPAK modules
System **FLPA permanently loaded
area into main storage

L Low

Nucleus address

-0-

Control program and
tables

* FBLDL and PBLDL are defined exclusive of each other
within a system. Selection of which to use can be made
at the time of IPL.

.* Ditto for FLPA. PLPA. and MLPA

Fig. 1.6 Typical OS IV/F4 Address space

Contiguous
System pages of real

area storage

Raal storage

CONTROL PROGRAM

System Area
The system area comprises the system nucleus and,
optionally, a fixed link pack area (FLP A) and fixed
BLDL table (FBLDL). The system area is identical
for all address spaces with respect to size and con­
tents. It is contained in contiguous page frames at
the lowest addresses in real storage. The system area
is not paged, and its storage addresses are not transl­
ated into virtual addresses, as illustrated in Fig. 1.7.

The nucleus contains basic control-program
routines which are loaded when OS IV /F4 is initially
started (IPL). The FLP A contains reentrant pro­
grams and read-only tables intensively and
simultaneously used by many tasks; they are a
subset of the total link pack area (LPA), comprising
reentrant load modules which are heaviest used:
• some/all pagable SVC routines.
• some/all standard access method-modules.
• I/O error recovery routines.
• Reentrant libraries used by language processors.
• User-generated reentrant load modules.

The FLPA can be included or excluded each time
OS IV /F4 is loaded.

The FBLOL is the image of part/all of the 'directo­
ry for the system link library (SYSI.LINKLIB),
which contains the OS IV /F4 Assember, Linkage
editor, Loader, various service aids, and user-writ­
ten programs which are accessed frequently. Each
time OS IV /F4 is loaded, the operator can select
whether to include/exclude an FBLOL area, which
serves to speed up retrieval of LINKLIB members
named in FBLOL. In the common area, a pagable
BLOL table can optionally be created which is com­
plementary to the FBLDL. Neither, either, or both
can be selected by the operator, although he typically
accepts default values for these tables set during OS
IV /F4 system generation.

Address
space

Common
area

LSQA

Region

System
area

Segment
table

Private user area
Each private user area comprises a local system
queue area (LSQA) and a region. The LSQA con­
tains control information specific to this address
space such as its segment table, part/all of its page
table, and various control blocks for its tasks, as
shown in Fig. 1.8.

An LSQA is allocated for each address space-an
integral number of segments of 64K bytes
each -when the corresponding initiator is started by
the operator.

The region is the area in each address space where
programs are loaded and executed, plus associated
workspaces. Its size can be optionally limited by the
REGION parameter on a JOB or EXEC statement. If
the user specifies ADORSPC- REAL on his JOB or
EXEC statement, he must furnish a REGION
parameter unless a default value is assigned by the
associated initiator procedure, by an SMF exit
routine, etc. As discussed in the previous section,
AOORSPC""'REAL selects a real-storage region,
used primarily for time dependent jobs and others
with critical response time requirements.

If the user specifies AOORSPC-VIRT (the
OS IV /F4 default value), his region is allocated
pagable storage in integral segments (64 K blocks).

Common area
Like the system area, the common area is shared
among all address spaces; unlike the system area, it
is pagable. It contains the system queue area (SQA),
pagable and modified link pack areas (PLP A and
MLP A), pagable BLOL list (PBLDL), and a com­
mon service area. One set of page tables exists for
the common area, shared by all address spaces just as
they share the unique set of page tables for the
system area; this structure is indicated in Fig. 1.9.

Page
tabl"

Real
storage

System
area

Pages not in real storage

o page frame allocated to this user

Fig. 1.8 Addreu mapping for a private user area

34

Address Segment Page Real
space A teble A table storage

SG IFF)
Common

area

SG In)

System
area

SG IFF)
Common

area

SG In)

System
area

o page frames for
common area

Address
space B

Segment
table B

Fig. 1.9 Address structure for the common area

System queue area (SQA)
The SQA contains control blocks and tables for the
entire system, rather than for individ.ual address
spaces. When as IV /F4 is reloaded (lPt), the
Supervisor allocates segments (blocks of 64K bytes)
to SQA, as pre-determined during'system genera­
tion and optIonally modified by the console opera­
tor. SQA segments are allocated downward from the
top of each address space (location 16,777,215 for all
virtual-storage regions). Just as it handles the
LSQA, the Supervisor allocates page frames to these
segments only as corresponding addresses are
referenced by active tasks.

Pagable and modified link pack areas (PLP A and
MLPA)
Reentrant load modules used by all address spaces
are retrieved into these LP As from the system link
pack library (SYS1.LPALIB):
• Pagable SVC routines.
• Standard access methods.
• 110 error recovery routines.
• Reentrant libraries used by language processors.
• User-generated reentrant load modules.

Designated load modules from SYSl.LPALIB
may optionally be loaded into the FLP A; all others
are loaded into the PLP A, as selected at IPL time.

Pagable bLDL Ust (PBLDL)
Just as for the Fixed BLDL table, the PBLDL is cre­
ated when as IV IF4 is reloaded, as an image of part/
all of the directory Jar the system link library
(SYS I .LINKLIB) . Some (or no) LINKLIB directory
entries may be in FBLDL, some (or no) directory
entries in the PBLDL, and the remaining entries are
retrieved from DASD as needed.

vmTUAL STORAGE

Common service area (CSA)
The CSA is used by address spaces to communicate
with one another; this includes such systems tasks as
JES and VT AM as well as user address spaces. CSA
is allocated in integral segments (blocks of 64K
bytes) when as IV IF4 is reloaded. Address spaces
allocate and release space in CSA by means of
system macro instructions. Page frames are allocated
only as necessary; the CSA is fully pagable.

1.2.6 Processing Jobs in Virtual Storage

This section explains how as IV IF4 manages
address spaces and jobs prior to/during job process­
ing.

Prior to loading a user program
The console operator starts an initiator with a
START command, to which as IV/F4 responds by
creating a new address space together with its LSQA.
A page frame is allocated within the new LSQA to
hold the segment table and fITst page table for this
address space. Other necessary control blocks are
then created in the LSQA, as shown in Fig. 1.11.

Prior to processing a job, the initiator reserves
sufficient external slots to contain all of its pages,
based on explicit REGION parameters of its JOB or
EXEC statements or the default region size for this
initiator. The region is allocated virtual addresses
beginning just above the highest address of the
system area.

The programs named in EXEC statements must
all be members of program libraries, partitioned
data sets in a special format created by the linkage
editor. The directory of each library contains the
names and sizes of all member programs. The
Supervisor first reads the directory, allocates suffi­
cient virtual storage to hold the requested program,
and loads the program into this storage area. If suffi­
cient page frames exist, the entire program can be
loaded into real storage; otherwise, page-out activity
begins while the program is being loaded, as shown
in Fig. 1.12.

Page management during execution .
After a program has been successfully loaded, it
begins execution. Under OS IV IF4, most installa­
tions operate several initiators plus TSS, VT AM ,
AIM, etc. Each initiator may receive virtual-storage
requests exceeding the number of allocatable page
frames; the total of all outstanding requests (and
consequent allocations) of virtual storage typically
exceeds the total real storage of the system by a large
factor, forcing the as IV /F4 Supervisor to con­
tinually page out inactive pages from one or more
address spaces.

Corresponding to each page of each address space
is a page table entry, one of whose flag bits is the

CONTROL PROGRAM

-nM8-

High
position
eddresses

RlllltOrqt Virtual storage

SOA

P8LOL
PLPA. MPLA

eSA

LSOA

}
Common lrel:
only onl In I syltlm

Individual user area:
User mode and contant differ
with each addrass space

Low
position
addresses

t-----I-- ----- - - - -- - -~~~~~~d~~t=:::::::!!...-
FLBA, FBLDL I I

Systam area :
only one in a system

System Fixed ~~
area _____ ~r _____ L__ __ N_u_c_le_u_s __ .J.__-~ax- 1536

-08-

Segment antries {
for common area

Segment table

t-------t
LSOA segment {
antries t-------j

Segmlnt entriet
for regions

Segment entries
for systlm area

SGT

Fig. 1.10 Oven1l addressing of an address space

invalid bit. Whenever the CPU references a virtual
storage address, D AT hardware automatically
references the corresponding page table entry and
tests its invalid bit_ If on, there is no page frame cur­
rently allocated to this page, and the DAT hardware
automatically generates a page fault interruption
(or pqe fault) .

36

address spaces

Whenever a page fault occurs, the OS IV IF4
Supervisor gains control and places the correspond­
ing task into wait state until the page satisfying this
request is brought into a main-storage page frame. If
an unallocated page frame already exists-in the
pool of such frames controlled by the super­
visor-the requested page is read into this frame,

Address Segment Page Real
space A table A teble storage

SG (FF)
Common

area

SG In)

System
area

SG (FF)
Common

area

SG In)

System
area

IT] page frames for
common area

Address
space 8

Segment
table 8

Fig. 1.9 Address structure for the common area

System queue area (SQA)
The SQA contains control blocks and tables for the
entire system, rather than for indivi(iual address
spaces. When OS IV /F4 is reloaded (lPL) , the
Supervisor allocates segments (blocks of 64K bytes)
to SQA, as pre-determined during system genera­
tion and optionally modified by the console opera­
tor. SQA segments are allocated downward from the
top of each address space (location 16,777,21 5 for all
virtual-storage regions). Just as it handles the
LSQA, the Supervisor allocates page frames to these
segments only as corresponding addresses are
referenced by active tasks.

Pagable and modified link pack areas (PLP A and
MLPA)
Reentrant load modules used by all address spaces
are retrieved into these LP As from the system link
pack library (SYS1.LPALIB) :
• Pagable SVC routines.
• Standard access methods.
• I/O error recovery routines.
• Reentrant libraries used by language processors.
• User-generated reentrant load modules.

Designated load modules from SYS1.LPALIB
may optionally be loaded into the FLP A; all others
are loaded into the PLP A, as selected at IPL time.

Pagable bLDL list (PBLDL)
lust as for the Fixed BLDL table, the PBLDL is cre­
ated when OS IV /F4 is reloaded, as an image of part/
all of the directory Jor the system link library
(SYS 1.LINKLIB). Some (or no) LINKLIB directory
entries may be In FBLDL, some (or no) directory
entries in the PBLDL, and the remaining entries are
retrieved from DASD as needed.

VIRTUAL STORAGE

Common service area (CSA)
The CSA is used by address spaces to communicate
with one another; this includes such systems tasks as
JES and VT AM as well as user address spaces. eSA
is allocated in integral segments (blocks of 64K
bytes) when as IV /F4 is reloaded. Address spaces
allocate and release space in CSA by means of
system macro instructions. Page frames are allocated
only as necessary; the CSA is fully pagable.

1.2.6 Processing Jobs in Virtual Storage

This section explains how OS IV /F4 manages
address spaces and jobs prior to/during job process­
ing.

Prior to loading a user program
The console operator starts an initiator with a
ST ART command, to which OS IV /F4 responds by
creating a new address space together with its LSQA.
A page frame is allocated within the new LSQA to
hold the segment table and first page table for this
address space. Other necessary control blocks are
then created in the LSQA, as shown in Fig. 1.11 .

Prior to processing a job, the initiator reserves
sufficient external slots to contain all of its pages,
based on explicit REGION parameters of its JOB or
EXEC statements or the default region size for this
initiator. The region is allocated virtual addresses
beginning just above the highest address of the
system area.

The programs named in EXEC statements must
all be members of program libraries, partitioned
data sets in a special format created by the linkage
editor. The directory of each library contains the
names and sizes of all member programs. The
Supervisor first reads the directory. allocates suffi­
cient virtual storage to hold the requested program,
and loads the program into this storage area. If suffi­
cient page frames exist, the entire program can be
loaded into real storage; otherwise, page-out activity
begins while the program is being loaded, as shown
in Fig. 1.12.

Page management during execution .
After a program has been successfully loaded, it
begins execution. Under OS IV /F4, most installa­
tions operate several initiators plus TSS, VT AM ,
AIM, etc. Each initiator may receive virtual-storage
requests exceeding the number of allocatable page
frames; the total of all outstanding requests (and
consequent allocations) of virtual storage typically
exceeds the total real storage of the system by a large
factor, forcing the OS IV /F4 Supervisor to con­
tinually page out inactive pages from one or more
address spaces.

Corresponding to each page of each address space
is a page table entry, one of whose flag bits is the

CONTROL PROGRAM

-nMB-

High
position
addresses

RHlnorage Vlrtuel storage

PBLDL
PLPA, MPLA

eSA

LSQA

}
Common lrel:
only one In 8 sy1tem

Individual user area:
User mode and content differ
with each address space

Low
position
addresses

1-------\" . "- ""." - -- "- -~~~~~~~:f~;;f:::;:::!!~
System area:
only one in a system

FLBA. FBLDL I I

System Fixed ~~

-OB- area __ " __ ~r""_ " _,--__ N_uc_l_eU_S __ ~-~ax. 1536

Segment entries {
for common area

Segment table

)------1
LSQA segment {
entries 1------1

Segment entries
for regions

Segment entrias
for system erea

SGT

Fig. 1.10 Overall addressing of an· address space

invalid bit. Whenever the CPU references a virtual
storage address, DAT hardware automatically
references the corresponding page table entry and
tests its invalid bit. If on, there is no page frame cur­
rently allocated to this page, and the DAT hardware
automatically generates a pale fault Interruption
(or pale fault).

36

address spaces

Whenever a page fault occurs, the OS IV IF4
Supervisor gains control and places the correspond­
ing task into wait state until the page satisfying this
request is brought into a main-storage page frame. If
an unallocated page frame already exists-in the
pool of such frames controlled by the super­
visor-the requested page is read into this frame.

VIRTUAL STORAGE

Virtual stcrage

SOA

PBLDl
PLPA

FBLDl
FLPA

Nucleus

Address space is
created with its
LSQA by a START
command.

Fig. 1.11 Creating a new address space

Virtual storage

Common area

LSQA

4 5 6

1 2 3
Program loading

System area

1\
1\

-

Common
area

LSOA

~~C)

System
area

OS IV /F4 allocates
a region and reserves
external pages when
starting a job,
Availability of
sufficient external
pages is confirmed.

Common
area

LSOA

. , :. ~
~g~am

- ~~a~

,',1:.:, "

System
area

Prior to program
loading. OS IV /F4
determines the size
of the program from
the directory of its
library; the necessary
page frames are
secured inside the
region,

Real storage

.......... ...-----.----,----.

6

2

5

System area Page in

Page External page
out data set

{sP ~}
~ t:ID

Fig. 1.12 Loading and execution of a program

37

CONTROL PROGRAM

Waiting for release
_____ ~! ?.a.~t! _f~_ult ______ _

Successful

Release of page fault. Proces­
sing may be continued.

St.atus of general program

'--____ -. Paging supervisor

Completion
of page out

Real page which
was in use is
registered as an
allocatable page.

Adequate

Supplementing l
of allocatable Page

page J ",--_r_ep_,_ac~e_m_en_t_...,
Page in

'. Completion
"', of page out

··.,operation
External page "',

data sets

Completion of
page-in operation

Processing of
l<..rr-----f paging 1/0

Real
storage

Taking away of real page whose change bit
of the storage device key is ON.

devices
CIl

g Page Generation
out

Allocation' of
r---i external page

data sets
based onload

1\-----11 of channel .0
C
<D
c:
<D

Slot queue
sorting

Fig. 1.13 General flow of paging process

whereupon the supervisor inserts the address of this
page frame into the page table entry for this address
space. Also, the invalid bit for this entry is turned
off. The supervisor then returns to the interrupted
program, which reattempts the instruction causing
the page fault. This sequence is shown in Fig. 1.13.

Should no unallocated page frame be available,
the as IV /F4 Supervisor must create one or more
empty page frames. (It will typically attempt to
reclaim several frames at once, so as to meet future
page frame needs by this task and others. The reader
should review the preceding subsection on "Swap­
ping" for a discussion of how/why multiple frames
are released.) If an in-use page has not been
referenced for several seconds, it is eligible for page­
out. The as IV /F4 Supervisor selects one or more
such pages and examines reference bits and change
bits in their corresponding page table entries. If any
page has its reference bit off, this page has not been
recently referenced and is a candidate for page-out.
If it also has its change bit off, the page has not been
altered by a CPU or channel since it was last loaded
into a main-storage page frame. An identical copy of
this page already exists on a paging data set, and the
main-storage copy need not be paged out. In other
words, the current main-storage copy can be dis-

38

program

carded (its frame allocated to another page); when
AND if this page is again referenced, the identical
copy can be retrieved from the page data set.

When the reference bit for a page is off but its
change bit is on, this page has been previously
altered but not recently referenced. If this page is
selected for paging-out, the as IV /F4 Supervisor
must copy it to ~m empty slot, then add its page
frame to the pool of unallocated frames.

In this way, as IV IF4 uses a combination of dis­
carding unchanged pages and paging out changed
pages to create empty page frames. When a job step
completes, all of its page frames are released to the
pool by the as IV /F4 Step Terminator. This overall
technique is depicted in Fig. 1.13.

1.3 CHANNEL DYNAMIC ADDRESS
TRANSLATION

Channel DAT is a feature of M series computers
which considerably advances the state of art for vir­
tual storage systems. as IV /F4 fully supports this
feature, which facilitates allocation of real-storage
regions (described in Section 1.2.2) to discontiguous

http:f3l_u.1t

page frames. In prior virtual storage operating
systems, real-storage regions often required con­
tiguous page frames with "virtual addresses" identi­
cal to real-storage addresses, so that channels with­
out DAT capability could read/write into main
storage without suffering page faults.

Virtual-storage addresses for channel programs
A channel program comprises one or more channel
command words (CCWs) chained together. A chan­
nel program is analogous to a CPU program, as
shown in Fig. 1.14.

Just as a CPU accesses virtual storage addresses
and dynamically translates them into real storage
addresses, an M series channel accesses CCWs in
virtual storage, whose operand and data addresses
are also in virtual storage, and dynamically translates
all of these addresses into real storage addresses.

/
re Hardwa

fetches

c!9
Execution

Program

Instruction
1

Instruction
2

Instruction
3

~ A
"'='

Instruction
n-2

Instruction
n-1

Instruction
n

Chennel
c c progrem
0 .S!
~ ; ccw i ::I
¥ ¥
)()(

'" CI>
0 0 CCW2
GI G>
CJ CJ c: c:

CCW3 ., G>
::I ::I

£ i
.

en

~ ':::=:,...
'=-'

CCWI-2

CCWI·1

CCWI

\
H ardwere

etches f

Execution

Fig. 1.14 Analogies between CPU program and channel
program

Problems of non-OAT channels
In prior virtual-storage hardware, channels often
lacked OAT features; hence, their CCWs had to be
addressed directly in real storage, and their operand
and data addresses also had to reference real storage.
Furthermore, these real storage addresses often had
to be allocated to corresponding tasks for the dura­
tion of a job step (or interactive session), since chan­
nels could not sense when "page frames" were
"reallocated" to other tasks. CPUs could sense such
reallocations, but channels could not.

Problems in retrieving CCWs
If a channel program were created in virtual storage
by a CPU, it might straddle two or more page
frames. If such frames were reallocated by the con-

VIRTUAL STORAGE

trol program, a non-DAT channel would be unaware
of this reallocation and would try to retrieve CCWs
from an unknown .area, causing an undiagnosable
software error.

A technique often used by recent operating
systems is to fix all page frames containing channel
programs (or parts of channel programs) so that
their contents are guaranteed. This preempts a subs­
tantial number of page frames merely to hold chan­
nel programs.

Problems in referencing addresses within CCWs
Operand and data addresses within CCWs refer to
various page frames. Non-DAT channels are
unable to detect when these frames are reallocated
to other pages, and they would read and write
unknown operands and data if these frames were
reallocated. Hence, operating systems supporting
non-DAT channels have typically been forced to fix
all pages containing operands and data referenced by
CCWs for the duration of a job step - or at least, for
the duration of an entire 110 request.

Problems in stradding page frames
A further complication for non-DAT channels is
that initial addresses within CCWs do not indicate all
possible page frames into which readingANOwriting
may take place; a channel may reference two or
more pages when executing a particular CCW.
Hence, a virtual storage operating system supporting
non-OAT channels must investigate all channel pro­
grams to determine how many page frames are
accessed by each CCW.

Typical solutions to problems with non-OAT
channels
Operating systems supporting channels without
DAT capability typically "solve" the above prob­
lems as follows:
• Copy all channel programs from virtual storage to

a page-fixed area controlled by the operating
system.

• Calculate real-storage addresses for all CCWs and
their operands.

• Rewrite CCWs as necessary, so that their data
areas are contiguous and in page-fixed storage.

• Drastica:lly curtail opportunities for chained
scheduling and other performance-enhancing
techniques for modifying channel programs after
they have been issued by users.

The Channel OAT Solution
M series channels accept a special CCW command
code called transfer virtual and lock (TVL). When
issued by the OS IV IF4 I/O supervisor, a TVL com­
mand causes the channel to interpret subsequent
CCWs as having virtual addresses. The Supervisor
typically issues a TVL command in the system
nucleus, pointing to the user's 'channel program in
his virtual storage address space. 'The channel util-

CONTROL PROGRAM

izes the segment table corresponding to this address
space; OS IV 1F4 names this segment table in the
TVL command.

Channel DAT permits CCWs, operands, and data
addresses to be in virtual storage. Furthermore,
pages containing these CCWs, operands, and data
need not be fixed into main-storage frames
throughout entire job steps or interactive sessions.
The OS IV IF4 1/0 Supervisor short-term fixes chan-

40

nel program pages at the begining of each 1/0 opera­
tion. It also fixes operand areas referenced by the
channel program: control operands and data areas.
Hence, no page-fault interruptions occur during
channel operation. After each 1/0 operation com­
pletes, the 110 supervisor unfixes these pages. This
decreases supervisor overhead for I/O operations,
and yet allows compatibility with other similar
operating systems.

CHAPTER 2
JOB MANAGEMENT

2.1 OVERVIEW

OS IV IP4 Job Management performs the following
services to user jo bs:
• Job scheduling

as IV IP4 schedules and controls job flow includ­
ing initiation, execution, and termination of all
batch jobs.

• Master scheduling
as IV IF4 controls operator consoles and receives
inputs from operators at any time.

• System management facilities (SMF)
as IV IF4 provides exit routines and other exits at
several points during job initiation, step initiation,
step execution, termination, etc. where each
installation may gather statistics about the perfor­
mance of the entire system (or of particular jobs).

In addition, as IV IF4 provides a job entry sub­
system (JES) and remote entry services (RES),
which manage entry and return of jobs from local
and remote unit record devices, respectively.

JES is described in Section 2.2 of this chapter,
RES in Chapter 3.

2.1.1 Jobs and Job Steps

The basic batch-processing unit in as IV IF4 is ajob,
a connected sequence of processing tasks using a
collection of permanent and temporary data sets.
Each job comprises one or more job steps, single
executions using one set of 1/0 devices and associ­
ated data sets. The distinction between "tasks,"
"job steps," "jobs," and "sequences of related
jobs" may seem relatively arbitrary to the user, but
each of these terms is uniquely and formally defined
in OS IV IF4, just as for most other modern operat­
ing systems. These entities and their relationships to
one another are carefully defined in the present sec­
tion.

2.1.2 Job Flow

Input
To bring jobs into as IV IF4, the console operator
must start one or more JES readers. (Users cannot
directly start JES readersJ Jobs can be read from
local card readers, magnetic-tape or DASD drives,
or-via RES-from remote terminals. JES tem­
porarily stores the image of each job - the collection
of card images-onto the SYSl.SYSPOOL data set.
Job control (JCL) statements are not interpreted
and processed at this time. After JES has suc­
cessfully read an entire job and transcribed it onto
the spool data set (SYSl.SYSPOOL), JES enters a
record for this job into the system job queue
(SYSl.SYSJOBQE data set). At this time, the job is
sorted onto a selection queue according to its
CI.:ASS and PR TY parameters, which take the
values

A, B, C, ... ,0
and 0, 1, .. , 13, respectively.

Job Initiation
The console operator normally starts one or more
job initiators to process batch jobs from each class
(as designated by CLASS parameters on users' JOB
statements). To each initiator corresponds one or
more classes, sequenced in priority order. As OSIV I
F4 completes processing a job, the corresponding
initiator picks the next job from the highest-priority
non-empty queue of unprocessed jobs. The initiator
interprets JCL statements for the selected job, allo­
cates system resources to it, and yields control to
this job. For temporary storage of interpreted and
processed JCL, the initiator uses a scheduler work
area data set (SWADS); one SWADS corresponds
to each active initiator.

Job execution
Each active initiator processes exactly one user job
in one virtual address space of 16 million bytes.
Thus, the number of concurrently executing jobs is
at most equal to the number of initiators. JES per­
forms all transcriptions of system input (SYSIN)
and system output (SYSOUT) data sets to unit-

CONTROL PROGRAM

record and other low-speed devices; this process is
usually called spoollng of SYSIN and SYSOUT.

Step termination
After the first step of a job completes, the OS IV /F4
step-terminator routine automatically gains control
to perform post-processing of data sets and record­
ing of SMF data. If the job contains additional steps,
the initiator regains control and commences execu­
tion of the second, third, etc. steps. At the conclu­
sion of each step, the step terminator regains control
until no more steps remain in this job. The step ter­
minator decides whether any job steps should be
skipped, based on user-furnished conditions
(COND parameters) for these steps.

Job Termination
After all steps have been processed (or skipped. as

terminal

appropriate), OS IV /F4 terminates the job. All
system outputs (SYSOUT data sets) are written onto
the spool data set, to await transcription by JES/RES
to their ultimate output devices, typically a line
printer and/or ;', card punch. SYSOUT is distributed
into classes according to user-furnished SYSOUT
parameters for certain temporary data sets.

Disposition of job outputs
The JES writer processes SYSOUT data sets after the
corresponding job completes, according to which
SYSOUT classes they were directed and the user­
furnished PRTY parameter on the JOB statement.
The operator manages each JES writer according to
the type of device it services, user-furnishes
SYSOUT controls, forms controls, print trains, etc.

Monitoring job execution and collecting usage data

I nitietor -,

JES
Termi. :;, writer
nator

Start
writer

Modify
writer

Output
writer

JES
interface

routine

SYSTEM SPOOL VOLUME/S)

F;" 2.1 Outline of Job execution

42

Job is read into the system via a JES
reader.
Initiator carries out preparation for job
execution or postprocessing.
Job outputs /SYSOUTI are processed
by e JES writer.

SMF provides to each installation a flexible set of
entry points where locally-written routines to vali­
date, summarize, and evaluate resource usage data
- CPU time, channel programs, virtual-storage
pages, etc. - can be inserted. The routines can
monitor activity and efficiency of individual jobs as
well as aggregate system performance. If a particular
user job reaches a pre-selected CPU time limit, a
special installation-supplied routine gains control via
SMF; this routine can - for example - terminate
the job immediately, request a decision by the con­
sole operator, or change the charging rate for CPU
time for this job. With SMF, each as IV /F4 installa­
tion can collect perjob data needed for accounting
or charge-back purposes, volume-usage data, dataset
usage data, and the like.

Operator commands
All commands entered from the operator consoles
are accepted and processed by the as IV /F4 Master
Scheduler. Other operator commands can be pre­
pared by users and entered before/with their JCL
statements.

2.1.3 Components of Job Control

The three major components of the as IV /F4 job
control function are job scheduling, master schedul­
ing, and the system management facilities (SMF), as
shown in Fig. 2.2.

Local card
readers

Spool volumes

lOB MANAGEMENT

2.2 Job Entry Subsystem (JES)

JES controls all original inputs and final outputs for
each batch job submitted through as IV /F4. This
section describes the functions performed by JES,
plus a brief outline of how JES operates internally.
For details on the input-reader and output-writer
components of JES, the reader should study Sec­
tions 2.3 and 2.7, respectively. The present section
describes the following aspects of JES:

• Overview.
• Structure of the spool volume.
• Optimization of spooling performance.
• Contents and space control of spool volumes.
• Interfaces between JES and user programs.
• JES parameters.

2.2.1 Overview

The job entry subsystem provided with as IV IF4 is
JES, which serves as the point of entry for all jobs
and the function which produces all hardcopy job
output. To accomplish these functions, JES controls
local job-entry and output devices. A complemen­
tary as IV /F4 facility, remote entry services (RES),
furnishes comparable facilities for remote batch ter­
minals. A special job entry source, the internal
reader facility, allows as IV IF4 users to submit
system jobs: started tasks and ti me-sharing
LOGONs. Tape and disk input are also supported

Checkpoint volume

Remote card reeders

Remote stetions

(Pointers to the
spool volumes)

Operator
, , 1--------+---- __ J

Fig. 2.2 JES I/O Relationllhips

JES
Time Sharing

,
~ --- ---1-------;

OS IV!F4

CONTROL PROGRAM

through the internal reader facility. See Fig. 2.2 for
input/output relationships to the job entry su\).
system and as IV /F4.

While each job is in as IV /F4, the JES job queue
residing in pagable storage maintains a record for the
job. Jo\).related system records plus records related
to job input and output are maintained on external
spool volumes.

The system programmer during JES generation
and initialization-plus the operator during JES pro­
cessing-define and control the configuration of
entry sources and output destinations. JES provides
centralized control of job input, queuing, and out­
put, such that all jobs are controlled in the same
manner whether submitted from local or RJE
(remote job entry) devices, or through the Internal
Reader facility.

Fig. 2.3 outlines this section of the manual. As
suggested in this figure, jobs that are batched for
execution (execution batch facility) do not go
through the same conversion and execution process
as other jobs. Other functions described below are as
follows:
• Configurations-configurations of local and RJE

devices, generation of JES, and specifi~tion of
the internal reader facility and spool volum~s.

• Starting and stopping the job entry' sub­
system-starting the default (system-generated)
subsystem, and initializing JES automatically via
data sets containing initialization parameters.

• Controlling job submission and queueing- how to
submit a job to JES, the internal reader facility,
the RDR and RDRT procedures, the role of job
classes and priorities in job queuing, priority
aging, and placing of jobs in HOLD status.

• Controlling conversion and execution - JCL con­
version, scanning the accout number field of the
JOB card, defining a procedure library for the job,
specifying converter parameters, command
authority and recognition for JES and OS IV /F4,
control of initiators, and job monitoring.

• The execution batch facility-establishment of
the facility and writing an execution batch moni­
tor.

• Controlling output and output devices-how out­
put is queued and by what function, data set
enqueuing, device selection, separator pages and
separator cards, overflow, output routing, the
external writer and the XWTR procedure.

Parameters necessary for controlling various JES
functions are described in two manuals: F ACOM
OS IV /F4 System Programmer's Guide and
FACOM OS IV/F4 System Generation User's
Guide. These manuals contain detailed descriptions
of the implementation of each parameter. When
groups of parameters are described in this section,
the reader is referred to the system generation
manual or the initialization manual for implementa­
tion details.

Controlling Job
SubmiS$ion and RJE queuing figuration

Conliderati
Con

ons

I I

Execution Controlling
betched conversion

jobs and
execution

I I

St arting and
stopping Miscallan IOU.

JES

Output Control

XWTR

JES U.r·
writer Standard written writer writer

Fig. 2.3 Topics described under JES

During JES generation and initialization, the
system programmer can specify the configuration of
JES local devices, the JES internal reader facility,
and the JES spool volumes.

JES is created by a process called JESGEN. The
system generation process is designed so that the
operator can generate JES while stage II of SYSGEN
is in progress. Following JESGEN the operator must
issue a START command START JESBLD in order
to linkage edit JES into SYS l.LINKLIB and
SYS 1.LP AlB.

Lo«;al devices refer to card readers, printers, and
card punches in an OS IV /F4 system for reading jobs
and writing output.

During JES generation, the system programmer
specifies the number of readers and writers to be
controlled by JES via the &NUMRDRS and
&NUMWTRS parameters. It is not possible to assign
additional devices to JES without regenerating the
system.

The system programmer can also specify JES pro­
cessing parameters for each device and indicate
whether a device is to be considered active or inac­
tive upon completion of JES initialization. An active
(for example, a "hot reader") device is dynamically
allocated during JES initialization, and processing on
that device begins as soon as work is available. An
inactive device must be activated by the operator via
a JES START command.

During JES initialization, if the system program­
mer does not identify as many devices as were
specified during JES generation, JES selects devices
and dynamically allocates them. Devices are selected
according to lowest device address for each type of
device (reader, printer, punch), until the number

specified during JES generation is obtained or no
devices of that type remain. For a device to be
selected, it must be physically attached to the
system. For devices not identified to JES during JES
initialization, default paremeters established during
JES generation and initialization are used.

During JES processing, devices can be activated
via the JES START command and deactivated via
the JES STOP command resulting in their dynamic
allocation or deallocation.

Role of JES
JES reads two kinds of source statements: JCL state­
ments (including certain operator commands which
may be optionally submitted by users) and system
input (SYSIN) statements. Collectively, a sequence
of jobs-each comprising one or more JCL state­
ments plus associated SYSIN data sets- is called a
job stream or input stream.

JES processes most output data sets from a job
except those which are retained as permanent data
sets on magnetic tape or DASD devices. JES also
processes essentially all diagnostic messages from
language processors, utility programs, and applica­
tion programs. These outputs are written onto line
printers, card punches, and other output devices
intermixed in a precise and pre-defined sequence, so
that they can be easily retrieved and interpreted by
users.

The basic objective of JES is to handle system
inputs and outputs rapidly and efficiently. The tech­
nique of spooling SYSIN and SYSOUT from disk to
lower-speed devices has proven most efficient
among all alternative techniques utilized and evalu­
ated for prior operating systems. Spooling is de­
scribed in the following paragraphs.

System input
JES reads several input streams-typically
3-10-simultaneously and stores the JCL and
SYSIN data sets in a unique data set (named
"SYSl.SYSPOOL") which is permanently allocated
to one or more DASDs at each installation.
Relatively small installations can use part of one disk
drive for SYSl.SYSPOOL;intermediate size
installations may require an entire disk drive, and
large installations may need two or more drives for
spooling functions.

Storage of input streams on DASD is only tem­
porary; later, jobs in these streams are presented to
OS IV /F4 initiators one at a time, in priority
sequence, where they are processed just as if they
were read directly from local card readers, etc.

System output
Likewise, JES transcribes output data sets from
SYS1.SYSPOOL to one or more line printers, card
punches, or other output devices, as indicated by
user JCL. Here too, storage on DASD is only tem­
porary for these data sets.

JOB MANAGEMENT

Optimal speed and efficiency
Although JES requires additional main storage,
DASD space, and CPU overhead, its performance is
generally superior to other job-entry designs; hence,
JES is a mandatory service for each batch job
entered or returned to the user by OS IV /F4.

Hardware/software components of JES
JES is a collection of OS IV /F4 system routines- for
controlling associated DASD data sets and low­
speed devices, using a substantial address space of
its own - which are divided into two major services:
• JEPS - job entry peripherals service.
• JECS - job entry central service.

JEPS operates all low-speed peripherals, whereas
JECS controls JES overall and allocates and manages
space within the SYS1.SYSPOOL data set. The latter
functions include buffer management and all JES
interfaces to application programs; these interfaces
are identical among all compilers, assemblers, utility
programs, and user programs.

Contribution to system performance
The following six aspects of system performance are
particularly enhanced by the OS IV /F4 JES:

Unit -Record Device ·Speeds
JES creates and uses specialized channel programs,
which readANDwrite multiple records with a single
EXCP macro instruction. This technique permits
these devices to operate close to their top speeds,
and it also reduces their per-record overhead on the
main CPU. These channel programs are ~fficient in
their usage of multiplexer subchannels and also in
reducing virtual-address manipulations by hard­
ware/software to a minimum.

Unit-record utilization
Since each ~ard reader, card punch, line printer, etc.
can be used for multiple unrelated jobs, OS IV /F4
users need not be assigned specific devices. Essen­
tially any OS IV /F4 job can be submitted to the
system through any appropriate device, with com­
parable flexibility for receiving SYSOUT data sets.
Even if consecutive jobs are submitted on behalf of
different users in a continuous stream, JES operates
associated card readers, printers, etc. at full speed,
creating and maintaining internal job delimiters.

Simplified job scheduling
All JCL and source data sets for ajob can be submit­
ted at one time, without concern for when and how
long each job step wil.1 run. Hence, card readers, card
punches, and line printers are committed to particu­
lar users only for as long as transcriptions to them
require; they need not be committed during the
execution of corresponding jo b steps, which can vary
emormously.

r Card reader I

~ tape

- -
§

Input units

~
(Card punch I
. .6=J "

tape

t, ' -
Output units

.IE"

t:fta..r '2
c=~======~=====~~ System inputs ., Reader 1

I
I

~
Private ~

PROCLIB

• Start reader .H------Lr----J

Stop reader ;1--+-------1 r
I
I Writer 2

C=====~===:=:JI
" System outputs Writer 1

[Start writer -. •
I • Stop writer r

[Modifiy writer ~

[Output writer :

r Cancel writer • .-
COMMENTS: JES performs spooling for system input/output,

SYS1.SYSJQBOe

r-----~Ir-~~~q-U-~--~--e-n-tr-y-t-o-t-~-J-'O-b--~~~ ------~-~
r--~ OOntfoi queue, and t:::: ::::::::

JEts

retrieval ~ ~

JES buffer pool

I---<>ne buffer ,, ---

---~~----> ~Sl.SYSPOOL~ Logical cylinder

SPOOL VOLUMES

JES
interfKa
routine

seQ.
ac:cess
method

Readers and writers are reentrant modules to minimize their total need for virtual storege,
Prior to writing data to spool volume, equalization of load and optimization of access

JEPS: Job Entry Peripheral Service
JECS: Job Entry Central Service

ICom~ndl are taken into consideration .
name Shows operator command

Fi&- 2.4 ConfJ8Ur8tion or JES

Flexible operation of JES readers and writers
Since reading source jobs and processing SYSOUT
data sets are chronologically decoupled from job pro­
cessing, a minimum number of readers can be
started by the console operator even if the number
of initiators is relatively large. Likewise, the number
of output writers can be raised or lowered according
to the available numbers of card punches, line prin­
ters, etc., without considering either the number of
input readers or the number of active or inactive job
initiators.

Minimal number of main-storage page frames
JES operates almost entirely out of virtualstorage
pages which need not be fixed into real storage page
frames. Since readers and writers are re-entrant,
only one copy of their program logic need be fur­
nished in JES, plus associated I/O buffers and work
areas. Furthermore, these reentrant pages need not
be paged out; they are automatically discarded by the
OS IV IF4 Paging Supervisor during periods of light
activity, since they can be retrieved intact from their
DASD library. .

Installation-defined configuration
Each installation can define one or more JES con­
figurations appropriate to its collection of unit­
record equipment, remote terminals, usage intensity
throughout the typical work week, size and speed of
DASD devices for spooling, etc. During each
reloading of OS IV IF4 (IPL), the console operator
can either accept system-generation default values
for JES or override them selectively.

2.2.2 Structure of the Spool Volume

Four elements of the spool volume are defined in
the following section and diagrammed in Fig. 2.5 :
• Spool volume
• Spool data set
• logical cylinder
• initialization of a spool volume

JES uses the SYSI.SYSPOOL data set on each
spool volume to store all job input, job outPlOt, JES
control blocks, and system data such as the job jour­
nal. Spool volumes are identified to JES by their
volume serial numbers. A six-character name iden­
tifying the primary spool volume is specified in the
&SPOOL parameter during JES generation. A
&SPOOL parameter can be used during JES
initialization to override the JES generation
parameter. The primary spool volume must exist
during JES initialization.

Each volume with a volume serial number named
in the SPOL VOL parameter is considered a spool
volume by JES and is searched for a SYS 1.SYSPOOL
data set. The maximum number of spool volumes is
also specified during JES generation by the

JOB MANAGEMENT

SPOLVOL parameter.
The system programmer also specifies how tracks

of the volumes are allocated and subdivided into
physical records by the ALOCUNIT and BUFSIZE
parameters. These parameters can be specified only
during JES generation.

JES also requires one system checkpoint data set
on a direct access volume to store a copy of the JES
queue and other information needed for warm start.
This data set must be on the primary spool volume.
See FACOM OS IV/F4 System Generation User's
Guide for a description of how to allocate this data
set and SYSI.SYSPOOL data sets.

Spool volume
Each volume containing part/all of the
SYS I .SYSPOOL data set is called a spool volume.
Up to 10 DASP devices can be online with spool
volumes, whose mount status must be permanently
resident, i.e., never removed during processing. It is
desirable to keep other high-activity data sets off
spool volumes to avoid excessive contention for as­
sociated channels, control units, and access mechan­
isms.

Spool data set
All SYSIN and SYSOUT data sets for all jobs are
written into and out of the single SYSl.SYSPOOL
data set, which may possibly extend over two or
more volumes. To the user's application program,
however, it appears that each SYSIN or SYSOUT
data set is directed to an independent DASD.

Logical cylinder
OS IV/F4 allocates space within the
SYS 1.SYSPOOL data set by logical cylinders rather
than by blocks, tracks, physical cylinders, etc. Each
logical cylinder is the same size and comprises one
or more complete tracks, depending on the track
length for the corresponding DADS and user­
selected system generation parameters. The default
capacity of an OS IV IF4 logical cylinder is approx­
imately 40K bytes, equal to three tracks of a F478B
or F479B Disk Drive or three tracks of a F6625A
Drum.

The number of tracks per logical cylinder can be
changed during system generation or after any "cold
start" reloading of OS IV IF4 ("cold-start IPL" L

If most jobs at a particular installation submit
small SYSIN decks (500 card images == 40K bytes,
for example), most space of SYSIN logical cylinders
may be wasted. However, logical cylinders are also
used to temporarily store SYSOUT data
sets - approximately 500 print lines can be contained
in each 40K logical cylinder. Hence, wastage of logi­
cal cylinders on input must be traded off at each
installation against the CPU overhead for allocating
and managing a larger number of smaller logical
cylinders, e.g., with only one or two tracks apiece.

CONTROL PROGRAM

FIg. 2.5 Structure of spool volume

Spool volume initialization

Logical cylinder
(3 tracks)

SVSIN d.ta for
one jot-

Each logical cylinder on a spool volume is for­
matted into one or more fixed-length blocks; the

JECS

Acquisition
and release
of buffer

I/O operation
to spool
volume

Allocation
and

rele.18 of
spool spaca

Access arm

Logical cylinder
bitmep

Fig. 2.6 Optimization of spoolilll

block size is constant across all spool volumes at a
particular installation, irrespective of device type ..
The default block size is selected during system
generation, subject to overriding by the console
operator during a cold-start IPL. The OS IV IF4
default value is 880 bytes.

During a cold start, all spool volumes are refor­
matted to the indicated block size, and the logical
cylinder maps are zeroed. During a warm start, OS
IV IF4 determines the block size from the pre­
viously-formatted spool volumes, as described in
Section 2.1l.3 .

2.2.3 Spooling Performance Optimization

As JES reads and writes SYSIN and SYSOUT data,
JCL statements, etc. to spool volumes, it employs
several techniques for balancing this 110 load across
channels and spool volumes.

Spool space allocation
To allocate fresh logical cylinders - either for
newly-read SYSIN data or for newly-created
SYSOUT data - JES utilizes a special algorithm to
allocate an empty cylinder near the current position
of an available spool volume access mechanism. One

JES buffer pool

one buffet

Logical cylinder

Spool volumes

bit of the logical cylinder bit map corresponds to
each logical cylinder on each spool volume, as
shown in Fig. 2.6. This bit is turned on whenever the
corresponding logical cylinder is allocated for sto~ing
SYSIN/SYSOUT; it is turned off when this logical
cylinder is released to the unallocated pool, after its
contents have appropriately processed.

Thus, JES uses essentially no references to S9001
volume VTOCs or other tables which are relatively
cumbersome to search.

I/O Load Balancing
When a fresh logical cylinder must be allocated, JES
selects a spool volume which is relatively lightly
loaded at this instant. (If there is only one spool
volume at this installation, the choice is trivial.) This
choice is based on the average rate of accesses in the
past few minutes to each spool volume.

Having selected a spool volume, the empty logical
cylinder closest to the current access-mechanism
position is allocated for the new SYSIN/SYSOUT
data. In this way, a single SYSIN/SYSOUT data set
may be distributed over several different volumes,
in several discontiguous physical cylinders on each
volume.

JES buffer pool
All main-storage buffers in the JES address space
are centrally controlled, whether they are used for
input card images (input card reader or communica­
tions line), disk spool buffers, operator messages, or
output print/punch images. These buffers comprise
the JES buffer pool; a sufficient number must be
allocated at IPL time (defaulting to a system-genera­
tion parameter) so that no device need be idled due
to exhaustion of the pool. Only buffers actively in
use are page-fixed in real storage; hence, it costs the
installation no additional real storage to allocate a
generously large pool.

When JES needs a fresh buffer, it attempts to allo­
cate one recently returned to the pool, since this
buffer is unlikely to have been paged out by OS IV/
F4.

2.2.4 Control and Space Management of Spool
Volumes

Contents of spool volumes
JES has total control over the contents of spool data
sets; no other system or l:rer routine accesses these
data sets directly. The following data is spooled.

• Data from JES input readers
this includes all JCL and SYSIN data sets.

• Data from Executing Programs
this includes all SYSOUT data sets.

• Data from OS IV /F4 Routines
this includes all system messages created during
JCL interpretation, program execution, step and

JOB MANAGEMENT

job terminations, plus the system log.

Spool space conservation
JES truncates trailing blanks from each JCL, SYSIN,
or SYSOUT record (or system message) prior to
writing this record into the spool data set. This effec­
tively converts all fixed-length records to variable­
length, although JES reconstructs the original for­
mat prior to presenting these records to application
programs or JES output writers.

Monitoring spool capacity
During routine operation of OS IV /F4, the storage
capacity of spool data sets may become nearly
exhausted. Hence, JES contains an installation­
defined threshold percentage (default of 80%);
when exceeded, the console operator is warned that
spool capacity is nearly reached. Any active JES
input readers are automatically stopped, so as to
avoid accumulating additional SYSIN data.

The console operator should attempt to reduce the
amount of spooled SYSIN and SYSOUT data by
starting as many JES writers as possible and halting
several initiators, so that new loads of SYSOUT
records are not created on the spool volumes.

When the spool-volume utilization has dropped at
least 10% below the threshold value, OS IV IF4
notifies the operator that sufficient spool capacity
now exists to resume normal operation of input
readers and initiators.

If spool volume utilization continues to grow, OS
IV /F4 notifies the operator each time it rises another
5% above the threshold value. If spool capacity is
entirely exhausted, executing jobs must be aborted,
since there is no room for their SYSOUT data; this is
a most undesirable situation and should be avoided
at any cost.

SYSOUT limitation
Most installations impose limits on the amount of
SYSOUT data written by each job. For example, if
an undebugged program enters an endless loop writ­
ing SYSOUT records, it can quickly exhaust spool
capacity. A default limitation SYSOUT for each job
can be defined by each installation. A user can
impose a SYSOUT limitation on a particular data set
by furnishing an OUTLIM parameter on the cortes­
ponding DD statement.

2.2.6 Interface. Between JES and Uler Program.

As noted earlier, user programs cannot read/write
spool data sets directly; to read SYSIN data or write
SYSOUT records, they issue requests to JES, which
performs the actual input/output operations. Hence,
user address spaces must communicate with the JES
address space. SYSIN and SYSOUT data are handled
as independent sequential data sets, subject to cer­
tain limitations described in Sections 2.3 and 2.7. As

CONTROL PROGRAM

a job step terminates - normally or abnormally -
any associated SYSIN data sets are automatically
deleted by JES from the spool volumes; likewise,
after a SYSOUT data set has been completely
printed, punched, etc., JES returns all logical cylin­
ders containing this data set to the pool of unallo­
cated logical cylinders.

2.2.6 JES Parameters

Most parameters have default values, which each
installation sets while generating JES. The system
parameter library SYSl.PARMLIB contains a
JESP ARA member, which holds these default
values. Whenever the system is reloaded (lPL), the
console operator has the opportunity to change these
parameters selectively. Alternatively, permanent
changes can be made to the JESP ARA member with
the JSEUPDTE utility program.

At system generation or thereafter, an installation
can set the following JES parameters:
• number of buffers in the JES pool.
• maximum number of input readers.
• maximum number of output writers.
• maximum number of unit records read/written by

each JES channel program, i.e., string of chained
channel command words.

• volume serial number(s) of spool volume(s) .
• spool capacity threshold. .
• default limitation on SYSOUT records per job.
• size of a logical cylinder.

2.3 SYSTEM INPUT

Jobs are submitted through the job entry subsystem
and queued in priority order. The system program­
mer can use various parameters and facilities to con­
trol input streams, to control the specification of job
classes and priorities for jobs, to hold or release jobs,
to set the default class and/or priority for a job, and
to change these specifications by altering entries in
the JES job control table, using the JOB statement
SMF exit routine.

Jobs are submitted to JES in three ways:
• through card readers allocated to J£S,
• through RJE devices allocated to JES, via remote

entry services,
• through a JES internal reader facility.

The following section describes major aspects of
JES readers:
• flow of control
• starting and stopping a reader
• reading methodology
• transcription to the input queue
• command statements
• reader procedures.

50

2.3.1 Flow of Control

JES reads JCL statements and SYSIN data sets for
each job. Both types of inputs are stored on spool
volumes, as described in Section 2.2. After an entire
job has been successfully read, JES writes an entry
into the system job queue to indicate the job's class,
priori ty , size, and spool-volumes location .
Optionally, the user may have designated the job to
be held on queue until explicitly released by the con­
sole operator or to be merely checked for correct
JCL syntax, rather than actually executed

Optionally, the user can enter certain operator­
command statements with his jobs either prior to his
JOB statement or imbedded within his JCL state­
ments.

2.3.2 Starting and Stopping a Reader

To start a IES reader, the operator designates the
name of the associated reader procedure in a START
command. This procedure is a collection of control
statements previously entered as a member in the
system procedure library (SYS l.PROCLIB) . The
reader procedure may optionally specify the device
address for a card reader, magnetic tape drive, or
DASD; alternatively, the operator can enter this
address with the START command. The operator
can start as many readers as have been generated for
this OS IV IF4 system. Certain readers can be auto­
matically started by OS IV IF4 immediately after the
system has been reloaded (lPL). In this case, corres­
ponding START commands must be included with
the system-startup member of SYSl.PARMLIB.

To stop a JES reader, the console operator enters
an appropriate STOP command In the case of a
magnetic tape or DASD drive, IES automatically
stops the reader when it encounters an end of file
(EOF) record. In the case of a card reader, the JES
reader enters Wait State when the input hopper is
empty rather than automatically stopping. If addi­
tionaljobs are subsequently placed in the hopper and
the device readied, JES resumes input reading; this
facility is called the hot reader function and is com­
monly used by OS IV IF4 installations.

2.3.3 Reading Methodology

This section describes the JES access method, how
JCL statements are read and partially processed, and
how cataloged procedures are merged with JCL
statements.

JES access method (JA~f)
J AM is a special access method for reading several
punched cards with one channel program, to achieve
higher device efficiency and reduced system over­
head. JAM may only be used for EBCDIC-punched

cards, not column binary cards.
If an input stream is read from magnetic tape or

DASD, JES uses QSAM rather than JAM.

Reading and processing of JCL statements
JCL statements are not fully processed until the cor­
responding job is initiated by OS IV IF4. JES cannot
fully check JCL while reading source statements,
since this would cause substantial degradation of
reading speed. However, certain parameters of the
JOB statement are needed for scheduling each job;
JES scans, validates, and enters these into the con­
trol block for this job. For omitted parameters, JES
furnishes default values specified by the installation
in the associated reader procedure.

Merging cataloged procedures
Most batch jobs use one or more cataloged pro­
cedures to simplify their JCL statements. If the
operator has allocated SYS 1.PROCLIB to the reader,
JES does not copy procedures into the JCL stream at
reader time, deferring this activity until the job has
been initiated. If the operator has allocated a locally­
developed procedure library to this reader, pro­
cedures are copied into the JCL stream at reader
time.

2.3.4 Transcription to the Input Oueue

All jobs are stored on spool volumes by JES while
awaiting execution. A control block for each job is
stored in the SYSl.SYSJOBQE data set.

Jobs are classified according to their class (CLASS
parameter of JOB statement), selection priority
(PR TY parameter), and various other attributes.

JOB

Input streem

Fia. 2.7 Reader and procedure Ubrary

First
privete
procedure
library

lOB MANAGEMENT

Job classes are designated by the letters A - 0, fif­
teen altogether. Each installation determines the
meaning of its own job classes according to such
attributes as:
• heavy CPU usage,
• light CPU usage but heavy I/O usage,
• trival length, .
• urgency, etc.

If the CLASS parameter is omitted, the corre­
sponding reader procedure assigns a default job class
to this job.

The JES queue
A job received by JES is enqueued in priority order
on the JES queue residing in the JES address space.
A job is considered received by JES when it has been
totally read in and its control block placed on the
SYSJOBQE data set.

The queue entry for each job contains its name,
priority, a flag to indicate whether the job is held,
pointers to JES control blocks on the spool volumes,
and the JES process (JCL conversion, execution,
output processing, purge) for which the job is next
eligible. Jobs are selected in priority order for each
JES process. Logically, the overall job queue com­
prises subqueues for each JES process, plus 16 sub­
queues (one for each class) for executing jobs.

A job which is held is not removed from the
queue; instead it is made ineligible to be selected for
any JES processing. A job can be held at any time. If
an executing job is held by the console operator, it is
not eligible for output processing until released. A
job may be held by name, by class, or as a conse­
quence of all jobs being held.

Second
private
procedure
library

Spool volume

CONTROL PROGRAM

Job class

1/ A3 JOB, .. CLASS "A, PRTV • 7

'II A2 JOB, .. CLASS" A, PRTV =10

II A1 JOB, .. CLASS = A, PRTV ~ 5

IIC1 JOB, .. CLASS" C, PRTV" 5

1102 JOB, .. CLASS = 0, PATV .. 12

1/ 01 JOB, ., CLASS • O. PATV-3

1/ H JOB, CLASS = B.PATV = 3.
TVPAUN = HOLD

Pis- 2.8 Enqueu.insjob.

Job class
There are classes of jobs possible under JES. One
class is used by the system: CRJE for time-sharing
LOGONS. The other 15 classes, (A -0) are for nor­
mal jobs and can be used to help control the job mix.

The job class is specified on the JOB statement
(CLASS parameter) . If not specified, JES assigns it a
default class corresponding to the device through
which the job is entered. All jobs entered through
the internal reader facility are considered to be
entered through a device described by the INTRDR
parameter.

There are no absolute rules for assigning job
classes, and some experimentation is necessary.
Generally, jobs of similar characteristics and with
similar processing requirements should be assigned
to the same class. For example, if several jobs are
time-dependent and must execute in nonpagable
dynamic storage, it may not be desirable to tie up all
of nonpagable dynamic storage by running these
jobs concurrently. These jobs may all be assigned to
class B (or C or 0 - class names have no inherent
meaning); then, if only one initiator is started that
can handle class B jobs, there will never be more
than one of these jobs executing at once.

52

Suppose the following assignments are made:
Class B - jobs that are time-dependent.
Class C =- jobs with high CPU requirements.
Class 0 -jobs with high 110 requirements.

The system programmer can specify initiator

............ ---
""'........ ----------------.......... -------------,.,....-.-0""..", - -................... ---------- --~ --- --------- .,.."."'"

....... -----_.---,....,...,..,
-- --......... --""'-------- ...,.,"" -- -----.-. ..,.....'"

............ ----------..,., ..,.,..,.
""- ---..,,-

JOBCUEUE

parameters such as:
11 CLASS BCD
12 CLASS-CDB
I3 CLASS .. DCB

Selection
priority of
Job

15 input queues

Hold queue

If the three initiators are processing jobs with the
same priority and all necessary resources (for exam­
ple, I/O devices and data sets) are available, then
three jobs - one from each of the three different
classes - run concurrently. If ajob within one of the
classes has higher priority than others in its class, it
will be initiated first.

During JES initialization, the system programmer
can assign job classes according to running time,
memory requirements, file resources, and urgency
of jobs in each class. Characteristics of each class can
include some/aU of the following:
• JCL conversion parameters.
• Whether a JES job log is to be produced for this

class. The JES job log is a list of all messages and
replies issued by - or on behalf of - a job.

• Whether a system journal is to be saved for this
job. If it is not saved, the overhead is avoided but
the job may not be automatically restarted in case
of job failure or system restart.

• Whether this class is reserved for the execution
batch scheduling facility. (See Section 2.4.4)

• Whether output is suppressed for jobs in this class
(e.g., started tasks).

• Define the procedure library (PROCnn).
• SMF options.

• Whether the job is held.
• Whether JCL statements are to be converted but

not executed.

The system programmer should assign separate
job classes to jobs having distinct execution charac­
teristics such as:
• ratio of CPU to 110 processing
• use of special devices
• number of devices used
• use of real storage

Within classes, jobs are selected for initiation
according to their selection priorities designated by
the PRTY parameters of their JOB statements, rang­
ing from 0-13. If several jobs have the same
CLASS and PRTY parameters, OS IV /F4 selects
them according to time of entry. If the PRTY
parameter is omitted from a JOB statement, JES
assigns a default value from the corresponding
reader procedure.

If the user codes TYPRUN=HOLD on his JOB
statement, the job is automatically held by OS IV /F4
until released explicitly by the console operator.
When he issues a RELEASE command for this job,
it reenters the normal queue for its job class.

If the user codes TYPRUN=SCAN, OS IV/F4
marely scans the syntax of his JCL statements and
does not execute any job steps. Scanned jobs flow
immediately from JES through the OS IV /F4 JCL
scanner/interpreter and back to JES for SYSOUT
processing; hence, they provide a convenient and
inexpensive way to validate JCL for long production
runs.

2.3.6 Command Statements

Most commands are entered by console operators
with typewriter or CRT devices. However, batch
jobs may contain the following operator commands:

CANCEL MOUNT START
DISPLA Y RELEASE STOP
HOLD REPLY UNLOAD
LOG RESET VARY
MODIFY SET WRITELOG

Interpretation of commands depends on their posi­
tion within an input stream, as shown in Fig. 2.9. If
commands appear prior to a JOB statement but
following the delimiter of a previous job, they are
interpreted and executed at JES reader time, Le., as
soon as read. If commands follow a JOB statement,
their interpretation and execution are deferred until
this job is initiated.

The JES reader procedure determines whether
each in-stream command should be executed, dis­
played and then executed, displayed and then
executed only, after confirmation by the console
operator, or ignored altogether.

JOB MANAGEMENT

2.3.6 Reader Procedures

JES starts an input reader in response to a START
command specifying a reader procedure. Standard
reader procedures are developed by each installation
and entered into the system procedure library
(SYS1.PROCLlB). For a card reader, the standard
procedure name is RDR; for magnetic tape or
DASD, the standard name is RDRT.

The internal reader facility
An internal reader jobstream is identified to JES by
the fact that an output data set specifying a special
user writer (INTRDR) has been allocated
dynamically, or via SYSOUT- (x,INTRDR) coded
on a DD card. JES recognizes such data sets and
places them in the input stream, thus allowing jobs
and system tasks to enter jobs into the input stream.

A job entered through an internal reader begins
with a / /JOB statement and ends with the next / /
JOB statement, or I*EOF statement, or by closing
the internal reader data set. Abnormal closing or
closing after a WRITE error causees deletion of the
last job. AI*DEL statement may be used to explicity
delete the last job.

The class to which the internal reader data set is
allocated, e.g., class X if SYSOUT-=
(X,INTRDR),becomes the MSGCLASS for the
submitted job unless the JOB statement contains a
MSGCLASS parameter. If the internal reader data
set is dynamically allocated without a specific class,
the MSGCLASS of the submitting job or TSS user
becomes the default. Two exceptions to this are
time-sharing LOGONs and started tasks. If specified
for the internal reader allocation, the DEST
parameter becomes the default SYSOUT destination
for all jobs submitted via that internal reader.

JES can accept multiple jobs simultaneously via the
internal reader facility. OS IV /F4 uses it to pass
started tasks, TSS LOGON, and TSS background
jobs to JES. Also, jobstreams can be read from tape
and disk (any QSAM-supported device) and submit­
ted through the internal reader via the RDR pro­
cedure, and any job executing in OS IV IF4 can use
the internal reader facility to pass a job-stream to
JES.

Although the internal reader facility appears to
JES logically as multiple input devices (maximum
set by the &NUMINRS parameter during JES
generation), the facility is controlled as one entity.
The number (&NUMINRS) of internal readers is
the number of jobs that can be received
simultaneously through this facility.

Characteristics of the facility are specified during
JES initialization as subparameters of the INTRDR
parameter.

The RDR procedure
The OS IV IF4 procedure for using the internal

CONTROL PROGRAM

Command statementa
within a job

JOB

Command
statement 3

EXEC

Command
stetement 2

JOB

Commend
Itetement 1

input Itream

7

Command
stetaments
externel
to any lob

INPUT

CElmmand
statement 1

Command
statement 3

EXECUTION

Maltar
scheduler

Execution
of command

Commands executed when entered.

FIg. 2.9 Execution of command statementa

reader facility to read jobs from tape or disk is named
KDJRDRI. The starter system provides the RDR
procedure in SYS I.PROCLIB to allow the operator
to start the reader (see Fig. 2.10). Basically the same
procedure can be used to read a jobstream from any
QSAM-supported device. The operator uses the
RDR procedure as follows:

IIKDJPROC

II
IIKDJRDER
II
II
II
II
II

EXEC PGM=KDJVMA,
PARM='00600
300005010EOOOIIA'

DO UNIT-F610-2,
LABEL-(,NL),
VOLUME""SER=SYSIN,
DISP-OLD,
DCB - (RELFM '" F,
LRECL~80)

Fi&- 2.10 The RDR procedure

• To read ajobstream from the second file of a tape
named JOBTAP on device 180:

54

START RDR,180,JOBTAP,LABEL=2,
DSN=JOBS

• To read a jobstream from a cataloged library of
jobs:
START RDR, F478B,

DSN = PRODUCTN(PA YROLL)
• To read a jobstream starting with a specific job on

a tape named JOBTAP, the operator must submit
a job to JES:

IIREADJOBx JOB
II EXEC RDR
IIRDER DD DSN-JOBS,
II VOL - SER = JOBT AP,
II UNIT-TAPE,
II OISP- OLO
IISYSIN DD '. II EDIT START-JOBx
1$ UNIT-

The system programmer can define internal
readers on EXEC statements in such a manner that

- ' . .. -- ' .-'.-~-

http:Fia-2.10

they are started conditionally. This allows the forma­
tion of a set of dependent jobs that can execute with­
out operator intervention. For example:
• To submit Jobs Band C if the first steps of Job A

complete successfully.

IIJOBA
IISTEPI
II
II
II
II
IISTEPS
II
IIJSERDER
II
II
II

JOB
EXEC

EXEC RDR,
COND= (8,LE)

DO DSN=JOBS(JOBB),
DISP=SHR

DO DSN=JOBS(JOBC),
DISP=SHR

• To submit Job B if Job a terminates normally, Job
C if it terminates abnormally, and Job D in either
case.
IIJOBA
IISTEPI
II
II
II
IISTEPN
IIJSERDER
II
IISTEPNI
IIJSERDER
II
IISTEPN2
IIJSEFDER
II

JOB
EXEC

EXEC RDR
DD DSN=JOBS(JOBB),

DISP=SHR
EXEC RDR,COND ONLY
DO DSN=JOBS(JOBC),

DISP=SHR
EXEC RDR,COND-EVEN
DD DSN= JOBS (JOBD),

DISP=SHR

Installation-written procedures and programs can
further exploit the internal reader facility to select
particular jobs, to generate special job streams, and
to allow operator submission of production
jobstreams.

2.4 JOB INITIATION

This section describes how jobs are selected for
execution and processed by OS IV IF4. Allocation of
resources is described in Section 2.5, execution of
jobs in Section 2.6.

2.4.1 Overview

How jobs awaiting execution are controlled by
OS IV IF4 is shown in Fig. 2.11.

As described in Section 2.3, batch jobs are entered
and enqueued for execution by class, priority, and
entry time-. The SYSl.SYSJOBQE data set contains,

JOB MANAGEMENT

for each job, all attributes necessary to schedule it
effectively.

Each OS IV IF4 job initiator can process from one
to eight job classes. For example, Initiator N might
process classes C, D, H, B, A, in selection order. If
the following jobs were awaiting execution, with
indicated classes, priorities, and entry times,

Name Class Priority Entrytime
JOE D 3 01:00
SAM A 4 01:30
TOM C 2 01:30
HARRY D 1 02:00
BILL D 12 02:00
DICK 0 3 02:30

then their order of selection by Initiator N would be
as follows:

TOM, BILL, JOE, DICK, HARRY and SAM.

To prevent low-priority jobs from remaining
enqueued indefinitely, OS IV IF4 provides a priority
aging facility, whereby the selection priority of each
job increases one level at fixed time intervals. After
a substantial time on queue, even a low-priority job
will gain a sufficiently high selection priority to
bypass a higher-priority job in the same class.

The H,L, and T sub parameters of the PRICOND
JES-generation parameter specify, respectively, a
limit above which there is no incrementing, a limit
below which there is no incrementing, and an
integer representing the number of times that the
priority is incremented in a 24-hour period - subject
to the upper limit. The default of zero for the T sub­
parameter specifies no priority aging.

The T subparameter specifies whether the feature ..
is used and, if so, how many times in a 24 hour
period the priority is incremented. For example,
PRICOND= (T=48) specifies a priority increment
of one unit every 30 minutes. The H subparameter
specifies the upper limit; a priority lower than the
value of the L subparameter specifies that the job is
not subject to priority aging.

Within each OS IV IF4 job initiator are the follow­
ingcomponents: JCL interp,reter, resources alloca­
tor, job terminator, and others. The JCL interpreter
converts JCL statements into control blocks after
fully validating them against one another and against
installation standards. These control blocks are w"rit­
ten into the scheduler work area data set (SW ADS)
for this initiator.

The resources allocator allocates main storage,
110 devices, data sets, and other resources to the job
and its component steps. If dedicated data sets are
available for this initiator, the allocator will attempt
to pair them with user-JeL requests for dedicated
data sets, which serves to reduce the aggregate over­
head for allocating/de-allocating temporary data
sets.

The step terminator reclaims all resources allo­
cated to each job step and issues appropriate system
messages and return codes. The terminator decides

I/JOB, .. CLASS=A

Changing classes and/or
priority for an initiator

Holding a job

Releesing a job

Displaying queue
.tatus of a job

Cancelling a lob

SYS1.SYSJOBQUE

FiJ. 2.11 Job queue control and initiation

execution

Modifying attribUtes of an initi.or

Stopping an Initiator

,r~'~ ~ ;: aj,f
~:' (~ >,

U.er
processing
program Terminator

Output queue

http:Fis-2.11

whether subsequent job steps should be executed or
skipped.

To improve efficiency of processing small similar
jobs, OS IV IF4 furnishes an execution batching
facility, which bypasses most functions in job and
step initiation.

Users can optionally direct job outputs to an inter­
nal reader (INTRDR), which converts them to
system inputs including any necessary JCL state­
ments. Hence, one OS IV IF4 job can create one or
more independent jobs, to be executed at a later
time.

2.4.2 Job Queue Control

The SYSl.SYSJOBQE data set contains all data
about each job awaiting execution needed to
schedule it timely and efficiently. This data set con­
tains three principal Queues: the input Queue, output
Queue, and held-jobs Queue. The input queue con­
tains control blocks describing jobs awaiting execu­
tion, the output queue describes jobs whose output
is awaiting printing and punching, and the held-jobs
queue contains jobs which have been explicitly
delayed from selection by their submitters or by the
console operator.

Jobs remaining enqueued for several hours rise in
selection priority according to an installation­
defined algorithm. Usually limits are set for each job
class, such that the aging increments to its priority
can not exceed a certain maximum value. Also the
interval between priority incrementings is defined
by each installation.

The following table indicates which operator com­
mands can be used to control the job Queue:
Operator command Fu nctions
DISPLA Y Q Display number of jobs on

the input., output, and held­
jobs queues, by job class

DISPLA Y N Display names of these jobs
DISPLAY job-name Display the class, current

selection priority, and rela­
tive position on the job

HOLD { JOb-name}
Job-class

queue of t~e specified job
The specified job (or class of
jobs) is held from execution

Operator Command Functions

RELEASE{~o~n:me}The specified job (or class of
o c ass jobs) is released for execu­

tion.

RESET

CANCEL

The class of a job is reset to
its original value
The specified job is deleted
and discarded.

JOB MANAGEMENT

2.4.3 Job Initiator Functions

In OS IV IF4, a job initiator prepares jobs for execu­
tion, yields control to individual job steps, and pro­
cesses job outputs destined for local/remote print­
ers, card punches, etc. The specific functions of an
initiator are as follows:
• selection of each job from the queue.
• interpretation of its JCL statements.
• controlling its virtual storage area.
• allocating 110 devices.
• disposing of its data sets after each step, and after

the entire job completes.
• issuing volume-mount messages.
• initiating job steps.
• termination processing for job steps and the entire

job.

Using the selection algorithm described in Section
2.4.1, (priority aging) each initiator selects the high­
est priority job within the classes for which it is eligi­
ble. Selection occurs immediately after termination
processing for the job previously controlled by this
initiator (if any) . If no jobs are enqueued for execu­
tion in classes for which this initiator is eligible, the
latter enters Wait state until an appropriate job
arrives.

If two or more initiators can process the same job
class, each will make its selection decisions indepen­
dent of the other. Of course, when one initiator has
selected a particular job, the latter is immediately
marked ineligible for selection by any other initiator.
If a particular class is not designated for selection by
any initiator on an OS IV/F4 system, any jobs
entered in this class remain enqueued indefinitely.
As soon as an initiator is started which is eligible for
this class, corresponding jobs become available for
processing.

Each initiator (and its stream of jobs) occupy one
llddress space. Time-sharing jobs also occupy
individual address spaces.

Just prior to executing the first step of a job, the
initiator processes all user-furnished JCL statements
and merges them with associated cataloged and in­
stream procedures. Interpreter routines create cor­
responding control blocks in the scheduler work area
data set (SW ADS) for this initiator.

2.4.4 Execution Batch Scheduling

Execution batch scheduling is an extension of nor­
mal job scheduling to provide improved system per­
formance by gathering pseudo-jobs, execution batch
jobs, into a single input stream. Execution batch jobs
are typically submitted to JES one at a time; they
may have different input sources and different print
and punch output routings. Execution batch
scheduling collects related batch jobs into a single
stream and passes them as a single SYSIN data set to
a user-written execution batch processing program.

CONTROL PROGRAM

This reduces overhead associated with setting up
and processing numerous individual jobs andlor job
steps.

Processing programs using execution batch
scheduling represent a wide variety of application
areas such as:
• compile-and-go debugging compilers.
• file inquiry programs.
• hardware or software system emulators.

Typically, a program is suitable for execution
batching if it handles jobs or transactions of
relatively short duration. If not, the reduction in job
management overhead between successive jobs may
not be sufficiently large to justify use of this feature.

At 1£S initialization, each installation defines
zero, one or more job classes as dedicated to execu­
tion batch scheduling. One or more classes may be
assigned to each type of execution batch processing
program. Subsequently, the user identifies which
program he wishes by the appropriate class.

JES can support more than one execution batch
processing program to process various kinds of batch
jobs. Each execution batch processing program must
be associated with at least one JES initiator:

To determine which jobs are eligible for execution
batch processing, the JES reader scans all JOB state­
ments. Instead of sending execution batch jobs to an
initiator, JES invokes an appropriate procedure from
PROCLIB to initiate the execution batch 'processing
program. The job then becomes part of the SYSIN
stream for the execution batch processing program.

For example, consider an order entry system that
requires an inventory update and an invoice for each
order. With standard processing, the normal pro­
cedure would be to batch all orders and submit them
as a data stream at the end of the day to an order
entry system.

However, this causes delay. Alternatively, the
installation could periodically batch together orders
received during a certain time period and run the job
several times a day. By using the execution batch
scheduling facility, orders can be processed as if the
order processing program were scheduled for every
order, but without the overhead of scheduling the
order program for the runs.

To implement this approach, the installation
would designate the order entry program as an
execution batch processing program. Orders would
be submitted as execution batch jobs by prefixing
order data that would have been submitted in batch
with a specialized JOB statement. For an order entry
program designed to read batch jobs at th'e end of the
day, the only logical changes would be (1) to enter
the input stream via SYSIN (this may be a
ccomplished by JCL in PROCLIB), (2) to recognize
the null statement as an order separator or to estab­
lish other terminators, and (3) to ignore all other
JCL statements. The program should print all infor­
mation relating to one order before processing the

58

next order, to distinguish one from another. JES
would automatically schedule the order entry pro­
gram sporadically and concatenate all orders into the
input stream, regardless of where they originated.

Submitting input to an execution batch processing
program
A representative input stream follows:

IIJOB
1£S control statements
input data

To submit data to an execution batch processing pro­
gram, the user should follow certain rules:
.• The first statement of each job must be a standard

JOB statement with the specialized CLASS
parameter. The class identifies which program is
to receive the input. The installation associates
certain classes with the execution batch facility via
the system procedure library. The accounting field
of the JOB statement is interpreted by JES just as
it is for normal jobs.

• All JES control statements are effective with
execution batch jobs, except I-OUTIPUT is
ignored.

• No other JCL can be furnished. Remaining source
statements comprise the SYSIN data set for the
execution batch processing program, readjust as if
they had been placed in a DO-DATA data set and
the execution batch program were invoked by
standard JCL. If the execution batch program
requires it, each transaction can be terminated by
a statement with $$ in columns 1 and 2.

In the order entry system example mentioned
earlier, the user might code the following:

IIJOBxx JOB (INVOl,667),CLASS=X
rROUTE PRINT RMT47
order 1
order 2

The I-ROUTE statement would cause the invoice to
be printed at the indicated remote location.

Execution batch scheduling operations
Special actions take place when JES recognizes input
for an execution batch program.

If the execution batch program is not already
active, JES automatically submits an internal job
which uses JCL from SYS 1.PROCLIB to invoke the
execution batch processing program, awaiting
availability of an initiator. JES control cards are con­
verted to JCL comment statements. The entire input
stream, plus a JCL null statement added by'1£S, is
allocated to the execution-batch processing program
as a SYSIN data set.

If the execution batch program is already active
and awaiting another job, JES allocates the SYSIN
data set as above and processing begins immediately,

without any additional use of OS IV IF4 job manage­
ment.

The end of the SYSIN stream can be detected by
the execution batch program when it reads the JCL
null statement added by JES. After writing any
remaining SYSOUT data for the completed job, the
execution batch program attempts to read ahead in
its input file for another transaction. JES detects this
condition, temporarily forces the execution batch
program in to wait state, and performs job termina­
tion actions for the execution batch job (flushes out­
put buffers, releases input spool space, queues the
job for printing, and so forth). The execution batch
program remains active in the OS IV IF4 address
space.

When an execution batch program is waiting, JES
job selection is altered. Instead of scanning for any
class eligible to execute in that address space, JES2
first tries to start an execution batch job which may
be processed by the currently-loaded execution
batch program. If successful, processing can begin
immediately.

If no jobs of the same execution batch class are
awaiting execution, other job classes for this address
space are scanned in order. If a job is found, JES
internally cancels the execution batch processing
program; normal job scheduling then commences.

If no jobs of the other eligible classes are found,
the address space and execution batch processing
program remain idle, awaiting availability of a job in
any eligible class. If a job enters the system whose
class corresponds to the execution batch program
still in the address space. processing begins
immediately.

If an execution batch program ends (ABEND or
normal return to OS IV 1F4) JES detects this as a
non-batch termination in the address space.

OS IV IF4 Job Management will again invoke the
batch program when another job for its class is
selected.

In summary, an execution batch processing pro­
gram must have certain characteristics:
• It must read all user input from a single sequential

data set.
• It must recognize a standard JOB statement (or its

own control statement) to determine the begin­
ning of each job.

• It must recognize a standard null statement (1411"
followed by 78 blanks) or its own control state­
ment to determine the end of a job.

• To ensure system integrity, it should not
dynamically allocate SYSOUT data sets.

The execution batch processing program will
receive an end-of-file condition when a card with $$
in columns 1 and 2 is read while processing a job.
The program may continue to the next logical sub­
file by simply resetting appropriate bits in I/O con­
trol blocks and continuing reading, or by closing and
reopening the data set to continue reading at the card

JOB MANAGEMENT

following the $$ card.

Execution batch scheduling preparation
Job classes are reserved for execution batch jobs
with the BATCH initialization parameter.
"EXBTCH" must be used the first seven characters
of each catalog-procedure name containing JCL
necessary for an execution batch program.

Each batch class should be associated with one
execution batch program. Each batch class should be
made eligible to execute in an OS IV IF4 address
space by issuing an appropriate START command.

For each combination of batch class and initiator.
there must be a procedure in SYS 1.PROCLIB
named "nnnnncid" , in which:
• "nnnnn " are the five characters assigned to

&XBATCHN.
• "c" is the particular batch job class set in $$x.
• "id" is the 1- or 2-character initiator identifica­

tion, corresponding to "nn" of the Inn parameter.

These procedures actually call the execution batch
program for each class, and define all data sets other
than the user input data set.

The procedures may be single-step, or they may
have preliminary steps before the step invoking the
execution batch program (stepname GO). The
execution batch program invoked by this step must
read its input from SY2 or the procedure must refer
to ODNAME=SYSIN on a DO statement used for
input by the processing program.

If a given batch class is eligible to be executed by
more than one initiator (the Inn initialization
parameter or $T operator command defines eligible
classes) , the requirement for a separate procedure
name for each address spacelclass combination may
be satisfied by alias names of a single procedure, or
by distinct procedures which specify different work
fields.

The following example shows the internal job that
JES generates to initially load a program to process
batch class X jobs for Initiator 3, assuming a default
setting for &XBA TCHN.
1I$$$$$X3 JOB 1, SYS, MSGLEVEL ... 1
IIF AKE EXEC $$$$$X3
IIGO.SYSIN DO DATA,
II DCB= BUFNO = 1

The following is an example of a procedure that an
installation might use for a simple file inquiry pro­
gram that reads inquiry input from SYSIN, checks a
file, and prints responses to SYSPRINT:
11$$$$$X3 PROC
IIGO EXEC
IISYSPRINT DD
IIPARTFILE DD

IISYSUDUMP DD

PGM=-FINDPART
SYSOUT-A
DSN - PARTFILE.MASTER,
DISP-SHR
SYSOUT-A

CONTROL PROGRAM

The following JCL is for the order entry system

PROC
ecample:
//$$$$$X3
//MDSE
//MESSAGE
//INVOICE
//INVTRY

EXEC PGM-ORDERIN
DD SYSOUT-M
DD SYSOUT-(P"INVC.)
DD DSN - MSTRINVT,

/I .
/lORDERS
/I

DD
DISP=SHR
DSN=ORDERS,
DISP == MOD

• / /MESSAGE - the installation might identify
class M as a punch class. This will allow the sub­
mitter of the execution batch job to route the
invoices and messages separately, as shown in the
example in "submitting input to an execution
batch processing program" above in this section.

• / /INVOICE-defines the specially prepared out­
put.

• / /INVTR Y - uses a master inventory list as a
base; it is updated as the orders are received.

• /lORDERS-accumulates the day's orders.
ORDERS has a disposition of MOD because the
execution batch processing program is periodically
started and stopped during the day.

• SYSOUT data sets-messages and invoices. '
• SYSIN data sets - batch jobs processed by the

execution batch processing program.

2.4.6 Controlling Interpretation and Execution

The JCL for ajob, LOGON, or started task is passed
through the JCL interpreter and changed into inter­
nal text. The job is then available for execution,
which occurs as soon as an initiator eligible to pro­
cess the job becomes available.

JCL interpretation
A job is eligible for JCL interpretation as soon as it is
placed on the queue. The interpreter is invoked sep­
arately for each job. JES passes to the interpreter
various parameters and a pointer to a procedure libr­
ary.

Procedure library selection
The JES procedure is located in SYSl.PROCLIB. It
defines job-related procedure libraries such as:
/lPROCOO DD

/IPROCOI DD

/lPROCnn DO

/lanyname DD

60

If multiple data sets are required they must be
specified as concatenations in the JES cataloged pro­
cedure.

Class-related initialization parameters can specify.
the library as PROCnn. If the procedure is un­
specified or specified but not found, PROCOO is
used.

Execution control
Execution is controlled by the console operator by
instructing initiators how to process enqueued jobs,
as well as by monitoring each job and issuing com­
mands.

JES associates one logical Initiator residing in JES
with each system initiator interfacing with JES. The
number of active logical initiators (subject to this
maximum) is controlled by the operator ($S Inn) .
The operator can also associate with logical initiators
the order in which the classes are selected by JES.

Classes are associated with each initiator during
JES initialization, subsequently by the console
operator. During execution, each initiator selects
nonheld jobs in priority order within their classes in
the order specified for that initiator. That is, the
lowest priority job in the first nonempty class is
selected ahead of the highest priority job of the next
class-assuming neither job nor class is held.

Initiators can be automatically started by OS IV /
F4 when it is reloaded, if the installation fur­
nishes the appropriate command statements in the
corresponding SYSl.PARMLIB member. This
approach is used for the standard batch-processing
streams of most OS IV /F4 installations, plus any
specialized initiators used for timesharing and other
nonterminating subsystems.

Stopping an initiator
The console operator stops an initiator with a STOP
command, which releases any resources it may hold
after the currently executing job - if
any-terminates . . Among these resources are the
scheduler work area data set (SW ADS) and any
dedicated data sets allocated to this initiator.

Modifying an initiator
To change attributes of an initiator, the console
operator issues a MODIFY command, which may
alter
• job classes: number and priority.
• upper limit for the scheduling priority for each job

class.
• assignment of a uniform scheduling priority with­

in a class, i.e., so that corresponding jobs are
selected FIFO (first in, first out).

2.4.6 The Initiator Cataloged Procedure

One initiator cataloged procedure (lNIT) must ~
contained in SYS1.PROCLIB for use by JES in

I

creating address spaces into which system initiators
are initialized. The console operator issues a START
command to create one system initiator for each
active JES logical initiator. The number of active
initiators must be controlled by starting and stopping
JES logical initiators.

Two standard initiator procedures are furnished
with each OS IV /F4 system:
INIT initiator without dedicated data sets
INITD initiator with dedicated data sets corres­

ponding to DD names such as SYSUTl,
SYSUT2, SYSUT3, SYSLIN, and
SYSLMOD.

2.5 ALLOCATING RESOURCES TO JOBS

Various hardware and software resources are
required by each job: virtual storage (when the user
specifies ADDRSPC=REAL, a fixed address
region in real storage), I/O devices, tape and disk
volumes, data sets, and program libraries. Also de­
scribed in this section are broad aspects of setting up
aod processing data sets.

2.6.1 Allocating System Resources

Each batch job explicitly/implicitly requests an
address space (real or virtual storage), program libr­
aries, and data sets. Several of these requests are fur­
nished on the JOB statement, for example the type
and size of its address space (ADDRSPC and
REGION parameters). Other requests are furnished
on EXEC st'atements. Program libraries and other
data sets are invariably specified by data definition
(DD) statements.

The I/O allocation routines assign units, volumes,
and data sets in response to DO statements at step
initialization. Considerations and rules for coding
DO statements may be found in FACOM OS IV /F4
Job Management Functions and Facilities,
FACOM OS IV/F4 Job Control Language
Reference Manual.

The allocation routines attempt to improve system
throughput by satisfying requests in as parallel a
fashion as possible. Two types of serialization must
be considered: the status of devices eligible for
allocation must remain static while they are being
selected, and certain devices must be used in a serial
manner.

The allocation routines try to satisfy requests in
this order, from least serialized to most serialized:
• Allocating data set requests that require no

specific units or volumes; for example, dummy
and SYSIN/SYSOUT data sets. These requests
need not be serialized.

• Allocating data set requests to sharable units, that
is, direct access units with permanently resident or

JOB MANAGEMENT

reserved volumes mounted on them. These
requests need not be serialized.

• Allocating communications devices.
• Allocating mounted volumes and devices that do

not need volumes. During this processing, the au­
tomatic volume recognition (AVR) function
reads serial numbers of any volumes which have
been premounted on serialized devices.

• Allocating online but unallocated devices that
need volumes mounted by the console operator.

• Allocating all remaining requests, for example,
those that need offline devices and/or devices
allocated to other jobs which can not be used con­
currently.

2.6.2 Storage Allocation

Each job can request an allocation of virtual storage
or real storage, specifying ADDRSPC-VIRT (the
default value) or ADDRSPC-REAL, respectively,
on its JOB or EXEC statements. Main storage is allo­
cated in units of 4096 bytes (4K) called pages. The
total address space is mapped onto external page
storage in units of 65536 bytes (64K).

Virtual storage for a user comprises a collection of
pages in main storage and on one or more paging
devices, specially designated DASDs. Each page
accessed by the user exists either in main storage, on
a paging device, or both. Not all pages needed by the
user are in main storage at once; they are retrieved
as needed from the paging device, as shown in Fig.
1.13.

Real storage for a user comprises a collection of
pages which are all in main storage during execution
of his job. Although the pages may be physically dis­
contiguous (as shown in Fig. 1.12, dynamic address
translation hardware presents them as a logically
contiguous address space to the user, who need not
be aware of page boundaries. Real-storage regions
are not paged to paging devices, as are virtual­
storage regions; they are assigned at the beginning of
each job step for the duration of the entire step.

2.6.3 Specifying Unit Information

The user must explicitly/implicitly provide
OS IV IF4 with information it needs to assign one or
more devices to a data set. To indicate what unit or
type of unit he wants, the user may code one of the
following volumes for the UNIT parameter of the
corresponding DO statement:
• unit address,
• device type (generic name).
• user-assigned group name (esoteric name).

The unit address is a three-character address
comprising the channel, control unit, and unit num­
bers. For example, UNIT-ISO indicates channell,

CONTROL PROGRA.\I

Program DO statements in the input stream Data seU

COBO L Program DO names DO state menU

SELECT MASTER
ASSIGN TO MS ... '""--+--I--_ _ _ --I~S DO DS~~:;:,_;_~-- I f__--___i

SELECT TRANS
ASSING TO TR· ,·

I

[/1 Jl JOB ... ~ ___ _

Fig. 2 .12 Allocation of data ~ts to program input/output functioru

control unit 8, and unit number O. Specifying a unit
address, however, limits unit assignments; as IV/
F4 can assign only that specific unit. If the unit is
being used the job must be delayed or canceled.
Cnit add- ,es should only be specified when
absolutely .iccessary.

A devict! type corresponds to a particular set of
identical input/output devices. By coding a device
type, the user allows as IV I F4 to assign any avai­
lable device of this type. For example,
UNIT=F478B indicates that he wants the system to
assign an available F 47 8B disk drive.

Each installation can also define user-assigned
group names during system generation to identify a
group of devices having a common function . By cod­
ing a user-assigned group name, the user allows as
IV /F4 to assign any available device from the group.
For example, if :~, e group named DISK includes all
F478B and F479B disk drives and the user codes
lrNIT - DISK, as IV /F4 can assign any available
F4 78B or F478B device.

If a group contains more than one device type or
class (for example, SYSSQ can refer to all tape
drives and DASDs), the user should not code the
group name when defining an existing data set or
requesting a specific volume . The volume on which
the data set resides may reguire a device different
from the one assigned to it. For example , if the data
set resides on a tape reel, it must be assigned to a
tape drive . .

Requesting more than one unit
To increase operating efficiency, the user can
request multiple units for a multivolume data set or
for a data set that may require additional volumes.
When each required volume is mounted on a sepa­
rate device, execution of the job step is not inter­
rupted to allow the console operator to dismount and
mount volumes. The user should always request
multiple units when the data set can be extended to a
new volume if it currently resides on a permanently-

62

Magnetic tape
control unit

DASD
control unit

Unit group A
r---~---------------+-~---

Unit group B

F479B

I

~
Device type name

Fig. 2.13 Esample of user-assigned unit groups

,
,.

resident or reserved volume-permanently-resident
and reserved volumes cannot be dismounted in
order to mount a new volume.

The user requests multiple units by:
• furnishing a unit-count subpararneter in the UNIT

parameter.
• requesting parallel mounting.

The user can request parallel mounting when
making a specific or non-specific volume request.
OS IV /F4 counts the number of volumes requested
(volume serial numbers specified on the DD state­
ment in cataloged or passed data sets). This is com­
pared with the volume count, if it has been
specified, and OS IV IF4 assigns the larger of the
specified number of devices.

When the UNIT parameter is unnecessary
OS IV /F4 can often obtain unit information from
sources other than the UNIT parameter. In these
cases, the user need not code the UNIT parameter.
• When the data set is cataloged. For cataloged data

sets, OS IV /F4 obtains unit and volume informa­
tion from the system catalog. However, if
VOL=SER=serial-number is coded on a DD
statement for a cataloged data set, OS IV /F4 does
not interrogate the catalog. In this case, the user
must code the UNIT parameter.

• When the data set is passed from a previous job
step. For passed data sets, the system obtains unit
and volume information from passed data set
information. However, if VOL=SER=serial­
number is coded on a DD statement for a passed
data set, OS IV /F4 does not interrogate passed
data set information. In this case, the user must
code the UNIT parameter. .

• When the data set utilizes volumes assigned to
other data sets via VOLUME= REF syntax. In
this case, OS IV /F4 obtains unit and volume
information from an earlier DD statement
specifying the volume serial numbers or from the
catalog.

Determining numbers of volumes/units per
request
Before assigning volumes and units for a job step,
the allocation routines must determine:
• the maximum number of volumes per request.
• the maximum number of units per request.
• the number of units per job step.

The maximum numbers are calculated because
more units than specified may actually be used. The
rules for determining unit requirements are
explained below under " Units per Job Step".

Minimum Number of Volumes per request
The maximum number of tape volumes or direct
access volumes required to satisfy any request is the
greater of:
• the volume count specified in the VOLUME

parameter .
• the number of volumes whose serial numbers are

available.
The number of available volumes is one of the

following:
• The number of volumes whose serial numbers are

specified.

JOB MANAGEMENT

• The number of volumes obtained through
VOL = REF (only if VOL:II REF was coded).

• The number of volumes on which the data set
resided when it was passed (only if the request is
for an existing data set that was passed from a
prior step, and neither volume serial number nor
VOL=REF was specified) .

• The number of volume serial numbers obtained
from the catalog (only if the request is for an
existing data set not passed from a prior step, and
neither volume serials nor VOL=SER was
specified) .

• The number of volume serial numbers minus the
volume sequence number + 1 (only if the request
is for an existing data set in which the volume
sequence number specified is not greater than the
number of volume serial numbers). For example,
if 8 volume serial numbers will be needed and a
volume sequence number of 4 is specified, then
the number of volume serial numbers to be allo­
cated would be 5 (= 8 - 4 + 1); in this case, the
first three volume serial numbers will be dis­
carded, and the fourth volume would become the
first volume allocated.

• The unit count specified in the UNIT parameter
(only if the unit count specified is greater than the
number of volume serial numbers calculated in
the previous statement, or if the request is for a
new nonspecific direct access volume that does
not specify VOLUME- PRIV ATE).

When the required number of volume serial num­
bers for a request is greater than the number of
specific volume serial numbers from passed data sets
or from the catalog, the remainder of the volumes
are assumed to be requests for nonspecific vilumes.

Maximum Number of Units per request
The maximum number of tape or direct access units
required to satisfy any request is equal to the greater
of:
• the unit count specified in the UNIT parameter.
• the total number of volumes required (if parallel

mounting is requested).

When UNIT=AFF is specified, the unit require­
ments are obtained from the referenced request.
The number of units shared with the referenced
request is the number of units used by the
referenced request.

For direct access volumes, the number of units
required to satisfy a request specifying a generation
data group (GDG) name is dependent upon the unit
requirements of each member of that GDG.
Therefore, each member is handled as a single
request.

For direct access volumes, the number of units
required to satisfy a VSAM data set is dependent
upon the unit/volume configuration of the data set.
If the data set spans multiple device types, the total

http:infor.ma

CONTROL PROGRAM

number of units required is determined by the
OS IV /F4 catalog manager additional tables will then
be generated by the scheduler to cause the allocation
of the required number of units. For VSAM data
sets, a specified unit count or parallel mount may be
overridden by the system once the unit require­
ments for the data set are determined

Number of Units per job step
The number of units required for a job step is not
necessarily the sum of the unit requirements for
each request.

The following rules tend to reduce the total unit
requirements for a step:
• A volume can be allocated only to one unit.

Therefore, if more than one request asks for the
same volume, all requests will be allocated to the
same unit.

• For OASOs, storage and/or public requests can be
allocated to the same volume. Therefore, two or
more such requests may be satisfied with one unit.

The following rules tend to increase the total unit
requirements for a step:
• A permanently resident or reserved volume can­

not be demounted. Therefore, a volume which is
permanently resident or reserved will be assigned
its own unit (where it is mounted) even if,
through JCL specification, it was to share a unit
with one or more other volumes.

• For direct access, when more than one request
within a job step requires the same volume, that
volume must be shared. Therefore, a direct access
volume which is required by more than one
request will be assigned its own unit even if,
through JCL specification, it was to share a unit
with one or more other volumes.

• For direct access, a VSAM data set will require
additional units if the data set resides on more
than one device type.

• For direct access, an additional unit is required for
a private catalog volume if it is associated with
and/or used to retrieve volume information about
a particular data set.

• For direct access, when a GDG name is specified,
additional units may be requested to satisfy the
device type requirements of each individual mem­
ber of the GDG.

• For tape, when conflicting unit assignments are
specified for tape volumes, the volume involved
in the conflict will be assigned its own unit. For
example, such a conflict would exist for VOLUM2
in the following DO statements:

64

//ODI DO UNIT-TAPE,
VOL-SER=-= (VOLUM1,
VOLUME2)

//002 DO UNIT==TAPE,
VOL-SER=(VOLUM2,
VOLUM3)

In this case, three units-one for each
volume-would be assigned. If the user had
requested via unit affinity that the same tape unit be
used for both DOl and 002, then only one unit
would have been assigned.

2.6.4 Volumes

A volume is a media unit for data such as a reel of
magnetic tape, a disk pack, or a drum. Each volume
is identified by a volume serial number of 1-6
alphanumeric characters, which is typically written
onto the volume itself in machine-readable form
and also onto an external label to facilitate han­
dling/recognition of the volume by the console
operator.

Volume attributes
Attributes serve to determine eligibility of a
volume for dismounting and to control which data
sets can be allocated to it. Volume sbaring is
defined as usage of a volume for two or more data
sets within one job step or for two or more data sets
accessed by concurrently-executing job steps.

Attributes of magnetic tape and direct-access
volumes are the mount attribute and use attribute.
The nonsbarable attribute may be assigned only to
direct access volumes.

Mount and use attributes
Every volume is assigned a mount and use attribute
either when the OS IV /F4 system is loaded OPL)
via a V A TLST or when the volume is first used by a
job. The mount attribute controls volume
demounting. The use attribute helps control alloca­
tion of mounted volumes to data set requests. The
mount and use attributes are as follows:
Mount
- Permanently resident
- Reserved
- Removable
Use
- Public
- Private
- Storage
- Scratch

A private volume can only be allocated when its
volume serial numbers are explicitly or implicitly
specified. "

A public volume is a direct-access volume eligi­
ble for allocation of temporary data sets when no
specific volume is requested (and PRIV ATE is not
specified) .

A storage volume is a direct-access volume eligi­
ble for allocation of both nontemporary and tem­
porary data sets when no specific volume is
re~ested (and PRIV A TE is not specified). Storage
volumes are primarily used for non-temporary data

sets; temporary data sets will be assigned to storage
volumes only if they cannot be assigned to public
volumes.

A magnetic-tape scratch volume is used tem­
porarily within one job. After the latter completes,
the reel is left mounted for use by subsequent jobs.

The following points list the mount attributes and
describe how the mount and use attributes are
assigned to a volume:
• Permanently resident volumes cannot be dis­

mounted. Only direct access volumes can be per­
manently resident. Although the user may desig­
nate all direct access volumes as permanently resi­
dent in the volume attribute list
(VATLSTxx) in SYSl.PARMLIB, the following
volumes are always permanently resident:
1) volumes that cannot be physically demounted,
such as drum-storage volumes.
2) the IPL volume.

Volume
Temporary Nontemporary
data set data set state

Type of volume request

Public! Nonspecific Specific
Permanently or specific
resident'

Private! Specific Specific
Permanently
resident·

Storage! Nonspecific Nonspecific
Permanently or specific or specific
resident'

Public! Nonspecific Specific
Reserved' or specific

Private! Specific Specific
Reserved (Tape
and direct
access)

Storage! Nonspecific Nonspecific
Reserved· or specific or specific

Public! Nonspecific Specific
Removable or specific
(Tape and
direct access)

Private! Specific Specific
Removalbe
(Tape and
direct access)

• Direct access VOlumes only .

JOB MANAGEMENT

3) any volume containing system data sets such as
SYSl.LINKIB and SYSl.PROCLIB.

Any installation can assign to a permanently
resident volume a use attribute of "public," "p!"i­
vate," or "storage" in the V A TLST member of
SYSl.PARMLlB; the default attribute is
"public".

• Reserved volumes remain mou'1ted until the con­
sole operator issues an UNLOAD command. Both
direct access and tape volumes can be reserved. A
volume becomes reserved as a result of a MOUNT
command or a V ATLST entry (for direct access
devices only). A volume is usually designated as
"reserved" to avoid repeated mounting and dis­
mounting when used by many jobs.

An installation can designate a reserved direct
access volume as "public," "private," or
"storage." The use attribute is assigned to the
volume either in the VATLST member of

How 8SSignecl How demounted

VA TLST entry or by default Always"
mounted

VATLST entry Always·'
mounted

VATLST entry Always··
mounted

VATLST entry or MOUNT UNLOAD or
command VARY OFFLINE

commands

VATLST entry or MOUNT UNLOAD or
command VARY OFFLINE
(MOUNT command only for commands
tape.)

VATLST entry or MOUNT UNLOAD or
command VARY OFF LINE

commands

VOLUME=PRIVATE is not Whan unit is
coded on tha DO statement. required by
(A nonspecific request and a another volume
temporary data set for tape
also causes th is assignment.l

VOLUME=PRIVATE is coded At job termination
on the DO statement. or when the unit
(Specific request or a is required by
nontemporary data set for another volume.
tape also causes this
assignment.)

•• Note that VARY OF F LINE effectively accomplishas dismounting.

Fig. 2.14 Summary of'volume type and data set requests

CONTROL PROGRAM

SYSl.PARMLIB or in a parameter of the
MOUNT command, depending on how the
volume becomes reserved.

A reserved tape volume is always private.
• Removable volumes are neither permanently resi­

dent nor reserved. They can be demounted either
after the end of the job in which they are last used
or when the unit on which the volume is mounted
is needed for another volume.

A use attribute of "private" or "public" can be
assigned to a removable direct access volume
when the PRIVATE volume subparameter is
coded or omitted, respectively.

A removable tape volume can be assigned a use
attribute of "public" or "private". The use
attribute of "public" is assigned when the PRI­
V ATE subparameter is omitted, a nonspecific
volume request is made, and the data set is tem­
porary (a system-generated data set name or a dis­
position of DELETE). The use attribute of "pri­
vate" is assigned when the PRIVATE sub­
parameter is coded, a specific volume request is
made, or the data set is nontemporary (a non
system-generated data set name or a disposition
other than DELETE.)

Fig. 2.14 summarizes the types of volumes that
satisfy specific or ~nonspecific volume requests for
temporary or nontemporary data sets; qow these
attributes are assigned; and how volumes are
demounted.

Nonsbarable attribute
OS IV IF4 assigns the nonsharable attribute to direct
access volumes that may require demounting during
execution of a step. When a volume has the "non­
sharable" attribute, it cannot be assigned to any
other data set until the nonsharable attribute is
removed. It is removed at the end of the step that
was using it as nonsharable.

The nonsharable attribute is never assigned to a
permanently-resident or reserved volume. It is
always assigned to a volume used to satisfy any of
the following requests:
• specific volume request that specifies more

volumes than devices.
• a nonspecific volume request if it specifies PRI-

The request is :

V ATE and a volume count greater than the num­
ber of devices.

• a request for unit affinity with an earlier data set
defined in the job step, when the data sets reside
on different volumes.

• a request for deferred mounting of the volume on
which the data set resides.

Fig. 2.15 shows the OS IV IF4 action for sharable
and nonsharable requests.

To illustrate when the nonshaarable attribute is
set, suppose JOBA has indicated a need for two
volumes but only one unit is specified. In this case,
the operator will later have to mount JOBA's second
volume. JOBB is willing to share the first volume
mounted. If 10BA were to request mounting of the
second volume while JOB8 is executing, 1088
would fail. To avoid this problem, the system marks
J08A's volume request as "nonsharable" so that no
other job can use these volumes while J08A is
executing.

Satisfying specific volume requests
In the following cases, OS IV IF4 can satisfy a
request for a specific volume that is already
mounted:
• The volume is permanently resident or reserved.

The volume is assigned regardless of the
requested use attribute, and the use attribute is
not changed by the allocation.

• The DASD volume is removable, does not have
the nonsharable attribute, and is being used by a
concurrently executing step. If the user's request
would make the volume nonsharable, OS IV IF4
delays assigning the volume to his job until all
other job steps using the volume have terminated.

• The DASD volume is removable but not allo­
cated. The use attribute (private or public)
assigned to the volume is determined by presence
or absence of a PRIV ATE sub parameter .

• The tape volume is a scratch volume and is not in
use. The use attribute of private is assigned to the
volume if the request is for a permanent data set
or if PRIVATE is coded.

Fig. 2.16 shows how user requests affect use
attributes.

The volu me is allocated:

Sharable Nonsharable

Sharable allocata the volume wait-

Nonsharabla wait- wait-

- The operator has tha option of deleting the request. The request will always fail if waiting is not allowed.

Fi&- 2.1S Deac:ription of volume aBocations with respect to sharable requests

66

JOB MANAGEMENT

The volume is:
The request is:

Private Public

Privete stays private changes to private

Public steys private Itays public

Fig. 2.16 Private and public volume requests

Satisfying nonspecific volume requests
There are four types of nonspecific volume
requests:
• a private volume for a temporary data set
• a private volume for a nontemporary data set
• a nonprivate volume for a temporary data set
• a nonprivate volume for a non temporary data set

OS IV /F4 satisfies these requests as described
below. Since it satisfies the first two types of
requests in the same way, they are described jointly.
• For a nonspecific volume request .for a private

DASD or tape volume, OS IV /F4 requests the
console operator to mount a volume. He should
furnish a volume with most/all space available,
giving the user control over all space on the
volume. Once mounted, the volume is assigned
the use attribute of "private."

• For a nonspecific volume request for a non-pri­
vate direct access volume that is to contain a tem­
porary data set, OS IV /F4 attempts to a ssign a
public or storage volume that is already mounted.
If no space is available, it requests the operator to
mount a removable volume.

If OS IV /F4 selects a mounted volume, its use
attribute remains the same. If a removable
volume is mounted, the system assigns it the use
attribute of "public."

For a nonspecific volume request for a non-pri­
vate tape volume that is to contain a temporary
data set, OS IV /F4 assigns a scratch volume that is
already mounted, or it requests the operator to
mount a tape volume. Once mounted, OS IV /F4
assigns the volume the use attribute of "public."

• For a nonspecific volume request for a non-pri­
vate direct access volume that is to contain a non­
temporary data set, OS IV /F4 assigns a storage
volume if one is mounted on an eligible device.
Otherwise, it treats the request as a nonspecific
volume request for a private volume.

For a nonspecific volume request for a non-pri­
vate tape volume that is to contain a nontempor­
ary data set, OS IV /F4 treats the request as a non­
specific volume request for a private volume.

Deferred mounting of volumes
If a job step defines a data set that may not be
needed, depending on conditions determined during
execution, the user can request (using the DEFER

subparameter) that OS IV/F4 not mount volume(s)
containing the data set until the latter is opened.
This can eliminate unnecessary operator mounting
of volumes on direct access devices. No other job
step can use deferred-mount volumes until the job
step specifying DEFER ends. If DEFER is coded for
a new data set which could be placed on a direct
access device, DEFER is ignored.

110 load balancing
OS IV /F4 attempts to satisfy nonspecific volume
requests so as to optimize the balance on channels,
control units, and devices. Whenever the step initia­
tor chooses a device in this situation, it scrutinizes
the current load on each of these I/O facilities and
chooses that device and path - among atl devices
capable of satisfying the nonspecific request-which
is lightest loaded at present. Loads are estimated
according to intensity of I/O activities on these
devices and paths over a recent fixed-length time
interval.

2.6.6 Data Sets

This section discusses four kinds of data sets: tem­
porary, non-temporary, dummy, and dedicated.
Temporary data sets are created, used, and deleted
within a single job; they are used for intermediate
working storage. Nontemporary data sets are
typically retained between two or more related jobs.
All non-temporary data sets on DASD must have
data set names, identifiers of 1-44 characters
divided into simple names (at most eight
alphanumeric characters) separated by periodes
(".") .

Dummy data sets are used to bypass I/O func­
tions requested by executing programs. If a program
reads a dummy input data set - indicated by a first
operand of "DUMMY" on the corresponding DD
statement - it receives an immediate end-of-file sig­
nal from OS IV/F4. If a program writes a dummy
output data set, output records are automatically dis­
carded by OS IV /F4 data management.

Dedicated data sets may be permanently allocated
to an initiator by the cataloged procedure which
started it. Dedicated 'data sets are used for the same
functions as temporary data sets; their contents may
not be passed between jobs. The performance

CONTROL PROGRAM

. ' ~.~- .~ '" ,-": .-, -... J . ' ,~' . " " ' ';''''''''

::;~." ",;.;." -'"',~ ~~*.I~ .. ,:' . .'...,:., ·?~:::~ .. . ," / : ". , .. j EXECUTION

INITIATOR . '~" :i'::' \ .. / OF JOB STEP
." . · ":t\.:+..~~~. '" - .,,"

.,
,.
",

Initiator procedure

r'WORK 1 OOool __

("WORK 2 DO ... ~_

Interpreter

Allocator

-.. - .:..~- -------.-

---'

,
I

)

, -----, ... -~ ;:;: ,

!- :'\-. ,· ·"t , . .:.(

Input stream

//OS1000SNAME=
&&WORKI

liDS 2 DO OSNAME=
&&WORK2

Requests for dedicated data sets

Allocation of two
dedicated dati Sits

. : .' i. DedlC:ated' ;..:.· •• d)
~~.\ , '; . :. .•... J.,<:.;~setS

i ~ ;.:.t~4;..t. ;'" :~: "', . ;,....-. "I\;~' . '~J.:'

"':-~\..~ . :~ .; . : .:' , .~.,:, ~<. ~-:~";;'I'.t ,~.~

" ':. · · -I."'(of

Ge,..mdeta
set definfQ
byu.., '''.\

. ',- "\0,.: •
,' ,< . A

Pis. 2.17 Definition and use of dedicated data seu

advantage of dedicated data sets over temporary data
sets is primarily in reduced CPU overhead and tur­
naround delays. Each time a temporary data set is
allocated or deallocated, OS IV IF4 expends con­
siderable effort in selecting an available unit, read­
ing its VTOC, and allocating space on this volume.
Since dedicated data sets are pre-allocated, most of
this overhead is avoided. Another advantage of
dedicated data sets is that an installation can
deliberately assign them to channels and devices to
achieve balance among these I/O facilities:

The user requests a dedicated data set condi­
tionally, since the initiator which selects his job
may/may not have dedicated data sets allocated to it.
If not, his request will be automatically satisfied with
a temporary data set allocated by OS IV IF4 . If a cor­
responding dedicated data set exists but is too small
to satb "y his request, an ordinary temporary data set
will be allocated. Hence, the request will be satisfied
with one of the dedicated data sets for this initiator
(if any) only if certain attributes of size and format
match pre-existing attributes of the corresponding
dedicated data set, as shown in Fig. 2.17.

2.&.8 Program Llbrarl.s

The system library of executable programs is named
SYS1.LINKLIB; it stores the OS IV IF4 routines,
compilers, Assembler, utility programs, linkage edi­
tor, loader, sort programs, and-at the option of
each installation-frequently-used application pro­
grams. Users need not specify LINKLIB as their pro­
gram library, since it is the default source of
executable programs.

Each installation -or user-can define an arbitr-

68

ary number of private libraries of executable pro­
grams. A private library must be defined in each job
whre it is used. If it is used in only one or two steps
of a job, it can be defined as a step library by a
STEPLIB DD statement of the following form:

IISTEPLIB DD DSN =data-set-name, . ..

A STEPLIB statement must be furnished in each
step where the library is to be used.

A job library is analogous to a step library, except
that it is available for all steps of a job:

I/JOBLIB DD DSN=data-set-name, . ..

The JaBLlB statement immdiately follows the
JOB statement, preceding the EXEC statement for
the first job step.

It is possible to furnish both job and step libraries
for a single job. In this case, the directory of the
specified st.ep library is searched first for the
requested program (member of the program library,
which is a partitioned data set) . If the requested pro­
gram is not found in the step library, OS IV IF4
searches the directory of the job library (if fur­
nished). If the requested program is in neither the
step nor job library, OS IV IF4 searches for it in
LINKLIB.

A temporary program library can be created,
used, and deleted within a single job. A temporary
library is merely a temporary partitioned data set
used as a program library.

2.&.7 Status and disposition of data sets

Disposing of data sets at the end of a job step is

known as disposition processing. The user requests
disposition processing for a non-VSAM data set by
coding the DISP parameter on the DO statement
defining the data set. (VSAM data sets are handled
differently. For information on VSAM, the user
should refer to the F ACOM OS IV /F4 VSAM
Functions and Facilities and FACOM OS IV /F4
AMS Commands Reference Manuals.) In the DISP
parameter, the user can code the following sub­
parameters:
• Data set status as the first subparameter, indicat­

ing whether the data set is new, old, sharable with
other jobs, or modifiable.

• Normal disposition as the second subparameter,
indicating how the data set should be handled if
the job step terminates normally.

• Conditional disposition as the third subparameter,
indicating how the data set should be handled if
the job step terminates abnormally.

If the user omits any of these subparameters - or
if he omits the DISP parameter entirely -
OS IV /F4 supplies default values, as described
under "Default Disposition Processing."

Data set status
The user indicates the status of a data set by coding
one of the following values:
• NEW - the data set is being created in this job

step.
• OLD - the data set existed before this job step.
• SHR - the data set existed before this job step

and can be read simultaneously by other jobs.
• MOD - the OS IV /F4 assumes the data set exists

and will position the read/write mechanism after
the last record in the data set; if OS IV IF4 cannot
find volume information for the data set, it
assumes the data set will be created in the job step.

By coding SHR, the user permits shared control of
the data set; his access is usually restricted to reading
the data set, as opposed to writing or updating it. By
coding NEW, OLD, or MOD, the user implicitly
requests exclusive control of the data set. Shared
and exclusive control are described in this chapter
under "Insuring Data Set Integrity".

Specifying a disposition for the data set
The user can specify a normal disposition for the
data set, used if the job step terminates normally
(successfully). He can also (or alternatively) specify
its conditional disposition, to be used if the job ter­
minates abnormally.

For normal disposition, the second parameter of
the DISP parameter specifies that the data set be:
• deleted, by coding DELETE;
• kept, by coding KEEP;
• cataloged, by coding CA TLG;
• uncataloged, by coding UNCA TLG; or
• passed, by coding PASS.

JOB MANAGEMENT

NOTE: Disposition of a data set depends entirely on
the DISP parameter. However, disposition
of volumes on which the data set resides
also depends on the volume status when the
volume is dismounted.

For conditional disposition (third subparameter of
the DISP parameter), the user can code any of the
above values with the exception of PASS.

Data sets allocated to steps that abnormally termi­
nate and do not allow automatic restart are disposed
of as specified by the conditional disposition. If a job
step abnormally terminates during execution and a
conditional disposition is not specified, OS IV IF4
follows the normal disposition. If a job step fails dur­
ing step allocation:
• any data set created in that job step is deleted.
• any data set that existed before that job step is

kept.

Disposition processing differs for data sets on
DASD or magnetic tape volumes. The DASD
volume table of contents (VTOC) contains control
blocks describing non-VSAM data sets and available
space on the volume. How.to manage tape and direct
access volumes when specifying a particular disposi­
tion is described below.

When the user specifies KEEP or PASS for a
cataloged data set, OS IV /F4 assumes that he wants
the data set recataloged if volume information was
obtained from the catalog and if OS IV IF4 deter­
mines that the catalog entry must be updated. If the
job step performs catalog maintenance and the user
wishes to avoid recataloging, he should refer to the
data set by its specific unit and volume serial number
when coding the corresponding DO statement.

Deleting a data set
By specifying DELETE, the user requests that the
data set's space on the volume be released at the end
of the job step (when coded as the normal disposi­
tion) or if the step abnormally terminates (when
coded as the conditional disposition). If the data set
resides on a public tape volume, OS IV /F4 rewinds
the tape and makes this volume available for use by
other job steps. If the data set resides on a private
volume, the tape is rewound and unloaded, and a
KEEP message is issued. If the data set exists on a
DASD volume, OS IV /F4 removes the control
block describing the data set from the VTOC; its
space on the volume is then available for allocation
to other data sets.

In one case, however, a data set on a direct access
volume will not be deleted, even if the user specifies
DELETE: when the expiration date or retention
period has not expired. The user can specify how
long a data set should be kept by assigning a reten­
tion period or expiration date in the LABEL
parameter on the corresponding DO statement.

If the user wishes to delete a cataloged non-VSAM

CONTROL PROGRAM

data set, the data set entry in the system catalog is
also removed, provided OS IV IF4 obtained volume
information for the data set from the catalog (that is,
its volume serial number was not coded on the DD
statement). If OS IV IF4 did not obtain volume
information from the catalog, the data set is deleted
but its entry in the catalog remains. If OS IV IF4
encounters an error while attempting to delete a data
set, its entry in the catalog will not be removed. (The
data set mayor may not be deleted, depending on
where the error occurs) . The user can furnish an
access method services DELETE command or the
JSEPROGM UNCATLG command to delete a non­
VSAM entry from the catalog.

DELETE is the only valid conditional disposition
for a data set with no name or a temporary name. If a
disposition other than DELETE is specified,
OS IV IF4 assumes DELETE.

Keeping a data set
By specifying KEEP, the user asks OS IV IF4 to keep
a data set intact until a subsequent job step requests
that the data set be deleted, or until the expiration
date or retention period - indicating the length of
time a data set must be kept - has elapsed. If he does
not specify a time period, OS IV IF4 assumes a 'reten­
tion period of zero days.

For DASD data sets, the VTOC entry describing
the data set and the data set itself are kept intact. For
data sets on tape, OS IV IF4 rewinds and unloads the
volume and issues a KEEP message to the operator.

Cataloging a data set
Cataloging allows the user to keep track of and
retrieve data sets. Data sets can be cataloged in the
system master catalog or in user (private) catalogs.
When retrieving a cataloged data set, the user need
not specify volume information; he needs only to
code the DSNAME parameter and a DISP status
other than NEW.

To catalog a non-VSAM data set, the user codes
CA TLG for its disposition; OS IV IF4 creates an
entry in the catalog that points to the data set. The
CATLG disposition implies KEEP.

The user can specify a CA TLG disposition for an
already-cataloged data set. This should be done
when lengthening the data set with additional output
(MOD) such that the data set may exceed one
volume. If OS IV IF4 obtained volume information
for the data set from the catalog (that is, if the
volume serial number is omitted from the DO state­
m en t) and if the user codes DISP
- (MOD,CATLG), OS IV/F4 updates the entry to
include serial numbers for any additional volumes.

A collection of cataloged data sets kept in
chronological order can be defined as a generation
data group (GOG). The entire GDG is stored under
a single data set name; each data set within the
group, a generation data set, is associated with a
generation number that indicates how far removed

70

the data set is from the original generation. For more
information on defining and creating -generation
data groups, the user should consult the F ACOM
OS IV IF4 Data Management Functions and
Facilities.

Uncataloging a data set
To remove the entry describing a non-VSAM data
set from the catalog, the user codes UNCA TLG for
its disposition. Specifying UNCA TLG does not
request the initiator to delete the data set - only the
catalog reference is removed. If the user requests
access to this data set in a subsequent job, he must
include volume information on his DO statement.

Passing a data set
If several steps in a job need the same data set, each
step using the data set can pass it for use by subse­
quent steps. A data set can only be passed within one
job.

To pass a data set, the user codes PASS as its nor­
mal disposition; he cannot specify PASS for a condi­
tional disposition. He continues to code PASS in
each step referencing the data set until the last time
it is used in the job. At this time, he should assign it
a final disposition within this job.

Specifying the name of a passed seet without cit­
ing its volume serial number is called receiving the
data set. Identical data set names (whether or not
they reference the same data set) can be passed at
the same time. Such identical data set names are
received in the same order in which they are passed.
A data set name that has been passed N times can be
received no more than N times. A data set cannot be
passed and received within the same step.

Disposition processing of unrecelved passed data
sets
A data set ran be passed by ajob step and not subse­
quently received by another job step. In such a case,
if the earlier job step terminates abnormally,
unreceived data sets that specified a conditional dis­
position when passed are processed as specified in
their conditional disposition, with four exceptions. If
the conditional disposition requires updating of a
user catalog:
• and CA TLG is specified for a data set with a first­

level qualifier of a catalog name or alias, the data .
set will not be cataloged.

• and UNCATLG or DELETE (of a cataloged data
set) is specified for a data set with a first-level
qualifirer of a catalog name or alias, the data set
will not be uncataloged.

• and CATLG is specified for a data set with no
qualifier or with a qualifier that is not a catalog
name, the data set will be cataloged in the master
catalog.

• and UNCATLG or DELETE (of a cataloged data
set) is specified for a data set with no qualifier or
with a qualifier that is not a catalog name, an

attempt will be made to uncatalog the data set
from the master catalog.

Data sets that do not specify a conditional dis­
position - those specified as (NEW, PASS) in this
job-are deleted; all others are kept.

If no job step abnormally terminates,
unreceived data sets specified with
DISP= (NEW,PASS) are deleted; other
unreceived data sets are kept.

Default disposition processing
If the user omits a DISP parameter altogether-or
omits one or more subparameters-OS IV/F4 fur­
nishes various default values.

If the user omits the status subparameter, OS IVI
F4 assumes a value of NEW. If he omits the second
or third subparameters, OS IV IF4 determines how
the data set should be handled according to its status.
Data sets that existed prior to this job step are auto­
matically kept (data sets for which OLD, SHR, or
MOD is coded and the volume information is availa­
ble). Data sets created during this job step are auto­
matically deleted (data sets for which the user coded
NEW or MOD and volume information was not
available, or for which he did not code,a status).

If a step abnormally terminates before it actually
begins execution (for example, during allocation of
units and volumes or direct access space),
OS IV IF4 ignores the disposition furnished by the
user, automatically keeping existing data sets and
deleting new data sets.

For example, if the user codes:
DISP= (,PASS,CATLG)

OS IV IF4 assumes the data set is new. If the job step
abnormally terminates during execution,
OS IV IF4 will catalog the data set, as instructed by
the conditional disposition of CATLG. If the step
abnormally terminates befor it actually begins
execution, OS IV IF4 will delete the data set, since it
is a new data set.

Bypassing disposition processing
If the user defines a data set as a dummy data set, OS
IV IF4 ignores any user-furnished DISP parameter
and omits disposition processing. For details the
reader should consult Sections 2.5.5 and 2.7.2.

Insuring data set integrity
The user can request either exclusive control of
various data sets in his job-allowing no other con­
currently-executing job to access these data sets-or
shared control, allowing them to be concurrently
accessed by other jobs also specifying shared control.
The process of securing control of data sets is called
data set integrity processing.

Data set integrity processing avoids conflicts be­
tween two or more jobs requesting simultaneous
access to the same data set. For example, a job
named READ and another named MODIFY may
simultaneously request the data set FILE. READ

JOB MANAGEMENT

needs to read and copy certain records, MODIFY
deletes some records and changes other records in
the FILE data set. If both jobs access FILE concur­
rently, READ cannot accurately access its
records-cannot be sure of the integrity of the data
set. MODIFY should gain exclusive control of the
data set; READ can share control of FILE with other
jobs needing read-only access to the data set. The
user should indicate the type of control in the DISP
parameter on the DD statement defining the data
set.

Exclusive control of a data set
When a job has exclusive control of a data set, no
other job can use the data set until the controlling
job terminates. A job should acquire exclusive con­
trol over a data set prior to modifying, adding, or
deleting records.

In some cases, the user may not need exclusive
control over the entire data set. He can request
exclusive control of individual blocks by coding
READ, WRITE, and RELEX macro instructions.
These instructions are described in the F ACOM OS
IV IF4 Data Management Macro Instructions
Reference Manual.

To request exclusive control of a data set, the user
codes NEW, OLD or MOD as the first DISP sub­
parameter.

Shared control of a data set
A data set on a direct access storage device can be
used concurrently be several jobs; however, none of
the jobs should change the data set drastically. To
request shared control, the user codes SHR as the
first DISP subpararneter. If more than one step of
his job needs the data set, he must code SHR every
time he defines it if it is to be available to other con­
currently-executing jobs. Data set integrity process­
ing is performed once per job; a data set has either
shared or exclusive control. If the user codes NEW,
OLD or MOD on any reference to a data set,
OS IV IF4 assigns exclusive control to the data set
for the entire job; a references requesting exclusive
control overrides any number of references permit­
ting shared control.

Example of disposition processing
/lOISP
I/S1
/101
/102
/I
1/03
/I
1/
1/
/104
/I
/I
IIS2
1/01
/I
/I
II

JOB
EXEC
00
00

00

00

EXEC
00

... MSGLEVEL 1
PGM-JSEBR14
OSN =ABC, OISP. (SHR, KEEP)
OSN "SYSA, OISP. (OLD, DELETE,

UNCATLG)
OSN=SYSB, UNIT- F478B,

VOl =SER- F478B1,
SPACE- (CYL, (4,2,111,
OISP"'(NEW, KEEP, CATLG)

OSN=&&SYS1, OISf'K (MOO' PASS),
UNIT=F478B, VOL- SER =F478B2,
SPACE - (TRk, (16,5,1))

PGM"JSEBR14
OSN=&&SYS1, 0151'- (MOO, DELETE),
UNIT: F4788,

VOL- SER- F478B2.
SPACE-(TRK,116,5,111

CONTROL PROGRAM

1. The JOB statement requests that all JCL state­
ments and system messqes be printed.

2. D 1 in step S 1 defines a data set that already exists
and can be shared with other data sets. It is to be
kept on the volume after this job step.

3. D2 in SI defines a data set that already exists, can­
not be shared with other data sets, is to be deleted
at the end of the job step, and is to be uncataloged
if the program abnormally terminates.

4. D3 in SI defines a new data set that is to be
assigned a specific volume(F478Bl) on a F478B
device. The data set is to be kept on the volume at
the end of this job step if the step terminates nOf­
mally, but it is to be cataloged if the program
abnormally terminates.

5. D4 in SI defines a temporary data set that is to be
created in this job step. It is to be assigned to
volume F478B2 on a F478B device with 15 prim­
ary tracks, 5 secondary tracks and a directory. This
data set is to be passed to subsequent steps in this
job .

. 6. Dl in SI refers to the temporary data set defined
in D4 of S 1. When this step completes, the data
set is to be deleted.

2.6.8 Automatic Volum. Recognition (AVR) and
Volum. S.tup

To facilitate smooth and efficient mounting of tape
and DASD volumes, OS IV /F4 furnished A VR and
a JES-based setup facility.

Automatic volume recognition (A VR)
This facility recognizes a volume when the operator
mounts it on a previously-empty drive. Hence, the
operator takes the initiative in selecting and mount­
ing volumes, in contrast to the demand mounting
option, where OS IV /F4 determines which, where,
and when volumes are to be mounted.

Immediately after a labelled volume is mounted,
A VR reads the volume label and enters it into an
internal OS IV /F4 table. If the volume is unlabelled
(necessarily magnetic tape) AVRwill unload it after
attempting to read the non - existent label. Other­
wise, A VR will accept standard, JlS, and ANSI
labels, plus most non-standard labels. Each installa­
tion must install its own routines for automatic
recognition of non-standard tape labels.

A VR permits console operators to pre-mount
reels and packs required by jobs requiring setup, as
described below. Since the operator knows in
advance which volumes will be required for each
job, he can premount them on available drives prior
to releasing the job. This reduces delays in setting up
jobs to an absolute minimum.

Setup
The user informs OS IV /F4 which mountable
volumes are needed for his job by furnishing one or

72

more SETUP statements immediately after his)OB
statement:
/·SETUP vol-ser-no-l [, vol-ser-no-2] [, vol-ser­
no-3]

Each volume serial number should indicate -
explicitly if not implicitly - what type of volume
(tape reel, lOO-megabyte disk pack, 200-megabyte
pack, etc.) is required; in case of a tape reel, the user
should indicate whether the file protection ring
should be inserted/removed by the console operator
prior to mounting the reel.

Each job furnishing at least one SETUP statement
is automatically placed onto the hold queue by JES.
Mter the operator has retrieved requested volumes
from the volume library, he may premount some/all
of them if the OS IV IF4 system includes the A VR
option. Whether he mounts volumes or not, he then
can release the job, since its volumes are either
mounted or available for quick mounting near cor­
responding drives.

2.6 JOB EXECUTION

In a typical OS IV /F4 system, many batch and time­
sharing jobs execute simultaneously most of the
time. Each batch initiator selects, initiates, and ter­
minates jobs non-stop so long as it remains active
(console operator has not issued a STOP command
to it) and at least one class of jobs for which it is
eligible is non-empty.

As jobs execute, individual steps may be executed
or bypassed according to user-furnished conditions
(COND parameter) typically based on the success/
failure of prior steps.

The following subsections describe how
OS IV /F4 processes multiple batch jobs
simultaneously, executes and terminates each job
step, conditionally executes or bypasses steps, and
terminates jobs.

2.6.1 Proc lng Multlpl. Job.

It is typical to service ten batch streams plus
numerous time-sharing users from a single
OS IV IF4 system. The principal reason for perform­
ing multiple independent computations concur­
rently is to utilize the powerful Fujitsu central pro­
cessing units (CPUs) fully . The speed disparity bet­
ween a typical CPU and a typical file peripheral
(tape or disk drive with its associated channel and
control unit) is quite large. Hence, OS IV /F4 ser­
vices many different jobs ~th one CPU (two CPU's
in the case of a multiprocessor configuration) and a
large collection of file peripherals. Some file periph­
erals are dedicated to particular users, others are
shared by many users.

One unit of work for a CPU is called a task in OS

Input streem

Delimiter
statement

IIEXEC

L--....,-.........

Enqueing
of job

Job with setup function is
handled as follows.

<D SETUP statement is read
by JES reader .

@ Job enters the hold queue.

@ Operator is informed by

SETUP statement which
volumes need mounting.

Request of
mounting
of volume

@ Operator mounts required volumes.

® Operator enters RELEASE command for
this OS job.

® The job is shifted from the hold queue to
the general input queue.

(J) Initiator activates the corresponding job.

® Volume mounted previously is ellocated to
the job automatically by the help of AVR
function.

Fig. 2.18 Setup function and activation of job

Volume used in the job
is mOunted.

IV IF4. Since as IV IF4 processes many tasks
simultaneously, it is considered to be a multitask­
iog or muItijobbing operating system. If two or
more CPUs share a pool of main storage and periph­
erals, the hardware configuration is called a
multiprocessing or multiprocessor. system.

2.6.2 Execution of Jobs and Job Steps

Each job begins with a JOB statement and ends with
a null statement (or, by default, the delimiter state­
ment fQr the last SYSIN data set or the last]CL
statement). Each job step begins with an EXEC
statement which either names a particular program
to be executed or invokes a cataloged or in-stream
procedure, as shown in Figs. 2.18 and 2.19. Expan­
sion of procedure calls into several EXEC, DD, and
other]CL statements is described in the F ACOM

JOB MANAGEMENT

Input
RELEASE
command

AVR function

Release of job

OS IV IF4 Job Management Functions and
Facilities.

Job steps and initiators
Each job is fully processed by one initiator, which is
dedicated to this job until it terminates. Each initia­
tor (and the stream of jobs it processes) occupy one
virtual address space of 16 million bytes, which is
defined at the time the console operator starts the
initiator.

Each initiator starts a job step after allocating its
device and data set resources by issuing an
A'IT ACH macro instruction naming the program
for that step. The first step to be attached in this way
is called the job step task. Ordinarily this is the only
task in this address space; however, the job step task
can issue A 'IT ACH macro instructions to start one
or more subtasks which execute concurrent with
one another, their job step task (parent task), and
job step tasks for other active initiators.

CONTROL PROGRAM

Fig. 2.19 Jobs and job steps

library

Exec PGM=A

JOB
Procedure

Input stream

Exec PGM=A

JOB

Actuelly e)(ecuted job

Fig. 2.20 USing a cataloged procedure

Dispatching priority
Earlier in this chapter, the concept of job selection
priority was discussed. Dispatching priority is
different from selection priority; it specifies the
relative priority of any task for controlling the CPU.
The user can set the dispatching priority for a par­
ticular job step by furnishing a DPRTY parameter
on the corresponding EXEC statement:

DPRTY-(d"d2)

74

Job step

Job step
(link editl .

(COBOL compile)

where dl is the broad job-step priority and d2 is a
refinement of this priority. The priority used by as
IV IF4 is 616*d l + d2, 0 ~ d l ~ 13, O~d2~ 15.

Higher values of the dispatching priority give it
preference over other tasks (from the same or other
address spaces) for gaining control over the CPU. If
d, is omitted, its value defaults to the selection
priority (PRTY parameter) of the entire job. The
default value for d2 is 1 L

The initiator limits dispatching priorities for all
tasks in its address space. Associated with each job
class processed by this initiator are two limiting
value: the upper limit, and the uniform dispatching
priority. Either of these value-or both-may be
omitted. The upper limit is the maximum value
(between 0 and 13) which dl can take; if omitted, d1

can take any value up to 13. The uniform dispatching
priority applies to all jobs in this class processed by
this initiator; it is a constant value for dl which over­
rides any DPRTY values furnished by users.

Automatic priority group (APG)
as IV IF4 normally chooses dispatching priorities
for all user tasks according to their recent histories
of using the CPU and various 110 devices. This
facility is called APG and is based on the following
approach. as IV IF4 automatically monitors usage of
the CPU and all tape and disk channels. Periodically
(every few seconds), the dispatching priorities of all
tasks operating under APG are changed; tasks which
have recently used the CPU heavily are given tem­
porarily lower dispatching priorities for the next
time period, while tasks which have not heavily used
the CPU are given temporarily higher dispatching
prioroties. Hence, I/O-limited tasks have chronically
.higher priorities than compute-limited tasks, the lat­
ter gaining-or-losing dispatching priority in round­
robin sequence.

Jobs not asigned to APG operate altogether higher
or altogether lower than those in APG. and their dis­
patching priorities are not automatically modified by
OS IV IP4. Most jobs will operate most efficiently if
they are assigned to APG, whether they are I/O­
limited, CPU-limited, or balanced. To select APG,
the user omits DPRTY parameters from corres­
ponding EXEC statement.

Table 2.1 Operator communication macro instructions

Macro
Instruction

Full Name Function

WTO Write to Program issues message on
operator one or more consoles, as

indicated by a console-
distination card

WTOR Write to Program issues message on
operator one or more consoles,
with reply then awaits the operator's

reply, which i~ read into
a progrem buffe~

QEDIT Queue Program accepts any
edit MODIFY or STOP

command previously
SUbmitted. for this job

r by the operator

WTl Write to Program writes a message
log onto the system log data

set (SYS1.l0GREC)

DOM Delete Program requests deletion
operator of message currently
message displayed on operator CRT

console, previously issued
by this job step by a WTO
or WTOR macro instruction

JOB MANAGEMENT

Operator Communications
During execution of his job, the user can issue
messages to the console operator using the assem­
bler-language macro instructions described in Table
2.1 (and corresponding verbS in higher-level
languages, such as DISPLAY and ACCEPT in
COBOL).

Initiating tasks by START commands
System tasks may optionally be started by operator
commands, such as readers (START RDR) and
initiators (START INIT). Procedures for these tasks
are predefined in the system procedure library
(SYSl.PROCLIB) and are similar in format to
ordinary cataloged procedures.

Most user jobs are read from JES readers or sub­
mitted through internal readers. A user job can also
be initiated by a START command, whose operand
is the name of a cataloged procedure. This job com­
prises one job step, comparable to processing one
EXE~,statement (although the cataloged procedure
can itself invoke several different programs).
Installations can invoke frequently-used system
utility programs in this way.

Although system and user tasks do not require
initiator services when started this way, they each
occupy one address space as usual. Differences be­
tween jobs submitted through JES readers and via
START commands are summarized in Table 2.2.

2.6.3 Terminating Job Steps

When a job step terminates, OS IV /F4 regains con­
trol via its step terminator, which determines
whether the ending was normal or abnormal
(ABEND). Even if a task ends normally, the step

Table 2.2 Comparison of the task activated by START command and general jobs

R
Time Main-

Item Task
monitoring Check tenanee CANCEL

Input protac- SMF
pointl command Type mode during racords

processing

of
tion key

execution?
restart? of data permitted?

Task sets

System task Procedure in· 0 No Not Impossible Required Impo!$ible ,
SYS1.PROC- collected collected except except
LIB invoked for during
by START rellders. allocation
command writers

andVTAM

Job step Procedure In ,.0 ~es Not Impossible Requirlld Possible
Initiated by a SYS1.PROC- collected
ST ART Command LIB invoked

by START
command

Ordinary job Inputted from FO Yes Collected Possible Required Possible
submitted the Input
through JES stream, and
reeder relld-in by

JES raader

terminator processes its resources (main and sec­
ondary storage, data sets, etc.) carefully; there is lit­
tle operational distinction between normal and
abnormal termination processing .

A job may be abnormally terminated by a
CANCEL command. Whenever a job terminates
abnormally, the user may receive a formatted
SYSOUT dump of his address space if he has pre­
viously requested this option.

At the termination of each job step, the initiator
releases any resources acquired solely for this step
and passes other resources (e.g., passed data sets) to
subsequent job steps. The initiator determines
whether succeeding steps should be executed based
on return codes issued by current/previous steps
and whether the current step terminated normally.

Normal end
In each compiler or assembler language, facilities
exist for issuing a normal end ("RETURN,"
"EXIT," etc.) or abnormal end ("ABEND,"etc.).
In all cases, when the job step task ends (as defined
in Section 2.6.2) the corresponding job step is con­
sidered terminated.

Abnormal end
As noted earlier, an abnormal end (ABEN'D) is
differentiated from a normal ending by OS IV /P4
primarily in terms of specialized diagnostic pro­
cessing for the former. Typical ABEND ,causes are
the following conditions:
• Unrecoverable hardware error,
• Erroneous usage of a system macro instruction.
• Erroneous data-set usage.
• Exceeding a job or job-step limitation, such as

CPU time, SYSOUT quantity, or protracted
WAIT state.

• Job cancelled by console operator.

ABEND can be automatically issued by OS IV /F4
or requested by the user program.

For obtaining a partial/complete printout of his
address space (dump), the user should furnish
either a SYSABEND or SYSUDUMP DD statement
at the time he submits his job; these statements
should be included with each step possibly suscepti­
ble to ABEND. A SYSUDUMP statement instructs
OS IV /F4 to print the contents of the user's virtual
storage plus relevant as IV /F4 tables and register
save areas. A SYSABEND statement requests the
same information plus a formatted display of the as
IV /F4 nucleus.

An assembler-language user can regain control
after ABEND occurs with a specialized exit routine.
In some cases, the user program can correct errors
causing ABENDs and resume normal execution.

Execution limits
Each installation can limit four resource utili218tions
by user jobs. In addition, each user job can optionally

76

specify more stringent limitations on these
resources:
• CPU time for the entire job.
• CPU time per step.
• Time in uninterrupted WAIT state.
• SYSOUT quantity.

The JOB-statement TIME parameter limits total
CPU time for the job. The EXEC-statement TIME
parameter limits CPU time for this step (including
all executions within a cataloged procedure), subject
to the overall job limitation on CPU time.

If a job remains in uninterrupted WAIT state for
several minutes, it is likely to be entirely dormant or
erroneously handled; for example, it may have
missed a necessary I/O interruption, or it may be
awaiting mounting of a tape reel. as IV /F4 will au­
tomatically cancel such a job, according to an
installation-specified limit for uninterrupted WAIT
state.

The quantity of printed/punched records directed
to a SYSOUT device may become excessive during a
job, possibly through a programming error. The user
can prespecify a limitation for a SYSOUT data set
by an OUTLIM parameter on the corresponding DD
statement. Overriding this is the aggregate SYSOUT
limitation specified by the installation for the corres­
ponding initiator.

At the end of each job step (and also at the end of
the job), as IV /F4 passes control to an SMF
routine. Each installation can add its own exit
routines to SMF in order to capture statistics on
system performance and resources used by particu­
lar jobs.

Releasing resources
At the end of each job step, most of its resources are
reclaimed by as IV /F4, so that they can be issued to
other users (or to subsequent steps of the same job).
Passed data sets are retained by this initiator for sub­
sequent steps. If a step terminates abnormally, as
IV /F4 reclaims all resources from the user, whether
these resources are released in an orderly fashion or
not.

2.6.4 Conditional Execution of Job Steps

Normally, steps of ajob are processed in their input
sequence one by one. However, if a job step has an
unsatisfactory termination (either in the as IV IF4
ABEND sense or due to bad input data), it can set a
return code to prevent needless execution of subse­
quent steps. For example, if a compile-load-go job
encounters a serious source-program error during
the compilation step, it should generally bypass the
"load and go" step.

Return codes
Each job step issues a return code - explicitly or
.ft~

implicitly - when it terminates. The return code is
an integer between 0 and 4095, inclusive. By con­
vention, OS IV /F4 compilers, assemblers, utility
programs, and application packages issue return
codes of 0 for normal ending and larger values for
various severities of errors. Subsequent job steps can
test these return codes to determine whether they
should be executed or skipped, using COND
parameters on corresponding EXEC statements:
COND= «condition-code-l,operator-l), (condition­
c:ode-2,operator-2), ...)

Each condition code is an integer between 0 and
4095, which is compared against return codes from
one or more previously-executed steps. Operators
are the six relational operators: EQ, NE, GT, LT,
GE, and LE, which correspond to "equal,""not
equal, ""greater than," etc. Up to eight tests of the
above form - "(condition-code, operator)" - can
be included in one COND parameter, if any of the
tests is satisfied during execution of the job, the step
bearing this COND parameter is skipped by OS IV/
F4.

COND parameter on a JOB statement
If the user furnishes a COND parameter on his JOB
statement, he thereby requests that step-skipping
tests be applied to the second and' all subsequent
steps, using return codes passed from preceding
steps. Whenever one of the tests is satisfied, all
remaining steps in this job are skipped.

COND parameter on an EXEC statement
The user can furnish a COND test in either/both of
the following formats:
(condition-code, operator) Test condition code

against return codes
from all prior steps

(condition-code, operator, Test condition code
step-name) against the return code

from this particular
prior step.

COND parameter with an abnormal termination
A job step sets a return code only when it terminates
normally. In general, if a step terminates abnor­
mally, all subsequent steps are automatically skipped
by OS IV/F4. However, two special forms of the
COND parameter permit specific job steps to be
executed subsequent to an abnormally-terminating
step:
COND=EVEN

COND-ONLY

This step is executed even if a
prior step has abnormally termi­
nated.
This step is executed only if a
prior step has abnormally termi-
nated. .

For example, STEPI of a job updates records in a
data set. If STEPI abnormally terminates, the user

JOB MANAGEMENT

may want to execute STEP2, which will print the
data set. He should specify that STEP2 should be
executed only if STEPI abnormally terminates by
coding ONL Y in the COND parameter on the EXEC
statement for STEP2.

Specifying return code tests
In the COND parameter, the user may specify tests
to determine if the system should bypass a job step.
If OS IV /F4 determines that a comparison is true,
the job step is skipped (if COND was coded on the
EXEC statement) or all remaining job steps are skip­
ped (if COND was coded on the JOB statemen t) .

For example, if the user codes COND =
«(1 O,GT) , (20,LT» he is asking, "Is 1 0 greater than
the return code, or is 20 less than the return code?

If the return code is 12, neither test is satisfied: no
job step is skipped. All tests the user specifies must
be false if processing is to continue without skipping
any job steps. If the return code is 25, the first test is
still false, but the second test is satisfied: 20 is less
than 25. OS IV /F4 will bypass one job step or all
remaining job steps, depending on whether the
COND parameter was coded on the EXEC state-
ment or on the JOB statement. .

Example of routing a job through the system
The purpose of the following job is to execute five
steps to perform an unspecified function. Not all of
the steps will execute because of conditions are
placed on them. See Fig, 2.21.

IIROUTE JOB (0687061, ROEGER, MSGLEVEL"(1,1),
1/ CLASS>zE
IISTEP 1 EXEC PGM=JSEBR 14
1/001 DO SYSOUT-A
IISTEP 2 EXEC PGM=JSEBR14, CONO'"EVEN
/1002 DO SYSOUT-A
I/STEP 3 EXEC PGM=JSEBR 14, CONO=ON L Y
11003 DO SYSOUT=A
/lSTEP4 EXEC PGM=ABEN0806
11004 DO SYOUT=A
/lSTEP5 EXEC PGM=JSEBR14, CONO=ONLY
1/006 DO SYSOUT=A

1. This job will use the installation-defined priority
default.'

2. The JOB statement specifies that only JCL state­
ments and messages are to be written, and that the
job is assigned to job class E.

3. All SYSOUT data sets will be directed to output
class A.

4. STEPI will execute normally.
5. STEP2 will execute' normally.
6. STEP3 will not execute.
7. STEP4 will execute and will abnormally termi­

nate. (ABEND806 program issues an ABEND
macro instruction).

8. STEPS will execute because a preceding step did
abnormally terminate.

CONTROL PROGRAM

(f/STEP 1 EXEC

No by-pass tast

("STEP 2 EXEC

r I/;TEP 3 EXEC

• COND-I10,GT, STEP 1)
(20, LT, STEP 2)

By-pass test C?nditions

Contents of by·pass conditons
test at STEP 3

Parameter

Job step 1
(STEP1)

Job step 3
(STEP 3)

, , o

YES

YES

description (10, GT, STEP 1) (20, L T, STEP 2)

Return code
20 <

Return code
Significance 10 >

of STEP 1 of STEP 2

Test Yes because No because
satisfied? 10> 5 20 < 15

By-pass
conditions Either of conditions is sat isfied? Yes
judgement

When COND parameter in EXEC statement is designated, the execution of the lob
step is based on the completion status (return codes) of the preceding job steps.

Fig. 2.21 Example of multiple condition codes

2.8.& Terminating Job.

When the last step of a job has completed, or when
remaining steps have been skipped by OS IV IF4, the
job terminator routine gains control and releases all
resources held by the job. All SYSOUT data sets cre­
ated by the job are entered onto the lES queue,
ready for transcription to printers, card punches, and
- via RES - remote terminals as soon as the latter
are readied and available.

78

2.7 SYSTEM OUTPUT

The principal outputs from each OS IV IF4 batch job
are 'a) permanent data sets on disk and tape, (b)
punched card decks, (c) printed listings, and/or (d)
magnetic-tape images of printed/punched outputs.
Outputs of type (a) were discussed in Section 2.5.7.
The current section describes outputs of types (b) -
(d), which are collectively called SYSOUT data sets.
They contain a combination of messages issued by
OS IV IF4 - to record job initiation, step initiation,
device allocation, volume mounting, step termina­
tion, job termination and device disposition events

- and outputs generated by compilers, assemblers,
editors, utility programs, and application programs.

All SYSOUT data sets are processed by JES
writers. JES queues output data according to data set
characteristics such as output class, forms, print
train, and forms control buffer name. Data sets are
also queued by installation writer name and destirta­
tion, as discussed in the "external writer" section.
These characteristics are obtained from the
SYSOUT DD statement or the demand OUTPUT
statement. With the exception of held data sets and
spinoff data sets, output for jobs, started tasks, or
time-sharing users with identical characteristics are
queued together in a data set group pointed to by a
job output element (JOE). Each held and spinoff
data set is queued separately and constitutes a
"group" of one data set. Each data set group is con­
sidered a processing entity with a set of processing
characteristics. JES selects work by data set groups
and will - if the separator option is specified -
delimit each group with separator pages or cards.
See Fig. 2.22.

SYSOUT = (A, 2 PRT), UCS = PN
SYSOUT = A, UCS = PN
SYSOUT ~ 8
SYSOUT = A

Total of four JOEs
built

---------------------~-------
SYSOUT =A
SYSOUT = A

SYSOUT = 8
SYSOUT =8

SYSOUT = lA, ,2 PAT)

Total of three

JOEs built

Fig. 2.22 Relationship of SYSOUT specification to number of job
output elements

JOEs built for job-related output are duplicated
according to the number of job copies requested by
the REPEAT parameter of the WRITER statement.
This allows the number of copies being processed
for any job to be governed by which devices are
available for output.

2.7.1 Types of SVSOUT Data

By coding various JeL parameters the user can
request output data sets, listings of JeL statements,
system messages, and abnormal termination dumps.
By coding various JeL and JES statements, he can
request special forms processing, routing of output
to specific devices, and multiple copies of certain
data sets within a job. The JES statements have
several options which complement those of JeL

JOB MANAGEMENT

statements, with some additional features such as
multiple destinations, left and right indexing
features for printers, and data set grouping.
This section includes three topics:
• JeL statements and system messages
• Abnormal-termination dumps
• Output data sets

JeL statements and system messages
OS IV IF4 displays messages about a job concerning
allocation of units and volumes, disposition of data
sets, and termination of job steps and the job. The
user can request that these messages - and/or JCL
statements from the job and from procedures called
by the job - be included on his output listing.

By coding the MSGLEVEL parameter on the JOB
statement, the user informs the system what state­
ments and messages he wants included on his output
listing. The notation used on output listings to iden­
tify cataloged and in-stream procedure statements is
described in the chapter "using cataloged and in­
stream procedures."

By coding the MSGCLASS parameter on his JOB
statement, the user assigns messages and JeL state­
ments to an output class. A default class is assigned
if MSGCLASS is not cod;;;d.

Abnormal-termination dumps.
To obtain an address-space dump in the event of
abnormal termination of a job step, the user codes a
DD statement defining a dump data set. The name
of the DD statement must be either SYSABEND or
SYSUDUMP. If both are present, the last occur­
rence will be used.

The SYSABEND or SYSUDUMP DD statement
can provide a dump displaying the processing pro­
gram's virtual storage area, the system nucleus, the
entire system queue area, all local system queue
areas, and any active link pack area (LPA) modules
for the failing task. Descriptions of dumps and infor­
mation on reading dumps are included in the OS
IV /F4 Guide to Debugging.

To have the dump printed, the user either assigns
the dump to an output class with the SYSOUT
parameter of his DD statement or codes the UNIT
parameter and specifies the printer he wants. To
store the dump, he defines the data set as he would
any other data set, coding DSNAME, DISP, UNIT,
and VOLUME parameters. If the data set should go
to a direct access device, he must code a SPACE
parameter.

If a private data set is specified and more than one
dump is possible, the data set should be specified
with a disposition of MOD, as it will be closed after
each dump.

Output data sets
There are two ways to write output data sets:
• Assign the data set to an output class.
• Specify the device onto which the output should

CONTROL PROGRAM

'g
~; r------i

Interp
)- ,; reter

I ' . .

'SYSOUT det. "t' ... ,J .-:~: ,:~. '..... ,t- ~~,

JES
interface
routine

:, . ~ ~.''''''' .. ' ~'.

, ' jes/REs
"~t . speCe'" '

Remote
terminal

System spool data set

Contents of SYSOUT data set prepared at a job step are actually
written-in to the SYS1 .SYSPOO L by the help of JES spooling
function .

Fia- 2.23 SYSOUT Data set and 'pooli",

be written.
When the user assigns aa data set to an output

class, it is handled by lES. The data set is first writ­
ten to the JES spool volume and then written to the
final output device by either JES or an external
writer. If the user specifies the device in his UNIT
parameter, when the device becomes available, it is
exclusively assigned to his job, under the control of
his program.

Assigning data sets to SYSOUT classes
Output classes contain output with similar charac­
teristics written to the same device. Thirty-six possi­
ble output classes can be coded on either the
SYSOUT or MSGCLASS parameters. The letter and
number names have no inherent meaning - each
installation defines its own output classes. For
example, output class W might contain low priority
output; class X might be reserved for high-volume
output. If the' user wants output data sets and
messages from his job to be printed on the same out­
put listing, he should specify SYSOUT=*, which
implies the same output class in the SYSOUT
parameter as for his MSGCLASS output.

Each installation can designate certain SYSOUT
data sets as reserved. Reserved classes contain data

80

sets which should be held - deferred from JES out­
put processing. If an output class specified by a
MSGCLASS parameter is not designated as
reserved. it will not be held. Data sets can be
explicitly held by coding either the HOLD = YES
JCL parameter or the HOLD parameter on the
ALLOCATE and-FREE TSS commands. (Refer to
the FACOM OS IV IF4 TSS Command Language
Reference Manual, for information on TSS com­
mands.) Jobs can be released from hold state by the
console operator or by a time-sharing user with an
OUTPUT TSS command. By using reserved classes,
holding or releasing desired print data sets is con­
trolled by MSGCLASS parameters on JOB state­
ments. See Fig. 2.23.

Device specification
To write an output data set without using the JES
SYSOUT service, the user should code a UNIT
parameter on his DD statement defining the' device
onto which the data set is to be written. OS IV IF4
will allocate the device exclusively to his job if the
device is available: no other job can write output to
that device until it is released. Jobs cannot share a
non-SYSOUT device assigned via a UNIT
parameter, as they can when output is assigned to

http:Fia:-2.23

SYSOUT classes.
Data management routines write program output

to the device specified in the UNIT parameter.
Specifying particular output devices with UNIT
parameters is not recommended for most OS IV IF4
installations.

Processing SYSOUT classes
JES is a highly efficient facility for writing outputs.
JES supports local and remote printers, punches,
and magnetic tapes as devices onto which output
classes may be written. An external writer supports
tapes and DASDs with installation-defined writer
routines.

Job-related output is neither held nor spun off
nor processed by a user-written writer. A spun-off
data set is made available for output processing
before job termination. Job-related output is
retained until the end of a job, then printed by JES.
All dynamically deallocated SYSOUT data sets are
spun off and, as with held output, are not considered
part of job-related output.

A 0---0-0--{)

sO-O--

C 0--0----0--

zO

00-0--

9 o-c:r--o--

Execution result of job is
recorded in accordance
with the dispatching
priority of job.

Output class processed by the writer

A.S

\ Writer 1

C,A

Writer 2

~ 2,0,9

/ Writer 3

Job queue (output queue)

36 kinds of output classes

One writer can process output classes up to 8 optionally.

Fig. 2.24 Output class and writer

Outputs are printed on a single listing if such
parameters as CLASS, FORMS, FCB, UCS, and
DEST have similar characteristics for these data sets
and a user-written writer is not specified. An
installation may choose to direct all data sets specify­
ing the same output class as the MSGCLASS
parameter to the same listing, even though their

JOB MANAGEMENT

FORMS, UCS, FCB and/or DEST parameters may
differ.

For an external writer, the console operator deter­
mines what data sets are selected. He can direct cer­
tain outputs to the same listing, even though their
FORMS, DEST, UCS, and FeB parameters are not
identical. See Fig. 2.24.

Either an OS IV IF4 external writer or an installa­
tion writer can process output. An external writer
must be started by the console operator, as described
in the F ACOM OS IV IF4 System Programmer's
Guide.

Limiting output records
The number of logical records in a SYSOUT data set
can be limited by specifying the maximum number
of records in an OUTLIM parameter. For example, a
program which is printing may go into an endless
loop. The user can anticipate this problem and limit
the number of records printed before OS IV IF4 dis­
continues output processing.

Requesting multiple copies of a SYSOUT data set
The user can control the number of hard copies pro­
duced from his SYSOUT data sets. As many as 255
copies of an output data set can be requested by a
COPIES parameter on the SYSOUT DO statement
defining the data set or on the JES OUTPUT control
statement.

Requesting forms and print chain control
When requesting that an output data set be printed,
the user can give JES special instructions on how to
print the data set.
• A special output form.
• A special character set, when output is being

printed by an F650D printer with the universal
charactor set (UCS) feature.

• A special image which controls how many lines
per inch .are printed and the length of the form,
when the data set is written to an F650D printer
with the forms control buffer (FeB) feature.

• A specific carriage-control tape, when the data set
is written to a printer without the FCB feature.

Requesting a special output form
Special forms may be requested by including the
form name in the SYSOUT parameter of the '00
statement defining the data set or on the OUTPUT
control statement. For example, the user can assign
a data set to a printed output class and specify that is
be printed on a special form. JES and the external
writer insure that the proper form is mounted.

Requesting a special character set
A universal character set (UeS) feature is requested
by coding the ues parameter on a DO statement
defining an output or SYSOUT data set or by coding
UCS on the OUTPUT control statement for a
SYSOUT data set. The user can request ues

A1

CONTROL PROGRAM

features for different sets of characters to be printed
for various applications.

Chain identifiar
for a F650 D Characteristics of chain/train

Printer

AN Arrengemant A, standard EBCDIC
character set, 48 characters

HN Arrangemant H, EBCDIC character set for
FORTRAN and COBOL, 48 characters
ASC II character set.

PCAN Preferred alphameric character set,
arrangement A

PCHN preferred alphame~ic character set,
arrangement H

PN PUI alphameric character set
aN PUI prefarred alphameric character set

for scientific applications
RN Preferred character set for commarcial

application. of FORTRAN and COBOL
SN Preferred character set for text printing
TN Charecter set for text printing, 120

character.
XN High-speed alphameric character .et for

a printar
YN High-speed preferred alphameric

charactar .at for a printer .
,

FIg. 2.25 Standard chancter seu

To request a special character set for a 'printer, the
user should specify the code identifying the
character set in the UCS parameter or the OUTPUT
statement. Codes of the F ACOM standard character
sets are summarized in Fig. 2.25. Some of these
character sets may not be available at a particular OS
IV /F4 installation. In addition, an installation can
design character sets to meet special needs and
assign unique codes to them. Hence, the user should
consult his system programming staff for a complete
list of available character sets for his installation.

The image of a character set must be stored in the
system image library (SYS 1.IMAGELIB) prior to
its usage on a UCS-equipped printer. Each installa­
tion defines standard images corresponding to
some/all print trains defmed in Fig. 2.25 and stores
them in SYS l.IMAGELIB, so that individual users
need be concerned only with non-standard images
and print trains.

If the user wishes to print all letters of a particular
alphabet in upper case, he can specify the FOLD
option on corresponding SYSOUT statements; this
option maps lower-case characters onto their upper­
case counterparts, in order to speed up printing and
reduce the need for changing printer trains.

The user can furnish a VERIFY parameter with
his SYSOUT statements, which requests lES to dis­
play the character set mounted on the line printer
just prior to printing his data sets. This enables the
operator to verify that the print train and UCS image
currently in place are correct for these data sets.

82

Requesting a forms control buffer
The F650D printer has a forms control buffer (FCB)
which controls line feeding and skipping according
to an image previously stored in the printer control
unit. Each installation can create as many FCB
images as it needs, which are stored in
SYS l.IMAGELIB just like the UCS images. Stand­
ard FCB images are as follows:
• STDI printing 6 lines/inch on forms which are

8.5 inches long; and
• STD2 printing 6 lines/inch on forms which are 11

inches long.
To select a particular image, the user codes the

corresponding FCB identifier on his SYSOUT DO
statement.

The user can request either or both of two
verification options with his FCB parameter:
• Verify that the correct FCB image has been loaded

by OS IV/F4.
• Verify that the forms are correctly positioned

within the printer vis a vis the initial status of the
FCB image.

Controlling JES writers
While a writer is printing or punching, the console
operator can issue WRITER commands to control
these activities. Hence, these commands cannot be
issued by the programmer. The operator can request
forward feeding of forms, logical backspacing of
printing (lES rereads part/all of a SYSOUT data
set), temporary suspension of output, repetition of
an output, etc.
• Page feeding: with an FSP option on a WRITER

command, the operator skips printing forward a
specified number of logical pages; he can delete all
remaining output for this data set if necessary.

• Logical backspacing: with a BSP option, the opera­
tor can repeat all/part of a SYSOUT data set, or
even the entire job output.

• Modifying line spacing: with an LSP option, the
operator can change spacing from the current
value (single, double, or triple spacing) to any
other of these three options. Alternatively, the
operator can cancel default spacing and let pre­
programmed values in the SYSOUT stream con­
trol this printer.

• Temporarily suspending output: with a HOLD
option, the operator can temporarily suspend out­
put from a job, which is then entered onto the
hold queue for this lES writer. No output data are
lost by suspending printing/punching in this way.
The writer selects another job output ready for
processing and commences processing at once.

• Repeating an output: with a REPEAT option, the
operator can request additional copies of a particu­
lar data set or of the entire job output.

Modifying operations of a JES writer
Using a MODIFY command, the operator can exer­
cise the following control over a writer:

• By specifying CLASS-a,b,c, ... the operator re­
designates which SYSOUT classes are to be pro­
cessed and their priority order.

• By specifying PAUSE,., FORMS, the operator
requests a pause so that he can change output
forms.

• By specifying PAUSE,.,DATASET, the operator
requests the output device be stopped briefly after
each data set has been processed by the writer.

2.7.2 Special SYSOUT Controls

The programmer can exert special controls over
selected SYSOUT data sets, such as directing them
to a hold queue, suppressing them altogether, pro­
viding his own writer, and routing them to specific
destinations.

Delayed writing of SYSOUT data sets
Data sets can be delayed from normal printing - or
delayed for inspection from a time-sharing terminal
prior to actually printing on that terminal - if the
user specifies reserved classes or codes a HOLD
parameter. For example, an installation can delay
printing a very large data set to prevent monopo­
lizing a SYSOUT device until smaller data sets have
been written. If a data set requires special forms that
are not immediately available, it can be held until
the console operator has retrieved and mounted
those forms. When HOLD=YES is specified on a
DD statement, the data set is placed on a hold queue
until the operator releases it. The user should notify
the operator (using the NOTIFY parameter for TSS
or the MESSAGE statement for lES) when his data
set is ready for processing, because no message will
be sent to the operator. The data set can be released
by the operator or time-sharing user.

Suppressing SYSOUT data sets
By coding a special SYSOUT or UNIT parameter,
the user can suppress writing of a data set by de­
fining it as a dummy data set. This is useful when
testing a program; the user may not want data sets
printed until he is sure they contain meaningful out­
put. Suppressing a data set saves processing time.

When furnishing a SYSOUT parameter, the user
should also code a DUMMY parameter to define a
dummy data set. When DUMMY is coded, the
SYSOUT parameter is ignored and the data set is not
written.

The user can also suppress an output data set by
specifying a particular installation-defined class
which has been defined to delete data sets. This
technique can be used by an installation to suppress
the output from started. tasks such as those initiated
by START and MOUNT commands.

If a device to which the data sets will be written is
specified by a UNIT parameter, the user can assign
the data sets dummy status by coding DUMMY or

JOB MANAGEMENT

by assigning a data set name of "NULLFILE."
Parameters other than DUMMY, DSNAME =
NULLFILE, and/or DeB are ignored; no units are
assigned to these data sets. When the program
requests that a dummy data set be "written," the
request is recognized but no data is transmitted.
Dummy data sets are available for access by the
basic sequential access method (BSAM) or queued
sequential access method (QSAM).

If any other access method is used, OS IV /F4 con­
siders this to be erroneous and terminates the job
abnormally.

Private writers
Instead of (or in addition to) a standard OS IV IF4
lES writer, an installation can furnish one or more
private writers. They must be installed in the system
link library (SYS1.LINKLIB) prior to usage. The
user requests a private writer by naming it in the
SYSOUT parameter of corresponding DD state­
ments.

Routing job outputs
The default destination for each job output is its
point of submission: a local printer/punch, if the job
was submitted through a local JES reader; a remote
print/punch, if the job was submitted via RES
through a corresponding reader. However, the user
can request that selected data sets be routed to
different local/remote destinations by furnishing
DEST parameters on corresponding, DD statements.
In addition, the console operator can issue ROUTE
commands to direct outputs to local or remote
devices.

Bypassing writers
As noted earlier, a user can omit standard or private
writers altogether by specifying a UNIT parameter
for a data set, omitting the SYSOUT parameter from
the corresponding DD statement. This practice is
not generally recommended, since it requires the
requested device to be available at the (unpredicta­
ble) time when the job is executed; it bypasses the
efficient device-queuing approach of the lES wri­
ters. Also, the job can execute only as fast as limiting
110 devices, which are quite likely to be printers and
punches if the user writes output directly to them.

2.7.3 Demand Output

Most as IV /F4 job requests are handled on a closed
shop basis, where 1I0-control staff received and
submit jobs to the system, also managing all output
devices and returning printed/punched outputs to
the user somewhat after they have been generated.
The demand output facility of as IV /F4 permits
users to operate output devices themselves or to
request outputs on demand from the SYSOUT
queues within JES.

CONTROL PROGRAM

Specifying demand outputs
To receive his job output, the user need furnish only
a specialized command statement, needing no other
JCL or command statements. He must have indi­
cated with a /.OUTPUT JES statement that output
is to be directed to the demand output class rather
than a normal SYSOUT class.

Demand outputs are held on spool volumes until
requested by users, who submit special-format iden­
tification cards into a demand reader, a special-pur­
pose card reader not also serving as a JES reader. As
each identification card is received by JES, it
immediately releases all outputs being held for this
user to a printer/card punch designated for demand
outputs. As soon as these output devices complete
any current tasks, they commence processing these
just-requested outputs.

Temporary dumping of demand output
If many users at an installation create demand out­
puts, it is possible for the aggregate size of these out­
puts to saturate the spool volumes. Since this can be
troublesome to system operations, the console
operator can issue a command to temporaril~ dump
demand outputs to task or disk. These output~ can
be printed/punched by standard utility programs at
the operator's convenience.

Requesting demand output
The objectives of a demand output facility are to
minimize the workload of the I/O-control staff at an
OS IV /F4 installation and hence to maximize the
simplicity and speed with which users can retrieve
their own outputs from the OS IV /F4 output queue.
To facilitate this, it is usually desirable to designate
one or more card readers as demand readers; these
should be located external to the principal computer
room, convenient to the users' work area. Likewise,
one or more printers (and possibly card punches)
should be in this same area, dedicated to demand
outputs. If possible, a display console should also be
available to users, so that they can inquire about and
request their jobs without assistance from the
installation's staff; this approach characterizes an
open shop.

2.7.4 Writer Procedure.

Each lES writer is started by a writer procedure pre­
viously cataloged into the system PROCLIB:
WTR Standard procedure utilizing card punches

and line printers
WTRT Procedure utilizing magnetic tape for out­

put.

84

2.8 CHECKPOINT/RESTART

The OS IV /F4 checkpoint/restart facility permits
reexecution or resumption of a job which was
either abnormally terminated due to an internal
program or data error or interrupted by a system
hardware/software failure. Additional details on
using checkpoint/restart may be found in the
FACOM OS IV/F4 Checkpoint User's Guide.

2.8.1 Overview

Checkpoint
Execution of ajob, may terminate abnormally due to
an unrecoverable hardware error, operator error,
logical error in the program, or erroneous input data.
If the job is short, it is simplest and least
troublesome for the user to resubmit his job.
However, if the job is long-running, the user may
wish to take precautionary measures to avoid losing
substantial processing time if his job is prematurely
terminated. Also, the user may wish to avoid the
effort and turnaround delay of resubmitting his job.
Such precautionary measures are defined to
OS IV /F4 as checkpoints, where the user copies
important program and data-set status data to a tape
or disk file. "Checkpoints" refer both to procedures
for copying this data and also to the records contain­
ing this status data.

Checkpoints can be taken within or between job
steps. The following sections defme how to restart
jobs under various conditions and user-selected
options.

Restart function
A restart is an attempt by a user or console operator
to reprocess or resume a partially processed job. If
from the beginning of a job step, the attempt is
called a step restart; if from a checkpoint within a
step, it is called a- checkpoint restart. In either case,
restarts can be designated by the user - at the time
he initially submits his job - as automatic (requir­
ing no user intervention) or deferred (requiring the
user to explicitly request resumption by submitting a
special job).

Restart options
Checkpoint and restart facilities furnished by
OS IV /F4 are closely related; the user can elect any
of the following four options when he initially sub­
mits a longrunning job that requires checkpointing:
• automatic step restart (ASR)
• automatic checkpoint restart (ACR)
• deferred step restart (DSR)
• deferred checkpoint restart (DCR)

These are summarized in Table 2.3.

JOB MANAGEMENT

Table 2.3 Checkpoint and restart

~ of restart

Type of Restart method Restart point
restart

Automatic step restart Beginning of job step which ended

(ASRI System schedules restart ebnormally.

Automatic checkpoint restart
automatically when job step

From last checkpoint in job step
(ACR)

ends abnormally
which ended ebnormally.

Deferred step restart Beginning of any step in the job
(DSR) User must submit a restart
Deferred checkpoint restart job
(OCR)

2.8.2 Checkpoint/Restart Processing

This section describes how jobs are restarted under
the four options defined in Section 2.8.1.

Automatic restart
If a job specifying ASR or ACR is interrupted for
any reason, t is automatically requeued lor execu­
tion by JES

Automatic checkpoint/restart (ACR)
OS IV /F4 will utilize the last checkpoint of the job
step that terminated abnormally to determine where
and how to resume processing (middle of job step).

Automatic step restart (ASR)
OS IV /F4 will restart the job step which was inter­
rupted from its beginning.

Conditions required for automatic restart
When a step ends abnormally, its return code (if
any) must match the range of restart return codes
allowed by the installation. Also, the user must have
furnished a RD parameter in his original JOB state­
ment specifying automatic restart. Finally, the
operator must authorize restart of each interrupted
job.

Operator actions
As OS IV /P4 resumes processing a checkpointed
job, it issues a message to the console operator ask­
ing if the job should be restarted. This confirmation
prevents an erroneous job from failing, resuming,
and failing again in an endless cycle.

Also, if it is inconvenient to restart the job, the
operator can defer it until later, since he has three
options for each job requesting automatic restart:

YES Restart at once
NO Terminate the job abnormally
HOLD Postpone restarting the job

Postponing automatic restart
When the restart, the job is reentered onto the
OS IV /P4 hold queue. Later, the operator releases

From any checkpoint within eny
step of the job.

this job with a RELEASE command, just as if it had
been entered with TYPRUN-HOLD on its JOB
statement.

Deferred restart
If the user wishes to explicitly review and resume a
job if it should fail to execute properly, he specifies
"deferred restart" on his initial JOB statement. If
the job fails, he can elect to delete it from the
OS IV /P4 hold queue or to restart it with a
specialized job bearing a RESTART parameter on its
JOB statement.

Deferred checkpoint restart
The user can request restart from any checkpoint
within any job step; he designates these two values
with his RESTART parameter.

I>eferred step restart
The user can request restart from the beginning of
any step in the interrupted job.

Data sets during check point/restart
During restart from the middle of a step, OS IV /P4
automatically repositions any tape or disk data sets
- tapes are spaced forward the correct numbers of
files and blocks; disk SEEK addresses are
appropriately set. Unit-record and paper-tape
devices are not positioned by OS IV /P4, and the user
must make his own provisions for reprocessing
them.

Restart cannot reconstruct the original contents of
DASD data sets which are updated in place. Hence,
corresponding jobs can be restarted only if updating
can be accurately resumed from the point of inter­
ruption.

2,8.3 Taking Checkpoints

To take a mid-step checkpoint, the user must write
an assembler-language CHKPT macro instruction.
Hence, it is quite cumbersome to take mid-step
checkpoints in such higher level languages as Cobol

CONTROL PROGRAM

and PL/I. The user must also define which data set
(on tape or DASD) is to receive checkpoint rec­
ords.

CHKPT macro instruction
This macro instruction indicates which status data
should be written into the checkpoint record and
whether automatic restart is permitted. If a job uses
two or more checkpoint data sets, the CHKPT
macro instruction indicates which is to be used; it
also gives each checkpoint record a checkpoint iden­
tifier.

Checkpointed data
The primary information needed to restart a job
mid-step is an image of its virtual storage area,
attributes of its data sets and corresponding DO
statements, and various control-program
parameters.

Checkpoint identlfler
To each checkpoint corresponds a unique identifier;
either OS IV IF :· or the user can assign checkpoint
identifiers. As each checkpoint record is written by
OS IV IF4, its identifier is displayed on the operator
console. During a deferred checkpoint resuJt, the
user can designate which checkpoint is to be used by
its identifier.

Table 2.4 Restrictiolll on cehckpoint data seta

~ Volume
CASC Magnetic tape

Attribute

Number of
1 >1

volumes

Data set Sequential or Sequential
organizetion pertitioned

Record format Underlined Underfined
length length
(U formatl (U format)

Block Min. 600 600
length
(bytes) Max. Track length 32,760

Other restrictions Secondary The follOWing
space formats are
allocations not 'permitted :
allowed -9-track or

7-track
- Standard or

non-standard
label, or no
labels

Checkpoint data set
Checkpoints may be written onto tape or disk, as
indicated in Table 2.4. Additional records can be
written into the same data set for other purposes. If
the data set is partitioned, each checkpoint record

86

becomes a separate member. If the data set is
sequential, multiple checkpoint records can be writ­
ten, possibly interspersed with other data.

Multiple checkpoint data sets
Within a job step, the user can define one or more
checkpoint data sets. His CHKPT macro instructions
indicate which data sets are to be used. Even if one
data set becomes unreadable, the user can optionally
use an alternate copy if he has created it. Identifica­
tion of each checkpoint is displayed to the operator
when it is written: job name, DO name associated
with this checkpoint, device name, volume serial
number, and the checkpoint identifier.

2.8.4 JCL statementl for Reltartlng a Job

When a job requiring checkpoints is initially submit­
ted, its JCL statements must contain an appropriate
restart definition (RO) parameter. If the job must
be restarted, the user furnishes an appropriate
RESTART parameter for a deferred checkpoint
restart, plus a DO statement whose name is
"SYSCHK. "

Restart definition
The RD parameter can be furnished on a JOB or
EXEC statement, the former value overriding if RD
is furnished on both. RD indicates whether automat­
ic restart should be attempted andlor whether
checkpoint records should be written initially by the
executing program:
RD=R Take checkpoints and allow automat-

ic restart
RD=NR
RO=NC
RD=RNC

Take checkpoints for deferred restart
No checkpoints or restarts
No checkpoints, but automatic step
restart is permitted.

These options are summarized in Table 2.5.

Table 2.S RD parameter

If CHKPT macro instructions No CHKPT

are issued macro
instructions
are issued

Checkpoints Automatic Automatic
RD- written? Checkpoint step

restart? restart?

R YES YES YES

NR YES NO NO

NC NO NO NO

RNC NO NO YES

RESTART parameter
If a user restarts a job on a deferred basis, he must
furnish a RESTART parameter on his JOB state-

ment. If restarting at the beginning of a step, its
name is his RESTART value. If restarting in the
middle of a step, the user must also furnish the
checkpoint identifier.

SYSCHK DD statement
For a deferred checkpoint restart, the user must fur­
nish a SYSCHK DO statement naming the data set
containing the desired checkpoint. For automatic
checkpoint restart, the SYSCHK statement is
unnecessary since as IV IF4 records which data set
contains the last-written checkpoint record.

2.9 SYSTEM MANAGEMENT
FACILITIES (SMF)

SMF has two primary functions: to collect and
record nontrivial events from system start-up to
system shut-down, and to permit each installation to
set its own limitations on resources used by jobs and
job steps. Data collected by SMF, routines -
whether furnished in as IV/F4 or by the'user - are
caUed SMF data; corresponding routines for captur­
ing these data are called SMF exit routines. Each
installation can capture and process SMF data to
meet its particular needs for resource management
and usage accounting. Additional details on SMF are
contained in the FACOM OS IV IF4 System Pro­
grammer's Guide and the FACOM OS IV IF4 SMF
Implementation Guide.

2.9.1 Collecting SMFData

Standard OS IV IF4 routines capture and record SMF
data, independent of one another but in a uniform
format. Each SMF record type is specialized as to
function and point of creation, although SMF
records fall into four broad categories:
• per-job usage of resources, which facilitates

accounting and monitoring of individual users
• data set usage
• volume usage
• usage of mainframe resources, and incidence of

system-wide events.

While generating an OS IV IF4 system, an installa­
tion specifies which types of SMF records are to be
collected during routine system operations; the con­
sole operator can elect more or fewer SMF types to
be collected when reloading OS IV IF4.

Each SMF record contains a header field con­
taining the following information:
• record type (two-digit number>
• capture time (date, hours, minutes, and fractional

seconds)
• system identifier

JOB MANAGEMENT

• system model identifier
• job name
• associated lES-Reader time and date.

Accounting records
Accounting records are records which show the
user's name, utilized system resources, and end
status of a job or job step, upon completion of each
job or job step. Accounting records are of three
types:
• Type-4 End-of-step SMF records
• Type-5 End-of-job SMF records
• Type-6 Output writer SMF records

Table 2.6 shows when each of the above records is
collected and its contents.

Table 2.6 Accounting records

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•

Type 4 (End of step)

SMF record header
Step name
Step sequence number
Program name
Date and time of step start
Date and time of step end
Step priority
Step termination indicators
Step CPU tima
Siza of virtual memory used
list of I/O devices utilized
EXCP count for each device
Number of page·ins for step
Number of page·outs for step
Step completion code·

Type 5 (End of job)

8M F record header
Date and time that the reader processad the job

5tatement
Date and time of job start
Date and time of job end
Number of steps in job
Job class
Job priority
Program name
Number of accounting fields specified in JOB
statement
Job CPU time
Output class
Job termination indicator
Job completion code··

Type 6 (End of 8YSOUT class processing)

SMF record header
Date and time of SYSOUT start
SYSOUT class
Number of logical records processad by writer
Form number

At normel termination, this field contain§ uhe
return code. In the case of ebnormal termination.
tha code may be either the system ABEND or
user ABEND code.

Completion code of the last step of this job will
be shown here.

CONTROL PROGRAM

Table 2.7 Data set activity recorda

Type 14 (End of INPUT or ROBACK (-1) date
set processing)

"'. SM F record heeder

• Creation date
• . Expiration dete

• Devica type

• Number of volumes
• Volume serial numbers
• Pertinent portions of system control blocks

• Record format
• Record length
• EXCP count

Type 15 (End of OUTPUT, UPDAT, INOUT, or
OUTIN (*1) data sat processing)

• Same as record type 14

Type 17 (When user data set is scratched)

• SM F record header

• Data set name

• Number of volumes

• Volume serial numbers

Type 18 JWhen data lat il renamed) _._-
• SMF record heeder

• Old data lit neme

• New dete set name ,
• Number of volumes

• Volume serial numbers
,

Type 62 (At opening of VSAM component or ..
clustar)

• SMF record header .
• VSAM catalog neme

• Volume serial number containing the catalog

• VSAM component or clust.r name

• Number of online volumes containing the
component or cluster

• Volume sarial number

• Devica type

Type 64 (Whan a VSAM component is closed. (-2)
or another volume is switched to, or no more
spaca available)

• SM F record header

• State indicator (close, volume switch. or no spaca
availabla)

• Indicator of component baing processed (data or
index component)

• VSAM catalog name

• VSAM componant name

• Current RBA (Ralative byte address)

• Volume serial number

• Devica type

• Channel and unit

• DASD cylinder and track address

• Number of records updated

• Number of records retrieved

• Number of records deleted

• Number of unused control intervals

• Number of sPl.it control intervals

• Number of split control areas

• EXCP count

Type 68 (When VSAM catalog entry is renamed
(*3))

• SM F record header

• VSAM catalog name

• Old entry name

• New entry neme

88

(-1): These are data sets residing on a magnetic tape
volume or direct acc:ess volume.

(-2) : If e dUlter is closed, one record il written for
each component in the cluster.

(-3) : A record is written for each VSAM cluster.
component. data .et, or catalog entry name
change.

Data set activity Records
Data set activity records are written when data sets
are closed, scratched, or renamed, and when VSAM
components are opened, closed or renamed.
• Type 14 INPUT or ROBACK data set activity

record
• Type 15 OUTPUT, UPDAT, INOUT, or

• Type 17
OUTIN data set activity record
Scratch data set status record
Renamed data set status record
VSAM component opened status

• Type 18
• Type 62

record
• Type 64 VSAM component closed status

record
• Type 68 Renamed VSAM entry record

Table 2.7 shows when each of the above records is
collected and its contents.

Volume records
Volume records describe the space available on
direct access volumes, error statistics on magnetic
tape volumes, and data spaces in a VSAM catalog .
Volume records are of three types:
• Type 19 Direct access volume record
• Type 21 Error statistics for tape volume record
• Type 69 VSAM data space record

Table 2.8 shows when each of the above records is
collected and its contents.

Table 2.8 Volume records

Type 19 (When volume on a DASD is dismounted, or
when HALT or SWITCH command is
processed)

• SMF record header·

• Device type and address

• Volume serial number

• Owner identification of direct access volume

• VTOC address

• Number of DSCBs

• Number of unused alternate tracks

• Number of unallocated cvlinders and tracks

• Number of cylinders and tracks in the largest frH
extent

• Number of unallocated extents

Type 21 (When data let on magnatic tape is closed
or EOV processed)

• SMF record header·

• Device type and address

• Volume serial number

• Number of SIOs (Start i/O)

• Number of recoverable read errors

• Number of recoverable write errors

• Number of unrecoverable read errors

• Number of noise blocks

• Tape density

Type S9 (When defining, extending, or deleting
VSAM data space)

• SM F record header
• Device type and address
• VSAM catalog neme
• Volume serial number
• Number of unallocated cylinders and tracks
• Number of unused extents
• Number of cylinders and tracks in tha largest

contiguous unallocated araa on the volume

• SMF record header does not include data
ralatad to the job.

System Usage Records
System usage records describe the overall system
operation statistics. These records are of the seven
types listed below.
• Type 0 IPL record
• Type 1 System statistics record
• Type 8 I/O device configuration record
• Type 9 V ARY ONLINE record
• Type 10 Allocation successful record
• Type 11 VARY OFFLINE record
• Type 12 End of run record

Table 2.9 shows when each of the above records is
collected and its contents.

Table 2.9 System usage records

Type 0 (During system initialization after IPL)

• SM F record header(* 1)

• Size of real storage area

• Size of virtual storage area

• SMF Options in effect'· 2)

Type 1 (At IPL and at termination of first job
step following interval of elapsed
time(*3)

• SMF record header (* 1)

• CPU waiting time

• Total page·ins for the entire system during
interval

• Total page~uts for the entire system during
interval

Type 8 (During system initialization after IP LI

• SM F record header(" 1)

• Class, type, and address of each online I/O
device

Type 9 (Upon execution of VARY ONLINE
command)

• SMF record header("1)
• Identificaton of each device addad to the system

configuration

Type 10 (After a device is added to the
configuration)

• SMF record header
• Identification of 110 devices which have become

available

JOB MANAGEMENT

Type 11 (After execution of VARY OFFLINE
command)

• SMF record header(" 1)

• Identification of 110 devices removed from the
system configuration

Type 12 (When HALT or SWITCH command is
executed)

• Same as record type 1 (* 4)

(* 1): SM Frecord header does not include data
related to the job.

'" 2): SMF options includa the following types of
deta:
• Upper limit of the Job's continuous

waiting time.
• Designation of SMF date set.
• Designation for selaction of SMF data

records.
• Presence/absence of SMF exit request.

(0 3): The system statistics record is written at
10-minute intervals. After SMF initialization,
the record contains statistics accumulated
during the IPL process.

(0 4): This record contains statistics accumulatad
during the interval between the last Type 1

record written and exacution of HALT or
SWITCH command.

SMF data sets
Two SMF data sets exist at all times on permanently­
resident volumes of an OS IV /F4 installation:
SYSI.MANX and SYSl.MANY. The data sets need
not be on the same volume, but they must have the
same device type. When one of the data sets is filled
during system operation, OS IV IF4 notifies the con­
sole operator that it is automatically switching to the
other SMF data set. Hence, OS IV IF4 alternates bet­
ween SYS1.MANX and SYSl.MANY. When the
operator learns that one of these data sets is full, he
should soon schedule a special batch job to dump it
to an ordinary sequential data set on DASD or mag­
netic tape. The special OS IV/F4 utility used for
dumping SMF data also resets the dumped extent to
"available" status, so that the SMF routines can
write again to it when the alternate data set becomes
filled.

2.9.2 SMF Exit Routines

During system generation, each OS IV /F4 installa­
tion can furnish as many SMF exit routines as it
wishes, using SMF exit linkages defined in the
FACOM OS IV IF4 SMF Implementation Guide.
These routines become part of the OS IV IF4 control
program for that installation; hence, they should be
thoroughly tested before production usage. These
routines can complement standard OS IV /F4
facilities for tasks such as the following:
• Validate JCL statements, testing parameters for

accuracy, assigning/verifying job classes and

CONTROL PROGRAM

priorities, and assigning default values for omitted
JCL parameters.

• Modify maximum elapsed time or maximum CPU
time allowed for each job step.

• Increase SYSOUT limits during step execution.
• Halt writing of certain SMF records.
• Write supplemental SMF records, as designated

by each installation.
• Interrupt execution of a job or job step.
• Write installation-dependent console messages.
• Calculate and record SYSIN totals per job.
• Calculate and record SYSOUT totals per job.
• Calculate and record turnaround times.

To write supplemental SMF records, an installation
should use SMFWTM macro instructions, using
record types in the range 128-255.

SMF job management exits
The following nine exit points are available:
• input-stream validation.
• job start.
• JCL validation.
• job-step start.
• SYSOUT limit exceeded.
• CPU time limit exceeded.
• SMF-record validation.
• job end (execution completed) .

Table 2.10 Characteristics ot SMF exit points

Exit point When SM F receives control

JOB stetement Reader raceives JOB statement
validation

Job start Initiator has selected next job

JCL validation 1. Prior to interpreting each JCL
statement

• job purge (SYSOUT processing completed).

Table 2.10 shows schematically where these exits are
located within OS IV IF4 Job Management.

Standard SMF exit parameters
Each SMF exit routine receives the following
parameters when OS IV IF4 passes control to it:
• job name.
• date and time of job entry.
• system identification.
• intra-job communication field.
• inter-job communication field.
• step sequence number.
• SMF option flags.
• job priority.
• job class.
• number of SYSOUT records.

The intra- and inter-job communication fields are
used to pass information among SMF exit routines;
the intra-job field is initialized at the start of each
job, while the inter-job field can be used to com­
municate parameters between successive jobs pro­
cessed by this initiator.

Table 2.10 summarizes these nine SMF exit
points.

Passed parameters in addition to standard
SMF exit parameters

Image of JOB statement

Programmer name, priority, and JOB-
statement accounting parameter

Images of JCL statements

2. After all JCL statements have been
interpreted

Job step start Curing step initiation, just prior to Step name. programmer name. and
I/O device allocetion EX EC statement accounting

parameter

SYSOUT limit From I/O supervisor if SYSOUT is
exceeded exceeded

Time limit 1. CP.U limit for job exceeded Time-limit code
exceeded 2. CPU limit for step exceeded

3. Uninterrupted WAIT limit
exceeded

SMF·record Just prior to transcribing block of SMF Block of SMF records
validation/chenge records to CASO

Job step end End of step Programmer name, step return code, step
CPU time, EXEC statement accounting
perameter, and the Type4 SMF record

Job end End of job Programmer name, job return code, job
CPU t ime, JOB~tatement accounting
parameter, and Type-5 SMF record

Job purge After JES has transcribed all SYSOUT Programmer name, job CPU time. and
for job, just prior to deleting job from JOB~tatement accounting paremeter.
JES tables

90

SMF exit points during job processing
Table 2.10 summarizes SMF exit points available
during job processing. Each installation can furnish
its special processing routines at some/all of these
points.

JOB statement validation exit
Whenever the JOB statement of a new job is read,
JES yields control to this SMF exit routine (if fur­
nished), which decides whether to accept the job. If
accepted, JES enters the job onto its input queue;
otherwise, the job is discarded, and the JES reader
skips forward to the next JOB statement.

Job start exit
Whenever an as IV/F4 job initiator selects ajob for
processing, it first yields control to this SMF exit
routine, which either confirms the job's eligibility
for processing or deletes it.

JCL validation exit
As the initiator retrieves each JCL statement from
the spool data set, it yields control to fthis SMF exit
routine, which validates its syntax, checks installa­
tion-dependent parameter values, and . deletes the
job if it fails to conform to certain limits. After the
routine returns control to the initiator, the JCL
statement is interpreted as usual.

Job step start exit
As each step is initiated, control passes to this SMF
exit routine, which decides whether to execute or
delete this step.

SYSOUT limit exceeded exit
If the default (or user-furnished) SYSOUT limit is
exceeded, control passes to this SMF exit routine,
which decides whether execution should continue or
be terminated abnormally.

Time limit exceeded exit
According to which limit is exceeded, the SMF exit
routine decides whether execution should continue
or be terminated abnormally.

SMF-record validation/change exit
Whenever the standard SMF-output routine is ready
to write a block into the current SMF data set, it
yields control to this exit routine which validates
and/or changes the SMF records according to special
needs of the installation.

Job step end exit
At the end of each job step, the as IV /F4 step ter­
minator yields control to this SMF exit routine prior
to writing the standard Type-4 SMF record. The
routine decides whether this record should be writ­
ten and whether execution should continue.

JOB MANAGEMENT

Job end
At the end of a job, the OS IV IF4 job terminator
yields control to this SMF exit routine, which
decides whether the corresponding Type-5 SMF
record should be captured.

Job purge
After all SYSOUT classes have been processed for a
job, JES yields control to this SMF exit routine,
which compiles and writes any appropriate ac­
counting information. Immediately after the routine
returns control to JES, this job is purged from the
system - aU of its control blocks and data records
deleted.

2.10 MULTIPLE CONSOLE SUPPORT
(MCS)

as IV /F4 furnishes support of multiple operator
consoles. This multiple console support (MCS) pro­
vides the following facilities:
• Backup console service

When one console fails, the operator can specify
an alternate console to process messages destine.d
for the original console. In this case, route codes
of the two consoles are not merged, and the alter­
nate console receives only messages with its route
codes. However, if the alternate console is the
only active OS IV /F4 console remaining on that
processor, it receives all messages.

• Operator action messages
For MCS consoles configured in conversational
mode or in roll deleteable mode, action, mes­
sages remain on each screen until deleted by the
program issuing them or manually by the console
operator. If an MCS console was defined as an
output-only console, its messages can be deleted
from the ' screen by entering a system command
from an associated MCS console.

• Screen-oriented displays on CRT consoles
At system generation, each MCS CRT console
screen can be divided into multiple screen areas
for receiving displays in out-of-line or non­
message screen areas. To make decisions such as
"operator action" MCS consoles can also' be
designated as "output-only."

• Authority levels
Each MCS console may be assigned authority
levels to restrict which commands it will display.
The MCS master console on each processor must
be enabled for all system commands.

• Log facilities
Each installation can furnish a hardcopy device for
logging, or it can log messages into system log
facilities on DASD.

Up to 32 consoles can be operated on each
OS IV /F4 system. The main console is the primary

CONTROL PROGRAM

one for operator-OS IV IF4 dialogue; all others are
considered to be auxlllary consoles, used to manage
specialized functions such as reel mounting, pack
mounting, printer forms and train changes, etc.

2.10.1 Operator Commands and Mellag.s

Operator commands (or simply, commands) are
entered by operators through MCS consoles; opera­
tor messages (simply, messages) are displayed on
one or more consoles by as IV IF4 or executing pro­
grams. Most commands can also be entered by
operators or users on punched cards through JES
readers.

2.10.2 Display Consoles

An OS IV IF4 alphanumeric display console com­
prises a display screen, keyboard and, optionally, a
selector pen (SP) and program function keys
(PFKs). The screen can display 24 lines of 80
characters, as shown in Fig. 2.26 .

Table 2.11 Operator commands

Verb

CANCEL.

CONTROL.
DISPL.AY
DUMP

HAL.T
HOL.D

L.OG

MODIFY

MONITOR
MSGRT
MOUNT

REL.EASE
REPL.Y
RESET

SET

START

STOP

STOPMN
SWAP

SWITCH
UNL.OAD

VARY

WRITEL.OG

Function

Delete indic:ated job from system queues
and/or execution
Define functions for a display Console
Display current system status
Dump virtual image of indic:ated job onto
SYS1.DUMP
Halt all OS IV /F4 activities
Hold specified Job in queue, or specified
job clalS
Write specified text into SYSL.OG data
set
Alter/halt proeassing of an initiator or
output class
Display system status continuously
Define statuI display area for a console
Notify OS IV /F4 that a volume has bee ...
mounted
Release 8 held Job (or class of Jobs)
Reply to computer·issued message
Reset attributes of a jOb class, output
class, or job priority to the OS IV /F4
default values
Set one or more basic OS IV /F4
parameters
Start a system task, JES reader, JES
writer, etc.
Stop the indic:ated system task, JES
reader, etc.
Stop MONITOR functions
Permit swapping a volume to a different
drive
&Nitch SMF data sets
Notify OS IV/F4 to permit unloading
of a volume
L.ogic:ally connect/disconnect 8 CPU,
memory module, channel, or device
from OS IV /F4
Move contents of SYSL.OG data set to
JES writer

Format of display screen (Fig. 2.26)
• Message output area

This area contains operator messages, commands,
responses to commands, etc. in their sequence of
entry. Each line is prefixed by a symbol indicating
its origin, as shown in Table 2.12.

Table 2.12 Message prefixes

Prefix Signific:ance

System message requiring operator
action

CJI User·program message requiring
operator action

+

Informationel message from
OS IV/F4
Information message from user
program
Message which has alreedy been
acknowledged

• Program function key display
This area is discussed below under "Entering
Commands. "

• Designation line
This line displays as IV IF4 status information
about this console.

• Input area
This area displays commands or responses
recently entered by the operator

• Alarm line
This line displays alarm messages about display
console errors.

PFK No. display line

Designation line

Input area (2 lines)

Alarm line

ON/OFF switch with
screen density control

r-" ~,"",,"""""r--'" ~ r-"r--'l.r-'\

r-"\ ~,---.,.,--...,--.,. r-'\~ r-'\~

~ ,--..,---v---'\~~ "" ~r-'\~

r-" r-'\~~ r--'\r-'\ r--""\,......y--"\

~

PFK keyboard
Typewriter keyboard

,Write pen

Fig. 2.26 Console display unit and standard (ormat o(its screen

Entering commands
In addition to keying in commands with the
typewriter keyboard, the console operator can utilize
the SP and/or PFKs .
• With PFKs

Up to 12 PFKs can be used with an OS IV /F4
system, each corresponding to one or more com­
mands. Each depression of a PFK enters a com­
mand in either conversational or non-conversa­
tional mode. In conversational mode, each com­
mand is displayed on a separate line corresponding
to the particular PFK. In non-conversational
mode, all PFK-entered commands are displayed in
a single input area .

• With SP
Instead of pressing a PFK, the operator can point
to a PFK number displayed on the screen with the
selector pen, which is sensed by the display screen
and accepted as equivalent to depressing this key.

Status displays
OS IV IF4 provides the following information when
requested by a DISPLAY or MONIT0R command:
• status of I/O devices.
• status of jobs or system tasks.
• job queue status.
• consoles status.
• currently-executing jobs and system tasks.
• job name and its starting and ending times.
• allocations of data sets to DASD volumes.
• unallocated DASD space.

Defining the status display area
With a CONTROL command, the operator can
define several display areas within the overall
message output area, each to contain specific status
information from the above list according to subse­
quent MSGRT commands. If multiple areas are not
requested, all messages will be displayed con­
secutively. Table 2.13 shows how two status display
areas may be defined.

Dynamic versus static displays
A static display is presented only when requested
by the operator, a dynamic display is periodically
updated by OS IV IF4, as requested by a MONITOR
command. A STOPMN command halts dynamic dis­
play of console messages.

Control of the display screen
During system operation, the message output area
gradually fills with commands and messages. Addi­
tional commands and messages can be entered only
if earlier information is automatically or deliberately
erased:
• Automatic erasure

The oldest displayed information is automatically
erased by OS IV IF4.

• Deliberate erasure
The operator must delete obsolete messages and

JOB MANAGEMENT

commands by indicating them with CONTROL
commands or the selector pen. In either case,
remaining messages move to the top of the
screen, creating empty lines at the base of the
message output area to receive subsequent
messages.

2.10.3 Definition of Multiple Con,oles

MCS comprises one main console and up to 31 aux­
iliary consoles. Specific functions are assigned to
auxiliary consoles during system generation, and
these functions can be changed at any time by opera­
tors with VARY commands.

Command groups
Operator commands fall into five functional groups,
as shown in Table 2.13.
• Data displays and message replies

These commands display the status of individual
jobs or the entire system; they do not affect the
operational system status.

• System control
These commands manage OS IV IF4 jobs and
queues.

• 110 control
These commands change the logical status of I/O
devices, channel paths, volumes, etc. They
include the MOUNT, UNLOAD and V AR Y com­
mands for volume management.

• Auxiliary consoles control
These commands alter the configuration or func­
tions of auxiliary consoles.

• Main console control
These commands manage operation of the main
console.
Only the main console can issue all five groups of

commands. Any console can issue data display com­
mands. The authority to issue system control, I/O

Table 2.13 CommBJId groups

Command group Commands

Data displays and CONTROL DISPLAY LOG
message replies MSGRT MONITOR REPLY

STOPMN

System control CANCEL DUMP HALT
HOLD MODIFY RELEASE
RESET SET START
STOP SWITCH WRITELOG
WRITER

I/O control MOUNT SWAP VARY
UNLOAD (unit other

than a
console)

Auxiliary- VARY-CONSOLE
consoles control VARY-AL TCONS

Main console CONTROL-M VARY-HARD
VARY -MSTCONS COpy

VARY·AUTH

CONTROL PROGRAM

control, and auxiliary-consoles control commands is
restricted to certain auxiliary consoles (possibly
none) during system generation. Auxiliary consoles
can be allocated wider or narrower authority during
system operation by VARY commands. Table 2.l3
lists the command groups; Table 2.11 has previously
described their functions.

Message destinations
as IV IF4 and user programs display console
messages by issuing write to operator (WTO) and
write to operator with reply (WTOR) macro instruc­
tions (or higher level-language equivalents, such as
the COBOL DISPLA Y and ACCEPT verbs). An
optional destination code can be included with each
message to select to which console (or group of con­
soles) the message should be directed.

The correspondence between destination codes
and consoles is defined for each installation during
system generation. Each console can be assigned
none, one, or more destination codes, so as to
achieve a consistent function. Messages without
destination codes or whose codes do not correspond
to consoles are directed to the main console. Stan­
dard destination codes are defined in Table 2.l4. A
representative set of destination-console 'corre­
spondences is shown in Fig. 2.27 A.

Table 2.14 Standard OS IV/F4 destination codes

94

Code number

2

Function

Imponant messages for the main
console, requiring operator action

Imponant informational m8Sl&g8S for
the main console

3 Meaages about magnetic tape reels

4

5

6

7

8

9

10

11

12

13·15

16

Messages about DASD volumes

Messages about magnetic tape data sets

Messages about DASD/tape data sets

Messages about unit·record devices
(card readers, punches, printers)

Messages about communications
controllers, links, etc.

Messages regarding system or data
security, e.g., passwords

Messages about hardware errors,
maintenance actions, etc.

Write to programmer (WTP) messages,
transm.itted also to a SYSOUT
data set

Emulation messages

Optional user destination codas

Unassigned code

Alternate consoles
To each console can be assigned an alternate con­
sole, which assumes the functions of the basic con­
sole if the latter suffers hardware or software trou­
ble. Alternate consoles are assigned during system
generation and can be changed during system opera­
tion by V AR Y commands. One console can serve as
the alternate for several basic consoles, but each
basic console can have only one alternate at a time.

In Example 1 of Fig. 2.28, the main console serves
as the alternate for auxiliary consoles A, B, and C,
and console A serves as the alternate for the main
console. In Example 2 of Fig. 2.28, console A is the
alternate for the main console; if both the main con­
sole and console A have problems, console B is the
alternate for both. Example 3 of Fig. 2.28 shows an
illegal configuration of alternate consoles, since the
main console is defined with three alternates.

Message with destination
code a (12)

Message with destination
code - (1,2,3)

Message without
destination code

Message with destination
code - 4

Message with destination
code. 13

Console for emulation

Destination
code 12

Main oonsole

Destination
codes

1,2,5,6,8,9,10

Tape operating console

Destination
codes 3,5

Disk operating console

Destination
codes 4,6

1

Console for trouble data

Message with destination
code - (1,2.4,9)

Message with destination

code .. 11

Destination
codes 9,10

Spool data set

Fig. 2.27 Example of distributing messages to consoles
according to their destination codes

Example 1

Example 2

Example 3

Fig. 2.28 Examples of alternate console configurations

Hardcopy log and system log
The hardcopy log records in a consecutive stream
commands entered from all consoles, plus messages
written to them. Messages and commands may be
selectively logged, as defined during system genera­
tion and optionally modified during system opera­
tion by V AR Y commands.

The hardcopy log may be directed to a line printer
or a character printer, as defined during system
generation and optionally modifiec. by VARY com­
mands.

The system log is a consecutive record of system
activity comprising two kinds of data:
• LOG commands issued by operators.
• Messages created by users with Write To Log

(WTL) macro instructions.

If the system log is directed to a hardcopy device,
all such information can be collected at one place.

The system log data sets are named
SYS1.SYSVLOGX and SYSl.SYSVLOGY, sub­
allocated from the spool data set (SYS 1.SYSPOOL).
During system operation, log records are written to
one of these data sets until it is full; OS IV IF4 auto­
matically switches to the other data set, and it also
automatically transcribes the full data set to a
SYSOUT queue defined at system generation.
Hence, the system log is periodically printed out via
a JES writer.

JOB MANAGEMENT

2.11 STARTING/STOPPING OS IV/F4
OPERATIONS

2.11.1 System Start

During initialization of OS IV IF4, the following
operations must be performed, either automatically
or with selected operator choices and parameters:
• load the OS IV IF4 control-program nucleus into

main storage.
• initialize all related control tables and work areas.
• set date and time - operator entry.
• override selected operating parameters - opera­

tor entries.
• start system tasks associated with VTAM (Virtual

Telecommunications Access Method) and NCP
(Network Control Program), if the system oper­
ates communications equipment.

• start JES, and optionally RES.

Below are described four mlijor activities during
system start.
• initial program loading (IPL).
• nucleus initialization program (NIP).
• master scheduler initialization program (MSIP).

Initial Program Loading OPLl
The IPL routine is stored on the SYSRES volume at
a fixed location; it is brought automatically into main
storage when the console operator presses the Load
key on the control panel. The IPL routine loads the
nucleus of the control program from SYSRES into
lower main storage and NIP and MSIP into upper
main storage, then yields control to NIP.

Nucleus Initialization Program (NIP)
NIP verifies whether 1/0 devices predefined at this
installation are ready to operate. It accepts various
parameter settings from the console operator and
sets initial· values into control tables. NIP opens
several system data sets such as P ARMLIB,
SVCLIB, PROCLIB, and LINKLIB. NIP then for­
mats the external page dats set (EPS) and loads the
link pack area (LP A) in virtual storage. NIP finally
transfers control to MSIP .

Master scheduler initialization program (MSIP)
The OS IV IF4 master scheduler processes com­
mands entered by the console operator relating to
such system tasks as VT AM, TSS, AIM, and various
lES readers, writers, and intiators. Some of these
tasks are started automatically. others require
explicit operator commands. MSIP sets the time of
day based on operator entries, initializes lES and
RES, the job queue data set (SYSl.SYSJOBQE), the
system log (SYSl.SYSVLOGX and SYSl.
SYSVLOGY), and the SMF routines and data sets
(SYSl.MANX and SYS1.MANY). After com­
pleting all these functions, MSIP yields control to
the OS IV IF4 Supervisor, which dispatches the high-

CONTROL PROGRAM

est priority task at the start of routine operations.
Collectively, the sequence ofIPL, NIP, and MISP

activities are called system loading or, loosely, IPL.

Time of day
NIP requests the operator to set/confirm the date
and time at which the system is loaded, based on
wallclock time. Once set, OS IV /F4 maintains an
accurate digital record in main storage of the time
and date, which can be interrogated by the TIME
macro instruction (or equivalent higher-level
language facility).

Automatic-start options
Many default system parameters can be set during
System generation, helping minimize the number
and complexity of operator entries during IPL. Col­
lections of related parameters may be optionally
stored as members in the system parameter library
(SY5 I.P ARMLIB). As each member is retrieved
during NIP and M5IP, the operator can intervene to
override selected parameters to meet various con­
tingencies. In this way, initial system loading (and
reloading after a planned/unexpected stop) can be
performed quickly yet flexibly, setting the following
parameters and options:
• JES configuration - numbers of readers, writers,

corresponding I/O devices.
• structure and format of spool data sets.
• initialization/not of the job queue data' set.
• automatic START commands.
• premounted DASD volumes: which (if any)

should be kept permanently mounted, etc.
• PROCLIB format.
• size of systems queue area (SQA).
• subroutines to be kept in the fixed link pack area

(FLPA).
• various SMF options.

Automatic processing of commands
Once an OS IV /F4 system has been loaded, the
operator can enter commands either through a con­
sole or on punched cards through a 1£S reader.
When the system is initially loaded, he can request
that sequences of commands be presented automat­
ically to MSIP.

2.11.2 Stopping an OS IV/F4 System

During a typical day, the console operators may need
to stop all system operations one or more times to
make major equipment changes (e.g., take periph­
eral devices offline for preventive maintenance),
change personnel shifts, perform inspections, etc.
To perform this in an orderly loss-free manner, the
operator issues STOP commands to readers, writers,
and initiators. When the system has thus been
quiesced, the operator issues a HALT EOD com­
mand to stop OS IV /F4 altogether, closing

96

SMF data sets and tran~ibing remaining log entries
to the system log device.

2.1 1.3 SYltem Start and Restart

Initialization of OS IV /F4 and JES/RES are distinct
processes. Basically, this means that those processes
associated with initialization (coldstart or warmstart)
are specified separately for OS IV /F4 (reloading
LP A, etc.) and for JES (initializing the job queues).
Although during any given IPL it is possible to col­
dstart OS IV IF4 or JES and warmstart the other, the
usual procedure is to warmstart both. A detailed
description of the process and options for IPL
generally - including starting and stopping JES -
may be found in the FACOM OS IV /F4 Operator's
Guide. The description given here is an overview
with considerably less detail.

The objective of warmstart is to maintain on
queues (a) all jobs which have been previously
entered through JES readers, (b) all job outputs
awaiting processing by 1£5 writers, and (c) other
initialized system functions such as LP A.

If a serious hardware or software failure has occur­
red, the operator may be required to coldstart an OS
IV /F4 system, which deletes all enqueued jobs and
job outputs from the spool volumes and reformats
both the spool data sets and the system job queue

Table 2. 1S Job salvage possibilities during system warmstart

Status of job
whan OS IV /F4

halted

During JES reeding

Warmstart
faasible for
this job?

No

Aweiting initiation Yes

During job initiation Sometimes

During execution Sometimes
(no checkpoint)

During execution Yes
(checkpoint taken)

During job Sometimes
termination

Awaiting JES Yes
writer service

During JES '1::.
writing

Necessary actions

Reenter entire job

None

Job must be re­
entered if new data
sets have already
been allocated, etc.

Resumption from
beginning of IlIIt
step permitted if
JOB statement
specified RD-R or
RD-RNC

Operator decides
which checkpoint
to utilize

(CompleX option)

None

Output can be
resumed from a
-:lnvenient point;

operator controls
this by WRITER
command

(SYSl.SYSJOBQE data set).
Procedures for warmstarts and coldstarts are quite

similar; the operator is asked by MSIP whether
warms tart or coldstart is to be performed. Table 2.15
shows the status of jobs and data sets when as IV 1
F4 stops under various conditions, and whether the
system can be warmstarted in each case.

2.12 JOB CONTROL STATEMENTS AND
PROCEDURES

A user can write programs in one or more program­
ming languages. as IV IF4 will translate them into a
universal machine language, so that the instructions
can be executed and work performed. The job con­
trol language (JCL) directs OS IV IF4 in handling
application programs. When submitting programs to
as IV IF4, the user provides JCL statements to
define work to be done, methods to be used, and
necessary resources. In addition he can obtain
special input and output processing by including JES
control statements for the job entry subsystem. A
collection of related problem programs is submitted
to the operating system as a job. A job is made up of
one or more job steps, each of which is a unit of
work associated with the overall application.

2.12.1 JCl statements

The OS IV IF4 job control language contains nine

Name of statement Purpose

II JOB (job) marks the beginning of a job;
assigns a name to the job.

II EXEC (execute) marks tha beginning of a job
step; idantifies the programs
to be executed or the cataloged
or in-stream procedure to be
celled; assigns a name to the
step.

II DO (data definition) identifies a data set and
describes its attributes . ,- (or two characters indicates the end of data placed

designated by the user in the input stream.
to indicate delimiter)

1/ (null) marks the end of a job.

1/ PROe (procedure) for cataloged procedures, assigns
default values to parameters
defined in the procedure ; for
in .~;tream procedures, marks the
beginning of the procedure.

I' PEND (procedure end) marks the end 'of in-$tream
procedure.

"- (comment) contains comments.

'I (command) enters system operator
commands through the input
straam.

Fig. 2.29 Job control statements

JOB MANAGEMENT

types of statements. The name and purpose of each
statement are summarized in Fig. 2.29.

Every job requires exactly one JOB statement (to
identify the job), one or more EXEC statements (!o
identify each job step), and various DD statements
(to identify data sets used by the job). The null
statement is optional; placing it within the job
causes JCL statements up to the next JOB statement
to be ignored. JES ignores null statements.

The delimiter statement indicates "end of data"
in the input stream. Paired PROC and PEND state­
ments define a set of JCL statements as an in-stream
procedure. Each command statement contains one
operator command submitted through the input
stream, used primarily by console operators. Com­
ment statements can be used to make programs
readily understandable by other programmers.

In addi tion to identifying data sets, job steps, and a
name for the job, the user can code parameters on
JCL statements to request resources and services
from as IV IF4, which is responsible for managing
all resources of the entire system. as IV IF4 auto­
matically performs many services in processing jobs;
however, the user can influence the processing of a
job by including JCL parameters. For example, JES
automatically selects most jobs for execution, but
the user can influence when the job is selected or
delay its selection by coding parameters on the JOB
statement.
• JOB statement

By furnishing various parameters on his JOB
statement, the user can provide accounting infor­
mation for the installation's accounting routines,
define execution characteristics, specify condi­
tions for early termination of his job, request a
specific class for job scheduler messages, hold a
job for later ex.ecution, and limit the maximum
amount of time the job can use the central pro­
cessing unit. These are summarized in Table 2.16.

• EXEC statement
Parameters on the EXEC statement define which
program or cataloged procedure is to execute.
They also provide job-step accounting informa­
tion, specify conditions for bypassing or executing
the step, assign a limit for CPU time used by the
step, and pass information to a processing pro­
gram such as the linkage editor.

• DD statement
Parameters on the DO statement provide as IV 1
F4 with such information as the name of a data
set, names of volumes on which it resides, type of
1/0 device for this data set, format of its records,
whether it is old or new, size of newly-created data
sets, and which access method will be used to
create or refer to the data set.

• Delimiter statement
This terminates each system input data set
(SYSIN data). "I." is normally used, but a special
delimiter can be defined by a OLM parameter on a
SYSIN DO statement.

CONTROL PROGRAM

• Null statement
This statement indicates the end of a job.

• PROC statement
This statement marks the beginning of an in­
stream procedure or cataloged procedure.
Parameters of a PROC statement assign default
values to symbolic parameters of the procedure.

• PEND statement
This statement indicates the end of an in-stream
procedure.

• Comment statement
This statement furnishes arbitrary user comments
to be displayed on the SYSOUT listing.

• Command statement
Most operator commands can be punched onto
cards and entered into the input stream, normally
by the console operator.

Table 2.16 Format of JOB statement

/ljob neme JOB
/I

paramaters

ADDRSPC

CLASS

COND

MSGCLASS

MSGLEVEL

NOTIFY

PRTY

RD

REGION

RESTART

TIME

TYPRUN

accountinlt'parameters, programmer·name (,
other·perameters)

Other parameters of JOB statement
purpose

Define whether pagabie storage is to be
allocated to this address space

Job cless

Define conditions under which remaining
job steps are skipped

O'utput class for system messages

Contents detail for system messages

Notify e TSS user when his job completes
execution

Selection priority

Restart definition; conditions
under which job may be restarted

Size of region/address space

Define where job shou Id be restarted

CPU time limit for entire job

Define whether job should be held,
scanned or executed normally

Table 2.17 Format of EXEC statement

{
PGMsprogram name }

/lstep·name EXEC PAOC-procedure·name L other parameters)

Parameter

ACCT

ADORSPC

COND

DPRTY

PGM

PROC

REGION

TIME

98

procedure name

Parameters of EXEC statement purpose

Accounting perameters for this stap

Define whether pegable storage is to be
used tor this tep

Define conditions under which this step is
to be skipped

Dispatching priority for this step

Defines one program

Optional keyword for procedure to be
executed

Size of region address space

CPU time limit for this step

Table 2.18 Fonnat of DD statement

IIdd·name DO [~ATA] I. other parameters)
DUMMY

Parameter

DSNAME
(or DSN)

AFF

SEP

UNIT
VOLUME

DCB
DDNAME

DISP
DUMMY
LABEL

SPACE

SPLIT
SUBALLOC

DATA

DLM

COPIES

DEST
FCB
HOLD

OUTLIM
SYSOUT
UCS

AMP

DYNAM
TERM

Perameters of DO statement purpose

Data Set Identification

Data set name

IIC path, volume. and unit specification

Channel affinity (obsolete parameter;
ignored by OS IV IF4)
Channel separation (obsolete parametar;
ignored by OS IV/F4)
110 devica
Volume identification

Data Set Attributes

Data control block attributes
Postpone data set definition to
indicated DO statement
Status and disposition
Dummy data set
Label end security attributes

DASD spaca allocation

Ordinary spaca request for new data
set
Request for a split-cylinder allocation
Req,:,est for a suballocation of space

System input data set

Following statements are SYSIN data
set (without" /I" in position 1 -21
Following statements are a SYSIN data
set (possibly with "/I" in positions
1 -21
Ending delimiter for this SYSIN data
set is indicated pair of characters

System output data set

Number of output copies to be made
of this data set
Destination of remote (RES) output
Designate special forms control buffer
Hold this output on queue until
released by operator
Limit on number of output records
Define class for system output data set
Designate special buffer for U niversel
Character Set feature

VSAM data set
Attributes

RESITSS features

Define dynamic data set in TSS
Distinguish AES and TSS terminals

2.12.2 The J ES Statementa

The user can control the' setup and return of a pro­
gram by coding JES control statements and placing
them in the input stream. Two JES statements can
be used with JeL to direct execution of a job. Fig.
2.30 shows the name and purpose of each statement.

Name of statement

/* OUTPUT

'* SETUP

Purpose

Requests return of demand outputs
to 8 user

Lists mountable volumes needed
for the job

Fig. 2.30 lES control statements

2.12.3 Specifying Job Parameters with JeL
Statements

To request processing of ajob, the user submits JCL
statements and any related input data to SO IV f
F4 through an 110 device chosen by the
operator. The input unit can be a card reader, a mag­
netic tape, a terminal, or a direct access device. The
sequence of JCL statements and input data for jobs
submitted through an input unit is called the input
stream.

A JCL statement consists of one or more 80-byte
records. Typical jobs are originally submitted to
OS IV fF4 for execution in the form of 80-column
punched cards. OS IV fF4 is able to distinguish a JCL
statement from data included in the input stream. In
columns 1 and 2 of all statements except the
delimiter statement appear "f f." The delimiter
statement contains "f." in columns 1 and 2; a com­
ment statement contains "f f." in the first three col­
umns.

One job

COBOL ~~========~
compilation /I DO

JOB MANAGEMENT

A job can be simple or complicated; the user can
submit a procedure in the input stream or call a
cataloged procedure. Fig. 2.34 shows some examples
of what jobs can look like. Although only one exam­
ple shows the use of JES statements, these state­
ments could have been placed with all the jobs.

2.12.4 Examples of JeL Statements

A complete set of JCL statements for a COBOL
compile, link-edit, and execute job is shown in Fig.
2.31 . Each collection of source statements in the
input stream becomes one SYSIN data set if it is
delimited by statements of the following format:

/lSYSIN DD. (or DATA)
[Input statements]

f.

An arbitrary number of jobs may be read from a
card reader, magnetic tape, or DASD device as a
single input stream. A typical input stream is shown
in Fig. 2.32. If the stream is read from a tape or
DASD, the operator can request that only part of the
stream be processed by naming the starting andf or
ending jobs in his START command for the associ­
ated reader:

START RDR,FIRSTJOB,LASTJOB
If FIRSTJOB is omitted, the JES reader processes

jobs up to LASTJOB: if LASTJOB is omitted, the
reader begins with FIRSTJOB and .reads to the end­
of-file mark in the input stream.

r-------------------------~
I I
I
I
I
I
I
I

OUTPUT

,- seTUP
I
I .
I

------------------------~ I

Fig. 2.31 Examples of job control statements

I I
I
I

I I

~------------------------~
If necessary for setup of
mountable devices and/or
for demand output.

CONTROLPR(,)GRAM

Fig. 2.32 Multiple jobs in one stream

2.12.6 Cataloged and In-Stream Procedures

Often the same set of JCL statements are used
repeatedly with little or no change (for example, to
specify compilation, link-editing, and execution of
programs). To save programming time and to reduce
the frequency of errors, each OS IV IP4 installation
prepares standard job step definitions and places
(catalogs) them into a partitioned data set known as
the system procedure library (SYSl.PROCLIB). A
set of JCL statements placed in the procedure library
is called a cataloged procedure. A cataloged pro­
cedure comprises EXEC and DD statements, plus
optional JCL comments statements.

By furnishing a JOB statement and one EXEC
statement, the user can retrieve a speCific cataloged
procedure. The name of the procedure is specified
on the EXEC statement. The effect is the same as if
the JCL statements in the cataloged procedure
appeared in the input stream in place of the EXEC
statement which called the procedure. If necessary,
the user can modify the cataloged procedure by
overriding selected statements andlor parameters of
these statements.

Before putting a procedure into the procedure
library, the user may want to test it by converting it
to an in-stream procedure. An in-stream procedure
is a set of JCL statements that can be used

100

repeatedly in EXEC statements of a particular job. A
principal function of in-stream procedures is
testing cataloged procedures prior to entering them
into the procedure library.

In addition to standardized procedures for com­
pilations, linkage editing, and loading, OS IV IP4
furnishes procedures for easy invocation of sortl
merge programs, utility programs, and system tasks
such as VT AM, TSS, JES readers and batch initia­
tors.

Contents of procedures
Cataloged and in-stream procedures contain standar­
dized job control statements needed to perform
applications. A procedure contains one or more pro­
cedure steps, each step consisting of an EXEC state­
ment that identifies the program to be executed and '
DD statements defining data sets to be used or pro­
duced by the program. The program requested on
the EXEC statement must exist in a private library
or the system link library (SYSl.LINKLIB). If the
user requests a program from a private lib~ary, the
procedure step calling that program must include a
DD statement with the dd-name STEPLIB that
defines the private library; the STEPLIB DD state­
ment is described in Section 2.5.6.

Cataloged and in-stream procedures cannot con­
tain:

• EXEC statements that refer to other eataloged or
in-stream procedures;

• JOB, delimiter, or null statements;
• DD statements defining private librari~s to be

used throughout the job (DD statements with the
dd-name JOBUB);

• DD statements defining data in the input stream
(statements including • or DATA parameters).

• JES control statements; they are ignored.

Identifying an in-stream procedure
To identify an in-stream procedure, the user must
furnish PROC and PEND job control statements to
delimit the body of the procedure. The PROC state­
ment must be the first statement of an in-stream
procedure; with it, the user assigns the procedure a
name, used for subsequent calls to the procedure.
Optionally, the user can also assign default values to
symbolic parameters contained in the procedure. A
symbolic parameter is a special identifier (symbol
preceded by a single ampersand) representing a
parameter, sub parameter , or value in a procedure;
including symbolic parameters in a procedure is de­
scribed in FACOM OS IV/F4 Job Management
Functions and Facilities.

If the user does not assign default values to one or
more symbolic parameters on a PROC statement,
these must be furnished by calls to this procedure.
The simplest form of the PROC statement - for
example, to identify an in-stream procedure named
PAYROLL - would be as follows:

liP A YROLL PROC
The PEND statement marks the end of an in­

stream procedure. Th~ user may include a name on
the PEND statement and comments, but these fields
are optional. Both of the following examples are
acceptable:

IIENDPROC

II

PEND

PEND

end of in-stream pro­
cedure

The following example illustrates an in-stream
procedure named SALES consisting of two pro­
cedure steps. Note that STEP2 includes a STEPLIB
DD statement to define the private library in which
the program JUGGLE can be found. Fig. 2.33 shows
additional examples of in-stream procedures and
their usage.

I/SALES PROC
/lSTEP 1 EXEC PGM-FETCH
/IDOlA DO OSNAME=RECORDS (BRANCHES).
II DISP=OLO

/lD01B DO DSNAMEDRECORDS (MORGUE).
/I DISP=MOO
I/STEP 2 EXEC PGMsJUGGLE
/lSTEPLIB DO DSNAME-PRIV. WORK. OISP-OLO
/lD02A DO SYSOUTaA
1/ PEND

JOB MANAGEMENT

Placing a cataloged procedure in a procedure
library
The major difference between cataloged and in­
stream procedures is where they are placed; in­
stream procedures are placed within the job that calls
them. A procedure library is simply a partitioned
data set containing cataloged procedures.
OS IV IF4 defines a standard procedure library
named SYS1.PROCLIB, but each installation can
define additional procedure libraries with different
names. When a programmer calls a cataloged pro­
cedure, OS IV IF4 merges a copy of the procedure
into his JCL statements; therefore, a cataloged pro­
cedure can be used by more than one programmer
simultaneously.

To add a procedure to a procedure library, the
installation uses the JSEUPDTE utility program. It
can also use the JSEUPDTE utility to permanently
modify an existing procedure. Before modifying an
existing cataloged procedure, however, the system
programmer should notify the operator, who must
delay execution of jobs that might use the procedure
library while it is being updated. Details on using the
JSEUPDTE utility are included in the
F ACOM OS IV IF4 System Utilities User's Guide.
Before placing or modifying a cataloged procedure in
a procedure library, the submitter should test it
without overriding any parameters, in order to
ensure that procedure statements are syntactically
correct. Additionally, he should test the procedure
by running it as an in-stream p,ocedure several
different ways.

No special JCL statements are needed to identify a
cataloged procedure. The PEND statement is never
used, the PROC statement is optional. The user
needs to code a PROC statement (first statement in
a cataloged procedure) only when he wants to assign
default values to symbolic parameters. The name of
the PROC statement is not necessarily the name of
the cataloged procedure; its submitter assigns the
procedure a name when adding it to the procedure
library.

Using cataloged and in-stream procedures
To use a cataloged or in-stream procedure, the user
specifies the procedure name on an EXEC state­
ment. He can modify the procedure by adding DD
statements; overriding, adding, or nullifying
parameters on EXEC and DD statements; and
assigning values to symbolic parameters. Calling and
modifying procedures is explained in greater detail
in the following paragraphs.

Calling cataloged and in-stream procedures
To call a cataloged or in-stream procedure, the user
names the procedure in the first operand of his
EXEC statement, optionally preceded by the
keyword PROC:
• Procedure-name .
• PROC= procedure-name.

http:ISTEPL.lB
http:I/SAL.ES

CONTROL PROGRAM

Definition
of in.tream
procedur .. ·

Calling
instream
procedures

1/ JOB

1/ PROC1 PROC

Contentt of procedure

II PEND

/I PROC2 PAOC

Contents of procedure

/I PEND

/I STEP1 EXEC

1/ STEP2 EXEC

Fig. 2.33 Examples of in-stream proc:e4ures

delimiter

A cataloged procedure must exist in the procedure
library before usage. JES is responsible for fetching
cataloged procedures, as described in Section 2.4.6.
To call a cataloged procedure named PROCESSA,
the user should furnish:

IICALL EXEC PROCESSA or
IICALL EXEC PROC-PROCESSA

When using an in-stream procedure the user
includes the procedure - beginning with a PROC
statement and ending with a PEND statement -
with his JCL statements for thejob; such procedures
must follow the JOB statement and appear before
EXEC statements that call them. The user can
include as many as fifteen different in-stream pro­
cedures in one job. He can use each procedure as
many times as he wishes in the job.

On the EXEC statement, he can also code JCL
modifications required for this execution of the pro­
cedure.

Allowing for changes in cataloged and in-stream
procedures
The usefulness of cataloged and in-stream pro­
cedures would be destroyed if each programmer
were obliged to permanently modify them every
time he wanted to make a change. When writing a
procedure, the submitter can define as symbolic
parameters those parameters, subparameters and
values likely to vary each time the procedure is used.

A job with one job step

The EXEC statement defines the program to be
executed; the DO statements define the data to
be used. In this case, the data is in the input
stream.

A job with a cataloged procedura

The EXEC statement is calling a cataloged
procedure to process the data in the input
stream.

SYS1.PAOCLI B

Fig. 2.34 Examples of jobs uang procedures (part 1)

un

. 1

Modifying cataloged and in-st ream procedures
The user can modify a procedure by:
• Assigning values to (or nullifying) symbolic

parameters contained in the procedure.
• Overriding, adding, or nullifying parameters on

<

JOB MANAGEMENT

EXEC and DO statements in tbe procedure.
• Adding DO statements to the procedure .

Any changes he makes are in effect only during
this single invocation of the procedure .

A job with an in-straam procedure

The EXEC statament rafers to an in-stream
procedure which is shown using tha PROC
and PEND statements.

A job with JES statements

A simple job using JES control st.tements .
The command and any comment stetements
would be the only control statements to be
placed in front of the JOB statement.

Fig. 234 Examples.of jobs using procedures (part 2)

.. 11./)'=-." ____ _

CHAPTER 3
REMOTE ENTRY SERVICES

3.1 Overview

3.1.1 Functions and Facilities

RES provides a facility for remote entry of batchjobs
to OS IV IF4. It does not provide interactive process­
ing, which is offered in OS IV /F4 by the time shar­
ing system (TSS). RES users submit jqbs from
remote batch terminals, each typically comprising
the following hardware components:
• controller (often based on a minicomputer).
• card reader.
• line printer.
• operator console.
• optionally, card punch, paper-tape equipment, etc.
• data communications interface.

Jobs can be prepared and submitted to RES just as
to JES; their formats are usually no different for
RES than for JES, except as described below. Jobs
can optionally be entered remotely at one location
and outputs returned to another remote location or
to the central OS IV IF4 installation. Likewise, jobs
can optionally be centrally entered via JES with their
outputs routed to one or more remote terminals via
RES. Hencee, JES and RES are functionally similar
and can be used for complementary purposes.

Central os IV /F4 installation

Central
computer
system

Input of
job

Remote terminals

input unit

a:::::c:=::;> '-----~ Terminal
output

unit

Central Central
input unit output

unit

Output of
processed
result

Fig. 3.1 Remote batch processing

104

3.1.2 Controlling Output Destinations

RES allows users to submit jobs to a central comput­
ing center from a work station and to route output to
work stations.

The default output location is the submitting loca­
tion, whether a remote work station or the central
installation (destination of LOCAL) . To receive the
output at the submitting location, the user simply
assigns output data sets to any output class (with the
SYSOUT parameter) and messages from his job to
an output class (with the MSGCLASS parameter).
RES offers most of the options for writing data sets
available to jobs whose outputs are handled at the
central installation. The user can request that:
• a data set be held until the operator requests that it

be printed.
• special output forms be ,used, by specifying the

corresponding form name in his SYSOUT
parameter.

• multiple copies of a data set be printed or
punched.

Whether at a remote station or at the central
installation, the user can also request that a data set
be routed to another destination. To route an output
data set to another destination, he codes the iden­
tification of that destination in the DEST parameter
of his DO statement defining the data set. If he
codes a destination on his SYSOUT statement, it
overrides the default destination. Work stations are
identified by destination identifications established
by each installation. A destination parameter cause~
outputs to be routed to local printers or punches, or
to any remote station.

3.1.3 Remote Entry of Jobs

With RES, the user can submit jobs and receive
system output at remote facilities as if the jobs had
been submitted at the central installation. The
remote facility must be connected to the central
computer by a (point-to-point) binary synchronous
communication link. The remote facility becomes a

logical extension of the local computer facility and is
operated by a person called a remote operator.

There are two types of RES stations: a remote ter­
minal, which does not have a CPU, and a remote
workstation that does have a CPU. For example,
FACOM U-200 workstation can be used for entering
jobs into and receiving data from RES. A pro­
cessor-for example, another FA COM computer­
executes a RES-generated program that allows it to
send and receive jobs from a larger computer operat­
ing under OS IV /F4 RES. A terminal station
system program (TSSP) is established by a special
RES support program, RMTGEN, during system
generation. Each workstation furnishes printers,
punches, card readers, and/or a console. A remote
station is a collective term for a remote terminal or a
remote workstation.

Reading, printing, and punching between a CPU
and a remote terminal (i.e., without a CPU) take
place one action at a time. For example, the terminal
can either transmit print data or transmit punch data
or read an input stream, but it cannot perform two or
more of these actions simultaneously. The remote
operator selects the sequence of these ~ctions . How
this is done is presented later in this section under,
"Altering the Sequence of Operations from a
Remote Terminal."

Communication between the local CPU and
remote workstations uses a RES facility called
interleaved transmission that allows multiple print
and punch streams to be transmitted concurrent
with multiple console messages and input streams
recei ved centrally by RES . Using interleaved
transmission, an OS IV /F4 installation can maintain
several operations simultaneously. Operators at
remote terminals and at workstations without RES
consoles can enter operator commands into the
input stream in the normal manner, i.e., via their
card readers. OS IV /F4 schedules replies to these
commands back to the requesting remote stations
for printing on corresponding remote printers.

Remote lines can be configured as dedicated or
nondedicated. The overall configuration is defined
at system generation and optionally modified
during system start-up when the remote stations are
specified. If the station parameter RMTnnn desig­
nates a line number, the corresponding line is dedi­
cated to that station. Lines not selected by station
parameters at initialization are nondedicated lines,
eligible to be dynamically connected to any non­
dedicated station.

Remote stations not physically connected to a
CPU - stations that must be connected via dial
facilities - normally do not specify dedicated lines,
so that ther may access any available nondedicted
line. There are other reasons for specifying a line as
nondedicted, even if the line is physically con­
nected to a remote station:
• A LOGON card is not required for connecting sta­

tions to dedicated lines. If furnished, a LOGON

REMOTE ENTRY SERVICES

card is ignored, since stations on dedicated lines
are considered active when their lines are started.
Line and station password authorization is only
enforced for nondedicted lines and stations.

• One physically-connected station can be initialized
as multiple nondedicted stations for use by
different groups at different times. Usage of each
logical station is defined at LOGON and LOGOFF
times. Data routed to a logical station will only be
transmitted while that logical station is logged on.

• If remote stations are initialized as nondedicated,
one remote station can be used as backup for an
inoperable station by being logged on with the
identification of the inoperable station.

• A station attached to a dedicated line is considered
active whenever its line is active. Line activation is
under control of the central operator, who is not
aware of station usage on dedicated lines. Via his
console he is aware of station usage when non­
dedicated stations log on and off. JES allocates
resources for remote lines while they are active,
which is only between logon and logoff for non­
dedicated lines.

One advantage of specifying dedicated lines is that
corresponding stations need not log onto RES, a
manual process at all remote terminals.

It is possible to configure lines and stations utiliz­
ing dial facilities as "dedicated." However, only one
station identification and set of station charac­
teristics can be associated with each dedicated line.

Starting remote sessions
Since communications lines are considered inactive
by JES immediately after system start-up, each line
must be activated using a RES START command,
either by the operator, with commands entered into
a job stream (for example, through the JES
initialization deck) or through the automatic com­
mand processor.

A nondedicted remote station must first submit
a LOGON statement in the following format:

Column Description
1 I*LOGON

16 REMOTEnnn
25 Password-l
73 password-2

• REMOTEnnn defines the remote station request­
ing logon. The numbers must be left-justified with
no leading zeroes.

• Password-l defines the password established at
initialization or changed by the operator for .that
line. If the line has a password, then password-l is
required. To establish password, the installation
sets the LINEnnn RES initialization parameter.
This password can be subsequently changed or
displayed by the operator .

• Password-2 is established at initialization, one
password assigned to each terminal. If the ter-

CONTROL PROGRAM

minal has a password, then password-2 is required.
To establish password-2, the installation sets the
RMTnnn RES initialization parameter. The
password ensures that the station logging on is a
valid station.

A line is dynamically allocated when activated.
The operator can deactivate and deallocate a line
using the STOP command of JES/RES.

A remote device is considered active when its
remote station becomes active, provided that the au­
tomatic start option has been specified for the device
by the START subparameter in a Rnnn.ROm,
Rnnn,PRm, or Rnnn.PUm initialization parameter.
Otherwise, the device is considered inactive and
must be started either by a remote or local operator
command. The interval in which a remote terminal
is active is called a session.

Altering the sequence of operations from a remote
terminal
Two RES options allow the remote terminal opera­
tor to control the sequence of operations at his ter­
minal.

During RES generation, an installation can specify
a delay ttme ($W AITIME parameter) between
printing and punching outputs for each job. This
delay permits the operator to ready the card reader
and prepare the terminal to transmit dat,a. RES will
sense this condition and read the input stream
before resuming printing or punching.

When each printer or punch device is defined at
RES generation/initialization, (Rnnn.PRm or
Rnnn.PUm parameters), the suspend mode of
operation can be specified or omitted. If the suspend
mode is in effect, a remote operator can alter the
sequence of operations by stopping an output
device. When he again readies the device, RES will
simulate an output suspension by flushing its cur­
rent 110 buffers and printing any defined remote
separator page. RES will then determine if the
remote card reader is ready; if so, its input stream
will be read. If not, RES selects the highest-priority
output, which can be either resumption of the sus­
pended operation or printing/punching another data
set. The delay must be sufficiently long for the ter­
minal to notify RES of the stopped device state. The
delay interval depends on the terminal type.

If suspend mode is not. in effect, the current
operation is resumed after the device is readied
again.

Options for disconnecting remote lines
At RES initialization, each installation uses the
LINEnn statement to choose whether each line is to
have the abortive disconnect feature. If selected,
RES automatically disconnects the line bt simu­
lating a SE command sequence when the com­
munications control program (CCP) detects a not­
ready data set.

106

If abortive disconnect is not selected, the line will
remain active and wait for the data set to be readied
or for operator-intervention conditions under which
a CCP can detect a not-ready data set depend on line
configurations.

An installation can also instruct RES to automat­
ically disconnect an inactive station by coding a
non-zero value into the OISCINTV parameter of
RMTnnn during RES initialization. When this dis­
connect interval has elapsed without any data being
sent or received on the line, RES will disconnect the
line by simulating a $E command sequence.

Job flow
All remotely-entered jobs are transferred from RES
to JES, where their source images are stored on
spool data sets and their queue entries on the system
job queue (SYSl.SYSJOBQE). Thereafter, these
jobs are processed by OS IV /F4 identically as those
entered locally, in particular with respect to job
classes and priorities. The central operator - and
also the remote operator - can observe and control
progress of the jobs. Upon termination of each job,
its outputs are written into spool data sets using up
to 36 SYSOUT classes, just like local outputs. To
each active terminal corresponds a RES writer,
which returns designated outputs to the terminal
according to the priority of its SYSOUT classes.

Remote operator messages
Remote operators can send messages to the central
installation or to other terminals by issuing SEND
commands; the SEND facility is also available to
central operators. By issuing a LISTBC (tist broad­
cast messages) command, a central operator or a
remote operator can display the contents of the
system broadcast data set.

Stopping remote sessions
The remote operator issues a LOGOFF command to
terminate a session. Thereafter, RES will neither
accept jobs from this terminal nor attempt to
transmit outputs to it. Fig. 3.2 displays the overall
flow of jobs \lnd commands in RES.

3.1.4 System Configuration

RES supports remote workstations such as the
FACOM U-200 system, to which is typically
attached a typewriter, line printer, and card reader.
Controlling each U-200 (or equivalent workstation)
is a terminal station system program (TSSP) ,
which communicates efficiently and compatibly with
the VT AM and NCP components of OS IV /F4 at the
central installation. See Chapter 6, "Telecom­
munication Management" for details of VT AM and
NCP. Fig. 3.3 shows a typical RES configuration.

..

..

Starting
of session

SYS1.UADS

User identifier
pass word,
LOGON

,p~ocedur8 name

"I"

F~ U Flow of proc:eMlng in RES

Job

JCL
command

Job input -,- Job -, .. execution
----------t--Term inat ion ----I----------Job output- of session --

I

I I RES I

V
T
A
M

Input queue

A0--0
B 0-0-<>-<>

N-o
0-0-0
HOLD0--0

I

1 I
Job

I

I 1

I Comand on I' 0 I information flow
and job control I

Output queue

A ...0-<>
B 0-0-<>-<>

Z0--0
o --<>-<>
HO L D ..-<>-<>

I 1

Comm'" 0. lop"' I ,
__ q_u_eu_e_c~n_tr_o_1 __ J-T _, __ -_-_-_-_-_ ~ ~ ~ _-_-_-_-_ _..-_-,---

Comand on output
queue control

M A I L section

I
I

SEND

r-------- -- -- -- ------,
: Center console :

: c:J ! I Lt::~:t-----=::::==::::=-----i-~L~_1~~~{-~::::_~-_~-~=)=:======~== __ J

Sending and reception
of terminal user

message ·1 ..
I

Message sending and I
message display in -------...j

the center

RES

V
T
A
M

I

1
I

Reception I
of processed I

result I

Termina
tion

of session

http:T""",.ot

CONTROL PROGRAM

r- - ----- - - - - --- ----- - - - - - - - -,
I ,

, Central installation :

OS IV/F4

RES

I
I

U-200
Terminal

r--,
U-200

EJ Terminal

"' ______ _ __________________ - - ____ • _________ - - - ___ • .1

r----------- --- ---------------------------- ------- -,
I '

: U-200 I
, Terminal

I
I
I ,
I ,

,
I

I
I
I
I , , , ,
~.-------------------------- ~- - -- - ---~

Fig. 3.3 Typk:al RES configuration

3.2 LOGON AND ENTERING JOBS

3.2.1 Starting a S ••• lon

As outlined in Section 3.1.3, a remote operator must
enter a LOGON command after establishing a com­
munications link between his terminal and a central
OS IV IF4 installation. In addition to the name of
this terminal and its associated password (s), the
operator must furnish the name of the procedure for
the RES reader and writer he wishes to manage this
session. These parameters are stored centrally for all
terminals in the user attribute data set
(SYS1.UADS). '

During LOGON for this terminal; any waiting
broadcast messages are sent to it by RES; the system
broadcast data set is described in Section 3.5.1. If a
terminal is capable of accessing the AIM and TSS
subsystems at the central installation, the remote
operator must indicate their operational parameters
during RES logon. As described in Section 3.1.3, it is
unnecessary to logon if the terminal accesses RES
via a dedicated line.

User attributes
RES accesses the user attributes data set
(SYSl.UADS) when logging on remote terminals to

108

determine their processing attributes and usage
authorizations. Each member of SYS1.UADS (a
partitioned data set) contains the password, default
LOGON procedure name, and other attributes cor­
responding to this terminal identification, which is
the name of the member. RES merges parameters of
the LOGON command with those of the corre­
sponding PDS member to defme how this session is
to be managed: .
• Authorized terminal(s) for each remote user.
• Authorization to omit the LOGON procedure

name from LOGON commands.
• How job outputs may be routed.
• Upper limit for job priorities (PRTY parameter of

JOB statement).

Identification and passwords
Corresponding to each terminal identification are an
arbitrary number of passwords, as outlined in Sec­
tion 3.1.3. To each password corresponds an arbitr­
ary number of LOGON procedure names, as shown
in Fig. 3.4_. .

As each session starts, RES verifies that the
LOGON procedure name and password are valid for
this terminal. If a particular terminal is permitted to
omit the LOGON procedure name, RES supplies a
default name previously generated for this termin~l.

LOGON procedure names

Pesswords

Terminal
Identification

PAS 1

PAS 2

PAS 3

Fig. 3.4 Structure of identifications and passwords

Readers and writers

PAOC4

PROCS

PAOC6

Remote operators cannot directly issue START
commands 'to RES readers and writers. Hence, asso­
ciated procedures are cataloged at the central
installation and invoked automatically when a ses­
sion starts, according to the procedure name fur­
nished in the LOGON command (orthe default pro­
cedure name) .

Status commands
Either a central or remote operator can issue a
DISPLA Y command to show which terminals are
currently active. By issuing a MONITOR command,
the central operator can continually display which
terminals are logging on and off.

3.2.2 Submitting and Controlling Jobs

While entering/receiving jobs, a remote operator
can issue the following commands:
• A STOP command halts the associated RES

reader.
• A CANCEL command deletes the indicated job,

whether it is being entered, already enqueued for
execution, executing, or awaiting output process­
ing.

• A RESET command changes the class and! or
priority of a job (or class of jobs).

• A HOLD command holds a job (or class of jobs)
from executing (Le., moves it to the input hold
queue).

• A RELEASE command releases a held job.
• A DISPLAY command furnishes the remote

operator with information about all jobs awaiting
execution, executing, or awaiting output process­
ing at the central installation.

After all jobs have been submitted at a particular

REMOTE ENTRY SERVICES

remote terminal, the remote operator need not con­
tinue the session. If he logs off, he can subsequently
log on and receive any outputs prepared by OS IV /
F4 up to that point (or while RES transmits these
outputs)

3.3 PROCESSING JOBS

Jobs submitted remotely are processed exactly like
those submitted centrally to OS IV /F4. During a ses­
sion, a remote operator can issue the following com­
mands to control jobs:
• CANCEL deletes a specified job, whether being

entered, awaiting execution, executing, or await­
ing output processing

• REPLY replies to queries transmitted to this ter­
minal by the central installation

• MODIFY transmits a parameter to a currently
executing job controlled by this terminal

• MONITOR displays messages at the terminal
whenever jobs submitted from this terminal start
or complete execution

• STOPMN stops the dynamic job-status display
requested by a prior MONITOR command.

3.4 PROCESSING JOB OUTPUTS

RES furnishes essentially the same output facilities
as JES, described in Section 2,7 above.

3.4.1 Output Classes

SYSOUT data are written onto spool data sets by
processing programs, controlled by entries on the

--,
CENTRAL USER 1 USER 2

A....o Ae-o A_

B....o B- Be-o

c- Ce-o c-

z- z- Z....o
0....0 0- 0-

1 -
1....0

1 _

a_ a_ 8....0
9- 9...0 9-
HOLD....o HOLDe-o HOLDe-o

SYS1.SYSJOBQE

, ,
I

USER N :

Ae-o-o

B_
c_

z-
0....0

1 -

8....0
9_

HOLD-

- ----- ------------- --__________ ___________________ J

Fig. 3.5 Output queue structures

100

CONTROL PROGRAM

system job queue (SYS 1.SYSJOBQE). Correspond­
ing to each terminal is the same queue structure as
for the central installation: SYSOUT queues by
class, plus an output hold queue. Hence, if a total of
N terminals are defined to RES - irrespective of the
number simultaneously active - lES and RES
together define N + 1 output queue structures, as
shown in Fig. 3.5.

Remote operators define which SYSOUT classes
have what priority levels for transmission to their
terminals, using WRITER commands to start these
RES writers and MODIFY commands to modify
classes and/or their priorities.

3.4.2 Routing Outputs

Outputs from each remotely-submitted job can be
returned to the submitting terminal (the default
destination), the central installation, or another ter­
minal. Likewise, outputs from centrally-submitted
jobs can be directed to remote terminals. Two
facilities are available for routing jobs:
• DEST parameter on a DD statement

The job submitter merely codes the terminal iden­
tification where he wants one or more SYSOUT
data sets sent as DEST-parameter values on cor­
responding DD statements. The central installa­
tion has a routing identification of "LOCAL" .

• ROUTE command
The job submitter can optionally furnish a
ROUTE command with his JCL, indicating to
which remote terminal - or the central installa­
tion (LOCAL)' - his entire job output should be
routed. This is in contrast to the DEST parameter,
which only routes individual SYSOUT data sets. A
central/remote operator can issue a ROUTE com­
mand from his console to redirect outputs from
one job (or from a class of jobs, or from all jobs
destined for one terminal) to another terminal or
to the central installation.

3.4.3. limitations on Rerouting Outputs

RES verifies that requests to reroute outputs are
properly authorized by comparing destination con­
trol values (integers between 0 and 255) of the
source and destination for each job. The values are
set by the central operator, usually based on default
values stored in the SYSl.UADS data set. A
ROUTE command is valid and effective only if the
destination control value for the new destination
(central installation or a terminal) is at least as large
as the destination control value of the issuer of the
ROUTE command.

For example, Fig. 3.6 shows the destination con­
trol values for a network of four terminals accessing
a central installation.

110

Termina' A Termina' 0
(10) (40)

Center

Terminal B Terminal C

(destination control values in parentheses)

Fig. 3.6 Example of destination control values

Terminal A can route its outputs to the central
installation or any other remote terminal. Terminal
B can route its outputs to terminals C and D; etc.
Outputs from centrally-entered jobs can be routed to
any terminal.

3.5 CREATING AND RECEIVING
MESSAGES

Certain messages are exchanged between the central
operator and remote operators. Other messages are
originated by the central operator for display to users
on their SYSOUT listings.

3.5.1 Broadcast Data Set (SYS1.BRODCAST)

The broadcast data set contains messages exchanged
by operators. Since all terminals of a network are not
necessarily active when a message is prepared for
them, it is necessary for RES to hold such messages
on DASD at the central site until each terminal has
had the opportunity to receive these messages.
SYSl.BRODCAST is divided into sections for
NOTICEs and MAIL. Messages are entered into
SYS 1.BRODCAST by SEND commands issued by
central/remote operators.
• NOTICE section

This contains messages to be displayed to all
remote operators, identified by message numbers.
A central operator can add or delete messages
from this section by SEND commands; remote
operators can only display messages, not add or
delete them. .

• MAIL section
This contains messages for individual terminals
entered by central or remote operators. Each set of
messages is segregated from those for other ter­
minals. When a terminal logs onto RES-or issues

a LISTBC command subsequently-any accumu­
lated messages from its subsection of MAIL are
displayed and then deleted from MAIL.

3.6.2 SEND Command

SEND commands can be issued by central or remote
operators to communicate with one another. If the
destination terminal is active, it can receive
messages immediately. Otherwise, messages are
handled in three different ways according to a SEND
parameter:
• Unsent messages are deleted

The sender is notified that his message was not
sent successfully.

MAIL
section

SYS1. BRODCAST

NOTICE section

DDDD
(messages for all term inal users)

Terminal
1

Terminal
2

Terminal
3

Fig. 3.7 Structure of SYS 1.BRODCAST

• Un sent messages are stored in SYSI
BRODCAST
When the destination terminal next becomes
active, RES sends these messages from the MAIL
section of SYS1. BRODCAST.

• All messages are stored in SYSl.BRODCAST
Hence, these messages are received only when the
next session starts at the destination terminal or
when its operator issues a LISTBC command.
All messages directed to the central installation

are immediately sent.
The central operator can create a message for all

terminals by a SEND command directed to the
NOTICE section of SYSl.BRODCAST. He can also
display or delete any message in either section.

- --~~-.~------

REMOTE ENTRY SERVICES

3.6.3 LlSTBC Command

Remote operators use LISTBC commands to display
relevant messages in the broadcast data set. A
remote operator can choose whether to display
NOTICE messages, MAIL messages, or both. The
central operator can display partlall of the entire
broadcast data set. (However, when he displays
MAIL messages for a particular terminal, these
messages are not deleted, as they are when displayed
by the operator of that terminal.)

3.6 CENTRAL OPERATIONS

3.6.1 Generating RES

During OS IV IF4 system generation, various RES
parameters and options are defined, including
attributes for each terminal which are stored in the
system parameters library (SYS 1.PARMLIB) . Using
the ACCOUNT utility program, each installation
defines the system broadcast (SYSl.BRODCAST)
and user attributes data sets (SYSl.UADS).

3.6.2 Starting and Stopping RES

The central operator starts RES with a START com­
mand after initiating VT AM. Terminals can
thereafter access this system until the central opera­
tor issues a STOP command to RES, which takes
effect after all RES readers and writers conclude
their current activities.

3.6.3 Creation and MaIntenance of RES System
Data Sets
The central operator issues ACCOUNT commands
followed by various commands to creat, display, and
maintain elements of the SYS1.BRODCAST and
SYSl.UADS data sets. The commands available are
as follows:

ADD command
• Enters the identification for a new terminal.
• Adds passwords and LOGON procedure names to

existing terminals .

CHANGE command
• Changes attributes for an existing terminal.

DELETE command
• Deletes a terminal identification.
• Deletes passwords and LOGON procedure names,

either for a specific terminal or for all terminals.

CONTROL PROGRAM

LIST command
• Lists terminal identifications, passwords, and

LOGON procedure names for the entire
SYSl.UADS data set.

• List passwords and LOGON procedure names for
a particular terminal.

• List all terminals using a specific password, and
corresponding LOGON procedure names.

• List all terminals using a specific LOGON pro­
cedure name, and corresponding passwords.

LISTIDS command
• Lists all terminal identifications in SYS1.UADS.

SYNC command
• Create a new SYS 1.BRODCAST data set based on

the information in SYSl.UADS.

END command
• Last command of a sequence following

ACCOUNT.

3.7' RES COMMANDS

A remote operator can inquire about the status of
the central installation as well as send it messages
and define how jobs are to be entered and <processed.
Certain central-site commands are not authorized
for remote operators, such, as START, HALT, and
MOUNT. Likewise, certain RES commands are
appropriate primarily for remote operators:

• LISTBC.
• LOGON.

112

• LOGOFF.
• ROUTE (also useful to central operator).
• SEND (also useful to central operator) .

Table 3.1 OS IV/F4 operator commands

OS IV/F4 OS IV/F4

Command command. RES command

nama with RES commands only for
paramaters central

operators

START X
STOP X X
CANCEL X X
HOLD X X
HALT X
RELEASE X X
RESET X X
DISPLAY X X
REPLY X X
MOUNT X
UNLOAD X
VARY X
SET X
MODIFY X
WRITER X X
LOGON & LOGOFF X
WRITELOG X
SWITCH X
MONITOR X X
STOPMN X X
MSGRT X
CONTROL X
SWAP X
DUMP X
L1STBC X X
LOGON X X
LOGOFF X X
ROUTE X X
SEND X X

CHAPTER 4 DATA MANAGEMENT

4.1 OUTLINE OF DATA MANAGEMENT

With the diverse expansion of computer applications
and development of more powerful computer
systems, I/O units are being treated as common
resources of a computer system separated from any
specific processing programs. As a result, there is a
need for common control of read/write operations
performed by I/O units. The term dat~ manage­
ment is used to collectively denote these control
programs. Data management programS, together
with job, task, and recovery management programs
constitute the OS IV /F4 control program.

The main functions of data management are given
below:
• Control the generations of data sets (a named set

of related records) .
• Blocking/deblocking records.
• Processing of volume/data set labels.
• Detect and process operation errors of I/O units.
• Minimize reprogramming because of changed

110 units.
• Centralized control over the location of data sets.
• Allocation of direct access storage device (DASD)

area
• DASD protection.
• Exclusive control over data sets.
• Processing of data sets witll various organizations.

Several categories of input/output devices may be
controlled by the data management facilities of the
operating system as follows:
• magnetic tape device.
• direct access storage device (disk pack device,

magnetic drum device).
• unit record device (!jne printer, card reader, card

punch, paper tape reader and paper tape punch).

An illustration of the different capabilities of the
data management system are depicted in Fig. 4.1.

The indexed sequential access method (IS AM} ,
which is widely used on third-generation systems, is
processed in OS IV /F4 by the virtual storage access
method (VSAM) . VSAM is provided with an ISAM

Data management i/o support

Spece allocation

~talog manegement

Password protection

Sequential access method (SAM)

Partitioned access method (PAM)

Diract access method (DAM)

Fig. 4.1 Data management system

interface routine which is transparent to the ISAM
application programmer. For ~ description of this
capability see Chapter 5, Part 2 of this manual.

4.1.1 I/O Units

The main specifications of the 4 types of storage
devices are given in the Tables 4.1 to 4.6.

Table 4.1 Magnetic tape device spedfications

~
Recording Transfer

Device density Tracks speed
name (BPI) (KB/sac.)

F610Al 1600 9 320
F610Al 900/1600 9 160/320
F610A] 556/800 7 111/160

F6t1A 1600/6250 9 200/781
F6ttE 800/1600 9 100/200

CONTROL PROGRAM

Table 4.2 DASD specifications

• KL=langth of each key fiald
• D L =Iength of each data field

~
Total block length (including inter

Device Tracks/ No. of
Max. track Volume

Devi capacity capacity and interblock gaps)
name type cylinder cylinders

(bytes) (megabytes) Keyd blocks Unkeyed blocks

F479B Ramovable
19 808 13,030 200 191+KL+DL 135+DL

Disk drive pecks

F4785 Removable
19 404 13,030 100 191+KL+DL 135+DL

Disk drive packs

F6625A
Fixed·head 8 126

Drum
14,660 15 289+KL+DL 198+DL

Table 4.3 Line printer specifications

~ Alphabet size Print speed
Print positions Remarks Devica (charactsrs)

narne

48
F650D

108

16
F651D

62

19
F651E

109

36
F649A

62

19
F649B

109

- Under switch control

Table 4.4 Cud reader specifications

~
ttribut.

Device
nlWTle

F668D

F671D

F670B

Reading
.peed

(cards/min)

2000

1250

600

Table 4.5 Cud punch specifICAtion

~
ttribut.

Device
name

F690D

F6888

114

Punching
.peed

(card./min)

250

91

l!ines/minuts)

,
,

",

.

Remarks

Mark reeding
mechanism
optional

Mark raeding
mechanism
optional

Remarks

2,000

1,060

2,400

800

1,600

800

900

630

900

370

Printing mechanism
and punch/reed
mechanism are
optional

150 optional
132/136-

positions

Without Kana
132/136-

alphabet

With Kana
132/136-

alphabet

Without Kana
136

alphabet

With Kana
136

alphabet

Table 4.6 Paper tape specifications

~
Reading/

Device Type punching Remarks
name speed

(ch/sac.)

F749F Read 600/1200 6/8 channels,
fixed

F749D Read 300/600 6/8 channels
selectable

F766A Punch 200 6/8 channels
selectable

4.2 PROGRAMS AND DATA SETS

The work involved in programming is considerably
reduced because of the data management
capabilities of the as IV IF4 operating system. Data
storage and retrieval is handled easily by data man­
agement programs. In addition, the necessary
parameters for transferring data between memory
and an external storage device need not be provided
until the time of program execution. This feature,

called device independence, permits the program­
mer to use different storage devices without making
permanent program changes.

4.2.1 linkage Between Programs and Data Sets

Before the programmer can process any data sets, he
must first provide the control program with detailed
parameters required for storing and retrieving the
data. This set of control information is referred to as
a data control block (DCB). The DCB is initially
constructed in the processing program by a DCB
macro instruction. Specifications which can be
defined in a DCB macro instruction are data set
organizational format, block length, etc. However,
the DCB constructed through a DCB macro instruc­
tion usually contains only a part of the parameters
that is required for the processing of a data set. The
other sources available to complete the content of
the DCB at execution time are:
• DD job control statement

Information not defined in a DCB macro instruc­
tion may be coded in the DCB parameter of the
DD job control statement.

• Data set label
During the opening of an existing data set, infor­
mation in the data set label is read and stored in
the DCB area of the program.

• Modification through DCB exit
DCB information may also be provided by default
options assumed in the OPEN macro instruction
and by the user program with the DCBD macro
instruction or a DCB exit routine.

Fig. 4.2 illustrates the linkage between programs
and data sets.

User's program

Macro instruction

DeB Data-set
name

DeB
DO Data-set

name name

DO statement
(job control statement)

Fig. 4.2 Linkage between ptogram and data aetS"

DATA MANAGEMENT

4.3 VOLU MES AND DATA SETS

As stated previously, the following 110 units can be
utilized in an application program operating under
the OS IV /F4 system:
• Magnetic tape device
• Direct access storage device (magnetic disk, mag­

netic drum)
• Unit-record device (line printer, card reader; card

punch, paper tape reader and paper tape punch)

The medium onto which data is recorded by a
magnetic tape unit and direct access unit is called a
volume. The concept of a volume is not applicable to
other devices, such as the unit-record device, dis­
play unit, and special I/O units. The volumes associ­
ated with a magnetic tape unit and direct access unit
are called a magnetic tape volume and direct access
volume respectively. A volume may contain multi­
ple data sets, or a single data set may extend to 2 or
more volumes.

4.3.1 Volumes

The media unit for magnetic tape (reet) or direct
access storage (pack) is called a volume. Volumes
may be described in terms of data sets, operating
mode, access mode and management mode.

The following relationships may exist between
volumes and data sets:
• single data set/single volume.
• single data set/multiple volumes.
• multiple data sets/single volume.
• multiple data sets/multiple volume.

Volumes can be classified into the according to
operating mode:
• Private volumes

Volumes reserved for specific jo bs only.
• Public volumes

Volumes that may be used commonly by any
number of jobs.

• Storage volumes
Same as public volumes, but which are
demounted after their last use in a job step.

• Scratch volumes
Magnetic tape volumes which are used when a
nonspecific volume request is made and the data
set is temporary.

Volumes can be classified into the following types
according to access mode:
• Random access volumes

These are volumes onto which records may be
read or written without consideration of sequenc­
ing. These volumes can only reside on DASD
devices.

CONTROL PROGRAM

• Sequentiai access volumes
The read/write operations must be performed
sequentially within the data set starting at the
beginning (tape volumes may be read in reverse
starting at the end) .

Volumes can be classified as follows according to
management mode:
• Standard volumes

These are volumes having established manage­
ment mode and recording formats for data sets.
This type of volume can receive the services
offered by the data management program.

• Non-standard volumes
These are volumes having no fixed mode of man-

1. record 1 record 1 record

LlblOCk--l

Fig. 4.3 Unblocked records

I.
1 block with 3 reoords/block

Fig. 4.4 Blocked records

Record processing area

Records
Buffer area

....
Record Record

Write
operation

agement or no fixed recording formats for data
sets. The data sets can have formats which can
freely be altered by the user according to his
needs.

4.3.2 Data Sets

A data set is defined as a named collection of re­
lated data for processing by a computer. It is com­
posed of records, a single record being the unit of
data for processing by a computer program.

Records and blocks
The unit of data physically recorded on an I/O

Record

1 record

.Main
storage
blocking

1 record

SL~I~:R:e:co:r:d===:R:ec~o:rd=:. :1 =:R:e:co:r:d=;,l.=?~! :R:e:co=r:d=~~~:R:e~co~r:d==:R:e:co=rd';!=I~=I==--) ~=etic
.. , J

"""'" or:r:~on .-•.• ,
'"

y ' "

Record Record Record

--- , ~ :--.k--
Buffer area Record

Record procesSing araa

FiJ. 4.5 Blocking and debloclcing

116

Main
storage
deblocking

device is called a block. When two or more records
are included in one block, the records are said to be
blocked. The number of records which constitute
one block is called the blocking factor. When each
record occupies an entire block, it is called an
unblocked record. Fig. 4.3 and 4.4 illustrate the con­
cept of records and blocks.

The process of concatenating records into 1 block
for transfer to a storage medium is called blocking.

Conversely, the process of transferring one record
at a time from the blocks on the recording medium
to main storage is called deblocking.
Fig. 4.5 illustrates the concept of blQcking and
deblocking by using a magnetic tape example.

Record format
There are four kinds of record format depending on
whether the length of the records in the data set are
fixed or not. All the records in each data set must
have the same format.
• Fixed length record (F-format)

Records with this format have equal length .
• Variable length records (V -format) •

Records of different length contained in a single
data set are called variable length records. The
length of each record is contained in a record
descriptor word (RDW) at the beginning of the
record. Similarly, the length of each block: is con­
tained in a block descriptor word (BDW) at the
beginning of the block. Fig. 4.6 indicates the rela­
tionship of a variable length record to a block.

I~
.' ,,,
'-:, \ Block--~

BOW 1 ROW I record

Fig.4.6 V·format record

DATA MANAGEMENT

• Variable spanned records (VS-format)
Variable spanned records are records whose
length is greater than the length of their block.
Fig. 4.7 depicts the variable length spanned record
format.

• Spanned records are divided into units called seg­
ments. A word (segment description word) con­
taining the length of a record segment is located at
the beginning of the record. Multiple segments
may constitute one record; therefore, the total
record length can exceed the maximum block
length (maximum 32,760 bytes) .

• Undefined length record (U-format)
Undefined length records cannot be classified in
any of the above categories: F-format, V-format,
or VS-format. Undefined length records may not
be blocked under data management control. In
addition, these records do not contain any indica­
tor of record length. Thus the user must perform
all blocking and deblocking within the program
without the aid of data management processing.
Fig. 4.8 shows the record to block relationship for
U·format records.

~ 11 Record ~ Record 11 Record [1 Record I)

I. Block I
Fig. 4.8 UndefUled length records

Control character
A control character is the specification made at the
beginning of a record to indicate a carriage control
channel when the data set is printed or for stacker
selection control when the data set is punched.

Although the character is part of the record in
storage, it is never printed or punched. However, it
does require a one-byte space in the buffer area.
Therefore, the determination of buffer size should

1------1 record-----/

Fig. 4.7 VS·format record

CONTROL PROGRAM

include this control character space requirement. If
the immediate destination of the record is a device,
such as a disk, the does not recognize the control
character, the system assumes that the control
character is the first byte of the data portion of the
record. If the destination of the record is a printer or
punch and the user has not indicated the pres­
ence of a control character, the system regards the
control character as the first byte of data.

4.3.3 Magnetic Tape Volume.

Because data sets on magnetic-tape devices must be
organized sequentially, the operating system does
not require space allocation procedures comparable
to those for direct access devices. When a new data
set is to be placed on a magnetic-tape volume, the
user must specify the data set sequence number if it
is not the first data set on the reel. The operating
system positions a volume with standard labels,
American National Standard labels, or no labels so
that the data set can be read or written. If the data set
has nonstandard labels, provisions for volume posi­
tioning must be made in nonstandard label process­
ing routines in the user program. All data sets stored
on a given magnetic tape volume must be recorded
in the same density.

Each data set and each data set label group on
magnetic tape that is to be processed by the operat­
ing system must be followed by a tape mark (see Fig.
4.9). Tapemarks cannot exist within a data set.
When the operating system is used to create a tape

with standard labels or no labels, all tape marks are
automatically written. Two tapemarks are written
after the last trailer label group on a volume to indi­
cate the last data set on the volume. On an unlabeled
volume, the two tape marks are written after the last
data set.

When the operating system is used to create a tape
data set with nonstandard labels, the delimiting
tapemarks are not written.

If the data set is to be retrieved by the operating
system, those tape marks must be written by the
user's nonstandard label processing routine. Other­
wise, tapemarks are not required after nonstandard
labels since positioning of the tape volumes must be
handled by installation routines.

Tape mark ----'---........

Load point End point

Fig. 4.9 Data seta on magnetic tape volumes

. Types of label format
The types of labels which can be processed on mag­
netic tapes are stated below:
• Standard label.
• ANSI label.
• Standard user label.
• Non-standard label and no label.

LABELS Standard labels (SL) 1 Standard
volume
label

Standard
data set
labels

--....- Header label
L Trailer label

118

ANSI labels (AL)

L:o~~~e
label

ANSI data --,-- Haader label
set labels L Trailer label

Standard user L User's
labels (SULI header

label

User's trailer
label

Non-standard label (NSL)

No label (N LI

Fig. 4.10 Summary of label types

DATA MANAGEMENT

(el Single deta set/single volume

(b) Single data set/multiple volumes (First volume and last volume)

U,;a:, ,'l' =' V=~=l~II=HO=1 R~I =' H=~=R~I B=-~' -====-=-=--D=-a=t_a=s_e=t-=j~,t:=========I...'::1 E=~=v~I'=EO=2 v=I--=~~· ~ IT] EJ ~ rn
(el Multiple data sets/single volume

(dl Multiple deta setsfmultiple volumes

~> rrJ°F ~OF 0' EJDR mOR ~'" 0 t ;~ 1 2 , 1 2 , ata se
~$:. ':'.,

GHroV] fEoVl FA,"',', fl,:
11J ~L2J LJU

Fig. 4.11 Standard label configuration of magnetic tape

Each of the above types can be further classified
into volume labels which identify the volume and
indicate the attributes of the volume, and data set
labels which identify data sets and indicate the
attributes of data sets contained in their respective
volumes. Fig, 4.10 illustrates the entire label system
adopted here.

Standard label format
The labels commonly produced and processed by
data management are called standard labels.

The standard label configuration depends on the
data sets contained in the volume. The possible
combinations are depicted in Fig. 4.11.
• Standard volume label

The standard volume label (VOLl) occupies the
initial data block of the volume and has a block
length of 80 bytes. It contains the attributes of that
volume such as the volume serial number,
owner's name, and so on.

• Standard data set label
Standard data set labels exist as a special initial
data set preceding the user's data set and a special
end data set following the user's data set. The
initial label is called the header label (HDR) and
the label following the user's data set is called the
trailer label (EOF). The EOF may be of two types:
trailer label for a volume with one data set, and
trailer label for multiple volumes with one data
set.

The system of standard data set labels is shown
in Fig. 4.12 .

Standard data set labels

~Header label -- HDR1, HOR2

LTrailer labals L EOF 1, EOF2 multiple volumes
with one data set

EOF1, EOF2 volume with one data set

Fig. 4.12 Summary of standard data set labels

Non-standard labels and No label
• Non-standard labels

Non-standard labels require special processing by
the user program. Its contents are optional and
may include items like: number of data sets, data
set arrangement, or number of tape marks, tape
mark position, and so on. Its contents iocluQing
the position of check-head, etc. is the respon­
sibility of the user .

• No label
This type refers to volumes with absolutely no
labels at all. The tape contains only data sets and
tape marks. Therefore, all data set information
must be contained in the DD statement or DCB
for the data set.

The data on magnetic tape volumes <!an be in
either EBCDIC or ASCII. ASCII is a seven bit code
consisting of 128 characters. It permits data on mag­
netic tape to be transferred from one computer to

http:Fig.4.12

CONTROL PROGRAM

another even though the two computers may be pro­
ducts of different manufacturers.

Data management support of ASCII and of Amer­
ican National Standard tape labels is such that data
management can translate records on input tapes in
ASCII into EBCDIC for internal processing and
translate the EBCDIC back into ASCII for output.
Records on such input tapes may be sorted into
ASCII collating sequence.

4.3.4 Direct Acce •• Volume.

Direct access volumes are used to store executable
programs, including the operating system itself.
Direct access storage is also used for data and for
temporary working storage. One direct access
storage volume may be used for many different data
sets, and space on it may be reallocated and reused .

... ~

~ 1:1
:s 1:1

"tl

~ 1:1 E
~ "tl

i ~ ::I 4i
;;: ., E

QI E E ::J ~ -e ::J ~
0 0 co "tl 0 ..
X 0 0 « u 0

A volume table of contents (VTOC) is used to
account for each data set and available space on the
volume!

Each direct access volume is identified by a
volume label, which is stored in track 0 of cylinder O.
The user may specify up to seven additional labels,
located after the standard volume label, for further
identification.

The VTOC is a data set consisting of data set con­
trol blocks (DSCBs) that describe the contents of
the direct access volume. The VTOC can contain
seven kinds of DSCBs, each with a different purpose
and a different format.

Each direct access volume is initialized by a utility
program before being used on the system. The
initialization program generates the volume label
and constructs the table of contents.

When a data set is to be stored on a direct access
volume, the user must supply the operating system

...,
~ ~
~ '" 1:1 E E

~
1:1

'" .. 4i
'" Ie ;;: .. C -e -e ::J !l

1:1 "tl 0 .. « « u 0

IT'Kk_"J R'~d'~ LR'~'d"
record (RO)

.. c
i ~ ... 1:1 ~ 1:1

1:1 a; 1:1 E a;
i ;;: 4i tit ;;:
QI .. ;;: s ..
~

c: '" -e c:
::J .. & 0 .. 1:1

x 0 0 « 0

1 track
With count data format

... ..
~
~

~ 1:1 E
4i ..

:! ;;: ~
>- ~ 1:1 .. co :.¥ lao(0

..
4>
~
'" E 1:1

~ ..
;
o

1- I Track descriptor R_'d'~
record (RO)

1----------------1 track----------------!

With count·kay-data format

Fig. 4.13 Track rormats

120

with the amount of space to be allocated to the data
set, expressed in blocks, tracks, or cylinders. Space
allocation can be independent of device type if the
request is expressed in blocks. If the request is made
in tracks or cylinders, the user must be aware of such
device considerations as cylinder capacity and track
size.

Track format
Information is recorded on all direct access volumes
in a standard format. In addition to device data, each
track contains a track descriptor record (capacity
record or RO) and data records.

As shown in Fig. 4.13, there are two possible data
record formats - count-data and count-key
data-only one of which can be used for a particular
data set.

In addition to device data, the count area contains
eight bytes that identify the location of the record by
cylinder, head, and record numbers, its key length
(0 if no keys are used), and its data length.

If the records are written with keys, the key area
(I to 255 bytes) contains a record key ·that specifies
the data record by part number, account number,
sequence number, or some other identifier. In some
cases, records are written with keys so that they can
be located quickly.

DASD structure
Direct access volumes served by the data manage­
ment program are composed of IPL records (1, 2),

IPL record 1

~l.o}raCkO
ata-set area

~

Alternate track

Fig. 4.14 Structure of direct access volume

DATA MANAGEMENT

volume label, VTOC (volume table of contents) and
data sets.

Fig. 4.14 below shows the structure of a direct
access volume.
Initial program loader (IPU records
IPL records (1, 2) consist of an eight byte count
field, four byte key field, and data field.

The data field is 24 bytes long. The IPL records for
the system volume (volume on which the operating
system resides) contains a program to load the con­
trol program into main storage.

Volume label
This label indicates the overall attributes of the
volume (volume serial number, owner's name,
VTOC address, etc.). This information is placed in
the volume label at the time of its initialization. The
volume label and IPL records are located at cylinder-
0, track-O.

VTOC
The VTOC (volume table of contents) consists of
tables containing device information, data set
characteristics and other control information. Each
of these tables is called a DSCB (data set control
block) . Each data set on a direct-access volume has
one or more DSCBs to describe its characteristics.
The DSCB is 140 bytes, consisting of a 44 byte key
and a 96 byte data portion.

There are seven types of DSCB according to
usage, as given below:
• DSCBO
• DSCBl
• DSCB2
• DSCB3
• DSCB4
• DSCB5
• DSCB6

After initialization, the relationship between the
volume label and VTOC are as shown in Fig. 4.15 .

To accomodate various categories of information
about the volume and the data sets on it, the 140
byte blocks are formatted in different ways. DSCB
formats 1 through 4 are designed for data set infor­
mation; DSCB formats 5 and 6 describe the avail~ble
or shared space.

A single DSCB4 is located at the beginning of the
VTOC. It is followed by at least one DSCB5. If there
are any more DSCB5, they are chained from the first
DSCB5.

If there are any DSCB6s, they are chained from
the DSCB4. For every data set on the volume there
is a DSCB4. A DSCB2 would also normally be used
for data sets with index sequential organization,
however, since OS IV IF4 does not support ISAM,
reference to DSCB2 is possible only to allow for
compatibility. DSCB's are found by using a search
(equal) command with an argument of the
DSNAME operand; they are not chained to one

CONTROL PROGRAM

another nor to the DSCB4. If the data set has more
than three extents, a DSCB3 is chained from the
DSCBl.

User labels, if used, occupy the first extent de-

Volume label

- Address of VTOC I

VTOC

OSC84 l OSCB5

Blank are8 filled with OSCBO

scribed by DSCBl. This extent, a separate one for
each data set, is one track long; the labels from 80
byte data segments.

These characteristics are summarized in Table 4.7.

J Cylinder 0,
track 0

J Size is specified in track units,
at the time of initialization

Note : VTOC area consists of 'n' tracks which form one continuous EXTENT. Its position
is kept recorded in the volumi label, the position of the VTOC can be anywhere on
the OASO

FIi- 4.15 Volume label and V'tOC

Table 4.7 Characteristics of DSCB

OSCB
Cond itions for existenca

Chaining to other OSCB' Main contents

1 One OSCB is always constructed for each To OSCB3 when the number Describes the
data set . In addition, one is prepared for of EXTENTS is greater than 3. attributes up to three
each volume in the case of a multivolume To OSCB2 in the case of IS extents of a data set.
data set. organizat ion .

2 One OSCB required in the index area of a To OS CB3 when the number Characteristics of IS
volume when the data set is of EXTENTS is greater than 3. organ ization data sets.
characteristics of IS organization.

3 One OSCB is constructed when the data None Describes remaining
set has more than 3 EXTENTS. EXTENTS in the data

set; up to 13 edditional
EXTENTS.

4 One DSCB is prepared at the time of To DSCB6 when a shared Describes the VTOC
volume initialization. cylinder allocation is made. data set.

5 One OSCB is prepared at the time of To the next OSCB5 when the Describes the amounts
VOlume initialization. More than one unused EXTENTS on the of unused area of the
may be constructed as needed. volume exceed 26. volume.

S One DSCB is constructed for shared To next DSCBS when shared Describes the extent
cylinder allocation. EXTENTS exceed 26. of space that are being

shared by two or more
data sets.

0 These are the unused areas in the None Binary zeros.
VTOC. They are filled with binary Th is is available VTOC
zeros. space.

The OSeB pointer process is depicted in Fig. 4.16.

122

DATA MANAGEMENT

r--1 Volume label I
VTOC

/

Description
of device
and volume

'--- DSCB4 f----

! / ;1 5

DSCB5 1,5 /

Available
VTOC space

Description
of data set

~

t:JJ
I 1

DSCB1

, -,

-

'---

•

.. I

I / 6
6

DSCB6

f--

r--

I
3

DSCB3

r--

Description
of up to 26
available
extents

Description
of up to 26
shared
cylinders

Description
of 4th-16th
extents

~ User label ~
• Split cylinder cOntained in a volume

If over 3 EXTENTS exist for a data set
..... If user label exists. It may be used only with ohysical sequential

or direct organization data sets

Fig. 4.16 DSCB concatenation

Record format and block format
Record and block formats on a direct access volume
which can be handled by the data management pro­
gram are given below.
• Fixed length records/unblocked.
• Fixed length records/blocked.
• Variable length records/unblocked.
• Variable length records/blocked;
• Variable spanned records/unblocked.
• Variable spanned records/blocked.
• Undefmed length records.

Organization of data sets
The data management program can process datta
sets with the following organizations:
• Physical sequential organization (PS).
• Partitioned organization (PO).
• Direct organization (DO) .

For the specific format of data sets, refer to the
respective access method (see data set access
method, Section 4.6).

Error track
At the time of initialization by a system utility pro­
gram, a read/write check is made to identify normal
tracks and any error tracks. If an error track is
detected, an error procedure is followed which per­
mits the direct access volume to be used while com­
pensating for the error track. The action taken
depends on the device type.
• Disk pack device

If an error is detected on a track of a disk pack at
the time of initialization, it is linked with some
other track (alternate track) _ This linkage makes it
possible for the channel control program (EXCP)
to access the auxiliary track during a read/write
operation.

• Magnetic Drum Unit
If an error track is detected on this unit at the time
of initialization, the head is shifted to a spare track
using hardware functions instead of linking the
error track to an auxiliary track by a system utility.

CONTROL PROGRAM

These procedures make the processing of error
tracks transparent to the user. That is, the user need
not be worried about error tracks during program
operation.

4.4 INPUT IOUTPUT

I/O support is the center of the data management
program. It supports I/O operations by providing
procedures which allow for different access methods
(SAM, PAM, DAM). The fuction of 1/0 support
can be readily classified into the following:
• Open function . .. Essential preprocessing per­

formed before actually accessing the data sets.
• Close fuction ... Postprocessing of data sets.
• EOV IEOD function .. . Processing at the end of a

volume or data set.

In addition to processing associated with specific
access methods, there are some basic operations car­
ried ou t by I/O support which are common to all
access methods. Fig. 4.17 indicates the position
occupied by I/O support relative to other data man-
agement facilities. .

4.4.1 Opttn Function

When a program is assembled, the various data man­
agement routines required for I/O operations are not
completely assembled until the DCBs are initialized
for execution. To accomplish initialization an OPEN
macro instruction must be issued. After all DCBs
have been completed, the system ensures that all
required access method routines are loaded and
ready for use and that all channel word lists and
buffer areas are ready.

The DCB information is collected and structured
by merging together DCB data from the user's pro­
gram, DO statement and data set label.

An explanation of the DCB merging steps
depicted in Fig. 4.18 is:
• Prepare DCB by issuing DCB macro instruction.
• Store DCB information from the DO statement

into JFCB Gob file control block) on DASD.
• Store the information given in data set label of the

input data set into a JFCB field that had not
already been filled.

• Store DCB data contained in JFCB into the corres­
ponding field of DCB that had not already been
filled.

• Make modifications in the contents of the DCB by
making use of a DCB merge exit routine.

• If the data set to be processed is opened for output
the DCB data is stored in the JFCB.

• If the data set to be processed is opened for output
a data set label is also prepared.

124

u
o

• DADSM: Direct access device space management

Fig. 4.17 Position of I/O support in data management

DeB macro instruction in user program

DO statement

/I OCB 00

merging DCB information

®
OCB merging

exit

uOuO
Output data set I nput data set

JFCB : Job file control block

Fig. 4.18 DCB merging

4.4.2 Clos. Function

When I/O operations for a data set are completed,
the user should issue a CLOSE macro instruction to
return the DCB to its original status, handle volume
disposition, create data set labels, complete writing
of queued output buffers, and free virtual and aux-
iliary storage. .

Specifically, the following actions may be per­
formed by data management during the execution of
the CLOSE macro instruction:
• Data .set labels (trailer label) are constructed for

magnetic tape volumes. For direct access

http:Fig.4.18

volumes, modification of information in the data
set label (DSCBI) is completed.

• Positioning of magnetic tape volumes is carried
out by specifying a parameter in the CLOSE macro
instruction or through DISP parameters in the DD
statement.

• After a data set has been closed, the DCB can be
used for another data set. It can also be used for
the same data set after any appropriate parameters
have been changed. For example, a data set can be
used as an output data set and then as an input
data set during the same job step.

• A request for release of unused space to space
management can be made if such a release of
unused DASD spaces had not been indicated
through the SPACE parameter in a DO statement
(i.e., RLSE had not been specified as a SPACE
parameter) .

4.4.3 EOF/EOD Function

The EOV (end of volume)/EOD (end of data set)
functions pass control automatically to the data man­
agement routines when the end of volu'me/end of
data set conditions are indicated.
• EOV function

When end of a volume (EOV1, 2) is detected
while processing an input data set, the data man­
agement routine switches processing to the next
volume.

For an output data set, this data management
function automatically continues the write opera­
tion on another volume of the same type. The out­
put of records is continue~ after preparing a data
set label (EOV1, 2) for the present volume and
another data set label (HDRl, 2) for the next
volume. If no such volume is available, the user's
job is terminated.

• EOD function
This function is applicable only for input process­
ing. When the end of data set is encountered dur­
ing input processing (i.e., when EOFI and EOF2
are reached), control is transferred to the EOD
exit provided in the users program.

4.4.4 Exits to Special Processing Routines

The DCB macro instruction can be used to identify
the location of:
• an end-of-data processing procedure.
• a routine that supplements the operating system's

error recovery routine.
• a list that contains addresses of special exit

routines.

Special processing routines can be provided in the
user's program to perform specific functions such as
label processing, blockcount check, etc. The control

DATA MANAGEMENT

program will transfer control to the user's program
at different processing stages, like OPEN/CLOSE/
EOV etc. depending on parameters set in the DCB
macro instruction.

Setting of exits
The user provides for special processing exits by pre­
paring processing routines and specifying their type
and initial address in the DCB of the application pro­
gram. Control is transferred to the particular pro­
cessing routine at execution time based on this
information.

Fig. 4.19 illustrates the relationship which exists
between the DCB and the special processing
routines.

DCB

EOD EXIT

Exit list L-
SYNAD EXIT

-
Exit list

t--

\L

Address of exit
processing routine

Exit
processing

routine

Exit
processing

routine

Fig. 4.19 Relationship between DCB and exit processing

Types of exits
Table 4-8 summarizes the exits that can be specified
implicitly by providing the address of an exit list in
the DCB.

4.6 BUFFER MANAGEMENT

The operating system provides several methods of
buffer acquisition and control. Each buffer (virtual­
storage area used for intermediate storage of input/
output data) usually corresponds in length to the
size of a block in the data set being processed. When
using the queued access technique, any reference to
a buffer actually refers to the next record (buffer
segment).

The user can assign more than one buffer to a data
set by associating the buffer with a buffer pool. A
buffer pool must be constructed in a virtual storage
area allocated for a given number of buffers of a
given length. A buffer pool consists of a BCB (buffer
control block) which shows its characteristics and an
optional number of buffers. (See Fig. 4.20 below) .

CONTROL PROGRAM

BCB ~BUFAD 1 BUFNO I BUFL

1\ : -r------- J
Buffer 1

BUFAD: Conte ins the address of an
empty buffer (4 bytes)

fJr---,-------.., BU FNO: Indicates the number of buffers

"(\ _____ J included in the buffer pool.

Buffer 2

\
BUFL: Buffer length (2 bytes)

.~-------j
Buffer 3

Fig. 4.20 Structure of buffer pool

Table 4.8 Types of exits and their functions

Typ. of exit routine
Type

Processing and functions
code'

User'. input header 01 Process standerd user input
label header labels

User's output heeder 02 Process standard usar output
label header labels .
User's input trailer 03 Process stnadard user input
label trailer labels

User's output trailer 04 Process standard user output
label trailer labels

DCB merge 05 Process DCB eXits

End of volume 06 Porcessing at the end of a
volume

JFCB 07" Specify storage address
where JFCB is to be
reed·in.

213 ABENO 09" Not provided

User's totalling OA·· Specify the address of
computation totalling computation

Block count OB Processing after unequal
block count comparison
by end of volum.
routine

Input trailer label OC Delay the processing of
delay input trailer label from

the time of EOD
closing time.

Non-standerd 00 Delay the processing of
input trailer non-standard input
label delay trailer label. from the

time of EOD closing
time.

FCB image 10·· Define FCB images when
opening a data set or
issuing a SETPRT mecro.

.A:BEND 11 Process ABEND exits

aSAM parallel 12 Specify the edd ress of
GET PDAB

Last entry item 80 Indicates end of
parameter list

Indicates hexadecimal 1 byte codes
•• Indicates exit processing routine not necessary

126

4.6.1 Reservation and Releasing of Buffer Pools

The number of buffers assigned to a data set should
be a tradeoff against the frequency with which each
buffer is referred. A buffer that is not referred to for
a relatively long period of time may be paged out. If
this were allowed to happen to any considerable
degree, it could result in a greater number of buffers
actually decreasing throughout.

The type of requirement of buffer pool differs as
follows, according to the adopted access method.
eQSAM

A buffer pool is necessary here since buffer man­
agement is carred out by the control program.

eBSAM
Since buffer management is the user's respon­
sibility, in this method a buffer pool is not always
necessary. However, buffer management work
can be simplified by keeping a buffer pool
reserved. Macro instructions may be used to
secure or return buffers.

Reserving of buffer pool
There are three . methods which may be used to
reserve a buffer pool as given below. The user may
select anyone.
e Automatic construction at the time of a data set

open operation.
e Reserving by GETPOOL macro instruction.
e Compiling a buffer pool using a BUILD macro

instruction.

Releasing of buffer pool
The reserved buffer pool can be released by issuing a
FREEPOOL macro instruction. Timing considera­
tions applicable to the FREEPOOL macro instruc­
tion differ with each method of access.
eQSAM

With this access method, the timing issue associ­
ated with the FREEPOOL macro instruction
differs with each buffering method (see Section
4.5.3 Method of Buffering). When using the
queued access technique, a data set must be closed

first. When using exchange buffering, the buffer
pool must not be released until all the data sets
have been closed.

• BSAM/BPAM/BDAM
In this method, FREEPOOL macro instruction
may be issued after all the buffers contained in the
buffer pool are no longer needed.

4.6.2 Acquiring and Returning of Buffers

The method for acquiring and returning buffers to
the buffer pool differs as follows according to the
access method used.
• QSAM

In this method, buffer management is done by the
control program. The control program retrieves
buffers from the buffer pool and assigns them to
channel programs.

• BSAM/BDAM/BPAM
In this method, buffer management is done by the
user. Macro instructions which are provided for
buffer management are GETBUF/FREEBUF.
These macro instructions are useful when multi­
ple DCBs make common use of a buffer.

4.5.3 Method of Buffering

When OSAM is used as the access method, the user
program cannot directly control the buffers. In this
case data management routines control the buffers.
However, the following two buffer control macro
instructions can be used.
• RELSE macro instruction

By issuing this macro instruction, the input buffer
is released and recor!;1s from the next input buffer
can be processed.

DCB

DATA MANAGEMENT

• TRUNC macro instruction
By issuing this macro instruction, the current out­
put buffer is truncated (that is, a short block
length is constructed for output) and additional
records are prepared in the next output buffer.

Two methods of buffering are available to the user
when QSAM is the access method-simple and
exchange. Each of these buffering techniques are
described below.
• Simple buffering

Here, the buffer is divided into small units, called
buffer segments. In simple buffering the buffer
segments are lined up contiguously in the buffer
area. The buffer is allocated to a data set at the
time of opening and is eventually returned back to
the buffer pool when that data set is closed. The
buffer pool, which the control program automat­
ically reserves at the time of a data set opening, is
released upon closing of that data set.

• Exchange buffering
With this method, the buffer segments in the
buffer are not necessarily contiguous in virtual
storage. Moreover, since the buffer segments are
not always associated with the same data set, the
buffer structure does not remain constant.

Generally, in exchange buffering, input data
sets and output data sets share the same buffers.
The transfer of records is eliminated by exchang­
ing input buffer segments with output buffer seg­
ments and/or with a working area of processing
program. In this way the program processing effi­
ciency is improved. The buffer reserved at the
time of a data set opening is not returned back to
its buffer pool. Because some other data sets may
be utilizing a buffer segment within the buffer,
the buffer may not be returned back to its pool
even when the data set is closed. Fig. 4.21 illus­
trates the. simple buffering and exchange buffer­
ing methods.

DCB

lOB

Buffer BS BS BS

Simple buffering Exchange buffering.

lOB: Input output block
BS: Buffer segment
W: Work area

Fig. 4.21 Simple buffering and exchange buffering

http:Fig.4.21

CONTROL PROGRAM

For simple buffering, each record must be
physically moved from an input buffer segment to
an output buffer segment. It can be processed within
either segment or work area.

In exchange buffering, the work area which con­
tains records to be processed can be used as the
buffer area of the processing program (substitute
mode). Thus, there is no need to move the record
for output.

4.8 DATA SET ACCESS METHOD

4.6.1 Access Technique

Two access techniques are available for processing
data sets: queued and basic access. With the queued
technique, data set processing is done in record units
and the blocking/unblockirig of records is carried
out by the data management program. In basic
access technique, data set processing is done in
block units and the blocking/deblocking of records
is performed by the user whenever necessary.

4.8.2 Data Set Organization and Acce •• techni­
que

Different data set organizations can be handled in
combination with the above two access techniques.

Table 4.10 Characteristia of access methods

Sequential organization

Access

Table 4.9 indicates the valid access techniques for
each of the data set organizations.

Table 4.9 Ac:c:ess techniques and data sets

~ technique
Queued Basic

Data set technique technique
organization

Sequential data sets OSAM BSAM

Partitioned data sets QSAM BPAM, BSAM

Direct data sets - BDAM,BSAM

QSAM
BSAM
BPAM
BDAM

Queued Sequential Access Method
Basic Sequential Access Method
Basic Partitioned Access Method
Basic Direct Access Method

4.6.3 Acce •• Method Characteristic.

Characteristics of access methods are shown in
Table 4.10

4.7 PROCESSING A SEQUENTIAL DATA
SET

4.7.1 Structure of a Sequentla' Data Set

A data set proce~sed according to the physical
sequence in which blocks are recorded is called a

Partitioned Direct
organization organization ~ method QSAM BSAM BPAM BDAM

128

Main access macros GET, PUT, PUT)(READ, WRITE READ, WRITE, BLDL READ,WRITE
FIND, STOW, NOTE
POI!'lT

I/O access and program Executed by data CHECK CHECK WAIT,CHECK
synchronization management

progrem

Record format F,V,U,D format F,V,U,D format F ,V,U format F,V,U format

Buffer pool construction BUILDRCB, BUILD BUILD, BUI LD, GETPOOL. BUILD,
method and macros used GETPOOL. GETPOOL. Constructed GETPOOl.
for it Constructed Constructed automatically upon Construced

automatically upon automatically opening- automatically
opening upon opening- upon opening-

Buffering method and RELSE, TRUNCH. GETBUT/ GETBUF/FREEBUF GETBUFI
buffering macros used Simple/exchange FREEBUF FREEBUF/

buffering FREeDBUF
automatically
conducted by
system

.
Transfer mode Shift, data positioning
(work area - buffer) or substitute mode - - -

- Buffer pools are automatically reserved during OPEN processing by the control program executing the BUILD. BUILDRCD, and­
GETPOOL macro instructions of QSAM.

sequential data set. Data sets on magnetic tape,
paper tape, card and printer equipment are all
sequential. The sequential access method (SAM) is
used to access sequential data sets. Also, data sets
with nonsequential crganization on direct access
devices can often be referenced in sequence with
SAM. See Table 4.11.

Table 4.1 J Sequential data set/device type attributes

1/0 device
namas ~ Magnetic tape unit Direct access unit

Item

Tvpe of volume Multivolume Multivolume

Data set
Max. 255 data sets Max. 255 data sets concatenation

User label Usable Usable

Volume Structure
• Magnetic tape volume

~B~I Block EI Block H Block m)) IJ Block IJ~3
11---------Recording medium-., --- 1

0: IRG

Fig. 4·22 Data sets on magnetic tape volume

Because of its physical characteristics, magnetic
tape volumes can only store sequential data sets.
Refer to Fig. 4.22.

• Direct access volume

EOF is located in the same
track with the final block.

I ~~~~:I ~ ____ __ ____ ___

Q;JO block .

Remaining volume
area

EOF is located in 8 different
block from the final block.

l Initial ----------- --block

~ block

Q
Remaining volume

area

Sign B indicates EOF mark

Fig. 4.23 Data seta on direct access volume

DATA MANAGEMENT

Sequential data sets on direct access volumes are
constructed in the allocated data set area without
requiring any system areas to describe the data set.
At the end of every data set an EOF (end of file)
mark is written. See Fig. 4.23 .

Record fonnat
Data management routines can process sequential
data sets with the following four types of record for­
mats:
• F-format (fixed length record) .
• V-format (variable length record).
• U-format (undefined length record).
• D-format (variable length ASCII record).

Recording formats of unit-record device
The term unit record device is the collective name
given to line printer/card reader/card punch units.
The purpose of each of these units, and the associ­
ated record format/record length which they can
handle is described below .

Line printer unit
The line printer unit can print the following three
types of record formats:
• Fixed length (F-format).
• Undefined length {U-format} .
• Variable length (V-format).

Because each line of print corresponds to one
record, the record length should not exceed the
length of one line on the printer (133 or 136 charac­
ters) . For variable-length spanned records , each line
corresponds to one record segment; the block size
should not exceed the length of one line on the
printer .

Card reader unit
The card reader unit can read the following types of
record formats and character codes respectively.
• Record formats:

- Fixed length (F-format) .
- Undefined length (U-format) .
- Variable length (V-format) .

• Character codes:
- EBCDIC mode.
-Column binary mode.
-Simple EBCDIC mode.

Card punch unit
The card punch unit can punch the following types
of record formats and character codes respectively.
• Record formats:

- Fixed length (F -format).
- Undefined length (U-format) .
- Variable length (V -format) including spanned
records.

• Character codes:
- EBCDIC mode.
-Column binary mode.
-Simple EBCDIC mode.

CONTROL PROGRAM

Paper tape reader unit
The paper tape reader can read the following types of
record formats:
• Fixed length (F-format) .
• Undefined length (U-format) .

'4.7.2 Sequential Acce .. Method

Two types of sequential access methods are available
under data management - QSAM (which provides
vides services at the record level) and BSAM (which
provides services at the block level).

QSAM macro instructions
QSAM is equipped with the following macro instruc­
tions to perform processing in record units:
• GET

Record read-in processing.

• PUT
Record write-out processing.

• PUTX
Record revise processing.

,. RELSE
Move buffer pointer to the next input' buffer,
ignoring the remainder of the present buffer.

• TRUNC
Write a short block on the recording medium,
ignoring 'the remainder of the present buffer,

• BUILD
Prepare a buffer pool.

• BUILDRCD
Reserve a buffer pool and record area.

The GET /PUT macro instructions have four main
variations according to the user's program work area
and the method of data transfer between 110
buffers.
• Move mode

Commands of this mode shift data between the
user's program work area and 110 buffers are de­
scribed in Fig. 4.24.

• Data mode
This mode is available to handle variable length
spanned records. If this mode is used for input,
only the data portion of the variable length span­
ned record& from the input buffer (that is the

Input buffer

, ,

Ou tput buffer

\\ GET macro '- \ PUT macro

Fig. 4.24 GET/PUT macro instructions with move mode

130

record portion excluding BDW and SDW) is
transferred to the user's program work area. Dur­
ing output, this mode allows data from the user's
program work area to be segmented and subse­
quently the record segments sent to the output
buffer after having added BDW and SDW to the
beginning of each record segment. Fig. 4.25
illustrates the movement of data after issuing
GET/PUT macro instruction with the data mode.

I nput buffer Input buffer

,
,

, , ,

Work area

Work area

B S Record S Record
o 0 segment 0 segment
W W W

Output buffer

B S
o 0
W W

Record
segment

PUT macro

Output buffer

Fig. 4.25 GET/PUT macro instructions with data mode

• Locate mode
When 110 macro instructions with the locate
mode are used, a record work area is not neces­
sary in the user's program. The I/O itself is used
as the 'work area, The user's program determines
the address of the I/O buffer from a general-pur­
pose register. ,Fig. 4.26 indicates how the I/O
buffer is pointed to after issuing a GET/PUT
macro instruction with locate mode.

Input buffer

I R~rd\ "'l Record ,
This address is returned in
general purpose register 1

Output buffer

Input buffer

I' Record Record J
GET macro instruction
(locate model

Output buffer

" 'R~~:.>l Record I. I Record I
I

Record

This address is returned in
general purpose register 1

PUT macro instruction
(locate model

Fig.4.26 GET/pUT macro instructiona with locate mode

- Substitute mode
In this mode, the addresses of the I/O buffer and
the work area in the user's program are inter­
changed in general purpose register 1. No transfer
of data is performed. Fig. 4.27 illustrates the
interchange of the I/O buffer address and the
work area address after issuing a GET/PUT macro
instruction with substitute mode.

I I ~ Before issuing GET
Input buffer R 1 R2 R3 ~ macro instruction

Input bUffer! W R2 R3

This address found in general
purpose register 1.

Output bUffer/ R 1 I R2 I R3

Output bUfferl W R2 R3

This address found in general
purpose register 1.

Work
area

r::l After issuing GET
~ macro instruction
Work
area

Iwl Before.issu ing ~UT
~ macro mstruetlon
Work
area

r-;;l After issuing PUT
L:..:J macro instruction
Work
area

Fig.4.27 GET/PUT macro instruction with ~bstitute mode

Two processing modes of the PUTX macro
instruction can be used in conjunction with a GET
locate macro instruction.
- Update mode

In this mode, records from a data set are read by
the GET macro instruction, processed and then
written out to the same record position from
which it was read. This mode is convenient for
updating data sets.

- Output mode
In this mode, records are read by the GET macro
instruction from one data set, updated and
transferred to a new data set.

BSAM macro instructions
BSAM is equipped with the following macro instruc­
tions to perform data management in block units:
-READ

Block read-in processing.
- WRITE

Block write-out processing.
- CHECK

Check the end of I/O operations of the READ/
WRITE macro instructions.

- BSP
Backspace one block on the magnetic tape or
direct access volume being processed.

-CNTRL
Control of magnetic tape and unit record devices.

- POINT

DATA MANAGEMENT

Position to specified blocks on a volume.
-NOTE

Requests the address of the present block on the
volume.

4.7.3 Optional Functions of the Sequential
Access Method

Functions indepenaent of I/O device type
1) Parallel input processing
QSAM parallel input processing may be used to pro­
cess two or more input data sets concurrently. This
eliminates the need for issuing a separate GET
macro instruction to each DCB processed. The get
routine for parallel input processing selects a DCB
with a ready record and then transfers control to the
normal get routine. If there is no DCB with a ready
record, a multiple WAIT macro instruction is issued.

Parallel input processing provides a logical input
record from a queue of data sets with equal priority.
The function supports QSAM with input processing,
simple buffering, locate or move mode, and fixed,
variable, or undefined length records. Spanned
records, track-overflow records, dummy data sets,
and SYSIN data sets are not supported.

Parallel GET function has been designed to
shorten the waiting time during input processing in
the case where requests for input from multiple data
sets are issued simultaneously. This is accomplished
by extracting records from the data set whose input
is completed earlier.
2) Chained scheduling function
This function accelerates the input/output opera­
tions required for a data set. Prior to completing an
earlier I/O request, a series of separate I/O requests
are issued to the computer system as one continuous
operation. The I/O performance is improved by
reduction in both the CPU time and the channel
start/stop time required to transfer data within vir­
tual storage.
3) User's totalling function
When creating or processing a data set with user
labels, control totals for each volume of the data set
may be developed and stored in the user labels. For
example, a control total that was accumulated as the
data set was created can be stored in the user label
and later compared with the total accumulated dur­
ing processing of the volume. User totaling assists
the programmer by synchronizing the control data
the user creates with records physically written on a
volume. For an output data set without user labels,
the programmer can also develop a control total ·that
will be available to the end-of-volume routine.

I/O device dependent functions
1) Direct search function
This function is used to accelerate input operations
required for a data set on DASD. Direct search reads
in the requested record and the count field of the

CONTROL PROGRAM

second record. This allows the operation to get the
next record directly, along with the count field of the
following record.

2) Check function (write operation)
After a record is transferred from main to secondary
storage, the system reads the stored record (without
transferring data) and verifies that the record was
written correctly.

3) Track overflow function
The amount of used space on a volume can be
reduced by using the track overflow option in the
DD statement or the DCB macro instruction associ­
ated with a data set. A block that does not fit on the
track is partially written on that track and continued
on the next track.

4) RPS function (rotational position sensing)
This function minimizes the channel time spent
waiting for a revolution of the volume on a direct
access unit.

Function unique to magnetic tape units
Data management provides the following' sl?ecial
services:

1) Read back ward function
This function is used to read a magnetic tape back­
wards. In the case of BSAM, several macro instruc­
tions have been provided to position the tape
(POINT /CNTRL macro instructions).

2) Padding function
The possibility of error is higher when writing blocks
on a magnetic tape of very small length. To reduce
this source of error, a funct ion is available to add
padding characters to short blocks and write them
onto magnetic tape.

3) Handling of format-D code data sets
This function is used to convert/reconvert format-D
code data sets (convert format-D codes to
standard EBCDIC codes and vice-versa). A prefix is
added to the data blocks showing the attributes of
the block when the format-D code is used for data
sets.

4) Handling of '-track magnetic tape units
This function is used to perform code conversion
between EBCDIC and BCD data sets. The conver­
sion is done by the magnetic tape unit itself by utiliz­
ing a special hardware mechanism.

5) OS IV /F2 checkpoint record bypass function
Magnetic tape data sets which have been prepared by
a OS IV /F2 system may contain checkpoint records
which are of no use under OS IV /F4 data manage­
ment. Therefore, in data management, OS IV /F2
checkpoint records must be tested and bypassed

132

before proceeding with data set processing.

6) REF function (reduce error recovery)
This function is utilized in the data management
program to control the repetitions of error recovery
processing when an 110 error has occurred during
data transmission. If an error exit is specified in the
DCB macro instruction, the user routine is given
control in the event of an uncorrectable error.

Functions unique to tbe line printer unit
The functions of data management related to control
of the line printer unit are as follows:

1) Line feed control
This function control the advance of the line printer
sheets.

2) Universal character set mechanism
This mechanism enables the processing program to
specify the character type which the line printer can
print.

3) Form control buffer (FCB)
Form Control Buffer has the software specifications
which control skipping of lines when printing is
being done on a line printer unit such as the F650D
or F651D/E.

Functions Unique to tbe Card Punch Unit
Data management provides the following special
services:

1) Specifiable Punching Modes
• EBCDIC mode.
• Digit binary mode.
• Simple EBCDIC mode.

2) Specifiable stacker
The output stacker is program-selectable.

Special data seets
Special services are provided for the following data
sets:

1) SYSIN/SYSOUT data sets
SYSIN/SYSOUT data sets are input/output streams
which are stored on an intermediate storage device
until there is a convenient time for processing.

2) Dummy data sets
By specifying DUMMY in a DD statement it is
possible to carry out a simulated (dummy) process­
ing of data sets. Dummy processing is the apparent
processing performed when an 110 request is
received from the processing program, however no
processing is done.

3) Handling of F690D card puncb unit
This device is equipped with card read, card punch,

and card print functions. The user can select any of
these functions by specifying appropriate parameters
in the DCB of the program. Any combination of the
three functions may be selected.

4.7.4 Volume Switching

If multiple volume data sets are required, automatic
volume switching is accomplished by the end-of­
volume routine.

When an end of volume condition occurs, the pre­
sent volume is automatically closed and the open
operation for the new volume is performed.

Volume switching situations
• Magnetic tape volume

During input when EOF is detected and during
output when the present volume is filled (EOV is
detected).

• Direct access volume
During input when present volume has to be
changed because the EOD is detecte~ on a multi­
volume data set and during output when unused
space on the present volumes makes it impossible
to further allocate space.

Processing of current volume when swtching
• Processing of data set label.
• Check of block count (for input processing of

magnetic tape only).
• Processing of user's label.
• Position processing (for magnetic tape only).
• Space allocation (for direct access volume only).

Processing of new volume when switching
• Check of whether correct volume has been

DATA MANAGEMENT

mounted or not.
• Processing of data set label.
• Processing of user's label.
• End of volume processing for the old volume.

4.8 PARTITIONED DATA SET AND PAR­
TITIONED ACCESS METHOD

A sequential data set can be processed (read, write,
etc.) by specifying its name and volume. All process­
ing must include open and close operations. When
processing multiple sequential data sets, open and
close processing is performed separately for each
data set. Moreover, since the devices for processing
of these data sets may be different for each, process­
ing efficiency can be adversely affected. A degree of
efficiency can be achieved if similar types of data
sets with the same attributes and same general pur­
pose are assembled at one location on the same
device so that a common open/close processing for
the entire group of data sets can be performed col­
lectively. The concept of a partitioned data set has
been developed in order to permit this procedure.
The partitioned access method is used to access to a
partitioned data set.

Constraints imposed on a partitioned data set are
given in Table 4.12.

Table 4.12 Constraints imposed on a partitioned data set

Medium Direct access volume

Volume configuration Single volume

Data-set concatenation Max. up to 255 data sets

User's label Not permitteci

I
Directory

I

I Directory
entry of

member·A
I · 1 m"" ;" ',:. . "':"!t~ .•.• , ' . .• ;.~ Directory I Directory Dlrectory ."'}~.'?f..l ~ .~)~: '{"{'l'.':' .

entry of entry of entry of)' "74:: :Blintc c' .".J'.';'::'";.: .~;
member·C II member·D member-K .' y.... . ,., ,. '. , '.

area

Member
I

area I Member A (

~L-__ ~

Note : Sign" I.. is EOF mark

Fig. 4.28 Structure or a partitioned data set

..

CONTROL PROGRAM

4.8.1 Partitioned Data Set Structure

A partitioned data set residing on a direct access
volume is made up of independent data groups and
data management information related to those data
groups. Each of these data groups is called a mem­
ber; the organization of each member is sequential.
This method of organization is designed to process
similar sequential data sets in a uniform manner.
The space allocated to the members is called the
member area. The portion of the data set which con­
tains information regarding each member is called
the directory.

Fig.4.28 shows the structure of a partitioned data
set.

Structure of the directory
The directory is a data set composed of several data
blocks which are called directory blocks. Each direc­
tory block is composed of several records called
directory entries containing information about
members. An EOF mark follows the last physical
directory block. The structure of directory is shown
in Fig. 4.29.

Some of the information about members, 'which is
contained in the directory entries, includes member
names, initial address (relative track address) of
members, etc. Every directory block contains the
maximum number of directory entries in alphabeti­
cal order of the member names.

4.8.2 Partitioned Acceas Method

The partitioned access method has been developed
for processing partitioned data sets (BPAM: basic
partitioned access method). BP AM permits record­
ing and deleting members from the directory and
reading or writing of records within members.
Several macro instructions are available in BP AM,
such as, macro instructions to retrieve and store

Count field Key field Directory block

D 0 IOirectory I Directory I· ~,~A!I
entry entry ..; I

information in the directory and macro instructions
to retrieve/store member records from the member
area.

Macro instructions unique to partitioned data sets
Before a member of a partitioned data set can be pro­
cessed, the volume must be positioned to the mem­
ber. This is done randomly using information from
the directory. The following macro instructions are
available to support this operation.
-BLDL

Retrives information from the directory.

- FIND
Positions the volume to specified members.

-STOW
Performs inserting, deleting, updating and replac­
ing of member information in the directory.

Before issuing any of the above macro instruc­
tions, the partitioned data set must be opened, and
previous 110 requests regarding that partitioned
data set must be complete.

Macro instructions to retrieve/store records
110 macro instructions for retrieving and storing
records within a member are identical to the macro
instructions used in the basic sequential access
(BSAM).
-READ

Reads blocks within a member.
- WRITE

Writes blocks within a member.
- CHECK

Makes the processing wait for the end of an I/O
operation.

-NOTE
Acquires the relative track address of the previous
block transferred.

- POINT
Points to a block.

Count field Key field Directory block

1\ 0 I Directory I Directory I Directory l~,' ,' L---.J entry entry entry ail
Count field Key field Directory block Count field Key field Directory block

D 0 I Directory I Directory ! Direc'li~lIDD lDirectoryj ::;;J; >"::'\'i. ' ,.;;; ',!, tory '" - Blenk " " entry entry entry co entry ' ,' ,,, '" ,

Count field Key field

DOr
Directory block

IEOFl
~

Fig. 4.29 Structure of directory area

134

http:Fig.4.29

4.9 DIRECT DATA SET AND DIRECT
ACCESS METHOD

Often a data processing application requires the pro­
cessing of records in an order different than the
physical sequence in the data set. In a direct data set,
there is a relationship between a control number of
identification of each record and its location on the
direct access volume. The relationship permits
access to a record without an index search. Table
4.13 specifies some attributes of direct data sets.

Table 4.13 Attributes of direct data sets

Medium Direct access volume

Volume configuration Multi-volume possible

Data-set concatenation Not possible

User's label
Allowed (however only on the
1st volume)

4.9.1 Direct Data Set Structure

A direct data set must reside on a clirect access
volume. It contains records arranged according to
the user's specifications, similarly, the accessing
sequence is arbitrary depending on the user's needs.
A direct data set can be processed sequentially using

B --- -- -

--'
RO

DATA MANAGEMENT

either the queued access technique or the basic
access technique.
• A direct data set may consist of either a data field

only or a key-field and data field.
• Records in the data field may be fixed length,

variable length, or undefined length records.
• In the case of a direct data set with fixed length

records space must be allocated on the basis of the
range of keys rather than the number of records.

If format-F records with keys are being written,
the key of each record can be used to identify the
record. For example, a data set with keys ranging
from 0 to 4999 should be allocated space for 5000
records. Each key relates directly to a location that
can be referred to as a relative record number. The
main disadvantage of this type of organization is that
records may not exist for many of the keys even
though space has been reserved for them.

The fact that a direct data set with variable or
undefined record length has the maximum blocksize
reserved for each block also results in unused space
in a file.

Overall structure of direct data set
Fig. 4.30 shows the overall structure of a direct data
set.

Volume configuration for direct
organization data set ;

• maximum 16 EXTENTS per volume
• maximum 255 EXTENTS per data set

Within these limitations, a data set may reside

on multiple volumes

. --.

5jEJIT:Jc:rJB5jeTIBITJeTIB
[jb GJ Q 0 [J [J 0 GJ ErE]

RO

[JOGJGJO[JeJO[JeJO
db GJ ETEJ'GJ DDGJGJ 0

~GJ===-==Rb=-=GJ=-=GJ=-13 =O==-=GJ====:=c --==LJ=--=~"D=~ ~:~=--====l[]~-----l} EM ""k

RO }

~1~c~~I~I====~I~I==~==I~ __ ~ End of EXTENT

Records corresponding to keys 1-5,7-9, 12. and 13 contain data, while records
corresponding to keys 6, 10, 11, and 14 are dummy records .

Fig. 4.30 Structure of direct data set

http:Fig.4.30

CONTROL PROGRAM

Record format
Record formats for direct data sets are the following
types:
• F-format

fixed length record format.
• V-format

variable length record format.
• V-format

undefined length record format.

These formats may include the blocking (B), track
overflow (T), and spanned (S) options. The most
common formats are the following:

• F/FT
• V/VS/VBS
.U

Format F, V, and U are shown in Fig. 4.31,4.32,
and 4.33 respectively. Fig. 4.34 depicts the VBS
Blocked variable length spanned) record format.

F·formlt without key:

Count field Data field

D !-1 __ L_O_9_ic_a_l_re_c_o_rd_s __J\

I-S,bytesJ .. I.---L bytes-- --...,!

F·format with key :

Count field Key field Data field

D D ~I L_09ical_record-----'1

~S bytes-1 ~K bvtes-l ... I .--L bytes-- ----I· I

L: Record length, block length (1 record!1 block)
K: Key length

Fig. 4.31 F-format for direct data set

V -format without key :

Count field Data field

D Logical record

~a bytes--.j

V-format with key:

EJ Dr '-_a~_t~_~_~e_l-'dl_L_O_9_ica_l_re_c_o_rd__'
l-a bytes~ ~K byt8$~ ~~ ~

bytes
L bytes

L: Record length, block length (1 record!l block)
K : Key length
ROW : Record descriptor word

• 4·byte record descri ptor word (ROW) exists at the beginning of
each logical record .

• Initial 2 bytes of ROW (£ £) . , . Length of the logical record (Ll
• Next 2 bytes of ROW ... Binary zeroes.

Fig. 4.32 V-format for direct data sets

136

U-format without kay :

Count field Data field

D 11.. ___ L_O_9_iC8_I_r_e_co_r_d_s_--,1

~a bytes-l !f----L bytes--...,.I

U-format with key:

Count field Key field Data field D D r,---L-0-9i-ca-l-r-ec-o-r-ds---'

~a bytes~ ~K byt8$-4 I L bytes---l

L: Block length
K : Key length

Fig. 4.33 U-format for direct data set

V BS-format without key:

Count field Data field

La bytes~

SOW I Initial I
segment

L4~-J l;;~ J bytes bytes bytes 0'
£ bytes .II; bytes

D IBOwl SOW Intermediate segments

f-a bytes~ f--4 4----1 I
1------2Q" bytes----J

D I..I_B_o_w~_s_o_w~l_s_~_~_~_n_t-L_s_o_w~I __ ~
f-a bytes-J 4~-J ~~~ bytes bytes", bytes

£ bytes

f----- --- L bytes

BOW : Block descriptor word
• Initial 2 bytes of BOW, , .. Length of its segment

(L bytes in this diagram)
• Next 2 bytes . , , ' , . .. , .. Binary zeroes

SOW : Segment descriptor word
• Initial 2 bytes of SOW, Length of its segment

(£'. £", Q'" bytes in this
diagram)

• Next 1 bytes . ' .. , , , , Segment control code

{

00 , , , . Logical record which cannot
be divided into segments

Lower 2 bits 01 ,. , , Initial segment '.
10 . , . , End segment
11 , ... I ntermediate segment

• Next 1 byte " .. ' , , Binary zeroes

Fig. 4.34 VBS-format for direct data set

4.9.2 Direct access m'ethod

The BSAM DeB macro instruction must be used
with the WRITE macro instruction to create a direct
data set.

http:Fig.4.34
http:Fig.4.31
http:4.31,4.32

There are two methods of accessing a direct data
set: by using the block address, or by the extended
search technique using a block address as the start­
ing point. There are three ways to specify a block
address:
• Relative block address (nnn)

In this method, the relative position of a block (or
record) in the data set is specified with 3 binary
bytes (nnn). This method can only be used in data
sets with fixed length records.

• Relative track address (TIR)
In this case, the block address is specified by a
relative track number in the data set. That is 2
bytes for the track (TT) followed by 1 byte (R) for
the record number (or block number).

• Absolute track address (MBBCCHHR)
In this method, the address of desired block in the
data set is specified as an 8 byte absolute track
address (MBBCCHHR).

The primary macro instructions which can be used
in the direct access method are the following:
• READ

Reads in a block.

• WRITE
Writes out a block.

• CHECK
Tests for the completion of an 110 operation.

4.9.3 Optional Functions Utilized in the Direct
Access Method

A large portion of the data set processing must be
performed by the user when direct data sets are
used. However, there are advantages to selecting an
optimum layout for data sets. The following three
optional functions are available to improve the pro­
cessing efficiency.

Feed-back option
This option specifies that the system provide the
address of the record requested by a READ or
WRlTE macro instruction. The feed-back option has
2 forms: one for creation of a direct data set, and the
other for updating or making additions to a direct
data set.
• Feed-back option for creating direct data sets.

The function can be used only for creating
direct data sets with variable length spanned
records (VS). With the variable length spanned
record format the address of the next block to be
written is computed in advance. This task is facili­
tated by utilizing the feed-back option; address of
the next block is returned to the area specified by
the user in the form of a relative track address
(TTR) .

• Feed-back ·option for Updating or making addi-
tions to direct data sets. .

In this case, feed-back is returned·in the format

DATA MANAGEMENT

of the addressing scheme used in the problem pro­
gram (an actual or a relative address). When a
WRITE or RELEX macro instruction is issued,
the system will assume that the addressing scheme
used for the WRITE or RELEX macro instruction
is in the same format as the addressing scheme
used for feed-back in the READ macro instruc­
tion.

Extended search option
Usually the READ or WRlTE macro instruction is
used for searching 1 track for a block or dummy
block in a direct data set. By utilizing this option,
multiple tracks can be searched by issuing a single
READ or WRlTE macro instruction. When search­
ing for a dummy record, only one WRITE instruc­
tion is needed.

Dynamic buffering option
The user can either create and manage 110 buffers
himself or use the capabilities of the data manage­
ment program. Data management handles the man­
agement of I/O buffers through the use of the
dynamic buffering option. With it the user can effi­
ciently utilize buffers secured by the data manage­
ment program as 110 areas.

After issuing a READ macro instruction with the
dynamic buffering option, the system, before per­
forming the 110 operation, retrieves a buffer from
the buffer pool and then reads the I/O data into it.
When a subsequent WRITE macro instruction is
issued, the retrieved buffer is considered an output
area for updating or adding data to the data set. The
system then returns that buffer to the buffer pool
after having written out its contents.

In case the user wants to return the buffer without
issuing a WRITE macro instruction, he can do it by
issuirig FREEDBUF macro instruction.

Exclusive control option
This function has been incorporated for executing
automatic exclusive control over a direct data set,
after the user has issued READ or WRITE macro
instructions to it, while adopting direct access
methods.

The exclusive control option prevents a job step
from accessing a block during updating by another
job step. Therefore the block contents cannot be
read until the current program issues a WRITE or
RELEX macro instruction to the block.

4.10 CONCATENATION OF DATA SETS

While processing similar multiple partitioned data
sets or sequential data sets, it is sometimes conven­
ient to treat them collectively as one data set. This
capability exists in the data management program by
using the data set concatenation function. Multiple

CONTROL PROGRAM

data sets which are processed consecutively by this
function are called concatenated data sets. Con­
catenation may be of 2 types: concatenation of data
sets with identical attributes and concatenation of
data sets with different attributes.

In the former, the identical attributes of the con­
catenated sets are:
• record format.
• record length/block length.
• data set organization.
• device containing the data sets (DASD only).

Open or close processing for each data set is not
necessary while concatenating data sets of identical
attributes. When concatenating data sets of different
attributes open and close processing is required. Fig.
4.35 shows an example of concatenation.

Concatenate

Concatenate

Concatenate

Concatenate Concatenate

Identical
attributes

}
~~~~ical 

'-.....::~==. attributes 

Note: In this case, only one member of the partitioned data set 
is concatenated. 

Fig. 4.35 Concatenation of data sets 

Only sequential data sets and partitioned data sets 
can be concatenated. And, as seen in Fig. 4.35, both 
concatenation of identical and non-identical sequen­
tial and partitioned data sets is possible. 

Concatenation limits are specified as follows: 
• Sequential data sets only; maximum 255. 
• Partitioned data sets only; maximum up to 255 

138 

extents, where every data set contains not more 
than 16 extents. In other words, if every data set 
contained only 1 exetent, it would be possible to 
concatenate up to 255 data sets. 

• Mixed sequential and partitioned data sets; since 
sequential access is used to process concatenated 
data sets, it is possible to concatenate up to 255 
data sets. With this type of concatenation, because 
only 1 member of each partitioned data set may be 
concatenated, they are treated in the same way as 
sequential data sets. Positioning of the concate­
nated members of the partitioned data sets is done 
by the data management program. 

An example of the job control statements neces­
sary for concatenating data sets with non-identical 
attributes are given below. Here are three data sets; 
two with DSN equal to AAA and MT A and the third 
on card input. AAA resides on disk and MT A on 
tape. 

/lTRCF 
I I 
I I 
I I 

DO DSN=AAA, UNIT=F479B, VOL=SER=OOOOO1, 
DISP=(OLD, DELETE) 

DO DSN=MTA, DISP=OLD, UNIT=F610K, 
LABEL=(,N Ll 

II DO 0 

r Card data ·1 

10 

4.11 SHARING AND EXCLUSIVE CON­
TROL OF DATA SETS 

Generally, when multiple user's seek to process a 
data set, it is possible to adopt either the exclusive 
control method or sharing method. 

Exclusive control of a data set 
To use exclusive control, the DISP parameter of the 
DD statement is specified as OLD, NEW or MOD. 
The initiator, at the time of initiating the specified 
data set in the DD statement, keeps other requests 
waiting until the present user has completed pro­
cessing of the data set. 

Sharing of a data set 
To permit sharing of a data set, the DISP parameter 
of the DD statement is specified as SHR. Multiple 
users can then simultaneously process the same data 
set. 

Usually exclusive control is adopted when large 
numbers of requests for the same data set would 
exist if the data set were shared. Macro instructions 



necessary in exclusive control are as given below: 
• ENQ macro instruction. 
• DEQ macro instruction. 
• RESERVE macro instruction. 

Additional reference information on these macro 
instructions is presented in Section 8.7. 

4.11.1 Shared Use or Exclusive Control of a Data 
Set by Tasks Within a Job Step 

This section describes the shared use or exclusive 
control of a data set by the multiple tasks which are 
generated, say, by issuing A IT ACH macro instruc­
tions (see Section 8.3 Task Management) during a 
job step. However, the user must carefully under­
stand the operation of tasks and the method of 
shared use of a DCB before he can access shared 
resources. 

Shared use of a data set by one DCB 
Fig. 4.36 shows an example of one DCa that is used 
commonly by two tasks for a shared data set. 

Task A 

OPEN DCB 

Task B 

READ DECB2 

DECB2 of task B points to the 
DCB of task A. 

DECS: Data event control block 

Fig. 4.36 Shared use of a data set with one DeB 

In the figure: 
• Task A initially opens a DCB. 
• Next task B is generated by issuing an A IT ACH 

macro instruction. 
• READ macro instruction containing DECBI 

designation is issued. 
• During task B a READ macro instruction contain­

ing DECB2 designation is issued. 
• DECB2 of task B points to the DCB of task A. 

DATA MANAGEMENT 

In this case, the user is generally required to 
execute exclusive control of the data set by issuing 
ENQ/DEQ macro instructions every time he access 
the data set. Table 4.14 gives the macro instructicns 
exclusive witth one DCB. 

Table 4.14 Exclusive control macro instructions with one DeB 

~ 
method 

BSAM QSAM BPAM BDAM 
Pro-
cessing 
mode 

ENQ ENQ ENQ 
Not 

INPUT READ GET READ 
CHECK CH'ECK necessary 

DEQ DEQ DEQ 

ENQ 
ENQ 

ENQ 
WRITE WRITE OUTPUT PUT/PUTX Not CHECK CHECK 
DEQ DEQ STOW necessary 

DEQ 

ENQ ENQ ENQ ENQ 
READ READ READ 
CHECK GET CHECK CHECK 

UPDATE I WRITE PUTX WRITE WRITE 
CHECK DEO CHECK CHECK 

l DEQ STOW DEO 
DEQ 

Shared use of data sets by multiple DCBs 
An example of a data set being shared by more than 
one task and using multiple DCBs is shown in Fig. 
4.37. 

Task A 

OPEN DCB1 

Task B 

OPEN DCB2 

READ DECB2 

(OCB2 ) 

( DECB2 ) 

Both DCB1 and OCB2 point to the 
SIIma data .at 

Fig. 4.37 Shared UN or data leta by _eral DeBs 



CONTROL PROGRAM 

In the figure: 
• Task A initially opens DCBI. 
• Next, Task B is generated by issuing ATTACH 

macro instruction. 
• READ macro instruction containing DECBI 

designation is issued. 
• During Task B, DCB2 is opened. 
• Next, READ macro instruction containing 

DECB2 designation is issued. 
• DECBI of Task A points to DCBI, while DECB2 

of Task B points to DCB2. 
• And both DCBI and DCB2 point out the same 

data set. 

By utilizing this method, a user can freely access 
any record in the data set in the INPUT processing 
mode, without any concern of other users. In the 
OUTPUT processing mode, however, shared use of 
a data set is generally not possible. When the access 
method is BDAM, since the system automatically 
controls the sequence of accesses to records, shared­
use is possible, both in INPUT as well as OUTPUT 
processing mode. In the UPDATE mode, the 
shared-use of a data set, except in the ,case of 
QSAM, is possible but is the user's respons~bility . 
Table 4.15 gives the macro instructions for exclusive 
control when multiple DCBs are used. 

Table 4.15 E'xclusive control macro instructions with 
multiple DCBs 

~ 
method 

BSAM CSAM BPAM 
Process-
ing mode 

INPUT 
Not Not Not 
necessary necessary necessary 

OUTPUT Not Not Not 
feasible feasible feasible 

ENC ENC 
READ READ 
CHECK CHECK 
WRITE 

Not WRITE UPDATE 
CHECK feasible CHECK 
DEC STOW 

DEC 

BDAM· 

Not 
necessary 

Not 
feasible 

ENQ 
READ 
CHECK 
WRITE 
CHECK 
DEC 

• The user exercises exclusive control of data set himself 
without making use of BDAM's exclusive control function. 

4.11.2 Sharing and Exclusive Control of a Data 
Set by Tasks from Different Jobs 

This section describes the shared use and exclusive 
control of a data set by tasks which are included in 
the job steps of different jobs in a multijob system. 
For this type of processing, the user must code SHR 
in the DISP parameter on the DO statement for the 
data set. 

To use exclusive control, the user must issue 
ENQ/DEQ macro instructions as given below and 
also specify the appropriate parameter in the DO 

140 

statement for the data set. Fig. 4.16 gives the macro 
instructions for using exclusive control. 

Table 4.16 Exclusive control units 

~ 
method 

BSAM CSAM BPAM BDAM' 
Process· 
ing mode 

INPUT 
Not Not Not Not 
necessary necessary necessary necessary 

OUTPUT 
Not Not Not Not 
feasible feasible feasible necessary 

ENC ENC ENC 
READ READ READ 
CHECK Not CHECK CHECK 

UPDATE WAITE feasible WRITE WRITE 
CHECK CHECK CHECK 
DEC STOW DEC 

DEC 

• The user exercises exclusive control himself without 
making use of BDAM's exclusive control function . 

4.11.3 Sharing and Exclusive Control of a Data 
Set by Multiple Systems 

This section describes the shared use or exclusive 
control of a data set by 2 or more computer systems. 
The data set must reside on a shared DASD (shared 
direct access storage device). Shared DASD refers to 
one or more DASD which can be shared and 
accessed by multiple systems simultaneously. 

For exclusive control, the user must utilize the 
RESERVE macro instruction (see Section 8.7 Man­
agement of Serially Reusable Resources) and DEQ 
macro instruction. That is, exclusive control is the 
responsij)i1ity of the user. The system cannot 
execute exclusive control (BDl\M's exclusive con­
trol function also is not available for shared DASD). 
Fig. 4.38 presents the concept of shared DASD . 
Table 4.17 gives the macro instructions for exclusive 
control of a data set by multiple systems. 

Computer 
system 1 

2 channel switches 

Shared DASD 

Fig. 4.38 Concept of shared DASD 

Computer 
system 2 



Table 4.17 Exclusive control macro instructions 

--::~ BSAM 
ProCi!ssing mode 

INPUT Not necessary 

OUTPUT Not feasible 

RESERVE 
READ 

UPDATE CHECK 
WRITE 
CHECK 
DEC 

4.11.4 Deadlock from Exclusive Control 

Deadlock is the nonoperational mutual wait state 
caused by competition among job steps for exclusive 
control of a data set. Fig. 4.39 illustrates the 
deadlock state. 

Job A 

Job step A1 
ENC T1 '-., 
ENCT2 

, , 

~ 
, 

""'@ 
Job step A2 " / , , 

" 

Job 8 P-,/ ® 
Job step 81/) 

ENC T2 " 
ENCn 

Job step 82 

Fig.4.39 Deadlock state 

In the figure: 

r---

i'--.... 

I'----

i'-

:::> 
.;.-/ 

..-/ 

------

DASD 

} Data set T1 

} Data set T2 

• Job step AI locked data set Tl by issuing the ENQ 
macro instruction. 

• Job step BI locked data set T2 by issuing the ENQ 
macro instruction. 

• Job step Al issues the ENQ macro instruction to 
data set T2; however, it is kept waiting since T2 
has been locked by Bl. 

• Job step BI issued the ENQ macro instruction to 
data set Tl; however, it is kept waiting since TI 
has been locked by AI. 

T~ the above case, both job steps Al and Bl 
remain in the wait state, thus halting operation. This 
state is called the deadlock state. Users executing 
exclusive control (except for BDAM exclusive con-

DATA MANAGEMENT 

aSAM BPAM BDAM 

N at necessary N at necessary Not necessary 

Not feasible Not feasible Not feasible 

RESERVE RESERVE 
READ READ 

Not feasible CHECK CHECK 
WRITE WRITE 
CHECK CHECK 
STOW DEC 
DEC 

troO, must be careful to avoid this type of 
deadlock. 

4.12 SPACE MANAGEMENT 

Space management is the function of managing 
requests for allocation or releasing of space on a 
direct access unit. Space management is performed 
by a control program called DADSM (direct access 
device space management) . Below are some of the 
main functions of DADSM: 
• space allocation for data sets; 
• allocation of space extensions for data sets; 
• releasing all space of a data set; 
• releasing of unused space of data set. 

4.12.1 Space Allocation 

The request for allocation of space on a direct access 
volume may be made by parameters on the DD 
statement. The following type of parameters are 
available. 
• SPACE parameter 

Specifies the general request for space allocation. 
• SPLIT parameter 

Specifies the request for a split (divided) cylinder 
space allocation. 

• SUBALLOC parameter 
Specifies the request for further suballocation of 
already allocated space. 

An example of the SPACE parameter of the DD 
statement is shown in Fig. 4.40. 

SPACE= ( {~~~ } (:I~::~on 
block length 

[
• secondary 1 

a"ocationJ 

SPACE= 

[. directOry] ) ~ RLSE] [. CONTIGJ L ROUN~J) 
.MXIG 
.MLX 

(ABSTR, (primary allocation, relative track 
address in the volume !. directory))). 

Fig. 4.40 DD statement parameters for requesting allocation 
of space 



CONTROL PROGRAM 

The unit of space allocation and space allocation 
method is described next by referring to the above 
subparameters. 

General Space Allocation 
The following are the units of space allocation: 
• tracks. 
• cylinders. 
• block length (in bytes, however, the system, while 

actually allocating the space, allocates it in track 
units) . 

• Space in track units starting from the user's 
specified absolute track address (relative track 
address in the volume). 

The methods of space allocation can be sum­
marized as follows: 
• CONTIG (Contiguous) 

With this parameter, available contiguous 
EXTENTS equal or larger than the requested 
space, are searched out and the requested space is 
allocated from them. 

• MXIG (Maximum Contiguous) 
Here, available contiguous EXTENTS, greater 
than the size of the requested space are searched 
out, and from them, space from the EXTENT 
containing the maximum available space is allo­
cated. 

• ALX (All Extent) 
EXTENTS larger than the requested space are 
searched out. Up to 5 EXTENTS, starting from 
the largest available space, are allocated. 

• No special space requirement specified: 
An EXTENT containing available space which can 
satisfy the need is searched out and allocated. 

.. 
'" -g 
>­

(.) 

2 

3 

4 

5 

7 19 tracktot unuSed extents:' 
;'. ; ,, ;.:., 

hil Volume before allocation 

However, if such an EXTENT cannot be found, 
space taken from up to 5 EXTENTS may be con­
secutively allocation. 

• ABSTR (Absolute Track) 
The requested space, starting from the specified 
address (relative track address in the volume, 
except RO) is allocated. 

An example of the various methods of space 
allocation is given in Fig. 4.41. The figure indicates 
the before and after space allocation corresponding 
to the given DD statement. 

Allocation of split cylinder 
This method allocates cylinder space from the same 
volume for shared use by a number of data sets, 
which are used in the same job step, thereby 
minimizing movement of the access arm. The 
folIowing are the units for allocation of split 
cylinder. 
• cylinders . 
• block length in bytes (the system allocates space 

after conversion into cylinder). 

When requesting split cylinder space the required 
space for the first data set may be specified exactly, 
and space for subsequent data sets may be specified 
as a percentage of the first. In response to this 
request, the system searches out an available 
EXTENT, equal to or larger than the requested 
space, and allocates the required space from it. 
Eventually, the allocated cylinders are divided bet­
ween the data sets in the specified ratio. 

The split cylinder space allocation (SPLIT 
parameter) cannot be made for partitioned data sets. 

1 1213141516171819110 11112113114 15n6117D8l19 
4 tracks .of 

TRN4 unused · 
. axt4!f\~" 

1 TRN2 

I 
I TRN3 

TRN3 I 
TRN1 

(bl Volume after allocation 
j-- .. _----------- -- ------ ---- - -- -- ---- ------- ------ -- - - -------- -- ---------., 

142 

t /lSAT1 DO DSN=TRN1. SPACE=(CYL. '. CONTIGI. .............................................................................. : 
I /lSAT2 00 OSN=TRN2, SPACE=(CYL, 1, MIXGI, ................. .................................................................. I 

: //SAT3 00 OSN=TRN3, SPACE=(TRK, 15 .. ALXI, ........... .. ............. ... ................ .. ......... ...... ...... ....... ....... : 
I //SAT4 00 DSN=TRN4, SPACE=(TRK, 10), ..... ................... ... .. ...... .... .......... ....................... .................... : L _______________________________________________________________ .J 

With direct access volume aHhown in the figure (al. specifications through 
00 statements (cl will cause the volume to contain data as shown in the 
figure (bl. 

Fig. 4.41 Example of various methods of space allocation 



The following 00 statements are an example of a 
split cylinder request. 
//STAl 00 DSN=MASl, 
II SPLIT = (5,CYL,8), ... 
I/STA2 DO DSN=TRN1, SPLIT=7, .. . 
//STA3 DO DSN=TRN2, SPLIT=5, .. . 

The subsequent space allocation in response to the 
above request is depicted in Fig. 4.42. 

! 
MAS1 5 tracks 

-t 
TRN1 5 tracks i 1cyli nder 

5 tracks 

~ 
TRN2 

.' . Riuiiaining SpaCe , 
...... 

~" l· .14-,------1'. 
I. 8 cylinders I 

Fig. 4.42 Result of a split cylinder allocation 

Suballocation 
SubaiIocation of space is performed for multiple data 
sets in the available contiguous space on the same 
vvolume. With this method, the total space necess­
ary for a job is requested collectively. Thus, every 
step in that job eventually requests for suballocation 
of already allocated space. 

Since the space is continuous, improved access 
efficiency can be expected. Where optimum access 
efficiency is essential, this method will be found 
convenient. Units of space suballocation are the 
same as those which can be specified in the SPACE 
parameter (except ABSTR) . 

Suballocation can be specified in the SUBALLOC 
parameter of the DO statement and reference made 
to the DD statement of the first data set for which 
the space was secured. Therefore, space, starting 
with the first suballQcated data set is allocated and 
any remaining space is allocated to the first data set 
(making the collective request). An example of 
suballocation is illustrated in Fig. 4.43. 
iiijJ1Jo-B-CI..Ass~A.~:-.---- ---- ---- --- - - - ---1 
: IISTEP1 EXEC PGM.,PPTRN1 : 
I I/STA1 DO DSN=JOBTRN, SPACE-(CYL. 8,. CONTIG) •.. . I 
: I/STA2 DO DSN=TRN1.SUBALLOC-(CYL. 3 .. STAll •... : 
I I/STA3 DO DSN"TRN2.SUBALLOC-(CYL. 1 .. STA1).. .. I 
I I/STAP2 t:XEC PGM-PP. TRN2 I I 
: IISTA4 DO DSN-TRN3. SUBALLOC-(CYL. 2,STEP1 I 
I STA1).... I 

I I/STA5 DO DSN-TRN4, SUBALLOC-(CYL.'. STEP' : 
I STA 11. . .. I --_________________________ 04 

(a) JCL used to request subellocation 
Space allocation perlonned (b) in response to the DO statemenu 
(a,! 

DATA MANAGEMENT 

(b) Resulting suballocation of space 
Fig. 4.43 Example of suballocation of space 

4.12.2 Space Extension 

If the primary space allocated to a data set runs 
short, and secondary space has been designated, 
DADSM automatically secures space extension. 
DADSM can manage a data set extending on multi­
ple volumes. When this is done DADSM secures 
consecutive space extensions. The space extension 
onto another volume becomes necessary either 
when the unused space on the initially allocated 
volume is short or when the total EXTENTS of the 
data set exceed 16. 

Specification for additional space can be done 
through SPACE, SPLIT, or SUBALLOC parameters. 

Unit of additional space 
The unit of additional space can be cylinders, tracks, 
or block length (bytes) depending on the initially 
used unit of space allocation. 

Rt!lationship between DISP parameter of DD 
statement and additional space. . 
• When the DISP parameter is specified as NEW, 

the space is extended directly by the amount 
specified in the secondary space allocation. 

• When the DISP parameter is MOD or OLD, sec­
ondary space which was specified at the time of 
the initial space allocation or the secondary space 
specified in the current DO statement becomes 
the extension space. The latter type of secondary 
space allocation is effective only for the job step in 
which it is specified. 

Method of space extension 
For data sets or split cylinders, unused space is allo­
cated on that volume equivalent to the secondary 
EXTENTS, which have been designated for that 
data set only. Thus, the additional cylinders do not 
get split between different data sets. 

For suballocation data sets and all ordinary data 
sets, the method utilized is the same as that used at 
the time of primary space allocation. 

--- - -----.---- ---



CONTROL PROGRAM 

4.12.3 Releasing of Unused Space 

Data management provides for releasing unused 
space so that any unused space in the allocated space 
of a data set at the time of the close operation is 
released to the available space on the volume. This 
enables efficient use of volume space without any 
unnecessary space ailocation. Moreover, the units of 
released space are the same as the space unit which 
was used at the time of initial allocation. Table 4.18 
gives the space releasing boundary for the different 
space allocation units. 

Table 4.18 The space releasing boundary for the different 
space aUocation units 

Space allocation unit Space releasing boundary 

Cylinder (CYLI May be released starting from the 
boundary of the cylinder next 
to the last stored data. 

Track (TAKI May be released starting from the 
boundary of the track next to the 
last stored data. 

AOUND May be released starting from the 
specified boundary of the cvlinder r,lext to 

Block the last stored data. , 
length AOUND May be released starting from the 

not specified boundary of the track next to the 
last $to red data. 

The following DD statement is an example of 
using the RLSE parameter to release unused space. 

liST A 1 00 DSN-TAN1. 
II SPACE=(CYL.10. RLSE. CONTIGI •... 

Space is released upon closing the above data set 
(TRNI) in the following manner as shown in Fig. 
4.44. 

Fig. 4.44 Release of unused DASDI space 

4.13 CATALOG MANAGEMENT 

Data sets residing on direct access or magnetic tape 
volumes can be managed by the user, However, the 
user must then be constantly aware of the data set 
names and their corresponding volume serial num­
ber. 

Catalog management is the portion of data man-

144 

agement designed to relieve the user from this 
tiresome work by performing' a centralized and 
systematic type of data set management. In catalog 
management, data sets are managed by recording 
information (their names., volume serial number, 
device type) into a ledger where they are stored. 
This ledger, which is called the system catalog is also 
a data set itself. It resides on a direct access volume 
(system resident volume) with the name of 
"SYSCTLG". Parts of the catalog can exist on other 
volumes if necessary. Registering or deleting data 
sets from the system catalog is done by using the 
JSG PROGRAM utility program (see Part 3, 
Chapter 9, UTILITY) or by parameters in the job 
control statements. 

By utilizing the catalog management function, any 
data set can be readily processed simply by specify­
ing its name. Thus, the job control statements are 
simplified and time is saved during system opera­
tion. 

4.1 3.1 Structure of System Catalog 

The system catalog is recorded in the VTOC in the 
same way as other data sets. Its structure is the same 
as that of the directory of partitioned data sets. Each 
block is composed of several levels of index to man­
age the hierarchy of data set names. This type of 
block is called the index or index block. 

The physical structure of the system catalog is 
designed for the catalog management functions; 
however the user need understand only its logical 
structure in order to take advantage of it. 

(Systam resident volume! (Control volumel 

Data set Data set 

Fig. 4.45 Structure of the system catalog and its relationship 
wIth other control volumes 



Although the system catalog generally exists on a 
system resident volume, part of it can be con­
structed on other types of volumes also. Any 
volume which contains part of the system catalog is 
called a control volume (CVQL). The control 
volumes must be kept logically linked with the 
system catalog contained on the system resident 
volume. It is also possible to link multiple control 
volumes mutually in succession. Fig. 4.45 illus­
trates the relationship between the system catalog on 
the system resident volume and the other control 
volumes. 

Inside the system catalog are Qualifier and simple 
names constituting the data set names. They are 
arranged in a uniform hierarchial structure with 
every Qualifier pointing to a separate index block. 
The index block pointed to by the last qualifier is an 
index entry with volume information and simple 
names. An example of the qualified name structure 
is: 

STAFF SKILLS MASTER 
qualifier qualifier simple name 

~~ 
qualifies qualifies ' 

Here STAFF and SKILLS Qualify the simple 
name MASTER. 

As shown in Fig. 4.45, the system catalog is a data 
set of hierarchial physical structure. Another 
illustration of the scheme used to manage data sets 
inside a system catalog is shown in Fig. 4.46. 

SYSCTLG data sat 

Index blocks 

Volume containing the data set Volume containing the data set 
STAFF·SKILLS·MASTER TAX·YTDTOTAL 

Fig. 4.46 System catalog and its data sets 

DATA MANAGEMENT 

4.13.2 Cataloging of Genera' Data Sets 

By cataloging of data sets is meant the recording 
information related to their location into the system 
catalog. This information includes the following 
items. 
• data set name. 
• volume serial number. 
• device type. 
• data set number (for magnetic tape volume only). 

The user can catalog data sets (seQuential/parti­
tioned/ direct access data sets) into the system 
catalog using job control statements or a utility pro­
gram. 

Cataloging of data sets by job control statements 
If data sets being created are to be simultaneously 
cataloged, the user may do it by using a DO state­
ment with the DISP parameter specified as CATLG. 
The user can also catalog data sets while accessing 
already existing data sets. However, the data sets will 
not actually be cataloged until the end of the job or 
job step. 

Some examples of cataloging data sets are given in 
Fig. 4.47. 

illSTA1 DO -DSN=A·S:C;-DISP-;(NEW:CATLGT; UNIT-:F478B,i 

~'- ____ ~~~~c~!:.~~Q.L~~~O~ ____ J 
(a) JCL for creating and cataloging 8 new data set 

(Before catalogi ng) 

(b) Effect of cataloging data set A·B·C 

Volume containing 
data set A· B·C 

r - --- - - - - - -- - - - - - - - -- - -- - - - - - - - - - - -- - - -, 
'IISTA1 DO DSN=A·B·C. DISP=(OLD. GATLG), UNIT=F478B,; 
:/1 VOL=SER=OOOOOl ' _____________________________________ J 

(c) JCL for cataloging an old data set 

r - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - ---, 
'I/STA1 DO DSN=A·S,C. DISP=OLD , L ______________________________________ J 

(d) JCL for accessing a cataloged data set 

Fig. 4.47 Creating and accessing cataloged data sets 



CONTROL PROGRAM 

Cataloging of Data Sets by Utility Program 
(JSGPROGRM) 
With this method, information about existing data 
sets is given to the utility program, JSGPROGM, 
which performs the cataloging function. 

4.13.3 Cataloging of Generation Data Seta 

Some data sets are periodically created and updated; 
others are updated irregularly. It is convenient to 
catalog periodic data sets collectively and to update 
them at periodic intervals. For this purpose, data 
sets which are related with respect to the date of 
their creation are collectively called a generation 
data group, · In catalog management, this group of 
data sets is managed under one name, the genera­
tion data group name. Moreover, data se ts which 
belong to a generation data group are called genera­
tion data sets. Each Qf them being referred to by 
their group name and generation number. Genera­
tion numbers are of two types: absolute generation 
numbers and relative generation numbers. 

Generation data neme 

, 
GOG ·MASTER·Gnnnn Vmm 

'--_...,-_--" ''-_ _.._-..J 

Generation 
data group 
nama 

Absolute 
generation 
number 

Fig. 4.48 Absolute generation number 

Absolute generation numbers 
An absolute generation number is used to identify a 
specific generation of a generation data group. 

As shown in Fig. 4.48, an absolute generation 
number is expressed with 8 characters; 'nnnn' is the 
generation number expressed with anyone of the 4 
decimal digits from 0001-9999; and 'mm' is the 
version number expressed with anyone of the 2 
decimal digits 00-99. 

The relationship between absolute generation 
numbers and the system catalog is shown in Fig. 
4.49. 

Relative generation numbers 
As an alternative to using absolute generation and 
version numbers when cataloging or referring to a 
generation, a relative generation number can be 
used. 

Generation data name 

GOG ·MASTER (in)' .. '~ 

Generation Relative 
data group generation 
name number 

Fig. 4.50 Relative generation number 

Any relative generation number can be expressed 
as shown in Fig. 4.50, where 'n' is the relative 
generation number expressed as any decimal num­
ber from 0-255. The relative generation number 
shows the relative position of the latest generation of 
data sets and is intended to be used for retrieving or 

Generation index (MASTER) 

Fig. 4.49 Relationship between absolute 
generation numbers and system catalog 

146 

Volume containing the Volume containing the 
generation data set generation data set 
GOG·MASTER· GOG· MASTER· 
GOOO3VQO G0002VOO 

Volume containing the 
generation data set 
GOG· MASTER' 
GOO01VOO 

------------~y------------~ 
Generation data group 



cataloging (described later) data sets. Fig. 4.51 
shows the relationship between relative generation 
numbers and the system catalog. 

In order to catalog a generation data group, the 

SYSCTLG 

Index (MASTER) 

GOOO3VOO GOOO2VOO GOO01~OO I ) 
(01 (-11 (-21 

Data set of latest Data set of oldest 

generation generation 

- ---------------------------------------, 
IISTA1 DO DSN=GOG·MASTER (-21. DISP=OLD : 
IISTA2 DO OSN=GDG'MASTER (-11. DISP=OLO : 
IISTA3 DO OSN=GDG'MASTER (0), DISP=OLD : 

I I 

~-------------------------------------------~ 

Fig. 4.5 I Relationship between relative generation numbers 

and the system catalog 

DATA MANAGEMENT 

user must in advance, set up the generation data 
group name in the system catalog. For instance, in 
Fig. 4.49, and 4.51, the user must set index GOG 
and generation index MASTER prior to actual 
cataloging of the generation data sets. This can be 
done by using a utility program, JSGPROGM. The 
maximum number of generation data sets which can 
be cataloged in a generation index is 255 (the limit is 
specified in a parameter of JSGPROGM). The 
method of cataloging generation data sets is the 
same as cataloging of other data sets, that is, either 
by job control statements or by utility program 
(JSGPROGM) . 

The cataloging of data sets by absolute generation 
numbers is depicted in Fig. 4.52. 

Here, G0002VOO must be greater than the latest 
cataloged absolute generation number. IfGOOOl VOl 
had been specified as the absolute generation num­
ber, and if GOOOI VOO already has been cataloged, it 
will get replaced by GOOOl VOl. 

The cataloging of data sets by relative generation 
numbers is depicted in Fig. 4.53. 

In the example, given by Fig. 4.53, generation 
data set name GOG.MASTER. G0003VOO is 
assigned as the data set of latest generation, and is 
cataloged at the end of that job-step. 

Upon cataloging the generation data set 
GOG. MASTER (+ 1) its relative generation num­
ber becomes (0), while the data set corresponding to 
the relative generation number (0) before cataloging 
(GDG.MASTER.G0002VOO) becomes (- O . 
However, while extracting a generation data set 
cataloged as GOG. MASTER (+ 1) during the same 
job step, its relative generation number will have to 
be specified as (+ 1) . 

r - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - - - -., 

~~s_T!-2_~~..c:~~~~=_G_~~·~_~s:r~~~~~_o3Y99~~I_S~~i~~~~~~!~92·] 
(a) JCL for cataloging a new generation 

System catalog before cataloging 
GOG'MASTER -GOOD1 VOO 

SYSCTLG 

System catalog after cataloging 
GOG'MASTER-GOO02VOO 

Volume containing the generation Volume containing the generation Volume containing the generation 
data set GOG-MASTER GOOO1VOO deta set GOG'MASTER-GOO01VOO data set GOG·MASTER.GOOO2VOO 
(b) Effect of cataloging 

Fig. 4.52 Cataloging by absolute generation numbers 



CONTROL PROGRAM 

~ --- - - -- -- - -- - -- -- - - - - - - - - - - - - - - - - - - - - -- - ---
, I 

:/ISTAl DO OSNAME=GOG·MASTER(-ll. OISp=INEW, CATLGI · ··: 
, I I ____________ _ ______ _ __ . ______________________ I 

(al JCL for cataloging 8 new generation 

System catalog prior to cataloging System catalog after cataloging 

Generation data set Ganeration data set Generation data set Generation data set Generation data set 
GOG·MASTER GOG·MASTER GOG·MASTER GOG·MASTER GOG' MASTER' 
GOO02VOO G0001VOO G0003VOO GOOO2VOO GOOO1VOO 
(bl Effect of cataloging 

Fig. 4.53 Cataloging by relative generation numbers 

4.13.4 Uncataloging Data Seta 

Uncataloging a data set means deleting , the corre­
sponding volume information and any unnecessary 
index from the system catalog. Once a data set is 
uncataloged it cannot be accessed through catalog 
management until it is cataloged again. 

Uncataloging can be done by two methods: with 
job control statements or with a utility program 
(JSGPROGM). 

Uncataloging of data sets by job control statements 
In this method, uncataloging is done by using a DD 
statement with DISP parameter specified as 
UNCATLG. For uncataloging a data set 
simultaneously with deleting it after completion of 
processing the user may specify DELETE for the 
DISP parameter on the DD statement. However, in 
this case, if the VOL parameter also has been 
specified in the DD statement, the data set will only 
be deleted and not uncataloged. In the former case, 
actual uncataloging is done at the end of that job or 
job step. 

An example of the DD statement used to retrieve 
data set A. B. C. and uncatalog it at the end of the job 
or job step is given in Fig. 4.54. 

Uncataloging of data sets by utili ty program 
(JSGPROGM) 
The utility program, JSGPROGM, can be used to 
uncatalog data sets by removing the volume infor­
mation and any unnecessary index information from 
the system catalog. Uncataloging is not complete 
until the utility finishees execution. 

148 

r -- -- --- - - ------ - - -- - -- ------ .... ----- -_ .. -- --- - - .. - - - --~, , ' 
: IISTAl 00 DSNAME=A·B·C. DISP=(OLD. UNCATLGI : , , 
~-------------------------- - --------------------------~ 

System catalog prior to 
uncataloging 

Data se t Data set 
A·S·C A·B·D 

(a) 

(b) 

Fig. 4.54 Uncataloging a data set 

Sy stem catalog aftar 
uncataloging 

Data set 
A·B·D 

4.13.5 Uncataloging of Generation Data Sets 

Generation data sets may be uncataloged using two 
methods: automatic uncataloging during catalog 
management and uncatalC?ging by user's instruction. 

Automatic uncataloging during catalog manage­
ment 
In catalog management, generation data sets are 
usually processed at periodic cycles. Since the max-



imum number of generation data sets which can be 
included in a generation data group is fixed (as 
specified by the utility program JSGPROGM . . . 
maximum of 255), if this number is exceeded, the 
oldest generation data set in the group is automat­
ically uncataloged. 

It is also possible to specify (via utility program 
JSGPROGM) that all the generation data sets in that 
group get automatically uncataloged upon exceeding 
the set number, and only the latest generation data 
set which is requesting to be cataloged at that time, 
gets cataloged. 

The user can make either of these two arrange­
ments by specifying a parameter in the utility pro­
gram when the generation data group name is 
inserted in the system catalog. Thus, uncataloging 
will be done automatically without the user's giving 
explicit instructions. 

Uncataloging by user's instruction 
If the user wishes to uncatalog a generation data set, 
he can do it by making use of job control statements 
during processing of a utility program 
(JSGPROGM) in the same way as for uncataloging 
other data sets. 

An example of the uncataloging of a generation 
data set is given shown in Fig. 4.55. 

~-------------------------------------------------~ . . 
; /1ST A 1 DO DSN=GDG'MAS(-1 I. DISP=(OLD. UNCATLGI : . , L __________________________________________________ J 

(e) 

(Before unc8taloging) 

Generation Generation Generation 
data set data set data set 
GDG·MAS- GOG-MAS' GOG-MAS' 
GOO03VOO GOO02VOO GOOO1VOO 

(b) 

(After uncatalogingl 

Generation Generation 
datll set data set 
GOG-MAS, GDG·MAS· 
GOOO3VOO GOO01VOO 

Fig. 4.55 Uncataloging a generation data let 

4.14 PASSWORD PROTECTION 

Password protection provides for the security of data 

DATA MANAGEMENT 

sets stored on direct access and magnetic tape 
volumes. The user may designate passwords (each 
may have a maximum of eight characters) to pre­
vent unauthorized access to his data set. 

Password protection performs data set security 
checks to ascertain that only authorized users are 
accessing confidential data sets. The security check 
involves comparison, during open processing, of the 
password specified by the user. This is indicated by a 
protect-display byte in the tape label or data set con­
trol block. 

Password protection can be requested when the 
data set is created by using the LABEL field of the 
DD statement. In addition to requesting password 
protection in the JCL, at least one record must be 
entered for each protected data set in a data set 
named PASSWORD that must be created on the 
system residence volume. 

The password data set is maintained by the system 
through the use of the PROTECT macro instruction 
or the JSGPROGM utility program. The utility pro­
gram is provided to add, delete, change, and print 
out entries in the password data set: 

Two levels of protection options are available. The 
user can specify the options in the LABEL field of a 
DD statement with the following parameters: 
• PASSWORD makes a data set unavailable for all 

types of processing until a correct password is 
entered. 

• NOPWREAD indicates that a password is not 
required if orily reading is to be performed; for 
other types of processing, such as deletion or out­
put, a password is required. 

If JSGPROGM or the PROTECT macro instruc­
tion is used to perform password protection for a 
data set on a direct access device, the system auto­
matically updates the DSCB of the data set to indi­
cate its protected status. However, the data set to 
which the password belongs must be mounted at 
that time. 

Types of passwords and password protection 
method 
The password can be entered in the password data 
set by using the utility program JSGPROGM. A data 
set may possess one or more passwords. The initial 
recorded password is called the control password; 
other passwords are called auxiliary passwords. The 
control password and auxiliary passwords should be 
specified for a data set at the same time. 

Protect mode and protect display 
The protect mode is the security level indicated in 
the password records of the password data set. The 
following types of protect mode can be specified . 
• Protect password for all access transactions. 
• Protect password for the write or delete operation, 

no password required for the read operation. 



CONTROL PROGRAM 

RO Password record 

GJ I Datal 0 ~B 0 
RO Pessword record 

08 ~ BE] ~ 
RO Password record 

0~GJEJB GJ 

RO Password record 

GJ~ 0 G;JB IEOFi 

Fig. 4.56 Structure of the password data set 

The protect display is the security indicator byte in 
the label of the data set to be protected. The user es­
tablishes the protect display by either the DD 'state­
ment or the utility program JSGPROGM. During 
the opening operation, a data set which is protected 
by a password is checked for protect mode and 
password. 

4.14.1 Structure 01 Password Data Set 

The password data set (PASSWORD), which always 
exists on the system residence volume, is composed 
of password records. Each password record contains 
information about the data set which is to be pro­
tected. The PASSWORD data set organization is 

Key field Data field 

I Data set name I Password I I 
"""T""J.....,-....L....,,-------...J 

The user may use 
for comments and 

data set information 
(77 bytes). 

Protect mode 
(1 byte). 

Counter : Advances by 
1 every time a data set is 
opened (2 bytes). 

'---- Password·entered by utility 
program (JSGPROGMI. 

1.--__ Data sat name entered by utility program 

(JSGPROGM). 

Fia- 4.57 Structure of password record 

ISO 

Password record Password record 

BB 0EJ8 
Password record Password record 

EJa ~ aa 
Password record Password record 

~~ 0 G;J~ 

~ 

sequential and contains keys plus fixed length un 
blocked records. Fig. 4.56 shows the structure of a 
password data set. 

Every password record consists of the fields given 
in Fig. 4.57. 

4.14.2 Password Protection and User's Identity 
Check 

An outline of password protection and user's iden­
tity check is shown in Fig. 4.58. 

Fig. 4.58 illustrates how password protection of a 
data set and user's identify check is performed dur­
ing the opening of a data set TRNI. In the figure: 
1. Initially, a check is made to determine whether 

the data set TRNI (to be opened) is protected by 
a password or. not. This is done by checking the 
protect-display contained in the data set label 
(DSCBl). If the display indicates protection is not 
necessary, open processing of the data set may be 
continued. 

2. If the display indicates password protection, 
password management requests the user to input 
the password. It then checks whether the input 
password for the data set matchess with that of ' 
the password record of TRNI. If the input 
password is incorrect, it requests the user to rein­
put the password. If the input password is not cor­
rect a second time, the job is terminated. 

3. If the input password matches, password manage­
ment checks the password mode indicated in the 
password record of TRNI (protect-display shown 
in DSCBl). 

With these three steps password management 
determines whether or not the user is authorized 
to use the data set TRNI. 



At any arbitrary time concurrent with or 
subsequent to the entering of the password 

• (Next OPEN) 

Password 
protection displayed or­

not in the OSCBl which 
oints to data set TRN1? 

No 

Right identity 

Continue 
processing 

• If password protection of the data set is specified in the 
LABEL parameter of the DO statement at the time of its 
creation an indicator specifying protect-display is set 
in the OSCB1-

Fig. 4.58 Outline of password protection and user's identity check 

Table 4.19 summarizes the method of password 
protection and user's identity check_ 

Protect-display indicated in the data set label is 
controlled by the LABEL parameter of the DO 
statement. The protect-mode indicated in the 
password record is controlled by the TYPE 
parameter of the ADD statement in the utility pro­
gram JSGPROGM (see Part 3, Chapter 9 Utility). 

4.16 EXCP 

EXCP is a control program which enables the user to 

DATA MANAGEMENT 

nteringof password of TRN 1 by utility 
program JSGPROGM 

System residence volume 

# # Check of user's input password with 
# that recorded in the TRNl 

# 

Input the password of 
data-set TRNl 

Abnormal 

perform 1/0 operations with 110 devices which the 
data management program cannot handle or access 
data sets which cannot be accessed by usual 
methods. By utilizing EXCP, the user can directly 
control data sets to be transferred to 110 units 
according to their respective organization, as well as 
control the 110 units themselves. Fig. 4.59 shows 
the various relationships between EXCP users and 
EXCP. 

4.16.1 EXCP-Usage and Proc ... lng 

To use EXCP, the user must prepare some informa-

--------------- - ------------ -- --- -- --- ---



CONTROL PROGRAM 

Table 4.19- Method of password protection and user's identity check 

Protect-display inside Password input Processing mode at Protect mode given in 
Action 

data set label essential or not the time of OPEN password record 

No password Not essential 

---------- -----------~ specification 

READIWRITE 
INPUT • 1 Continue 

ROBACK READ processing 

Password Essentiel '2 

INOUT READIWRITE 
OUTPUT • 1 
OUTIN READ Abnormal end 
UPOAT 

• 2 

Not essential 
INPUT 

----------- -------------
ROBACK 

No password read INOUT READIWRITE Continue 

Essential OUTPUT • 1 processing 
OUTIN READ Abnormal end 
UPDAT 

• 2 

.1 Password protection during both READ and WRITE operations . 
• 2 Password protection is available for WRITE operation but not necessary for READ operation . 

. 
, 

I 
User's program 

, 

Data management 
E 
X access method 
C routine 
P 

Other control 
programs 

IEXCP users) 

Fig. 4.59 EXCP users and EXCP 

tion for execution of the channel program in an ICB 
(I/O' block). Subsequently, the user may issue an 
EXCP macro instruction to request data for input. 
Upon receiving this request, EXCP issues an SIC 
(start 110') macro instruction to BIOS (basic 110' 
system) to request execution of the channel pro­
gram. Channel program here means the program to 
perform 110' processing. It consists of a CCW (chan­
nel command word) which indicates the processing 
method. The channel program is interpreted by four 
separate operations before being executed. 

BICS, which performs all 110' operations, is the 
control program which forms the nucleus of ICS (I/ 
0' supervisor). Fig. 4.60 shows the relationship be­
tween EXCP, BICS, and ICS. 

Some precautions on the usage of EXCP: page 
folding must be avoided by providing in advance for 

152 

lOS 

BIOS 

Fig. 4.60 Structure of lOS 

the necessary page. The area can be: 
• 110' buffer area. 
• PCI appendage routine. 
• Channel end appendage routine. 
.CCW. 

With EXCP the user can interrupt processing by 
EXCP. Also, if the EXCP user indicates a specific 
EXCP appendage routine, the EXCP transfers con­
trol to it during processing. EXCP appendage 
routines are described in the next section. 

4.15.2 EXCP Appendage 

In addition to the access methods provided by tt;e 
operating system, an elementary access technique 

http:Fig.4.60


called execute channel program (EXCP) is also pro­
vided. To utilize this technique, the user must estab­
lish a system for organizing, storing and retrieving 
data. Its primary advantage is the complete flex­
ibility it allows in using the computer. However, if 
every attempt to give the system redundancy were 
made, its performance would be adversely effected. 

The EXCP appendage interface has been provided 
for OS IV IF4 to control a part of EXCP operation by 
interrupting it during processing in order to perform 
several independent functions. 

The user must provide an EXCP appendage 
routine, which links with the EXCP appendage 
interface of the OS IV IF4 system. This reenterable 
structure must be kept ready in LP A Oink pack 
area). Because of its structure, the EXCP cannot 
acknowledge the EXCP appendage routine. 

Types of EXCP appendage interface 
Six types of EXCP appendage interface functions are 
available with EXCP: 
• EOE (End of Extent). 
• SIO (Start I/O). 
• PG FX (Page Fix). , 
• PCI (Program Controlled Interruption). 
• CE (Channel End). 
• Abnormal end. 

lOS . 
r---------------------~ I I 
I I EXCP user 
: EXCP : 
I 
I 

~-----------------
: EOE 
I 

: appendage routine 
~----------------~ 

r-----------------
: SIO 
: appendage routine 
~------------------

BIOS r-------------------
: PGFX 

l __ :~~~~~~~: ~~~~i~: __ 
r--------pci--------
: appendage routine 
~------------------

r-------------------
: CE 
; appendage routine 

I L __________________ _ l.. _________ .J 

: ---At;n-or;';-';-I-;;ci ----
i appendage routine L __________________ _ 

Fig. 4.6) Relationship between appendages and EXCP 

The interrelationships of these appendages in 
OS IV/F4 are shown in Fig. 4.61. 

Any appendage routines can be executed while 
protect key ZERO (see Section 8.2.3 Flow of Con­
trol) is set at supervisor mode. 

Appendage routines must conform with the 
following rules: 

DATA MANAGEMENT 

• Any appendage routine should never issue a com­
mand which changes the system's operating mode 
(SVC command, LPSW command, etc). 

• An appendage routine should not include logic 
which makes the processing wait for an end of I/O 
command execution. 

• An appendage routine must not rewrite the area 
being used by the operating system. 

EOE (end of extent> appendage interface 
This appendage receives control at the time of 
EXTENT check by DASD. That is, in the case of 
DASD, EXCP checks the SEEK address before 
executing the SIO macro instruction. It then 
transfers control to this appendage if the SEEK 
address is found to be incorrect. 

To handle such cases, the EXCP user must pro­
gram this appendage routine to correct the 
erroneous address. Thus, when control returns to 
EXCP, it repeats the EXTENT check. 

SIO (start 110) appendage interface 
This appendage receives control from EXCP before 
EXCP has started the transfer operations with the 
channel program and its data ar~a. 

Through this appendage the EXCP user can make 
changes in the channel program, make necessary 
changes in the addresses of data area, etc. 

PGFX (page fix) appendage interface 
This appendage is intended to notify the EXCP 
about which pages to fix by sending a fix list to it. 
This may be required to avoid page folds that may be 
generated while revising the channel program. The 
area in which the fix list is prepared is supplied by 
EXCP. Only after this area has been provided is con­
trol transferred to this appendage. 

Here the EXCP user must structure a fix list 
which includes areas of CCW, buffers, PCI appen­
dage, and CE appendage. There can be up to 10 
EXTENT areas in the fix list. The EXCP fixes pages 
in the areas set by the PGFX appendage only. 

PCI (program controlled interruption) appendage 
interface 
This appendage receives control from the PCI exit 
routine which is set by EXCP during post-processing 
of BIOS. Here the EXCP user provides an appen­
dage routine to make dynamic alterations in CCW 
and in the channel program. 

The PCI interruption is generated when the PCI 
flag contained in CCW turns ON. 

CE (channel end) appendage interface 
This appendage receives control from EXCP in the 
following cases. 
• When channel-end is reached after normal end of 

channel program. 
• Upon recovering from an error by ERP (error 

recovery procedure) (see Section 7.2.7 ERP). 



CONTROL PROGRAM 

This does not refer to the channel-end of the 
channel program by retries, but to the end·ofERP 
processing when the processing has temporarily 
been diverted to ERP. 

The EXCP user provides an appendage routine 
taking into consideration unit exception cases (for 
example, if tape mark is detected upon issuing 
READ command to MT unit) and the processing 
of multivolumes. 

Abnormal end appendage interface 
This appendage receives control from EXCP in the 
following cases: 
• If an error is generated during execution of the 

154 

SIO macro instruction. 
• If interruption caused by error status is generated 

at the start of 1/0 operation. 
• If ERP cannot recover an error even after making 

several tries. 
• When the seek address is not correct during 

EXTENT check (i.e., exceeds the limit) and EOF 
appendage has not been provided; or EOF appen­
dage is provided but has made an abnormal end. 

The user, by providing an appendage routine to 
perform a reinput/output operation in the case of 
different errors, can process his own independent 
errors also. 



CHAPTER 6 
VIRTUAL STORAGE 
ACCESS METHOD 

5.1 OVERVI EW 

The virtual storage access method utilizes direct 
access devices for sequential and direct processing. 
VSAM creates and maintains two types of data sets. 
One type is organized by a key field within each 
record and is called a key sequenced data set. 
Records are located using the key field'aQd an inqex 
that points tp key fields and addresses of associated 
data. Key-sequenced records can also be located 
using their displacements from the beginning of the 
data set; each record displacement is'called a relative 
byte address (RBA). 

The other type of VSAM data ~et is organized by 
time of arrival of each record into the data set. This 
is called an entry sequenced data set. Records are 
located using the RBAs. 

VSAM offers users two major advantages over 
sequential (SAM), indexed sequential (ISAM), and 
direct (DAM) access methods. One is its data 
organization techniques, which minimize data 
movement and provide device-independent data 
sets designed for long-term stability and for data 
base applications. The other is a set of service 
routines designed to facilitate data management; 
these routines initially define data sets, copy and 
print data sets, delete VSAM entries from a catalog, 
and provide full data set portability among small and 
large operating systems. 

Conversion of data sets from ISAM or SAM for­
mat to VSAM format is another function of the ser­
vice routines. An IS AM interface program is pro­
vided to map ISAM macro instructions into corre­
sponding VSAM requests, so that most programs 
written using ISAM data sets can also be used with 
VSAM. In VSAM, access to data is controlled by as­
sembler-language macro instructions. 

In addition to major improvements, certain 
device-dependent calculations have been automated 
in VSAM to minimize the programming effort 
required to change device types. For example, the 
calculation of optimum block size for a device is per­
formed by OS IV /F4. VSAM also offers multiple 
levels of password protection and an exit for user 

written security routines to improve data set 
security. 

For additional details on VSAM, the reader 
should consult the following publications: 
• FA COM OS IV /F4 VSAM Functions and 

Facilities. 
• FA COM OS IV/F4 AMS Commands Reference 

Manual. 
• F ACOM OS IV /F4 VSAM Macro Instructions 

Reference Manual. 

5.1.1 VSAM Highlights 

CPU and DASD efficiency 
VSAM has many facilities to improve CPU 
efficiency , effective channel throughput, and 
job/transaction turnaround times, compared to 
SAM, ISAM, and DAM: 
• skip-sequential processing, to eliminate continued 

index searches after locating the first record of a 
sequence. 

• replicated track indexes, to reduce rotational 
delays on DASDs. 

• long-term retention of index and data records in 
buffers to reduce the number of ovverall I/O 
operations. 

• automatic insertion of empty space on tracks 
during creation of VSAM data sets, allowing for 
subsequent additions. 

• reuse of space from deleted records, so that each 
track or block is compactly filled with ac~ive 

records. 

Also, the following unique aspects of VSAM help 
it perform well: 
• VSAM catalog is itself a VSAM data set. 
• indexes are blocked. 
• keys are compressed (sequences of keys reduced 

to minimum overall size). 
• insertion of several new records within one track 

with a single track-long channel program. 

Simple but useful modes of access 
• Sequential access by key or RBA. 



CONTROL PROGRAM 

• Direct access by key or RBA. 
• Skip-sequential access by key. 

These modes can be intermixed freely after a data 
set has been opened, in contrast to ISAM. The user 
can switch from one mode to another as his applica­
tion requires. 

Integrated approach 
All attributes of VSAM data sets and associated 
volumes are collected into the VSAM catalog, rather 
than being dispersed to non-VSAM catalogs, 
VTOCs, directories, etc. as in other access methods 
for DASDs. This approach helps simplify DO state­
ments considerably. 

Device independence 
Each record in a VSAM data set is located by its byte 
address relative to the beginning of the data set. 
Hence, record and block numbers are not used to 

156 

OS IV /F4 control program area 

Catalog 
control 
routine 

ISAM user 
program 

"3 
'0; 
o 
...J 

VSAM user 
program 

AMS program 
(access method 

service program) 

User program area 

c:==::> Data flow 

---__ Control flow 

Fig. S.l Schematic diagram ofVSAM 

'" c: 
.~ 

~ e 
Q. 

locate records. Since these numbers are quite 
device-dependent, VSAM achieves a mucb bigber 
level of device independence than SAM, ISAM, etc. 

Using the VSAM catalog and tbe AMS service 
program, it is simple to move VSAM data sets be­
tween installations. 

Privacy and security 
Passwords can be created at four different levels in 
VSAM, to safeguard individual fields and records as 
well as entire data sets. Users can be required to fur­
nish authorization keys. Shared andd exclusive con­
trols of data sets and individual recOrds are fully sup­
ported. 

Comprehensive service aids 
In the access method services (AMS) service pro­
gram are facilities for defining, changing, deleting, 
and displaying the VSAM catalog and selected 

Pointer 
--------1 
-----~ : , , 

: : , , , , , 
____ J I 

-: 
, , , , 

---- -- -~ 

,.-------------------------------, , , 
: , , , , , , 

, 
: , 

~---------------------- - -------~ 

~. 
To other system 



VSAM data sets. AMS will copy SAM, ISAM, and 
DAM data sets to VSAM format. It will create 
portable data sets, which contain relevant portions 
of the VSAM catalog as well as selected VSAM 
records. Finally, AMS will give powerful assistance 
to the user recovering VSAM data sets after a job 
failure or system failure. 

6.1.2 VSAM Structure 

Fig. 5.1 shows a schematic outline of VSAM. In the 
control program area (system and common areas of 
each address space) are VSAM routines for process­
ing records, managing catalogs, and interfacing to 
programs with ISAM linkages. In the user area are 
the problem programs (using VSAM and! or ISAM 
linkages) and, as a distinct job step, AMS. 

Record processing 
These routines accept and validate requests for 
VSAM records from user programs, AMS, catalog 
control routines, and ISAM interface routines. 
These routines then process VSAM data sets and 
catalogs as requested. 

Catalog control 
This routine manages the VSAM catalog on a 
unified and centralized basis, handling the definition 
and any subsequent attribute modifications for each 
VSAM data set. 

ISAM interface 
This routine accepts and validates requests for 
ISAM-format records by user programs. It converts 
these requests to equivalent VSAM macro instruc­
tions, then services these requests appropriately. 
Hence, VSAM data sets can be created, accessed, 
and modified by assembler, COBOL, and PLII pro­
grams originally written to use ISAM data sets. 

VSAM user program 
A VSAM user program requests processing of 
VSAM data sets with VSAM macro instructions. 

ISAM user program 
An ISAM user program can process VSAM data sets 
by linking to the ISAM interface routine. Previously 
any indexed sequential data sets must be converted 
into VSAM data sets using REPRO commands from 
AMS. 

AMS (access metrwd services) 
AMS is a utility program for handling VSAM data 
sets. AMS is closely related to the catalog control 
routine. In other words, AMS processes data set 
information by referencing and changing catalog 
information. With AMS, a user can convert and 
indexed sequential data set to a VSAM data set. 
Also, he can move a VSAM catalog and/or VSAM 
data set to another OS IV /F4 system. 

VIRTUAL STORAGE ACCESS METHOD 

6.2 VSAM DATA SETS 

6.2.1 Types 

There are two types of VSAM data sets: key 
sequenced and entry sequenced. Each type may only 
be created on one or more DASDS. 

Key sequenced data set 
In a key sequenced data set (KSDS), records are 
arranged by ascending order of their keys. When a 
record is accessed by its key, an index is necessary; if 
a record is accessed by its relative byte address 
(RBA), an index is not used. Each index is a data set 
distinct from one containing data records. Key 
sequenced data sets automatically reuse space from 
which records have been deleted. 

Entry sequenced data set 
In an entry sequenced data set (ESDS), records are 
arranged in order of input; there is no index. All 
accesses are by RBA, and any new records are added 
to the end of the data set. 

The principal differences between these two types 
are shown in Table 5.1. 

Table 5.1 Differences between KSDS and ESDS 

~ 
Key sequenced Entry sequenced 

date set data sets 
Attribute . (KSOS) (ESOS) 

Sequence Ascending by keys Entry sequence 

Index? Yes No 
Accessby __ Key or RBA ABA 

Position of Each control End of deta set 
free space interval/control area 

Reuse space? Yes No 

Change R BAs by Yes No 
insertions/ 
deletions? 

5.2.2 Structure 

Common attributes of all VSAM data sets are as 
follows: 
• VSAM data spaces. 
• clusters. 
• control areas. 
• control intervals. 
• physical blocks. 
• records. 
• relative byte addresses. 

VSAM data spaces 
VSAM data sets are not directly allocated by direct 
access storage device space management 
(DADSM), which allocates space for SAM, PAM, 
and DAM data sets in OS IV/F4. First, VSAM 



CONTROL PROGRAM 

acquires data spaces from which individual VSAM 
data sets are allocated. Thereafter, information on 
these spaces is entered into the VSAM catalog. 
VSAM data spaces can coexist with non-VSAM data 
sets on a volume. 

In summary, VSAM data sets are allocated by 
VSAM from data spaces, based on information con­
tained in the VSAM c;ltalog. 

Cluster 
A cluster is a group of related VSAM data sets. For 
example, a KSDS actually comprises two data sets: 
the index, and the records themselves. These two 
data sets are collectively called a cluster. 

An ESDS has no index, hence contains only one 
data set. Nonetheless, it is still considered to be a 
(trivial) cluster. 

VTOC 

VSAM data 

space 

Non·VSAM area 

Fig. S.2 VSAM data space and data sets 

Control interval 

Cluster A 

'. Cluster 8 

} Cluster C 

VSAM controls transfers of data between I/O 
buffers and a VSAM data set; the unit of transfer is a 
control interval. 

The length of a control interval is computed for 
each data set to be optimal for the DASD on which it 
is written, taking into consideration record lengths 
and I/O buffer lengths. Users can optionally select 
lengths for control intervals, with a maximum value 
of 32,768 bytes. 

One or more records are contained in each control 
intervaL One VSAM record can never extend over 
several control intervals. 

The user can leave empty space in the control 
intervals of a KSDS to allow for future record inser­
tions. Unused or reused space from deleted records 
is reutilized within each control interval. 

158 

Control area 
A control area consists of multiple control intervals. 
The size of a control area is determined by its con­
trol-interval length, primary volume, secondary 
volume, space allocation, etc. 

The maximum size of a control area is one DASD 
cylinder. One control area is the minimum unit for 
extending a VSAM data set. 

When creating a KSDS, a user can allocate one or 
more empty control intervals for future record inser­
tions within his control area. 

Physical block 
Each control interval contains one or more physical 
blocks. A physical block is the unit of transfer for 
actual 1/0 operations; VSAM blocks have a fixed 
length within each data set: either 512, 1024, 2048, 
or 4096 bytes. 

VSAM selects the optimum block size for each 
data set, taking into consideration the lengths of 
records and control intervals. If the control interval 
is larger than one physical block, data are transferred 
between a control interval and I/O buffers by chains 
of physical blocks. Hence, the same control interval 
length can be maintained even if the data set is 
moved to a different type of DASD. The relation­
ship will be described with reference to Fig. 5.3. 

Suppose there exists control interval within an 
110 buffer, as shown at the top of Fig. 5.3. The con­
tent of this control interval can be accommodated in 
one physical block. Thus, this control interval is 
divided into three physical blocks. In this case, 
records may extend over physical blocks, such as 
records 3 and 5 on Device I . 

Suppose this data set is shifted from Device 1 to 
Device 2, whose track length is shorter than that of 
Device 1. VSAM selects a different physical block 
length for Device 2, in order to better utilize DASD 
space. Thus, both the lengths and numbers of physi­
cal blocks change. Since the control-interval length 
remains constant , the user program sees no 
difference between processing the data set on 
Device 1 or Device 2. 

Records 
The VSAM record is the logical unit of data accessed 
by a program, just as for other access methods. The 
maximum VSAM record length is 32,761 bytes, the 
maximum length (32,768 bytes) of a control interval 
minus the minimum field (7 bytes) of necessary' 
control information. 

Relative byte address 
Relative byte address (RBA) shows the relative 
position of a record from the start of the data set. 
Even if a data set contains many extents (or extends 
over many volumes), RBAs are determined in a 
consistent, device-independent way. VSAM con­
verts RBAs into physical addresses on a device by 
considering the bytes/track, tracks/cylinder, and 
tracks/extent coefficients peculiar to this device and 



VIRTUAL STORAGE ACCESS METHOD 

I I-------------Control interval-------------il 

InputJ 
Output 
buffer 

~ 

t! 
0 
(J 
CI> 
a: 

N 

t! 
0 
(J 
G> 
a: 

M .., 
"C t! .. 
8 0 

IJ 
G> CI> 
a: a: 

Track 

C 
IS) -.£ 
"C ~~ 0--
~ .. .. c. .. ~ E IJ E 0. CI> W" 00 a: u_ 

.E 

block block block Phv.a'ir'hV·''''ir'h''''''i 
Control 
interval 
on one 
track 
(Device 1) 

~ 

t! 
0 
(J 
G> 
a: 

N 

t! 
0 
(J ., 
a: 

M M 

t! l' 
0 0 

:s u ., 
a: a: 

. 

.., IS) IS) 
c 

- .2 
t! "C t! o --0 .. .. 
0 0 e E u u ... ., ., G> 8.E a: a: a: 

.C: 

r-------Track-------.., I-I-------Track- ------.,I 

Physical-l rPhYSicall rPhYSicall 
block I block block 

Control 
interval 
on two 
tracks 
(Device 2) 

~ N N M M .., 
t! "C "E "C "C "t) 

~ 0 8 ~ 8 0 
u IJ IJ U ., ., ., 

'" '" 
., 

a: a: a: a: a: a: 

Fig. 5.3 Control intervals and physical blocks 

data set. The user need not be conscious of physical 
addresses. 

RBAs are calculated by VSAM when writing 
records into a VSAM data set. Users can access 
RBAs and thus achieve direct access to records. By 
processing records in sequence by their RBAs, 
records are accessed in sequence. Since an RBA is a 
four byte integer, one VSAM data set can have 232 

bytes - approximately 4.3 billion bytes. 

&.2.3 Key Sequenced Data Seta 

The internal structure of a key sequenced data set 
(KSDS) is quite similar to that of an indexed 
sequential data set. 

~':r;;~'lr':r.:;~'l r':r;;~'l 
<t IS) 

"C t! 0 0 
U IJ 

'" '" a: a: 

Key 
sequenced 
data set 

IS) 

"C ~~ 0 c.., 
U E 0. 
'" w '" a: 

Fig. 5.4 KSDS structure 

Structure 

c 
- .2 
o --.. .. c E o ~ 
u.E 

'c: 

Higher index 
'--------' levels 

Lowest index 
'--___ --' level 

A KSDS is structured as shown in Fig. 5.4. 
The data set contains an index (consisting of 

index levels) and data (consisting of records). The 
index and data are data sets independent of one 
other. 

The sequence set is the lowest level of the index; 

- --.----------------~-------



CONTROL PROGRAM 

it can be optionally processed as data in order to 
increase access efficiency. The index levels of higher 
order than the sequence set is called the index set. 

Fig. 5.5 shows an example of a KSDS. 

Structure of the data portion of a KSDS 
VSAM data can be at different levels such as control 
areas, control intervals, and data records. 

Structure of a control interval 
Each control interval normally contains the follow­
ing three kinds of data, as shown in Fig. 5.6: 
• groups of KSDS records. 
• empty space. 
• system control information. 

When a KSDS is created, the user can plan to 
avoid clumsy future insertions by providing empty 

Index of 
highest order 
level 

Index 

85 1197131514BO 1 

space on D ASD tracks. 
VSAM creates system control information at the 

right end of each control interval: a control interval 
definition field (CIDF) of four bytes, and a record 
definition field (RDF) of three bytes. The CIDF 
contains information about records and empty space 
within the control interval. 

The RDF contains information about the record 
format: how it is placed within its control interval. 
RDFs do not necessarily match individual records. 
For example, when several consecutive records have 
the same length, their RDFs are combined to save 
space. RDFs enable VSAM to handle fixed-length 
and variable-length records in the same way. In Fig. 
5.6, variable length records 1 to 3 are controlled by 
RDFs 1 to 3. 

A KSDS utilizes space of deleted records or space 
released when records are shortenbd. 

Index set 

Index of 
second 
highest 
order level 

I...-22--.J_47--1_6_7--1_B_5......Jt 11 OBll 34\161 1 197 1 \210 1245127613151 

Index of 
lowest order 
level 

~."ol "" 0 1 

Co.,ml "" 1 1 

For empt'tll ! ~ontrol 30 38 45 
~_'--_'--_~In~t=e~~al ~. _-L_~.~~_~ 

47 
For empty} control Sequence set 

'--_'--_~_~i~nt=e~rval 

For control area 0 For control area 1 For control erea 2 

Data 
Control interval 0 Control interval 1 

IRe~rdl 4 I 5 I 7 I 
Empty 

I I 8 
1 10 I 

11 I 12 14 I Emptyl 
space space 

Control interval 2 Control interval 3 

I 15 I 18 I 19 I 21 I 221 Empty 1 I Empty control interval 
space 

Control inte~al 4 Control interval 5 

I 24 25 I 27 I 29 I 30 1 ~=:y I I 31 I 32 I 35 1 
37 38 I~;:~YI 

Control interval 6 Control inte~al 7 

I 39 41 144 I 45 I Empty I 1 46 1 
47 

1 
Empty space space 

Control inte~al 8 Control in te~al 9 

1 1~50 ~l 5------l-.1 _53 ~54--,--1 ~;----.J:c:y II 56 1 58 1 59 

Control area 2 Control interval 10 Control interval 11 ,r--rl --r,--.--.--67-,lrE-m-p-ty'! .-------------, 

,--6_1_,--6_3-L_65 __ ~_66--1 __ --1.~s_p_ac_e~. '--___ Em_Pt_y_c_o_nt_r_ol_i_nt_e_rv_a_I ___ ~ 

60 

Fig. 5.5 Diagram or KSDS 

160 



System control 
information 

Record 1 Record 2 Record 3 Empty M N-
U. u.u. u. 

(variable (variable (variable 0 0 0 e 
length) length) length) space a: a: a: u 

Fig. 5.6 Structure of control interval 

Structure of a control area 
A control area .consists of multiple control intervals, 
as was shown in Fig. 5.5. It is also possible to leave 
empty space in a control area, just as in a control 
interval. By leaving an empty control interval within 
a control area, the user avoids rebuilding the control 
area later, which is likely to happen if he lengthens 
existing records or inserts records. 

Structure of the index 
The index controls records by keys, just like an 
ISAM data set. 

Index levels 
Index consists of a group of index reCords, including 
key values, pointers, and various kinds of control 
information. 

A VSAM index normally has a tree structure of at 
least two levels. The highest level contains exactly 
one record. The lowest level of the index is called 
the sequence set; as shown in Fig. 5.7. 

Index portion 

Index set 

Sequence 
set 

Data portion {'--_-'--_.... .... ___ --J 

Index 
record 

Control 
interval 

n 

VIRTUAL STORAGE ACCESS METHOD 

Each index record in the index set contains a verti­
cal pointer to an index record one level lower. Each 
index record of the sequence set contains a horizon­
tal pointer to the following index record of the same 
level, plus vertical pointers to all control intervals 
within one control area. 

Structure of index records 
Each index record has the format shown in Fig. 5.8. 
VSAM selects its size for each data set. An index 
record fills one control interval, thus having one 
RDF. 

Control interval 

Index record 

~ 
c: 
, 
c: III ~ M 

Empty ~ > ~ > ~ 
~ "-Header control Unused .. .. .. 

c: c: c: c: c: 
portion interval space ., ., ., ., ., 

)( )( )( )( )( 
entry ., .. l 

.. ., ., 
"0 "0 "0 "0 "0 
.: c: .: .: .: - 'I 

( 

Fig. 5.8 Index record and control interval 

Index 
record 

Index 
record 

Index 
record 

Control 
interval 

o 

Index 
record 

Vertical pointer 

Horizontal pointer 

N .-

~ ~ 
E u. c: 0 .. ., 

)( )( a: ., ., 
"0 "0 
.: .: 

'-------Control area 0------'1 ... 1 -----COntrol area 1---------' 

Fig. 5.7 Structure of index and data in KSDS 

. I 
I 

u. 
0 
u 



CONTROL PROGRAM 

The header portion of an index record contains 
control information for this record. The next control 
interval entry exists only in the sequence set; other­
wise, it is empty. The unused space is an empty 
space within the index record. If an index entry is 
added to this index record, it is entered into this 
unused space (if any). 

An index entry has a different format, according 
to whether it is in the index set or the sequence set: 
• Within an index record in the index set 

Key of the maximum index entry for the level 
immediately below, plus a pointer to the corre­
sponding index record. 

• Within an index record of the sequence set 
Key of the maximum record within the control 
interval, plus a pointer to this control interval. 

Key compression 
Each key within an index entry is equivalent to the 
key field of a particular record. However, keys are 
usually compressed to increase DASD space utiliza­
tion and access efficiency. 

Compressing keys consists of eliminating leading 
and/or trailing characters from consecutive keys 
represented by an index entry. Only c~aracters 

necessary to uniquely identify each record r,emain 
after compression. As a consequence of key com­
pression, the lengths of index entries vary, as shown 
in Fig. 5.9. 

Residual key Number of Number of Vartical 
after bytes bytes pointer 
compression omitted remaining 

from haad after 
of key compression 

0 @ (5) 0 

Fig. 5.9 Structure of an index entry 

Complete keys 

Preceding key 11.j i L3..! 4' -15,1 5 I 7 

Current key 

VSAM keys are subject to forward compression 
and backward compression. Forward compression 
omits leading characters from consecutive keys 
whose leading characters match. In Fig. 5.10, if key 
"1234557" immediately precedes key "1234567", 
the characters "12345" match; they are omitted 
from the key "1234567". The number of omitted 
characters is recorded in the index entry, "5" in this 
example. 

After forward-compressing consecutive keys, 
VSAM compresses keys backwards as follows: if key 
"1234578" follows key "1234567", their sixth 
characters do not match; the seventh character, 
"7", is omitted from key" 1234567". 

In this way, after subjecting the pr~eding keys to 
forward and backward compression, only the 
character "6" remains from key "1234567". If this 
index entry pointed to the third control interval (i.e., 
relative number "2") within a control area, it would 
be written as l61511121in the format of Fig. 5.10, 
requiring only four bytes rather than the original 
seven bytes. 

Sectioning 
VSAM automatically divides index entries into sec­
tions in order to increase the ~fficiency of index 
searches. The number of index entries in each sec­
tion is approximately $, where N is the total num­
ber of index entries at this level. For example, 
VSAM creates three sections of 5 entries, and two 
sections of 6 entries if N = 27. Whenever a particular 
index entry is sought, instead of sequentially search­
ing from the first index entry, VSAM compares its 
argument against the maximum key within each sec­
tion. This technique enables VSAM to quickly locate 
the section containing the desired index entry, 
increasing search efficiency. 

Options to increase index-search efficiency 
With the DEFINE command of AMS, a user can 
request any/all of the following options for improv­
ing index-search efficiency: 

Characters 
deleted by 

forward 
compression 

Character 
deleted by 
backward 

compression 

Index entry 
after 

compressions 

@ @ @ @ 

16 I 5 I I 21 
Character wh ich does not 
egree for the first time 

Following key 

(Note) ® - @ denote correspondence with Fig. 5.9 

Fig. 5.10 Example of key compression 

162 



• creating the index and data portions of a KSDS on 
separate volumes. 

• replicating index records. 
• including the sequence set in the data portion. 
• replicating the sequence set. 
• reading part/all of the index into virtual storage. 

Creating the index and data portions on separate 
volumes 
This option improves retrieval times as follows: 
• simultaneous access to index and data portions. 
• potential for using a drum (very fast access, 

limited capacity) for the index. 

Replicating index records 
Fig. 5.11 shows how index records can be replicated. 
If the user selects this option, VSAM allocates a fun 
track to each index record, replicating this record as 
many times as the track capacity permits. Rotational 
delays are minimized by this strategy; however, it 
increases the amount ofDASD space required for an 
index, in order to improve response times and chan­
nel throughput. 

Including the sequence set in the data portion 
The user can request VSAM to create his sequence 
set within the data portion of his KSDS rather than 
in the index. This option can sometimes increase 
efficiency of searching the sequence set. 

Replicating the sequence set 
Index records are written onto the first track of the 
corresponding control area, replicated as much as 
the track can accommodate, as shown in Fig. 5.11. 
This technique minimizes time spent searching for 
an index record. Since the control interval contain­
ing the desired record is on the same cylinder, the 
DASD access mechanism need not be moved, 
improving overall DASD efficiency. This method is 
particularly effective for random or skip-sequential 
accesses to many records. 

Reading an index into virtual storage 
VSAM has a capability similar to that of ISAM for 
holding part/all of the master and cylinder indexes 
for an ISAM data set in main storage. 

Using the DEFINE command of AMS, a VSAM 
user can assign a predetermined number of virtual­
storage buffers to hold index records whenever this 
KSDS data set is accessed. These buffers are fined 
with currently-useful index records when VSAM 
commences processing the data set. If an buffers 
become filled, VSAM overwrites those index 
records (in virtual storage) least likely to be useful 
thereafter during this job step. With this approach, 
VSAM reads index records from DASD as infre­
quently as possible. Often, VSAM can load the 
entire index into virtual storage as the data set is 
being opened. 

Replication Replication 
Heading track of 
control arell 

of index of index 
record record 

Control area 
Sacond track 

moth track 

Heading track of 
RepliCation Replication the control area 

of index of index 
Control erea record record 

Second track 

moth track 

Fig. 5.11 Creating a sequence llet in a data portion 



CONTROL PROGRAM 

6.2.4 Entry-Sequenced Data Set. 

An ESDS has no index; its data portion has the same 
format as that of a KSDS, except as follows: 
• records may not include logical keys. 
• empty space cannot be preallocated to control 

intervals or control areas. 

6.3 VSAM PROCESSING 

VSAM provides a wide variety of access techniques 
for key-sequenced and entry-sequenced data sets. 

15.3.1 VSAM Acce •• Technique. Overview 

There are five access techniques, as shown in Table 
S.2. 

Table 5.2 VSAM access techniques and data seta 

Key Entry 
Access by Access type sequenced sequerced 

data set data set 
" 

Sequentiel X 
Key Direct X 

Skip 
X < 

sequential 

ABA 
Sequential X X 
Direct X x 

Also, system programmers can directly read, 
write, and update control intervals, although this 
practice is not usually necessary or recommended 
for ordinary users. 

The VSAM user can shift from one access techni­
que to another whenever necessary, without having 
to open and close his data set repeatedly. 

Access processing 
Sequential access processes ' records in their 
sequence of entry (ESDS) or their key sequence 
(KSDS) . 

For direct access, the user must furnish a key or 
RBA with each request; only after receiving his 
request does VSAM schedule a corresponding 110 
request, allocate one or more buffers, etc. (In 
general, VSAM acquires an appropriate number of 
buffers when it opens the data set; it assigns these 

Control Deletion 

buffers to control intervals only when it receives 
specific record requests.) 

In either case, VSAM deblocks records one by one 
if the user has requested move-mode processing, 
moving these records to the work areas he desig­
nates. If the user has requested locate-mode access, 
VSAM points general register 1 to each logical 
record: VSAM permits users to optionally perform 
their own' synchronization of 110 with processing. 

6.3.2 KSOS Processing 

All VSAM access techniques can be used with 
KSDS, although most commonly access is by key. 
After deletion, insertion, or updating of 11 KSDS 
record, its RBA may change. 

Sequential access by key 
Records are processed sequentially in key order, 
even if the user does not furnish keys in his 110 
requests. 
• Reading records 

When a KSDS data set is opened, VSAM presents 
the record with the lowest key. If the user wants to 
start processing with another record, he must 
issue a macro inStruction to position VSAM 
appropriately. 

Reading is performed by GET macro instruc­
tions. 

• Deleting records 
After a record has been requested by a GET macro 
instruction for updating purposes, it can be 
deleted by an ERASE macro instruction. 

With ISAM, it was impossible to reuse space 
vacated by deleted records. With VSAM, a dele­
tion creates useable empty space. Space reutiliza­
tion is.shown in Fig. 5.12. The reader should note 
that the RBAs for records "35" and "36" change 
after the deletion. 

• Updating records 
After the user has retrieved a record by a GET 
macro instruction he can optionally issue a PUT 
macro instruction to update this record. He can 
change the length of a key-sequenced record. If he 
shortens its length, VSAM performs space 
reutilization; if he lengthens the record, the 
following records are moved back within their 
blocks, control intervals, etc. In either case, RBAs 
for all records after the updated record change. 

When updating, the user cannot change a key or 
its position within the record. 

Brought forward 

~ __ ~ __ ~~~~ __ ~ ____ ~ ____ ~~IL_3_0~ __ 3_2-J1 __ 3_5-J1_,_3_6~1 __ ~_:_~_;~ 
Before deletion After deletion 

Fig. 5.12 Space reutiliz:ation 

164 

http:Fig.s.12


• Adding records 
Additions can either be insertions within the data 
set (between two existing records) or additions at 
the end of the data set. 

VSAM can insert several new records 
simultaneously into one control interval, using a 
highly-efficient set of 110 operations as follows. 

All read, insert, delete, and other operations are 
performed on the virtual-storage image of the 
control interval, which is then written to the 
DASD as shown in Fig. 5.13. Hence, VSAM does 
not require several different block-oriented 110 
operations to insert new records onto a DASD 
track, as ISAM does; VSAM updates the in­
memory image of the entire control interval, 
which it writes back to DASD with an efficient 
chained-block channel program. 

Buffer prior to 
VSAM updating 

Buffer after 

Update "12" 

Insert "13" 
Delete "15" 

~~~--~--~~--~--~----~ 

VSAM updating ~ __ L-____ ..l-_..l----'_..L..-_..L..--,-r-'

Corresponding
control interval

VSAM data set

Fig.5.13 Example of multiple simultaneous insertions/deletions

, : , For , ,
Sequence set

15 !@ 24 kD 31
i0

empty , control , , ,
interval , , ,

Control interval@

11 I 14 15
Empty
space

Control intervalQ)

17 I 19 22 24

Control area Control interval'0

Empty
space 28 I 30 31

Control interval ®
Empty control interval

Before inserting record "21"

Fig.5.14 Sectioning a control interval

, ,

VIRTUAL STORAGE ACCESS METHOD

• Sectioning control intervals
If adequate empty space is available in a control
interval, insertion is a simple, efficient process; no
sectioning of the corresponding control interval is
required.
Control-interval sectioning is a VSAM feature
for introducing empty space at the end of a control
interval to facilitate future expansion. A record
whose key exceeds that of a record about to be
inserted into a control interval is moved to an
unallocated control interval within the same con­
trol area. Thereafter, the inserted record becomes
the last record of the first control interval, as
shown in Fig. 5.14. In this figure, the striped
boxes indicated changed record areas, and the
circled numbers denote pointers to control inter­
vals.

RBAs of records in the striped boxes of Fig.
5.14 have changed. After inserting record "21",
the user can read sequentially by key as follows:
11,14,15,17,19,21,22,24,28,30,31. If he
reads sequentially by RBA, his access is by physi­
cal sequence of the records: 11, 14, 15, 17, 19,21,
28, 30, 31, 22, 24 .

• Sectioning control areas
This is exactly analogous to sectioning control
intervals, except that empty space is left at the end
of an entire control area, defined in terms of par­
tiallyltotally empty control sections.

Direct access by key
VSAM searches for the key supplied by each user
request, beginning with the highest-order index
level and continuing down to an index record in the
sequence set. The search time depends on whether
the required index levels are already in virtual
storage buffers.

, , . . \ ,
:@ , 15 :@ 31 · l® , , ,

I I
c=::;>
I I

I

, , ,

Control intervalQ)

17 I 19

Control interval0

28 I 30

: ~:- J

31 I

. '1 . .. ,
. .'t

Empty
space

Empty
space

Empty spece

After inserting record "21"

http:Fig.5.13

CD
@

CONTROL PROGRAM

Using direct access by key, the user can read,
delete, update, insert, and add records to a KSDS. It
is impossible to perform several simultaneous
changes to one control section without writing it
back to DASD several times, since continual up­
dating of the DASD image is needed to insure data
integrity.
• Reading records

The user furnishes a complete or generic key with
each GET macro instruction. Using a complete
key, he can request either the record having this
exact key or the record whose key is equal or next­
higher than this key.

Using a generic key of N bytes, the user
requests either the first record from the data set
whose key matches the furnished key for at least
N bytes or the first record whose key is equal to or
greater than the furnished key, considering only
the first N bytes of each key.

• Deleting records
After reading a record by key, the user can delete
it by issuing an ERASE macro instruction.

• Updating records

In the case of updating a record having a key "SO"

Procedure portion User bu fler area

After reading a record by key, the user can update
it by issuing a PUT macro instruction, as shown in
Fig. 5.15.

• Adding records
The user inserts or adds records by issuing PUT
macro instructions.

Skip-sequential access by key
The skip-sequential access technique searches
horizontal pointers of the sequence set without ver­
tically searching the index each time. The skip­
sequential technique has somewhat higher effi­
ciency than direct access. Fig. 5.16 shows the
difference between direct access by key and skip­
sequential access. The first record to be retrieved has
key" A". VSAM locates it in the sequence set by
using vertical pointers from the index in the
sequence (0 - (2) - (4).

If record "8" is now requested, its key is only
slightly higher than the present key. Using direct
access, VSAM must repeat the entire vertical search.
This requires substantial unnecessary search time
for index records, resulting in lower efficiency.

Key sequential data set

Index record
Index set

Key :

GET 1 60 I l~uffer for inde
Record updating (in the case of
processi ng three bu ffers

being prepared)

Index of highest
order level '=--'----'---'--J<;~=*==:::=~ '148!2511320 1435 1

'=--'----'---'--J<~~==:=~:::J 132!72!120!1481165!191!220!25*801

PUT I r-60-'1---'1 i '----''----''---''----'K=:==*===:=~ 110 I 21 I 32 I 146 I 65 172 1 185 1

I

L -- ----- --- -- --- ----no --------®v, ©
User program area ~

@ Updating

User work ar ••
VSAM

Processing procedure

Assign the key "SO" and ganerate GET macro. (j) ®
VSAM transfers index record of highest order level to the buffer . ® @

Control{
area

1

12

23

Sequence set

Data set

4 7 10 Empty space

15 18 21 Empty space

24 30 32 Empty space

Empty control interval

41 45 46

52 53 SO 65

69 71 72 Empty space

Empty control interval

}
Control
interval

@@
®®

Find an entry "148" and transfer its index record . @ @
Find an entry "72" and transfer its index record. @

Find an entry "65" and transfer its control interval.

Transfer to user work area (during move mode) and update.

Return again to the buffer from the PUT macro.

Store data set in VSAM.

Fig. S.IS Example or direct access by key

166

Direct access

Index set

Sequence set 1'--__ ---'
3

Fig. 5.16 Direct .access by key and skip-sequential access

The skip sequential technique processes these two
requests as follows. Since VSAM sees that record
"B" has a higher key than record "A", it omits
searching the index set. The index entry for "B" is
immediately found.

As the example indicates, if a user is following
each direct access by several sequential accesses, he
should use the skip-sequential technique. However,
he should use direct access if he is reading individual
records truly at random.

Sequential access by RBA
For sequential access by RBA to a KSDS, only read­
ing, deleting, and updating of records are allowed.
• Reading records

After opening the data set, VSAM starts process­
ing with the first record (RBA=O) . To start pro­
cessing from an intermediate record, the user
issues a POINT macro instruction furnishing its
RBA.

Just as for sequential access by key, sequential
access by RBA has two modes: one for reading a
record, one to prepare for updating or deleting it
after reading.

• Deleting Records
After his GET macro instruction, the user can
issue an ERASE macro instruction. When reading
and deleting records by RBA, VSAM doess not
update the index; hence corresponding records do
not exist if he later attempts to access them by
key.

• Updating Records
After a GET macro instruction, the user can
update a record by issuing a PUT macro instruc­
tion. He may not change either the length of the
record or the value of its key.

Direct Access by RBA
A user can directly access a KSDS by RBA. In this
mode, he can read, delete, or update records.
• Reading records

The user must furnish an RBA with each GET
macro instruction.

• Deleting records
The user issues an ERASE macro instruction after
formed just as for direct access to a KSDS by RBA.

VIRTUAL STORAGE ACCESS MEmOD

Skip-HQuential access

Only search
in the horizontal
direction

I h! I II
A B

a GET macro instruction. VSAM will reutilize
any freed space, but it does not update the index.

• Updating records
The user issues a PUT macro instruction after a
GET macro instruction to update a record.

Example of access by RBA
Fig. 5.17 shows the sequence set and data portion of
a KSDS. During direct access by key, the user may
request the record whose key is "20":
• VSAM searches the index; in the sequence set,

three entries for its control interval are found.
• VSAM knows that " 0" is the first RBA of the

control area.
• VSAM adds "2048" to " 0", the former number

obtained by multiplying "1024" (the control
interval length) by "2" (the sequence number of
the control interval) to determine the first RBA of
control interval 2.

• Based on this, control interval 2 is read into a
buffer and searched sequentially to locate the
record whose key is " 20."

To read record "20" by direct access using RBA, the
user must previously have learned that the RBA of
record "20" is "2500". If he issues a GET 'macro
instruction specifying "RBA-2500", the second
control interval is read into his buffer; the record is
located immediately.

5.3.3 Processing Entry-Sequenced Data Seta

Since an ESDS has no index, only RBA access is
possible, which is similar to accessing a KSDS by
RBA. Reading, updating, and adding records are
permitted for ESDS. To delete ESDS records, users
must assign and manage their own deletion codes.
• Sequential access by RBA

Reading and updating ESDS records sequentially
are performed the same way as for KSDS records.
Records cannot be inserted into the middle of an
ESDS, but they can be added at its end.

• Direct access by RBA
Reading, updating, and adding records are per­
formed just as for direct access to a KSDS by RBA.

CONTROL PROGRAM

Header
information

,---J-..

Entry for
CIO

~

Entry for Entry for Entry for
Cll CI2 CI3

,--'--, ,---J-.. ,---J-..
Head
R8A

for
control

area

Value CI Value CI Value CI Valua CI

- Sequence set

Control
area of
the data
portion

RBA=O 150

of
key

350 450

Fig. 5.17 Example of access by RBA

member

600

Just as for sequential access to ESDS, deleting
records is not handled by VT AM; a user must
choose his own deletion code and stpre it into
records when they are deleted, recognizing this
code when he reads the data set.

6.3.4 Types of Processing Supported by VSAM

Table 5.3 summarizes the modes of access to VSAM
data sets in OS IV IF4.

Table 5.3 Types of processing supported by YSAM

Deta .. t AcceslmOde
Reading

Sequential access x
by key

Direct access by
X key

KSDS
Skip sequential

X
access by RBA

Sequential access
X by R8A

Direct access
X

byRBA

Sequential access
X

ESDS
byRBA

Direct access by
X

RBA

Lengths cannot be altered.

of
key

member of
key

1023

member of member
key

Control interval 0
(CIO)

Control interval 1
(Cll)

Control interval 2
(CI2)

Control intervel 3
(CI3)

6.3.6 VSAM Macro Instructions

VSAM furnishes various control blocks and macro
instructions for Assembler language programmers.
Programmers writing in COBOL, PLlI, etc. use
VSAM via the ISAM interface described in Section
5.5.

This section describes VSAM control blocks,
followed by macro instructions for the following
purpose:
• Creating control blocks.

I/O operation

Updating Deleting Inserting Adding

x X X X

X X X X

X X X X

X· X

X· X

X· X·· X

X· X·· X

Users must write their own deletion codes into deleted records.

168

• Dynamically managing control blocks.
• Linking and separating VSAM data sets from pro­

cessing programs.
• Processing VSAM requests.

Fig. 5.18 shows the relationship between these
control blocks and macro instructions.

VSAM control blocks
VSAM creates certain control blocks when opening
a data set. Users create other control blocks to pro­
vide VSAM with various kinds of information:
ACB, RPL, and EXLST.
• Access method control block (ACB)

The ACB contains information about allowable
processing modes for the data set, passwords,
number and size of I/O buffers, addresses of
various exit routines, etc. The ACB of VSAM is
functionally analogous to the DCB of SAM, PAM,
DAM, etc.

• Request parameter list (RPL)
Each RPL defines one specific I/O request; it is
analogous to the DECB (data event control block)
of SAM, PAM, DAM, etc.

• Exit list (EXLST)
An EXLST parameter furnishes addresses for
various types of exit routines. EXLST has the
same format and general functions for VSAM as
for other access methods.

Imperative macro OPEN/CLOSE macro
instructions instructions

GET RPl OPEN
PUT address - CLOSE
ERASE
POINT
CHECK
ENOREQ

RPL

• ACe address

• Attributes of one
1/0 request ~

Control-block macro
/1

ACB
instructions .'

DO name parameter
ACe :' -----RPL '--------

EXLST
GENCe
MODce EX LST address

T SHOWCe
TESTCe .~ I

EXLST

Address for various
exit routines

----t___ Pointer

---------__ Operation of control blocks

Fig. 5.18 Relationship between VSAM control blocks

VIRTUAL STORAGE ACCESS MEmOD

Macro instructions for creating control blocks
The ACB, RPL, and EXLST macro instructions are
used in programs as follows:

ACB macro instruction
VSAM OPEN routines process the ACB generated
by an ACB macro instruction (or dynamically cre­
ated by the user program with a GENCB macro
instruction) . The principal attributes which the user
codes in his ACB macro instruction are as follows:
• Number of buffers for data records, number of

buffers for index records, and aggregate memory
to be allocated by VSAM.

• Addresses of various user-furnished exit routines.
• Processing options.
• Passwords (if omitted from the ACB, passwords

are requested from the operator during program
execution.)

• Maximum number of concurrent I/O requests.

RPL macro instruction
An RPL defines a specific I/O request; one RPL is
created by each RPL macro instruction. A user can
dynamically alter the content of an RPL by issuing a
MODCB macro instruction during execution. He
can furnish any/all of the following parameters in an
RPL macro instruction:
• ACB address.
• Work-area address and length.
• Key address (or RBA address).
• Address for a message about any unrecoverable II

o error; and the length of this message.
• Next RPL address (if any)

VSAM will process multiple records within a data
set in one I/O request, if the user builds a chain of
RPLs as shown in Fig. 5.19.

• Various processing options.
• Updating/no updating of records.

User program VSAM data I8t

GET RPl=RPLl

,

I ' l..-__ -'

~//

Fig.5.19 Chained requests

EXLST macro instruction
Users can furnish addresses for various exit routines
in EXLST macro instructions:

CONTROL PROGRAM

• I/O error analysis routine
When an unrecoverable error occurs during an
I/O operation, VSAM enters the routine so that
the user can analyze detailed error information.

• Logical error analysis routine
VSAM enters this routine when an 110 problem
other than an unrecoverable hardware failure
occurs.

• End of data address (EODAD)
During sequential access by key or RBA, if the
user attempts to read past the last record of the
data set, VSAM passes control to the EODAD
routine.

• Journaling routine
When a record is added to a KSDS, control passes
to this exit so the user can record how RBAs of
this data set change thereafter.

Macro instructions for dynamically creating/
modifying VT AM control Blocks
ACB, RPL, and EXLST macro instructions create
control blocks when a user program is assembled.
Alternatively or in addition, the user can issue
macro instructions during execution of his program
which dynamically create or modify control'blocks.

A GENCB macro instruction creates a VSAM
control block. A MODCB macro instruction can
change one or more fields of an existing control
block. A SHOWCB macro instruction displays part
or all of a control block. A TESTCB mac'ro instruc­
tion tests the value of a specified field in a VSAM
control block.

These macro instructions help users create
reentrant programs. Also, each user can create con­
trol blocks to reflect data sets he is processing against
various transactions.
• GENCB (Generate Control Block) macro instruc­

tion
A user executes a GENCB macro instruction to
create an ACB, RPL, or EXLST.

• MODCB (Modify Control Block) macro instruc­
tion
A MODCB macro instruction dynamically
changes the contents of an ACB, RPL, or EXLST.
By using this macro instruction, a user can adapt
preassembled control blocks to meet specific
needs identified during execution of his program.

• SHOWCB (Show Control Block) Macro instruc­
tion
A SHOWCB macro instruction displays the con­
tents of an ACB, RPL, or EXLST in a user-fur­
nished work area during execution of his program.
With this macro instruction, the user can scrutin­
ize information newly added by VT AM to his con­
trol blocks.

• TESTCB (Test Control Block) macro instruction
A TESTCB macro instruction tests specific fields
of an ACB, RPL, or EXLST, usually to select sub­
sequent program options.

170

OPEN and CLOSE macro instructions
OPEN associates one or more data sets with a pro­
cessing program. It also prepares various routines
necessary for processing the data sets. CLOSE termi­
nates processing of these data sets and releases
resources (virtual storage buffers, 110 routines,
etc.) used for this processing.

OPEN macro instruction
VSAM associates an ACB (access method control
block) with a data set. VSAM creates various control
blocks based on each DO statement and associated
catalog information. VSAM loads routines necessary
for GET/PUT/ERASE/etc. processing into the
user's region, or it connects already-loaded routines
to the corresponding ACB.

If the data set is password-protected, OPEN
checks for the correct password, furnished either in
an ACB parameter or on the corresponding DO
statement. VSAM checks whether the index and
data portions are separately processed, in the case of
a key sequenced data set.

When processing a multivolume VSAM data set,
the console operator need not mount all volumes
before/at OPEN time. When initially creating a
VSAM data set, a user furnishes a DEFINE com­
mand with AMS to define the range of keys on each
volume. When the user is ready to access this data
set at a later time, he can limit the number of
volumes to be mounted by limiting the range of keys
at OPEN time.

CLOSE macro instruction
When the user issues a CLOSE macro instruction,
VSAM writes all data and index records remaining in
his I/O buffers to DASD, then separates the ACB
from the data set, and erases various VSAM control
blocks and processing routines created by OPEN.
The CLOSE routine restores each control block to
its pre-OPEN format.

If the end of the data set has moved due to addi­
tions or insertions of records, the corresponding
VSAM catalog entry is updated. If the installation is
capturing SMF data, VSAM writes various SMF
records to the current SMF data set.

The TYPE=T option can be requested with
CLOSE, which is often called the TCLOSE func­
tion. TCLOSE writes any portions of the current
control interval remaining in I/O buffers onto
DASD, to insure logical integrity of the data set.
TCLOSE also updates the catalog entry for this data
set. After issuing a TCLOSE macro instruction, the
user can optionally resume processing this data set
without having to re-open it.

Imperative macro instructions
For VSAM, the user can issue GET, PUT, POINT,
ERASE, CHECK, and ENDREQ macro instruc­
tions, each requiring only an RPL parameter.

• GET macro instruction
GET reads one.record from a data set. With GET,
the user can access VSAM records in sequential,
direct, or skip-sequential sequence. He can per­
form synchronous or non-synchronous process­
ing. He can optionally prepare to update each
record.

• PUT macro instruction
Following his GET macro instruction the user can
issue a PUT macro instruction to update, insert, or
add a record to the data set.

• POINT macro instruction
The user issues a POINT macro instruction to
position VSAM to a particular record within the
data set.

• ERASE macro instruction
An ERASE macro instruction is used together
with a GET macro instruction to delete a specific
KSDS record.

• CHECK macro instruction
A CHECK macro instruction is used to synchron­
ize a task with an 110 operation; for VSAM,
CHECK plays the same role as for BSAM, BPAl\:f,
and BDAM.

• ENDREQ macro instruction
An ENDREQ macro instruction cancels an
asynchronous 110 request issued by another
macro instruction.

System catalog

User catalog

Fig. S.20 OS IV /F4 catalogs and data sets

VIRTUAL STORAGE ACCESS METHOD

6.4 VSAM CATALOG

5.4.1 Overview

The VSAM catalog' is distinct from the OS IV IF4
system catalog, which was described in Section 4.14.
Non-VSAM data sets need not be entered into
the OS IV IF4 system catalog. However, all VSAM
data sets must be entered into a VSAM catalog,
since most of their attributes are retained only in this
catalog.

Types of catalogs
Catalogs for VSAM data sets are called VSAM
catalogs, comprising one master catalog pointing to
an optional number of user catalogs.
Master and user catalogs are identical in format, but
a user catalog has the following special purposes:
• Reduce the size of the master catalog.
• Minimize search times.
• Improve the integrity {resistance to failure} of the

overall catalog structure.

Fig. 5.20 shows an overall diagram of catalogs and
data sets.

CONTROL PROGRAM

VSAM catalogs and JCL parameters
A VSAM catalog not only points to the volumes
containing a VSAM data set - like the system
catalog - but also contains many attributes of the
data set. VSAM always consults a VSAM catalog
when processing a VSAM data set, even when
merely requesting additional space for the data set.

Due to the functional breadth of the VSAM
catalogs, data definition (DO) statements become
quite simple. In other words, attributes of a data set
are retrieved from the VSAM catalog when it is to be
processed, rather than from DO statements. Space
management information can also be obtained from
the VSAM catalog, except when initially securing a
VSAM data space.

Since entries and deletions from the catalog are
performed by the AMS utility routine, JCL
parameters for cataloging / uncataloging are
unnecessary for VSAM data sets.

The following JCL rules and procedures are added
to basic OS IV /F4 data management to support
VSAM:

JOBCAT and STEPCAT nn statements ,
These define VSAM user catalogs used in particular
jobs and job steps, respectively.

The AMP parameter
The AMP parameter can furnish any/all (farameters
specified ordinarily by an ACB or EXLST macro
instruction. In addition, AMP can furnish sub­
parameters for the following attributes:
• Checkpoint/restart option.
• ISAM interface option.
• Control-block dump option.
• Location for a VSAM data set having a specified

volume serial number.

6.4.2 Contents of the VSAM Catalog

An installation can store volume pointers for non­
VSAM data sets in the VSAM catalog as well as
attributes of VSAM data sets. This approach speeds
up catalog searches, compared with using the OS IV/
F4 system catalog. It is impossible to define genera­
tion data sets in a VSAM catalog.

Information about data sets
• Correspondences of relative byte addresses

(RBAs) with physical positions on each volume.
• Pointers to each extent of the data set.
• Various activity and format statistics, such as

number of inserted records, number of deleted
records, empty space information, etc.

• Size of control intervals, number of control inter­
vals per control area, size of physical blocks, posi­
tion of the key, etc.

• Passwords.
• Timestamp information.

172

• For a KSOS, a flag indicating whether data and
index portions are to be processed separately or
not.

• End of data set processing option, etc.

Information about volumes
• Volume serial number and device type of each

volume.
• Number of data spaces and data sets.
• Positions of data spaces, etc. on each volume.
• Unallocated areas in each data space, etc.

6.4.3 Using the VSAM Catalog

Opening a VSAM data set
When a user issues an OPEN macro instruction, the
VSAM catalog is accessed as shown in Fig. 5.21.

Job control
estatement (JCLI

OPEN ACB=AC(b J
J

ACB

Var ious
information

on other
data sets

VSAM catalog

VSAMDATA

Information
on data sets

Informetion
on VOlumes

VSAMDATA

Fig. 5.21 Example of OPEN macro instruction and the
VSAM catalog

Accessing VSAM catalogs

}\
\
\
I
I
I
I
I ,
I ,
I

!

The user can furnish a JOBCATI DO statement
(whose name field contains "JOBCAT") to allocate
a user catalog for the duration of an entire job; this
DD statement immediately follows his JOB state­
ment. The user can furnish a STEPCA T DO state­
ment (whose name field contains "STEPCAT") to
allocate a user catalog for one step. If he omits both
JOBCAT and STEPCAT s~atements, VSAM utilizes
the master catalog for all searches.

Sequence of catalog searching
Catalogs are searched in the following sequence by
OS IV/F4.

• User catalog designated in a STEPCAT statement.
• User catalog designated in a JOBCAT statement.
• VSAM master catalog.
• OS IV IF4 system catalog.

5.5 ISAM INTERFACE ROUTINES

ISAM interface routines enables ISAM programs to
use VSAM for processing VSAM data sets. The
following subsections describe how the interface
operates and constraints on its use.

6.6.1 Overview

Indexed sequential and key sequenced data sets are
similar to each other in structure and processing
functions. Hence, most ISAM programs can process
VSAM data sets with little or no alterations. The
ISAM interface routines of VSAM facilitate this
transition, as shown in Fig. 5.22.

In the case of using ISAM

Using VSAM: - Processing request

¢=) Data access

Fig. 5.22 Location of the ISAM interface routines

6.6.2 ISAM Interface Processing

A VSAM data set can be processed with the ISAM
interface as follows:

1) The user allocates DASD space for the new
VSAM KSDS with a DEFINE command of AMS
(access method services) . He then copies his ISAM
data set to the KSDS with a REPRO command.
2) If necessary, he changes any aspects of his
ISAM source program (typically few or none) which
cannot be handled by the ISAM interface routines.
3) He changes his JCL to its VSAM equivalent.

VIRTUAL STORAGE ACCESS METHOD

4) He excecutes his program~ when he issues
ISAM macro instructions, the ISAM interface
routines convert them into corresponding VSAM
macro instructions.
5) When his IS AM-oriented program opens the
KSDS, an ISAM interface routine receives control
and performs the following services:
• Loads additional ISAM interface routines.
• Creates control blocks needed by VSAM.
• Initializes the IS AM DCB in the user's program,

so that it appears to be opened normally .
• Sets any necessary DCB exit routines

6) When thhe user issues an imperative IS AM
macro instruction (READ, GET, e tc.), an ISAM
interface routine receives centrol, selects the corres­
ponding VSAM macro instruction, creates an
appropriate RPL, and yields control to the appropri­
ate VSAM routine.
7) When the previous step completes, the ISAM
interface routine translates the VSAM return code
into the corresponding ISAM return code,
appropriately updates the IS AM DCB, and returns
control to the application program.
S) When the user issues a CLOSE macro instruc­
tion, an ISAM interface routine terminates process­
ing of the data set; thereafter, the ISAM interface
routine loaded when this data set was opened is
deleted (unless it is still in use for another VSAM
data set).

5.5.3 Restrictions of the ISAM Interface

Since VSAM cannot perform all ISAM functions,
users must make minor changes to their ISAM­
using programs. Typical constraints are shown in
Table 5.4 .

Table 5.4 Typical constraints on using the ISAM interface

Constraint

OPEN (TYPE=J)
macro instructions
cannot be used with
VSAM.

Recommended alternative

Redesign program so it does not
need OPEN (TYPE=Jl.

Although ISAM Either (a) allocate a permanent
data sets can be VSAM data set for the same
temporary . function or (b) use a non-ISAM
(DSNAME omitted), temporary data set for this
VSAM data sets function.
cannot be temporary

ISAM counts This function is unnecessary and
accesses to overflow obsolete with VSAM; associated
areas . routines may be deleted .

Some ISAM SETL Change to othar forms of SETL
macro instructions which are supported by the
have no VSAM ISAM interface.
counterparts.

CONTROL PROGRAM

5.6 SHARED AND EXCLUSIVE CON­
TROL OF VSAM DATA SETS

Several users can concurrently share a VSAM data
set:
• Subtasks within one region.
• Jobs between regions.
• Users of different as IV /F4 configurations.

Since VSAM manages control blocks by region,
complete data s~t integrity can be assured for sharing
by subtasks, without any special action by users.

When sharing data sets between jobs or configura­
tions, users must define and perform their own data
set integrity control for simultaneous reading,
updating, etc.

6.8.1. Sharing by Subtalkl

When sharing a data set among sub-tasks, the unit of
exclusive control for a VSAM data set is the control
interval; the reader should review Section 4.11 for a
general discussion of how data sets are shared or
exclusively controlled. Exclusive control is un­
necessary for several subtasks concurrently reading
a VSAM data set.

6.6.2 Sharing by Jobs

In this case, each job must assign DISP=SHR.
With an option of the AMS DEFINE command, the
creator of a VSAM data set can authorize/prohibit
its being shared simultaneously by different jobs in
one as IV /F4 system.

Exclusive control among jobs is exercised by
cluster name when the user issues an OPEN macro
instruction. By specifying DISP=OLD on his DD
statement, a user can insure that his job gains
exclusive control of the data set before executing.

6.6.3 Sharing Between OS IV/F4 Configurations

As described in Section 4.11.3, a user must issue
RESERVE/DEQ macro instructions ifhe needs to
gain exclusive control of a data set shared by several
as IVIF4 configurations. To keep DASD blocks
always current, the VSAM user can elect a sharing
option so as to write back physical blocks to DASD
every time he reads, updates, deletes, or adds a logi­
cal record to a VSAM data set.

174

5.7 DATA PROTECTION FACiliTIES

VSAM offers various functions to prevent data from
being (a) accessed by unauthorized users, (b)
damaged inadvertently or intentionally, or (c)
misread by user programs.

5.7.1 Data Protection

Password Protection
VSAM permits the creator of a data set to define
four types of passwords:
• Master password

This aHows any type of access to the data set and
its catalog record: reading, updating, or deletion.

• Control password
This allows access to the control intervals of a
VSAM data set.

• Update password
This allows any type of access to data records of a
VSAM data set.

• Read password
This allows only reading of a VSAM data set and
its catalog record.

Passwords can be assigned to a cluster, the entire
data portion, or to any unit of the data portion by
DEFINE commands of AMS.

When opening a protected data set, if the user pro­
gram does not furnish the appropriate password,
VSAM requests it from the operator. If neither the
user program nor the console operator can furnish
the necessary password, this data set cannot be
opened.

Authorization routines
When an as IV /F4 installation is planning its
VSAM password protection, it can furnish its own
routine to confirm authorizations of requestors. To
confirm that a requestor has furnished the correct
password, VSAM yields control to this installation­
supplied routine when the requestor issues an OPEN
macro instruction to this data set.

Control over deletions and updating
Updating or deleting records from a VSAM data set
is limited by specifying read-only access to the data
set, using the INHIBIT parameter of the AMS
ALTER command. Also, data protection is sup­
ported by the TO parameter of the ALTER com­
mand. Date protection is discussed in detail in the
FACOM OS IV/F4 Job Management Functions
and Facilities.

Timestamping
The data and index portions of a VSAM data set can
be processed independently. Whenever the content
of either portion is updated, this event is posted in
the VSAM catalog as a timestamp. Other users of

this data set can thus confirm which data set has
been updated and when (date and time).

5.7.2 Data Integrity Facilities

VSAM furnishes the following facilities to prevent
damage or loss of data due to carelessness or system
errors:

Reduction of overall I/O operations
When processing records, VSAM uses each I/O
buffer quite efficiently. After a block of records has
been fully processed, writing operations to DASD
are minimized.

When inserting, updating, or deleting records,
corresponding index records are not altered so long
as their control intervals are not sectioned.

By reducing I/O operations in this way, VSAM
reduces the incidence of hardware I/O errors while
improving the efficiency of DASD accesses.

Pre formatted control areas
When a new control area is required for sectioning,
VSAM pre-formats this control area before writing
records into its control intervals. This helps prevent
added records from being lost.

Write validity checking
After writing or updating a record, the VSAM user
can request hardware checking (write validity
checking) to determine whether the record has been
correctly stored.

Final-status checking
If a user does not close a VSAM data set in the nor­
mal manner after adding/changing records, final­
status information about the data set may not be cor­
rectly posted in the catalog. In this case, added
records may be lost. By issuing an AMS VERIFY
command, the user can insure that final-status
attributes are entered into the catalog whenever a
record is added, to prevent its being lost.

Temporarily closing data sets
By issuing a temporary-CLOSE 'macro instruction
(CLOSE TYPE=T) during processing of a data set,
the user can insure that all control intervals remain­
ing in its I/O buffers are written onto DASD.
Likewise, the catalog entry for this data set is
updated whenever a CLOSE (TYPE=T) macro
instruction is issued.

Shared and exclusive control of data sets
A data set can be shared or exclusively controlled at
three levels, as described in Section 5.6.

VmTUAL STORAGE ACCESS METHOD

6.8 ACCESS METHOD SERVICES (AMS)

Access method services (AMS) is a service program
which performs processing on the following VSAM
catalog and VSAM data sets:
• Definition, alteration, and deletion of VSAM

catalog entries and VSAM data sets.
• Copying existing sequential, indexed sequential,

and VSAM data sets into new VSAM data sets.
• Printing VSAM catalogs and VSAM data sets.
• Moving VSAM catalogs and VSAM data sets to

other systems.
• Recovery of damaged data sets.

AMS can be invoked either as a separate job step,
by an executing batch program, or by a TSS terminal
using one of these methods. There are two kinds of
AMS commands: functional commands such as
defining the VSAM catalog, and modal commands,
which condition execution of functional commands.

5.8.1 Functional Commands

There are nine functional commands:
• DEFINE
• ALTER
• DELETE
• LISTCAT
• PRINT
• REPRO
• EXPORT
• IMPORT
• VERIFY

Fig.5.23 shows their broad relationships to
catalogs, data sets, and each other.

DEFINE cQmmand
Before a VSAM data set can be created, the user
must define' its catalog, data space, and other
attributes with a DEFINE command.

Definition of a catalog
Before creating any VSAM data sets, an installation
must define a master cataJog. As necessary, users
can define additional catalogs of their own.

Definition of a data space
With a DEFINE command, the user secures a
VSAM data space, whose attributes are registered in
the catalog.

Definition of a VSAM data set
Attributes of a VSAM data set are defined by AMS
as follows:

http:Fig.S.23

CONTROL PROGRAM

VSAM catalog

Catelog management

DEFINE Data let portability between IYlteml

ALTER
Entry for data set 1

EXPORT

DELETE Entry for data set 2 IMPORT

Entry for data set 3 Volume for move

LISTCAT

Volume containing
VSAM data sets

r-Q---t5l/,---L---"~~~~1
: ' ... ----~ -... -----------,

Printing catal
entries for
data se.-3

Copy/convarsion of data sets

c: Data set 1

Data set 2

,
,

Other 'system

Final-status check/correction

_---\--- VERIFY
- .-"" \

EOO "

[§j- '
-------'"" \ Print contents of data set

[
c: Data set 3

REPRO

PRINT

Non-VSAM
data sat ¢=::) Flow of data

--- ContrOl, operation

-------- Reference

Fig. S.23 Schematic diagram of AMS commands

• Average and maximum record lengths.
• Information about keys.
• Catalog name.
• Volume serial number(s)
• Space requirements.
• Minimum 110 buffers for accessing the data set.
• Replicated/unique index records.
• Sequence set in index or data portion.
• Whether index and data portions are to be created

on separate volumes.
• Length of control intervals.
• Free space reservations.
• Integrity and protection options.
• Write validity checking.
• Preformatted control areas.

The creator of a new VSAM data set can reference a
previously-defined VSAM data set as a model; in
this case, furnishing its attributes becomes very sim­
ple. An installation can catalog non-VSAM data sets
into its VSAM catalog; in this case only volume
pointers are retained in the catalog.

176

AL TER command
An ALTER command changes selected attributes of
a VSAM data set .(which were originally defined by
DEFINE command).

ALTER has the same parameters and format as
DEFINE; most attributes can be altered. However,
control-interval length, location of the sequence set,
and other fundamental format attributes cannot be
altered. To change these, the user must copy the
data set to a new DASD location.

DELETE command
This command deletes a specified catalog entry~
released space can be immediately used for other
data sets.

LISTCA T command
This command displays alf entries of the catalog -
or a subset specified by the user. If he furnishes an
entry name, only the corresponding entry is printed;
if he furnishes an entry type, all corresponding
entries ire printed.

LISTCA T will also display selected fields of each
entry. Since the password field is itself password­
protected, L1STCA T will not print passwords unless
the master password is furnished with this AMS job.

REPRO command
With a REPRO command, a user can copy a sequen­
tial or indexed sequential data set to a VSAM data
set. Likewise, he can copy a VSAM data set to a new
sequential data set. He can copy a VSAM data set,
reorganizing its free space automatically in the new
data set.

PRINT command
With this command, a user can print part/all of a
sequential, indexed sequential, or VSAM data set.
For a KSDS, he can print the index separately from
the data portion. Sequential data sets and ESDS are
printed in physical sequence; indexed sequential
data sets and KSDS can be printed in either physical
sequence or key sequence.

EXPORT command
When a VSAM data set must be carried (exported)
to another system, the user issues an EXPORT com­
mand to AMS. Both the data set and its catalog infor­
mation are moved to the mountable volume which
contains the exported data set.
• Moving by catalog entry

When a VSAM data set is moved, the corre­
sponding user catalog may optionally be removed
from the master catalog of the exporting system.
This catalog is imported by the receiving system,
together with one or more data sets. In the import­
ing system, this catalog is linked to its master
catalog by an IMPORT command.

• Moving by volume
A user can copy a VSAM data set onto magnetic
tape or DASD as a sequential data set. At the same
time, he can create a copy of the catalog entry for
this data set, which is moved to the new VSAM
data set on the importing system.

IMPORT command
IMPORT commands complement EXPORT com­
mand as follows:
• Moving by Catalog Entry

Since both the user catalog and its VSAM data sets

VIRTUAL STORAGE ACCESS METHOD

can be used without change by the importing
system, the IMPORT command merely adds a
pointer to the VSAM master catalog of the
importing system.

• Moving by volume
In this case, IMPORT creates new catalog entries
in the master catalog of the importing system.
IMPORT then creates VSAM data sets from the
sequential data sets being imported.

By utilizing IMPORT and EXPORT commands,
an installation can conveniently backup its VSAM
data sets and VSAM catalog onto tape or DASD.

VERIFY command
The last record of a VSAM data set is recognized by
its EOD parameters (highest key and highest RBA),
recorded in its catalog entry. Also, VSAM writes a
hardware EOF record at the end of the data set.

If an unlikely error occurs during CLOSE process­
ing of a VSAM data set, the position of the hardware
EOF record may disagree with the EOD parameters.
The VERIFY command checks such EOD con­
tradictions; it corrects EOD information in the
VSAM catalog if it finds an inconsistency.

6.8.2 Moda' Commands

AMS offers IF, DO-END, and SET commands for
controlling the sequence of functional commands.
The P ARM parameter controls the length of input
commands and various AMS outputs for each run.
• IF command

This controls the execution sequence of func­
tional commands, based on condition codes from
each AMS operation.

• DO and END commands
These delimit the start and end of a command
group, as defined in the FACOM OS IV /F4
VSAM Functions and Facilities.

• SET command
This command alters an AMS condition code.

• P ARM parameter
The PARM parameter defines the length (other
than the default value) for input commands. It
also can set special Universal Character Set (UCS)
values for printing outputs.

CHAPTER 6
DATA COMMUNICATIONS

6.1 OVERVIEW

The growing complexity of modern data com­
munications networks has made control functions
such as scheduling data flows and managing system
resources - terminals, telephone lines and
modems, computers, and communications control
units - critical to successful operation of such net­
works.

OS IV /F4 furnishes the virtual telecommunica­
tions access method (VT AM) as its principal access
method for data communications. VTAM operates
in conjunction with the network control program
(NCP), which operates within a communication
control processor (CCP), a new and independently­
programmable control unit for M series computers.
The CCP architecture permits NCP to assume many
functions formerly performed by host computers.
This host-CCP architecture enhances overall system
reliability and efficiency.

VT AM is an access method applicable to various
system configurations: terminals and computers
linked via telephone circuits, character display units
connected directly to host-computer channels, and
linkages between computers utilizing channel-to­
channel adapters (CTCA) .

Major functions of VT AM are as follows:
• Connecting and disconnecting application pro­

grams from terminals.
• Data transmission between application programs

and terminals.
• Sharing of network resources such as the CCP,

communication lines, and terminals.
• Multiple application functions from each ter­

minal; for example, used for inquiries in the
morning - order entry in the afternoon.

• Monitoring and reallocating resources during
routine operations.

This chapter outlines VT AM and NCP from the
viewpoint of installation management. Additional
details can be found in the following publications:
• FACOM OS IV/F4 VTAM Functions and

Facilities.
• FACOM OS IV/F4 VTAM Macro Instructions

178

Reference Manual.
• FACOM OS IV/F4 VTAM Generation User's

Guide.
• FACOM OS IV/F4 VTAM Operator's Guide.
• F ACOM OS IV /F4 NCP Functions and Facili­

ties.
• F ACOM OS IV /F4 NCP Generation User's

Guide.

6.1.1 Purpose of VT AM

A communication control processor is necessary to
connect communication lines to a computer. There
are many kinds of computer network connections
with respect to speed and transmission control pro­
cedures.

It is desirable to use the host computer for data
processing and noncommunications input/output
functions as much as possible, leaving most com­
munications control tasks to the CCP.

Communications control is logically classified into
four levels: transmission control, network control,
path control, and format control.

The transmission control level manages
transmission control procedures, polls and selects
contiguous stations, controls communications
equipment such as telephone circuits and modems,
and performs error detection and correction and
various types of error recovery.

The network control level performs
• selection of path from sender to receiver,
• establishment of network communication paths,
• retry using alternate paths,
• translation and editing of data transmitted via

other paths, and
• dialogs with other data networks.

The path control level controls logical com­
munication between computers and terminals. It es­
tablishes and releases logi"cal communication paths.

The format control level provides blocking/
deblocking, linefeed, control of displays, and cursor
control.

OS IV 1F4 VT AM interfaces with the NCP stored in

the CCP. this vr AM-CCP combination furnishes the
following advantages:
• shares processing loads to increase host-computer

efficiency.
• simplifies interfaces between terminals and the

host computer.

6.1.2 Usage of VT AM

Several major OS IV IF4 subsystems utilize vr AM
for all of their communications to remote terminals:
• Time sharing system (TSS) -described in Part IV

of this manual.
• Remote entry services (RES) -described in

Chapter 3 of this part of the manual.
• Advanced information manager (AIM) - de­

scribed in Section 4.11 of Part 1 of this manual.

In addition, users can write their own terminal
subsystems using VTAM macro instructions; com­
parable communications verbs are available in high­
level languages such as COBOL and PLiI. OS IV IF4
subsystems and user programs containing VT AM
macro instructions (or equivalent) will be collec­
tively called VTAM applications programs in this
chapter, as depicted in Fig. 6.1.

User subsystems

Fig. 6.1 VT AM applications programs

6.1.3 Network Structures

A IU!h~tlfk eoftsl§t§ ~f ~H@ ~f ftl61'@ ~nUil e6ffi"
PHl~f§ aHB t~fl3 ; l)iU~; (IF ffi.t}f~ iefffilMis; ~atil
eefUtal ttHfilitiier tjf letffilriili cofrtprises 6ft~ or tH6fe
fi66es ftofu a e6fttfflHHieat!tjHlHlrellltecllife \flew"
palfit N08e§ . C6ffi~ the ~ eletfi~~ afitl
etlffi8lnatltlHs tfiefe6f:
• a~piieatidfi i1ftJ~riltit
• eeHiffiHtiieatl6Hs totUf€d t1ftl€@s§ot;
• etiffiffiilfiieatiaft!l iiHt
• i~fffiiftai t§tatitm) ;
• itleai tlo dt:!vit~ tof ~¥8tJiifd U§ef§.

PIA; 6; 1 Hi~mj~9 a ie~f~tfiiaU~~ fttHW6tk tif
H6B~s; tti this ehapt!rl tefmlttais wut IBeal 1/0
dl!,vltes for kerbbard .users .Iii be dliled i1it!t_
ffilnals'; cotieaWely; s1itce they tlte etJrtlfuUetl B¥
Vi' AM 1ft ~sseh tlally the same WitY.

DATA COMMUNICATIONS

Each station itself comprises a node. The con­
figuration of a station, nodce differs according to its
hardware characteristics and its control by the host
computer. A station node can be one of the fol­
lowing three types.
• Cluster station.
• Terminal station.
• Component.

A cluster station consists of several devices shar­
ing a control unit. The host computer can communi­
cate with some or all of them simultaneously, recog­
nizing each device separately. In general, each
device is separately operated, calling its own applica­
tion programs independent of the other devices. In
the polling method of communication, the host
computer identifies each input device by the con­
tents of its message texts. In contention method, the
host identifies each device by the content of a data
field sent by the station with each transmission
request. Every cluster station sets its own address
into a specified position in each message.

The F1530 banking terminal, F9525 character dis­
play terminal, and F9520 character display terminal
are representative cluster stations.

Each terminal station can receive input from only
one source at a time. Likewise, each can write only
one stream at a time to a host computer. Terminal
stations cannot recognize which input device
receives each message. The operator typically uses
one input or output device at a time, and only one
application program can communicate with a ter­
minal station at a time.

Each device in a cluster station is itself the body of
a terminal; F1520 teletypewriter/paper tape unit,
U-200 intelligent terminal, and F1510 teletype­
writer Ipaper tape unit are representative devices and
terminals.

A component is a terminal that can select an out­
put device according to an address transmitted by a
host. Paper-tape punches and printers in the F1520
aH~ \:J~l{m t@ifftHials fiI:'~ e~fflpijti@tU!J . Th~ FBIO
tifffiiftil Rli fit} @6ffiP6ftlftt @iplsilitYi its @ytP\lt
d~Vie@§ iif~ §@l@€i@tl §6i@irsy tR@ §lali@ft 6~@fiHEJfl
HtH By eljfttf6i €liafaetef§ fi6ft1 a 8@§t Fij. 6:3 iihl§if=
iUes iRS llOOTe t1pti§ of §tsti@fl§ mll o@,ie@§;

It 1.4 YfAM flffftiHili

nffftiftsi§ §\1~poftei:i ay Vf AM mil Nett eilli 8@ my
af Hi@ fuUtlwifti tri'~s:
jlFint~ HH@ tltUtBt to lMtiaU
• il§¥fteHfijHi:H1~ ;
.. SYtieHftH15us.
• tiiJUitil'adtifes!ilti~.
• t6Ht~tUitJf1.
• halt dUilt@~.
• hftl duplex;

CONTROL PROGRAM

CPU

OSIV /F4 superviser

IAIM iObW AIM

TSS

RES

User online
program

VTAM

CTCA

Fig. 6.2 VT AM network configuration

Dialup (switched)
• synchronous.
• synchronous.
• contention.
• half duplex.

NODcommuDicatloDs
• F9525 character display unit.
• channel to channel adapter (CTCA) link.

180

Line

LOCIII deyiCII herminal)

Character display

Line
Station (terminal)

Station herminall

system

Station (terminal)

Computer sy~tem

6.2 VTAM FACILITIES

VT AM furnishes many macro instructiollS and
operator commands. Application programs use the
macro instructions (or higher-language equivalent
verbs) to accomplish various functions described
laier in Section 6.4. The current section describes
overall . functional capabilities and operations 6f
VTAM.

DATA COMMUNICATIONS

Device ,nput/output unit

Cluster ----------1
Terminal

controller Device 'nput/output unit

Station

Terminal

Multiple
components

Single component

FUJITSU FACOM STATIONS

FACOM
models

F9525
Character
display

F1530 ,
Banking
terminal

F9520
Character
display

F1520
Teletype-
writer

U-200
Intelligent
terminal

F1510
Teletype-
writer,_

Key: CR
LP
CRT

. Station
type

,

Cluster

Cluster

Cluster

Cluster

Cluster

Terminal

Card reader
Line printer
Display

Fig. 6.3 Types and components ofVTAM network

8.2.1 Sharing Network Resources

VT AM manages network resources (control units,
lines, and terminals) so that several application pro­
grams and dozens/hundreds of terminals can
simultaneously share these resources, each unaware
of activity by the others.

Terminal
controller

Component

Multiple

Multiple

Multiple

Multiple

Multiple

Single

KB
CP
PT

Device Component

Terminal

Controller

Input/Output
device

CRT, KB

KB,CP

CRT, KB. LP

KB. CP, PT. LP

KB. CR, LP

KB.CP.PT

Keyboard
Character printer
Paper tape read/punch

Input/output unit

Input/output unit

Component

Input/output unit

Input/output unit

Sharing control units
Representative shared control units are the ·CCP
itself and the control unit for F9525 character dis­
plays. Several application programs can simul­
taneously share each of these control units, as
shown in Fig. 6.4.

CONTROL PROGRAM

Application Terminal

control unit

Fig. 6.4 Shared control units

Sharing lines
Several application programs can share one
multidrop line. Each terminal can communicate with
a different application program. .

In Fig. 6.5, terminals T2 and T3 use appli~ation
program PI, terminals T1 and T4 use program P2.

Applicetion
programs

~-- . - ~:~------ -----

CCP

Fig. 6.S Example of sharing lines

CCP

Fig. 6.6 Sharing tenninala

182 .

Terminals

-- ----d]

Terminal

Terminals on the same multidrop line can thus use
different application programs.

Sharing terminals
In OS IV IF4, all terminals access application pro­
grams via VT AM. Hence, several application pro­
grams can simultaneously be accessed by certain
types of terminals. However, once a terminal com­
mences communication with one application pro­
gram, it cannot communicate with another program
until it finishes (normally or abnormally) with the
first.

In Fig. 6.6, terminals T1 and T4 use application
programs P2 at timepoint I ,program PI at time
point 2 .

6.2.2 Establishing Communications Links

Communications links are necessary to establish
network paths. A connection is a link between a ter­
minal and an application program. Communications
connections are established and used in the follow­
ing stages:
• Connection is requested. A communications path

is furnished by OS IV IF4 and NCP if the required
node (application program or terminal) is a availa­
ble.

• Data is transfered if a connection is successfully
established.

• The connection is released when communication
has been completed.

Initially, all terminals in a network are available to
VT AM; an application program can request connec­
tion to any VT AM terminal. A connection can be
requested by an application program, a terminal, or
the center site operator.

A connection is established when VT AM makes a
path between the application program and the ter-
91inal available for messages. The terminal can then
communicate with one application program. If the
application program requests VT AM to disconnect
this terminal, VT AM makes its path temporarity
unavailable. The disconnected terminal can then
request linkages to other application programs as
appropriate.

VT AM can connect dynamically to terminals.
There are two ways to establish connections: to ·'
acquire or to receive a connection.

When VT AM connects an application program to
a particular terminal which the former has
requested, the application program acquires the ter­
minal. Conversely, when a terminal successfully
requests connection with an application program via
VTAM, the terminal receives the connection.

Other application programs cannot connect to a
terminal already connected with one application pro­
gram; however, they can enqueue their requests for
linkage. During execution, an application program

can not only release a terminal to another application
program but also connect to another terminal dy­
namically.

6.2.3 Data Transmission

Once an appiicationprogram connects to a terminal,
it can communicate with the terminal using one of
the VT AM options. If the program transfers data
using standard VT AM, it need provide only data
records and no transmission control characters. The
program need not translate data into a transmission
code; it presents EBCDIC data to VT AM. Likewise,
VT AM transfers data from a terminal to an applica­
tion program in EBCDIC; translation and deletion of
transmission control characters by the program are
unnecessary, since these are all handled by VT AM.

Another option is to incorporate a user program
into the NCP for independent user processing, per­
formed through VT AM jointly with this NCP.

6.2.4 SOLICIT Macro Instruction

In a communications network the host computer
must be aware of the configuration of lines and types
of terminals. The host computer must always be pre­
pared to receive data from terminals. To prepare for
such data, the host computer uses VTAM and NCP
via a SOLICIT procedure. User programs need not
be aware of SOLICIT procedures.

SOLICIT reads data into a VT AM buffer from the
network prior to its being required by a program. An
application program issues a SOLICIT macro
instruction, then transfers data from a VT AM buffer
to its work area by issuing a READ macro instruc­
tion.

Via SOLICIT, an application program can receive
data from any terminal ready to transmit data with­
out specifying which one. After the application pro­
gram issues a SOLICIT macro instruction, its read
macro instruction acquires data from any/all ter­
minals currently connected to this program.

6.2.6 Network Solicitor

Terminals can be shared by requesting dynamic
connections, increasing the efficiency of the net­
work. The following functions are necessary:
• Manage terminals so that their linkage requests

can be serviced.
• Discriminate data inputs by termina!, i.e., by

names of corresponding application programs.
• Transmit connection requests to application pro­

grams.

VT AM provides a network sollcltor routine to
monitor connection requests from terminals. That is

DATA COMMUNICATIONS

the network solicitor controls all local and remote
terminals not dedicated to specific ~pplication pro­
grams.

The network solicitor is not necessary when con­
necting via LOGON, as described in Section 6.4.3.
This option is selected at system generation.

When VT AM starts, the network solicitor con­
nects any terminal for which automatic LOGON was
specified. The solicitor controls these terminals until
connection is actually requested by LOGON or an
application program. This function can be performed
by a user-written solicitor program or directly by an
application program. Unless otherwise specified, the
following discussion assumes the standard OS IV /F4
network solicitor is used.

6.2.6 Exit Routines

An installation can add exit routines to VTAM for
functions such as the following:
• simplify applications design.
• increase system efficiency.
• dynamic linkages.
• check validity of application-program VT AM

interfaces.
• accounting.

There are two types of exit-routine interfaces:
• for a particular program.
• for an installation-standard routine, specified

when VT AM is defined at system generation.

Application-program exit routines
VT AM provides an innovative and asynchronous
service to exit routines.

Processing several unrelated tasks concurrently
with a program is troublesome to program and often
inefficient. OS IV /F4 and VT AM avoid these prob­
lems and furnish concurrent processing of tasks as
follows:

VT AM relieves user programs from synchroniz­
ing unrelated subtasks by providing asynchronous
exits for such subtasks. That is, an application pro­
gram can designate one or more routines to process
specific asynchronous tasks. There are two interface
formats for exit routines: explicit READ, WRITE,
SOLICIT macro instructions; and specification by an
exit list (LOGON exit, error exit, etc.).

In both cases, exit routines are scheduled
asynchronously. For example, exit routines to
schedule subtasks can be issued whenever an I/O
operation is completed; hence, a program can
optionally issue concurrent I/O requests. When data
satisfying a VT AM request is received, OS IV /F4
schedules the exit routine to process the data, then
returns control to the interrupted program, and the
latter resumes execution. By this method, a program
can accept data from a terminal and process it simply
and efficiently.

CONTROL PROGRAM

When creating line control procedures, an
installation should define a hierarchical structure to
process several terminals concurrently. In general,
each level is dispatched by the line control program
whose exit routine can reduce the time to switch
tasks, thereby increasing performance.

Fig. 6.7 is an example showing a conversational
inquiry task and its associated exit routine.
("RETURN" is a supervisor macro instruction
returning to the interrupted program.) If no exit
routine is provided, the application program must
search a multiple-events ECB list for completion
times of each event, then schedule processing
routines appropriate to the requests.

Application program

READ EXIT=A
~ J READ EXIT=A

""-

WAIT
~

Exit·Routina A . .
WRITE EXIT=B

,
RETURN

Exit·Routln. B

READ EXIT=A

RETURN

Fig. 6.7 A typical exit routine

In addition to passing control to OS IV /F4 for each
access request (such as a READ or WRITE macro
instruction), LOGON exit routines also provide
dynamic linkage, as shown in Fig. 6.8.

Application program

LOGON message

Extablish linkages
to terminals

Fig. 6.8 LOGON exit routine

184

Network solicitor

• Node check
• Disconnect

solicitor
from

terminals

LOGON exit routine

Installation-supplied exit routines
Installation-supplied routines can be included with
VT AM during system generation.

A default exit routine will be included by OS IV /
F4 if the installation does not furnish its own
routine.

Control is passed to an installation-supplied exit
routine synchronous with VT AM processing. Two
types of these exit routines are:
• Authorization checking exit routine VTAM yields

control to this exit routine just before linking a
terminal to an application program. If the
authorization level of this terminal is insufficient,
VT AM transmits it an appropriate return code and
cancels the connection request. In some cases, the
LOG AN exit routine will check any necessary
au thorizations.

• Accounting exit routine
VT AM passes control to this routine just after
linking a terminal to an application program and
when a linkage is released.

6.3 DEFINITION OF A VTAM NETWORK

The console operator (or an automatic command
procedure) issues a START command to initiate a
subsystem using VT AM. The OS IV /F4 initiator
creates a VTAM address space. Various parameters
are then red - and optionally modified by the con­
sole operator - to condition the structure and
operation of this network.

Preceding start-up of a VT AM subsystem, each
installation must perform a VT AM system genera­
tion and an NCP generation, define its network,
initialize VT AM, and perform any necessary
modifications of the hardware/software configura­
tions. These topics are briefly described in the
following sections.

6.3.1 System Generation

Each installation defines four elements of VT AM
during system generation:
• VT AM modules

With the standard network solicitor, these pro­
grams (defaults supplied by OS IV /F4) are link­
edited into appropriate system data sets .

• Interface to the communications control processor
(CCP)
Specifies which host-computer channels and sub­
channels are connected to the CCP.

• Interfaces to local terminals
Specifies which channels and subchannels are
connected to local terminal-type devices, e.g.,
F9525 character displays.

• VT AM system data sets
'During system generation, 0 ASD space is
reserved for SYS1.VTAMLIB, SYSIYfAMLIST,
and SYS 1.VT AMOB] data sets.

NCP generation deck

Deck of NCP·

Input

Fig. 6.9 NCP generation

Output

Stage 1

Assemble

stage 2

Assemble/
link~it

6.3.2 Generating a Network Contl'ol Program
(NCP)

Stage 1 of NCP generation assembles NCP-genera­
tion macro instructions. Stage 2 assembles and link­
edits the job stream prepared by Stage 1. Stage 2 cre­
ates NCP load modules and a block handler table, as
shown in Fig. 6.9.

NCP-generation macro instructions are used both
for generating the NCP itself and for defining the
VT AM network. Any VT AM macro instructions
included in the NCP generation deck are ignored;
however, they later become part of the NCP defini­
tion deck for defining the VT AM network. Table 6.1
shows which NCP generation macro instructions are
used by VT AM, only by NCP, or for generating both
subsystems.

6.3.3 Defining a VT AM Network

Each installation fu rnishes network-definition
source modules (definition decks), cataloged in
SYS 1. VT AMLST by member name.
SYS 1. VT AMLST is accessed immediately after the
VTAMSTART command~ hence, SYS1.VTAMLST
must exit before the operator issues his first START
command after initially loading OS IV IF4 (lPL).

There are four members of SYSl.VTAMLST:
NCP definition deck, local-terminals definition
deck, application-programs definition deck, and a
collection of VT AM parameters.

The system programmer can create or modify
members of SYS1.VTAMLST with the JSEUPDTE
utility program.

Definition of an NCP
The NCP generation deck can also be used as the

Macro library

DATA COMMUNICATIONS

• Stege 1 macro
definit ions

• Stage 2 macro
definitions

• NCP load modu les
• Block handler tables

NCP definition deck. Therefore, a distinct NCP
defenltion deck need not be created in
SYS1.VTAMLST to define the VTAM/NCP inter­
face. The member name of the NCP definition deck
should be the same as for the NCP load module.

At least one NCP must be defined for each CCp.
However, it is often useful to define several NCP's,
to reflect different hardware configurations or
different modes of using the network.

Definition of local terminals
Each local terminal - one directly channel-con­
nected to the host computer rather than via a CCP -
is defined by a LOCAL macro instruction.

A local-terminals definition deck consists of one
or more LOCAL macro instructions, read just after
the operator issues a VT AM START command;
from it, VTAM creates a control table which defines
individual local terminals or groups of such ter­
minals. Selection of a local-terminals definition deck
can be modified by a parameter just after the START
command.

Definition of application programs
Each application program or program group IS

defined by an APPL macro instruction or VT AM­
created control block. An application-programs
definition deck consists of one or more APPL
macro instructions, entered as a member of
SYS1.VTAMLST and read just after the VTAM
START command.

Definition of LOGON requests
A LOGON characteristics table (LCT) control
block specifies types of LOGON requests in ·a
VT AM network. The LCf is defined by a LOGON
or LOGCHAR macro instruction and read by the
network solicitor with an INTERPRET macro

CONTROL PROGRAM

Table 6.1 Macro instructions to define an NCP

Macro instruction Function(s) of macro instruction VTAM

PCCU • CCP unit address for host computer

• Selection of VTAM functions: x
a. Whether take check points
b. Whether to perform CCP initial test * 1

BUILD • Neme of NCP load module

• Characteristics of NCP and CCP x

SYSCNTRL Dynamic control function in NCP ·2 x

CSB Type and characteristics of line scanning ·3

lINELIST Definition of a logical *4 x

HOST • VTAM buffer size

• N umber of buffers allocated by VT AM when data is received
from CCP x

• Offset of buffer-header prefix used by VTAM *5

SERVICE Definition of service sequence table ·1

GROUP Definition of physical group x

LINE Characteristics of one line x

CLUSTER CharacteristiCS of a cluster·type control unti (e.g., F9525) x

TERMINAL Characteristics of a terminal x

COMP Characteristics of a component x

STARTBH Start of a block handler ·1

ENDBH End of a block hander,

DATETIME Whether NCP should timestamp data blocks x

EDIT Whether NCP should delete data indicated by backspace charactars

UBHR User-written blQck handler is furnished
f

BHSET Definition of block handler set *6

GENEND End of the NCP ganeration input deck x

·1 See Section 6.6 for a description of the Network Control Program.
*2 Dynamic control function serves to indicate if modules dealing with sessions andlor the different types of

display functions are'to be incorporated in the NCP or not. (See 6.6 NCP)
*3 Communication scanner mechanism indicates the CS. (See FACOM M·190 Hardware Function Specifcs.'
*4 For exchanges between VTAM and NCP, access can be done in logical communication group units.
*5 Prefix area used for buffer queuing of header areas in the buffer employed for transfer purpO$Els between VTAM

and NCP.
*6 User·generated block handling function can be included. This function can carry out specialized processing

(handling of codas, insertion of specific messages, etc.) which are dependent on terminals.

follows:

NCP

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

instruction which is used to acknowledge LOGON
requests and to invoke appropriate application pro­
grams.

• definition of the initial configuration of NCP,

LOGON and LOGCHAR macro instructions are
related to terminals by TERMINAL macro instruc­
tions - among the NCP-definition macro instruc­
tions - and LOCAL macro instructions. They are
associated with application programs by the APPL
macro instructions.

LOGON request definitions should be entered as
a member of SYS 1. VT AMLST but are not required
for terminals not logging onto applications programs
or if standard LOGON formats are used.

VT AM parameters
Parameters interpreted when VT AM is started
determine its initial status; they should be entered
into SYS1.VTAMLST as SO-byte card images as

186

local terminals and application programs.
• VTAM buffer sizes.
• number of VTAM buffers.
• entry-point name of the Network Solicitor.
• number of control blocks for access requests.
• number of control blocks for scheduling exit

routines.
• number of control blocks for linkages.

An installation can define several different collec­
tions of VT AM parameters, each comprising a
member of SYS1.VTAMLST whose name may be
specified when VT AM is started.

A typical procedure for defining a network appears
in Fig. 6.10.

DATA COMMUNICATIONS

Table 6.2 Points where a VTAM network can be defined/modified

~' System NCP
Creation of a Operator commands:

T modification VTAMLST START
VARY. MODIFY, ype of generat ion generation VTAM

modification member etc.

Addition of a CCP x x)(

Addition of a NCP·

definition deck •)()(

Update of a NCp·
definition deck)()(

Deletion of a NCP·
definition deck x

Selection of a NCP·
definition deck x

Activating/deactivating
N CP resources x

Addition of a local
terminal)(x

Addition, deletion , or
updat ing of a local·
terminals definition
deck ••)(

Selection of a local·
terminals definition deck x

Activating/deactivating a ,

local terminal .)(

Addition, deletion , or
updat ing of an application·
programs definition deck x

Selection of an application· .
programs definition deck x

Reload the NCP)(

• It is impossible to add terminals or other equipment to a CCP which was not defined during system generation .

.. It is impossible to modify a VTAM network to include local terminals not defined d ruing system generation .

6.3.4 Initializing and Modifying a VTAM Network

Section 6.3.3 described how a VT AM network is
defined during system generation and NCP genera­
tion. The network can also be modified when VT AM
is started and thereafter by central-site operator
commands, as summarized in Table 6.2.

6.4 OPERATING A VTAM NETWORK

This chapter describes execution of application pro­
grams within a VT AM network. The reader will
recall that "application program" is used broadly in
this chapter to include RES, TSS, and AIM as well as
installation-developed subsystems using data com­
munications.

Each application program executes in the
following sequence:
• start-up of VT AM.
• start-up of the application program.
• connection of the application program to one or

more terminals.

• data transmission between the application pro­
gram and the terminals.

• release of connections between the application
program and the terminals.

• application program termination.
• VT AM shutdown.

6.4.1 Start-up of VTAM

When the operator issues a START command "for
VT AM, OS IV IF4 allocates an address space and
starts the VT AM initialization routine (KCB
CPCMD). VTAM determines its initial network
configuration, initializes various tables, acquires
buffers, and starts a VT AM command procedure
and the network solicitor. The NCP is loaded into
the CCP if the latter is included in the network.

The cataloged procedure to start VT AM must be
in SYSl.PROCLIB; its contents are as follows:
1) EXEC statement

PGM - KCBCPCMD
REGION - VT AM-region-size

CONTROL PROGRAM

188

c . g
f!-
!.~
01-
:!> < .
1-1-
>CI: .<
1-1-
CI:cn
< ..
I- ..
cni
c ..

i~
.~ .;;,t
CJ c
~~
i:i
c .0

~ i
E < .. -
:!

Member neme of NCP definition deck must
be same as NCP loed·module name specified
by NCP generetion .

JSEUPDTE
UTILITY

{C:NCPOQ
;

f~~OCALc£J '" .,
< .~

1:
B

GOCAL~
>
.0
0
CIO

f=APM,:J 13

~
~
c w

DpPLOQ

{GTAMP£]
~

Fig. 6.10 Example or defmill8 a VT AM network

Definition deck used by NCP generation
can be used unchanged

NCP definition deck
(NCPOOI

GENEND

NCP definition deck
(NCPOll

GENEND

LOGCHAR APPLlD=YY

CC LOGON

VT AM parameter
(VTAMPOOI

VT AM parameter
(VTAMP01)

:I
c
CD
E
~
:! ..
c o
:~
c

;;::
CD

" = c
o
i

i §
: /: c
~/ ~ ~

... ~ I C
...... : 8.

I !
8

,
: , ,
'/

Y
/ I /

.. ... , ... /

______________ ~J

CONTROL PROGRAM

STARTVTAM .••
PARM=PARMOO,
CONFG-(APPLOO,
LOCALOO, NCPOO,
NCP01),
NTSL-N ETSOLOO.
BFSZ-100,
BFNMc40,
CBL 1-250,
C8L2-150,
C8LJa50

\ , , ,
\ , ,

Other space

, , ,
" "-

Virtual Itorage

SQA

CSA

VTAM space

KC8CPCMD

NETSOLOO VTAM command
procedure routine

Nucleus, FLPA. F8LDL

NCPOBJ

® ~n~o~.ck
1.---""'--"-' ~ LOCALOO

l;§E;J
GAR MOO]

/
,/ ,. II EXEC PGM=

KCBPCMD,
REGION~
VTAM1.ST=
VTAMLlB=
NCPOBJ=

CD
@

All basic OS IV/F4 components are determined when it is loaded (lPL). In this figure, the VTAM controlroutine is
added to the LPA (Link Pack Area).
After tha START command for VTAM, the KCBCPCMD program performs a series of initialization processes, such
as assembly and linkage editing of the VTAM definition deck, loading of the NCP, and acquisition of buffer pools.
The KCBCPCMO program also loads the Network SoliCitor and VTAM command procedure routines. Thereafter,
VTAM is reedy to receive commands, to accept requests for the application programs from terminals. and

®
to manage transmit/receive requests from terminals.
Each application program is started by a terminal. using ordinary JCL statements. Application programs already
executing may link to VTAM by OPEN macro instructions issued after VTAM has been successfully started.

Fig. 6.11 Example of starting VTAM

190

An application program can use two or more
ACBs; however, each ACB should correspond to
different APPL entry. An ACB can also be
dynamically created by a GENCB macro instruction
during execution.

VT AM exit list
An EXLST macro instruction creates a list of exit­
routine addresses. Operands of this macro instruc­
tion indicate characteristics of exit routines to which
VT AM passes control:
LERAD exit routine for logic errors in

linkage requests or I/O requests
issued by the application program.

SYNAD exit routine for an unrecoverable
I/O error.

ASYIP exit routine entered if a block of data
was read into a VT AM buffer after a
SOLICIT macro instruction.

TPEND exit routine entered when a console
operator issues a HALT command,
or if VT AM completes normally or
abnormally.

RELREQ exit routine to which control is
passed if another application pro­
gram requests linkage to terminals
linked to the current program by
OPNDST or SIMLOGON macro
instructions.

LOGON exit routine for queued LOGON
requests for application program.

LOSTERM exit routine to which control is
passed when the console operator
releases a terminal linked with this
application program by issuing a
VARY command.

6.4.3. Connecting Application Program to a Ter­
minal

An executing application program can link to VT AM
by issuing an OPEN macro instruction. At this point,
VT AM still controls the terminal, whether the latter
is remote or local.

There are four methods for VT AM to connect a
terminal with an application program:
• LOGON from the terminal.
• LOGON from a network console.
• LOGON from the application program.
• Acquisition of the terminal by application pro­

gram.

Ineach mothod, connection of the application pro­
gram to the terminal is completed when the applica­
tion program issues an OPNDST macro instruction.

LOGON from the terminal
This method links an application program with a ter­
minal by the latter's specifying the program name in
a LOGON command. LOGON commands are con-

DATA COMMUNICATIONS

trolled by the network solicitor specified in a
parameter of the START-VTAM command.

Whether LOGON commands are controlled by
the network solicitor depends on whether LOGON
requests (by LOGON and LOG CHAR macro
instructions) are defined for this network. If
LOGON is requested by a terminal, VT AM
schedules the LOGON exit routine if the ACB
points to a LOGON exit routine.

Connection is completed when the programmer
issues an OPNDST macro instruction in his LOGON
exit routine, using RPL (request parameter List)
and NIB (node initialization block) macro instruc­
tions specifying specifying" ACCEPT."

Each RPL or NIB can be created by an RPL or NIB
macro instruction, respectively. Information necess­
ary for linkage can be obtained from an RPL. Cor­
responding to each VT AM terminal en try, a NIB
contains the name of the terminal to be linked and
other information. Characteristics of terminals can
be queried by issuing INQUIRE macro instructions
during the LOGON exit routine. When connection
with terminal is established (RPL=ACCEPT is
specified in a corresponding OPNDST macro
instruction), data transmission can begin, informa­
tion in the NIB is moved to an internal table of
VTAM.

Thereafter, the application program NIB is no
longer used as an information source.

®
@

(VTAM)

(Network solicitor)

<D OPEN

OPNDST

@ READ

Automatic logon
specification

RPL

\ , INTRPRET RPL

@ CLSDST PASS specification

(Application program A)

OPEN ACe

:/
READ RPL
:1

WRITE RPL

------J ----- -------- -- ---- ------
(LOGON exit routine)

\
OPNDST RPL"'ACCEPT

During definition of a network, an installation may
specify that certain LOGON requests are issued by OPEN,
even if no command is requested from terminal. Such a
LOGON request is called an automatic LOGON request.
INTRPRET macro instruction checks the validity of an
application program from tha LOGON message trans­
mitted by a terminal.
Application program A is linked with the terminal by an
OPNDST macro instruction specifying "ACCEPT".
A CLSDST macro instruction specifying "PASS" indicates
that the term inal requesting iinkage is to be accepted by
the specified application program.

Fig. 6.12 LOGON from a terminal

CONTROtPROGRAM

LOGON requests ffrom a terminal can be queued
within VT AM through an ACB option specified by
an application program. This queuing can be halted
by a SETLOGON macro instruction.

RPt macro instruction
An application program should furnish an RPL to
request connection or an I/O operation to one or
more terminals. Each RPL creates a control block
used by an application program to describe a pro­
cessing function to VT AM. For example, specifying
an RPL ina READ macro instruction indicates to
VT AM which terminal to read, where to store input
data, how to notify the application program at the
end of each application, and how to process each
reuqest.

An RPL can be modified not only by OPNDST,
READ, and WRITE macro instructions but also by a
MODCB macro instruction. An RPL can also be cre­
ated by a GENCB macro instruction during program
execution.

NIB macro instruction
A NIB indicates which terminal is to be connected or
how to communicate between a terminal' and the
program during execution of an OPNDST 'macro
instruction. A NIB is similar to an RPL; both -contain
information about I/O requests. However, a NIB
contains information necessary to communicate
with a terminal.

An RPL also contains information about transac­
tions such as a data address to display at a terminal,
or whether to process a request synchronously or
asynchronously.

A NIB can be partially modified by a MODCB
macro instruction. Subsequently, this modification
can be changed by a CHANGE macro instruction. A
NIB can also be created dynamically by a GENCB
macro instruction during program execution.

LOGON from a network console
A network console is a console defined to VT AM
during system generation or by a V AR Y command.
It can also be a console permitted to send VT AM
commands, defined to VT AM by a command group.

By entering VARY NET, LOGON, terminal
name, and the name of an application program from
a network console, LOGON for a specified applica­
tion program is requested. This request is processed
if a LOGON exit routine exists. The terminal con­
sole becomes connected to the program when an
OPNDST macro instruction specifying" ACCEPT"
is issued in the LOOON exit routine.

If the specified terminal is already connected with
a different application program, connection is
impossible; this situation is signalled to the applica­
tion program attempting the new connection.

If an application program being connected issues a
CLSDST macro instruction, a LOGON request is
created for this program and the LOGON exit

192

routine is entered. Fig. 6.13 shows a LOGON from a
network console.

(VTAM)

(Application program)

OPEN ACe

READ RPL

WRITE RPL

Link

RPL=ACCEPT

Network console

VARY NET. LOGON. a. A

Fig. 6.13 LOGON from a network console

LOGON by an application program
A LOGON can be requested by an application pro­
gram to connect with a specified terminal. The
application program simulates a LOGON request. In
this case, the application program processes its own
LOGON request with a SIMLOGON macro instruc­
tion.

The above sequence is the same as an OPNDST
macro instruction linkage request with the
"ACQUIRE" option, except that the LOGON exit
routine processes the connection request. Fig. 6.14
shows how an application program simulates a
LOGON.

(VTAM)

(Application p,rogram)

OPEN ACe

SIMLOGON

(LOGON exit routine

OPNDST RPL=ACCEPT

Fig. 6.14 LOGON from application program

Unilateral acquisition by an application program
An application program can request connection
unilaterally between a terminal and itself. Such a
request is satisfied immediately if the terminal is
available (operable but no LOGON request has
been issued) . However, if the terminal has already

been connected with another application program,
the terminal cannot be connected with the request­
ing program until released by its current owner. This
type of request is indicated by the ACQUIRE option
of the RPL named in the OPNDST macro instruc­
tion. ACQUIRE should have been defined in the as­
sociated network-definition APPL macro instruc­
tion. Fig. 6.15 illustrates unilateral acquisition by an
application program.

(VTAMI

(Application program)

OPEN

Link
OPNDST RPL=ACQUIRE

Fig. 6.15 U nilaterai acquisition by an application program

Fig. 6.16 illustrates how different control blocks
relate to one another when connecting a terminal to
an application program via one of the four above
methods. When a connection to the terminal has
been established, data transmission can commence;
NIB data can be moved to the VT AM internal table.
The NIB of the application program is thereafter no
longer used.

Application program ----~-l VT AM

Fig.6.16 VTAM control table specified by application program

6.4.4 Data Block Transmission Between an
Application Program and a Terminal

Data transmission can start when an application pro­
gam is successfully connected to a terminal.

Receiving data f.rom a terminal
The application program receives a data block by
issuing a READ macro instruction. Data can be pre­
read into a VT AM buffer by a SOLICIT macro

DATA COMMUNlCATIONS

instruction preceding the READ macro instruction.
Each READ macro instruction specifies an RPL
address, as described below.

A SOLICIT macro instruction acquires data from
one or more linked. terminals and stores these data
into VT AM buffers. Data are thereafter transferred
to the application program by subsequent READ
macro instructions.

If VT AM receives a SOLICIT request , it
immediately returns control to the requestor .

There are two types of READ macro instructions:
specifying/not specifying physical I/O operations. If
ANY is specified in the RPL, no I/O operation is
performed; any data already successfully solicited
from the terminal are transferred to the application
program.

If a READ macro instruction was issued to a
special terminal- RPL = SPEC - and data were not
yet solicited from this terminal, READ first solicits
data.

VT AM transfers data to an application-program
buffer and sets a bytes-transferred count into the
RPL at the same

A request for a READ operation is also posted in
the corresponding RPL. Several options and
parameters for the READ macro instruction are
determined by this RPL, for example from which
terminal (of several solicited terminals) data have
been acquired or location in the application program
to receive data.

VT AM provides a RESET macro instruction to
cancel 110 macro instructions such as READ and
WRITE. The RPL specifies whether linkage
requests between an application program and a ter­
minal are synchronous (SYN) or asynchronous
(ASY) .

Synchronous requests
Control is not returned to the application program
until the requested operation completes, normally or
abnormally. A CHECK macro instruction should
not be used for a synchronous request; VT AM
automatically performs the CHECK function.

Asynchronous requests
Control is immediately returned to the application
program after VTAM schedules the requesfed
operation. When this operation completes, VT AM
performs one of the following actions:
• If an ECB operand of the RPL was specified, this

ECB is posted. The application program should
issue a CHECK macro instruction to test whether
the ECB has been posted "complete."

• VT AM schedules the indicated exit routine if the
EXIT option of the RPL was specified. A CHECK
macro instruction can be issued in this exit
routine. In this case, LERAD or SYNAD. exit
routine is automatically called if the requested
operation completes with a logical error or physi­
cal error.

http:Fig.6.16
http:Fig.6.15

CONTROL PROGRAM

LOGON
message
input

VTAM

Control
transfer

A

Application program

OPEN ACB, EXLST=A LOGON axit

INQUIRE

LOGON exit

Authorization of
LOGON message

Message
is passed OPNDST RPL=ACCEPT

, , , , , , ,
Control -- - __ t."ansfer

Completion
information

is notified
Data

transmission

Fig. 6.17 Receiving data

Fig. 6.17 illustrates how data are received by issu­
ing SOLICIT and READ macro instructions.

Transmitting data to a terminal
Data are transmitted by WRITE macro instructions.
Each WRITE transfers one block of data from an
applications program area to a particular terminal.
Highlights of VT AM WRITE include the following
features :

VTAM

Control

LOGON
transfer

message
input

Terminal Message
is passed

Data

Control
transfer

Fig. 6.18 Tran&mission of data .

194

SOLICIT EX LST=B SOLICIT exit

B SOLICIT exit

READ RPL= {A~Y } READ exit

C ' READ exit

CHECK

• Automatic read after write (conversational
WRITE).

• Write after refreshing the screen on a display unit.
• Refresh the nonprotected portion of a screen

without transmitting data.

If a WRITE macro instruction is issued to a ter·
minal whose preceding WRITE operation is in pro­
cess, the second WRITE is executed after the first
WRITE operation completes.

OPEN ACB, EX LST=A LOGON exit

A LOGON exit

INQUIRE Authorization of
LOGON message

OPNDST RPL=ACCEPT

WRITE {ASY} RPL = B WRITE exit

B WRITE exit

CHECK

If a WRITE macro instruction is issued to a ter­
minal to which a SOLICIT is already directed, the
WRITE macro instruction is usually executed after
the solicitation has been completed.

If a WRITE macro instruction is issued to a ter­
minal subsequent to a SOLICIT/READ sequence of
macro instructions specifying CONT (continuous)
in its RPL, data are transmitted to the terminal after
the latter surrenders control via an EOT signal. In
this case-end of transmission (EOT) -the
SOLICIT/READ sequence recommences.

When an RPL is specified in a WRITE macro
instruction, the RPL furnishes the terminal address ,
virtual-storage address of output data, operation
type, etc. A RESET macro instruction may be used
to reset a previous WRITE macro instruction.

Synchronous/asynchronous operation of a
WRITE operation (specified by SYN/ ASY in the
RPL) is interpreted just as for a READ macro
instruction.

Fig. 6.18 illustrates how data are transmitted using
a WRITE macro instruction.

VT AM furnishes a special macro instruction to
transfer blocks with heading charactersf: the DO
(device order) macro instruction, whose control
table is created by an LDO (logical device order)
macro instruction. A DO macro instruction names
the RPL that specifies the LDO. Operation of a DO
macro instruction is the same as that of a WRITE
macro instruction.

Dynamic network control by operator commands
VTAM permits a central-site operator to redefine,
modify, and monitor a network dynamically during
usage. These facilities are as follows:
• VARY command: dynamically redefine the net­

work.
VTAM

DATA COMMUNICATIONS

• MODIFY command: modify the network status.
• DISPLAY command: monitor the network.

Dynamically redefine the network
The status of a terminal, line, line list, etc. can be
moddified by a VARY command as follows:
• active/deactivate a remote or local terminal
• active/deactivate a communications line.
• active/deactivate a line list (specified by

LINELIST macro instruction in the network
definition) .

• Activate/deactivate an NCP line.

Modify the network status
An operator can modify one or more operational
characteristics of a CCP by MODIFY command.

Monitoring the network
The status of an application program, terminal, line,
or CCP can be displayed by a DISPLAY command:
what resources aie used, by whom, error informa­
tion, etc.

6.4.5 Releasing a Linkage Between an Applics­
tion Program and a Terminal

The connection between an application program and
a terminal should be released when date transmis­
sion completes or -' infrequently - when an
emergency request arrives. The released terminal
can be connected with another application program
if desirable.

There are two ways to relea.se a linkage:
• LOGOFF from a network console .
• Release by the application program.

VT AM appl ication program

.~

..•• /-j:/ , /

READ EXLST=A (LOSTERM exit)

RPL=B(READ exit)

Terminal
./ I-------------------i

r-V_T_A_M_b_u_ff_er-, _-=±~~:..-_'_----T'T A (LOSTERM exit)

.... ~ CLOSDST RPL: Terminal
, ,

Y-,

VARY NET, LOGOFF .
Terminal

CLOSE

-- B (READ exit)

CHECK

Fig. 6.19 LOGOFF (rom a network console ----------../

ItHes~adig character S

Header T
X

Data
E E
T T
B X

ACB

http:Fig.6.19

CONTROL PROGRAM

LOGOFF from a network console
The connection between the specified terminal and
the application program is released by entering from
network console:

V ARY NET, LOGOFF, TERMINAL-name
When this command is issued, I/O operations stop
between the specified terminal and application pro­
gram. If furnished, a LOSTERM exit routine com­
mences, as specified by an EXLST macro instruction.

Any in-process I/O requests end normally, but
new requests are cancelled. Cancellations are posted
in the corresponding RPLs.

The applications program should release the ter­
minal entirely by subsequently issuing CLSDST
macro instruction, as shown in Fig. 6.19.

In Fig. 6.19, data already in a VT AM buffer are
passed to the application program when READ
macro instructions are issued. Also, any appropriate
READ exit routines are entered. However, if an
operator issues a VARY or LOGOFF command dur­
ing input from a terminal, the LOGTERM exit
routine is scheduled.

Release by the- application program
An application program can release its connection to
a terminal by issuing a CLSDST (close destination)
macro instruction. Each such terminal can be
specified in the RPL named in the CLSDST macro
instruction; any data in a VT AM buffer are dis­
carded and are not retained for any application pro­
gram subsequently connecting to the terminal.

A terminal can be connected to another applica­
tion program by a CLSDST macro instruction
specifying PASS in the corresponding RPL. VT AM
first releases the terminal, then creates a LOGON
request from the terminal. In this case, the applica­
tion program issuing the CLSDST macro instruction
should indicate which application program should
receive the LOGON request.

Terminal AA

Terminal BB

VTAM

VTAM buffer

Transfer of
control

A RELEASE option in an RPL merely releases
the terminal. If another application program has
requested access to this terminal, VT AM connects it
to the terminal if appropriate. A CLOSE macro
instruction - rather than a CLSDST macro instruc­
tion - should be issued if the application program
has completed all processing and all terminals are to
be released.

A terminal cannot be connected to another
application program during/after a CLOSE macro
instruction. In Fig. 6.20, terminals AA and BBB are
exchanging data with an application program. The
application program releases each terminal when
the exchanges are completed. It issues a CLOSE
macro instruction to release the VT AM linkage
when all exchanges with all terminals are completed.

6.4.6 Termination of .a VTAM Application Pro­
gram

Like other programs, a VT AM application program
usually terminates by issuing a RETURN macro
instruction. Alternatively, it may be cancelled
(CANCEL command) by an operator. In either case,
it completes only after releasing its connection to
VT AM. A RETURN macro instruction should be
issued only after releasing connections to all ter­
minals. The OS IV /F4 terminator releases any
remaining connections with terminals in case the
operator issues a CANCEL command.

The linkage of an application program to VT AM is
released by a CLOSE macro instruction. When
VT AM receives a CLOSE macro instruction, it
releases the linkage between the corresponding ACB
and the terminal. All I/O operations are quiesced,
and all unprocessed I/O requests and queued
LOGON requests are cancelled prior to releasing the
linkage. Fig. 6.21 shows how a VTAM application
program terminates normally.

VTAM application program

READ RPL=A(READ exit)

READ RPL=A(READ exit)

A (READ exit)

CHECK RPLX

Terminal X completed

Continued

WAITE

All terminals
.------------' completed

CLOSE ACB ...••

Fig.6.20 Release by the application program . I

http:Fig.6.20

Terminator

Terminal

,
/

--

Fig. 6.21 Tenninating a VTAM application program

6.4.7 End of VTAM Operations .

CLOSE
ACB

The HALT command stops VT AM and deallocates
the address space acquired by the ST ART VT AM
command.

There are two types of HALT command modes to
complete VT AM. Either can be selected by the
operator, depending on the purpose of the shutdown
and current system status:
• FLUSH mode (gradual completion).
• QUICK mode (immediately).

Halting VT AM is trivial if all VT AM users have
already been logged off.

The main functions of the HALT command are as
follows:
• HALT inhibits any subsequent OPEN macro

instructions issued to VT AM.
• HALT initiates any TPEND exit routine which

may have been previously specified by a EXLST
macro instruction.

• In case of QUICK mode, all terminals are deacti­
vated: subsequent I/O requests are inhibited, any
I/O requests already queued by VT AM or NCP

are cancelled.
• In case of FLUSH mode, I/O requests and con­

nections are allowed.
• If any VT AM application programs are still active

their names are displayed on console. '

In both QUICK and FLUSH modes all VTAM
application programs should have previ~uslY issued
CLOSE macro instructions whose functions are now
completed, so that VT AM can complete in an
orderly manner.

6.5 RAS FACILITIES FOR DATA COM­
MUNICATIONS

Reliability, availability and serviceability (RAS)
facilities for OS IV IF4 data communications are

DATA COMMUNICATIONS

offered jointly by VTAM and NCP.
Data-communications RAS is divided into three

functional components:
• Diagnostic facilities

Collects trace information about each event. The
status of the entire network can be comprehended
by summarized trace information. These summ­
aries also help installation managers increase net­
work performance.

• Recovery facilities
Recovery is attempted a prespecified number of
times when an error occurs. A restart facility is
also provided for the CCP.

• Error-recording facilities
Temporary and permanent errors for each hard­
ware component are recorded in detail and/or
summary form on DASDs and/or hardcopy con­
soles.

6.5.1 Diagnostic Facilities

Diagnostic facilities fall into six categories as
follows:
• trace facility .
• NCP dump facility.
• NCP time monitoring.
• dynamic panel display of the CCP.
• error message displays.
• online terminal tests.

Trace facility
The trace facility for OS IV /F4 data communications
collects the following data:
• SVC events - collected each time SVC is issued.
• VT AM I/O operations - collected for each I/O

operation of VTAM or NCP.
• NCP lines - collected for specific communication

lines.
• Addresses - collected register contents and

specified areas in the CCP.

VT AM I/O traces and NCP line traces are started
and ended by MODIFY commands.

Trace information is written into the
SYSl.TRACE data set, as shown in Fig. 6.22.

Application

trace

Fig. 6.22 Types of tracing

http:Fig.6.21

CONTROL PROGRAM

NCP dump facility
VT AM writes error messages if the NCP malfunc­
tions or if errors are found in I/O requests from
VTAM to the CCP.

VT AM does not continue I/O operations for the
corresponding CCP after such errors. NCP dumps
and NCP diagnostics can be requested by MODIFY
commands.

NCP time-monitoring faclllty
This facility checks whether the CCP is operating
normally, using one or more predesignated ter­
minals.

NCP checks whether all of its processes operate
normally each time the operator enters this com­
mand and then returns its acknowledgement to
VTAM.

The CCP time monitor continues until a HALT
command is issued from a central-site console. If an
error is detected, the NCP time monitoring facility
notifies the application program and displays the
error on a console.

CCP dynamic panel display facility
The operator can display the following CCP infor­
mation by pushing buttons on the control panel:
• contents of the CCP external registers.
• contents of main storage.
• information about a communication line.

Error-message display facility
VTAM writes necessary network information on a
network console when an error is found, so that it is
immediately available to the central-site operator.

Online terminal test facility
The VTAMINCP combination furnishes an online
terminal test facility which may be requested by
either the terminal operator or a central-site opera­
tor, using the telecommunication online test control
program (TOL TEC) in VT AM. The result of each
test is passed to VTAM by NCP.

8.6.2 Recovery Facilities

Recovery facilities fall into eight categories as
follows:
• line error recovery.
• local unit error recovery.
• automatic network shutdown.
• checkpoint/restart.
• switching to a back-up line.
• switching channel adapters.
• restarting the NCP.
• pause retry.

Line error recovery
NCP attempts to recover from temporary and per­
manent line errors. When NCP completes a recov-

198

ery attempt, it transmits an error record to VT AM as
a permanent record of the error. VTAM writes this
error record into the SYSl.LOGREC data set.

Local-unit error recovery
I/O errors are classified as permanent or temporary.
When a permanent error occurs, its status is sent to
the network console which records such errors.
When a temporary error occurs, the associated block
is retransmitted to attempt recovery from the error.
If successful, the application program continues to
execute as if no error has occurred. If a temporary
error can not be recovered, it is tabulated and treated
as a permanent error.

Automatic network shutdown
A VT AM/NCP network shuts down automatically
if the channel between VT AM and NCP malfunc­
tions or NCP is unable to communicate with VT AM.
When a network begins an automatic shutdown,
NCP sends an emergency message to all connected
terminals; all subsequent I/O operations are
inhibited. NCP can be restarted by a restart request
from VT AM or reloading the NCP (NCP IPL).

Checkpoint/restart
This facility permits resumption of an interrupted
NCP from a point somewhat prior to the point of
interruption by using the latest checkpoint record .
• Creating a checkpoint record

A checkpoint record is created when the status of
a significant building block of the network
changes. NCP status at this time is recorded in this
record. If VT AM requests creation of a checkpoint
record, NCP creates and transfers it to VTAM.

• Restarting
If an error requiring reloading of the NCP occurs
in the CCP, VTAM reloads NCP and initializes it
as requested by the console operator.

After initialization, VT AM requests a restart
effort by sending the most recent checkpoint
record to the NCP, in order to restore the NCP to
its status prior to the error. NCP uses this record
to restore its own status and restart network con­
trol.

Switching to a backup line
If permanent error occurs on a private line (not on .
the switched public telephone network), or if a tem­
porary error occurs frequently on a private line, it is
sometimes possible to use a switched line as a back­
up line, to which it can be manually connected by a
remote operator (in the case of a terminal) or a
central-site operator (in the case of a central-site line
problem).

Exchanging channel adapters
Two channel adapters in a CCP can be exchanged by
a request from VT AM. If one adapter malfunctions,
it can be switched out of service and a correctly-

functioning adapter switched into service.

Restarting NCP
VTAM can restart an NCP after its CCP has mal­
functioned. Restarting an NCP supported by VT AM
requires initial program loading (IPL) of its CCP,
followed by a VT AM-issued restart. In either case, a
MODIFY command is used to restart the NCP.

Pause retry
NCP provides two types of recovery levels for line
errors. The first level retries continuously, as often
as specified during system generation of the NCP.
The second level retries after pausing for a specific
interval (pause retry if the error was not bypassed by
the first-level procedure. Pause retry is attempted
only for WRITE operations, not for READ opera­
tions. If an error cannot be recovered after several
pause retry cycles (number specified at NCP genera­
tion), VT AM records this error.

6.5.3 Error recording facilities

VT AM writes various records into the system log
data set, where they may be summarized and re­
ported to maintenance personnel p~riodically. The
following types of error records are captured on
LOGREC:
• Outboard record (Iong)

Failure of a local I/O device.
• Outboard record (short)

A similar but shorter record.
• Inboard record

Failure of a channel.
• MDR (Miscellaneous Data Record)

Created by the NCP, unexecutable command
error or a line error in the NCP.

MDR records in turn are of two types, as follows:
• MDR record for adapter check, program check, or

invalid interruption.
• MDR record for statistical summaries about a line

or a permanent error on the line.

6.6 NCP

The network control program (NCP) is a special pro­
gram stored in a communication control processor
(CCP) , which supports communications networks in
cooperation with VT AM.

NCP is linked with VT AM via a host-computer
channel. Only one subchannel is necessary for this
linkage, which is strikingly different from previous
architectures which required dozens - even
hundreds - of subchannels between the host com­
puter and the communication controller.

Communication between VT AM and NCP is per­
formed in basic transmission units (BTUs). Each

DATA COMMUNICATIONS

BTU comprises control information, a selection
field, and message data. A BTU transmitted from
VTAM to NCP is called a command BTU, a BTU
transmitted from NCP to VT AM is called a
response BTU. NCP is almost always ready to
receive information from VT AM, without regard to
the status of particular line or terminal. During a
NCP-to-VT AM transmission, one operation can
contain multiple response BTUs. NCP reads them
from VT AM into its own buffers in the CCP. An
arbitrary number of BTUs can be transmitted to
NCP from VT AM at any time.

During NCP-to- VT AM transmission, NCP
notifies VT AM of the arrival of new information.
However, information transfer cannot begin until
VT AM issues an appropriate input command.

VT AM can send multiple command BTUs to the
NCP in one input operation; the maximum number
of BTUs is determined during NCP generation. Dur­
ing network control, the NCP receives data from
VTAM and remote terminals concurrently. VTAM
indicates channel speeds for a remote network,
while NCP and CCP perform line control for remote
terminals with respect to line speed.

Major facilities of NCP are as follows:
• line control.
• dynamic buffer control.
• insertion and deletion of transmission control

characters.
• translation of character codes.
• handling of permanent errors, and detection of

machine checks.
• collection of line-status data.
• activation/deactivation of lines.
• closing the network.
• processing recoverable errors.
• timestamping messages and control fields.
• notifying VT AM of any errors.

6.6.1 Basic Transmission Units

All communications between host computer and
CCP are in basic transmission units (BTUs); data
messages, CCP status information, host-computer
status information, control messages for the net­
work, responses from the NCP, etc. Also, the NCP
sends unsolicited elements to VT AM sporadically,
describing abnormal status conditions in the CCP as
they occur. VT AM does not solicit such elements,
since it cannot anticipate when abnormal status con­
ditions will arise.

Fig. 6.23 shows the three categories of BTUs.

BTUs are used for four types of commands:
• Teleprocessing commands

TP commands control (a) the start and end of
each session between VT AM and an 110 device
and (b) data transmission. There are five TP com­
mands: INVITE, CONTACT, READ, WRITE
and DISCONNECT.

CONTROL PROGRAM

• TEST commands
These ttelecommunications online test com­
mands (TOL TEC) request start, execution, and
end of online terminal tests.

• RESTART commands
Using checkpoint records, these commands
request restart of the NCP.

• CONTROL commands
These commands modify or monitor network
resources dynamically.

Command BTU

I VTAM Required operation is .. ?:1_N_C_P_---l

Response BTU

VTAM ' f::S result of execution is . . . NCP

Unsolicited element

I VT AM ~ormal status etc NCP

Fig. 6.23 BTU categories

6.6.2 Buffer Management

Both VT AM and NCP use internal I/O buffers to
exchange BTUs. The effective number of buffers in
a CCP is automatically calculated by NCP after it has
been loaded and started execution. NCP divides
remaining (unallocated) CCP main storage into
buffers whose lengths were determined during
system generation.

Each BTU requires one or more buffers. Sizes of
buffers within NCP and VT AM may vary this
specification is furnished in the VT AM/NCP defini­
tion macro instruction. When VT AM and NCP are
exchanging BTUs, they chain one or more buffers
together. lIenee, even if the buffers are too long/
short for a particular block, VT AM and NCP can
accurately transfer the correct amount of data.

VTAM to NCP data transfer
The NCP recognizes the command-chaining status,
the command linking status, and the input format
from host; it fills its own buffers as it receives data
from VTAM.

NCP to VT AM data transfer
NCP creates response BTUs after receiving data and
adding appropriate control information. NCP
transmits buffers to VT AM when it receives ending
characters such as EOT from terminals or internal
NCP buffers become filled.

200

VT AM chains its buffers together while receiving
data from the NCP. Therefore, each received BTU is
stored in one or more VT AM buffers.

Buffer insufficiency
When insufficient buffers remain in the CCP, one of
two remedial modes is entered:
• Slowdown mode

NCP enters slowdown mode if it has insufficient
buffers for receiving data from VT AM or from a
line. NCP notifies VT AM when it must slowdown.
Thereafter, VTAM sends NCP single-buffer
BTUs at a rate controlled by NCP, to avoid losing
data. When NCP has emptied enough buffers, it
leaves the slowdown mode. and notifies the host
that it is ready to exchange BTUs normally.

• Nobuffer mode
NCP retains one empty buffer to issue
CONTROL commands when it enters slowdown
mode. In this case, BTU cannot be received. If this
buffer is in use, the NCP can no longer receive
BTUs from any source - VT AM or lines.

6.6.3 Starting a Network Control Program

VT AM loads the NCP into the CCP. When loading
has been completed and NCP assumes control of the
CCP, it initializes the following hardware/software
elements of the network:
• channel adapters, communication scanners, and

virtual storage.
• NCP control tables.
• buffer pools.

NCP notifies VT AM when initialization has been
completed, VT AM then starts NCP network control
by a TP or CONTROL command. VT AM restarts
network control after an interruption by a
REST ART command.

6.6.4 Ending Networkk Control Activitie.

After VT AM issues a CONTROL command
requesting shutdown of the network, NCP performs
appropriate termination processing. In the following
cases, NCP itself initiates termination:
• If communication between NCP and VTAM

becomes impossible due to a channel-adapter
failure or channel time-out.

• If the central-site operation initiates network ter­
mination from the CCP panel.

6.6.6 Data Unit.

BTU commands transmit three kinds of data units
from VT AM to NCP: blocks. messages, arid
transmissions, specified by device type durirtg NCP

generation and modifiable thereafter by control
commands. The type of each block is specified by
the corresponding WRITE command.

In Fig. 6.24, downward-pointing arrows indicate
when NCP transmits BTUs to VT AM. Thereafter,
NCP must decide whether additional data are
expected from the originating terminal or whether
NCP should send it an acknowledgement; this deci­
sion depends on which data units are present. The
vertical symbols in Fig. 6.24 have the following
definitions:

(~E) End of Text Block

(Bi) End of Text

(X~) End of Transmission

DATA COMMUNICATIONS

6.6.6 Session Service

Each network controlled by VT AM and NCP has a
physical linkage and a logical linkage. The physical
linkage denotes the hardware network comprising
the CCP, terminals, and communications links.

The logical linkage is the network of NCP and
other resources which are linked at a given instant
for transmitting data.

A session is defined as a flow of commands and
data between VT AM and certain network resources.

For a terminal without multiple concurrent 110
capability, two types of connections are possible:
single·drop (also called point·to·point) and multi­
drop, where several such terminals connect to a
single private (non-switched) line. For a single-drop
terminal, only one session can take place. For a
cluster-type terminal on a multi-drop line, the single
line can be used for multiple network resources,
which increases line utilization and avoids its pre­
emption for a single function.

Figs. 6.25 and 6.26 illustrate sessions for single­
drop and multidrop lines, respectively. A contact
command transmits the terminal address at the
beginning of a session, an invite command polls the
terminal address. Polling is a communications
activity performed by a CCP to determine whether a

TYPE OF TERM INAL

Unit

Block I

Message !

Transmission I

Block

Message

Transmission

Start-stop (asvnchronous) station

Other than EXT receive EXT receive

RECEIVING DATA UNITS FROM TERMINALS

I ~ 1 I! I I
1

I! I ~ I I I! I
I I T

I! I ~ I
I IT

TRANSMITTING DATA UNITS TO TEAMINALS

11 I

I!I~I I! I
rml T 0

"0T

Binary synchronous
control (SSC) station

I f I

I!I~I

I! I

I! I
I !I-. _____ .J...I.;.;!..J..I--.:~..JI

L-_______ L-________________ ~ _________________ ~ _______________ ~

Fig.6.24 Data unitE

http:Fig.6.24

CONTROL PROGRAM

CCP

NCP

Session

Fig. 6.25 Session with a single-drop private-line tenninal

particular terminal is ready to send/receive data.
Macro instructions defining sessions and logical

connnections are included in the NCP definition
generation deck, as defined in Section 6.3.2:
-GROUP
- LINE
- SERVICE
-CLUSTER
-TERMINAL
-COMP

Sessions and logical connections can be defined by
suitably combining these macro instructions.
Various session attributes are defined below:
- Session limit

The session limit is the maximum number of
concurrent sessions possible on a multidrop line
(or for a local cluster-type terminal).

- Service order table
Se"ice seeking comprises checking resources
with which to construct a network when NCP
attempts to . establish a new session on a multi­
drop line by polling (INVITE command) or

202

VTAM
BTU

command

Logical
connection

addressing (CONTACT command).
The se"ice order table defines the sequence in

which the VT AM application program requests
service seeking; it lists network resources on a
multidrop line by cluster, terminal, and compo­
nent.

- Service seeking limit
The service seeking limit is the number of entries
in a service order table. NCP generally attempts to
establish sessions up to this limit. Service seeking
ends as soon as a positive response can be satisfied
by a network resource, so that a new session is es­
tablished.

- Service seeking interval
The se"ice seeking interval is how long NCP will
attempt to start a new session. By timing service
seeking and stopping after this interval, NCP
decreases unnecessary. polling and can perform
other useful tasks.

- Priority of service seeking
This parameter determines whether NCP should
give higher priority to serving the current session
or to establishing a new session.

~
~

Session

Fig. 6.26 Session with multidrop terminals

• Transmission limit
A transmission limit is a maximum value for the
number of transmissions during one logical
linkage. If the number of transmissions reaches
this limit, the logical linkage is released at the end
of the current operation.

• Negative polling limit
The negative polling limit is the number of con­
secutive negative responses before NCP releases a
logical linkage. Therefore, this limit applies to
polling which attempts to restart a previously­
established session.

• End of polling routine
This parameter selects what action NCP should
take when it reaches the negative polling limit.

VTAM
BTU
commands

DATA COMMUNICATIONS

1 , .. mi.",

1 ,.~i." A

1 Terminal B

1 Terminal A

Terminal C

1 "~i","
1 Terminal A

Logical
connection

6.6.7 Block Handling Facilities

NCP has three optional block handling facilities:
• insertion of date and time (timestamp) into

messages.
• automatic text correction.
• user-written block handling routines.

Timestamp
NCP will optionally insert date and time of its arrival
into a message, whether the latter arrived from the
host computer via a channel or from a terminal via a
line. This timestamp can be placed only in the first
block of a message' or in each block comprising the
message.

CONTROL PROGRAM

Automatic text correction
NCP will automatically delete text-correction
characters and error characters from messages
entered by keyboard terminals. Any character except
a line-control character can be defined as a text cor­
rection character.

User-written block handling routines
These can be created and entered as necessary.

CHAPTER 7
RELIABILITY, AVAILABILITY,
AND SERVICEABILITY

7.1 OUTLINE OF RAS

As computer systems become larger and more diver­
sified, they require ever-improved reliability,
availability and serviceability. Operating systems for
these computers provides many aspects of RAS as
follows:
• Record 	 problems and probable causes at early

stages, whose data may aid prevention of these
problems. .

• Isolate 	 hardware and software components
experiencing problems.

• Recover from these problems automatically 	as
much as possible.

7.2 RECOVERY MANAGEMENT SUP­
PORT

Recovery management support (RMS) attempts

retry of a failing CPU or I/O operation in order to

use corresponding hardware as long as feasible.

Reliability of the total system is improved by gather­

ing and recording error information; recorded data

may help protect the system from trouble and main­

tenance episodes. RMS includes the following func­

tions:

Machine check handler (MCH)

MCH records failures of the CPU and main memo­

ry. It also attempts to recover from these failures, in

conjunction with the Alternate CPU Recovery

facility.

Alternate CPU recovery (ACR)

When one CPU of a tightly-coupled multiprocessor

configuration (two CPUs sharing main storage as

well as various peripherals) malfunctions, the sur­

viving CPU uses the ACR facility to (a) diagnose the

malfunctioning CPU. (b) attempt to resume its

operation, or (c) if the malfunction is serious, con­

tinue full processing functions with the surviving

CPU.

Channel check handler (CCH)

This facility analyzes hardware failures in a channel,

such as channel interface checks and channel control

checks.

Alternate path retry (APR)

If a hardware failure occurs on one path of an I/O

device having several paths to main memory. the

APR facility will attempt the 1/0 operation on one or

more alternate paths.

Missing interruption handler (MIH)

If an 1/0 interruption is "lost" by a channel, control

unit, device, or software routine, the associated task

may become delayed indefinitely. The MIH facility

timestamps all 1/0 operations; if certain operations

(such as read, write, and control commands to tape

and disk drives) do not complete within reasonable

intervals, MIH advises the console operator and asks

him to issue intervening commands.

Dynamic device reconfiguration (DDR)

When the OS IVIF4 1/0 supervisor detects a perma­

nent error on a mountable volume such as a disk

pack or tape reel, it will invoke the DDR facility,

which asks the console operator to move this

volume to another drive where the failing I/O opera­

tion can be reattempted.

Error recovery procedures (ERPs)

Whenever a nontrivial hardware failure occurs on

an 110 device, the device-dependent ERP analyzes

the failure as much as possible and - if feasible ­
attempts to recover from it.

LOGREC recording

All nontrivial hardware failures are logged into the

SYS I.LOGREC data set by the OS IVIF4 super­

visor.

Fig. 7.1 illustrates the relationship among these
RMS components.

\,;urUKUL l"KUliKAM.

I/O interruption

Chennel error
process request

Process command
OS IV/F4
I/O supervisor Request

APR
Command

c: .g

i
:l
0­ mc:

-aca
E aso . ­u"

~I
 .;;;Cl

0
.~el
C

0..
0.

e ~

E
~ 8

ERP

Fig. 7.1 Outline of RMS

7.2.1 Machine Check Handler (MCH)

The machine check handler (MCH) gathers infor­
mation about all machine checks and records them
on the SYSl.LOGREC data set. It determines if
recovery from a malfunction can be successfully
completed by M series hardware facilities. If recov­
ery attempts are unsuccessful, MCH performs a
limited analysis, then invokes appr.opriate software
routines.

In a multiprocessing environment, if MCH is
unsuccessful in a failing CPU, it will attempt to initi­
ate further recovery processing by marking the fail­
ing CPU offline and invoking alternate CPU recov­
ery (ACR) in the nonfailing CPU.

If the malfunction occurs in a CPU or main
memory, recovery is attempted by the hardware
instruction retry (HIR) and/or error checking and
correction (ECC) hardware functions. If HIR and
ECC fail to recover from the malfunction, a
machine check interruption is generated to start
MCH.

MCH starts analysis of a main-p1emory malfunc­
tion and provides - according to the result of
analysis - the following attempts to continue
system operation;
• If a copy of the damaged data or program exists on

an external page data set, MCH attempts to page
in a fresh copy, so that system operation may be

Record

commend

CCH 	 MCH

Starting External
interrupt

ACR
LOGREC
recorder

""" Capture failure data
"

.......... ,-.

~.'"

SYS1.LOGREC data set

continued without any loss of program/data
integrity.

• If the effort to restore destroyed data or program
fails, MCH terminates the task which last
referenced the malfunctioning page. This does not
affect other currently-executing jobs.

• If the error is a permanent one, an invalid flag is
turned on in the malfunctioning page frame, so
that the OS IV/F4 Supervisor will refrain from
subsequent usage of this frame.

• If 	none of these steps succeed in recovering
system operation, MCH puts this CPU into dis­
abled wait state, since it can no longer be used
without emergency maintenance.

7.2.2 Alternate CPU Recovery (ACR)

Alternate CPU recovery (ACR) is a new feature in
OS IV/F4. When one CPU in a tightly-coupled
multiprocessing configuration can no longer func­
tion, a signal is emitted before the CPU enters a per­
manent wait or stopped state. The signal can indicate
a hardware malfunction alert ora software emergen­
cy signal; in either case, ACR is invoked.

When ACR receives control, it attempts to
transfer tasks in progress on the failing CPU to the
nonfailing CPU. It cleans up tasks that cannot
transferred by processing their failures as abnormal

RELIABILITY, AVAILABILITY, AND SERVICEABILITY

terminations. ACR resets I/O operations on chan­
nels connected to the failing CPU. For sym­
metrically connected I/O, ACR attempts to restart it
through channels to the working CPU. In the case of
symmetrically-connected I/O (two-channel switch
through channels on two CPUs) , ACR invokes
recovery termina:tion management routines to
recover the program in progress at the time of the
failure.

7.2.3 Channel Check Handler (CCH)

If a channel data check (parity error), channel con­
trol check (channel device control error) or interface
control check (channel-lIO interface control error)
occurs, M series hardware automatically stores asso­
ciated error information into a fixed log-out region
in main memory. Then the OS IV/F4 I10Supervisor
transfers control to the CCH, so that this malfunc­
tion can be analyzed.

Based on log-out information, the CCH evaluates
the error, generates a channel error alarm for the
operator, and logs the error information onto the
SYSl.LOGREC data set.

In the case of a channel control check or interface
control check, the CCH prepares information
needed by the corresponding ERP retrying the chan­
nel program.

7.2.4 Alternate Path Retry (APR)

The APR option can be generated into OS IV/F4 if
the configuration includes one or more I/O devices
with multiple channel paths to main memory.

If one channel path develops an error, the APR
attempts to process the I/O request on an alternate
channel path, which must previously have been
assigned to the device performing the I/O operation.
An operator can vary a path to a device online or
offline, using the VARY PATH command. He can
vary offline all paths except to a shared direct access
divice with an outstanding RESERVE request or the
last path to an allocated device.

7.2.5 Missing Interruption Hand!er (MIH)

The missing interruption handler (MIH) of
OS IV/F4 notifies the console operator if a device or
channel-end interruption is not received within a
prespecified intervaL If an interruption has not been
received, it is possible that a MOUNT message has
not been satisfied or that a device has malfunc­
tioned. Specific actions by the operator depend on
conditions he encounters. He may be required to
ready a device on which a volume has been
mounted, examine indicator lights on the device for
abnormal signs or terminate the job. By supervising
completion of I/O operations, the operator can pro­
tect OS IV/F4 from delays due to indefinite waiting
by I/O devices.

7.2.6 Dynamic Device Reconfiguration (DOR)

When an I/O error is sensed, the appropriate ERP
retries the channel program so that OS IVIF4 can
recover from the failure. If a prespecified number of
retry attempts fail, the ERP indicates a permanent
malfunction of the I/O device at that point on its
recording medium. If this medium is removable,
DDR is invoked.

DynamiC device reconfiguration surveys the
entire configuration for an allocable I/O device of
this type and commands the operator to move the
mountable volume to another device. In this pro­
cedure, DDR repositions the volume so that the
channel program may be successfully executed on
the replacement 1/0 device and hence the inter­
rupted program can resume execution without
abnormally terminating.

The operator can initiate DDR activity by issuing a
SWAP command, for example, when he wishes to
clean a tape drive.

DDR cannot be applied to a system volume, such
as one containing a page data set.

7.2.7 Error Recovery Procedure (ERP)

Each error recovery procedure analyzes and recovers
from certain types of hardware failures of a specific
I/O device (or family of devices).

When a hardware failure is sensed while perform­
ing an 110 operation, the OS IVIF4 Supervisor calls
the appropriate ERP, which analyzes the error infor­
mation and - if feasible - retries the channel pro­
gram. If the ERP fails to recover from the error,
DDR may be started for a mountable volume; in all
other cases, the task for which the I/O was being
performed is terminated abnormally.

7.2.8 lOGREC Recording

Subsequent to each nontrivial hardware malfunc­
tion, various data are gathered and written into the
SYSl.LOGREC data set through the LOGREC
recorder. The LOG REC data set is always located on
the system resident volume; it is initialized at system
generation.

Records written onto SYSl.LOGREC describe the
following malfunctions or unusual conditions:
• channel failures.
• I/O device failures.
• error summaries for I/O devices which - like the

communications control processor - contain
special hardware to record error information~

• main-memory failures.
• information record for each system loading (IPL).
• information record for system shutdowns.

When the SYS1.LOGREC data set is 900/0 full,
OS IV/F4 asks the console operator to dump its con­
tents onto another permanent medium, such as a

CONTROL PROGRAM

tape reel or a printed report. The SYS1.LOOREC
data set can be processed by the JQQEREPO service
aid, which edits and prints LOGREC data and
optionally captures its contents onto magnetic tape.
The JQQDIPOO se"ice aid can initialize
SYSl.LOGREC and modify its space allocation.

7.3 DYNAMIC SUPPORT SYSTEM (DSS)

DSS provides effective maintenance and debugging
procedures for OS IV/F4 control program routines.
Maintenance personnel can use the special com­
mand language of DSS for detecting and correcting
logical errors in their programs.

DSS is invoked when the console operator (or
systems maintainer) presses the RESTART key
located on the M series service processor. Once
started, DSS supervises control-program execution
until the operator enters a command to reset this
supervisory function.

DSS offers the following services:

1) Debugging and correction of any of the
following events:
• successful branch instruction.
• modification 	 of a specified general-purpose

register.
• instruction-fetch from a specified main-memory

area, and
• modification of a specified main-memory area.

These events can be detected by the hardware pro­
gram event recording (PER) feature.
2) Updating and/or display of real memory, vir­
tual memory, and/or registers.
3) Accepting DSS commands at preselected
points in a program.
4) Setting breakpoints at desired main-memory
addresses for debugging purposes.
5) Submitting DSS commands from designated
input devices (card reader, magnetic tape, or an
operator console).
6) Displaying prespecified data on a DSS output
device (line printer, magnetic tape drive, or an
operator console).

7.4 SERVICE AIDS

The OS IV/F4 service aids are a group of programs
to assist with diagnosis and correction of errors in
the control program or user programs.

7.4.1 Service Aids for Gathering Diagnostic Data

JQLSADMP service aid
The JQLSADMP service aid dumps data from real
memory or virtual memory. It is used for

Table 7.1 Service aids

Functional
classification

Gathering
diagnostic data

Formatting and
printing data
sets and their
elements

Correcting and
updating
programs

LOGREe
management

Program name

JQLSADMP

JOMGTF

JONLIST

JOOJOSOD

JOLPRDMP

JOPPTFLE

JOPSPZAP

JQOEREPO

JOODIPOO

Function

Formatted dump
of real or virtual
memory.
Trace

Formatting and
printing of load
modules, object
modules, etc.
Display the
contents of the
SYS1.SYSJOSQE
data set.
Formatting and
printing gathered
data.

Corrections to the
OS IV /F4 control
program
Corrections to
load-modu Ie
instructions or
other data on a
direct access
volume

Edit and display
LOGREC data
Initialize the
LOGREC data set

troubleshooting the control program. Appropriate
output devices are line printers and magnetic tape
drives.

Dumps may be of two kinds: direct dumps, and
high-speed dumps. A direct dump formats real and
virtual memory areas (either/both the common area
and a particular address space) and displays them on
a line printer.

A high-speed dump is used to capture the image
of a real memory area without formatting. Data cap­
tured by a high speed dump can be formatted and
displayed with the JQLPRDMP service aid at a later
time.

This service aid (JQLSADMP) operates stand­
alone; it does not require the OS IV/F4 control pro­
gram.

JQMGTF se"ice aid
The JQMGTF service aid traces the flow of the con­
trol program or a user program. Control-program
events which can be traced by JQMGTF are as
follows:
• I/O interruptions
• 	SVC interruptions
• program interruptions
• external interruptions
• Start I/O instructions
• switching of tasks by the OS IV/F4 dispatcher.
• 	VTAM trace information. Trace data are written

into the SYS1.TRACE data set or a data set

---------.-----~--------------~------------------

REUABILITY, A V AlLABILITY, AND SERVICEABILITY

specified by the user.

The user can select events to be traced in his pro­
gram by issuing GTRACE macro instructions. Data
captured on the SYS1.TRACE data set can be for­
matted and displayed by the edit function of the
JQLPRDMP service aid.

7.4.2 Service Aids for Formatting· and Printing
Data Sets and Their Elements

JQNLIST service aid
The JQNLIST service aid formats and prints the
contents of an object module, load module, the OS
IV/F4 nucleus and/or link pack area, etc.

JQNLIST has the following output options:
• mapping object modules, 	 including ESD cross

references.
• mapping 	 load modules, including ESD cross

references.
• mapping the OS IV/F4 nucleus.
• software-change histories of selected control sec­

tions.
• mapping the LP A.

JQOJOBQD service aid
The JQOJOBQD service aid formats and prints the
system job queue data set (SYS 1.SYSJOBQE) and
the work area data sets for one or more OS IV/F4
initiators (SYS 1.SW ADS).

Via this service aid, a trained system programmer
can analyze software problems causing OS IV/F4
interruptions.

The following items from SYS1.SYSJOBQE can
be displayed:
• total contents.
• contents of a specified input job class.
• contents of a specific output class.
• contents of the hold queue.
• contents 	of a specific job located in the input

queue.
• jobs from a specific terminal user.
• 	job outputs awaiting return to a specific terminal

user.
• jobs in the hold queue for a specific terminal user.

Similarly, the following data can be selectively
printed out from a SW ADS:
• total contents.
• contents by procedure name.

The JQOJOBQD operates stand-alone from the
OS IV /P4 control program.

JQLPRDMP service aid
The JQLPRDMP service aid formats and displays
the following data sets:
• high-speed dumps created 	by the JQLSADMP

service aid.
• 	SYSl.DUMP data sets.
• DSS dump data sets, and
• trace data sets written by the JQMGTF service aid.

Optional elements of a JQLSADMP high-speed
dump or DSS-written real-memory dump can be for­
matted and printed:
• all queue control blocks.
• Link pack area map.
• 	OS IV/F4 nucleus, system queue area, and com­

mon service area.
• system control 	blocks for a particular address

space.
• system control blocks for all address spaces.
• real memory areas.
• virtual memory areas.
• address space 	of a user, plus his local system

queue area.

After issuing a DUMP command. a user can
request that his SYS1.DUMP data set be formatted
and printed, including the following elements:
• virtual memory area for his job.
• system control blocks for his job.

Also, trace data gathered by JQMGTF can be for­
matted and printed.

7.4.3 Service Aids for Correcting and Updating
Programs

JQPPTFLE service aid
The JQPPTFLE service aid corrects failures in user­
written programs incorporated into OS IV /F4. It can
also be used to correct/change portions of the
OS IV/F4 control program. In either case,
JQPPTFLE changes individual control sections of
selected load modules temporarily, so as to verify
their correct operation before permanently installing
them.

JQPSPZAP service aid
The JQPSPZAP service aid corrects arbitrary data
fields in DASD records. In particular, it corrects
instructions and data within load modules as follows:
• Checks and corrects instructions and data in a load

module, which is an executable member of a pro­
gram library.

• Checks and corrects any data on DASD, for exam­
ple, a damaged VTOC.

• Display some/all 	of the corrected instructions,
data, etc. to confirm their validity.

7.4.4 LOGREC Functions

JQQEREPO service aid
The JQQEREPO service aid formats data from the
SYS1.LOGREC data set and collects the data onto
magnetic tape. This service aid can also format and
print accumulated LOGREC data.

JQQDIPOO service aid
The JQQDIPOO service aid initializes the
SYSl.LOGREC data set during system generation
or reconstructs a damaged LOGREC data set. This

CONTROL PROGRAM

service aid can also change the space allocated to
SYSl.LOGREC. .

7.5 INDEPENDENT UTILITY PROGRAMS

These programs do not operate under control of
OS IVIF4; they thereby run stand-alone. They are
self-loading and perform all their own 110 opera­
tions. An independent utility is ordinarily used only
when OS IV/F4 is inoperable or before OS IVIF4
has been successfully generated. The reader should
consult the FACOM OS IV IF4 Independent
Utilities User's Guide for additional details on these
programs.

JQJDASDI utility
This independent utility initializes a direct access
device O(allocates an alternate track. It is typically
used to correct a defective track on an initialized
system volume such as the IPL volume.

JQJDMPRS utility
This independent utility dumps part/all of oI).e direct
access volume to another direct access volume or to
magnetic tape. This utility is also used to restore the
contents of a dumped volume.

7.6 HARDWARE DIAGNOSIS PROGRAM

The hardware diagnosis program is operated under
control of OS IVIF4 or the maintenance operating
system (MOS). MOS is a specialized operating
system used for stand-alone maintenance of a hard­
ware system; diagnostic programs run without using
OS IVIF4. The online test control program
(OLTEC) furnishes an interface between programs
to be tested and OS IV/F4 or MOS.

Under OL TEC, individual diagnostic programs
can run as if they were unrelated to OS IVIF4 or
MOS.

Diagnostic programs have the following func­
tions:

1) Test and diagnose
• I/O devices.
• the service processor (SVP).
• a communications control processor (CCP).
• a terminal device.

2) Detect errors due to device interactions.

3) Analyze machine-check logout data for the

CPU, main memory, or channel to locate a mal­

function.

4) Analyze SYS1.LOGREC data to determine

which component has malfunctioned and print rele­

vant statistics.

210

CHAPTER 8

.SUPERVISOR

8.1 OVERVIEW

A Supervisor is a basic component of any operating
system, whose principal functions are to issue I/O
requests, respond to I/O interruptions, control
executing tasks and respond to their requests for
supervisory services, and maintain continuity of
system operation. All OS IV/F4 system programs, as
well as all batch and interactive programs, operate
under control of the supervisor.

This chapter will outline certain basic hardware
features of M series computers which are closely reI·
ated to the OS IVIF4 Supervisor, then describe the
principal elements of the Supervisor together with
supervisory macro instructions which can be issued
by user programs. Although the I/O Supervisor is an
integral part of the overall OS IV/F4 Supervisor, it
will be only briefly discussed here, since it relates
directly to OS IV/F4 Data Management. For a full
discussion of data management, the reader should
consult the FACOM OS IV/F4 Data Management
Functions and Facilities. For a detailed description
of· supervisory macro instructions, assembler­
language programmers should read the FACOM OS
IVIF4 Supe"isor Macro Instructions Reference
Manual.

A batch user defines his jobs in terms of job steps
within which he executes programs. However, the
Supervisor defines batch and interactive users in
terms of tasks, activities, and disabled routines,
which are discussed in Section 8.2.2. The OS IVIF4
Supervisor provides the following services to these
program elements:
• Interruption control 	 - Analyze the cause and

useful consequence of each interruption.
• Task management - Attach, detach, and change

the status of various system and user tasks.
• Virtual storage management - Allocate and de­

. allocate 	 virtual-storage areas as requested by
system and user programs.

• Real 	 storage management - Allocate page
frames, read and write pages to DASD, and fix
and release pages from page frames.

• Program management 	- Load and link programs
within an address space.

• Management of serially reusable resources ­

Sequence requests for such resources in an
orderly and efficient fashion.

• Time management 	- Manage time intervals (as
requested by various tasks) plus the time of day
clock.

• Program-interruptions service - Respond to soft-
ware-caused program interruptions.

• Program dumping and snapshotting.
• 	I/O supervisor - Support the execute cht:lnnel

program (EXCP) macro instruction and associ­
ated appendage routines: also, support the M
series channel-DAT feature.

8.2 OPERATION

This section discusses major aspects of how the
as IV/F4 Supervisor operates, beginning with the
range of hardware interruptions issued by M series
hardware. The supervisor must respond to every
interruption carefully, thoroughly, and efficiently.
Finally, this section describes how OS IVIF4 defines
multiprogramming and achieves a high level of
throughput by multiprogramming batch and interac­
tive jobs.

8.2.1 Interruptions

An interruption is a solicited/unsolicited change of
instruction sequence - a program is executing a
sequence of pre-planned instructions when some
internal/external event occurs which should be
immediately serviced by the operating system super­
visor. External events include 110 interruptions,
external signal interruptions (including lapsation of
predetermined time intervals), and machine check
and program-restart interruptions. Internal events
are those initiated by the executing program such as
issuing a supervisor call instruction or executing an
instruction causing a program check interruption.
For a detailed description of causes and hardware
actions for interruptions, the reader should consult
the F ACOM M series Hardware Reference
Manual. Table 8.1 summarizes the types and causes
of interruptions.

CONTROL PROGRAM

Table 8.1 Types of intemuptions

Interruption 	 Causelsl

Machine check Hardware failure in CPU or main
interruption storage

Program 	 Execution of a program resultad in
intarruption 	 an unusual event such as an

operation, memory-protection, or
page-fault exception.

SVC interruption 	 A Supervisor call instruction was
executed.

External 1. Interrupt key was pushed on
interruption the service processor ISVP)

panel.
2. 	 The CPU received a signal

processor instruction ISIGP)
3. 	 Preset time interval has elapsed

I/O intarruption 	 Completion of part/all of an

I/O operation

Restart 1. Service processor ISVP) generated
interruption a restart command.

2. 	The CPU received SIGP restart
subcommand.

As a consequence of each type of interruption, M­
series hardware starts an instruction sequence in the
OS IV/F4 supervisor called an interruption'
handler, of which there are six:
• MCH (Machine check handler).
• Program interruption handler.
• 	SVC interruption handler.
• External interruption handler.
.110 interruption handler.
• Restart interruption handler.

Each executing task can selectively set mask bits
for interruptions other than the SVC and restart
interruptions. For program interruptions, four mask
bits are available to control acceptance/rejection of
interruptions when certain arithmetic overflow/
underflow conditions occur. All other interruptions
are unconditional as far as user programs are con­
cerned.

A typical timeline for interruption processing
appears in Fig. 8.1. Before each interruption is
analyzed, the corresponding interruption handler
saves data stored in the old PSW area in the OS
IV/F4 nucleus_ The old PSW is moved into another
storage area, so that it can be protected from pre­
mature overwriting. Then the cause of interruption
is analyzed in detail:
• For example, a program interruption can result

from an overflow in a decimal-arithmetic opera­
tion or an addressing error. During analysis of the
interruption, its code (two-byte identifier) is
checked (I).

• When analysis 	of the interruption code is com­
pleted, the supervisor branches to a routine cor­
responding to the interruption cause(2).

• When the interruption has been fully serviced,
saved data are restored into their prior registers

and storage areas, fields of the old PSW are loaded
into the current PSW, and the supervisor returns
control to the interruped proaram (3).

When executing in the supervisor, a CPU is in the
hardware-defined supervisor state; otherwise, it is
in the problem program state.

Save genaral registers, etc.
and analyze cause of this Rastore prior
interruption status of the

....-----.(1) interrupted
Accept an :: program
interruption i: (3)

, : 121 ,--I'-.
Routine corresponding to i --------------------1
a specific interruption i :

InterruPted~ 	 .h­
program u 	 U

Interruption 	 Interruption
ralease

Fig.8.1 Timeline of an interruption

8.2.2 Tasks, Activities, and Disabled Routines

There are the three types of CPU contenders, as
seen by the OS IV/F4 Supervisor: tasks, activities,
and disabled routines.

Tasks
Every active batch or interactive program in an
OS IV/F4 system at a given instant comprises one or
more tasks, each of which is a collection of
resources (including one executing program) com­
peting for CPU service. A job step ordinarily initi­
ates one task; in the COBOL or FORTRAN
languages, a programmer can specify only one
execution sequence at a time. However, in the as­
sembler and PLII languages, he can specify t~o or
more tasks which are to compete with one another
simultaneously for CPU time.

One task is created in each address space by
OS IV/F4 as a result of initiating execution of a job
step (the job step task). The user can optionally
create additional tasks in his program. If he does not,
the job step task is the only task iri his address space.
The benefits of a multiprogramming environment
are still available even with only one task in a job
step; work is performed for other address spaces
when this task is waiting for an event such as com­
pletion of an input operation_

The advantage of creating additional tasks within a
job step is that more tasks can compete for CPU con­
trol. When a wait condition occurs for one task in an
address space, it is not necessarily a task from some
other address space that gets control; it may be
another task in the same space.

The supervisor uses a task control block
(TCB) - created and retained' in the local system
queue area (LSQA) of the corresponding address
space - to control each task.

212

------~-- - --------

SUPERVISOR

The TCB describes the task status, its resources,
. dispatching priority, etc. Hereafter, a task will be
represented as shown below: a TCB (small box) and
a program (large box).

TCB

I

Program

The general, rule is that parallel tasks within a job
step (subtasks) should be created only when a sig­
nificant amount of overlap between two or more
subtasks can be achieved. The amount of overhead
required by the as IVIF4Supervisor for establishing
and controlling subtasks, and the increased effort to
coordinate subtasks and provide communications
between them, must be taken into account.

A new task is created when the user '(or system
routine) issues an AITACH macro instruction. The
task issuing the AITACH macro instruction is the
originating task; the newly-created task is a subtask
of the originating task. The subtask competes for
control in the same manner as any other task in the
system, on the basis of its priority (both address
space priority and task priority within the address
space) and its current ability to use the CPU.

Activities
In a typical prior operating system the supervisor
classified all CPU-using routines as either tasks or
disabled routines, the latter performing uninterrup­
tible functions within the supervisor. This two-way
classification has proved to be cumbersome and
inadequate for certain supervisory routines, which
are not conventional user-program tasks yet need
not execute disabled for interruptions. Hence, OS
IVIF4 defines a third category for CPU-using
routines, an activity, which is described below.

When a supervisory routine executes as a task, it
must be managed by the task dispatcher, which
imposes substantial overhead on the CPU and may
delay rapid responses to interruptions. Yet, if this
same supervisory routine runs disabled for interrup­
tions, it causes presentation of these interruptions to
be delayed, which slows system throughput and
responsiveness. Also, a multiple-address-space
operating system like OS IVIF4 should execute with
interrupts disabled as infrequently and briefly as
possible, especially in multiprocessor configurations
where delays of inter-CPU communications can stall
both CPUs.

The concept of an activity solves many of these
problems. An activity is functionally quite similar to
a supervisory routine which executes disabled; the
principal difference is that an activity runs enabled

for I/O and external interruptions. When inter­
rupted, the supervisor schedules a routine to process
the interruption, then returns control immediately
to the interrupted activity. Even if the interruption
could cause another activity Or task to gain a higher
dispatching priority, the supervisor returns to the
interrupted activity. In this regard, activities are
different from tasks; the supervisor may dispcttch a
different task (or activity) after one task has been
interrupted.

As shown in Fig. 8.2, most disabled time required
by prior operating systems is assigned to interrupti­
ble activities in as IVIF4, greatly reducing hardware
delays to interruptions. The shaded area in this
figure indicates what fraction of CPU activity must
execute disabled for interr~ptions. Just as tasks are
managed by TCBs, activities are man"aged by service
request blocks (SRBs).

Activity TaskOS rV/F4

Typical

prior
 Task
operating

system

Fig.8.2 Enabled/disabled fractions of CPU time

Disabled routines
The as IV IF4 Supervisor uses no special control
tables for disabled routines; hence, they cannot be
controlled by the dispatcher.

The number of disabled routines has been greatly
reduced in OS IVIF4, and most system functions
execute as tasks or activities most of the time. Dis­
abled routines include supervisor functions where
raflid processing strongly influences total system
efficiency, functions managing tasks and activities,
and interruption handlers.

8.2.3 Flow of Control

When a hardware interruption occurs, the super­
visor analyzes its cause, then commences any
required processing. Thereafter, the su pervisor
usually gives control to one of its own routines, the
dispatcher, which selects the activity or task with
highest execution priority. After this selection, the
supervisor gives CPU control to the selected activity
or tasks. This function is known as dispatching.

Multiprogramming
One of the major purposes of an operating system is
to improve the efficiency of using system resources.
The CPU is usually the most important system
resource - most costly, most heavily used, and
necessary for all batch/interactive jobs. Hence, OS
IVIF4 has been designed'to utilize the CPU as effi­

CONTROL PROGRAM

ciently as possible. If a program is allowed to use a
CPU exclusively until it completes executing the
CPU often idles While the program is awaiting com­
pletion of an 110 operation. In order not to waste
this idle time, OS IVIF4 permits another program to
use the CPU while the first program is waiting.
Thus, the CPU is used by two or more programs
alternatively. Viewed externally, several batch andl
or interactive programs are running in parallel,
which is known as multiprogramming or multi­
tasking.

Task 1 '.,"Y "'ttl fl¥L',itil
Task 2 hU

\" /] : !;.",',.j:,:,....;::'·""'"ii,,;""':*'''''''"'illl

:
r---i

I
:

I I
Taskn (·· .."d Time ..
Fig. 8.3 Profile of multi·task CPU operation

"Multiprogramming" is often used to denote
"multijob processing" - parallel processing of
batch jobs.

Dispatching
As described above, the dispatcher is a routiq.e with­
in the supervisor which selects an activity or task to
receive CPU control. The selected activity or task
usually has the highest dispatching priority of any
which are ready to execute.

There are really three priorities to consider:
address space priorities, task priorities, and subtask
priorities.

Address space dispatching priority
Each batch job is initiated in an address space. All
successive steps in the job execute in the same
address space. The address space has a dispatching
priority; OS IVIF4 normally assigns and alters this
priority in order to achieve the best overall balance
in the system-that is, in order to make the most
efficient use of CPU time and other system
resources.

It may be desirable for some jobs to execute at a
different address space priority than the default
priority assigned by OS IVIF4. To assign a priority,
the user codes DPRTY= (value!, 'value2) on his
EXEC statement.

The address space priority is then determined as
follows: address space dispatching priority=
(value! x 16) + value2.

Once an address space dispatching priority has
been set, it can be altered only by OS IVIF4. (Thus,
there is no limit priority associated with an address
space.) However, a user can set a new address space
priority for succeeding job steps by specifying
different values in DPRTY parameters on corre­
sponding EXEC statements.

Task dispatching priority
OS IVIF4 associates with each task in an address
space a limit priority and a task dispatching
priority. OS IVIF4 sets these priorities when initiat­

ing each job step. If the user creates other tasks in his

address space by issuing A ITACH macro instruc­

. tions, he can give them different limit and dispatch­

ing priorities by LPMOD and DPMOD parameters,

respectively.

Dispatching priorities of tasks in an address space
do not affect the sequence in which jobs are selected
for execution; the latter is based on address space
dispatching priorities. Once OS IVIF4 has selected
an address space for dispatching, the dispatcher
selects the highest priority task ready to execute.
Thus, task priorities may affect processing within an
address space. In a multiprocessor configuration,
task priorities do not guarantee the sequence in
which tasks execute, since more than one task may
be executing simultaneously in the same address
space on different CPUs. In a paging environment,
page faults also alter the order in which tasks
execute.

Subtask dispatching priority
When a subtask is created, its limit and dispatching
priorities are the same as those of the originating
task, unless the subtask priorities are modified by
LPMOD and DPMOD parameters of the A ITACH
macro instruction. The LPMOD parameter specifies
a decrement to be subtracted from the current limit
priority of the originating task. The result of the
subtraction is assigned as the limit priority of the
subtask. If the result is zero or negative, zero is
assigned as the limit priority. The DPMOD
parameter specifies the number to be added to the
current dispatching priority of the originating task.
The result of the addition is assigned as the dispatch­
ing priority of the subtask, unless the number is
greater than the limit priority or less than zero. In
the latter cases, the limit priority or 0, respectively,
is used as the dispatching priority.

Assigning and changing dispatching priorities
Tasks requesting a high rate of I/O operations
should be assigned higher priority than tasks with lit­
tle I/O, since the former will be in wait state for a
greater amount of time. Lower-priority tasks
execute when higher-priority tasks are in wait state.

A user can explicitly change the priorities of his
subtasks by issuing CHAP macro instructions. Each
CHAP macro instruction changes the dispatching
priority of an active task or one of its subtasks by
adding a specific positive or negative value. The dis­
patching priority of an active task can be reduced
below that of another task. When this occurs, and if
the other task is dispatchable, the OS IVIF4 Super­
visor gives it control after servicing the CHAP
macro instruction.

In each address space, an activity has higher dis­
patching priority than any task or subtask.

A CHAP macro instruction can increase the limit
priority of any subtask of an active task. An active
task cannot change its own limit priority. The dis­
patching priority of a sub task can be raised above its
own limit priority, but not above the limit of the
originating task. When the dispatching priority ofa

214

I

SUPERVISOR

subtask is raised above its own limit priority, the
-subtask's limit priority is automatically raised to its
- new-dispatching priority.

Fig. 8.4 Example of dispatching priorities

Wait macro

Task A'------------------ instruction(l)

Fig. 8.4 shows a collection of activities and tasks at
a particular instant in an OS IV/F4 system. In this
figure, address space priorities are highest at the top,
lowest at the bottom. Likewise, task priorities with;"1
each address space are highest at the left, lowest at
the right. The following abbreviations have the indi­
cated meanings:
ASCB Address space control block, one for each

address space
CVT Communication vector table, whic~

resides in the OS IV/F4 nucleus and
points- to the GSPL and the highest­
priority ASCB

GSPL Global service priority list, which queues
global activities (those not related to a
single address space)

LSPL Local service priority list, which queues
local activities for each address space

SRB Service request block, one for each
activity

In this figure, the instantaneous priority order
among all activities and tasks is shown by circled
numbers. For example, if the fIrst SRB (to which the
GSPL points) is ready to execute, it will receive
CPU control as soon as the dispatcher gains control.
If activities (1) and (2) are both awaiting I/O com­
pletions, the task designated by (3) will receive CPU
control when the dispatcher next gains control, etc.

WAIT macro instruction
A program issues aWAIT macro instruction to
move from active to wait state.

Fig. 8.5 shows the sequence of CPU control
resulting from aWAIT macro instruction issued by
Task A:

Cause of interruption
SVC interruption _________________ is analyzed (2).
handler

Task A is set

to wait state(31.
WAIT routine -------------- --- ---- ----­

Dispatcher --- ---- - - ---- ------___ - ________________ _

Control tables ara searched to locate the highest

priority task/activity which is ready to exacute;
control is transferred to this task (4).

Task B --- -- -------- --------- -- - --- --- -- --- ------------ ---- ------'----__

Fig. 8.5 Processing a WAIT macro instruction

CONTROL PROGRAM

(1) 	 The WAIT macro instruction issues a super­
visor call instruction, which generates an SVC
interruption.

(2) 	 As described in Section 8.2.3, the SVC inter­
ruption causes CPU control to be transferred to
the SVC interruption handler, which checks the
interruption code, then transfers control to the

- supervisory routine which processes WAITs.
(3) 	 If the specified event has not yet been com­

pleted, this wait routine sets the task being
executed (Le., which issued the WAIT macro
instruction) into wait state.

(4) 	 When the wait routine completes, it yields con­
trol to the dispatcher, which searches the OS
IV/F4 tables of activities and tasks (similar to
that depicted in Fig. 8.4) for the highest­
priority task and transfers control to this task
(Task B in Fig. 8.5).

SVC routines
Each SVC routine receives control from the SVC
interruption handler. For most installations, all SVC
routines are - already defined within OS IV/F4.
However, an installation can add its own SVC
routines during system generation. SVC routines are
operated in supervisor state with a protectiori key of
O. 	 '

An SVC routine can be resident (Type 1 or Type
2) or nonresident. Table 8.2 shows where and how
various types of SVC routines are executed.

Table 8.2 Attributes of SVC routines

RESIDENCY AND TYPE OF ROUTINE

Other -Resident Nonresident

Attributes Type 1 Type 2 Types 3 and 4

Location in Link pack
each address Nucleus Nucleus area
space

Supervisory Disabled Subtask of Subtask of
control routine th is add ress this address

space space

Accept
inter- NO YES YES
ruptions?

Issue other
SVC macro NO YES YES
instructions?

8.2.4 Automatic Priority Group (APG)

When several unrelated jobs are executing concur­
rently, it usually happens that some are CPU­
limited (use the CPU heavily, I/O devices lightly),
some are 1I0-limited (use the CPU lightly, 110
devices heavily), and the remainder are relatively
balanced (CPU usage overlaps considerably with
110 usage, neither exceeding the other by a large
factor). If the user requests a high dispatching
priority for a CPU-limited job, his job will occupy
the CPU rather heavily and not permit lower ­

priority jobs - some of which may be 110 limited ­
to issue their 110 requests. Hence, it is generally
desirable for CPU-limited jobs to have lower dis­
patching priorities than 1I0-limited jobs, with bal­
anced jobs falling in between.

APG is a feature of the OS IV/F4 Supervisor
which automatically raises/lowers dispatching
priorities of tasks according to their recent relative
usage of the CPU and 110 devices. The user can
choose (with his JCL statements) whether his job
should be processed in APG or outside of APG. If
outside, his job will run with a dispatching priority
which is invariably higher - or invariably
lower-than all jobs in APG. Urgent jobs needing
fast turnaround should be submitted with DPRTY
parameters above the APG range, in certain cases.
CPU-limited jobs which can be processed on an
overnight basis may be submitted with DPRTY
parameters below the APG range. However, most
batch jobs at most OS IV/F4 installations should be
included in APG, since it achieves high overall
utilization of the CPU and 110 devices yet does not
degrade turnaround times for most batch jobs.

Each OS IVIF4 installation selects a priority range
for its APG, which is set during system loading
OPt) or by the default value specified during
system generation. Each job step will be assigned the
APG dispatching priority unless it explicitly requests
a higher or lower priority with a DPRTY parameter.

For APG, a short time interval (typically 1-3 sec­
onds) is defined as the APG interval. Whenever
this interval has elapsed, the OS IVIF4 Supervisor
inspects recent usage of the CPU by all tasks. Any­
task which has used the CPU throughout the entire
interval is considered to be CPU-limited (at least

Dispatching priority

(High) r !

I/O limited
subgroup

APG

CPU limited
subgroup

!

Dispatching priority •
(Low) !

Fig. 8.6 Example of APG dispatching priorities

216

SUPERVISOR

temporarily). Any task which has used the CPU
lightly in an interval is considered to be IIO-Iimited;
often this task issues a WAIT macro instruction
soon after receiving CPU control during the inter­
val, so that it can no longer execute. If two or more
CPU-limited tasks are ready to execute in an inter­
val, and if the configuration is a uniprocessor (one
CPU), only one task can control the CPU
throughout this interval. Other CPU-limited tasks
"appear" to be lIO-limited, and OS IVIF4 raises
their dispatching priorities accordingly ..

The above ordering of tasks is illustrated in Fig.
8.6.

As each job step is initiated, the dispatcher first
determines if its assigned dispatching priority is
above, within, or below the APG range. If above,
this step executes with higher CPU priority than any
task shown in Fig. 8.6; if below, the step executes
with lower priority than any in this figure. If the
priority of the step is within the APG range, the dis­
patcher assigns the job a priority just above the high­
est task in the IIO-limited subgroup shown in Fig.
8.6. Its priority movement thereafter depends on the
following algorithm.

Each task in the IIO-limited subgroup will use
some or all of the APG interval when it receives
control of the CPU:
(1) 	 It may use the entire interval without losing

control of the CPU;
(2) 	 It may issue a WAIT macro instr.uction early I

late in the interval, thus yielding control to
another task; or

(3) 	 Another higher-priority task may become dis­
patchable, in which case the dispatcher will
assign the CPU to the higher-priority task.

In case (1), the original task will be moved to the
top of the CPU-limited subgroup during the follow­
ing APG interval; in Fig. 8.6 this is just ahead of
Task #N. In case (2), the task moves to a position
within the lIO-limited subgroup depending on what
fraction of the interval it actually used the CPU. In
case (3), the rank of the original task is unchanged,
but it is allocated only an abbreviated interval of
CPU control, which equals the time it lost to the
higher-priority t2.sk.

Tasks in the CPU-limited subgroup execute as
follows, using the same three cases as for the I/O­
limited subgroup. In case '(1), a task using a full
APG interval is moved to the· bottom of the
subgroup, just below Task #M. Hence, all other
CPU-limited tasks move up one position, in a
round-robin sequence:

Execution of Positions within the
task #N CPU-limited subgroup
Before N N+l N+2 ... M
After N+l N+2 .,. M N

If no other task becomes dispatchable during the
previous APG interval, the Dispatcher will then give
control to Task #N+1 if it is ready to execute ­
which is quite likely. If Task #N+1 also uses its full
interval of CPU time, the round-robin sequence
continues:

Execution of Positions within the
task #N+l CPU-limited subgroup

high low
After task
#N +1 executes N+2 N+3 M N N+l

For a CPU-limited task in case (2), the !ask is
moved to the bottom of the I/O-limited subgro'.:p.
just below Task #N-l. In case (3), the CPU-limited
tasks are not resequenced but the highest-priority
task is given only the remainder of its APG interval
before the APG algorithm is again executed.

The APG algorithm gives higher dispatching
priority to tasks which are chronically I10-:imited. It
gives lower priority to CPU-limited tasks. It con­
tinually reevaluates each active task to determine
whether it has become more CPU-limited than pre­
viously, become more I/O-limited, or remained the
same.

The length of the APG interval is itself automat­
ically revised by OS IVIF4. If the relative ranking of
tasks changes slowly, the APG interval is
lengthened; if the relative ranking changes
quickly-which is due to many tasks of differeent
attributes executing concurrently-the APG inter­
val is shortened. The frequency with which the APG
interval is automatically modified-and the time
increment by which it is lengthened or shortened,
plus maximum and minimum values for the APG
interval - are set during system generation,
optionally modified when the system is loaded
(IPL).

8.2.5 Multiprocessor Configurations

Multiprocessing is usage of two or more CPUs to
process a common workload. A tightly-coupled
multiprocessor configuration (called a multi­
processor in the remainder of this chapter) comprise
two CPUs connected to common pools of main­
memory modules and peripheral devices. In addition
to raising the throughput rate of an installation con­
siderably above that of a uniprocess':.',· (12 ,e
CPU) configuration, a multiprocessor has much
higher inherent reliability; if c:'.e ::-:'U malfunctions
briefly, its workload can be assumed entirely by the
other CPU. Even if the malfunction is fairly serious,
full OS IVIF4 facilities can be kept operational on
the other CPU. Furthermore, the surviving CPU can
perform significantly more powerful diagnostic pro­
cedures on the malfunctioning CPU than the latter
could perform on itself, which facilitates rapid isola­
tion and repair of the malfunction.

When a uniprocessor processes multiple tasks
concurrently, its activity profile is like tpe example
in Fig. 8.7:

Task 1 ----" r-,---, , ,, ,
~Task 2 	 , ,,, ,

L __-, ,

, :
Taskn 	 L-J

Time •
Fig. 8.7 Multiprogramming with a uniprocessor

--------------.~------

CONTROL PROGRAM

Tasi<1

Tasi<2

Tasi< 3

Tasi< n

Executed by CPU 1.

Executed by CPU 2.

Fig. 8.8 Multiprogramming with a multiprocessor

In each time interval, at most one task can be
active, even though other tasks are receiving I/O
services while they await control of the CPU.

With a multiprocessor, two tasks can be
simultaneously active, as shown in Fig. 8.8.

OS IV/F4 fully supports multiprocessor M series
configurations. Each interruption is presented to one
of the CPUs. Only one copy of OS IV/F4 is
needed - in particular, one supervisor - and most
supervisory functions can be executed by either
CPU, even concurrently with one another.

Some inherent difficulties and hardware solutions
for multiprocessors are summarized in the following
sections.

Prefixed storage areas
A prefixed storage area (PSA) is a 4K-byte area of
main storage hardware-connected to exactly one

I

I

I

L
Time

CPU. (All other storage is connected to both CPUs.)
This area is required for specialized hardware opera­
tions, such as PSW-interchanges and diagnostic log­
outs. In particular, the PSA stores new and old
PSW's for each type of interruption, channel status
word (CSW), channel address wOJd (CAW), inter­
ruption codes, and so on.

A PSA is required for each CPU of a
multiprocessor. Since the PSA always has addressed
o - 4095 for its CPU, the two PSAs must be dis­
tinguished from one another. Each PSA is identified
by a prefix register located at the top of the prefix
area.

Each CPU uses real addresses which correspond
in almost all cases to the absolute addresses of the
hardware configuration. The relationship between
real and absolute addresses is illustrated in Fig. 8.9.
In this example, the PSA for CPU A has absolute

Real
address

CPU A

--;-::..,.:':-­ -­________________ -.L.....:.....c~::::...:- - ­ PSA for CPU "B-­-­

On the main storage

- --:"":.... ~::--

Real
address

CPU B

Fig. 8.9 PrefIXed storage areas and prefIX registers

-----_._-­
218

addresses 0-4095 because its prefix register points
to O. If the prefix register for CPU B points to
absolute address 4096; absolute addresses 4096 ­
8191 become the PSA for CPU B.

The user cannot directly reference or update
prefix registers or absolute addresses.

The reader should note that this discussion is·
entirely independent of virtual storage concepts and
virtual addresses. The DAT feature translates virtual
addresses into real addresses. Most real addresses
are the same as corresponding absolute addresses,
but PSA addresses (0 - 4095) are often translated
into absolute addresses other than 0 - 4095,
depending on the contents of the corresponding
prefix register.

Communication between CPUs
Since two CPUs run concurrently in a
multiprocessor, synchronization and communica­
tion are required when updating shared system
resources. When rewriting a page table, for example,
translation lookaside buffers (TLBs) for both CPUs
must be cleared. When an I/O device is connected to
only one of the CPUs and the other CPU requests an
operation on it, the two CPUs must communicate
directly.

Communication between CPUs is initiated by an
external interruption in one CPU, caused by execut­
ing a signal processor (SIGP) instruction in the
other CPU. Since an external interruption is maska­
ble, the first CPU may delay receiving this interrup­
tion, although typically only for a fraction of a sec­
ond. Thus the requesting CPU may await comple­
tion of communication, or it may start other process­
ing which is independent of this communication.
The above TLB example requires synchronized
communication but the above I/O request example
does not require synchronization.

Communication between CPUs is fully controlled
by the supervisor, and the user need not be con­
scious of it-or of any hardware/software aspect of
multiprocessing, for that matter.

Disabled routines in a multiprocessor
In a uniprocessor configuration, any system
resource can be exclusively controlled by a routine
which executes with interruptions disabled. In a
multiprocessor system, exclusive control cannot be
guaranteed merely by disabling interruptions; even
if one CPU operates disabled, resources can be
updated by the other CPU.

Fig. 8.10 shows an example of resource conten­
tion where CPU A executes disa,bled but CPU B
nonetheless updates a control block being accessed
by CPU A.

MSU

IPrefix A; IPrefix BI

Fig. 8.10 Resource cOntention in a multiprocessor

SUPERVISOR

To prevent uncontrolled and dangerous conten­
tion for resources, OS IV/F4 furnishes several soft­
ware locks on system resources so that these
resources can be accessed by two CPUs in an orderly
sequence. When accessing any serially-reusable
system resource, one CPU locks the resource. If the
other CPU attempts to access this resource shortly
thereafter, it finds the locked resource unavailab:e.
The second CPU can then take one of two actions:
await unlocking of the resource by tre firs'. CPU, or
perform other activities prior to attempting access
again.

In OS IV/F4, sophisticated locking/unlocking of
system resources contributes to efficient and safe
multiprocessing.

Alternate CPU recovery (ACR)
Described in Section 7.2.2, ACR is a useful hard­
ware/software feature of OS IV/F4. If one CPU of a
multiprocessor malfunctions, and if its hardware
instruction retry OUR) and error checking and cor­
rection (BCC) hardware-recovery circuits are un&ble
to continue normal operations, this CPU issues a
signal processor instruction to advise the other CPU
of its (serious) malfunction. The healthy CPU then
continues as many tasks, activities, etc. as possible
on behalf of the first CPU, terminating abnormally
only those tasks whose programs, data areas, register
contents, etc. were irreparably damaged by the
malfunctioning CPU. ACR is facilitated by the
unique set of main-storage tables sharer by both
CPUs; except for the PSA of the malfunctioning
CPU, the healthy CPU utilizes preciseiy the same
real addresses and virtual storage maps as the mal­
functioning CPV.

8.3 TASK MANAGEMENT

OS IVIF4 can execute a number of subtasks concur­
rently within a single job step. In order to perform
this function effectively, OS IVIF4 furnishes
various supervisor macro instr.uctions and associated
exit routines. The supervisory routines supporting
these mac!'o instructions and ex;! routines are called
task management collectively, described in the
following sections.

8.3.1 Attaching and Detaching Tasks

Attaching a task using ATTACH
By issuing an A TTACH macro instruction, a user
requests OS IVIF4 to assign to a new taks resources,
authority to compete for the CPU, and the oppor­
tunity to be enqueued for CPU control if necessary.
Every time a user program (or system program)
issues an ATTACH macro instruction successfully,
the supervisor creates a new TCB pointing to the as­
sociated resources, etc. This TCB is linked to an
appro-priate queue of TCBs, so that it can compete
for CPU control thereafter.

--- ---

CONTROL PROGRAM

The task issuing the AITACH macro instruction
is called the attaching tasks, and the tasks created
by the AITACH macro instruction is called the
attached task or subtask. The attached task can
itself issue A ITACH macro instructions to create
additional subtasks, as illustrated in Fig. 8.11.

All tasks in a job step compete independently for
CPU time; if no constraints are provided, the tasks
are performed and terminated asynchronously.
However, since each task is performing a portion of
the same job step, some communication and con­
straints between tasks are required, such as notifica­
tions when subtasks complete. If a user attempts to a
predecessor task before all of its subtasks are com­
plete, those subtasks and the predecessor task are
abnormally terminated by the supervisor.

The task management information in this section
is required only for establishing communications
among tasks in the same job. step. The relationship
of tasks in a job step is shown in Fig. 8.11. The
horizontal lines in this figure separate originating
tasks and subtasks; they have no bearing on task
priority. Tasks 1\, AI, A2, A2a, B, Bl and Bla are all
subtasks of the jobstep task; tasks AI, A2, and A2a
are subtasks of task A. Tasks A2a and Bla are the
lowest-level tasks in the job step. Although taSk Bl
is at the same level as tasks Al and A2, it is not con­
sidered a subtask of task A.

Task A is the originating task for both tasks Al
and A2, and task A2 is the originating task for task
A2a. A hierarchy of tasks exists within the job step.
Therefore, the job step task, task A, and task A2 are
predecessors of task A2a, while task B has no direct
relationship to task A2a.

The A ITACH macro instruction issued by a task
contains a supervisor call instruction. The Super­
visor prepares a TCB and places it into the address
space for the job step task. If the first program of the
attached task is not already in virtual storage, the
Supervisor loads it before passing control to the
attached task.

When issuing an A ITACH macro instruction, the
user can specify a dispatching priority for the
attached task as long as it is within the limits already
specified for this job class and initiator.

Terminating a task
Each task returns control to the supervisor after it
completes all required processing. The attaching task
loads the address of a termination-processing
routine into general register 14 prior to issuing the
AITACH macro instruction. The end of each
executable program is indicated by a RETURN
macro instruction (or equivalent higher-level
language verb, such as END, RETURN, STOP,
etc.). The RETURN macro instruction creates a
branch instruction using the address provided in
register 14. Ending a program is performed by a
RETURN macro instruction not only in case it was
called by an A ITACH macro instruction but also
when it was called by a LINK or CALL macro
instruction, as described in Section 8.6.3.

Fig. 8.12 shows the flow of a task from A ITACH
to RETURN .

. When a task terminates, all of its system resources
(program area and so on) should be released. The
ECB and ETXR parameters of the A ITACH macro
instruction assist communication between a sub task
and its originating task. These parameters indicate

-~
~

~
~

~

IT:::,~I

F"I -~ , I , I, I
" ­ I" ­... I

~ , I,- "- I/ - ,

IT"'" ,I r::A21 IT-:8'1
I
I

I

I I
I

I

fl.2a 81a@ 6]

Fig.8.11 Levels of tasks in ajob step

---- - ------ ---- -- -- --- -- ----~"-----~-~

220

http:Fig.8.11

Processing to terminate the task.

RETURN (BR14)

SUPERVISOR

Task B attached.

Address of ending process routine - REG 14.

A

~.
ATTACH B ~CB)

WAIT ECBI/J

DETACH B

Note: <D
@
@

Termination of task, entering an exit routine
Detach ing the task
End of exit routine

c
ETXR

Exit routine
DETACH B
RETURN

RETURN

Attaching a task
Termination of the task with EeB
Detaching the task

Attaching a task

A

ATTACH B

Fig. 8.12 Attaching and return of task

normal or abnormal termination of a subtask to its
originator. If ECB and/or EXTR parameters are
coded in an ATTACH macro instruction, the sub­
task TCB is not removed from OS IVIF4 when the
sub task is terminated, The originating task must
remove this TCB from the system after termination
by issuing a DETACH macro instruction. TCBs for
all subtasks must be removed before the originating
task can terminate normally.

The ETXR parameter specifies the address of an
end-of-task exit routine in the originating task,
which receives control when the subtask being cre­
ated terminates. The end-of-task routine is given
control asynchronously after the subtask has termi­
nated and must therefore be in virtual storage when
it is required. After the supervisor terminates the
subtask, the specified end-of-task routine is
scheduled to be executed. It competes for CPU time
using the priority of the originating task and of its
address space; it can receive control even though the
originating task is in wait state. Although the
DETACH macro instruction does not have to be
issued in the end-of-task routine, this is a good place

for it.
The ECB parameter specifies the address of an

event control block which is posted by the super­
visor when the subtask terminates. After posting,
the event control block contains the completion
code specified for the subtask.

Detaching a task
Detaching a task is a supervisor action to delete the
corresponding TCB.

If neither an ECB nor an ETXR parameter is
specified in the ATTACH macro instruction, the
supervisor removes the subtask TCB from the
system when the subtask terminates. Its originating
task does not have to issue a DETACH macro
instruction. A reference to the TCB in a CHAP or a
DETACH macro instruction in this case is risky, as
is task termination; since the originating task is
unaware of sub task termination, the user might
refer to a TCB which has been removed from the
system, which would cause the active task to be
abnormally terminated.

Fig. 8. t3 Attahing, terminating and detaching a task

C

STAI exit
routine
L REGO ... Address of retry routine in register O.

RETURN ... Return is requested via a special return code

Retry
routine

Note:

~
Attaching a task.

2 A task error.
3

CONTROL PROGRAM

ABEND macro prepares
'------' C l...---..JABENDmacro

r-:S:=T:-"A-=E---' ins tr uct ion

Supervisor
prepared

'------' rC-;::-:;:C7-:---' .'-----' instruction
STAI

exit exit
routine routine

RETURN RETURN

NOTE: Attaching a task.

A task error.

Task error ended. To exit routine.

End of exit routine. To retry routine.

Fig. 8.14 STAE and STAI facilities

Task error ended. To exit routine.
4 End of exit routine. To retry routine.
5 End of retry routine.

RETURN

Fig. 8.13 shows the flow of attaching, terminating,
and detaching a task. The left side of this figure
shows the flow when an ECB has been specified; the
right side shows the flow when DETACH is issued
by an exit routine.

Tasks for ordinary batch jobs

Job steps run in the sequence specified by JCL state­

ments, after an initiator has selected the job.

The first task in a job step is called the job step
task. Starting a job step is no more than the super­
visor's attaching a job step task by issuing an
AITACH macro instruction. The first program to be
executed by ajob step task is specified by the EXEC
statement. When the job step task terminates, the
supervisor notifies the corresponding initiator to
start termination processing for the job step.

.8.3.2 Processing flow for an abnormal task

A task can abnormally terminate itself or its parent
job step by issuing an ABEND (abnormal end)
macro instruction.

The supervisor will terminate a user task if it
detects an error in conjunction with the task. In this
case, the supervisor issues an ABEND macro
instruction on behalf of the task. Thus, abnormal
termination is requested by an ABEND macro
instruction in any case.

The user can intercept an abnormal termination
for his task by furnishing an abnormal end exit
routine. For this purpose, he can furnish a STAE
macro instruction (specify task abnormal exit) or a
STAI (subtask abnormal intercept) parameter in his
AITACH macro instruction, as shown in Fig. 8.14.

Fig. 8.IS Retry routine

222

SUPERVISOR

By issuing a ST AE macro instruction in his pro­
gram, the user requests that control be transferred to
a specified exit routine if his task misbehaves. By
specifying a STAI parameter in his A ITACH macro
instruction, the user requests that his exit routine be
entered in such a situation.

Abnormal-end exit routines are useful for analyz­
ing causes of error and evaluating extent of pro­
gram/data damage before tasks terminate. In some
cases, the user can recover from the abnormal con­
dition by branching to a retry routine, as shown in
Fig. 8.l5. (Retry can often be requested by furnish­
ing a certain return code in a RETURN macro
instruction in the exit routine.)

Either a STAE or a STAI exit routine is executed
on behalf of the task which issued the ABEND
macro instruction.

In general, any exit routine must be linked into
the load module containing the program which
incurred the ABEND condition.

8.3.3 Status of a Task

From the viewpoint of the supervisor, tasks can be
classified as follows:
.Active­ using a CPU
.Ready- ready to use a CPU, but not

currently executing
.Wait state- waiting for completion of one

or more I/O operations or
another task

.Nonexecutable- execution inhibited by the
Supervisor or another task

• Terminated- execution of all programs
completed.

Transitions among these conditions are shown in
Fig. 8.16, and macro instructions to control these
transitions are described thereafter.

EVENTS)

Attaching
a task
(ATTACH)

(POST)

(STATUS) Event occurred (POST) (STATUS)

Even occurred (POST)

Fig. 8.16 Task status transitions

CONTROL PROGRAM

WAIT and POST macro instructions
A program issues aWAIT macro instruction to
move from active to wait state. A program (includ­
ing a system program such as the supervisor) issues
a POST macro instruction to make another task
ready (if it was in wait state).

Moving from active to wait state is at the initiative
of the active task, typically when it must stop execut­
ing until one or more 110 operations have com­
pleted, etc. These events are formally designated to
the supervisor by various tasks; each WAIT macro
instruction names one or more events which must
occur (or must already have occurred) prior to this
task's resuming execution.

A POST macro instruction changes the status of
one event to "completed." After an event has been
posted, the supervisor regains control- often at
once, sometimes considerably later-and enters its
dispatcher routine, which will now consider the
posted task to be ready rather than waiting.

Most WAIT macro instructions "issued" by user
jobs are actually issued by OS IV/F4 data manage­
ment, especially on behalf of COBOL, FORTRAN,
PLlI, and ALGOL users. Even with the Assembler
language, a user typically issues GET, PUT,
CHECK, and other macro instructions rather than
explicit WAIT macro instuctions. GET, PUT, etc.
link to data management routines which issue WAIT
macro instructions on behalf of the user program.
Likewise, the I/O supervisor issues most POST
macro instructions, which result from completion of
110 operations requested by system/user programs.

In certain situations, a user may wish to await the
completion of anyone of several concurrent opera­
tions. For example, he may issue several 110
requests in rapid succession whereupon he must
wait for at least one 110 operation to complete. He
then issues a multiple-events WAIT macro instruc­
tion pointing to several ECas. When anyone of
these ECBs is posted, his task is moved from wait to
ready state. More generally, a multiple-events
WAIT macro instruction can specify that the task
becomes ready when any M of N events complete as
shown in Fig. 8.17. In this example, the task
becomes ready when two out of three events are
completed.

8 ECB

Post -1'---------11
Released from

Task

l'-t-__--.
ECB

8D
waiting status

8 Post -i_cB___......1

Fij. 8.17 Example of a multiple-events WAIT macro instruction

EVENTS macro instruction

OS IVIF4 furnishes an EVENTS macro instruction,

which is functionally similar to aWAIT macro

instruction but imposes much less CPU overhead.

ST A TUS macro instruction

This macro instruction designates an executable task

as non-executable, or vice versa; the reader should

review the beginning of Section 8.3.3 for explana­

tions of these terms. An executable task is one that

is active, ready, or in wait state; a non-executable

task is one that has been explicitly suspended by the

OS IV/F4 control program or a controlling task.

8.3.4 Other Task-Management Facilities

These include macro instructions for changing dis­
patching priorities and extracting task information.

Change dispatching priority
A user can change the dispatching priority of a task
by issuing a CHAP (change priority) macro instruc­
tion. The CHAP macro instruction is valid for the
issuing task or any of its sub tasks.

Extraction of task information
By issuing an EXTRACT macro instruction, a user
can move copies of selected fields from a control
block (such as his TCa) into his own region. Hence,
EXTRACT does not change any control blocks or
task status; it merely retrieves information into a
more convenient region and format.

8.4 VIRTUAL STORAGE MANAGEMENT

The virtual storage management of as IVIF4 is a
component of the supervisor which manages multi­
ple address spaces. It processes requests for small,
medium, or large areas issued by the OS IV/F4 con­
trol program or user programs.

Virtual storage management includes the follow­
ing activities:
• Allocating and releasing each address space and its

LSQA (local system queue ares).
• Allocating and releasing regions.
• Allocating and releasing the SQA (system queue

area) region within LSQA.
• Allocating and releasing areas within regions.
• Allocating and releasing 	areas within the CSA

(common service area).

This section describes how user-region areas are
allocated and released. Chapter 1 descrihes the over­
all structure of an address space and how it is cre­
ated. The user of a high-level language such as
COBOL or FORTRAN need not be aware of how
areas in his region are allocat~ and released; the

224

SUPERVISOR

supervisor automatically secures any necessary areas
for him, based on his job control statements. When
an assembler-language user needs to acquire or
release a work area within his region, he issues the
supervisor macro instructions GETMAIN or
FREEMAIN, respectively.

The GETMAIN macro instruction allocates an
area in an address space, the FREEMAIN macro
instruction releases an area.

8.6 REAL STORAGE MANAGEMENT

Virtual storage is allocated, released, etc. by the
OS IVIF4 virtual storage management routines.
Real storage (also called main storage) is managed
by the OS IVIF4 Paging Supervisor

As described in Chapter 1, virtual storage
architecture permits each user to execute programs
which use address spaces much larger than real
storage. Typically, several - even dozens - of
these users are executing concurrently o.n an OS IVI
F4 configuration. Hence, real storage management
must furnish sufficient page frames (4K-byte blocks
of real storage, aligned on 4K-byte address bound­
aries) so that an efficient number of users are
executing. In particular, high-priority tasks should
be allocated more page frames - in proportion to
their need for frames-than low-priority tasks, so
that they can execute longer between page faults and
hence complete faster.

The paging supervisor is a component of the
OS IVIF4 Supervisor and resides in the system
nucleus. It manages real storage of up to 16
megabytes and external page storage (EPS) on up to
16 DASDs.

OS IVIF4 furnishes several macro instructions for
managing program pages and real-storage page
frames, of which the PGRLSE (page release) macro
instruction is available to any program; it reieases
the designated page frame for other users after the
paging supervisor has handled it appropriately. A
user may issue PGRLSE when he knows that a page
he has previously defined-but not necessarily
used-will not be referenced again for a protracted
period - say, at least 20 seconds. Possibly he knows
that the page will never be used again during this job
step. PGRLSE is an optional facility by which users
can assist the paging supervisor to work more effi­
ciently.

Use of other page-frame macro instructions
such as PGFIX and PGFREE is restricted to the
OS IVIF4 control program and authorized system
programmers~ these facilities are cited in Chapter I
of this part plus the FACOM OS IVIF4 System
Programmer's Guide.

8.6 PROGRAM MANAGEMENT

This supervisor function manages all executable
programs (and other load modules) to be loaded into
address spaces. Only the OS IVIF4 nucleus is not
loaded by program management; the nucleus is
loaded by the IPL program when OS IVIF4 is
initially loaded. Program management includes the
following functions and features.
• Loading and deletion of programs.
• Control of overlay segments.
• Management 	 of potentially sharable programs:

reentrant, serially reusable, and other types of
load modules.

• Support of dynamic link structures.
• Support of the PSECT facility.
• Support of the authorized program facility (APF).

S.S.1 Program Libraries

There are five types of program libraries in
OS IVIF4, as follows:
• System library (SYS 1.LINKLIB)

This library contains all system programs (com­
pilers, assembler, utility programs, and service
aids) not contained in the SYSl. LPALIB and
SYSI. SVCLIB.

• Job library
Each batch job can define a job library with a
special DD stateme;J.t whose name field contains
"JOBLIB". It contains load modules potentially
useful for several steps of this job.

• Step library
Each job step can define a step library with a
special DD statement whose name field contains
"STEPLIB". This library contains load modules
used only in this step.

• Task library
A user specifies a task library by furnishing a
T ASKLIB parameter when attaching a subtask.

The task library is used when loading the first

program of the subtask and if the attached task

issues LOAD, LINK or XCTL macro instructions.

The attaching task is responsible for opening the

task librcry.

• Private library
Program libraries other than the above types are
called private libraries. When a user issues a pro­
gram loading request (LOAD, ATTACH, and so
on) for a private library, the latter must be
specified in the DCB parameter of this macro
instruction.

The DCB macro instruction must be assembled

into the user's program, which is also responsible

for opening the private library.

When a user issues a program-loading request,
program management searches these libraries in the
following sequence: .

----------~.~--------

~--~.-- -------~

CONTROL PROGRAM

No DCB in program loading request

Modules in JP A (job pack area)

Task library for module requesting task.

Task libraries of higher-priority tasks in the same

address space.

Step library (or job library)

Modules in the various link pack areas

SYS l.LINKLIB.

DCB parameter furnished in program-loading

request

Modules in JP A.

Private library specified by DCB parameter.

Modules in the various link pack areas.

SYSl. LINKLIB

8.6.2 Usage Attributes of a Load Module

Each load module can be assigned one of the follow­
ing usage attributes at the time it is link-edited:
• Reentrant

Read-only program, which issues GETMAINs for
any work areas it needs. Can be, used
simultaneously by an arbitrary number of tasks.

• Serially reusable
Self-initializing program. Cannot necessarily be
used simultaneously by more than one task, but
can be reused (from the start of the program).

• Nonreusable
A module which cannot be used safely more than
once after loading from its library. Hence, a fresh
copy must be loaded each time this module is
used.

The programmer assigns a usage attribute to his
load module at link-edit time. Neither the linkage
editor nor program management can verify whether
he has assigned the correct attribute to this module.

Program management retrieves load modules with
these attributes as follows:
• Re-entrant modules

An arbitrary number of tasks are permitted to use
a reentrant module. Once loaded, a reentrant
module is not deleted from an address space even
when all requesting tasks relinquish control of it.
The user can delete this module by issuing a
DELETE macro instruction.

• Serially reusable module
When several tasks in one address space
simultaneously request a serially reusable module,
OS IVIF4 services them serially according to their
priorities.

Similar to a reentrant module, a serially reusa­
ble module is not deleted from an address space
even when all requestors have completed using it.
The module can be deleted by a DELETE macro
instruction.

• Nonreusable module

This module is loaded every time it is requested.
After use"this module is deleted from the address
space.

8.6.3 Program Management Macro Instruction.

Program management furnishes the following
macro instructions:
• LOAD

Module with the specified entry point is loaded.
• DELETE

Module previously requested by LOAD macro
instruction is deleted from this address space.

• CALL
Control is transferred to a specified entry point.
When the called routine completes executing, it
usually returns control to the program which
issued the CALL macro instruction. This macro
instruction utilizes the BALR (branch and link)
instruction.

• LINK
Module with the specified entry point is loaded
into this address space, and it immediately
receives CPU control from the linking module.
Control normally returns to the program which
issued the LINK macro instruction.

If a serially reusable module is requested by a
LINK macro instruction, this request is processed
by the supervisor. If a serially reusable module is
requested by a LOAD or CALL macro instruc­
tion, the user is responsible for controlling its
access.

• XCTL (Transfer Control)
Module with the specified entry point is loaded
into this address space, and control is transferred
to the loaded module. This program overwrites
the requesting program, so that control cannot be
returned to the requestor.

• IDENTIFY
A new entry point is defmed for the specified load
module after it has been loaded.

• SEG LD (Segment Load)
Requests loading of a specified program segment
asynchronous with continued execution of the
requesting program.

If the requestor tries to transfer control to the
segment during the course of loading, his execu­
tion is delayed until loading is completed.

• SEGWT (Segment Wait)
Requests loading of a specified segment; control is
not transferred until the loading is completed.

Differences in program control between LOAD,
CALL, LINK, XCTL, and ATTACH macro instruc­
tions is shown in Fig. 8.18. The circled numbers
indicate the sequence of CPU control. Since
ATTACH permits parallel CPU control, its circled
numbers are duplicated.

8.6.4 Dynamic Link Structures

The OS IVIF4 Supervisor permits programs to have
a dynamic link structure. With this structure, load
modules need not be linked fully by the linkage edi­
tor; they can be partiaUy/totally linked during execu­
tion.

For example, an external reference is written in
the assembler language as shown below:

L 15,=V(SUBl)
BALR 14, 15

Loading

LOAD leD ------@--- @

CALL

(BA~R) ~®
RETURN

~eD
LINK

~@
RETURN

XCTL

RETURN

Task attaching

RETURN

Fig. 8.) 8 LOAD, CALL, LINK, XCn., and A TIACH macro
instructions

SUPEF.VISOR

If a user specifies the DYNAMIC attribute during
link-editing of this reference, the linkage edi~or cre­
ates a dynamic rather than a static link structure, as
illustrated in Fig. 8.19.

For a static link structure, the linkage editor
locates the SUBl entry address and uses it tc satisfy
the V(SUBl) parameter shown above; this s'atically
links the subroutine with the main routine.

For a dynamic link structure, the addres< or the
dynamic linking table (D ALT AB) is stored i:1to the
V(SUBO field, and DALTAB is linked with t1.e
main routine. After the BALR instruction hr.s been
executed during the first linkage to this subnutine,
the supervisor gains control. If SUBI has not been
loaded, the supervisor loads it into t~e :'ddress
space. Then, the supervisor stores its address into
D ALT AB before branching for the first fme to
SUBl. These steps correspond to (D - (3) 'n Fig.
8.19. When SUBl is next called, control flows
directly to it without any supervisor intervention,
since the address of SUB 1 is now in DALTAB.

In ec.c'~tion to a static linl< or dynamic link struc­
ture, the user can design a dynamic program struc­
ture wi:h LINK, ATTACH, LOAD, and XCTL
macro instructions. Linkages are established during
execution. These different structures can also be
created with programs written in higher level
languages. Static link or dynamic link structures are
selected by linkage editor parameters.

To create a dynamic program structure in COBOL,
a verb equivalent to the LOAD macro instru(!ion is
availabie, Verbs equivalent to LOAD and ATTACH
are available to PLiI programmers.

8.S.5 Prototype Control Sections (PSECTs}

In addition to designating load modules as ree'1trant
or serially reusable, a user can ask OS IVIF4 pro­
gram man!lgement to provide PSECT support to
reel'trant programs.

In prior operating systems, the user was oblined to
issue a ,GETMAIN macro instruction to secure a
work area. Furthermore, his program had to initial­
ize this work area before the latter could satisfy a re­
entrant program. OS IVIF4 solves this overhead
problem by introducing the concept of a prototype
control section (PSECT).

When the supervisor gives control to a load
module containing a PSECT, in response to a LINK
macro instruction, it automatically allocates a work
area to the PSECT which it then copies into this area.
Hence, this work area is preinitiatized by the OS IVI
F4 Supervisor as shown in Fig. 8.20. So long as the
work area is difined entirely within this PSECT, the
requested program is automaticaily reentrant,
thereby easing its preparation and usage.

In order to compile reentrant programs, OS IVIF4
compilers for FORTRAN, COBOL, and PLII gener­
ate PSECTs for their work areas.

---- .----~-.---------­

CONTROL PROGRAM

MAIN CSECT

L 15,=V (SUB1) . 'AddressofSUB1 is filled
BALR 14,15 at link edition.

MAIN CSECT

L15,=V(SUB1) ... Address of OALTABis
BALR 14,15 filled at link eidtion.

END

SUB 1 CSECT
Supervisor
(Program

BA 14 management)

c::;;: J

Static link structure

Fig. 8.19 Static and dynamic link structures

8.6.6 Authorized Program Facility

For ordinary user jobs, the as IVlF4 Supervisor fur­
nishes several macro instructions. Other supervisory
macro instructions are defined in as IVIF4 which
strongly influence operation and performance of the
system; these facilities and related utility programs
are not authorized for most user programs, although
they are usually available to system programmers at
an installation.

The OS IVIF4 Supervisor offers the authorized
program facility (APF), which permits an installa­
tion to limit certain programs and macro instructions
to users furnishing a special password (authoriza­
tion).

8.7 MANAGEMENT OF SERIALLY
REUSABLE RESOURCES

When several tasks attempt to simultaneously access
a serially reusable resource, their sequence of
accesses must be carefully controlled; otherwise the
resource can be damaged and/or the tasks can cause
one another to fail.

The as IVIF4 component to control this function
is known as serially reusable resource management.

The supervisor offers the ENQ an,d DEQ macro
instructions to request use and release of serially
reusable system resources. Requests issued via ENQ
macro instructions are accepted in FIFO sequence
(first in, first out). These reequests are further
classified into exclusive requests and sharing
requests. When requests are mixed, they are

228

SUB1 CSECT

SUB1 is loaded and its address
BR 14 is set into DALTAB during

execution. ~
DynamiC link structure

Library Library

Loaded by OS Loaded by OS

IEl::ihado~..,ed parts are not The supervisor loads CSECT and

defined within the PSECT.
load module.

Each time the module is attachE!'
At execution, the program or linked, the supervisor copies

must issue a GETMAIN the PSECT into a supervisor·

macro instruction to secure allocated work area.

a work area.

red

In virtual storageI n virtu al storage

Fig. 8.20 Reentrant program with/without PSECTs

SUPERVISOR

accepted in the sequence shown in Fig. 8.21. A shar­
ing request is for read-only access to a resource. An
exclusive request solicits permission to update the
resource.

When all current requests for a particular resource
can share it, no special control is required, since the
resource can be used simultaneously. When
requests include at least one which is exclusive,
sharing requests must be included in the same queue
as exclusive requests. In this case, priority to access
the resource can be established by ENQ macro
instructions specifying the same queue name for
exclusive and sharing requests.

Specifying shared or exclusive data sets is facili­
tated by the DISP parameter of the DD statement.
The initiator allocates and deallocates a data set
based on the DISP parameter of the corresponding
DD statement.

If all DD statements in one job which reference a
particular data set specify DISP = SHR, the data set
can be shared simultaneously with other tasks.
Otherwise, it must be exclusively controlled by this
job. For two different computer configurations to
share DASDs, RESERVE macro instructions are
often needed instead of ENQ macro instructions.
The RESERVE macro instruction issues an ENQ
macro instruction and also issues a RESERVE chan­
nel command to attempt to capture this DASD for
the duration of ajob. The corresponding DEQ macro
instruction notifies the I/O supervisor to issue a
RELEASE channel command to this DASD prior to
performing the normal dequeuing operation.

(11 	 Consecutive exclusive requests

Exclusive Exclusive

request request

(2) 	 Sharing requests followed by exclusive

requests

Sharing Sharing Exclusive
request request request

(3) 	 Exclusive requests followed by

sharing requests

Exclusive Sharing Sharing
request request request

(4) 	 Mixed sharing and exclusive requests

Sharing Exclusive Sharing
request request request

8.8 TIMER MANAGEMENT

OS IVIF4 timer management provides time of day
and time-interval services by using the hardware
TOD (time of day) clock, the clock comparator, and
the CPU timer. The following macro instructions are
offered by timer managment:

-TIME
Hours, minutes, seconds, and fractional seconds
(optionally). In addition to the Julian year and day
format, the date can be presented in the form
YYMMDD (year, month, day).

- STIMER
Sets a time interval after which an external inter­
ruption will be generated. Time is measured selec­
tively, either when the requesting task is execut­
ing (task time) or continuously (real time).
When the elapsed time reaches the preset interval"
control is transferred to the timer exit routine of
the requesting task. An event completed signal
can be requested when a specified time interval is
reached, by furnishing an ECB. Tasks can also Be
set into wait state for specified time intervals.

• TTIMER
Checks remaining time until the STIMER func­
tion will generate a timer interruption or cancels a
previously requested timer service.

In addition to the above macro instructions, timer
management monitors the following time intervals
for the control program:

When the earlier exclusive request has been satisfied, the
next exclusive request is honored.

A resource is shared by two requestors. The next exclusive
request is left in queue until both sharing requests have
ended.

Later sharing requests must wait in queue until the exclusive
request is satisfied; then, sharing requests can be honored
simu Itaneously.

The exclusive request is left in queue until the first sharing
request is satisfied. The second sharing request is honored
when the exclusive request has ended. Nonconsecutive
sharing requests are not honored together.

Fig. 8.21 Examples of sharing and exclusive requests

CONTROL PROGRAM

• Monitoring CPU time used by a job or job step
When a TIME parameter has been specified in an
EXEC statement or JOB statement, timer man­
agement generates a timer interruption when the
job or job step exceeds the specified value.

• Calculation of CPU idle time
The total idle time of a CPU is accumulated every
10 minutes; the cumulative statistic is used as an
installation-management aid via SMF.

• Time intervals for page management
Control is transferred to page management every
time a pre-determined interval elapses, to check
the paging rate per time interval.

• Date change interval
This interval is used to change the date every mid­
night.

• Automatic Priority Group (APG) interval
Every time this interval elapses, a slice of CPU
time is allocated to an APG job.

8.9 PROGRAM INTERRUPTION, PRO­
CESSING

The OS IVlF4 Supervisor handles all program inter­
ruptions, subject to certain user options for handling
program interruptions. Program interruptions are
originated by M series hardware when the CPU or
channel detects an illegal instruction, operand,
datum, or channel command.

The user can optionally preplan how to handle
program interruptions such as an operation excep­
tion, memory-protection exception, or data excep­
tion by specifyying an exit routine with an SPIE
(specify program interruption exit) macro instruc­
tion. The flow of control for a SPIE routine is shown
in Fig. 8.22. Data are exchanged between the inter­
rupted program and the exit routine through control
areas known as the PICA (program interruption
control area) or PIE (program interruption ele­
ment).

Supervisor

SPIE A

~ Program
~ interruption

A
Program
interruption
exit routine

Fig. 8.22 Program interruption exit routine

8.10 PROGRAM DUMPING

The program-dumping facilities of OS IVIF4
includes the following:
• SNAP and DUMP facilities

A user can issue a SNAP macro instruction to
copy part or all of an address space to a specified
data set in an edited format. This function is also
performed when a DUMP parameter is specified
in an ABEND macro instruction.

• SVC dumping function
With this function, a user can dump the contents
of an address space onto magnetic tape or DASD
without any formatting, dumps can later be edited
and printed by using the JQLPRDMP service aid.

This function is actuated when a DUMP is
keyed in from console.

In addition, the stand-along JQLSADMP ser­
vice aid will dump part or all of real storage or vir­
tual storage onto tape. It is capable of dumping
storage either formatted or unformatted for print­
ing.

230

CHAPTER 9
- SYSTEM GENERATION

9.1 OVERVIEW

System generation is the procedure for creating an
operating system tailored to the needs of a particular
installation. System generation accepts the detailed
description of a particular hardware configuration
plus a large number of OS IV/F4 software options.

Fujitsu furnishes several library tape reels which
contains all available software functiohs, plus a
starter system reel used to generate the initial
operating system.

Generating a complete operating system
One tpe of system generation creates a full-function
operating system. Except for minor I/O equipment
changes, this type of system generation is invariably
used. For example, circumstances requiring genera­
tion of a full-function system include the following:
• 	When initially creating OS IV/F4 at an installation
• 	When adding and deleting major subsystems such

as large numbers of communication lines and/or
major functions such as APR function, A VR
function, APG function, etc.

Generating a new 110 configuration

An abbreviated system generation can be performed

to add/delete I/O devices and/or channels. Com­

pared with generating a complete version of OS IV /

F4, considerably less processing time is required for

generating only a new I/O configuration.

For additional details on OS IV/F4 system genera­
tion, the reader should consult the FACOM
OS IV/F4 System Generation User's Guide.

9.2 FLOW OF SYSTEM GENERATION

System generation comprises four stages: Stage 0,
Stage 1, Stage 2, and testing the new system.

Stage 0
During Stage 0, the installation prepares to perform
system generation.

If it has no established operating system, it uses

the Fujitsu-supplied starter system with the library
tapes and independent (stand-lilone) utility prJ­
grams:
• 	The starter system is restored from magnetic tap~

to several DASD volumes. Stand-alone umity
programs are used for dumping/restoring ree!s to
volumes.

• Controlled 	by the starter system, other libraries
are copied from magnetic tape to DASD by the
JSECOPY utility program.

If the installation already has an operating version.
of OS IV/F4, it need only catalog aDY new or
updated library tapes during Stage O.

Stage 1
This stage of system generation is executed as a
single OS IV/F4 job, processing an input stream pre­
pared by the installation's system starr. This stream
begins with assembly of a group of systCI11-genera­
tion macro instructions defining the new OS IVIF4
system, plus JCL for Stage l.The OS IV/F4 Assem­
bler checks these macro instructions for syntactical
correctness and valid parameter ranges. If the As­
sembler detects one or more errors, it issue~ ti;;::

usual diagnostic messages but no other outputs.
After the system staff have corrected these macro
instructions, they reattempt Stag:' 1 until it runs suc­
cessfully.

Stage 2
The outputs from Stage 1 are (1) the assembly list­
ing and (2) a stream of JCL statements and other
control statements which become the input stream .
to Stage 2. Added at this time are any installation­
supplied source libraries, SVC routines, additional
LINKLIB members, etc. During Stage 2, several as­
semblies and link-edjts are performed, which create
the system nucleus and various other components of
the OS IV/F4 control program. Other control state­
ments entering Stage 2 request copying and merging
of system libraries such as LINKLIB, SVCLIB,
P ARMLIB, PROCLIB, etc. Stage 2 directs these
program libraries and source-statement libraries to
their ultimate DASD locations within the generated

CONTROL PROGRAM

or

--­

Library tapes supplied by Fujitsu

JCL + System generation
macro instructions

Fig. 9.1 System generation flow

system, as directed by the installation staff with their
Stage 1 parameters.

Testing the new system
In order to thoroughly test a new OS IVIF4 system,
Fujitsu supplies a group of jobs known as the instal~
lation verification procedure (IVP) , supplied on the
library reels together with the operating system
itself. These jobs perform the following diagnostic
and validation tests:

Stage 0

4 Stage 1

-----j Stage 2

Testing the
new system

• Execute the assembler, linkage editor, and loader.
• Print 	 out the system procedure library

(SYS1.PROCLIB).
• Print 	 out the system parameter. library

(SYS 1.PARMLIB). c

• Simulate an 	OS IVIF4 control~program failure,
which tests recovery software and associated
operating procedures.

• Print out lists of all I/O channels, control units,
and devices.

232

SYSTEM GENERATION

9.3 RESOURCES REQUIRED FOR 9.4 SYSTEM PARAMETERS
SYSTEM GENERATION

Parameters determining characteristics of the ver­
sion of OS IVIF4 at a particular installation are called An installation can use either the starter system or
system parameters, stored in the system parameter its prior OS IVIF4 system to perform system genera­
library (SYS1.PARMLIB). Each installation cre­tion. The minimum configuration for performing a
ates/changes members of PARMLIB as follows:system generation is as follows:
• Parameters of system generation macro instruc­• M series CPU

tion generate some PARMLIB members. • At least 304K bytes of main storage
• Subsequent additions, deletions, and changes, can • Standard' console

be performed with the JSEUPDTE utility. • Card reader
• Line printer

PARMLIB members are read by OS IV/F4 when• At least 4 DASDs
the system is being reloaded (IPL). In addition, the • At least 2 nine-track magnetic tape drives (density

at least 800 bpj) console operator can override certain parameters at
IPL time.

The result ofsystem generation is the output from
Stage 2, including the following three groups:
• Nucleus - stored in SYS I.NUCLEUS. 	 9.5 SYSTEM DATA SETS
• System parameters.
• System data sets. 	 Table 9.1 lists OS IV/F4 system data sets.

Table 9.1 System data sets

SecondarySystem
Data set name Contents Required 	 Creation Cataloged allocation Organization

residence
allowed

CMDPROC 	 Command procedure Optional Required in a When it is to Optional I Yas PDS

library TSS system be usee

PASSWORD 	 Password and Yes Required for Prior to using Optional No Sequential
corresponding data PASSWORD data set
set name I registration protection

feature

SYSCTLG Catalog of data sets Yes Yes 	 At SYSGEN No Yes Sequential
time

SYS1.BRODCAST 	 Notices (messages Optional Required in After Yes No Oirect

to all users) e TSS system SYSGEN,

Mail (messages to first use of

specific users) SEND

initializes it

SYS1.CMDLIB Command processor Optional Required in At SYSGEN Yes Yes PDS

library aTSS time

system

SYS1.DCMLlB 	 Program function Optionel Required if At SYSGEN Yes No PDS

key (PFK) definitions transient time

for display consoles module

display
function is
specified in
SCHEDULE
or
SECONSLE

CONTROL PROGRAM

Table 9.1 Continued

Secondary
System aHoca-Data set name Contents 	 Required Creation Cataloged Organizationresidence tion

allowed

SYS1.DSSVM 	 Command language Optional Yes At SYSGEN Yes No Sequential
modules used by the time
dynamic support
system (DSS)

SYS1.DUMP 	 Core image dumps Optional No At SYSGEN Yes No Sequential
recorded by ABEND (either time if DASD
orABTERM DASD or or IPL time if

I 	magnetic megnetic tape
tape)

SYS1.HELP TSS HELP in- Optional Required if At SYSGEN Yes Yes PDS
formation TSS HELP time

is to be used ,

SYS1.tMAGELIB 	 UCS and FCB image Optional Required for I At SYSGEN Yes No PDS
modules 	 line printers I time

with USC

and paper

tape units

SYS1.LlNKLIB 	 load modules which Option:J1 Yes At SYSGEN Yes Yes PDS
are not in the link . time,

, pack area 	 members I

can be added, I
additional
data sets can
be
concaten ated

SYS1.LOGREC 	 Statistical data of I Yes Yes At SYSGEN No No Sequential
machine errors 	 time; siza

may be

changed

after

SYSGEN

SYS1.LPALIB 	 Load modules in Optional Yes At SYSGEN Yas Yes PDS
link pack area time

SYS MACLIB 	 Definition of Optional Yes At SYSGEN Yes Yes PDS
system macro time
instruction

SYS1,MANX Date collected by Optional Yes Allocate Optional No Sequential
SYS1.MANY SMF - before IPL

SYS1.NUCLEUS 	 Resident portion Yes Yes At SYSGEN Yes No PDS
(nucleus) of control time
program modules

SYS1.PARMlIB 	 System parameter Optional Yes At SYSGEN Yes No PDS
library 	 time

Additions

and changes

allowed

SYS1.PROCltB ; System procedure Optional Yes At SYSGEN Yes Yes PDS
library time

Members may .
be added

SYS1,SAMPLIB 	 Independent utilities, Optional Yes At SYSGEN Optional Yes PDS
tPl text and SMF time
exit routines

SYS1 SVCllB 	 Nonresident SVC Yes Yes Allocate Yes Yes PDS
routines, SER, MCH before
modules, etc. SYSGEN

234

------ -- ------

SYSTEM GENERATION

Table 9.1 Continued

Data set name Contents
System

residence
Required Creation Cataloged

Secondary
allocation
allowed

Organization

SYS1.SYSJOBQUE System job queue

SYS1. SYSPOO L Au xiliary data sets
for SYSIN, sYSOUT,
SYSLOG

Optional

Optional
I
I
I

Yes

Yes

Allocate just
before IPL

!
i
! Allocate

just
before IPL

Required if

Inot on
system
residence
volume

No

I

No

No

Sequentiai

I

I
Sequenti2!

SYS1.UAoS RES and TSS user
attributes

Optional Required for
TSS

At SYSGEN
time

Yes Yes PoS

Members

SYS1,vTAMLlB

SYS1.VTAMLST

SYS1.VTAMOBJ

Load module of
network solicitor

Network definition
decks and VTAM
parameters

Load module of
network control
program (NCP)

Optional

Optional

Optjonal

Required for

I VTAM

Required for
VTAM

Requ ired for
VTAM

may be

J added

I At SYSGEN
i time

j
I At SYSGEN

time

Allocate
before
VTAM
generation
time

Yes

Yes

Yes

I

I
I
I

Yes

Yes

Yes

PoS

POS

POS

CONTROL PROGRAM

9.6 SYSTEM GENERATION MACRO Macro
ParametersinstructionINSTRUCTIONS

CTRlPROG • Mlximum number of user addrN
.PICI.These fall into the following four categories sum­

• 	 Fixed BlDl option
marized in Tables 9.2, 9.3, 9.4 and 9.5: 	 .• At IPL, option to display offline
• Hardware configuration. 	 devices on 8 console

• Control program. 	 • Limited/full number of error
retries for certain devices • Installation-supplied routines.

• 	 Reliability Data Extract (ROE)• System generation. option
• 	 Page frames zeroed prior to

reallocation
• 	 Number of segments for system

tables·Table 9.2 Macro instrUctions defining the hardware
confIgUration • Maximum number of frames for

a real-storage region
• 	 Greenwhich Mean Time or localMacro

Parameters timeinstruction
• Date format for messages:

CENPROCS • CPU model
 YYMMDD or YYDDD

CHANNEL • Address and type (multiplexor,
 DATAMGT • VTAM option
selector, etc.) • VSAM option

10DEVlCE • Address of first (or only) device
 EDITOR • Load-module block size
of a group

JES • Size of 8 JES buffer• 	 Number of consecutive-address
• 	 Number of JES buffersdevices in th is grou p
• 	 Names of demand-output• 	 Auxiliary functions

classes• 	 Model number
• 	 Card readers for demand output• 	 Any alternate channel
• 	 Line prin ters for demand output• 	 Adapters (only for F2803 or
• 	 Maximum number of SYSOUTF2805)

data set records (OUTUM

UCS • Identifier for defau It character
 default value)

set • Priority aging
• 	 Default value for UCS Upper limit for selection

parameter on DO statement priority

UNITNAME • Name for group of I/Odevices lower limit for selection

• 	 Their device addresses' priority
Time interval between aging
increments

• SYSOUT default device(s)
Table 9.3 Macro instructions defining the control program • 	 JES readers

Maximum number
Macro Number of records per JAMParameters

instruction input request

Maximum storage for allCKPTREST • Normal step-termination codes

SYSIN buffers
for which automatic restart

• 	 Threshold value foris to be excluded
SYS 1.SYSPOOL capacity • 	 ABEND termination codes for

• 	 Spool volumes identifierwhich step restart is auto­
• 	 Maximum number of SWADSmatically attempted

records per JC L statement

CTRLPROG
 • 	 APG • Maximum number of WTL

Range of dispatching macro instructions and LOG
priorities commands
APG interval: maximum, • 	 JES writers
minimum & increment Maximum number
values Maximum storage needed for
Period between automatic installation-supplied writer
changes of APG interval and/or job separator routines
RatiO of wait state to Number of records per JAM
time slice, per task output request

• 	 Support of ANSI/JIS tape Maximum storage for .all
formats SYSOUT buffers

Accept/create ANS tapes
LOADER • DO name for load module Accept/create J IS tapes

libraryNo ANS or JIS tapes
• 	 DD name for input source• 	 Size of the common system area
• 	 DO name for diagnostic and (in each address space)

map outputs
• 	 Maximum number of

• 	 Loader options simultaneous I/O requests

236

instruction

PAGE

SCHEDULER

SECONSLE

SECONSlE

Table 9.S Definition of system generation

Table 9.4 Definitions of user-generated routines Macro
Parameters

Diagnostic messages
External references map
Abort execution if major
errors are encountered
Default load module
libraries
Automatic usage of LPA

• 	 Pageable LPA
• 	 Size of page data' set
• 	 Primary/secondary volumes in

page data set
• 	 Device address and volume

serial number of page data set

• 	 Main console and its alternate
console

• 	 Size of area (for display
console)

• 	 Size of system broadcast data
set (SYS1.BRODCAST)

• 	 Disposition of error messages
for volumes:
SMF data sets or console

• 	 Error Statistics by Volume (ESV)
and Error Volume Analyses (EVA)
limits

• 	 Hardcopy log
Device address
Optional SYSLOG capture of
hardcopy Tessages ­
Destination code
Types of messages

• 	 SYSJOBOE blocking factor
• 	 Number of SYSJOBOE records

initially allocated to each job
stream

• 	 Default destination for WTO
and WTOR macro instructions

• 	 Remote entry services
• 	 Number of buffers for WTO

commands
• 	 Number of outstanding WTORs

requiring responses
• 	 Destination codes for the main

console
• 	 Number of PFKs for a display

console
• 	 Output class for the system log
• 	 Number of WTL buffers
• 	 WTL output class
• 	 Automatic volume recognition
• 	 Default AVfl density for 7·track

magnetic tapes
• 	 Address of one auxiliary console
• 	 Address of its alternate console
• 	 Number of PFKs, if a display

console

• 	 Destination codes associated
with this console

• 	 If output display console:
- Display status
- Operator messages

• 	 Authorization level

System generation!
macro instruction

LlNKLIB

LPALIB

RESMODS

SVCTABLE

Macro
instruction

DATASET

GENERATE

SYSTEM GENERATION

Content of specification

• 	 member names of user-generated
routines that should be added to
the nEIIIV system's SYS1.LlNKLlB

• 	 name of library from which
edded members are retrieved
during system gen.

• 	 names of members that are to be
stored in the KAAFIXOOlist
in order to fix those added
members into main memory
(FLPA)

• 	 member names of user·
generated routines to be added
to SYS1.lPAlIB

• 	 name of library from which
added members are retrieved
during system gen.

• 	 names of members, from
among those added members,
which are to be stored in the
KAAFIXOO list

• 	 member names of user·
generated routines to be
included in SYS1.NUCLEUS

• 	 name of library from which
added members are retrieved
during system gen.

• 	 SVC numbers of user·
generated SVC routines added
to the system

• 	 SVC type (1,2,3, or 4)
• 	 type of lock (seeFACOM OS IV/F4

Supervisor Functions and
Facil ities

• 	 SVC authorization: only by
specified users, or by any user

Content of specification

• 	 name of system data set
• 	 amount of space
• 	 volume serial number and device

type
• 	 type of system generation
• 	 temporary data set index names

used during system gener~tion
• 	 step names for stage·2 job
• 	 output class for system·

generation jobs
• 	 serial number of the nEIIIV

system resident volume

~

--------------------~-------~-------------------------

PfQ\~T 3
~IRiOCIES$DINl@ 1P'1R~@~fQ\MS

,I; •

I

CHAPTER 1
COBOL

1.1 OVERVIEW

COBOL is a high-level language especially suitable
for complex file-handling and data-processing prob­
lems. This chapter provides a brief description of the
OS IV/F4 COBOL compiler. For more detailed dis­
cussions of COBOL, the user is referred to the
following publications: .
• FACOM OS IV JIS COBOL Reference Manual
• FACOM OS IV/F4 JIS COBOL User's Guide.

The OS IV IF4 COBOL compiler conforms with
the Japan Industrial Standard (JIS) COBOL
language (I972) and also incorporates all major
functions of the American National Standard (ANS)
COBOL (1974).

JIS COBOL includes the nucleus (basic elements
such as data-item operations, comparisons, and
transmissions), table handling (OCCURS clause,
SET statement, SEARCH statement, subscript com­
parison), sequential access, random access, sort, re­
port generation, segmentation, and Library. The OS
IV IF4 JIS COBOL provides several extensions of
these functions as well as all mandatory elements.

1.2 OUTLINE OF FUNCTIONS

The following describes the major and extended
functions of OS IV IF4 JIS COBOL.

1.2.1 Reentrant Programs

Object programs generated by the OS IV IF4 COBOL
compiler and the system library modules are always
reenterable. When link-editing a load module, the
user should specify the RENT parameter to the
linkage editor.

1.2.2 Program Linkages

To pass control and reference common data fields
among several programs, the programmer issues
CALL, CANCEL, ENTRY, EXIT PROGRAM,
GOBACK, and STOP RUN statements. A CALL
statement passes control (and various parameters)
to a subprogram. The CANCEL statement resets
and releases areas used for a subprogram to which
access has been already made. The ENTRY state­
ment indicates an entry point in a subprogram.

Object modules from different languages can be
linked directly, such as programs written in COBOL
and FORTRAN, if the user converts data formats
and/or array elements in each program. Where data
formats are incompatible, it is still possible to link
COBOL and FORTRAN programs via an intermedi­
ate PLiI program: COBOL-PLlI-FORTRAN (or
vice versa). Data arrays or data structures can be
easily converted by specification through PLiI. The
PLiI linkage approach also permits user handling of
various types of program interruptions, as discussed
in Section 3.2.2.

1.2.3 Program Structures

The COBOL compiler can generate the following
program structures: simple, overlay, dynamic link,
and dynamic program structures.

Various linkages such as attaching subtasks can be
performed with the assembler and PLiI languages
for controlling a dynamic program structure.
However, COBOL supports only one type of linkage:
passing control to specified subprograms. In a sim­
ple or overlay structure, all required modules must
be link-edited together before execution. In a
dynamic link structure, load modules can be brought
into memory as required.

If a dynamic link structure is used for a COBOL
program, common subroutines need not be link­
edited into each main program; they can be main­
tained as separate load modules in a private library.
These subroutines can be easily corrected, facilitat­
ing their maintenance.

PROCESSING PROGRAMS

1.2.4 Optimization

At the user's option, the OS IV /F4 COBOL compiler
will optimize execution speeds and/or program
lengths of designated object modules. Items (1) and
(2) below are unconditional optimizations, items (3)
and (4) must be explicitly requested.
(1) Constants for condition names, literals, etc. are

uniquely compiled for each object program.
Only initial values in the data division need
sometimes be repeated.

(2) During execution, COBOL programs do not
unnecessarily recompute addresses for
subscripted data items, as shown in part (a) of
Fig. 1.1.

(3) The compiler allocates base registers semiper­
manently to frequently-referenced data record
areas.

(4) By dividing the procedure division of each pro­
gram into control sections of at most 4096 bytes
(procedure blocks), the COBOL compiler
translates GO TO statements (and other branch­
ing statements) into RX-type branch instruc­
tions, which are only four bytes long and hence ,

MOVE ABC (J. K) TO XYZ 1
MOVE EFG TO ABC (J. KI 2

The addrass calculeted for ABC(J,KI
in statament 1 is saved and used for statement 2.

(al Optimization example

FD AFILE • . •
01 AAEC.

02 Al PIC X(SI.
02 A2 PIC X (201.

FD BFILE
01 BAEC.

02 81 PIC X (101.
02 B2 PIC X (20),

MOVE A2 TO B2 .

Without optimization

L a. - A (AAEC)
L 13, - A (8REC)
MVC 10(20, /3l , S (al

The registers a and {3 are
indefinite. At each MOVE
statement, two Load instructions
are generated.

With optimization

MVC 10(20,~1.5m

The registers 8 and 7
are used.

(b) Optimization example

Fig. 1.1 Examples of optimization

242

highly efficient. Each branch instruction uses a
base register pointing to the start of its pro­
cedure block (PB), plus a displacement pointing
within the PB. This optimization considerably
decreases the number of address constants and
makes object programs both smaller and faster .

1.2.5 Conversational Processing

Since the COBOL compiler can operate under TSS
(time sharing system) control, a user can generate,
debug, and execute a program from a terminal.

The TERM or TEST option specifies conversa­
tional processing to the COBOL compiler at the time
of translation. The TERM option directs ordinary
system output to the SYSTERM data set: listings,
error messages, etc. The TEST option permits
debugging in a conversational style. Data sets and
programs generated by COBOL under batch or TSS
control are compatible.

OS IV /F4 provides the following conversational
aids for the COBOL compiler (see Part 4 of this
manual for TSS details) :
• COBOL prompter

When invoked by a command from the terminal,
the prompter assists the user in supplying all
necessary program elements, DO statements, etc.
to execute successfully .

• COBOL interactive debug
When the programmer specifies the TEST option
for execution, he can debug his program in a con­
versational style; he can specify certain line num­
bers and data names in his sources program which
OS IV /F4 will display as encountered, thereby
tracing his program flow.

1.2.6 Communications Interface

The OS IV /F4 COBOL optionally provides a com­
munications interface between a program and
various communications facilities. Programs can
transmit information between OS IV /F4 and remote
terminals independent of the type(s) of terminals.

1.2.7 Extended Source Program Library

An extended source program library (ESPL) is
defined by a combination of BASIS, and DELETE
statements. This facility makes it simple to compile a
modified version of a source program from a user's
private library. Without this feature, recompilation
would require two steps: (a) correcting the source
program and (b) compiling the updated program.
With ESPL, only step (b) is necessary; the contents
of the source program library are not changed, and
debugging is facilitated, as shown in Fig. 1.2.

Nevv source program statements

BASIS KEISAN
DELETE 001770·001780

001770 IF TTT > 36 GO TO A3
DELETE 001800

COBOL

Source
program
library

compiler

Library K E ISAN

001770 IF TTT > 38 GO TO A3
001780 IF TTT > 16 GO TO A2
001790 A
001800 ADD 240 TO TAN
001810 ADD 30 to HH

002250 STOP RUN Result (object, compile li! t)
001770 IF TTT > 36 GO TO A3
001790 A
001810 ADD 30 TO HH

002250 STOP RUN

Fig. 1.2 Example of compiling an updated source program using ESPL

1.2.8 Bit Processing

Bit processing permits the user to address the
smallest M series unit of information. In a loaded OS
IV /F4 environment such as a heavy-traffic online
system, bit processing can reduce virtual-storage and
DASD needs. Also, bit processing facilitates flexible
linkages between different languages (especially the
PLiI and assembler languages) and various applica­
tion programs. Fig. 1.3 t;hows an example of defin­
ing and using bit processing.

01 A1
02 A2
02 B.

03 B1
03 B2

PIC 1 (2) BIT.
PIC 1 (6) BIT.

PIC 1(2) BIT.
PIC 1 BIT.

COMPUTEA1=B1ANDB2

Fig. 1.3 Example of bit processing

1.2.9 Character-String Processing

MOVE statements can be used to concatenate/sepa­
rate character strings; however, the programmer
must write several statements if he uses only the
standard COBOL facilities. The OS IV /F4 character­
string facility furnishes the following statements:
• STRING statement

This statement concatenates several data items
into one item.

• UNSTRING statement
This statement separates one data item into
several subfields.

• INSPECT statement
This statement replaces or tallies specified charac­
teristics of data items.

1.2.10 File Organizations

An OS IV /F4 COBOL program can process the
following file organizations:
• Sequential (SAM) .
• Relative (see below).
• Direct (DAM).
• Virtual sequential (VSAM).

A relative file is a direct organization specially
defined for COBOL; relative files must be assigned
to direct access storage devices. With this file
organization, the position of each record is deter­
mined relative to the first record of the fiie. A rela­
tive file must be created sequentially but may 'be
retrieved or updated sequentially or randomly. To
access a relative file, the programmer must specify
RELATIVE in the ORGANIZATION clause of his
source program.

A member of a partitioned data set (PDS) can be
processed as a sequential file by furnishing the
member name on the corresponding DO statement.
For instance, when processing member B of a PDS
named "A" , the following DD statement is
appropriate:

//INDATA DD DSN=A(B),

PROCESSING PROGRAMS

1.2.11 Debugging Facility

The OS IV /F4 COBOL debugging facility provides
statements which may appear anywhere in the
source program and specify compile-time debug­
ging.

Source program debugging facilities
• TRACE

When a TRACE statement is encountered during
execution, each time a section or paragraph is
entered the corresponding line number is dis­
played. The user can specify the start (READY
TRACE) and end (RESET TRACE) of tracing.

• EXHIBIT
Execution of an EXHIBIT statement displays a
specified identifier and its value. The user may
specify display of an identifier only if its value has
changed since the previous time the EXHIBIT
statement was executed.

·ON
An ON statement speCifies when corresponding
statements are to be executed. Counters are pro­
vided within each ON statement during compila­
tion. Every time an ON statement is reached, the
counter is incremented by one and the count con­
dition is tested. If the condition is satisfied the cor­
responding statement is executed. The following
is an example of using an ON statement:

77 TWO PIC 90) VALUE 2 .

ON TWO MOVE A TO B ELSE
MOVE A TOC

• Debugging packet
Statements for debugging a given section or
paragraph in the program may be placed directly
after the body of the procedure division. These
debug packets will be compiled with the source
program and will be executed at object time.
These packets can include the statements for
debugging stated above (TRACE, EXHIBIT,
ON). The packet for debugging is arranged as
follows:

PROCEDURE DIVISION

P2

P3 SECTION

244

DEBUG P2

D13

} Packet for debugging

D14

Compiler option statements
• STATE option

This option indicates the program status if an
abnormal program termination occurs. It also dis­
plays the line number and verb being executed at
the time of abnormal termination.

• FLOW option
The FLOW option traces the flow of up to 99 pro­
cedures entered just prior to an abnormal termina­
tion.

• SYMDMP option
This option dumps the values of selected data
names at any time, not necessarily for an abnor­
mal termination. The user can specify the location
and frequency of these dynamic dumps.

1.2.12 Other Features

OS IV F/4 COBOL also provides the sort/merge , the
Report writer feature, and the segmentation feature.

Sort/merge
By using the sort verb, sorting and merging of files
can be requested within COBOL source programs.
Procedures can be optionally included for special
handling of files before and after they have been
sorted. When the sort program is requested, the pro­
gram can set special registers to control its options,
as follows:
• SORT-FILE-SIZE register

Specifies the data item containing the number of
input records.

• SORT-CORE-SIZE register
Data item specifying the size of the memory area
to be used by sort/merge. '

• SORT-MODE-SIZE register
Data item specifying the average record length for
variable-length records.

• SORT-RETURN register
Data item to receive the sort/merge return code.

• SORT-MESSAGE register
Specifies the DD name for sort/merge messages.

Report generation
This feature facilitates report generation by specify­
ing the format of each report in the data division

instead of requiring detailed procedure division cod­
ing.

Each report is divided into several report groups;
each group is further divided into a series of items.
Whenever a report group is cited by the program, all
of its items are cited by implication.

Segmentation
The procedure division of a COBOL source program
is usually written as a series of functionally distinct
sections. When the programmer requests the seg­
mentation feature, the compiler segments the entire
procedure division. The compiler must distinguish
whether each section belongs to the fixed portion or
to an independent segment.

The fixed portion is defined as that part of a
COBOL load module which is always in virtual
memory; it comprises permanent segments and
overlayable fixed segment.s. A permanent segment
is a segment in the fixed portion that cannot be
ovelaid. An overlayable fixed segment is treated
logically as if it is always located in virtual memory,
but it may be overlaid by another segment. An inde­
pendent segment can overlay-and be overlaid
by-another independent segment or an overlayable

COBOL

fixed segment.
In the SECTION clause, the programmer assigns

to the fixed portion and independent portion priority
numbers from 0 to 99. Priority numbers 0 to 49 are
for the fixed portion, 50 to 99 for the independent
segments.

To decrease the number of permanent segments,
the programmer can specify priority numbers be­
tween 1 and 49 in his SEGMENT-LIMIT clause.
Only sections whose priority numbers are smaller
than the SEGMENT-LIMIT are considered perma­
nent. Sections whose priority-numbers are larger
than the SEGMENT-LIMIT but less than 49 are
considered to be overlayable fixed segments.

In order to execute a segmented program, the pro­
grammer must specify OVL Y in the parameter field
of the linkage editor EXEC statement.

1.3 REQUIRED CONFIGURATION

The configuration of 110 functions (and associated
DD names) required for the COBOL compiler is
shown in Fig. 1.4.

DOu~

SYSLIB

When library of extended
source program library
is requested.

u fo
O ::nk-editing

is in the
same job.

If
link-editing
is in a
separate job.

SYSIN

COBOL
compiler

u
o

Always required.
Principal listings
of source programs,
errors, messages,
and maps.

Fig. 1.4 COBOL compiler unit configuration diagram

SYSTEAM

Terminal

EJO
CJ

For TSS usage

• SYSUT1 is always required on OASD

• SYSUT2-SYSUT4 are required.

.SYSUT5 is required for SYMDMP
specification.

CHAPTER 2
FORTRAN

2.1 OVERVIEW

The FORTRAN language is especially appropriate
for mathemetical computations and other manipula­
tions of numerical data. OS IV IF4 provides two
FORTRAN compilers:
• OS IV/F4 FORTRAN IV GE compiler.
• OS IV IF4 FORTRAN IV HE compiler.

This chapter provides a highlight description of the
GE and HE compilers. Additional information con­
cerning FORTRAN can be found in the following
publications:
• FA COM OS IV FORTRAN Reference Manual.
• F ACOM OS IV IF4 FORT.RAN HE User's

Guide.
• FA COM OS IV/F4 FORTRAN GE User's

Guide.

The GE and HE levels of the FORTRAN language
offer many extensions to standard FORTRAN. The
GE language is a subset of the HE language with the
exception of the following two features:
• Debug packet.
• Free-form source statements.

Object modules generated by the GE and HE com­
pilers are compatible and can be linked to each
other. A single FORTRAN subroutine library is pro­
vided for both compilers. However, an installation
not needing the HE compiler may exclude corre­
sponding specialized subroutines from this library
during system generation.

2.1 .1 GE Compiler

The GE compiler is especially convenient for
developing FORTRAN programs; it has the follow­
ing highlights:
• Minimal compilation times.
• Comprehensive debugging facilities.
• Simple operation from a terminal.

The GE compiler is itself a reentrant program.

Therefore, when a large number of users use the
compiler simultaneously, only one copy of the com­
piler is loaded, saving real-storage page frames.

By specifying the GO option, the loader retrieves
one or more object modules into virtual storage, and
the resulting object program is immediately
executed. When compile and load steps bypass
linkage editing in this way, execution efficiency is
significantly raised.

2.1.2 HE Compiler

The HE compiler is appropriate for compiling effi­
cient FORTRAN object programs; it has the follow­
ing characteristics:
• Object code optimized for both size and execution

speed.
• Wide range of source-program documentation

options, such as structured listings and cross­
reference listings.

2.2 HIGHLIGHTS

2.2.1 Reentrant Programs

A user can compile a reentrant FORTRAN program
by furnish ing the following specifications:
• For either the GE or HE compiler, the RENT

option requests a reentrant object module.
• In addition, the programmer must specify RENT'

for link-editing or loading to create an executable
reentrant program.

2.2.2 Linkages with Object Modules fro~ Other
Languages

When linking programs written in different
languages such as FORTRAN and COBOL, pro­
grammers need take no ~pecial precautions if data
formats, array elements, etc. are compatible at the

machine-language level. In some cases, the pro­
grammer can link incompatible subprograms by
using a locally-written PL/I interface program, as
shown in Fig. 2.1. In this method, array elements
and data structures can be co:werted simply by
specification in a PLII subprogram. Also, if linkages
are made via PL/I, the programmer can more readily
handle his own interruptions and other exceptional
conditions.

Direct access to data

Communicating data
via a PUI interface
subroutine

FORTRAN

FORTRAN

Fig. 2.1 Example of communication between different languages

2.2.3 Program Structures

Programs 'with simple, overlay, and dynamic link
structures can be created in the FORTRAN
language. Source-program coding is independent of
structure; the user specifies the desired structure
during link-editing.

In a simple structure or overlay structure, all
required modules must be link-edited together. For
a dynamic link structure, modules can be loaded
dynamically during execution; frequently-accessed
subroutines can be maintained as separate load
modules, as described in Section 8.6.4 of Part 2 of
this publication.

2.2.4 Optimization Procedures

The HE compiler optimizes execution speed of user
programs as follows:
• Deletion of logically-unnecessary assignment

statements, elimination of common subexpres­
sions, and relocation of loop-invariant computa­
tions, as shown in Fig. 2.2(a).

• Replacing multiplications of loop variables by
additions (when possible) and replacing small
integral powers of a variable by repeated inline
multiplications, as shown in Fig. 2.2 (b) .

• Optimization of sequential I/O as shown in Fig.
2.2(c) .

• In-line code is compiled for statement functions in
the same way as for built-in functions. This code is
then optimized as shown in Fig. 2.2(d).

• Initial linkages to/from subprograms are
optimized for execution speed rather than pro­
gram size. This optimization is especially efficient
when subprograms contain many statements and

FORTRAN

are within DO-loops.

Without optimization With optimization

X ~ 1.0
Y X+A Y _ 1.0 + A

lOa x A-a lOa x =A-a

900 z A-a 900 z = x

x = COS (A+C)

When A and C are constant in the loop.

Example (a)

With,out optimization

1=1

Without optimizBtion

[~ : ~*(~;
I 1* C2 [

1-1
C3- Cl * C2
M = I * Cl
A - B (M)

M - M + C3

Cl and C2 are constant in the loop.

Example (b)

READ (1) (All), I = 1,N)
Data are not read into elements A(I) individually; instead,
A(l)-A(N) are transferred at one time.

Example (c)

Without optimizaf'on With optimization

STFUNC(X,Y) = X+Y
Z = STFUNC(1.0, 2.0)

Example (d)

Z = 3.0

Fig. 2.2 Examples of optimization

• In general, each use of a mathematical function
requires a distinct function call. The trigonometric
functions are often used with one anoth~r;
therefore, the compiled code reduces by saving
both function values obtained by one call to a libr­
ary routine. For example, the consecutive state­
ments

Y = SIN (X)
Z = COS (X)

require only one call to the sine/cosine routine.
• By the DPROF option, a load module can be

divided into basic blocks (statement sequences
without branches). The programmer can request
that entries to these blocks be counted during
execution to determine which blocks are most
important for job-step performance.

PROCESSING PROGRAMS

Table 2.1 Precision comparison table

Data type Mantissa Charactaristic
Bit structure precision precision

Precision Bvte Bit
Mantissa Charac'

Mantissa
Hexa' Decimal Hexe- Decimal

sign teristic decimal (approx) decimal (approx)

Single precision 4 32 1 bit 7 bits 24 bits 6 digits 7 .2 digits
(1 word) 16-65 10- 7•

Double precision 8 64 1 7 56 14 16.8
(2 words)

Extended 16 128 1 7 112 28 33.6 1663 1075

precision (4 words)

Extended noating point format

~ Characteristic High·order part of 112·bit mantissa 'fr ~ ~ ~ ~~~-~:_~t~~~:~~;_1 Low-order part of 112.oit mantissa

o 1 7 8 63 64 65 71 72 127

2.2.6 Conversational Processing

Since the FORTRAN compilers can operate under
TSS control, the user can generate a program, debug
it, and execute it from a terminal. Data sets and pro­
grams generated in batch and TSS modes are identi­
cal and may be freely intermixed. For details o'n TSS
facilit ies, the reader should review Part 4 {)f this
publication.

To perform conversational processing in
FORTRAN, the following features are particularly
convenient:
• FORTRAN syntax checker

This separate TSS processor checks for syntactical
errors in a FORTRAN source program. The
checker operates under the TSS editor; whenever
the terminal user enters a syntactically-erroneous
line, he can correct it at once.

• FORTRAN prompter
This separate TSS processor is activated by a com­
mand from a terminal. The prompter provides a
simple user interface for invoking either
FORTRAN compiler and for submitting execu­
tion-time JCL information.

• FORTRAN interactive debug packet
If the programmer specifies the TEST option
while compiling his FORTRAN program, his
source-program line numbers and variable names
are displayed selectively during execution. By con­
trolling the flow of his program, the programmer
can test his program conversationally. The debug
packet can only be used with the GE compiler.

• Free-form source statements
With the GE compiler, a programmer can enter
FORTRAN programs without regard for "card
columns"; he uses the tab key on his terminal to
space from one field of a statement to the next
field.

2.2.6 Extended Precision For Real and Complex

Arithmetic

In some scientific and technical computations, quad­
ruple precision arithmetic is necessary. Both the HE
compiler and GE compiler can compile quadruple­
precision data and appropriate M series instructions.

Since the characteristic of each M series floating
point number has 7 bits, it can range from 0 to 127.
To accommodate both positive and negative expo­
nents , 64 is added to the actual exponent to form the
characteristic for each floating-point number.
Therefore, the magnitude of a floating point number
ranges from 16-65 to 1663 in hexadecimal (approx­
imately 10-78 to 1075in decimal).

An extended floating point number comprises
two long floating point numbers. The sign and
characteristic of the low order number are ignored
and assume, respectively, the sign of the high-order
number and characteristic of the high-order number
minus 14. The mantissa of the low-order number
contains the 14 (unnormalized) low-order digits of
the 28-digit fraction.

2.2.7 Automatic Precision Increase

By specifying the AUTODBL option for the HE
compiler, the programmer requests automatic pre­
cision increase (API) : constants, variables, func­
tions, and array data (real, double-precision real, '.
complex, and double-precision complex) are con­
verted to the next higher level of precision. Storage
areas defined by DIMENSION, EQUIVALENCE
and COMMON statements are appropriately
increased. In the GE compiler, precision .can be
increased by specifying .the DOUBLE option or
GUARD option. However, in this case, redefining
storage areas with EQUIVALENCE statements, etc.
is not corrected automatically. See Table 2.1 for pre­
cision comparisons.

'.

2.2.8 Asynchronous Input/Output Statements

By issuing asynchronous READ/WRITE state­
ments, program execution can be overlapped with
I/O processing. When the programmer uses
asynchronous READ/WRITE statements, his
WAIT statements synchronize 110 with computa­
tion.

Fig. 2.3 shows an example of asynchronous
READ/WRITE and WAIT statements. This pro­
gram reads data into array A. It processes the data
and calculates new values for array B, from which a
record is written. After the first asynchronous
READ statement, input and output of data are per­
formed concurrent with computation. The values of
the COND parameter in the WAIT statement are as

. follows: "1" for a normal end, "2" for an
unrecoverable 110 error, and "3" for an end-of-file
condition.

DIMENSION A(200), 8(200), C(200)
INT = 0

5 READ (7. 10=1) A
IF (INT. EO. 0) GO TO 25

15 WRITE (9 . 10=2) 8
25 WAIT (7. 10=1. CONO=K)

GO TO (40,77 . 88). K
35 INT = 1

GO TO 45

40 IF (INT. EO. 0) GO TO 35
WAIT (9. 10=2. CONO=L)
IF (l. GT. 1) GO TO 88

45 DO 55 I = 1. 200
8 (I) = A(I) + CU)

55 C(I)=8(1)
GO T05

77

88

99 STOP
END

Fig. 2.3 Example of asynchronous input/output statements

2.2.9 Data Set Organizations

FORTRAN programs can access data sets ",ith:
• Sequential organization, or
• Direct organization (without keys) .

In addition, the programmer can access a member
of a partitioned data set (PDS) as a sequential data
set. For instance, member B of PDS A is specified by
the following DD statement:

//INDATA DD DSN=A(B),

FORTRAN

2.2.10 Debugging Aids

FORTRAN debugging aids help the user to locate
errors in his source programs:
• Tracing flow within programs.
• Tracing flow between programs.
• Displaying values of variables and arrays.
• Checking validity of subscripts.

To utilize these aids, the following statements are
provided:
• DEBUG statement.
• AT statement.
• TRACE ON statement.
In addition, the following compiler options can be
specified:
• GOSTMT INOGOSMT.
• MAP/NOMAP.
• XREF/NOXREF (only in the HE compiler) .
• DEBUG/NODEBUG (only in the GE compiler).
• ASTER/NOASTER.

2.2.11 Miscellaneous Features

• ENCODE/DECODE statements
These statements transfer information from one
area to another in the user's address space, per­
forming data conversions specified by FORMA. T
statements just as for READ/WRITE statements.

• Implied DO loops in DATA Statements
• Assignment statements for character strings

These are coded similar to arithmetic assignment
statements, wi th the character data preceded by
"nH" or epclosed in apostrophes.

A = 4HABCD
A = 'ABCD'

• Asterisk lines
When the programmer puts an asterisk into the
first column of a FORTRAN statement, he can
specify at compilation time whether this st?tet:lent
is to be treated as a comment or as an executable
statement.

• External functions and subroutines such as
DATE, TIME, EXP2, and ALOG2.

2.3 REQUIRED UNIT CONFIGURATION

The configuration of I/O functions (and associated
DD names) required by the FORTRAN IV GE and
HE compilers is shown in Fig. 2.4. The optional con­
figuration required by the FORTRAN IV HE com­
piler is enclosed in broken lines.

PROCESSING PROGRAMS

CJQu

If link-editing
is in a saparata
job.

SYSIN

FORTRAN
HE and GE
compiler

If link-editing
is in the same
job. Always required .

• Principal listings of
. source programs,
arrors, messages,
and maps .

HE compiler only ,..-- --- ... ---- _ ... -- -- -- ------- -- ... --- -- --------i

SYSTERM

Terminal

Specification of EDIT
requesting structured
listing.

Specification of XREF
requesting compiler
cross reference
listing.

uO
CJ

For TSS usage

,

L __ __ ____ ____ __ __ ________ __ ... ___ ________ ___ ____ _ ..,;

Fig. 2.4 FORTRAN HE and GE compiler unit configuration diagram

250

CHAPTER 3
PL/I

3.1 OVERVIEW

PLII is a multipurpose programming language
designed for both business and scientific applica­
tions. This section briefly describes the OS IV fF4
PLII compiler. For further information on the PLII
language and how it is used with OS IV fF4, the
reader is referred to the following publications:
• F ACOM OS IV IF4 PLII Reference Manual.
• FACOM OS IV/F4 PLII User's Guide.

3.1.1 PL/I Subroutine Libraries

All PLII programs use two libraries of load-module
subroutines: (a) a resident library containing
subroutines link-edited or loaded with user object
modules, and (b) a transient library containing
subroutines loaded as required during execution.
This pair of libraries provides more efficient use of
main storage than would a single resident library.

3.2 HIGHLIGHTS

The following sections describe basic features and
selected unusual features of the OS IV fF4 PLiI
compilers.

3.2.1 Reentrant Programs

The user may generate a reentrant program by the
following procedures:
• He must specify REENTRANT in the OPTIONS

list of his PROCEDURE statement. The compiler
will generate code that is reenterable for both
machine instructions and compiler-created work
areas.
An example of this is presented below:

EX: PROCEDURE OPTIONS
(REENTRANT) ;

END EX;

• He must insure that any static sto(age in his pro­
cedure is read-only, not updatable .

3.2.2 Linkages Between PL/I and Other
Languages

To exchange information between programs written
in different languages, data formats must be com­
patible. PLiI provides the following facilities for this
purpose:
• The programmer can specify a non-PLII language

with his OPTIONS attribute in the entry name
declaration.

DECLARE SUBI ENTRY OPTIONS
(FORTRAN);
or specify the language in the program
invoking the PLiI procedure:
SUB2: PROCEDURE OPTIONS (COBOL);

END;
• The programmer can specify by means of

OPTION . attributes (NOMAP, NOMAPIN,
NOMAPOUT) whether COBOL structures and
FORTRAN data arrays should be converted to
PLfI data structures and arrays.

• He can specify whether PLiI interruption process­
ing (INTER) should be used for interruptions
occurring during execution of non-PLII
subprograms.

• He can specify ENVIRONMENT attributes to
map PL/I file structures onto COBOL data sets.

3.2.3 Program Structures

The PL/I programmer can create simple, overlay,
dynamic link, and dynamic program structures. A
program is processed as a dynamic program struc­
ture when FETCa and RELEASE statements are
used to initiate loading and deletion of procedures.
To create more complicated program structures, the
user specifies the DYNAMIC option for the linkage

PROCESSING PROGRAMS

editor. Modules are then loaded only as required at
execution time, facilitating changes to subroutines
during link-editing as described in Section 8.6.4 of
Part 2 of this publication.

3.2.4 Multitask Facilities

In a single job step, several tasks can be attached,
detached, and processed asynchronously. Data sets
can be shared among asynchronously-executing
tasks.

The programmer attaches a subtask by furnishing
one or more of the multitasking attributes (TASK,
EVENT, and PRIORITY) in the corresponding
CALL statement. AWAIT statement synchronizes
execution of a subtask. An EXIT, RETURN, END
or STOP statement ends a subtask.

A task and its subtasks can share a data set if cor­
responding PLiI files are open when the subtasks
are attached. The EXCLUSIVE attribute locks a file
to prevent interference from other tasks.

3.2.6 Dynamic Storage Management

Dynamic storage management in a PLiI program
facilitates the following processing:
• Determining the length of a string variable, upper

and lower bounds of an array, and the size of an
area variable.

• Allocating a storage area and returning it during
execution by ALLOCATE and FREE statements.

3.2.6 Optimization Procedures

The PLiI compiler provides optimization facilities
which increase execution speeds and reduce the
sizes of object modules.

Global Optimization
• Common subexpressions are calculated only once.
• Invariant expressions are transferred out of loops.
• Within a loop, multiplication by the induction

variable is changed to repeated additions of the
corresponding argument.

• Constants replace expressions whenever possible.
• Unnecessary assignment statements are elimi­

nated.

Assignment optimization
When arrays with the same structure and data
attributes are assigned or moved, the compiled
instructions assign aggregate rather than individual
elements whenever possible.

InUne coding
Data conversion, record input/output
(CONSECUTIVE organization), string-processing

252

and built-in functions are performed by in-line
instructions whenever possible, reducing the num­
ber of library subroutine calls.

3.2.7 Conversational Processing

Since the PLiI compiler can be used under TSS con­
trol, a user can generate, debug, and execute a pro­
gram from a terminal. The PLiI compiler offers the
TERMINAL, LMESSAGE, and SMESSAGE
options during compilation for conversational pro­
cessing. The TERMINAL option specifies that err-or
messages are immediately displayed at the terminal;
the LMESSAGE/SMESSAGE option specifies
whether long (detailed) or short diagnostic messages
are to be displayed.

OS IV IF4 PLiI provides the following special
facilities for conversational processing:
• PLiI syntax checker

This independent TSS processor checks for syn­
tactical errors, line by line. Since the syntax
checker operates under the TSS editor, the user
can make necessary corrections and continue
entering his source program.

• PLiI prompter
The user can request this facility from his ter­
minal; it invokes the PLiI compiler and executes
the module after compilation, prompting the ter­
minal user for necessary link-edit and JCL
parameters.

3.2.8 The PL/I Preprocessor

The OS IV /F4 PLiI compiler consists of a pre­
processor and the body of the compiler.

A percent sign (%) precedes each preprocessor
statement. The PLiI preprocessor scans each source
program for preprocessor statements, which are
executed as soon as they are encountered. Output from
the preprocessor is an altered version of the source pro-

% DECLARE I FIXED;
% 1:0;
% LAB: I: I + 1;

Z(I) = X (I) + YO);
% IF I < = 10 % THEN % GO TO LAB;
% DEACTIVE I;

~ Preprocessor

Z(1) = X(l) + y(1)

Z(2) - X(2) + Y(2)

Z(10) = X(10) + Y(10)

Fig. 3.1 Example of using preprocessor statements

gram, which becomes the principal input to the body of
the compiler. An example of preprocessing is shown in
Fig. 3.l.

3.2.9 Data Communications

An OS IV IF4 PLII program can initiate linkage to a
remote terminal, as described in Chapter 6 of Part 2
of this publication. A PLII program can be designed
to respond to terminal-initiated dialogs. The pur

. program need not be designed for a particular type of
terminal or communications linkage; it is generally
device-independent.

3.2.10 Data Sets

A PL/I program can create, access, and process any
of the common file organizations for magnetic tape
or DASD:
• Sequential data sets on magnetic tape, including

seven-track as well as nine-track format, decimal
(ANS) as well as EBCDIC format, etc.

• Sequential data sets on DASD, including mem­
bers of partitioned data sets.

• Direct data sets, with/without keys.
• Virtual sequential data sets. .

VSAM data sets can be accessed in two fundamen­
tally different ways, as specified by the
ENVIRONMENT attribute:
• ENV (VSAM)

This permits the programmer to use the full
capabilities ofVSAM , asdescrided in Chapter 5 of
Part 2 of this publica tion.

• ENV(INDEXED CONSECUTIVE)
This permits a PUI program to perform ISAM­
like functions on entry-sequenced and key­
sequenced VSAM data sets, as described in
Chapter 5 of Part 2.

3:2.11 Program Testing Aids

OS IV IF4 PLII offers the following facilities for
detecting and diagnosing errors with source­
language displays of identifier names and conversion
of execution-time data to their originally-specified
formats (binary, hexadecimal, character, packed
decimal, etc.):
• Tracing execution flow within each PLII pro­

cedure.
• Tracing execution flow between PLII procedures.
• Displaying names and values of selected variables

whenever their values change.
• Checking the ranges of subscripts for designated

variables, to avoid overwriting other data areas
and/or programs.

PL/I

The following PLII statements generate diag­
nostic printouts, as selected by the programmer:
• PUT DATA statements.
• Condition prefixes (SUBSCRIPT RANGE, SIZE,

etc.).
• ON, SIGNAL and REVERT statements.
• CHECK conditions.
• Asterisked lines, used under program;y,~r contrcl

either as comments statements or de':::: .. 'gging
statements.
The following source-program listing and debug­

ging options are available to programmers:
• FLOW listing.
• COUNT option.
• STMT IGOSTMT option.
• NUMBER/GONUMBER option.
• OFFSET option.
• DEBUG statement.

3.2.12 Other Features

User handling of interruptions
By furnishing one or more ON condi­
tions-specifying various types of interruptions or
other unusual events he wishes to handle him­
self - the programmer can execute procedures of
arbitrary size and sophistication. This type of pro­
cedure is essentially an "exit routine" in the sense
of Chapter 8 of Part 2 of this publication. After this
procedure has completed, the programmer can
return to his interrupted mainline program, 0r he
can redirect control permanently to another pro­
cedure.

Recursive calls
By specifying the RECURSIVE attribute for a pro­
cedure, the programme!' can executei: recursively.
PLII library subroutines and ON-units C3.:1 always be
used recursively.

List processing
Based variables and pointer var:abJes permit the pro­
grammer to manipulat~. chained lists of data. He has
such functions as ADDR and NULl to assist
manipulation of based, pointer, offset, and area
variables. ALLOCATE and FREE statements" per­
mit him to control when and how much storage is
allocated to lists as well as for other dynamic-alIoel,­
tion needs.

Built-in subroutines and functions .
Certain common functions such as SUBSTRING,
CHARACTER, ABS, and ADDR are expanded into
inline instructions by the OS IV IF4 PLII compiler
whenever feasible.

Invocation of other subsystems and OS IV IF4
facilities
The PLII programmer can easily invoke such

PROCESSING PROGRAMS

packages as sort/merge. He can take checkpoints in
the mid9le of his·program. He can request snapshot
dumps as well as terminal dumps, which are de­
scribed in Chapter 8 of Part 2 Of this publication. At
the end of each job step, he can set a return code for
the OS IV /F4 step terminator in his RETURN state­
ment.

(
Source text

(conteining 0
compile time
statements)

SYSIN
SYSCIN

3.3 REQUIRED CONFIGURATION

The configuration of I/O functions (and associated
DD names) required for the PLil compiler is shown
in Fig. 3.2.

Required when %INCLUDE
is specified

SYSPUNCH

[
Preprocessor (

PLII compiler

Fig. 3.2 Pl/l compiler unit configuration diagram

254

Ou PLII source
progrem

CHAPTER 4
ALGOL

4.1 OVERVIEW

ALGOL is an algorithmic language for describing
computational processes, especially suitable for
scientists and engineers. The OS IV IF4 ALGOL
compiler provides a number of extensions to the JIS
ALGOL 5060 standard. This section presents a
general description of OS IV IF4 ALGOL. For a
more complete treatment, the user should consult
the following pUblications:
• FACOM OS IV ALGOL Reference Manual.
• FACOM OS IV IF4 ALGOL User's Guide.

The main characteristics of the OS IV IF4 ALGOL
compiler are as follows:
• Punched cards and paper tape can be used for

entering source programs.
• Upper-case and lower-case letters can be used in

identifiers and character strings.
• ALGOL can manipulate many different data

types: integers, real and logical constants, double­
length integers, double-precision real numbers,
complex numbers, double-precision complex
numbers, and character strings.

• ALGOL provides arithmetical, logical, address,
and character expressions.

• OS IV IF4 ALGOL furnishes all standard func­
tions and variable functions in addition to those
required by Japan Industrial Standard (JIS)
ALGOL.

• OS IV IF4 ALGOL provides a number of 1/0 pro­
cessing functions.

• OS IV IF4 ALGOL furnishes a debugging facility.
• OS IV IF4 ALGOL can manipulate columns,

rows, and cross-sections of data arrays.
• OS IV IF4 ALGOL provides a full range of pro-

gram and subprogram linkages. .

4.2 HIGHLIGHTS

4.2.1 Program Linkages

When the programmer wishes to link several
ALGOL programs or procedures, he can use either
global symbols or external symbols. A global sym­
bol is an identifier which is defined in one procedure
and can be referenced in one or more inner pro­
cedures or other external procedures. An external
symbol is one which identifies a scalar variable, an
array name, or a procedure name defined in another
procedure or program. Each external symbol must
be identified in procedures where it is used, except
that a subprogram name is automatically and
implicitly defined as a global symbol.

4.2.2 Standard and Variable Functions

Many OSIV IF4 ALGOL functions are predefined,
so that the programmer need not define them as
external symbols.

Standard functions
The standard functions of OS IV IF4 ALGOL
includes most of the frequently used arithmetical
functions:

ABS, SIGN ARCCOS, ARCSIN, ARCTAN,
COS, SIN, TAN, COSH, SINH, TANH
EXP, LN, LOG, MAX, MAXn,MIN, MINn,
MOD,REM,NRANDOM,RANDOM
SQRT EQUIV, LENGTH
CLOCK, CLOCKM

Variable functions
The variable functions of OS IV IF4 ALGOL per­
form various conversions of identifiers or expres­
sions:

ENTlER, ENTIEL, FLOAT, FLOA TL
IMAGINARY, COMPLEX, CONJUGATE
FIX, FIXL

TSS (TIME SHARING SYSTEM)

Character handling functions
Standard facilities for character strings are
REPLACE, INSERT, and DELETE functions.

4.2.3 1/0 Facilities

OS IV /F4 ALGOL provides several I/O procedures
to process information read/written to data sets
(sequential organization and direct organization) .

Two sets of procedures are provided: standard
procedures prescribed in 1IS ALGOL, and nonstan­
dard procedures implemented s'pecially for OS IV I
F4 ALGOL. In addition, INLIST 10UTLlST direct
data sets can be accessed via LNOTE and LPOINT
verbs. These procedures and verbs are shown in
Table 4.1.

Table 4. 1 I/O procedures

Datum/control field Input Output

Line feed INLINEFEED OUTLINEFEED

I nteger item ININTEGER OUTINTEGER

Real item INREAL OUTREAL.

Array INARRAY OUTARRAY

Symbol string
I

INSYMBOL OUTSYMBOL

Formatted items INPUTn OUTPUT
(n=0-9) (n=0'-9)

INLIST OUTLIST

Complex item INCOMPLEX OUTCOMPLEX

Standard I/O control CALF
EJECT
LFEED

READ PRINT
READA PR INTA

PRINTFIX
PRINTI
PRINTR
PRINTSTRING
SPACE

READ ARRAY WRITEARRAY

Device·dependent INPUT OUTPUT
control REWIND REWIND

Direct I/O position POINT POINT

Direct I/O feedback NOTE NOTE

SYSIN/SYSOUT stream GET PUT
GETA PUTA
GETD PUTD
GETMT PUTMT

Change standard format SFORM SFORM

4.2.4 Debugging Facilities

To facilitate program debugging, OS IV IF4 ALGOL
provides four procedures. Each procedure can dis­
playa character string corresponding to the formal
parameter STRING. Additional outputs from each
function are described below:

256

• CHECKPOINT(STRING)
When an error occurs during execution, an error
message is displayed.

• SNAP(STRING,E)
The value of an arithmetic expression (E) is
evaluated and displayed.

• SN AP ARRAY (STRING ,ARRAY)
This procedure displays the value of STRING
followed by all elements of the array in lex­
icographic order.

• SNAPLIST(STRING,LlST)
This procedure displays the value of STRING
followed by the elements named in the list.

4.2.5 Other Features

Asterisked lines
If a statement contains an asterisk in its first posi­
tion, the programmer can decide at each compilation
whether to treat the statement as a comment or as a
compilable statement.

Automatic precision increase (API) facility
API permits the programmer to double the precision
of all arithmetical operations with a single compile­
time option. Integers are processed as double-preci­
sion integers, real and complex full word numbers as
their doubleword counterparts, and real and com­
plex doubleword numbers as their extended-preci­
sion counterparts.

Constants and work areas are automatically
doubled in size when API is invoked.

CHECK option
The programmer can designate that some or all of
the following conditions be checked during execu­
tion of his ALGOL program:
• Subscripts within declared ranges.
• Subscript ranges declared correctly.
• Agreement of number and modes of parameters

in a procedure call with the declared number and
modes.

4.3 REQUIRED UNIT CONFIGURATION

The configuration of I/O functions (and associated
DO names) required for the ALGOL compiler is
shown in Fig. 4.1.

'DOLJo
SYSIN

ALGOL
compiler

Object module
output.

u
o

Always required.

When XREF
option is requested.

Principal listings of source programs,
errors, messages, and maps.

Fig. 4.1 ALGOL compiler unit configuration diagram

ALGOL

.)

' ..

CHAPTER 5
SL/100

6.1 OVERVIEW

SLiIOO is an OS IV IF4 language used primarily for
implementing systems software rather than applica­
tions packages. It includes all features and syntax of
the OS IV IF4 Assembler Language, including its
macro language facility. In addition, it furnishes
many statement types of higher-level languages such
as assignment statements ("A=B+C"), IF, DO,
and GOTO statements. SLiIOO is therefore language
which retains full flexibility at the machine-language
level yet gives programmers several conveniences of
higher-level languages.

This chapter presents a brief description of the OS
IV IF4 SLilOO facility. For more detailed informa­
tion, the user is referred to the following publica­
tions:
• F ACOM OS IV SLIlOO Reference Manual.
• F ACOM OS IV IF4 SL/IOO User's Guide.

The SLiI 00 compiler comprises a compiling phase
and an assembly phase. In the compiling pbase,
non-assembler statements are converted into assem­
bler source statements; ordinary Assembler state­
ments are copied unchanged into the compiled out­
put. In the assembly pbase, output from the compil­
ing phase is converted into machine language, and
an object module program listing and other optional
outputs are produced. The assembly phase is func­
tionally identical to the OS IV IF4 assembler.

5.1.1 Highlights

(l) SLiIOO can create all M series data formats: bit,
character, halfword, etc.

(2) Using SLiIOO-either alone or in conjunction
with certain other languages-the programmer
can create load modules in any of the four OS
IV IF4 structures: simple, overlay, dynamic
program, or dynamic link.

(3) SLiIOO programs can be more concisely coded
and more easily maintained than assembler­
language programs.

(4) SLiIOO automatically optimizes allocation of

258

general -registers to indexing and integer­
arithmetic calculations. The programmer can
designate which register variables are to be
preferentially allocated general registers.

(5) Like the assembler, SLiIOO has access to all
facilities of OS IV IF4 Job Management, task
management, and data management.

5.2 DATA FORMATS

5.2.1 Declarations

Data items are declared by assembler pseudo­
instructions: "DC" for constants, "OS" for storage
areas. Registers are declared by special SLiI 00 state­
ments which have 0.0 assembler counterparts. Con­
trol sections of various types are specified by
START, CSECT, DSECT, PSECT, DXO, and COM
pseudo-operation codes, just like their assembler
counterparts. The reader should refer to Section
6.3.1 for a discussion of dividing programs into con­
trol sections.

5.2.2 Types of Operands

Operands are classified as constants, variables and
functions.

Operands

-E Self·defining

Constants literals .

'" Named constants

-{ Storage
Variables . -[General registers

Register
" Floating-point

ASS
Functions -[

ADDR

registers

Fig.S.l Types of SL/l00 operands ..

Constants
Self-defining constants can appear as displacements
or immediate operands in instructions. Constants
can be defined and referenced by usages in literals,
self-defining constants preceded by "=". A cons­
tant can also be defined with the DC pseudo-instruc­
tion, then referenced by name. SLIlOO constants
can have the following formats and (parenthesized)
type codes:
• Character (C) - 8-bit code for any of the 256

EBCDIC characters.
.• Bit constants - represented in binary or hex­

adecimal notation.
- binary (B) - binary digit of O.or 1
- hexadecimal (X) - 4-bit code in the range
0-9 and A-F.

• Fixed-point binary
- halfword (H)
- full word (F)

• Floating point format
- short floating point (E)
- long floating point (D)
- extended floating point (L)

• Packed decimal (P) - two decimal digits packed
into each byte with the sign in the right-most four
bits

• Zoned decimal (Z) - each byte contains a four-bit
zone or sign and one decimal digit.

Variables
Storage operands can be expressed as scalar variables
or as subscripted array elements (one or two
sUbscripts). Register operands can be referenced by
previously-declared symbols. Storage addresses can
also be obtained by the ADDR function.

Functions .
SLIlOO provides two functions of particular conven­
ience for creating system programs.
• The ABS function obtains the absolute value of a

binary or floating point argument. For example,
the SLllOO statement

A = ABS(B)
generates the following assembler instructions if
A and B are full word integers:

L O,B
LPR 0,0
ST O,A

• The ADDR function obtains the 24-bit virtual
storage address of an argument.
For example, when the statement

C = ADDR(D)
is compiled, the following assembler instructions
are generated (if D is within the range of a current
USING statement):

LA O,D
ST O,C

SL/IOO

5.3 PROCeDURAL STATEMENTS

The SLIIOO procedural statements fall into three
categories:
(1) Executable statements

• assignment

• IF
• DO and END
• GOTO

(2) Auxiliary statements
• DECLARE
• RELEASE
• RESTRICT

(3) Compile-time statement
• INCLUDE

Assignment statements
This type of statement is used for internal computa­
tions and movements of data, of which the following
are examples:
• The expression on the right side of the assignment

statement is evaluated, and its result is stored into
the variable (or array) specified on the left side.

• A specified bit in a particular byte is set ON or
OFF.

• A specified field is assigned the value of a storage
variable of up to four bytes or a constant.

• As in (3), a one-byte value can be propagated into
all bytes of a field.

• The contents of several contiguous general
registers are stored into one storage variable
(equivalent to a store multiple instruction); con­
versely, contiguous registers can be loaded from a
storage variable (equivalent to load multiple).

• Three integers are added togetbr, and their sum
is placed into the designated register variable
(equivalent to a load address instruction).

• Sum/difference of operands is computed either
arithmetically or logically (using high-order bit as a
datum rather than a S!gn), then stored into the indi­
cated variable.

• Quotient is assigned to a scalar variable, if division
is requested; quotient and remainder are both
assigned if two varia.bles appear on the left side of
the assignment statement.

• Logical AND, OR, EXCLUSIVE-OR, and NOT
operations are performed, the result being
assigned to the designated bit variable (or bit
array).

IF statement
Just as for a high-level language, an SLIIOO IF state­
ment tests one or more conditions (using AND and
OR for conjunction and disjunction) and condi­
tionally branches according to the result.
• Comparisons

Arithmetical and/or logical comparison
• Bit tests
• Condition-code tests

Equivalent to branch-on-condition instructions.

PROCESSING PROGRAMS

DO and END statements
These bracket one group of SLlI00 statements
executed consecutively. They provide a means for
visual verification of procedural units, thus assisting
debugging ~d documentation.

GOTO statement
This statement generates an unconditional Branch
instruction.

DECLARE statement
This statement declares the attributes of. a register
variable, constant, or bit variable.

RESTRICT and RELEASE statements
RESTRICT places a designated general register
under the control of the programmer, so that he can
allocate it to a specific arithmetical or pointer func­
tions. The programmer issues RELEASE to permit
SLIIOO to assign this general register according to its
own algorithm.

INCLUDE statement
This statement has the same function as the, Assem­
bler-language COpy statement.

6.4 FLOATING-POINT FACILlTI.ES

SLIIOO provides several floating-point functions as
well as data definitions comparable to those of the
assembler-language DC and DS statements.

Floating-point data
Each floating-point number is represented by a
seven-bit characteristic and a fractional part whose
length depends on the requested precision. SLI 1 00
furnishes three floating-point formats:
• short (single precision) format,
• long (double precision) format, and
• extended (quadruple-precision) format.

Their storage requirements are, respectively, 32,
64, and 128 bits. Floating-point formats can be
specified for constants, storage variables, register
variables, and functions.

Floating-point assignment statement

260

The floating-point assignment statement has the
following functions:
• Move a floating-point number between storage

and one or more floating-point hardware registers.
• Conversion of floating-point numbers to/from

fixed point numbers.
• The value of a floating-point expression is
. assigned to the indicated variable.

Floating-point comparisons
Floating-point expressions can be compared in IF
statements.

Register declarations
A DECLARE statement can assign a mnemonic
symbol to a (hardware) floating-point register.

5.5 DECIMAL ARITHMETIC FACILITIES

Decimal data
Decimal data are decimal constants and decimal
variables in either packed or zoned format.

Decimal assignment statement
The decimal assignment statement has the following
capabilities:
• Conversions of packed-decimal numbers to/from

zoned decimal numbers.
• Transfers between packed decimal variables and

register variables.
• The results of arithmetic operations with packed

decimal numbers are assigned to the left side of
the statement.

Decimal arithmetic comparisons
Packed decimal expressions can be compared in IF
statements.

5.6 REQUIRED CONFIGURATION

The configuration of 110 functions (and associated
DD names) required for the SLIIOO compiler is
shown in Fig. 5.2.

http:FACILITI.ES

DOu

When DECK is
requested

SYSIN

SL/100
compiler

When OBJECT
is requested

u ,

o
Always required .

Principal listings of source
programs, errors, messages,
and maps.

Fig. S.2 SL/IOO compiler unit configuration diagram

SL/lOO

CHAPTER 6
ASSEMBLER

6.1 OVERVIEW

The assembler language is a symbolic programming
language used to write programs close to the level of
machine language in format and content. Mnemonic
symbols are defined for machine language operation
codes, and symbolic names can be used for storage
addresses. By using these symbols, the programmer
greatly reduces his level of effort and eXP9sure to
errors. Nonetheless, he can directly acce,ss all
machine-language facilities, many of which are not
available to him in higher-level programming
languages (except SLlIOO) .

This chapter presents a brief description of the OS
IV /F4 assembler language. For more detailed infor­
mation, the user should study the following publica­
tions:
• F ACOM OS IV Assembler Reference Manual.
• F ACOM OS IV /F4 Assembler User's Guide.

Assembler-language statements can be divided
into three groups: machine instructions, assembler
instructions, and macro instructions.

Machine instructions
The assembler language provides mnemonic opera­
tion codes for all machine instructions of F ACOM
M series computers. These codes are translated into
machine language by the assembler.

Assembler instructions
The assembler language also provides mnemonic as­
sembler instruction (or pseudo-instruction) opera­
tion codes for special functions performed by the as­
sembler, such as storage allocation, base-register
assignment, and displacement computations. With a
few exceptions, assembler instructions do not gener­
ate machine-language instructions.

Macro instructions
A macro definition is a collection of assembler
language statements. When invoked by a macro
instruction, part or all of the macro definition is au­
tomatically copied into the user's program. This
allows an Assembler-language programmer to

262

generate instruction sequences without coding all
necessary instructions each time he requires them.
Macro definitions fall into two categories:
• System macro definitions provided by OS IV /F4,

such as data management, job management and
supervisor macro definitions.

• User macro definitions created by a programmer
either for us~ in his current program or for incor­
poration into a library ..

6.2 MACHINE·INSTRUCTIONS

Machine instructions can be classified by. their sym­
bolic formats: Table 6.1 illustrates formats for the
six classes of instructions.

Functions performed by machine instructions
include status switching, input/output, arithmetical,
logical, and branching operations:

Status switching
A set of instructions is provided to switch the status
of the CPU, main storage, virtual storage, and com­
munications between systems. The choice between
supervisor state and problem state determines
whether the full set of instructions is valid. In the
supervisor state, all instructions are valid. Privileged
instructions are not valid in the problem state.

Input/output
The OS IV /F4 assembler language contains several
input/output instructions, which provide the user '.
with direct control of input/output operations.

Arithmetic operations
Additions, subtractions, multiplications, divisions,
rounding, and comparisons can be performed upon
one or two operands, Arithmetic iristructions differ
according to their data formats, which fall into three
major classes:
• Fixed-point arithmetic
. The basic operand is ~ signed binary integer of fix­
ed length. The operation is 'performed upon one
operand in a register and another operand either in

j
'I
,

.J
1

...,
. " ·1

I

L •

. 1

ASSEMBLER

Table 6.1 Machine instruction formats

Type Operation I nstruction formats

RR Register to register I OP

0

RX Register to storage. indexed I OP

0

A5 Register to storage I OP

0

5 Implicit storage I
0

51 Immediate to storage I OP

0

I I OP

SS Storage to storage 0 .
I OP

0

Key : OP - Operation code
R - Register
B - Base register
X - I ndex register

a register or retrieved from main storage.
• Decimal arithmetic

Operations are performed on packed or zoned
decimal data of variable lengths. One or two
lengths are specified in the instruction. Both
operands are located in main storage.

• Floating-point arithmetic
Operations are performed on floating-point num­
bers having short, long, or extended formats.
These formats differ according to the lengths of
their fractions. Hardware floating-point registers
permit operations to be either register-to-register
(RR) or storage-to/from-register (RX).

Logical operations
A logical operation can be performed on fixed­
length or variable-length data: comparison, transla­
tion, editing, bit-testing, and bit-setting.

Branching instructions
Branching instructions provide conditional changes
of instruction sequence, linkages to subroutines, or
repetitions of loops. Conditional branches. depend
on arithmetical calculations concurrent with the
Branch instructions (BXLE, BXH, BCT, BCTR) or

I R) I R21

8 12

I R) I X21 B21 °2 I
8 12 16 20 31

I R) I R31 8 2 1 O2 I
8

OP

I
8

I L[

8

I
8

12 16 20 31

I B21
O2 I

16 20 31

12 I B) I 0) I
16 20 31

I L21 B) I 0)
I 82 1

02 I
12 16 20 32 36 47

L I B) I 0) I 82 1 O2 I
16 20 32 36 47

D - Displacement
L - Length

- Immediate

more general tests performed earlier .

6.3 ASSEMBLER INSTRUCTIONS

Assembler instructions are requests for special ser­
vices from the assembler. These statements do not
always cause machine instructions to be generated.
They include instructions for program sectioning,
data definition, base register assignments and pro­
gram control.

6.3.1 Program Sectioning and Linking

It is often convenient to divide a large program into
control sections which can be compiled independ­
ently. The Assembler provides facilities for creating
multisection programs.

CSECT, START, and END
A CSECT instruction identifies the beginning (or
continuation) of a control section.

A START instruction assigns a name to the first

PROCESSING PROGRAMS

control section of a program. An END instfuction
terminates a program.

COM (COMMON)
A COM instruction identifies and reserves a com­
mon area of storage (COMMON data in
FORTRAN, for example) that may be utilized by
independent assemblies that have been link-edited
(or loaded) together for execution.

DSECT
The DSECT instruction identifies the beginning (or
resumption) of a dummy control section. It is
assumed that storage is reserved by some other section
of this assembly or else by another assembly. Address
displacements for symbols defmed in a dummy section
are relative to the initial statement of the section.

External dummy section
An external dummy control section can be defined
as a work area by a program. Thearea is not reserved
by the assembler but is loaded dynamically when the
programmer issues a GETMAIN macro instruction.
Initial values cannot be assigned to external dummy
control sections, which effectively define w~r~ areas
used in common by sever'll main programs,
therefore generating a reentrant program. TO define
an external dummy section, Q-type address con­
stants must be used with the following instructions:
• DXD (Define External Dummy) .

This instruction defines the size of an external
dummy section.

• CXD (Cumulative External Dummy)
This instruction defines the cumulative length of
an external dummy section. The sum is stored by
the linkage editor.

• Q-type address constant
This constant defines displacement from the
beginning of a dummy section defined either by a
DXD or DSECT instruction. The displacement is
stored by the linkage editor.

PSECT (prototype control section)
A PSECT instruction identifies the beginning (or
continuation) of a prototype control section. Since
storage is reserved by the assembler for a prototype
control section, initial values can be defined for
reenterable programs. The linkage editor segregates
PSECTS in' a load module, and the supervisor moves
their contents into dynamically-acquired virtual
storage Different from control sections defined by
DSECTs, the programmer need not explicitly allo­
cate storage for a PSECT; the supervisor allocates
this storage automatically while loading his program,
as described in Section 8.6.5 of Part 2 of this publica­
tion.

264

6.3.2 Addressing

Each assembler-language storage address requires a
base register (which contains a base address) and a
displacement, which is added to the base address to
obtain the virtual storage address. The programmer
may specify a symbolic address and ask the assem­
bler to determine its storage address in terms of its
base register and displacement. The programmer
must inform the assembler what base registers are
available and what virtual storage address each
register is assumed to contain throughout his pro­
gram.

Addressing in the source program
USING and DROP instructions enable program­
mers to use base registers implicitly, leaving assign­
ment of base registers and calculation of displace­
ments to the assembler.

The USING instruction indicates that one or more
general registers are available for use as base
registers. The user guarantees that certain base
address values will be in these registers for indicated
sections of his program during its execution.

The DROP instruction specifies that a previously
available general register may no longer be used as a
base register.

The following example illustrates hardware
registers for an RX-type instruction, where the sec­
ond operand (designated by the triple "X2 IB2 ID 2")
is a storage address:

Op code

o 8 12 16 20 31

The logical address of the storage operand is
determined by adding the displacement D2 to the
base address in base register B2 and the indexing
value in the index register X2• Only the low-order 24
bits (bits 8-31) of the registers are used in address
calculation.

Base address + Indexing+ Displacement
= Logical Address
A dynamic storage address is represented by a dis­

placement in the page. If each page size contains 4K
bytes and each segment contains64K bytes, M
series dynamic addresses will have the following for­
mat:

1" ',,' "'I . ' ·'·'H,'<·" ... "':, ·6~ 'it;.~;, ·
s p D

0 8 16 20 31
1\

Segment Page Displacement
number number in page

ASSEMBLER

Table 6.1 Machine instruction fonnats

Type Operation Instruction formats

RR Register to register I OP

0

RX Aegister to storage, indexed I OP

0

RS Register to storage I OP

0

S Implicit storage I
0

SI Immediate to storage I OP

0

I OP

SS Storage to storage 0 .
, I OP

0

Key : OP - Operation code
R - Register
8 - 8ase register
X - I ndex register

a register or retrieved from main storage.
• Decimal arithmetic

Operations are performed on packed or zoned
decimal data of variable lengths. One or two
lengths are specified in the instruction. Both
operands are located in main storage.

• Floating-point arithmetic
Operations are performed on floating-point num­
bers having short, long, or extended formats.
These formats differ according to the lengths of
their fractions . Hardware floating-point registers
permit operations to be either register-to-register
(RR) or storage-to/from-register (RX).

Logical operations
A logical operation can be performed on fixed­
length or variable-length data: comparison, transla­
tion, editing, bit-testing, and bit-setting.

Branching instructions
Branching instructions provide conditional changes
of instruction sequence, linkages to subroutines, or
repetitions of loops. Conditional branches depend
on arithmetical calculations concurrent with the
Branch instructions (BXLE, BXH, BCT, BCTR) or

I AI I R21

8 12

I RI I X2! 82 1 °2 I
8 12 16 20 31

I RI I R31 8 2 1
O2 I

8 12 16 20 31

OP I 8 2 1 02 I
16 20 31

I 12 ! 8 1 ! 0 1 I
8 16 20 31

I LI I L21 8 1 I 01 ! 82 1
02 I

8

I
8

12 16 20 32 36 47

L I 8 1 I ° 1 I 82 1 02 I
16 20 32 36 47

0 - Displacement
L - Length
I - Immediate

more general tests performed earlier .

6.3 ASSEMBLER INSTRUCTIONS

Assembler instructions are requests for special ser­
vices from the assembler. These statements do not
always cause machine instructions to be generated.
They include instructions for program sectioning,
data definition, base register assignments and pro­
gram control.

6.3.1 Program Sectioning and Linking

It is often convenient to divide a large program into
control sections which can be compiled independ­
ently. The Assembler provides facilities for creating
multisection programs.

CSECT, START, and END
A CSECT instruction identifies the beginning (or
continuation) of a control section.

A START instruction assigns a name to the first

PROCESSING PROGRAMS

control section of a program. An END instruction
terminates a program.

COM (COMMON)
A COM instruction identifies and reserves a com­
mon area of storage (COMMON data in
FORTRAN, for example) that may be utilized by
independent assemblies that have been link-edited
(or loaded) together for execution.

DSECT
The DSECT instruction identifies the beginning (or
resumption) of a dummy control section. It is
assumed that storage is reserved by some other section
of this assembly or else by another assembly. Address
displacements for symbols dermed in a dummy section
are relative to the initial statement of the section.

External dummy section
An external dummy control section can be defined
as a work area by a program. Thelirea is not reserved
by the assembler but is loaded dynamically when the
programmer issues a GETMAIN macro instruction.
Initial values cannot be assigned to external ,dummy
control sections, which effectively define wor~ areas
used in common by seven~1 main programs,
therefore generating a reentrant program. To'define
an external dummy section, Q-type address con­
stants must be used with the following instructions:
• DXD (Define External Dummy)

This instruction defines the size of an external
dummy section.

• CXD (Cumulative External Dummy)
This instruction defines the cumulative length of
an external dummy section. The sum is stored by
the linkage editor.

• Q-type address constant
This constant defines displacement from the
beginning of a dummy section defined either by a
DXD or DSECT instruction. The displacement is
stored by the linkage editor.

PSECT (prototype control section)
A PSECT instruction identifies the beginning (or
continuation) of a prototype control section. Since
storage is reserved by the assembler for a prototype
control section, initial values can be defined for
reenterable programs. The linkage editor segregates
PSECTS in' a load module, and the supervisor moves
their contents into dynamically-acquired virtual
storage Different from control sections defined by
DSECTs, the programmer need not explicitly allo­
cate storage for a PSECT; the supervisor allocates
this storage automatically while loading his program,
as described in Section 8.6.5 of Part 2 of this publica­
tion.

6.3.2 Addressing

Each assembler-language storage address requires a
base register (which contains a base address) and a
displacement, which is added to the base address to
obtain the virtual storage address. The programmer
may specify a symbolic address and ask the assem­
bler to determine its storage address in terms of its
base register and displacement. The programmer
must inform the assembler what base registers are
available and what virtual storage address each
register is assumed to contain throughout his pro­
gram.

Addressing in the source program
USING and DROP instructions enable program­
mers to use base registers implicitly, leaving assign­
ment of base registers and calculation of displace­
ments to the assembler.

The USING instruction indicates that one or more
general registers are available for use as base
registers. The user guarantees that certain base
address values will be in these registers for indicated
sections of his program during its execution.

The DROP instruction specifies that a previously
available general register may no longer be used as a
base register.

The following example illustrates hardware
registers for an RX-type instruction, where the sec­
ond operand (designated by the triple "X2 IB2 ID2")
is a storage address:

Op code

o 8 12 16 20 31

The logical address of the storage operand is
determined by adding the displacement D2 to the
base address in base register B2 and the indexing
value in the index register X2• Only tne low-order 24
bits (bits 8-31) of the registers are used in address
calculation.

Base address + Indexing + Displacement
= Logical Address
A dynamic storage address is represented by a dis­

placement in the page. If each page size contains 4K
bytes and each segment contains64K bytes, M
series dynamic addresses will have the following for­
mat:

o

s P D

8 16 20 31

'-__ --" "'----...----'
Segment
number

Page
number

Displacement
in page

Fig. 6.1 illustrates a USING instruction desi~nat­
ing a base register and the result of assembling a
LOAD instruction.

Symbolic linkages
Symbols may be defined in one program and
referenced in another program, thus linking inde­
pendently-assembled programs. Linkage symbols
are defined by ENTRY, EXTRN and WXTRN
instructions.

An ENTRY instruction identifies one or more
symbols in this program which will be referenced by
other programs. These symbols are entered into the
external symbol dictionary (ESD) of the assembled
object module.

o

0000

0002

~ .,
Ew
~Ill

'" ~
i5

FIRST

BEGIN

START 0
BALR ' 11,0
USING BEGIN,ll

L 4 , CNT'

I 0060 CNT DC F'22'

L
1002

END

~------------------~

USING

. J
'" ., 1

~ .fl ., u

II
• The assembler instruction is translated into the

following mach ine instruction

8 o 5 E

8 12 16 20 31

Fig. 6.1 Example of the USING instruction

An EXTRN (external symbols) instruction iden­
tifies one or more symbols used by this program but
defined in another program. Examples of these
instructions appear in Fig. 6.2.

A WXTRN (weak external) instruction identifies
one or more weak external symbols, which differ
from ordinary external symbols as follows: the
linkage editor attempts to resolve all of the latter
among object modules, load modules, and libraries
which the user furnishes, but it only conditionally
attempts to resolve weak external symbols. These
conditions are based on parameters specified by the
user to the linkage editor.

!

A

NXT
ENT

B

SUB

START

EXTRN

L
BR

L
BR

DC
DC

END

START
ENTRY

END

B

10, NXT
10

4, ENT
4

ACB)
V(SUB)

SUB

ASSEMBLER

Fig. 6.2 Example of using ENTRY and EXTRN instructions

6,3.3 Symbol and Data Definitions

Some assembler instructions cause storage areas to
be set aside for constants and data areas.
• EQU (Equate Symbol) . .

An EQU instruction defines a symbol by asslgmng
to it the attributes of the expression in the operand
field. The EQU instruction can be used to name
general or floating-point registers, immediate
'operands, and other program elements.

• DC (Define Constant)
A DC instruction defines one or more constants in
virtual storage, as shown in Table 6.2

• OS (Define Storage)
A OS instruction reserves one or more storage
areas and assigns names to these areas.

• CCW (Channel Command Word)
A CCW instruction defines the four fields of-one
eight-byte Channel Command Word.

6.3.4 Assembler Control Instructions

Assembler control instructions set the Location
Counter, control the program listing, and indicate
the statement formats .

Address alignment control
.ORG (Set Program Origin)

An ORG instruction sets/alters the value of the
Location Counter for the current control section.

PROCESSING PROGRAMS

Table 6.2 Summary of constants

Length (bytes)
Code Format

Implied Allowable

B - 1 - 256 Binary digits
C - 1 - 256 Characters
X - 1 - 256 Hexadecimal digits
F 4 1 - 8 Fixed-point binary (signed)
H 2 1 - 8 Fixed-point binary (signed)
P - 1 - 16 Packed decimal
Z - 1 - 16 Zoned decimal
E 4 4 Short floating-point
0 8 8 Long floating-point
L 16 16 Extended floating-point
A 4 1 - 4 A type address constant (value of address)
y 2 1 - 2 Y type address constant (value of address)
S 2 2 S type address constant (address in base-displacement form)
V 4 3 - 4 V type address constant· (externally defined address value)
Q 4 1 - 4 Q type address constant (symbol naming external dummy section)

• The linkage editor resolves all external symbols of static structures. External symbols belonging to dynamic
structures remain unresolved and DAL TAB is generated. (Refer to 8.2.3 Processing of Program Structure)

• L TORG (Set Origin for a Literal Pool)
A L TORG instruction causes all literals which the
Assembler has scanned thus far (or since 'the last
L TORG instruction in this assembly) to be assem­
bled at appropriate boundaries, starting at the first
doubleword boundary following the L TORG
statement.

• CNOP (Conditionally Generate No-Operation
Instructions)
A CNOP instruction allows the programmer to
align an instruction at a halfword boundary whose
address is a prespecified offset from a word or
doubleword boundary.

Input format and sequence control
• ICTL (Input Format Control)

An ICTL statement allows the programmer to
alter the normal format of his source-program
statements by specifying the beginning, ending,
and continuation columns for each source-pro­
gram statement.

• ISEQ (Input Sequence Checking)
An ISEQ instruction requests the Assembler to
check the sequence of input statements.
Sequence-checking begins with the first statement
following the ISEQ statement and terminates with
an ISEQ statement bearing a blank operand.

Listing control
• PRINT

A PRINT instruction controls printing of the as-
sembly listing. The following operands may be
specified:
ON/OFF - listing is (is not) printed.
GEN/NOGEN -macro-generated instructions
are (are not) printed
DATA/NODATA-full (first eight bytes) con­
stants are printed.

• TITLE
A TITLE instruction enables the programmer to
print his own heading on an assembly listing.
Also, the contents of the name field of the TITLE
statement are punched into columns 73-76 of
any assembly output cards. Any character string in
the operand field is printed at the top of each page
of the assembly listing thereafter.

• EJECT
An EJECT instruction causes the next line of the'
assembly listing to appear at the top of a new page.

• SPACE
A SPACE instruction inserts one or more blank
lines into the listing.

Punch control
• PUNCH

A PUNCH instruction requests that data in its
operand field be punched in edited format.

• REPRO
A REPRO instruction requests that data on the
following statement be punched without editing.

Redefinition of operation codes
An OPSYN (Operation Code Synonym) instruction
allows a programmer to define a new operation code .
for an existing code or to redefine an existing opera­
tion code.

Saving and restoring status
• PUSH

A PUSH instruction saves current PRINT and
USING status.

• POP
A POP instruction restores the former PRINT and
-USING status.

&NAME

&NAME

.M1

.M2

MACAO
MOVE
AIF
AIF
ST
L
ST
L
MEXIT
MNOTE
MEXIT
MNOTE
MEND

&TO,&FROM
(N' &TO EO 0) .Ml
(N' &FROM EO 0) .M2
2, AREA
2, &FROM
2, &TO
2, AREA

'NO FIRST OPERAND'

'NO SECOND OPERAND'

Fig. 6.3 Example of macro definition

6.4 MACRO LANGUAGE

The OS IV IF4 macro language enables the program­
mer to define a frequently-used sequence of assem­
bly-language statements as a macro definition. This
facility simplifies coding of programs and reduces
the incidence of coding errors.

6.4.1 Macro Instructions

A macro instruction is processed by the Assembler
just like an assembler statement. The Assembler
substitutes a sequence of Assembler-language state­
ments for each macro instruction. These generated
statements are then processed like other Assembler­
language statements. The Assembler-language
statements are obtained either from a library macro
definition or from a macro definition submitted with
this particular source program.

Three types of parameters may be defined for
each macro instruction:
• Positional parameters

The programmer must furnish values for posi­
tional parameters in a prespecified sequence, sep­
arated by commas.

• Keyword parameters
The programmer can furnish values for keyword
parameters in any sequence he chooses. Keyword
parameters are most useful when their number is
large and many parameters assume default values
most of the time.

• Mixed-mode parameters
Many macro definitions define a sequence ofposi­
tional parameters followed by a collection of
keyword parameters; these correspond to mixed
mode macro instructions.

6.4.2 Macro Definitions

A macro definition is a set of statements that pro­
vides the Assembler with the mnemonic operation
code and format of corresponding macro instruc-

}

}

__ MACRO statement
_ PROTOTYPE statement

ASSEMBLER

_ Conditional assembler instruction statements

_ _ Model statements

~- MEXIT statement
- MNOTE statement

~ MEND statement

tions and the sequence of statements the Assembler
selectively generates to replace each occurrence of
the macro instruction. See Fig. 6.3.

A macro definition consists of the following state­
ments:
• MACRO

The macro definition header statement indicates
the beginning of a macro definition.

• Macro instruction prototype
Specifies the mnemonic operation code and the
format of all macro instructions that refer to the
macro definition.

• Model statements
These are Assembler statements from which
other sequences of Assembler-language stcrte­
ments are generated.

• MEXIT
The macro definition exit statement indicates to
the Assembler that all necessary statements have
generated from this macro definition.

• MNOTE
An MNOTE statement requests the Assembler to
write an error message during the macro-genera­
tion process.

• Conditional assembly instructions
These allow the programmer to generate different
sequences of statements from the same macro
definition.

• MEND
The macro definition trailer statement indicates
the end of a macro definition.

6.4.3 Conditional Assembler Instructions

The conditional assembly instructions allow the pro­
grammer to vary parts of generated statements and
the sequence of the statements. All of the condi­
tional assembly instructions may be used anywhere
in an Assembler language source program. The pri­
mary use of these instructions, however, is in macro
definitions.

P3.0CESSING PROGRAMS

Macro instruction

Label field I Operation field I Operand field

Macro definition

&NAME

&A
&8
&C
&0
& NAME

Generated statements

MOVE

MACRO
MOVE
LCLA
SETA
SETA
SETA
SETA
ST
L
ST
L
MEND

ST
L
ST
L

Fig. 6.4 Example of SETA instruction

SET symbols
SET symbols are variable parameters which are
assigned values by the SETA, SETB or SETC
instructions. LCLA, LCLB and LCLC instructions
may be used to define and assign initial values to
SET symbols.
• SET A -the Set Arithmetic instruction is used to

assign an arithmetic value to a SET A symbol.
• SETB-the Set Binary instruction is used to assign

the binary values of 0 or 1 to a SETB symbol.
• SETC-the Set Character instruction is used to

assign a .character value to a SETC symbol.

Sequence symbols ,
Sequence symbols provide the programmer with the
ability to vary the sequence in which statements are
processed by the assembler. A sequence symbol is
used in the operand field of an AIF or AGO state­
ment.
• AIF-conditional branch instruction used to alter

the sequence in which source statements are pro­
cessed.

• AGO-unconditional branch instruction used to
alter the sequence in which source statements are
processed.

• ANOP- Assembly No Operation instruction
facilitates conditional and unconditional branch-

FLl , FL2

&TO, &FROM
&A, &B, &C, &0

} A<;<hm";, ",'''';0",
10
15
&A-&B
&A+&B
2. AREA
2, &FROM&D
2. &TO&C
2, AREA

2. AREA
2. FL225
2. FL15
2. AREA

ing to statements named by symbols or variable
symbols.

Examples of conditional assembly instructions are
shown in Figs. 6.4 to 6.7. .

6.5 CONVERSATIONAL PROCESSING

Since the Assembler can operate under TSS (time
sharing system) control, a user can generate, debug,
and execute a program from the terminal.

The SYSTERM or TEST option specifies conver­
sational processing to the Assembler. The .
SYSTERM option directs output of error messages
to the SYSTERM data set. The TEST option permits
debugging in a conversational mode. The user can
trace the flow of his program by requesting displays
of addresses and variable names in his TEST com­
mands.

OS IV IF4 provides an Assembler Prompter to
assist the user in conversational processing. When
invoked by a terminal command, the Prompter helps
the user define all necessary program elements, DD
statements, etc. to assemble and execute his pro­
gram successfully.

Macro instruction

Label field I Operation field

Macro definition

&NAME

&B1 ·
&B2
&A1
&C1
&NAME

Generated statemen ts

MOVE

MACRO
MOVE
LCLA
LCLB
LCLC
SETB
SETB
SETA
SETC
ST
L
ST
MEND

ST
L
ST

I Operand field

FLA,FLB

&TO, &FROM
&A1
&B1, &B2
&C1
('&TO' EO 'FLA')
(L' &FROM EO ~Ol
&91
'&B2'
2, AREA
2, &FROM&A1
2, &TO&C1

2, AREA
2, FLB1
2, FlAO

ASSEMBLER

Macro instruction

Label f ield I Operation f ield 1 Operand field

Macro definition

&NAME

&A
&NAME
&A

&A

Generated statements

MOVE

MACRO
MOVE
LCLC
SETC
ST
SETC
L
SETC
ST
MEND

ST
L
ST

Fig. 6.6 Example of a SETC instruction

&TO, &FROM
&A
'FL'
2, &A.A
' FLE' ' DE' (1,3)
2, &A
' AFLEF' (2,3) '0'
2, &A

2, FLA
2, FLEDE
2, FLED

Fig. 6.S Example of a SETB instruction

Macro instruction

Label field I Operation field

FLB

Macro definition

&NAME

&NAME

.END

Generated statements

FLB

ADD1

MACRO
ADD1
AIF
AIF
ST
L
A
ST
MEND

ST
L
A
ST

Fig. 6.7 Example of an AlF instruction

I Operand field

A1, A2, A3

&A,&S,&C
('&A' EO 'AO'LEND
(T'&C EONI.END
2,AO
2, &A
2,&B
2, &C

2,AO
2, A1
2,A2
2,A3

PROCESSING PROGRAMS

6.6 REQUIRED CONFIGURATION

The configuration of 110 functions (and associated
DO names) required by the Assembler is shown in
Fig.6.S.

Required for
macro use

If 'DECK' is specified.

SYSIN

Assembler

If 'OBJECi'
is specified

u
o

Always required.
Principal listings of
source programs,
errors, messages, and
maps.

Fig. 6.8 Assembler unit configuration diagram

270

uO
Q

For TSS usage

CHAPTER 7
SORT/MERGE

7.1 OUTLINE OF SORT/MERGE

The sort/£nerge program of OS IV /F4 arranges
object data into a specified order (sort function) or
merges several presorted data sets into one data set
retaining the original order (merge function).

The sort/merge program provides the user with a
generalized, efficient, and flexible program to han­
dle his sorting and merging applications.

The sort/merge program is generalized in the
sense that it can handle a wide range of sorting and
merging applications. It can, for example, accept a
wide variety of inputs: •
• EBCDIC Or ASCII data sets.
• Concatenated data sets having unlike charac­

teristics or residing on unlik~ devices.
• Variable or fixed-length records.
• Data sets residing on punched cards, magnetic

tape, and direct access storage devices.

The OS IV /F4 sort/merge program selects the
most efficient sort or merge algorithm appropriate to
any collection of input, output, and work data sets.
Specifically, it will:
• Automatically choose the most efficient sorting or

merging method for a given input-output-inter­
mediate storage configuration and set of file
characteristics .

• Determine, at execution time, the maximum
amount of real storage in the system that can be
made available to it, and use it.

• Support as intermediate work devices the F478B
and F479B disk storage devices, the F6625A drum
storage device, and the F610 series and F611
series magnetic tape units.

Sort/merge is flexible in that it can:
• Be installed to include all of its functional

capabilities, or only those capabilities needed by
the user's installation.

• Perform a sort operation on as many as 64 control
fields, arranging the data in either ascending or
descending order.

• Perform an intermediate merge operation on as

many as 16 previously-sorted date>. sets.
• Include at execution time as many as 18 different

types of exit routines. (This makes it possible for
the user to use his own I/O error-handling
routines.) Using these specially written routines
the user can also perform common sort-related
tasks such as generating summary reCJ~ds, delet­
ing and inserting records, and general file mainte­
nance.

Fig. 7.1 shows the sort unit configuration and Fig.
7.2 shows the merge unit configuration. Data defini­
tion names (DDNAMES) for sort/merge are as
follows:
• SORTIN

·SORTOUT

• SORTLIB

• SORTMODS

• SYSIN
It SORTWKnn

• SORTCKPT
(optional)

• SYSOUT

input file(s) to be sorted or
merged.
output file of sorted or merged
records.
library of sort/merge program
modules.
data sets furnishing any modules
required by the exit routi.nes.
program control statements.
work area(s) used by the sort
program.
data set for checkpoint records.

messages produced by Sort/
Merge.

7.1 .1 Sort/Merge Phases

The OS IV /F4 sort/merge program consists of an
initialization phase, an internal sort phase, an inter­
mediate merge phase and a final merge phase. The
flow of sort/merge is shown in Fig. 7.3.

Initialization phase
In this phase OS IV /F4 checks the SYSIN control
statements for sort/merge, determines the sort tech­
nique, calculates program area and work area, and
checks the SOR TIN and SORTOUT units used for
sort/merge.

PROCESSING PROGRAMS

L-----...JI 0
SORTIN SYSIN e

SORTLIB

SORT

SORTMODS

Fig. 7.1 Sort unit configuration diagram

Internal sort phase
In this phase, input data are internally sorted and
written onto the SORTWKnn data sets. Data at one
or more specified positions (control fields) in the
records are compared, rearranged, and written as
sequences of partially sorted records (strings), in
either ascending or descending order. When all
input data have been processed in this way, control
passes to the next phase.

Intermediate merge phase
Strings generated in the internal sort phase are read
back from the SORTWKnn data sets, merged into
longer strings, and written back onto the work data
sets. This operation is continued until the number of
strings reaches the target number for the final merge
phase. If the number of strings generated in the
internal sort phase is already less than the target
number of strings for the final merge phase, the
intermediate merge phase is skipped.

171

SORTWKnn

o
u

Final merge phase

SORTWKnn

SORTCKPT

Fully-sorted (or fully-merged) data are written onto
the SORTOUT unit(s).

7.1.2 Sort Processing Flow

When the user requests sorting, the four phases are
normally executed in the indicated sequence. Under
some conditions (e.g., if input data sets are substan­
tially presorted), the intermediate merge phase may
not be needed.

7.1.3 Merge Processing Flow

When the user requests merging, only the initializa­
tion and final merge phases are performed. Input
data must have been presorted into the required
sequence.

SORT/MERGE

1..-----11 0
SORTINnn SYSIN e

SORTLIB

Exit routine
lib.

SORTMODS

Fig. 7.2 Merge unit configuration diagram

7.2 FUNCTION OF SORT/MERGE

7.2.1 Control Field Comparison Method

MERGE

A maximum of 64 control fields can be specified.
Each control field must be within 4092 bytes from
the beginning of each record, and the sum of .the
lengths of all control fields must not exceed 4092
bytes.
The control functions are as follows:
• Order specification

The order of arranging the records, either ascend­
ing or descending, can be specified for each con­
trol field .

• Control field comparison
The format of each control field is specified on the

o
B

SORTCKPT

Sort/Merge control statement.
• Change of control field collating order

When the characters of the control field are com­
pared, the user can request a collating sequence
other than EBCDIC. This is accomplished by
using the ALTSEQ command on the sort/merge
control statement. Even if this function is used,
the value of the control field is not changed for
output.

• Processing control fields of identical' value
When records whose control fields have identical
values are sorted, the records are usually output
without preserving the input sort order. However,
the input sort order can be retained in output
records having equal control fields by specifying a
parameter on the sort control statement.

PROCESSING PROGRAMS

Table 7.1 Organization of sort/merge data sets

~ SORTWKnn SORTIN SORTOUT
Characteristics

Unit CR,MT,OASO· LP, MT, OASO· MT,OASO--

Organization Sequential organization , Sequential organization Sequential organization
VSAM data set VSAM data set ,-

Record format Fixed or variable length Fixed or variable length -
• Any OASO unit supported by aSAM and VSAM can be used as the SORTIN or SORTOUT unit .

•• Mixed use of MT and OASO is impossible. For OASO, the SORTWKnn units must be the same type and the work area on
each DASO must be contiguous (i.e ., a single DASD extent).

7.2.2 Input/Output Data Sets and Work Data Sets

Table 7.1 shows characteristics of the SORTIN,
SORTOUT, and SORTWKnn data sets. The follow­
ing sections d~scribe block lengths and record
lengths permitted for the SORTIN and SORTOUT
data sets.

Block Length
When several SORTIN data sets are concatenated,
their block lengths may differ. •
• During merging, block lengths of SORTIN'data

sets may differ.
• For both sorting and merging, block lengths of the

SORTIN and SORTOUT data sets may ,differ.
• Any DASD unit supported by QSAM and VSAM

can be used at the SORTIN or SORTOUT unit.
• Mixed use of MT and DASD is impossible. For

DASD, the SORTWKnn units must be the .same
type and the work area on each DASD must be
contiguous (i .e., a single DASD extent) .

Record length
During the execution of sort/merge, the user can
change the record length by using an exit routine.
The length is specified through the LENGTH
parameter of the RECORD control statement.

7.2.3 User Exit Routines

The user can optionally perform special processing
during Sort/merge by using exit routines written in
assembler language. All exit routines are linked to
the Sort/Merge program by the MODS control state­
ment.

Data set opening and initialization exit routines
The user can open any/all data sets and perform
other initializations byproviding the following exit
routines:

Ell Internal sort phase
E21 Intermediate merge phase
E31 Final merge phase

Data set close exit routines
These routines can be used to close any/all data sets

274

in the indicated phase (s) .
E17 Internal sort phase
E27 Intermediate merge phase
E37 Final merge phase

Record change exit routines
These routines can be used to add or delete input
records and to change their contents.

E15 Internal sort phase
E25 Intermediate merge phase
E35 Final merge phase
E32 In the case of merge processing

Error processing exit routines for record input/out­
put
These routines can be used to incorporate an error
recovery routine into the Sort/merge program for
each user or for an entire computation center. This
exit routine is automatically executed when an
uncorrectable input/output hardware error is
encountered.

During input
E18 Internal sort phase
E28 Intermediate merge phase
E38 Final merge phase

During output
E19 Internal sort phase
E29 Intermediate merge phase
E39 Final merge phase

Control field change exit routine
This routine (E60 lengthens, shortens, or alters any .
control field within a record. The control-field­
change option must be specified on the Sort/Merge
control statement for each control field to be
changed.

Work data set overflow exit routine
This routine (E 16) specifies the procedure to be
taken by the Sort/merge program when available
main storage for any work data set is insufficient.

7.3 SORT/MERGE TECHNIQUE

The Sort/merge program selects the sort technique
for the internal sort phase and intermediate merge
phase which uses the least CPU and I/O time.

Internal sort technique
The internal sort technique is called tournament
replacement selection technique. This technique
simultaneously compares as many input records as
will fit in main storage and outputs as long a string as
possible.

Intermediate merge technique
The intermediate merge technique depends on the

SORT/MERGE

type of external storage (DASDs or magnetic tape
units) used for the work data sets.

When work data sets are on DASDs, the balanced
merge technique is used, which alternates main
storage processing with input/output and distributes
the output strings across as many tracks of the work
data set as possible thereby lessening the head
motion.

When three or more magnetic tape units are used
for the work data sets, the read backward polyphase
merge technique is applied. After the internal ~or t

phase has distributed strings to all work units but
one, the reels on these units are read backwards ;
longer strings are then written onto the last work
unit.

User exit name

Initialization phase E 11

E 15

E 16 O'OP", d,,, ,,,','
E 17

E 18

U
Internal sort phase

E 19

No
E 61

~ Wbrk data sets
I

0 E 21 I

E 25
Intermediate merge phase

U E 27

[28

Merge input data sets
E 29

0 U Final merge phase E 31

Sort/merge E 32
output data set

0 U E 35

E 37

E38

E 39

Fig. 7.3 Flow-diagrarn of sort/merge

CHAPTERS
LINKAGE EDITOR/LOADER

8.1 OUTLINE OF THE LINKAGE
EDITOR/LOADER

The linkage editor and the. loader are two OS IV /F4
processing programs for preparing the outputs from
language translators for execution. The linkage edi­
tor prepares a load module, which a separate job step
can bring into main storage for execution. The
loader prepares an executable program in main
storage and passes control to it directly during the
same job step .

The linkage editor provides several additional pro­
cessing facilities for creating overlay programs,
selectively replacing program sections, and building
and editing system libraries. The loader provides fast
loading of programs that need not be stored for pro­
duction use or do not require the special processing
facilities of the linkage editor. One invocation of the
Loader is comparable to linkage editing and immedi­
ate execution of a program.

8.2 FUNCTIONS OF THE LINKAGE
EDITOR

8.2.1 Combining Object Modules and Load
Modules

The user compiles object modules with an assembler
and/or compiler. He creates an executable program
by furnishing these object modules to the linkage
editor or loader, which links them together by
resolving references to external symbols.

Linking Modules
Input modules (object modules and load modules)
specified by linkage editor control statements are
linked into one load module, as shown in Fig. 8.1 .

Editing load modules
If the user wishes to change an executable program,
he compiles (or assembles) and edits only object

276
- ----------_._-- - -- ----_. - ------.. ---- ---- ---- -- -- - - --- ~ - - -

o 0 U source program

o 0 U Obi'" mod.'.

Control
statement

Fig. 8.1 Source, object, and load modules

Load module

modules which need updating rather than his entire
source program. Specified modules can be replaced,
renamed, deleted, or reordered via linkage editor
control statements as shown in Fig. 8.2.

Automatic call function
To resolve external symbol references, the optional
automatic call function can retrieve load modules
from a specified library (the automatic call library) .
in order to resolve them. Data sets specified by
INCLUDE or LIBRARY control statements (except
any libraries named on the SYSLIB DD statement)
can be used as automatic call libraries. The following
functions can be used to specify external references
that are not to be resolved by the automatic call
function:
• Restricted nocall function (LIBRARY control

statement parameter)
. The specified external symbol references are not
to be resolved during the current linkage editor
step.

• Never-call function (LIBRARY control statement
parameter)
The specified external symbol references are not
to be resolved during any linkage editor step .

• NCAL option (EXEC statement parameter)
All external symbol references are not to be
resolved during the current job step.

Load module

A

B

C

Object module

Linkage
editor

Load module

NEWA

B

C

REPLACE A (NEW A)

Fig. 8.2 Replacing a control section in a load module

8.2.2 Address Allocation

Allocating addresses comprises the following four
functions: aligning page boundaries, reserving
COMMON and static external storage areas, pro­
cessing of pseudo-registers, and processing of pro­
totype control sections.

Page boundary alignment for control sections and
labeled common areas
Control sections and labeled common areas of the
load module are aligned to a 4 K -byte page boundary.
Careful alignment of page boundaries can reduce
paging activity by OS IV fF4 virtual storage architec­
ture.

Reservation of specialized storage areas
This function processes the unlabeled common con­
trol section (COMMON) generated by FORTRAN
and assembler-language processors. It also processes
any static external storage areas generated by a PLfI
compiler. The linkage editor reserves this common
area in the output module.

Pseudoregister processing
Pseudoregisters are useful for coding reentrant pro­
grams. The storage area for these registers must be

LINKAGE EDITOR/LOADER

secured dynamically during execution. The linkage
editor processes the pseudoregisters by calculating
the amout of storage required for each pseudo­
register, the displacement of each pseudo register
from the beginning of the dynamic storage area, and
the total storage area required for all pseudo­
registers .

Processing prototype control section
A prototype control section (PSECT) may be
requested for a reentrant program containir.g data to
be changed, work data, and address constants. When
a prototype control section is furnished for a
reentrant load module, the linkage editor links it
with any other prototype control sections. If the
reentrant attribute is not specified, PSECTs are pro­
cessed in the same way as ordinary control sections
(CSECTs).

Each time the load module is attached or linked,
the OS IV IF4 Supervisor copies the PSECT into a
Supervisor-allocated work area.

8.2.3 Program Structure Processing

The program structures permitted by OS IV IF4 are
the following:

PROGRAM
STRUCTURE

STATIC
STRUCTURE

DYNAMIC
STRUCTURE

SIMPLE
STRUCTURE

OVERLAY OVERLAY
STRUCTURE STRUCTURE

DYNAMI C
PROGRAM
STRUCTURE

DYNAMIC
LINKING
STRUCTURE

The principal difference between a static struc­
ture and a dynamic structure is the time at which the
modules required for e]S:ecution of the program are
linked. A static structure has all required control sec­
tions linked into a single load module. A dynamic struc­
ture contains two or more load modules. At execution
time, the OS IV IF4 control program loads the proper
program into the user's virtual storage area and passes
control to it. The conceptual flow of control for each
structure is shown in Fig. 8.3.

PROCESSING PROGRAMS

Simple structure

Overlay structure

Dynamic program structure

Dynamic link structure
Branch

SVC45

RETURN

RETURN Branch

Loading

Load
module

[3 DALTAB

o Module to be
loaded

Fig. 8.3 Conceptual figure of the program structure

Table 8.1 AUowable program structures

Simple structure
All programs for one job step are loaded into virtual
storage at one time and immediately executed

Overlay structure
An overlay structure consists of several segments
which overlay one another upon request by the user
program.

Dynamic program structure
A dynamic program structure retrieves other load
modules depending on execution flow. These
modules are loaded - and control is passed to them
- via various supervisory macro instructions:
ATTACH, LINK, XCTL, LOAD, CALL and
RETURN.

Dynamic link structure
This structure dynamically links to load modules
managed by the OS IV IF4 control program as well as
those specified explicitly by the user in his address
space. A dynamic linking table (DALTAB) is gener­
ated by the linkage editor to resolve external sym­
bols possibly required during each execution of the
program. Control is passed to each module only
when actually required by the executing program.

In a dynamic program structure, the user fur­
nishes program-control macro instructions and the
linkage editor need not perform special processing.
The static and dynamic link structures differ in how
they resolve external symbol references. The
linkage editor can process either structure, as
requested by the user.

8.3 TIME-SHARING CONSIDERATIONS

So that programs can be developed, debugged, and
executed under TSS control (for details see Part 4,
"Time Sharing System"), not only compilers and
the assembler but also the linkage editor and loader
are available under TSS.

~ Simple structure Overlay structure Dynamic program Dynamic link
Program structure structure

Linkage editor X X X X

Loader X X· X

• (Some restrictions)

Table 8.2 Usage attributes

~ Program
Refreshable Reenterable Serially reusable Nonreusable

Linkage editor X X X X

Loader X

278

TERM option
The PARM parameter of the EXEC statement
designates the output unit for error and warning
messages from the linkage editor and loader. Output
is to the unit (terminal, line printer, OASO, or mag­
netic tape) specified by the SYSTERM DO state­
ment.

Prompter
Prompters are provided for the linkage editor and
loader , called directly or indirectly through a TSS
terminal command to allocate data sets required by

(QEJ
SYSUT 1 SYSLIN SYSLIB o

Linkage editor Automatic call libraries

OuD
Fig. 8.4 Linkage editor unit configuration diagram

LINKAGE EDITOR/LOADER

the linkage editor or loader, to invoke the linkage
editor or loader, and when processing is completed,
to release these data sets.

8.4 REQUIRED UNIT CONFIGURATION

The unit configurations used by the linkage editor
and loader are shown in Figs. 8.4 and 8.5, respec­
tively.

o
U
Units required
for execution

Loader and
execution

Link
pack
area

SYSUB

SYSTERM (for TSS users only)

smOUT c::J 0 U
uo CJ

Fig. 8.5 Loader unit configuration diagram

CHAPTER 9
UTILITY PROGRAMS

9.1 OVERVIEW

OS IV /F4 offers system utility, data set utility and
independent utility programs. System utility pro­
grams are used to maintain system control informa­
tion - volume tables of contents (VTOCs), catalogs
(SYSCA TLG), PASSWORD data sets, etc. Data set
utility programs perform various transcription and
validation operations on sequential, partitio~ed, or
direct access data sets. They reorganize, change, or
compare records at the data set and/or record level.
Most data set utility programs offer various user exit
facilities to permit each installation to customize its
operation. System and data set utility programs can
be invoked by other application programs.

9.2 SYSTEM UTILITY PROGRAMS

9.2.1 Alternate Track Assignment and Recov­
ery-JSGATLAS

This utility program allocates an alternate track as a
logical replacement for a hardware-defective DASD
track. Salvageable data records on the defective track
are moved to the alternate track, after analysis of any
records wbich are difficult or impossible to read.

9.2.2 DASD Initialize, Dump, or Restore
JSGDASDR

The functions of this utility program are to initialize
a DASD volume, assign one or more alternate
tracks, and save or restore contents of a DASD
volume, specifically:
• To write a volume label and to create a volume

table of contents on a new or reconditioned
DASD volume.

• To perform thorough surface testing for a DASD
volume, verifying its capability to read/write data
from each track without hardware errors.

---~- . - -. - ..

• To change the serial number of a DASD volume.
• To allocate an alternate track as a replacement for

a defective track.
• To write part or all of the contents of a DASD

volume onto another volume.
• To write ("dump") a DASD volume onto mag­

netic tape, or to restore the tape contents back
onto a DASD volume.

• To write a diagnostic image of one or more DASD
tracks onto the system output unit.

9.2.3 Initialize Magnetic Tape Reels-JSGINITT

This utility program can initialize one or more mag­
netic tape reels. Volume and header labels are cre­
ated; either ASCII or EBCDIC can be selected as the
character code.

80 bytes 80 bytes

Load point

Header label

Volume label

Fig. 9.1 Tape format after initialization

9.2.4 J-;st Data Sets or Control Informa­
tion - JSGLlST

This utility program can perform the following ser­
vices:
• Display the contents. of a system catalog

(SYSCATLG data set).
• Display a partitioned data set directory .
• Display selected information from a DASD

volume table of contents. The information can de­
scribe the entire volume or a selected data set.

9.2.5 'Edit and Print SMF Statistic8-JSGSTATR

This utility program edits and prints certain informa­
tion collected by the OS IV /F4 system management
facilities .

9.2.6 Move or Copy a Data Set-JSGMOVE

This utility program can copy or move a sequential,
partitioned, or direct access data set. The source data
set is usually deleted when processing has been com­
pleted - unlike the JSECOPY utility program - so
the user must invoke JSGMOVE carefully so a
useful data set is not prematurely deleted.
• To copy or move an arbitrary data set.
• To copy or move a group of cataloged data sets.
• To copy or move part or all of a system catalog

(SYSCA TLG data set) .
• To include or exclude the specified data sets (or

members of a partitioned data set) while copying
or moving the contents of a DASD volume.

• To unload a partitioned data set onto a magnetic
tape as a sequential data set, i.e., t6 back up the
data set. Likewise, the program can' reload the
magnetic tape copy back onto a DASD volume in
partitioned format.

9.2.7 Program for VTOC and Catalog Manage­
ment-JSGPROGM

This utility program has the following functions:
• To delete data sets or partitioned data set (PDS)

members.
• To change the names of data sets or PDS mem­

bers.
• To catalog or uncatalog data sets.
• To create or delete indices or index names from

the system catalog.
• To link or delink 'portions of the system catalog.
• To create or maintain the indices for generation

data groups.
• To create or change the passwords for the DASD

volume.

9.3 DATA SET UTILITY PROGRAMS

9.3.1 Compare Two Data Set8-JSDCOMPR

This utility program can compare pairs of records
from two sequential data sets or two partitioned data
sets. Sequential data sets are considered identical if
they contain the same number of records and corre­
sponding records and keys are identical. Two par­
tioned data sets are considered identical if they con-

UTILITY PROGRAMS

tain the same number of records in corresponding
members, contain note lists in the same positions of
corresponding members, and have identical records
and keys.

9.3.2 Copy a Data Set-JSECOPV

This utility program can copy one or more part~ ­

tioned data sets:
• To copy, delete , or replace specified members

from the target data set.
• To change names of selected members.
• To copy all members-or specified mem­

bers-onto magnetic tape in order to back up the
data set, and vice versa.

• To compress and reorganize a partitioned data set,
in order to reclaim unusable DASD space.

9.3.3 Generate a Test Data Set-JSDDG

This utility program creates data sets for program
debugging. Test -data are generated by specifying
output record fields and desired characteristics or by
selecting given fields from input records for the out­
put records . .

9.3.4 Edit a Job Stream-JSEEDIT

This utility program copies and edits data sets by
selecting them from a job stream; it creates a new
input job stream.

9.3.5 Generate a New Data Set-JSDGENER

This utility program generates one or more sequen­
tial data sets or members of a partitioned data set. It
can also create a partitioned data set from a sequen­
tial data set.

9.3.6 Print or Punch a Data Set-JSDPTPCH

This utility program 'has the following functions:
• To print or punch a sequential data set or an entire

partioned data set.
• To print or punch specified members of a parti­

tioned data set.
• To print or punch specified records from a

sequential or partitioned data set.
• To print or punch.the directory from a partitioned

data set.

9.3.7 Update a Source Llbrary-JSEUPDTE

This utility program has the following functions:
• To create a source-program library.

?Ill

a To update a source program stored in a sequential
or partitioned data set.

a To change a data set organization (from parti­
tioned to sequential, or vice versa) .

...

~A~T4

T§S
fr~ME SHA~~NG ~V§"IEM)

. .

i

. I

CHAPTER 1
OUTLINE OF TSS

The time sharing system (TSS) of OS IV IF4 allows
the user to make use of a computer from a terminal.
A terminal is a typewriter-like device connected
through telephone or other communication lines to
a computer. A terminal can be any distance from the
computer - in the same room or in another city.
Because OS IV IF4 processes instructions much
faster than the user can enter them through the ter­
minal, it can process input from many ,remote ter­
minals at the same time it is processing jobs entered
locally at the computer center. However, due to the
speed of the system, the user will be able to work
almost as though he had exclusive' use of the com­
puter.

The user can tell the system what work to perform
by typing in one or more commands in the TSS com­
mand language. The command language can be used
to:
• enter, store, modify, or retrieve data at the ter­

minal.
• solve mathematical problems.
• develop programs in Assembler, FORTRAN,

COBOL, PLlI, or other languages.
• execute programs.

Table 1.1 Terminals supported by TSS .

Terminal. TY LP PT CRT

Fujitsu F1510 X X
F1520 X X X
F1530 X
F9520 X X X
F9525 X X

TY Typewriter I/O
LP Line printer
PT Paper tape read/punch
CRT Display terminel

Other terminals in common use as TSS terminals may
also be supported in the future provided they meet certain
common standerds for control and interface.

When the user enters a command into the system,
the system performs the work requested by that
command and sends messages back to the user's ter­
minal. The messages tell him the status of his pro­
gram and whether the system is ready to accept
another command. He can interrupt the processing
of a command at any time to enter a new command,

If the user makes a mistake typing in a command,
or if he fails to include some necessary information
with the command, the system sends him a message
prompting him for correct input. He may then re­
spond by typing in this information. Table 1.1 lists
the terminals supported by TSS.

1.1 TSS DESIGN

TSS has been designed with the following charac­
teristics:
• ease of input.
• efficiency.
• h igh reliability.

To accomplish these goals, the following con­
siderations have been given to the system:
• A variety of commands allow the remote user to

use most OS IV IF4 capabilities .
• TSS provides the user with both diagnostic and

informative messages.
• OS IV IF4 batch environment is compatible with

TSS. Therefore, programs developed under TSS
can be executed in batch mode and batch­
developed programs can be run under TSS.

• The system automatically schedules jobs by means
of its optimization algorithm.

• The modular structure of the control program
confines system failures to one module.

• The secrecy of the user's programs and data is
assured.

For additional details the reader should consult
the FACOM OS IV IF4 TSS General Description
and other related F ACOM OS IV IF4 TSS
Manuals.

TSS (TIME SHARING SYSTEM)

1.2 TSS FEATURES

Simultaneous operation of TSS and batch
TSS and batch jobs operate simultaneously in the
same system. Allocation of CPU control among
batch and TSS jobs is easily controlled. Since this
allocation is a function of the number of concurrent
TSS and batch jobs, the optimum distribution is
achieved at all times.

Multiprocessor support
TSS jobs can be executed on either a uniprocessor or
multiprocessor configuration,

Multiple virtual storage support
Each terminal user is given a virtual address space of
16 million bytes 06 MB). Since the user is not
restricted by real-storage region sizes, he can readily
execute most programs.

Number of concurrent jobs
The maximum number of concurrent TSS and batch
jobs is essentially infinite (approximately 1,500).

Number of users
The number of authorized TSS users for one
installation is unlimited.

Communication access
Virtual Telecommunications Access Method
(VT AM) controls communication between the ter­
minal user and TSS. A communication access man­
agement routine processes incoming messages. The
configuration of each remote terminal is defined for
VT AM when TSS is installed at a center.

Job swapping
If an executing job must await terminal input/out­
put, it is swapped out to external storage. The job is
brought back into the system when the input/output
is complete. Hence, a greater number of users can
use real storage and other system resources.

Response times
OS IV /F4 allocates CPU time according to an
algorithm which assures adequate response time for
TSS jobs. The standard algorithm can be altered for
each installation.

Compatibility with batch
The environments of TSS and batch are mutually
compatible so that it is possible to execute TSS­
developed programs in the batch environment and
batch-developed programs by TSS. A data set gener­
ated by batch may be accessed by TSS and a TSS­
registered data set may be used in the batch environ­
ment.

Service routines
The service routines contain control functions

required by all terminal users. The 110 service
routine dynamically controls the 110 device buffers.
The parse/scan service routine checks the validity of
input commands and their syntax.

Debug aids
Interactive debug commands allow the user to debug
his programs efficiently by setting breakpoints or
displaying the contents of registers and storage
areas. A breakpoint is either a source statement to
be executed or a condition to be met which will sus­
pend program execution and return control to the
user's terminal. A program may be executed from
one breakpoint to any other breakpoint or from the
beginning to any breakpoint.

Prompters
Prompters provide a conversational method of
defining jobs for compilers or the linkage editor/
loader. The prompter accepts input commands from
the user, analyzes the input for correctness and com­
pleteness, prompts the user to input any missing
inforr;:;.ation, allocates the necessary data sets, and
invokes the proper processor. The terminal user can
activate the following prompters by command:
• FORTRAN.
• COBOL.
.PLlI.
• Assembler.
• Linkage editor.
• Loader.

Dynamic allocation
The user can allocated data sets such as system li­
braries, user libraries and other data sets required by
his jobs, then release them when they are no longer
needed. This dynamic allocation should be
employed for data sets which cannot be allocated
until job execution.

Conversational remote job entry (CRJE)
CRJE allows the user to execute programs
developed under TSS in the batch environment.
Users may generate, update and debug programs
under TSS and then submit the completed programs
to the OS IV /P4 job initiators for execution.

User protection
Since each user has an independent virtual space he
can neither destroy nor read from another. user's
address space. The system automatically applies the
user's registered name and password to his data sets
so they are protected from any illegal access.

Failure localization
Since each user has an independent space, he can
not be affected by a failure in another user's job.

User control of the system
Any authorized user can modify a system parameter

(e.g., . permission to use the OPERA TOR or
ACCOUNT commands) . The user can also monitor
syst~m operation from his terminal.

TSS Command Language
Table 1-2 lists the types of TSS commands. Addi­
tional details are found in the FACOM OS IV/F4
TSS Command Reference Manual and the
F ACOM OS IV IF4 TSS Command Processor
Generation Guide.

TSS languages
TheTSS language processors are as follows:
• ANS COBOL.
• FORTRAN IV GE.
• FORTRAN IV HE.
.PLlI.
• Assembler.

Table 1.2 Types of TSS commands

Purpose Function

System Defines installation or
control user control informati on

Session Requests the system to
control initiate or terminate a

session .

Program Creates or updates data
development or source programs .
data operation

Program Controls translation,
operation linkage and execution

of programs.

Data set Allocates data sets,
management releases or modifies data

set names, pri nts data
sets, and deletes data sets.

Debug aid Allows conversational
debugging of programs.

Terminal Defines terminal
control characteristics, such as

the attention, character
erase and line erase
characters,

Conversational Submits TSS-generated
remote batch programs to the OS

OS IV IF4 job initiat<;lrs.

Connect time Requests terminal
connect time.

Message Sends messages to the
transmission console operator or

to other users.

Command Request the function,
description syntax, and operands

for any TSS command.

Command
,

OPERATOR
~CCOUNT

... LOGON
LOGOFF

EDIT
MERGE

CALL, RUN
LINK

ALLOCATE
LIST
DELETE

TEST

TERMINAL
PROFILE

SUBMIT
OUTPUT

TIME

SEND

HELP

1.3 SYSTEM CONFIGURATION

The hardware and software configurations required
for TSS are described below. For additional informa-

OUTLINE OF TSS

tion, the reader should consult the FACOM OS IV I
F4 TSS General Description.

1.3.1 Hardware Configuration

The following devices are needed for TSS operation
in addition to the standard configuration for batch
processing:
• Terminal devices

Typewriter devices used as TSS terminals are the
F1510, F1591, F1592 typewriter terminals and the
F9525 display devices.

• Communication control processor (CCP)
A F2805 or F2803 communication control pro­
cessor is a required interface between the terminal
communication lines and the channel processoc.

• Direct access storage devices
DASDs for holding the command library and
system data sets are the F6625 magnetic drum
unit and the F478B/F479B magnetic disk pack
unit.

Fig. 1.1 illustrates a representative hardware con­
figuration for TSS.

1.3.2 Software Configuration

The following elements make up the TSS software
system:
• Virtual Timesharing Access Method (VT AM).
• Time Sharing Control Task (TSCT).
• Address Space Control Task (ASCT) .
• Session Control Task (SCT).
• TSS Message Control Program (TSSMCP).
• Terminal Monitor Program (TMP) .
• Command Processor (CP).
• Service routines.
• Language processors.
• Syntax Checkers (FORTRAN, PLin.
• Prompters (FORTRAN, COBOL, PLlI, Assem­

bier, Linkage Editor, Loader).
• Interactive Debug (FORTRAN, COBOL).

Fig.l.2 shows the configuration of the TSS control
program.

The main functions of each program in the soft­
ware system are as follows:

Time sharing control task (TSCT)
TSCT performs overall control of TSS'. It initializes
TSS processing, generates space for users, mOdifies
the job-scheduling algorithm, and terminates TSS
processing.

Address space control task (ASCT)
ACST controls swap-out and swap-in of jobs and
processes attention interrupts from user terminals.

TSS (TIME SHARING SYSTEM)

Central processi ng
unit
(CPU)

Channel processor
(CHP)

BMC MXC BMC BMC

CRT
control

unit

Disk
control

unit

~478B/F479B (

BMC: Block multiplexor channel

MXC: Multiplexor channel

Drum
control

unit

Fig. 1.1 Representative hardware configuration for time sharing

as IV/F4

TSS manager VTAM Batch user

Fig. 1.2 Configuration of TSS control program

Session control task (SCT)
SCT allocates resources when a terminal session is
initiated and releases the resources when the session
is terminated.

TSS message control program (TSSMCP)
TSSMCP controls terminal I/O by editing messages
and attention interrupts.

Terminal Monitor Program (TMP)
TMP processes commands from each terminal and
passes control to the appropriate command pro­
cessor.

Command Processor (CP)
CP executes terminal commands.

Service Routine
The service routines are the programs supplied
under TMP and CP which check the syntax of input
commands, allocate device buffers for CP, and
dynamically allocate data sets for the execution of
user jobs.

----- - - --- ----- - - --

Syntax Checker
This program checks the syntax of each statement of
a FORTRAN or PLII source program, and prints
any required error messages.

Prompter
Prompters provide the user with a conversational
method of defming a job. The prompter inputs com­
mands from the terminal, allocates system libraries
and user data sets needed for program execution,
prompts the terminal user to input any missing
operands, invokes the proper processor, and returns
all resources when processing is complete. The
following prompters are available:
• FORTRAN.
• COBOL.
.PLlI.
• Assembler.
• LINK (for Linkage Editor).
• LOADGO (for Loader).

LOGON
LOGOFF

Terminal

[Terminal -rz

Flow of control
Data access

V

T

A

M

Fig. 1.3 1'8S architecture

TSCT

T

S

S

M

C

P

,

tJ

OUTLINE OF TSS

Interactive debug
Interactive debug facilitates the debugging of
FORTRAN or COBOL source programs. The user
may set breakpoints in his program, define initial
values of variables, execute his program from break­
point to breakpoint, and display any storage location
desired.

Fig. l.3 illustrates the TSS architecture.

1.4 OUTLINE OF PROCESSING

Initialization of TSS at the Installation
The console operator must perform the following
tasks to start TSS:
• Start VT AM.
• Start the Time Sharing Control Task (TSCT) to

initiate TSS processing.

--,/

.:::"-' ..
- """' ,

-~-----'

"' ,

SYS1 .PROCLIB

SYS1.UADS

User's
directory

SYS 1.BRODCAST

Broadcast
data set

CMD PROC

- '::----y

- " .. -:: ... ~ .. ~ ..

... I:l-J BATCH I o I lob .

, , ,

\ SYS1 .CMDLlB

User's
library

••• _ ••• 0 0" ~.O " _'.

TSS (TIME SHARING SYSTEM)

Starting a Terminal Session
The terminal user must take the following steps to
initiate a session:
• Switch on the terminal' power source.
• Input the LOGON command with the user's

registered name, password, account number, and
log-on procedure. The registered name of the user
identifies all his data sets. The password is
checked to verify that the user is authorized to use
the TSS system. All processing is charged to the
user's account number. The log-on procedure
identifies the cataloged procedure which defines
the system resources and libraries needed by the
user. Generally, the program designated by the
EXEC statement in this procedure is a terminal
monitor program (TMP).

Terminal Processing
Input the command for the processing required.
The system invokes the proper command processor
from the command library. If an operand is omitted
from the input command, any default value will be
utilized . For any operand with no standard value, a
message such as "ENTER XXXXXXX" ~s dis­
played at the terminal to prompt the user to input
the missing information. Users may obtain infprma­
tion about a command, subcommand or operand by
inputting "HELP" together with the name of the
command. .

Generally, a user must enter a series of commands
during a terminal session. Part or all of this series
can be optionally cataloged as a command procedure
and invoked by an EXEC command. Command pro­
cedures can be prepared by each instailation and/or
generated by the user at his terminal.

Stopping a Terminal Session
The user terminates a session by the following steps:
• Enter LOGOFF command.
• Disconnect the terminal. The system updates the

user's accounting information, releases the
system resources, and disconnects the terminal
from TSS. To commence a new session after can­
celling the previous session, a LOGON command
can be entered without a prior LOGOFF com­
mand.

Terminating TSS at the Center
The consoTe operator must perform the following
steps to halt TSS when all terminal sessions are com­
plete:
• Stop the time sharing control task.
• Stop VTAM.

1.6 SUPERVISION Of SYSTEM OPERA­
TION

The TSS Control Program uses tuning parameters

290

set by each installation and information from each
task to optimally distribute resources to each user.

Tuning parameters greatly affect resource dis­
tribution so the operating condition of the system
must be monitored to assure optimum system effi­
ciency. The functions which enable the system man­
ager to determine the system condition are:
• OPERATOR command

Any authorized user can use the OPERATOR
command to display the number of active ter­
minals and batch jobs submitted from TSS,
modify TSS options that were defined when TSS
was initiated, monitor the processing of both TSS
and batch jobs, cancel ajob submitted by TSS, and
send or receive messages from other terminal
users.

• SMF (System Management Facilities)
The SMF data collection routines gather account­
ing information, such as CPU time, data set
activity information, such as EXCP count by
device, and volume information, such as the space
available on given DASDs.

• GTF (Generalized Trace Facility)
GTF assists the user in problem determination
and diagnosis by tracing system and user events.
GTF produces trace event records for the event
types the user selects to monitor.

1.6 DATA AND PROGRAM PROTECTION

Data and program protection is important in a time­
sharing system in which a number of users access
system resources simultaneously. OS IV IF4 TSS has
the following protection features include authoriza­
tion check, program protection, and data set protec­
tion.

Authorization check
When the user inputs a LOGON command the
system checks his name to verify that it is in the
directory of authorized users. If a password is
required, it is also checked. The directory defines
which functions each user is authorized to use.

Program protection
Each user has an individual address space in TSS and
may not access any other address space. His pro­
grams and data buffers cannot be destroyed by other
users, nor can he destroy other users' programs.

Data set protection
The user may associate a password (which ' can be
identical to his LOGON password) with any data set.
Any other user must then input the proper password
in order to open this data set.

There are two types of passwords:
~ Renewal protection

The password is required only if the data set is to

be rewritten, updated or erased.
o Read protection.

The password is required if the data set is to be
read.

1.7 SERVICE ROUTINES

The system contains service routines which perform
syntax checking, 110 buffer control and data se~
allocation.

ParseJscan routine
The scan routine determines whether the command
names in each I/O string are grammatically correct;
the parse routine checks the syntax of each operand
in the 110 string. Default values are provided for
missing operands (when defined). The user is

OUTLINE OF TSS

prompted to furnish the missing operands having no
default values.

1/0 service routine
The terminal monitor program (TMP) reads in
commands from a terminal and transfers control to
the proper command processors. The I/O service
routine dynamically allocates I/O buffers for each
command processor as needed.

Dynamic allocation of data sets
In general, data sets required for a user's job cannot
be conveniently allocated until execution. The
dynamic allocation facility allocates data sets as
required, releasing them when no longer needed.
The maximum number of data sets than can be
dynamically allocated must be specified by each user
in his LOGON procedure.

CHAPTER 2
TSS 'COMMAND LANGUAGE

2.1 GENERAL CONCEPTS

User attibute data set (SYS1.UADS)
Every user authorized to use TSS has an attribute
data set which contains his registered name,
password, account number, LOGON procedure and
other user attributes. SYSl.UADS is compared with
the user's LOGON information to check his
authorization to use the system.

Broadcast data set (SYSl.BRODCAST) .
This data set contains messages sent by the installa­
tion or one terminal user to other terminal users.
Messages of general interest to all users ~re called
NOTICES; messages for an individual user are
called MAIL.

Terminal mode
A terminal is in command mode when it is ready to
accept a command. OS IV /F4 indicates this status by
writing a READY message to the terminal. When
the user inputs a command with one or more sub­
commands such as the EDIT command, OS IV /F4
writes an EDIT message to the terminal, notifying
the user that the terminal is in the EDIT subcom­
mand mode. These messages are called mode
messages.

The entry modes of the EDIT command are edit­
ing mode, which accepts subcommands, and input
mode, which accepts data. Users generate source
programs in input mode and then make corrections
in editing mode. Modes can be changed by typing
blank lines or Attention characters. Fig. 2.1 shows
the relationship of the different modes.

Authorization
Use of the ACCOUNT, OPERATOR, or CRJE
commands requires authorization from the installa­
tion. SYS 1. U ADS indicates whether these com­
mands can be used. The ACCOUNT command is
us~d to modify SYS1.UADS.

Data-set naming conventions
A user identification qualifier and a content iden­
tification qualifier should be prefixed and suffixed,

292

Prior to initiating
session

LOGOFF command

Blank l ine!
attention char.

Fig. 2.1 Mode conversion

LOGON command

respectively, to the name of each user data set. The
user identification qualifier is typically his registered
name; the content identification qualifier describes
the purpose and/or type of data set. For example, if
a user is named ' ''USER'', his data set is named
" DSN," and the data set is an assembler program,
an appropriate name for the data set might be:

USER.DSN.ASM
All user data sets in TSS are cataloged in the above

format.

Second-level messages
If a system message ends with .. + ", the user may
demand more detailed information by inputting
"?". The resulting expanded message is called a sec­
ond level message.

Attention interrupt
The user can interrupt any executing program by
pressing the attention key. Processing will continue
if a blank line is input. However, if a new command
is 'input, the current program is cancelled and the
new command is processed. Any messages waiting
to be sent to the user are erased.

Command procedure
A series of frequently executed commands can be
cataloged as a command procedure. The procedure is
invoked by the EXEC command which causes the
series of commands to be executed as if it were
input.

Text editing
A terminal may have character or line erase charac­
ters. The system converts all lower case letters into
capital letters. If the user would input "a*Bb*de**e"
when "." is designated as the character erase
character, "BE" would be accepted by the system.

2.2 SYSTEM CONTROL COMMANDS

The ACCOUNT command is used to add or delete a
TSS user or to alter an attribute of a user (e.g.,
authorization to use the OPERATOR, SUBMIT, or
ACCOUNT commands). Any designated user may
employ the OPERATOR command to. supervise the
TSS system. The user may output the availability of
system resources, output the number of TSS users,
cancel jobs, and send messages to any terminal.

2.3 SESSION CONTROL COMMANDS

The LOGON command requests initiation of a ter­
minal session. The registered user name, password,
account number and LOGON procedure name are
input. Multiple sessions cannot be established using
the same registered user name. The LOGON infor­
mation is compared with SYSl.UADS and if all
inputs are valid, the terminal session may begin.

The LOGOFF command terminates a terminal
session. When the LOGOFF command is input, the
system updates the user's accounting information,
releases the system resources allocated to the user,
and disconnects his terminal from the system. If the
user inputs a LOGON command without inputting a
LOGOfF command, the system automatically ter­
minates the prior session and establishes a new ses­
sion.

2.4 PROGRAM-DEVELOPMENT AND
DATA-ENTRY COMMANDS

The EDIT command is used to generate, update or
delete source programs and data. The EDIT com­
mand has various subcommands and entry modes
for input and editing. The input mode generates new
programs and data; the editing mode updates or
deletes existing files . For additional information, the

TSS COMMAND LANGUAGE

reader should consult the F ACOM OS IV IF4 TSS
Command Reference Manual, the FACOM OS IV /
F4 TSS Command Processor Generation Guid(' ;
and the FACOM OS IV /F4 TSS Messages
Handbook.

Input mode
The user puts the terminal into input mode by desig­
nating NEW as an operand of the EDIT commanc:.
The system outputs the current line numbei on the
left side of the terminal to prompt the user to ir: ;.ut a
line of data. If the user depresses the new line key
after inputting each line, the system outputs the
number of the next line. The INPUT subcommand
of EDIT will also put the terminal in the input mode.
If the user inputs a blank line, the terminal will
switch from input mode to editing mode. Each line
of a source program can be checked for syntax errors
as it is input . The SAVE subcommand of EDIT must
be used to save the newly-generated data set.

Editing mode
EDIT has numerous subcommands to update and
delete data sets. The user can replace a given
character string with another character string with
the CHANGE subcommand. The DELETE sub­
command deletes given lines in a data set. Both line
number and contextual editing can be performed .
The user can edit a specific line or group of lines by
specifying the line number as an operand of an EDIT
subcommand. Contextual editing operates upon
character strings. For example, if the user is unsure
which line contains the character string 'XXX' he
may input FIND'XXX'. The line pointer will be
moved to the line containing the given character
string. The user may either output the line with the
LIST subcommand or correct the line with the
CHANGE subcommand. The line pointer can be
moved up or down a given number of lines or set at
the ' beginning of a data set. Entire lines can be
inserted with the INPUT subcommand. The END
subcommand terminates editing.

2.5 PROGRAM OPERATION COM -
MANDS

Each compiler generates an object module from
a source program. The LINK command calls the
OS IV IF4 linkage editor to convert the object
module to a load module. The CALL command
executes the load module. The RUN command
translates a source program to an object module,
converts the object module to a load module, and
executes the load module. However, the object and
load modules are not retained. The LOADGO com­
mand executes an object module, but the load
module is deleted after execution.

TSS COMMAND LANGUAGE

2.6 DATA SET MANAGEMENT COM­
MANDS

Data set allocation, release, and deletion
The ALLOCATE command dynamically allocates
output and work data sets when requested by a user.
(The EDIT command defines input data sets.) The
FREE command releases an allocated data set. The
DELETE command deletes a data set which was cre­
ated by the EDIT command.

Data set availability and other attributes
The LIST ALC command lists data sets currently
allocated to this user. The LISTDS command out­
puts for a given data set its creation date, record
length, organization, and member names (if parti­
tioned). The LISTCA T command lists the data sets
which are cataloged under a given user identification
number.

Data set protection
The PROTECT command associates a password
with a data set so it can be read, written, or deleted
only by authorized users.

2.7 DEBUGGING COMMANDS

The TEST command is used to debug assembler
language programs by:
• Setting specific values into storage or general

registers.
• Setting or releasing breakpoints.
• Executing a program from its beginning or from

any relative address (or labeled statement).
• Printing the contents of storage or registers.
• Printing the contents of an OS IV IF4 control

block.

The interactive debug feature performs the same
functions as the TEST command but is used for
FORTRAN or COBOL programs.

2.8 TERMINAL CONTROL COMMANDS

The user can issue a TERMINAL command to
designate an attention character string, if his ter­
minal does not have an attention interrupt key. The
user may also specify the logical line size or screen

294

size of his terminal. A character erase character
and/or line erase character may be defined with the
PROFILE command.

2.9 CONVERSATIONAL REMOTE JOB
ENTRY (CRJE) COMMANDS

The CRJE commands (SUBMIT, STATUS, OUT­
PUT, CANCEL) allow the TSS user to submit jobs
to the OS IV IF4 batch initiators. The user must first
generate a data set containing the job stream as card
images.

,
\

\ ,
\

\
\

,8
, ,

, ,
,

Job stream
I

I

The SUBMIT command transfers the job stream
to the batch input queue. The STATUS command
reports the status of a job submitted for batch pro­
cessing. If "NOTIFY" is specified as a parameter on
the JOB card, the user will be notified when his job
has been executed provided he is still logged on to
TSS. After the job has been executed, it can be
printed with the OUTPUT command. The CANCEL
command cancels a particular job.

2.10 MISCELLANEOUS COMMANDS

The TIME command displays the connect time and
CPU time which has elapsed in the current session. .
The SEND command transmits a message to the
installation or other users. The HELP command
clarifies the meaning of any requested TSS com­
mand or gives the grammar of its operands.

CHAPTER 3
TSS LANGUAGE

The following TSS conversational language pro­
cessors are available:
• COBOL.
• FORTRAN.
• PUI.
• Assembler.

3.1 COBOL LANGUAGE

The user may generate, edit, compile, and execute
COBOL source programs from his· terminal.

COBOL source program generation
The EDIT inpu t mode is used to generate source
programs. Line numbers are automatically assigned
to each input line. The line numbers are used to edit
a particular line or to identify a line with a diagnostic
message. The user may define logical t.abs for
COBOL statements by defining the column number
for each tab.

COBOL program compilation
The user invokes the compiler with the CALL com­
mand to compile the source program. If the COBOL
prompter is used, the required data sets ' and com­
piler options are defined and the compiler is
executed. The compiler diagnostic messages are
printed at the terminal. Any source program errors
detected by the compiler can be corrected with the
EDIT command.

COBOL program execution
The object program generated by the COBOL com­
piler is executed by the loader, using the LOADGO
command. Any data sets required for execution
must be allocated in advance with ALLOCATE
commartds. If the load module created from the
object program is to be retained, the user can invoke
the linkage editor with the LINK command. The
user can then execute the load module with a CALL
command. The RUN command compiles and
executes a program in one step. The COBOL interac­
tive debug facility aids the testing of COBOL pro-

grams. The user must first compile his program
specifying the TEST parameter on the CALL com­
mand which invokes the COBOL compiler .

3.2 FORTRAN LANGUAGE

The following two compilers are provided for
FORTRAN:
• FORTRAN IV GE (abbreviated GE) .
• FORTRAN IV HE (abbreviated HE) .

GE is appropriate for program development and
short executions. It has the following features:
• Compilation time is minimized.
• An interactive debug package is available.

HE is appropriate for long production runs and
produces:
• Minimum object program size.
• Comprehensive cross reference listings of source

program variables and statemen~ labels.

The GE language is a subset of the HE language
with the exception of:
• interactive debug package,
• free-form input of source statements, where verbs

and operands can be separated by arbitrary num­
bers of blanks, rather than having fixed positions.

A conceptual diagram of FORTRAN is given in
Fig. 3.1.

The user may generate, edit, compile, and execute
FORTRAN source programs from his terminal.

, FORTRAN source program generation
The user generates source programs using the EDIT
command in the same manner as in COBOL. GE will
accept free-form input which does not comply with
standard FORTRAN. Free-form input statements
may start in column 1 and extend across as many
lines as needed, using the hyphen as a continuation
character. The .CONVERT command will convert
free-form to standard FORTRAN input (statement

TSS (TIME SHARING SYSTEM)

--- : Flow of data
Free type

sourcr

--- ----- -- : Flow of control
) 1

I

====): Output

Convert
command
processor

Convert
utility

,g, .
Standard

I type source

I I

j
EDITOR

(edit command
processor)

I I

I
HE prompter

HE compiler FORTRAN
library

Jl t
I

Object module I
I lOADGO

command
processor .

linkage
editor /loader

~
load module

Fig.3.1 Flow of data and control in FORTRAN

Free form source has no set column alignment.
Standard type source conforms to the proper
columns prescribed by ISO.
Syntax checking can be performed for both GE
and HE source statements.

labels, continuation characters, and statements are
in specific columns).

The Syntax Checker detects syntactical erros in
source statements as they are input with EDIT sub­
commands:

FORTRAN compilations
FORTRAN programs can be compiled by either GE
or HE. When the compiler is invoked by the
FORTRAN prompter, necessary data sets and
default compiler options are automatically provided
by TSS. Diagnostic messages are printed at the ter­
minal. Source statements can be corrected with the
EDIT command, facilitated by the line numbers of
each erroneous line printed in the diagnostic
messages. The user may also print the entire pro-

296

SCAN subcommand or ..
SCAN operand FORTRAN

--- -- - - - --- ----- ------- - - - ----- syntax - --- -- - --- - - --- - - - - ---- -- ----
checker

...
/ --- , J J l
,

Execution '-
GE prompter

i'---

I

. ..

loader GE ./ - compi ler, -- -- GO
option

~NO:EST
option

~TEST option

Object I I
load

module module

t ,/
FORTRAN
interactive

debug

The FORTRAN library is common to GE and
HE. It contains functions (such as absolute
value and minimum) which are called by
FORTRAN programs.

gram listing at his terminal.

FORTRAN executions
Object modules generated by GE or HE can be
executed with a LOADGO command. When the
object module is converted to a load module, perti­
nent libraries can be linked and saved for future use
with the LINK command. A load module (i.e., pro­
duction program) can be executed with the CALL
command. GE and HE object modules can be
arbitrarily combined into . load modules. A RUN
command automatically compiles and executes a
source program. The FORTRAN interactive debug
feature facilitates testing FORTRAN programs. The
program must be compiled and link-edited with the
TEST option prior to execution.

~.3 PL/I LANGUAGE

PLII programs can be generated, compiled, and
executed at the user's terminal.

PL/I source program generation
The user generates source programs with the EDIT
command in the same manner as in COBOL. TSS
sets logical tabs for the input statements and auto­
matically assigns line numbers. The syntax checker­
detects any syntactical errors as the source state­
ments are input.

PL/I compilations
The user invokes the compiler to compile the source
program. If the compiler is invoked by the PLII
promter, TSS provides all necessary data sets and
compiler options and executes the ~ompiler. The
compiler prints diagnostic messages at the terminal
and the user can correct any erroneous statements
with the EDIT command.

PL/I executions
The object module generated by the compiler is
executed with the LOADGO command. The LINK
command converts the object module to a load
module and saves the load module. The CALL com­
mand executes the retained load m9dule. The RUN
command compiles and executes a source program
in one step.

TSS LANGUAGE

3.4 ASSEMBLER LANGUAGE

Assembler programs can be generated, compiled,
and executed from a terminal.

Assembler source program generation
The EDIT command generates Assembler source
programs in the same manner as COBOL. Source
statements can be input free format.

Program compilation
The user invokes the assembler to assemble the
source program. If the assembler is invoked by the
prompter, all the necessary data sets and assembler
options are automatically provided and the assem­
bler is executed. The diagnostic messages of the as­
sembler are output at the user's terminal.

Program execution
The LOADGO command executes an object
module. The RUN command assembles and
executes a source program. The LINK command
converts an object module to a load module and
saves the load module. The load module is executed
with the CALL command. The TEST command is
used to debug an assembler program which has been
assembled ana link-edited with the TEST option.

INDEX

ABEND (see abnormal end macro instruction)
abnormal end macro instruction (ABEND), 75, 76,

153, 222, 230
appendage interface, 154
condition, 223
exit routines, 222, 223
typical causes, 76

abnormal termination, 71
COND parameter with an, 77
dumps, 79

abortive disconnect, 106
absolute addresses, 218
absolute generation numbers, 146
absolute track (ABSTR), 142
absolute track address, 137
ACB (see access method control block)
access method control block (ACB), 169

macro instruction, 169, 170
access method services (AMS), 16, 156, 157,

175-177
functions, 156
functional commands, 175
modal command, 177
services, 175
VERIFY command, 175

access
basic, 128
diverse modes of, 8
methods, 124

characteristics of, 128
DAM, PAM, SAM, 124

technique, 128
accessing

a direct data set by block address, 137
VSAM catalogs, 172
VSAM under PLlI, 253

ACCOUNT commands, 111,293
accounting records, 87
ACR (see alternate CPU recovery)
active task, 223
activities defined by Supervisor, 211, 213
acquiring a terminal, 182
acquiring and returning of buffers, 127
ACP (see application control program)
ADD command, 111
adding KSDS records, 165
adding VSAM direct records, 166
address

absolute track, 137
alignment control in assembler, 265
allocation, 277
displacement in base, 264
mapping for the system area, 33
range, 27
space dispatching priority, 214
spaces, 7, 11

creating new, 37

for TSS jobs, 57
multiple, 28
multiple virtual, 6
overall addressing of, 36
printout of, 76

translation, 30-31
process, 30

address space control (ASCT), 287
address space control block (ASCB), 215
addresses, absolute, 218
addressing assembler instructions, 264- 265
addressing in the assembler source program, 264
advanced information management (AIM) system,

7-8,22-24
data base management, 23
execution flow of the, 24
list organization in, 23
message management, 23
operational management, 23
program management, 23

_ support management, 23
system definition management, 23

advantages of VSAM, 155
aging increments, 57
aging, priority, 13, 55
AIM (see advanced information management)
algorithm, LRU, 12
algorithmic language. (ALGOL), 7, 255- 257

asterisked lines in, 256
character handling functions in, 256
CHECK option in, 256
debugging facilities in, 256
I/O facilities in, 256
I/O procedures in, 256
program linkages, 255
required unit configuration for, 256 - 257
standard and variable functions in, 255 - 256
standard functions in, 255
variable functions in, 255

all extents (ALX), 142
ALLOCATE commands, 294, 295
allocating

resources to jobs, 61 -72
storage, 61
system resources, 61

allocation
determining numbers of volumes/units per

request, 63
of split cylinder space, 142 -143

allocation unit (ALOCUNIT) parameter,.47
allowable program str.uctures, 278
allowing for changes in cataloged and in-stream

procedures, 102
ALTER command, 174, 175, 176
altering the sequence of operations from a remote

terminal, 106
alternate consoles, 94 - 95

a!t.:rnate CPU recovery (ACR). 4. 205- 207. 219
feature. 5 .

alternate path retry (APR). 4. 205. 206
facility. 18

alternate track assignment and recovery
(JSGATLAS). 280

AMP parameter. 172
anticipatory volume setups. 14-15
APG (see automatic priority group)
appendage

interface. abnormal end. 154
routine routes. 153
routines. 211

application control program (ACP). 23
application program. LOGON by an. 192
applicatioQ program name definition (APPL) macro

instructions. 186. 193
APR (see alternate path retry)
arithmetic operations instructions. 262

floating-point. 263
arithmetic overflow/underflow conditions. 212
ASCB (see address space control hlock)
ASCII code. 119

and EBCDIC. code conversion between. 120
assembler. 262-270 '

addressing in the source program. 264
addressing instructions. 264 - 265
control instructions. 265 - 267
input format and sequence control in. 266
instructions. 262. 263 - 267
language statements, 262
listing control in, 266
macro instructions. 262, 267
prompter, 268
punch control in, 266
redefinition of operation codes in. 266
required configuration for. 270
saving and restoring status in. 266
source program generation in TSS. 297
symbolic linkages in. 265

assembly phase of the SLll00 compiler. 258
assigning and changing dispatching priorities.

214-215
assigning data sets to SYSOUT classes. 80
assignment statements

for character strings. FORTRAN. 249
in SLll00. 259

asterisked lines
ALGOL,256
FORTRAN. 249

asynchronous connection request,s. 193
asynchronous input/output statements. 249
ATTACH macro instruction. 139.213.214.219,

220. 221. 222
attaching a task using. 219- 220
difference in program control among LOAD,

CALL. LINK. XCTL macro instructions. 226
attaching and detaching tasks. 219- 222
attention character string. 294
attribute. nonsharable. 64. 66

300

attributes of SVC routines, 216
authorization check in TSS. 290
authorization routines of VSAM password protec­

tion. 174
authorized program facility (APF), 228

authorization password of, 228
automated processing, 5
automatic

adjustment of paging rates, 12
call fundion, 276 - 277
call library, 276
network shutdown, 198
processing of commands, 96
restart, 84. 85

conditions required for. 85
postponing. 85

start options. %
text correction, 204
uncatalogirig during catalog management, 148
volume switching, 132

automatic checkpoint/restart (ACR), 84. 85
automatic double precision (AUTODBL) option, 248
automatic precision increase (API), 248

facility in ALGOL. 256
automatic priority group (APG), 20. 74 -76.

216-217
algorithm. 217
dispatching priorities. 216
interval, 217
length of the interval. 217
range. 217

automatic volume recognition (A VR), 72
feature, 14
function, 61

automatically disconnect, 106
auxiliary consoles. 13
auxiliary consoles control commands. 93
auxiliary passwords. 149
auxiliary storage. 27
available terminal . 192

back space (ESP) macro instructions, 131
background of virtual storage. 27 - 28
backup console service. 91
balanced jobs. 75. 216
balanced merge technique, 275
base register. 264
basic access, 128
basic blocks. 247
basic direct access method (BDAM) macro in­

structions, 16. 127, 137. 140
features, 16

basic 110 system (BIOS). 152
basic partitioned access method (BPAM) macro in­

structions. 16. 127. 134
basic sequential access method (BSAM) macro in­

structions. 16, 126, 127, 130. 131, 136
basic transmission units (BTUs), 199 - 200
batch interface commands, 22

batch jobs under TSS, 21
BOW (see block descriptor word)
binary coded decimal (BCD) data sets

code conversion between EBCDIC and, 132
bits, change, 38
block, 117. 200

address, accessing a direct data set by, 137
format, 123

block descriptor word (BDW), 117, 130
blockcount check processing routine, 125
blocking, 117. 136

factor. 117
blocks, 116

basic. 247
BPAM (see basic partitioned access method)
branching instructions, 263
broadcast data set (SYSl. BRODCAST), 15,

110-111,292
BSAM (see basic sequential access method)
buffer, 125

acquiring and returning of a, 127
assigned to a data set, 126
CCP insufficiency, 200
centralized management of. 13
management, 125-127
online management, 200
pool , 125

JES, 49
releasing of, 126
reservation and releasing of, 126 -127
reserving of. 126
structure of, 126
type of requirement of, 126

requesting more than one unit, 62 - 63
buffer control block (BCB), 125
buffer size (BUFSIZE) parameter, 47
buffering

exchange, 127
method of, 127
options. 16
simple, 127

FUILD macro instruction, 126, 130
BUILD record (BUILDRCD) macro instruction, 130
built-in subroutines and functions in PLlI, 253
bypassing disposition processing with dummy data

set, 71
bypassing JES writers, 83

CALL command, 293, 295
CALL macro instruction, 220, 226
calling cataloged and in-stream procedures,

101-102
CANCEL command, 76, 109
capabilities of the data management system, 113
capacity record (RO), 121
card punch unit

character codes, 129
functions unique to the, 132
record formats, 129

card reader
specifications, 114
unit character codes, 129
unit record formats, 129

catalog
management, 144-149

cataloged, calling and in-stream procedures,
101-102

cataloged procedure. 100
cataloging

of data sets, 70, 145
of data sets by job control statements, 145
of general data sets, 145
of generation data sets, 146-148

catalogs, 100
categories of inpUt/output devices, 113
CCP (see communications control processor)
CCW (see channel command word)
central, communication between remote and, 111
central operations for RES, 111-112

differences in program control among LOAD,
LINK, XCTL, and ATTACH macro
instructions, 226

recovery by means of an alternate, 18
central processing unit (CPU), 72

and main-storage failures, 18
communication access in, 286
communication between, 219
limited, 75, 216

jobs, 216
management, 6
synchronization of two, 219
unit of work for a. 72

centralized management of buffers, 13
chained scheduling, 16

function, 131
change

bits, 38
dispatching priority, 224
of control field collating order, 273

CHANGE command, 111
change priority (CHAP) macro instruction, 214, 221.

224
CHANGE subcommand, 293
channel

control program, 123
failures, 18
program, 39, 152

channel check handler (CCH), 4, 18, 205, 252
channel command word (CCW) instruction, 12,32,

39, 152, 265
problems in referencing addresses within, 39
problems in retrieving, 39 -

channel OAT (see channel dynamic address tran­
slation)

channel dynamic address translation (channel DAT),
6,12,28-40

channel-OAT features , 32, 211
channel end (CE), 153

appendage interface, 154

channel-to-channel adapters, 178
channels, non-DAT, 39
CHAP '(see change priority)
character

codes, card punch unit, 129
control, 117 -118
control space requirement, 118
erase character, 294
handling functions in ALGOL, 256
line erase, 294
string. attention, 294

characteristic for floating-point number. 248
characteristics of access methods. 128
characreristics of DSCB, 122
CHECK macro instruction. 131. 134. 137

option in ALGOL, 256
check function (write operation), 132
checkpoint, 84

indentifier. 86
checkpoint (CHKPT) macro instruction, 86
checkpointed data, 86
checkpoint/restart, 84 - 87

processing. 85
CLASS parameter, 13
classes. output. 80
close function. 124-125
CLOSE macro instruction, 124. 196
closed destination (CLSDST) macro instruction, 192.

196
closing data sets. 124
cluster station, 179
COBOL, 7. 241- 245

and other languages. linkages between. 241
bit processing, 243
character-string processing. 243
communications interface. 242
compilation in TSS. 295
compiler option statement, 244
conversational aids for the compiler, 242
conversational processing. 242
debugging facility, 244
execution in TSS, 295
file organizations, 243
generation in TSS, 295
linkages. 241
optimization. 242
outline of functions. 241- 245
reentrant programs. 241
report generation, 244 - 245
required configuration for, 245
required configuration for, 245
segmentation. 245
sort/merge. 244
structures, 241
TSS language, 293

code conversion between ASCII and EBCDIC, 120
code conversion between EBCDIC and BCD data

sets. 132
code, message destination, 92
coldstart, 96

302

cold-start IPL, 47
coldstarts. 97
collecting SMF data, 87
combining object modules with load modules.

276-277
command

AMS functional, 175
AMS modal, 177
groups. 93 - 94
mode. 292
processor (Cm. 288
statement. 97, 98
teleprocessing, 199

commands, 92
AMS. 175-177
central operator, 92
channel,39
compiler invocation, 22
data display and message replies. 93
1ES, SO, 53. 57. 59, 60
NCP.199-200
RES. 111-113
teleprocessing. 199
TSS. 292 - 294
VTAM.195-199

comment statement. 97. 98
COMMON (COM). 264
common area. 29. 34 - 35
common service area (CSA). 29, 34, 35
communication

access in TSS. 286
between CPUs. 219
between different languages. 247
between remote and central. 111
control levels. 178
data. 17 -18, 178-204

communication vector table (CVT). 215
communications control processor (CCP), 15, 178.

199
buffer insufficiency. 200
data units, 200~201
dynamic panel display facility. 198
exchanging channel adapters. 198
no-buffer mode, 200
slowdown mode. 200

communications networks, 7
compare two data sets-1SDCOMPR, 281
compatibility between GE and HE FORTRAN, 246
compatibility of TSS with batch. 286
compiler invocation commands. 22
compiling phase, 258
compiete key. 166
component terminal, 179
components of job control. 43
com pressing keys, 17
concatenation of data sets, 137-138
concept of shared DASD, 140
COND parameter

on a JOB statement, 77
on an EXEC statement. 77

with an abnormal termination, 77
condition code, 77

multiple, 76
operators, 77

conditional assembler instructions, 267 - 268
conditional disposition, 69, 70
conditional execution of job steps, 76 -78
conditionally generate no-operation instructions

(CNOP),266
conditions required for automatic restart, 85
configuration of JES, 46
configuration of OS IV IF4, 9
configuration of TSS control program, 288
connection, 182
connecting a VT AM application program to a ter­

minal, 191-193
by LOGON from network console, 192
by LOGON from terminal, 191

connecting by LOGON, 191-193
by SIMLOGON from program, 192
unilateral acquisition by program, 192

consoles
alternate, 94-95
auxiliary, 13
auxiliary control commands, 93
backup service, 91
definition of multiple, 93 - 95
display, 13,92-93
functional, 13
main, 13
main control commands, 93
network, 192

constants in SLll00, 259
constraints on a partitioned data set, 133
CONTACT command, 199,202
content identification qualifier, 292
contention method, 179
contents of FLPA, 34
contents of procedures, 100-101
contents of spool volumes, 49
contents of the VSAM catalog, 172
contiguous (CONTlG), 142
control

and phyisical blocks, 159
and space management of spool volumes, 49
area, 158

pre-formatted, 175
sectioning, 165

channel program, 123
character, 117 -118
comparison method, 273
creating line procedures, 183
execution, 60
field collating order, change of, 273
interval sectioning, 165
interval structure of a, 160-161
Line feed, 132
network, 179
of RES jobs, 15
of the display screen, 93

over VSAM deletions and updating, 174
password, 149, 174
space requirement, 118

control (CNTRL) macro instruction, 131
CONTROL commands, 200

auxiliary consoles, 93
data, 22
main console, 93

control interval definition field (CIDF), 160
control section (CSECT), 263

control volume (CVOL), 145
controlling

interpretation and execution, 60
JES writers, 82
RES output destinations, 104

conversational
aids for the COBOL compiler, 242
entry of batch jobs under TSS, 21
facilities, 20
processing, 268

COBOL,242
FORTRAN, 248
PLlI,252

remote job entry (CRIE), 286
commands, 294

conversion of data sets from ISAM or SAM format
to VSAM format, ISS

CONVERT command, 295
converting from ISAM to VSAM, 173
copy a data set-JSECOPY, 281
count data format , 120
count-key-data format, 120
CPU (see central processing unit)
create data set labels. 124
creating a direct data set, 136
creating a new address space, 37
creating a new task, 213
creating and receiving messages, 110-111
creating line control procedures. 183
creating the VSAM index and data portions on

separate volumes, 163
creation and maintenance of RES system data sets,

111-112
CSECT (see control section)
cumulative external dummy (CXD), 264

DAM (see direct access method)
DASD (see direct access storage device)
data

and program protection in TSS, 290-291
bases, 23
checkpointed, 86
communications, 17 -18, 178 - 204

diagnostic facilities for, 197 - 198
control commands, 22
declarations of items in SLll00, 258
delimiter statement indicating end of, 97
displays and message replies commands, 93
final merge phase of, 272

management. 16. 113 -1 54
capabilities of the system. 113
main functions. 113
outline of. 113-114

medium, 115
mode GET/PUT, 130
protection, 174

data base/data communications (DB/DC) systems, 7
subsystem. 22

data base management system (DBMS), 23
data communication management sybsystem

(DCMS),23
data control block (DCB), 115, 124

by data set label, modification of, 115
by DD job control statement, modification of, 115
exclusive control macro instructions with multiple.

140
initializing. 124
merging. 124
multiple, 140
relationship between and exit processing. 125
setting of exits. 125
shared use of a data set by multiple, 139-140
shared use of a data set by one, 139 '
through DCB exit, modification of, 115
types of exits and their functions, 126

data definition (DO) statement, 22, 97
format of, 98
lOBCAT and STEPCAT, 172
modification of DCB, 115

DATA FORMATS in SLl100, 258-259
data resources, management of, 8
data set, 116

accessing direct, 137
activity records, 88
allocation, release, and deletion in TSS, 294
availability and other attributes in TSS, 294
creating a direct, 136
deleting a, 69-70
exclusive control of a, 69, 71, 138
FORTRAN organizations, 249
generation. 70
integrity processing, 71
keeping a, 70
LOGREC,19
model, 175
names, 67
normal disposition for a, 69
passing a, 70
protection command in TSS, 290-291, 294
receiving the, 70
security,S

features, 16
sequencial, 129
sequencial record format, 129
sequencial volume structure. 129
sharing of a, 138-139
specifying a disposition for the, 69
status, 69

304

uncatail.,., . ~ .;
utility pr0gr~Hs, 280, 281- 282

data set control block (DSCB), 120, 121, 149
characteristics of, 122
concatenation, 123

dat~ set label (DSCB1), 119, 125
C,t'3te, 124
modification of DCB by, 115

data sets, 67-68, 113, 121
assigning to SYSOUT classes, 80
cataloging of, 70, 145
by job control statements, cataloging of, 145
closing, 124
code conversion between EBCDIC and BCD, 132
concatenation of, 137 -138
dedicated data sets, 67-68
delayed writing of SYSOUT, 83
disposition processing of unreceived passed,

70-71
dummy, 67, 132
during checkpoint/restart, 85
entry-sequenced, 164
macro instructions unique to partitioned, 134
management of, 5
multiple, 137
multiple checkpoint, 86
non-temporary, 67
opening, 124
organization of, 123
output, 79-81
PLll,253
processing multiple, 138
relations:lips between volumes and, 115
shared and exclusive control of, 175
sharing, 138-141
space allocation for, 141-143
status and disposition of, 68-72
SYSOUT, 42, 78
system, 234 - 235
temporarily closing, 174
temporary, 67 .
uncataloging, 148
V-format for direct, 136

DATA statements, implied DO loops in, 249
data structures, management of diverse, 8
data transfer under VT AM, 17 -18
data transmission under VT AM, 183
data units, CCP. 200-201
DCB (see data control block)
DD(see data definition)
deadlock, 23. 141

from exclusive control, 141
deadlocks, 8
debug packets, 244

FORTRAN interactive, 2~
debugging

aids for TSS. 22
aids for FORTRAN, 249
COBQL facility, 244
COBOL source program facilities, 244

facilities in ALGOL, 256
interactive, 289
tools, 21

decimal
assignment statement in SLll00, 260
comparisons in SLilOO, 260
data in SLl100, 260
facilities in SLl100, 260
instructions, 263

DECLARE statement in SLll00, 260
dedicated line, 105
default disposition processing, 71
default parameters, overriding, 13
deferred

mounting of volumes, 67
restart, 84, 85

deferred checkpoint restart (DCR), 84, 85 '
deferred step restart (DSR), 84, 85
DEFINE command, 175
define constant (DC) instruction, 265
define external dummy (DXD), 264
define storage (DS) instrv.ction, 265
defining

a VT AM network, 185-186, 188
the status display area, 93

definition
and use of dedicated data sets, 68
decks, 185
fo a VSAM data set, 175 -176
of a VTAM network, 184-187
of an NCP, 185
of local terminals, 185
of LOGON requests, 185-186
of multiple consoles, 93 - 95
of VTAM application programs, 185

delayed writing of SYSOUT data sets, 83
DELETE command, 111, 175, 176, 294
DELETE macro instruction, 226
deleting,

a data set, 69-70
KSDS records , 164

by RBA, 167
VSAM direct records, 166

delimiter statement indicating end of data, 97
demand output, 14,83-84
demand output facility, 83
dequeue (DEQ) macro instruction, 139, 140,228,

229
destination control values, 110
DETACH macro instruction, 221, 222
detaching a task, 221 - 222
determining numbers of volumes/units per

allocation request, 63
device

independence, 115, 156
type, 62

diagnosis
and recovery from hardware failures,S
and recovery from software failures,S
by the M series service processor (SVP), 18

diagnostic facilities for data communications,
197-198

dialup (switched) terminals, 180
dictionary and directory management subsystem

(DDMS),23
differences between KSDS and ESDS, 157
differences in program control among LOAD,

CALL, LINK, XCTL, AND ATTACH macro
instructions, 226

direct access
by RBA, 167
by VSAM key, 165-166
volumes 115, 120-124, 129
volume initialization program, 120

direct access method (DAM), 124, 136-137
direct access storage device (DASD)

initialize, dump, or restore-JSGDASDR, 280
paging to different types of, 12
specifications, 114
structure, 221

direct data set
accessing by block address, 137
and direct access method, 135-137
overall structure of, 135
record format, 136
structure, 135-136
structure of, 135
VBS-format for, 136

direct dump, 208
direct search function, 131
directory, 134
disabled routines, 211, 213

in a multiprocessor, 219
disabled state, minimun, 20
discarded pages, 12, 38
disconnect, abortive. 106
DISCONNECT command, 199
dispatcher, 213
dispatching,. 214

function, 213
priorities, 74, 214, 215

APG,216
assigning and changing, 214-215
change, 224

dispatching priority (DPRTY) parameters, 214
displacement in base address, 264
DISPLA Y command, 109
display consoles, 13, 92 - 93
display screen

control of, 93
format of, 92

disposition of job outputs, 42
disposition processing, 69

of un received passed data sets, 70 - 71
diverse modes of access, 8
DO and END statements in SLll00, 260
DO command, 177
DOS checkpoint record bypass function, 132
DPMOD parameters, 214
DROP instruction, 264

" - -- ~ .-- " , .- - -. . --_ .. ~ -- -- ----' - ' ~' ----------- - ~------- --

DSCB (see data set control block)
DSECT (see dummy section)
dummy' data sets, 67, 132

bypassing disposition processing with, 71
dummy section (DSECT), 264

external, 264
dump, 76

direct, 208
high-speed, 208
NCP facility, 198
real-memory, 209

DUMP command, 209
DUMP facilities, 230
dumping, program, 211, 230
dynamic address translation (DAT), 6

hardware feature, 30
procedure, 30

dynamic
buffering option, 137
connections, 183
display, 93
in TSS, 286
link structures, 21, 227, 241, 247, 278
network control by operator commands, 19~
of data sets in TSS, 291
panel display facility, 198
program structure, 227, 241, 278
status indicators, 13
structure, 277
versus static displays, 93

DYNAMIC attribute during link editing, 227
dynamic device reconfiguration (DDR) 4, 205, 207
dynamic linking table (DALT AB), 227
dynamic support system (DSS), 19, 208

command, 208
command language, 19

dynamically
link programs, 7
redefining the network, 195

easy management and control of VSAM, 17
EBCDIC code, 119

and BCD data sets, code conversion between, 132
code conversion between ASCII and, 120

ECC (see error checking and correction)
edit a job stream-JSEEDIT, 281
edit and print SMF statistics-JSGST ARR, 281
EDIT command, 293

entry modes of the,292
EDIT input mode, 295
editing and printing LOGREC data, 208
editing load modules, 276
editing mode, 292
editing mode in TSS, 293
efficiency enhancements of OS IV IF4, 13-14
efficient spooling, 13
EJECT instruction, 266
ENCODE/DECODE statements, 249
END command, 112, 177

306

END instruction, 264
end, normal, 76
end of

data processing procedure, 125
polling routine, 203
task exit routine, 221
VTAM operations, 197

end of data set (EO D), 125
condition, 125
EOV /EOD function, 124
functions, 125

end of extent (EO E), 153
appendage interface, 153

end of file (EOF) mark, 129, 134
end of transmission (EOT), 195

signal, 195
end of volume (EO V), 125

condition, 125, 132
EOV I EOD function, 124
routine, 132

endi ng network control activities, 200
ENDREQ macro instructions, 170, 171
enqueue (ENQ) macro instruction, 139, 228, 229
entering commands, 93
entry-sequenced data sets, 164
ENTRY instruction, 265
entry modes of the EDIT command, 292
entry. page table. 35
entry-sequenced data set (ESDS), 155, 157

differences between KSDS and, 157
processing, 167 -168

entry sequenced format, 16
EOn (see end of data set)
EOF (see end of fiie mark)
EOT (see end of transmission)
EOV (see end of volume)
EPS (see external page data set)
equate symbol (EQU) instruction, 265
ERASE macro instruction, 166, 167, 170, 171
error checking and correction (ECC), 18

hardware functions, 206
hardware-recovery circuits, 219

error
handling and recovery facilities, 8
message display facility, 198
track, 123

recovery procedure for disk pack device, 123
recovery procedure for magnetic drum unit, 123

error recovery procedure (ERP), 4, 18, 1,54, 205, 207
routine 125

ESDS (see entry sequenced data set)
esoteric name, 61
ESPL (see extended source program library)
establishing communications connections, 182'
establishing communications links, 17
event control block (ECB) parameter, 221
events, external, 211
EVENTS macro instruction, 224
examples of JCL statements, 99-100
exchange buffering, 127

I

exchanging CCP channel adapters, 198
exclusive control

macro instructions with multiple DCBs, 140
'of a data set, 69, 71, 138

by tasks within a job step, 139
of tasks, 8, 71
of VSAM data sets, 174
option, 137
units, 140

exclusive request to update a resource, 229
EXCP (see execute channel program)
execute channel program (EXCP) macro instruction,

16. 123, 152-154, 211
appendage. 153-154

interface, 153
routine, 153

relationship between appendages and, 153
types of appendage interface, 153
usage and processing, 152 -153
usage of, 152
usage precautions, 152

execute (EXEC) statement. 97, 222
COND parameter on an, 77
format of, 98

execution
control,60
facility. 14, 44
flow of the AIM system. 24
jobs, 57
limits. 76
of JES command statements, 54
of jobs and job steps, 73 -75
processing. 14
scheduling, 57 -60

operations, 58 - 59
preparation, 59 - 60

EXHIBIT statement, 244
exit list (EXLST) macro instruction, 169, 170, 191,

1%,197
exit

JCL validation, 91
job, 91
LERAD routine, 193
LOGON, 183, 184, 192
LOGTERM routine, 194
LOSTERM routine, 194
points, 15
routine, end of task, 221
routines, abnormal end, 222, 223,

exits to special processing routines, 125
expansibility features of OS IV IF4, 6-7
EXPORT command, 175, 177
extended

floating point number, 248
precision for real and complex arithmetic, 248
search option, 137

extended source program library (ESPL), 242
extent, 122, 138
external

dummy section, 246

./

events, 211
interruption, 219

handler, 212
writer, 79, 81

enternal page data set (EPS), 9S
storage, 27, 30, 225

external symbols (EXTRN), 265
EXTRACT macro instruction, 224
extraction of task information, 224

F-format (see fixed length record)
failure

channel, 18
localization in TSS, 286
prevention of, 18-19

FBLDL (see fixed BLDL table)
FCB(see forms control buffer)
feed-back option

for creating direct data sets, 137
for updating direct data sets, 137

FIFO seq~ence (first in, first out). 12
file peripheral, 72
final merge phase of data, 272
final-status checking. 175
FIND macro instruction, 134
fix

list, 153
page frames, 39

fixed
pages, 12, 31

short-term, 31
portion of a COBOL load module, 245

fixed BLDL table (FBLDL), 34
fixed length record (F-format), 117, 129, 136

for direct data set, 136
fixed link pack area (FLP A), 34

contents of, 34
including or excluding, 34

fixed -point arithmetic, 262 - 263
fixing pages, 153

long-term, 31
floating-point

arithmetic instructions, 263
assignment st2.tement in SLl100, 260
comparisons in SLl100, 260
data in SLll00, 260
extended number, 248
facilities in SLilOO, 260
number, characteristic for, 248

flow of
control at interruption, 213-216
data and control in TSS FORTRAN, 2%
JEC control, SO •
processing in RES, 107
system generation, 231-232

FLPA (see fixed link pack area)
FLUSH mode, 197
format

control, 178

format-continued
entry sequenced, 16
of DD statement, 98
of display screen, 92
of EXEC statement, 98
of JOB statement, 98

format-D code data sets, handling of, 132
forms control buffer (FCB), 82
FORTRAN, 7. 246- 2SO

and other languages, linkages between, 246
a~signment statements for character strings, 249
asterisk lines, 249
compatibility between GE and HE. 246
compilations in TSS. 296
conver5ational processing, 248
data set organizat:ons. 249
debugging aids, 249
executions in TSS, 296
free-form source statements, 248
HE optimization procedures. 247
interactive debug packet, 248
linkages. 246
prompter, 248
reentrant programs, 246
required configuration for, 249- 250
source program generation in TSS, 295
structures, 247
syntax checker , 248
TSS language, 295-296

FORTRAN IV GE compiler, 246
features of, 246

FORTRAN IV HE compiler, 246
features of, 246

frames , 28
FREEBUF macro instruction, 127
FREEDBUF macro instruction, 137
FREEMAIN macro instruction, 225
FREEPOOL macro instruction, 126
function,

au tomatic call, 276 - 277
DOS bypass, 132
never-call, 277
open, 124
padding, 132
sort/ merge, 273-274

functional consoles, 13
functions

in SLl1 00, 259
independent of I/O device type, 131
LOGREC, 209-210
of the linkage editor, 276 - 278
unique to magnetic tape units, 132
uiiique to the card punch unit, 132
unique to the line printer unit, 132

F690D card punch unit, 132

GENCB (see generate control block)
general concepts of TSS command language, 292
general data sets, cataloging of, 145

308

general flow of paging process, 38
general space allocation, 142
generalized trace facility (GTF), 19. 290
generate a new data set-JSDGENER. 281
generate a test data set-JSDDG, 281
generate control block (GENeB) macro instruction,

170
generate reentrant programs, 7
generating

a complete operating system, 231
a network control program (NCP), 185
a new 110 configuration, 231
RES, 111

generation data group (GDG), 63, 70, 146
name, ·146

generation data set, 70
cataloging of, 146-148
uncataloging a by user's instruction. 149
uncataloging of, 148 -149

generlition, JES, 44
generation numbers, 146

absolute, 146
generic key, 166
generic name, 61
GET facil ity, parallel, 16
GET function, parallel, 131
GET macro ;nstruction, 130. 167
GETB UF macro instruction, 127
GETMAIN macro instruction, 225, 227
GETPOOL macro instruction, 126
GET I ?UT macro instructions

data mode, 130
locate mcde, 130
move mode, 130
subst itute mode, 131
wit); data mode, 130
with locQte mode, 130
with move m·:>de. 130
with substitute mode, 131

global activities , 215
glooal ;ocks, 20 .
glooal opCmization, PLit 252
global service priority list (GSPL), 215
GOTO statement in SLl100, 260
GTRACE macro instructions, 209

HALT command, 197
hand:ing of format-D code data sets, 1~2
handling of F690D card punch unit, 132
handl:ng of 7-track magnetic tape units, 132
hardcopy log, 13, 9S
hardware

conRguration for TSS, 287
diagnosis and recovery from failures, S
diagnosis program, 210
1/0 fai:ure analysis, 18

. ~l'ogl'am event recording (PER) feature, 208
hard ware instruction retry (HIR) 206, 219
harGware/software components of JES, 4S

header label (HDR), 119
held-jobs, 57
hierarchical indexing structure, 16
hierarchical structure, 183
high processing efficiency of VSAM, 16-17
high-speed dump, 208
highlights of SLl1oo, 258
HOLD command, 109
hot reader function, 50
how jobs are selected for execution, 55,
how OS IV IF4 processes batch jobs, 72

IDENTIFY macro instruction, 226
identifying an in-stream procedure, 101
IF command, 177
IF statement in SLiloo, 259
implied DO loops in DATA statements, 249
IMPORT command, 175, 177
improve system throughput, 61
improved processing efficiency of TSS, 21
INCLUDE statement. in SLl1oo, 260
including or excluding FLPA, 34 ,
including the sequence set in the data pqrtion, 163
independent segment, 245
independent utility programs, 210
index-search efficiency, 162 -163
indexed sequential access method (IS AM), 16, 113

restrictions of the interface, 173
typical constraints on using the, 173

initial program loading (lPL), 95,
records, 121

initialization of OS IV IF4, 95
initialization of TSS at the installation, 289
initialize magnetic tape reels-JSGINITT, 280
initializing and modifying a VT AM network, 187
initializing DCBs, 124
initiating tasks by START commands, 75
initiator cataloged procedure (lNIT), 60-61
inline coding, PLlI, 252
input

mode, 292
EDIT,295
in TSS, 293

modules, 276
processing, parallel, 131
queue, 57
stream, 45, 99

input format control (ICTL), 266
format and sequence control in assembler, 266

INPUT processing mode, 140
INPUT subcommand, 293
input/output instructions, 262
input sequence checking (ISEQ), 266
INSPECT statement, 243
installation accounting for computer usage, 15
installation-management enhancements, 14-15
installation management facilities, 5-6
installation-supplied exit VTAM routines, 184
installation verification procedure (IVP), 232

installation writer, 81
in-stream procedure, identifying an, 100, 101
in-stream procedures, modifying cataloged and, 103
instruction

EJECT,266
END,264
input/output, 262
machine, 262-263
POP, 266
PRINT,266
PUNCH,266
PUSH,266
REPRO, 266
SPACE,266
START,264
TITLE,266
USING,264

insuring data set integrity, 71
integrity and schedule management subsystem

(ISMS),23
interactive debug, 289

feature, 294
interface

abnormal end appendage, 154
between JES and user programs, 49 - 50
for applications programs, 8
ISAM, 113, ISS, 157, 173
JES, 15
PLlI,247

inter-job field, 90
interleaved transmission, 105
intermediate merge phase, 272
intermediate merge technique, 275
internal events, 211
internal sort phase, 272
internal sort technique, 275
internal readers, 55

facility, 53
INTERPRET macro instruction, 185
interruptiori

code, 212
control, 211
external, 219
flow of control at, 213-216
handler, 212

external, 212
110,212
program, 212
restart, 212
SVC, 212

page fault, 36
processing, program, 230
time of an, 212

interruptions, 211 - 212
masking, 212
types of, 212

INVITE command, 199, 202
invocation of other subsystems and OS IV IF4,

facilities from PLlI, 253 - 254

I/O
control commands, 93
deviCe dependent function, 131-132
device type, functions independent of, 131
devices , categories of, 113
facili ties in ALGOL, 256
generating a new configuration, 231
hardware failure analysis, 18
interruption handle;, 212
JES relationships, 43
limited, 75, 216
load balancing, 14, 49, 67
procedures in ALGOL, 256
request, 16
service routine in TSS, 291
sort/merge data sets and work data sets, 274
support, 124 ,
support in data management, position of, 124
timing out missed interruptions, 18
units, 113 -114

110 block (IOB), 152
110 supervisor (lOS), 152, 211
IPL, cold start, 47
ISAM interface

processing, 173
program, 155
routine, 113, 157, 173

JCL (see job control language)
JES (see job entry subsystem)
JES access method (JAM), SO-51
JESGEN,44
JESPARA member, SO
job,97

batch, principal outputs from, 78
Class, 52 - 53
control, components of, 43
control statements and procedures, 97-103
end,91
execution, monitoring, 41- 42
flow, 41, 106
image, 41
initiation, 41, 55-61
initiator, 15

functions, 57
JCL statements for restarting, 86- 87
library, 68, 225
managemep..t, 12-15,41-103

services, 41
number of units per step, 64
purge, 91
queue control, 57
and initiation, 56
routing through the system, 77
salvage possibilities during system warmstart, 96
scheouling, 5-6, 41
selection priorities, 53
start exit, 91
step end exit, 91

310

start exit, 91
task, 73, 212, 222

steps, 41, 97, 211
and initiators, 73
conditional execution of, 76-78
number of units per, 64

stream, 45
swapping in TSS, 286
termination, 42

job control language (JCL), 97
conversion parametres, 52
examples of statements, 99-100
interpretation, 60
interpreter, 55
reading and processing of statements, 51
specifying job parameters with statements, 99
statements, 79, 97 - 98

and system messages, 79
for restarting a job, 86 - 87

validation exit, 91
VSAM catalogs and parameters, 172

job entry subsystem (JES), 13, 41, 43 - SO, 79
and user programs, int~rfaces between, 49- SO
buffer pool, 49
bypassing writers, 83
command statemnts, 53
configuration or, 46
contribution to system performance, 45
control statements, 58, 99
controlling writers, 82
exection of command statements, 54
flow of control, SO
functions , 44
generation, 44

ALOCOUNIT, 47
BUFSIZE,47

hardware/software components of, 45
initiaiization, 44, 52, 58
initiator, 58
interface, 15
110 relationships, 43
merging catologed procedures by, 51
modifying operations of a writer, 82-83
parameters, SO
private writers, 83
queue, 51, 78
reader, 13, IS, 58, 75

procedures, 53 - 5S
reading methodology, SO-51
role of, 45
routing job outputs, 83
simplified job scheduling enhancement by, 4S
starting and stopping a reader, SO
statements, 14, 79, 98- 99
threshould percentage, 49
topics described under, 44
unit-record device speed enhancement by, 4S
unit-record utilization enhancement by, 45
writer, "42

rout ines, 15

job file control block (JFCB), 124
job output element (JOE), 79
JOB statement, 97

COND parameter on a, 75
format of, 98
validation exit, 91

JOBCAT and STEPCAT DD statements, 172
jobs, 41

allocating resources to, 61 - 72
balanced, 75, 216
execution batch, 57
execution of, 73 -75
how selected for execution, 55
LOGON and entering, 108-109
number of concurrent, 286
processing mUltiple, 72 -73
sharing by, 174

JQJDASDI utility, 210
JQJDMPRS utility, 210 •
JQLPRDMP service aid, 208 209, 230
JQLSADMP high-speed dump, 209
JQLSADMP service aid, 208, 230
JQMGTF service aid, 208, 209
JQNLIST service aid, 209
JQOJOBQD service aid, 209
JQPPTFLE service aid, 209
JQPSPZAP service aid, 209
JQQDIPOO service aid, 209
JQQEREPO service aid, 208
JSDCOMPDR, 281
JSDDG,281
JSDGENER, 281
JSDPTPCH, 281
JSECOPY, 281
JSEEDIT, 281
JSEUPDTE utility program, SO, 101
JSGATLAS, 280
JSGDASDR, 280
JSGINITT, 280
JSGLIST, 280
JSGMOVE, 281
JSGPROGM, 281
JSGST ATR, 281

keeping a data set, 70
key-sequenced access, 17
key sequenced data sets (DSDS), 155, 157, 159-163

and ESDS, differences between, 157
adding records, 165
deleting records, 164
deleting records by RBA, 167
processing, 164-167
reading KSDS record by, 167
reading records, 164
updating records, 164
updating records by RBA, 167

key sequenced format, 16
keyword parameters, 267

label, no, 119
label, non-standard, 119
label processing, 125

nonstandard routines, 118
least recently used (LRU) algorithm, 12
length of the APG interval, 217
LERAD exit routine, 193
levelling paging activity, 32
levels of protection options, 149
levels of tasks in a job step, 220
library

automatic call, 276
job, 68, 225
private, 66, 225,
procedure, 101
procedure selection, 60
step, 225
task,225
temporary program, 68
transient PLiI subroutine, 251
types of program, 225

limit priority, 214
limitation on re-routing RES outputs, 110
limiting output records, 81
line erase character, 294
line feed control, 132
line, multidrop, 202
line printer specifications, 114
line printer unit

functions unique to the, 132
record formats, 129

line, private, 198
lines, non-dedicated, 103
LINK command, 220, 293, 295, 296
link editing, DYNAMIC attribute during, 227
LINK macro instruction, 226

differences in program control among LOAD,
CALL, XCTL, and A IT ACH macro
instructions. 226

linkage editor, 276
functions of the, 276 - 278

linkage editor/loader, 276-279
outline of the, 276
required unit configuration for, 279

linkages
between COBOL and other languages, 241
between FORTRAN and other languages, 246
between PLiI and other languages, 251
FORTRAN program, 246

linking modules, 276
LIST command, 112
list data sets or control information-JSGLlST, 280
list organization in AIM, 23
list processing in PLlI, 253
LIST subcommand, 293
LISTALC command, 294
LISTBC command, 111
LISTCAT command, 175, 176 -177, 294
LISTDS command, 294

LlSTIDS command, 112
listing control in assembler, assemble, 266
LOAD macro instruction, 226

differences in program control among CALL,
LINK, XCTL, and ATTACH macro in­
structions, 226

load module, 276
combining object modules with, 276-277
editing. 276

loader, 276
LOADGO command, 293, 295, 296
local devices, 44
local locks, 20
LOCAL macro instructions, 183
local service priority list (LSPL). 215
local system queue area (LSQA), 29, 34, 35, 212
local-unit error recovery, 196
iocate mode GET/PUT, 130
lock,20
locks, local.22
log facilities, 91
LOGCHAR macro instructions, 186
logging on to RES, 105
logical cylinders. 13; 47
logical initiator, 60
logical operations, 263
logical recording of errors (LOGREC), 5
LOGOfF command, 196,293
LOGOFF from a network console, 196
LOGON and entering jobs, 108-109
LOGON by an application program, 192
LOGON ch aracteristics table (LCT), 185
LOGON command, IS, 108, 191, 293

issuing from the tenninal, 191
LOGON exit, 183

routine, 184, 192
LOGON from a network console, 192
LOGON macro instruction, 186
LOGREC data set, 199

data, 209
set, 19

editing and printing, 208
functions, 209- 210
recording, 205, 207 - 208

LOGTERM exit routine, 196
long-term fixed pages, 31
LOSTERM exit routine, 196
LPMOD parameter, 214
LSQA (see local system queue area)

machine check handler (MCH), 4, 205, 206, 212
machine instructions, 262 - 263

formats, 263
macro definition exit statement (MEXIT), 267
macro definition header statement, 267
macro definition trailer statement (MEND), 267
macro definitions, 267
macro instruction prototype, 267
macro instructions

312

defining sessions and logical connections, 202
for creating control blocks, 169
for dynamically creating/modifying VTAM con-

trol blocks, 170
for fixing/freeing pages, 33
to define an NCP, 186
to retrieve store PDS records. 134
unique to partitioned data sets, 134

macro language, 267-268
magnetic tape

device specifications, 113
handling of 7-track units, 132
units, functions unique to, 132
volumes, lIS, 118-120
positioning of, 125

MAIL section, 110-111
main- and virtual -storage management, 6
main characteristics of the OS IV /F4 ALGOL com-

piler, 255
main console, 13
main console control commands, 93
main functions of data management, 113
main storage. 27, 225
maintenance assistance by remote telecom-

munications (MART), 19
maintenance of password data set, 149
maintenance operating system (MOS), 210
major facilities of NCP, 199
major features of FACOM OS IV/F4, 4-8
major functions of VT AM, 178
management

data, 16, 113-154
job, 12 - 15,41-103
of data resources, 8
of data sets and volumes, 5
of diverse data structures, 8
of serially reusable resources, 211, 228- 229
of system resources, 6
online network facilities, 8
page, 9-10, 34, 35-37, 38
space,16,141-143
task, 211, 219-224
time, 211

masking interruptions, 212
master password, 174
master scheduler, 13
master scheduler initialization program (MSIP),

95-%
master scheduling, 41
maximum contiguous (MXIG), 142
maximum number of units per allocation request,

63-64
media unit, 115
member area, 134
merge processing flow, 273
merge unit configuration diagram, 273
merging cataloged procedures by JES, 51
message destinations, 94

code, 94
messages, 200

http:loca1.22

creating and receiving, 110-111
operator action, 91
operator messages, 92
to-from the central site under RES, 15-16

method of accessing a direct data set, 137
method of buffering, 127
methods of space a\1ocation, 142
methods of space extension, 143
minimum disabled state, 20
minimum number of volumes per a\1ocation request,

63
miscelIaneous TSS commands, 294
missing interruption handler (MIH), 4, 18, 205, 207
mixed mode macro instructions, 267
mixed-mode parameters, 267
MLP A (see modified LP A)
MNOTE statement, 267
modal command, AMS, 177
MODCB macro instruction, 170
mode. editing, 292
mode messages, 292
modes, processing, 7, 130, 131
model data set. 175
model statements, 267
modification of DCB by data set label, 115
modification of DCB by DO job control statement,

115
modification of DCB through DCB exit, l1S
modified LPA (MLPA), 29, 34
MODIFY command, 60, 82, 110

modifying an initiator, 60
modifying cataloged and in-stream procesures, 103
modifying operations of a JES writer, 82-83
modifying the network status, 195
module, non-reusable, 226
modules, linking, 276
MODS control statement, 274
monitoring job execution and collecting usage data,

42-43
monitoring spool capacity, 49
monitoring the network, 195
mount attribute, 64
move mode GET/PUT, 130
move or copy a data set-JSGMOVE, 281
MSIP (see master scheduler initialization program)
multidrop line, 202
multijobbing, 73
multiple address spaces, 28
multiple checkpoint data sets, 86
multiple command processors in TSS, 21- 22
multiple condition codes, 78
multiple console support (MCS), 13, 91-95

authority levels, 91
multiple data sets, 137
multiple DCBsIDCBs, 140
multiple virtual address spaces, 6
multiple virtual storage support in TSS, 286
multiple virtual storages, 11
multiple volume data, 132
multiple-events WAIT macro instruction, 224

multiprocessing, 73, 217
support, 20, 218

multiprocessor, 5, 217, 219
configurations,S, 214, 217 - 219
support in TSS, 286
system, 73

multiprogramming, 28, 213-214
multitasking, 73, 214

named set of related records, 113
NCAL option, 277
NCP (see network control program)
negative polling limit, 203
network, 179

automatic shutdown, 198
console, 192

LOGOFF from a, 196
LOGON from a, 192

management facilties, online, 8
monitoring, 195
solicitor, 183
structures, 179

network control program (NCP), 7, 17, 18, 178,
199-204

and CCP architecture, 18
block handling facilities, 203 - 204
checkpoint/restart, 198
definition of a, 185
dump facility, 198
generation, 185

deck, 185
macro instructions to define a, 186
major facilities of, 199
pause retry, 199
RESTART commands, 200
restarting, 199
starting a, 200
time-monitoring facility, 198
to VT AM data transfer, 200
user-written block handling routines, 204

network status, modifying, 195
never-call function, 277
NIB macro instruction, 192, 193
NIP (see nucleus initialization program)
no label, 119
nodes, 179
non-communications terminals, 180
non-dedicated lines, 105
non-executable task. 223
non-resident, 216
non-reusable module. 226
non-standard label, 11,9
non-standard volumes, 116
non-temporary data sets, 67
nonsharable attribute, 64. 66
nonspecific volume requests, 67
nonstandard label processing routines, 118
NOPWREAD, 149
normal disposition for a data set, 69

normal end, 76
NOTE macro instruction, 131, 134
NOTICE section, 110
nucleus, 34
nucleus initialization program (NIP), 95, 96
null statement, 97, 98
number of buffers assigned to a data, 126
number of concurrent jobs, 286
number of TSS users, 286
number of units perjob step, 64

object modules. 276
combining with load modules, 276-277

objectives of OS IV /P4, 3
omission of unnecessary paging, 12
ON statement, 244
online buffer management, 200
online network management facilities, 8
online system recovery facilities, 198-199
online terminal test facility, 198
online TEST commands, 200
online test control program (OLTEC), 19,210
open function, 124
OPEN macro instruction, 1.70
opening a VSAM data set, 172
opening data sets, 124
operating a VTAM network, 187 -197
operation of supervisor, 211 - 219
operator. 5-6

action messages, 91
actions for restart, 85
commands. 92

and messages, 92
communications, 75

macro instructions, 75
messages, 92

OPERATOR command, 290
OPNDST macro instruction, 192, 193
optimization, COBOL, 242
optimization of spooling, 48
optimization options, 20
option. exclusive control, 137
optional functions utilized in the direct access

method, 137
optional speed and efficiency, 45
options for disconnecting remote lines, 106
options to increase index-search efficiency, 162-163
organization of data sets, 123
organization of sort/merge data sets, 274
originating task, 213, 221
OS IV/P4

ALGOL compiler, 2S5
catalogs and data sets, 171
configuration of, 9
efficiency enhancements of, 13-14
expansibility features of, 6-7
initialization of,95
main characteristics of the ALGOL compiler, 255
major features of F ACOM, 4 - 8

314

objectives of, 3
principal components of, 11 - 24
processes batch jobs, 72
sharing between configurations, 174
starting/stopping operations, 95 - 97
stopping a system, 96
structure of. 9 - 10
structure of address spaces, 33 - 35
subsystems utilizing VT AM, 179
testing a new system, 232
typical address space, 33
virtual storage architecture, 28 - 38
virtual storage in, 28

outline of COBOL functions, 241- 245
outline of data management, 113-114
outline of RAS, 205
outline of RMS, 206
outline of sort/merge, 271 - 273
outline of the linkage editor/liader, 276
outline of TSS, 285- 291
outline of TSS processing, 289- 290
output

classes. 80
data sets, 79-80
demand, 14,83-84
demand facility, 83
mode PUTX, 131
queue. 57
specifying demand. 84

OUTPUT processing mode, 140
OUTPUT statement, 14
outstanding RESERVE request. 207
overall addressing of an address space, 36
overall structure of direct data set, 135
overlay structure. 247, 278
overlayable fixed segments, 245
overriding default parameters. 13

padding function, 132
pagable and modified link pack areas (PLPA and

MLPA), 35
pagable BLDL list (PBLDL), 29, 34, 35

table. 34
pagable link pack area (PLPA), 29, 34
page

algorithm. 12
boundary alignment for control dections, 277
boundary alignment for labeled common areas,

277
during execution, 35-36, 38
entry, 35
fault. 31, 36. 225

interruption, 36
fix appendage interface, iS3
fixing. 31
folding, 152
frame table, 31
frames; 225

problems in stradding, 39

management, 11 -12
prior to loading a user program, 3S
recovery, 12
table, 30, 35
translation exception, 31

page-in, 31
process, 31

page-out, 31
page release (PGRLSE) macro instruction, 225
paged out, 12
pages, 11, 27, 31

discarded, 12, 38
fixing. 153
macro instruction for fixing/freeing, 33

paging, 11, 31
automatic adjustment of rates, 12
devices, 61 :
general flow of process, 38
hierarchies. 32
omission of unnecessary, 12
overhead, 32 - 33
preventing overloads, 32
to different types of DASDs, 12

PAM (see partitoned access method),' 124
paper tape reader unit record format, 130
parallel GET facility, 16
parallel GET function, 131
parallel input processing, 131
parent task, 73
parse routine, 291
partitioned access method (PAM), 124, 134
partitioned data set (PDS)

and partitioned access method, 133 -134
constraints on a, 133
structure, 134

passing a data set, 70
password data set (PASSWORD), 149, 150

maintenance of, 149
structure of, 1 SO

password, master, 174
password protection, 149-152, 174

and user's identity check, 150-151
creation, 149

passwords, 156
auxiliary, 149
control, 149, 174
types of, 290

path control, 178
PDS (see partitioned data set)
PEND job control statements, 77, 98, 101
permanent segments, 245
permanently resident volumes, 65
PGFIX (page fix) macro instructions, 12, 225
PGFX (page fix) appendage interface, 153
PGFREE macro instructions, 12, 225
placing a cataloged procedure in a procedure

library, 101
PUI, 7, 251- 254

accessing VSAM under, 253
assignment optimization, 252

built-in subroutines and functions in, 253
compilations in TSS, 297
conversational processing, 252
data communications, 253
data sets, 253
dynamic storage management, 252
executions in TSS, 297
global optimization, 252
inline coding, 252
interface program. 247
invocation of other subsystems and OS IV / F4

facilities from ,253 - 254
language under TSS, 296-297
linkages between and other languages. 251
list processing in, 253
multi-task facilities, 252
optimization procedures, 252
preprocessor, 252 - 253
prompter, 252
recursive calls in. 253
reentrant programs, 251
required configuration for, 254
resident subroutine library, 251
source program generation in TSS, 297
structures, 251- 252
subroutine libraries. 251
syntax checker. 252
testing aids, 253
user handling of interruptions in, 253

PLPA (see pagabJe link pack area)
POINT macro instruction, 131, 134
polling, 202

method,179
negative limit, 203

pools of communications resources for multiple ap-
plications, 17

POP instruction, 266
position of lIO support in data management, 124
positional parameters, 267
positioning of magnetic tape volumes, 125
POST and WAIT macro instruction, 224
postponing automatic restart, 85
pre-formatted control areas, 175
prefix register, 218
prefixed storage area (PSA), 218-219
preventing paging overloads, 32
prevention of failures and imprOVed diagnostic

facilities, 18 - 19
principal advantages of NCP-CCP a~chitecture, 18
principal components of OS IV /F4, 11- 24
principal outputs from batch job, 78
PRINT command, 175, 177
PRINT instruction. 266
print or punch a data set-JSDPTPCH, 281
printout of address space, 76
priority. 57

aging, 13, 55
incrementings, 57
job seleCtion, 53
limit, 214

'2.1C

priority - continued
of service seeking, 202

priority"(PRTY) parameter, 13
privacy, 156
private JES writers, 83
private libraries, 68, 225
private line, 198

(point to point) terminals, 179
private user area, 34
private volume, 64. 115
problems in referencing addresses within CCWs, 39
problems in retrieving CCWs, 39
problems in stradding page frames, 39
problems of non-DAT channels. 39
PROC statement, 97, 98, 101
procedural statements in SLl100, 259-260
procedural library selection, 60
procedure steps, 100
procedures, cataloged and in-stream, 102
processing

current volume wi1en switching, 133
entry-sequenced data sets, 167-168
flow for an abnormal task, 222 - 223
jobs in virtual storage, 35 - 38
modes, 7, 130, 131
multiple data sets, 138
multiple jobs, 72 -73
new volume when switching, 133
programs, 20-21, 239
RES job outputs, 109-110
RES jobs, 109
routine, blockcount check, 125
sequent ial data sets, 128 -133
sort/merge control fields of identical value, 273
SYSOUT classes, 81
WAIT macro instraction, 215

PROCLIB,58
program

channel, 39, 152
CO BOL linkages, 241
COBOL structures, 241
compi iation in TSS, 297
control commands, 22
d umping, 230

and snapshotting, 211
faciliLies of OS IV /F4, 230

execution in TSS, 297
for VTOC and catalog
management~JSGPROGM, 281
handler, 212
interruptions service, 211
libraries, 35, 68, 225 - 226
management, 211, 225-228

l'nacro instructions, 226
services, 225

processing, 230
protect:on in TSS, 290
sectioning and linking instructions, 263 - 264
structure processing, 277 - 278
structures, allowable, 278

316

swapping, 32
program controlled interruption (PCn, 153 -154

appendage interface, 153
program event recording (PER), 208
program function keys (PFKs), 13. 92
program interruption control area (PICA). 230
program interruption element (PIE), 230
programmable communications control processor

(CCP), 17
programs, 211
prompter, 279, 289
prompters for TSS, 22
PROTECT command, 294
protect display, 150
PROTECT macro instruction, 149
protect mode, 149
protection and maintenance of VSAM data sets, 17
prototype control section (PSECf), 227, 264
PSA,219
pseude-register processing, 277
public volumes, 64, 115
punch coni rol in assembler, 266
PUNCH instruction, 266
purpose of VTAM, 178-179
PUSH instruction, 266
PUT macro instruction, 130, 166, 167
PUTX macro instruction, 130

output mode, 131
update mode, 131

Q-iype address constant, 264
queue, 57

JES, 51, 77
JOB control, 55, 57
output, 57

queued access technique, 128
queued sequential access method (ASAM) macro in­

structions, 16, 126, 127, 130 140
QUICK mode, 197

random access volumes, 115
RAS (see reliability, availability, and serviceability)
RDR (see reader)
read backward function, 132
read backward polyphase merge technique, 275
READ macro instruction. 131, 134, 137, 193, 199
read ~assword, 174
read protection password, 291
reader, JES, 13, 15, SO-51, 53-55
reader (RD~) procedure, 53-55
reac:ing an i!1dex into virtual storage, 163
re .. ding and processing of JCL statements, 31
reading KSDS records, 164.
reading VSAM direct records, 166
ready task, 223
real addresses, 218
real-memory dump, 209
real storage, 27, 225

management, 31, 211 , 225
regions, 32-33 '

real-storage programs, 29
real time, 229
receiving a connection, 182
receiving the data set, 70
receiving VT AM data, 194
record definition field (RDF), 160
record descriptor word (RDW), 117
record format, 117, 123

line printer unit, 129
recording, LOGREC 205, 207 - 208
records. 116

accounting, 87
adding KSDS , 165
adding VSAM direct, 166

recovery by means of an alternate CPU, 18
recovery management support (RMS), 4- 5,

205-208
outline of, 206
recovery by, 18

recovery management support (RMS) software, 18
recursive calls in PLlI, 253
redefinition of operation codes in assembler, 266
reduced error recovery (RER) function, 132
reentrant COBOL programs, 241
reentrant FORTRAN programs, 246
reentrant module, 226
reentrant object programs, 20
reference bits, 38
region in private user area, 34
REGION parameters, 35
register declarations in SLl100, 260
register, prefix , 218
relationship between appendages and EXCP, 153
relationship between DCB and exit processing, 125
relationship between DISP parameter of DD

statement and additional space, 143
relationships between volumes and data sets, 115
relative block address, 137
relative byte address (RBA), 155, 158-159

reading record by RBA, 167
sequential access by, 167

relative file, 243
relative generation numbers, 146
relative track address, 137
RELEASE command, 109
release of terminal by the application program, 196
releasing a connection between an application

program and terminal, 195-196
releasing of buffer pool, 126
releasing of unused space, 144
releasing resources. 76
RELEX macro instruction, 137
reliability, availability, and serviceability (RAS),

4-5,18-19,205-210
facilities for data communications, 197 -199
outline of, 205

RELSE macro instruction, 127, 130
remote

and central, communication between, 111
batch processing, 104
entry of jobs, 104-106
lines, options for disconnecting, 106
maintenance of M series computers, 19
operator, 105

control commands, 109
messages, 106

station, 105
terminal , J 05

altering the sequence of operations from a, 106
workstation, 105

remote entry services (RES), 7, 15-16,41, 78, 95,
104-112

central operations for, 111-112
classes, 109 -11 0
commands, 112
controlling output destinations, 104
creation and maintenance of system data sets.

111-112
delay time, 106
flow of processing in, 107
functions and facilities , 104
generating, 111
identification and passwords, 108
job flow under, 15
jobs, control of, 15
limitation on re-routing outputs, 110
logging on to, 105
messages to/from central site, 15-16
operators. 15
processing job outputs. 109-110
processing jobs, 109
queue structures, 109
routing outputs, 110
starting a session, 15
starting and stopping, 111
starting readers and writers, 109
status commands, 109
submitting and controlling jobs, 109
user attributes. 108

removable volumes. 66
renewal protection password, 290
replicating the sequence set , 163
replicating VSAM index records, 163
representative types of application programs, 10
REPRO command, 173, 175, 177
REPRO instruction, 266
request parameter list (RPL) macro instruction, 169,

170, 192, 193, 195, 196
requesting a forms control buffer, 82
requesting a special character set, 81 - 82
requesting a special output form. 81
requesting demand output, 84
requesting forms and print chain control, 81
requesting more than one 110 unit. 62-63
requesting multiple copies of SYSOUT data set, 81
required configuration for assembler, 270
required configuration for COBOL, 245
required configuration for FORTRAN. 249-250

11'1

---------------~- ... ----- ------- ---.--.- ----- - -. . ---- .-~--

required configuration for PLlI, 254
required configuration for SLll00, 260-261
required unit configuration for ALGOL, 256 - 257
required unit configuration for linkage-

editor/loader, 279
RES (see remote service entry)
reservation and releasing of buffer pools, 126-127
reservation of specialized storage areas, 277
RESERVE channel command, 229
RESERVE macro instruction, 139, 140,229
RESERVE request, outstanding, 207
reserved output classes, 80
reserved volumes, 65-66
reserving of buffer pool, 126
RESET command, 109
RESET macro instruction, 193, 195
resident PLiI subroutine library, 251
resident (type 1 or type 2), 216
resource contention in a multiprocessor, 219
resource required for system generation, 233
resources allocator, 55
response BTU, 199
response times in TSS, 286
restart, 84

automatic, 84, 85
definition, 86
function, 84
interruption handler, 212
operator actions, 85
options, 84-85
return codes, 85
rewrn codes, 85

RESTART parameter, 86-87
restarting NCP, 199
RESTRICT and RELEASE statements in SLll00,

260
restricted no-call function, 276
restrictions of the ISAM interface, 173
retry by alternate channel paths, 18
retry routine, 222, 223
return codes, 76 - 77
RETURN macro instruction, 220, 223
ring organizations, 23
RMS (see recovery management support)
RMTGEN,105
role of JES, 45
rotational position sensing (RPS) function·, 132
round-robin sequence, 217
ROUTE statement, 58
routine, parse, 291
routing a job through the system, 77
routing JES job outputs, 83
routing RES outputs, 110
RPL (see req;}est parameter list)
RPL 1>arameter, 170
RUN command, 293, 295
RO (see capacity record)

SAM &ee sequential access method)

318

satisfying nonspecific volume requests, 67
satisfying specific volume requests, 66
SA VE subcommand, 293
saving and restoring status in assembler, 266
scan routine, 291
scheduler work area data set (SW ADS), 41, 55, 57,

60,209
scheduling, master, 41
scratch volume, 65
scratch volumes, 115
screen-oriented displays on CRT consoles, 91
SDW, 130
second-level messages, 292
sectioning control areas, 165
sectioning control intervals, 165
sections, 162
security, 156

and privacy protection,S
data set,S
data set features, 16
features of TSS, 21

segment and page tables, 29
segment. independent, 245
SEGMENT-LIMIT clause, 245
segment load (SEGLD) macro instruction, 226
segment table, 30, 35
segment wait (SEG WT) macro instruction, 226
segments, overlay fixed, 245
segments, permanent, 245
selector pen (SP), 13, 92
self-defining constants, 259
SEND command, 111
sending messages, 111
seq uence of V S AM catalog searching, 172 - 173
sequence set, 159, 161

including the data portion, 163
replicating the, 163

sequence symbols, 268
sequential access by RBA, lQ7
sequential access method (SAM), 124, 129,

130-131
sequential access volumes, 116
sequential data set, 129

processing a, 128 -133
structure of a, 128-130

sequential data set record format, 129
sequential data set volume structure, 129
serially reusable module, 226
serially reusable resources, management of, 211,

228-229
service aid programs

JQLPRDMP, 208, 209, 230
JQLSADMP, 208, 209, 230
JQMGTF, 208, 209
JQNLIST, 209
JQOJOBQD, 209
JQPPTFLE, 209
JQPSPZAP, 209
JQQDIPOO, 209
JQQEREPO,208

required configuration for PLlI, 254
required configuration for SLll00, 260-261
required unit configuration for ALGOL, 256-257
required unit configuration for linkage-

editor/loader, 279
RES (see remote service entry)
reservation and releasing of buffer pools, 126 -127
reservation of specialized storage areas, 277
RESERVE channel command, 229
RESERVE macro instruction, 139, 140, 229
RESERVE request, outstanding, 207
reserved output classes, 80
reserved volumes, 65-66
reserving of buffer pool, 126
RESET command, 109
RESET macro instruction, 193, 195
resident PLiI subroutine library, 251
resident (type 1 or type 2), 216
resource contention in a multiprocessor, 219
resource required for system generation, 233
resources allocator, 55
response BTU, 199
response times in TSS, 286
restart, 84

automatic, 84, 85
definition, 86
funct ion, 84
interruption handler, 212
operator actions , 85
options, 84-85
return codes, 85
rewrn codes, 85

RESTART parameter, 86-87
restarting Nep, 199
RESTRICT and RELEASE statements in SLl100,

260
restricted no-call function, 276
restrictions of the ISAM interface, 173
retry by alternate channel paths, 18
retry routine, 222, 223
return codes, 76-77
RETURN macro instruction, 220, 223
ring organizations, 23
RMS (see recovery management support)
RMTGEN,105
role of JES, 45
rotational position sensing (RPS) function, 132
round-robin sequence, 217
ROUTE statement, 58
routine, parse, 291
routing a job through the system, 77
routing JES job outputs, 83
routing RES outputs, 110
RPL (see req~est parameter list)
RPL flarameter, 170
RUN command, 293, 295
RO (see capacity record)

SAM (see sequential access method)

318

satisfying nonspecific volume requests, 67
satisfying specific volume requests, 66
SA VE subcommand, 293
saving and restoring status in assembler, 266
scan routine, 291
scheduler work area data set (SW ADS), 41, 55, 57,

60, 209
scheduling, master, 41
scratch volume, 65
scratch volumes, 115
screen-oriented displays on CRT consoles, 91
SDW, 130
second-level messages, 292
sectioning control areas, 165
sectioning control intervals, 165
sections, 162
security, 156

and privacy protection, 5
data set, S
data set features, 16
features of TSS, 21

segment and page tables, 29
segment, independent, 245
SEGMENT-LIMIT clause, 245
segment load (SEGLD) macro instruction, 226
segment table, 30, 35
segment wait (SEGWT) macro instruction, 226
segments, overlay fixed, 245
segments, permanent, 245
selector pen (SP), 13, 92
self-defining constants, 259
SEND command, 111
sending messages, 111
sequence of VSAM catalog searching, 172-173
sequence set, 159, 161

including the data portion, 163
replicating the, 163

sequence symbols, 268
sequential access by RBA, 1{)7
sequential access method (SAM), 124, 129,

130-131
sequential access volumes, 116
sequential data set, 129

processing a, 128 -133
structure of a, 128-130

sequential data set record format, 129
sequential data set volume structure, 129
serially reusable module, 226
serially reusable resources, management of, 211,

228-229
service aid programs

JQLPRDMP, 208, 209, 230
JQLSADMP, 208, 209, 230
JQMGTF, 208, 209
JQNLIST, 209
JQOJOBQD, 209
JQPPTFLE, 209
JQPSPZAP, 209
JQQD!POO,209
JQQEREPO, 208

management, 31 , 211, 225
regions, 32 - 33 .

real-storage programs, 29
real time, 229
receiving a connection, 182
receiving the data set, 70
receiving VT AM data, 194
record definition field (ROF), 160
record descriptor word (ROW), 117
record format , 117, 123

line printer unit, 129
recording, LOGREC 205, 207 - 208
records. 116

accounting, 87
adding KSOS, 165
adding VSAM direct, 166

recovery by means of an alternate CPU, 18
recovery management support (RMS), 4-5,

205-208
outline of, 206
recovery by, 18

recovery management support (RMS) software, 1.8
recursive calls in PLlI, 253
redefinition of operation codes in assembler, 266
reduced error recovery (RER) function. '132
reentrant COBOL programs, 241
reentrant FORTRAN programs, 246
reentrant module, 226
reentrant object programs, 20
reference bits, 38
region in private user area, 34
REGION parameters, 35
register declarations in SLll00, 260
register, prefix, 218
relationship between appendages and EXCP, 153
relationship between DCB and exit processing, 125
relationship between DISP parameter of OD

statement and additional space, 143
relationships between volumes and data sets, 115
relative block address, 137
relative byte address (RBA), 155, 158-159

reading record by RBA, 167
sequential access by, 167

relative file, 243
relative generation numbers, 146
relative track address, 137
RELEASE command, 109
release of terminal by the application program, 196
releasing a connection between an application

program and terminal, 195 -196
releasing of buffer pool, 126
releasing of unused space, 144
releasing resources , 76
RELEX macro instruction, 137
reliability, availability, and serviceability (RAS),

4-5,18-19. 205-210
facilities for data comm unications, 197 -199
outline of, 205

RELSE macro instruction, 127, 130
remote

and central. communication between, 111
batch processing, 104
entry of jobs, 104 -106
lines •. options for disconnecting, 106
maintenance of M series computers, 19
operator, 105

control commands, 109
messages, 106

station, 105
terminal , J 05

altering the sequence of operations from a, 106
workstation, 105

remote entry services (RES), 7, 15-16,41,78,95.
104-112

central operations for, 111-112
classes, 109-110
commands, 112
controlling output destinations, 104
creation and maintenance of system data sets.

111-112
delay time, 106
flow of processing in, 107
functions and facilities, 104
generating, 111
identification and passwords, 108
job flow under, 15
jobs, control of. 15
limitation on re-routing outputs, 110
logging on to. 105
messages to/ from central site, 15-16
operators, 15
processing job outputs. 109-110
processing jobs, 109
queue structures, 109
routing outputs, 110
starting a session, 15
starting and stopping, 111
starting readers and writers, 109
status commands, 109
submitting and controlling jobs, 109
user attributes. 108

removable volumes . 66
renewal protection password, 290
replicating the sequence set, 163
replicating VSAM index records , 163
representative types of application programs, 10
REPRO command, 173, 175, 177
REPRO instruction. 266
request parameter list (RPL) macro instruction, 169,

170, 192. 193, 195, 196
requesting a forms control buffer, 82
requesting a special character set, 81 - 82
requesting a special output form, 81
requesting demand output, 84
requesting forms and print chain control, 81
requesting more than one 110 unit, 62-63
requesting multiple copies of SYSOUT data set, 81
required configuration for assembler, 270
required configuration for COBOL, 245
required configuration for FORTRAN. 249-250

required configuration for PLlI, 254
required configuration for SLl100, 260-261
required unit configuration for ALGOL, 256-257
required unit configuration for linkage-

editor/ loader, 279
RES (see remote service entry)
reservation and releasing of buffer pools, 126-127
reservation of specialized storage areas, 277
RESERVE channel command, 229
RESERVE macro instruction, 139, 140, 229
RESERVE request, outstanding, 207
reserved output classes, 80
reserved volumes, 65-66
reserving of buffer pool, 126
RESET command, 109
RESET macro instruction, 193, 195
resident PLiI subroutine library, 251
resident (type 1 or type 2), 216
resource contention in a multiprocessor, 219
resource required for system generation, 233
resources allocator, 55
response BTU, 199
response times in TSS, 286
restart, 84

automatic, 84, 85
definition, 86
fu nction, 84
interruption handler, 212
operator actions, 85
options, 84 - 85
return codes, 85
return codes, 85

RESTART parameter, 86-87
restarting NCP, 199
RESTRICT and RELEASE statements in SLll00,

260
restricted no-call function, 276
restrictions of the ISAM interface, 173
retry by alternate channel paths, 18
retry routine, 222, 223
return codes, 76 - 77
RETURN macro instruction, 220, 223
ring organizations, 23
RMS (see i-ecovery management support)
RMTGEN,105
role of JES, 45
rotational position sensing (RPS) function, 132
round-robin sequence, 217
ROUTE statement, 58
routine, parse, 291
routing a job through the system, 77
routing JES job outputs, 83
routing RES outputs, 110
RPL (see req:lest parameter list)
RPL yarameter, 170
RUN command, 293, 295
RO (see capacity record)

SAM (see sequential access method)

318

satisfying nonspecific volume requests, 67
satisfying specific volume requests, 66
SA VE subcommand, 293
saving and restoring status in assembler, 266
scan routine, 291
scheduler work area data set (SW ADS), 41,55, 57,

60,209
scheduling, master, 41
scratch volume, 65
scratch volumes, 115
screen-oriented displays on CRT consoles, 91
SDW.I30
second-level messages, 292
sectioning control areas, 165
sectioning control intervals, 165
sections, 162
security, 156

and privacy protection, 5
data set,S
data set features, 16
features of TSS, 21

segment and page tables, 29
segment, independent, 245
SEGMENT-LIMIT clause, 245
segment load (SEGLD) macro instruction, 226
segment table, 30, 35
segment wait (SEGWT) macro instruction, 226
segments, overlay fixed, 245
segments, permanent, 245
selector pen (SP), 13, 92
self-defining constants, 259
SEND command, 111
sending messages, 111
sequence of VSAM catalog searching, 172-173
sequence set, 159, 161

including the data portion, 163
replicating the, 163

sequence symbols, 268
sequential access by RBA, 167
sequential access method (SAM), 124, 129,

130-131
sequential access volumes, 116
sequential data set, 129

processing a, 128-133
structure of a, 128-130

sequential data set record format, 129
sequential data set volume structure, 129
serially reusable module, 226
serially reusable resources, management of, 211 ,

228-229
service aid programs

JQLPRDMP, 208, 209, 230
JQLSADMP. 208, 209, 230
JQMGTF. 208, 209
JQNLlST, 209
JQOJOBQD, 209
JQPPTFLE,209
JQPSPZAP. 209
JQQDIPOO, 209
JQQEREPO,208

service aids, 156, 208-210
for correcting and updating programs, 209
for formatting and printing data sets and their

elements, 209
for gathering diagnostic data, 208

service order table, 202
service processor (SVP), 4
service programs, 21
service request block (SRB), 213, 215
service seeking, 202

interval, 202
limit. 202

session control commands, 22, 293
session control task (SCT), 288
session limit, 202
session service, 201- 203
SET command, 177
set origin for a literal pool (LTORG), 266
set program origin (ORG), 265
SET symbols, 268
setting of DCB exits, 125
setup, 72
SETUP control statements, 14
shared and exclusive control of data sets, 175
shared control, 71 .

of a data set, 71 - 72
shared DASD, 23

concept of, 140
shared use of a data set by one DCB, 139
shared use of a data set by tasks within a job step,

139-140
shared use of data set by multiple DCBs, 139-140
shared VSAM data sets, 174
sharing and exclusive control of a data set by

multiple system, 140-141
sharing and exclusive control of a data set by tasks

from different jobs, 140
sharing between as IV IF4 configurations, 174
sharing by jobs, 174
sharing by subtasks, 174
sharing control units under VT AM, 181-182
sharing data sets, 138 -141
sharing lines under VTAM, 182
sharing network resources under VT AM, 181
sharing of a data set, 138-139
sharing request, 229
sharing terminals under VT AM, 182
short-term fixed pages. 31
SHOWCB macro instruction, 170
signal processor (SIGP) instruction, 219
simple buffering, 127
simple names, 67
simple operating procedures, 13
simple structure, 247,278
simplified job scheduling enhancement by JE5, 45
simultaneous operation of TSS and batch, 286
simultaneous peripheral operations online (SPOOL),

6
skip-sequential access, 156

by key, 166-167

SLll00, 258-261
assembly phase of the, 258
assignment statements in, 259
constants in, 259
DATA FORMATS in, 258-259
decimal arithmetic comparisons in, 260
decimal arithmetic facilities in, 260
decimal assignment statement in, 260
decimal data in, 260
declarations of data items in, 258
DECLARE statement in, 260
DO and END statements in, 260
floating-point assignment statement in, 260
floating-point comparisons in, 260
floating-point data in, 260
floating-point facilities in, 260
fUnctions in, 259
GOTt) statement in, 260
highlights of, 258
IF statement in, 259
INCLUDE statement in, 260
procedural statements in, 259- 260
register declarations in, 260
required configuration for, 260-261
RESTRICT and RELEASE statements in, 260
types of operands in, 258
variables in, 259

slot sequence. 12
slot sorting, 12. 32
slots, 27, 30
SMF (see system management facilities)
SNAP macro instruction, 230
software

configuration for TSS, 287
diagnosis and recovery from failures, 5

SOLICIT macro instruction. 183, 193, 195
sort

internal phase, 272
internal technique, 2i5
processing flow. 272
unit confuguration diagram, 272

sort/merge, 271- 275
COBOL. 244
control field comparison, 273
function of, 273- 274
initialization phase, 272
input/output data sets and work data sets, 274
order specification. 273
organization of data sets, 274
outline of, 271- 273
phases, 272
processing control fields of identical value, 273
technique, 275
user exit routines, 274

source program
addressing in the assembler, 264
COBOL debugging facilities, 244
COBOL generation in TSS, 295

space allocation
allocation for data sets, 141-143

11Q

space allocation-continued
general, 142

space extension, 143
methods of, 143

SPACE instruction, 266
space management, 16, 141-144
SPACE parameter, 141
space releasing boundary for the different space

allocation units, 144
spanned (S) options, 136
special data sets, 132
special SYSOUT <;ontrols, 83
specifiable punching modes, 132
specifiable stacker, 132
specify program interruption exit (SPIE) macro in-

struction, 230
specifying a disposition for the data set, 69
specifying damand outputs, 84
specifying job parameters with JCL statements, 99
specifying return code tests, 77
specifying unit information, 61-64
SPIE routine, 230
split cylinder space, allocation of, 142-143
SPLIT parameter, 141, 142
SPOLVOL parameter, 47
spool capacity, monitoring. 49
spool data set (SYSl. SYSPOOL), 41, 47
spool space allocation. 48-49
spool space conservation. 49
spool volume, 47

contents of, 49
control and space management of. 49
initialization, 48

spooling, 42
efficient, 13
optimization of 48
performance optimization. 48 - 49
structure of the, 47 - 48
to unit record devices, 6

spun-off data set. 81
ST AE and ST AI facilities, 222
ST AE macro instruction (specify task abnormal

exit), 222
stand-alone, 210

utilities. 210
standard and variable functions in ALGOL,

255-256
standard data set label. 119
standard functions in ALGOL, 255
standard label format, 119
standard SMF exit parameters, 90
standard volume label (VOLl), 119
standard volumes, 116
ST ART command, 13, SO, 75

initializing tasks by, 75
START instruction, 264
start I/O (SIO) macro instruction, 152, 153

appendage interface, 153
start-up of VT AM, 187-189
starting a network control program, 200

320

starting a RES session, 15
starting a TSS terminal session, 290
starting a VT AM application program, 189-191
starting and stopping a JES reader, 50
starting and stopping RES, 111
starting remote sessions, 105-106
starting RES readers and writers, 109
starting/stopping OS IV/F4 operations, 95-97
static display, 93
static link structure, 227
static structure, 277
station, 179
status and disposition of data sets, 68-72
status displays, 93
ST ATUS macro instruction, 224
status of a task, 223 - 224
status switching instructions, 262
step initiator. 15
step library, 225
step restart, 84
step termination, 42
step terminator, SS
STIMER macro instruction, 229
STOP command. SO, 109
STOPMN command, 109
stopping a TSS terminal session, 290
stopping an initiator, 60
stopping an OS IV /F4 system, 96
stopping remote sessions, 106
stopping VT AM, 197
storage

allocating. 61
allocation, 61
auxiliary, 27
organization, 29- 33
volume. 64-65
volumes, 11S

STOW macro instruction, 134
STRING statement, 243
structure of

buffer pool. 126-
control interval, 160-161
control program, 9
data portation of a KSKS, 160
directory, 134
directory area, 134
direct data set, 135
index. 161
index entry. 162
index records, 161-162
KSDS,159
KSDS control area, 161
OS IV /F4, 9-10
overlay, 247, 278
password data set, 150
password record, ISO
sequential data set, 128-130
spool volume, 47-48
system catalog, 144-145
VSAM data sets, 157 -161

SUBALLOC parameter, 141
suballocation of space, 143
subcommands, 202

CHANGE, 293
INPUT, 293
LIST, 293
SAVE, 293

submitting and centroIling RES jobs, 109
submitting input to an execution batch processing

program, 58
substitute mode GET/PUT, 131
subtask, 220, 221
subtask abnormal intercept (STAn parameter, 222
subtask dispatching priority, 214
subtasks, 73, 213
supervision of time sharing system operation, 290
supervisor, 19-20,211-290

activities defined by, 211, 213
operation of, 211 - 219

supervisor code (SVC)
attributes of, 216
dumping function, 230
interruption handler, 212
routines., 216
services, 211

supressing SYSOUT data sets, 83
suspend mode of operation, 106
suspended tasks , 12
SVC (see supervisor codes)
SW ADS (see scheduler work area data set)
swapping, 12, 32
switching to a backup line, 198
symbolic linkages in assembler, 265
symbolic parameter, 101
SYNAD exit routine, 193
SYNC command, 112
synchronization of two CPUs, 219
synchronous connection requests, 193
syntax checker, 289, 296

FORTRAN, 248
PLlI, 252

SYSCHK DD statement, 87
SYSIN,47

data sets, 45
SYSI. BRODCAST, 110-111,293
SYSI. LOGREC data, 208, 210

set, 209
SYSl.MANX, 95
SYSl.MANY,95
SYSl.PARMLIB, SO
SYSQ.PROCLIB, 101
SYSl.SW ADS, 209
SYSl.SYSJOBQE, 95, 209
SYSl.SYSPOOL, 45, 47,95
SYS1.SYSVLOGX, 95
SYSl.SYSVLOGY, 95
SYSl.UADA, 111, 112
SYSl.UADS data set, 15
SYSOUT (,see system output)
system area, 29, 34

system configuration for TSS, 287 - 289
system control commands, 22, 93
system data sets, 234 - 235
system generation, 231- 238

flow, 232
macro instructions, 236- 238

system initiator, 60
system input, 45, SO - 55
system job queue (SYS1.SYSJOBQE data set), 15
system library (SYS1.LINKLIB), 225
system loading, 96
system log, 95

data sets, 95
system management facilities (SMF), 6, 15, 41, 43,

87-91, 290
collecting data, 87
data, 42,87

set, 15
sets, 89

job management exits, 90
points during job processing, 91
record validation/change exit, 91
routines, 87, 89-91
standard exit parameters, 90
writing supplemental records, 90

system nucleus, 34
system output (SYSOUT), 45, 47, 78-84

assigning data set to, 80
classes, 42, 110
data sets, 41, 42, 78
delayed writing of data sets, 83
destination, 53
limit exceeded exit, 91
limitation, 49
processing classes, 81
queue, 14
requesting multiple copies of data set, 81
special controls, 83
supressing data sets, 83
types o(data, 79-83

system parameter library (SYSl. PARMLIB), 96, 233
system parameters, 233
system procedure library (SYSI. PROCLIB), 13,

SO, 100
system queue area (SQA), 29, 34, 35
system recovery, 18
system resources, allocationg, 61
system resources, management of, 6
system restoration, 18-19
system start, 95- 96
system start and restart, 96 - 97
system usage records, 89
system utility programs, 280 - 281

taking checkpoints, 85-86
tapemark, 118
task,72

active, 223
creating a new, 213

---'- '--' -'- '-' --- --- _ .. _-_ .. _ ------_.-

task -continued
detaching a, 221- 222
dispatching priority, 214
end of exit routine, 221
extraction of information, 224
job step, 73, 212, 222
library, 225
management, 211, 219-224
non-executable, 223
originating, 213, 221
parent, 73
processing flow for an abnormal, 222 - 223
ready, 223
status of a, 223 - 224
status transitions, 223
suspension, 12
terminated, 223
terminating a, 220-221
time, 229
using ATTACH in attaching a, 219-220

tasks, 211, 212, 213
activities, and disabled routines, 212-213
exclusive control of, 8, 71
for ordinary batch jobs, 222
levels of in a job step, 220
shared use of a data set by with a job step,

139-140
suspended, 12
within a job step, exclusive control of a data set

by, 139
TCB (see task control block)
TCLOSE function, 170
telecommunications on-line test commands

(TOLTEC), 200
teleprocessing commands, 199
temporarily closing data sets, 174
temporary-CLOSE macro instruction, 174
temporary data sets, 67
temporary dumping of demand output, 84
temporary program library, 68
TERM option, 279
terminal

available, 192
control commands, 294
mode, 292
station, 179
test facility, online, 198
transmitting data to a, 194 -195

terminal monitor program (TMP), 288, 291
terminal station system program (TSSP), 105, 106
terminals, 179

acquiring a, 182
component, 179
dialup (switched), 180
non-communications, 180
private line, 179
supported by TSS, 285
supported by VT AM and NCP, 179

terminated task, 223
terminating a task, 220- 221

322

terminating jobs, 78
steps, 75-76

terminating TSS at the center, 290
termination

abnormal, 71
abnormal dumps, 79
job,42
of a VT AM application program, 196
step, 42

terminator, 15
step, 55

TEST command, 294
online, 198

TESTCB macro instruction, 170
testing a new OS IV IF4 system, 232
text, automatic correction, 204
text editing, 293
thrashing, 12, 32
throughput, improve system, 61
tightly-coupled multiprocessing configuration, 206
tightly-coupled multiprocessor configuration, 217
time limit exceeded exit, 91
TIME macro instruction, 229
time management, 211
time of daty, 96
time sharing control task (TSCT), 287
time sharing system control commands, 293
time sharing system (TSS), 7, 21- 22, 268. 278, 285

architecture, 289
attention interrupt, 292
authorization, 292
authorization check in, 290
COBOL language, 295
COBOL program compilation in, 295
COBOL source program generation in, 295
communication access in, 286
compatibility wtih batch mode. 21
configuration of control program, 288
conversational entry of batch jobs under, 21
data and program protection in, 290-291
data-entry commands, 293 _
data set allocation, release, and- deletion in, 294
data set avaiabiIity and other attributes in, 294
data set management commands, 294
data set naming conventions, 292
data set protection command in, 294
data set protection in, 290 - 291
debug aids, 286
debugging aids for, 22
debugging commands, 294
design, 285
editing mode in, 293
failure localization in, 286
features, 286-287
FORTRAN compilations in, 296
FORTRAN executions in, 296
FORTRAN, flow of data and control in, 296
FORTRAN language, 295- 296
FORTRAN source program generation in, 295
general concepts of command language, 292

hardware configuration for, 287
initialization at the installation, 289
improved processing efficiency of, 21
input mode in, 293
1/0 service routine in, 291
job swapping in. 286
language. 287. 292-294. 295-297
miscellaneous commands. 294
multiple command processors in. 21- 22
mUltiple virtual storage support. 286
number of users. 286
outline of. 285- 291
outline of processing. 289- 290
PLiI compilations, 297
PL/I language. 296 - 297
procedure. 293
program compilation in, 297
program-development commands. 293
program execution in, 297
program operation commands, 293
program protection in, 290
prompters, 286
prompters for, 22
response times in. 286
security features of. 21
service routines, 286, 288, 291
simultaneous operation of and batch, 286
starting a terminal session, 290
stopping a terminal session, 290
system configuration for, 287 - 289

. terminal processing, 290
terminals supported by, 285
terminating at the center, 290
user protection in, 286
with batch , compatibility of, 286

timeline of an interruption. 212
timer management, 229- 230

macro instructions. 229
monitoring services. 230

timestamp, 203
timestamping, 174
timing out missed Va interruptions. 18
TITLE instruction, 266
topics described under lES, 44 .
tournament replacement selection technique, 275
TP commands, 199
TPEND exit routine. 197
trace facility, 197
TRACE statement, 244
track

absolute address, 137
descriptor record, 121
formats. 120, 121
overflow. 136

function. 132
trailer label (EO F), 119
transcription of jobs to the Input queue. 51-53
transfer control (XCTL) macro inltructlon. 226

differences in program control amonl LOAD.
CALL. LINK. and A IT ACH macro In-

------ ---- ---- - --_._--

structions, 226
transient PLiI subroutine library, 251
translation lookaside buffer (TLB). 31
transmission control . 178
transmission limit. 202
transmissions. 200
transmitting data to a terminal, 194-195
TRUNC macro instruction, 127. 130
TSS (see time sharing system)
TSS message control program (TSSMCP). 288
TTIMER macro instruction, 229
1VL channel command. 39
type of requirement of buffer pool, 126
types of DCB exits and their functions, 126
TYPES OF EXCP appendage interface. 153
types of interruptions, 212
types of label format, 118 -119
types of macro parameters, 267
types of operands in SU100, 2S8
types of password and password protection method,

149
types of passwords, 290
types of processing programs, 9
types of processing supported by YSAM. 168
types of program libraries. 225
types of SYSOUT data. 79-83
types of TSS commands. 287
types of YSAM catalogs. 171
types of VSAM data. 157
typical ABEND causes. 76
typical constraints on using the ISAM interface. 173
typical OS IV IF4 address space. 33

U-format (see undefined length)
UCS (see universal character set)
unblocked record, 117
uncataloging a generation data set by user's in­

struction, 149
uncataloging data sets. 70, 148

by job control statements, 148
by utility program (1SGPROGM), 148

uncataloging of generation data sets, 148-149
undefined length record (U-format). 117. 129. 136

for direct data set, 136
uniform dispatching priority. 74
unilateral acquisition of terminal. 192
uniprocessor. 5, 217
uniprocessor (one CPU) configuration. 217
unit address, 61
unit of additional space. 143
unit of work for a CPU. 72
unit record device. 129
unit-record device speed enhancement by lES, 45
unit record format, paper tape reader. 130
unit-record utilization enhancement by JSS. 45
units of space allocation. 142
unlvenal character set mechanism. 132
unlvenal character set (UCS) parameter. 82

feature. 81

•••

unsolicited elements, 199
UNSTRING statement, 243
update a source library-ISEUPDTE, 281- 282
UPDATE mode. 140
update mode PUTX, 131
update password, 174
updating KSDS records, 164
updating KSKS records by RBA, 167
updating VSAM direct records, 166
upper priority limit. 74
usage attributes of a load module, 226
usage of EXCP, 152
usage of VT AM. 179
use attribute, 64
user area, private, 34
user-assigned group names. 62
user attribute data set (SYS1.UADS), 292
user control of te time sharing system. 286 - 287
user handling of interruptions in PL/I, 253
user identification qualifier. 292
user protection in TSS. 286
user sort/merge exit routines. 274
user-written NCP block handling routines, 204
user's totalling function, 131
using cataloged and in-stream procedures, 101
USING instruction, 264
using the VSAM catalog. 172-173
utility programs. 280-282

data set. 280, 281 - 282
independent. 210
system. 280 - 281

utility programs, data set
JSDCOMPD, 281
JSDDG.281
JSDGENER. 281
JSDPTPCH, 281
JSECOPY. 281
JSEEDIT. 281
JSEUPDTE. SO, 101

utility programs. independent
JQJDASDI, 210
JQJDMPRS. 210

utility programs. system
JSGATLAS. 280
JSGDASDR. 280
JSGINITT. 280
JSGLlST, 280
JSGMOVE, 281
JSGPROGM. 281
JSGST ATR, 281

V-format. 136
V -format for direct data sets, 136
variable functions in ALGOL, 255
variable length records (V -format). 117. 129
variable length spanned records (VS-format), 117,

137
variables in SLll00, 259
V ARY command, 94, 196

324

VARY PATH command, 207
VBS-format for direct data set, 136
VERIFY command. 175. 177
virtual storage. 27 - 40

addresses for channel programs, 39
background of. 27 - 28
concepts, 28
in OS IV /F4. 28
layout. 28-29
main- and management, 6
management, 11 -12. 211. 224 - 225

activities. 224
multiple support in TSS. 286
multiple. 11
processing jobs in. 35- 38
reading an index into. 163

virtual storage access method (VSAM). 5, 16 -17.
113,155-177

accessing. 172
accessing under PLII. 253
adding direct records, 166
advantages of. 155
area. 158
authorization routines of password protection. 174
blocks, 169
catalog. 16, 171-173
catalogs and ICL parameters, 172
CHECK macro instruction, 171
close macro instruction. 170
cluster. 158
contents of the catalog. 172
control over deletions and updating. 174
control routine, 157
converting from ISAM to, 173
creating the index and data portions on separate

volumes. 163
data set. defInition of a. 17S-176
easy management and control of. 17
format. conversion of data sets from ISAM or

SAM format to to. ISS
functions to improve CPU and DSAD efficiency. ISS
GET macro instruction. 171
high processing efficiency of. 16-17
highlights. 155-156
index levels. 161
integrity facilities. 17S
interval. IS8
key compression. 162
opening a data set. 172
macro instructions. 168-171
physical block. 158
POINT macro instruction. 171
processing. 164-171
prOtection and maintenance of data sets. 17
protection facilities. 174- 1 ':IS
PUT macro instruction. 171
record. 158
record processing routines. 157
records. deleting direct. 166
recording direct records. 166

!eplicating index records, 163
sectioning. 162
sequence of catalog searching, 172 -173

sequential access by key, 164
sets, 157 -164, 253

definition of a, 175-176
exclusive control of data, 174

shared data sets, 174
space, 157-158
structure of a data set, 157
structure of data sets , 157 -161
techniques overview, 164
types of catalogs. 171
types of data. 1.57
types of processing sUPP0l1ed by, 168
updating direct records, 166
using the catalog. 172 - 173

virtual telecommunications access method
(VTAM), 7,15, 17, 178

access control block (ACB), 189
buffer, 193
connecting application program to a terminal,

191 - 193
control table specified by application program.

193
data transfer. NCP to, 200
data transfer under, 17 - 18
data transmission under, 183
definition of a network, 184 -187
definition of application programs, 185
end of operations, 197
error recording facilities. 199
exit routines, 183
facilities, 180-184
initializing and modifying a network, 187
installation-supplied exit routines , 184
list, 191
macro instructions for dynamically

creating/ modifying control blocks, 170
major functions of, 178
operating a network, 187 -197
parameters, 186
purpose of, 178 - 179

, receiving data, 194
routines, 183-184
sharing control units under, 181-182
sharing lines under, 182
sharing network resources under, 181
sharing terminals under, 182
START command, 187
start-up of, 187 -189
starting an application program, 189-191
stopping, 197
system generation, 184
terminals. 179-180
usage of. 179

volume. 115
access mode classification, 115
and space management for DASDs, 6
attribute list. 65

attributes, 64
labels, 119, 121
management modes, 116
multiple data, 132
nonspecific requests, 67
positioning, 118
private. 64, 115
records, 88-89
satisfying specific requests, 66
satisfying nonspecific requests, 67
scratch. 65
serial number. 64
setup, 72
sharing, 64
switching, 132-133

automatic, 132
situation. 133

usage classification, 115
volume table of contents (VTOC), 69, 120. 121, 149
volumes, 64-67

magnetic tape, 115, 117-120
minimum number of per allocation request , 63
non-standard. 116
permanent resident. 65
public, 64. 115
random access, 115
removable; 66
reserved, 65 - 66
scratch, 11 5
sequential access. 116
standard , 116

VSAM (see virtual storage access method)
VTOC (see volume table of contents)

WAIT and POST macro instructions, 224
WAIT macro instruction, 131, 136,215-216

processing a. 215
wait state. 57
wait task, ' 223
warmstart, 96, 97
ways to write output data sets, 79
weak exterminal (WXTRN) instruction, 265
weak external symbols, 265
when password protection can be created, 149
when the UNIT parameter is unnecessary. 63
WRITE macro instruction, 131, 134, 137, 195.
write operation (check function), 132
write validity checking. 175
WRITER commands, 15,82,110
writer, JES, 15, 42
writer procedures, 84
writers, 79
writing of queued output buffers, 124
writing of tapeworks, 118
writing supplemental SMF records , 90

XCTL (see transfer control)

64SG-l000E-l
COMMENT FORM

F ACOM OS IV /F4
General Description

Please use the form below to write whatever comments and suggestions you may have regarding this publication. The
completed form should be given to the F ACOM representative in your area.

Your opinions please.
Please mark each item below with the appropriate letter representing your frank views on this publication, i. e.
E (excellent), G (good), F (fair), P (poor), o Text usefulness 0 Illustrations/tables

D Text clarity D Index coverage

o Text accuracy D Cross referencing

o Text organization 0 ---------
DetaUed comments:

D General appearance

o Paper quality

D Printing

o Binding

Name: _______________ ~ Position: ______________ _

Company or organization: _ __________________________ _ _

Address: ____________________ ___ Reply requested: No

Yes

FOR OFFICE USE ONLY. Do not fill in here.

Local representative: Date received:

Documentation section Date received:

Action :

Seen and checked by ______ _____ _

	64SG-1000E FACOM OS-IV F4 General Description (two thirds)
	64SG-1000E FACOM OS-IV F4 General Description (part two)
	64SG-1000E FACOM OS-IV F4 General Description (part one)
	64SG-1000E-1(TOC)
	64SG-1000E-1(Ch 1-4)
	64SG-1000E-1(Pt 2 - Ch 1)
	64SG-1000E-1(Pt 2 Ch 2)
	64SG-1000E-1(Pt 2 - Ch 2a)
	64SG-1000E-1(Pt 2 - Ch 2b)

	64SG-1000E-1(Pt 2 Ch 3)

	64SG-1000E-1(Pt 2 Ch 4)

	64SG-1000E-1(Pt 2 Ch 5)
	64SG-1000E-1(Pt 2 Ch 6)
	190
	64SG-1000E-1(Pt 2 Ch 6)

	64SG-1000E-1 (Part Three)
	64SG-1000E-1 (Part Four)
	64SG-1000E-1 INDEX
	64SG-1000E-1 (INDEX)
	315-317

