HEWLETT
PACKARD

A

HP 1000 A900 Computer

Reference Manual

HP 1000 A900 Computer

Reference Manual

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

The Federal Communications Commission (in Subpart J, of Part 15,
Docket 20780) has specified that the following notice be brought to the
attention of the users of this product.

Warning: This equipment. generates, uses, and can radiate radio frequency energy and
if not installed and used in accordance with the instruction manual, may cause in-
terference to radio communications. It has been tested and found to comply with the
limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against such interference. Opera-
tion of this equipment in a residential area is likely to cause interference in which case
the user at his own expense will be required to take whatever measures may be
required to correct the interference.

(bﬁ HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

MANUAL PART NO. 02139-90001
Printed in U.S.A. April 1985
u1086

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition Dec 1982
Update 1.........Dec 1982
Second Edition...................., .Jun 1983
Update 1.......... Dec 1983
Update 2.......... May 1984
Reprint, May 1984 Update 1 and 2 has been incorporated.
Update 3 Dec 1984
Update 4Apr 1985
ReprintApr 1985 Updates 3 and 4 has been incorporated.
Update 5......... Oct 1986
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to ancther program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1982, 1983, 1984, 1985, 1986 by HEWLETT-PACKARD COMPANY

i

DOCUMENTATION MAP

HP 1000 A900
Computer
Installation and
Service Manual
02139-90002

HP 1000 A900
Computer
Reference Manual
02139-90001

HP 1000

Model 26/27/29
Computer System
Installation and
Service Manual
02196-90002

HP 1000

Model 16/17/19
Computer System
Installation and
Service Manual
02196-90001

HP Micro/1000
System/Computer
Installation and
Service Manual
02430-90001

HP 1000 A/L-Series
Diagnostic
Operating and
Troubleshooting
Manual
24612-90001

HP 12205A Control HP 92049A
Store Card Microprogramming
Installation and Package
Reference Manual Reference Manual
12205-90001 92049-90001
HP 1000 L-Series HP 92049A
Computer /O Microprogramming
Interfacing Guide Package
02103-90005 Pocket Guide
92049-90003

HP 1000 AS00
Computer
Engineering
and Reference
Documentation
02139-90003

HP 1000 A/L-Series
DDL Programming
Manual
24612-90002

HP 1000 A/L-Series
Computer Kernel
Diagnostic
Reference Manual
24612-90003

HP 1000 A/L-Series
Computer Interface
Diagnostic
Reference Manual
24612-90004

iii

CONTENTS

Section I Page
GENERAL FEATURES
Architecture i 1-1
Floating Point Hardware 1-1
User Microprogramming 1-2
Virtual Control Panel 1-2
Bootstrap Loaders 1-2
Self-Test Routines R 1-2
Time Base Generator 1-2
Power Supply........... 1-2
Input/Output 1-2
Memoryoi 1-3
Cache Memory e 1-3
Software e 1-4
HP Interface Bus R 1-4
Computer Network R 1-4
Expansion and Enhancement 1-4
Specificationsciiiiii 1-4
Section II Page
OPERATING FEATURES
Hardware Registerscoiiuiinn. 2-1
A-Register i 2-1
B-Register A 2-1
P-Registero i i 2-1
Extend (E) Register 2-1
Overflow (O) Register 2-1
Central Interrupt Register 2-1
Violation Register 2-1
Parity Violation Register 2-1
Interrupt System Register 2-1
X-and Y-Registerscoviiii.., 2-1
WMAP Registercoiiiiiiiinennnnn... 2-1
IMAP Registert 2-2
C- and Q-Registers 2-2
Z-Registerc.cuiiiiiiiiii e 2-2
IQ-Registert 2-2
Virtual Registersl 2-2
M-Register ... 2-2
T-Registeroo i 2-2
Controls and Indicators 2-2
Self-Test ... i 2-2
Bootstrap Loaders 2-3
Loader Selection for Auto-Boot 2-3
Program Starts 2-3
VCP ReEntry for Extended Boot Loading....... 2-3
Device Parameters and Media Formats......... 2-4A
Virtual Control Panel 2-4A
VCP Program Operation...................... 2-4A
Loader Commands 2-6
VCP User Considerations 2-6
VCP Slave Functions. 2-6
Section III Page
PROGRAMMING INFORMATION
Data Formats, 3-1
Addressing ... 3-1
Paging ... 3-1

Direct and Indirect Addressing e 3-1
Memory Mapping e 3-3
Virtual Memory Area 3-3
Code and Data Separation 3-3
Base-Relative Addressing 3-3
Reserved Memory Locations 3-3
Nonexistent Memorycooeiunenn. 3-4
Base Set Instruction Formats...................... 3-4
Memory Reference Instructions 3-4
Register Reference Instructions 3-5
Input/Output Instructions 3-4
Extended Arithmetic Memory Reference
Instructions i 3-5
Extended Arithmetic Register Reference
Instructions i, 3-5
Extended Instructions P 3-5
Floating Point Instructions 3-5
Language Instruction Set 3-5
Double Integer Instructions 3-5
Virtual Memory Instructions 3-6
Operating System Instructions 3-6
Scientific Instruction Set 3-6
Vector Instruction Set 3-6
CDS Instructionsc.ccoiiiinennnan. 3-6
Base Set Instruction Coding 3-6
Memory Reference Instructions 3-6
Register Reference Instructions 3-8
Shift/Rotate Group 3-8
Alter/Skip Groupot 3-11
Input/Output Instructions...................... 3-13
Extended Arithmetic Memory Reference
Instructions i 3-15
Extended Arithmetic Register Reference
Instructions i 3-16
Extended Instruction Group 3-18
Index Register Instructions.................. 3-18
Jump Instructions 3-21
Byte Manipulation Instructions.............. 3-22
Bit Manipulation Instructions 3-23
Word Manipulation Instructions 3-24
Floating Point Instructions 3-25
Single Precision Operations 3-25
Double Precision Cperations 3-26
Language Instruction Set 3-28
Double Integer Instructions 3-31
Virtual Memory Instructions................... 3-33
Operating System Instruction Set 3-35
Execution Timesot 3-35
Scientific Instruction Set 3-35
SIS Execution Times and Interrupts............ 3-40
Vector Instruction Set 3-40
VIS Execution Times and Interrupts 3-47
Assembly Languaget 3-47
RTE Implementation............................. 3-47
Section IV Page
DYNAMIC MAPPING SYSTEM
Memory Addressing 4-1

iv Update 5

CONTENTS (Continued)

General Descriptions e 4-1
Page Mapping Register Instructions 4-1
Working Map Instructions 4-1
Cross-Map Instructions 4-2

Detailed Descriptionsoiiiiiiiinnnnnn. 4-3

DMS Instruction Execution Times 4-10

Assembly Language and RTE Implementation..... 4-10

Section V Page

CODE AND DATA SEPARATION

Code and Data Addressingc..... 5-1

General Description...............cooiiiiiiinnn.. 5-1
Procedure Call Instructions 5-1
Procedure Exit Instructions 5-2
C, Q, Z, and IQ Instructions 5-2

Stack Frame Description 5-2

Detailed Descriptionsc e, 5-4

Assembly Language and RTE Implementation. 5-10

Execute Times........t 5-10

Section VI Page

INTERRUPT SYSTEM

Power Fail Interrupt, 6-1

Multiple-Bit Error Interrupt 6-3

Memory Protect Interrupt 6-3

Unimplemented Instruction Interrupt 6-4

Time Base Generator Interrupt 6-4

Virtual Memory Area Interrupt 6-4

CDS Segment Interrupt 6-4

Input/Output Interrupt 6-5

Interrupt Priority L. 6-5

Central Interrupt Register 6-5

Processor Status Register 6-5

Interrupt Type Control 6-5

Instruction Summary 6-5

Section VII Page

INPUT/OUTPUT SYSTEM

Input/Output Addressing 7-1

Input/Output Priority 7-1

Interface Elements 7-4
Global Register, 7-4
Control Bits 7-4

FlagBits ...ttt 7-4
Data Buffer Register 7-4
Control Registercooiiiiiiit. 7-4
Direct Memory AcCCeSSovvereeerenennnennnns 7-4
Control Word 1iiiiiiinnninnn, 7-5
Control Word 2coiiiiiiiiiiiiiiinnnnn 7-5
Control Word 3 7-5
DMA Transfer Initialization 7-5
Self-Configured DMA 7-5
DMA Data Transferoooeitt. 7-7
Non-DMA Data Transfer 7-7
Input Data Transfer (Interrupt Method) 7-7
Output Data Transfer (Interrupt Method) 7-8
Non-Interrupt Data Transfer 7-9
Input ... 7-10
Output ...t 7-10
Diagnose Modes, 7-10
Diagnose Mode 1...............ooiiiiinnn. 7-10
Diagnose Mode 2.................ciiiia. .. 7-10
Diagnose Mode 3l 7-10
Section VIII Page
MICROPROGRAMMING
The Microprogrammed Computer 8-1
The Microprogrammable Computer 8-1
Customized Instructions 8-1
System Speed..........coiiiiiiiiiiiie e 8-1
Memory Space and Security 8-1
Developing Microprograms 8-2
Support for the Microprogrammer 8-2
FPP Microprogrammingcccovvvnivennnnn. 8-2
Conclusionc.coiviiiniiiiiinn i 8-2
Appendix Page
Character Codes................ciiiiiiiiiinnnnn, A-3
Octal Arithmeticcoiiiiiiii.. A-4
Octal/Decimal Conversionsccuouuun.. A-5
Mathematical Equivalents A-6
Octal Combining Tables A-8
Instruction Codes in Octal A-9
Base Set Instruction Codes in Binary............. A-11
Extend and Overflow Examples A-16
Interrupt and Control Summary A-17

ILLUSTRATIONS

Title Page Title Page
HP 1000 A900 Computersccovuun.... 1-0 Stack Frame General Layout 5-3
A900 Computer Simplified Block Diagram 1-1 Input/Output System 7-2
Loading Device Parameters and Media Formats2-7 I/O Priority Assignments 7-2
Loader Command Format 2-10 Priority Linkage (Simplified) 7-3
Data Formats and Octal Notation 3-2 Interrupt Sequence 7-3
Base Set Instruction Formats...................... 3-4 General Bit Definitions for Control Word 1......... 7-6
Shift and Rotate Functions 3-9 DMA Input Data Transfer......................... 7-7
Examples of Double-Word Shifts and Rotates 3-17 Input Data Transfer (Interrupt Method) 7-8
Basic Logical Memory Addressing Scheme 4-1 Output Data Transfer (Interrupt Method) 7-9
Expanded Memory Addressing Scheme 4-2 Microprogramming Implementation Process 8-3
Title Page Title Page
Options and Accessories.......................... 1-5 Typical Base Set Instruction Execution Times 3-34
Specifications 1-6 SIS Instruction Error Codes 3-36
Start-Up Switch Settings............. 2-4 Instructions and Opcodes for RTE
Sample VCP Loader Call Back Checkout Implementation 3-48
Program 2-4B Dynamic Mapping Instructions Execution Times .. 4-11
ID Numbers for Interface Cards 2-4B CDS Instructions Execution Times............... 5-10
VCP Characters and Associated Registers...... 2-5 A900 Interrupt Assignments 6-1
VCP Commands........ 2-6 Sample Power Fail Subroutine 6-2
VCP Loader Command Errors 2-11 Instructions for Select Codes 00 through 07........ 6-6
Memory Paging 3-3 Noninterrupt Transfer Routines 7-9
Reserved Memory Locations 3-3 Diagnose Mode 1....... 7-10
Shift/Rotate Group Combining Guide.. 3-9 Diagnose Mode 2. 7-10
Alter/Skip Group Combining Guide 3-11

vi Update 5

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS

INSTRUCTION PAGE
ADA Addto A i 3-6
ADB AddtoB 3-6
ADQA AddQtoA 5-9
ADQB AddQtoB ... 5.9
ADX Add Memory to X..................... 3-18
ADY AddMemoryto Y..........covvvnnnn.. 3-18
ALF Rotate A Left Four 3-8
ALOG Natural Logarithm 3-38
ALOGT Common Loagrithm 3-39
ALR A Left Shift, Clear Sign 39
ALS Aleft Shiftoia.t. 39
AND CANd” B0OA L. 3-7
ARS ARight Shift 3-9
ASL Arithmetic Shift Left 3-16
ASR Arithmetic Shift Right 3-16
ATAN Arctangent L e e 3-38
BLF Rotate B Left Four 3.9
BLR B Left Shift, Clear Sign 3-10
BLS B Left Shift 3-10
BRS BRight Shift 3-10
CACQ CopyAtoCand Q.........oovvnv.an. 5-8
CAX Copy AtoX ..o, 3-18
CAY Copy AtoY ..o, 3-18
CAZ Copy AtoZoooviiiiiiiinins, 5-8
CBCQ CopyBtoCand Q..................... 5-8
CBS Clear Bits 3-24
CBT Compare Bytes 3-22
CBX CopyBtoX ..., 3-18
CBY CopyBtoY ...t 3-18
CBZ CopyBtoZoovviiiiiiiiiiia.. 5-8
CCA Clear and Complement A.............. 3-11
CCB Clear and Complement B.............. 3-11
CCE Clear and Complement E.............. 3-12
CCQA Copy Cand Qto A..........covvennnn.. 5-8
CCQB CopyCandQtoB..................... 5-8
CIQA Copy Interrupted to A 5-9
CIQB Copy Interrupted to B 5-9
CLA Clear At 3-12
CLB Clear B ...ttt 3-12
CLC Clear Control 3-13
CLE Clear E3-10, 3-12
CLF ClearFlag.............ooooivivatt, 3-13
CLO Clear Overflow 3-14
CMA Complement Ac....., 3-12
CMB Complement B 3-12
CME ComplementE 3-12
CMW Compare Words 3-24
COSs Cosine.........oicviiveeneniiiiinaan, 3-38
CPA Compareto A................. e 3-7
CPB Compareto B 3.7
CXA Copy Xto A ...oovviiiiiniii i, 3-18
CXB Copy XtoBoovvviiiiiiiias 3-19
CYA Copy Yo A ..ottt 3-19
CYB Copy YtoBoooiiviiiniiinn., 3-19
CZA Copy Zto A ... 5.9
CZB CopyZtoBooiiiiiii 5-9
DIV Divideoviiiiiii i, 3-15

INSTRUCTION PAGE
DLD Double Load 3-15
DPOLY Polynomial Evaluation 3-39
DST Double Store.......................... 3-16
DSX Decrement X and Skip if Zero 3-19
DSY Decrement Y and Skip if Zero 3-19
DVABS Vector Absolute Value 3-44
DVADD Vector Addccocvnvnnn.. 3-41
DVDIV Vector Divide S 3-42
DVDOT Vector Dot Product.................... 3-45
DVMAB Vector Maximum Absolute Value 3-45
DVMAX Vector Maximum Value e 3-45
DVMIB Vector Minimum Absolute Value 3-46
DVMIN Vector Minimum Value 3-46
DVMOV Vector Moveccccovvennenn.. 3-46
DVMPY Vector Multiply S - 2 524
DVNRM Vector Norm................. ... 3-44
DVPIV Vector Pivotc....... 3-44
DVSAD Scalar-Vector Add..................... 3-42
DVSDV Scalar-Vector Divide 3-43
DVSMY Scalar-Vector Multiply 3-43
DVSSB Scalar-Vector Subtract 3-43
DVSUB Vector Subtract 3-41
DVSUM Vector Sumcoevnnenn.. 3-44
DVSWP Vector Swapcovivveennann.. 3-47
ELA Rotate ELeft with A.................. 3-10
ELB Rotate E Left with B.................. 3-10
ERA Rotate E Right with A 3-10
ERB Rotate E Right with B 3-10
EXIT Procedure Exit e, 5.7
EXIT1 Procedure Exit With One Skip.......... 5-7
EXIT2 Procedure Exit With Two Skips 5.7
EXP Etothe Power X 3-39
FAD Floating Point Add.................... 3-25
FDV Floating Point Divide 3-26
FIX Floating Point to Single Integer 3-26
FLT Single Integer to Floating Point 3-26
FMP Floating Point Multiply 3-26
FSB Floating Point Subtract 3-26
HLT Halt..... T A R T 3-14
INA Increment A oL 3-12
INB Increment Bc.... ...l 3-12
IOR “Inclusive Or” to A..................... 3-7
ISX Increment X and Skip if Zero.......... 3-19
ISY Increment Y and Skip if Zero.......... 3-19
ISZ Increment and Skip if Zero 3-7
JLA JumpandLoad A..................... 3-22
JLB Jumpand Load B..................... 3-22
JLY Jumpand Load Y..................... 3-21
JMP Jump ... 3-7
JPY Jump Indexed by Y 3-21
JSB Jump to Subroutine 3-7
LAX Load A Indexed by X 3-19
LAY Load A Indexed by Y 3-19
LBT Load Bytecooocviiiinnininn., 3-23
LBX Load BIndexed by X.................. 3-20
LBY Load B Indexed by Y.................. 3-20
LDA Load A ... 3.8

vii

INSTRUCTION PAGE
LDB LoadBcoiiiiiiiiiin, 3-8
LDMP load AMapcoovvivenennnnnn. 4-3
LDX Load X from Memory 3-20
LDY Load Y from Memory 3-20
LIA LoadInputto A 3-14
LIB LoadInputto B....................... 3-14
LPMR Load Page Mapping Register 4-3
LSL Logical Shift Left (32) 3-16
LSR Logical Shift Right (32) e '8-16
LWD1 Load DATAL Map.......covvvuveennn... 4.5
LWD2 Load DATAZMap...........coviivnnnnn 4-5
MBO00 Cross Move Bytes, Execute to Execute ..4-9
MBO01 Cross Move Bytes, Execute to DATAL ... 4-9
MBO02 Cross Move Bytes, Execute to DATA2 .. 4-10
MB10 Cross Move Bytes, DATA1 to Execute .. 4-10
MB11 Cross Move Bytes, DATA1 to DATA1 .. 4-10
MB12 Cross Move Bytes, DATAL to DATA2 .. 4-10
MB20 Cross Move Bytes, DATA2 to Execute .. 4-11°
MB21 Cross Move Bytes, DATA2 to DATAL .. 4-11
MB22 Cross Move Bytes, DATAZ to DATAZ2 .. 4-11
MBT Move Bytesoovviivuinenniains 3-23
MIA MergeInto Aoiit, 3-14
MIB MergeIntoB oot 3-14
MPY Multiplyoooiii i 3-16
MVW Move Wordsocovvneennvenennn 3-25
MWO00 Cross Move Words, Execute to Execute .. 4-7
MWO01 Cross Move Words, Execute to DATAL .. 4-7
MW02 Cross Move Words, Execute to DATAZ2 .. 4-8
MW10 Cross Move Words, DATA1 to Execute ..4-8
MWi11 Cross Move Words, DATA1 to DATA1 .. 4-8
MW12 Cross Move Words, DATA1 to DATA2 ..4-8
MW20 Cross Move Words, DATAZ2 to Execute .. 4-9
MWw21 Cross Move Words, DATA2 to DATA1 ..4-9
MW22 Cross Move Words, DATAZ2 to DATA2 ..4-9
NOP No Operationcccvvvvnenn.. 3-10
OTA Output A ...t 3-14
OTB Output B ...t 3-14
PCLAI Internal Procedure Call 5-4
PCALN Procedure Call, ENTN Compatible 5-6
PCALR Procedure Call, ENTR Compatible 5-6
PCALV Variable External Procedure Call 5-5
PCALX External Procedure Call e e re e .. 54
RAL Rotate A Left e 3-10
RAR Rotate A Right R U 3-11
RBL Rotate B Left e 3-11
RBR Rotate B Right e 3-11
RRL Rotate Left (32) e 3-18
RRR Rotate Right (32)cocvnvenn 3-18
RSS Reverse Skip Sense 3-12
SAX Store Alndexedby X 3-20
SAY Store A Indexed by Y oo 3-20
SBS Set Bits ...ooovviiinreaiiie i 3-24
SBT Store Byteoviiiiiiiiit 3-23
SBX Store BIndexed by X 3-20
SBY Store B Indexed by Y 3-21
SDSP Store Displayoiiil 5.7
SEZ Skipif EisZero 3-12

viii

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS (Continued)

INSTRUCTION PAGE
SFB Scan for Bytecooiiiiin, 3-23
SFC Skip if FlagClear..................... 3-14
SFS Skipif FlagSet................covnt. 3-15
SIMP Save Interrupted Map 44
SIN SN . e 3-39
SLA Skip if LSB of A is Zero 3-11, 3-12
SLB Skip if LSB of B is Zero 3-11, 3-13
SOC Skip if Overflow Clear 3-15
SOS Skip if Overflow Set 3-15
SPMR Store Page Mapping Register 4-3
SQRT Square Rootcoiint 3-35
SSA Skip if Sign of A is Zero 3-13
SSB Skip if Sign of Bis Zero............... 3-13
STA Store A oot 3-8
STB Store B.....ooiiiii 3-8
STC Set Controlccovviiviinian.. 3-15
STF SetFlagooovvvvnviiinniiineene, 3-15
STMP Store AMapccooovviennninnnnnn. 4-4
STO Set Overflow........cccvvvuienneanan. 3-15
STX Store X to Memory 3-21
STY Store Yto Memory...........c.covvne 3-21
SWMP Save Working Map 4-4
SZA Skipif AisZeroccoovvvineenn. 3-13
SZB Slipif BisZero..........cooovvuivivnn. 3-13
TAN Tangentcoovviiiieiieiineeinnn. 3-35
TANH Hyperbolic Tangent 3-39
TBS Test Bitsccovvviiiiniieenneann.. 3-24
VABS Vector Absolute Value 3-44
VADD Vector Addoooiiiiint 3-41
VDIV Vector Divideouan. 3-42
VDOT Vector Dot Product 3-45
VMAB Vector Maximum Absolute Value 3-45
VMAX Vector Maximum Value 3-45
VMIB Vector Minimum Absolute Value 3-46
VMIN Vector Minimum Value 3-46
VMOV Vector Moveccovviin 3-46
VMPY Vector Multiplyooutt. 3-42
VNRM Vector Norm...........cocvvvninnnn.. 3-44
VPIV Vector Pivotcoiinunn, 3-44
VSAD Scalar-Vector Add..... e 3-42
VSDV Scalar-Vector Divide 3-43
VSMY Scalar-Vector Multiply 3-43
VSSB Scalar-Vector Subtract 3-43
VSUB Scalar Subtract 3-41
VSUM Vector Sumcooiveiineennnnnn. 3-44
VSWP Vector Swap ..., 3-47
XAX Exchange Aand X 3-21
XAY Exchange Aand Y.................... 3-21
XBX Exchange Band X 3-21
XBY ExchangeBand Y 3-21
XCA1l Cross Compare A through DATA1 Map . 4-6
XCA2 Cross Compare A through DATA2 Map . 4-7
XCB1 Cross Compare B through DATA1 Map . 4-7
XCB2 Cross Compare B through DATA2 Map . 4-7
XJcQ Cross Map Jump (and Load C and Q) ... 4-4
XJMP Cross MapdJump 4-4
XLA1l Cross Load A through DATAl Map 4.5

INSTRUCTION
XLA2 Cross Load A through DATA2 Map ...
XLB1 Cross Load B through DATA1 Map ...
XLB2 Cross Load B through DATA2 Map ...
XOR “Exclusive Or” to A
XSAl Cross Store A through DATA1 Map ...
XSA2 Cross Store A through DATA2 Map ...
XSB1 Cross Store B through DATA1 Map ...
XSB2 Cross Store B through DATA2 Map ...
.BLE Single Floating Point to Double
Floating Point
.CFER Transfer Complex or Double Floating
Pointooooiviiiiiiiii .,
.CPM Single Integer Arithmetic Compare
.CPUID Processor Identification...............
.DAD Double Integer Add
.DCO Double Integer Compare..............
.DDE Double Integer Increment
.DDI Double Integer Divide
.DDIR Double Integer Divide Reverse........
.DDS Double Integer Decrement and Skip
ifZero.........coiiiiiiiiiiiaL,
.DFER Transfer Three Consecutive Words
.DIN Double Integer Increment
.DIS Double Integer Increment and Skip
ifZero.......cooiiviiiiiiiiiiiian,
.DMP Double Integer Multiply
.DNG Double Integer Negate
.DSB Double Integer Subtract
.DSBR Double Integer Subtract Reverse
.ENTC Transfer Parameter Addresses
.ENTN Transfer Parameter Addresses
.ENTP Transfer Parameter Addresses
.ENTR Transfer Parameter Addresses
.FIXD FLoating Point to Double Integer
FLTD Double Integer to Floating Point

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS (Continued)

PAGE

INSTRUCTION PAGE
FPWR Exponentiation 3-40
.FWID Firmware Identification 3-35
IMAP 16-Bit Subscript Mapping 3-33
IRES 16-Bit Subscript Resolution 3-33
JMAP 32-Bit Subscript Mapping 3-34
JRES 32-Bit Subscript Resolution 3-34
.LBP Mapping with Registers 3-35
.LBPR Mapping with DEF 3-34
.LPX Indexed Mapping with Registers 3-34
.LPXR Indexed Mapping with DEF 3-34
.NGL Double Floating Point to Single

Floating Point 3-28
PMAP Map Specified Page 3-33
.SETP SevATable 3-30
SIP Skip if Interrupt Pending.............. 3-35
.TADD Double Floating Point Add 3-27
.TDIV Double Floating Point Divide 3-27
TFTD Double Integer to Double

Floating Point 3-28
.TFTS Single Integer to Double

Floating Point 3-27
TFXD Double Floating Point to

Double Integer 3-28
TFXS Double Floating Point to Single Integer 3-27
.TMPY Double Floating Point Multiply 3-27
.TPWR Exponentiation 3-40
.TSUB Double Floating Point Subtract 3-27
.WFI Wait for Interrupt 3-35
XFER Transfer Three Consecutive Words 3-29
.ZFER Transfer Eight Words 3-29
.FCM Complement and Normalize Single

Floating Point 3-30
.TCM Complement and Normalize Double

Floating Point 3-30
/ATLG A=-XYA+X) i 3-40

ix

General Features

A900

- HP 2159A

HP 2199A/C

HP 21998/D

1-0

Figure 1-1. HP 1000 A900 Computers

GENERAL FEATURES

SECTION

The HP 1000 A900 Computer and Computer System
(hereafter referred to as A900 computers) are the most
powerful members of the HP 1000 A-Series Computer
family. The A900 computers deliver full minicomputer
power to a wide variety of applications, and maintain
software compatibility with previous HP 1000 Computers.
The A900 hardware is available as HP 2139A/2439A
Computers (boxes) and computer system processor units
(HP 2199A/B/C/D and HP 2489A). (See Figure 1-1.)

-1, ARCHITELSTURE

The A900 computer architecture is based on a distributed
intelligence concept that separates the processing of
input/output (I/0) instructions from that of other in-
structions. The central processor unit (CPU) features a
microprogrammed control processor and resides on four
printed-circuit cards called the sequencer, data path,
cache control, and memory controller cards. The computer
has cache memory for fast access to instructions and data,
and uses pipelining for fast processing. The CPU executes
the powerful HP 1000 instruction set, including index
instructions and a full complement of instructions for
logical operations as well as bit and byte manipulation.
The A900 computer base instruction set also includes
floating-point, double-integer, and virtual memory ad-
dressing instructions, and a language instruction set that
substantially increases program execution speed for such
high-level languages as FORTRAN and Pascal. The CPU
also performs several system level functions, including
memory protect, power fail/auto restart, time base gen-
eration, memory error interrupt, and extensive self-tests.
The A-Series architecture also includes a feature called
Code and Data Separation (CDS) which accommodates
programs that have up to 4 million words of code.

All input/output instructions are executed by custom
silicon-on-sapphire (SOS) input/output processor (IOP)
integrated circuit chips that reside on the individual /O
interface cards. The instructions are fetched from memory
and decoded by the processor cards. When an instruction is
decoded as being of the I/O type, it is broadcast on the
backplane for execution by the appropriate I/O processor
chip. Because each I/O card is capable of operating in-
dependently of the CPU, the A900 can perform direct
memory access (DMA) I/O transfers very efficiently. An
I/O card interacts with the CPU only on DMA initiation
and completion; beyond that, the entire high-speed trans-
fer is handled by the I/O card, leaving the CPU free to
work on other tasks. This achieves high efficiency in CPU
and I/O throughput. Figure 1-2 is a simplified block diag-
ram of the A900 computer.

i

SEQUENCER

DATA PATH

CACHE
CONTROL

MEMORY
CONTROLLER

A900 BACKPLANE

JO0gQ0

MEMORY

k >i % INTERFACE

| INTERFACE

]

8200-137

Figure 1-2. A900 Computer Simplified Block Diagram

1-2. FLOATING-FOINT HARDWARE

The A900 includes as a standard feature high-speed
dedicated logic that performs floating-point arithmetic
operations. The floating-point logic has three custom SOS
chips and provides exceptionally fast execution of single
precision (32-bit) and double precision (64-bit) floating
point operations. Microcoded firmware implements a
powerful Scientific Instruction Set (SIS) that performs
trigonometric, logarithmic, and other transcendental
functions. The A900 also includes a Vector Instruction Set
(VIS) which uses the floating-point chips as a computing
resource to perform vector and matrix arithmetic and to
process large data arrays. The floating-point hardware
achieves extremely high accuracy with computational
speeds that are 6 to 30 times faster than comparable
software routines.

1-1

General Features

1-3. USER MICRCPROGRAM VING

The power and flexibility of microprogramming is made
available to the A900 computer user through a
microinstruction set of microorders. Microprogrammers
have access to special scratch pad registers in addition to
the other internal registers of the A900, and can address
up to 32K 48-bit words of control store. AS00 computers
also support up to 14 levels of nested subroutines in
microprograms. Microprogramming offers the advantages
of speed and security as well as the ability to expand the
instruction set to meet a variety of special computing
needs.

Microprogramming is supported by Hewlett-Packard
through a software package and customer training
courses. A paraphraser microassembler allows the user to
write microprograms in a versatile free-format style that
greatly enhances program readability and documentation
compared to traditional microprogramming techniques.
User-developed microprograms can be dynamically loaded
into optional Writable Control Store (WCS) for execution,
and permanently fused into programmable read-only
memory (PROM) chips for mounting on the optional
Control Store card. (Refer to Section VIII for more in-
formation on microprogramming.)

1-6. VIRTUAL CONTROL P£EL

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal} to control the CPU in a manner similar to a
conventional computer control panel and also provides
additional features. That is, it allows the operator to ac-
cess the various registers (A, B, etc.), examine or change
memory, and control execution of a program. The VCP
program is stored in PROM on the cache control card. In a
typical application, the VCP could be an HP 262x or HP
264x Terminal interfaced by an HP 12005 Asynchronous
Serial Interface Card. When not being used as the VCP,
the VCP-assigned terminal can be used in the same way
as any other terminal connected to the system. When the
A900 computer is operating as a node in a computer
network via DS/1000-IV, the VCP can be an adjacent
computer in the network.

1-3. B3O00TLTRAF LOADER

There are several bootstrap loaders stored in PROM on the
cache control card. The loaders provide program loading
from several sources including disc drives, PROM storage
modules, a DS/1000-IV network link, HP mini-cartridge
tapes, magnetic tape drive, and cartridge tapes of the HP
7908/11/12/14 Disc Drives. The first three loaders can be
selected for auto-boot by switches on the data path card;
any of the loaders can be selected by operator commands
via the Virtual Control Panel.

1-2

A900

1-t. SELF-TEST ROUTINES

Two self-test routines are standard in the A900 computer
and are stored in PROM on the sequencer and cache con-
trol cards. These routines are executed whenever com-
puter power is turned on, providing a convenient
confidence-check of the processor cards and memory cards.
Execution of both routines can also be initiated by a
switch on the sequencer card, and execution of the second
routine can be initiated by operator cornmand via the
Virtual Control Panel.

i<, TIME BASE GENEHATOR

The memory controller card includes a time base
generator that can be used to time external events or to
create a real-time clock in software. The time base
generator (TBG) can generate an interrupt every 10
milliseconds. The TBG, which can be enabled and disabled
by standard IO instructions, is disabled at power up.

1-3. POWER SUFFLY

A900 computers have a power supply designed to continue
normal operation in environments where ac input line
voltages and frequencies may vary widely without affect-
ing the operation of the computer. An optional battery
backup card and battery pack can be installed area to
sustain memory for up to 180 minutes in the event of a
complete power failure, thus providing an automatic
restart capability. Another power supply option provides
two 25-kHz voltages that can be rectified at the load and
used to power accessory plug-in cards used for mea-
surement and control applications.

1.6 INPUT QUTFLUT

The input/output system for A900 computers features a
custom SOS chip on each /O card, enabling each card to
process its own [/O instructions and handle direct memory
access (DMA) data transfers. The I/O system has a mul-
tilevel vectored priority interrupt structure with 53
distinct interrupt levels, each of which has a unique
priority assignment. Any I/O device can be selectively
enabled or disabled, or all /O devices can be enabled or
disabled under program control.

Data transfer between the computer and I/O devices can
take place under DMA control or program control. The
DMA capability provides a direct link between memory
and /O devices. The total bandwidth through multiple
DMA channels is 3.7 million bytes (1.85 million words) per
second.

The A900 computer backplane provides the link between
the processor, memory, interface cards, and the power
supply. In the card cage of the HP 2439A/89A, the
backplane has 16 plug-in card slots, of which two are
reserved for the optional battery backup card and 25-kHz

A900

power module. Three slots must be used for the processor
cards, one for the memory controller card, and one for each
memory array card. Thus, in the HP 2439A, there are nine
slots available for I/O cards (if only one memory array card
is installed) or eight slots available (if the maximum of
two array cards is installed), provided that the battery
backup card is not installed. In addition to the three
processor cards and the two memory cards, the HP 2489A
System Processor Unit (SPU) includes as standard a
terminal interface card and an HP-IB interface card (for a
disc drive), leaving either six or seven slots available for
I/O cards.

In the HP 2139A and 2199A/B/C/D the backplane has 20
plug-in card slots. With the three processor cards and two
memory cards installed, the HP 2139A has up to 15 slots
available for I/O cards, depending upon the number of
additional memory array cards installed. In addition to
the five basic processor and memory cards, the HP
2199A/B/C/D SPU includes as standard a terminal
interface card and an HP-IB interface card (for a disc
drive), leaving up to 13 slots available for IO cards. An
SPU that has the full complement of six million bytes of
memory still has six slots available for additional /O
cards. The number of available I/O slots may be increased
by using an HP 12025A/B 1/0 Extender with the A900
computer.

The A900 computer uses standard HP A/L-Series I/O
cards. An important feature of these cards is a common-
content Global Register which can be loaded with the
select code of a specific I/O card. When the Global Register
is enabled all I/O instructions are executed only by the /'O
card whose select code is in the Global Register. This not
only facilitates setting up DMA transfers but also makes
reconfiguration of an I/O driver a simple matter of
changing the Global Register to the appropriate select
code. Also, since the Global Register can direct I/O in-
structions to a specific /O card, the I/O-instruction ad-
dress bits can be used to access registers on an I/O card.

About one-third of the area on all A/L-Series I/O cards is
occupied by identical logic called the /O Master, consist-
ing of an I/O processor chip and its associated logic. The
/O Master is also available in breadboard form for users
who wish to design their own I/O cards. The I/O Master is
described in detail in the HP 1000 L-Series Computer I/O
Interfacing Guide, part no. 02103-90005.

1-10 MEMORY

A900 computers are available with semiconductor mem-
ory systems based on 64k-bit and/or 256k-bit dynamic
RAM (random-access memory) chips. The memory system
consists of a memory controller card with error-correction
capability, up to eight HP 12220A/21A Memory Array
Cards, and a memory frontplane. The 12220A card uses
64k-bit chips and provides 768 kilobytes of memory, while
the 12221A card uses 256k-bit chips and provides three
megabytes of memory; both cards may be used together in
the same computer. The data is stored in memory as two

General Features

16-bit words with 7-bit error correction to detect errors.
Data is transferred over the frontplane to the memory
controller, and all data transfers occur 39 bits at a time
(two 16-bit words and 7 check bits).

The error-correcting memory system provides fault-secure
memory operation for the A900 computers. The system is
capable of correcting all single-bit errors, and of detecting
all double-bit errors and many multiple-bit errors. The
memory controller card logs the physical address and
error syndrome of single-bit errors, and an LED on each
memory array card will indicate a multiple-bit error that
occurs on that card after the last power-on. The error-
correcting system is particularly valuable in computer
systems with large amounts of memory, or where fault-
secure operation is essential.

The maximum memory size available in A900 computers
is 24 megabytes. Addressing physical memory config-
urations larger than 64k bytes is made possible by the use
of the Dynamic Mapping System (DMS), which is standard
in the A900 and is described in Section IV. The DMS is a
powerful memory management scheme that allows A900
computer users to address up to 32 megabytes of memory
and provides either write or read-and-write protection of
each individual 2048-byte page.

1-11. CACHE MEMORY

For high performance, the A900 utilizes high-speed, 4k-
byte, single-set cache memory with write-to and read-
before-write features. This provides single-cycle access to
memory for both reads and writes for the CPU when the
requested data is in the cache. If the data is not in the
cache, then the cache must wait for four CPU cycles before
completing the request. Since the probability of the data
being in cache (hit) is much more likely than its not being
there (miss), the effective memory access time is close to
one CPU cycle. The exact ratio of hits to total cycles varies
according to what type of program is running and how
localized its requests are. The average hit ratio is expected
to be around 88 percent but is highly variable.

The main memory for the A900 is not connected to the
computer backplane. DMA requests from I/O cards are
buffered by the cache memory, and the CPU can still use
memory (cache) during high DMA traffic. Likewise, CPU
memory operations do not go across the /O backplane;
therefore, DMA does not get held back by a high rate of
CPU memory requests. This parallelism makes the A900
ideal for applications where both DMA rate and processor
throughput are very important.

For its address, the cache memory takes a 15-bit logical
address plus a 5-bit map set select address and translates
these via the Dynamic Mapping System into a 24-bit
physical address. It also checks for violations of protected
memory.

Update 4 1-3

General Features

12 SOFTAARE

Software support for the A900 computer begins with
RTE-A, a member of HP’s family of Real-Time Executive
(RTE) operating systems. RTE-A is a real-time multi-
programming, multi-user system designed to take full
advantage of the A900 I/O structure to enhance overall
CPU and I/O throughput. RTE-A offers a wide range of
configurations, from a small, memory-based, execute-only
system to a full disc-based system with on-line program
development. Utilizing the A900 mapped memory system,
RTE-A supports user partitions of up to 64k bytes and
memory sizes from 128k bytes to 24 megabytes. Memory
can be divided into fixed and dynamically allocated par-
titions at system generation time. Critical programs can
be made resident in fixed partitions to ensure fastest
possible response to requests for their execution. Other
programs can be assigned partitions from the dynamic
memory pool according to need, using the smallest
available block of memory.

RTE-A also supports Virtual Memory Addressing (VMA)
for access to data arrays much larger than main memory
(up to 128 megabytes). The disc functions as an extension
of main memory so far as data is concerned, in a manner
that is transparent to the user and does not require any
special programming. In addition, RTE-A supports a
special case of VMA, called Extended Memory Area
(EMA). With EMA, up to two megabytes of a program’s
data can be in main memory at once, which affords faster
processing of data arrays small enough to use the EMA
capability. The programmer chooses the data array
handling mode at program load time.

Disc-based RTE-A systems support program development
in FORTRAN 77, Pascal/1000, BASIC, and Macro/1000
Assembly Language. Program development for the A300
can also be performed on an HP 1000 System under
RTE-6/VM or RTE-IVB.

The HP 92078A software accessory package provides
software support, via the Code and Data Separation (CDS)
feature, for programs that have up to 4M words of code.
With CDS, a large application program is automatically
segmented by the LINK loader program into one or more
code segments, in addition to a data segment which may
be up to 31k words in size; the program may also access a
VMA area. The code segments may reside on disc or in
memory, and the process of accessing code segments in
physical memory, or loading a code segment from disc into
physical memory, is automatically handled by a combi-
nation of microcode and software. CDS is described further
in Section V.

The diagnostic packages listed in Table 1-1 may be used
for testing and fault location.

A900

Among the I/O interface cards available for the A900
computer is the HP 12009A HP-IB Interface Card which
can interface the A900 computer to a variety of HP
peripherals and other equipment compatible with the
Hewlett-Packard Interface Bus (HP-IB). (HP-IB is the
Hewlett-Packard implementation of IEEE standard 488-
1978, “Digital Interface for Programmable Instrumen-
tation”.) A single HP 12009A can control up to 14 HP-IB
instruments, and several can be used to achieve concur-
rent operation of multiple HP-IB instrumentation clusters
under the RTE-A multiprocgramming operating system.

Tt COMPUTED pilw

The user can configure the A900 computer into an HP
DS/1000-1V Distributed System by using either an HP
12007A or an HP 12044A HDLC Interface. Both of these
interfaces support the high-level data link communica-
tions (HDLC) protocol, functioning as a preprocessor to
handle low and medium levels of protocol processing. The
A900 computers can be easily mixed with other members
of the HP 1000 family in a single computer network. The
HP 12042A Programmable Serial Interface allows the
sophisticated OEM to design his own customized protocol
for networks. Hewlett-Packard offers a customer training
course on how to program the PSI card.

fod s, RAPARSIOMN AN Spobdnd SRR
Table 1-1 lists accessory products available to expand or
enhance the A900 computers. -

Complete specifications for the A900 computers and sys-
tem processor units are given in a data handbook avail-
able from your nearest Hewlett-Packard Sales and Service
Office. (These offices are listed at the rear of this manual.)
Table 1-2 provides an abridged set of A900 specifications.
Except where indicated, the specifications are applicable
to both the computers and the system processor units.
Both the computers and the SPUs meet the safety
standards of the Underwriters’ Laboratories (UL), the
Canadian Standards Asscciation (CSA), and the Inter-
national Electrotechnical Commission (IEC). The A900
computers and SPUs alsc meet the Federal Communi-
cations Commission (FCC) Class A and Verband
Deutscher Elektrotechniker (VDE) Level A standards for
electromagnetic interference (EMI).

1-4 Update 1

A900

Table 1-1. Options and Accessories

General Features

p&scnmnou - HP PRODUCT NO. OPTION NO.
- Removes standard memory array card -— 014
230 Vac Operation — 015
- 768k Byte Memory An‘ay Card 12220A —_
'3M Byte Memory Array Card - . 12221A —
- Memory antptane for one memory amy card 12222A —
. Memory Frontptane for two memory array cards 122228 —_
Memory anhhne for thnae ‘memory array cards 12222C —
Memory Frontpfane for four memory array cards 122220 o
Memory Frontplane for five memory array card 12222E —
Memory - Frontptane for six memory array ‘cards 12222F —_—
Memory Frontplane for seven memory an'ay cards 12222G —
-Memory Frontptane for evgwt memory array. cards. 12222H -
Asynchronous Serial mterfwe , : 120058 —
Parallel Interface 12006A -
HDLC Interface (modem operat:on) 12007A -
PROM Storage Module 12008A —
HP-IB Interface : 12009A —
Intelligent Breaaaoarct : O S 12010A —
Extender Board (for memory and 1/O cards) 12011A —
‘Extender Board (for pmcessor cards) 12240A —
Pmnty Jumper Card 12012A -
Input/Output Exiendet : 12025AfB~001 —
: &Chamel Asynchmnous Mu;tidexer . 12040B —
‘ ' 12042A —
12044A -
12060A —
12061A —
12062A —
12063A —
L e Interf “ 12072 —
DS/1000-V Modem Interfaee 10 HP 3000 : 12073A —
LAP-8 netwerk;ammee - 12075A —
DS/1000-V Direct chmect lnterface to HP 3000 ~ 12082A _
Battery Backup Card ~ 12154A" -
| Battery Backup Module 12157A —
25 kHz Sine Wave Modute - 12158A ~_.
25 kHz Power Module o 12150A -
Control Store Card Le , © 12205A -
Diagnostic Package for A900 processor rd titacds 246127 —
Diagnostic Package for A900-compe ible ham& disc drives and 24398B* —_
i magnet:c tape umts) :
lhciude(f with the HP 2199A/e/czn and HP 2489A System Processor Units.
"*For HP 2439A and 2439A only b
Update 4 1-5

General Features

A900

Table 1-2. Specifications

CENTRAL PROCESSOR
Word Size:

instruction Set:
Memory Reference:
Register Reference:
Input/Output:
Extended Arithmetic:
Index:
Bit, Byte, Word Manipulation:
Floating Point:
Scientific:
Language:
Dynamic Mapping:
Vector Instructions:
Double integer:
Virtual Memory:
Operating System:
Code and Data Separation:

Registers:
Accumulators:

Index:

Memory Register:
Base:

Bounds:
Supplementary:
Power Fail Provisions:

MEMORY
Implementation:
Cache Size:
Cache Cycle Time:
Cache Fauit Processing Time:
Main Memory Cycle Time:

Average Effective Memory

Access Time:
Memory Structure:

Memory Expansion:

Time Base Generator Interrupt:

SPECIFICATIONS COMMON TO THE HP 2139A, 2199A/B/C/D, 2439A, and 2489A

16 bits

292 standard instructions
14
43
13
10
34
10
16
14
14
40
38
12

9
4
21

Two (A and B), 16 bits each. Implicitly addressable, also explicitly addressable as
memory locations.

Two (X and Y), 16 bits each

One (P), 15 bits

One (Q), 15 bits; one (C), 1 bit.

One (Z), 16 bits

Two (overflow and extend), one bit each

When primary line power falls below a predetermined level while the computer is
running, a power fail waming signal from the cornputer power supply causes an
interrupt to memory location 00004. This location is intended to contain a jump-to-
subroutine (JSB) instruction to a user-supplied power fail subroutine. A minimum
of 5 milliseconds is available to execute the power fail subroutine.

A time base generator interrupt is provided for maintaining a real time clock. The
interrupt request is made when the CPU signals, at 10-millisecond intervals, that
its internal clock is ready to roli over. Timing accuracy of the time base generator
is +2.16 seconds per 24-hour day.

64k or 256k dynamic RAM
4k bytes

133 nanoseconds

532 to 931 nanoseconds

Read: 532 nanoseconds
Write: 400 nanoseconds

Approximately 181 nanoseconds, assuming 88% cache hit rate.

32 pages of 2048 bytes per page, with direct accass to current page or base page
(page 0), and indirect or indexed access to all pages. With CDS enabled, a 15-bit
base register is added to addresses on base page.

Paged memory address space expandable to 16k pages of 2048 bytes with
standard Dynamic Mapping System. Maximum physical memory capacity is cur-
rently 12k pages (24 megabytes).

1-6

Update 1

A900 General Features

Table 1-2. Specifications (Continued)

SPECIFICATIONS COMMON TO THE HP 2139A, 2199A/B/C/D, 2439A, and 2489A (Continued)

INPUT/OUTPUT

Determination of /O Address: /O address select code is set for each interface card by select code switches on
the card and is therefore independent of interface card position in the card cage.

I/O Device Interrupt Priority: Depends upon /O interface card position in the card cage with respect to the
processor cards.

Interrupt Masking: The VO Master Logic includes an interrupt mask register which provides for
selective inhibition of interrupts from specific interfaces under program control.
This capability can be programmed to temporarily cut off undesirable interrupts
from any combination of interfaces when they could interfere with crucial transfers.

Interrupt Latency (without 3.7 to 19 microseconds. 4 microseconds typical. (Interrupts cannot be serviced

DMA interference): until a DMA cycle or an instruction in progress has completed execution.) The
worst-case latency of 19 microseconds is based upon the longest uninterruptible
time.

Direct Memory Access (DMA): The /O processor chip supports DMA capability on each /O interface, which re-
duces the number of interrupts from one per data item (byte or word) to one per
complete DMA block.

Data Packing Under DMA: When byte mode is specified in Control Word instructions, the /O processor chip
automatically packs or unpacks bytes.

Maximum Achievable DMA Rate: 1.85 million words (3.7 megabytes) per second for input transfers; 1.5 million
words (3.0 megabytes) per second for output transfers.

SAFETY AND RFI HP 1000 A900 products meet the safety standards of the Underwriters’ Labora-

QUALIFICATION: tories (UL), the Canadian Standards Association (CSA), and the International

Electrotechnical Commission (IEC). The A900 also complies with the RFI
standards of the Federal Communications Commission (FCC) and Verband
Deutscher Electrotechniker (VDE).

VIBRATION AND SHOCK: HP 1000 A900 products are type tested for normal shipping and handling shock
and vibration. (Contact factory for review of any application that requires operation
under continuous vibration.)

1-7

General Features

A900

Table 1-2. Specifications (Continued)

POWER SUPPLY
Output:

Optional AC Voitages and
Tolerances:

Maximum Output Current
Ratings:

Short Circuit Protection:

+5V Output Overvoltage
Protection:

DC Current Available for
I/O Interfaces:

BATTERY BACKUP

Recharge Time:
Battery Type:

SPECIFICATIONS COMMON TO THE HP 2139A, 2199A/B/C/D

DC voltages and tolerances

+5V +2%
+12V +6/-3%
—12v +6%

27V rms *=8%, 25 kHz nominal, split phase from three pins on backplane-mating
connector. Total harmonic distortion: <10%.

+5V +5M +12V -12V 25 kHz
70A 10.0A 5.6A 3.5A 1.5A

All dc and ac power outputs are fault protected for short circuits. The power supply
will shut down if any of the outputs are short circuited at turn on.

The +5V output is sensed for overvoltage and the +5V supply shuts down if its
output voltage exceeds 5.5V. The ac power swiich must be cycled to reset the
+5V output.

The power supply provides enough current for any combination of compatible HP
interfaces and other HP plug-ins.

12157-60001 Battery Backup Module
1420-0304 Battery Pack

The Battery Backup System provides from 15 to 75 minutes of sustaining power
depending upon the number of memory array cards (5 maximum), state of charge,
and temperature; additional hold-up time can be achieved by connecting an ex-
ternal battery.

24 hours for fully discharged battery pack

Sealed lead acid

1-8

A900

Table 1-2. Specifications (Continued)

General Features

ELECTRICAL SPEC!F[CA“DNS
AC Power Required
Line Voltage: ‘

Line Frequency:
Maximum Power Required:

PHYSICAL CHARACTERISTICS
Dimensions
Height:
Width:
Depth:
Weight:
Ventilation:
Volume:

ENVIRONMENTAL SPECIFICATIONS
Temperature
Operating:

Non-operating:

Relative Humidity:

Altitude
Operating:
Non-operating:

ELECTRICAL SPECIFICATIONS
Standard Line Voltage and Line
Frequency
Line Voitage (With HP 7908R):

Line Voltage (With HP 7911R,
HP 7912R, or HP 7914R):

Line Frequency:

Option 015 Line Voitage and
Line Frequency
Line Voltage (With HP 7908R):
Line Voltage (With HP 7911R,
7912R, or 7914R):

Line Frequency:

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2139A COMPUTER

86-138V (115V —25%/+20%) standard;
178-276V (230V —23%/+20%) option 015.

47.5 to 66 Hz
800 watts

266 mm (10.5 in)
483 mm (19 in)
610 mm (24 in)
29.1 kg (64 Ib)

Air intake is in through the front; exhaust is out through the rear.

Approximately 10.7 cubic metres/min. (380 CFM).

0°to 55°C (32° to 131°F) to 3048 metres (10,000 ft); 0° to 45°C (32° to 113°F) to 4,572

metres (15,000 ft).

—40° to 75°C (~40° to 167°F)

—-40° to 60°C (—~40° to 140°F) with Battery Backup
5% to 95% non-condensing

To 4.6 km (15,000)
15.3 km (50,000 ft)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2199A/B/C/D

88-127V (115V nominal)

90-105V (100V nominal) or
108-126V (120V nominal)

With HP 7908R: 47.5 to 66 Hz
With HP 7911/12/14R: 54 to 66 Hz.

180-255V (230V nominal)

198-231V (220V nominal) or
216-252V (240V nominal)

With HP 7908R: 47.5 to 66 Hz
With HP 7911/12/14R: 47.5 to 55 Hz

1-9

General Features

A900

Table 1-2. Specifications (Continued)

Power Requirements:

Maximum Current Required:

PHYSICAL CHARACTERISTICS
Dimensions
Height:

Width:
Depth:
Weight
Without Disc Drive:

HP 7908R Disc Drive adds:
HP 7911R/12/14R Drive adds:
Ventilation:

Racking Limitations:

Temperature

Operating (with HP 79xxR
Disc):

Non-operating:
Relative Humidity:

With HP 79xxR Disc:
Altitude

Operating:

Non-operating:

ENVIRONMENTAL SPECIFICATIONS

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2199A/B/C/D {Continued)

Requires at least 20-ampere grounded power receptacle for 115 Vac operation, or
at least 10-ampere grounded power receptacle for 230 Vac operation (option 015).
The HP 2199A/C requires split-phase power; the HP 2199B/D requires single-
phase power. An additional power receptacle is required for the system
console.

HP 2199A/C: 16 amperes per phase
HP 2199B/D: 16 amperes

HP 2199A/C: 1613 mm (63.4 in)
HP 2199B/D: 720 mm (28.3 in)

635 mm (25 in)
813 mm (32 in)

HP 2199A/C: 139.7 kg (307.5 Ib)
HP 2199B/D: 94.3 kg (207.5 Ib)

37.0 kg (81.6 Ib)
67.3 kg (148 Ib)

Perforations in the HP 2199B/D cabinet and in the lower part of the HP 2189A/C
cabinet facilitate front-torear ventilation driven by the fans in the computer and sys-
tem disc.

Four 120 CFM fans at the top rear of the HP 2199A/C cabinet draw in air through a
filter at the bottom rear of the upper section, providing bottomto-top airflow of
approximately 11.3 cubic metres per minute (400 CFM). The actual value of air
flow depends upon the configuration of user equipment racked in the upper section
of the cabinet.

The additional spece in the top half of the HP 2199A/C cabinet is intended for user
equipment installed on rails and not on slides.

0° to 40°C (32° to 104°F), rate of change is <10°C (18°F) per hour.
—40° to 60°C (—40° to 140°F)
20% to 80% non-condensing

To 4.6 km (15,000 ft)
To 15.3 km (50,000 ft)

1-10

A900 General Features
Tab:.e 1-2. Specifications (Continued)
SPECIFICATIONS COMMON TO THE HP 2439A and 2489A
ELECTRICAL
AC Power Required
Line Voltage: 86-138V (115V —25%/+20%) standard; 178-276V (230V —23%/+20%) option

015.

Line Frequency: 47.5 to 66 Hz

Operating Current:

PHYSICAL CHARACTERISTICS
Dimensions
Height:
Width:
Depth:
Weight
Without Integral Discs:
Integral Discs Add:
Ventilation:

ENVIRONMENTAL SPECIFICATIONS
Temperature
Operating:

Non-operating;

Relative Humidity:
Without Option 110 Discs:

With Option 110 Discs:

Non-operating:

Altitude
Operating:
Non-operating:

POWER SUPPLY
Output:

Maximum Output Current
Ratings:

Short Circuit Protection:

6A, max. in 115V configuration; 3A, max. in 230V configuration.

178 mm (7 in)
483 mm (19 in)
648 mm (25.5 in)

18.1 kg (40 Ib)
2.27 kg (5 Ib)
Air intake is in through the left; exhaust is out through the right.

0° to 55°C (32° to 131°F) to 3048 metres (10,000 ft) without Option 110 internal
discs. Maximum temperature is linearly derated 2°C (3.6°F) for each 304.8m (1000
ft) increase of altitude. Resulting temperature range is 0° to 45°C (32° to 113°F) at
4572 metres (15,000 ft).

5° to 45°C (40° to 113°F) with Option 110 internal discs; maximum rate of change
<10°C (18°F) per hour.

~40° to 75°C (—40° to 167°F) maximum temperature with Option 110 internal
discs is 60°C (140°F).

Operating: 5% to 95%with maximum wet bulb temperature not to exceed 40°C
(104°F), excluding all conditions which cause condensation.

Operating: 20% to 80% with maximum wet bulb temperature not to exceed 29°C
(85°F), excluding all conditions which cause condensation.

5% to 95% non-condensing.

To 4.6 km (15,000 ft)
To 15.3 km (50,000 ft)

DC voltages and tolerances

+5.1V +/—2%

+12V +6/—3%

-12Vv +/~6%

+5.1V +12V -12V
50A 7.0A 3.0A

All dc power outputs are fault protected for short circuits. The power supply will
shut down if any of the outputs are short circuited at turn on.

1-11

General Features _ A900

Table 1-2. Specifications (Continued)

SPECIFICATIONS COMMON TO THE HP 2439A and 2489A (Continued)

25 KHZ AC VOLTAGE HP 12159A 25 kHz Power Module

The Power Module provides 27V p-p +/—8%, 25 kHz nominal, split phase from
three pins on the backplane-mating connector. Maximum output is 30 watts.

BATTERY BACKUP HP 12154A Battery Backup Card

The Battery Backup Card provides from 45 to 180 minutes of memory sustaining
power depending upon system configuration, state of charge, and temperature;
additional hold-up time can be achieved by connecting an external battery.

Recharge Time: 14 hours for fully discharged battery pack
Battery Type: Nickel cadmium

1-12

This section describes the bootstrap loaders, the Virtual
Control Panel (VCP) program, and the central processor
registers accessible to the programmer.

2-1. HARDWARE REGISTERS

The processor cards have several working registers that
can be selected for display and modification via the Vir-
tual Control Panel program. (Interface card registers are
described in Section VI of this manual and in the interface
card reference manuals.) The functions of these processor
card registers are described in the following paragraphs.

2-2. A-REGISTER

The A-register is a 16-bit accumulator that holds the re-
sults of arithmetic and logical operations performed by
programmed instructions. This register can be addressed
directly by any memory reference instruction as location
000000 (octal), thus permitting interrelated operations
with the B-register (e.g., “add B to A,” “compare B with
A,” etc.) using a single-word instruction.

2-3. B-REGISTER

The B-register is a second 16-bit accumulator which can
hold the results of arithmetic and logical operations com-
pletely independent of the A-register. The B-register can
be addressed directly by any memory reference instruction
as location 000001 (octal) for interrelated operations with
the A-register.

2-4. P-REGISTER

The 15-bit P-register holds the address of the instruction
being executed. When the machine is halted, the
P-register contains the address of the next instruction to
be fetched from memory.

2-5. EXTEND (E) REGISTER

The one-bit extend (E) register is used by rotate instruc-
tions to link the A- and B-registers or to indicate a carry
from the most-significant bit (bit 15) of the A- or
B-register by an add instruction or an increment instruc-
tion. This is of significance primarily for multiple-
precision arithmetic operations. If already set (logic 1), the
extend bit cannot be cleared by the absence of a carry.
However, the extend bit can be selectively set, cleared,
complemented, or tested by programmed instructions.

2-6. OVERFLOW (0O) REGISTER

The one-bit overflow (O) register is used to indicate that
an add instruction, divide instruction, floating-point mul-
tiply or subtract instruction, or an increment instruction
referencing the A- or B-register has caused (or will cause)
the accumulators to exceed the maximum positive or
negative number that can be contained in these registers.
The overflow bit can be selectively set, cleared, or tested
by programmed instructions.

2-7. CENTRAL INTERRUPT REGISTER

The central interrupt register is a six-bit register that
holds the select code of the last interface card or internal
condition whose interrupt request was serviced.

2-8. VIOLATION REGISTER

The violation register is a 15-bit register that records the
logical address of any fetched instruction that violates
memory protection rules.

2-9. PARITY VIOLATION REGISTER

The 32-bit parity violation register (PVR) stores the phys-
ical address of the last memory location that caused a
single-bit or multiple-bit error. (A single-bit error is
automatically corrected by the memory controller, and the
error syndrome is logged with the physical address.)

2-10. INTERRUPT SYSTEM REGISTER

The interrupt system register is a one-bit register that
indicates the status of the interrupt system. When set
(logic 1), the interrupt system is enabled; when cleared
(logic 0), the interrupt system is disabled.

2-11. X- AND Y-REGISTERS
These two 16-bit registers, designated X and Y, are acces-

sed through the use of the 32 index register instructions
and two jump instructions described in Section III.

2-12. WMAP REGISTER

This 16-bit register holds the map numbers used for mem-
ory references by Dynamic Mapping System instructions.
(The DMS is described in Section IV.)

2-1

Operating Features

2-13. IMAP REGISTER

The IMAP register is a 16-bit register that holds the value
which WMAP had at the last interrupt. The IMAP regis-
ter may be accessed only by the SIMP instruction.

2-14. C- AND Q-REGISTERS

The one-bit C-register determines whether the Code and
Data Separation (CDS) feature is enabled (0=enabled,;
1=disabled). The Q-register is a 15-bit base register whose
value is added to memory addresses whenever CDS is
enabled and a memory address is between 2 and 1023,
inclusive.

2-15. Z-REGISTER

This 16-bit register is a bounds register used by Code and
Data Separation instructions to protect user memory (re-
fer to Section V).

2-16. [IQ-REGISTER

This 16-bit register holds the value which the C- and
Q-registers had at the last interrupt.

There are two virtual registers, M and T, that are created
by the Virtual Control Panel program and which can be
accessed, bia the VCP, to examine or change a program in
memory or to manually create a program in memory.

2-18. M-REGISTER

The M-register holds the address of the memory cell
currently being read from or written into by the Virtual
Control Panel.

2-19. T-REGISTER

The T-register indicates the contents of the memory lo-
cation currently pointed to by the M-register.

Operator controls and indicators for an A900 computer
system are described in the appropriate system installa-
tion and service manual.

On the A900 computer there is only one operator control: &
line-power switch. This two-position switch controls the
application of ac line power to the computer power supply

2-2

A900

and ventilating fans. Light-emitting diodes (LEDs) on the
sequencer card provide indications for the computer
self-test.

The self-test consists of two test programs (Test 1 and Test

'2) that automatically execute each time the computer is

powered up and which provide a quick, convenient check
of basic computer operation. (Also, the self-test can be
executed by pressing the Reset switch on the sequencer
card.) Test 1 tests the processor at the level of individual
circuits, and Test 2 tests the processor at a functional
level. (For example, Test 1 tests the hardware associated
with an LIA instruction to ensure that it works correctly,
and Test 2 executes an LIA instruction and checks the
result.) If either test program fails, the computer will not
operate. Successful completion of the self-test is followed
immediately by execution of either a bootstrap loader, the
Virtual Control Panel program, or a program sustained in
memory by an optional battery pack, as preselected by the
user.

Test 1 is a microprogram stored in PROM on the se-
quencer card. It executes immediately upon power up and
makes checks of all four processor cards, including a check
of the microcode PROMs on the sequerncer card and the
VCP/Test 2 PROMs on the cache control card. On suc-
cessful completion, Test 2 is started. If Test 1 detects a
failure it stops executing and the LEDs on the sequencer
card indicate an error code. (Refer to the computer in-
stallation and service manual for information on error
codes.) Test 1 execution time is negligible.

Test 2 is an assembly lariguage program stored in PROM
on the cache control card and executes upon successful
completion of Test 1. (Test 2 can also be initiated by the
VCP command %T.) Test 2 checks the computer’s basic
instruction set, several internal flags, and all the memory.
If memory was sustained by the optional battery pack,
Test 2 checks it in a non-destructive manner by reading
each memory location, thus making a parity check on the
data. If a parity error does occur, the location is reported to
the VCP (if present). If memory was not sustained, Test 2
writes all ones to each memory location, and reads back
the data; and then writes all zeros and reads back. (The
memory is cleared.) Test 2 also checks the /O Master logic
on each interface card to ensure that data transfer, flag,
interrupt, and direct memory access (DMA) transfer and
flag functions are processed correctly. If Test 2 detects a
failure, it stops executing and the sequencer LEDs indi-
cate an error code. (If a VCP is in the system and the
failure does not hinder VCP operation, the VCP program
is entered and the failure code is displayed on the VCP.)
The LED indication on successful completion of Test 2
depends on the computer action selected by the Start-Up
switches on the data path card. Test 2 has a maximum
execution time of 10 seconds.

A900

2.02. BOOTSYRAD { QADERS

Bootstrap loading of a program for the A900 computer is
provided for by six loaders contained in PROMs on the
cache control card. The loading devices are disc drive (via
HP-IB or disc interface), PROM storage module, DS/1000-
IV network link, HP 264x mini-cartridge tape, cartridge
tape of the HP 7908/11/12/14 Disc Drive, and HP 7970E
Magnetic Tape Drive. There are two ways to invoke a
loader: auto-boot when power comes up; and by VCP
command. Auto-boot can only invoke four of the loaders:
two discs, PROM module, and DS/1000-IV; the VCP can
invoke any of the loaders by a command from the operator.
The VCP load commands are discussed later in this
section.

2-23. LOADER SELECTION FOR
AUTO-BOOT

The selection of an auto-boot is by means of four switches
located on the data path card. These switches, the Start-
Up switches, are set during installation anc also provide
options other than auto-boot selection. When a loader has
been selected for auto-boot and the self-test completes, the
boot loader executes if memory was lost; or the program in
memory executes if memory was sustained by the optional
battery backup pack. Refer to Table 2-1 for Start-Up
switch settings.

2-24. PROGRAM STARTS

When an auto-boot completes without error, the loaded
program starts execution at memory location 02. The
loader sets the contents of the A- and B-registers as
follows:

a. Cold start (memory not sustained):

1. A = loader command parameters.

2. B = pointer to a string area where:

Word 1 = memory size.
Word 2 = zero.

b. Auto-restart (memory sustained; execuzion starts at
location 04):

1. A = zero.

2. B = zero.

¢c. %E command from VCP:
1. A= -1,
2. B = zero.

d. %B command from VCP:

1. A = loader command parameters.

Operating Features

Table 2-1. Start-Up Switch Settings

BOOT SEL switches*

S1 S2 S3 S4 S5 S6 COMPUTER ACTION

c C € C z vy Loop on self-test Test 2 regard-

less of error.
cC €C O C z y Loop on self-test Test 2 and stop
on error.

Run VCP** routine on comple-
tion of self-test.

if memory lost (not sustained),
run VCP routine; otherwise,
restart program (JMP 4B). (Note
2, Note 4.)

If memory lost, load and execute
program from PROM card;
otherwise, restart program (JMP
4B). (Note 2) (In order to auto-
boot from PROM, the card must
have select code 22. Equivalent
to loader command %BRM.)

If memory lost, load and execute
program via HDLC card; other-
wise, restart program (JMP 4B).
(Note 2) (In order to auto-boot
via HDLC, the card must have
select code 24. Equivalent to
loader command %BDS.)

If memory lost, load and execute
program from first file of disc (via
HP-1B); otherwise, restart pro-
gram (JMP 4B). (Note 2) (In or-
der to auto-boot via HP-IB, the
HP-IB interface card must have
select code 27 and the disc drive
must have HP-IB address 2.
Equivalent to loader command
%BDC.)

O C C O z vy If memory lost, load and execute
program from first file of disc (via
HP 12022A interface); other-
wise, restart program (JMP 4B).
(Note 2) (in order to auto-boot
via HP 12022A, the card must
have select code 32 and operate
with a hard disc drive having
address 0. Equivalent to loader
command %BDl.)

= open (up); C = closed (down)

= C, system console uses ENQ-ACK handshake.

y = O, system consolé does not use ENQ-ACK handshake.
z = C, normal mode, break enabled.
z = O, break disabled (not halts).

** Virtual Control Panel.

Notes: 1. When a loader finishes an auto-boot, it starts execu-
tion of the loaded program at location 02.

2. If auto-restart feature is disabled (switch M closed),
the program cannot restart and the boot loader (or
VCP routine) will execute.

3. Do not use any switch combination that is not shown
above.

4. Use this switch configuration for normal computer
operation. .

0
y

2-3

Operating Features

Table 2-1. Start-Up Switch Settings

A900

BOOT SEL switches*
82 S3 sS4 S5 S6 COMPUTER ACTION

o O O O

Cc C C z y Loop on self-test Test 2 regardless of error.
z y Loop on self-test Test 2 and stop on error.

Run VCP** routine on completion of self-test.

O O O
O O O
o O o
N
<

z y If memory lost (not sustained), run VCP routine; otherwise,
restart program (JMP 4B). (Note 2, Note 4.)

Cc o C z y If memory lost, load and execute program from PROM
card; otherwise, restart program (JMP 4B). (Note 2) (In
order to auto-boot from PROM, the card must have select
code 22. Equivalent to loader command %BRM.)

0] C C z y If memory lost, load and execute program via HDLC card;
otherwise, restart program (JMP 4B). (Note 2) (In order to
auto-boot via HDLC, the card must have select code 24.
Equivalent to loader command %BDS.)

0 o C z y If memory lost, load and execute program from first file of
disc (via HP-IB); otherwise, restart program (JMP 4B).
(Note 2) (In order to auto-boot via HP-IB, the HP-IB inter-
face card must have select code 27 and the disc drive must
have HP-IB address 2. Equivalent to loader command
%BDC.)

C C o] z y If memory lost, load and execute program from first file of
disc (via HP 12022A interface); otherwise, restart program
(JMP 4B). (Note 2) (In order to auto-boot via HP 12022A,
the card must have select code 32 and operate with a hard
disc drive having address 0. Equivalent to loader command
%BD\.)

o] C o] z y Selects the speed sensing option on the A400 on-board
I/O or the 8-channel MUX (rev. 4010 or higher). It allows
VCP to execute at any supported baud rate on the on-
board 1/O or the 8-channel MUX. If memory lost, speed
sense and run VCP; otherwise, restart program (JMP 4B).
(Note 2.)

*0
y
y!
z
z

open (up); C = closed (down)

C, system console uses ENQ-ACK handshake.

O, system console does not use ENQ-ACK handshake.
C, normal mode, break enabled.

= 0, break disabled (not halits).

I

** Virtual Control Panel.
Notes: 1. When a loader finishes an auto-boot, it starts execution of the loaded program at location 02.

2. If auto-restart feature is disabled (switch M closed), the program cannot restart and the boot loader (or
VCP routine) will execute.

3. Do not use any switch combination that is not shown above.
4. Use this switch configuration for normal computer operation.

2-4

Update 5

A900

2-26. DEVICE PARAMETERS AND

MEDIA FORMATS

There is a specific data format for each combination of,
loader, interface card, loading device, and media. The data
formats are described in Figure 2-1.

The Virtual Control Panel (VCP) program is an interactive
program that enables an external device (such as a terminal)
to control the CPU in a manner similar to a conventional
computer control panel. That is, it allows the operator to
load programs using the loaders, access the various registers
(A, B, etc., plus I/O card registers), examine or change mem-
ory, and control execution of a program. There is one VCP
program stored in PROM on the cache control card. The
VCP program supports four VCP interfaces: the HP 12005
Interface Card, the HP 12007/12044 DS/1000-IV Card, the
HP 12040 Multiplexer Card, and the HP 1000 A400 On-
Board I/O port A. Only one interface in the computer can
serve as a VCP interface. The interface selection is estab-
lished by a switch on the desired interface card at system
installation.

2-28. VCP PROGRAM OPERATION

The VCP program is executed from PROM as a software
program and uses the various machine registers (A, B, etc.)
during its execution. Therefore, these registers are automat-
ically saved upon entry to the VCP code. (The save area is in
boot RAM on the memory controller card. Boot RAM is
separate from physical memory and is not accessable by
user-written programs or RTE-A.) Thus, the response to an
inquiry is the data that was saved at the time of entry to the
program. The exceptions to this are indicated by the absence
of an asterisk in Table 2-2. When the operator enters the
Run (%R) command, the VCP program restores the machine
with the current data in the save area and starts execution as
specified by the program execution address in the P-register.

The VCP program can be entered in three ways as follows:

a. After a power-up, PROM execution is directed to the
VCP program instead of a boot load routine;

Operating Features

b. When the VCP interface card requests a slave cycle to
enable the VCP program (e.g., BREAK key pressed on
VCP); or

¢. When an HLT (halt) instruction is fetched and one I/O
card is enabled for break (otherwise the instruction has
no effect).

After a power-up, the total memory size is displayed on the
VCP screen. An I/0 table including the select code, ID num-
ber, and the revision of the interface card is also included.
Each type of interface has an ID number associated to it.
Table 2-1B is a list of the ID numbers and their
corresponding interface cards. The A-register is set to the
number of I/O chips that were tested during the self-test.
This enables the operator to verify that all installed memory
and I/0 cards were tested. (Also, except when the self-test
detects an error and reports it in the B-register, the B-reg-
ister contains the revision code of the VCP PROMs.) When
entered, the VCP displays the basic set of registers (P, A, B,
RW, M, and T) and issues the VCP prompt character
(VCP>) for an operator response. The operator can enter
any of the characters or commands listed in Tables 2-2 and
2-3 and the VCP program will respond as indicated in the
tables. A carriage return is used to terminate a VCP entry.

After a response to an inquiry the operator can change the
data contained in that register or memory location by enter-
ing new data; for example (operator inputs are underlined
and <cr> indicates a carriage return):

A 001234 4321<cr>
A 004321

Data input is terminated by the operator entering a carriage
return. If during an input the program cannot interpret a
character, the program will output the characters “!?”” and
then start a new line with the VCP prompt. Entry errors
may be corrected by backspacing over them and entering the
correct information. During any data input the operator can
abort the input by entering a rub-out (DEL). The loader
commands, %B, %L, and %W can also be aborted by a rub-
out. When entering data into a register, leading zeros may be
omitted. If the operator types a question mark, the VCP will
output a “help” file that summarizes acceptable command
entries.

Update 5 2-4A

Operating Features

Table 2-1A. Sample VCP Loader Call Back Checkout Program

A900

LABEL OPCODE OPERAND COMMENTS
ASMB,AB,L,C
ORG 2B
JMP START Goto start of the program.
NOP
NOP No powerfail, auto restart.
ORG 20008
START HLT 0 Test halt to compare string.
LDA COUNT Negative number of characters in the boot string.
LDB PNTR Starting address of the string.
HLT 0,C Call VCP loader sequence.
NOP
NOP
NOP
COUNT DEC —-18 Negative number of cheracters (bytes) in the string.
PNTR DEF *+1 Starting address of the string.
ASC 09,CT10020 Test String
END
Table 2-1B. ID Numbers for Interface Cards
ID NUMBER INTERFACE CARD
000 HP 12005A/B Asynchronous Interface Card
001 HP 12006A Parallel Interface Card
002 HP 12043A Multi-Use Programmable Serial Interface
002 HP 12092A Data Link Master Interface Card
003 HP 12008A PROM /O Card
003 HP 12155A A700 PROM Control Store Card
004 HP 12009A HP-IB Interface Card
005 HP 12010A Breadboard Card
006 HP 12041B Multi-Use 8-Channel Muitiplexer Card
022 HP 37222A Integral MODEM Interface Card
023 HP 12022A Integrated Disc Interface Card
025 HP 12065A Color Video Interface Card
026 HP 12076A LAN Interface Card
040 HP 12060A High Level Analog Input Card
044 HP 12062A Digital-to-Analog Card
060 HP 12153A A700 Writable Control Store Card
061 HP 12205A A900 Writable Control Store Card
077 HP 12100A A400 On-Board /O
102 HP 12007B HDLC (Modem) Card
102 HP 12044A HDLC (Direct Connect) Card
102 HP 12042A/B Programmable Serial Interface Card
106 HP 12040B/C Multiplexer Interface Card
141 HP 12063A 16IN/160UT Isolated Digital Card
143 HP 12072A Data Link Slave Interface Card

2-4B

Update 5

A900 Operating Features

Table 2-2. VCP Characters and Associated Registers

CHARACTER ,
ENTERED RESPONSE* MEANING
A* XXXXXX A-register contents
B XXXXXX B-register contents
E" X E-register contents
G* x000xx Global Register (GR) contents and status (bit 15=0 if enabled, 1 if
disabled)
" X Interrupt system status (0=off, 1=on)
M* Oxxxxx Memory address (pointer for T and Ln command)
o X O-register contents
P* 0xx00¢x Program execution address
Q XXXXXX C- and Q-register contents (C is bit 15)
RS XXXXXX Switch register contents
T OXXXXX XXXXXX Memoty contents pointed to by M
A XXXXXX Violation register (memory protect)
X* XXXOXX X-register contents
y* JOXAXX Y-register contents
z XXXXXX Z-register contents
RC XXXXXX Central Interrupt Register contents
RD** XHKXX XXXXXX Data for /O diagnose modes 1 and 2 (refer to paragraph 7-22)
RF* XXXXXX VO flags: Flags 20 thru 24, and Flag 30 (1 = flag set; 0 = flag clear)
R** X000 Interrupt mask register
RP K JXXKX XXX Parity violation register contents
RS XXXXXX : Switch Register
Rw* XXX Working map set (WMAP)
R20™ 200X DMA self-configuration register
R21™ 2000 DMA control register
R22* XXXXXX : DMA address register
R23* XXXXXX DMA count register
R24* XXXXXX VO scratch register
R25** XXXXXX /O scratch register
- Re2e** XXXXXX /O scratch register
R30** XXXXXX o VO card data register
R31* 2XXXXX Optional /O card register
R32™ JOOXXX : Optional VO card register
? Output Help file
t x = octal data.
* Registers that are maintained in the VCP save area of boot RAM.
** Applies only to the /O card whosé select code equals the contents of the Global Register.
NOTE: When a register's contents are changed by the user the new value is returned; if the VCP does not accept a
change, the VCP prompt is returned.

Update 4 2-5

Operating Features

Data input is terminated by the operator entering a
carriage return. If during an input the program cannot
interpret a character, the program will output the
characters "1?” and then start a new line with the VCP
prompt. Entry errors may be corrected by backspacing
over them and entering the correct information. During
any data input the operator can abort the input by enter-
ing a rub-out (DEL). The loader commands, %B, %L, and
%W can also be aborted by a rub-out. When entering data
into a register, leading zeros may be omitted. If the
operator types a question mark, the VCP will output a
“help” file that summarizes acceptable command entries.

2-29. LOADER COMMANDS

The loader commands can be entered via the VCP in
either of two ways:

a. Allow the parameter default values (given in Figure
2-1) to be used; or

b. Specify all necessary parameters.

The VCP loader command format is shown in Figure 2-2.
The loader command error codes and their meanings are
listed in Table 2-4.

2-30. VCP USER CONSIDERATIONS

When using the VCP to debug a program the user should
be aware of the following conditions:

a. The VCP program uses an interface card and modifies
the characteristics of that card. When the VCP pro-
gram exits, it sets Register 24 on the interface card to
all ones to allow software detection of a VCP in-
teraction and, thus, reinitialization of an operation.
(This also causes an interrupt if the interrupt system
is enabled.) Also, the VCP will leave the card in the
output mode with both Flag 30 and Control 30 set.

b. The status of the interrupt system (STC 4 [on] or CLC
4 [off]) is not indicated and will remain unchanged
unless %P is executed to preset the computer.

¢. Memory protect is indicated by the sign bit of RW
(WMAP register) and may be modified.

2.31. VCP SLAVE FUNCTIONS

The slave feature of an I/O processor chip is used in
conjunction with the VCP program. The slave feature
enable is read into the I/O chip of the VCP interface card
on power-up and cannot be altered until the next power-up
condition. After power-up a change in the state of the
slave signal causes the I/O chip to generate a slave re-
quest. When the request is granted, the I/O chip requests
the CPU’s current P-register contents and saves these
contents in a register in the /O chip. The I/O chip then

2-6

A900

Table 2-3. VCP Commands

COMMAND* MEANING

%B Load and go (1oot). Execute a specified loader
routine and start program execution at comple-
tion of load. See Figure 2-2 for format.

%C Clear memory. Set all memory to zero and per-
form a preset.

%E Execute. Start execution of program at location
P=2 (A-register equals ~1 (all ones) and
B-register equals 0).

%L Load. Similar to %B except do not start execu-
tion. See Figure 2-2 for format. (%L followed by
%R is equivaient to %B.)

%P Preset. Generate a control reset (CRS) signal
on the backplane to initialize all cards.

%R Run. Set all registers to the appropriate values
in the save area and start execution at address
specified by the P-register.

%T Test. Initiate the self-test Test 2 and return to
VCP (memory is sustained but the 1/O system
is reset).

%W Write. Write to the selected device. (See
Figure 2-2 for format.) When writing to a disc
drive, the Count and Partial values defined in
Figure 2-1 must be in memory locations 00000
and 00001.

D Decrement. Decrement memory pointer and
display the contents of the M- and T-registers.
Valid only after T.

Ln List. List n blocks of eight memory locations
starting with location pointed to by the
M-register.

N Next. Same as D except increment the pointer.
Valid only after T.

RMxx List the 32 map registers in the DMS map set
specified by xx.

RMxxPyy Show the value of register yy in map set xx.
If a number is input after this command, the
register is changed to the new value.

? Output Help file.

*Must be followed by a carriage retumn.

A900

Operating Features

MINI-CARTRIDGE TAPE
Device: HP 264x Terminal
Interface: HP 12005B Asynchronous Serial Interface
Default
Parameters*: 000020
Format: Reads absolute binary file, writes 4k absolute binary block.
Loader:
(0 = 0 to 4k).
is specified, the result will be unpredictable. ;
More than 32k words may be loaded into a system from a single cartridge tape.
PROM MODULE
Device: PROM (2k x 8 bits)
interface: HP 12008A PROM Storage Module
Default
Parameters*: 000022
Format: Count-Partial-Data
Count = number of 64k byte blocks.
Partial = number of words of partial 64k byte block.
Data = 16-bit words, one word per location until Count and Partial are satisfied.
Loader:
number or unit number.
*See Figure 2-2 for loader command formats.

Transmits special escape sequence to invoke a read of a record and does checksum of the data. When
writing to tape, a block number is used to specify which 4k-word memory area is to be dumped to tape

If a file number is specified then the program will issue a find file command; if not, the tape is read from
where it stands. When writing to the tape, the program will not write a file mark; this allows sequential
blocks to be written in a series. There are only two units (0 and 1) on the terminal; if a larger unit number

Uses STC-LIA process to transfer data. The PROM cannot be written to nor does it use the block

Figure 2-1. Loading Device Parameters and Media Formats (Part 1 of 3)

stores the starting address of the VCP program into the
CPU’s P-register, instructs the CPU to enzble the boot
PROM, and allows execution to start. The VCP program
can be started in several other ways, as follows:

a. On power-up and after the self-test the VCP program
starts execution if it is selected in lieu of a boot loader.
This selection may often be used becauss the loaders
can be invoked individually from the VCP.

b. When a HLT* (halt) instruction is executed the I/O
processor chip interprets it in the same manner as a
change in the slave enable signal. This allows a
program to have breakpoints for debugging purposes.
(Note that a HLT instruction is not executed but
causes a memory protect interrupt if memory protect
is enabled.)

During execution of the VCP program, access to the
P-save register in the I/O chip is accomplished with LIA/B
3 and OTA/B 3 (without the instruction’s Flag bit set). It
should also be noted that the I/O chip will not execute a
slave request until an STC 2 (enable break feature) in-
struction has been executed. This prevents re-entry of the
VCP program once it has been entered.

During the self-test, the starting address of the VCP
program is assigned to the break-enabled /O card by an
OTA/B 3,C* instruction with the A- or B-register set to the
address. This address can also be read back with an LIA/B
3,C* instruction.

*If break is not enabled on any I/O card, then the in-
struction has no effect.

2-7

Operating Features A900

DISC DRIVE

Device: HP 9895, 7906, 7908, 7910, 7911, 7912, or 7914 Disc Drive, or cartridge tape drive of the 7908/11/
12/14 Disc Drive.

Interface: HP 12009A HP-IB Interface

Default

Parameters*: 002027

Format: Count-Partial-Data
Countt = number of 64k byte blocks.
Partialt = number of words of partial 64k byte block.
Data = 16-bit words, one word per location until Count and Partial are satisfied.

Loader: Uses HP-IB protocol to communicate with the disc. The load sequence is:

1. Device clear
2. Status check
3. Read/write 32k words via DMA
4. Status check

DISC DRIVE (VIA DISC INTERFACE)

Device: HP 2439A/89A internal fixed/micro-floppy disc drive.
Interface: HP 12022A Disc Interface.
Default

Parameters*: 000032
Format: Sarne as Disc Drive via HP-1B, above.
Loader: Standard /O for commands to interface, and _DMA for data.

*See Figure 2-2 for loader command formats.
+The Count and Partial values are stored in memory locations 00000 and 00001, respectively.

Figure 2-1. Loading Device Parameters and Media Formats (Part 2 of 3)

2-8

A900 Operating Features

MAGNETIC TAPE
Devi'ce: HP 7970E or 7974A Magnettc Tape Drive
Interface: HP 12009A HP-IB tnterface.
Defaut
Parameters*: 004027
Format: Memory image file k
: Count-Partial-Data

~ Count = number of 64k byte blocks. u
PaﬁialunumberofWOfdsofparﬁalwby{eblwk N A ~
i Data = 256 byte records read until EOF or until Count and Partial are sattsﬂed,

Loader: Uses HP-1B pmtocol to cqmmumcate wrth the magnet:c tape
‘ }The!oadsequemeis ‘ : ;
1. Device ID
2. Device clear
3. Rewind/file forward (if file specmea)
- 4, Read/write
5. Stams check
‘COMPUTER NETWORK |
Device: HP 1000 Computer.
Interface: HP 12007A/12044A HDLC Interface.
Defautt S |
Parameters*: ’000024'
- Format: Reads absolute binary or ‘memory image files, writes a 32k memory image fﬂe
Loader: Standard handshake usmg HP distributed system protocol. Block number and unit number are not used.

 *See F;gure 2-2 for iaadef command formats.

Figure 2-1. Loading Device Parameters and Media Formats (Part 3 of 3)

Update 1 2-9

Operating Features A900

LOADER COMMAND FORMAT

%B/LUW dv fffffbusc text

where:

dv = device type as follows:

DC = disc (cartridge or flexible) via HP-IB
CT = cartridge tape (HP 264x)

RM = PROM card

DS = DS computer network Link

MT = magnetic tape via HP-IB

D! = disc via HP 12022A Card

fifff = file number (octal 0 to 77777 only)

b = 4k-word memory block number when writing to cartridge tape; HP-IB bus address of disc drive; or non-HP-1B
drive address: otherwise, use 0. For the HP 2439A/89A internal disc drives, this is 0 for the first fixed drive, 1 for
the second, and 3 for the micro-floppy drives.

u = unit number (0 to 7) only if used on device. For the HP 7906 Disc Drive, the unit number is the head number.
For HP 7908, 7911, 7912, or 7914 Disc Drive that includes cartridge tape drive, unit 0 = disc drive and
unit 1 = cartridge tape drive.

sc = select code of interface card to be used.

text = file name, or ASCII string to be passed to the program after it is loaded. This is only available with the %B and

%L commands.
Note: See Figure 2-1 for default parameters for each loading device.
Note that spaces cannot be used in the command entry. The following formats are all acceptable:

%Bdvtext Device parameters are defaulted; text cannot start with a number.
%Bdvffbusc No text passed.
%Bdvffbusctext Text passed.

EXAMPLES:

%BDC Load and start execution of the default program on disc. (Disc parameters defaulted to 002027; see
Figure 2-1).

%BDC30 Load and start execution of the default program on the disc at select code 30 and default other
parameters.

%L.DC27025 Load (but don't execute) and override parameter default values:

file number 2 (i.e., the third file)
HP-IB bus address 7

unit O

select code 25

%WDC27025 Same as above except write to file 2.

Figure 2-2. Loader Command Format

2-10

A900

Table 2-4. VCP Loader Command Errors

Operating Features

ERROR |

120

gIensiNEE

312
313
;31 4

| Time out aﬁer dowmw requesz

‘ saei 1

211

21 2 ; Bad format. i

213 Systom larger than aéekmust staﬁon card boundary
'DS/1000 Loadlr E!ron “

310 nme out aﬂer cnc 0. Cheek sena code speeiﬁad

311

CMeksum errar. P file not absolme binary.

CODE | : 1 nEANlﬂG CODE
2 sem cede less ’thﬁn 20 octal.
3 Mocamwimmesebctmdeyouspeciﬁed
cmaago Tlpl Lm ﬁrrom :
110,) k,;Fiie fomarct en'or, Status in B—register
111 | Checksum emor.
12 | No data befare EOF (end ef Me)

‘nme;out dumg mad or ';me wr‘hmand

Sta%us error, Statas in B-registet .
Time out dwing ﬁ&a mask. P
“Time out during sook,

Time om during psJ (Devwe $peciﬁed Jump} e |

~ command. i
Bad EJSJ mtum ﬂetumed vame iga Bamgister Y
Dmhmidanﬁﬁabie msctvm&mgister '

2-11/2-12

PROGRAMMING INFORMATION

This section describes the software data formats and the
base set machine-language instruction coding required to
operate the computer and its associated input/output
system. Machine-language instruction coding for the
Dynamic Mapping System is presented in Section IV, and
coding for Code and Data Separation is presented in
Section V.

3-1. DATA FORMATS

As shown in Figure 3-1, the basic data format is a 16-bit
word in which bit positions are numbered frora 0 through
15 in order of increasing significance. Bit posit.on 15 of the
data format is used for the sign bit; a logic 0 in this
position indicates a positive number and a logic 1 in this
position indicates a negative number. The dats. is assumed
to be a two’s complement whole number and the binary
point is therefore assumed to be to the right of the number.

The basic word can also be divided into two 8-bit bytes or
combined to form a 32-bit double integer. The byte format
is used for character-oriented input/output devices; pack-
ing two bytes of data into one 16-bit word is accomplished
by software drivers. In I/O operations, the higher-order
byte (byte 0) is the first to be transferred.

The double integer format is used for extended arithmetic
in conjunction with the extended arithmetic instructions
described under paragraph 3-23 and 3-24. Bit position 15
of the most-significant word is the sign bit and the binary
point is assumed to be to the right of the least-significant
word. The integer value is expressed by the remaining
31 bits, using twos-complement form.

The two floating point formats in Figure 3-1 are used with
floating point software. Bit position 15 of the most-
significant word is the mantissa sign and bit position 0 of
the least-significant word is the exponent sign. Bits 1
through 7 of the least-significant word express the ex-
ponent and the remaining bits express the mantissa. A
single precision floating point number is made up of a
23-bit mantissa (fraction) and sign and a 7-bit exponent
and sign, thus providing six significant decimal digits in
the mantissa. A double precision floating poin: number is
made up of a 55-bit mantissa and a 7-bit exponent and
sign, thus providing 16 significant decimal digits in the
mantissa. If either the mantissa or the exponent is
negative, that part must be stored in two’s complement
form. The number must be in the approximate range of
107%* 10***, When loaded into the accumulators, the
A-register contains the most-significant word and the
B-register contains the least-significant word.

Figure 3-1 also illustrates the octal notation for both
single-length (16-bit) and double-length (32-bit) words.
Each group of three bits, beginning at the right, is
combined to form an octal digit. A single-length (16-bit)
word can therefore be fully expressed by six octal digits
and a double-length (32-bit) word can be fully expressed
by 11 octal digits. Octal notation is not shown for byte or
floating point formats, since bytes normally represent
characters and floating point numbers are given in deci-
mal form.

The range of representable numbers for single integer
data is +32,767 to —32,768 (decimal) or +77,777 to
—100,000 (octal). The range of representable numbers for
double integer data is +2,147483,647 to —2,147 483,648
(decimal) or +17,777,777,777 to —20,000,000,000 (octal).

3-2. MEMORY ADDRESSING
3-3. PAGING

The computer memory is logically divided into pages of
1,024 words each. A page is defined as the largest block of
memory that can be directly addressed by the address bits
of a single-length memory reference instruction. (Refer to
paragraph 3-9.) These memory reference instructions use
10 bits (bits 0 through 9) to specify a memory address;
thus, the page size is 1,024 locations (2000 octal). Octal
addresses for each page, up to a maximum memory size of
32k words, are listed in Table 3-1.

Provision is made to directly address one of two pages:
page zero (the base page consisting of locations 00000
through 01777) and the current page (the page in which
the instruction itself is located). Memory reference in-
structions reserve bit 10 to specify one or the other of these
two pages. To address locations on any other page, indirect
addressing is used as described in following paragraphs.
Page references are specified by bit 10 as follows:

a. Logic0 = PageZero).
b. Logicl = Current Page (C).

3-4. DIRECT AND INDIRECT
ADDRESSING

All memory reference instructions reserve bit 15 to specify
either direct or indirect addressing. For single-length
memory reference instructions, bit 15 of the instruction
word is used; for extended arithmetic memory reference
instructions, bit 15 of the address word is used. Indirect
addressing uses the address part of the instruction to ac-

3-1

Programming Information

A900

DATA FORMATS
--- > INCREASING MEMORY --->

/— Sign Bit /—— Least significant data bit

1141312111098 76 54 32 10\ Binary point

SINGLE INTEGER

Byte O Byte 1
PACKED _ L N
BYTE
FORMAT

1514131211109 8 76 54 32 10
Binary

/—-— Sign Bit point

151413121110 98 76 54 32 10 151413121110 98 76 54 32 10

DOUBLE INTEGER

J

—~

Integer

\
/—— Mantissa sign 31 bits Exponent sign —\

SINGLE PRECISION I__l

FLOATING POINT

1541413121110 98 76 54 32 10 151413121110 98 76 54 32 10

AL J
~— ~"
Bir_|arv Mantissa Exponent
Point 23 bits” 7 bits

/-——— Mantissa sign Exponent sign —\

DOUBLE PRECISION
FLOATING POINT eg 22 Z? ?2
1541413 10 1514 2 1 0 1514 2 1 0 1514 8 76 54 32 10
VT ‘—A ~"" /
Binary point Mantissa Exponent
55 bits 7 bits

OCTAL NOTATION

WORD
FORMAT

151413121110 98 76 54 32 10

8()

INTEGER
DOUBLE WORD

151413121110°98 76 564 3210 5141312111098 76 564 32 10

10 9

8 8

2270-2

Figure 3-1. Data Formats and Octal Notation

3-2

A900
Table 3-1. Memory Paging
MEMORY OCTAL
SIZE PAGE ADDRESSES

00000 to 01777
02000 to 03777
04000 to 05777
06000 to 07777
10000 o 11777
12000 to 13777
14000 to 15777
16000 to 17777
20000 to 21777
22000 two 23777
24000 to 25777
26000 to 27777
30000 to 31777
32000 to 33777
34000 to 35777
36000 to 37777

NP ORI SOR NS WN—-O

16K &

16 40000 to 41777
17 42000 to 43777
18 44000 to 45777
19 46000 two 47777
20 50000 to 51777
21 52000 to 53777
22 54000 to 55777
23 56000 to 57777
24 60000 to 61777
25 62000 to 63777
26 64000 to 65777
27 66000 to 67777
28 70000 to 71777
29 72000 to 73777
30 74000 ta 75777
31 76000 to 77777

cess another word in memory, which is taken as the new
memory reference for the same instruction. This new
address word is a full 16 bits long: 15 address bits plus
another direct/indirect bit. The 15-bit length of the ad-
dress permits access to any location in logical memory. If
bit 15 again specifies indirect addressing, still another
address is obtained; thus, multistep indirect addressing
may be done to any number of levels. The first address
obtained that does not specify another indirect level
becomes the effective address for the instruction. Direct or
indirect addressing is specified by bit 15 as follows:

a. Logic0 = Direct (D).

b. Logicl = Indirect (I).

Programming Information

3-5. MEMORY MAPPING

Memory mapping is a standard feature of the A900
computer and is used to access all locations of main
memory. Memory mapping is provided by the Dynamic
Mapping System described in Section IV.

3-5A. VIRTUAL MEMORY AREA

Under Virtual Memory Area (VMA) operation, a program
may access two separate data areas, one being the 32k
word logical address space, and the other being a virtual
address space of up to 16M words. The virtual address
space may be either memory-resident or disc-resident, and
up to 1M words per program may reside in memory. This
is accomplished through mapping pages of the logical
address space to the virtual address space.

3-5B. CODE AND DATA SEPARATION
When Code and Data Separation (CDS) is enabled, a
program’s address space is partitioned into two separate
address spaces: a code space and a data space of up to 31k
words each. Opcodes and the operand pointers that follow
the opcodes reside in code space, and variables and
constants reside in data space. CDS instructions are
provided that remap the code segment to other physical
pages in memory, thus providing large program support.
A program’s code size may be up to 128 segments (each
having 31k words of code), which may be either memory-
resident or disc resident. The optional HP 92078 A package
for the RTE-A operating system provides software support
for CDS.

3-5C. BASE-RELATIVE ADDRESSING

Under CDS, special hardware is used to access memory
locations relative to a base register called the Q-register.
When a memory address is in the range 2 through 1023,
the Q-register value is added to produce an effective
address in the data space. When CDS is enabled, code may
not reside on the base page, which means that jump in-
structions may not jump to the base page.

3-6. RESERVED MEMORY LOCATIONS

The first 64 memory locations of these of the base page
(octal address 00000 through 00077) are reserved as listed
in Table 3-2. The first two locations are reserved as ad-
dresses for the two 16-bit accumulators (the A- and
B-register). If options or input/output devices correspond-
ing to locations 00020 through 00077 are not included in
the system configuration, these locations can be used for
programming purposes. The last 64 locations of the
physical base page (octal addresses 1700 through 1777)
are reserved for use by the Virtual Control Panel program
for the string area.

3-3

Programming Information

Table 3-2. Reserved Memory Locations

MEMORY
LOCATION PURPOSE
00000 A-register address.
00001 B-register address.
00002-00003 | Reserved.
00004 Power-fail interrupt.
00005 - Memory multi-bit error interrupt.
00006 Time base generator interrupt.
00007 Memory protect interrupt.
00010 Unimplemented instruction interrupt.
00011 Reserved.
00012 Virtual Area Memory Interrupt.
00013 CDS Segment Interrupt.
'00014-00017 | Reserved.
00020-00077 | Interrupt locations corresponding to
interface card select codes.
-01700-01777 | VCP program string area.

3-7. NONEXISTENT MEMORY

Nonexistent memory is defined as those locations not
physically implemented in the machine. For the A900 this
definition refers to the memory array cards and not the
cache memory. An attempted write to a nonexistent
memory location only occurs in the cache; when the cache
location is flushed, the data is not written to a memory
array card. An attempted read from a nonexistent memory
location that is not in the cache will return an all ones
word (177777 octal); if the location was pulled into the
cache on a previous access, the current cache value will be
returned. If the nonexistent memory is protected, a mem-
ory protect interrupt will be generated.

3-8. BASE SET iNSTRUCTEON
FORMATS

The base set of instructions are classified according to
format. The six formats used are illustrated in Figure 3-2
and described in the following paragraphs except for the
DMS and CDS instructions, which are described in
Sections IV and V. In all cases where a single bit is used to
select one of two cases (e.g., D/I), the choice is made by
coding a logic 0 or logic 1, respectively.

3-9. MEMORY REFERENCE
INSTRUCTIONS

This class of instructions, which combines an instruction
code and a memory address into one 16-bit word, is used to

34

A900

execute some function involving data in a specific memory
location. Examples are storing, retrieving, and combining
memory data to and from the accumulators (A- and
B-registers) or causing the program to jump to a specified
location in memory.

The memory cell referenced (i.e., the absolute address) is
determined by a combination of 10 memory address bits (0
through 9) in the instruction word and 5 bits (10 through
14) from the P-register which holds the address of the
instruction. This means that memory reference in-
structions can directly address any word in the current
page; additionally, if the instruction is given in some
location other than the base page (page zero), bit 10 Z/C)
of the instruction doubles the addressing range to 2,048
locations by allowing the selection of either page zero or
the current page. (This causes bits 10 through 14 of the
address to be set to zero instead of assuming the value

[ispafizf2[1ifiofe] 8] 7]e[s]a]3] 2] 1] 0]
i I i I i
. | | | |
[| ziC i | |
MEMORY
REFERENCE llnstruchon[[Memory Address J
o' | !
i | i : |
| i
I ! ‘ |
| ! ! '
| | | | |
i A/BSIA | | |
REGISTER] I 1 — J
|
REFERENCE [?ass Instruction
[
| | | | {
|
I ! I | |
| | | |
) ! !
)] | | |
1 AlB | |
INPUT/OUTPUT[Class] Tinsnucnon Channel No.
: ! | i
! ! Instruction !
) Class | f |
1 | | |
| | i | |
! ! i]]
EXTENDED)
ARITHMETIC L[] [zeros |
MEMORY
REFERENCE I Memory Address l
D/|i) : | ;
:Class : | Ins!ruc:lton |
! | !
: | 1 a I
EXTENTED | 1 | | |
ARITHMETIC No of
REGISTER Shifts
REFERENCE i | | [|
| 1 | : |
! | | | !
| : | ! |
EXTENDED — A8 ! I
INSTRUCTION Class l Class 1 Instruction J
GROUP T :
| i | | |
R R A
A T
1 t | [|
FLO?:;"':‘$ Class [Instruction J

Figure 3-2. Base Set Instruction Formats

A900

from the P-register.) This feature provides a convenient
linkage between all pages of memory, since page zero can
be reached directly from any other page. With CDS en-
abled, this feature becomes even more powerful as the
base register is added to all base page references (ad-
dresses 2 through 1777 octal, or MRG instructions with
Z/C = 0). This means that each single-word instruction
has direct access to data on the current page or data up to
1k words relative to the base register.

As discussed under paragraph 34, bit 15 is used to specify
direct or indirect memory addressing. Note also that since
the A- and B-registers are addressable, any single-word
memory reference instruction can apply to either of these
registers as well as to memory cells. For example, an ADA
0001 instruction adds the contents of the B-register
(address 0001) to the contents currently held in the
A-register; specify page zero for these operations since the
addresses of the A- and B-registers are on page zero.

3-10. REGISTER REFERENCE
INSTRUCTIONS

In general, the register reference instructions manipulate
bits in the A-register, B-register, and E-register; there is
no reference to memory. This group includes 39 basic
instructions which may be combined to form a one-word
multiple instruction that can operate in various ways on
the contents of the A-, B-, and E-registers. These 39 in-
structions are divided into two subgroups: the shift/rotate
group (SRG) and the alter/skip group (ASG). The ap-
propriate subgroup is specified by bit 10 (S/A). Typical
operations are clear and/or complement a register, con-
ditional skips, and register increment.

3-11. INPUT/OUTPUT INSTRUCTIONS

The input/output instructions use bits 6 through 11 for a
variety of I/O instructions and bits 0 through 5 to apply
the instructions either to a specific I/O channel (if the
Global Register is disabled) or to an I/O card register. This
provides the means of controlling all peripherals con-
nected to the I/O channels and for transferring data to and
from these peripherals. Included also in this group are
instructions to control the interrupt system, overflow bit,
and computer halt.

3-12. EXTENDED ARITHMETIC MEMORY
REFERENCE INSTRUCTIONS

As the single-word memory reference instruction de-
scribed previously, the extended arithmetic memory
reference instructions include an instruction code and a
memory address. In this case, however, two words are
required. The first word specifies the extended arithmetic
class (bits 12 through 15 and 10) and the instruction code
(bits 4 through 9 and 11); bits 0 through 3 are not needed
and are coded with zeros. The second word specifies the

Programming Information

memory address of the operand. Since the full 15 bits are
used for the address, this type of instruction may directly
address any location in memory. If the CDS mode is en-
abled and the reference is to the base page, the base (Q)
register will be added to the second word before referenc-
ing memory. As with all memory reference instructions,
bit 15 is used to specify direct or indirect addressing.
Operations performed by this class of instructions are
integer multiply and divide (using double-length product
and dividend) and double load and double store.

3-13. EXTENDED ARITHMETIC REGISTER
REFERENCE INSTRUCTIONS

This class of instructions provides long shifts and rotates
on the combined contents of the A- and B-registers. Bits 12
through 15 and 10 identify the instruction class; bits 4
through 9 and 11 specify the direction and type of shift;
and bits 0 through 3 control the number of shifts, which
can range from 1 to 16 places.

3-14. EXTENDED INSTRUCTIONS

The extended instructions include index register in-
structions, bit and byte manipulation instructions, and
move and compare instructions. Instructions comprising
the extended instruction group are one, two, or three
words in length. The first word is always the instruction
code; operand addresses are given in the words following
the instruction code or in the A- and B-registers. The
operand addresses are 15 bits long, with bit 15 (most-
significant bit) generally indicating direct or indirect
addressing.

3-15. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtrac-
tion, multiplication, and division of floating point quan-
tities. Conversion routines are provided for transforming
numerical integer representations to/from floating point
representations.

3-16. LANGUAGE INSTRUCTION SET

The language instruction set performs several frequently
used high-level language operations, including parameter
passing, array address calculations, and floating point
conversion, packing, and rounding.

3-17. DOUBLE INTEGER INSTRUCTIONS

The double integer instructions allow arithmetic and test
operations on 32-bit quantities. The data format for double
integer values is shown in Figure 3-1.

Programming Information

3-18. VIRTUAL MEMORY INSTRUCTIONS

The virtual memory instructions perform accesses to
Virtual Memory and the Extended Memory Area, which
are extensions of logical memory.

3-19. OPERATING SYSTEM
INSTRUCTIONS

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

3-20. SCIENTIFIC INSTRUCTION SET

The Scientific Instruction Set performs nine single-
precision and nine double-precision trigonometric and
transcendental functions.

3-21. VECTOR INSTRUCTION SET

The Vector Instruction Set applies the floating point
processing power of the A900 to highly efficient repetitive
processing of vectors and matrices.

3-21A. CDS INSTRUCTIONS

The CDS instruction set includes instructions for exa-
mining and modifying the base (Q) register, bounds @)
register, and CDS mode (C) register. This set also includes
instructions for transferring control between subroutines
(which may or may not be memory-resident).

All instructions that reference multi-word data (double
integer, single and double precision floating point) as well
as instructions using sequential addressing (DMA move
instructions, .SETP and SFB) will have the base register
added to the initial address if the instruction is base re-
lative and CDS mode is enabled. Subsequent memory
references are then executed sequentially.

Instructions that leave an address in a register upon
completion (e.g., LBT, .ZFER, .SETP, MWO00) will contain
an address resolved for base relativity, incremented by the
proper count.

3-22. BASE SET INSTRUCTION CCDING
Machine language coding for the base set of instructions
are provided in following paragraphs. Definitions for these
instructions are grouped according to the instruction type.

Directly above each definition is a diagram showing the
machine language coding for that instruction. The gray
shaded bits code the instruction type and the gold shaded
bits code the specific instruction. Unshaded bits are

3-6

A900

further defined in the introduction to each instruction
type. The mnemonic code and instruction name are in-
cluded above each diagram.

In all cases where an additional bit is used to specify a
secondary function (D/I,Z/C, or H/C), the choice is made by
coding a logic 0 or logic 1, respectively. In other words, a
logic 0 codes D (direct addressing),Z (zero page), or H (hold
flag); a logic 1 codes I (indirect addressing), C (current
page), or C (clear flag).

3-23. MEMORY REFERENCE
INSTRUCTIONS

The following 14 memory reference instructions execute a
function involving data in memory. Bits 0 through 9
specify the affected memory location on a given memory
page or, if indirect addressing is specified, the next ad-
dress to be referenced. Indirect addressing may be con-
tinued to any number of levels; when bit 15 (D/I) is a logic
0 (specifying direct addressing), that location will be taken
as the effective address. The A- and B-registers may be
addressed as locations 00000 and 00001 (octal),
respectively.

If bit 10 Z/C) is a logic 1, the memory address is on the
current page. If bit 10 is a logic 0, the memory address
depends on whether CDS mode is enabled. If CDS mode is
enabled, the base (Q) register will be added to bits 0
through 9 to provide the memory address. If CDS mode is
not enabled, the memory address is on the base page
(page 0). If the A- or B-ragister is addressed, bit 10 must
be a logic 0 to specify page zero, unless the current page is
page zero.

ADA ADD TO A
14131241110 98 7 6|5 4 3]2 1 0

15
Plofofofofsel [[[T [[17 |

"4
Memory Address

Adds the contents of the addressed memory location to the
contents of the A-register. The sum remains in the
A-register and the contents of the memory cell are unal-
tered. The result of this addition may set the extend bit or
the overflow bit. (Extend and overflow examples are illus-
trated on page A-15.)

ADB ADD TO B
15114 13121110 918 7 6|5 4 312 1 0

LCofefofofnfeel [[[T [[T][]

~
Memory Address

A900

Adds the contents of the addressed memory location to the
contents of the B-register. The sum rermains in the
B-register and the contents of the memory cell are unal-
tered. The result of this addition may set the extend bit or
the overflow bit. (Extend and overflow examples are illus-
trated on page A-15.)

AND “AND” TO A
1514131 1110 918 7 65 4 3|12 1 0
Pojofofnfol>e | | T [T T T[]
\ /)
Y

Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“and” operation. The contents of the memory cell are
unaltered.

CPA COMPARE TO A
15[14 13121110 9|8 7 6|5 4 3j2 1 0

Colefofafole] [[[T [[17]]

\'
Memory Addrass

Compares the contents of the addressed memory location
with the contents of the A-register. If the two 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed. Neither the A-register contents nor memory cell
contents are altered.

CPB COMPARE TO B
15114 131211110 9|8 7 6|5 4 3}2 1 0

Cofrfoirgofee I 0 [T][] [

v—
Memory Address

Compares the contents of the addressed memory location
with the contents of the B-register. If the twc 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed. Neither the B-register contents nor memory cell
contents are altered.

IOR “INCLUSIVE OR” TO A
15141312’11109876543210
Pofefaf1]ol2d [1]

INNEEN

Memory Address

Programming Information

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“inclusive or” operation. The contents of the memory cell
are unaltered.

182 INCREMENT AND SKIP IF ZERO
15114 1312|1110 9|8 7 6|5 4 3|2 1 0
Cdolrfefrmef 1 [T [1] 1]
\ v
A4
Memory Address

Adds one to the contents of the addressed memory loca-
tion. If the result of this operation is zero (memory con-
tents incremented from 177777 to 000000), the next in-
struction is skipped; i.e., the P-register is advanced two
counts instead of one count. If the result of this operation
is not zero, the next sequential instruction is executed. In
either case, the incremented value is written back into the
memory cell. Current page, direct addressing with this
instruction produces undefined results when CDS is
enabled.

JMP JUMP
15114 13121110 98 7 6|5 4 3|2 1 0

Lofrjofrfzel I [[T [[]|

\'
Memory Address

Transfers control to the addressed memory location. That
is, a JMP causes the P-register count to set according to
the memory address portion of the JMP instruction so that
the next instruction will be read from that location.

JSB JUMP TO SUBROUTINE

15[14 1312]1110 98 7 6]5 4 3|2 1 0

Lofojaofoe][]]]|
\\ v /

Memory Address

This instruction, executed in location P (P-register count),
causes the computer control to jump unconditionally to the
memory location (m) specified by the memory address
portion of the JSB instruction. The contents of the
P-register plus one (return address) is stored in memory
location m, and the next instruction to be executed will be
that contained in the next sequential memory location
(m + 1). A return to the main program sequence at P + 1
will be effected by a JMP indirect through location m. This
instruction produces undefined results when CDS is
enabled.

3-7

Programming Information

LDA LOAD A
15f1a 1312]1110 98 7 65 4 3[2 1 0
Llefifofoleel f [T L[T 1|

v
Memory Address

Loads the contents of the addressed memory location into
the A-register. The contents of the memory cell are
unaltered.

LDB LOAD B

15]14 1312[1110 9]8 7 6]5 4 3]2 1 0
Colafofofo?d f [1 [[
\4

Memory Address

Loads the contents of the addressed memory location into
the B-register. The contents of the memory cell are
unaltered.

STA STORE A
15[14 13121110 9f8 7 6]5 4 3|2 1 0
Clefofrfolrdd JIIL T T 7

-
Memory Address

Stores the contents of the A-register in the addressed
memory location. The previous contents of the memory
cell are lost; the A-register contents are unaltered. Cur-
rent page, direct addressing with this instruction produces
undefined results when CDS is enabled.

STB STORE B
1514 1312]1110 9]8 7 6]5 4 3[2 1 0
Llofedefofeel T LT[[[]

-
Memory Address

Stores the contents of the B-register in the addressed
memory location. The previous contents of the memory
cell are lost; the B-register contents are unaltered. Cur-
rent page, direct addressing with this instruction produces
undefined results when CDS is enabled.

XO0R “EXCLUSIVE OR” TO A
15114 131241110 9|8 7 6]5 4 3|2 1 0

Pofolofofole] [[[T [][]

v
Memory Address

-
"

3-8

A900

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“exclusive or’operation. The contents of the memory cell
are unaltered.

3-24. REGISTER REFERENCE
INSTRUCTIONS

The 39 register reference instructions execute functions
on data contained in the A-register, B-register, and
E-register. These instructicns are divided into two groups:
the shift/rotate group (SRG) and the alter/skip group
(ASG). In each group, several instructions may be com-
bined into one word. Since the two groups perform sepa-
rate and distinct functions, instructions from the two
groups cannot be mixed. Unshaded bits in the coding
diagrams are available for combining other instructions.

3-25. SHIFT/ROTATE GROUP. The 20 in-
structions in the shift/rotate group (SRG) are defined first;
this group is specified by setting bit 10 to a logic 0. A
comparison of the various shift/rotate functions are il-
lustrated in Figure 3-3. Rules for combining instructions
in this group are as follows (refer to Table 3-3):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

b. References can be made to either the A-register or
B-register, but not both.

c. Sequence of execution is from left to right.

d. In machine code, use zeros to exclude unwanted
microinstructions.

e. Code a logic 1 in bit position 9 to enable shifts or
rotates in the first position; code a logic 1 in bit posi-
tion 4 to enable shifts or rotates in the second position.

f. The extend bit is not affected unless specifically
stated. However, if a “rotate-with-E” instruction
(ELA, ELB, ERA, or ERB) is coded but disabled by a
logic 0 in bit position 9 and/or position 4, the
E-register will be updated even though the A-or
B-register contents are not affected; to avoid this
situation, code a “no operation” (three zeros) in the
first and/or second positions.

ALF ROTATE A LEFT FOUR
15|14 13 12}1110 9]8 7 6]5 4 3]2 1 0

i W]
A

2nd Position

A900

Table 3-3. Shift/Rotate Group Combining Guide

RAL
RBL

RAR
RBR

ALR
BLR

ERA
ERB

ELA
ELB

ALF
BLF

ALS ALS |
ARS ARS |
RAL RAL
RAR RAR
ALR [.CLE] (.sLal |- ALR [
ALF ALF
ERA ERA
ELA ELA
—— - e —
BLS 8LsS
BRS BRS
RBL ‘RBL |
RBR L | [CLE] [.sts] |/ RBR ;
BLR BLR ,
BLF] BLF
ERB ‘ERB :
| ELB . ELB /|
A or B register o
ALS Al5 14{13|12|11)10{9| 8|7 |6|5|4a|3|2]|1]0
BLS
s X R'RTad
sRs L* HIIHIHIHIM

{{»ﬁmlm 1171)

20" '
ﬁlmmmmﬁm

Y 0 £ °
LTI [T

)

A Y
kIwIHH[‘Ir_jHH,lHo]

()

-

Tof3]

-]

(R

-

I00DOBEE

Figure 3-3. Shift and Rotate Functions

Programming Information

Rotates the A-register contents (all 16 bits) left four
places. Bits 15, 14, 13, and 12 rotate around to bit posi-
tions 3, 2, 1, and 0, respectively. Equivalent to four succes-
sive RAL instructions.

ALR A LEFT SHIFT, CLEAR SIGN

1501413 12§1110 9J8 7 65 4 312 1 0
Jrjofo] 1] Jrjolo

= 7

1st Position 2nd Position

Shifts the A-register contents left one place and clears
sign bit 15.

ALS A LEFT SHIFT
15|14 13 12]1110 9]8 7 6 5 4 312 10
0 fololo] [1] [o]o]o

- [

1st Position 2nd Position

Arithmetically shifts the A-register contents left one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
The bit shifted out of bit position 14 is lost; a logic 0
replaces vacated bit position 0.

ARS A RIGHT SHIFT

1514131211109‘87‘6543210
Jojoi+f [1] fojejr
1st Position 2nd Position

Arithmetically shifts the A-register contents right one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
A copy of the sign bit is shifted into bit position 14; the bit
shifted out of bit position 0 is lost.

BLF ROTATE B LEFT FOUR
151413 1211110 9]8 7 6)5 4 3|2 1 0

]] el

Y L

1st Position 2nd Position

Rotates the B-register contents (all 16 bits) left four
places. Bits 15, 14, 13, and 12 rotate around to bit posi-
tions 3, 2, 1, and 0, respectively. Equivalent to four succes-
sive RBL instructions.

3-9

Programming Information

BLR B LEFT SHIFT, CLEAR SIGN

A900

375543210
1]0]0

D‘L:}’

1st Position 2nd Position

Shifts the B-register contents left one place and clears sign
bit 15.

BLS B LEFT SHIFT

151413121110“9 8 7 6|5 4 3[2 10
’ g{1J0]1Jolo]o] [1] Jo]o]o

= [

1st Position 2nd Position

Arithmetically shifts the B-register contents left one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
The bit shifted out of bit position 14 is lost; a logic 0
replaces vacated bit position 0.

ELB ROTATE E LEFT WITH B
8 7 6[5 4 3]2 1 0
tafrfe] 0] [afa]o

L

1st Position 2nd Position

Rotates the E-register content left with the B-register
contents (one place). The E-register content rotates into
bit position 0; bit 15 rotates into the E-register.

ROTATE E RIGHT WITH A

8 7 6|5 4 3[2 10
1Jon] [[rle]n

L

1st Position 2nd Position

Rotates the E-register content right with the A-register
contents (one place). The E-register content rotates into
bit position 15; bit 0 rotates into the E-register.

BRS B RIGHT SHIFT ERB ROTATE E RIGHT WITH B
1514131211109876543210 375543210
' [1] 1Jof0] [1] [1]o]y
1st Position 2nd Position L;)smon |’;nd Position

Arithmetically shifts the B-register contents right one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
A copy of the sign bit is shifted into bit position 14; the bit
shifted out of bit position O is lost.

CLE CLEAR E

Rotates the E-register content right with the B-register
contents (one place). The E-register content rotates into
bit position 15; bit 0 rotates into the E-register.

NC OPERATION

15014 131211110 918 7 6]5 4 312 1 0

HEOEEEN

Clears the E-register; i.e., the extend bit becomes a logic 0.

ELA ROTATE E LEFT WITH A

5J1a13 12[1110 918 7 6fs 4 3f2 1 0
a1 11 Jo] [1] [1]1]o

R

15t Position 2nd Position
Rotates the E-register content left with the A-register
contents (one place). The E-register content rotates into
bit position 0; bit 15 rotates into the E-register.

3-10

§ 7 6|54 3[210
gJoJofofofofoJo]o

This all-zeros instruction causes a no-operation cycle.

RAL ROTATE A LEFT
1514131211109876543210

[1] fol1lo

LT T

1st Position 2nd Position

Rotates the A-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

A900

ROTATE A RIGHT
9’8 7 6 5 4 3 z 1 o

& L

1st Position 2nd Position

Rotates the A-register contents right one place (all 16
bits). Bit O rotates into bit position 15.

RBL ROTATE B LEFT
13211109876543210

(1] Jo]1]o

Rotates the B-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

RBR ROTATE B RIGHT
1514131211109 8 7 6 5’4 3 2 1 0

Sl

1st Position 2nd Position

Rotates the B-register contents right one place (all 16
bits). Bit 0 rotates into bit position 15.

SLA SKIP IF LSB OF A IS ZERO
15014 131211110 918 7 6]5 4 3]2 1 0

HEEEOEE

Skips the next instruction if the least-significant bit (bit 0)
of the A-register is a logic 0.

SLB SKIP IF LSB OF B IS ZERO
8 7 6154 3/2 10

RN

Skips the next instruction if the least-significant bit (bit 0)
of the B-register is a logic 0.

Programming Information

3-26. ALTER/SKIP GROUP. The 19 instructions
comprising the alter/skip group (ASG) are defined next.
This group is specified by setting bit 10 to a logic 1. Rules
for combining instructions are as follows (refer to
Table 3-4):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

b. References can be made to either the A-register or
B-register, but not both.

c. Sequence of execution is from left to right.

d. If two or more skip functions are combined, the skip
function will occur if either or both conditions are
met. One exception exists: refer to the RSS

instruction.

e. In machine code, use zeros to exclude unwanted
instructions.

Table 3-4. Alter/Skip Group Combining Guide

CLA CLE

cmal 1 1.sez] | Icmel | [.ssal [SLAI LINA] [,SZA] [.RSS]
cca ccel) |

cLe CLE)} | : S

CMB) | [SEZ] |.{CME} | [SSB][SLB] [INB][S28B] [,RSS]
cce CCE

CCA CLEAR AND COMPLEMENT A
512 1110 918 7 65 4 3]2 1 0

] [T [T

Clears and complements the A-register contents; i.e., the
contents of the A-register become 177777 (octal). This is
the two’s complement form of —1.

cCB CLEAR AND COMPLEMENT B
15114 13121110 9|8 7 65 4 3j2 1 0

I EEEEEER

Clears and complements the B-register contents; i.e., the
contents of the B-register become 177777 (octal). This is
the two’s complement form of —1.

3-11

Programming Information

CCE CLEAR AND COMPLEMENT E
15114 131211110 9|8 7 6|5 4 312 1 0

DT[]

Clears and complements the E-register content (extend
bit); i.e., the extend bit becomes a logic 1.

CLA CLEAR A

15114 1312}1110 98 7 6|5 4 3]2 1 0

ofofofofofofo] [] [[][]

A900

INA INCREMENT A
15114 13121110 98 7 65 4 312 1 0

[[T f]

Increments the A-register by one. The overflow bit will be
set if an increment of the largest positive number (077777
octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

INB INCREMENT B

Clears the A-register; i.e., the contents of the A-register
becomes 000000 (octal).

CLB CLEAR B
15141312 1110 918 7 65 4 312 1 0

[ofofofonaJofo T TT T 11 |

Clears the B-register; i.e., the contents of the B-register
become 000000 (octal).

CLE CLEAR E

15014 131211110 918 7 6]5 4 3]2 1 0

Clears the E-register; i.e., the extend bit becomes a logic 0.

CMA COMPLEMENT A
15114 131211110 98 7 6]5 4 3|2 1 0

ofofofonafo] [[] I

Complements the A-register contents (one’s complement).

CMB COMPLEMENT B
1‘51413]2’ 54 31210

o] [| |

Complements the B-register contents (one’s complement).

CME COMPLEMENT E
15014 13121110 918 7 6]5 4 3]2 1 0

Dl [[ofo] [T 1

Complements the E-register content (extend bit).

3-12

15014 13121110 9|8 7 65 4 3|2 1 0
: LI Tl
Increments the B-register by one. The overflow bit will be
set if an increment of the largest positive number (077777

octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

RSS REVERSE SKIP SENSE
15114 13121110 98 7 615 4 3]2 1 0

AL TIT LT

Skip occurs for any of the following skip instructions, if
present, when the non-zero condition is met. An RSS with-
out a skip instruction in the word causes an unconditional
skip. If a word with RSS also includes both SSA and SLA
(or SSB and SLB), bits 15 and 0 must both be logic 1’s for a
skip to occur; in all other cases, a skip occurs if one or more
skip conditions are met.

SEZ SKIP IF E IS ZERO
15|14 131211110 918 7 6]5 4 3]2 1 0

HiiEEENOEEEE

Skips the next instruction if the E-register content (extend
bit) is a logic 0.

SLA SKIP IF LSB OF A IS ZERO
15114 13121110 9}8 7 6}5 4 3|2 1 0

HE R EE

Skips the next instruction if the least-significant bit (bit 0)
of the A-register is a logic 0; i.e., skips if an even number is
in the A-register.

A900

SLB SKIP IF LSB OF B IS ZERO
15114 13121110 98 7 65 4 3[2 1 0

HEERIEE

Skips the next instruction if the least-significant bit (bit 0)
of the B-register is a logic 0; i.e., skips if an even number is
in the B-register.

SSA SKIP IF SIGN OF A IS ZERO
15014 131211110 918 7 6 210

L[

Skips the next instruction if the sign bit (bit 15) of the
A-register is a logic 0; i.e., skips if a positive number is in
the A-register.

SSB SKIP IF SIGN OF B IS ZERO
15014 131211110 9]8 7 6|5 4 3]2 1 0

HERRE

Skips the next instruction if the sign bit (bit 15) of the
B-register is a logic 0; i.e., skips if a positive number is in
the B-register.

SZA SKIP IF A IS ZERO
15114 131211110 918 7 6]5 4 3|2 1 0

[T o]

Skips the next instruction if the A-register contents are
zero (16 zeros).

SZB SKIP IF B IS ZERO
150114 1312]1110 98 7 6]5 4 3|2 10

[T 1]

Skips the next instruction if the B-register zontents are
zero (16 zeros).

3-27. INPUT/OUTPUT INSTRUCTIONS

The following input/output instructions provide the capa-
bility of setting, clearing or testing the flag and control
bits associated with DMA, programmed /O interrupts,
memory protect, time base generator, parity error, Global

Programming Information

Register, and overflow. I/O instructions with select codes
of seven or less have various functions. (Refer to Table 5-3
for further information regarding specific select-code func-
tions.) I/O instructions permit data transfer between the
A- and B-registers and either specific I/O devices or be-
tween registers associated with memory protect or inter-
rupts. The various registers and I/O devices are addressed
by means of their register numbers and select codes.

Bit 11, where relevant, specifies the A- or B-register or
distinguishes between set control and clear control;
otherwise, bit 11 may be a logic 0 or a logic 1 without
affecting the instruction (although the assembler will as-
sign zeros in this case). In those instructions where bit
position 9 includes the letters H/C, the programmer has
the choice of holding (logic 0) or clearing (logic 1) the
device flag after executing the instruction. (Exception: the
H/C bit associated with instructions SOC and SOS holds or
clears the overflow bit instead of the device flag.) Note
that this H/C option is not supported on many of the I/O
instructions with select code less than 10 octal.

Bits 8, 7, and 6, specify the appropriate I/O instruction.
When the Global Register is enabled, bits 5 through 0
apply the instruction to a register on the I/O card whose
select code is in the Global Register. (The Global Register
is discussed further in paragraph 7-4).

NOTE

Execution of I/O instructions is inhibited
when the memory protect feature is
enabled. Refer to paragraph 6-3.

The following instruction descriptions assume that the
Global Register is disabled and, therefore, the instructions
are addressed to a select code.

CLC CLEAR CONTROL
15114 13 12J1110 9]8 7 6|5 4 3]2 1 0

Select Code or
Register Number

Clears the control bit (Control 30) of the selected I/O
channel or function. This turns off the specific device
channel and prevents it from interrupting. A CLC 00
instruction clears the control bits from select code 20 up-
ward, effectively turning off all /O devices.

CLF CLEAR FLAG
15114 13 12]1110 9

7 6154 312 10
1

|

Select Code or
Register Number

3-13

Programming Information

Clears the flag (Flag 30) of the selected I/O channel or
function. A CLF 00 instruction disables the interrupt sys-
tem for the time base generator and all interface cards;
this does not affect the status of the individual channel
flags.

CLO CLEAR OVERFLOW
1514 13121110 9|8 7 6|5 4 3}2 1 0

g 1 JoJo[1]ofo]ofojon

Clears the overflow bit.

HLT HALT
15 1413’12’111’0 9/8 7 6}5 4 32 10

Select Code or
Register Number

Halts the computer, holds or clears the flag of the selected
/O channel, and invokes the virtual control panel pro-
gram. The HLT instruction will be contained in the
T-register, which is displayed on the VCP when the VCP
program starts executing. The P-register (also displayed)
will normally contain the HLT location plus one. Note
that if break is not enabled on any I/O card, the HLT
instruction has no effect.

LIA LOAD INTO A
15014 13 12}1110 9|8 7 6|5 4 3]2 1 0

Register Number

Loads the contents of the addressed I/O special function
register into the A-register.

L8 LOAD INTO B
1514 1312|1110 9|8 7 6]5 4 3]2 1 0

Register Number

Loads the contents of the addressed I/O special function
register into the B-register.

3-14

A900

MIA MERGE INTO A
15[14 13 12]1110 9]8 7 6]5 4 3]2 1 0
| folalocfrfoo] [[]|

\ /

v
Register Number

By executing a logical “inclusive or” function, merges the
contents of the addressed 1/0 special function register into
the A-register.

MIB MERGE INTO B
151413121119 8 7 6|5 4 3|2 10

Dol fofo] [[] |

Y
Register Number

By executing a logical “inclusive or” function, merges the
contents of the addressed I/O special function register into
the B-register.

OTA OUTPUT A
114131211109 8 7 6|54 3|12 10

ofafrdafijof [] L]

~
Register Number

Outputs the contents of the A-register to the addressed I/O
special function register. The contents of the A-register
are not altered.

0TB OUTPUT B
15[1a 13121110 9|8 7 6]5 4 3[2 1 0
4 Pfilifo] [[

A4
Register Number

Outputs the contents of the B-register to the addressed /O
special function register. The contents of the B-register
are not altered.

SFC SKIP IF FLAG CLEAR
151413 1241110 9|8 7 6|5 4 3]2 1 0

of1Jof T [1] |

Y
Select Code or
Register Number

Skips the next programraed instruction if the flag (Flag
30) of the selected channel is clear (device busy).

A900

SFS SKIP IF FLAG SET
1431211109876543210

ofofvo] [[][]

Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag
30) of the selected channel is set (device reacly).

soC SKIP IF OVERFLCW CLEAR
1514 13121110 9

8 7 6/54 3[]2 10
of[1]0]ofojofoo]1

Skips the next programmed instruction if the overflow bit
is clear. Use the H/C (bit 9) to either hold or clear the
overflow bit following the completion of this instruction
(whether the skip is taken or not).

S0S SKIP IF OVERFLOW SET
15114 1312]1110 918 765 4 3]2 ;1 0

011
Skips the next programmed instruction if the overflow bit
is set. Use the H/C bit (bit 9) to either hold or clear the
overflow bit following the completion of this instruction
(whether the skip is taken or not).

STC SET CONTROL
15114 13 12]1110 918 7 6]5 4 3j2 1 0

HEEE

A4
Select Code or
Register Number

Sets the control bit (Control 30) of the selected I/O channel
or function.

STF SET FLAG
15]14 13 12]11 10 9]8 7 6]5 4 3]2 1 0
[IifoJofolo] [[] [|
\ /
—

Select Code or
Register Number

Sets the flag (Flag 30) of the selected I/O channel or func-
tion. An STF 00 instruction enables the interrupt system
for the time base generator and all interface cards.

Programming Information

STO SET OVERFLOW
15[14 13121110 9]8 7 6]5 4 3[2 1
Jojoj1]ofolo]o]o]

Sets the overflow bit.

3-28. £ EXTENDED ARITHMETIC MEMORY
REFERENCE INSTRUCTIONS

The four extended arithmetic memory reference instruc-
tions provide for integer multiply and divide and for load-
ing and storing double-length words to and from the
A- and B-registers. The complete instruction requires two
words: one for the instruction code and one for the address.
When stored in memory, the instruction word is the first
to be fetched; the address word is in the next sequential
location.

Since 15 bits are available for the address, these instruc-
tions can directly address any location in memory. As for
all memory reference instructions, indirect addressing to
any number of levels may also be used. A logic 0 in bit
position 15 specifies direct addressing; a logic 1 specifies
indirect addressing.

DIVIDE
2 10
000
o /

Memory Address

Divides a double-word integer in the combined B- and
A-registers by a 16-bit integer in the addressed memory
location. The result is a 16-bit integer quotient in the
A-register and a 16-bit integer remainder in the
B-register. Overflow can result from an attempt to divide
by zero, or from an attempt to divide by a number too
small for the dividend. In the former case (divide by zero),
the division will not be attempted and the B- and
A-register contents will be unchanged except that a nega-
tive quantity will be made positive. In the latter case
(divisor too small), the execution will be attempted with
unpredictable results left in the B- and A-registers. If
there is no divide error, the overflow bit is cleared.

DLD DOUBLE LOAD

15141312111098765’43210

a]1]ojolo]ofolo]0

\ J
A\'4

Memory Address

3-15

Programming Information

Loads the contents of addressed memory location m (and
m + 1) into the A- and B-registers, respectively. If m is
base relative and CDS mode is enabled, the base register
will be added to m and the references will come from m+Q
and m+Q+1 (even if m+1 is not base relative).

DST DOUBLE STORE
15[1a1312]1110 9fs 7 6|5 a4 3]2 1 o
1} lolofo]o
D/|
AN /
\"4

Memory Address

Stores the double-word quantity in the A- and B-registers
into addressed memory locations m (and m + 1),
respectively. If m is base relative and CDS mode is en-
abled, the base register will be added to m and the ref-
erences will come from m+Q and m+Q+1 (even if m+1 is
not base relative).

MPY MULTIPLY
15114 13 12J1110 9|8 7 6]5 4 3]2 1 O

1 0 ﬁ 1olofo]o

v
Memory Address

Multiplies a 16-bit integer in the A-register by a 16-bit
integer in the addressed memory location. The resulting
double-length integer product resides in the B- and
A-registers, with the B-register containing the sign bit
and the most-significant 15 bits of the quantity. The
A-register may be used as an operand (i.e., memory ad-
dress 0), resulting in an arithmetic square. The instruc-
tion clears the overflow bit.

3-29 EXTENDED ARITHMETIC REGIS-
TER REFERENCE INSTRUCTIONS

The six extended arithmetic register reference instruc-
tions provide various types of shifting operations on the
combined contents of the B- and A-registers. The
B-register is considered to be to the left (most-significant
word) and the A-register is considered to be to the right
(least-significant word). An example of each type of shift
operation is illustrated in Figure 3-4.

The complete instruction is given in one word and includes
four bits (unshaded) to specify the number of shifts (1 to
16). By viewing these four bits as a binary-coded number,
the number of shifts is easily expressed; i.e., binary-coded
1 = 1 shift, binary-coded 2 = 2 shifts . . . binary-coded 15
= 15 shifts. The maximum number of 16 shifts is coded
with four zeros, which essentially exchanges the contents
of the B- and A-registers.

3-16

A900

The extend bit is not affected by any of the following
instructions. Except for the arithmetic shifts, overflow
also is not affected.

ASL ARITHMETIC SHIFT LEFT
15014 13 12]1110 918 7 6]5 4 3

Number of Shifts

Arithmetically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
low-order positions of the A-register. The sign bit is not
affected, and data bits are lost out of bit position 14 of the
B-register. If any one of the lost bits is a significant data
bit (“1” for positive numbers, “0” for negative numbers),
the overflow bit will be set; otherwise, overflow will be
cleared during execution. See ASL example in Figure 3-4.
Note that two additional shifts in this example would
cause an error by losing a significant ‘1.

ASR ARITHMETIC SHIFT RIGHT

15|14 1312|1110 9|8 7 6]5 4 3]2 1 0

Number of Shifts

Arithmetically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. The sign bit is unchanged and
is extended into bit positions vacated by the right shift.
Data bits shifted out of the least-significant end of the
A-register are lost. Since overflow cannot occur, the in-
struction clears the overflow bit.

LSL LOGICAL SHIFT LEFT
151413 1211110 98 7 6]5 4 3

Number of Shifts

Logically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
low-order bit positions of the A-register; data bits are lost
out of the high-order bit positions of the B-register.

LSR LOGICAL SHIFT RIGHT

15014 13 12|1110 98 7 6]5 4 3}]2 1 0

Number of Shifts

A900

Programming Information

B-REGISTER

A-REGISTER

i ._.E.—__———-’ Bits lost

1 011 000 101 000 101

0101 101011100 111 |

]
]
]
1
ASRE ;
{Arithmetic Shlh Rly\t :
5 places) 1
; !
I 1111110110001 010 | 0010 101011010 111]
_____]
‘Extended sngn :
'
Bits lo‘st‘—————-:L— :
1]
ASL 5 [0000000 111 101000 | 1101 101 000 110 111 |
(Arithmetic Shift Left : : :
§ places) ' i
v i
‘ [0011110 100011 011 | 0100 011 011 100 000 ld-—— Zeros Filled
'
: E————b Bits lost
i
LSR5 { 1011000 101000 101 ! 0101 101011100 111]
{Logical Shift Right s ?
5 places)]
H
i
Zeros filled -—---Dl 0000 010 110001 010 | 0010 101 011 010 111
[]
]
T e i
Bits soséd———]— :
. ' B :
' 0101000 111 101000 ' 1101 101 000 110 111
LSL5 [, : ; |
(Logical Shift Left t
5 places) ; '
|
0011110 100011011 | 0100011011 100 ooo Zeros filled
3
3
|
! 7
RRR 8 [0101110 111000010 | 0100010 110000 111 |
~ (Rotate Right 1
8 places) :
]
| 1000011 101011 107 } 1100 001 001000 101 |
- _—
'; 1
i -
i o :
RRL7 l 0110011 101 111 000 | 0110011010000111]
(Rotate Left —— B
7 places)

\

"\

L‘IOH 110 000 110 011

0100 001 110 110 0111

1
|
[
!
|
|
i
|
|
1

|

Figure 3-4. Example of Double-Word Shifts and Rotates

3-17

Programming Information

Logically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
high-order bit positions of the B-register; data bits are lost
out of the low-order bit positions of the A-register.

RRL ROTATE LEFT
15§14 13 12j1110 98 7 6]5 4 3]2 1 0
oJo] T [|

N —

Number of Shifts

Rotates the combined contents of the B- and A-registers
left n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the high-order end of the B-register are rotated
around to enter the low-order end of the A-register.

RRR ROTATE RIGHT
L14131211109876543210
Jojo]o] oJol1fofol | | |

\— e’

Number of Shifts

Rotates the combined contents of the B- and A-registers
right n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the low-order end of the A-register are rotated
around to enter the high-order end of the B-register.

3-30. EXTENDED INSTRUCTION GROUP

3-31. INDEX/REGISTER INSTRUCTIONS. The
index registers (X and Y) are two 16-bit registers accessi-
ble by the following instructions.

ADX ADD MEMORY TO X

A900

15—141‘31211109 8 7 615 4 312 10

N

Memory Address

Adds the contents of the addressed memory location to the
contents of the X-register. The sum remains in the
X-register and the contents of the memory cell are unal-
tered. The result of this addition may set the extend bit or
the overflow bit.

3-18

ADY ADD MEMORY TO Y
15]14 13 12]11 10 98 7 6}5 4 312 1 O
1j1]11]0

Memory Address

Adds the contents of the addressed memory location to the
contents of the Y-register. The sum remains in the
Y-register and the contents of the memory cell are unal-
tered. The result of this addition may set the extend bit or
the overflow bit.

CAX COPY ATO X

15014 1312]11 10 98 7 645 4 3]2 1 0

Copies the contents of the A-register into the X-register.
The contents of the A-register are unaltered.

CAY COPYATOY
15114 1312]11 10 98 7 & 54 3|12 10

Ljofrjojolt

Copies the contents of the A-register into the Y-register.
The contents of the A-register are unaltered.

CBX COPY B TO X
15114 1312111 10 918 7 6)5 4 3

2 1 0
L] [1fr]o]o]e o]

Copies the contents of the B-register into the X-register.
The contents of the B-register are unaltered.

CBY COPYBTOY
15141312111098 7654 3]2 10

1] a1} 1]of1]o o |

Copies the contents of the B-register into the Y-register.
The contents of the B-register are unaltered.

CXA COPY X TO A

15014 1312]11 10 9] 8 7 6|5 4 3]2 1 0
0fof1]0]o0

A900

Copies the contents of the X-register into the A-register.
The contents of the X-register are unaltered.

CXB COPY X TO B
15141312111098 76]54 312 10

0 00

Copies the contents of the X-register into the B-register.
The contents of the X-register are unaltered.

CYA COPY Y TO A
210

1] 1‘:[0[03

Copies the contents of the Y-register into the A-register.
The contents of the Y-register are unaltered.

15114 13 1211 10 9]8 7 6 543

CYB COPY YTO B
15114 1312111 10 9]8 7 6]5 4 3]2 1 0
: 1ojo

Copies the contents of the Y-register into the B-register.
The contents of the Y-register are unaltered.

DSX DECREMENT X AND SKIP IF ZERO

1514131211109 876 54”3

Subtracts one from the contents of the X-register. If the
result of this operation is zero (X-register decremented
from 000001 to 000000), the next instructior. is skipped;
i.e., the P-register count is advanced two counts instead of

Programming Information

18X INCREMENT X AND SKIP IF ZERO

15]14 1312]11 10 9] 8 7 6]5 4 3f2 1 0
[0jojojo

Adds one to the contents of the X-register. If the result of
this operation is zero (X-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the
P-register count is advanced two counts instead of one
count. If the result is not zero, the next sequential instruc-
tion is executed.

ISY INCREMENT Y AND SKIP IF ZERO
15[14 1312|1110 9]8 7 6]5 4 3]2 1 0
0fofo

Adds one to the contents of the Y-register. If the result of
this operation is zero (Y-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the
P-register count is advanced two counts instead of one
count. If the result is not zero, the next sequential instruc-
tion is executed.

LAX LOAD A INDEXED BY X
15114 13 12J11 10 9] 8 7 6]5 4 3[21 0

Operand Address

Loads the A-register with the contents of the memory
location indicated by the effective address, which is
computed by adding the contents of the X-register to the
operand address. The X -register and memory contents are
not altered. Indirect addressing and base relativity are
resolved before indexing; bit 15 of the effective address is
ignored.

one count. If the result is not zero, the next sequential LAY LOAD A INDEXED BY Y
instruction is executed.
15014 13 12]1110 9|8 7 6]5 4 3]2 10
; el {oj1]o1]0
DSY DECREMENT Y AND SKIP IF ZERO
N *

15141312111098 7 6 543

Subtracts one from the contents of the Y-register. If the
result of this operation is zero (Y-register decremented
from 000001 to 000000), the next instruction is skipped;
i.e., the P-register count is advanced two counts instead of
one count. If the result is not zero, the next sequential
instruction is executed.

“

Operand Address

Loads the A-register with the contents of the memory
location indicated by the effective address, which is
computed by adding the contents of the Y-register to the
operand address. The Y-register and memory contents are
not altered. Indirect addressing and base relativity are
resolved before indexing; bit 15 of the effective address is
ignored.

3-19

Programming Information

LBX LOAD B INDEXED BY X
2 10
0(1]0

Vv

Operand Address

Loads the B-register with the contents of the memory
location indicated by the effective address, which is
computed by adding the contents of the X-register to the
operand address. The X -register and memory contents are
not altered. Indirect addressing and base relativity are
resolved before indexing; bit 15 of the effective address is
ignored.

LBY LOAD B INDEXED BY Y
15114 13 12§11 10 9] 8 7 615 4 3121 0
1]o0(1]0

v

Operand Address

Loads the B-register with the contents of the memory
location indicated by the effective address, which is
computed by adding the contents of the Y-register to the
operand address. The X -register and memory contents are
not altered. Indirect addressing and base relativity are
resolved before indexing; bit 15 of the effective address is
ignored.

LDX LOAD X FROM MEMORY

15014 13 12}1110 98 7 65 4 32 10

1] 1] | of1]o|1

N

Memory Address

Loads the contents of the addressed memory location into
the X-register. The A- and B-registers may be addressed
as locations 00000 and 00001, respectively; however, if it
is desired to load from the A- or B-register, copy instruc-
tions CAX or CBX should be used since they are more
efficient.

LDY LOAD Y FROM MEMORY
15114 13 12111 10 98 7 615 4 3]2 1 0

v

Memory Address

3-20

A900

Loads the contents of the addressed memory location into
the Y-register. The A- and B-registers may be addressed
as locations 00000 and 00001, respectively; however, if it
is desired to load from the A- or B-register, copy instruc-
tions CAY or CBY should be used since they are more
efficient.

SAX STORE A INDEXED BY X
15[14 13 1211 10 9f8 7 6]5 4 321 0
j0jojojo]o

g

Operand Address

Stores the contents of the A-register into the memory
location indicated by the effective address, which is
computed by adding the contents of the X-register to the
operand address. The A- and X -register contents are not
altered. Indirect addressing and base relativity are resol-
ved before indexing; bit 15 of the effective address is
ignored.

SAY STORE A INDEXED BY Y
15014 13 12]1110 98 7 615 4 312 10

g

Ogperand Address

Stores the contents of the A-register into the memory
location indicated by the effective address, which is
computed by adding the contents of the Y-register to the
operand address. The A- and Y-register contents are not
altered. Indirect addressing and base relativity are resol-
ved before indexing; bit 15 of the effective address is
ignored.

SBX STORE B INDEXED BY X
1514 13 12J11 10 9]8 7 6]5 4 32 1 0
‘ lo|ojofo]o

g

Operand Address

Stores the contents of the B-register into the memory
location indicated by the effective address, which is
computed by adding the contents of the X -register to the
operand address. The B- and X -register contents are not
altered. Indirect addressing and base relativity are resol-
ved before indexing; bit 15 of the effective address is
ignored.

A900

SBY STORE B INDEXED BY Y

Programming Information

XBX EXCHANGE B AND X
15114 131211 10 9] 8 7 6]5 4 3]2 1

“

Operand Address

Stores the contents of the B-register into the memory
location indicated by the effective address, which is
computed by adding the contents of the Y-register to the
operand address. The B- and Y-register contents are not
altered. Indirect addressing and base relativity are resol-
ved before indexing; bit 15 of the effective address is
ignored.

STX STORE X TO MEMORY
15114 13 12J1110 918 7 615 4 312 1 0

h

Memory Address

Stores the contents of the X-register into the addressed
memory location. The A-and B-registers may be ad-
dressed as locations 00000 and 00001, respectively. The
X-register contents are not altered.

STY STORE Y TO MEMORY

"
Memory Address

Stores the contents of the Y-register into the addressed
memory location. The A- and B-registers may be ad-
dressed as locations 00000 and 00001, respectively. The
Y-register contents are not altered.

XAX | EXCHANGE A AND X
1514 13 12|11

Exchanges the contents of the A- and X-registers.

XAY EXCHANGE A AND Y
1514 1312]11 10 9|8 7 6]5 4 3]2 1 0

% [

Exchanges the contents of the A- and Y-registers.

Exchanges the contents of the B- and X-registers.

XBY EXCHANGE B AND Y

1514 1312]11 10 9]8 7 65 4 3|2 1 0O

Exchanges the contents of the B- and Y-registers.

3-32. JUMP INSTRUCTIONS. The following four
jump instructions allow a program to either jump to or exit
from a subroutine.

JLy JUMP AND LOAD Y

15]14 13 1211 10 o] 8 7 6]5 4 32 1 0

>
Memory Address

This instruction is designed for entering a subroutine. The
instruction, executed in location P, causes computer con-
trol to jump unconditionally to the memory location
specified in the memory address. Indirect addressing may
be specified. The contents of the P-register plus two (re-
turn address) is loaded into the Y-register. A return to the
main program sequence at P + 2 may be effected by a JPY
instruction (described next).

JPY JUMP INDEXED BY Y

15114 13 12}1110 918 7 645 4 312

v

Operand Address

Transfers control to the effective address, which is com-
puted by adding the contents of the Y-register to the
operand address. Indirect addressing is not allowed. The
effective address is loaded into the P-register; the
Y-register contents are not altered.

321

Programming Information

JLA JUMP AND LOAD A

15]14 13

ﬁ.
q i

12]1110 918 7 6]5 4 3]2 1 0

o]0

v
Memory Address

This instruction, executed in location P, causes computer
control to jump unconditionally to the memory location
specified by the second word of the instruction. The con-
tents of the program counter plus two are stored in the
A-register. A return to the main program will be effected
by a JMP indirect through location 00000 (the A-register).

JLB JUMP AND LOAD B

15114 13 121110 9

Memory Address

This instruction, executed in location P, causes computer
control to jump unconditionally to the memory location
specified by the second word of the instruction. The con-
tents of the program counter plus two are stored in the
B-register. A return to the main program will be effected
by a JMP indirect through location 00001 (the B-register).

3-33. BYTE MANIPULATION INSTRUC-
TIONS. A byte address is defined as two times the word
address plus zero or one, depending on whether the byte is
in the high-order position (bits 8 through 15) or low-order
position (bits O through 7) of the word containing it. If the
byte of interest is in bit positions 8 through 15 of memory
location 100, for example, then the address of that byte is
2% 100 + 0, or 200; the address of the low-order byte in the
same location is 201 (2* 100 + 1). Because of the way byte
addresses are defined, 16 bits are required to cover all
possible byte addresses in the 32k-word logical address
space. Hence, for byte addressing, bit 15 does not indicate
indirect addressing. Memory references to byte addresses
on the base page (4-3777) with CDS mode enabled will
have 2*Q (byte base register) added to the base relative
address.

Byte addresses 000 through 003 reference bytes in the
A- and B-registers. These addresses will not cause mem-
ory violations. The user should, however, be careful in
referencing these byte addresses; for example, storing into
byte address 002 or 003 would destroy the byte address
originally contained in the B-register.

3-22

A900
CBT COMPARE BYTES
1514 13 12|11 10 918 7 65 4 3|2 1 0
~ .) S { ERERC

ojojo|ojojoo0joj0|0j0|0(0J0|0 |0

Return if array 1 = array 2

Return if array 1 < array 2

Return if array 1 > array 2

Compares the bytes in string 1 with those in string 2. This
is a three-word instruction where

Word1 = Instruction code,

Word2 = Address of word containing the string
count, and

Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address of string 1 and
the B-register contains the first byte address of string 2.

The number of bytes to be compared is given in the mem-
ory location addressed by Word 2 of the instruction; the
number of bytes to be compared is restricted to a positive
integer greater than zero. The strings are compared one
byte at a time; the ith byte in string 1 is compared with the
ith byte in string 2. The comparison is performed
arithmetically; i.e., each byte is treated as a positive
number. If all bytes in string 1 are identical with all bytes
in string 2, the “equal” exit is taken. As soon as two bytes
are compared and found to be different, the “less than” or
“greater than” exit is taken, depending on whether the
byte in string 1 is less than or greater than the byte in
string 2. The three ways this instruction exits are as
follows:

a. No skip if string 1 is equal to string 2; the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incre-
mented by the count stored in the address specified in
Word 2.

b. Skips one word if string 1 is less than string 2; the
P-register advances two counts from Word 3 of the
instruction. The A-register contains the address of the
byte in string 1 where the comparison stopped.

c. Skips two words if string 1 is greater than string 2;
the P-register advances three counts from Word 3 of
the instruction. The A-register contains the address of
the byte in string 1 where the comparison stopped.

For all three exits, the B-register will contain its original
value incremented by the count stored in the address
specified in Word 2. Wraparound of either byte address

A900

produces undefined results. This instruction is inter-
ruptible. The interrupt routine is expected to save and
restore the contents of the A- and B-registers. During the
interrupt, the remaining count is stored in Word 3 of the
instruction. This instruction produces undefined results
when CDS is enabled.

LBT LOAD BYTE

15{14 13 12J1110 918 7 65 4 3]2 1 0

011

This one word instruction loads into the A-register the
byte whose address is contained in the B-register. The
byte is right-justified with leading zeros in the left byte.
The B-register is incremented by one.

MBT MOVE BYTES

15014 13 12{11 10 9|8 7 615 4 312 1 0

Jrptfefrjof

cjojofojofoj0jof0|0joO;O(OJO|O]|O

Moves bytes in a left-to-right manner; i.e., the byte having
the lowest address from the source is moved first. This is a
three word instruction where

Word1l = Instruction code,

Word2 = Address of word containing the byte
count, and

Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address source and the
B-register contains the first byte address destination.

The number of bytes to be moved is given by a 16-bit
positive integer greater than zero addressed by Word 2 of
the instruction. The byte address in the A- and B-registers
are incremented as each byte is being moved. Thus, at the
end of the operation, the A- and B-registers are incre-
mented by the number of bytes moved. Wraparound of
either byte address produces undefined results. For each
byte move, a memory protect check is performed.

If different logical pages are mapped to the same physical
page and an attempt is made to move bytes between
overlapping strings in physical memory via different
logical pages, erroneous results may occur.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and

Programming Information

B-registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction
produces undefined results when CDS is enabled.

SBT STORE BYTE
15114 1312]11 10 9§18 7 6]5 4 3]2 1

Stores the A-register low-order (right) byte in the byte
address contained in the B-register. The B-register is
incremented by one. A memory protect check is performed
before the byte is stored. The left byte in the A-register
does not have to be zeros. The other byte in the same word
of the stored byte is not altered.

SFB SCAN FOR BYTE
15114 1312111 10 918 7 6}5 4 3]2 1 0]

This is a one word instruction with the operands in the
A- and B-registers. The A-register contains a termination
byte (high-order byte) and a test byte (low-order byte). The
B-register contains the first byte address of the string to
be scanned.

A string of bytes is scanned starting at the byte address
given in the B-register. Scanning terminates when a byte
in the string matches either the test byte or the termina-
tion byte in the A-register. The manner in which the
instruction exits depends on which byte is matched first. If
a byte in the string matches the test byte, the instruction
will not skip upon exit; the B-register will contain the
address of the byte matching the test byte. If a byte in the
string matches the termination byte, the instruction will
skip one word upon exit; the B-register will contain the
address of the byte matching the termination byte plus
one.

The scanning operation will not continue indefinitely even
if neither the termination byte nor test byte exists in
memory. These bytes are in the A-register with byte
addresses 000 and 001, respectively. Thus, if no match is
made by the time the B-register points to the last byte in
memory, the B-register will roll over to zero and the next
test will match the termination byte in the A-register with
itself.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers.

3-34. BIT MANIPULATION INSTRUCTIONS. The
following three instructions allow any number of bits in a
specified memory location to be cleared, set, or tested.

3-23

Programming Information

CBS CLEAR BITS

Memory Address

Clears bits in the addressed location. This is a three-word
instruction where

Word 1 = Instruction code,
Word2 = Address of a 16-bit mask, and
Word3 = Address of word where bits are to be

cleared.

The bits to be cleared correspond to logic 1’s in the mask.
The bits corresponding to logic 0’s in the mask are not
affected. A memory protect check is performed prior to
modifying the word in memory.

SBS SET BITS

A900

Tests (compares) bits in the addressed location. This is a
three-word instruction where

Word1 = Instruction code,
Word2 = Address of a 16-bit mask, and
Word3 = Address of word in which bits are to be

tested.

The bits in the addressed memory word corresponding to
logic 1’s in the mask are tested. If all the bits tested are 1’s,
the instruction will not skip; otherwise the instruction
will skip one word (i.e., the P-register will advance two
counts from Word 3 of the instruction).

3-35. WORD MANIPULATION INSTRUCTIONS.
The following instructions facilitate the comparing and
moving of word arrays.

CMwW COMPARE WORDS

15114 13 1211110 9}8 7 6|5 4 3}]2 1

ojojo|ojojo0j0j0;0}jOj0|0}jO |0 |0

15]181312[11 10 9]8 7 6|5 4 3]2 1 0
IR

Return if array 1 = array 2

Return if array 1 < array 2

Return if array 1 - array 2

-

Memory Address

Sets bits in the addressed location. This is a three-word
instruction where

Word1 = Instruction code,
Word2 = Address of a 16-bit mask, and
Word3 = Address of word where bits are to be set.

The bits to be set correspond to logic 1’s in the mask. The
bits corresponding to logic 0’s in the mask are not affected.
A memory protect check is performed prior to modifying
the word in memory.

TBS TEST BITS
15014 13 121110 98 7 6]5 4 312 1 0

-

Memory Address

3-24

Compares the words in array 1 with those in array 2. This
is a three-word instruction where

Word1 = Instructior. code,

Word2 = Address of word containing the word
count, and

Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first word address of array 1 and
the B-register contains the first word address of array 2.
Bit 15 of the addresses in the A- and B-registers are ig-
nored; i.e., no indirect addressing allowed.

The number of words to be compared is given in the
memory location addressed by Word 2 of the instruction; a
negative word count produces undefined results. The
arrays are compared one word at a time; the ith word in
array 1 is compared with the ith word in array 2. This
comparison is performed arithmetically; i.e., each word is
considered a two’s complement number. If all words in
array 1 are equal to all words in array 2, the “equal” exit is
taken. As soon as two words are compared and found to be
different, the “less than” or “greater than” exit is taken,

A900

depending on whether the word in array 1 is less than or
greater than the word in array 2. The three ways this
instruction exits are as follows:

a. No skip if array 1 is equal to array 2; the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incre-
mented by the word count stored in the address
specified in Word 2.

b. Skips one word if array 1 is less than array 2; the
P-register advances two counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

c. Skips two words if array 1 is greater than array 2; the
P-register advances three counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

For all three exits, the B-register will conta:n its original
value incremented by the word count stored in the address
specified in Word 2. This instruction is interruptible. The
interrupt routine is expected to save and restore the
contents of the A- and B-registers. During the interrupt,
the remaining count is stored in Word 3 of the instruction.
Wraparound of either word address produces undefined
results with the following exception: if the last word ac-
cessed was at location 077777 octal, the A- or B-register
will properly terminate with a value of 100000 octal. This
instruction produces undefined results when CDS is
enabled.

MVwW MOVE WORDS

15]14 13 12|11 10 9|8 7 6]5 4 3|2 1

i s

Moves words in a left-to-right manner; i.e, the word hav-
ing the lowest address in the source is moved first. This is
a three-word instruction where

Word1 = Instruction code,
Word2 = Address of word containing the count, and
Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the address of the first source word
and the B-register contains the address of the first des-
tination word. Bit 15 of the addresses in the A- and
B-registers is ignored; i.e., no indirect addressing is al-
lowed. The number of words to be moved is given in the
memory location addressed by Word 2 of the instruction. A
negative word count causes undefined results. For each
word move, a memory protect check is performed.

Programming Information

At the end of the operation the A- and B-registers are
incremented by the number of words moved. Wraparound
of either word address causes undefined results with the
following exception: if the last word accessed was at lo-
cation 077777 octal, the A- or B-register will properly
terminate with a value of 100000 octal.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction
produces undefined results when CDS is enabled.

3-36. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtrac-
tion, multiplication, and division of both single precision
(32-bit) and double precision (64-bit) floating point
quantities, and conversion of quantities from floating
point format to integer format or vice versa. Data formats
are shown in Figure 3-1. Except for zero, all floating point
operands must be normalized (i.e., sign of mantissa differs
from most significant bit of mantissa).

For multiple-word instructions, indirect addressing to any
number of levels is permitted for the words indicated as
memory address. A logic 0 in bit position 15 specifies
direct addressing; a logic 1 specifies indirect addressing.

The execution times of the floating point instructions are
specified in Table 3-5. These instructions are non-
interruptible; any attempted interrupt is held off for the
full execution time of the currently active floating point
instruction. However, data transfer via direct memory
access is not held off.

3-37. SINGLE PRECISION OPERATIONS. Over-
flow for single precision operations occurs if the result lies
outside the range of representable single precision float-
ing point numbers [—2'%7, (1 —2-2%) 2'27]. In such a case,
the overflow flag is set and the result (1 —2-23) 2127 jg
returned to the A- and B-registers. Underflow occurs if the
result lies inside the range [—27'2° (1 +2722), 2-129] In
such a case, the overflow flag is set and the result 0 is
returned to the A- and B-registers.

FAD FLOATING POINT ADD

15114 13 12]1110 9|8 7 6[5 4 3[2 1 o

Memory Address

Adds the floating point quantity in the A- and B-registers
to the floating point quantity in the specified memory
locations. The floating point result is returned to the
A- and B-registers.

3-25

Programming Information

FSB FLOATING POINT SUBTRACT

15[141312[1110 9]8 7 6f5 4 3[2 1 0
“ o{o{ojofojojojo]jO

v
Memory Address

Subtracts the floating point quantity in the specified
memory locations from the floating point quantity in the
A- and B-registers. The floating point result is returned to
the A- and B-registers.

FMP FLOATING POINT MULTIPLY

1413 12]1110 9]8 7 6]5 4 3]2 1 0
| q of1]0]ofo]o]o

v
Memory Address

Multiplies the floating point quantity in the A-and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned to
the A- and B-registers.

FDV FLOATING POINT DIVIDE

’1141312111098 7 6|5 4 31210

Yo
Memory Address

Divides the floating point quantity in the A-and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned to
the A- and B-registers.

FLOATING POINT TO
FIX SINGLE INTEGER

15014 1312|1110 9|8 7 6|5 4 3|2 1 0

1 ofojofn} o] JoJoTo]o]o]o

Converts the floating point quantity in the A-and
B-registers to single integer format. The integer result is
returned to the A-register. If the magnitude of the floating
point number is <1, regardless of sign, the integer 0 is
returned. If the magnitude of the exponent of the floating
point number is =16, regardless of sign, the integer 32767
(077777 octal) is returned as the result and the overflow
flag is set.

3-26

A900

SINGLE INTEGER TO
FLT FLOATING POINT

54 3[2 10
o[1]o]ofo]0

1514 1312|1110 9|8 7 6

Converts the single integer quantity in the A-register to
single precision floating point format. The floating point
result is returned to the A- and B-registers.

FLOATING POINT TO
DOUBLE INTEGER

7615 4 32 10
[1fo]ofo]1 o]0

.FIXD*
15114 131211 10 9]¢

Converts the floating point quantity in the A- and
B-registers to double integer format. The integer result is
returned to the A- and B-registers. (The A-register con-
tains the most-significant word and the B-register con-
tains the least-significant word.) If the magnitude of the
floating point number is <1, regardless of sign, the integer
0 is returned. If the magnitude of the exponent of the
floating point number is =32, regardless of sign, the in-
teger 2*! —1 is returned as the result and the overflow flag
is set.

DOUBLE INTEGER TO

.FLTD* FLOATING POINT

15014 13 12J11 10 9|8 7 6]5 4 3|2 1 0
10 ¢ 1] T1lof{1|o]1{0]|o0

Converts the double integer quantity in the A- and
B-registers to single precision floating point format. The
floating point result is returned to the A- and B-registers.
Positive numbers truncate toward zero and negative
numbers truncate away frcm zero when precision is lost in
the conversion.

3-38. DOUBLE PRECISION OPERATIONS. Over-
flow for double precision operations occurs if the result lies
outside the range of representable double precision float-
ing point numbers [—2'%, (1 —27°%) 2°'*]. In such a case,
the overflow flag is set and (1 —27) 2'*" ig returned as the
result. Underflow occurs if the result lies inside the range
[-27129(1 +275%), 27'#], In such a case, the overflow flag is
set and O is returned as the result.

#*For HP Assembly Language usage, refer to paragraph
3-48.

A900
DOUBLE FLOATING
.TADD* POINT ADD
15014 13 12]11 10 918 7 615 4 3}]2 1 0
ofofofofo[1]0

Vo

Memory Address

Adds two double precision floating point quantities (au-
gend plus addend). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of augend.

Word 4 = Address of addend.

DOUBLE FLOATING

.TSuB* POINT SUBTRACT
15414 13 12311 10 918 7 65 4 3]2 1 0

| ofo[1]ofo[1]0
D/I
D/I

Memory Address

Subtracts one double precision floating point quantity
from another (minued minus subtrahend). This is a four-
word instruction where

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of minuend.
Word4 = Address of subtrahend.
DOUBLE FLOATING
.TMPY* POINT MULTIPLY

12111 10 98 7 65 4 3|2 1 0

o1 JoJofo 10

Memory Address

*For HP Assembly Language usage, refer to paragraph
348.

Programming Information

Multiplies one double precision floating point quantity by
another (multiplicand by multiplier). This is a four-word
instruction where

Word1 = Instruction code.
Word 2 = Address of result.
Word3 = Address of multiplicand.
Word4 = Address of multiplier.
DOUBLE FLOATING
.TDIV* POINT DIVIDE

1211110 98 7 6)]5 4 3jJ2 1 0

oj1{1/0joj1]0

D,

P

~
Memory Address

Divides one double precision floating point quantity by
another (dividend by divisor). This is a four-word instruc-
tion where

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of dividend.
Word 4 = Address of divisor.
DOUBLE FLOATING
JFXS* POINT TO SINGLE INTEGER

1514 1312|1110 9|8 7 6|5 4 312 10
tjojofo]oj1]o

~

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to single integer format.
The integer result is returned to the A-register. If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =16, regardless
of sign, the integer 2> —1 is returned as the result and the
overflow flag is set.

SINGLE INTEGER TO
.TFTS* DOUBLE FLOATING POINT

15[14 13 12]11 10 9] 8 7 6]5 4 3]21 0
1lo{1]|0]0]|1]0

Ve

Memory Address

3-27

Programming Information

Converts the single integer quantity in the A-register to
double precision floating point format. The floating point
result is returned to the specified memory locations.

DOUBLE FLOATING
.TFXD* POINT TO DOUBLE INTEGER

15[1a 13 12]1110 98 7 65 4 3]2 1 0
“ ‘ jojojojtj1jo

-~

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to double integer format.
The integer result is returned to the A- and B-registers.
(The A-register contains the most-significant word and
the B-register contains the least-significant word.) If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =32, regardless
of sign, the integer 2%! —1 is returned as the result and the
overflow flag is set.

DOUBLE INTEGER TO
DOUBLE FLOATING POINT

.TFTD*

5114 13 12]11 10 9]8 7 6115 4 32 1 0

Yoy

Memory Address

Converts the double integer quantity in the A-and
B-registers to double precision floating point format. The
floating point result is returned to the specified memory
locations.

3-39. LANGUAGE INSTRUCTION SET

The Language Instruction Set (LIS) instructions perform
several frequently-used FORTRAN operations including
parameter passing, array address calculations, and float-
ing point conversion, packing, and rounding operations.

For multiple-word instructions, indirect addressing to any
number of levels is permitted for the words indicated as a
memory address. A logic 0 in bit position 15 specifies
direct addressing; a logic 1 specifies indirect addressing.

*For HP Assembly Language usage, refer to paragraph
3-48.

A900

The following paragraphs provide machine language
coding and definitions for the Language Instruction Set.
Data formats are shown ir. Figure 3-1.

NOTE

For a more detailed description of the
instructions in the Language Instruction
Set, refer to the Relocatable Library
Reference Manual, HP part no.
92077-90037.

SINGLE FLOATING POINT TO

.BLE* DPOUBLE FLOATING POINT

15114 13 12|11 10 98 7 6|5 4 3]2 1 0
ojt(1|1

i

il

'

Mertory Address

Converts the single precision floating peint quantity in
specified memory locations to a double precision floating
point quantity. The result is returned to other specified
memory locations. This is a four-word instruction where

Word1l = Instruction code.
Word2 = Return address
Word3 = Address of result.
Word4 = Address of operand.

DOUBLE FLOATING POINT
.NGL* TO SINGLE FLOATING POINT

15{14 13 12|11 10 9|8 7 65 4 312 1 0

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to a single precision float-
ing point quantity. The result is placed in the A-and
B-registers. Overflow is cleared unless, during execution,
rounding results in overflow or underflow of the exponent,
in which case overflow is set and the result is truncated to
the greatest positive number. This is a three word in-
struction where

Word1 = Instruction code.
Word2 = Return address.
Word3 = Address of operand.

Note that if the instructior: following .NGL accesses mem-
ory location 000000 or 000001, unpredictable data will
result.

3-28 Update 4

A900

TRANSFER THREE
CONSECUTIVE WORDS

0

Transfers three consecutive words from one memory lo-
cation to another. The A-register must contain the source
address and the B-register must contain the destination
address. The source address +3 is returned to the
A-register; the destination address +3 is returned to the
B-register. Wraparound of either address produces un-
defined results. Under CDS, the source and/or destination
addresses may be adjusted for base relativity.

TRANSFER THREE
.DFER* CONSECUTIVE WORDS

15[14 13 12]11 10 918 7 6|5 4 3]2 1

WV

Memory Address

Transfers three consecutive words from one memory loca-
tion to another. The source address +3 is returned to the
A-register; the destination address +3 is returned to the
B-register. This is a three word instruction where

Word1 = Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

Wraparound of either address produces undefined results.
Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

TRANSFER COMPLEX

.CFER* OR DOUBLE FLOATING POINT

15114 1312|1110 98 7 65 4 32 1 0

Memory Address
Transfers a double floating point quantity (four consecu-

tive words) from one memory location to another. The

*For HP Assembly Language usage, refer to paragraph
348.

Programming Information

source address +4 is returned to the A-register; the
destination address +4 is returned to the B-register. This
is a three word instruction where

Word1 = Instruction code.
Word2 = Destination address.
Word3 = Source address.

Wraparound of either address produces undefined results.
Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

.ZFER* TRANSFER EIGHT WORDS

15014 13 12111 10 98 7 65 4 3|2 1

g

Memory Address

Transfers eight consecutive words from one memory lo-
cation to another. The source address +8 is returned to the
A-register; the destination address +8 is returned to the
B-register. This is a three word instruction where

Word1 = Instruction code.
Word2 = Destination address.
Word3 = Source address.

Wraparound of either address produces undefined results.
Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

TRANSFER PARAMETER

.ENTN* ADDRESSES

15114 13 12]11 10 918 7 6]5 4 312

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-
rameter DEF in the calling routine. A true address is
determined by eliminating all indirect references. This
instruction may not be used when CDS is enabled.

TRANSFER PARAMETER

.ENTC* ADDRESSES

15014 131211 10 9]8 7 6]5 4 32 1 0

3-29

Programming Information

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-
rameter DEF in the calling routine. There must be exactly
two words between the subroutine entry point and the
.ENTC instruction. A true address is determined by
eliminating all indirect references. The true return ad-
dress is returned to the A-register. Used for privileged or

re-entrant subroutines. This instruction may not be used
when CDS is enabled.

TRANSFER PARAMETER

.ENTR* ADDRESSES
1514131211109875543210
1Jofo 1]y

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. A true address is determined by
eliminating all indirect references. (Refer to the Re-
locatable Library Reference Manual, part no. 92077-
90037, for more information.) This instruction may not be
used when CDS is enabled.

TRANSFER PARAMETER

[ENTP* ADDRESSES
15[14 13 12]11 10 of8 7 6|5 4 3]2 1 0
1jojo [E I 1]o]1{0]o0

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. A true address is determined by
eliminating all indirect references. The true return ad-
dress is returned to the A-register. Used for privileged or
re-entrant subroutines. (Refer to the Relocatable Library
Reference Manual, part no. 92077-90037, for more
information.) This instruction may not be used when CDS
is enabled.

SINGLE INTEGER
.CPM* ARITHMETIC COMPARE

15114 13 12]11 10 98 7 6}5 4 312 1 0

Return if operand 1 = operand 2

Return if operand 1 < operand 2

Return if cperand 1 > operand 2

*For HP Assembly Language usage, refer to paragraph
3-48.

A900

Arithmetically compares operands addressed by second
and third word. Does not skip if operands are equal; how-
ever, skips one instruction if the first operand is less than
the second, or skips two instructions if the first operand is
greater than the second.

.SETP* SET A TABLE

15§14 13 121110 98 7 6}5 4 3]2 1 0

1[of1[1]1

0 | Address where Count is given

Sets a table of increasing numbers in consecutive memory
locations. The A-register must contain the initial number
and the B-register must contain the initial memory address
(direct only); the succeeding memory location must give the
address where the number ¢f memory locations (count = 0)
is given. Entries in the table are established by incrementing
the initial address and number by one (1) for each successive
entry until the last number, initial number + COUNT —1, is
reached and the A-register equals the initial
value+COUNT. Wraparound will produce undefined
results. This instruction is interruptible. On return, the B-
register equals the initial address + COUNT. Under CDS,
the memory addresses may be adjusted for base relativity.

NOTE

If the initial address + COUNT -1 re-
sults in an address which is beyond the
end of logical memory, addresses within
the base page may be destroyed.

NEGATE SINGLE
..FCM* FLOATING POINT
15114 13121 10 9 | 2 10
| 0 0{1]0
Negates a packed single precision floating point quantity

located in the A- and B-registers. The result is returned to
the A- and B-registers.

NEGATE DOUBLE
..TCM* FLOATING POINT

15[14 13121110 9|8 7 65 4 3|2 1 0

v’

Memory Address

Negates a packed double precision floating point quantity
located in the specified memory locations. The result is
returned to the same specified memory locations.

3-30 Update 4

A900

3-40. DOUBLE INTEGER INSTRUCTIONS

The double integer instructions allow arithmetic and test
operations on 32-bit integer quantities. The data format
for double integer values is shown in Figure 3-1. Double
integer values contained in the (A,B) registers have the
most significant bits in the A-register. Values stored in
memory require two locations. The operand address in a
double integer instruction points to the first memory loca-
tion, which contains the most significant bits.

Instructions which do not return information in the ex-
tend or overflow bits will not alter the state of these flags.
Operations which may return an overflow condition will
clear overflow at entry.

.DAD*

DOUBLE INTEGER ADD

v

Memory Address

Perform the double integer operation:
(A,B) = (A,B) + <OPND>

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual sum. in unsigned
form. The extend bit will be set if an unsigned carry out of
the A-register occurs.

.DSB* DOUBLE INTEGER SUBTRACT

Memory Address

Performs the double integer operation:
(A,B) = (A,B) — <OPND>

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual difference, in un-
signed form. The extend bit will be set if an unsigned
borrow out of the A-register occurs.

Programming Information

DOUBLE INTEGER
.DSBR* SUBTRACT REVERSE

15414 13 12]11 10 9] 8 7 6 543210

~
Memory Address

Performs the double integer operation:
(A,B) = <OPND> - (A,B)

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual difference, in un-
signed form. The extend bit will be set if an unsigned
borrow out of operand occurs.

.DMP* DOUBLE INTEGER MULTIPLY
15114 13 12411 10 9] 8 7 6 5 4 3121 0

v

Memory Address
Performs the double integer operation:
(A,B) = (A,B) x <OPND>
The contents of <OPND> are unaltered. If overflow oc-

curs, the result (077777, 17777) is returned and overflow
is set.

DOUBLE INTEGER DIVIDE
0

-

Memory Address

Performs the double integer operation:
(A,B) = (A,B) + <OPND>
The contents of <OPND> are unaltered. If overflow or

divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

*For HP Assembly Language usage, refer to paragraph
3-48.

331

Programming Information

DOUBLE INTEGER

.DDIR* DIVIDE REVERSE

1514 13 12411 10 9} 8 7 65 4 3})12 1 0

Memory Address
Performs the double integer operation:
(A,B) = <OPND> =+ (A,B)
The contents of <OPND> are unaltered. If overflow or

divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

.DNG* DOUBLE INTEGER NEGATE

”15141'11211109 8 7 6154 3jJ21 0

Performs the double integer operation:

(A,B) = — (AB)

An input value of (10000,000000) is left unchanged and
overflow is set. An input value of zero will cause the
extend bit to be set.

DOUBLE INTEGER COMPARE

5 4 3121 0

15114 13 12J11 10 918 7 6

Memory Address

Compares the double integers (A,B) and <OPND>

If (A,B) = <OPND> Return to P+2
If (A,B) < <OPND> Return to P+3
If (A,B) > <OPND> Return to P+4

where P is the address of the .DCO instruction. The value
of both double integers and the overflow bit are unaltered.

*For HP Assembly Language usage, refer to paragraph
3-48.

3-32

A900

.DIN* DOUBLE INTEGER INCREMENT
15114 1312|1110 9|8 7 6]5 4 3}j2 1 0

Performs the double integer operation:
(AB) =B +1

An input value of (077777, 177777) will return a result of
(100000, 000000) and set overflow. An input value of
(177777, 177777) will return a result of zero and cause the
extend bit to be set.

.DDE* DOUBLE INTEGER DECREMENT
15114 13 12|11 10 9]8 7 6]5 4 3|2 1 0

{of[1]ofo]s

Performs the double integer operation:

(AB) =(AB) -1

An input value of (100000, 000000) will return the result
(077777, 177777) and set overflow. An input value of zerc
will return the result (177777, 177777) and cause the
extend bit to be set.

DOUBLE INTEGER INCREMENT
.DIS* AND SKIP IF ZERO

1514131211109876543210

Memory Address

Performs the double integer operation:
<OPND> = <OPND> + 1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in <OPND> is
treated as an unsigned number, and carry out of the
<OPND> is ignored.

DOUBLE INTEGER DECREMENT
AND SKIP IF ZERO

.DDS*

~

Memory Address

A900

Performs the double integer operation;
<OPND> = <OPND> -1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in -<OPND> is
treated as an unsigned number, and a borrcw out of the
<OPND> is ignored.

3-41. VIRTUAL MEMORY INSTRUCTIONS

The Virtual Memory Instructions perform accesses to
Virtual Memory and Extended Memory Area, which are
extensions of logical memory. If an addressed data item is
in physical memory, the instructions perform the required
mapping, including modification of map registers and
entry of the appropriate page numbers into the user’s
logical address space. If an addressed data item is not in
physical memory, a fault is generated to a macrocode
routine which swaps the data from the disc into physical
memory and then restarts the VMA instruction. The fault
sequence generated depends on whether the CDS mode is
enabled. If CDS mode is disabled, a JSB,I through memory
location 04 in the user map is effected. Memory location 04
is expected to contain the address of the entry point of the
VMA fault-handler in the user space (indirect addressing
is not allowed). If CDS mode is enabled, an interrupt is
generated to trap cell 12 octal in the system map. As the
VMA fault interrupt is the lowest priority in‘errupt, any
other pending interrupts will be serviced first.

With one exception, VMA always maps both the page that
the requested VMA address is on and the next page,
ensuring that entire data items up to 1k words in size are
mapped in. The exception is .PMAP, which only maps in
the requested page.

For more information on VMA and EMA, refer to the
RTE-A Programmer’s Reference Manual, HP part no.
92077-90007.

MAP* 16-BIT SUBSCRIPT MAPPING

1514131?11109 8 7 654 3121 0

I j1jojojo

Programming Information

Performs a subscript calculation and maps the result into
logical memory. Each of the subscripts and dimensions are
16-bit integers. However, the calculation uses 32-bit adds
and multiplies. The subscript words cannot address the
A- or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

.PMAP* MAP SPECIFIED PAGE

15114 13 12111 10 9|8 7 6|5 4 3|2 1 0

.

ia

- ’%

Error return

Normal return

On entry, the A-register is loaded with the number of the
user-map register to be altered and the B-register is
loaded with the page ID, which are the parameters passed
to the routine. If an attempt is made to map in the last+1
page, that PMR is mapped read and write protected and
the E-register is set. When no error occurs, a normal
return occurs to the second word after the instruction;
mapping is complete, and the contents of the A- and
B-registers are incremented. If a fault occurs and the sign
bit is set in the A-register, an error return to the word
following the instruction occurs. If a fault occurs and the
sign bit is not set in the A-register, a normal fault se-
quence is generated. The O-register is undefined. The
E-register is set if an attempt was made to map the last+1
page; otherwise it is cleared.

The .PMAP instruction uses the last user page (31) of
memory and then maps that logical page read and write
protected. After a .PMAP call, memory references to
address greater than 75777 octal will cause memory
protect violations.

RES* 16-BIT SUBSCRIPT RESOLUTION

o, 15114 131211 10 9J8 7 6[5 4 3|2 1 0
Word 2 = DEF dope vector ‘ ‘ 1]0 Iﬂ
Word 3 = Subscript N Word 2 = DEF dope vector

: . Word 3 = Subscript N

l Word N+2 = Subscript 1 :

Uord N+2 = Subscript 1 —I

*For HP Assembly Language usage, refer to paragraph
3-48.

Performs a subscript calculation. Each of the subscripts
and dimensions are 16-bit integers. However, the calcula-
tion uses 32-bit adds and multiplies. The subscript words
cannot address the A- or B-register.

3-33

Programming Information

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A- and B-registers contain the
address of the array element in double-integer format
(most significant word in the A-register).

JMAP* 32-BIT SUBSCRIPT MAPPING
]514131211 10 9 0

Word 2 = DEF dope vector
Word 3 = Subscript N

l Word N+2 = Subscript 1

Performs a subscript calculation and maps the result into
logical memory. Each of the subscripts and dimensions are
32-bit integers, and the calculation uses 32-bit adds and
multiplies. The subscript words cannot address the A- or
B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

.JRES* 32-BIT SUBSCRIPT RESOLUTION
1504 13 121110 98 7 65 4 32 10

D

!
Word 2 = DEF dope vector
Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation. Each of the subscripts
and dimensions are 32-bit integers, and the calculation
uses 32-bit adds and multiplies. The subscript words can-
not address the A- or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A- and B-registers contain the
address of the array element in double-integer format
(most significant word in the A-register).

334

A900

.LPXR* INDEXED MAPPING WITH DEF
154 13 121110 9]8 7 615 4 312 1 0
l11]1]0]0

A

Memory Address

On entry, the pointer specified by the second instruction
word is resolved, and the double word it points to is loaded
into the A- and B-registers. The offset specified in the
third instruction word is resolved, and the double word it
points to is added to the contents of the A- and B-registers.
The result is treated as a 26-bit VMA pointer and is
mapped. On exit, the B-register contains the logical ad-
dress of the data item, and the A-register is undefined.
The offset word cannot refer to the A- cr B-register.

.LPX* INDEXED MAPPING WITH REGISTERS

15014 13 121110 9] 8 7 6]5 4 3121 0

v~

Memory Address

On entry, the second instruction word either directly or
indirectly points to a double integer in memory, which is
to be added to the double integer in the A- and B-registers
to form a double-word VMA pointer. The result is treated
as a 26-bit VMA pointer and is mapped. On exit, the
B-register contains the logical address of the data item,
and the A-register is undefined.

.LBPR* MAPPING WITH DEF

Memory Address

On entry, the pointer specified by the second instruction
word is resolved and the double word it points to is loaded
into the A- and B-registers. This value is treated as a
26-bit VMA pointer and is mapped. On exit, the B-register
contains the logical address of the data item, and the
A-register is undefined.

#*For HP Assembly Language usage, refer to paragraph
3-48.

A900

.LBP* MAPPING WITH REGISTERS
1514 1312111 10 918 7 6]5 4 3|2 1 0

On entry, the 26-bit VMA pointer is contained in the
A-register (most significant word) and B-register. The
data item is mapped. On exit, the B-register contains the
logical address of the data item, and the A-register is
undefined.

3-42. OPERATING SYSTEM INSTRUCTION
SET

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

.CPUID* PROCESSOR IDENTIFICATION
114 312 11 8 7 6f5 4 312 1 0}
The A-register is loaded with a number that identifies the
processor installed in the computer system, where:

Octal 2 = A600 Computer.
Octal 3 = A700 Computer.
Octal 4 = A900 Computer.
Octal 5 = A600+ Computer.

.FWID*

FIRMWARE IDENTIFICATION

On entry, the B-register holds a number indicating which
bank of 1k microwords is identified. On exit, the
A-register contains a number that identifies the specific
ROM package (lower byte) and revision date code (upper
byte). If no microcode exists in the selected block, the
A-register is set to 177777 octal.

ROM package = 0, 1,2 = A900 base set without CDS
support
3 = A900 base set with CDS support

.WFI* WAIT FOR INTERRUPT
15]14 13 12111 10 918 7 65 4 3}2
o n 3

This instruction is equivalent to a JMP * except that the
processor does not perform memory accesses, which would
decrease the effective bandwidth of the memory back-
plane. This instruction is interruptible.

*For HP Assembly Language usage, refer to paragraph
3-48.

Programming Information

.SIp* SKIP IF INTERRUPT PENDING
15114 13 1211 10 98 7 65 4 3|2

The processor skips if an I/O interrupt is pending INTRQ-
is asserted on the A-Series backplane), which is inde-
pendent of the Type 2 and Type 3 interrupt masks. (Refer
to Table 6-1.)

3-43. EXECUTION TIMES
Table 3-5 lists the execution times required for the various
base set instructions.

3-44. SCIENTIFIC INSTRUCTION SET

The Scientific Instruction Set (SIS) is included with the
optional Floating Point Processor (FPP) card and performs
nine trigonometric and logarithmic functions. The follow-
ing paragraphs provide machine language coding and def-
initions for the SIS instructions. Error conditions and
codes are given in Table 3-6. Note that except for zero, all
floating point operands must be normalized (i.e., sign of
mantissa differs from most significant bit of mantissa).

TAN* TANGENT

15[14 1312f11 10 98 7 6]s 4 3]2 1 0
“ 0]o oo

Calculates the tangent of the single precision floating
point quantity (in radians) contained in the A- and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error return will execute the next instruction, set
the overflow bit, and return an ASCII error code in the
A- and B-registers.

SORT* SQUARE ROOT
15014 1312111 10 9}8 7 6|5 4 312 1 0

m

1ojofo]1

Calculates the square root of the single precision floating
point quantity contained in the A- and B-registers. The
result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error return will
execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

335

Programming Information

Table 3-5. Typical Base Set Instruction Execution Times

A900

INSTRUCTION EXECUTION TIME (usec) INSTRUCTION EXECUTION TIME (usec)
Memory Reference Group
SC4: CLF 0.40
LDA/B, ADA/B, IOR, XOR, AND 0.267 SFC, SFS 0.80
STAB 0.40 LIA/B, OTA/B 0.533
CPA/B 0.533 STC, CLC 0.667
12 0.533 SFT (flushes cache) 2.00 msec.
JSB 0.533
JMP 0.133 SC5: STF, CLF 0.40
SFC, SFS 0.40
(Each Indirect Address Level) 0.133 LIA/B 0.80
OTA/B 2.133
Alter/Skip Group STC, CLC 0.80
CLA/B or CMA/B 0.267 SC6: STF, CLF, STC, CLC 0.80
CCA/B or INA/B 0.267 SFC, SFS 0.80
SZA/B or SSA/B 0.533 LIA/B, OTA/B 0.40
All other combinations with skip 0.533 SC7: CLF, CLC 0.40
All other combinations w/out skip 0.267 sTC 0.933
- SFC, SFS 0.40
Shift/Rotate Group LIA/B 0533
With skip 0.533 oTAB 0.40
Without skip 0.40 STF 0.80
Extended Arithmetic Group $C20 and up:
STC, CLC 2.667
DLD 0.533 CLF, STF 1.20
DST 0.53 SFC, SFS without skip 1.333
MPY 2.267 Additional with skip 1.067
DIV 6.267 LIA/B, MIA/B 3.067
ASL 0.80 OTA/B 3.333
ASR, LSR, RRR 0.667 STC, CLC = 20 2.667
LSL, RRL 0.40 STC, CLC > 20 1.333
Input/Output Group Extended Instruction Group
HLT 3.067 (Index Register Instructions)
By select code: ADX, ADY, LDX, LDY 0.40
SFC, SFS 0.933 CYA, CYB 0.75
LIAB 3.067 DSX, DSY, ISX, ISY 0.667
OTA/B 3.867 LAX, LBX, LAY, LBY, STX, STY 0.533
CLC 2.00 SAX, SAY, SBX, SBY 0.533
STC 0.40 XAX, XBX, XAY, XBY 0.533
i JLy 0.533
SC1: CLF, STF, STC, CLC 0.267 Per each indirect address level 0.133
SFC, SFS 0.40 JPY 0.40
LIA/B 1.867
OTAB 0.40 JLA, JLB 0.533
SC2: STF, CLF, STC, CLC 0.80 (Bit Manipulation Instructions)
SFC, SFS 0.80 CBS, SBS, TBS 0.80
LIA/B 3.067 (Word Manipulation Instructions)
OTA/B 3.60 MVW 0.933 plus 0.267/word
SC3: STC, CLC 0.40 CMW 1.733 plus 1.20 for
CLF 0.40 four words
SFC, SFS 0.40 (Byte Manipulation Instructions)
LIA/B 3.067 CBT 1.467
OTA/B 3.333 Additional for two bytes 0.40
STF 1.067 LBT 0.667
MBT 1.333
Additional per byte 0.133
SBT 0.933
SFB 1.733
Additional for two bytes 0.40

3-36

A900

Programming Information

Table 3-5. Typical Ease Set Instruction Execution Times (Continued)

INSTRUCTION | EXECUTION TIME (usec) INSTRUCTION EXECUTION TIME (usec)
Language Support Instructions | Floating Point Group '
ENTR, .ENTP ' 1.60 (Single Precision)

.ENTN, .ENTC : ; 1.20 _FAD, FSB 1.733
Additional per word (no indirects) 0.267 FMP 1.867
Additional for each indirect level 0.133 FDV 4.00
.CPM 1.20 FIX 1.733
.SETP 1.067 FLT 1.867
Additional per word - 0.267 FIXD 2.133
.FCM 1.60 FLTD ‘ 2.00
Jgﬁﬁ g‘ig? , (Double Precision) -
.BLE 1.60 .TADD, TSUB 3.467
DFER 160 ;’6":}’ gggs
.CFER 1.867 :
.ZFER 2933 -TFXS 2.267
XFER 1.333 JFT8 1867
, : TFXD 2.40
~ - i TFTD 2.00
Double integer Instructions o —— e ;
Scientific In '
DAD, .DSB, .DSBR 0.80 nstruction Set
'gfg gﬁé oS 0930 ' ‘ TIME (u8)
: . Single-Precision Instructio T .
'DCO $.335 ngle-Precision Instructions Min) th
.gg'r’ ;;g Sine or Cosine 177 195
: Tangent 20.3 24.0
 -DDIR y s 5 333 Arc Tangent 13.5 20.5
T ; T ; Hyperbolic Tangent 9.7 25.0
Virtual Memory Instructions: Exponentiation 191
BP)) 1733 Natural/Base 10 Logamhm 18.9
LBPR 2.00 Square Root ' ‘ 14 7
.LPX 2.133 ' -
LPXR 2533 Note: The maxunum non‘mterruptble ume is <15 macroseoonds
IMAP (Basic) 3.60 , - Kz e
Additional per parameter - 2.00 : S us)
JMAP (Basic) 3.20 Double-Precision Operations Min. ~ Max,
Additional per parameter 2.00 SN ‘ : ‘ ——————
JIRES (Basic) 1.733 DPOLY 30 138
Additional per parameter 2.00 M 40
JRES (Basic) 1.33 N 37
Additional per parameter 2.00 - IATLG 1.0
.PMAP 1.60
: - & . SIS Accuracy:
Operating System Instructions 3"3 m E"‘”'
WFI (Basic) 0.40 Singh-Pmct:ion Bouthnclllen
WFI (Per loop) 0.133 : . !
SiP 0.667 Sine i 9.2E-8 : 1.25-16
.CPUID 0.40 Cosine 7.7E-8 1.3E-16
.FWID 1.733 Tangent i 1.55,»7 i 1.9E-16
s Arc Tangent - 15E-7 2.3E-16
Dynamic Mapping System Refer to Section IV for de- Hyperbolic Tangent © o 2.2E-7 5. 55-46
instruction Group tailed descriptions and ex- | Square Root ' B.7E-8 1.8E-17
R _ecution times. Exponemxatnn 3.2E-7 8.8E-17
Natural Logarithm 1.2E-7 1.3E-16
Base 10 Logarithm 1.6E-7 1;35;16

3-37

Programming Information

Table 3-5. Typical Base Set Instruction Execution Times

(Continued)

INSTRUCTION EXECUTION TIME (usec)

Vector Instruction Set
EXECUTION TIME
INSTRUCTION FIXED LOOP*

Single-Precision Instructions
VADD, VSUB 4.9 1.2
VMPY 51 1.2
VDIV 4.3 3.7
VSAD, VSSB 48 1.1
VSMY 5.1 1.2
VSDV 3.7 3.7
VPIV 6.8 1.6
VABS 4.8 1.1
VSUM 4.0 24
VNRM 4.4 24
vDOT 8.0 3.2
VMAX, VMIN 41 0.7-27
VMAB, VMIB 4.1 21-25
VMOV 2.8 0.7
VSWP 2.8 1.2
Double-Precision Instructions
DVADD, DVSUB 6.1 2.0
DVMPY 6.1 2.0
DVDIV 4.7 7.2
DVSAD, DVSSB 5.7 1.6
DVSMY 5.9 1.6
DVSDV 4.0 7.2
DVPIV 8.4 27
DVABS 56 1.6
DVSUM 41 20
DVNRM 45 2.0
DVDOT 7.5 25
DVMAX, DVMIN 4.3 0.7-33
DVMAB, DVMIB 4.3 25-32
DVMOV 3.1 1.2
DVSWP 3.1 23

*Fixed time is instruction start-up time; loop time is the process-
ing time per vector element. Total time equals fixed time plus the
number of elements times loop time.

Maximurn non-interruptible time is < 15 microseconds for any
VIS instruction.

NOTES: All times are in microseconds.

Memory refresh during a processor memory access,
heavy DMA activity, or “misses” in the cache will de-
grade (lengthen) all instruction execution times.

3-38

A900

Table 3-6. SIS Instruction Error Codes

INSTRUCTION ERROR CODE
TAN 090R if Ix | > 32768 7w/4
SQRT O3UN ifx <O
ALOG 02UN ifx < 0
ATAN None
COoS O50R if Ix | > 32768*n/4
SIN O50R if Ix | > 32768"m/4
EXP 070F if x > 88.029678
ALOGT 02UN ifx < 0
TANH None
Where:
OF = Integer or floating point overflow.
OR = Out of range.
UN = Floating point underflow.

NATURAL LOGARITHM
15[14 13 12]11 10 9f8 7 6] 2 1.0
(1fotolo] | 0[1]o0

Calculates the natural logarithm of the single precision
floating point quantity contained in the A-and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error return will execute the next instruction, set
the overflow bit, and return an ASCII error code in the
A- and B-registers.

ATAN* ARCTANGENT

15[t ta1z]11 10 8]s 7 6]s5 4 3[2 1 0
1] plif e oo [

Calculates the arctangent of the single precision floating
point quantity contained in the A- and B-registers. The
result (in radians) is returned to the A- and B-registers.
The overflow bit is cleared.

Ccos* COSINE

15J14 1312f11 10 9f 8 7 6[5 4 3]2 1 0
’ {o]1]0]0

*For HP Assembly Language usage, refer to paragraph
3-48.

A900

Calculates the cosine of the single precision {loating point

Programming Information

DPOLY* POLYNOMIAL EVALUATION

quantity (in radians) contained in the A- and B-registers.

The result is returned to the A- and B-registers. A normal 2]1])0

return will skip the next instruction. An error return will slo 1

execute the next instruction, set the overflow bit, and

return an ASCII error code in the A- and B-registers. X |[X|T
D/l

SIN* SINE D/I

15014 131211 10 9] 8 7 6]5 4 312 1 0 D/t

5 0f1{0]1 o/
D/l

Calculates the sine of the single precision floating point -

quantity (in radians) contained in the A- and B-registers.
The result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error return will
execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

EXP* E TO THE POWER X

15014 131211 10 9]8 7 6]5 4 312 1 0
' 0f1]1]o0

Calculates e to the power x of the single precision floating
point quantity contained in the A- and B-registers. The
result is returned to the A- and B-registers. A normal
return will skip the next instruction. An error condition
will execute the next instruction, set the overflow bit, and
return an ASCII error code in the A- and B-registers.

ALOGT* COMMON LOGARITHM

15[14 1312]11 10 o8 7 65 4 3]2 1 o
0f1 11

Calculates the common logarithm of the single precision
floating point quantity contained in the A-and
B-registers. The result is returned to the A- and
B-registers. A normal return will skip the next instruc-
tion. An error condition will execute the next instruction,
set the overflow bit, and return an ASCII error code in the
A- and B-registers.

TANH*

HYPERBOLIC TANGENT

Calculates the hyperbolic tangent of the single precision
floating point quantity contained in the A-and
B-registers. The result is returned to the A-and
B-registers. The overflow bit is cleared.

*For HP Assembly Language usage, refer to paragraph
3-48.

nVam

Memory Address

Evaluates a polynomial or quotient of polynomials using
64-bit floating-point. This is a seven-word instruction
where:

Word 1 = Instruction code.

Word2 = Sub-opcode.

Word3 = Address of result Y (64-bit floating).
Word4 = Address of argument X (64-bit floating).
Word 5 = Address of coefficient Py (64-bit floating).
Word 6 = Address of numerator order M (integer).
Word 7 = Address of denominator order N (integer).

Define PZ) = Py Z¥ + Py_,ZM' + ... + PZ + P,
QZ)=Z¥ +Qy_1 + ... + QZ + Q,

The computation performed depends on the values of bits
F, S, T of the sub-opcode:

F=0 Y = PX)QX)

F=1,8=0,T=1:Y = PX?»QX?)

F=1,8=0,T=0: Y = X*PX*»QX?)
F=1,8=1,T=1:Y = PX*/QXH-PX?) (N>0)
F=1,8=1,T=0: Y = X*PX?/(QX?*»-X*PX?) (N>0)

Horner’s Rule is used to evaluate the polynomial(s). The
coefficients must be stored sequentially in memory,
starting with Py, in the order:

PM! l)M—ly ey Pl) PO) QNAI) cer Ql’ QO
where Qy = 1.0 is implied but not stored. If N=0, no
coefficients are provided for Q and only P is evaluated. The
case N=0 and S=1 is not allowed.

Any underflow or overflow which occurs invalidates the
final result. M must be at least one. The ABX,Y and E
registers are undefined after this instruction. The O
register is undefined after the instruction.

This instruction is interruptible. Since it restarts after an
interrupt, it is not recommended for very large values of
(M+N).

Timing (in microseconds): Approximately
3 to 14) + 4.0M + 3.7N

339

Programming Information

A900

/ATLG* (1-X)(1+X) .TPWR* EXPONENTIATION
15414 13 12j11 10 9)8 7 6|5 4 312 1 0 514131211109 2 10
1o]1]1 1 {01

Memory‘rAddress

Performs the computation X =(1-X)/(1+X).

Word 1
Word 2

Instruction code.
Direct Address of X (64-bit floating).

The AB,X,Y,E and O registers are undefined after this
instruction.

Timing: 11.039 microseconds.

.FPWR* EXPONENTIATION

15|14 13 12|11 10 9|8 7 65 4 3]2 1 0

Memory Address

Raises a 32-bit floating-point number to an integer power.
This is a two-word instruction, where:

Word 1
Word 2

Instruction code.
Address of base X (32-bit floating).

The power I is supplied in the A-register. It is unsigned
and must be in the range [2,32768]. The left-to-right bi-
nary method is used to compute X', e.g. if [=83,, = 1234 =
1010011, then

Xz = X*X 10

X+ = X2*X? 100

X = XX 101
X = X5 X5 1010
X2() — E:I(Y*XIU 10100
X0 = Xoexwo 101000
X4 = XX 101001
X8z = XX 1010010
X# = Xe*X 1010011

The X, Y and E registers are undefined. The O register is
set if underflow or overflow occur else cleared. The A- and
B-registers contain the result.

Timing: Approximately 3.9 + 1.3M + 1.6N

microseconds
where M = (# bits in)
N = (# bits set in I)

-~
Memory Address

Raises a 64-bit floating-point number to an integer power.
This is a three-word instruction, where:

Word 1 = Instruction code.
Word 2 = Address of result (64-bit floating).
Word 3 = Address of base X (64-bit floating).

The power I is supplied in the A-register. It is unsigned
and must be in the range [2,32768]. The left-to-right bi-
nary method is used.

The A,B,X,Y and E registers are undefined. The O register
is set if underflow or overflow occurs, else cleared.

Timing: Approximately 4.7 + 1.9M + 2.1N
microseconds

where M
N

(# bits in)
(# bits set in D

3-45. SIS EXECUTION TIMES AND
INTERRUPTS

Table 3-5 lists the typical execution times required for the
SIS instructions. Also listed is the maximum period of
non-interruptible instruction execution. If an instruction
is interrupted, its execution restarts from the beginning.

3-46. VECTCR INSTRUCTION SET

The Vector Instruction Set (VIS) performs arithmetic
operations on arrays of floating point numbers. The VIS
provides nineteen operations in both single and double
precision formats, for a total of 38 instructions. For more
information on the VIS instructions, refer to the Re-
locatable Library Reference Manual, part no. 92077-90037

Only three levels of indirect in-
structions are allowed for any
parameter. Failure to observe this

constraint will produce unpredict-
able results.

*For HP Assembly Language usage, refer to paragraph
3-48.

340 Update 1

A900

Vector instructions require six to ten memory locations to
specify parameters of the following type:

Opcode

Return
address

Specifies the microcode entry point. Bit 4,
or P-bit, indicates the precision of the
operation. (P=0 for single precision, P=1
for double precision.)

Specifies the direct address of the next
instruction.

The remaining parameters are addresses which may be
direct or indirect, as indicated by bit 15. These include:

Vector

Scalar

Integer

Increment

#Elements

Specifies the address of the first vector
element to be processed. Vector elements
require two (single precision) or four (dou-
ble precision) memory locations. All vectors
in a given instruction must be of the same
precision. Note that for instructions that
contain two vector operands, these
operands may both specify the same vector.
Similarly, the result vector may replace one
of the operands.

Specifies the address of a single floating
point quantity. Scalars are used for both
operands or results. The precision of the
scalar must match that of the associated
vectors.

Specifies the address of an integer quantity
in which a result is returned.

Specifies the address of an integer quantity
associated with each vector. The increment
indicates the spacing between vector
elements to be processed. (An increment of
1 indicates that each element will be
processed, an increment of 2 indicates every
other element, etc.) An increment of zero
will cause the first element of the vector to
be used in all operations. Negative in-
crements will step through the vector in
reverse order, i.e., decreasing memory
locations. Vector elements skipped over by
the increment will not be modified.

Specifies the address of an integer quantity
indicating the number of vector elements to
be processed. A value less than or equal to
zero will result in a NOP operation.

The remaining parameters are addresses
which may be direct or indirect, as indi-
cated by bit 15. For further information on
VIS instructions, refer to the Relocatable
Library Reference Manual (HP part no.
92077-90037).

Programming Information

VADD/DVADD* VECTOR ADD

5(4/3]2[1]0

XX X|X(X
D/l
D/l
D/t
Dii
D/l
D/l
D/l

-

Memory Address

Performs the vector operation:

V3 =V1 + V2

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.

Word 9 = Address of # elements N.
VSUB/DVSUB* VECTOR SUBTRACT
1501413 (12311(10{9f 8|7 (654 |3 2|10

110 1(0 (1 0 0 111

D/l

D/l

Dt

D/

D/l

'

Memory Address

Performs the vector operation:

V3 =V1 -V2

*For HP Assembly Language usage, refer to paragraph

3-48.

Update 1

341

Programming Information A900

This is a nine-word instruction, where VDIV/DVDIV* VECTOR DIVIDE
Word 1 = Instruction code. 514131210
Word 2 = Return address. OjPlOj1]0]1
Word 3 = Address of vector V1. x| x [xlx
Word 4 = Address of increment INCR1. X
Word 5 = Address of vector V2. D/l
Word 6 = Address of increment INCR2. ot
Word 7 = Address of vector V3. !

Word 8 = Address of increment INCR3. d bl
Word 9 = Address of # elements N. ol
D/l
D/l
VMPY/DVMPY* VECTOR MULTIPLY D/l
5141312{1]0 S
olpiolt1lolo Memory Address
X[X[X|X|X X Performs the vector operation:
D/l
V3 =V1/V2
D/
ol This is a nine-word instruction, where
DIl
Word 1 = Instruction code.
o Word 2 = Return address.
D/l Word 3 = Address of vector V1.
Iy Word 4 = Address of increment INCRL.
: Word 5 = Address of vector V2.
- Word 6 = Address of increment INCR2.
Memory Address Word 7 = Address of vector V3.
Word 8 = Address of increment INCR3.
Word 9 = Address of # elements N.
Performs the vector operation:
V3 =V1*V2

This is a nine-word instruction, where VSAD/DVSAD* SCALAR-VECTOR ADD
Word 1 = Instruction code. 15014/1312}11110/9} 8 | 7 |6}5]4[3} 21
Word 2 = Return address. , 0 Pioj1]1
Word 3 = Address of vector V1. xIx!|x|x
Word 4 = Address of increment INCR1. 0jx|X X X|X| X | X]X X
Word 5 = Address of vector V2. Dil
Word 6 = Address of increment INCR2. 0l
Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3. D
Word 9 = Address of # elements N. DI
Dil
Dil

Memory Acdress

— Performs the vector operation:
*For HP Assembly Language usage, refer to paragraph
3-48. V2 =S + V1

342

A900

This is an eight-word instruction, where

Programming Information

Performs the vector operation:

Word 1 = Instruction code. V2 =S * V1
Word 2 = Return address.
Word 3 = Address of scalar S. L. . . .
Word 4 = Address of vector V1. This is an eight-word instruction, where
Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2. Word 1 = Instruction code.
Word 7 = Address of increment INCR2. Word 2 = Return address.
Word 8 = Address of # elements N. Word 3 = Address of scalar S.
Word 4 = Address of vector V1.
Word 5 = Address of increment INCR1.
VSSB/DVSSB* SCALAR-VECTOR SUBTRACT Word 6 = Address of vector V2.
s14(3)2(11]0 Word 7 = Address of increment INCR2.
Word 8 = Address of # elements N.
0|P/o} 1|11
XX/ X]X|X|X
D/l
o VSDV/DVSDV* SCALAR-VECTOR DIVIDE
D/l
o/l 514 110
DIl 0|P 01
D/l ‘ XX XX
|
Memory Address Dil
Performs the vector operation: Dl
D/
V2 =8-V1
Dl
This is an eight-word instruction, where o
Word 1 = Instruction code. ~
Word 2 = Return address. Memory Address
Word 3 = Address of scalar S.
Word 4 = Address of vector V1.)
Word 5 = Address of increment INCR1. Performs the vector operation:
Word 6 = Address of vector V2.
Word 7 = Address of increment INCR2. V2 =S/V1
Word 8 = Address of # elements N.
This is an eight-word instruction, where
VSMY/DVSMY* SCALAR-VECTOR MULTIPLY
Word 1 = Instruction code.
514 3 2 110 Word 2 = Return address.
0/(P/110]0]0 Word 3 = Address of scalar S.
XX X[Xix Word 4 = Address of vector V1.
Word 5 = Address of increment INCR1.
Dl Word 6 = Address of vector V2.
o/l Word 7 = Address of increment INCR2.
o Word 8 = Address of # elements N.
/
D/l
D/l
D/
N— 4

v’

Memory Address

*For HP Assembly Language usage, refer to paragraph

3-48.

343

Programming Information A900
VPIV/DVPIV* VECTOR PIVOT This is a seven-word instruction, where
51413)21110 Word 1 = Instruction code.
Piojojo|1 Word 2 = Return address.
XX IxIx Ixix Word 3 = Address of vector V1.
Word 4 = Address of increment INCR1.
DI Word 5 = Address of vector V2.
Dl Word 6 = Address of increment INCR2.
o Word 7 = Address of # elements N.
Dil
DI VSUM/DVSUM* VECTOR SUM
Dl 5(41312(110
ol X |x|x [x |x
M D/l
Memory Address
D/l
Performs the vector operation: D/l
D/
V3 =8*V1l + V2

This is a ten-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of vector V3.

Word 9 = Address of increment INCR3.
Word 10 = Address of # elements N.

VABS/DVABS* VECTOR ABSOLUTE VALUE
5(4(312|1]0
0|Plojo]1]|1
X|X|X X [X

o

D/

D

D/

DN
N —— g

N

Memory Address
Performs the vector operation:
V2 = ABS (V1)

*For HP Assembly Language usage, refer to paragraph
3-48.

344

Memory Address

Performs the vector operation:

SUM = 2 V1

Note that for VSUM the sum is internally accumulated in
double precision; the answer is then truncated to single
precision.

This is a six-word instruction, where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of scalar SUM.
Word 4 = Address of vector V1.
Word 5 = Address of increment INCE1.
Word 6 = Address of # elements N.
VNRM/DVNRM* VECTOR NORM

51413121110

D/

D/

D/

D/

Memory Address

A900

Performs the vector operation:

SUM = % ABS (V1)
Note that for VNRM the sum is internally accumulated in
double precision; the answer is then truncated to single
precision.

This is a six-word instruction, where

Word 1 = Instruction code.
Word 2 = Return address.

Word 3 = Address of scalar SUM.
Word 4 = Address of vector V1.
Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

VDOT/DVDOT* VECTOR DOT PRODUCT
15114(13({12]11{10|{ 9] 8 (7 |[6]5]4 |3 2/1]0

D/l
D/l
D/l
D/t
D/l
D/l

'

Memory Address

Performs the vector operation:
DOT = 3 V1 * V2

Note that for VDOT the product and sum is internally
accumulated in double precision; the answer is then trun-
cated to single precision.

This is an eight-word instruction, where

Word 1 = Instruction code.

Word 2 Return address.

Word 3 Address of scalar DOT.
Word 4 = Address of vector V1.

Word 5 = Address of increment INCRL.
Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.
Word 8 = Address of # elements N.

*For HP Assembly Language usage, refer to paragraph
3-48.

Programming Information

VMAX/DVMAX*

VECTOR MAXIMUM VALUE

'

Memory Address
Performs the vector operation:
IMAX = Position (MAX(V1))
Note that IMAX is the position of the maximum of those
elements that were tested, as requested by INCR1 and N.
If INCR1 # 1, the position is given by:
IPOS =1 + INCR1 * (IMAX - 1)

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of integer IMAX.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

VECTOR MAXIMUM

VMAB/DVMAB* ABSOLUTE VALUE

15014)13]12111/10{9) 8 |7 |6]5]|4|3] 2|1]0

O X (X XX (X [X]X X [X]X[X|X]X]|X[X
D/l
D/
o)l
ol

Memory Address
Performs the vector operation:
IMAB = Position (MAX(ABS(V1)))
Note that IMAB is the position of the maximum absolute
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by:
IPOS =1 + INCR1 * (IMAB - 1)

345

Programming Information

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of integer IMAB.
Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.
Word 6 = Address of # elements N.

VMIN/DVMIN* VECTOR MINIMUM VALUE
21110
0f1i1
X IX [X

D/l

D/l

DA

D/

-~

Memory Address

Performs the vector operation:
IMIN = Position (MIN(V1))
Note that IMIN is the position of the minimum absolute
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by:
IPOS = 1 + INCR1 * (IMIN - 1)

This is a six-word instruction, where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of integer IMIN.

Word 4 = Address of vector V1.

|

Word 5 = Address of increment INCR1.
Word 6 = Address of # elements N.
VECTOR MINIMUM
VMIB/DVMIB* ABSOLUTE VALUE
5141312110
111101
X| X X
DI
DI
DI

A900

Performs the vector operation:

IMIB = Position (MIN(ABS(V1)))

Note that IMIB is the position of the minimum absolute
value of those elements that were tested, as requested by
INCR1 and N. If INCR1 # 1, the position is given by:

IPOS =1 + INCR1 * (IMIB - 1)

This is a six-word instruction, where

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of integer IMIB.
Word 4 = Address of vector V1.
Word 5 = Address of increment INCR1.
Word 6 = Address of # elements N.
VMOV/DVMOV* VECTOR MOVE
2|1
: 1
X[X (XXX X
D/l
D/
D/
D/l
D/

VO

Memory Address
Performs the vector operation:

V2 =V1

This is a seven-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.
Word 7 = Address of # elements N.

o

Memory Address

346

*For HP Assembly Language usage, refer to paragraph
3-48.

A900

VSWP/DVSWP* VECTOR SWAP

15]14/13]12) 11[10{9] 8|7 (6] 5[4 (3] 2|1 |0
{110 IERERE
X |x X [x |x

D/t

D/

D/l

D/

D/l

N

Memory Address

Performs the vector operation:
Vi< ==>V2

This is a seven-word instruction, where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of vector V1.
Word 4 = Address of increment INCRI1.
Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of # elements N.

3-47. VIS EXECUTION TIMES AND
INTERRUPTS

Table 3-5 lists the typical execution times for the VIS
instructions. VIS times are composed of two parts: a fixed
time per instruction execution, and a per-element loop
time. Thus the time to process 100 elements equals the
fixed time plus 100 multiplied by loop time.

The maximum period of non-interruptible instruction
execution for all VIS instructions is 15 microseconds.

*For HP Assembly Language usage, refer to paragraph
3-48.

Programming Information

When a VIS instruction is interrupted, the current state of
execution is stored in the first word of the result memory
location, as well as the A, B, X, and Y registers. When
re-entered following the interrupt processing, the VIS in-
struction will resume execution from the point of
suspension.

3-48. ASSEMBLY LANGUAGE

New instructions not recognized by the HP Macro-
assembler require different handling in HP Assembly
Language programming. These instructions are as-
terisked in the preceding paragraphs and must be used in
the form: JSB x where x is the instruction. (The instruc-
tion, x, must be declared as an external at the beginning of
the assembly language program.) Most of these instruc-
tions correspond to library subroutines* and must be im-
plemented into HP RTE systems (as described in the fol-
lowing paragraph) to enable their execution in hardware-
firmware instead of in software.

3-49. RTE IMPLEMENTATION

New instructions can be implemented in an HP RTE-A
operating system simply by changing library entry points
during the parameter input phase of system generation.
(Refer to the appropriate RTE manual for the system
generation procedure.) With the opcodes given in Table
3-7, the entry point changes would be as indicated below:

JLA,RP,100600
.JLB,RP,104600

EXIT2,RP,105416
EXIT,RP,105417

Alternatively, entry points may be changed by loading
(via LINK) a “replacement” module when user programs
are loaded. Opcode replacement modules RPL90 and
RPLI1 are included in the RTE-A system software.

*Refer to the Relocatable Library Reference Manual, part
no. 92077-90037.

347

Programming Information

Table 3-7. Instructions and Opcodes for RTE Implementation

A900

INSTRUCTION OCTAL INSTRUCTION OCTAL INSTRUCTION OCTAL
MNEMONIC OPCODE MNEMONIC OPCODE IANEMONIC OPCODE
JLA 100600 .DIN 1056210 STMP 105703
JLB 104600 .DDE 105211 LWD1 105704
.FAD 105000 .DIS 105212 LwD2 105705
.FSB 105020 .DDS 105213 SWMP 105706
.FMP 105040 .PMAP 105240 SIMP 105707
.FDV 105060 IRES 105244 XJMP 105710
.FIX 105100 JRES 105245 XJCQ 105711
AFIX* 105100 .IMAP 105250 XLA2 101721
.FIXD 105104 JMAP 105252 XSA2 101722
FLT 105120 .LPXR 105254 XCA2 101723
FLOAT* 105120 .LPX 106255 XLAT1 101724
FLTD 105124 .LBPR 105256 XSA1 101725
.TADD 105002 .LBP 105257 XCA1 101726
.TSuB 105022 .CPUID 105300 XLB2 105721
TMPY 105042 .FWID 105301 XsB2 105722
.TDIV 105062 .WFI 105302 XCB2 105723
TFXS 105102 .SIP 105303 XLB1 105724
.TINT” 105102 VADD 105001 XSB1 105725
TFXD 105106 vsuB 105003 XCB1 105726
.TFTS 105122 VMPY 105004 MBOO 101727
ATBL” 105122 VDIV 105005 MBO1 101730
.TFTD 105126 VSAD 105006 MBO02 101731
TAN 105320 vSsB 105007 MB10 101732
SQRT 105321 VSMY 105010 mMB11 101733
ALOG 105322 vSDV 105011 MB12 101734
ATAN 105323 VPIV 105101 MB20 101735
COSs 105324 VABS 105103 MB21 101736
SIN 105325 VSUM 105105 MB22 101737
EXP 105326 VNRM 105107 MWO00 105727
ALOGT 105327 VvDOT 105110 MWO1 - 105730
TANH 105330 VMAX 105111 Mwo2 105731
DPOLY 105331 VMAB 105112 MW10 105732
{CMRT*" 105332 VMIN 106113 MW11 105733
/ATLG 105333 VMIB 105115 MW12 105734
.FPWR 105334 VMOV 105116 MW20 105735
.TPWR 105335 VSWP 105117 Mw21 105736
.DFER 105205 DVADD 105021 Mwa2 105737
.BLE 105207 DvsuB 105023 CCQA 101406
.NGL 105214 DVMPY 105024 CACQ 101407
XFER 105220 DVDIV 105025 CZA 101410
.ENTR 105223 DVSAD 105026 CAZ 101411
ENTP 105224 DVSSB 105027 CIQA 101412
SETP 105227 DvsMY 105030 ADQA 101413
.CFER 105231 DVSDV 105031 PCALI 105400
..FCM 105232 DVPIV 105121 PCALX 105401
.TCM 105233 DVABS 105123 PCALV 105402
.ENTN 105234 DVSUM 105125 PCALR 105403
.ENTC 106235 DVNRM 105127 PCALN 105404
.CPM 105236 DVDOT 105130 SDSP 105405
.ZFER 105237 DVMAX 105131 ccas 105406
.DAD 105014 DVMAB 105132 CBCQ 105407
.DSB 105034 DVMIN 105133 czB 105410
.DMP 105054 DvMIB 105135 cBz 105411
.DDI 105074 DVMOV 105136 cias 105412
.DSBR 105114 DvsSwp 105137 ADQB 105413
.DDIR 105134 LPMR 105700 EXIT1 105415
.DNG 105203 SPMR 105701 EXIT2 105416
.DCO 105204 LDMP 105702 EXIT 105417

*Alternate mnemonic for the one preceding it.
**Not directly user callable. Used by HP 1000 software.

348

 DYNAMIC MAP

The basic addressing space of the HP 1000 A900 computer
is 32768 words, which is referred to as logical memory.
The amount of memory actually installed in the computer
system is referred to as physical memory. The Dynamic
Mapping System (DMS) is standard logic in the HP 1000
A900 computer and provides an addressing capability for
up to 16 million words of physical memory. The DMS
allows logical memory to be mapped into physical memory
through the use of dynamically-alterable memory maps.

4-1. MEMORY ADDRESSING

The basic memory addressing scheme provides for ad-
dressing 32 pages of logical memory, each of which con-
sists of 1024 words. This memory is addressed through a
15-bit logical address bus as shown in Figure 4-1. The
upper 5 bits of this bus provide the logical page address
and the lower 10 bits provide the relative word offset
within the page.

PAGE OFFSET

LOG
ADD

LOGICAL PAGE ADDRESS

Figure 4-1. Basic Logical Memory Addressing Scheme

Also associated with any memory access is a 5-bit map
number. The DMS converts the map number and the
logical page address into a 14-bit physical page number,
thereby allowing 16k (2'*) pages of physical memory to be
addressed. This conversion is accomplished by having the
5-bit map number and the 5-bit logical page address access
1024 page mapping registers (PMRs), each of which is 16
bits wide. Each of these map registers contains the user-
specified (privileged) 14-bit page address. This new page
address is combined with the original 10-bit page offset to
form a 24-bit memory address as shown in the Figure 4-2.

The PMRs also contain two bits of memory protection
information. Bit 15 indicates that the page is read-
protected when privileged mode is disabled. Bit 14 indi-
cates that the page is write-protected whea privileged
mode is disabled. Any attempt to read from a read-

protected page will result in a read violation and the
memory read will return an undefined result. Any at-
tempt to write into a write-protected page will result in a
write violation and the memory will not be altered.

If a read or write violation occurs, the DMS signals the
memory protect logic (located on the memory controller
card) that a violation has occurred, which causes the
memory protect logic to generate an interrupt. As dis-
cussed in Section VI, memory protect violations cause an
interrupt to select code 07.

The width of the PMRs is limited to a 16-bit word, of which
two bits specify read/write protection, so the maximum
width of the physical page address is 14 bits.

4-2. GENERAL DESCRIPTIONS

4-3. PAGE MAPPING REGISTER
INSTRUCTIONS

The page mapping register instructions allow the
privileged user to alter the PMRs, each of which have the
following format:

PAGE MAPPING REGISTER FORMAT
0
physical page number
13
14 — write protect this page
15 — read protect this page

The page mapping register instructions are:

LPMR - loada PMR indexed by register A fromregister B
SPMR - store a PMR indexed by register A to register B
LDMP - load a map from memory

STMP - store a map to memory

All of these instructions are privileged.

4-4. WORKING MAP INSTRUCTIONS

The computer will maintain three logical maps, cumula-
tively called the Working Map Set (WMAP). The working
map instructions allow the system to alter the logical
maps, and also to initiate a user program.

4-1

Dynamic Mapping System

The Execute map is the map number used for instruction
fetches and normal memory accesses. The data maps
(DATA1 and DATAZ2) are the map numbers used in
cross-map memory references. There are two data maps to
allow the system to do cross-map moves from one area of
memory to another without having to go through the sys-
tem map. In addition, this feature allows the system to be
able to quickly access one area of memory (such as a
System Available Memory map) while being able to also
access another (such as the user’s map). A memory ref-
erence to locations 0 or 1 in the Execute map are defined to
access the A- or B-registers, respectively. References to 0
or 1 in the data maps are defined to access physical mem-
ory locations.

The computer has an additional working map called the
code map. The code map is defined as the Execute map
that has been inclusively ORed with 1, following which
the original Execute map is redefined as the data map.
This use of separate maps for both code and data occurs
only when CDS mode is enabled, and effectively doubles
the logical address space for user programs.

The format of WMAP is as follows:

WMAP FORMAT:

0
. } Execute map number

5
DATA1 map number
10
. DATAZ2 map number
14
15 memory protection enable

A900

Upon servicing interrupts, the computer saves the cur-
rently executing WMAP in a register called IMAP, and
loads WMAP with the following values:

a. The DATAI map is set to the old Execute map.
b. The new Execute map is set to zero.
c. The DATA2 map contains an undefined value.

d. Memory protection is disabled.
The working map instructions are:

XJMP - cross jump

XJCQ - cross map jump (and load C and Q)
SWMP - store current WMAP into memory
SIMP - store current IMAP into memory

LWDI1 - load WMAP field DATA1 from memory
LWD2 - load WMAP field DATA2 from memory

All of these instructions are privileged.

4-5. CROSS-MAP INSTRUCTIONS

While the working map instructions provide a way to load
the working map set, the cross-map instructions provide a
means to use them.

These instructions are non-privileged. For all of these
instructions, indirect DEF references are done through
the Execute map, while the final reference is done through
the specified map. When Code and Data Separation (CDS)
is enabled, any memory accesses involving the Execute
map number are considered to be data accesses, and the
base register hardware will add the base (Q) register value
to memory addresses from 2 through 1023. Memory ac-

0 0 o\
PAGE \
OFFSET
9 9 PHYSICAL
LOGICAL 0 ADDRESS
ADDRESS | (oonl 10 o
PAGE .
A .
DDRESS i PAGE
14 MAPPING
MAP 0 REGISTERS
NUMBER (PMRs)
4 13 23 /
10
14 WRITE-PROTECT
15 READ-PROTECT

Figure 4-2. Expanded Memory Addressing Scheme

A900

cesses involving the DATA1 or DATA2 map numbers are
done with CDS disabled, so accesses to the base page will
not have the base register added.

Abbreviations used are:

“0” - means logical Execute map
“1” - means logical DATA1 map
“2” - means logical DATAZ map

The cross map instructions are:

XLA1 - cross load A through the DATA1 map
XLBL1 - cross load B through the DATA1 map
XLAZ2 - cross load A through the DATA2 map
XLB2 - cross load B through the DATA2 map
XSA1 - cross store A through the DATA1 map
XSB1 - cross store B through the DATA1 map
XSAZ2 - cross store A through the DATA2 map
XSB2 - cross store B through the DATAZ2 map
XCA1 - cross compare A through the DATA1 map
XCBI - cross compare B through the DATA1 map
XCAZ2 - cross compare A through the DATA2 map
XCB2 - cross compare B through the DATA2 map
MWOO - cross move words from Execute to Execute
MWOL1 - cross move words from Execute to DATA1
MWO2 - cross move words from Execute to DATA2
MW10 - cross move words from DATA1 to Execute
MW11 - cross move words from DATA1 to DATA1
MW12 - cross move words from DATA1 to DATA2
MW20 - cross move words from DATA2 to Execute
MW21 - cross move words from DATA2 to DATAL1
MW22 - cross move words from DATA2 to DATA2
MBOO - cross move bytes from Execute to Execute
MBO1 - cross move bytes from Execute to DATA1
MBO02 - cross move bytes from Execute to DATA2
MB10 - cross move bytes from DATA1 to Execute
MBI11 - cross move bytes from DATA1 to DATA1
MB12 - cross move bytes from DATAL to DATA2
MB20 - cross move bytes from DATAZ2 to Execute
MB21 - cross move bytes from DATAZ2 to DATA1
MB22 - cross move bytes from DATA2 to DATA2

If CDS mode is enabled, the base (Q) register will be added
to base relative addresses in the Execute map only. Cross
map references to addresses in one of the alternate maps
are not checked for base relativity.

4-5. DETAILED DESCRIPTIONS

The following paragraphs provide machine language
coding and definitions for the DMS instructions. Note that
all memory accesses are subject to the DMS memory
protection rules.

LPMR LOAD PAGE MAPPING REGISTER

15[14 13 12[1110 9[8 7 &[5 4 3|2 1 0
‘ o{ofo

Dynamic Mapping System

Loads the contents of the B-register into the page mapping
register (PMR) addressed by the contents of the
A-register. Any attempt to either address a PMR outside
the range of 0 to 1023 or to modify a PMR that is currently
being accessed produces undefined results. The format for
the PMR contents is: bit 15 = read protect; bit 14 = write
protect; and bits 13 to 0 = physical page number. This
instruction is privileged. After the operation, the
A-register is incremented.

SPMR
151413 12

B

STORE PAGE MAPPING REGISTER
1110 918 7 6|5 4 3|2 10

1] ofo]o]o]

Loads the contents of the page mapping register (PMR)
addressed by the value in the A-register into the
B-register. Any attempt to address a PMR outside the
range of 0 to 1023 produces undefined results. The format
for the PMR contents is: bit 15 = read protect; bit 14 =
write protect; and bits 13 to 0 = physical page number.
This instruction is privileged. After the operation, the
A-register is incremented.

LDMP] LOAD A MAP
15114 13 12|11 10 9]8 7 65 4 3J2 1 0
{0j0j0j1]0

Loads the map number specified by Word 2 from the 32-
word block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed, when modification of a
currently executing map is tried, or when the resolved
address of the map image is outside the range of 2 to 77740
octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

4-3

Dynamic Mapping System

STMP STORE A MAP

A900

XJCQ CROSS MAP JUMP (AND LOAD C AND Q)

1511413 12 210

011

Stores the map number specified by Word 2 to the 32-word
block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed or when the resolved address
of the map image is outside the range of 2 to 77740 octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

XJMP CROSS MAP JUMP
15014 13 12j11 10 9|8 7 615 4 3]2 1 0
1]0 {1]01 of1fojo]o
D

|

D

Resolves indirect references, sets the program counter to
the resolved address specified by Word 3, and loads
WMAP with the value pointed to by the resolved address
of Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new WMAP number.
Word 3 = Pointer to next instruction (new PC value).

All memory references (direct and indirect are done in the
Execute map and may include the A- and B-registers. The
next instruction will be fetched using the new WMAP.
This instruction is privileged and is interruptible in that it
may be interrupted during indirect address resolution
after three levels of indirection, and then restarted.

4-4

15]14 13 12}11 10 9§48 7 6|5 4 3]2 1 0

Resolves indirect references, sets the program counter to
the resolved address specified by Word 3, loads the WMAP
specified by Word 2, and loads the C- and Q-registers with
new values addressed by Word 4, where:

Word 1 = instruction opcode.

Word 2 = pointer to new WMAP number.

Word 3 = pointer to next instruction (new PC value).
Word 4 = pointer to new C- and Q-register values.

All memory references (direct and indirect) are done in the
Execute map and may include the A- and B-registers. The
next instruction will be fetched using the new WMAP,
under a CDS mode specified by the new C-register value.
This instruction is privileged and is interruptible in that it
may be interrupted during indirect address resolution
after three levels of indirection, and then restarted.

SWMP SAVE WORKING MAP

15114 13 12]11 10 918 7 6}5 4 3|21 0

Stores WMAP at the memory location pointed to by Word
2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

SIMP SAVE INTERRUPTED MAP
2 10
1111

Stores IMAP at the location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and rhen restarted.

A900

LWD1 LOAD DATA1 MAP

Dynamic Mapping System

XLB1 CROSS LOAD B THROUGH DATA1 MAP

151413121110987654 3j2 1 0

15/14 13 12]1110 918 7 6)5 4 3}12 1 0

1] ’ {1{0]1]0]0

Loads the DATAI1 field of the WMAP register from the
memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA1 map.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted. Map numbers
outside the range of 0-31 produce undefined results.

LWD2 LOAD DATA2 MAP

15114 13 121110 98 7 65 4 32 10

Loads the B-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XLA2 CROSS LOAD A THROUGH DATA2 MAP

Loads the DATAZ2 field of the WMAP register from the
memory location pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATAZ2 map.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted. Map numbers
outside the range of 0-31 produce undefined results.

XLA1 CROSS LOAD A THROUGH DATA1 MAP
15114 1312|1110 9|8 7 6|5 4 3|2 1 0

Loads the A-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

Loads the A-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATAZ2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATAZ2 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XLB2 CROSS LOAD B THROUGH DATA2 MAP

15114 13 12]11 10 98 7 6}5 4 3121 0

e

Loads the B-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 mabp.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The

4-5

Dynamic Mapping System

direct memory reference is done in the DATAZ2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XSA1 CROSS STORE A THROUGH DATA1 MAP
15|14 13 12

Stores the A-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1l map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted

during indirect address resolution after three levels of

indirection, and then restarted.

X$SB1 CROSS STORE B THROUGH DATA1 MAP
8 76

15(14 1312|1110 9 54 31210

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map. direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted

during indirect address resolution after three levels of

indirection, and then restarted.

XSA2 CROSS STORE A THROUGH DATA2 MAP

15]14 13 12 0

A900

Stores the A-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATAZ2 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

X8B2 CROSS STORE B THROUGH DATA2 MAP
15141?12,“103,9 8 7 6154 3]2 1 0

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instructior. code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XCA1 CROSS COMPARE A THROUGH
DATA1 MAP
15114 13 12]1110 9|8 7 65 4 Jj2 1 0

gj1joj1{1]0

D,

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to raemory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative

A900

checking are disabled in the DATA1 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may he interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XCB1 CROSS COMPARE B THROUGH
DATA1 MAP

15[1413 1211110 9|8 7 6]5 4 3|2 1 0
’ of1(1]0

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

XCA2 CROSS COMPARE A THROUGH
DATA2 MAP

15]14 13 121110 918 7 6]5 4 3|2 1 ¢

{oJol1] 1/0]of1]1

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATAZ2 map, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

Dynamic Mapping System

XCB2 CROSS COMPARE B THROUGH
DATA2 MAP

15]14 13 121110 98 7 6f5 4 3|2 1 ¢

1] BDDEE

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 mabp, direct addresses
0 through 1777 refer to physical memory locations. This
instruction is interruptible in that it may be interrupted
during indirect address resolution after three levels of
indirection, and then restarted.

MWO00 CROSS MOVE WORDS,

EXECUTE TO EXECUTE
15114 13 12]1110 9 |8 6|5 4 3]2 10

afel AT e Jen 0]

Moves a block of words from the Execute map to the
Execute map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and des-
tination references are not allowed. On return, the
A-register contains the last memory address in the source
block moved plus one, the B-register contains the last
memory address in the destination block moved plus one,
and the X-register is zero.

If CDS mode is enabled, the A- and B-registers will be
checked for base relativity before execution. Upon exit
these registers will contain the base relative address,
incremented by the count in the X-register.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MwWo1 CROSS MOVE WORDS,

EXECUTE TO DATA1
11]0 8 _ 6 5 4 3|2 10
0 1/1]o] o]0

15114 13 12

4-7

Dynamic Mapping System

Moves a block of words from the Execute map to the
DATA1 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-
tion address in the DATA1 map, and the X-register
specifies the number of words to be moved (which must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block moved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
Z€ero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

Mwo02 CROSS MOVE WORDS,

EXECUTE TO DATA2
14”13‘12’1110"9 8 7 65”4 312 1 0
ofofo1]ol 11} 1[1]o]o]1

Moves a block of words from the Execute map to the
DATA2 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to be moved (which must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block moved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

CROSS MOVE WORDS,
DATA1 TO EXECUTE

210
of1]o

1110 9

4-8

A900

Moves a block of words from the DATA1 map to the
Execute map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block rnoved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
Zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MW11 CROSS MOVE WORDS, DATA1 TO DATA1
15 14 13 12

210
011

Moves a block of words from one location in the DATAI
map to another in the DATA1 map. The A-register
specifies the source address, the B-register specifies the
destination address, and the X-register specifies the
number of words to be moved (which must be an integer
equal to or greater than zero). Address bit 15 must be zero,
as indirect source and destination references are not
allowed. On return, the A-register contains the last
memory address in the source block moved plus one, the
B-register contains the last memory address in the des-
tination block moved plus one, and the X-register is zero.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MW12 CROSS MOVE WORDS, DATA1 TO DATA2
1514 13 12”1110 918 7 AB 54 3

2 10
1] of1]1[1] o]0
Moves a block of words from the DATAL map to the
DATA2 map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to be moved (which must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block moved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
zZero.

A900

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MwW20 CROSS MOVE WORDS,

DATA2 TO EXECUTE

151413121110 9 8 7 615 4 3 210
1o
Moves a block of words from the DATA2 map to the
Execute map. The A-register specifies the source address
in the DATAZ2 map, the B-register specifies the destina-
tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block moved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
Zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MW21 CROSS MOVE WORDS, DATA2 TO DATAT
1514131211109 8 76|54 3 0

tl !

Moves a block of words from the DATA2 map to the
DATA1 map. The A-register specifies the source address
in the DATA2 map, the B-register specifies the destina-
tion address in the DATA1 map, and the X-register
specifies the number of words to be moved (waich must be
an integer equal to or greater than zero). Address bit 15
must be zero, as indirect source and destination references
are not allowed. On return, the A-register contains the
last memory address in the source block moved plus one,
the B-register contains the last memory address in the
destination block moved plus one, and the X-register is
zero.

This instruction produces undefined results .f the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

Dynamic Mapping System

MW22 CROSS MOVE WORDS, DATA2 TO DATA2
151413121110 918 7 6|5 4 3 210

Moves a block of words from the DATA2 map to the
DATA2 map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be an integer equal to or greater than zero).
Address bit 15 must be zero, as indirect source and des-
tination references are not allowed. On return, the
A-register contains the last memory address in the source
block moved plus one, the B-register contains the last
memory address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the A-, B-,
or X-register has bit 15 set or if the source or destination
address rolls over. It is interruptible, with the context
saved in the A-, B- and X-registers.

MBO0O CROSS MOVE BYTES,
EXECUTE TO EXECUTE

Moves a block of bytes from one location in the Execute
map to another in the Execute map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the
A-register contains the last memory byte address in the
source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

If CDS mode is enabled, the A- and B-registers will be
checked for base relativity before execution. Upon exit
these registers will contain the base relative address,
incremented by the count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MBO1 CROSS MOVE BYTES,
EXECUTE TO DATA1

1514131211109 8 7 6|5 4 3 210

Dynamic Mapping System

Moves a block of bytes from a location in the Execute map
to one in the DATA1 map. The A-register specifies the
source address in the Execute map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB02 CROSS MOVE BYTES,
EXECUTE TO DATAZ2

1514131211109 8’76 54 312 10
[*]oJo]ofofoj1]1]: [1]1fo]o]1

Moves a block of bytes from a location in the Execute map
to one in the DATA2 map. The A-register specifies the
source address in the Execute map, and the B-register
specifies the destination address in the DATA2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

mB10 CROSS MOVE BYTES,
DATA1 TO EXECUTE

g8 7 6|15 4 312 10
)[1]1]o0]1]0

15]14 13 12[11 10 9
, ofof1]

A900

Moves a block of bytes from a location in the DATA1 map
to one in the Execute map. The A-register specifies the
source address in the DATAI map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined resuits if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB11 CROSS MOVE BYTES, DATA1 TO DATA1

’1514131211109 2 10
0000C o[

Moves a block of bytes from one location in the DATA1
map to another in the DATA1 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the
A-register contains the last memory byte address in the
source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB12 CROSS MOVE BYTES, DATA1 TO DATA2
1514131211109 B 7 6 4 312 10

ol o[1[1]1] o]0

Moves a block of bytes from a location in the DATA1 map
to one in the DATA2 map. The A-register specifies the
source address in the DATA1 map, and the B-register
specifies the destination address in the DATA2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address

A900

uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB20 CROSS MOVE BYTES,
DATA2 TC EXECUTE

8 7 6]54 3]21 0

15

K
Moves a block of bytes from a location in the DATA2 map
to one in the Execute map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the B-register will bz checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB21 CROSS MOVE BYTES, DATA2 TO DATA1

15/14 13 1211110 918 7 6|5 4
[1]o]o]0

Moves a block of bytes from a location in the DATA2 map
to one in the DATA1 map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).

Dynamic Mapping System

Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB22 CROSS MOVE BYTES, DATA2 TO DATA2

15[14 1312|1110 98 7 6
[ifofolofofoe]1f1]1]1

Moves a block of bytes from one location in the DATA2
map to another in the DATA2 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the
A-register contains the last memory byte address in the
source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

4-7. DMS INSTRUCTION EXECUTION
TIMES

Table 4-1 lists the execution times for the various DMS
instructions.

4-8. ASSEMBLY LANGUAGE AND
RTE IMPLEMENTATION

Refer to paragraphs 3-48 and 3-49 for information on
implementing the DMS instructions in HP Assembly
Language and in an HP RTE-A operating system.

4-11

Dynamic Mapping System

Table 4-1. Dynamic Mapping Instructions Execution Times

A900

INSTRUCTION k , EXECUTION TIME (ys)
XLA1/XLB1, XLA2/XLB2 080
XSA1/XSB1, XSA2/XSB2 0.80
XCA1/XCB1, XCA/XCB2 1.067
MWO0O0, MWO1, MWO02, MW10, MW11, MW12, MW20, MW21, MW22 1,067 plus 0.267 per word moved
MB00, MBO1, MB02, MB10, MB11, MB12, MB20, MB21, MB22 1.60 plus 0.133 per byte moved
LPMR : 0.933
SPMR ; 0.933
LDMP , « 9.20
STMP | 9.333
XJcQ ; ~ 200
XJMP S 1.867
LWD1 ‘ ©1.333
LWD2 1.20
SWMP 0.667
SIMP : o 0667

Note: Memory refresh durihg a processor memory access, heavy DMA activity, or “misses” in the cache will
degrade (lengthen) a// instruction execution times.

CODE AND DATA SEPARAT

SECTION

ON

The basic logical address space of the HP 1000 A-Series
architecture is 32768 words, in which both code and data
reside. Code and Data Separation (CDS) is an enhance-
ment to the A-Series architecture which separates code
and data into separate logical address spaces. The main
benefit of CDS is that it provides support of programs that
may have up to 4M words of code, and this code may be
either memory-resident or disc-resident. The optional HP
92078A package for RTE-A provides software support for
CDS. Refer to the RTE-A Programmer’s Reference Man-
ual for a description of how to take advantage of CDS by
using Macro/1000 and other HP languages.

5-1. CODE AND DATA ADDRESSING

CDS utilizes the Dynamic Mapping System environment
of the A-Series architecture, and uses separate DMS maps
to reference code and data. The term “code” refers to
opcodes, DEFs to parameters, in-line constants, current-
page links and constants for Memory Reference Group
(MRG) instructions. The term “data” refers to variables
and constants used by a program.

When CDS is disabled, both code and data are accessed
through the logical address space of the computer, which
is 32k words. The DMS maps this logical zddress space
into the physical address space of up to 16M words. This is
accomplished through the use of 32 memory maps of 32
pages each. A program executes in a single raap, which is
called the Execute map, although it may access memory
through other maps using DMS instructions.

When CDS is enabled, code and data are accessed through
separate maps. The Execute map number specifies which
map is used to access data, and the Execute map number
inclusive-ORed with ‘1’ is used to access code. The Execute
map number must be an even number between 0 and 30,
inclusive. In all subsequent descriptions, DATA[n] and
CODE(n] refers to memory locations in daza space and
code space, respectively. In addition, when CIDS is enabled
the base register (Q) is enabled, and all Execute map
memory addresses that lie in the range 2 through 1023
have the Q-register added by the memory accessing
hardware before the memory location is accessed. Loca-
tions 0 and 1 of data space are still defined to reference the
A- and B-registers. Cross-map memory accesses, such as
XLA1, are done with CDS disabled.

As an example, consider a DLD 500 instruction that is
executed with CDS on, with an Execute map number of 2,
and with the Q-register equal to 5000. The DLD opcode
and the DEF 500 are read from memory using map
number 3, because these words are considered to be code.
The memory values loaded into A and B will be read
through map number 2, because these words are consi-

dered to be data. The actual address of the memory loca-
tions to be loaded is 5500, because the hardware auto-
matically adds the Q-register to memory addresses be-
tween 2 and 1023.

Most instructions separate code and data as was described
for the previous example, but the Memory Reference
Group has some exceptions. The JSB, STA current page
direct, STB current page direct, and ISZ current page
direct instructions may not be used when CDS is enabled
because they attempt to write into code space. MRG
references to base page always access memory in the data
space, but MRG references to the current page always
access code space for the first memory access and data
space for all subsequent direct/indirect levels. That means
that an LDA current page direct will load a constant from
code space, that an LDA current page indirect will access a
current page link in code space and then data in data
space, and so on for the other MRG instructions. Note also
that base page MRG references are useful for accessing
variables that are Q-relative, such as the local variables or
parameter pointers in a stack frame (to be described later).

The following restrictions must be met when CDS is
enabled, otherwise undefined results may occur. The
Q-register value must lie in the range of 1024 through
32767. The program counter must lie in the range 1024 to
32767, which means that jump instructions may not jump
to the base page or to the A- or B-register.

Support for linking of relocatable code is provided by the
RTE-A LINK program.

5-2. GENERAL DESCRIPTIONS
5-3. PROCEDURE CALL INSTRUCTIONS

The procedure call (PCAL) instructions are used to invoke
a procedure, which may reside in code or data space. All of
the PCAL instructions adjust the Q-register to allocate
and set up a new stack marker (memory locations used to
link procedure invocations and exits), and branch to the
new procedure.

The PCAL instructions are:

PCALI - procedure call to current segment
PCALX - procedure call to any segment
PCALV - procedure call to any segment (variable)

PCALR - procedure call to .ENTR-compatible non-
CDS code in data space

PCALN - procedure call to .ENTN-compatible non-
CDS code in data space

5-1

Code and Data Separation

The PCALI instruction is the fastest PCAL instruction,
and it is used to call a procedure that resides in the current
code address space.

Two of the PCAL instructions (PCALX, PCALV) are
capable of remapping the logical code space to another
area of physical memory. Each logical code space is called
a segment, and these PCALs are called cross-segment
PCAL instructions.

The last two PCAL instructions (PCALR, PCALN) are
used to call code that is not CDS-compatible. Such code
resides in the data space, and must follow the .ENTR or
.ENTN procedure call sequence.

The standard PCAL call sequence is:

PCALopcode (PCALI, PCALX, PCALV,PCALR, or PCALN)
LABEL PE

DEC AC [,I]

DEF A_1 [I]

DEF A_AC [,I]
(return point from procedure PE)

PE DEC FS
(next instruction to be executed in procedure PE)

EXIT opcode (EXIT, EXIT1, or EXIT2)

The PCAL opcode is the appropriate opcode to be used to
access the new procedure. If the new procedure is in the
same segment, then PCALI should be used. If the new
procedure is in another segment, then PCALX or PCALV
should be used. If the new procedure is not CDS-
compatible, then PCALR or PCALN should be used. Note
that the selection of the PCAL opcode is done auto-
matically by the RTE-A LINK program, which will also
automatically segment your program for you.

The LABEL to the new procedure points to the location of
the new procedure. In the case of PCALI, PCALR,
PCALN, the LABEL is a DEF (a 15-bit logical address,
possibly indirect) to the new procedure. In the case of
PCALX, the LABEL consists of a word which contains
information that determines how the logical code space
must be remapped to get to the new procedure. In the case
of PCALV, the DEF (which may be indirect) points to a
word in data space which specifies how code space should
be remapped.

AC is a word which specifies how many parameter poin-
ters follow. Parameter pointers are 15-bit logical ad-
dresses (with the 16th bit specifying indirectiony which

5-2

A900

point to variables that are being passed as parameters to
the new procedure. From 0to 255 parameter pointers may
be passed in the PCAL call sequence.

5-4. PROCEDURE EXIT INSTRUCTIONS

There are three procedure exit instructions (EXIT, EXIT1,
EXIT2). These instructions will remap the logical code
space if necessary, adjust the Q-register value back to that
of the calling procedure, and set the P-register to the
return point in the calling procedure.

The EXIT instructions are:

EXIT - procedure exi: with no skips
EXIT1 - procedure exi: with one skip
EXIT2 - procedure exit with two skips

5-5. C, Q, Z, AND IQ INSTRUCTIONS

Other instructions are provided to access the C-, Q-, Z- and
1Q-registers. These are:

CCQA (CCQB) - copy C and Q to A (or B)
CACQ (CBCQ) - copy A (or B) to C and Q
CZA (CZB) - copy Z to A (or B)

CAZ (CBZ) - copy A (or B) to Z

CIQA (CIQB) - copy IQ to A (or B)
ADQA (ADQB)- add Q to A (or B)

SDSP - store display

5-6. STACK FRAME DESCRIPTION

A stack frame is an area of memory in the logical data
space that contains variables local to a procedure and
pointers to variables of other procedures. The stack frame
also contains six words of information called the stack
marker, which links the procedure call chain from one
procedure invocation to tke next. The general layout of a
stack frame is shown in Figure 5-1.

The Z-register, also called the bounds register, increases
the reliability of CDS software. The bounds register de-
tects the growth of a stack frame past the end of the
allowed data space into areas used by VMA or memory
used for other purposes. On every PCAL instruction, the
microcode checks that the NEXT_Q value of a created
stack marker is less than the Z-register. If this check fails
then the program will interrupt to the memory protect
handler (see PCALI description for more detail).

A900

Code and Data Separation

previous
stack frame

Q ——— > STATIC_Q
0 PREV_Q
R RETURN_P

RETURN_CST ARG_COUNT

0 NEXT_Q

reserved

0 or more words of
parameter pointers

0 or more words of
local variable space

next stack frame

?::._—__—___——————___ﬁ

PREV_Q is the Q-register value for the calling procedure.

RETURN_P is the return address in the calling procedure.

stack
market

parameter
pointers

local variable
space

R is the return segment indicator: R = 0 indicates the return address is in the same segment as the calling procedure (a
segment reload is not required), R = 1 indicates the return address is in segment RETURN_CST (a segment reload is
required).

ARG_COUNT is a number (0-255) that is the count of actual parameters passed to the called procedure. This field is
maintained for all PCAL instructions.

NEXT_Q is the Q-register value to use when building the next stack frame during a subsequent PCAL. NEXT_Q may be
adjusted during the execution of a procedure to alter the size of the local variable space.

STATIC_Q is a word that is used by block-structured languages such as Pascal. This word and the RESERVED word are
reserved for use by Hewlett-Packard software.

Stack
Frame

Figure 5-1. Stack Frame General Layout

5-3

Code and Data Separation

5-7. DETAILED DESCRIPTICNS

PCALI INTERNAL PROCEDURE CALL
15[14 13 12f11 10 9] 8 7 65 4 3]21 0
1 |t 0 ojofojo
L

N = argument count (0 <N < 255)

:0/]

[«D,'l

N DEFs to arquments

Function: Procedure call to current code
segment
Use: Current Code Segment
PCALI
DEF pe [,I]
DEC ac
DEF a_11[.I]
DEF a_ac [,I]
Current Code Segment
pe EQU *
DEC fs
Operands: pe : Procedure entry point
ac : Actual argument count
a__i: Actual argument i
(multiple indirects are
supported)
fs : Frame size in words
Interruptible: Yes

PCALI determines the new Q-register value for the called
stack frame, which may be found at the current NEXT_Q
value. The old Q value is written into the new stack frame
at PREV_Q, which provides a link from the new stack
frame to the old stack frame. The argument count (AC) of
parameters to be passed is read from CODE[P+2], and the
parameter pointers are copied from CODE[P+3] to
DATA[new Q+6] after the parameter pointers have been
resolved for indirection and base relativity. The value of
AC is written into the ARG_COUNT location of the stack
marker. Indirects are followed in memory until a direct
address is found. If the (direct) address is between 2 and
1023, the current Q-register value is added before the
parameter pointer is copied into data space. PCALI may
be interrupted during parameter pointer resolution and
copying, and the PCALI instruction may simply be re-
started after the interrupt has been processed because the
actual state of the calling procedure (specifically the P-
and Q-registers) has not been altered.

5-4

lo

A900

The actual parameter count (AC) is stored in the ARG_
COUNT field of the new stack frame, and the upper byte of
that word (RTN_CST) is undefined. The return point of
the procedure (P+3+AC) is stored in the RETURN_P
location of the new stack frame. The ‘R’ bit contains zero,
which designates that a subsequent EXIT instruction
should exit without loading a new segment.

The called procedure entry (PE) is found by resolving the
address at CODE[P+1], and CODE[PE] contains the
called frame size (FS). The NEXT_Q value of the new
stack frame is set to the new Q value plus FS.

If the new NEXT_ Q is greater than or equal to the bounds
register (Z), stack overflow has occurred and a memory
protect interrupt will be executed to memory location 07 of
map zero. After the interrupt, the instruction violation
register is equal to the fetch address of the PCAL in-
struction, and the program counter value at the time of
the interrupt is undefined. The Q-register and IQ-register
point to the offending stack marker. The new stack
marker and formal arguments may have been written into
memory locations at addresses greater than the Z-register
value. To provide a safety zone, set the Z-register to 264
words below the area you want to protect.

If stack overflow did not occur, PCALI branches to the
called procedure by setting the program counter, P, to
PE+1 and the Q-register to the new Q value.

PCALX EXTERNAL PROCEDURE CALL

1514 13 12]11 10 918 7 6}]5 4 3

| =
-0

[—]
DN

0 | Code label to subroutine

N = argument count { 0 <N < 255)

:o/ll

N DEFs to arguments

b o o ¢

|

Procedure call to procedure in
external segment.

Function:

Use: Current Code Segment

PCALX
LABEL pe
DEC ac
DEF a_1 [,I]

DEF a_ac [,I]

External Code Segment

EQU *
DEC fs

pe

A900

Operands: pe : Code label (Code Segment
Table index and Segment
Transfer Table index) to
procedure.
ac : Actual argument count
a_i: Actual argument i
fs : Frame size in words
Interruptible: Yes

PCALX determines the new Q-register value for the called
stack frame, which may be found at the current NEXT_Q
value. The old Q value is written into the new stack frame
at PREV_Q, which provides a link from the new stack
frame to the old stack frame. The actual count (AC) of
parameters to be passed is read from CODE[P+ 2], and the
parameter pointers are copied from CODE[P+3] to
DATA[new Q+6] after the parameter pointers have been
resolved for indirection and base relativity. PCALX may
be interrupted during the parameter pointer resolution
and copying, and the PCALX instruction may simply be
restarted after the interrupt has been processed because
the actual state of the calling procedure (specifically the
P- and Q-registers) has not been altered.

The return point of the procedure (P+3+AC) is stored in
the RETURN_ P location of the new stack frame. The ‘R’
bit contains one, which designates that a subsequent
EXIT instruction should load the new segmert indicated
by RETURN_CST in the stack marker. The current
segment number is read from CODE[2000B], ANDed with
177400B, inclusive ORed with AC, and stored in
DATA[new Q-+3].

PCALX now attempts to load the external segment. The
upper byte of CODE[P+1] contains the CST (Code Seg-
ment Table) index. The PCALX instruction looks up the
CST entry through the base page of the code map set. (The
code map set number is the Execute map number inclusive
ORed with one.) The memory address of the CST entry is
the CST index shifted left two times. Restriction: the CST
index must be in the range 0 through 127. Note that this
process of looking up a CST entry is done with the base
register hardware and A/B addressability off. If bit 15 of
the CST entry is ‘1’, then the called procedure is not in
memory. PCALX will interrupt to memory location 13
octal of map zero and this location must contain a JSB to
the segment interrupt handler. The program counter at
the time of the interrupt points to the offending PCALX
instruction, and the Q value is unchanged. After the
segment is loaded, the PCALX instruction may be re-
executed. The CDS segment interrupt is the lcwest prior-
ity interrupt, and if other interrupts are present when a
fault is detected, the instruction is simply restarted after
the other interrupts are serviced. The following para-
graphs describe what PCALX does if the segment is
present in memory.

This paragraph describes how a code segment is ‘mapped
in’. The lower 14 bits of the CST entry contain the starting
physical page of the new code segment, which the

Code and Data Separation

microcode maps in by setting the PMRs (page mapping
registers) of code page 1 to the physical page number, code
page 2 to the physical page number plus 1, code page 3 to
the physical page number plus 2, and so on. These page
mapping registers are write-protected to protect the code
against alteration. The base page PMR of the code map is
not altered.

After the new code segment has been mapped in, the entry
point of the called procedure is determined. The low byte
of the external label (in CODE[P+1] in the old segment)
contains the STT (Segment Transfer Table) index. Be-
ginning at location 2001B in code space is a table of ad-
dress pointers (with bit 15 set to zero) that point to the
externally accessible procedures in this segment. Location
2001B plus the STT index contains the 15 bit address of
the called subroutine, and this value is the called proce-
dure entry (PE).

CODE[PE] contains the called frame size (FS). The
NEXT_ Q value of the new stack frame is set to the new Q
value plus FS. If the new NEXT_Q is greater than or
equal to the bounds register (Z) then stack overflow has
occurred, and a memory protect interrupt will be executed
at memory location 07 of map zero. After the interrupt, the
instruction violation register is equal to the fetch address
of the PCALX instruction, and the program counter
contains an undefined value. The Q-register and I1Q-
register point to the offending stack marker. The new
stack marker and formal arguments may have written
into memory locations at addresses greater than the
Z-register value.

Now that the new stack marker is complete, PCALX

branches to the called procedure by setting the program
counter, P, to PE+1 and the Q-register to the new Q value.

PCALV VARIABLE EXTERNAL PROCEDURE CALL

15114 13 12§1110 98 7 65 4 32 1 0
{1] ofof1]o
D;,] DEF to code label to subroutine
N = argument count (0 <N < 255)
0,4
E N DEFs 1 t 1
o arguments
[oug P]
Function: Procedure call, Code to Code, Ex-
ternal procedure
Use: Current Code Segment
PCALV
DEF xl [,I]
DEC ac
DEF a_1[,1]
DEF a_ac [,I]

5-5

Code and Data Separation

Operands:

Interruptible:

pe

x1

External Code Segment
EQU *
DEC fs

Data Segment
LABEL pe

pe : Procedure entry point
x1 : Procedure variable

ac ;: Actual argument count
a_1i: Actual argument 1

fs : Frame size in words

Yes

The difference between the PCALX and PCALV in-
structions is that the code label is in the call sequence in
PCALX, while in PCALV it is in the data space. The
pointer to the external label may be a multi-level indirect
See PCALX for a description of segment loading.

PCALR PROCEDURE CALL, .ENTR COMPATIBLE

15114 13 12

1110 9|8 7 65 4 3]2

: n

DEF to subroutine

N = argument count { 0 <IN <{ 255)

:D/|I

Pﬂl

N DEFs to arguments

Function:

Use:

Operands:

Interruptible:

5-6

pe

Procedure call, Code to Data, . ENTRK

compatible

Current Code Segment

PCALR
DEF pe [,I]
DEC ac
DEF a_1[,I]

DEF a_ac [,I]

Data Segment
BSS fc

NOP

JSB .ENTR
DEF pe—fc

pe : Procedure entry point
ac : Actual argument count
a_1: Actual argument i

fc : Formal argument count

Yes

A900

PCALR is similar to PCALI except it is used for invoking
procedures in the data segment that are .ENTR com-
patible. The mechanism for calling non-CDS-code involves
copying a .ENTR call sequence (minus the JSB) into the
stack frame. PCALR then turns off CDS, and executes the
function of a JSB to the non-CDS-code procedure by writ-
ing a return address into the new procedure entry and
branching to the procedure entry plus one. The procedure
entry address must be between 1024 and 32766.

A “DEF *+AC+1” is written into the reserved word lo-
cation (of the stack marker) for PCALR so as to follow the
.ENTR calling convention.

The stack frame created by PCALR (and PCALN) is:

Q—» Stack
Marker

DEF a_1

DER a_ac
EXIT
EXIT1
EXIT2

NEXT_ Q in the stack marker is undefined.

PCALN PROCEDURE CALL, .ENTN COMPATIBLE

N = argument count { 0 <{ N < 255)

ID/

H 'I N DEFs to arguments

o 1
Function: Procedure call, Code to Data,

Constant Internal procedure,
.ENTN compatible

Use: Code Segment

PCALN
DEF pe [,I]
DEC ac

DEF a_1 [,I]

DEF a_ac [,I]

Data Segment

BES fe

pe NOP
JSB .ENTN
DEF pe—fc

A900

Operands: pe : Procedure entry pcint
ac : Actual argument count
a_1i: Actual argument i
fc : Formal argument count
Interruptible: Yes

The stack frame created by PCALN is similar to the stack
frame created by PCALR. The difference between PCALR
and PCALN is that the PCALR writes the return address
at the non-CDS-code procedure entry, PE, with a return
address of the new Q-register value plus 5, while PCALN
writes a return address of the new Q value plus 6. Thus,
the return address in PCALR points to a word that points
around a parameter list (as in the .ENTR convention),
while the return address in PCALN points to the pa-
rameter list (as in the .ENTN convention).

SDSP STORE DISPLAY

1514 13 12]1110 918 7 6|5 4 3|2

10
0|1

DEC delta level offset

D/,l DEF location of d 1+1 words for display

Function: Store display in memory.
Use: SDSP
DEC di
DEF dsp [,1]
Operands: dl : delta level offset
dsp: location of dl+1 words for
display
Interruptible: Yes

The store display instruction is used by block-structured
languages such as PASCAL to store a number of
STATIC_Q words into memory. SDSP begins by storing
the current Q-register value into the DATA[disp]. The
following is done dl times: the value just stored into
memory is used as an address in memory, and this value,
logically ANDed with 77777B, is stored in the word after
the last word stored. The following table shows what is
placed in the display by the SDSP instruction.

LOCATION VALUE

disp Q value for current procedue

disp+1 Q value for first lexically enclosing
procedure

disp+2 Q value for second lexically enclos-
ing procedure

disp+dl Q value for dl-th lexically enclosing

procedure

Code and Data Separation

EXIT PROCEDURE EXIT

15(14 13 12}1110 9|8 7 54 31210

[fofuftiofefofof1f1]1]1

Function: Exit from *ocedure.
Use: EXIT
Interruptible: No

The EXIT instruction is used by any called procedure (in
CDS mode or non-CDS mode) to return to the calling CDS
procedure. The RETURN_P word in the stack marker
holds the return address, and if bit 15 of that word is 1,
then a new segment must be loaded first. The return
segment is specified by the RETURN_CST field of the
current stack marker. (See ‘mapping in’ in the PCALX
description.) If the returning segment is not in memory,
then an interrupt to memory location 13 octal of map zero
will occur, with the P- and Q-registers unaltered by EXIT.
The CDS segment interrupt is the lowest priority
interrupt, and if other interrupts are present when a fault
is detected then the instruction is simply restarted.

If EXIT was able to load the segment, or if the EXIT was to
the current segment, then the C- and Q-registers are
loaded from the PREV_Q word, and the P-register is set to
RETURN_P.

EXIT1 PROCEDURE EXIT WITH ONE SKIP

15114 1312|1110 98 7 6|5 4 3|12 1 0
1{1]0]1

Function: Exit from procedure at normal exit
+ 1,

Use: EXIT1

Interruptible: No

EXIT1 is functionally identical to EXIT except that the
program counter is set to RETURN_P plus one.

EXIT2 PROCEDURE EXIT WITH TWO SKIPS

151413 12|1110 9|8 7 6|5 4 3|2 1 0

]

Function: Exit from procedure at normal exit
+ 2.

Use: EXIT2

Interruptible: No

EXIT2 is functionally identical to EXIT except that the
program counter is set to RETURN_P plus two.

5-7

Code and Data Separation

CACQ COPY ATO C AND Q

15114 13 12{11 10 9

8 7 6|5 4 3|2 1
{of1]1]1

Function: Copy A-to C- and Q-registers
Use: CACQ

Operands: A : value to load into C and Q
Interruptible: No

The value contained in the A-register is copied to the
C- and Q-registers. Bits 14 through 0 are copied into the
Q-register. If bit 15 of the A-register is one, then CDS is
turned off before the next instruction is fetched; otherwise,
CDS is turned on.

A900

ccas COPY CAND QTO B

151413 121110 9{8 7 6|5 4 3|2 1 0
1110

Function: Copy C- and Q-registers to
B-register

Use: CCQB

Operands: B gets values in C and Q

Interruptible: No

The C- and Q-registers are copied into the B-register. If
CDS is enabled (C = 0), then bit 15 of the B-register is set
to zero, otherwise, it is set to logic one.

cBCQ COPYBTOCANDQ CAZ COPY A TO Z
15]14 13 12 2 10 15]1413 12]1110 98 7 6[5 4 3]2 1 0
01 111 0{o0]1

Function: Copy B- to C- and Q-registers
Use: CBCQ

Operands: B : value to load into C and Q
Interruptible: No

The value contained in the B-register is copied to the
C- and Q-registers. Bits 14 through 0 are copied into the
Q-register. If bit 15 of the B-register is one, then CDS is
turned off before the next instruction is fetched; otherwise.
CDS is turned on.

CCOA COPY C AND Q TO A
15§14 13 12]1110 9 2 10
{1]ofolo]olol1 1]1]0

Function: Copy C- and Q-registers to
A-register

Use: CCQA

Operands: A gets values in C and Q

Interruptible: No

The C- and Q-registers are copied into the A-register. If
CDS is enabled (C = 0), then bit 15 of the A-register is set
to zero, otherwise, it is set to logic one.

5-8

Function: Copy A-register to Z-register
Use: CAZ

Operands: Z gets value in A
Interruptible: No

The contents of the A-register are copied into the
Z-register. The results of setting bit-15 of the Z-register
are undefined.

CBZ COPY B TO Z

15[1a 13 12[1110 9|8 7 65 a4 32 1 0
K

Function: Copy B-register to Z-register
Use: CBZ

Operands: Z gets value in B
Interruptible: No

The contents of the B-register are copied into the
Z-register. The results of setting bit-15 of the Z-register
are undefined.

A900

CZA COPY ZTO A

15{14 13 1241110 9|8 7 5 4 312 10

Function: Copy Z-register to A-register
Use: CZA

Operands: A gets value in Z
Interruptible: No

The contents of the Z-register are copied into the
A-register.

CZB COPY ZTO B

1514 13 12]11 10 918 7 6 5 3j2 1 0

Code and Data Separation

cias COPY INTERRUPTED Q TO B

15[14 13 12]1110 98 7 6|5 4 3|2 1 o
o{1]0

Function: Copy interrupted Q-register to
B-register

Use: CIQB

Operands: IQ : interrupted Q and C values

Interruptible: No

The B-register is loaded with the value of the 1Q-register,
which is the value of the C- and Q-registers at the time of
the last interrupt or fault.

ADQA ADDQTO A

Function: Copy Z-register to B-register
Use: CZB

Operands: B gets value in Z
Interruptible: No

The contents of the Z-register are copied into the
B-register.

CI0A COPY INTERRUPTED Q TO A

15[14 1312|1110 98 7 65 4 3]2 1 0
o[1]0

Function: Copy interrupted Q-register to
A-register

Use: CIQA

Operands: 1Q : interrupted Q and C values

Interruptible: No

The A-register is loaded with the value of the IQ-register,
which is the value of the C- and Q-registers at the time of
the last interrupt or fault.

15114 13 1241110 9| 8 6 54 312 10
afajojof1]o]1]1

Function: Add Q-regisfer to A-register
Use: ADQA
Interruptible: Yes

The Q-register is added to the A-register (A = A+Q). The
ADQA instruction produces undefined results if executed
while CDS is disabled.

ADQB ADDQTOB

151413121110 98 7 65 _» 3|2 10
11]of1]1

Function: Add Q-register to B-register
Use: ADQB
Interruptible: Yes

The Q-register is added to the B-register (B = B+Q). The
ADQB instruction produces undefined results if executed
while CDS is disabled.

5-9

Code and Data Separation

Refer to the Assembly Language and RTE Implementa-
tion paragraphs in Section III for information on im-
plementing the CDS instructions in HP Assembly
Language and in an HP RTE-A operating system.

Table 5-1 shows the execution times for the CDS
instructions.

5-10

A900

Table 5-1. CDS Instruction Execution Times

INSTRUCTION TIME (usec)
EXIT, EXIT1
no segment mapping 0.931
with segment mapping 6.11
EXIT2
no segment mapping 1.064
with segment mapping 6.11
PCALI (no parameters) 1.86
per parameter passed 0.4
per indirect 0.13
PCALX (includes segment mapping) 7.84
per parameter 0.4
per indirect 0.133
PCALV (includes segment mapping) 7.98
per parameter 0.4
per indirect 0.133
PCALR 2.66
per parameter 0.4
per indirect 0.133
PCALN 2.66
per parameter 0.4
per indirect 0.133
CACQ,CBCQ 0.53
CCQA,CCQB 0.53
CAZ,CBZ 0.53
CZA,CZB 0.53
CIQA,ClQB 0.66
ADQA,ADQB 0.53
SDSP
display size = 0 0.93
per element of display 0.4

INTERRUPT SYSTEM

SECTION

Vi

The vectored priority interrupt system has up to 53 dis-
tinct interrupt levels, each of which has a unique priority
assignment. In the A900 computer, the interrupt priority
of an I/O card is based on the card’s proximity to the
processor card and is independent of the card’s select code.
The I/O card in the slot nearest to the processor card has
the highest interrupt priority. Each I/O card has higher
interrupt priority than I/O cards farther from the pro-
cessor card and lower priority than cards closer to the
processor card. As shown in Table 6-1, the select code of an
interrupt level is associated with an interrupt location in
memory.

Any device can be selectively enabled or disabled under
program control, thus switching the device into or out of
the interrupt structure. In addition, the interrupt system
is divided into types of interrupts (Table 6-1). Interrupt
Type 3 can be enabled or disabled under program control
using a single instruction, and interrupt Types 2 and 3
combined can be enabled or disabled using a single
instruction. Interrupt Type 4 cannot be disabled, but is
lower priority than Types 1 through 3.

Table 6-1. A900 Interrupt Assignments

SELECT INTER-
CODE | INTERRUPT RUPT
(OCTAL) | LOCATION ASSIGNMENT TYPE
04 00004 Power Fail Interrupt 2
05 00005 Mutti-bit Error Interrupt 1
06 00006 Time Base Generator 3
Interrupt
07 00007 Memory Protect Interrupt 2
10 00010 Unimplemented Instruction 1
Interrupt
11 00011 Reserved
12 00012 Virtual Area Memory 4
Interrupt
13 00013 CDS Segment Interrupt 4
14-17 | 00014-00017| Reserved
20-77 | 00020-00077 ! VO Card Interrupts 3

When a qualified interrupt is serviced, the state of the
interrupted routine is saved in the IMAP and [Q registers,
CDS mode and memory protect are turned off, the Execute
map is set to 0 (System map), and the DATA1 map is set to
the Execute map of the interrupted process. After this new
state of the machine is set up, a fetch from the appropriate
trap cell is performed. Trap cells are expected to contain a

JSB to an appropriate routine that will service the
interrupt and restore the state of the interrupted process
before restarting it. If a JSB or JMP instruction is not
contained in the trap cell, instruction execution will
proceed at the address which was interrupted, but in the
System map.

6-1. POWER FAIL INTERRUPT

The computer power supply is equipped with power-
sensing circuits. When primary line power fails or drops
below a predetermined level while the computer is
running, an interrupt to memory location 00004 is
automatically generated. Memory location 00004 is in-
tended to contain a jump-to-subroutine (JSB) instruction
referencing the entry point of a user-supplied power fail
subroutine. The interrupt capability of lower-priority
operations is automatically inhibited while a power fail
subroutine is in process. (That is, the equivalent of a CLC
04 automatically occurs whenever a power fail interrupt is
serviced.)

A minimum of five milliseconds is available between the
detection of a power failure and the loss of usable power-
supply power to execute a power fail subroutine; the
purpose of such a routine is to transfer the current state of
the computer system into memory and then wait for power
to return. After the macro level state has been saved, an
STF 4 instruction must be coded. This allows the internal
state of the CPU to cleaned up (cache flushed, etc.) before
power disappears. A sample power fail subroutine is given
in Table 6-2. The optional battery backup module will
supply enough power to preserve the contents of memory
for a sustained line power outage of up to 180 minutes.

The user has a switch-selectable option of what action the
computer will take upon restoration of primary power.
When switch U0101S8 (labeled “M”) on the data path card
is closed, the computer will execute either a loader or the
Virtual Control Panel routine, depending on the setting of
the Start-Up switches. (The Start-Up switches are de-
scribed in paragraph 2-23 and tabulated in Table 2-1.)

NOTE

Switch U0101S8 is mounted on the data
path card and is not an operator control.
The setting of this switch is normally
determined by the System Manager
prior to or during system installation.

When switch U0101S8 is open, the automatic restart
feature is enabled. After the self-test is executed following
the return to normal power levels, an interrupt to location
00004 occurs. This time the power-down portion of the

6-1

Interrupt System

Table 6-2. Sample Power Fail Subroutine

A900

LABEL OPCODE OPERAND COMMENTS
PFAR NOP Power Fail/Auto Restart Subroutine.
SFC 4B Skip if interrupt was caused by power failure.
JMP up Power being restored; reset state of system.
DOWN CLC 0B Shut down any DMA or |/O.
STA SAVA Save A-register contents.
CCA Set flag indicating that computer was running when power failed.
STA PFFLG
sSTB SAVB Save B-register contents.
ERAALS Transfer E-register content to A-register bit 15.
SOC Increment A-register if Overflow is set.
INA
STA SAVEO Save E- and O-register contents.
LDA PFAR Save contents of P-register at time of power failure.
STA SAVP
SIMP
DEF SAVI Save IMAP contents.
. Insert user-written routine to save /O states.
STF 4B Clean up internal state (flush cache, etc.)
SFS 4B
JMP *—1 Wait in case power comes back up.
upP LDA PFFLG Was computer running when power failed?
SZA RSS
HLT 48 No, then halt.
CLA Yes, then reset computer Run flag to initial state.
STA PFFLG
. Insert user-written routine to restore /O devices.
LDA SAVEO Restore the contents of the E-register and O-register.
CLO
SLAELA
STF 1B Set O-register.
LDA SAVA Restore A-register contents.
LDB SAVB Restore B-register contents.
STC 4B Reset power fail logic for next power failure.
XJMP Cross jump to program executing at power failure.
DEF SAVI
DEF SAVP,|
SAVEO ocT 0 Storage for E and O.
SAVA OCT 0 Storage for A.
SAVB OCT 0 Storage for B.
SAVP oCT 0 Storage for P.
PFFLG OoCT 0 Storage for Run flag.
SAVI OoCT 0 Storage for IMAP.

Note: The memory maps used must be saved and restored, as must (if used) the states of the interrupt mask register,

memory protect (conditional restore), and Global Register.

6-2

A900

subroutine is skipped and the power-up portion begins.
(Refer to Table 6-2.) Those conditions existing at the time
of the power fail interrupt are restored and the computer
continues the program from the point of the interruption.

Note that an auto-restart interrupt to location 00004 oc-
curs only if that location’s contents are not zero; otherwise,
the system is re-booted. This is done so that if power fails
and is restored during a boot, an attempt to restart a
partially loaded program can be avoided. To enable this to
happen the program being loaded should initially load
location 00004 with zero and load the power-fail JSB
instruction only when the load is otherwise complete.

If the computer memory does not contain a subroutine to
service the power fail interrupt, location 00004 should
contain a NOP instruction (00 octal).

At the end of a restart routine, consideration should be
given to re-initializing the power-fail logic and to restor-
ing the interrupt capability of the lower priority functions.

6-2. MULTIPLE-BIT ERROR
INTERRUPT

As a replacement for the parity checking of memory that
exists in other HP 1000 computers, a standard feature of
the A900 is error-correcting memory. Consequently, the
‘parity error’ interrupt has been replaced by a ‘multiple-
bit error’ interrupt. The meaning is still the same: the
data from the offending memory read cannot be trusted.
(Unlike parity error interrupts, the error-correcting
capability of the A900 cannot be disabled.)

The Error Detection and Correction (EDC) circuitry
checks the memory array cards and the path between
them and the cache. Whenever the cache writes to mem-
ory the EDC logic generates seven checkbits which
accompany two 16-bit data words so that a memory array
card stores a total of 39 bits per write. When the cache
requests data from memory the EDC logic checks the 39
bits coming from the memory array card to determine
whether an error of one or more bits has occurred. This
determination is made by using the 32 bits of read data to
recompute the seven checkbits, and comparing these
checkbits with the old ones. The result of this comparison
is called the error syndrome.

If a single-bit error is detected, it is automatically cor-
rected before the data is sent to the cache. The even-
numbered physical address of the two-word block con-
taining the error and the error syndrome are latched into
the parity violation register (PVR). If the error is de-
termined to be a multiple-bit error, it is treated differently
because it cannot be corrected. The data is sent to the
cache without modification and a multiple-bit error
interrupt to memory location 00005 is generated. The
even physical address is still latched into the PVR, but

Interrupt System

then the PVR is frozen to prevent this address from being
overwritten by another error. (Location 00005 may con-
tain either a JSB instruction referencing the entry point of
a user-supplied error subroutine (included with RTE) or a
JMP instruction pointing to a HLT instruction.)

The PVR is accessible to the user through select code 05.
An LIA 05 or LIB 05 provides bits 0 through 15 of the
physical address. An LIA 5,C or LIB 5,C provides bits 16
through 23 of the physical address, the 7-bit syndrome,
and a bit that indicates whether the error was a single-bit
error or a multiple-bit error. An LIA 5,C or LIB 5,C also
clears the PVR syndrome bits and the multiple-bit error
interrupt. The multiple-bit error interrupt capability is
enabled after-power-up but may be disabled and enabled
by CLC 05 and STC 05 instructions, respectively.

An OTA 05 or OTB 05 can be used to force memory errors
to test the EDC logic; the A- or B-register specifies the
address where the checkbit pattern held in the X-register
will be written.

6-3. MEMORY PROTECT iNTERRUPT

The memory protect feature provides the capability of
protecting selected pages of memory against access or
alteration by programmed instructions. References to the
A- and B-registers as locations 00000 and 00001 are not
affected.

The memory protect logic, when enabled by an STC 07
instruction, also prohibits the execution of all privileged
instructions. This includes the I/O instructions except
those referencing I/O select code 01 (the processor card
status register and the overflow register). (Execution of all
HLTs is prohibited.) This feature limits control of /O
operations to interrupt control only. Instructions which
control the DMS are also privileged. Thus, an executive
program residing in protected memory can have exclusive
control of the DMS and the I/O system.

The memory protect logic is disabled automatically by any
interrupt and must be re-enabled by an STC 07 or XJMP
instruction at the end of each interrupt subroutine.

Programming rules pertaining to the use of memory
protect are as follows (assuming that an STC 07 instruc-
tion has been given):

a. Locations 00000 and 00001 in the Execute map are
the A- and B-registers and are not in protected
memory. Locations 00000 and 00001 in the DATA1
and DATA2 maps are real memory locations (not the
A- and B-registers) and may reside in protected
memory.

b. A user-specified 1024-word page of memory is read
and/or write protected by Page Mapping Register
instructions described in Section IV.

6-3

Interrupt System

¢. Execution will be inhibited and an interrupt to loca-
tion 07 will occur if any instruction attempts to read
(or fetch) from read-protected memory, write to
write-protected memory, or if any privileged in-
struction is attempted (this excludes those addressing
select code 01 but not HLT 01). After three successive
levels of indirect addressing, the logic will allow a
pending I/O interrupt.

Following a memory protect interrupt, the address of the
offending instruction will be present in the violation
register. This address is made accessible to the pro-
grammer by an LIA 07 or LIB 07 instruction, which loads
the address into the A- or B-register.

Note that DMA operation is not affected by memory
protect.

G-4. UNIMPLEMEMTED INST-UCTION
INTERRUPT

An unimplemented instruction interrupt (to memory
location 00010 octal) is requested when the last instruc-
tion fetched was not recognized by the CPU. This inter-
rupt provides a straightforward entry to software routines
for the execution of instruction codes not recognized by the
computer hardware. The unimplemented instruction
interrupt must receive immediate service in order to
recover the instruction code that caused it. For this re-
ason, and because it is desirable to permit the use of
unimplemented instructions anywhere, the unim-
plemented instruction interrupt is never inhibited.

5.5 TIME BASE GENERATCH
NTERRUFT

A time base generator interrupt request is made when the
CPU signals that its internal clock divider chain has rol-
led over. The clock divider is set to roll over at 10-
millisecond intervals for maintaining a real-time clock.
The interrupt occurs through location 00006 and can be
masked (inhibited) by using bit 1 of the interrupt mask
register. (The interrupt mask register allows interrupts
from the TBG and the I/O cards to be selectively masked.
For details on the interrupt mask register, refer to the HP
1000 L-Series Computer 1/O Interfacing Guide, part no.
02103-90005.) The TBG can be turned on by an STC 06
instruction, and turned off by a CLC 06 or CLC 00 in-
struction. The first TBG interrupt will be requested 10
milliseconds after an STC 06.

B-u. VIRTUAL MEMORY
SREA INTERERUPT

During the execution of a VMA instruction, the hardware
may determine that the desired VMA address does not
reside in physical memory and needs to be loaded from

6-4

A900

disc. This causes a VMA interrupt to memory location
000012 (octal). This interrupt can occur only when Code
and Data Separation (CDS) is enabled.

-7 CDDS SEGMENT INTERRUPT

During the execution of a CDS instruction, the hardware
may determine that a desired CDS segment does not re-
side in physical memory and needs to be loaded from disc.
This causes a CDS segment interrupt to memory location
000013 (octal).

s, INPUT/GUTRUT INTERRUPT

Interrupt locations 20 through 77 (octal) are reserved for
/O devices. In a typical /O operation, the computer issues
a programmed command such as Set Control/Clear Flag
(STC,C) to one or more external devices to initiate an
input (read) or an output (write) operation, via either
programmed [/O or DMA. While the [/O card is in the
process of transferring data, the computer may be either
running a program or looping, waiting for & flag to get set.
Upon completion of the read or write operation, the
interface flag is set. If the corresponding control bit is set,
the interface will interrupt. Its request will be passed
through a priority network so that only the highest prior-
ity interrupting device will receive service. The computer
will acknowledge the interrupt and the highest priority
device will receive service when the current instruction
has finished executing, sxcept under the following
circumstances:

a. Interrupt system disabled or interface card interrupt
disabled (or masked).

b. JMP indirect, JSB indirect, XJMP, or XJCQ in-
struction not sufficiently executed. These instructions
inhibit all TBG, power fail, and IO interrupts until
the succeeding instruction is executed. After three
successive levels of indirect addressing, the logic will
allow a pending I/O interrupt.

¢. A DMA (direct memory access) data transfer is in
process.

d. Current instruction is any I/O group instruction
(except those to select code 01). The interrupt in this
case must wait until the succeeding instruction is
executed.

After an interface card has been issued a Set Control (STC
instruction) and its flag bit becomes set, all interrupt
requests from lower-priority devices are inhibited until
this flag bit is cleared by & Clear Flag (CLF) instruction,
or until control is cleared by a Clear Control (CLC) in-
struction. A service subroutine in process for any device
can be interrupted only by a higher-priority device; then,
after the higher-priority device is serviced, the inter-
rupted service subroutine can continue. In this way it is
possible for several service subroutines to be in the

A900

interrupt state at one time; each of these service sub-
routines will be allowed to continue after the higher-
priority device is serviced. All such service subroutines
normally end with a JMP indirect or XJMP instruction to
return the computer to the point of interrupt.

Note that interrupt trap cells must contain a JMP or JSB
instruction; any other trap-cell instruction produces
undefined results.

6-9. INTERRUPT PRIORITY

The interrupt servicing priority, from highest priority to
lowest, is as follows:

a. Unimplemented instruction (select code 10).

b. Time base generator (select code 6).

¢. Multiple-bit memory error (select code 5).

d. Memory protect (select code 7).

e. Slave (break) interrupt.

f. Power fail (select code 4).

g. I/O interrupts (select codes 20 through 77).

h. Virtual Memory Area (select code 12) and CDS

Segment (select code 13).

6-10. CENTRAL INTERRUPT REGISTER

Each time an interrupt occurs, the address of the inocation
is stored in the central interrupt register. The contents of
this register are accessible at any time by executing an
LIA 04 or LIB 04 instruction. This loads the address of the
most recent interrupt into the A- or B-register.

6-11. PROCESSOR STATUS RIEGISTER
The processor status register is two registers: one for input
and one for output. The input register shows the status of
the switches on the data path card and is read into the
upper eight bits of the A- or B-register by an LIA/B 01
instruction. The switch, bit, and function relationships are
as follows:

Interrupt System

SWITCH U0101 BIT MEANING
S1 8 Boot select 0 = closed
S2 9 Boot select 1 = open
S3 10 Boot select
S4 11 Break enabled (0)/disabled (1)
S5 12 Not used
S6 13 ENQ/ACK handshake enabled

(0)/disabled (1)

S7 — Not used
S8 14 Auto-restart enabled (1Y

disabled (0)

The output register drives the lower eight LEDs on the
sequencer card. The output of the lower eight bits of the A-
or B-register are sent to the LEDs by an OTA/B 01 in-
struction. A logic 1 in either register lights the corre-
sponding LED.

6-12. INTERRUPT TYPE CONTROL

I/O address 00 is the master control address for Type 3
interrupts (TBG and I/O cards). An STF 00 instruction
enables Type 3 interrupts and a CLF 00 disables Type 3
interrupts. (Type 3 interrupts are disabled when power is
initially applied.) /O address 04 is the master control
address for Type 2 interrupts (power fail and memory
protect) and Type 3 interrupts combined. An STC 04
instruction enables Type 2 and 3 interrupts and a CLC 04
disables Type 2 and 3 interrupts.

The Type 2 and 3 interrupt mask from I/O address 04 is a
different Type-3 mask than the Type-3 mask at I/O address
00. If either of these two masks are set, Type 3 interrupts
will be disabled. In addition to these two interrupt masks,
the Time Base Generator flag interrupt can also be masked
by bit 1 of the interrupt mask register. If any of these three |
masks are set then the TBG flag interrupt will be disabled.

6-13. INSTRUCTION SUMMARY

Table 6-3 is a summary of instructions for select codes 00
through 07. For a summary of instructions used with the
I/O cards, refer to an I/O card reference manual.

Update 4 6-5

Interrupt System

A900

Table 6-3. Instructions for Select Codes 00 through 07

INSTRUCTION FUNCTION INSTRUCTION FUNCTION
STCO NOP STC 4 Enable Type 2 and 3 interrupts
CLC O System reset CLC 4 Disable Type 2 and 3 interrupts
STF O Enable Type 3 interrupts STF 4 Flush cache
CLFO Disable Type 3 interrupts CLF 4 NOP
SFS 0 Skip if Type 3 interrupts enabled SFS 4 Skip if power is stable
SFC 0 Skip if Type 3 interrupts disabled SFC 4 Skip if power going down
Lro Load from interrupt mask register L 4 Load from central interrupt register
MI* 0 NOP MI* 4 NOP
oT" 0 Output to interrupt mask register oT" 4 Output to central interrupt register
STC 1 NOP STC 5 Enable multiple-bit error interrupts
CLC 1 NOP CLC 5 Disable multiple-bit error interrupts
STF 1 Same as Set QOverflow (STO) STF 5 NOP
CLF 1 Same as Clear Overflow (CLO) CLF 5 NOP
SFS 1 Same as Skip if Overflow Set (SOS) SFS 5 NOP
SFC 1 Same as Skip if Overflow Clear (SOC) SFC 5 NOP
L1 Load from processor status register LS Load from parity register (bits 0-15)
MI* 1 Merge from processor status register L 5,C Load from parity register (bits 16-31)
oT* 1 Output to processor status register MI* 5 NOP
oT" 5 Force check bits in X-register to ad-
dress in A- or B-register.
STC 2 Enable break feature STC 6 Turn on time base generator
CLC 2 NOP CLC 6 Turn off time base generator
STF 2 Disable Global Register STF 6 Set time base generator flag
CLF 2 Enable Global Register CLF & Clear time base generator flag
SFS 2 Skip if Global Register disabled SFS 6 Skip if time base generator flag set
SFC 2 Skip if Global Register enabled SFC 6 Skip if time base generator flag clear
L2 Load from Global Register L6 NOP
MI* 2 NOP MI* 6 NOP
oT* 2 Output to Global Register (Note 1) oT 6 NOP
STC 3 NOP STC 7 Enable memory protect
CLC 3 NOP CLC 7 NOP
STF 3 NOP STF 7 NOP
CLF 3 NOP CLF 7 NOP
SFS 3 NOP SFS 7 NOP
SFC 3 NOP SFC 7 NOP
Lr3 Load from P SAVE Lz Load from violation register
MI* 3 NOP Mi* 7 NOP
oT* 3 Output to P SAVE oT 7 NOP
L~ 3C Load from ROM P
oT" 3,C Output to ROM P
* = AorB.

Note 1. An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

6-6

INPUT/OUTPUT SYSTEM

SECTION

Vil

The purpose of the input/output system is to transfer data
between the computer and external devices. As shown in
Figure 7-1, data can be transferred either by a direct
memory access (DMA) feature or through the A-or
B-register in the CPU (non-DMA). Each A’L-Series 'O
card has DMA logic and DMA is normally used for most
IO data transfers. Once the DMA logic has been in-
itialized, no programming is involved and the transfer
occurs in three distinct steps as follows:

a. Between the external device and its I/O interface card
in the computer;

b. Between the I/O card and cache memory via the
backplane data bus.

c. Between cache memory and main memory via the
memory frontplane. This three-step process also
applies to a DMA output transfer except in reverse
order.

As mentioned above, data may be transferred under
program control without using the DMA feature. This
type of transfer allows the computer to manipulate the
data during the transfer process. A non-DMA input
transfer is a three-step process as follows:

Between the external device and its I'O card;

b. Between the I/O card and the Aor B-register via the
d .ta bus and the processor card; and

c. Between the A- or B-register and memory via the
processor, cache, and memory frontplane.

Note that in the DMA transfer the A- and B-registers are
bypassed. Since a DMA transfer eliminates programmed
loading and storing via the accumulators, the time in-
volved is very short. Further information on the DMA
feature is given in paragraph 7-9.

7-1. INPUT/OUTPUT ADDRESSING

As shown in Figure 7-2, an external device is connected by
cable directly to an interface card located in the computer
mainframe. The interface card, in turn, plugs into one of
the input/output slots, each of which is assigned a fixed
interrupt priority. Note, however, that the select code of
the A/L-Series interface cards is independent of the
priority. The computer communicates with a specific de-
vice on the basis of its select code which is set by switches
on the interface card.

Figure 7-2 shows an interface card inserted in the I/O slot
having the highest priority. If it is decided that the as-

sociated device should have lower priority, its interface
card and cable may simply be exchanged with those
occupying some other I/O slot. This will change the prior-
ity but not the I/O address (select code). Due to priority
chaining, there can be no vacant slots from the highest
priority slot to the lowest priority slot used. Only select
codes 20 through 77 (octal) are available for input/output
cards; the lower select codes (00 through 17) are reserved
for other features.

7-2. INPUT/OUTPUT PRIORITY

The plug-in card slots of the A900 computers are num-
bered 1 through 16 or 1 through 20. Generally, slots 2
through 6 are used for the memory and processor cards
and the remaining slots are available for /O cards, with
slot 1 having the highest I/O interrupt priority and slot 7
having the next highest I/O priority. (Note that slots 2
through 5 can only be used for the processor cards. Also, in
the 16-slot computer slots 8 and 16 are reserved for the 25
kHz power module and the battery backup card,
respectively.) An I/O channel consists of an /O device (or
devices) and its /O card and is assigned the number of the
card slot.

When an input/output device is ready to be serviced, it
causes its interface card to request an interrupt so that the
computer will interrupt the current program and service
the device. Since many device interface cards will be
requesting service at random times, it is necessary to
establish an orderly sequence for granting interrupts.
Also, it is desirable that high-speed devices should not
have to wait for low-speed device transfers. Both of these
requirements are met by a series-linked priority structure
illustrated by Figure 7-8. The bold line, representing a
priority enabling signal, is routed in series through each
card capable of causing an interrupt. The card cannot
interrupt unless this enabling signal is present at its
input.

Each device (or other interrupt function) can break the
enabling line when it requests an interrupt. If two devices
simultaneously request an interrupt, the device with the
highest priority will be the first one that can interrupt
because it has broken the enable line for the lower-priority
device. The other device cannot begin its service routine
until the first device is finished. However, a still higher-
priority device (one interfaced through a lower-numbered
slot) may interrupt the service routine of the first device.
Figure 7-4 illustrates a hypothetical case in which several
devices request service by interrupting a CPU program.
Both simultaneous and time-separated interrupt requests
are considered.

7-1

Input/Output System

A900

CENTRAL
PROCESSOR
UNIT
MEMORY
- CACHE <] CONTROLLER
A-REG. B-REG. MEMORY AND ARRAY
CARDS
1\ A
BACKPLANE
] Y

[| A A

Y y Y
'O INTERFACE /O INTERFACE /O INTERFACE

CARD CARD CARD

Y Yy

PERIPHERAL PERIPHERAL PERIPHERAL
DEVICE DEVICE DEVICE
8200-172
Figure 7-1. Input/Output System
MEMORY
CONTROLLER
CARD
DATA PATH SEQUENCER
MEMORY MEMORY CARD CARD
FRONTPLANE ARRAY
N CARD
N
20 — I - __ — — 1 71
N
\ !
N
HHHHHHAHHA AR AR R A

TO 1O DEVICE WITH
LOWEST PRIORITY

TO /O DEVICE WITH

CACHE
CONTROL HIGHEST PRIORITY
CARD (SYSTEM DISC DRIVE)

8200-135

Figure 7-2. I/O Priority Assignments

A900

Assume that the computer is running a CPU program ‘

when an interrupt from I/O channel 8 occurs ' at reference
time t1), and that the card in slot 8 is assigned select code
22. When the interrupt is serviced, the /O card supplies
its select code (in this case 22) to the CPU. The CPU uses
the select code as an address to initiate the interrupt
service routine. A JSB instruction in the interrupt loca-
tion for select code 22 causes a program jump to the service
routine for the channel-8 device (select code 22). The JSB
instruction automatically saves the return address (in a
location which the programmer must reserve in his
routine) for a later return to the CPU program.

The routine for channel 8 (select code 22) is still in prog-
ress when several other devices request service (set flag).
First, channels 9 and 10 request simultaneously at time
t2; however, since neither one has priority over channel 8,
their flags are ignored and channel 8 continues transfer.
But at t3, a higher priority device on channel 1 requests
service. This request interrupts the channel 8 routine and
causes the channel 1 routine to begin. The JSB instruction
saves the return address for return to the channel 8
routine.

Input/Output System

During the channel 1 routine, the channel 7 flag is set (t4).
Since it has lower priority than channel 1, channel 7 must
wait until the end of the channel 1 routine. And since the
channel 1 routine, when it ends, contains a return address
to the channel 8 routine, program control temporarily
returns to channel 8 (even though the waiting channel 7
has higher priority). The JMP,I instruction used for the
return inhibits all interrupts until fully executed. At the
end of this short interval, the channel 7 interrupt request
is granted.

When channel 7 has finished its routine, control is re-
turned to channel 8, which at last has sufficient priority to
complete its routine. Since channel 8 has been saving a
return address in the main CPU program, it returns con-
trol to this point.

The two waiting interrupt requests from channels 9 and
10 are now enabled. Channel 9 has the higher priority and
goes first. At the end of the channel 9 routine control is
temporarily returned to the CPU program. Then the low-
est priority channel (channel 10) interrupts and completes
its routine. Finally, control is returned to the CPU pro-
gram, which resumes processing.

86 PRIORITY
ENABLE LECT
SIGNAL l ESDE
————-.——-——-1
MEMORY TIME BASE 0
ERROR GENERATOR
SlGNAL
COMPUTER | MEMORY) W’L‘gﬂr o
LOGIC | PROTECT MSRon
SSGNAL E
POWER t-) MEMORY -
FAK, PROTECT
SlGNAL ;

POWER
[) FAIL 04

HIGHEST
/O PRIORITY
INTERFACE
CARD
INTERFACE L
CARD
INTERFACE:
CARD
INTERFACE
CARD
LOWEST L 3
1O PRIORITY

INTERRUPTING o :
COMPUTER SERVICING
{SHADED CHANNEL)
'TlME 117891011
t1
9
©2 10} TOGETHER
B |1
4 |7

® END OF SERVICE SUBROUTINE

8200-143

Figure 7-3. Priority Linkage (Simplified)

8200-142

Figure 7-4. Interrupt Sequence

Input/Output System

- N - Y R . g ' M S SN] N
P e Tk e phd el

The interface card provides the communication link
between the computer and one or more external devices.
The interface card includes several basic elements which
either the computer or the device can control in order to
effect the necessary communication. These basic elements
are the Global Register, control bits, flag bits, data buffer
register, and control register. Other registers, associated
only with DMA, are discussed in paragraph 7-9. The
control and flag bits and the data buffer and control
registers of an interface card can be addressed directly
when the card’s select code is in the Global Register (GR)
and the GR is enabled. Refer to the interface card refer-
ence manuals for specific information on the data and
control registers.

7-4. GLOBAL REGISTER

In the A-Series computers, the select code that is in the
Global Register specifies which /O card is enabled to
execute I/0O instructions. The Global Register (GR) is a
register on each /O card that can be loaded with the select
code of any one of the IO cards. (At any given time, the GR
on all /O cards is loaded with the same select code.) When
the GR is enabled, an I/O instruction is executed only by
the I/O card whose select code matches the select code in
its GR. Also, the GR allows other registers on the selected
I/O card to be accessed programmatically by IO instrue-
tions. The Global Register on all I/O cards may be simul-
taneously loaded with an OTA/B 02 instruction, enabled
with a CLF 02 instruction, and disabled with an STF 02
instruction.

7-5. CONTROL BITS

The control bits on an interface card are used to turn on a
specific IO function. In addition, a control bit must be set
to allow the corresponding flag bit to interrupt. There are
three control bits associated with each I/O select code:
control 20, 21, and 30. Control 30 is the only control bit
that can be accessed with or without the Global Register
being enabled. When control 30 is set it generates an
action command, allowing one word or character to be
read or written. Control 20 and 21 can only be accessed
when the Global Register is enabled. When control 20 is
set it turns on DMA self-configuration. The setting of
control 21 enables DMA transfers.

7-6. FLAG BITS

The flag bits (when set) are used primarily to interrupt or
to signal completion of a task. Flag 30, the only flag bit
accessible without using the Global Register, signals that,
either one data element has been transferred or that an
interrupting conditton has been detected. There are three
other flags, all of which must be accessed with the Global
Register enabled. Flag 20 signals DMA self-configuring

7-4

A900

transfer complete; flag 21 signals DMA transfer complete;
and flag 22 signals a multiple-bit data error during DMA.
The device cannot clear the flag bit. If the corresponding
control bit is set, priority is high, and the interrupt system
is enabled, then setting the flag bit will cause an interrupt
to the location corresponding to the 1/0O card select code.

7-1. DATA BUFFER REGISTER

The data buffer register ‘designated Register 30) is used
for the intermediate storage of data during an I/O trans-
fer. Typically, the data capacity is 16 bits.

7-8. CONTROL REGISTER

The control register (designated Register 31) enables a
general purpose interface card to be configured for com-
patibility with a specific I/O device or to be programmed
for particular modes of operation. The control register
must be programmatically set up for each particular ap-
plication. Refer to the interface card manuals for specific
information on the control register.

The direct memory access (DMA) capability of each
A/L-Series interface card provides a direct data path
between memory and a peripheral device, making it
practical to use DMA for most data transfers. The use of
DMA to perform I/O data transfers reduces the number of
interrupts from one per byte or word to one per complete
DMA block transfer. (Maximum DMA block size is 65,536
bytes.)

The maximum DMA transfer rate (inbound) is 3.7 mega-
bytes per second; this is also the combined limit for DMA
transfers by two or more /O cards. DMA can interleave
with CPU operations. Even at full DMA rate, the CPU
should still be running at three-eighths full speed. The
DMA feature is provided by the following elements:

a. The common cache memory that links the processor,
main memory, and 1/O cards;

b. The capability of the I/O cards to execute I/O instruc-
tions; and

¢. The Global Register which:

1. Enables only the /O card whose select code is in
the Global Register to execute I/O instructions,
freeing the address bits of the I/O instruction; and

2. Enables the I/O-instruction address bits to be
used to access registers on the I/O card specified
by the Global Register.

Each I/O card has four registers associated with DMA.
Three of them must be loaded with control words that
specify the DMA operaticn. The fourth register is used for
a special type of DMA operation called self-configured

A900

DMA which is discussed later. All of these registers can be
accessed only when the select code of the desired /O card
is in the Global Register. The DMA registers and their
functions are as follows:

a. Register 20, DMA Self-Configuration Address
Register;

b. Register 21 (for Control Word 1), DMA Control
Register;

¢. Register 22 (for Control Word 2), DMA Address Regis-
ter; and

d. Register 23 (for Control Word 3), Word/Byte Count
Register.

7-10. CONTROL WORD 1

Control Word 1 (CW1) must be loaded into Register 21 of
the desired I/O card as part of the DMA initialization
process. The general definitions of the bits in Control
Word 1 are given in Figure 7-5. Note that the require-
ments of individual /O cards may vary slightly from the
general definitions and that it is necessary to refer to the
/O card reference manuals for specific programming
information.

7-11. CONTROL WORD 2

Control Word 2 (CW2) loads into Register 22 the address
of the first memory location to be read from or stored into
when the DMA operation is initiated. The most significant
bit, bit 15, is not used by the DMA control logic; when
CW2 is read for status, bit 15 is the complement of bit 7 in
CW1 (Figure 7-5).

7-12. CONTROL WORD 3

Control Word 3 (CW3) loads into Register 23 the twos-
complement of the number of data elements to be trans-
ferred by DMA. Data elements may be either words or
bytes as specified by bit 13 of CW1 (Figure 7-5). The end of
a DMA data transfer is indicated by the transition from -1
to O of the value in Register 23 (the Word/Byte Count
Register); this causes the I/O card to generate a comple-
tion interrupt. (A DMA transfer can also be terminated in
other ways as described in the interface card manuals.)

7-13. DMA TRANSFER INITIALIZATION

A DMA data transfer is started by:

a. Loading the Global Register with the select code of
the desired I/O card;

b. Loading the three DMA registers: DMA control into
Register 21, DMA address into Register 22, and
word/byte count into Register 23;

Input/Output System

c. Loading the control register (Register 31) of the /O
card (described in the individual interface card refer-
énce manuals); and

d. Issuing an STC instruction to Register 21 (DMA. Con-
trol Register).

A typical programming sequence to configure the DMA
logic for a DMA transfer is as follows:

LDA SC Load select code

OTA 2,C Set up Global Register

CLC 21B

LDA CW1

OTA 21B Output DMA control word
LDA CW2

OTA 22B Output DMA starting address
LDA CW3

OTA 23B Output DMA word/byte count
LDA CNTL

OTA 31B Output I/O card control word
STC 21B,C Start DMA and device

<continue any other processing>

7-14. SELF-CONFIGURED DMA

Each I/O card also has logic that can automatically load
the DMA registers discussed previously with the DMA
control words from sequential locations in memory. This
process is performed by using the I/O card’s Register 20,
the Self-Configuration Register. The DMA self-
configuration feature is initialized by setting the value of
Register 20 to the memory address of a list of DMA “trip-
lets” or “quadruplets”.

A triplet is of the form: DMA control word, DMA transfer
address, and word/byte count. The triplet words are the
words to be loaded into Registers 21, 22, and 23, respec-
tively. A quadruplet is of the form: DMA control word,
I/O-card control word, transfer address, and word/byte
count. Bit 8 of the DMA control word (Control Word 1)
determines whether a triplet or quadruplet is loaded. (A
quadruplet is used only when the I/O-card control word
must be changed; refer to the interface card manuals for
detailed information.) As each register is loaded, the con-
tents of Register 20 are incremented, leaving it pointing to
the memory location to be loaded into the next register.

DMA self-configuration can be chained to enable consecu-
tive DMA transfers via the same I/O card with a minimum
of interrupts. If bit 15 of Control Word 1 in a triplet (or
quadruplet) is a logic 1, the DMA registers will be loaded
with the next triplet or quadruplet in memory (as pointed
to by Register 20) upon completion of the current DMA
block transfer. When bit 15 (and bit 11) is a logic 0, the
current DMA block transfer is followed by a completion
interrupt.

7-5

Input/Output System A900

15 14 13 12 11 10 9 8 7 6 5 4 0

CONT| DVCMD | BYTE | RES | CINT [REM | FOUR | AUTO IN Various | ADDR EXT BUS

CONT (Continue), bit 15.
Bit 15 = 1: Enable a DMA re-configuration upon completion of a self-configured DMA transfer.
Bit 15 = 0: Stop DMA after current transfer.

DVCMD (Device Command), bit 14.
Bit 14 = 1: Issue a Device Command signal for each data element transferred.
Bit 14 = 0: No Device Command signal issued.

BYTE (Byte/word transfer), bit 13.
Bit 13 = 1. Conduct DMA transfer in byte mode.
Bit 13 = 0; Conduct DMA transfer in word mode.

RES (Residue), bit 12.
Bit 12
Bit 12

1. Write word/byte count back into memory.

0: Word/byte count is not written.

CINT (Completion Interrupt), bit 11.
Bit 11 = 1: Inhibit DMA completion interrupt.
Bit 11 = 0: Request completion interrupt when word/byte count goes from —1 to 0 and bit 15 equals 0.

REM (Remote), bit 10.
Bit 10 = 1: Enable remote (non-standard) memory for DMA transfer.
Bit 10 = 0: Rernote memory not enabled.

FOUR (Fetch four control words), bit 9.

Bit 9 =1: Causes DMA self-configuration to fetch four control words; i.e., three DMA control words and one 1/O card
control word.

Bit 9 =0: Fetch three control words for DMA seif-configuration.

AUTO (Automatic), bit 8. This bit is read only during self-configured DMA.

Bit 8 = 1: Initiate first data transfer once DMA is configured to output, without waiting for an SRQ. For input transfers,
enable a Device Command signal after the last data element is transferred.

Bit 8 =0: Foroutput transfers, wait for a Service Request (SRQ) signal before performing the first transfer. For input
transfers, the last data element is not followed by a Device Command.

IN (Transfer In), bit 7.
Bit 7 = 1. Perform DMA transfer from I/O device to memory.
Bit 7 =0: Perform DMA transfer from memory to /O device.

Various, bits 5 and 6, User definable.

ADDR EXT BUS, bits 4-0
These five bits allow DMA accesses to physical memory by referencing one map set of 32 registers each.

8200-53
Figure 7-5. General Bit Definitions for Control Word 1

7-6

A900

7-15. DMA DATA TRANSFER

Figure 7-6 illustrates, in general, the sequence of oper-
ations for a DMA input data transfer (the minor differ-
ences for an output transfer are explained in text). Note
that the Global Register has been enabled and loaded with
the I/O card select code.

The initialization routine sets up the DMA control regis-
ters on the I/O card (1) and issues the start command (STC
21,C) to the DMA Control Bit (Control 21). (If the opera-
tion is an output, the I/O card buffer is also loaded at this
time.) The DMA logic is now turned on and the computer
program continues with other instructions.

Setting the DMA Control bit (2) causes the I/O card to
send a Start signal (with a data word if it is an output
transfer) to the external device (3). The device goes
through a read or write cycle and returns a Done signal
(with a data word if it is an input transfer). The Done
signal (4) requests the DMA logic (5) to transfer a word
into (or out of) cache memory (6). The process now loops
back to step 3 to transfer the next word.

NOTE

Whenever a requested address is not al-
ready in cache memory, either for data
input or output, it is transferred from
main memory to cache.

Input/Output System

After the specified number of words has been transferred,
the DMA logic generates a completion interrupt (7). The
program control is now forced to a completion routine (8),
the content of which is the programmer’s responsibility.

For more detailed information on DMA, refer to the /'O
interfacing guide, part no. 02103-90005.

7-16. NON-DMA DATA TRANSFER

The following paragraphs describe how data is transferred
between memory and input/output devices without using
DMA. The sequences presented are simplified in order to
present an overall view without the involvement of
software operating systems or device drivers.

7-17. INPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-7 illustrates the sequence of events required to
input data using the interrupt method. Note that some
operations are under control of the computer program
(programmer responsibility) and some of the operations
are automatic. Note also that the Global Register has been
loaded and enabled and the I/O card control register has
been loaded.

INTERFACE CARD

COMPUTER
PROGRAM

INITIALIZATIOMH
ROUTINE

‘INTERRUPT

2]

‘ SET CONTROL P77/, INPUT
77777 « DEVICE
. DMA
°
° LOGIC START
°
.

7 LTI IS DONE

0 .9 °

BUFFER DATA

COMPLETION

ROUTINE ; 6
MAIN @m CACHE
MEMORY MEMORY

EEEJp PROGRAMMER'S RESPONSIBILITY

EZZ7> AUTOMATIC OPERATIONS

8200-144

Figure 7-6. DMA Input Data Transfer

7-7

Input/Output System

The operations begin (1) with the programmed instruction
STC 30,C which sets the Control bit (Control 30) and
clears the Flag bit (Flag 30) on the I/O card. Since the next
few operations are under control of the hardware, the
computer program may continue the execution of other
instructions. Setting the Control bit causes the card to
output a Start signal (2) to the device, which reads out a
data character and asserts the Done signal (3).

The device Done signal sets the Flag bit, which in turn
generates an interrupt 1) provided that the interrupt
conditions are met; i.e., the interrupt system must be on
(STF 00 previously given'. no higher priority interrupt is
pending, and the Control bit is set (done in step 1).

The interrupt causes the current computer program to be
suspended and control is transferred to a service sub-
routine (5). It is the programmer’s responsibility to pro-
vide the linkage between the interrupt location (which
agrees with the select code) and the service subroutine. It
is also the programmer’s responsibility to include in his
service subroutine the instructions for processing the data
(loading into an accumulator, manipulating if necessary,
and storing into memory).

The subroutine may then issue further STC 30,C instruc-
tions to transfer additional data characters. One of the
final instructions in the service subroutine must be CLC
30,C. This step (6) restores the interrupt capability to
lower priority devices and returns the I/O card to its static
“reset” condition (Control clear and Flag clear). This con-

A900

dition is initially established by the computer at power
turn-on and it is the programmer’s responsibility to return
the I/O card to the same condition on the completion of
each data transfer operation. At the end of the subroutine,
control is returned to the interrupted program via previ-
ously established linkages.

7-18. OUTPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-8 illustrates the sequence of events required to
output data using the interrupt method. Again note the
distinction between programmed and automatic opera-
tions. Note also that the Global Register has been loaded
and enabled and that the I/O card’s control register has
been loaded. It is assumec. that the data to be transferred
has been loaded into the A-register and is in a form suita-
ble for output.

The output operation begins with a programmed instruc-
tion (OTA 30) to transfer the contents of the A-register to
the I/O card buffer (1). This is followed (2) by the instruc-
tion STC 30,C which sets the Control bit (Control 30) and
clears the Flag bit (Flag 30) on the I/O card. Since the next
few operations are under control of the hardware, the
computer program may continue the execution of other
instructions. Setting the Control bit causes the card to
output the buffered data and a Start signal (3) to the
device, which writes (e.g., records, stores, etc.) the data
character and asserts the Done signal (4).

INPUT TRANSFER

COMPUTER
PROGRAM o INTERFACE CARD
INPUT
SET CONTROL
STC 20, h
° 0.C CLEAR FLAG DEVICE
. (2]
® > START
) (4)
INTERRUPT k777777 777777] SET FLAG 7] DONE

CLEAR CONTROL

a BUFFER DATA

SERVICE 6

SUBROUTINE

sl FROGRAMMER'S RESPONSIBILITY
FZZ2> AUTOMATIC OPERATIONS

8200-41

Figure 7-7. [nput Data Transfer (Interrupt Method)

7-8

A900

The device Done signal sets the card’s Flag bit, which in
turn generates an interrupt (5) provided that the interrupt
system is on, priority is high, and the Control bit is set
(done in step 2). The interrupt causes the current com-
puter program to be suspended and control is transferred
to a service subroutine (6). It is the programmer’s respon-
sibility to provide the linkage between the interrupt loca-
tion (which agrees with the select code) and the service
subroutine. The detailed contents of the subroutine are
also the programmer’s responsibility and the contents will
vary with the type of device.

The subroutine may then output further data to the I/O
card and reissue the STC 30,C command for additional
data character transfers. One of the final instructions in
the service subroutine must be a clear control (CLC 30,C).
This step (7) allows lower priority devices to interrupt and
restores the [/O card to its static “reset” condition (Control
clear and Flag clear). At the end of the subroutine, control
is returned to the interrupted program via the previously
established linkages.

7-19. NON-INTERRUPT DATA TRANSFER

It is also possible to transfer data without using the inter-
rupt system. This involves a “wait-for-flag” method in
which the computer commands the device to operate and
then waits for the completion response. In using this
method to transfer data, computer time is relatively un-
important. It is assumed that the interrupt system is

Input/Output System

turned off (STF 00 not previously given). It is also as-
sumed that the Global Register has been loaded and
enabled and that the I/O card’s control register has been
loaded. As shown in Table 7-1, the programming is very
simple; each of the routines will transfer one word or
character of data.

Table 7-1. Noninterrupt Transfer Routines

INSTRUCTIONS COMMENTS
INPUT ROUTINE

STC 30,C Start device

SFS 30 Is input ready?

JMP #-1 No, repeat previous instruction
LIA 30 Yes, load input into A-register

OUTPUT ROUTINE

0TB 30 Output data to I/O card's data register
STC 30,C Start device

SFS 30 Has device accepted the data?
JMP -1 No, repeat previous instruction
NOP Yes, proceed

OUTPUT TRANSFER

INTERFACE CARD

COMPUTER
PROGRAM
DATA OUTPUT
BUFFER
OTA 30 DEVICE
STC 30,C
. (3)
[]
SET CONTROL
° CLEAR FLAG START
[)
INTERRUPT k7777777 77777) SET A RZLZZZZZZZZZZ) DONE
@ CLEAR CONTROL
SERVICE
SUBROUTINE mm)) PROGRAMMER'S RESPONSIBILITY

UZ72> AUTOMATIC OPERATIONS

8200-42

Figure 7-8. Output Data Transfer {Interrupt Method)

7-9

Input/Output System

7-20. INPUT. As described in paragraph 7-17, an
STC 30,C instruction begins the operation by commanding
the device to read one word or character. The computer
then goes into a waiting loop, repeatedly checking the
status of the Flag bit (Flag 30). If the Flag bit is not set,
the JMP *—1 instruction causes a jump back to the SFS
instruction. (The *—1 operand is assembler notation for
“this location minus one.”) When the Flag bit is set, the
skip condition for SFS is met and the JMP instruction is
skipped. The computer thus exits from the waiting loop
and the LIA 30 instruction loads the device input data into
the A-register.

7-21. OUTPUT. The first step, which transfers the
data to the /O card buffer, is the OTA 30 instruction.
Then STC 30,C commands the device to operate and accept
the data. The computer then goes into a waiting loop as
described in the preceding paragraph. When the Flag bit
becomes set, indicating that the device has accepted the
output data, the computer exits from the loop. (The final
NOP is for illustration purposes only.)

722, DIAGNOSE 8O DES

A diagnose mode allows the /O cards to be accessed for
diagnostic or test purposes. A diagnose mode is estab-
lished when an OTA/B 2 instruction (output to the Global
Register) is executed with the A- or B-register value equal
to one through seven. (The diagnose mode is terminated
when an OTA/B 2 instruction is executed with the A- or
B-register equal to zero.) When establishing a diagnose
mode the current contents of the Global Register (GR) is
not altered. The diagnose mode can be on an individual 'O
card or on all I/O cards. If the GR is disabled then all /O
cards accept the diagnose mode. If the GR is enabled, only
the I/O card whose select code is in the GR will accept the
diagnose mode. Diagnose Mode 7 is used to disable any
service request (SRQ) signal coming into the I/O chip
which may cause DMA to cycle during a test. (Mode 7 can
be disabled only by a CRS signal (CLC 0).) Diagnose
Modes 4 through 6 are reserved for future definition.
Diagnose Modes 1 through 3 are described in the following
paragraphs.

7-23. DIAGNOSE MODE 1

When an OTA/B 2 instruction is executed with the A- or
B-register equal to one each I/0 card responds by turning
off priority to the next I/O card. When the instruction is
complete the only /O card receiving priority will be the
highest priority I/O card (i.e., the one directly next to the
processor card. When a subsequent LIA/B 2 instruction is
executed, the IO card receiving priority sets the A- or
B-register equal to its select code and identification data
(ID) and passes priority to the next I/O card. Having
responded once it will not respond again unless Mode 1 is
established again. The next LIA/B 2 executed sets the A-
or B-register equal to the second I/O card’s select code and
ID. The second I/O card at completion of the instruction

7-10

A900

passes priority to the next I/O card. This process continues
until the last /O card responds. After the last I/O card
responds the next LIA/B 2 will not affect the A- or
B-register and therefore can be detected as a no response.
(An OTA/B 2 with the A- or B-register equal to O ter-
minates this sequence.)

Mode 1 can also be used to retrieve the select code and ID
of a desired I/O card without going through the priority
process. This is accomplished by establishing Mode 1 and
then executing an LIA/B xx, where xx is the [/O card select
code. This procedure will not modify a priority sequence
already in process. The Mode 1 select code and ID format is
shown in Table 7-2.

Table 7-2. Diagnose Mode 1

A/B BITS MEANING

15 Intelligent interface

14
13
1? Interface card type identification number
10

9

~

Interface card revision code

5 Interface card select code

7-24. DIAGNOSE MODE 2

Diagnose Mode 2 causes an I/O card to respond to an
LIA/B 2 instruction in the same manner as in Mode 1
except that the data set into the A- or B-register is as
shown in Table 7-3.

7-25. DIAGNOSE MODE 3

Diagnose Mode 3 allows an I/O chip to do a DMA transfer
without affecting the I/O card. When Mode 3 is entered the
I/O chip does a DMA input transfer of the data in the
configuration address register to the location in memory
pointed to by the DMA address register. The configuration
address register is incremented after each transfer so that
the data can be verified. The transfer continues until the
DMA count is incremented to zero. Mode 3 also prevents
any STC instructions from generating a device command
to the I/O card.

A900

Table 7-3. Diagnose Mode 2

A/B BITS MEANING
15
14 Always zero
13
12 1 = Break feature is enabled
1 1 = Receiving interrupt priority
10 Always zero
9 Control bit
8 Flag bit
7 1 = Global register equals select code of interface card
6 Gilobal register enabled/disabled
5
4
g Current global register value
1
0

Input/Output System

7-11/7-12

MICROPROGRAMMING

SECTION

Vil

This section contains an introductory discussion of the
A900 computer microprogramming techniques and de-
velopment. For additional information, refer to the HP
92049A Microprogramming Package Referznce Manual,
part no. 92049-90001.

38-1. THE MICROPROGRAMMI:D
COMPUTER

The control section of a computer is the portion of the
computer that directs and controls the other sections; i.e.,
the memory section, input-output section, and the
arithmetic-logic section. In totally hardwired computers,
the control section logic is normally “spread out” physi-
cally throughout the computer. This design approach
makes it impossible to enhance the computer’s instruction
set without redesign. In contrast, A900 computers have a
fully microprogrammed control section, which means that
the sequence in which the control functions are performed
are made programmable through the use of a technique
called microprogramming.

The action taken when any one of the A900 base set of 292
assembly language instructions is executed is determined
by a microprogram associated with the assembly language
instruction (these microprograms reside in a special
memory called control store); the control section oversees
the translation and controls the execution of the
microprogram. With this design approach, instruction set
enhancements can be made by changing or adding to the
set of microprograms that control the machine’s execution.
Many computers are microprogrammed; however,
Hewlett-Packard has taken the concept one step further to
offer the power of microprogramming to the user.

8-2. THE MICROPROGRAMMABLE
COMPUTER

A900 computer users can more fully take advantage of the
computer’s power by utilizing microprogramming. The
microprogrammer has more instructions, a more flexible
word format, more registers, and faster execution times to
work with than does the assembly language programmer.
The microinstruction word length is 48 bits which enables
concurrent operations to be performed in a single in-
struction. Microprogrammers can access 10 scratch pad
registers in addition to those available to the assembly
language programmer and have up to 32,768 48-bit words
of memory (termed control store) in which to store
microprograms. Up to 14 levels of nested subroutines are
possible in A900 computers. The microprogrammer works
in a much faster environment than does the assembly

language programmer for two reasons. One, since
microinstructions have access to most of the internal parts
of the computer’s architecture, fewer memory fetches are
required to accomplish most tasks. Two, the
microinstruction execution time of 250 nanoseconds is
much faster than the typical assembly instruction
execution time of 1 to 2 microseconds.

These capabilities are easily taken advantage of by A900
computer users through the extensive support provided by
Hewlett-Packard. Some of the more important benefits of
Hewlett-Packard’s microprogramming are given in the
following paragraphs.

8-3. CUSTOMIZED INSTRUCTIONS

Through the use of microprogramming, the computer’s
assembly language instruction set can be expanded with
instructions tailored for specific applications. By adding
special purpose instruction sets, the general purpose
computer can be uniquely adapted for a certain job and
thus become very efficient at that job. Applications that
may be profitably microcoded include arithmetic calcu-
lations. I/O device driver programs, and sorts and table
searches.

Microprogramming is very similar to assembly language
programming, although it is more powerful in many ways.
Some knowledge of the internal structure of the computer
is required, but once this knowledge is attained, the in-
creased power and flexibility of microprogramming can
ease the solution of many programming tasks.
Microprograms are easily callable by assembly or higher
level language programs.

8-4. SYSTEM SPEED

Microprogramming often-used routines will typically
decrease program execution time by factors of two to ten
and sometimes by as much as twenty or more. Software
routines can be made to execute at the hardware speeds of
the microprogram environment and the additional reg-
isters available to the microprogrammer can serve to
eliminate many time-consuming memory fetches.

8-5. MEMORY SPACE AND SECURITY

By converting software routines into microprograms,
space in main memory that would normally be required
for time-critical routines can be freed for other uses. The
routines remain instantly callable, as opposed to routines

8-1

Microprogramming

stored in a peripheral device. Microprograms are also less
accessible than conventional software which affords a
higher degree of security to microcoded routines.

Developing microprograms is similar to developing Pascal
language programs and is done with the aid of the HP
paraphraser (MPARA). Since the user will not normally
want to microcode all of a certain program, some analysis
is required to determine which segments of the assembly
language program can be most profitably converted to
microcode. By substituting this section of code with a
microprogrammed subroutine that is callable by the
assembly or higher leve] program, overall execution time
is reduced.

Once the microprogrammer has determined what segment
to implement in microcode, the microprogram is developed
as shown in Figure 8-1. The paraphraser program (in
main memory) is used to assemble the source
microprogram into an object program. Then, the object
microprogram is loaded into writable control store (WCS).

When the microprogram is fully checked out, that user
may choose to have his program reside permanently in
programmable read-only memory (PROM) or in WCS
where it may be altered programmatically. Implementa-
tion in ROM is accomplished by programming the PROMs
with a PROM writer and installing the programmed
PROMs in the computer. The mask tapes shown in Figure
8-1 are required by the PROM writer and are generated by
the software at the user’s command. ROM-resident
microprograms are permanent and do not have to be
reloaded each time the computer is powered up; this
implementation also prevents users from erroneously
destroying the microprogram. The user who does not
require such permanence for microprogram storage may
execute his microcode from WCS. Microprograms used in
this manner may be loaded with the WCS /O utility
routine and may be altered under program control to suit
a variety of users. User-written microprograms are easily
accessed by assembly or higher level programs. Once the
microprogram is developed and loaded into control store, it
may be called in a very similar manner to a software
subroutine.

Hewlett-Packard provides a comprehensive set of
hardware manuals, software manuals, and training
courses to make user microprogramming easy to learn and
implement. For permanent implementation of
microprograms, PROMs may be installed in the HP

8-2

A900

12205A Control Store Card. Up to 2,048 48-bit words of
control store in the form of 2K PROMSs may be installed in
the optional Control Store Card which occupies a slot in
the card cage of the compuzer mainframe.

The 4K writable control store (WCS) of the HP 12205A
Card provides read-write control store which can be used
for the development and execution of user-supplied
microprograms. Microprograms in WCS are executed at
the same speed as those in the read-only control store. The
WCS contains 4,096 48-bit locations of random-access-
memory (RAM), including all necessary address and
read/write circuits. WCS can be written into or read under
computer control using standard input/output instruc-
tions. An I/O utility program makes it possible for
FORTRAN and Pascal programs to write into or read from
a WCS module using a conventional program call. The
WCS is read at full speed by way of a frontplane connect-
ing it to the control section of the processor.

Available microprogramming software includes the
paraphraser as well as a diagnostic, driver program, and
I/O utility program for use with the writable control store
module. These software aids operate under the Hewlett-
Packard Real Time Executive (RTE) operating systems.

A course is offered at HP facilities in Cupertino, California
for customer training. Requiring a knowledge of HP 1000
assembly language as a prerequisite, the course features
in-depth coverage of microprogram development and
implementation, and provides hands-on experience for the
microprogrammer. The A900 microprogrammer may also
take advantage of other user-written microprograms via
the HP Contributed Library.

e ST s g MUV
Information on directly microprogramming the Floating
Point Processor (FPP) is given in the HP 92049A
Microprogramming Package Reference Manual, part no.
92049-90001.

[I

Microprogramming is a very powerful tocl that gives the
user many advantages in terms of speed, flexibility, and
program security. Microprogramming does have its
limitations however, and the potential user should
examine very closely the extent of support provided by the
computer manufacturer. Hewlett-Packard has by far sold
and supported the greatest number of microprogrammable
computers in the world, and provides world-wide customer
support. Customer training courses and documentation
have been refined from years of customer-contributed
feedback and actual implernentation is made easy through
extensive software support packages and inexpensive
hardware tools.

A900 Microprogramming

ACTIVITY PROFILE
GENERATION
PROGRAM

USER
MICROPROGRAMMING
REQUIREMENT

l~ T

RUN PROGRAM

ANALYSIS COMPUTER

STUDY RESULTS
AND/OR
PLAN MICROPROGRAM

CONTROL
MEMORY

I

ASSIGN ASSEMBLY
LANGUAGE
INSTRUCTION CODE
TO DETERMINE
ACCESS POINT

I

WRITE THE
MICROPROGRAM PREPARE AND

INPUT SOURCE
IN PARAPHASER e
LANGUAGE

EDIT/1000)

MICROASSEMBLE

} DiSC
~

STORE
ON DISC

MICROPROGRAM
LISTING

WLOAD
PROM
Burn
Function

OBJECT GODE ON & . 23
DISC FILE (OR TO =" OUTPUT
OUTPUT DEVICE) DATA CARTRIDGE
' @ TAPE (OR OTHER
NEW (EDITED
NTERM PERFORM DEVICE)

EDITING AND
CHECKOUT

DISC FILE

WRITE USING WCS,
(READ) PARAPHASER
IN WCS w/\-NF"TABLE AND EDIT/1000 PROMS INSTALLED
CONTROL ON CS CARD
_== & |SToRE -
= = (WCS; =2
= R =

MICROPROGRAM
EXECUTION

WRITE CALL
MICROPROGRAM

WCS 10
uTILITY
ROUTINE
(WLOAD)

USER PROGRAMS
IN MAIN MEMORY

8200-8A
Figure 8-1. Microprogramming Implementation Process

§-3/8-4

M AppenDiX

A

A-1/A-2

A900

CHARACTER CODES

Appendix

ASCHl First Character Second Character ASCIH First Character Second Character
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivatent
A 040400 000101 ACK 003000 000006
B 041000 000102 BEL 003400 000007
C 041400 000103 BS 004000 000010
D 042000 000104 HT 004400 000011
E 042400 000105 LF 005000 000012
F 043000 000106 vT 005400 000013
G 043400 000107 FF 006000 000014
H 044000 000110 CR 006400 000015
1 044400 000111 SO 007000 000016
J 045000 000112 St 007400 000017
K 045400 000113 DLE 010000 000020
L 046000 000114 DC1 010400 000021
M 046400 000115 DC2 011000 000022
N 047000 000116 DC3 011400 000023
o 047400 000117 DC4 012000 000024
P 050000 000120 NAK 012400 000025
Q 050400 000121 SYN 013000 000026
R 051000 000122 ETB 013400 000027
S 051400 000123 CAN 014000 000030
T 052000 000124 EM 014400 000031
U 052400 000125 suB 015000 000032
\Y 053000 000126 ESC 015400 000033
w 053400 000127 FS 016000 000034
X 054000 000130 GS 016400 000035
Y 054400 000131 RS 017000 000036
Zz 055000 000132 us 017400 000037
SPACE 020000 000040
a 060400 000141 ! 020400 000041
b 061000 000142 o 021000 000042
c 061400 000143 # 021400 000043
d 062000 000144 $ 022000 000044
e 062400 000145 % 022400 000045
f 063000 000146 & 023000 000046
g 063400 000147 ' 023400 000047
h 064000 000150 (024000 000050
i 064400 000151) 024400 000051
i 065000 000152 * 025000 000052
k 065400 000153 + 025400 000083
i 066000 000154 . 026000 000054
m 066400 000155 - 026400 000055
n 067000 000156 . 027000 000056
o 067400 000157 / 027400 000057
p 070000 000160 : 035000 000072
q 070400 000161 ; 035400 000073
r 071000 000162 < 036000 000074
s 071400 000163 = 036400 000075
t 072000 000164 > 037000 000076
u 072400 000165 ? 037400 000077
v 073000 000166 @ 040000 000100
w 073400 000167 (055400 000133
x 074000 000170 \ 056000 000134
Y 074400 000171] 056400 000135
z 075000 000172 A 057000 000136
- 057400 000137
0 030000 000060 (' 060000 000140
1 030400 000061 075400 000173
2 031000 000062 ! 076000 000174
3 031400 000063 } 076400 000175
4 032000 000064 ~ 077000 000176
5 032400 000065 DEL 077400 000177
6 033000 000066
7 033400 000067
8 034000 000070
9 034400 000071
First Character Second Character
NUL 000000 000000 AL
SOH 000400 000001
STX 001000 000002 F \
ETX 001400 000003 L L 4
EOT 002000 000004
ENQ 002400 000005 [15[14]13]12]11]10] 0] 8| 7]6]s][a [3]2]1]0]

Appendix A900
OCTAL ARITHMETIC
ADDITION
TABLE EXAMPLE
001 02 03 04 05 06 07 Add: 3677 OCTAL
+ 1331 OCTAL
1(02 03 04 05 06 07 10 —_—
(111-) CARRIES
2|03 04 05 06 07 10 11 -
3|04 05 06 07 10 11 12 5230 OCTAL
4105 06 07 10 11 12 13
5(06 07 10 11 12 13 14
6107 10 11 12 13 14 15
7110 11 12 13 14 15 16
MULTIPLICATION
TABLE EXAMPLE
1102 03 04 05 06 07 Multiply: 657 OCTAL
x 54 OCTAL
2(04 06 10 12 14 16 E—
3|06 11 14 17 22 25 —“—\4?5;4
4 (10 14 20 24 30 34 -
5112 17 24 31 36 43 Y W
6|14 22 30 36 44 52
(Reminder: add in octal)
7116 26 34 43 52 61
COMPLEMENT
To find the two’s complement form of an octal number. (Same procedure whether converting from positive 1o negative
or negative to positive.)
RULE EXAMPLE
1. Subtract from the maximum Two's complement of 556,
representable octal value.
177777
2. Add one. - 000556
177221
_1
1772224
8200-43

A-4

A900 Appendix
OCTAL/DECIMAL CONVERSIONS
OCTAL TO DECIMAL -
TABLE OCTAL DECIMAL EXAMPLE
o 7 07 Convert 463, to a decimal integer.
10-17 815
2027 1623 400, = 256,
30-37 24-31%
4047 32-39 60, = 48,
50-57 4047 - 3
60-67 4855 8 = _3e
10-77 5663 307 decimal
100 64
200 128
400 256
1000 512
2000 1024
4000 2048
10000 4096
20000 8192
40000 16384
77777 32767
DECIMAL TO OCTAL
TABLE DECIMAL OCTAL EXAMPLE
1 1 Convert 5229,, to an octal integer.
10 12
20 2 5000,, = 11610,
40 50
100 144 2004, = 310,
1000 1750 9, = 11,
2000 3720
5000 11610 12155,
10000 23420
20000 47040 (Reminder: add in octal)
32767 77777
NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL
TABLE DECIMAL 2's COMP EXAMPLE
-1 177777 Convert —629,, to two's complement octal.
-10 177766
-20 177754 ~500,, = 177014,
-40 177730 =100,y = 177634,
-100 177634
-200 177470 —20,0 = 177754, (Add in octal)
-500 177014 =
-1000 176030 =S = 177767,
«2000 174060 176613,
-5000 166170
- 10000 154360
-20000 130740
-32768 100000
For reverse conversion {two's complement octal to negative decimal):
1. Complement, using procedure on facing page.
2. Convert to decimal, using OCTAL TO DECIMAL table.

A-5

Appendix A900
MATHEMATICAL EQUIVALENTS
2 + 7 iN DECIMAL
27 " e 65 536 16 0.00001 52587 89062 5
1 0 1.0 131 072 17 0.00000 76293 94531 25
2 1 0.5
4 2 0.25 262 144 18 0.00000 38145 97265 625
524 288 19 0.00000 19073 48632 8125
8 3 0.125 1 048 576 20 0.00000 09535 74316 40625
16 4 0.0625
32 5 0.03125 2 097 152 21 0.00000 04768 37158 20312 5
4 194 304 22 0.00000 02384 18579 10156 25
64 6 0.01562 5 8 388 608 23 0.00000 01192 09289 55078 125
128 7 0.00781 25
256 . 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 0625
33 554 432 25 0.00000 00298 02322 38769 53125
512 9 0.00195 3125 67 108 864 26 0.00000 00149 01161 19384 76562 5
1 024 10 0.00097 65625
2 048 1 0.00048 82812 5 134 217 728 27 0.00000 00074 50580 59692 38281 25
268 435 456 28 0.00000 00037 25290 29846 19140 625
4 096 12 0.00024 41406 25 536 870 912 .2 0.00000 00018 62645 14923 09570 3125
8 192 13 0.00012 20703 125)
16 384 14 0.00006 10351 5625 073 741 824 30 0.00000 00009 31322 57461 54785 15625
2 147 483 648 3 0.00000 00004 65661 28730 77392 67812 5
32 768 15 0.00003 05175 78125 4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25
10 = 7 IN OCTAL
107 g 1077 107 n 107"
1 0 1000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32
1750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11
303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3641 100 6 0000 000 206 157 364 055 37 434 157 115 760 200 000 1€ 0.000 000 000 000 000 001 63
46 113 200 7 0000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 OO0 000 00C 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 1& 0.000 000 000 000 000 000 O1
7 346 545 000 9 0000 000 000 104 560 276 41
8200-45

A-6

A900 Appendix

MATHEMATICAL EQUIVALENTS

2% IN DECIMAL
x 2% x 2% x 2%
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 01 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 03 1.23114 44133 44916
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 04 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 05 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 1247
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 09 1.86606 59830 73615

n n 10g402 n log, 10 n n logye 2 n log, 10
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
3 0,90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.23771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 3321928 09489
MATHEMATICAL CONSTANTS IN OCTAL SCALE
m = (3.11037 552421) g, e = (2.55760 521305)g, Y = (0.44742 147707) (g,
m=1 = (0.24276 301556) g, e”! = (0.27426 530661) g in7y = -(0.43127 233602)g,
/T = (1.61337 611067)g, V& = (151411 230704)g, log, ¥ = -10.62573 030645)g,
Inm = (1.11206 404435)g, logw € = (0.33626 75425”(8) ﬁ= (1.32404 746320l(8,
log, ™ = (1.51544 163223) (g, log; € = (1.34252 166245} g, In2 = (0.54271 027760)g,
/10= (3.12305 407267} g, log, 10 = (3.24464 74”36)(8) In10 = (2.23273 067355} g)

8200-46

A-T

Appendix A900
OCTAL COMBINING TABLES
MEMORY REFERENCE INSTRUCTIONS
INDIRECT ADDRESSING
Refer tc octal instruction codes given on the following page.
To combine code for indirect addressing, merge 100000 with octal instruction code.
REGISTER REFERENCE INSTRUCTIONS
SHIFT-ROTATE GROUP (SRG) ALTER-SKIP GROUP (ASG)
1. select to operate A or B. 1. select to operate on A or B.
2. select 1 to 4 instructions, not more than one 2. select 1 to 8 instructions, not more than one
from each column from each column.
3. combine octal codes (leading zeros omitted) 3. combine octal codes (leading zeros omitted)
by inclusive or by inclusive or.
4. order of execution is from column 1 to column 4. 4. order of execution is from column 1 to column 8.
A OPERATIONS A OPERATIONS
1 2 3 4 1 2 3 4
ALS (1000} CLE (40) SLA (10) ALS (20) CLA (2400) SEZ (2040) CLE (2100) SSA (2020)
ARS (1100} ARS (21) CMA (3000) CME (2200)
RAL (1200) RAL (22) CCA (3400) CCE (2300}
RAR (1300) RAR (23)
ALR (1400} ALR (24) 5 6 7 8
ERA (1500) ERA (25) SLA (2010) INA (2004) SZA {2002) RSS (2001)
ELA (1600) ELA (26)
ALF (1700) ALF (27)
B OPERATIONS B OPERATIONS
1 2 3 4 1 2 3 4
BLS (5000) CLE (4040) SLB (4010) BLS (4020) CLB (6400) SEZ (6040) CLE (6100) SSB (6020)
BRS (5100) BRS (4021) CMB (7000) CME (6200)
RBL (5200) RBL (4022) CCB (7400) CCE (6300)
RBR (5300) RBR (4023)
BLR (5400) BLR (4024) 5 6 7 8
ERB (5500) ERB (4025) SLB (6010) INB (6004) SZB (6002} RSS (6001)
ELB (5600) ELB (4026)
BLF (5700) BLF (4027)
INPUT/OUTPUT INSTRUCTIONS
CLEAR FLAG
Refer to octal instruction codes given on the following page.
To clear flag after execution {instead of holding flag), merge "“001000°* with octal instruction code.
8200-47

A-8

A900

INSTRUCTION CODES IN OCTAL

Appendix

Memory Reference
ADA 04(0XX)—
ADB 04(1XX)—
AND 01(0XX)—
CPA 05(0XX)—
CPB 05(1XX)—
IOR 03(0XX)—
1SZ 03(1XX)—
JMP 02(1XX)—
JsB 01(1XX)—
LDA 06(0XX)—
LDB 06(1XX)—
STA 07(0XX)—
STB 07(1XX)—
XOR 02(0XX)—
Binary
Shift-Rotate
ALF 001700
ALR 001400
ALS 001000
ARS 001100
BLF 005700
BLR 005400
BLS 005000
BRS 005100
CLE 000040
ELA 001600
ELB 005600
ERA 001500
ERB 005500
NOP 000000
RAL 001200
RAR 001300
RBL 005200
RBR 005300
SLA 000010
SLB 004010
Alter-Skip
CCA 003400
CCB 007400

Extended Arithmetic ,

ASL
ASR
Div
JLA

CCE 002300
CLA 002400
cLB 006400
CLE 002100
CMA 003000
CMB 007000
CME 002200
INA 002004
INB 006004
RSS 002001
SEZ 002040
SLA 002010
SLB 006010
8SA 002020
8sB 006020
SZA 002002
$zB 006002
input/Output

CLC 1067
CLF 1031
.CLO 103101
HLT 1020—-
LIA 1025
LiB 1065—
MIA 1024
MiB 1064—
OTA 1026
oTB 1066
SFC 1022
SFS 1023~
SOC 102201
SOSs 102301
STC 1027
STF 1021 -
STO 102101

1000(01X)—
1010(01X)—
100400
100600

DLD 104200
DST 104400
JLB 104600
LSL 1000(10X)—
LSR 1010(10X)~
MPY 100200
RRL 1001(00X)—
RRR 1011(00X)—
Binary

Ext. Inst. Group
ADX 105746
ADY 105756
CAX 101741
CAY 101751
CBS 105774
CBT 105766
cBX 105741
CBY 105751
CMW 105776
CXA 101744
CXB 105744
CYA 101754
cYB 105754
DSX 105761
DSY 105771
18X 105760
ISY 105770
JLY 105762
JPY 105772
LAX 101742
LAY 101752
LBT - 105763
LBX 1058742
LBY 105752
LDX 105745
LDY 105755
MBT 105765
MVW 105777
SAX 101740
SAY 101750
SBS 105773

SBT 105764
SBX 105740
SBY 105750
SFB 105767
STX 105743
STY 105753
TBS 105775
XAX 101747
XAY 101757
XBX 105747
XBY 105757
Floating Point
FAD 105000
FDV 105060
FiX 105100
FLT 105120
FMP 105040
FSB 105020

.FIXD 106104
.FLTD 105124

.TADD 105002
JDIV 105062
TFTD 105122
TFXD 105106
TFXS 105102
.TMPY 105042
.TsuB 105022

Language Inst. Set

.BLE 105207
.CFER

: 105231
DFER 105205
CPM 105236
ENTC 105235
ENTN 105234
ENTP 105224
ENTR 105223

..FCM 105232
NGL 105214
SETP 106227
.TCM 105233

.DSBR

- JRES
.LBP 105257

XFER 105220
ZFER 105237
Double Integer

.DAD 105014

~.DCO 105204

.DDE 105211
.DDI 105074
.DDIR 105134
.DDS 105213
.DIN 105210
.DIs 105212
.DNG 105203
.DMP 105054
.DsB 105034
105114

- VMA/EMA

IMAP 105250

JIRES 105244
JMAP 105252
105245

.LBPR 105256

LPX 105255
.LPXR 105254
.PMAP 105240
Oper. Syst. Set

.CPUID - 105300
.FWID 105301
.SIP 105303
WFI 105302

Scientific lsist. Set

ALOG 105322
ALOGT 105327

- ATAN 105323
/ATLG 105333
/CMRT*

105332

Appendix A900

INSTRUCTION CODES IN OCTAL (Continued)

cos 105324 VMIB 105115 DVMAX 105131 MB20 101735 XSA2 101722

DPOLY 105331 VMIN 105113 DVMIB 105135 MB21 101736 XSB1 105725

EXP 105326 VMOV 105116 DVMIN 105133 MB22 101737 XSB2 105722
FPWR 105334 VMPY 105004 DVMOV 105136 MW0OO 105727

SIN 105325 VNRM 105107 DVMPY 105024 MWO1 105730 Code and Data Sep.

SQRT 105321 VPIV 105101 DVNRM 105127 MW02 105731

TAN 105320 VSAD 105006 DVPIV 105121 MW10 105732 ADQA 101413

TANH 105330 VSDV 105011 DVSAD 105026 MW11 105733 ADQB 105413

TPWR 105335 VSMY 105010 DVSDV 105031 MW12 105734 CACQ 101407

VSSB 105007 DVSMY 105030 MW20 105735 CAZ 101411

Vector Inst. Set VSUB 105003 DVSSB 105027 MW21 105736 CBCQ 105407

VSUM 105105 DVSUB 105023 MW22 105737 CBZ 105411

VABS 105103 VSWP 105117 DVSUM 105125 SIMP 105707 CCQA 101406

VADD 105001 DVABS 105123 DVSWP 105137 STMP 105703 ccaB 105406

VDIV 105005 DVADD 105021 SPMR 105701 CIQA 101412

vDOT 105110 DVDIV 105025 Dynamic Map Syst. SWMP 105706 cias 105412

VMAB 105112 DVDOT 105130 XCA1 101726 CzA 101410

VMAX 105111 DVMAB 105132 LDMP 105702 XCA2 101723 czB 105410

- — LPMR 105700 XCB1 105726 EXIT 105417

Assuming: no indirect addressing. LWD1 105704 XCB2 105723 EXITI 105415

no combined instructions. LWD2 105705 XJMP 105710 EXIT2 105416

shifts taken in first position only. MBOO 101727 XJCQ 105711 PCALI 105400

hold flag after IO execution. MBO1 101730 XLA1 101724 PCALN 105404

* Not directly user callable. MB02 101731 XLA2 101721 PCALR 105403

Used by HP software. MB10 101732 XLB1 105724 PCALV 105402

. n MB11 101733 XLB2 105721 PCALX 105401

Refer to preceding page for octal combining tables. MB12 101734 XSA1 101725 SDSP 105405

A-10

A900 Appendix
BASE SET INSTRUCTION CODES IN BINARY

15 [14 13 12| n 10 9 |8 7 6| 5 a3 | 2 1 0
MEMORY REFERENCE INSTRUCTIONS
D/t | AND 001 0 2/C |- MEMORY ADDRESS >
D/l | XOR 010 0 Z/C
D/l | IOR 011 0 Z/C
Dn | JsB 001 1 Z/C
D/t | JMP 010 1 2/C
D/} 182 011 1 Z/C
D/t | AD” 100 AB Z/C
D/t | CP” 101 A/B 2/C
DA | LD* 110 A/B ZC
D/t | ST 111 A/B Z/C
SHIFT/ROTATE GROUP
0 000 A/B 0 D/E | LS 000 tCLE D/E tSL" | *LS 000
A/B 0 D/E | *RS 001 D/E *RS 001
A/B 0 D/E | RL 010 D/E R'L 010
A/B 0 D/E | R'R 011 D/E R'R 011
A/B 0 DE |*LR 100 D/E LR 100
AB 0 D/E | ER" 101 D/E ER" 101
A/B 0 D/E |EL 110 D/E EL* 110
A/B 0 D/E | *LF 111 D/E ‘LF 11
NOP 000 000 000 000
ALTER/SKIP GROUP
0 000 . AB 1 cL 01 CLE 01 | SEZ 8S* SL" | IN© sz RSS
- AB cM™ 10 CME 10
A/B cct 1 CCE 11
INPUT/OUTPUT GROUP
1 000 1 H/C HLT 000 - SELECT CODE =meemcemmeiipn-
1 0 STF 001
1 1 CLF 001
1 0 SFC i 010
1 0 SFS 011
A/B 1 HC MI 100
A/B 1 H/IC LI 101
AB 1 H/C OT* 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 HC SOC 010 000 001
, 1 H/C SOS 011 000 001
EXTENDED ARITHMETIC GROUP
1 000 MPY** 000 010 000 000
DIv** 000 100 000 000
JLA 000 110 000 000
bLD** 100 010 000 000
- DST* 100 100 000 000
S JLB 100 110 000 000
- ASR 001 000 0 1
: 1
s o . o
LSL 000 000 1 0 BITS
RRR 001 001 . 0 0
. RRL 000 001 0 0
FLOATING POINT INSTRUCTIONS
1 000 101 00 FAD 000 0 000
FSB 001
FMP 010
FDV 011
FIX 100
FLT 101
Notes: * = A or B, according to bit 11. tCLE: Only this bit is required.
DA, A/B, Z/C, D/E, H/C coded 0/1. $SL™: Only this bit and bit 11 (A/B as applicable) are required.
**Second word is Memory Address. 8200-56

A-11

Appendix A900
BASE SET INSTRUCTION CODES IN BINARY (Continued)
15 [14 13 12 | 11 10 9| 8 7 6 | 5 a 3] 1 0
FLOATING POINT INSTRUCTION (Continued)
1 000 101 00 .TADD 000 0 010
TSUB 001
TMPY 010
TDIV 011
TFXS 100
TETS 101
FIXD 100 100
FLTD 101
TFXD 100 110
TFTD 101
DOUBLE INTEGER INSTRUCTIONS
1 000 101 000 001 DAD 100
011 DSB 100
101 DMP 100
111 DDl 100
001 001 .DSBR 100
001 011 .DDIR 100
010 000 DNG 011
DCO 100
001 DIN 000
DDE 001
DIS 010
.0DS 011
LANGUAGE INSTRUCTION SET
1 000 101 010 0 00 DFER 101
BLE 111
01 NGL 100
10 XFER 000
ENTR 011
ENTP 100
SETP 111
11 .CFER 001
.FCM 010
.TCM ot
ENTN 100
ENTC 101
CPM 110
ZFER 111
VIRTUAL MEMORY INSTRUCTIONS
1 000 101 010 100 PMAP 000
JRES 100
JRES 101
101 IMAP 000
JMAP 010
LPXR 100
LPX 101
LBPR 110
LBP 1M
OPERATING SYSTEM INSTRUCTION SET
1 000 101 011 000 .CPUID 000
FWID 001
WFI 010
SIP 011

A-12 Update 3

A900

BASE SET INSTRUCTION CODES IN BINARY (Continued)

Appendix

15

14 13

12 | 1

10

7

4

DMS INSTRUCTIONS

1

000

S

B/wW

01

m

000

001
010

011

LPMR
SPMR
LDMP
STMP
LWD1
LWD2
SWMP
SIMP
XJMP
XL*1
X811
XC*1
XL*2
XS2
XC*2
M°00
M°01
M°02
M°10
Me11
M°12
M°20
Me21
Me22

000
001

010
0t1

100
101

110
111

000
100
101

110
001
010
oM
111
000
001
010
011
100
101

110
111

SCIENTIFIC INSTRUCTION St

ET

1

000

101

011

010

011

TAN
SQRT
ALOG
ATAN
cos
SIN
EXP
ALOGT
TANH
DPOLY
/CMRT
/ATLG
.FPWR
.TPWR

000
001
010
011
100
101

110
111

000
001
010
011

100
101

VECTOR INSTRUCTION SET

1

000

101

000

001

000

001

010

011

000

VADD
vsus
VMPY
VDIV
VSAD
VSSB
VSMY
VSDV
DVADD
bvsus
DVMPY
DVDIV
DVSAD
DvssB
DVSMY
DvsDv
VPIV
VABS
VSUM

001
011
100
101
110
11
000
001
001
o1
100
101
110
111
000
001
001
011
101

Notes: * = A (0) or B (1), according to bit 11.

° =B (0) or W (1), according to bit 11.

A-13

Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

A900

15

14

13

12 | 1

10

9 | 8

7

6| s

a 3| 2

VECTOR INSTRUCTION SET (Continued)

000

101

001

001

010

o011

VNRM
vDOT
VMAX
VMAB
VMIN
VMIB
VMOV
VSWP
DPIV
DVABS
DVSUM
DVNRM
DVDOT
DVMAX
DVMAB
DVMIN
DvMiB
DVMOV
DVSWP

i1
000
001
010
011
101
110
1"
001
o
101
11
000
001
010
011
101
110
111

CODE AND DATA SEPARATION

1

000

001

101

100

100

000

001

000

001

CCQA
CACQ
CzZA
CAZ
CIQA
ADQA
PCALI
PCALX
PCALV
PCALR
PCALN
SDSP
ccaB
CBCQ
czB
cBz
cigs
ADQB
EXIT1
EXIT2
EXIT

110
111
000
001
010
o1
000
001
010
011
100
101
110
111

001
010
o011
101
110
111

A-14

A900 Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

EXTENDED INSTRUCTION 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GROUP
SAX/SAY/SBX/SBY 1 0 0 0 |AB 0 1 1 1 1 1 0 XY 0 0 0
CAX/CAY/CBX/CBY 1 0 0 0 |AB]| O 1 1 1 1 1 0o |xy|l o o 1
LAX/LAY/LBX/LBY 1 0 0 0 |AB| O 1 1 1 1 1 0 XY 0 1 0
STX/STY 110 0 © 1 0 1 1 1 1 1 o [xy] o 1 1
CXA/ICYA/CXBICYB 1 0 0 0 |AB 0 1 1 1 1 1 0 XY 1 0 0
LDX/LDY 1 0 0 0 1 0 1 1 1 1 1 0 |XYy]| 1 0 1
ADX/ADY 1 0 0 '0 1 0 1 1 1 1 1 0 {XxY| 1 1 0
XAX/XAY/XBX/XBY 110 o0 0 |AB| 0o 1 1 1 1 1 o |xvy| 1t 1 1
ISX/ISY/DSX/DSY 1 0 0 0 1 0 1 1 1 1 1 1 XY 0 0 o
/)
JUMP INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 /// 0 1 0
JLY =0
JPY = 1
: 7 /,
BYTE INSTRUCTIONS 110 0 0 1 0 1 1 1 1 1 1 0 //
BT =0 1 1
SBT =1 0 O
MBT =1 0 1
CBT =1 1 0
SFB =1 1 1
; ; ’
SBS =0 1 1
cBs =1 0 O
™S =1 0 1
V
WORD INSTRUCTIONS 1|60 0o 0 1 0 1 1 11 1 1 1 1 1 ///2
L
CMW =0
MVW = 1
8200-52

A-15

Appendix

EXTEND AND OVERFLOW EXAMPLES

A900

SAME SIGN (POSITIVE)

SIGN SIGN
< ~
A/B REGISTER
o]o ol 1
AUGEND ,)
LS LY
b] b}
L 4 L &
ADDEND o] o ol 1
b b)
L 4 <
1 2
OV=UNCHANGED ov=1
RESULT A8 0) E=UNCHANGED 1 | 5 E-UNCHANGED
<
SAME SIGN (NEGATIVE)
SIGN SIGN
b
< LY
A/B REGISTER o o
AUGEND 5)
L 8 LS
9 b]
< L 4
ADDEND 11o 1 1
b} Y
< <
Z ?
ov=1 OV=UNCHANGED
RESULT
ESULT A/B o] . % I
L4 1 §
DIFFERENT SIGNS
SIGN SIGN
b b}
A/B REGISTER ol o A o | 1 N
AUGEND y)
< LS
9 b
L4 1 4
ADDEND 1]o 1]
b b)
L4 [§
l 4
OV=UNCHANGED OV=UNCHANGED
RESULT A/B
N '] , E=UNCHANGED 0} , E=1
L § <
SIGN SIGN
£ , ' >
A/B REGISTER) N o *
AUGEND ! y)
Y LS
9 b}
| 4 L 4
ADDEND ol o | 1
b} b}
LY L4
4 4
OV=UNCHANGED OV=UNCHANGED
RESULT A8 0 E=1 ' | , E=UNCHANGED
Q

D
<

8200-48

A-16

A900 Appendix
INTERRUPT AND CONTROL SUMMARY
INST S.C. 00 S.C. 01 8.C. 02 8.C. 03 8.C. 04 S.C. 05 $.C. 06 S.C. 07
STC NOP NOP Enable break NOP Enable Type Enable mult- | Turn on Time Turn on memory
mode. 2and 3 ple-bit error Base Generator. | protect.
interrupts. interrupts.
CLC System reset. NOP NOP NOP Disable Type Disable multi- | Turn off Time NOP
2and 3 ple-bit error Base Generator.
interrupts. interrupts.

STF Enable Type 3 STO Disable Global NOP Flush cache NOP Set Time Base NOP
interrupts. Register. Generator

flag.

CLF Disable Type 3 CLO Enable Global NOP NOP NOP Clear Time NOP
interrupts. Register. Base Generator

flag.

SFS Skip if Type 3 sOs Skip if Global NOP Skip if power NOP Skip if Time NOP
interrupts are Register Is not going down Base Generator
enabled. disabled. flag is set.

8FC Skipif Type 3 SOC Skip if Giobal NOP Skip if power NOP Skip if Time NOP
interrupts are Register is is going down. Base Generator
disabled. enabled. fiag is clear.

Li* Load from in- Load from pro- | Load from Load from Load from cen- | Load bits 0-15 NOP Load from
terrupt mask cessor status Global PSAVE or (with tral interrupt from parity violation
register. register. Register. ,C) ROMP. register. error register, register.

or (with ,C)
bits 16-31.
Mi* NOP Merge from pro- NOP NOP NOP NOP NOP NOP
cessor status
register.

oT* Output to in- Output to pro- Output to Output to Output to cen- | See Note 2 NOP NOP
terrupt mask cessor status Global PSAVE or (with tral interrupt
register. register. Register. ,C) ROMP. register.

{Note 1)

Note 1: An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

Note 2: An OTA 05 or OTB 05 can be used to force memory errors to test the Error Detection and Correction logic; the A- or B-register specifies the
address where the checkbit pattern held in the X-register will be written.

Update 3

A-17/A-18

Operating Features

2. B = pointer to a string area where:

Word 1 = memory size (64k bytes).
Word 2 = string length. (in bytes)
Word 3 = first word of string.
Word n = n-2 word of string.

2-25. VCP RE-ENTRY FOR EXTENDED
BOOT LOADING

The VCP PROM loader can be re-entered from a program
to boot load. It executes a program from a loading device.
The VCP code is re-entered as follows:

a. A VCP boot loader call allows the programmer to call
any of the VCP loaders. This allows a complete call
back sequence including a checkout routine. For a
sample VCP loader call back checkout program, refer
to Table 2-1A.

LDA COUNT Negative number of char-
acters in the boot string.
Starting address of the
string.

Call VCP loader sequence.
VCP loader is started and
the new program is loaded.
Negative number of char-
acters (bytes) in the string.
Starting address of the
string.

ASC 06,DC2027SYSTEM

LDB POINTER

COUNT DEC -12

POINTER DEF *+1

The string can be any allowable string entered after the
%B command (%Bxxffffbusctext). Note that %B is not
actually entered but is assumed when using this call.

If the VCP loader encounters an error, the loader will
report the error and return to the VCP) prompt.

b. With the disc loader, re-enter to boot load the specific
program described by the “ABS” code in the following
call back programming sequence.

CLA,CLE,INA Indicate disc call back — do not
suspend

HLT 3,C Return to VCP loader

ABS... HP-IB bus address

ABS... Device unit number (head for
7906)

ABS... Absolute starting sector (Vector 1
for 7908/11/12/14)

ABS... Cylinder offset (Vector 2 for
7908/11/12/14)

ABS... Vector 3 for 7908/11/12/14

This sequence assumes that the Global Register is set
prior to entry to the loader and that the absolute starting
sector is the combined cylinder/head/sector for that drive.
When the load is completed, the loader will start execution
in the standard JMP 2 manner. If a suspend after load was
specified by the E-register being set when called, the
program will return to VCP after the load. In the case of
the suspend the operator can enter either a %E or a %R to

A900

continue. Any error will return to the VCP, if present, or
start the original load over.

The HP 7906 Disc Drive will be accessed in the surface
mode only, all other discs will be accessed in the cylinder
mode.

2-26. DEVICE PARAMETERS AND
MEDIA FORMATS

There is a specific data format for each combination of
loader, interface card, loading device, and media. The data
formats are described in Figure 2-1.

b

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal) to control the CPU in a manner similar to a
conventional computer control parnel. That is, it allows the
operator to load programs using the loaders, access the
various registers (A, B, etc. plus I/O card registers),
examine or change memory, and control execution of a
program. There are two VCP programs stored in PROM on
the cache control card: one program is for use with an HP
12005 Interface Card, and the other is for either use with
an HP 12007/12044 DS/1000-IV Card or the HP 12040B
Multiplexer Card. Only one interface card in the computer
can serve as a VCP interface; the card selection is es-
tablished when the system is installed.

2-28. VCP PROGRAM OPERATION

The VCP program is executed from PROM as a software
program and uses the various machine registers (A, B,
etc.) during its execution. Therefore, these registers are
automatically saved upon entry to the VCP code. (The
save area is in boot RAM on the memory controller card.)
Thus, the response to an inquiry is the data that was saved
at the time of entry to the program. The exceptions to this
are indicated by the absence of an asterisk in Table 2-2.
When the operator enters the Run (%R) command, the
VCP program restores the machine with the current data
in the save area and starts execution as specified by the
program execution address in the P-register.

The VCP program can be entered in three ways as follows:

a. After a power-up, PROM execution is directed to the
VCP program instead of a boot load routine;

b. When the VCP interface card requests a slave cycle to
enable the VCP program (e.g., BREAK key pressed on
VCP); or

¢. When a HLT (halt) instruction is fetched and one I/O
card is enabled for break (otherwise the instruction
has no effect).

2-4 Update 1

A900

Operating Features

Table 2-1A. Sample VCP Loader Call Back Checkout Program

LABEL OPCODE OPERAND COMMENTS
ASMB,A,B,L,C
ORG 2B
JMP START Goto start of the program.
NOP
NOP No powerfail, auto restart.
ORG 100B
START HLT 0 Test halt to compare string.
LDA COUNT Negative number of characters in the boot string.
LDB PNTR Starting address of the string.
HLT 0,C Call VCP loader sequence.
NOP
NOP
NOP
COUNT DEC -18 Negative numbers of characters (bytes) in the string.
PNTR DEF *+1 Starting address of the string.
ASC 09,CT10020 Test String
END

After a power-up, the total mermory size is displayed on the
VCP screen. The A-register is set to the number of I/O
chips that were tested during the self-test. This enables
the operator to verify that all installed memory and /O
cards were tested. (Also, except when the self-test detects
an error and reports it in the B-register, the B-register
contains the revision code of the VCP PROMs.) When
entered, the VCP displays the basic set of ragisters (P, A,
B, RW, M, and T) and issues the VCP prompt (VCP>) for
an operator response. The operator can enter any of the
characters or commands listed in Tables 2-2 and 2-3 and

Update 1

the VCP program will respond as indicated in the tables.
A carriage return is entered to terminate a VCP entry.

After a response to an inquiry the operator can change the
data contained in that register or memory location by
entering new data; for example (operator inputs are
underlined and <cr> indicates a carriage return):

A 001234 4321<cr>
A 004321

2-4A/2-4B

A900 Operating Features

Table 2-2. VCP Characters and Associated Registers

CHARACTER
ENTERED RESPONSE? MEANING

A XXOOKKX A-register contents

B* XXXXXX B-register contents

E* X E-register contents

G” x000xx Global Register (GR) contents and status (bit 15=0 if enabled, 1 if

disabled)

I* X Interrupt system status (0=off, 1=on)

M* OxxxxX Memory address (pointer for T and Ln command)
o X O-register contents

P* 0XXXXX Program execution address

Q XXXXXX C- and Q-register contents (C is bit 15)

RS XXXXXX Switch register contents

T OXXXXX XXXXXX Memory contents pointed to by M

\ XXXXXX Violation register (memory protect)

X XXXXXX X-register contents

Y* XXXXXX Y-register contents

z XXXXXX Z-register contents

RC XXXXXX Central interrupt Register contents

RD** XXXXXX XXXXXX Data for I/O diagnose modes 1 and 2 (refer to paragraph 7-22)
RF** XXXXXX VO flags: Flags 20 thru 24, and Flag 30 (1 = flag set; 0 = flag clear)
RI** XXXXXX Interrupt mask register

RP XXXXX XXXXX XXX Parity violation register contents

RS XXXXXX Switch Register

Rw* XXXXXX Working map set (WMAP)

R20** XXXXXX DMA self-configuration register

R21** XXXXXX DMA control register

R22** XXXXXX DMA address register

R23** XXXXXX DMA count register

R24** XXXXXX /O scratch register

R25"* XXXXXX /O scratch register

R26** XXXXXX /O scratch register

R30** XXXXXX /O card data register

R31** XXXXXX Optional I/O card register

R32™ XXXXXX Optional /O card register

? Output Help file

t x = octal data.

* Registers that are maintained in the VCP save area of boot RAM.
** Applies only to the I/O card whose select code equals the contents of the Global Register.
NOTE: When a register's contents are changed by the user the new value is returned; if the VCP does not accept a

change, the VCP prompt is returned.

Update 4 2-5

General Features

SEOL 4 s ’1 D e B DR

The power and flexibility of microprogramming is made
available to the A900 computer user through a
microinstruction set of microorders. Microprogrammers
have access to special scratch pad registers in addition to
the other internal registers of the A900, and can address
up to 32K 48-bit words of control store. A900 computers
also support up to 14 levels of nested subroutines in
microprograms. Microprogramming offers the advantages
of speed and security as well as the ability to expand the
instruction set to meet a variety of special computing
needs.

Microprogramming is supported by Hewlett-Packard
through a software package and customer training
courses. A paraphraser microassembler allows the user to
write microprograms in a versatile free-format style that
greatly enhances program readability and documentation
compared to traditional microprogramming techniques.
User-developed microprograms can be dynamically loaded
into optional Writable Control Store (WCS) for execution,
and permanently fused into programmable read-only
memory (PROM) chips for mounting on the optional
Control Store card. (Refer to Section VIII for more in-
formation on microprogramming.)

The Virtual Control Panel (VCP) program is an interactive
program that enables an external device (such as a terminal)
to control the CPU in a manner similar to a conventional
computer control panel and also provides additional
features. That is, it allows the operator to access the various
registers (A, B, etc.), examine or change memory, and con-
trol execution of a program. The VCP program is stored in
PROM on the cache control card. In a typical application,
the VCP could be an HP 239x interfaced by an HP 12005
Asynchronous Serial Interface Card. When not being used as
the VCP, the VCP-assigned terminal can be used in the same
way as any other terminal connected to the system. When
the A900 computer is operating as a node in a computer
network via DS/1000-1V, the VCP can be an adjacent com-
puter in the network.

There are several bootstrap loaders stored in PROM on the
cache control card. The loaders provide program loading
from several sources including disc drives, PROM storage
modules, a DS/1000-IV network link, HP mini-cartridge
tapes, magnetic tape drive, and cartridge tapes of the HP
7908/11/12/14 Disc Drives. The first three loaders can be
selected for auto-boot by switches on the data path card;
any of the loaders can be selected by operator commands
via the Virtual Control Panel.

A900

Two self-test routines are standard in the A900 computer
and are stored in PROM on the sequencer and cache con-
trol cards. These routines are executed whenever com-
puter power is turned on, providing a convenient
confidence-check of the processor cards and memory cards.
Execution of both routines can also be initiated by a
switch on the sequencer card, and execution of the second
routine can be initiated by operator command via the
Virtual Control Panel.

RO MR 3

The memory controller card includes a time base
generator that can be used to time external events or to
create a real-time clock in software. The time base
generator (TBG) can generate an interrupt every 10
milliseconds. The TBG, which can be enabled and disabled
by standard I/O instructions, is disabled at power up.

A900 computers have a power supply designed to continue
normal operation in environments where ac input line
voltages and frequencies may vary widely without affect-
ing the operation of the computer. An optional battery
backup card and battery pack can be installed area to
sustain memory for up to 180 minutes in the event of a
complete power failure, thus providing an automatic
restart capability. Another power supply option provides
two 25-kHz voltages that can be rectified at the load and
used to power accessory plug-in cards used for mea-
surement and control applications.

The input/output system for A900 computers features a cus-
tom chip on each I/O card, enabling each card to process its
own I/O instructions and handle direct memory access
(DMA) data transfers. The I/O system has a multilevel vec-
tored priority interrupt structure with 53 distinct interrupt
levels, each of which has a unique priority assignment. Any
1/0 device can be selectively enabled or disabled, or all I/O
devices can be enabled or disabled under program control.

Data transfer between the computer and /O devices can
take place under DMA control or program control. The
DMA capability provides a direct link between memory
and I/O devices. The total bandwidth through multiple
DMA channels is 3.7 million bytes (1.85 million words) per
second.

The A900 computer backplane provides the link between
the processor, memory, interface cards, and the power
supply. In the card cage of the HP 2439A/89A, the
backplane has 16 plug-in card slots, of which two are
reserved for the optional battery backup card and 25-kHz

1-2 Update 5

General Features

Software support for the A900 computer begins with RTE-A,
a member of HP’s family of Real-Time Executive (RTE)
operating systems. RTE-A is a real-time multiprogramming,
multi-user system designed to take full advantage of the
A900 I/O structure to enhance overall CPU and I/0
throughput. RTE-A offers a wide range of configurations,
from a small, memory-based, execute-only system to a full
disc-based system with on-line program development.
Utilizing the A900 mapped memory system, RTE-A sup-
ports user partitions of up to 64k bytes and memory size
from 512k bytes to 24 megabytes. Memory can be divided
into fixed and dynamically allocated partitions at system
generation time. Critical programs can be made resident in
fixed partitions to ensure fastest possible response to
requests for their execution. Other programs can be assigned
partitions from the dynarnic memory pool according to need,
using the smallest available block of memory.

RTE-A also supports Virtual Memory Addressing (VMA)
for access to data arrays much larger than main memory
(up to 128 megabytes). The disc functions as an extension
of main memory so far as data is concerned, in a manner
that is transparent to the user and does not require any
special programming. In addition, RTE-A supports a
special case of VMA, called Extended Memory Area
(EMA). With EMA, up to two megabytes of a program’s
data can be in main memory at once, which affords faster
processing of data arrays small enough to use the EMA
capability. The programmer chooses the data array
handling mode at program load time.

Disc-based RTE-A systems support program development
in FORTRAN 77, Pascal/1000, BASIC, and Macro/1000
Assembly Language. Program development for the A900
can also be performed on an HP 1000 System under
RTE-6/VM or RTE-IVB.

The HP 92078A software accessory package provides
software support, via the Code and Data Separation (CDS)
feature, for programs that have up to 4M words of code.
With CDS, a large application program is automatically
segmented by the LINK loader program into one or more
code segments, in addition to a data segment which may
be up to 31k words in size; the program may also access a
VMA area. The code segments may reside on disc or in
memory, and the process of accessing code segments in
physical memory, or loading a code segment from disc into
physical memory, is automatically handled by a combi-
nation of microcode and software. CDS is described further
in Section V.

The diagnostic packages listed in Table 1-1 may be used
for testing and fault location.

A900

Ll HMPINTERFACE BLE

Among the /O interface cards available for the A900
computer is the HP 12009A HP-IB Interface Card which
can interface the A900 computer to a variety of HP
peripherals and other equipment compatible with the
Hewlett-Packard Interface Bus (HP-IB). (HP-IB is the
Hewlett-Packard implementation of IEEE standard 488-
1978, “Digital Interface for Programmable Instrumen-
tation”.) A single HP 12009A can control up to 14 HP-IB
instruments, and several can be used to achieve concur-
rent operation of multiple HP-IB instrumentation clusters
under the RTE-A multiprogramming operating system.

Ll COMPLTER NETVORE

The user can configure the A900 computer into an HP
DS/1000-IV Distributed System by using either an HP
12007B or an HP 12044A HDLC Interface. But of these
interfaces support the high-level data link communications
(HDLC) protocol, functioning as a preprocessor to handle
low and medium levels of protocol processing. The A900
computers can be easily mixed with other members of the
HP 1000 family in a single computer network. The HP
12042A Programmable Serial Interface allows the sophisti-
cated OEM to design his own customized protocol for
networks. Hewlett-Packard offers a customer training
course on how to program the PSI card.

Tt EXPALSI

AND EhNHANTEMEN Y

Table 1-1 lists accessory products available to expand or
enhance the A900 computers.

et SPECH CATICORS

Complete specifications for the A900 computers and sys-
tem processor units are given in a data handbook avail-
able from your nearest Hewlett-Packard Sales and Service
Office. (These offices are listed at the rear of this manual.)
Table 1-2 provides an abricdged set of A900 specifications.
Except where indicated, the specifications are applicable
to both the computers and the system processor units.
Both the computers and the SPUs meet the safety
standards of the Underwriters’ Laboratories (UL), the
Canadian Standards Association (CSA), and the Inter-
national Electrotechnical Commission (IEC). The A900
computers and SPUs also meet the Federal Communi-
cations Commission (FCC) Class A and Verband
Deutscher Elektrotechniker (VDE) Level A standards for
electromagnetic interference (EMID).

14 Update 5

A900

Table 1-1. Options and Accessories

General Features

DESCRIPTION HP PRODUCT NO. OPTION NO.
Removes standard memory array card _ 014
230 Vac Operation — 015
768k Byte Memory Array Card 12220A —_
3M Byte Memory Array Card 12221A —
Memory Frontplane for one memory array card 12222A —
Memory Frontplane for two memory array cards 122228 —
Memory Frontplane for three memory array cards 12222C —
Memory Frontplane for four memory array cards 12222D —
Memory Frontplane for five memory array cards 12222E —
Memory Frontplane for six memory array cards 12222F —
Memory Frontplane for seven memory array cards 12222G —
Asynchronous Serial Interface 120058 —
Paralle!l Interface 12006A —
HDLC Interface (modem operation) 12007A/B —
PROM Storage Module 12008A —
HP-IB Interface 12009A —
Intelligent Breadboard 12010A —
Extender Board (for memory and 1/O cards) 12011A —
Extender Board (for processor cards) 12240A —_—
Priority Jumper Card 12012A —
Input/Output Extender 12025A/B-001 —_
8-Channel Asynchronous Multipiexer 12040B/C —
Multi-use 8-channel Mulitiplexer 12041A/8 —
Programmable Serial interface 12042A —_
Multi-use Programmable Serial Interface 12043A —
HDLC Interface (hard-wired operation) 12044A —
High-Level Analog Input Card 12060A —
Expansion Multiplexer Card 12061A —
Analog Output Card 12062A —
16-In/16-Out Isolated Digital I/O Card 12063A —
Color Video Interface 12065A —
DS/1000-IV Data Link Slave Interface 12072A —
DS/1000-V Modem Interface to HP 3000 12073A —
LAP-B Network Interface 12075A —
LAN Interface 12076A —
DS/1000-iV Direct Connect interface to HP 3000 12082A —
Data Link Master Interface 12092A —_
Battery Backup Card 12154A** —
Battery Backup Module 12157A -
25 kHz Sine Wave Module 12158A —
25 kHz Power Module 12159A** —
Control Store Card 12205A —_
Diagnostic Package for A900 processor and interfaces 24612A* —
Diagnostic Package for AS00-compatible hard disc drives and magnetic tape units 24398B" —
HP-IB Extender Card 37203L —_
Integral Modem Interface 37222A —
*Included with the HP 2199A/B/C/D and HP 2489A System Processor Units.
**For HP 2439A and 2489A only.
Update 5 1-5

General Features

A900

Table 1-2. Specifications

SPECIFICATIONS COMMON TO THE HP 2139A, 2199A/B/C/D, 2439A, and 2489A

CENTRAL PROCESSOR
Word Size:

Instruction Set:
Memory Reference:
Register Reference:
Input/Output:
Extended Arithmetic:
Index:
Bit, Byte, Word Manipulation:
Floating Point:
Scientific:
Language:
Dynamic Mapping:
Vector Instructions:
Double Integer:
Virtual Memory:
Operating System:
Code and Data Separation:

Registers:
Accumulators:

Index:

Memory Register:
Base:

Bounds:
Supplementary:
Power Fall Provisions:

Time Base Generator Interrupt:

MEMORY
Implementation:
Cache Size:
Cache Cycle Time:
Cache Fault Processing Time:
Main Memory Cycle Time:

Average Effective Memory

Access Time:
Memory Structure:

Memory Expansion:

16 bits

292 standard instructions
14
43
13
10
34
10
16
14
14
40
38
12

9
4
21

Two (A and B), 16 bits each. Implicitly addressable, also explicitly addressable as
memory locations.

Two (X and Y), 16 bits each

One (P), 15 bits

One (Q), 15 bits; one (C), 1 bit.

One (2), 16 bits

Two (overflow and extend), one bit each

When primary line power falls below a predetermined level while the computer is
running, a power fail waming signal from the computer power supply causes an
interrupt to memory location 00004. This location is; intended to contain a jump-to-
subroutine (JSB) instruction to a user-supplied power fail subroutine. A minimum
of 5 milliseconds is available to execute the power fail subroutine.

A time base generator interrupt is provided for maintaining a real time clock. The
interrupt request is made when the CPU signals, at 10-millisecond intervals, that
its internal clock is ready to roll over. Timing accuracy of the time base generator
is =2.16 seconds per 24-hour day.

64k or 256k dynamic RAM
4k bytes

133 nanoseconds

533 to 931 nanoseconds

Read: 533 nanoseconds
Write: 400 nanoseconds

Approximately 181 nanoseconds, assuming 88% cache hit rate.

32 pages of 2048 bytes per page, with direct access to current page or base page
(page 0), and indirect or indexed access to all pages. With CDS enabled, a 15-bit
base register is added to addresses on base page.

Paged memory address space expandable to 16k pages of 2048 bytes with
standard Dynamic Mapping System. Maximum physical memory capacity is cur-
rently 12k pages (24 megabytes).

1-6

Update 5

A900

Operating Current:

PHYSICAL CHARACTERISTICS
Dimensions
Height:
Width:
Depth:
Weight
Without Integral Discs:
Integral Discs Add:
Ventilation:

ENVIRONMENTAL SPECIFICATIONS
Temperature
Operating:

Non-operating;

Relative Humidity:
Without Optional Internal Discs:

With Optional Internal Discs:

Non-operating:
Altitude
Operating:
Non-operating:
POWER SUPPLY
Output:

Maximum Output Current
Ratings:

Short Circuit Protection:

General Features
Table 1-2. Specifications (Continued)
SPECIFICATIONS COMMON TO THE HP 2439A and 2489A
ELECTRICAL
AC Power Required
Line Voltage: 86-138V (115V —25%/+20%) standard; 178-276V (230V —23%/+20%) option

015.

Line Frequency: 47.5 to 66 Hz

6A, max. in 115V configuration; 3A, max. in 230V configuration.

178 mm (7 in)
483 mm (19 in)
648 mm (25.5 in)

18.1 kg (40 Ib)
2.27 kg (5 Ib)
Air intake is in through the left; exhaust is out through the right.

0° to 55°C (32° to 131°F) to 3048 meters (10,000 ft) without optional internal discs.
Maximum temperature is linearly derated 2°C (3.6°F) for each 304.8m (1000 ft)
increase of altitude. Resulting temperature range is 0° to 45°C (32° to 113°F) at
4572 meters (15,000 ft).

5° to 45°C (40° to 113°F) with optional internal discs; maximum rate of change
<10°C (18°F) per hour.

—40° to 75°C (—40° to 167°F) maximum temperature with optional internal discs is
60°C (140°F).

Operating: 5% to 95%with maximum wet bulb temperature not to exceed 40°C
(104°F), excluding all conditions which cause condensation.

Operating: 20% to 80% with maximum wet bulb temperature not to exceed 29°C
(85°F), excluding all conditions which cause condensation.

5% to 95% non-condensing.

To 4.6 km (15,000 ft)
To 15.3 km (50,000 ft)

DC voltages and tolerances

+5.1V +/—2%

+12V +6/—3%

-12Vv +/—6%

+5.1V +12V -12V
50A 7.0A 3.0A

All dc power outputs are fault protected for short circuits. The power supply will
shut down if any of the outputs are short circuited at turn on.

Update 5 1-11

Operating Features

2-13. IMAP REGISTER

The IMAP register is a 16-bit register that holds the value
which WMAP had at the last interrupt. The IMAP regis-
ter may be accessed only by the SIMP instruction.

2-14. C- AND Q-REGISTERS

The one-bit C-register determines whether the Code and
Data Separation (CDS) feature is enabled (O=enabled;
1=disabled). The Q-register is a 15-bit base register whose
value is added to memory addresses whenever CDS is
enabled and a memory address is between 2 and 1023,
inclusive.

2-15. Z-REGISTER

This 16-bit register is a bounds register used by Code and
Data Separation instructions to protect user memory (re-
fer to Section V).

2-16. IQ-REGISTER

This 16-bit register holds the value which the C- and
Q-registers had at the last interrupt.

There are two virtual registers, M and T, that are created
by the Virtual Control Panel program and which can be
accessed, bia the VCP, to examine or change a program in
memory or to manually create a program in memory.

2-18. M-REGISTER

The M-register holds the address of the memory cell
currently being read from or written into by the Virtual
Control Panel.

2-19. T-REGISTER

The T-register indicates the contents of the memory lo-
cation currently pointed to by the M-register.

Operator controls and indicators for an A900 computer
system are described in the appropriate system installa-
tion and service manual.

On the A900 computer there is only one operator control: a
line-power switch. This two-position switch controls the
application of ac line power to the computer power supply

A900

and ventilating fans. Light-emitting diodes (LEDs) on the
sequencer card provide indications for the computer
self-test.

The self-test consists of two test programs (Test 1 and Test
2) that automatically exzcute each time the computer is
powered up and which provide a quick, convenient check
of basic computer operation. (Also, the self-test can be
executed by pressing the Reset switch on the sequencer
card.) Test 1 tests the processor at the level of individual
circuits, and Test 2 tests the processor at a functional
level. (For example, Test 1 tests the hardware associated
with an LIA instruction to ensure that it works correctly,
and Test 2 executes an LIA instruction and checks the
result.) If either test program fails, the computer will not
operate. Successful completion of the self-test is followed
immediately by execution of either a bootstrap loader, the
Virtual Control Panel program, or a program sustained in
memory by an optional battery pack, as preselected by the
user.

Test 1 is a microprogram stored in PROM on the se-
quencer card. It executes immediately upon power up and
makes checks of all four processor cards, including a check
of the microcode PROMs on the sequencer card and the
VCP/Test 2 PROMs on the cache control card. On suc-
cessful completion, Test 2 is started. If Test 1 detects a
failure it stops executing and the LEDs on the sequencer
card indicate an error code. (Refer to the computer in-
stallation and service manual for information on error
codes.) Test 1 execution time is negligible.

Test 2 is an assembly language program stored in PROM on
the cache control card and executes upon successful com-
pletion of Test 1. (Test 2 can also be initiated by the VCP
command %T.) Test 2 checks the computer’s basic instruc-
tion set, several internal flags, and all the memory. If mem-
ory was sustained by the optional battery pack, Test 2 checks
it in a non-destructive manner by reading each memory loca-
tion, thus making a parity check on the data. If a parity error
does occur, the location is reported to the VCP console (if
present). If memory was not sustained, Test 2 writes all ones
to each memory location, and reads back the data; and then
writes all zeros and reads back. (The memory is cleared.)
Test 2 also checks the I/Q Master logic on each interface
card to ensure that data transfer, flag, interrupt, and direct
memory access (DMA) transfer and flag functions are pro-
cessed correctly. If Test 2 detects a failure, it stops executing
and the sequencer LEDs indicate an error code. (If a VCP
console is in the system and the failure does not hinder VCP
operation, the VCP program is entered and the failure code
is displayed on the VCP.) The LED indication on successful
completion of Test 2 depends on the computer action
selected by the Start-Up switches on the data path card. Test
2 has a maximum execution time of 10 seconds; the more
memory installed in the backplane, the longer it takes to
execute.

2-2 Update 5

A900

e T T

Bootstrap loading of a program for the A700 computer is
provided for by six loaders contained in PROMs on the
cache control card. The loading devices are disc drive (via
HP-IB or disc interface), PROM storage module, DS/1000-
IV network link, HP 264x mini-cartridge tape, cartridge tape
of the disc drive, and magnetic tape drive. There are two
ways to invoke a loader: auto-boot when power comes up;
and by VCP command. Auto-boot can only invoke four of
the loaders: two discs, PROM module, and DS;/1000-1V; the
VCP can invoke any of the loaders by a command from the
operator. The VCP load commands are discussed later in
this section.

2.23. LOADER SELECTION FOR
AUTO-BOOT

The selection of an auto-boot is by means of four switches
located on the data path card. These switches, the Start-Up
switches, are set during installation and also provide options
other than auto-boot selection. When a loader has been
selected for auto-boot and the self-test completes, the boot
loader executes if memory was lost; or the program in mem-
ory executes if memory was sustained by the optional battery
backup pack. Refer to Table 2-1 for Start-Up switch settings.

2-24. PROGRAM STARTS

When an auto-boot completes without error, the loaded pro-
gram starts execution at memory location 02. The loader sets
the contents of the A and B-registers as follows:

a. Cold start (memory not sustained):

1. A = loader command parameters.
2. B = pointer to string area.

Word 1 = memory size.
Word 2 = zero.

b. Auto-restart (memory sustained; execution starts at
location 04):

1. A = zero.
2. B = zero.
¢. %E command from VCP:

1. A
2. B

-1
zero.

d. %B command from VCP:

1. A = loader command parameters.
2. B = pointer to a string area where:

Word 1 = memory size (64k blocks)
Word 2 = string length (in bytes).
Word 3 = first word of string.
Word n = n-2 word of string.

I

Operating Features

2-25. VCP RE-ENTRY FOR EXTENDED

BOOT LOADING

The VCP ROM loader can be re-entered from a program to
boot load. It executes a program from a loading device. The
VCP code is re-entered as follows:

a. A VCP boot loader call allows the programmer to call
any of the VCP loaders. This allows a complete call back
sequence including a checkout routine. For a sample
VCP loader call back checkout program, refer to Table
2-1A.

LDA COUNT Negative number of charac-
ters in the boot string.
Starting address of the string
Call VCP loader sequence.
VCP loader is started and the
new program is loaded.
Negative number of charac-
ters (bytes) in the string.
POINTER DEF *+1 Starting address of the string
ASC 06,DC2027SYSTEM |

LDB POINTER
HLT 0,C

COUNT DEC -12

The string can be any allowable string entered after the %B
command (%Bxxffffbusctext). Note that %B is not actually
entered but is assumed when using this call.

If the VCP loader encounters an error, the loader will report
the error and return to the VCP> prompt.

b. With the disc loader, re-enter to boot load the specific
program described by the “ABS” code in the following
call back programming sequence.

CLA,CLE,INA Indicate disc call back — do not
suspend

HLT 3,C Return to VCP loader

ABS... HP-IB bus address

ABS... Device unit number (head for 7906)

ABS... Absolute starting sector (Vector 1
for 7908/11/12/14)

ABS... Cylinder offset (Vector 2 for
7908/11/12/14)

ABS... Vector 3 for 7908/11/12/14

This sequence assumes that the Global Register is set prior
to entry to the loader and that the absolute starting sector is
the combined cylinder/head/sector for that drive. When the
load is completed, the loader will start execution in the stan-
dard JMP 2 manner. If a suspend after load was specified by
the E-register being set when called, the program will return
to VCP after the load. In the case of the suspend the operator
can enter either a %E or a %R to continue. Any error will
return to the VCP, if present, or start the original load over. l

Update 5 2-3

Operating Features

Table 2-3. VCP Commands

COMMAND* MEANING

%B Load and go (boot). Execute a specified loader
routine and start program execution at com-
pletion of load. See Figure 2-2 for format.

%C Clear memory. Set all memory to zero and per-
form a preset.

%E Execute. Start execution of program at location
P=2 (A-register equals — 1 (all ones) and B-reg-
ister equals 0).

%L Load. Similar to %B except do not start execu-
tion. See Figure 2-2 for format. (%L followed by
%R is equivalent to %B.)

%M Memory test. Execute destructive extended
memory test. Tests addressing logic. The test
will optionally loop on error. Returns amount of
memory found. If an error is found, the error
type, error address, and the data written and
read is displayed.

%P Preset. Generate a control reset (CRS) signal on
the backplane to initialize all cards.

%R Run. Set all registers to the appropriate values in
the save area and start execution at address
specified by the P-register.

%S Parity error set. Places a parity error in address-
able memory to test the parity interrupt handler
and to verify proper functioning of the parity
error interrupt logic. This command cannot be
used on the AS00 Computer.

%T Test. Initiate the self-test Test 2 and return to
VCP (memory is sustained but the I/O system is
reset).

%W Write. Write to the selected device. (See Figure
2-2 for format.) When writing to a disc drive, the
Count and Partial values defined in Figure 2-1
must be in memory locations 00000 and 00001.

D Decrement. Decrement memory pointer and
display the contents of the M- and T-registers.
Valid only after T.

Ln List. List n blocks of eight memory locations
starting with location pointed to by the M-reg-
ister.

N Next. Same as D except increment the pointer.
Valid only after T.

RMxx List the 32 map registers in the DMS map set
specified by xx.

RMxxPyy Show the value of register yy in map set xx. If a
number is input after this command, the register
is changed to the new value.

? Output Help file.

*Must be followed by a carriage return.

A900

2-29. LOADER COMMANDS

The loader commands can be entered via the VCP in either
of two ways:

a. Allow the parameter default values (given in Figure 2-1)
to be used; or

b. Specify all necessary parameters.

The VCP loader command format is shown in Figure 2-2.
The loader command error codes and their meanings are
listed in Table 2-4.

2-30. VCP USER CONSIDERATIONS

When using the VCP to debug a program the user should be
aware of the following conditions:

a. The VCP program uses an interface card and modifies
the characteristics of that card. When the VCP program
exists, it sets Register 24 on the interface card to all ones
to allow software detection of a VCI? interaction and,
thus, reinitialization of an operation. (This also causes
an interrupt if the interrupt system is enabled.) Also,
the VCP will leave the card in the output mode with
both Flag 30 and Control 30 set.

b. The status of the interrupt system (STC 4 [on] or CLC 4
[off]) is not indicated and will remain unchanged unless
%P is executed to preset the computer.

c¢. Memory protect is indicated by the sign bit of RW
(WMAP register) and may be modified.

2-31. VCP SLAVE FUNCTIONS

The slave feature of an I/Q processor chip is used in conjunc-
tion with the VCP program. The slave feature enable is read
into the I/O chip of the VCP interface card on power-up and
cannot be altered until the next power-up condition. After
power-up a change in the state of the slave signal causes the
1/0 chip to generate a slave request. When the request is
granted, the I/O chip requests the CPU’s current P-register
contents and saves these contents in a register in the I/0
chip. The I/O chip then stores the starting address of the
VCP program into the CPU’s P-register, instructs the CPU
to enable the boot PROM, and allows execution to start. The
VCP program can be started in several other ways, as
follows:

a. On power-up and after the self-test the VCP program
starts execution if it is selected in lieu of a boot loader.
This selection may often be used because the loaders
can be invoked individually from the VCP.

2-6 Update 5

A900

b. When a HLT* (halt) instruction is executed the /'O
processor chip interprets it in the same manner as a
change in the slave enable signal. This allows a
program to have breakpoints for debugging purposes.
(Note that a HLT instruction is not executed but
causes a memory protect interrupt if memory protect
is enabled.)

During execution of the VCP program, access to the
P-save register in the I/O chip is accomplished with LIA/B
3 and OTA/B 3 (without the instruction’s Flag bit set). It
should also be noted that the /O chip will not execute a

Operating Features

slave request until an STC 2 (enable break feature) in-
struction has been executed. This prevents re-entry of the
VCP program once it has been entered.

During the self-test, the starting address of the VCP
program is assigned to the break-enabled /O card by an
OTA/B 3,C* instruction with the A- or B-register set to the
address. This address can also be read back with an LIA/B
3,C* instruction.

*If break is not enabled on any I/O card, then the in-
struction has no effect.

MINI-CARTRIDGE TAPE

Device: HP 264x Terminal
Interface: HP 12005B Asynchronous Serial Interface
Default
Parameters: 000020 ;
Format: Reads absolute binary file, writes 4k absolute binary block.
Loader:
(0 = 0 to 4k).
is specified, the result will be unpredictable.
More than 32k words may be loaded into a system from a single cartridge tape.
PROM MODULE
Device: PROM (2k x 8 bits)
Interface: HP 12008A PROM Storage Module
Default
Parameters*: 000022
Format: Count-Partial-Data
Count = number of 64k byte blocks.
Partial = number of words of partial 64k byte block.
Data = 16-bit words, one word per location until Count and Partial are satisfied.
Loader:

Transmits special escape sequence to invoke a read of a record and does checksum of the data. When
writing to tape, a block number is used to specify which 4k-word memory area is to be dumped to tape

If a file number is specified then the program will issue a find file command,; if not, the tape is read from
where it stands. When writing to the tape, the program will not write a file mark; this allows sequential
blocks to be written in a series. There are only two units (0 and 1) on the terminal; if a larger unit number

Uses STC-LIA process to transfer data. The PROM cannot be written to nor does it use the block
number or unit number.

*See Figure 2-2 for loader command formats.

Figure 2-1. Loading Device Parameters and Media Formats (Part 1 of 3)

Update 5 2-7

Operating Features

A900

DISC DRIVE

Device:

Interface:

Defauilt
Parameters*:

Format:

Loader:

HP 9895, CS/80 and SS/80 Disc Drive, or cartridge tape drive of the disc drive.

HP 12009A HP-IB Interface

002027

Count-Partial-Data
Countt = number of 64k byte blocks.
Partialt = number of words of partial 64k byte block.

Data = 16-bit words, one word per location until Count and Partial are satisfied.

Uses HP-IB protocol to communicate with the disc. The load sequence is:

Py

Device clear
2. Status check
3. Read/write 32k words via DMA
4. Status check

DISC DRIVE (VIA DISC INTERFACE)

Device:

Interface:

Default
Parameters™:

Format:

Loader:

HP 2439A/89A internal fixed/micro-floppy disc drive.

HP 12022A Disc Interface.

000032
Same as Disc Drive via HP-IB, above.
Standard I/O for commands to interface, and DMA for data.

*See Figure 2-2 for loader command formats.

1The Count and Partial values are stored in memory locations 00000 and 00001, respectively.

2-8

Figure 2-1. Loading Device Parameters and Media Formats (Par: 2 of 3)

Update 5

A900

Operating Features

MAGNETIC TAPE
Device: HP 7970E or 7974A Magnetic Tape Drive
Interface: HP 12009A HP-IB Interface.
Default
Parameters™: 004027
Format: Memory image file
Count-Partial-Data
Count = number of 64k byte blocks.
Partial = number of words of partial 64k byte block.
Data = 256 byte records read until EOF or until Count and Partial are satisfied.
Loader: Uses HP-IB protocol to communicate with the magnetic tape.
The load sequence is:
1. Device ID
2. Device clear
3. Rewind/file forward (if file specified)
4. Read/write
5. Status check
COMPUTER NETWORK
Device: HP 1000 Computer.
Interface: HP 12007B/12044A HDLC Interface.
Default
Parameters*: 000024
Format: Reads absolute binary or memory image files, writes a 32k memory image file.
Loader: Standard handshake using HP distributed system protocol. Block number and unit number are not used.

*See Figure 2-2 for loader command formats.

Figure 2-1. Loading Device Parameters and Media Formats (Part 3 of 3)
Update 5 2-9

Operating Features A900

LOADER COMMAND FORMAT

%B/LUW av fffffbusc text

where:

av = device type as follows:

DC = disc (cartridge or flexible) via HP-IB
CT = cartridge tape (HP 264x)

RM = PROM card

DS = DS computer network Link

MT = magnetic tape via HP-1B

DI = disc via HP 12022A Card

fffff = file number (octal 0 to 77777 only)

b = 4k-word memory block number when writing to cartridge tape; HP-IB bus address of disc drive; or non-HP-IB
drive address; otherwise, use 0. For the HP 2439A/89A internal disc drives, this is O for the first fixed drive, 1 for
the second, and 3 for the micro-floppy drives.

u = unitnumber (0 to 7) only if used on device. For the HP 7906 Disc Drive, the unit number is the head number. For
CS/80 Disc Drives that include a cartridge tape drive, unit 0 = disc drive and unit 1 = cartridge tape drive.

sc = select code of interface card to be used.

text = file name, or ASCII string to be passed to the program after it is loaded. This is cnly available with the %B and

%L commands.
Note: See Figure 2-1 for default parameters for each loading device.
Note that spaces cannot be used in the command entry. The following formats are all acceptable:

%Bdvtext Device parameters are defaulted; text cannot start with a number.
%Bdviffbusc No text passed.
%Bdvffbusctext Text passed.

EXAMPLES:

%BDC Load and start execution of the default program on disc. (Disc parameters defaulted to 002027; see
Figure 2-1).

%BDC30 Load and start execution of the default program on the disc at select code 30 and default other
parameters.

%LDC27025 Load (but don’t execute) and override parameter default values:

file number 2 (i.e., the third file)
HP-IB bus address 7

unit 0

select code 25

%WDC27025 Same as above except write to file 2.

Figure 2-2. Loader Command Format

2-10 Update 5

A900

Operating Features

Table 2-4. VCP Loader Command Errors

ERROR ERROR
CODE MEANING CODE MEANING
0 Unrecognizable load/bootstring. Magnetic Tape Loader Errors
2 Select code less than 20 octal.
3 No card with the select code you specified. 510 Time out during initialization/read ID.
511 Time out when issuing end/select unit.
Cartridge Tape Loader Errors 512 Mag tape off line.
513 No write ring.
110 File forward error. Status in B-register. 514 Time out during End command.
im Checksum error. 515 Time out waiting for rewind completion.
112 No data before EOR (end of file). 517 Time out waiting for DMA transfer.
120 Write error. Status in B-register. 520 Parity error during DMA transfer.
521 Time out doing a PHI flush.
PROM Module Loader Errors 522 Time out waiting for DSJ.
523 Bad DSJ response.
211 End of programs. 525 Time out waiting for Mag Tape Not Busy.
212 Bad format. 530 Time out after issuing a command.
213 System larger than 32k must start on card boundary. 531 Parallel Poll time out after issuing a command.
214 Write not allowed to ROM. 535 Bad status after read/write command.
550 No data transfer (read only).
DS/1000 Loader Errors 560 Not mag tape ID.
310 Time out after CLC 0. Check select code specified. HP 12022A Disc Interface Loader Errors
311 Checksum error. P file not absolute binary.
312 Time out after download request. 610 Time out after SDH (sector drive head) for read/write.
313 Time out after file number. 611 Time out after cylinder high.
314 Bad transfer (Central generated). Status in B-register. 612 Time out after cylinder low.
315 Time out after buffer request. 613 Time out after sector.
316 Time out after count echo. 614 Time out after sector count.
317 Time out waiting for data. 615 Time out after read/write command.
320 Time out after VCP mode requests a DS write. 616 Time out after DMA read/write transfer.
321 Central will not accept data. Status in B-register. 617 Parity error during transfer.
325 Data block out of sequence. 620 Fixed disc not ready.
630 Time out after request status register.
Disc Loader Errors (via HP-IB) 631 Time out after read status register.
632 Time out after waiting for not busy.
411 Time out reading disc type. Check HP-IB address. 633 Time out after request error register.
412 Time out UDC (Universal Device Code) or reading 634 Time out after read error register.
status. Check disc. 635 Status error: A-register = status register;
413 Status error. Status in B-register. B-register = error register.
414 Time out during file mask. 650 Time out after SDH register for restore.
415 Time out during seek. 651 Time out after restore.
416 Time out during read or write command. 660 Disc not defined.
417 Time out during DMA of data.
420 Parity error during DMA transfer. Other
421 Time out during FIFO flush.
422 Time out during DSJ (Device Specified Jump) 1024/ | Possible meanings:
command. 1025
423 Bad DSJ return. Returned value in B-register. 1. Booting from CS/80 disc that has just been push
460 Disc not identifiable. Disc ID in B-register. button restored from CTD tape or booting diagnos-

tics directly from the tape. The CTD tape may not
have been certified/formatted before data was
stored to it.

2. Booting from a CTD tape in ASAVE format.

3. Booting from the CS/80 disc was not successful.
Bootex may be corrupted.

4. Faulty tape control board in the CS/80 disc.
5. Incorrect VCP file number in the runstring.

Update 5

2-11/2-12

READER COMMENT SHEET

HP 1000 Computers

HP 1000 A900 Computer
Reference Manual

02139-90001 October, 1986

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our
publications. Please explain your answers under comments, below, and use additional pages if
necessary.

Is this manual technically accurate? O ves O no
Are the concepts and wording easy to understand? Oves Ono
Is the format of this manual convenient in size, arrangement, and readability? Oves Ono

Comments:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local
HP representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

Address

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 0141 CUPERTINO, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Customer Information Manager
Hewiett-Packard Company
Data Systems Division

11000 Woife Road

Cupertino, CA 95014-9974

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

(bﬁ HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
MANUAL PART NO. 02139-90001 Data Systems Division

Printed in U.S.A. April 1985 11000 Wolfe Road
E0485 Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-04A
	02-04B
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	A-01
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	_upd1_02-04
	_upd1_02-04A
	_upd4_02-05
	_upd5_01-02
	_upd5_01-04
	_upd5_01-05
	_upd5_01-06
	_upd5_01-11
	_upd5_02-02
	_upd5_02-03
	_upd5_02-06
	_upd5_02-07
	_upd5_02-08
	_upd5_02-09
	_upd5_02-10
	_upd5_02-11
	replyA
	replyB
	xBack

