[ﬁﬁ HEWLETT

PACKARD

HP 92068A
RTE-IVB Programmer’s

Reference Manual

(ﬁp HEWLETT

PACKARD

RTE-IVB Programmer’s

Reference Manual

HEWLETT-PACKARD COMPANY

Data Systems Division MANUAL PART NO. 92068-90004
11000 Wolfe Road Printed in U.S.A. October 1981
Cupertino, California 95014 U1283

Printing History

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information. as well as all Updates.

To determine what software manual edition and update is compatible with vour current software revision code, refer to the
appropriate Software Numbering Catalog. Software Product Catalog, or Diagnostic Configurator Manual.

Second Edition..................... ...l Jan 1980
Update 1 ..., Apr 1980
Update 2 ..., Jul 1980
Update 3. Oct 1980
Update 4 ..., Jan 1981

Reprintedl Jan 1981 Incorporated Update 1 thru 4
Update 5.t Oct 1981

Reprinted Oct 1981 Incorporated Update 5
Update 6 Jul 1982
Update 7 Jan 1983 Add UB bit to EXEC 1 and 2
Update 8cciiiiiiii.. Dec 1983 Add SEGRT, floating point conversion routines

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980, 1981, 1982, 1983 by HEWLETT-PACKARD COMPANY

Preface

This manual describes the scope, format, and use of the RTE-IVB
operating system services available to user-written programs. It is
intended to be the primary reference source for programmers who will

be responsible for writing and maintaining software within the
RTE-IVB operating environment.

This manual is divided into six sections as follows:

CHAPTER ONE gives a general description of the RTE-IVB operating
system features,

CHAPTER TWO describes the use of the Executive communication module
of RTE-IVB that provides usern-written programs with the ability to
communicate with the operating system. The Executive allows programs
to perform I/0 operations, manage programs, manage system resources,
and obtain status information about the system.

CHAPTER .THREE describes the use of files and the File Management
System by wuser-written programs. By calling routines contained in
the File Management System, user-written programs can define, access,
position within, and purge disc or non-disc files.

CHAPTER FOUR defines and describes the use of the program
segmentation feature of RTE-IVB.

CHAPTER FIVE defines and describes the use of the Extended Memory
Area (EMA) feature of RTE-IVB.

CHAPTER SIX describes the format and use of the routines contained in
the System Library. The System Library contains user-callable
subroutines that provide a variety of utility and special purpose
functions.,

For additional information on the subsystems associated with the

RTE-IVB operating system, the reader should refer to the appropriate
reference manual as shown on the Documentation Map.

. Two additional reference manuals that are directly related to the
RTE-IVB operating system are briefly described below:

* RTE-IVB Terminal User ‘s Reference Manual., This manual describes
the features of the RTE-IVB operating system that are available
to the user in an interactive mode.

* RTE-IVB System Manager’'s Manual. This manual contains the
information necessary to plan, generate, and maintain the RTE-IVB
operating system,

iii

RTE-IVB Documentation Map

Getting Aquainted

With RTE-IVB
92068-90001

v

RTE-IVB
Terminal User's
Reference Manual
92068-90002

RTE
FORTRAN IV
Reference Manual

92060-90023

v

RTE-1V RTE-IVB RTE-IV RTE-IVB
Debug Subroutine Programmer’s Assembler Software Numbering
Manual Reference Manual Reference Manual ’ Catalog
92067-90005 92068-90004 92067-90003 92068-90011
RTE-IVB BASIC/1000D Decimal String
Batch and Spooling Multi-User Arithmetic
Real-Time BASIC —P .
Reference Manual Routines
2068-90005 Reference Manual 02100-90140
92068-9 92060-90016
RTE-IVB RTE-IVB RTIE
On-Line Generator System Manager’s > Relocatable
Reference Manual Manual II:_;bfrary
92068-90007 92068-90006 eference Manual
24998-90001
\ 4 l
RTE Opera}tmg Driver Manuals ROM
System Driver A . L |
Writing Manual As Appropriate —> oader Manua
92200-93005 (P/0 920628) 12992-90001
\ 4
RTE-IVB Appropriate
Utility Programs > Computer
Reference Manual Operator’s
92068-90010 Manual
Appropriate
Computer
— Microprogramming
Reference Manual

iv

Table Of Contents

Chapter 1
General Description

Introduction....ceeeeesececeesescssccsscccosssossscccccssaes
Multiprogramming and TimeslicCing.eeeecececesecococscsccoces
Program TaPeS.eceeeeeeeccsocessesosccoscssssscssassoscsssssssss
Memory Management..eeeeecesccoecsccsocoscccscccscsosssocscosscsces
MEMOLY MBPS.eeeesoeecsssssssoscsssssssssssscsocsssssssscss
SyStem MapP.eeeeeeeecooeosscossccccssssssssssscscsssccssse
USEIr MAP:eeeeeeseeosoccccscsssoosossssscscsssssccnsssssssse
Port Map A and Port Map Beieeeeceecococcecssooscoocnasccnse
Physical MemOIY.eeeeeeesseoecsssscocssscossssossssosssssscs
COMMON Are@aAS:eessessessesssessssssssssssssssssssssscess
Memory ProtectionN..cecesesscsscsscssessccosssssssssscscscscs
PArtitionSeeeeeeeeecseecscscseosossccosssccssssccsssonccsss
Input/Output ProcCessSinNge.ccesececsescccssossccscscscssscnsesns
Hardware ConsiderationS.ceeeecssscccccscsccsccccscssccccsss
Logical Unit NUMDEIrS..seeecessesccscsssscccscsossssossssanss
Power Faill...ieieeeeeeeeesososesosecossosessssssososcss
I/0 Controller Time=OUtL..sceceseccsocccoscscsssccscssccsccs
Privileged Interrupt ProcesSing..ccecscsccscscsccscsscsocs
Resource Management..ceceesceecsocsccesccocscssccsacsossascsocscs
SesSSion MONIitOreeeieeeeeeeossescsossocsoscsocssosncscssonsss
Language SUPPOIt.cceccccccccccsescsscccsscsssccsososcsscscocscsse
Executive Communication..cieeeescsecscsoessccscoscsssosscncsscs
File Management SysStemM....cceeeeeesosscsscsssscsscssosscoce
System Library.eeeeeecececseceecescsessssssssasssscsssscoscscncccse
SPo0ling SYSteMeceeeseeeescocccccccossossossssssssssocncsecse
System Utility ProgramS.cccecececcecceccssessssssssssscsssss

Chapter 2
Executive Communication

INntroduction..eeeeeeeeceeeeeeeecesosceosossosscsacoscoccssos
EXEC Call FOrMAtSecseceeecesacesccocesosssssssssssccsscsscs
EXEC Call Error REtUINS..ccececccccccoscsossscsssssscssssosscs
NO—Abort OptionS...
No-Suspend OptioN.eceeeesecescecssceososassosossssscssssccsasas
Buffered I/0 ReQUESES.cceeececooscccssscscssssccsosascssscas
EXEC Description ConventionS.iceeeecescecssessesccsssosscnas
Standard I/O EXEC CallS.ceeceeccccsescsccacsccsscossossccssss
Read or Write Call = EXEC 1 OF 2iceccccccccccsccccncoces
I/0 Control Call = EXEC 3. icceececccecsccocsscoscssccscscse
Disc Track Management EXEC CallS.ceeececcccccccsccccccscsse
Disc Track Allocation EXEC CAllS.ceeeecccccccosccocccsces
Disc Track Release EXEC CAlliccecoccccoccccoccscscsccss
Program Management EXEC C8llS.eccecececsccsoccccssscnsanas
Program SChedUling - EXEC 9,10,23, And 24cceeessssscsns

Update 8

]
®

l—‘!—-‘l—-‘b—‘l—'i—-‘l—‘!l—'l—'l—‘i—‘l—'b—"‘U
HFHOOAOUMUIUOUOWNDFHQ

—
NO O

1-13
1-13
1-14
1-15
1-15
1-15
1-16
1-17
1-18
1-19
1-20
1-20
1-21

NNNNN?NNNN
]

RO NNUOYVO
woo W

NN
[I |
=
< XX

2-20
2-22
2-23

String Passage = EXEC 1l4....c0000es
Time Scheduling - EXEC 12..
Swapping Control - EXEC 22.
Segment Load - EXEC 8......
Suspend - EXEC 7......
Completion - EXEC 6..

Program
Program
Program
Program
Program

Status EXEC Calls..'...........
Time Request - EXEC 1ll.......
25.0‘
Memory Size = EXEC 26...0c00
I/0 Status = EXEC 13...c00000
Class I/0 EXEC CallSeeeesesscacss

Partition Status

Class Read, Write,
Class I/0 Control

TI, RE,

- EXEC

and Write/Read

.

- EXEC 19..0000s
Class GET = EXEC 2liciicecsecces
System Class I/0 Consideration.
Executive Error MessageS.eeeeesss
Memory Protect Violations....
Dynamic Mapping Violations...
Dispatching Errors.e..eeeeee..
EX ErrorS.e.e.cieeeesscscccccas
Unexpected DM and MP Errors..

and RQ ErrorSeeeeeees

Track Error (Disc Parity)....
Parity ErrorsS..ceceececececsss
Other EXEC ErrorS.eeeceecessecees
Disc Allocation Error Messages.
Schedule Call Error Messages...
I/0 Call Error Cod€Seeecessans
Program Management Error Codes.
Logical Unit Error CodeS......
I/0 Error Message Format.......
Executive Halt Errors......
Error Routing.....eceeee..

Chapter 3
File Management Via FMP

Introduction......
FileSeeieesoneeens
File AccesS.ece.c...
CartridgeS..ecees..

Cartridge and File Directories........
File Security‘........."....l....'.‘.
Cartridges in the Session Environment.

o e o 0 0 00

oo 0 0 000

.

e o o 0

® e 0 000000 0 0 0

FMP CallSeeeeeseeocoscoccans
The Data Control Block....
Data Transfer..ceeceeccecess
FMP Call FormatSeeceeeeesee
Common ParameterS..eceeceees
IDCBuceecscscoesecacccns

IERR...o.o-oo...ou-0000000000000-0000

vi

INAM...0.00...oooooolo.ooooooo'.ooto

® o 00000000 00

.

® o 00 000 000

Update 8

.

©e o 00 00

® o o 00 0

.

.

.

3

2-28
2=31
2-34
2=3G
2-38
2-4v
2~43
2-43
2=-45
2=-47
2-49
2-53
2=-55
2-60
2-62
2-65
2-67
2-67
2-67
2-68
2-68
2-68
2-69A
2-69A
2-691
2=71
2=71
2-71
2=172
2-73
2=73
2=173
2-74
2=75

i
b= = = b b b b s 00 00 ON U s b b

IO D

L R O B |

WWWWwWwwWwwwwwWwwwww
!

!

IBUF...oo..o.oo.00-00..--0.0..oo.o.t0..0..000.00..0..0. 3-18

Optional Paralneters....o.oo.o0ooouoooooooo‘otooocooo.tooo 3-18

ISC.--o--o-ooooo.o‘000.0000.o.o.o.o.ocooooooo..o..o.-o. 3-18
ICR....‘CO...0.0.......’........I.......O...CO......0.. 3-19
IDCBZQ‘..O............Q....Q..O........Q.Q............. 3-20

FMP Call Description ConventionS..cesceeescccecscccscsess 3=20
File Definition FMP CallS.ceceoscocscscscassscsnsccccsssss 3=22
CREAT and ECREA CaAllSiceeceessccccsoosscscssocsccnsssssas 3=23
CRETS Calleceeeescosososcssscscscscsesnsssocsnsossnssscanse 3=29
OPEN and OPENF CallS.ceeeeccocscsccsccscccsssosccassosans 3-33
CLOSE and ECLOS CallSeeceeecoocscscoccscssosssscssssssccses 3—40
PURGE Call.iveeececocoossscocsososesosssossoscsasssesssssse 3-43
File ACCESS.cisesassesesscssssossssssesssssssscssscosssss 3—45
READF and EREAD CallS..cceeececscsascosscacsssssocssssosse 3—46
WRITF and EWRIT CallS..eseececococsccsscsscscscscscseacesacececs 3=52
File Positioning..eeeeeecesscsocsoscsscscscsossscccsssecss 3—506
LOCF and ELOCF CallS...ceseecscsscecscssossoscsssossscscsss 3=57
APOSN and EAPOS CallS..cecececoccscsssssoscscsscccccscccss 3-61
POSNT and EPOSN CallS.eseseesssscscsscsscscscsscsassosss 364
RWNDT CaAllS.ueeceasssesocssosscssessssssesssscsnssssssscs 3—068
Special Purpose FMP CallS..eeeccccescsssesscsssocssscssscse 3—69
FCONT Call.ucevecoesoscsscsecssossscasesssssscscsccsccscee 3—70
FSTAT Call.ceeeeesccssssescscccsasscsasosscsscscsssssasansee 3=73
IDCBS Calleceeecesosccccsoccocscssoscsscsssconssscccscscsssee 3=717
NAMF CAll.uceeoeoscscsoceossassscscosscssscscssccssscscsasossassse 3-78
POST Call.. 3"79
Examples Using FMP CallS.ceececcesscssccscscasscsessscssass 3-8l
FMP Error COdeS.. 3"87

Chapter 4
Program Segmentation

Introduction.eceeeeeceecescescccsceessossescsessosssocsnsacss 4
RTE FORTRAN-IV SegmentatioN.ceccceccescscoscscocsccssccocces 4=
FORTRAN-IV Segmentation Example..ccececcccccecscsccccsssss 4
RTE Assembler SegmentationN.c.ccccceccscccescccsscsssccccnes 4

Chapter 5
EMA Programming

INtEroductionN.eeeeeeceeeeeseosscccccccocscscooccscccsccsssoocsss
Extended Memory Area (EMA).:.ccececcccscososcoccosssssccssassse
Partition ConsiderationNS.cececcccceccsccccccccccssosocsccses
EMA Management SubroutineS..ccceceececcscsccscscsscssonss
SEMAP SuUbroutine..cceececsecccccoscscscscccscsccsscsscccncscss
+ERES SUDIroUtiNe.ceeeeeeeececccessecscossccsscssosnnsssss
«EMIO SUDrouUtine..e.eceeeececececscsccccsscosscscsncsoosssscsccs
MMAP SUDIOULINE. ceeeeeeeaososscosscccccccsccscscsossscccss

| [
PO -

w = O

U'|U'IU1L'J'IU1U'IU1U\

Update 8 vii

EMAS'I‘ Subroutine......l..............l........Q........
EMA Error MeSsSage SUMMALY..eeeeeeesccoccnaooscscsnscs

Chapter 6

RTE-IVB Library Subroutines

Introduction...eeeeeeeeeeesseessoecssssessonsssssnnasns
Calling Library SubroutinesS...ceeeeeeeseeeecennsnnns
Reentrant Subroutine Structure......ceeeeeecccecceces
Privileged Subroutine Structure.....eeeceeeececceecns
Memory Resident Library..cececceeeeccscscceccccccoocccss
Utility Subroutine StructuUre....ceeeeecccccoecccccnsns
System Library Subroutin€..eeceeececscecccosccccccnnes

REIOooo-onwooooooooo.oo.ocoooooo.oouoo-ooo;oooo..o

BINRY-.oooooooo.ooo.oooo.oo-ooooaoo.ooo-oooocooooo

RNRQ..o-ooono-oooo...oo.c.-oocoo.o.a.-ococoooo.-oo

LURQeeeeeeeeeeeoseeeeecccoccoscoososcososscccsssssscss
PARSE (SPARS) . euicetesesesesssnscasssososssscsnnnes
INPRS . eeeeeeeeoeoecsoecsscsccssccscscssosososssscsscas
$CVT3 (CNUMD,CNUMO), SCVT1 (KCVT)eeoeooeoosooanosos
ME S S .ttt teeeeieeeeeeeonseeaseosscososoosonssncscssnsas

COR.A, COR.BQ‘.O...I...I......‘...'0‘0......0.‘0.00

oDRCT......oo.a.ooocooooooo.ooot.oooooo.ooo.ooooo-.

.

F’l‘IMEooocooooboooooooooouocoocoooooooooooooo.loooao

GETS’P...O..OO...00.-..o..o..‘........l....l.0'..0.0

PRTN' PRTMQ.....'.........‘.Q.QQ.....'....'....'.'.

IFBRK.o.coonoooooto.coooo'oooaoooo.noooo.oooooooc‘oco..

e o o0

e o 0o 0

e o 0 0

IDGET..OOQ.O..QO....O..QO......‘............‘0......0.0

TMVAL.............ooooooo.oc‘ooo.oo.ooooooaooooooooo‘to

EQLU...O..00....0..........oo.0.0.00.00.00.0.0...0.00'.

TRMLU..O.......'......‘O...0'.0.....C..Q‘0.0....‘......

IFTTY....0..........0...Q...l..0......0..0‘.'0......'0.

LOGLU.Q...........C......00....‘l.....'t.....0......0..

LUTRU....ooooooo...oo00'0.....0.0..0..00.00ooo.oooooooa

LUSESQ....00.0.'.‘O...........00........00.0...........

GTERRoooooocooooo...ooo.0..0oouoo.oooooouo.coooottotooo

PTERR..O.....o..lt".o.o'o...0.00.'o..o'.‘...'.......o.

SESSNQOOD.oooooocoo.oococo..ocoooootooooo.oooo-.o.oooo.

ICAPS.....0......06.b.......l...............O...O..‘.O.

SYCON-o..oooo.oooc.cooo0000000000.-.oooo.oco.ooooao‘oc.

SEGLD....-..oooo.o...oo.o.-ccoooco.oooaoo.onooaooc..co‘

GTSCBQ.O...‘.0........'.l.........'...O..'.'.......O..O

LIMEMOO.l.l‘....O.Q0.0.....000.00.0..0...0..0'.0...000-

l SEGRTCQO.....0'.00.0...............000.0....'..0.0.0..0

DFCHI,FCHI,DFCIH,FCIH.Q.ooooooo..o.oooooo.-o-ooo...oooo

Appendix A
HP Character Set

viii

® 0 0 © 0 00600 000000000 00000000600000000000000so0

Update 8

et
w

[s))W) e We)Ne e Mo We e Je) i) e
|
H O N0 DD W
w

i
—
~

6-18
6-19
6-21
6-22
6-23
6-24
6-25
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45

Appendix B
System Communication Area and System Tables

System Communication Ar€a...eececeeccesscccscssscssosccsssssse
Program ID Segment...cceceececcccoscoscsscscescscscsccsscscssscscssccsce
ID Segment EXtENSiON.ceieeeeesecsscsccsoscscssosssscsssscconcs
Short ID Segment.cecececececossecsscossccssssoscssssscsssssccss
RTE-IVB System Disc LayoUt.eeeeeeececoecoscccssssscsccccccns
Table Area I and II Entry PointS.sececeecccccccccccccsansce

Appendix C
1/0 Tables and Processing

Equipment Table (EQT) eceeccecocasoccsossscsasocssscsesscsosccscs
Device Reference Table (DRT)eceececocecsscccscsosscsscecssos
Driver Mapping Table (DMT).ccceccecccccceccccscscssscscccscsss
Interrupt Table and Trap CellS..cceeececcccscscoscsscccssecs
Power Fail/Auto ResStart.ecececececosccsccscscscsccsossonsoscssccscse
Standard I/0 Request FloW..ceeeeeocececoscccscscsssssscsnsce

Appendix D
Record Formats

Source Record FOrmaAtieceeeeceascesoscesscsscsocasscsssssosncccscse
Relocatable and Absolute Record FormatS.eecececececoscesssscs
Absolute Tape FOrmat..cceeeecececssccsoscsccscscssocsscsocscscssscss
Disc File Record FOrmatS.eeeececesscscoscascscscscscscscscssnscesn
STIO Record FOrmat.eceeececsecscsccccscsscsssscsocsscscsocsscscsosss
Memory-Image Program File Format (TYPe 6)eccececcccccccccce

Appendix E
Differences In RTE Operating SySteMS .. cccccecoccscsccosccocscssocccoscs

Appendix F
PfogramTypes ® © 6 8 © 0 5 0 0 0 0 0 00 00 00 0 0 OO OO OO OO OO OO SO OSSO O POSOPS DS OOODS

Appendix G
Progmms'ates ® © & 0 0 6 0 0 0 0 0 0 0 0 0O O O OO OO O OO OO OO SO 000 00N e

Appendix H
DCB and Directory Formats
Data Control Block (DCB)...Q....Q........Q....O.......I..

Cartridge Directory FOrmat...cceeececeescscccccccsascosccncsscs
File Directory Format‘.............'..............0..‘...

Update 8

B-4
B-9
B-9
B-9
B-11

C-6
Cc-8
Cc-10
C-12
C-14

D-1
D-2
D-8
D-9
D-10
D-11

E-1

F-1

G-1

oo
[}
(S0 -]

ix

Appendix |
Memory Management and Related Tables

Address Translation.....'......l.........................
Logical Memory and Base Page...cceeeccescccccocsccscssscscs
Memory Allocation Table Entry..cecececececccsccsccoccscscssce

Appendix J
Session Monitor Tables

Session Control BloCk (SCB).iceecesessesccosossseccsssccnsscs
Session Switch Table (SST) and Configuration Table.......
Session Table RelationshipS...eeeeeeeececeecceccccosnnnns

Appendix K
Class 1/0 Application Examples
Appendix L
Resource Numbers and Logical Unit Lock Examples cescsccane
Appendix M
Schedule FMGR Programmatically

Glossa'y ® © 8 6 0 0 0 0 0 0 00 000600000000 0600000000000 0000000000000

lndex ® 6 0 0 0 0 0 0 9 0 0000 L0 0L 0L L SO 0L L 0O 0000000000000 000800000000

List Of lllustrations

Scheduling with Time=S1licing .seceeeeecsscesscsnsosns
Physical Memory AllocationS...ieeeecccessccoccccoces
Memory Protect Fence LocationS.i.eeeeceecsceoccccccns
EXEC 26 Parameter RelationshipS.ceececsccseecssssesns
Disc Cartridge Organization....ceeeeeeeececescocnens
Sequential Transfer Between Disc File and Buffers...
Data Transfer With Type 1 FileSieeeseteossscossnsons
Read Type 1 File When IL Greater Than 128.....¢¢c0..
Sample Write to Type 1 File.ieeseoeoseesooncosaansns
Segmented ProgramS..ceeeceeeescccscecssccoscscscccoscsscscs
Main Calling Segment.....ceeeeceseeccosccsscocscsnns
Segment Calling Segment.....cceeeeececccoccssoccsocns
Main To Segment JUMPS..eeececeosccesosscssscsoossosssss
EMA and MSEG Structure...ccceeceecccccocscssscsssncsnacs
Control Word Format (ICON).ceeeesecocscssoscsccsscnscas
ID Segment FOrmat..ceccececcceccesccscscccccsscsssccsssns
ID Segment EXtensSioN.scececcscsccecssoscccccccccsscs
RTE-IVB System Disc LayoOUt..eoeceecccccccccccccccsces
Equipment Table Entry Format.....ceeeceececeececcnns

NWWTAULDSDSEDWWWWWN -
i
FWNNHFRFRFFRFOBWNFOBWNHFFHWND -
[] (] []

LI D I |
e o o o o

Update 8

o
i
[N

K-1

GL-1

IN-1

| LI T L T R T S B I
WHOURHENAGOUIN U - D D
o DO W @

o

QT T ITONLE DL DBDWWWWWN - -
|

[I T Y U T TN TN J A O A N T N
e & o e 6 e o o o & & o ¢ o o o

RRULUUHHHHQDUODOOQOOOO

NHFEFMWNKHEDWNDHEFEFNDEFOOLA,WEN

[
>

[T T T A I T B
OO WNHFWNKH
e o o o o o o

= O
= X)

N
¢ o o

MOTWWWWWWWWWWwWwNNoNN

CONWD Word (EQT Entry Word 6) Expanded...ccecececesss C=6
Device Reference Table...cceseecescscsssesscscssesssss C=7
Device Reference Table Entry Format....ceeeeceeeeess C=8
Driver Mapping Table....cececsesssscccscscsscacsessecse C=9
Unbuffered EXEC Read Request FloW..eeeeoeesseesseaess C—16
Source Record FOrMAtSe.eeceescsessossossoccsccsscsssse D=2
Record FOrmatS..eeeecesesosasososossscscscsssssssseseasscse D=3
User Program State Diagram...ccescescececcssccccccsss G=3
Address Translation via Memory Mapping.cecececcecececeees I=2
RTE-IVB 32K Word Logical Memory Configurations...... I-4
Base Page StrUCtUr@...eceseescscccscssescccsssssssss L=5
Memory Allocation Table Entry Format...eccececeececeees I-6
SCBuveesessecsassscsssosssosssessoeassessesssasscssscee J—=2
Session Switch Table (SST)Formatececececcescscccssecss J—4
Configuration Table..eseescscecsceccscccsocscccssscscssse J=5
SCB CreatiONeecsessescscsscsescscssosssssssssssossccscscssce J=6
Class I/0 Multiple Terminal Input Example...cceesess K=3
Dispatching Input to Substasks for Processing....... K=6

List Of Tables

Summary of EXEC Calls 9, 10, 23, 24cccecescccsccccce 2=26
I/0 Status Word (ISTA1/ISTA2) Format.ceceeececceceecsesses 2=51
EQT Word 5 Status Table.eceecseccsccsscesoscsscssccssss 2=52
EXEC Call Error SUMMAILYeeecesesooscsessscsscscccscse 2=78
Categories of File TYPESeceececcscscscsossssccsccccces 3=2
FMP Call SUMMALYeseeeoscsscsscssossescssssssssccscsnse 3—12
Relation of Actual to Requested Packing Buffer Size. 3-17
OPENF DefaultS..cceeecccceoscscsscscsccssassasscsscsssss 3-36
Effect of IL Parameter in READF...cceccccocccccsccece 3—47
Effect of IL Parameter in WRITF..ceececscocccscscsces 3=53
Relationship Between NUR and IR..cccceccscecscsccecee 3—65
FCONT Function CodeS.ccececcecssocsccccsssccsscscsssssse 3—71
ISTAT Format Teeeeecessoscocscccccccssccsssssccsccsssecse 3—/5
ISTAT Format Il..ccececsoccccscscscoscscscccssccosnssssscce 3=76
FMP Error CodeS..ceeececcsscsscoscsscsccssscosssssascass 3=87
System Communications Area LocationS..ceccecceccccceces B=2
Interrupt Table ExampPle.cccccccccccosscsccccsoscscsessss C—1l
Summary of RTE=IVB Program TYPeS.eceessccsccscssccass F-1

Update 8

Chapter 1
General Description

Introduction

RTE-IVB is a disc based operating system that provides the
supervisory functions necessary to coordinate requests for, and
allocation of, system services and resources. Being a real-time
system, RTE-IVB processes all decision and scheduling tasks
internally unless overridden by user intervention. User requests for

system action can be made by a "call" from within a program or
interactively via an operator command.

As the major control element within the operating environment,
RTE-IVB provides the user with various services and automatically
handles the machine-related functions associated with each service.
The major services provided by* RTE-IVB are briefly summarized below:

* Executive Communication scheme that provides a communication link
between user-written programs and system services.

* Segmentation technique that allows a large program to be separated
into a main program and related segments, thereby allowing it to
execute in a memory partition smaller than its total size.

* Resource Management capabilities that allow cooperating
user-written programs to share system resources (files, 1I/0
devices, etc.).

* I/0 scheme which allows a program to continue executing while its
own I/0 requests are being processed.

* Program execution control that features multiprogramming (allows

several programs to be active concurrently) and time-slicing
(prevents compute intensive programs from dominating the CPU).

* Partitioned memory technique that takes advantage of the hardware

Dynamic Mapping System (DMS) to provide access to 2048k bytes of
physical memory.

* Extended Memory Area (EMA) that allows user-written programs to
access large data arrays; the size of the arrays being limited
only by the size of physical memory.

* QOperator interface that provides the user with the ability to
control system action via operator commands.

In addition to the features 1listed above that are inherent to
RTE-IVB, software modules are included with the operating system that

provides the user with additional capabilities. These features are
as follows:

General Description

FORTRAN~IV Compiler

RTE-IV Assembler

Interactive Relocating Loader
Interactive Editor

Debug Utility

Compile Utility

Compile and Load Utility
On-Line Generator

Disc Save/Restore Utility
Disc Backup and Update Utilities
System Status Utilities

File Management System
Spooling System

Session Monitor

File Merge Utility

Terminal Soft Keys Utility

* % % % % ¥ % * % ¥ ¥ % ¥ ¥ ¥ *

The features described above that relate to the programmatic control
of system action are described in later sections of this manual along
with background information on the RTE-IVB operating system. The
features of RTE-IVB that relate to the interactive control of system
action are described in the RTE-IVB Terminal User’s Reference Manual

and the appropriate subsystem manuals (see documentation map). For
information concerning the generation and configuring of the RTE-IVB

operating system, refer to the RTE-IVB On-Line Generator Manual or
obtain access to the RTE-IVB System Manager s Manual.

Multiprogramming and Timeslicing

RTE-IVB 1is a multiprogramming system that allows several programs to
be active concurrently; each program executes during the unused
central processor time of the others. Scheduling/dispatching modules
in RTE-IVB decide when to execute programs that are simultaneously
requesting system services and/or resources. The scheduling module
places programs into a scheduled list in order of their priority (the
highest priority program at the head of the list) and the dispatching
module initiates the execution of the highest priority program.
Programs with the same priority are scheduled on a
first-come-first-serve basis. When the executing program completes,
is terminated, or is suspended, it is removed from the scheduled list
and the dispatching module transfers control to the next program with
the highest priority. Note that the next program to be executed
could have the same priority as the program that was just removed
from the list.

The scheduled list can be logically divided into two areas by placing
a time-slicing boundary at a priority level. Programs with
priorities that place them above the boundary (higher priority, lower
numerically) are executed in the linear fashion described above.

General Description

Programs with priorities that place them below the boundary (lower
priority, higher numerically) are executed in a similiar fashion with
one exception; programs are assigned an execution interval when they

are scheduled. When a program exceeds its interval, it is moved
within its priority level in the scheduled list.

Each priority level below the time-slicing boundary can be considered
a queue. The program at the head of each priority queue represents
the next program of that priority to be executed. When the execution
of the program at the head of the queue is initiated, a maximum time
interval for execution (time quantum) is calculated by the operating
system. The program is allowed to execute until one of the following
occurs:

l. The program 1leaves the scheduled list (I/0 suspended, memory
suspended, etc.)

2. A higher priority program is ready to execute.

3. The program exceeds its time quantum.

If a program leaves the scheduled 1list, its time quantum is assumed
exhausted. When the program is again ready to execute, it is placed

at the end of the queue within its priority in the scheduled list and
a new time quantum is established.

If a higher priority program causes the suspension of a time-slicing
program, the remaining portion of the suspended program’s time
quantum 1is saved in its ID segment. When the suspended program is
scheduled to continue executing, the saved quantum value is restored.

wWhen a time-slicing program exceeds its time quantum, it is placed at
the end of the queue within its priority in the scheduled list and
control is transferred to the new head of the queue.

The time value used to calculate the quantum and the time-slicing
boundary are manipulated by the QU command described in the RTE-IVB
Terminal User s Reference Manual; the considerations for manipulating
them are discussed in the RTE-IVB System Manager’'s Manual. Figure
1-1 shows a diagram of scheduling with time-slicing.

Program Types

Programs within the RTE-IVB operating system are categorized
according to where they reside (memory- or disc-resident), what type
of memory partition they execute in, by the COMMON areas they have
access to, and whether or not they may be duplicated. A program’s
type can also indicate whether it is a main program, program segment,
or a subroutine (see Appendix F, "Program Types").

General Description

SCHEDULED LIST

PRIORITY
10
\
PRIORITY
20 \
PROGRAMS WITH SAME
PRIORITY ARE SCHEDULED
v “FIRST-COME-FIRST-SERVE"”
PRIORITY
N BOUNDARY SET AT LEVEL 40
Y
PRIORITY - PRIORITY . PRIORITY
50 50 - 60

f

Y

PRIORITY \
50 PROGRAMS WITH SAME

PRIORITY ARE SCHEDULED
WITH TIMESLICING

|
|
I
I
|
I
|
|
I
I
I
I
|
I
I
I
|
|
|
I 20
|
I
I
I
|
|
|
|
|
I
|
I
I
I
|
I
I
I
|
I

Figure 1-1. Scheduling with Time-Slicing

A program’s type is user-defined in the program definition statement
(PROGRAM statement in FORTRAN, NAM statement in Assembly Language) or
is assigned by the user when the program is 1loaded. If no type

parameter is specified, a default value is determined and assigned by
the loader or generator.

A program’s type, along with other necessary information, is

maintained by the system in the program’s ID segment (see Appendix B,
"ID Segment Format").

1-4

General Description

Memory Management

The RTE-IVB operating system is written to take advantage of the
hardware Dynamic Mapping System (DMS) available with the HP/1000
computers. The cooperation between the software operating system and
the hardware mapping system allows access to 1024K words of physical
memory.

The basic addressing space of the HP/1000 computer is 32,768 words
(32K) as defined by the 15-bit address length used by the CPU. This
is referred to as logical memory. The amount of memory actually
installed in the computer system is referred to as physical memory.
The DMS maps the 32K words of physical memory into logical memory by
translating the 15-bit address through "memory maps".

Memory Maps

The page pointers contained in the map registers that comprise the
memory maps are loaded by software modules within the operating
system. Each map is configured to represent the 32 pages of physical
memory (not necessarily contiguous) that contain the tables, buffers,
data, program code, etc., necessary to perform specific processing
tasks. Since there are four maps, four different 32 page sections of
physical memory can be described simultaneously, with only one map

being enabled at a time to indicate the section of memory currently
in use. The maps are altered by the operating system to reflect
dynamic changes in the operating environment, i.e., when a program is
scheduled to execute, a map has to be configured to describe the
physical memory pages it requires (known as the program’s logical
address space).

The four memory maps are classified by the type of processing tasks
they are associated with. The maps are comprised of the following:

* System Map ---The System Map describes the logical address space
associated with the RTE-IVB operating system and its base page,
COMMON, Subsystem Global Area, Table Area I and 1II, driver
partition, System Driver Area (SDA), and System Available Memory
(SAM) . The system map is loaded during system initialization and

is changed only to map in different driver partitions. Since the
RTE-IVB operating system handles all interrupt processing, the

system map is automatically enabled whenever an interrupt occurs.

* User Map ---The User Map 1is associated with each disc resident
program. It 1is a unique set of pages that describe the logical
address space containing the program’s code, the program’s base
page, Table Area I, driver partition, and optionally, Table Area
I1, System Driver Area, and COMMON.

1-5

General Description

All memory resident programs use a common set of pages that define
the memory occupied by the memory resident program and its base
page, the Memory Resident Library, Table Area I, driver partition,
COMMON, and optionally, Table Area II and System Driver Area.

Each time a new memory or disc resident program is dispatched, the
system reloads the User Map with the appropriate set of pages.

» Port Map A and Port Map B The Port maps are associated with DCPC
transfers. DCPC transfers are software assignable direct data
paths between memory and a high speed peripheral device.

This function 1is provided by the Dual Channel Port Controller
(DCPC) . There are two DCPC channels, each of which may be
assigned to operate with an 1I/0 device. Port A Map is
automatically enabled when a transfer occurs on DCPC channel 1,
and Port B Map is enabled when a DCPC channel 2 transfer occurs.

DCPC transfers are accomplished by "stealing" CPU cycles instead

of interrupting the CPU and transfering to an 1/0 service routine.
Having separate maps associated with DCPC transfers, and having

the transfer implemented by "cycle-stealing", facilitates
multiprogramming since one program can be executing via the User
Map while a DCPC transfer is in progress on another programs data
buffer.

The Port Maps are reloaded by the system each time a DCPC channel
is assigned for an I/0 request. The Port Maps will be the same as
the System Map or the User Map associated with the program being
serviced, depending on the type of request. Once initiated, the
DCPC transfer 1is transparent to the user since the currently
enabled map (System or User) shares the CPU with the Port Maps,
i.e., during a given instruction cycle (comprised of several CPU
cycles) the System or User Map is enabled alternately with the
Port Map.

Physical Memory

At generation time, the user plans physical memory allocations and
loads the system components and drivers for the most efficient
configuration. The wuser determines the size of System Available
Memory (SAM), the number and size of each partition, the size of
COMMON, and the size and composition of the resident library and
memory resident program area. See the RTE-IVB On-Line Generator
Manual and the RTE-IVB System Manager s Manual for a description of
the procedures used to configure physical memory.

USER PARTITION M(1<M<64)

USER PARTITION 1(+ USER BP)

SAM EXTENSION

MEMORY RESIDENT PROGRAMS

RESIDENT LIBRARY

MEMORY RESIDENT BASE PAGE

DRIVER PARTITION N

DRIVER PARTITION 2

SYSTEM AVAILABLE MEMORY

OPERATING SYSTEM

TABLE AREA 11

SYSTEM DRIVER AREA

BACKGROUND

SUBSYSTEM GLOBAL AREA

DRIVER PARTITION 1

SYSTEM AVAILABLE MEMORY

TABLE AREA |

SYSTEM BASE PAGE

Figure

General Description

COMMON

1-2. Physical Memory Allocations

General Description

The
Con

*

1-8

following 1is a brief description of the Physical Memory
figuration shown in Figure 1-2:

System Base Page - Contains system communication area and is used
by the system to define request parameters, I/0 tables, scheduling
lists, pointers, operating parameters, memory bounds, etc. System
links and trap cells are also located on the system base page.

Base page 1links for the memory resident 1library and memory
resident programs are only in the memory resident base page and

are not accessible by disc resident programs. The Table Areas,
SSGa, driver 1links, and the system communication area are
accessible to all programs. Partition base pages, used for disc
resident program links, are described below with partitions. For
all practical purposes, the memory resident programs are in a
single partition separate (protected) from all other partitions.

Table Area I - Contains the Equipment Table entries, Driver
Mapping Table, Device Reference Table, 1Interrupt Table, the Disc
Track Map Table, some system and HP subsystem entry points, and
all Type 15 modules.

Driver Partition - An area, established at generation time
containing one or more drivers. All driver partitions are the same
length, and only one driver partition 1is included in a 32K-word
address space at any one point in time. The minimum partition
size 1is two pages but may be increased when the system is
generated.

System Driver Area - An area for privileged drivers, large
drivers, or drivers that do their own mapping. The drivers that go
into this area are specified during the EQT definition phase of
system generation. The System Driver Area (SDA) is included in the
logical address space of both the system and Type 2 and 3
programs. It is included in the memory resident program area (if
requested) at generation time.

System - Contains the absolute code of the Type 0 system modules
(i.e., RTIOC, SCHED, EXEC, etc.).

Memory Resident Library - Contains the reentrant or privileged
library routines (Type 6) that are used by the memory resident
programs, or which are force loaded at generation time (Type 14).

It 1is accessible only by memory resident programs. All routines
loaded into the resident 1library also go into the relocatable

library for appending to disc resident programs that require them.

General Description

* COMMON - This area is divided into three subareas: the Subsystem
Global Area (SSGA), the Real-time COMMON area, and the Background
COMMON area. SSGA is used by Hewlett-Packard software subsystems
for buffering and communications. The Real-time and Background
sub-areas (system COMMON) are reserved for user-written programs
that declare COMMON. All programs relocated during generation time
that declare COMMON will reference this system COMMON. Programs
relocated on-line with LOADR may choose to reference system COMMON
or use local COMMON.

* Memory Resident Programs - This area contains all Type 1 programs
that were relocated during generation.

* Table Area II - Contains the Keyword Table, ID segments, ID
Segment Extensions, Class Table, RN Table, Batch LU Switch Table,
Memory Resident Map, and a number of entry points for system
pointers. This area has entry points that are created by the
generator and others that are defined by Type 13 modules.

* gystem Available Memory - This is a temporary storage area used by
the system for buffered, Class 1I1/0, reentrant I1/0, and parameter
string passing.

* Ppartition -~ This 1is an area established by the user for a disc

resident program to execute in. Each partition has its own base
page that describes the linkages for the program running in the
partition. Up to 64 partitions are allowed, within the constraints
of available physical memory.

COMMON Areas

The real-time and background COMMON, along with Subsystem Global
Area, occupy a contiguous area in memory and are treated as a single
group for mapping purposes (refer to Figure 1-2). The use of COMMON
is optional on a program basis, that 1is, any program may use
real-time COMMON, background COMMON or no COMMON. If the program

declares COMMON and the user chooses not to use local COMMON, both
COMMON areas and the Subsystem Global Area will be included in the

User Map. If a large background program does not use COMMON, it will

not be included in the User Mag, providing the user with a larger
program area in the 32K-words of logical address space.

REAL-TIME AND BACKGROUND COMMON. If a program declares at least one
word of COMMON, the use of real-time or background COMMON is selected
by program type at generation or parameters with the on-line loader.
Program types are summarized in Appendix F.

These system COMMON areas are not to be confused with the local
COMMON area that may be specified for programs loaded on-line. The
system COMMON areas are sharable by programs operating in different
partitions, whereas the local COMMON area is appended to the program
(i.e., it will be in its partition) and is accessible only to that
program, its subroutines and segments.

General Description

SUBSYSTEM GLOBAL AREA. The Subsystem Global Area consists of all
Type 30 modules input to the generator. Accessed by entry point
(using EXT statements) rather than COMMON declarations, SSGA provides
multiple communication and buffer areas for Hewlett-Packard
subsystems. SSGA access is enabled by program type at generation or
through special parameters during on-line 1loading. Programs
authorized for SSGA access have the COMMON area included in their
maps and have the memory protect fence set below SSGA.

Memory Protection

Memory protection is provided by a combination of the Dynamic Mapping
System and the Memory Protect Fence. DMS provides protection between
program partitions by not allowing a program to access memory
locations that are not defined by its memory map. The Memory Protect
Fence prevents a program from addressing memory locations below a
given address within its memory map.

A combination of DMS and the Memory Protect Fence, provides
protection for the driver partition, Table Area I, and (optionally)
System Driver Area, Table Area II, and COMMON by preventing stores
and jumps to locations below a specified address.

The Memory Protect Fence indicates the 1logical address space where
addresses are compared to the fence before translation. If a disc
resident program does not use any of the COMMON areas, the Memory
Protect Fence 1is set at the bottom of the program area. Similarly,
for a memory resident program not using COMMON, the Memory Protect
Fence is set at the base of the memory resident area.

For programs wusing COMMON, the memory mapped includes all COMMON
areas and the Memory Protect Fence is set at one of three possible
locations, dependingy on the portion of COMMON being used. A hierarchy
of prctection 1is established within COMMON due to their physical
locations. Background CCMMON is the least protected (any program
using any COMMON can modify it) and SSGA is the most protected (only
programs authorized for SSGA access can modify it). Figure 1-3
expands the COMMON area and shows these three fence settings as A, B,
and C respectively.

Partitions

Partitions are blocks of physical memory reserved for disc resident
programs. Program partitions are defined during system generation
and may be redefined during the reconfiguration process at system
boot-up (see RTE-IVB System Manager s Manuel).

1-10

General Description

| |
| |
| |
| |
| |
| |
| |
[PAGE — b _ l
: BOUNDARY | _ ~ —~— — T ————— ﬁ :
| BACKGROUND (BG) '
| COMMON |
| |
| c |
I REAL-TIME (RT) HIGHER l
| COMMON PHYSICAL |
l MEMORY I

8 |
‘ SUBSYSTEM GLOBAL .
: bAGE AREA (SSGA) I
| BOUNDARY > A |
| |
| I
I |
| |
| |
| |
| |

- - - - —-—— - —— - ——— - ——_— - - - —-——— —— - ———-— - - - - — - —— - - _—— - - - - -— -

Figure 1-3. “emory Protect Fence Locations

The number of partitions depends on the amount of available physical
memory and the size of the defined partitions., Partition types can be
specified as a mixture of real-time and background, all real-time, or
all background. A program can be assigned at load time to run in any
partition large enough to accommodate it. Several programs can be
assigned to the same partition, but only one program can run in that
partition at a time. If a program is not assigned to a partition,
then by default, real-time programs will run in real-time partitions,
background programs in background partitions, and EMA programs will
run in Mother partitions. If only one type of partition is defined,
all programs will run in that type partition.

dother partitions are large partitions (defined by linking Real-Time
or Background partitions) designed to execute EMA programs (see
Cnapter 5, "“EMA Programming"”). When a mother partition is not in
use, its subpartitions may be used by other programs.

General Description

Input/Output Processing

In the RTE-IVB operating system, centralized control and logical
referencing of 1I/0 operations effect simple, device-independent
programming. All I/0 and interrupt processing is controlled by the
operating system with the single exception of privileged interrupts
(privileged interrupts circumvent the system for faster response
time).

Requests for I/0 services are made by EXEC routine calls coded into
the <calling program. The EXEC calls specify the type of transfer
(Read, Write, Control) and the desired device. I/0 requests from a
particular program are queued to the controller’s I/O list according

to the calling program’s priority. Automatic buffering for write
operations is provided if specified at generation.

In addition to the standard EXEC 1/0 scheduling processes described
above, there are a number of other I/0 functions available that can
improve system performance in a multiprogramming environment:

* Dpevice Time-Out -- sets a time-out value for a device to prevent
indefinite program suspension because of a malfunctioning device.

* I1/0 Buffering -- automatic buffering on slower devices allows a
calling program to initiate an output operation (only) without
waiting for completion before resuming execution. An input
without wait operation is a function of Class I/0O (see below).

* Reentrant I/O -- allows a disc resident program to be swapped out
of a memory partition and into disc storage when it is suspended
for 1,/0. This permits any program to use the partition. The
previous status of the swapped program is maintained so that when
the reentrant I/0 request has completed, and it once again
achieves highest priority on the scheduled 1list, it can resume
execution and I/0 processing at the point of interruption.

* Logical Unit Lock == assigns a logical unit exclusively to a

specific program, thus preventing any other program from accessing
it until it is unlocked.

1-12

General Description

* Class 1/0 -- a special set of I/0 calls that provide a method for
buffering data between two or more programs (mailbox I/0) or
between programs and I1/0 devices. Class I/0 permits a program to
continue execution concurrently with 1its own 1I/0 (I/O without
wait).

Hardware Considerations

For a full understanding of the software I/0 characteristics of the
RTE-IVB operating system described in this manual, the user should be
familiar with two hardware-related terms:

l. I/0 Controller - a combination of I/0 card, cable and, for some
devices, a controller box used to control one or more I/O devices

associated with a computer I/0 select code. (Select code refers
to a physical card slot in the backplane of the computer.)

2. 1/0 Device - a physical unit (or portion of a unit) identified in
the operating system by means of an Equipment Table (EQT) entry
and a subchannel assignment.

Each 1I/0 device 1is interfaced to the computer through an I/0
controller that 1is associated with one of the computer I/0O select
codes. Controller Interrupts are directed to specific computer memory
locations based on their select codes.

For details on the hardware I/0 organization, consult the appropriate
computer reference manual (see documentation map).

Logical Unit Numbers

Logical Unit numbers provide RTE users with the capability of
logically addressing the physical devices defined by the Equipment
Table. Logical Unit numbers are used by executing programs to specify
which I/0 device requests are to be directed to. 1In an I/O EXEC
call, the program simply specifies an LU number and does not need to
know which physical device or which 1I/0 controller handles the
transfer.

An LU 1is associated with an EQT entry and a subchannel. Some I/0
devices have EQT entries with one subchannel designation (i.e., line
printers) and are referenced by a single LU number. Other devices
(disc drives and CRT terminals) have EQT entries with several
subchannel designations, with an LU assignment for each subchannel.
when a user makes an I/0 request specifying an LU number, he can be
addressing a total device (line printer) or a subsection of a device
(left CTU of a terminal).

1-13

General Description

Logical Unit numbers are decimal integers that range from 1 to 254,

LU numbers greater than 63 may only be accessed when operating under
Session Monitor control. The functions of Logical Units 0 through 6

are predefined in the RTE-IVB system as follows (could be system or
session LUs):

0 -- bit bucket (null device; no entry in Device Reference
Table)

1 -- system console

2 -- reserved for system (system disc subchannel)

3 -- reserved for system (auxiliary disc subchannel)
4 -~ standard output device

5 -- standard input device

6 -- standard list device

Logical Unit 8 is recommended for the magnetic tape device if one is
present on the system. Peripheral disc subchannels must be assigned
logical units greater than 6 and less than 64. If the Session Monitor
is wused, terminal LUs must be defined between 6 and 99. Additional
logical wunits may be assigned for any function desired. On-line
changes to existing LU assignments can be made by using the LU
operator command described in the RTE-IVB Terminal User’'s Reference
Manual.

Power Fail

Power Fail 1is an optional hardware/software feature that saves all
system status and context up to the point at which the computer
signals a power failure. If generated into the system, the Power
Fail routine performs the following steps:

1. When power fails, it saves all registers, stops DCPC transfers
and saves maps. If not enough time was available, Power Fail
issues a HLT 4.

2. When power comes on, it restarts the real-time clock, restores

registers and maps, sets up a time-out entry (TO) back to i;s EQT
entry, and then returns to the Power Fail interrupt location so

that it can do more recovery work after the power fail system and
operating system are reenabled.

1-14

General Description

1/0 Controller Time-Out

Each 1I/0 controller may have a time-out clock to prevent indefinite
I/0 suspension. Indefinite I/0 suspension can occur when a program
initiates I/0 and the device's controller fails to return a flag
(possible hardware malfunction or 1improper program encoding).
Without the controller time-out, the program that made the I/0 call
would remain in I/O0 suspension indefinitely, waiting for the
"operation done" indication from the device's controller.

Privileged Interrupt Processing

RTE-IVB allows interrupts from specified controllers to bypass the
standard system I/O processing modules and be processed instead by
special routines. These I/0O operations are therefore "privileged".
Privileged 1interrupt processing 1is established for time-critical
tasks such as power-fail processing or processing communication over
a modem link.

I/0 controller interrupts that are allowed to be processed as
privileged are established at generation time. A special I/O card is
placed in the backplane of the computer to physically separate the
privileged interrupt controllers from the standard system-processed
controllers. The location of the "privileged-fence" card (if
present) 1is stored in the System Base Page. Privileged controllers
are 1located below the fence (higher priority) and nonprivileged
controllers are located above fence (lower priority).

When a privileged interrupt occurs, the privileged fence card holds
off nonprivileged interrupts. The system operates in the
"hold-off-interrupt"” (not interrupt-disabled) state until the
privileged interrupt has been processed.

The hold-off-interrupt state does not disable the interrupt system.
It allows a higher priority privileged interrupt to interrupt a lower
priority privileged interrupt. A nonprivileged interrupt is not
allowed to interrupt a privileged interrupt. For more information on
privileged driver characteristics, see the RTE-IVB Driver Writing
Reference Manual.

Resource Management

The RTE-IVB operating system allows cooperating programs to manage
common system resources. A resource is defined to be any element
within the RTE-IVB environment that can be accessed by a user's
program, e.g., an I/0 device, a file, a program, or a subroutine.
Cooperation between programs is established by coding them to take
advantage of a utility subroutine (RNRQ) which allocates,
deallocates, 1locks, and unlocks an arbitrary identification number
known as a Resource Number (RN).

1-15

General Description

Within the cooperating programs, the RN is loqically related to a
particular resource by the statement stucture that comprises each
program. When a program seeks exclusive access to a resource, it
requests the system to lock the related RN, (The request is qranted
only 1if no other program has already 1locked the RN; otherwise, the
program is suspended until the RN is unlocked.) When it is finished
with the resource, the program requests the system to unlock the RN
so that other programs can lock it.

An RN 1is not physically assigned to any one resource. The logical
association between the RN and a resource is accomplished only by the
context of the statements within the program using the RN. The RN is
known to the system but the resource with which it is associated is
not; therefore, all cooperating programs must Aagree on which RN is
associated with which resource. The use of resource numbers is
described in Chapter 6 of this manual.

Session Monitor

If the appropriate software modules (see the RTE-IVR System Manaqer's
Manual) are included at generation time, the RTE-IVB operatina system
can be configured to provide controlled access to system services and
resources by multiple users.

With the Session Monitor configured into the system, the user is
required to "log on" to a station (terminal) wusing an account ID
assigned to him by the system manager. At system initialization, the
system manager sets up an account file on disc which describes the
I/0 devices and the command capabilities assiqgned to each account 1IN,
When a user has successfully logged on, a Session Contrnl Rlock (SCB)
is established for his "session" using information taken from the
account file. The Log-on Processor provides the session user with a
copy of FMGR, and each command entered is checked to verify that the
user has the capability to use the command as specified in his SCB.

The I/0 devices that the session user has access to must he defined
in a section of his SCB known as the Session Switch Table (SST). ‘The
SST entries are taken from the session user's specific account file
entry (LUs associated with the user's ID) and from a table in the
account file <common to all users known as the Confiquration Table
(LUs associated with each session station). The function of the SST
is to link the session LUs on which a user makes an I/0 request, to
the system LUs that the I/O0 request will actually be directed to.
When the user makes an I/0 request, his SST is searched for the LU
specified in the request. If the LU is found, it is switched to the
associated system LU and the request is processed. If the requested
LU is not found, an error message is returned, indicating that the LU
is not defined for the user's session. The SST therefore defines the
system I/0 devices that the session user has access to.

1-16 Update 6

General Description

When operating in the session environment, access to disc cartridges
is controlled by identifying them as belonging to a particular user
or group of users. Disc cartridges can be mounted as:

* Private cartridges - allows Read/Write access only by the session
user who mounted it.

* Group cartridges - allows Read/Write access only by members of the
group that the cartridge is mounted to.

* System cartridges (LU2 and LU3) - allows Read/Write access by the
system manager and non-session programs, read-only access by

session users. Can only be mounted or dismounted by system
manager.

* gystem cartridges (global) - allows Read/Write access by any
system user. Can only be mounted or dismounted by system manager.

Note that the system manager has access to all cartridges.

within the account file is a table (set up by system manager) that
indicates disc LUs that are available to session users (Spare Disc
Pool). If a session user wishes to mount a spare cartridge, and has
the capability to do so, a disc can be allocated from the pool (a
"working" copy of the Free Disc Pool maintained in memory) and an
entry 1is made in his SST indicating that he has access to that
cartridge. The entry in the disc pool is also flagged indicating the
disc is allocated.

Disc cartridges are mounted and dismounted via operator commands
discussed in the RTE-IVB Terminal User’'s Reference Manual. The
formats of the session related tables are shown in Appendix J.

Language Support

The 1language translators available for user program development in
the RTE-IVB operating environment are briefly described below. For
further information on these 1languages, refer to the appropriate
reference manual.

* RTE FORTRAN IV---a problem oriented programming language that is
translated by a compiler. The FORTRAN 1V compiler executes in RTE
and accepts source programs from either an input device or FMGR
file. The resultant relocatable okbject programs and listed output
files are stored in FMGR files or output to specified devices. For
further information, see the RTE FORTRAN-IV Programmer s Reference
Manual.

General Description

RTE~IV ASSEMBLER---a machine-oriented programming language. Source
programs written in this language are accepted ky the Assembler
from either input devices or disc files and translated into

absolute or relocatable object programs. Absolute code is output
in binary records suitable for execution on HP CPUs. For further
information, see the RTE-IVB Assembler Reference Manual.

* RTE MICRO-ASSEMBLER---part of an optional support package for
on-line users of special microprogrammed instructions. The
Micro-Assembler translates source code into object microprograms.
For further information, see the Micro-Assembler Reference Manual.

* REAL-TIME BASIC/1000D---an optional, conversational programming
language that 1is easily learned, even by users without previous
programming experience. Each statement entered by the user is

immediately checked for <correct syntax by the Real-Time BASIC

Interpreter. NO separate compilations or assembly operations are
involved. A partly completed program can be run at any time to

confirm that it executes as the user intended. For further
information, see the Multi-User Real-Time BASIC Reference Manual.

Executive Communication

EXEC calls are the line of communication between an executing program
and system services. The required calls are coded into a program
during its development phase. The calls have a structured format plus
a number of parameter options that further define the specific
operation to be performed. '

The following 1is a partial list of system services available to an
executing program via calls to the EXEC processor:

* Perform input and output operations
* Allocate and release disc space

* Terminate or suspend itself

* Load its segment

* Schedule other programs

* Recover scheduling strings

* Obtain the time of day

* Time-schedule program execution

* Obtain status information on partitions

See Chapter 2 of this manual for complete descriptions and format
considerations associated with EXEC calls.

1-18

General Description

File Management System

The File Management Package (FMP) allows the user to manipulate I/O
devices and files. The wuser interface to the FMP can be either
interactive (using FMGR commands described in the RTE-IVB Terminal
User’s Reference Manual) or programmatic, (using FMP calls described
in Chapter 3 of this manual).

The FMP library contains routines that are called from user programs
and used to manipulate disc and non-disc files. Using calls to these

routines, the user can create, access, purge, and obtain the status
of files.

Files are classified according to the record format within the file
and the type of data the system expects to find in each record. A
file’s type 1is defined when it is created and this information is
placed in 1its file directory entry. When a file is accessed, this
information is used by FMP to determine the files characteristics and

initiate the appropriate action as specified by the type of file it
is manipulating.

The wuser must also be aware of file types. Certain files are

formatted to facilitate random access (fixed-length records), and
others are formatted for sequential access (variable-length records).

User-written programs should be coded to recognize and take advantage
of a file’s characteristics if efficient file manipulation is to be
accomplished.

A file can contain up to (2**31)-~1 records and can have a total size
up to 32767 X 128 blocks (1 block = 256 bytes). For files with
fixed-length records, the file size is defined at creation and cannot

be expanded. For files with variable-length records the base file
size is defined at creation and the file is extendable as needed.

The following is a summary list of the services available to user
programs via FMP calls:

* File creation (disc file only)

* Opening files for specific modes of access.

* Read and write access to files.

* Positioning to records within a file.

* Closing files to access.

* Purging files from the system.

* Obtain position and status information on files.
* Renaming of files.

* Obtain disc cartridge list.

General Description

Refer to Chapter 3 of this manual for complete description and format
considerations associated with FMP calls.

System Library

The System Library, included with the RTE-IVB Operating System, is a
collection of relocatable routines that can be used to interface user
programs with system services. some of the important services
available with RTE-IVB are implemented by calling these routines.
For example:

* EMA programming
* Reentrant I/0 processing
* Resource management

In addition, the System Library contains various general purpose

routines that perform convenient services for the programmer. These
services include:

* Data conversion and string manipulation
* gSystem status query
* Gession environment related services

For more details on the System Library routines, refer to Chapter 6
of this manual.

Spooling System

The Spooling System operates in conjunction with the File Management
System to provide session input and output spooling, batch job
processing with spooling or, through user program calls, to provide
programmatic spooling without batch processing. Spooling means that
jobs or data are placed on disc files for input and data is sent to
disc for output. This allows input and output to be performed
independently of each other and of job processing. Spooling allows
programs to be processed without having to wait for completion of
input from or output to slow devices. The entire spool process can
proceed automatically with virtually no user intervention, or it may
be directly controlled during its various phases.

Spooling can be used to increase the throughput of a job stream or
program that is limited by the idle time of slow peripheral devices.
It does this by allowing programs to perform I/O to disc files rather

than to the slower peripheral devices. The system then manages the
I/0 between the disc files and the peripheral devices to assure that

all I1/0 reaches its proper destination.

1-20

General Description

The Spooling System provides the following capabilities:

- oOpens and closes the disc files known as spool files; after close,
optionally writes the file contents to a user-selected non-disc
device for output.

- Keeps a record of the current status of all jobs and spool files
in the system.

- Translates non-disc device references in program 1I/0 calls to
references to spool files.

For details on the interactive and programmatic services provided by

the Spooling System, refer to the RTE-IVB Batch and Spooling
Reference Manual.

System Utility Programs

Standard system utilities are on-line programs that run under the
RTE-IVB Operating System and are called by the user to perform
various program preparation, system status and housekeeping
processes. The presence of any utility program in the system is
optional, depending upon site-specific requirements.

The following brief descriptions of the utilities available with
RTE-IVB are intended to serve as an introduciton. For more details,

refer to the RTE-IVB Terminal User’s Reference Manual or the RTE-IVB
System Manager s Manual.

* Interactive Editor (EDITR)---The 1Interactive Editor (EDITR) is
used to create and edit ASCII files. EDITR can operate in

interactive mode (accepts commands from a keyboard device) batch
mode (accepts commands from a job command file), or from a user

command file spooled via the SL command.

* Compile Utility (COMPL)---The compile program enables the user to

invoke any of the compilers or the assembler. The utility will
select the appropriate compiler or assembler by reading the

control statement (first statement required in the program).

Optionally, the programmer can specify a new control statement
when running the compiler.

* Relocating Loader (LOADR)---The Relocating Loader program accepts
relocatable programs and outputs absolute 1load modules 1in
conformance with loader control parameter options specified by the
user. Other command parameters cause the 1loader to list system
status information; i.e., currently available programs; or purge
unwanted, permanently loaded programs from the system.

General Description

* Compile and Load Utility (CLOAD)---CLOAD performs a composite
function. It invokes the appropriate source translator (as COMPL
does) and inputs the relocatable results to the loader (LOADR) for
the creation of an executable memory-image program.

* On-Line Generator (RT4GN)---The On-Line Generator permits use of
an existing RTE-IVB System to configure a new RTE-IVB system
according to user specifications. Generation can be directed from
an answer file, logical unit or operator console.

* Disc Backup---The Disc Backup programs can be used either on-line
or off-line to transfer data from disc to magnetic tape or
vice-versa, copy data from disc to disc, verify successful
transfer or copy operation, and to initialize a disc cartridge.

* Disc Update---The Disc Update process can be used to replace disc
cartridge files with files stored on an HP minicartridge tape.
The primary purpose is to update master software discs with either
HP software distributed on minicartridges or user-written program
modifications.

* System Status Program (WHZAT)---The WHZAT program provides status
information regarding the current system environment. Two
different types of information can be displayed: a list of all
active programs and their current status, or a list of all
partitions with their sizes and current status (occupied or
non-occupied).

* File Merge Utility (MERGE)=---The Merge utility provides a quick
and simple way for file libraries to be constructed. Taking its
input from a command file or interactively from a terminal, the
Merge utility concatenates files to a destination file, creating a
new file if none exists.

* Save/Restore Utility (WRITT, READT)---The disc Save/Restore
utility allows the user to save and restore peripheral disc
cartridges through the use of magnetic tape. Saving user files or
cartridges on mag tape is accomplished through the WRITT program
and restoring them to the system is accomplished through the READT
program.

1-22

General Description

Interactive Debugger (DBUGR)---The DEBUGR Subroutine can be
appended to a user program through use of the Relocating Loader.
It can then aid the user in checking for 1logical errors in a
program through interactive control commands. Debugging 1is
performed at the Assembly Language 1level. Refer to the DBUGR
Reference Manual for a complete description of all DEBUGR
functions,

Soft Key Programs (KEYS and KYDMP)---The KEYS and KYDMP programs
are used to create user-defined command sets for programming the
soft keys on the HP 2645A/48A Display Station. Soft Keys provide
the capability to enter entire sequences of commands with a single
key stroke. The advantages are speed of entry and a significant
reduction in operator errors during terminal entry sessions.

Track Assignment Table Log Program (LGTAT)---The LGTAT program

logs and displays the status of the system and auxiliary (only)
disc tracks.

Chapter 2
Executive Communication

Introduction

An executing program may request various system services via a call
to the EXEC processor, specifying the request in a parameter string.
Initiation of the call causes a memory protect violation interrupt
(enaples the System Map) and transfers control to the EXEC module.
The EXEC module determines the type of request from the parameter
string and initiates processing if the request was legally specified.
A summary of the services available to the user via EXEC calls is
shown below in the order of their presentation:

* Standard 1/0

* Disc Track Management
* Program Management

* System Status

* Class I/0

EXEC Call Formats

In RTE FORTRAN-IV, EXEC calls are coded as either function or
subroutine call statements. In RTE Assembly Language, EXEC calls are
coded as JSB EXEC, followed by a series of parameter definitions. For
any FORTRAN call statement, the object code generated is eguivalent
to the corresponding Assembly Language object code.

The discussion that follows shows the general formats used to code
EXEC calls into Assembly Language and FORTRAN-IV programs. After
each general format is an example of its use. Each example shows the
same action being initiated, e.g., reading 10 words from LU 5 and
placing them into the first 10 words of a 100 word buffer.

Exe

cutive Communication

- - - - ——— - - - W P P W = - -— - — - - - —-— - ——— -~ =

Assembly Language Format:

EXT EXEC Link calling program to EXEC module,

JSB EXEC Transfer control to EXEC module.

DEF RTN Define return point from EXEC.
DEF P1 Define address of first parameter.
DéF Pn Define address of n-th parameter.
RTN : Continue execution of program.
Pl défine parameter value,
Pn define parameter value.
Example:

EXT EXEC
JSB EXEC
DEF NSI

DEF ICODE
DEF ICNWD
DEF IBUFF

DEF ILEN
NSI :
ICODE DEC 1 Request Code Word. 1 = Read.
ICNWD DEC 5 Control word. LU = 5.
IBUFF BSS 100 100 word buffer where data is placed.
ILEN DEC 10 10 words are to be read.

3
.

The parameters (Pl-Pn) defined in an Assembly Language

EXEC call are position dependent and the number of
parameters (n) is dependent on the function of the EXEC

call. For example, the Read example shown above

requires four parameter definitions (n = 4) and they
must be defined in the order shown.

Executive Communication

e e S e G S S S CE S S P - T T~ — - —— — ————— — D G " — " G Sy S > W D D T P > W WD D S P Y P D D P = e P e

FORTRAN~IV Subroutine Call Format:

3
.

Pl Array parameters are defined in
: DIMENSION or COMMON statements,

Pn One-word parameters are defined as
: integer variables.

CALL EXEC(Pl,...,Pn)

Example:

3

DIMENSION IBUFF (100) 100 word buffer.

ICODE=1 Request Code Word. 1=Read.
ICNWD=5 Control word. LU=5.
ILEN=10 10 words are to be read.

CALL EXEC(ICODE,ICNWD,IBUFF,ILEN)
or
CALL EXEC(1,5,IBUFF,10)

.

In FORTRAN-IV EXEC calls, one-word integer parameters
can be defined as integer variables or actual integer
values., Array parameters must be defined in a DIMENSION
statement. As in the Assembly Language format, param-
eters are function and position dependent.

e G s s e e S s T Sy S > - S " —— D — S WD D G P S - S — N o — — e > . — S > — — — — ———_ > - P S e ——— > Sy S

Executive Communication

FORTRAN-IV Function Call Format:

Pl Array parameters are defined in
: DIMENSION or COMMON statements.

Pn One-word parameters are defined as
: integer variables.

REG Defined as real variable comprised of
: two integer variables.

REG=EXEC(P1l,...,Pn)

Example:

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| :
| DIMENSION IBUFF (100) ,IAB(2)
| EQUIVALENCE (REG,IAB (1))
| :

| ICODE=1

[ICNWD=5

| ILEN=10

| :

I REG=EXEC (ICODE,ICNWD,IBUFF,ILEN)
| or

: REG=EXEC (1, 5,IBUFF,10)
I
|
|
|
|
|
|
|
|
|
|
|
+

The purpose for using the function call format is to
obtain the contents of the A- and B-registers after the
EXEC call has been executed. The A- and B-register
contents must be returned as a real variable. 1In the
example, the real variable REG has been equated to the
integer variables IAB(1l) and IAB(2), making the A-
register contents available in IAB(l) and the B-register
contents available in IAB(2). These two values can then
be examined for error indications (see EXEC CALL ERROR
RETURNS below).

T - — " - — - —_—-— - - ——-— - - - — - - - - — - - - - - . - w-—

Executive Communication

EXEC Call Error Returns

EXEC calls that are in error will cause the offending program to be
aborted 1if the error was severe enough. If an error is not severe,
it will either abort the program or, at the user's option, report the
error to the program and allow it to continue executing. Shown below
is a partial summary of the EXEC errors. The errors marked with an
"*" are considered severe and will always cause the program to be
aborted. The error code 1is placed in the user's Session Control
Block (SCB) words 5 thru 8.

Error Code Error Type Error Code Error Type
* MP Memory Protect sC Scheduling
* DM Dynamic Mapping LU LU Lock
* RQ Request Code I0 Input/Output Error
* DP Dispatching DR Disc Allocation
* RE Reentrancy RN Resource Number
PE Parity

A detailed explanation of EXEC call error messages is given at the
end of this section (see EXECUTIVE ERROR MESSAGES).

No-Abort Option

If the user wishes non-severe errors reported to the calling program
and the program to continue executing, the return point from the EXEC
call is altered by setting the "no-abort" bit (bit 15) in the request
code word (ICODE=ICODE+100000B). This causes the system to execute
the first line of code (it must be a one-word instruction) following
the EXEC call if an error occurs. When the "no-abort" bit is set and
an error occurs, the error code is not placed in the user's SCB. If

there is no error, the second line of code following the EXEC call is
executed. '

The following segments from a sample FORTRAN program demonstrate the
use of the altered error return points:

parameter definitions

ICODE=ICODE+100000B <-~set "no-abort" bit

CALL EXEC(ICODE,ICNWD, IBUFF,ILEN)
error return--> GO TO 100

no error return--> 10 :

100 error processing

Update 8 2-5

Executive Communication

In FORTRAN, only the GO TO statement should be placed after a
no-abort EXEC call; any other command would cause error information
to be 1lost. The GO TO statement also must not reference the next
statement, i.e.,

CALL EXEC(ICODE+100000B, ICNWD,IBUFF,ILEN)
GO TO 100
100 s

This 1is illegal because the FORTRAN compiler tries to optimize the
two statements and will not produce a jump if the jump destination is
the next executable statement; the GO TO would be ignored.

As discussed previously (see FORTRAN-IV Function Call Format), if a
non-severe error return is made to a program, the A- and B-registers
contain the ASCII error codes. The A-register contains the error
type (sC, LU, IO, DR, RN), and the B-register contains the error
number (ASCII 01, 02, 03, etc.). Note that the no-abort error return
will return control to the calling program when a parity error (PE)
occurs, 1if the error is on the system or auxiliary disc (LU 2 or LU
3). In this case, the B-register will be set to -1. 1If a parity
error occurs on a disc other than LU 2 or 3, the error is considered
"severe" and the calling program will be aborted.

In RTE Assembly Language, the A- and B-registers can be manipulated
directly to determine error information. In RTE FORTRAN-IV, an
HP-supplied subroutine (ABREG) can be used to obtain the contents of

the A- and B-registers. The ABREG subroutine would be used with an
EXEC subroutine <call; the use of the EXEC function call would make
ABREG unnecessary. The use of ABREG 1is shown in the following
example:

pérameter definitions
CALL EXEC(ICODE+100000B,...)<--set"no-abort"bit
error return--> GO TO 100
no error return-=-=> 10 :

13

100 CALL ABREG(IA,IB)
error processing

After the return from ABREG, IA <contains the contents of the
A-register and IB contains the contents of the B-register. The
calling program can then implement error processing accordingly.

Note that if an EXEC call is successful, the A- and B-registers can
contain pertinent information about the status of the call. ABREG
can be used to retreive this information also. The contents of the
A- and B-registers after a successful call are discussed with the
descriptions of the individual EXEC calls later in this section.

2-6

Executive Communication

ABREG 1is described 1in the DOS/RTE Relocatable

Library Reference
Manual.

NOTE

DO NOT set the no-abort in an EXEC function call.
For example, DO WNOT USE the following tecnnique:

REG=EXEC (ICODE+100000B,...)
GO TO 100

.

100 error processing

The reason for not using this method is that when
the function <call 1is compiled, a double-word
store instruction 1is generated to save the
contents of the A- and B-registers. This
instruction 1is placed directly after the EXEC
function call. If the EXEC call is successful,
control 1is returned to the second word after the
call. This would be the second half of a double

word instruction and would therefore be
erroneous.

Executive Communication

No-Suspend Option

Certain programs in a real-time environment may be considered too
important to be suspended due to an downed 1/0 device. This
capability 1is provided by the "no-suspend" I/0 option. Programs can
check device status before executing I/O request. However, if the
device goes down due to (or during) the I/0 request, the calling
program will be suspended unless the no-suspend bit (bit 14) in the
1/0 request code word (ICODE=ICODE+40000B) 1is set. The no-suspend
bit can be used for the following I/O EXEC requests:

Standard I/0 EXEC calls: 1,2,3
Class I/0 EXEC calls: 17,18,19,20

When the no-suspend bit is set, the calling program resumes execution
at the first 1line of code (it must be a one-word instruction)
following the EXEC call if an error occurs. If there is no error,
the second line of code following the EXEC call is executed. The use
of the altered return points, and the A- and B-Registers returns are
the same for the no-suspend I/0 option and the no-abort option. The
same restrictions on the use of the no-abort bit hold for the

no-suspend bit. The alternate return label can also be uesd for the
no-suspend option.

The following section from a sample FORTRAN program demonstrates the
use of the no-suspend bits:

parameter definitions
ICODE =ICODE+40000B <--set no-suspend bit.

CALL EXEC (ICODE,ICNWD, IBUFF,ILEN)
error return-—--- > GO TO 100
no error return--> 10 :
100 error processing

The following table outlines the various actions taken by the system
depending on the condition of the system at the time of the I/0
request when the no-suspend bit is set.

2-7A Update 8

Executive Communication

BUFFERED I/0 REQUESTS

System Condition
at request time.

Action Taken

A- + B-Registers

Requested EQT or
LU is LOCKED.

Requested EQT or
LU is DOWN,

No buffer memory

(Standard I/0 EXEC
calls 1,2,3 only).

Program resumes at
first line after call.

Program resumes at
first line after call.

Request continues to
be processed
unbuffered.

1013

I014

meaningless

UNBUFFERED I/0 REQUESTS

External Condition

Action Taken

A- + B-Registers

Device goes down
during 1/0
processing.

Operator downs the

device using the
"DN" command.

Program resumes at
first line after call.

Program resumes at
first line after call.

I014

I014

Update 8

2-7B

Executive Communication

EXEC Description Conventions

In the subsections that follow, certain conventions are used to
describe EXEC calls. These conventions are summarized below.

* Pparameters that are underlined, such as

CALL EXEC(IP1,IP2,IP3)

have values returned by the system, e.g., the value 1is not
supplied by the user.

* parameters that are double underlined, such as

CALL EXEC(IP1,IP2,IP3)

have values that are returned by the system in some cases and

user-supplied in other cases. The comments associated with the
call description should be consulted for details concerning their
use.

* Parameters enclosed in square brackets, such as

CALL EXEC(IP1,IP2[,IP3])

are optional.

* Parameters enclosed in angle brackets, such as
CALL EXEC(IP1l,IP2<,IP3>)

are optional in some cases and required in others. The comments
associated with the call description should be consulted for
details concerning their use,

* Parameters with no qualifiers, 1i.e., square brackets, angle
brackets, or underlines, are required and their value is supplied
by the user.

2-8

Executive Communication

If an optional parameter is wanted, but the preceding optional
parameters are not, dummy variables must be used as place holders

for the missing parameters.

All EXEC call descriptions in this section use the FORTRAN-IV
subroutine call format. If desired, the description of EXEC call
general formats included at the beginning of this section can be
consulted to convert the calls to the FORTRAN-IV function call or

Assembly Language format.

Executive Communication

Standard 1/0 EXEC Calls

Standard I/0 EXEC calls are used to transfer data to or from external
I1/0 devices in addition to performing various I/O control operations.
For output or control requests to unbuffered devices, the calling
program 1is I/0 suspended (state 2) until the operation completes.
All input requests cause the calling program to be placed in state 2
until completion. Note that a device is specified as buffered or
non-buffered at generation time (see RTE-IVB On-Line Generator
Manual).

The EXEC calls included in this section are listed below in the order
of their presentation:

* EXEC 1 or 2 - Read or Write
* EXEC 3 - I/0 Control

Note that the 1/0 operations performed by EXEC 1, 2 and 3 calls can
also be accomplished on a "no-wait" basis by wusing the class I/0
calls described in Chapter 2.

Read or Write Call — EXEC 1 or 2

Transfers information to (write) or from (read) a disc or non=-disc
I/0 device.

ICODE - Request code. 1l=read, 2=write.

ICNWD -~ Control word. Specifies the LU of the device involved
in the data transfer, driver dependent informa-
tion, and optional parameter (IOPl & IOP2) considera-
tions.

|
I
|
|
|
|
I
IBUFF - Data buffer. For read operations (ICODE=1), the array |
into which the system returns data; for write opera- |

tions (ICODE = 2), the array into which the program |

places data to be written. |

|

|

|

|

I

|

|

|

|

ILEN - Data length. Positive number of words or negative num-
ber of characters to be read or written.

IOP1l - Track number for disc transfers, optional parameter
for non-disc transfers.

IOP2 - Sector number for disc transfers, optional parameter
for non-disc transfers.

e T e s ———— . e —— —— s — —

2-10

Executive Communicacion

COMMENTS:

control word (ICNWD)---The format of the control word is as follows:

(UB) (2) (X) (A) (K) (V) (M)

XX| 14| Xx| 12 XXl 10l 9 | 8 1 716 | 51 41 31 21110

|[<=-=-Function Code-->|<-=---Logical Unit--->|

The function of the control word fields are summarized below:

*

Logical Unit (bit 0-5). Logical unit number (LU) of the device
to/from which data is to be transferred. Can be the LU of a disc
or non-disc device. If the LU is specified as zero, the call is
executed, but no data 1is transferred. If LU specitfies a disc
device, 1I0P1 and 1IOP2 are required (see Optional Parameters,
below) .

Function Code (bit 6-10). Specifies <control information for the
driver module associated with the I/O device involvea in tne data
transfer., This infcrmation is driver dependent and the user shoula
reference the appropriate driver reference manual for more
information. The function code field can be defaulted to zero it
no special driver action 1is desired. Some example values and
corresponding meaning:

DVAO5 Bit 8=1 EXEC 1 (Read from 264x terminal - Echo ON).
DVR12 Bit 7=0 EXEC 2 (Write to 2607A Line Printer) - First
character of output is used for line control,

Z-bit (bit 12). If the 2Z-bit is set ("1"), a control buffer
containing additional information is passed to the driver. The
control buffer is defined by 1I0P1 and 1I0P2 (see Optional
parameters, below). Note that this technique 1is only used for
transfers to non-disc devices.

The Z-bit is clear ("0"), if a control buffer is not being passea
to the driver or the transfer is to a disc device. MNote that
this is the default condition.

UB-bit (bit 14). If the UB-bit is set ("1"), the I/0 operation is
forced to be unbuffered, even if the 1/0 device is buffered. This
is useful if 1I/0 status is desired after a transfer or for very
large I/0 requests (equal to or more than 1K words).

Bit 11 and 13-15. These bits are used by the system and should be
set to zero by the user.

Update 7 2-11

Executive Communication

DATA LENGTH (ILEN) ---This variable defines the lengtn of tne data
record to be transferred. A positive number is used to specify tne
length of the data record in words. A negative number is used to
specify the length of the data record in characters (bytes). If the
data record contains REAL data, this must be allowed for in the ILEN
parameter, For example, a data record containing 10 REAL values
would require ILEN to be +20 or -40 since each REAL value requires
two words, If the data record contains double-precision data, three
words or four words are required for each value, depending on the
option taken for the FORTRAN Compiler at generation time.

OPTIONAL PARAMETERS (IOP1 and 1I0P2)---These two parameters are
required or optional depending on the state of the Z-bit (see above).
If the 2-bit is set ("1"), I0Pl specifies the address of a control
buffer and I0P2 specifies the length of the buffer (positive number
of words or negative number of characters). The contents of the
control buffer 1is driver dependent and the appropriate driver
reference manual should be consulted for more information.

If the Z-bit is clear ("0") and the LU specifies a disc device, IOP1l
contains the track number and I0P2 contains the sector number
necessary for the transfer.

If the 2Z-bit is clear and the LU specifies a non-disc device, I0P1l
and IOP2 are not used.

A- AND B-REGISTER RETURNS---End-of-operation information for
successful read and unbuffered write operations is transmitted to the
calling program via the A- and B-registers. These register returns

are summarized below:

* A-register <-- word 5 (status word) of devices EQT entry (see
Appendix B8, “EQT FORMAT").

* B-register <-- positive number indicating number of words

transferred (if ILEN in call was positive), or
positive numnoer of characters (bytes) transferred
(if ILEN in call was negative).

* A~ and 8-register returns are meaningless for write reguests to
buffered devices.

For unsuccessful operations, error information is returned in the A-
and B-registers. "EXEC CALL ERROR RETURNS", included earlier in this
section, describes the considerations associated with error returns.

I1/0 AND SWAPPING---Disc resident programs performing I/O are
swappable under any one of the following conditions:

A. The data buffer is not in the calling programs’ partition, i.e.,
it is in system COMMON.

2-12 Update 7

Executive Communication

B. The input or output buffer 1is completely contained in the
TFemporary Data Block (TDB) of a reentrant routine, and enough SAM
was allocated to hold the TDB (refer to Chapter 6, "“Reentrant
Subroutines section").

C. The device is buffered, the request is for output, and enoujh SAM
was allocated for buffering the data record to pbe transferred.

Only the first buffer of a double-buffer regquest (Z-bit set) is
checked to determine swappability. It is the user’s responsiblity to
put the second buffer in an area that implies swappability (COMMON,
etc.) if condition "a" or "b" are true. The system handles condition
l!c" .

Only the first buffer of a double-buffer request (Z-bit set) is
checked to determine swappability, It is the user’s responsiblity to
put the second buffer in an area that implies swappability (COMMON,
etc,) if condition "a" or "b" are true. The system handles condition

“c".

EXAMPLE---Write a message to the system console (LUl) which prompts
the operator to input his name, Read the response entered by tne
operator., Check for EXEC errors.

PROGRAM OPNAM
DIMENSION IBUF1 (5),IBUF2(10)
DATA IBUF1/2HEN, 2HTE,2HR , 2HNA, 2HME/

ICODE=2+100000B
ICNWD=1
ILEN=5
CALL EXEC (ICODE,ICNWD, IBUF 1, ILEN)
GO TO 100
10 CONTINUE

CALL EXEC (1+4100000B,1,IBUF2,-20)
GO TO 100
20 CONTINUE

100 CALL ABREG(IA,IB)
error processing

END

Update 7 2-13

Executive Communication

1/0 Control Call — EXEC 3

Initiates various 1/0 control operation (backspace, write
end-of-file, rewind, etc.,) on specified LU. Function is dependent on
device to be controlled,

O —————— +
| ICODE - Request code, 3 = control, |
| |
| ICNWD - Control word, Specifies the LU and the control |
| action to be initiated on that LU, |
| |
| IOPl - Optional parameter., Optional or reguired depending |
| on ICNWD. |
o e e e e e c e —— e — e —————— +
COMMENTS:

CONTROL WORD (ICNWD)---The format of the control word is as follows:

IXX1 XX XXIXXIxx110l 91 81 71 6l 51 4] 31 2| 11 0l

e o - Y e et o

| |
Function Code Logical Unit

The function of the control word fields are summarized below:

* Logical Unit (bit 0-5). Logical unit number (LU) of device that
control action is to be initiated on.

* Function Code (bit 6-10). Specifies the type of control action to
be initiated. Shown below is a partial summary of the function
codes associated with various devices and drivers. For more
details, the user should reference the driver reference manual
associated with the device to be controlled.

2-14 Update 7

Executive Communication

FUNCTION CODE (OCTAL) ACTION
00 Clear device (U)
01 Write end-of-file (MT,CTU)
02 Backspace one record (MT,CTU)
03 Forward space one record (MT,CTU)
04 Rewind (MT,CTU)
05 Rewind standby (MT), Rewind (CTU)
06 Dynamic Status (U)
11 List output line spacing, requires

use of IOPl. (LP)

12 Write inter-record gap (MT)
13 Forward space one file (MT, CTU)
14 Backspace one file (MT, CTU)
15 Conditional form feed (LP)
20 Enable Terminal (CRT)
21 Disable Terminal (CRT)
22 Set time out, requires IOP1l (CRT)
26 Write end-of-data (CTU)
27 Locate file, requires IOPl (CTU)
U = Universal
MT = Magnetic Tape Drive
CTU = Terminal Cartridge Tape Unit
LP = Line Printer
CRT = 264X Terminal

For more information consult the appropriate Driver Manual.

2-15

Executive Communication

OPTIONAL PARAMETER (IOPl)---IOPl is optional or required depending on
the function code wused. For example, if the function code is 11
(octal); 1indicating 1line spacing for the 1line printer, I0P1l would

contain the number of lines to be spaced. If the function code is 27
(octal), IOP1l would contain the number of a file to be located on the
CTU. For more details on the optional parameter, the user should

refer to the driver reference manual associated with the device being
controlled.

A- AND B-REGISTER RETURNS--~For successful I/0 control calls, the
values returned into the A- and B-registers are as follows:

* A-register <-- If call was to an unbuffered device, word 5 (status

word) of devices® EQT entry is returned (see
Appendix B, "EQT FORMAT"). If call was to a
buffered device, return is meaningless.

* B-register <-- meaningless.

Register returns for unsuccessful call contain error information (see
"EXEC CALL ERROR RETURNS").

EXAMPLE---Cause line printer (LU6) to space 5 lines.

ICODE=3

ICNWD=6+1100B

IOP1=5

CALL EXEC(ICODE,ICNWD,IOPl)

2-16

Executive Communication

Disc Track Management EXEC calls

The Disc Track Management EXEC calls allow the user to allocate disc
tracks for data storage and release disc tracks when they are no
longer required. After allocation, the disc tracks can be accessed
using EXEC read and write calls (see "STANDARD EXEC I/O CALLS"). The
tracks are allocated on the system or auxiliary cartridges (LU2 or
3).

Disc tracks can be allocated as either local or global tracks.
Locally allocated tracks can only be written to, or released by, the
program that they are allocated to; they can be read by any program.
Globally allocated tracks can be read from, written to, or released
by any program,

When tracks are allocated, the system makes an entry in the Track
Assignment Table (TAT). For a local allocation, the TAT entries
corresponding to the allocated tracks will contain the ID segment
address of the "owning" program. For global allocations, the TAT
Entries will contain 077777 (octal). TAT entries for available
tracks (released or never assigned) will contain zero. The TAT can
be examined using the LGTAT utility described in the RTE-IVB Terminal
Users’ Reference Manual.

When tracks are allocated, they are supplied in units of complete
tracks, 1i.e., one track is the minimum that can be allocated and no
fraction of a track can be allocated. Tracks are also allocated on a
contiguous basis. If six tracks are requested, six adjacent tracks
will be allocated and they will be on the same cartridge.

Automatic track switching 1is not provided. If the user writes or
reads a record that crosses track boundaries, it 1is the user’s
responsibility to divide his record access into two operations, One

operation to access the data on one track and another operation to
access the data on the following track.

The EXEC calls included in this section are listed below in the order
of their presentation:

* EXEC 4 or 15 - Disc Track Allocation

* EXEC 5 or 16 - Disc Track Release

Executive Communication

DISC TRACK ALLOCATION EXEC CALLS - EXEC 4 OR 15.

Allocate contiguous disc tracks for use by a single program (locally)
or by multiple programs (globally).

+
|
|
|
|
|
|
[
|
[
|
]
|
|
|
|
1
|
|
|
|
]
|
|
|
|
|
i
|
I
i
]
|
1
I
]
I
[
'
|
!
|
!
|
1
|
1
|
|
I
I
|
|
|
]
|
|
|
|
|
|
|
|
|
|
+

CALL EXEC(ICODE,ITRAK,ISTRK,IDISC,ISECT)

I I
| I
I I
e ettt +
| |
| ICODE - Request code. 4 = local allocation , 15 = global |
| allocation. |
| I
| ITRAK - Number of contiguous tracks requested. Program is |
| suspended if tracks are not available; rescheduled |
| when tracks become available. If bit 15 1is set |
| (ITRAK=ITRAK+1000008), the program is not suspended |
| if tracks are not available. I
| |
| ISTRK - Starting track number; returned by system. Set to |
| -1 if tracks not available. |
| |
| IDISC - LU number of disc cartridge where tracks were allo- |
| cated (2 or 3); returned by system. |
I |
| ISECT - Number of 64 word sectors per track; returned by |
| system. |
| I
o e — e —————————————————— +
COMMENTS :

A- AND B-REGISTER RETURNS--~-For successful completion of the call,
the contents of the A- and B-registers are meaningless. For
unsuccessful calls, error information is returned (see, "EXEC CALL
ERROR RETURNS").

EXAMPLE---Allocate two contiguous disc tracks globally and write 128
words into the sixth and seventh sector of the second track. If

tracks are not available, do not suspend program; forget about write
and continue processing. Check for errors after each call. Place

location information in COMMON for use by other programs.

Executive Communication

PROGRAM DSCWT
DIMENSION IBUFF (128)
COMMON IDISC,ISTRK

ICODE=15+100000B
ITRAK=2+1000008B
CALL EXEC(ICODE,ITRAK,ISTRK,IDISC,ISECT)
GO TO 100
10 IF (ISTRK.EQ.-1) GO TO 200

place data in IBUFF

ICODE=2+1000008
ICNWD=IDISC
ILEN=128
IOP1=ISTRK+1l
I0P2=6
CALL EXEC(ICODE,ICNWD,IBUFF,ILEN,IOP1l,IOP2)
GO TO 100
20 CONTINUE

100 CALL ABREG(IA,IB)
error processing

L d

200 CONTINUE

END

2-19

Executive Communication

DISC TRACK RELEASE EXEC CALL - REQUEST CODE 5 OR 16.

Release contiguous disc tracks that were previously allocated either
locally or globally.

o e e e e e e e — e —————— +
| I
| CALL EXEC(ICODE,ITRAK([,ISTRK][,IDISC]) :
|

F o e e e et — e e e e — e +
I I
| ICODE - Request code. 5 = release local tracks, 16 = release |
| global tracks. }
I

| ITRAK - Number of contiguous disc tracks to be released. If |
| ICODE = 5, ITRAK can be set to -1 and all tracks |
| allocated 1locally to the calling program will be |
I released. |
| I
| ISTRK - Starting track number of tracks to be released. Not |
| used if ICODE = 5 and ITRAK = -1. |
| |
| IDISC - Disc LU (2 or 3) where tracks to be released reside. |
I Not used if ICODE = 5 and ITRAK = -1. I
I I
o e +
COMMENTS:

A- AND B-REGISTER RETURNS---For successful calls with ICODE = 5, A-
and B-register returns are meaningless. I1If ICODE = 16, the
B~register return is meaningless and the A-register return can be
interpreted as follows:

* A =0, Tracks have been released.

* A = -1, No tracks have been released. This indicates that at
least one of the tracks was in use, i.e., a program was
queued to read or write on one of the tracks at the time
of the release reguest.

* A = ~2, No tracks have been released. This indicates that at

least one of the tracks to be released was not assigned
globally.

Error information is returned in the A- and B-registers for
unsuccessful calls (see, "EXEC CALL ERROR RETURNS").

If a program aborts with tracks allocated 1locally to itself, the
tracks are released automatically by the system.

Executive Communication

The local track release function (ICODE=5) can also be accomplished
interactively using the RT command described in the RTE-IVB Terminal
Users’ Reference Manual.

EXAMPLE---Read the data placed on disc 1in the previous example (see
Chapter 2). Release the tracks and verify that they were released.
Check for EXEC errors. Obtain the track number and disc LU from

COMMON.

PROGRAM DSCRD
DIMENSION IBUFF (128)
COMMON ISTRK,IDISC

.

ICODE=1+100000B
ICNWD=IDISC
ILEN=128
IOP1=ISTRK+l
IOP2=6
CALL EXEC(ICODE,ICNWD,IBUFF,ILEN,IOP1,IOP2)
GO TO 100
10 CONTINUE

ICODE=16+100000B
ITRAK=2
CALL EXEC(ICODE,ITRAK,ISTRK,IDISC)
GO TO 100

20 CALL ABREG(IA,IB)
IF (IA.EQ.0) GO TO 200
tracks-not-released processing

100 CALL ABREG(IA,IB)
error processing

200 CONTINUE

END

Executive Communication

Program Management EXEC calls
The program management EXEC calls allow user written programs to
control their own execution or the execution of other programs. This
includes scheduling, suspending, or terminating programs, as well as,
controlling program swapping and implementing communication between
programs. A list of the program management EXEC calls are summarized
below in the order of their presentation.
* EXEC 9,10,23,24 - Program Scheduling
* EXEC 14 - string Passage
* EXEC 12 - Timed Program Execution
* EXEC 22 -~ Program Swapping Control
* EXEC 8 - Program Segment Load

* EXEC 7 - Program Suspension

* EXEC 6 - Program Completion

Executive Communication

Program Scheduling — EXEC 9, 10, 23, and 24

Schedules a program for execution and optionally passes up to five
parameters and/or a buffer to the program.

CALL EXEC (ICODE,INAME[,I0P1][,I0P2][,IO0P3][,I0P4][,IO0P5] |
[, IBUFF] [, ILEN]) |

ICODE - Request Code. 9=immediate schedule with wait.
l0=immediate schedule without wait.
23=queue schedule with wait.
24=queue schedule without wait.

INAM - 3-word array containing ASCII name of program to be
scheduled.
specified in INAME.

IBUFF- Optional buffer; passed to program specified in
INAME.

ILEN - Data length; positive number of words or negative
number of characters (bytes) to be passed from IBUF
to the program specified in INAME.

|
I
I
|
I
|
|
|
IOP1 thru IOP5 - Optional parameters; passed to program |
I
|
I
I
|
|
|
I
|

COMMENTS:

FATHER AND SON---When one program schedules another, the program that
did the scheduling is known as the "Father" and the program that was
scheduled is known as the "Son". The system places a pointer in word
20 of the son's 1ID segment that points back to the father's ID
segment (see Appendix B, "ID SEGMENT FORMAT"). If a program is not
scheduled by another program, e.g., has no father, the pointer is set
to =zero. This would be the case if a program was scheduled by the
operator (RU command) or an interrupt, or scheduled from the time
list. 1If the father/son relationship exists and the son completes or
is terminated, the pointer is cleared.

Note that the father will receive an error return (SCll) if it tries
to schedule a son that has been placed in the time list from another
session.

ICODE=9 OR 10; IMMEDIATE SCHEDULE (WITH OR WITHOUT WAIT)---When a
father schedules a son without wait (ICODE=10), the son is scheduled
for execution according to its priority. The father continues
executing at its priority without waiting for the son to complete.

Update 8 2-23

Executive Communication

when a father schedules a son with wait (ICODE=9Y), the father is
placed 1in the general wait list (state 3). while in this state, the
father 1is swappable. The son executes according to its priority.
when the son completes or is terminated, the father resumes execution
at the point immediately following the scheduling EXEC call.

In order for the father program to immediately schedule a son
(ICODE=Y or 10), the son must be dormant (state 0). If the son is

not dormant, it is not scneduled. The father can determine whether
the son was scheduled or not by examining the contents of the
A-register after the execution of the scheduliny call. The

A-register contents will be as follows:

* If the son was successfully scheduled (dormant before call) the
A-register will contain zero.

Note that if the son was suspended by a previous EXEC 6 call (see,
"PROGRAM COMPLETION - EXEC 6"), only the four least significant
bits of the A-register will be zero.

* JIf the son could not be scheduled (was not dormant) the A-register
will contain the status of the son.

ICODE = 23 OR 24; QUEUE SCHEDULE (WITH OR WITHOJT WAIT)---The EXEC
23 and 24 calls are similiar to the EXEC 9 and 10 calls,
respectively, except that the system places the father in a queue if
the son is not dormant. Wwhile in the queue, the father is suspended
until the son can be scheduled. when the potential son goes dormant,
and can therefore be scheduled, the system reissues the father's
request and execution proceeds like the immediate schedule calls
described above. That 1is, for an EXEC 23, when the son becomes
available, the father 1is removed from the queue (rescheduled) and
execution continues as an EXEC Y. An EXEC 24 would continue as an
EXEC 10.

Note that the father does not have access to the son’s status via the
A-register as with the immediate schedule calls.

SON TERMINATION CONSIDERATIONS~--When a father performs an immediate
schedule with wait (ICODE = 9) or a queue schedule with wait (ICODE =
23), it is suspended until the son completes or is terminated. The
father can determine if the son terminated normally or not by
examining the systems copy of optional parameter 1 (see "OPTIONWAL
PARAMETER PASSAGE" below). The father does this by calling the RMPAR
routine which 1is described 1in the DOS/RTE Relocatable Library

Reference Mahual. The returned contents of IOPl are summarized
below:

Executive Communication

* JOPl = 100000B. 1Indicates that the son terminated abnormally for
one of the following reasons:

1. System aborted son

2. Operator issued OF command (see RTE-IVB
Terminal User ‘s Reference Manual).

3. Son performed an EXEC (6,0,2) or EXEC (6,0,3)
self-termination call (see, " PROGRAM
COMPLETION - EXEC 6").

* IOPl = Original value or value passed back by son indicates that
the son terminated normally.

OPTIONAL PARAMETER PASSAGE---The optional parameters (IOP1 - IOPS)
can be used to pass values from the father to the son. The father
places the values to be passed into the optional parameters and then
makes the scheduling call. When the son begins executing, it can
obtain these values by calling the 1library subroutine RMPAR. Note
that the RMPAR call should be the first executable statement in the
son program.

If the father performed a schedule with wait call, the son can pass
back up to five parameters to the father. To do this, the son would
make a call to the 1library routine PRTN (see Chapter 6, "SYSTEM
LIBRARY UTILITIES") to place the values to be returned into a
tive-word array. The son should then terminate itself using an EXEC
6 call to prevent B-register modification.

The son’s termination causes the father to be rescheduled. The
tather can then obtain the returned values by calling RMPAR. Note
that if the son terminates abnormally, the first returned parameter
will be overwritten with 1000008 (see "' SON TERMINATION
CONSIDERATIONS", above).

OPTIONAL BUFFER PASSAGE---In addition to five optional parameters,
the father can pass an optional buffer to the son. The father places
the data to be passed into IBUFF and specifies the length of the data
in ILEN. When the tather makes the scheduling call, the buffer is
moved into System Available Memory (SAM). The son can obtain the
buffer by making an EXEC 14 call (see "STRING PASSAGE - EXEC 14").
If there 1is not enough SAM currently available to hold the buffer,
the father 1is memory suspended (state 4). If there will never be
enough SAM available, the father is aborted or, if the "no-abort" bit
is set, the error return is taken (see, "EXEC CALL ERROR RETURNS").
Note that the length of the buffer is limited only by the amount of
usable SAM available.

Executive Communication

If the father performed a schedule with wait call, the son can pass a
buffer back to the father by using an EXEC 14 call and the father can
recover the buffer with an EXEC 14 <call. If a program is scheduled
by an operator command, e.g., the RU, ON, or GO command described in
the RTE-IVB Terminal User s Reference Manual, an EXEC 14 call can be
used to obtain the command string or a call to the library routine
GETST can be used to obtain the parameter string. GETST is described
in Chapter 6, "SYSTEM LIBRARY ROUTINES". The command string and the
parameter string are described with the discussion of the EXEC 14
call later in this section.

A~ AND B-REGISTER RETURNS---For successful EXEC scheduling calls, the
contents of the A- and B-registers are used to determine status and
parameter 1location information. These register returns have been
discussed in the above text with the calls that they pertain to. For
convenience they are briefly summarized below:

* A-register (for immediate schedule). 0 if son was scheduled,
son’s status if son could not be scheduled.

* A-register (for queue schedule). Meaningless.
* B-register (when son 1is scheduled with wait). Address of
parameters, 1if optional parameters are being used. If optional

parameters are not used, B-register is cleared.

For unsuccessful calls, the A- and B-register will contain error
information (see "EXEC CALL ERROR RETURNS").

EXAMPLE---Father schedules a son (queue schedule with wait,

ICODE=23). Father passes the son five parameters. Son returns five
parameters to father. Father checks for EXEC errors.

Table 2-1A. Summary of EXEC Calls 9, 10, 23, 24

IMMEDIATE QUEUE
SON DORMANT SON ACTIVE SON DORMANT SON ACTIVE

9 23
Wait Son Scheduled Son not scheduled Son Scheduled Father goes into state 3
9, 23 until son can be

scheduled.
Father goes into state 3 Son’s state in A-Reg Father goes into state 3 Son scheduled
until son completes until son completes

Father stays in state 3
until son completes

10 24
No Son scheduled Son not scheduled Son scheduled Father goes into state 3
until son can be
scheduled
Wait Father stays in state 1 Son’s state in A-Reg Father stays in state 1 Son scheduled

10, 24

Father goes into state 1

10

100

200

Executive Communication

PROGRAM FATHR
DIMENSION IPAR(5) ,INAM(3)
DATA INAM/2HSO,2HNN,2HY/

place values in optional parameters (IOP1-IOP5)

ICODE=23+1000008

CALL EXEC(ICODE,INAM,IOP1,I0P2,I0P3,I0P4,I0P5)
GO TO 100

CALL RMPAR(IPAR)

IF (IPAR(1) .EQ.100000B) GO TO 200

process five parameters returned by son.

CALL ABREG(IA,IB)
error processing

CONTINUE

END

PROGRAM SONNY

DIMENSION IP(5)

CALL RMPAR(IP)

process five values passed by father

place values to be returned to father in 1IP
CALL PRTN (IP)

CALL EXEC(6)
END

2=-27

Executive Communication

String Passage — EXEC 14

Allows a program to retrieve a buffer from the program that scheduled
it (father) or retrieve the command string if it was scheduled by an
operator command. Allows a son to pass a buffer back to its father.

ICODE - Reguest code. 14 = string passage.

string. 2 = write buffer to father.

IBUFF - Buffer into which retrieved data or command string
is placed (IRWCD = 1) or a buffer into which son
places data to be returned to father (IRWCD = 2).

ILEN - Positive number of words or negative number of
characters (bytes) to be transferred.

+
|
I
|

+
|
|
| IRWCD - Retrieve/write code. 1 = retrieve buffer or command
|
I
|
I
|
|
I
I
|

+

t———————— e ——— ¢

COMMENTS:

COMMAND STRING---When a program is scheduled using an operator
command (see RU, ON, or GO commands in the RTE-IVB Terminal Users’
Reference Manual) a command string is placed in a buffer in System
Available Memory (SAM). The command string 1is a copy of the command
used to schedule the program. For example, if the RU command with
optional parameters was used to schedule a program, the command
string would appear as:

RU, PROG,IP1,IP2,IP3,IP4,I1P5,STRING
where:

PROG = name of program to be scheduled
IP1 - IP5 = one-word parameters
STRING = ASCII string

If a program that was scheduled by an operator command performs an
EXEC 14 <call (IRWCD=1), the command string contained in the SAM
buffer is retrieved and placed in IBUFF. It is the program’s
responsibility to parse the string into separate parameters.

Note that the program could call the library utility program GETST to
retrieve the parameters following the second comma in the command
string (known as the parameter string). GETST is described in
Chapter 6, "SYSTEM LIBRARY UTILITIES".

2-28

Executive Communication

FATHER/SON BUFFER PASSAGE---If a father includes the optional buffer
as a parameter in the EXEC call used to schedule a son (see "PROGRAM
SCHEDULING - EXEC 9, 10, 23 or 24"), the contents of the buffer are
placed in SAM when the call is executed, 1If the son performs an EXEC
14 (IRWCD=1l), the buffer in SAM is retrieved, the contents are placed
in IBUFF, and the SAM buffer 1is deallocated. The son program should
perform the EXEC 14 prior to any other executable statement which may
cause the SAM buffer to be overwritten or deallocated (e.g., on EXEC
23, scheduling D.RTR may overwrite the SAM buffer that was intended
to be passed from the father to the son).

If the son was scheduled with wait (EXEC 9 or 23), the son can pass a
buf fer back to the father. The son would place the data to be
returned 1into IBUFF, specify the length in ILEN, and perform an EXEC
14 call with IRWCD=2. The son should then terminate itself (see
"PROGRAM TERMINATION - EXEC 6"), allowing the father to ope
rescheduled, The father could obtain the returned buffer from SAM by
performing an EXEC 14 call with IRWCD=1l,

Note that the EXEC 14 write call (IRWCD=2) deallocates any block of
SAM associated with the father, which the father created with an EXEC
14 call, and allocates a new block for the father into which thne
returned buffer will be placed,

ILEN---Only ILEN words or characters are transmitted., If the command
string on a retrieve operation, or the buffer on a retrieve or write
operation, 1is longer than ILEN, the excess data will be lost, If an
odd number of characters are requested for a retrieve operation, the
least significant byte of the last word is undefined,

A- AND B-REGISTER RETURNS---Upon successful return from a retrieve
operation (IRWCD=1l), the A- and B-registers can be interpreted as
follows:

* A-register = 0 if operation was successful

* A-register 1 if no string could be found

positive number of words or characters transferred,

* B-register

For wunsuccessful calls, error information is returned (see, "EXEC
CALL ERROR RETURNS") .

EXAMPLE---Father schedules a son (immediate schedule without wait,
ICODE=9) and passes it two optional parameters and an
optional buffer, The son retrieves the buffer and prints
its contents. The optional parameters contain the list ana
log LU to be used by the son,

Executive Communication

2-30

10

100

10

20

100

101

200
201

PROGRAM SENDR
DIMENSION IBUF1(10) ,INAME (3)
DATA INAME/2HGE ,2HTE,2HR /

.

ICODE=9+100000B
I0P1=1

I0P2=6

ILEN=10

place data in IBUF1

CALL EXEC(ICODE,INAME,IOP1l,I0P2,,,,IBUFl,ILEN)
GO TO 100
CONTINUE

error processing

L]

END

PROGRAM GETER

DIMENSION IBUF2(10) ,IPAR(5)
CALL RMPAR(IPAR)
LOGLU=IPAR(1)

LSTLU=IPAR(2)
ICODE=14+100000B

CALL EXEC(ICODE,1,IBUF2,10)
GO TO 100

CALL ABREG(IA,IB)
IF(IA.NE.O) GO TO 200

CALL EXEC(2+100000B,LSTLU,IBUF2,IB)
GO TO 100

CONTINUE

CALL ABREG(IA,IB)

WRITE (LOGLU,101) IA,IB

FORMAT ("A-REG=",16,5X,"B-REG=",16)
CONTINUE

3

WRITE (LUGLU,201)
FORMAT ("BUFFER NOT FOUND")
CONTINUE

END

Executive Communication

Program Time Scheduling — EXEC 12

Places <calling program or another program into the time scheduling
list. The EXEC 12 call has two modes of operation:

1.

Absolute Time Mode - a program can be scheduled to run once at an
absolute time or to run repeatedly at specified intervals with
the first run to be at an absolute time.

Initial Offset Mode - a program can be scheduled to run once at a
time offset from the current time or to run repeatedly at
specified intervals with the first run to be at a time offset
from the current time.

__ +
|

Initial offset: |
CALL EXEC(ICODE,INAME,IRESL,IMULT,IOFST) |

|

Absolute time: '
CALL EXEC(ICODE,INAME,IRESL,IMULT,IHRS,IMIN,ISEC,IMSEC) |

|
__ +
|

ICODE - Request code. 12 = time scheduling. |
I

INAME - Program name, 3-word array containing ASCII name of |
program to be scheduled; set to 0 if calling program |

is to pe scheduled. I

I

IRESL - Resolution code. Specifies units to be used with |
IMULT and IOFST. |

I

1 = 10"s of milliseconds l

2 = seconds |

3 = minutes |

4 = hours :

IMULT ~ Execution multiple. 1Integer (0-4095) that specifies |
the time interval between runs for programs that run |
repeatedly. Used 1in conjunction with IRESL. 0 in- |

dicates that program is to run once. |

I

IOFST - Initial offset. Negative integer that specifies off- |
set from current time that a program will first run. |

Used in conjunction with IRESL. %
IHRS,IMIN,ISEC,IMSEC - Specifies the hours, minutes, seconds |
and milliseconds, respectively, when a program will |

first run. ‘
__ +

Executive Communication

COMMENTS:

INITIAL OFFSET---The initial offset version of the EXEC 12 call can
be used to schedule programs as follows:

*

Run once - IMULT is set to zero to specify that a program is to
run once. IRESL and IOFST are set to indicate the offset from the
current time that the program is to be run. For example, if
IMULT=0, IRESL=3, and IOFST=-45, the program specified in INAME
will run once, 45 minutes from the current time. Note that the
program to be scheduled must be dormant at that time or the call
is ignored.

Run Repeatedly - IMULT is set to specify the interval between run
times; IRESL and IOFST indicate the offset from the current time
that the program will first run. For example, if IMULT=30,
IRESL=3, and IOFST=-60, the program specified in INAME will run
every 30 minutes, with the first run being 60 minutes from the
current time. The program to be scheduled must be dormant at the
indicated scheduling times or the call is ignored for that time
period. The future scheduling times are not affected.

ABSOLUTE TIME---The absolute start time version of the EXEC 12 call
can be used to schedule programs as follows:

*

Run once - IMULT is set to zero to specify that the program is to
run once. IRESL is unused. The time for execution is specified in
IHRS, IMIN, ISEC, and IMSEC. For example, if IHRS=18, IMIN=45,
ISEC=30, and IMSEC=0, the program specified in INAME would be
scheduled to execute at 18:45:30:0. If the program is not dormant
at the specified time, the scheduling call is ignored. If a time
is specified that has already passed, the program will be
scheduled in the next 24-hour period of the clock.

Run repeatedly - IMULT is set to indicate the interval between run
times. IRESL specifies the units to be used with IMULT. 1IHRS,
IMIN, ISEC, and IMSEC specify the first time that the program will
run. For example, if IRESL=3, IMULT=30, IHRS=18, IMIN=30, ISEC=0,
and IMSEC=0, the program specified in INAME would be scheduled to
execute every 30 minutes with the first run to be at 18:30:0:0.
The program must be dormant when a scheduling time arrives, or the
call 1is ignored for that time period. Future scheduling times are
not affected. If the specified first-run time has already passed,
the programs scheduling cycle will be started in the next 24-hour
period of the clock.

LIMITATIONS--~For IRESL=3, IMULT and IOFST must be less than 1440.
For IRESL=4, IMULT and IOFST must be less than 24.

Executive Communication

SELF TIME SCHEDULING---If INAME is set to zero, the calling program
time schedules itself.

* QOffset - After the calling program executes the EXEC 12 call, the
program is set dormant and rescheduled at the specified offset
from the current time. The point of suspension (after the EXEC 12
call) 1is saved, and the execution of the program continues from
that point when it is rescheduled.

The <calling program can be scheduled to run repeatedly with the
EXEC 12 call. IMULT is set to specify the interval between run
times. The calling program is set dormant after the EXEC 12 call
and 1is rescheduled at the specified offset from the current time.
The program continues executing at the point of suspension until
completion. The program schedules itself for future execution
starting at the beginning of the program. The program can be
designed to avoid executing the EXEC 12 call again.

* Absolute - The program 1is placed into the timelist to be
rescheduled at the specified starting time. The calling program
continues execution, does not go dormant, but schedules itself for
future execution starting at the beginning of the program.

A- AND B-REGISTER RETURNS---Upon successful completion of the call,
the A-register contents will be meaningless and the B-register
contents will be unchanged. For unsuccessful calls, the A- and
B-registers will contain error information (see, "EXEC CALL ERROR
RETURNS") .

Note that the EXEC 12 call performs a function similiar to the IT
operator command described in the RTE-IVB Terminal Users’ Reference
Manual.

Note also that the calling program will receive an error return
(sCll) if it attempts to time schedule a program that is currently
scheduled (or in the time list) for another session.

EXAMPLE---Schedule calling program to execute every 30 minutes with
first run to be 60 minutes from current time.

PROGRAM SCHED
IRESL=3
IMULT=0
IOFST=-60

10 CONTINUE
CALL EXEC(12,0,IRESL,IMULT,IOFST)
CONTINUE-~+
: |
IOFST=-30 | This section of code executes every 30 minutes.
GO TO 10 |
H -—-t
END

Executive Communication

Program Swapping Control — EXEC 22

Allows a program to lock itself into memory, i.e., program performing
call will not be swapped out if a higher priority program needs its
partition. Allows program to release the lock.

+
: ICODE - Request Code. 22 = swapping control :
: ILOCK ~ Lock control. 1 = program cannot be swapped :
I 0 = program can be swapped I
e e :
COMMENTS:

MEMORY LOCK CONSIDERATIONS -~ In order for a program to be allowed to
lock 1itself into a memory partition, the memory lock feature must be
enabled at generation time (see RTE-IVB On-~Line Generator Manual).
If the memory lock feature is not enabled and a program attempts to
perform a memory lock, a SCU07 error results,

When a program performs a memory lock (ILOC=1l), bit 6 of word 15 of
its ID segment is set (see Appendix B, "“ID SEGMENT FORMAT"). When a

program performs a memory "unlock" (ILOCK=0), the bit is cleared.
The bit is also cleared if the program aborts or terminates except if

the program terminated because of an EXEC program completion call
saving resources (see "PROGRAM COMPLETION CALL -~ EXEC 6").

A~ AND B~REGISTER RETURNS~~~Upon successful completion of the call,
the A-register will be meaningless and the B-~register will be
unchanged. I1If an error occurred, the A~ and B-registers can be
examined for the cause (see "EXEC CALL ERROR RETURNS").

EXAMPLE-~-~Program locks itself into memory, performs «critical
processing, and unlocks itself. Checks for EXEC errors.

10

20

100

PROGRAM LOCK

.

ICODE=22+1000008
ILOCK=1

CALL EXEC (ICODE, ILOCK)
<O TO 100

CONTINUE
. \
. > critical code
. /
. /
ILOCK=0

CALL EXEC(ICODE, ILOCK)
GO TO 100
CONTINUE

CALL ABREG(IA,IB)
error processing

.

END

Executive Communication

Executive Communication

Program Segment Load — EXEC 8

Loads the calling program’s segment from disc into memory ana
transfers control to the segment’s entry point (see Chapter 4,
"PROGRAM SEGMENTATION").

e e e e e e +
I I
| CALL EXEC(ICODE,INAME[,IOP1l][,I0P2][,I0P3][,I0P4][,IOP5]) :
|

o e e e e +
| |
| ICODE - Request code. 8 = segment load, ‘
|

| INAME - Segment name, 3-word array containing the ASCII |
| name of the segment to be loaded. :
|

| IOPl thru IOP5 -~ Optional parameters; passed to segment |
| specified in INAME, :
I

e e e e +
COMMENTS:

OPTIONAL PARAMETER PASSAGE---The calling program can pass up to five
optional parameters to the segment specified in INAME. The calling
program places the values to be passed into IOPl1 through IOP5., When
the segment load call is executed, these values are placed into the

temporary values of the program’s ID segment and their address is
placed 1n the B-register. When control 1is transferred to tne
segment ‘s entry point, the segment can recover these values by
calling the 1library routine RMPAR (see the DOS/RTE Relocatable
Library Reference Manual)., Note that the call to RMPAR should be tne
first executable statement in the segment’s code to prevent tne
B-register from being modified by the segment’s execution before
RMPAR has used it to access the parameters,

A- AND B-REGISTER RETURNS---When control has been successfully
transferred to the segment via its entry point, the contents of the
A- and B-registers will be as follows:

* A-register will contain the segment’s ID segment address.

* B-register will not be changed unless optional parameters are
being passed, in which case the B-register will contain tne
address of the parameters (used by RMPAR).

If an error occurs it is indicated in the A- and B-registers (see

"EXEC CALL ERROR RETURNS")., If the segment to be loaded does not
exist, an SC05 error is returned.,

2-36

Executive Communication

PROGRAM TYPES---The main program must be a type 2, 3, or 4 program.
The segment must be a type 5 program. The programs type is defined
in its program definition statement (see Appendix F, "PROGRAM
TYPES").

EXAMPLE---Main program loads its segment and passes it three
parameters.

PROGRAM MAIN,3
DIMENSION INAME (3)
DATA INAME/2HSE,2HGM,2dN/

place values in IOP1,I0P3,and IOPS

CALL EXEC(8,INAME,IOP1l,,IO0P3,,I0PS)
END

PROGRAM SEGMN,5

DIMENSION IPAR(5)

CALL RMPAR(IPAR)

process parameters obtained from main

END

2-37

Executive Communication

Program Suspend — EXEC 7

Suspends execution of the calling program. Program can be
rescheduled by using the GO operator command described in the RTE~IVB
Terminal User s Reference Manual.

COMMENTS:

A~REGISTER, B~REGISTER, AND PARAMETER PASSAGE~-~-~The execution of the
EXEC 7 call causes the system to place the calling program into the
operator suspend 1list (state 6). The contents of the A~ and
B~registers are saved. When the program 1is rescheduled via the GO
command (without parameters), the registers are restored to their
presuspension status and the program resumes execution. If the
program 1is rescheduled with a GO command that includes parameters,
the B-register will contain the address of the parameters and they
can be recovered by calling the 1library routine RMPAR (see DOS/RTE
Relocatable Library Reference Manual). The RMPAR call should
immediately follow the EXEC 7 call to prevent the B~register from
being modified before RMPAR has used it to access the parameters.

Note that when a call to RMPAR is used, the optional parameters must
be included 1in the GO command. If they are not included when the
program is rescheduled, RMPAR will use the restored B~register
contents as the address of parameters tnhat don’t exist. If the
parameters are included on a periodic basis, the program should be
coded to check for optional parameters and by-pass the RMPAR call if
they are not included (see Example).

If an EXEC 7 call is unsuccessful, error information will be returned

in the A~ and B-registers (see "EXEC CALL ERROR RETURNS"). Note that
it 1s illegal to use an EXEC 7 <call to suspend a program running in

the batch environment (see the Batch and Spooling Reference Manual).
If attempted, an SC00 error is returned.

OTHER SUSPENSION OPERATIONS-~~The SS operator command described in
the RTE~IVB Terminal User’s Reference Manual performs the same
function as the EXEC 7 call. The FORTRAN-IV PAUSE statement performs
the same function as the EXEC 7 call and additionally displays an

optional "pause-number" on the session console (see RTE FORTRAN-IV
Reference Manual).

Executive Communication

EXAMPLE~~~Suspend the calling program. Use FORTRAN~IV function EXEC
call technique to implement optional parameter passage check. If
parameters are included in GO command, call RMPAR to recover them. If
parameters not included, by-pass RMPAR call.

PROGRAM SPEND

DIMENSION IPAR(5) ,IAB(2)

EQUIVALENCE (REG,IAB (1))

REG=0.0

REG=EXEC (7)

IF(IAB(2)) 200,200,100
100 CALL RMPAR(IPAR)

process parameters

200 CONTINUE

END

Note that REG=0.0 indirectly causes the A~ and B-~registers to be set
to zero.

Executive Communication

Program Completion — EXEC 6

Notifies the operating system that the calling program wishes to
terminate itself or a subordinate program.

o e e e e e e e e e o e e +
| |
| CALL EXEC(ICODE[,INAME]|[,ICMCD]}[,I0P1l])([,I0P2][,I0P3] [,I0P4] |
| [,IOP5]) [
| |
o e e e e e e e e e e e e e o e e +
| I
| ICODE - Request code. 6 = program termination :
|

| INAME - Program name. 3-word array containing the ASCII |
| name of the program to be terminated (must be sub- |
| ordinate program). Set to zero if calling program |
| wishes to terminate itself. |
I I
: ICMCD - Completion code. %
| IOPl1 thru 1IO0P5 - Optional parameters. Only used when |
] INAME=0 (self-termination). Parameter values are |
| saved in terminating program’s ID segment; can be |
| recovered when program next executes. :
I

iy g gy g +

COMMENTS:

COMPLETION CODE (ICMCD)---The completion code specifies the manner in
which the program indicated by INAME 1is to be terminated. The codes
are summarized below:

* ICMCD 0 Normal completion.

"

* ICMCD

[

-1 Serially reusable completion. When rescheduled, the
program is not reloaded into memory if it is still
resident. ICMCD = -1 should only be used with disc
resident programs that can initialize their own
buffers or storage locations. The program is
reloaded from disc only if it has been overlaid by
another program, therefore, the program must be able
to maintain the integrity of its data in memory.

2-40

Executive Communication

* ICMCD

1 Save resources completion. Makes program dormant;
saves suspension point and all resources allocated to
the program. When program is rescheduled, it will
continue executing from point of suspension and have
access to previously allocated resources. If a
program does not terminate itself, it can only be
rescheduled by its father or by the RU or ON operator
command. If a program does terminate itself, it can
be rescheduled by any stimulus (EXEC, operator, time,
or interrupt scheduling). An EXEC 6 call with ICMCD
= 1, is similiar to the EXEC 7 call described earlier
or the SS operator command described in the RTE-IVB
Terminal User s Reference manual.

]
[\S]

Terminate program and remove it from the time list.
If program is I/0 suspended, the system waits until
the I1/0 operation completes before setting the
program dormant. Disc tracks allocated to the program
are not released. An EXEC 6 with ICMCD = 2 is
equivalent to the OF,name,0 operator command (see
RTE-IV3 Terminal User s Reference Manual).

* ICMCD

[l
w

Immediately terminate program, remove 1it from time
list, and release all disc tracks allocated to it.
If program is I/0 suspended, a system generated clear
request 1is sent to the driver. An abort message is
displayed on the system console. An EXEC 6 with

* ICMCD

ICMCD = 3 is equivalent to the OF, name,l operator
command (see RTE-IVB Terminal User 's Reference
Manual).

OPTIONAL PARAMETER PASSAGE---If INAME = 0 (self-termination) and the
optional parameters are included in the EXEC 6 call, they are stored
in the program’s ID segment, word 1 thru 5, (see Appendix B, "ID
SEGMENT FORMAT") along with their address which 1is placed in the
B-register save word (word 10). When the program is again scheduled
to execute, it can obtain the parameters by calling the library
routine RMPAR (see the DOS5/RTE Relocatable Library Reference Manual).
The RMPAR call should be the first statement executed when the
program is rescheduled to prevent the restored B-register from being
modified before RMPAR has used it to access the parameters. The use
of the optional parameters allows a program being scheduled from the
time 1list to use the same parameters each time it executes. If the
program is to be run interactively it must be scheduled by the system
RU command.

A- AND B-REGISTER RETURNS---For successful EXEC 6 calls, the contents
of the A- and B-registers are summarized below:

* A-register. Unchanged.

* B-register. Unchanged (no optional parameters specified) or
address of optional parameters.

2-41

Executive Communication

Note that the RTE FORTRAN-IV Compiler generates an EXEC 6 when it
compiles an END statement.

Note also that a father can terminate its son normally (ICMCD=0) or
with the son saving resources (ICMCD=1l).

EXAMPLE---Before program terminates itself, it obtains the current
time (see, "TIME REQUEST - EXEC 11"). The time is placed into the
optional parameters wused 1in the EXEC 6 call. When the program is
rescheduled it obtains the saved time values and prints them on the
session console (LU1l).

PROGRAM EXC6

DIMENSION ITM(5) ,IPAR(5)
CALL RMPAR(IPAR)
IHRS=IPAR(4)
IMIN=IPAR(3)
ISEC=IPAR(2)

WRITE(1,100) IHRS ,IMIN,ISEC
100 FORMAT ("PROGRAM LAST RUN AT",I2,":",I12,":",12)
CONTINUE

INAME=0
ICMCD=0
CALL EXEC(11l,ITM)

CALL EXEC(6,INAME,ICMCD,0,ITM(2),ITM(3),ITM(4))
END

2-42

ExXxecutive Communication

Status EXEC Calls

The status EXEC calls are used to obtain information about the
operating environment. This includes obtaining the current time
indicated by the 24-hour system clock, obtaining size and status
information about memory partitions, and determining the present
status of an I/0 device.

The status EXEC <calls are 1listed below in the order of their
presentation:

* TIME REQUEST - EXEC 11

* PARTITION STATUS - EXEC 25
* MEMORY SIZE - EXEC 26

* I/0 STATUS - EXEC 13

Time Request — EXEC 11

Request the current time indicated by the 24-hour real-time clock.

o e e e e e e e e e e e e e e e e e e e +
I I
= CALL EXEC(ICODE,ITIME, [IYEAR]) |

----- ————— I
I I
o e — e —————————————————— +
| I
| ICODE - Request code. 11 = time request. I
| |
| ITIME - 5-word array. Time indicated by a real-time clock |
| is returned by the system as follows: |
| |
| ITIME(l) = 10 s of milliseconds |
[ITIME (2) = Seconds I
| ITIME (3) = Minutes |
I ITIME (4) = Hours I
| ITIME (5) = Day of the year |
| |
| IYEAR - Optional one-word variable. Current year is re- |
| turned, by the system as a 4-digit number. |
I |
B M S O +

2-43

Executive Communication

COMMENTS:

A- AND B-REGISTER RETURNS---Upon successful completion of this call,
the A-register contents will be meaningless and the B-register will
be unchanged. If an error occurs, it is indicated in the A- and
B-register (see "EXEC CALL ERROR RETURNS").

ALTERNATE METHODS---The EXEC 11 call is similiar to the TI operator
command described in the RTE-IVB Terminal Users’ Reference Manual.
The library routine FTIME can also be used to obtain the current time
(see Chapter 6, "SYSTEM LIBRARY ROUTINES").

EXAMPLE---Obtain the current time on the real-time clock as well as
the current vyear. Print out date and time as hrs:mins day/year on
printer (LUG6).

PROGRAM TMRQT
DIMENSION ITIME (5)

ICODE=11
CALL EXEC(ICODE,ITIME,IYEAR)
IHR=ITIME (4)
IMIN=ITIME (3)
IDAY=ITIME (5)
WRITE(6,20) IHR,IMIN,IDAY,IYEAR
20 FORMAT (" CURRENT TIME AND DATE ",I2,":",12," ",13,"/",14)
CONTINUE

END

2-44

Executive Communication

Partition Status — EXEC 25

Requests system to return status information about a specified memory

partition.

o e e — — — — —————— —— —— ———————— ———————————————— +
| |
| CALL EXEC(ICODE,IPART,IPAGE,INPGS,IPST) l
l

| I
T +
I I
| ICODE - Request code. 25 = partition status. |
| I
| IPART - Number of partition that information is being re- |
| quested on. |
| |
| IPAGE - starting page number of partiton. |
| |
| INPGS - Number of pages in partition (including base page). :
|

| IPST - Partition status word. I
| |
e e e e — e = +

COMMENTS:

PARTITION STATUS WORD (IPST) - The format of IPST is as follows:

(RS) (RT) (M) (S) (C)

| =-ID segment number-- |

The meaning of the IPST fields are summarized below:

*

bit 15 (RS). Set to "1" if partition is reserved.
bit 14 (RT). Set to "1" if partition is a real-time partition.
bit 13 (M). Set to "1" if partition is a mother partition.

bit 12 (8). Set to "1" if partition is a sub-partition of a
mother partition.

bit 11 (C). Set to "1" if chain-mode is in effect, 1i.e.,
subpartition is linked to an active mother
partition.

bit 8-10. Not used.

2-45

Executive Communication

* bit 0-7. ID segment number. Set to the ordinal number (index

into keyword block) of the 1ID segment for the
program that occupies the partition. Set to zero if
partition is not occupied.

A- AND B-REGISTER RETURNS---For successful calls the A-register
contents will be meaninjless and the B-register will be unchanged.

For unsuccessful calls, error information is returned (see, "EXEC
CALL ERROR RETURNS").

If the partition number (IPART) is illegal, -1 will be returned in
INPGS and zero will be returned in IPAGE. For more information on
partitions, refer to Chapter 1, "MEMORY MANAGEMENT".

Note that the number of pages and the starting page number of all
partitions can be obtained by running the wutility program WHZAT
described in the RTE-IVB Terminal User s Reference Manual.

EXAMPLE---Obtain size information on all the partitions 1in the
system. Print results as a utility report on session console (LUl).

PROGRAM PUTIL

.

IPART=1

50 CALL EXEC(25,IPART,IPAGE,INPGS,IPST)
IF (INPGS.EQ.-1)GO TO 150
WRITE(1,100) IPART,IPAGE,INPGS

100 FORMAT(" PARTITION NUMBER ",I2," STARTS AT PAGE ",I4,
*" AND IS ",I2," PAGES LONG ")

IPART=IPART+1
GO TO 50
150 CONTINUE

END

2-46

Executive Communication

Memory Size — EXEC 26

Returns the memory limits of the partition that the calling program
is currently executing in.

Fo e ————————————————— +
| |
| CALL EXEC(ICODE,IFAW,ILMEM,INPGS[,IMAP]) I
| emem mmees e -—- |
| I
Ty +
| |
| ICODE - Request code. 26 = memory size. =
I

| IFAW - Address of first available word behind the calling |
| program, e.g., last word of program, plus length of |
| largest segment, plus 1. |
| I
| ILMEM - Number of words available between the last word of |
| the program and the last word of the programs add- |
| ress space. }
|

| INPGS - Length of the partition (including base page) that |
| program currently resides in. :
|

| IMAP - 32-word array into which a copy of the currently |
| enabled user map is returned. |
I |
o e e e e e e e e e e e e e e e e +
COMMENTS:

PARAMETER RELATIONSHIPS---The system calculates ILMEM by subtracting
IFAW from the address of the last word of the program’s logical
address space. A program s logical address space is determined at
load-time and can be equal to the program’s size (default) or greater
than the program’s size (using LOADR size-override option).
Furthermore, the partition a program resides in may be greater than
or equal to the program’s logical address space.

For EMA programs, ILMEM corresponds to the number of words between
IFAW and the beginning of MSEG (see Chapter 5, "EMA PROGRAMMING").

Figure 2-1 illustrates the relationships between the EXEC 26 returned
parameter values.

A- AND B-REGISTER RETURNS---For successful EXEC 26 «calls, the
returned A-register contents will be meaningless and the B-register
contents will be unchanged. For unsuccessful calls, error
information is returned (see, "EXEC CALL ERROR RETURNS").

Executive Communication

- - — T — - ——————— - —— - —— —- ——————— - —— - — - ———— - ———— ———— -

UNUSED PARTITION
SPACE OR MSEG

LAST WORD OF
ADDRESS SPACE

SEGMENT SPACE — INPGS

PROGRAM SPACE

A

COMMON

SYSTEM TABLES

BASE PAGE

LOGICAL USER MAP

- —— — - ——— ——————— — - - —— — - — — - —— —— —— —— -—— —— - — - ——— ——— A ———— - —— ——————— ——

Figure 2-1. EXEC 26 Parameter Relationships.

EXAMPLE---FORTRAN program makes an EXEC 26 call to determine the size
of the unused portion of its logical address space. The size and the
address of the first word of the space are passed to a user-written
Assembler routine (USER) that wuses the space for temporary data
storage.

PROGRAM DYALC

ICODE=26
CALL EXEC(ICODE, IFWA,ILMEM,INPGS)

CALL USER(ILMEM,IFWA,..)

.

END

Executive Communication

I/0 Status — EXEC 13

Requests information (status and device type) about device associated
with a specified Logical Unit number.

o e e e e e e e e e e e e e i e e +
| |
| CALL EXEC(ICODE,ICNWD,IST1(,IST2][,IST3]) :
|
g gL g g SRR +
| |
| ICODE - Request code. 13 = I/0 status. ;
|

| ICNWD - Session Logical Unit number (0-63) of device that status |
| is being requested on. :
|

| IST1 - Status word. Word 5 of the devices’ EQT entry (see |
| COMMENTS) . :
|

| IST2 - Status word. Wword 4 of the devices® EQT entry (see |
| COMMENTS) . |
| |
| IST3 - Status word. Specifies whether device is "up" or "down". |
| Also indicates subchannel associated with the device. |
| |
e e e e e e — — —— —— ———— ———————— ——————————————— +
COMMENTS :

STATUS WORDS---The contents of IST1 and IST2 are obtained from words
5 and 4, respectively, of the devices Equipment Table (EQT) entry.
Since the status 1is obtained from the EQT and not the wriver, the
status obtained from a buffered device or a device with multiple
subchannels, may not reflect the current device status. The format of
these words is shown in Table 2-1 and Table 2-2.

The contents of IST3 1is obtained from the Device Reference Table
(DRT) entry associated with the device (see Appendix C, "DEVICE
REFERENCE TABLE FORMAT"). Bit 15 of IST3 will be set to "1" if the
device is down. Bit 15 will be cleared to "0" if the device is up.
Bits 4 through 0 of IST3, will indicate the subchannel associated
with the device.

If an LU greater than 63 is specified in ICNWD, the status of the LU
with the value of (ICNWD-63) is returned.

A- AND B-REGISTER RETURNS---The contents of the A~ and B-registers
for a successful EXEC 13 call are meaningless. For unsuccessful
calls, error information 1is returned (see, "EXEC CALL ERROR
RETURNS") .

2-49

Executive Communication

EXAMPLE~--~-Program

if

RMPAR

100

200

and

05 or 07.

checks the LU passed to it in IPAR(l) to determine
it is associated with device type
continues,

If it is, execution

if it is not, the program terminates.

PROGRAM INTAC

DIMENSION IPAR(5)

CALL RMPAR (IPAR)
ICNWD=IPAR (1)

MASK5=2400B

MASK7=3400B

CALL EXEC(13,ICNWD,IST1)
ITEST=IAND (IST1,037400B)
IF(ITEST.EQ.MASKS5) GO TO 100
IF(ITEST.EQ.MASK7) GO TO 100
GO TO 200

CONTINUE

CALL EXEC(6)
END

IAND are described 1in the

Reference Manual.

2-50

DOS/RTE Relocatable Library

Executive Communication

I/O Status Word (ISTA1/ISTA2) Format

Table 2-1
WORD CONTENTS
T T Y T -T T r v T
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 D B P S T Unit # Channel #
5 AV EQUIP. TYPE CODE STATUS (see Table 2-2)
ISTA2 D = 1 if DMA required.
B = 1 if automatic output buffering used.
P = 1 if driver is to process power fail.
S = 1 if driver is to process time-out.
T = 1 if device timed out (system sets to zero before each 1/0 request).
Unit = Last sub-channel addressed.
Channel = 1/0 select code for device (lower number if a multi-board interface).
ISTAI AV = [/O controller availability indicator:

EQUIP. TYPE CODE

STATUS

0 = available for use.
1 = disabled (down); for UP/DOWN status of LU see ISTA3.

2 = busy (currently in operation).

3 = waiting for an available DMA channel.

type of device. When this number is linked with “DVR.” it identifies the

device’s software driver routine:

00 to 074 = paper tape devices (or system control devices)

00
01
02
05

07

= teleprinter (or system keyboard control device)
= photo-reader

= paper tape punch

subchannel 0 = interactive keyboard device (or system
keyboard control devices)

subchannel 1,2 = HP mini-cartridge device

subchannel 3 = graphics

subchannel 4 = aux. printer

multipoint driver

10 to 17 = unit record devices

11
12
15
20 to 37
31
32
33
40 to 77

= card reader
= line printer

= mark sense card reader

magnetic tape/mass storage devices
7900 moving head disc

= 7905 moving head disc

= flexible disc

instruments

= the actual physical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5 =1
means end-of-tape on input, or tape supply low on output.

Executive Communication

Table 2-2 EQT WORD 5 STATUS TAELE
Device \ Status 7 6 5 4 3 2 1 0
7900 Moving Head Disc
DVR31 NR EOT AE FC SC DE EE
7905/7906/7920
Moving Head Disc PS FS HF FC SC NR DB EE
DVR32
(See appropriate driver manual for status bits of other devices)
Where:

DE = Data Error

DB = Device Busy

SC = Seek Check

FC = Flagged Track (protected)
AE = Address Error

EOT = End of Tape/Track

NR = Not Ready

HF = Hardware Fault

PS = Protected Switch Set

FS = Drive Format Switch is set
EE = Error exists

2-52

Executive Communication

Class 1/0 EXEC Calls

The <class 1/0 feature of RTE-IVB is implemented by a special set of
I/0 EXEC calls. These class I/0 calls provide user programs with I/O
and communication capabilities not available with the standard I/0
EXEC calls discussed earlier in this section. The features provided
by class I/0 are summarized below:

* I/0 without wait - allows a program to continue executing
concurrently with its own input operation (class READ) or output
operation to an unbuffered device (class WRITE).

* Mailbox I/O - allows cooperating programs to communicate via a
controlled access data buffer.

* Data passage synchronization - prevents communicating programs
from processing incomplete or non-updated data; a program can
suspend itself wuntil it receives a signal indicating that valid
data is available from another program.

* 1/0 control without wait - allows a program to initiate a control
operation on an I/0 device and continue executing without waiting
for the control operation to complete.

Class 1/0 is based on the use of a buffer in System Available Memory
(SAM) with an associated "access key". The access key is known as a
class number; the class number and the buffer are collectively known
as a class.

Note that the use of class I/O is exclusive of system or local COMMON
used in standard program-to-prcocgram communication.

Class I/0 can be considered "double-call" I/0. One call is necessary
to initiate the operation and another <call is necessary to complete
the operation. The initiation call (class READ, WRITE, WRITE/READ,
or COWTROL) places request parameters, plus data if required, in the
class buffer in SAM. The completion call (CLASS GET) retrieves any
data and releases the request. The class number must be used as a
parameter in the GET <call, thereby insuring that only authorized
programs (programs "knowing" class number) can access the buffer. 1If
a program other than the program that initiated the I/0 operation
wishes to retrieve the results, the class number must be made
available to the retrieving program (via COMMON, in command string,
etc.). Note that once a <class 1I/0 operation 1is initiated, the
calling program has the option of either continuing with its
execution or waiting for the operation to complete.

Executive Communication

A class number 1is allocated when a user program makes an initial

class I/0 <call and requests a class number, The class remains
allocated until a program deallocates it. The class should always be
deallocated when it is no longer needed; freeing it for use by other
programs, The maximum number of classes (1-255) is established at
generation time (see the RTE~IV3 On-~Line Generator Reference Manual).
Note that a program can have more than one class number allocated to
itself.

A buffer in SAM 1is allocated each time a <class I/0 operation is
initiated. The buffer contains the request parameters and,
optionally, data. When the operation 1is completed (using GET call),
the buffer can be released or retained at the users option.

When a <class 1/0 request is made (i.e., READ, WRITE, etc.) it is
queued on the specified class number. This is known as the "pending
class queue". The request remains in the pending class queue until
the driver has received the request and processed it accordingly.

When the driver has completed the specified operation, the request is
linked to the "completed class queue" associated with the class
number, The results of the operation are then available to the
calling program (or another program) via a GET call. dNote that the
queueing technique (pending and complete) allows more than one buffer
to be associated with the same class number, i.e., a program can make
multiple requests specifying the same class number.

For "I/O without wait" operations, data can be read from, or written
to, an I1/0 device by first transferring the data to the buffer in SAM
(class READ, WRITE or WRITE/READ). The user program can either
continue execution of other tasks without waiting for the I/0
transfer to complete, or can suspend or terminate itself (releasing
system services to other waiting programs) until the data transfer is
completed.

A user program recovers the results of a Class I/O call by issuing a
Class I/0O GET call. If the results are not present, the caller
either can wait or return to execute more code before reissuing the
Class GET call.

A simple example of I/0 without wait would be a program that issues a
Class 1I/0 READ call in its code, followed by a series of other coded
operations. While these following operations were being executed, the
system simultaneously would be reading the data into the allocated
class buffer. The calling program (or another program) would issue a
Class I/0 GET <call to fetch the data from the buffer. A more
detailed example of I/O without wait, as well as, program-to-program

communication, 1is given in Appendix K, “CLASS I/O APPLICATION
EXAMPLES" .

2-54

Executive Communication

A more detailed explanation of how the RTE-IVB operating system
handles class I/O is given later in this section (see "SYSTEM CLASS
I/0 CONSIDERATIONS") .

The Class 1/0 EXEC calls are listed below in the order of their
presentation:

* CLASS READ, WRITE and WRITE/READ -~ EXEC 17, 18 and 20.
* CLASS I/0 CONTROl - EXEC 19
* CLASS GET - EXEC 21

Class 1/0 Read, Write, and Write/Read — EXEC 17, 18 and 20

Initiates the transfer of information to/from a non-disc 1/0 device,
or to another program,

|

|
e e e e e e e m e e e e — e e .- ————————— +
| ICODE - Request code. 17=Read, 18=Write, 20 = Write/Read. |
| |
| ICNWD - Control word. Specifies the LU of device involved |
| in data transfer, driver dependent information and |
| optional parameter (IOPl and I0P2) considerations. |
| |
| IBUFF - Data buffer. For READ operations, a dummy parameter;|
| for WRITE and WRITE/READ operations, the array |
| where the program places the data to be written. :
|
| ILEN - Data length. Positive number of words or negative |
| number of characters to be read or written. {
|
| IOP1 - Optional parameter (see COMMENTS). |
| |
| IOP2 - Optional paramter (see COMMENTS). |
| |
I ICLAS - Class word (see COMMENTS). |
et T e e RS R RIS +

2-55

Executive Communication

COMMENTS:
CONTROL WORD (ICNWD)---The format of the control word is as follows:

(2) (X) (A) (K) (V) (M)

S P S0 0n NS S D S S S D S S S D P S SER WD D D PSS Y S N B S 9 O M est M AP W e D Put S S NS P N S D I P S S e

T s L e B0 S S D ST P e S PED VSR N S e T S Pkt NP N P SeED MIP S AAE S Sekes N Weis Sabe TS SE TS Gy MM FAS GS NI P S OSSN e e S S

|<~-Function-=->|<-Logical Unit->|
Code

The function of the control word fields are summarized below:

* Logical Unit (bit 0-5). Logical unit number (LU) of the device
that data is to be transferred to or from. Must be LU of non-disc
device. If LU is set to zero, the call is executed but no data is
transferred to/from an external device.

* Function Code (bit 6-10). Specifies control information for the
driver module associated with the I/0 device involved in the data
transfer. This information is driver dependent and the
appropriate driver reference manual should be consulted for more
information. The function code can be defaulted to zero if no
special action is required.

* Z-bit (bit 12). The Z-bit is set to "1" if an additional control
buffer is to be passed to the driver module or passed to the
program that performs the GET call. The control buffer is defined
by the optional parameter (IOP1l and I0OP2).

* Bit 11 and 13~15. These bits are used by the system and should be
set to zero by the user,

ILEN---This variable defines the 1length of the data record to be
transferred. A positive number is used to specify the length of the
data record in words. A negative number is used to specify the length
of the data record 1in characters (bytes). The data type must be

allowed for in ILEN. For example, a data record containing 10 REAL
values would require ILEN to be +20 or -40 since each REAL value

requires two words, If the data record contains double-precision
data, three or four words are required for each value, depending on
the options taken at generation time for the FORTRAN compiler (see
RTE FORTRAN-IV Reference Manual).

OPTIONAL PARAMETERS (IOP1 AND 1IOP2)-~-~If the Z-bit 1is set, IOP1l
defines the address of an optional control buffer and I0P2 defines
the 1length of the buffer in positive words or negative characters.
The control buffer can contain driver dependent information (the user
should refer to the appropriate driver reference manual for more
details) or control information to be used by the program that issues
the GET call.

2-56

Executive Communication

If the 2Z-bit is clear, IOPl, and IOP2 can be used to pass one-word
parameters to the GET (EXEC 21) call described later in this section.

FTN4, L
PROGRAM IOPT
DIMENSION IBUF (10)
DATA IBUF/2HHI,2H T,2HHE,2HRE,2H!!.PH! /
100 CONTINUE

ICLAS=0
WRITE(1,1)

1 FORMAT (/5X,"PLEASE ENTER IOPl...<-")
READ(l,*) I0P1
IF(IOPl .EQ. 0) STOP
WRITE (1, 2)

2 FORMAT (/5X,"PLEASE ENTER IOP2...<-")
READ(l,*) IOP2
CALL EXEC(18,1,IBUF,6,I0PLl,IOP2,ICLAS)
WRITE(1,10) IOP1,IOP2

10 FORMAT (/5X,"CLASS WRITE INITIATED!! - IOPl = ",I6," IOP2 = " ,Ib)
CALL EXEC(21,ICLAS,IBUF,6,IP1,IP2,IP3)
WRITE (1,20) IP1,IP2,IP3

20 FORMAT (/5X,"I1IPl = ",16," IP2 = ",I6," IP3 = ",I6)
@ TO 100
END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

A- AND B-REGISTER RETURNS---When the user’s program issues a Class
I/0 call, the system allocates a buffer from System Available Memory

and puts the request in the buffer. If memory is not available, three
possible conditions exist:

l. The program 1is requesting more memory space than will ever be
available, In this case, the program is either aborted or the "no
abort" error return is taken (I004), depending on the state of
the no-abort bit in ICODE.

2. The program is requesting a reasonable amount of memory but the
system must wait until memory is returned before it can satisfy
the calling program, The program is suspended unless the "no
wait" bit 1is set, in which case a return is made with the
A-register set to -2,

3. If the buffer limit is exceeded, the program will be suspended
until this condition clears. 1If the "no wait" bit is set, the
program is not suspended and the A-register is set to =2,

The A-register will contain -1 if the "no-wait" bit was set and tne

program tried to allocate a class number with no class numbers
available,

The A-register will contain zero if the reguest was successful,

Executive Communication

The returned content of the B-register 1is meaningless. Error
information is returned to the A- and B-register for unsuccessful
calls (see, "EXEC CALL ERROR RETURNS").

CLASS WRITE---The general flow of a Class WRITE operation is as
follows:

l. User places data in IBUFF, specifies data length in ILEN, and
issues an EXEC 18 call specifying a previously allocated class

number in ICLAS (if ICLAS = 0, a class number will be allocated,
if available).

2. The system allocates a buffer in SAM (if available) large enough
to contain the data plus the request parameters, places the data
from IBUFF plus the request parameter into the buffer, and links
the buffer into the Pending Class Queue associated with ICLAS.
The calling program continues executing or suspends itself with
an EXEC 21 call to the class number.

3. The request is gueued (according to program priority) on the EQT
associated with the LU specified in ICNWD.

4, When the driver completes the WRITE operation, the request
portion of the buffer is linked into the completed class gueue.,
The data portion of the buffer is released back to the system. A
program suspended by a previous GET call (EXEC 21) on the class
number is rescheduled, See, "CLASS GET - EXEC 21", for details
associated with the GET call.

CLASS READ---The general flow of a Class Read operation 1is as
follows:

l. User 1issues an EXEC 17 call specifying a previously allocated
class number in ICLAS (if 1ICLAS = 0, a class number will pe
allocated, if available). The amount of data to be transferrea
from the external I1/0 device to a buffer in SAM is specified in
ILEN.

2. The system allocates a buffer in SAM large enough to contain the
data plus the request parameters, places the reguest parameters
in the buffer, and links the buffer into the Pending Class Queue
associated with ICLAS. The <calling program continues executing
or suspends itself with an EXEC 21 call to the class number,

3. Thg request is then queued (according to the calling program’s
priority) on the EQT associated with the LU specified in ICNWD.

4. When the driver completes the transfer of data from the external
I/0 device to the buffer in SAM, the request portion, plus tne
data portion, of the buffer are 1linked into the completed class
qgueue, A program suspended by a previous GET call (EXEC 21) on
the class will be rescheduled. See, "CLASS GET - EXEC 21", for
details concerning the GET call.

2-58

Executive Communication

CLASS WRITE/READ---The general flow of a class WRITE/READ request nas
characteristics of both the class WRITE and class READ caills
described above. The flow progresses like a class WRITE call until
the point of driver completion is reached. 1In a class WRITE call,
only the request portion of the class buffer would be linked into the
completed class queue; for a Class WRITE/READ, both the request
portion plus the data portion of the class buffer is linked into tne
completed class queue and flow continues 1like a class READ reguest.
Hence the name WRITE/READ.

The Class WRITE/READ call with LU=0 is used for program-to-program
communication. The data is transferred from the user program s
buffer into the class buffer and written to LU 0 ("bit-bucket”). The

data 1is retained in the completed class queue to be recovered oy an
EXEC" 21 call from another program.

CLASS WORD (ICLAS)---The format of the class word is as follows:

(NW) (S) (DA)

e e e e e e +
|15114113}12]11]10| 9| 8| 71 61 5| 41 3| 2| 1} O}
e e +
| |
| mommmeeeeee Class Number--=——-—-=e-- > |

The function of the class word fields are described pbelow:

* CLASS NUMBER (bit 0-12) - To obtain a class number from tae
system, the bits are set to zero. This causes the system to
allocate a class number (if one is availaple) to the calling
program, The number is returned to the ICLAS parameter when thne
call completes and the user must specify this parameter
(unaltered) when using it for later calls.

"DE-ALLOCATE" BIT (bit 13) - (see "CLASS GET - EXEC 21")
* "SAVE" BIT (bit 14) - (see "CLASS GET - EXEC 21")

* Y“NO-WAIT" bit (bit 15) - when set, the calling program does not
memory suspend if memory (or a class number) is not available,

2-59

Executive Communication

Class 1/0 Control — EX‘EC 19

Performs various 1I/0 control operations such as backspace, write
end-of-file, rewind, etc. The calling program does not wait for the
operation to complete.

ICODE - Request code. 19 = I/0 control.

ICNWD - Control word. Specifies the LU and the control
function to be carried out on that LU.

for the control operation.
ICLAS - Class word.

|
|
I
|
I
|
| IPRM - Optional paramter. Required for some control func-
I
|
I
|
I
| IOP1 and I0OP2 - Optional parameters.

|

|
I
|
I
|
I
|
tions. Must be used as a place holder if not required =
I
I
I
|
|

COMMENTS:

PARAMETER CONSIDERATIONS---ICNWD and IPRM perform the same function
for the class I/O control operation (EXEC 19) as for the standard I/0
control operation (EXEC 3) described earlier.

ICLAS is described earlier in this section with the discussion of the
class READ, WRITE, and WRITE/READ EXEC calls.

IOP1 and 1IOP2 can be used to pass information to the EXEC 21 call
described later in this section.

A- AND B-REGISTER RETURNS--For successful EXEC 19 calls, the
A-Register contains zero; the contents returned to the B-Register are
meaningless. Error information is returned to the A- and B-Registers
for unsuccessful EXEC 19 calls (see, "EXEC CALL ERROR RETURNS").

GENERAL FLOW---The general flow of the EXEC 19 call is as follows:

l. User program makes EXEC 19 call specifying the LU and operation
to be performed in ICNWD. A previously allocated class number is
specified in ICLAS (if ICLAS=0, a class number is allocated, if
available).

2-60 Update 8

3.

Executive Communication

The system allocates a buffer in SAM, places the request
parameters in the buffer, and links the buffer into the Pending
Class Queue associated with ICLAS. The calling program can
continue executing or suspend itself with an EXEC 21 call to the
class number,

The request is queued (according to program priority) on the EQT
associated with the LU specified in ICNWD.

when the driver completes the control operation, the request is
linked into the Completed Class Queue. A program suspended by a
previous GET call (EXEC 21) to the class is rescheduled. See,
"CLASS GET - EXEC 21", for details associated with the GET call.

2-61

Executive Communication

Class GET — EXEC 21

Completes the operation previously initiated by a Class READ, WRITE,
WRITE/READ or CONTROL request.

o e e —————— e e +
| |
| CALL EXEC(ICODE,ICLAS,IBUFF,ILEN[,IOP1][,IOP2]([,IO0P3]) |
| - ———mmmem —eee o
o e o e e o e e +
| I
| ICODE - Request code. 21 = Class GET. ‘
I

| ICLAS - Class word. |
I I
| IBUFF - Data buffer. Array (in calling program) where the |
I system places retrieved data. |
I |
| ILEN - Data length. Positive number of words or negative |
| number of characters (bytes) to be retrieved. |
| |
| 1I0Pl, IOP2, and IOP3 - Optional parameters; IOPl and IOP2 |
| are obtained from the original class request, IOP3 |
I is returned by the system. :
I

e e e e e ————— ————————————————— +
COMMENTS :

CLASS WORD (ICLAS)---The format of the <class word 1is described
earlier in this section (see, "CLASS READ, WRITE, and WRITE/READ -
EXEC 17, 18, and 20"). The function of bits 15, 14, and 13 of the

class word are described below:

* "No Wait" Bit (15)---when set, the calling program 1is not
suspended if the results of the operation are not yet available,

i.e., the request has not been linked into the Completed Class
Queue.

* "save" Bit (l1l4)---wWwhen set, the buffer in the Completed Class
Queue is not released; a subsequent GET call will return the same
data.

* "peallocate" Bit (13)---When set, the class number is not released
back to the system, If bit 13 is cleared to zero and no requests
are left in the Pending Class Queue, and no requests for the class
are pending on the driver for processing, the class number is
released to the system.

Bits 14 and 13 work in conjunction with each other. If bit 14 is
set, the buffer is not released and the class number cannot be

released because there will still be an outstanding request against
it.

N
i

62

Executive Communication

Note that the class number should always be released when it is no
longer needed since the system does not automatically release the
number when the allocating program terminates.

Only when the GET call retrieves the results of the last request on a
class or examines an empty class queue can the class number be
released by clearing bit 13 in the class word (ICLAS).

DATA LENGTH (ILEN)---This variable defines the 1length of the data
record to be retrieved; the data type must be allowed for. If the
data record contains REAL values, two words per value are reguired,
If the data record contains double-precision data, three or four
words per value are required depending on the options taken at
generation time for the FORTRAN compiler (see the appropriate FORTRAN
Reference Manual).

Note that ILEN must allow for the length of the optional output
buffer (Zz-bit set in original call) if it is to be retrieved.

OPTIONAL PARAMETERS (IOP1,IOP2, AND IOP3)---Optional parameters from
the Class READ, WRITE, WRITE/READ, or CONTROL calls are returned in
IOPl and 1I0P2. These words are protected from modification by the
driver. The original request code received by the driver is returned
in I0P3 as follows:

ORIGINAL REQUEST CODE IOP 3 RETURN

T T e e e o e e o e = = — e o e = e e

B S 2 + =ESEEEEEEE=E=Es

17/20 (READ,WRITE/READ) 1
18 (WRITE) 2
19 (CONTROL) 3

GENERAL FLOW---When a program issues a class GET call, the program is
telling the system that it is ready to accept data provided by a
previous class READ or WRITE/READ call, or remove a completed class
WRITE or CONTROL request from the Completed Class Queue, If the
driver has not yet completed (GET call was issued before request was
linked into completed class queue), the calling program is suspended
in the general wait 1list (state 3) and a marker so indicating is
entered in the class queue header. When the driver completes, the
program is automatically rescheduled. If desired, the program can
set the "no wait" bit to avoid suspension.

One of the features of the GET call 1is that a user program waiting
for system resources can suspend itself without CPU overhead or
program overhead such as polling. A program can issue a GET call on a
class number associated with a device or another program and therepy
suspend 1itself, The program will be rescheduled when there is
something to process; the requested data will be available, After
the data 1is processed, the program can again suspend itself with
another GET call.

Executive Communication

BUFFER CONSIDERATIONS---There are several buffer considerations in
using the class GET call:

* The number of words returned to IBUFF is the lesser of:
a. the number requested (ILEN specified in GET call)

b. the number in the Completed Class Queue element being
retrieved. (ILEN specified in original request.)

* 1If the original request was made with the Z-bit set in the control
word (ICNWD), the returned value of IOPl will be meaningless.

* The "zZ-buffer" will be returned only if the original request was a
READ or WRITE/READ call; for WRITE requests, no data is returned.
Note that ILEN must allow for the length of the Z-buffer e.g. ILEN
= length of original reguest buffer + length of Z-buffer.

* The remaining words in IBUFF (if any) past the number indicated by
the transmission log (B-register), are undefined. If a "Z-buffer"
is also returned, the words remaining past the end of the Z-buffer
are undefined.

A- AND B-REGISTER RETURNS---The A- and B-register contents after the
return from a successful EXEC 21 call are as follows:

If a return is made with data, then:
A-register (bit 15) =0
A-register(bit 14-0)=status (word 5 of devices EQT entry)
B-register=transmission log (positive number of words of
characters transferred depending on original request.

If a return is made without data ("no wait" bit set in ICLAS), then:

A-register negative number of (requests +1) made to the class
but not yet serviced by the driver (pending class

requests).

B-register meaningless.

For unsucessful calls, error information is returned in the A- and
B-registers (see "EXEC CALL ERROR RETURNS").

2-64

Executive Communication

System Class 1/0 Consideration
The system handles a Class I/0 call in the following manner:

a. When the <class user 1issues a Class I/0O call (and the call is
received), the system allocates a buffer from System Available
Memory (SAM) and puts the request parameters in the header (first
eight words) of the buffer. The call 1is placed in the Pending
Class Queue and the system returns control to the calling
program.

b. If this 1is the only request pending on the EQT, the driver is
called immediately; otherwise, the system returns control to the
class wuser and queues the request according to the calling
program’s priority.

c. If buffer space is not available in SAM, the class user is memory
suspended unless bit 15 ("no wait") is set in the class word. If
the "no wait" bit 1is set, control is returned to the calling
program with the A-register containing a -2, indicating no memory
available. If the program is suspended, no memory will be granted
to lower priority programs until this program’s Class I/O request
is satisfied.

d. If too much memory was asked for (more than all of System
Available Memory) the program 1is aborted with an I004 error
return.

e. If a class number is not available or the I/0 device is down, the
class user is placed in the general wait list (status = 3) until
the condition changes. If the "no-wait" bit is set, the program
is not suspended and the A- register will indicate the condition.

f. If the call is successful, the A-register will contain zero on
return to the program.

The buffer area furnished by the system is filled with the caller’s
data if the request 1is either a WRITE, or a WRITE/READ call. The
buffer is then queued (pending) on the EQT entry specified by the
Logical Unit Number.

After the driver receives the Class I/0 request (in the form of a
standard I/0 call) and completes, the system will:

a. Release the data buffer portion of the request if a WRITE. The
header is retained for the GET call.

b. Queue the header portion of the buffer (plus data if required) in
the Completed Class Queue,

c. If a GET call 1is pending on the Class Number, reschedule the
calling program. Note that the program that issued the Class I/0
call and the program that issued the Class GET call do not have
to be the same program.

2-65

Executive Communication

d. If there is no GET call outstanding, the system continues and the
driver is free for other calls.

Wwhen the user issues the GET call, the Completed Class Queue is
checked and only one of the following paths is taken:

a. If the driver has completed, the header of the buffer is returned
(plus data if applicable). The calling program has the option of
leaving the I/0 request in the Completed Class Queue so as not to
lose the data (a subsequent GET call will obtain the same data),
or dequeuing the request and releasing the header and buffer (can
also release the Class Number back to the system).

b. If the driver has not yet completed, the calling program is
suspended 1in the general wait list (status = 3) and a marker so
stating 1is entered in the Completed Class Queue header. If
desired, the program can set the "no-wait" bit to avoid
suspension. In any case, when the driver completes, any program
waiting in the general wait list for this class is automatically
rescheduled. Note that only one program can be waiting for any
given <class at any instant. If a second program attempts a GET
call on the same Class Number before the first one has been
satisfied, it will be aborted (I/0 error I01l0).

Executive Communication

Executive Error Messages

when RTE-IVB discovers an Executive error, it normally terminates the
program, releases any disc tracks assigned to the program, issues an
error message to the system console (and session terminal if in

session environment) and proceeds to execute the next program in the
scheduled list.

The user may specify the non~abortion of a program for some Executive

error conditions. See Chapter 2 for a detailed discussion of this
option,

The error messages described below are those that may occur while

accessing the Executive. They are grouped according to type. Table

2~-3 contains a summary of all possible errors associated with EXEC
calls.

Memory Protect Violations

The RTE~IVB operating system 1is protected by a hardware memory
protect. Consequently, any user program that illegally tries to
modify or jump to the operating system will cause a memory protect
interrupt. The operating system intercepts the interrupt and
determines its legality. If the memory protect is 1illegal, the

program 1is aborted and the following message 1is displayed on the
system console:

MP INST = XXXXXX (offending octal instruction code)

ABE ppppPpPP 999qdq (contents of A, B and E registers at abort)
XYO pppppPP 999qqq r (contents of X, Y and O registers at abort)
MP YyYYYY 22222 (yyyyy=program name; zzzzz=violation address)

YYyyyy ABORTED

Dynamic Mapping Violations

A dynamic mapping violation occurs when an 1illegal read or write
occurs to a protected page of memory. This may happen when a user
program tries to write beyond its own address space to non-existant

memory or to some other program’s memory. In this case, the program
is aborted and the following message is issued:

DM VIOL = wwwww (contents of DMS violation register)

DM INST = XXXXXX (offending octal instruction code)

ABE pppppPpP 99dqgq r (contents of A, B and E registers at abort)
XYO ppppPPP 999ggq r (contents of X, Y and O registers at abort)
DM yyyyYy zzzzz (yyyyy=program name; zzzzz=violation address)

Yyyyyy ABORTED

Executive Communication

Dispatching Errors

It 1is possible for programs to be scheduled and discover at a later
time that there is no partition large enough to dispatch the program.
This could occur if a parity error downed a partition and that
partition was the 1largest of its type (i.e., BG, RT, or EMA). 1If
this occurs, the program will be aborted with a DP error. The format
of the error message is:

ABE pppppp 9ggqqq r (contents of A,B, and E registers at abort)
XYO pppppp 9ggaqq r (contents of X,Y, and O registers at abort)
DP YYYYY Zz222 (yyyyyY = program name; zzzzz = violation address)

YYYyyy aborted

EX Errors

It 1is possible to execute in the privileged mode; that is, with the
interrupt system off. Therefore, the user may not make EXEC calls in
this mode because the memory protect, which is the access vehicle to
EXEC, 1is off. An attempt to make an EXEC call with the interrupt
system off causes the calling program to be aborted and the following
message issued:

ABE pppppp 9999daq r (contents of A,B and E registers at abort)
XYO ppppPP 9gqagqdq (contents of X,Y and O registers at abort)
EX YYYYY 2zzzz (yyyyy=program name; zzzzz=violation address)

YYYYY ABORTED

Unexpected DM and MP Errors

The operating system handles all DM and MP violations. Some of these
violations are 1legal; others are not. In any case, the operating
system associates these violations with program activity. A DM or MP
violation occuring when no program 1is active 1is an unexpected
violation. Since no program is present there is no program to abort.
In such a case, one of the following messages will be issued:

DM VIOL = WWWwWww (contents of DMS violation register)

DM INST = XXXXXX (offending octal instruction code)

ABE ppppppP 99dqdq r (contents of A, B and E registers at abort)

XY0 PPPPPP gggqgqgqq r (contents of X, Y and O registers at abort)

DM <INT> 0

or

MP INST = XXXXXX (offending octal instruction code)

ABE pppppp 99gqgqgqg r (contents of A, B and E registers at abort)
r (contents of X, Y and O registers at abort)

XYO pppPPpPP 9999499
MP <INT> 0

2-68

Executive Communication

Both of the above messages specify <KINT> as the program name to
signal the user that an unexpected memory protect or dynamic mapping
violation error has occurred. Either is a serious violation of the
operating system integrity. Usually, it indicates that user-written
software (driver, privileged subroutine, etc.) has damaged the
operating system integrity or has inadequately performed reguired
(driver) system housekeeping. However, it could also mean that the
CPU has failed and that the operating system detected the failure in
time to prevent a system crash.

If this error occurs, it is recommended that all users on the system
save whatever they were doing (i.e., finish wup editing, etc.) and
reboot the system. If only HP modules are present in the operating
system, CPU failure 1is a highly likely cause of the error and CPU

diagnostics should be run prior to rebooting.

Executive Communication

TI, RE and RQ Errors

The following errors have the same format as the MP and DM error
returns except that the register contents are not reported:

Error Meaning

TI Batch program exceeds allowed time.

RE Reentrant subroutine attempted recursion.
RQ Illegal request code is (between 1 and 26)

An RQO0 error means that the address of a returned
parameter is below the memory protect fence.

TRACK ERROR (DISC PARITY)

Upon detecting a disc parity error, the program that encountered the
error is aborted and the following message is issued:

TR nnnnn EQT xx,Uyy < of >
U
where:
nnnnn = Track number of track containing error.

XX = EQT of disc.

yy = Subchannel of disc.
S = System request encountered error.

U = User request encountered error.

2-69a

Executive Communication

Parity Errors

Upon detecting a "hard" parity error (i.e., one that 1is
reproducible), RTE aborts the program that encountered the parity
error and the following message is issued in addition to those listed
above:

PE PG# nnnnn BAD
ABE aaaaa bbbbb e
XYO XXXXX YYYYY ©
PE ppppp mmmmm
ppppp ABORTED

where:

nnnnn = physical page number where the parity error was detected
(page number counting starts at 0).

ABE = contents of the A, B, and E-registers respectively when
the parity error was detected.

XYO = contents of the X, Y, and O-registers respectively when
the parity error was detected.

PPPPP = program name.,

mmmmm = logical memory address of parity error.

If the program was disc resident, the following message is issued in
addition to those listed above:

PART :N XX DOWN
PART ‘N yy DOWN

where:
XX = the partition the program was running in.
Yy = the mother partition program if any are affected

Alternatively, if xx is a mother partition, then yy is a subpartition
that contained the parity error. In either case, partition xx and yy
are no longer available for running user programs until the system is
next booted up.

2-69b

Executive Communication

Upon detecting a "soft" parity error (i.e., one that 1is not
reproducible), RTE is not able to locate the physical page number of
the parity error. The following message is then issued:

PE @ mmmmm
DMS STAT = zzzzz

where:
mmmmm = logical address of parity error.
zzzzz = DMS status register.

A parity error occurring within the operating system itself, a driver
or system table area causes the system to execute a HLT 102005,

where:

A-Register physical page number where the parity error was

detected (page number counting starts at 0).

B-Register = logical memory address of the parity error.

A parity error occurring in a DCPC transfer when the operating system
is executing 1in the System Map causes the system to execute a HLT
103005, where the A and B-Registers are as above.

Note: If CPU switch AlSl is set to "HALT" instead of "INT/IGNORE",

the CPU halts when a parity error occurs and the parity error
is not processed by RTE.

2-70

Executive Communication

Other EXEC Errors

The general format for the following errors is

where:

type

name

type name address

address

a four-character error code (DR, SC, I0, RN, LU; see below)

the program that made the call.

location of the call (equal to the exit point if the

error is detected after the program suspends).

Disc Allocation Error Messages

DRO1

DRO2

DEO3

Not enough parameters

Number of tracks zero, illegal 1logical unit, or number of
tracks to release is zero or negative.

Attempt to release track assigned to another program,

Schedule Call Error Messages

SC00
SCul
SC02
SCO03

SCO03

SC04

SCO05

SCuU6

SC07

I

L

T

Batch program attempted to suspend (EXEC (7)).

Missing parameter.

Illegal parameter.

Program cannot be scheduled.

Occurs when an external interrupt attempts to schedule a
program that is already scheduled. RTE-IVB ignores the

interrupt and returns to the point of interruption.

program name specified is not a subordinate (or "son")
of the program issuing the completion call.

Program given is not defined.

No resolution code in Execution Time EXEC Call (not 1,
2, 3, or 4).

Prohibited memory lock attempted.

2-71

Executive

SCo8

SCo09

SC10

SC11

Communication

The program just scheduled 1is assigned to partition
smaller than the program itself or to an undefined
partition. Unassign the program or reassign the program
to a partition that 1is as large or 1larger than the
program.

The program just scheduled 1is too large for any
partition of the same type. For example, trying to
schedule a 23K background program when the largest
background partition is only 21K.

Not enough system available memory for string passage.

Attempt to schedule (or time schedule) a program already
in the time list for another session.

1/0 Call Error Codes

1000

1001
I002

1003

1004

1005

1006

1007
1008
1009

1010

I01l1

I012
1014

1020

2-72

]

Illegal <class number. Outside table, not allocated, or
bad security code.

Not enough parameters were specified.
Illegal logical unit number was specified.

Illegal EQT referenced by LU in I/0 call (Select
code=0).

Illegal wuser buffer. Extends beyond RT/BG area or not
enough system available memory to buffer the request.

Illegal disc track or sector.

Reference to a protected track; or using LG tracks
before assigning them (see LG, Chapter 3).

Driver has rejected call.
Disc transfer longer than track boundary.
Overflow of LG area.

Class GET call issued while one call already
outstanding.

Type 4 program made an unbuffered I/0 request to a
driver that did not do its own mapping.

Logical unit not defined for this session.
An I/0 request was issued with the no-suspend option.

Read attempted on write-only spool file.

Update 8

1021

1022

1023

I024

1025

1026

Executive Communication

Read attempted past end-of-file (EOF).

Second attempt to read JCL card from batch input file by
other than FMGR.

Write attempted on read-only spool file.

Write attempted beyond end-of-file (EOF), usually spool
file overflow.

Attempted to access spool LU that is not currently set
up.

Attempted to access LU 255.

Program Management Error Codes

RNOO
RNO1
RNO2

RNO3

No option bits set in call.
Not used.
Resource Number not defined.

Unauthorized attempt to clear a LOCAL Resource Number.

Logical Unit Error Codes

LU0l

LU02

Luo3

LUO4

Program has one more logical units locked and is trying
to LOCK another with wait.

Illegal 1logical wunit reference (greater than maximum
number) .

Not enough parameters furnished in the call. Logical
unit reference less than one., Logical unit not locked to

caller.,

Lock attempted on 1logical unit not defined for this
session,

1/0 Error Message Format

The following error message format is used to report I/0 errors:

NR

"IOET L www EXXx Syy zzz"
PE
TO

Executive Communication

where: www = the device’ s logical unit number
XX = the device’s EQT number
Yy = the subchannel for the device
zzz = device status returned by driver
NR = device not ready
ET = end of tape
PE = transmission parity error

TO = the device nas timed out

NOTE

If a driver is down when an I/0O request is made, the device
status cannot be assumed to be valid. Therefore, the
device status information of the error diagnostic is
replaced with three asterisks, indicating that the device
was already down when the request was issued.

Executive Halt Errors

There are several HLT instructions included in the RTE operating
system that indicate a serious violation of the integrity of the
operating system. Usually, tnese errors indicate that the CPU or one
of its subsystems (DCPC, Memory Protect, etc.) has failed. However,
tney could indicate that user-written software (driver, privileged
suproutine, etc.) nas damajed tne operating system integrity or has
inadeguately performed reguired (driver) system housekeeping. If
these HLT s occur, it 1s recommended tnat the user check out nis
hardware with tne appropriate diagnostics.

HLT O Located in Table Area I

HLLD 2 Located in location 2 of the system map

HLT 3 Located in location 3 of the system map

HLT © System tried to remove a partition from a 1list and the

partition was not found there,

Other system HLT s exist for which there is some corrective action:

dLT 5 Parity error in system map. See Parity Error discussion in
this section.

HLT 5,C Parity error in a DCPC transfer when operating system was

executing in the system map. See Parity Error discussion in
this section.

HLT 10 At startup, the system discovered that there was no
partition large enouyn to execute FMGR or D.RTR.

N
{

74

Executive Communication

dLT 4 Powerfail occured and one of the following is true:

* powerfail/auto-restart subsystem was not installed.

* CPU was halted when powerfail occurred.

* Ppowerfail code did not have time to execute completely.

A summary of EXEC call error messages is provided in Table 2-3.

Error Routing

All EXEC call error messages are reported to the "session" terminal
as well as tne system console. The term "session" is used to mean
the terminal from which the program, making the invalid reguest, was
invoked. This means that the routing of errors to the correct
console is not dependent on the session monitor.

Before the message is issued to the session terminal, several system
level status checks are performed. Each of the following tests must
pass or the echo to the session terminal is not performed.

* The session terminal must not be down.

* pnough System Available Memory is available for the error message.

* The session terminal must not have reached it’s buffer limit. If

the buffer limit has been reached, only one error message will be
allowed until:

1) any previous system error message is completed or,

2) The buffer limits are no longer exceeded.

Equipment error messages will be sent to the session terminal (in

addition to the system console) if any of the following conditions
are true:

* The error occured on a non-buffered regquest.

* The error occured on the initiation of a request.

In either «case, the ID segment (word 33) of the requesting program

provides the information required to issue the error message to the
"session" terminal.

If the error (parity error) occured during a DMA transfer, the
request 1is checked to determine the caller’s identity. If a user
program can be identified, the ID segment once again identifies the
destination of the error messaje.

Executive Communication

If the requesting program is under session control, RTE-IVB scans the
program’s session switch table for every "system" LU to be put down.
For every match found ("system" LU=high byte of switch table), the
system issues the error diagnostic to the session terminal, but uses
the "“session" LU as defined in the SST. For example, say "system" LU
17 goes down (needs to be write enabled) and the wuser has the
following SST: '

——— - . R e e - - . T B > e S G B

| -4 | (length word)
a2 1 1

(system LU’ s) T—--“5~_—T-—-“E~-T (session LU’s)
It
1 1 10 1

- —— . T et T B T G B B B B e S S

The system console will receive the following diagnostic:
“"IONR L 17 E10 s 0 004"

The session terminal (system LU 42 in this example) will receive the
following diagnostics:

"IONR L* 6 E10 s 0 004"
"IONR L* 10 E10 S 0 004"

The three octal numbers at the end of the message represent the
device status returned by the driver.

The asterisk before the logical unit indicates that the logical unit
reported is the session related value,

NOTE
If the above device was buffered, the calling program would
still be scheduled and capable of executing. The next
access of the down device would cause:
* The program to be suspended.
* The following diagnostic messages to be issued to the session
console.
"IONR L* 6 E 10 SO **x*xn
“"IONR L* 10 E 10 SO kxxn

The system console does not receive any additional message.

2-76

Executive Communication

If another session, represented by the following SST,

| -4 | length word
a3 1 | switch
V2 2|
s 6 1
a1

attempts to access the same down device, the session terminal (system
LU 43 in this example) will receive the following diagnostic:

"IONR L* 21 E10 SO kknm

2-77

Executive Communication

Table 2-3. EXEC Call Error Summary

ERROR READ | WRITE | CONTROL | PROGRAM | PROGRAM | PROGRAM | PROGRAM|PROG.| PROG. PROG. TIME

MEANING TRACK TRACK | COMPLETION | SUSPEND | SEG. | SCHED. SCHED. | REQUEST

ALLOCATE | RELEASE LOAD | W/WAIT | WO/WAIT
1 2 3 4 5 6 7 8 9 10 1

DRO1

Not Enough Parameters.

1. Less than 4 parameters. 1

2. Less than 1 parameter. 2

3. Number = - 1.

4. Less than 3 (not - 1).
DRO02

lilegal Track Number or

Logical Unit Number.

1. Track number = 0. 1

2. Logical Unit not 2 or 3.

3. Deallocate 0 or less
Tracks.

wnN

DRO3
Attempt to release Track X
assigned to another
program.

1000
lllegal Class Number »
1. Outside Table.

2. Not allocated.
3. Bad Security Code.

1001
Not Enough Parameters.
1. Zero parameters.
2. Less than 3 parameters.
3. Less than 5/disc.
4. Less than 2 parameters.
5. Class word missing.

W =
W -

1002
lllegal Logical Unit.
1. 0 or maximum. 1 1 1
2. Class request on disc LU.
3. Less than 5 parameters 3 3
and X-bit set.

1003
lllegal EQT command by
LU in VO call; delete X X X
code = 0.

1004
lilegal User Buffer.
1. Extends beyond RT/BG 1 1
area.
2. Not enough system
memory to buffer the
request.

1005
Ilegal Disc Track or Sector
1. Track number maximum.
2. Sector number 0 or 2 2
maximum.

-
-

1008
Attempted to WRITE to
LU2/3 and track not
assigned to user or X
globally, or not to next
load-and-go sector. lilegal
WRITE to a FMP track.
Attempted to use copy of
loader to make permanent
load or delete.

1007
Driver has rejected
request and request is X X X
not buffered.)

1008
Disc transfer implies track X X
switch (LU2/3).

1009
Overflow of LG area. X

1010
Class GET and one call
already outstanding.

1011
llegal User Map request X X X
for System Driver area.

1012
LU not defined for this X X X
session.

8300-01

2-78 Update 8

Executive Communication

Table 2-3. EXEC Call Error Summary (cont.)
CLASS PROG. PROG.
PROG. GLOBAL | GLOBAL |CLASS | CLASS | CLASS o CLASS PROG. SCHED. SCHED.
SCHED. 1o STRING TRACK TRACK 1o o o WRITE/ 10 SWAPPING QUEUE QUEUE | RNRQ LURQ
TIME | SATAUS | PASSAGE | ALLOCATE | RELEASE | READ | WRITE |CONTROL | READ GET CONTROL W/IWAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 23 24
1
3
4
1
2
3
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 1
2 2 2
4
5 5 5 5
1 1 1 1 1
2 2 2 2
3 3 3 3
X X X X X X
1 1 1
2 2 2 2
X
X X X X X
Update 8 2-79

Executive Communication

2-80

Table 2-3.

EXEC Call Error Summary (cont.)

READ|

WRITE

CONTROL

PROGRAM
TRACK
ALLOCATE
4

PROGRAM
TRACK
RELEASE

s []

PROGRAM
COMPLETION

PROGRAM
SUSPEND

7

PROG.
SEG.
LOAD
3

TIME
REQUEST

Luot
Program has one or more
logical units locked and 1s
trymng to LOCK another
with WAIT

Loz
llegai logical unit reference
(greater than maximum
number)

Lues
Not enough parameters
furnished in the call Hiegal
logical untt reference (loss
than one) Logical unt not
locked 10 caller

LUOs
LU not detined for this
sess0ON

RQO0
Retum butfer below
memory protect lence

RQ

EXEC call contans an

Wlegal request code

1 Return address ndicates
less than one or more
than seven parameters

2 Parameter aadress -
aect through A- or
8-Regmter

3 Request code not de-
hned or not loaded

ANGO
No ophon bds set

e
RANOG2

RNOY
No resource numbers in
system

Resource number not in
Table (undefined)

Unauthorized attempt to
clear a LOCAL Resource
Number

$C00
Batch program cannot
suspend.

$Co1
Missing Parameter
1 Segment name missing.
2. Not 4 or 7 parameters n
Time Call

3 Not 4 parameters n Stringg

Passage Cait or pantition
status call

e

$C02
ihegal Parameter.
1. Option word 1s mssing of
not0. 1,2 or3
2. Read/write word in String
Passage Call s not 1 or 2.

$C03
Program cannot be
scheduied.
1. Not a segment.
2. Is a segment

$C04
Attempted 1o control a pro-
gram that 18 not a "Son."

Resoluton not 1, 2, 3, or 4.

$Co7
Prohibited core memory
lock attempted

8300-02

Update 8

Executive Communication

Table 2-3. EXEC Call Error Summary (cont.)

CLASS PROG. PROG.
PROG. GLOBAL | GLOBAL |CLASS | CLASS | CLASS Vo CLASS PROG. SCHED. SCHED.
SCHED. 1o STRING TRACK TRACK Vo 1o o WRITE/ o SWAPPING | QUEUE QUEUE | RNRQ|LURQ
TIME | SATAUS |PASSAGE | ALLOCATE | RELEASE | READ | WRITE | CONTROL| READ | GET | CONTROL W/WAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 23 24
X
X
X
X
X X X X X X
X X X X X X X X X X X X X
X
) I
X
X
2
3
1
2
2 2
2 2 2
X
X
X
X X
X

Update 8 2-81

Chapter 3
File Management Via FMP

Introduction

File management 1is performed through program calls to the File
Management Package (FMP) library and by interactive operator commands
to the program FMGR. The FMP calls mainly control input to and
output from disc files or peripheral devices treated as files. The
file management capability is increased by using FMGR for interactive
progra? development, disc cartridge manipulation, and batch job
control.

This section describes the FMP calls available under RTE-IVB. For
more details on FMGR operator commands the reader should refer to the
RTE-IVB Terminal User's Reference Manual.

A summary of the services available to the wuser via FMP Calls is
shown below:

FILE DEFINITION

FILE ACCESS

FILE POSITIONING
SPECIAL PURPOSE CALLS

* ¥ ¥ *

Files

Files are a collection of information 1logically organized into
records. They can be stored on disc or they may reference nondisc
peripheral devices by name. The information in files may be programs
or the data used by the programs. Data may be in binary or ASCII
code. Programs may be in the form of ASCII source code, or binary
code 1in either relocatable or absolute form. Programs may also be in
memory-image form, a form used by RTE for programs ready to be
executed.

Eight file types are defined by the file system. Additional types
may be defined by the user. Only the first four types differ in
format; all subsequent types differ only in the type of data the file
system expects the file to contain. The file types may be divided
into three categories as shown in Table 3-1. The first category
contains one type, type zero. This type includes all nondisc devices
defined as files and accessible by name. The second category
contains two file types, types 1 and 2. These fixed-length-record
files are used for quick random access. The remaining file types all
belong to the third category of files with variahle-length records
designed for sequential access. All files can be extended. Types 3
and above are automatically extended; types 1 and 2 can be extended
by an option used with open call.

Update 6 3-1

File Management Via FMP

Table 3-1. Categories of File Types

CATEGORY TYPE DESCRIPTION
Fixed-length, 1 Fixed-length 128-word record files
random access

2 Fixed user-defined-record-length files
Variable-length, 3 Variable-length records; any data type
sequential access

4 Source program file; ASCII

5 Object program file; relocatable binary

6 Executable program file; memory-image code

7 Absolute binary

8-32767 User-defined data format

FMP file types are summarized below:

TYPE 0 FILES

Type 0 files are used to reference nondisc devices by name. They
afford a measure of device independence in that the standard file
commands can be wused to control the device. A directory entry is
made for the device as if it were a file. The File Directory entry
for a file of this type contains special entries that specify logical

unit number and the operations allowed on the particular device. A
type 0 file is created with a FMGR command, not with an FMP call.

TYPE 1 FILES

Type 1 files have fixed length records of 128 words. Because the
File Management Package transfers data to and from disc in 128-word
blocks, this file type allows direct access between disc and the
user's buffer area in his program, thereby eliminating the need to go
through an intermediate packing buffer (the Data Control Block). As
a result, type 1 files have the fastest transfer rate. Any other
file type, except type 0, may be opened and accessed as a type 1 file
in order to take advantage of the faster transfer rate. However, if
the files being transferred have less than 128-word logical records,
the user must be able to recognize where his records begin and end
within the 128 words, or if his records are longer, be able to work
with part of a record at a time. The end-of-file is defined to be
the last word of the last block.

File Management Via FMP

TYPE 2 FILES

The record lengths of type 2 files are fixed. Like type 1 files, the
end-of-file 1is defined to be the the last word of the last block.
Only one logical record is transferred at a time, but unlike type 1
files, the transfer must go through a packing buffer (the Data
Control Block). For this reason, files of type 2 and above have a
slower transfer rate than type 1 files.

TYPE 3 FILES

These files have variable length records and can contain data, source
code, relocatable or absolute binary code. Only one logical record
is transferred at a time and the transfer must be made through the
packing buffer (Data Control Block). The first and last words of
each record as written on disc always contain the number of words in
the record (minus the two 1length words). A zero-length record,
consisting of two =zero words, can be used to separate groups of
records into sub-files. The end-of-file is marked by a -1 as the
first length word in the next record. Words following the end-of-file
are undefined. However, FMP can write records beyond the end-of-file
by replacing the end-of-file with a new record followed by an
end-of-file mark.

TYPE 4 FILES

This file type is the same as type 3, except the file system expects
these files to contain ASCII data. Typically, source program files
are type 4.

TYPE 5 FILES

Same as type 3 files, except the file system assumes type 5 files
contain relocatable binary code. Typically, object program files are
type 5.

TYPE 6 FILES

This type file 1is the same as a type 3 file, except the system
assumes it contains a program in memory-image format that is ready to
run. Type 6 files are created by the Save Program (SP) command which
copies a program stored on the system track into a type 6 file on the
FMP tracks of LU 2 or LU 3. These files are always accessed by the
File Management Package as type 1 files. The first two sectors of a
type 6 file are used to record 1ID segment information for the
program. As a result, this file type can be used for programs that
do not have a permanent ID segment.

TYPE 7 FILES

Same as type 3 files, except the system expects type 7 files to
contain absolute binary code.

File Management Via FMP

FILE TYPES GREATER THAN 7

Same as type 3, but the content is user-defined. FMP does no special
processing based on file type for types greater than 7. For
instance, any checksums must be specifically requested. Content is
also user-defined; it may be source, relocatable binary, memory-image
format, etc.

File Access

Type 1 and type 2 files contain fixed length records which makes it
possible to calculate the position of a desired record. On the other
hand, type 3 files and above contain variable length records, so the
system must access the disc at least once, and in some cases several
times, in order to position to the desired record location. For this
reason, access takes longer for file types greater than type 2. Type
2 files should not be opened using update mode and automatic
extendability at the same time. An FMP -12 error will occur when
attempting to write to an extent that does not already exist.

All Files can be automatically extended whenever a write request
points to a location beyond the range of the currently defined file.
The extent is created by FMP with the same name and size as the main
file, and access continues. FMP numbers each extent starting with 1.
The extent number and location is kept in the file directory entry
for the extent. When a file with extents is referenced by its file

name, any extents are provided automatically. A file can have up to
255 extents.

For type 3 and above files, all extents are sequential. That is, the
main is created first followed by extent 1,2,3 and so on. The end of
the file is signified by an EOF mark. At close, the extents may be
truncated to provide more disc space or they may be retained.

For type 1 and 2 files, extents may be created sequentially or
randomly. That is, the main is created first and sequential writes
to the file may cause sequential extents to be created. However, a
random write to a record that would fall into an extent will cause
that extent to be created whether or not the extent immediately
preceding it exists.

For example, assume a type 1 file with a main file size of 10 blocks
is created. Writing to record 11 of this file will cause extent 1 to
be created. Now the main and only extent 1 exist., A write to record
31 will <cause extent 3 to be created, not extent 2. Now the file
consists only of the main, extent 1, and extent 3.

3-4 Update 8

File Management Via FMP

External type 1 and type 2 files are treated as logically contiguous.
As in the example above, writing 1408 words starting at record 31
causes 10 records (1280 words) to be written in extent 3, and 1
record in extent 4. Also, it is possible to read a record from an
extent that does not exist as long as that record is not beyond the
last word of the last extent in the file. No disc access is
performed; the user’s buffer will be zero-filled. For example, a
read to record 22 of the file created above will return with no
error, the return length will be 128 words, the user’s buffer will be
zero-filled, and the next record is set to 23.

The end of file for type 1 and type 2 files is defined as the last
word of the last extent in the file.

When a type 1 or type 2 file is copied using the FMGR ST, DU, or CO
commands, the resultant file may occupy more disc space than the
original file occupied. This is because records from non-existant
extents are physically read into the destination file. This feature
is especially important when compacting the extents of the file with
the ST, DU or CO commands. The resultant file must be physically
contiguous as well as 1logically contiguous to guarantee the same
displacement.

Files may be opened for access in either update or non-update mode.
Update mode is used to access existing files that are to be modified
in a random manner. Non-update mode is used to access files in a
sequential manner or to enter the original data into a file.

In update mode, the entire block containing the record is
automatically read into the Data Control Block before the record is
modified. After modification, the entire block 1is written to the
disc. This is done to insure that the Data Control Block always
contains the unmodified as well as the modified data, thereby
guaranteeing restoration of the block to the disc.

Reading or positioning a file 1is not affected by the update or
non-update modes of access.

Cartridges

Files managed by the File Management Package, whether they are
program files, data files, or spool files, are Kkept on FMP disc
cartridges. An FMP disc cartridge 1is a logical entity that may
correspond directly to a disc platter or may be a subdivision of the
disc platter. On some discs, a cartridge may cross platter
boundaries.

Each cartridge 1is defined as a contiguous block of tracks, and is
assigned a logical unit number. A cartridge reference number or the
LU may be wused to reference the cartridge. Files on the same
cartridge must have unique names. Duplicate names may be used as
long as the duplicates are on separate cartridges so the file can be
uniquely identified by its name and a cartridge identifier.

File Management Via FMP

Non-extended files are located in blocks of coantiguous sectors on an
FMP disc cartridge (file extents are non-contiguous). User files
begin in the lowest numbered track and work up. Directory entries for
user files begin in the highest numbered track and work down.
Removable cartridges containing FMP files are interchangeable between
drives of the same type within a system, or between drives on
different systems provided that logical track 0 refers to the same
physical track on every disc unit. (Refer to figure 3-1 for an
illustration of disc organization using one cartridge on the system
disc starting at the first FMP track, and one on a peripheral disc
starting at track 0.)

At cartridge initialization, the number of directory tracks for that
cartridge 1is specified. The first cartridge track must be assigned
at initialization; the number of sectors per track may be specified

at this time, but is supplied by FMP as a default if not.

Files may cross track boundaries, but may not cross cartridge
boundaries. Files are subject to being moved whenever a cartridge is
packed. This causes files to be relocatable within a cartridge and
no absolute file addresses should be kept in any file or program.

Files always start on even sector boundaries and all accesses are
multiples of 128 words addressed to even sectors.

Disc errors are passed back to the user for action. Error codes are
printed on the system 1log device when using the FMGR operator
commands, or passed to the user program when calling a File
Management Package library routine. You may report bad tracks to the
system through the FMGR Initialization command. Bad tracks
discovered by the system result in an error return to the calling
program.

Cartridge and File Directories

Two directory types are maintained by the file system; the FMP
cartridge directory on the system disc, and the file directory on
each cartridge. Program D.RTR updates and maintains the directories.

The cartridge directory is a master index to all mounted FMP
cartridges. It 1is maintained in the system area of LU 2 (refer to
figure 3-1). 1Its 1length is two blocks and it has an entry for all
currently mounted cartridges. The directory has room to describe up
to 63 cartridges using four words for eacn.

3-6

File Management Via FMP

LAST
FMP
TRACK

FIRST
FMP
TRACK

N

SYSTEM
TRACKS

|

|

|

|

|

|

CONTINUOUS LIST OF }

FILE 16-WORD ENTRIES, FILE LAST |
DIRECTORY ONE FOR EACH FILE DIRECTORY FMP

ON THE CARTRIDGE TRACK |

|

ADDITIONAL \ 16-WORD ENTRY DE- / ADDITIONAL '

DIRECTORY FINING USE OF THE DIRECTORY |

TRACKS CARTRIDGE TRACKS |

|

|

|

|

|

| '

_/ :

JM I

USER FILES START |

AT FIRST FMP |

USER TRACK '

FILES |

|

|

|

USER |

SYSTEM FILES |

SCRATCH |

———————=— 256WORD |

r 1 cARTRIDGE |

L——— DIRECTORY |

|

|

RTE I

SYSTEM l

|

FIRST |

- TRACK 0 >) - FMP |

LU 2 (OTHER DISC) TRACK |

ISYSTEM DISC) I

|

|

|

|

Figure 3-1.

Disc Cartridge Organization

3-7

File Management Via FMP

A file directory, maintained on each cartridge, contains information
on each file on that particular cartridge. Each directory starts in
sector 0 of the last track available to FMP. The first 1l6-word entry
in this directory contains label and track information for the
cartridge itself. Each subsequent 1l6-word entry has information on a
user file. The last entry is followed by a zero word. When a file is
purged, the first word in the directory entry for the file is set to
-1 to indicate that the directory entry 1is to be ignored. When the
cartridge 1is packed, the directory entry for any purged file is
cleared and the <cartridge area where the file was located is
overwritten by non-purged files wherever possible.

The formats of the cartridge and File Directory entries are shown in
Appendix H.

File Security

In addition to the security features provided through the Session
Monitor (see below), the File Management Package provides two

additional security levels: file system security and individual file
security.

During FMP initialization, a master security code is assigned to the
file system., If the code 1is zero, no security is provided., 1If
non-zero, the master code must be known 1in order to get directory
listings that include the specific file security codes and also in
order to re-initialize an FMP cartridge.

Each file also has a security code. This code may be zero, positive,
or negative. A zero code allows the file to be opened to any caller
(who has access to the disc cartridge containing that file) with no
restrictions; in effect this code provides zero security. A positive
code restricts writing on the file but not reading; that is, a user

who does not know the code may open the file for read only, but may
not write on the file. A negative code restricts all access to the
file; this code must be specified in order to open a file protected

by 1it. An attempt to open a file so protected without the correct
security code results in an error message.

Cartridges in the Session Environment

In the session environment, cartridge security 1is provided by
identifying them as to whom they are mounted.

When a disc cartridge is mounted to the system, an ID is put in the
cartridge 1list entry which identifies the category of the cartridge
and to whom the cartridge was mounted (refer to Appendix H).

There are four categories of cartridges in the session environment as
follows:

1. System or global cartridges.,

File Management Via FMP

2. Private cartridges.
3. Group cartridges.
4, Non-session cartridges.

System cartridges are those cartridges that only the system manager
can mount or dismount., The cartridge where the system tracks reside
must be defined duringy system generation as LU 2. An auxiliary

system cartridge, defined as LU 3 at system generation, can also be
defined.

LU 2 and LU 3 are read-only cartridges for session users. Only the

system manager and non-session users can write on these cartridges,
LU 2 contains:

1. Operating System

2. System Library

3. System Scratcn Tracks
4, Cartridge Directory
5. FMP Tracks

LU 3 can pe defined if more room 1is required for type 6 files than

wnat 1s available on LU 2 or 1if additional system tracks are
required.

In addition to LU 2 and LU 3, system global cartridges can be defined
which provide both read and write access to all users on the system,
Glopal <cartridges are cartridges other than LU 2 or 3 that are
mounted by the system manager.

Private cartridges are those that are accessible only to the user who

mounts them to his session and the system manager (who has access to
all cartridges in the system).

Group cartridges are those that are accessible only to membasrs of a
group who have it mounted to their sessions and the system manajer.

Non-session cartridges are only accessible to wusers operating in a

non-session environment or through the system console. Non-session
cartridges are those mounted to a wuser not operating under session

control. The system manager also has access to non-session
cartridges.

When the session system is initialized, the system manager can create
a spare cartridje pool from which session users can mount additional
private or group cartridges to their session. The cartridges "taken"
from the pool are typically used for temporary storage and are
released back to the pool by the user when they are no longer needed.

File Management Via FMP

The session monitor provides session users with protection for their
mounted cartridges by restricting cartridge access to only those
cartridges mounted in the user’s Session Control Block (SCB).
Whenever a cartridge 1is specified in a call, FMP checks that the
cartridge 1is mounted not only to the system, but is also mounted to
the user s SCB (see Appendix J, "SCB FORMAT").

There are some exceptions to the above check:

1. The system manager is allowed access to all cartridges mounted to
the system by using the SL command described 1in the RTE-IVB
Terminal User’s Reference Manual.

2. Some internal subsystems need to have, and are given, access to
all cartridges mounted to the system.

3. Procedure files can be set up by the system manager on LU 2 or LU
3 and may be run by any session user. The commands in these
procedure files are not subject to capability checking or
cartridge access restrictions.

4. User message files may reside on LU 2 and LU 3. Session users
will be able to open, read, and write into these files via the ME
and 51 commands described in the RTE-IVB Terminal User’s
Reference Manual.

5. Read only access will be allowed on LU 2 and LU 3, and read/write
access will be allowed on system global cartridges when operating
under session.

wWwnen accessing a file, if a particular cartridge is not specified,
the wuser’s private discs are searched in the order that they are
mounted in the system cartridge directory. Then the user s group

cartridges are searched in the order that they appear in the system
cartridge directory. Ffinally, system cartridges are searched in the
order tnat they appear in the directory.

To summarize, session users have access to their private and group
cartridges, system global cartridges, and have restricted access to
system LU 2 and 3.

Non-session users have access to non-session cartridges and
unrestricted access to all system cartridges. Non-session users do
not have access to cartridges mounted to session users.

The system manager has access to all cartridges,
Note that cartridges are mounted and dismounted using the MC, AC, and

DC commands described in the RTE-IVB Terminal User’s Reference
“Manual.

File Management Via FMP

FMP Calls

The FMP program calls provide an interface between programs and the
File Management utility routines. With these calls, the user can
open, close, read from, and write to files. In addition, the calls
can be used to create or purge disc files, position either disc or
non-disc files and directly control non-disc files.

Table 3-2 lists all the FMP calls according to general function and
indicates the status, before and after the call, of the Data Control

Block. It also indicates when and if the file directory is accessed
by the call.

The Data Control Block

The Data Control Block 1is a block of words defined within your
program that acts as an interface between the program and the File
Management Package. You must supply one Data Control 3lock for each
open file. It is an array which contains control information for the
file including the file name, type, size, and location on disc if the
file is a disc file., In addition, it acts as a buffer for the

physical transfer of data between a file and your program. The Data
Control Block is used to:

* Avoid directory access for file information

* Keep track of current record position in file

* provide a buffer for transfer of data between a file and the
progr am,

Once a file is open, the Data Control Block is referenced for file

information and the file name is no longer needed or used in FMP
calls.

Each Data Control Block is an array with a minimum of 144 words. The
first 16 words are a control block to provide all the file
information required by the FMP calls. The remaining words are a
packing buffer used for the transfer of data in blocks of 128 words.
The 1l6-word control area is maintained and used only by FMP and must

not be modified directly. Refer to Appendix H for the format of this
area.

A packing buffer of 128 words is the minimum that can be specified.
The buffer may be larger, as large as available memory, but any file

can be accessed with the minimum 128-word buffer regardless of the
buffer size specified at creation,

File Management Via FMP

Table 3-2, FMP Call Summary
DCB STATUS
CATEGORY | ROUTINE FUNCTION DIRECTORY
AT ENTRY | AT RETURN ACCESS
CREAT | Enter file in directory; open CBO OPNX YES
ECREA | exclusively for update.
File Definition ‘
CRETS | Enter scratch file in direct- CBO OPNX YES
ory; open exclusively for
update.
PURGE | Close file and remove from CBO CLOS YES
directory.
OPEN Open file. CBO OPN YES
OPENF
CLOSE | Close file. MBO CLOS YES
ECLOS
File Access READF | Transfer record from file to MBO OPN EXTENTS
EREAD | user buffer.
WRITF | Transfer record from user MBO OPN EXTENTS
EWRIT | buffer to file.
File Position LOCF Retrieve current position MBO OPN NO
ELOCF | and status of open file.
APOSN [Position disc file to a MBO OPN EXTENTS
EAPOS particular record.
POSNT | Position disc or non-disc MBO OPN EXTENTS
EPOSN | fije relative to current
record.
RWNDF Position file to first record. MBO OPN EXTENTS
Special FCONT | Specify control functions MBO OPN NO
Purpose for non-disc file.
Routines
FSTAT | Retrieve contents of car- — — —
tridge directory.
IDCBS | Retrieve actualsize of DCB MBO OPN NO
buffer used by FMP.
NAMF | Rename existing file. cBO CLOS NO
POST Write DCB buffer to disc. MBO OPN NO
Legend:
CBO Can be open: DCB can be assigned to open file; that file will be closed and, in case of CREAT and
OPEN, file specified in call will be opened.
MBO Must be open: DCB must be assigned to open file.
OPN Open: File assigned to DCB is opened or is left open.
OPNX Open: New file is assigned to DCB and is opened exclusively for update.
CLOS Closed: File assigned to DCB is closed; DCB is available for other use.
EXTENTS Directory is accessed only if call changed extents.

Data Transfer

File Management Via FMP

In addition to the Data Control Block, another buffer must be defined
in your program for transferring individual records. This buffer, the

user

which

Figure 3-2.

Each
user

buffer,

between the user buffer,

is where a record to be written is specified and into
record 1is read. The relation
Data Control Block, and a disc file is illustrated in Figure 3-2,

the

MEMORY
||
{ 1
128-WORD DCB BUFFER
RECORD 1
-
20 WORD USER BUFFER »"_w RECORD2
7~
1RECORD K/—. RECORD 3
>~
S~
DR RECORD 4
NN
W\ RECORD 5
\
/ :’1 RECORD 6
1ST 8 WORDS
LOGICAL READ/WRITE 1 T8 WORL

DIsC

FILE

7 3

128-WORD BLOCK

PHYSICAL
READ/WRITE

Sequential Transfer Between Disc File and Buffers

transfer within memory is known as a logical read or write.

call to read or write a record transfers one record between the
buffer and the Data Control Block packing buffer., This type of

File Management Via FMP

A physical read or write transfers a 128-word block between the disc
file and the Data Control Block packing buffer. A physical write is
performed automatically when the packing buffer 1is full, when the
file 1is <closed, or when a specific request is made with the POST
call. On a read request, a block of data is physically read into the
packing buffer from the disc only if the reguested record is not
already 1in that buffer. Any time a record being read or written is
not wholly contained in the packing buffer (refer to record 7 in
Figure 3-2), then the File Management Package reads or writes blocks
until the entire record has been transferred.

When type 2 files aie accessed randomly, the process is essentially
the same as the sequential access illustrated in Figure 3-2 except
that physical transfers may pe more frequent since successive

references are less likely to be to records in the same block in the
packing buffer,

Since each record 1in a type 1 file 1is 128 words, the intermediate
transferred to the Data Control Block packing buffer is omitted and
each record is transferred directly between the user buffer and the
file as illustrated in Figure 3-3. This type of access is the most
efficient. A full 144 word Data Control Block must still be specified
in the user program.

MEMORY DISC
] L J 1
1 1 I 1
USER BUFFER TYPE 1 FILE
1 RECORD = 128 WORDS & $1 1 BLOCK =128 WORDS

Figure 3-3., Data Transfer With Type 1 Files

Type 0 (non-disc) files also bypass the Data Control Block during
transfers. Records in these files are written or read directly to or
from the device identified as a type 0 file. A specific number of
words, ratner than a record, is the unit transferred by a read or
write request to this file type. The transfer can thus be tailored to
the particular record length of the device.

FMP Call Formats

wnen a calling seguence is encountered during execution of a user
program, the File Manajement Package executes the call according to
the value of the parameters in the calling sequence, and/or returns
information to areas defined in the parameter list. The number, type,
and neaning of the parameters dJdepends on the subroutine and are
described in detail in this section,

File #Management Via FMP

For FORTRAN, tne jeneral form of the calliny sequence is:
CALL name(pl,p2, « . . ,p0)

where:
name is the suproutine name.

pl througan pn are the parameters; parameters name a real or an
integer array or variable or, if tne parameter is one-word, a
value. Position determines parameter meaning.

For Assembly Languaje, the general form of the callinj sequence 1is:

EXT name

JSB name
DEF RTN (or * +4+(n+l) where n is the number of parameters)

DEF pl
DEF p2
DEF pn

RI'N (return location)

wnere:

naine 1is the subroutine name; it must always be defined as an
external with an EXT statement pefore it is called.

RTN 1is the label of the location to which the subroutine returns

upon completion; it must always follow the last parameter in the
calling seguence.

Pl through pn are the parameters; each parameter names an integer
array or variable,

File Management Via FMP

Common Parameters

Parameters used frequently in FMP calls are described here and under
Optional Parameters.

IDCB

This parameter specifies the array used as a Data Control Block. It
must be at least 144 words, 16 words for file control information and
128 for the minimum packing buffer. For faster processing, a larger
buffer can bDbe specified. In general, the larger the usable buffer,
the faster the transfer rate. ror example, a usable buffer of 256

words (IDCB8=272 words) will nearly double the transfer rate for
sequential accesses.

While a file may be created with a large DCB buffer, it may be
accessed with any packing buffer that is at 1least 128 words long
(IDC3=144 words). All transfers of data wuse the full actual buffer
size, This size 1is always 128, or a multiple of 128, words. The
actual size used is determined from the size requested for the Data
Control Block 1in conjunction with the file size in the following
manner:

* If the requested buffer size is greater than or egual to the file

size, FMP allocates an actual Data Control Block equal to the file
size +16 control words.

* If the requested buffer size 1is less than the file size, FMP
determines the actual Data Control Block buffer size according to
the following rules:

- It must be a multiple of 128 words.

- It must be less than or equal to the size specified for IDCB by
the user.

- It can be evenly and exactly divided into the total file size.

To 1illustrate, Table 3-3 snows the relation between file size,

requested packing buffer size and the actual size assigned by FMP for
two file sizes, one with factors and the other a prime number. File

size is given in 128-word blocks for convenience.

File Management Vvia FMP

Table 3-3. Relation of Actual to Requested Packing Buffer Size

FILE SIZE REQUESTED DCB BUFFER" ACTUAL DCB BUFFER
IN BLOCKS BLOCKS WORDS BLOCKS WORDS
10 1 128 1 128
2 256 2 256
3 384 " "
4 512
5 640 5 640
6 768 " "
7 896 " "
8 1024
9 1152 " "
10 1280 10 1280
13 1 128 1 128
2 256 1 128
12 1536 1 128
13 1664 13 1664
"16Cwords must be added to the buffer size when dimensioning the Data Control Block array
(IDCB).

A call to routine IDCBS may be made to determine the actual size of
the DCB (actual buffer + 16 control words).

When an error occurs during a subroutine call, a negative error code
is returned in this parameter and usually in the A-register., (A list
of the FMP error codes and their meaning 1is included at the end of
this section). For successful OPEN or OPENF calls, the file type is
returned as a positive integer in IERR; for successful CREAT calls
the number of disc sectors used is returned in IERR as a positive
integer. When using the CLOSE or ECLOSE calls always check tne IERR
parameter. In calls where IERR 1is the last parameter, it is
optional. It should be omitted only if errors are checked in the
A-register. Negative error codes allow for easy error checking and
error checking should not be omitted as a general practice.

File Management Via FMP

INAM

For calls requiring a file name, the name is specified in this 3-word
array. File names are six ASCII characters and must conform to the
following rules:

* only printable characters may be used

* first character must not be blank or a number

* if less than six characters, must be padded with trailing blanks
* embedded blanks are not allowed

* plus (+) minus (-) colon (:) or comma (,) are not allowed

Duplicate file names are not allowed on the same cartridge.

IBUF

This array 1is the wuser buffer and is included in the calls that
transfer records. It should be as long as the longest record to be
transferred. The record to be written must be in this array; when a
record is read it is placed in this array.

Optional Parameters

Most subroutines have one or more optional parameters. They always
appear at the end of the calling sequence and may be omitted only
from the end. If an optional parameter is needed that is preceded by
other unnecessary optional parameters, all the parameters up to the
desired parameter must be included; unused optional parameters should
be set to zero.

ISC

The file security code is specified in ISC. It can be a positive or
negative integer or two ASCII characters representing a positive
integer. When characters are used, FMP converts them to their integer
equivalent. If omitted, ISC is set to zero.

File Management Via FMP

ISC considerations are summarized below:

CREATION FILE PROTECTION FILE REFERENCE

ISC =0 unprotected ISC = any value for any access

ISC = +n write protected ISC = +nor —n to write or purge
ISC = any value to open or read

ISC = —n read/write protected ISC = —n for any access

ICR

This parameter

is specified to restrict the file search to a

particular cartridge or logical unit number. The search is for space
if the <call is CREAT or ECREA, for a file name in other calls. ICR
may be a positive or negative integer. If omitted, it is set to zero.

If ICR = 0

>0

<0

The file search 1is not restricted to a particular
cartridge. A CREAT or ECREA call locates the file on
the first cartridge with enough room; other calls
using ICR search the <cartridges 1in the following
order:

l) Private cartridges as they appear in the cartridge
list.

2) Group cartridges as they appear in the cartridge
list.

3) System cartridges as they appear in the cartridge
list.

File search is restricted to the cartridge identified
by the cartridge reference number (ICR), an identifier
assigned to all cartridges in the system. A list of
cartridge reference numbers can be obtained with the
FSTAT call or the :CL FMGR command.

File search is restricted to the cartridge associated
with the logical unit number (-ICR). To illustrate, if
ICR 1is -14, the file search is restricted to logical
unit 14,

3-19

File Management Via FMP

If 1ICR specifies a cartridge not mounted to the user’s SCB, an error
is returned.

IDCBZ

When a Data Control Block larger than 144 words is specified in
parameter IDCB, then parameter IDCBZ must also be specified. It
informs FMP of the number of words available in the DCB packing
buffer for data transfer. Any positive number can be specified; the
actual usable buffer is always determined by FMP as described in the
discussion of the IDCB parameter. This size is never larger than the
size specified in IDCBZ, but it may be smaller. For example, if IDCBZ
is less than 256 (any value between 1 and 255), then 128 words are
used for the DCB packing buffer (144 for the entire Data Control
Block) .

Normally, you will specify IDCBZ as 16 words less than the array size
specified for IDCB.

FMP Call Description Conventions

In the subsections that follow, certain conventions are used to
describe FMP calls. These conventions are summarized below:

* Parameters that are underlined, such as

CALL OPEN(IPl1,IP2,IP3)

have values returned by the system, e.g., the value 1is not
supplied by the user.

* Pparameters that are double underlined, such as

CALL OPEN(IP1,IP2,IP3)

have values that are supplied by the system in some cases and
user-supplied 1in other cases. The comments associated with the
call description should be consulted for details concerning their
use.
* Pparameters enclosed in square brackets, such as
CALL OPEN(IP1l,IP2[,IP3])

are optional.

3-20

File Management Via FMP

Parameters enclosed in angle brackets, such as

CALL OPEN(IP1,IP2<,IP3>)

are optional in some cases and required in others. The comments
associated with the call description should be consulted for
details concerning their use.

Parameters with no qualifiers, 1i.e., square brackets, angle

brackets, or underlines, are required and their value is supplied
by the user.

All FMP call descriptions use the FORTRAN-IV subroutine call
format. If desired, the description of FMP call general formats
included at the beginning of this section can be consulted to
convert the calls to Assembly Language format.

3-21

File Management Via FMP

File Definition FMP Calis

A file is defined in terms of its name, size, type, and where it is
located. 1In addition, a security code can be assigned to a file;
restricting access by unauthorized programs. A file is defined when
it 1is created using the CREAT or ECREA call. When a file is created,
an entry is made for the file in the file directory (see Appendix H,
"FILE DIRECTORY FORMAT").

Once defined, the file may be opened for access by any program using
the proper security code in an OPEN or OPENF call. When a file is
opened, necessary information (location, size, etc.) is transferred
from the file directory to the control words of the Data Control
Block (DCB) associated with the file, thereby making a logical
connection between the file name in the directory and the DCB.

When access to a file is no longer necessary, the logical connection
between the file directory and the DCB is removed by closing the file
using a CLOSE or ECLOS call. Closing a file frees the DCB for other
uses, but the file remains defined in the file directory.

The PURGE call is used to flag the directory entry associated with a

file so that the file is no longer defined. Note that the PURGE call
closes the file before performing the purge operation,

Scratch files provide temporary disc space. 3Such files are created
using the CRETS call. A number is passed by the calling program to
CRETS. When the scratch file is created, it is opened exclusively to
the <calling program and a unique file name is returned. To eliminate
the scratch file, call PURGE. To save a scratch file, either copy it
to another file or rename the scratch file with NAMF,

The File Definition FMP calls are listed below in the order of their
presentation:

* CREAT,ECREA
* CRETS

* OPEN,OPENF
* CLOSE,ECLOS

* PURGE

3-22

File Management Via FMP

CREAT and ECREA Calls

A call to CREAT or ECREA creates a disc file by making an entry in
the File Directory and allocating disc space for the file. The ECREA
call performs the same function as the CREAT call except that larger
files can be created. CREAT can define files up to 16383 blocks in
size, ECREA can define files up to 32767x128 blocks in size.

Following the creation call, the file is left open in update mode for
exclusive use of the calling program. To open a file in a different
mode, or for non-exclusive use, a call must be made the OPEN or OPENF
routines described later in this section.

Note that the CREAT and ECREA calls can only create disc files. To
create non-disc files (type 0), the FMGR CR command must be used (see
the RTE-IVB Terminal User’s Reference Manual).

File Management Via FMP

CALL CREAT (IDCB,IERR,INAM,ISIZE,ITYPE(,ISC][,ICR][,IDCBZ])
or
CALL ECREA (IDCB,IERR,INAM,ISIZE,ITYPE(,ISC][,ICR][,IDCBZ]
[,JSIZE])

IDCB -- Data Control Block. An array of 144 +n words where
n is positive or zero.

IERR -- Error return. A one-word variable in which a
negative error code 1is returned. If no error
occurs, IERR 1is set to the number of 64-word
sectors in the created file (for CREAT); for ECREA

calls, IERR is indeterminant.
INAM -- File name. 3-word array containing ASCII file name.

ISIZE -- File size. For CREAT call, a 2-word array with the
number of blocks in the first word (must be
<=16,383); record length (in words) in the second
word (used only for type 2 files).

For ECREA call, a 2-entry array with each entry
being a double word integer. The first entry speci-
fies the file size in blocks (up to 32767 x 128
blocks). The second entry specifies the record
length in words (used for type 2 files only).

S M S

------ CONTINUED NEXT PAGE- === - -

3-24

—_——————————

+

File Management Via FMP

--CONTTINUED FROM PREVIOUS PAGE - -+

ITYPE -- File type. A one-word variable between 1 and 32767;
types 1 - 7 are FMP-defined, the rest are user-
defined special purpose files.

ISC -- Security code. An optional one-word wvariable
between 0 and +/-32767. If 0 (or omitted),the file
is not protected. If positive, the file is write-
protected only. If negative, the file is write-
and read-protected.

+

|

|

|

|

|

|

|

|

|

|

I

| ICR -- Cartridge reference. An optional one-word variable.
| If positive, specifies a cartridge reference
| number. If negative, specifies a 1logical unit
| number. If 0 or -32768 (or omitted), first avail-
| able cartridge with enough room will be used. 1If
| in session environment, the ICR must specify a
| cartridge mounted to the user's session.

I

|

|

|

I

|

|

|

|

|

I

I

IDCBZ Packing buffer size. An optional one-word variable
set to the number of words in the packing buffer
if more than 128 are requested. If omitted, FMP.
assumes DCB size (control words + packing buffer)

is 144 words regardless of the IDCB dimension.

JSIZE Created file size. Used with ECREA call; optional
double-word parameter in which the actual file
size created (in sectors) is returned if the call

was successful.

COMMENTS :

FILE SIZE---Records are addressed by number; therefore, the number of
records contained in a file must not exceed the maximum accessible
using the file access calls described later in this section.

If a file is to be accessed with the standard access calls (READF,
WRITF, etc), the number of records contained in a file must not
exceed (2**15)-1., 1If a file 1is to be accessed with the extended
access calls (EREAD, EWRIT, etc), the number of records must not
exceed (2**31)-1.

The number of records contained in a file can be determined as
follows:

words in file (blocks in ISIZE x 128)
number of records = -
record length in words

Update 6 3-25

File Management Via FMP

When the exact size is not known, the rest of the cartridge may be
allocated by setting ISIZE to -1 (valid only for files of type 3 or
greater). The unused area may be returned to the system by truncating
the file when it 1is closed (refer to the CLOSE and ECLOS calls
described later). For CREAT call, the rest of the cartridge (but not
more than 16383 blocks) will be allocated. For ECREA the rest of the
cartridge (but not more than 32767 x 128 blocks) will be allocated.

The ECREA call allocates files in block increments. After 14383
blocks have been allocated, then ECREA begins allocating files in
chunk increments (1 chunk = 128 bhlocks). If a file size (ISIZE) is
specified that is not evenly divisible by 128, a full 128-block chunk
is allocated to accommodate the remainder.

FILE TYPES -- FMP defined file types are as follows:

type 1 - Fixed length, 128-word records; random access.
type 2 - Fixed length, user-defined record lengths; random access.

type 3 (and greater). Variable-length records; sequential access;
automatic extents provided.

type 4 - source program

type 5 - relocatable program

type 6 - memory-image program

type 7 - absolute binary program

File types greater than 7 are user-defined but are treated by FMP as
type 3. Any special processing based on file type is not provided as
a default; it must be specified.

When any file of type 3 or greater is created, FMP writes an EOF mark
at the beginning of the file. As records are written to the file, the
EOF is moved automatically to follow the last record.

When a file of type 1 or 2 is created, extents are not automatically
created unless the file is opened via the OPEN FMP call with the EX
bit (bit 5) set.

Further details on file types are given at the beginning of this
section.

EXAMPLE 1 -- Create a type 2 file called FIX with 100 blocks,f?2 words
per record, security code AB, and a DCB packing huffer of 128 words:

DIMENSION NAM1(3),1S1Z(2),IDCB1(144) <---- 15 control words +
128-word buffer

DATA NAM1/2HFI,2HX ,2H /

ISIZ=100 (=== -mmm e e number of blocks
ISIZ(2)=62 {==m—=m—mmmmm e record size

: V=———————- file type

CALL CREAT(IDCB1l,IERR,NAM1,ISIZ,2,2HAB)

IF (IERR .LT. 0) GO TO 900 e security code

CONTINUE -

: e process any errors at 900

3-26

File Management Via FMP

EXAMPLE 2 -- C(Create a type 3 file called PROGl, use rest of

cartridge, no security code, using a 256 word DCB packing buffer, and
locate it on logical unit 14.

DIMENSION NAM2(3) ,ISIZE(2),IDCB2(272) <---- 1l6-control words

+ 256-word buffer
DATA NAM2/2HPR,2HOG,2H1 /

ISIZE==1 (=w=ww=e- file uses rest of cartridge, record length
unspecified

ICR=-14 (-==meweee- file located on logical unit 14

ITYPE=3 (e=wececea- file type is 3

IDCBZ=256 (=====e=- DCB buffer size

CALL CREAT(IDCB2,IERR,NAM2,ISIZE,ITYPE,0,ICR,IDCBZ)

IF (IERR .LT. 0) GO TO 900 (e-—wcoemceraacea- error check
CONTINUE

.

Another method is to use literals for all one-word variables:

DIMENSION NAME2(3) ,ISIZE(2),IDCB2(272)
DATA NAME2/2HPR,2HOG,2H /

IF (IERR .LT. 0) GO TO 900
CONTINUE

.

Care should be taken when literals are used as parameters since this

practice can result in problems if the values are changed by the call
routines,

File Management Via FMP

EXAMPLE 3 -- Create a type 2 file (PROGD) that is 76,864 blocks in
size (76,864/128 = 600.5 chunks; 601 are allocated). Each record is
64 words long; DCB packing buffer is 128 words.

DIMENSION NAM3(3) ,ISIZE(4),IDCB(144)
DATA NAM3/2HPR,2HOG,2HD /

ISIZE(1l) =1
ISIZE(2) = 11328
ISIZE(3) = 0
ISIZE(4) = 64
ITYPE = 2

CALL ECREA (IDCB,IERR,NAM3,ISIZE,ITYPE,0,0,JSIZE)
IF (IERR .LT. 0) GO TO 900
CONTINUE

The double-integer parameter in the above example is manipulated
"by-hand". Note that 76864 - 65536 = 11328. Since 65536 = 2**16, bit
16 of the double-word integer must be set. This is equivalent to bit
0 of 1ISIZE(l). 1ISIZE(2) 1is then set to 11328 with the net result

being a double-integer representation of 76864 in ISIZE(1l) and
ISIZE(2).

3-28

File Management Via FMP

CRETS Call

A call to CRETS creates a temporary or scratch disc file by making an
entry 1in the File Directory and allocating disc space for the file.
CRETS can define files up to 32767 x 128 blocks in size.

Following the CRETS call, the file is 1left open in update mode for
exclusive use of the <calling program. The file 1is also given a
unique file name.

Upon terminating access to the scratch file, you must use the PURGE
call to delete the file. If the user program aborts after file
creation and prior to the call to PURGE, the file must be purged
using FMGR. If the file name consists of six numeric ASCII
characters the FMGR purge command will not succeed wunless an
alphabetic character is appended to the end of the file name, e.g., a
file named 077033 is purged as :PU,077033X. To save the file, either
copy it to another file or change its name using NAMF,

| CALL CRETS (IDCB,IERR,NUM,INAM[,ISIZE]([,ITYPE][,ISC][,ICR] |
| —_—— |
| [,IDCBZ][,JSIZE]) |
| |

IDCB -- Data Control Block. An array of 144+n words where n
is positive or zero.

IERR -~ Error return. A one-word variable in which a
negative error code is returned.

NUM —— Scratch file number. A one-word integer Dbetween 0
and 99.

INAM -- File name created 3-word array containing ASCII file
name.

ISIZE -- File size. A 2-entry array (or 4-word array) with

each entry being a double-word integer. The first
entry specifies the file size in blocks (up to
32767 x 128 blocks). The second entry specifies the
record length in words (used for type 2 files only).
Default is 24 blocks.

ITYPE -- File type. A one-word variable between 1 and 32767;

types 1-7 are FMP-defined, the rest are user-defined
special purpose files. Default is type 3.

3-29

File Management Via FMP

ISsC -- Security code. An optional one-word variable between
0 and +/-32767. If 0 (or omitted), the file is not
protected. If positive, the file is write-protected
only. If negative, the file is write- and read-
protected.

ICR -- Cartridge reference. An optional one-word variable.
If positive, specifies a cartridge reference number.
If negative, specifies a logical unit number. If 0
or -32768 (or omitted), first available cartridge
with enough room will be used. If in session
environment, the ICR must specify a cartridge
mounted to the user's session.

IDCBZ -- Packing buffer size. An optional one-word variable
set to the number of words in the packing buffer if
more than 128 are requested. If omitted, FMP assumes
DCB size (control words + packing buffer) 1is 144
words regardless of the IDCB dimension.

JSIZE -- Created file size. Optional double-word parameter in
which the actual file size created (in sectors) is
returned if the call was successful.

—_————— e —————— ¢

COMMENTS

FILE SIZE---Records are addressed by number; therefore, the number of
records contained in a file must not exceed the maximum accessible
using the file access calls described later in this section.

If a file is to be accessed with the standard access calls (READF,
WRITF, etc), the number of records contained in a file must not
exceed (2*%*15)-1. If a file is to be accessed with the extended
access calls (EREAD, EWRIT, etc), the number of records must not
exceed (2**31)-1.

The number of records contained in a file can be determined as
follows:

words in file (blocks in ISIZE x 128)
number of records = --—---—--——-—mm
record length in words (ISIZE(3) and ISIZE(4))

3-30 Update 6

File Management Via FMP

When the exact size is not known, the rest of the cartridge may by

allocated by setting ISIZE to -1 (valid only for files of type 3 or
greater). The wunused area may be returned to the system by

truncating the file when it is closed (refer to the CLOSE and ECLOS
call described later). The rest of the cartridge but not more than
32767 x 128 blocks will be allocated.

The CRETS call allocates files in block increments. After 16,383
blocks have been allocated, then CRETS starts allocating files in
chunk increments (1 chunk = 128 blocks). If a file size (ISIZE) is
specified that is not evenly divisible by 128, a full 128 block chunk
is allocated to accommodate the remainder.

Users of the scratch files are encouraged to use the default size.
The reason for this 1is that when a file 1is created requesting a
specific size, a check is made in the directory for a purged file of
exactly the same size. If such a file is found, the new file
replaces it; if such a file is not found, the new file is placed
after all other files on the cartridge. Therefore, if most programs
request the same size (that is, the default size) scratch files, the
space on the disc is used more efficiently.

FILE TYPES -- FMP defined file types are as follows:

Type 1. Fixed length, 128-word records; random access.
Type 2. Fixed length, user-defined record lengths; random access.

Type 3 (and greater). Variable length records; sequential access;
automatic extents provided.

type 4 -- source program

type 5 -~ relocatable program
type 6 -- memory-image program
type 7 -- absolute binary program

File types greater than 7 are user defined but are treated by FMP as
type 3. Any special processing based on file type is not provided as
a default, it must be specified.

When any file of type 3 or greater is created, FMP writes an EOF mark
at the beginning of the file. As records are written to the file,
the EOF is moved automatically to follow the last record.

Further details on file types are given at the beginning of this
section.

File Management Via FMP

EXAMPLE 1 -- Create a type 3 scratch file with 24 blocks, security
code HP, cartridge A3, and a DC3 packing buffer of 128 words. At the
end of the program, the file will be renamed to DATAOS.

IMPLICIT INTEGER (A-2)
DIMENSION DCB (144), NAME (3), NUNAME (3), SIZE (4)
DATA SIZE /0,24,0,0/, NUNAME/2HDA,2HTA,2H05/

TYPE = 3
SC = 2HHP
CRN = 2HAB
NUM = 23

.

CALL CRETS (DCB,ERROR,NUM,NAME,SIZE,TYPE,SC,CRN)
IF (ERROR.LT.0) GO TO 500

CALL NAMF (DCB,ERROR,NAME,NUNAME,SC,CRN)
IF (ERROR.LT.0) GO TO 700

.
.

File Management via FMP

OPEN and OPENF Calls

These routines open a file for access and position it at the first
record. The file must have been created prior to the OPENF or OPEN
call. The file opened may be a disc or non-disc (type 0) file. Type O
files may oe opened with a function code specified at creation or the
original function code may be overridden.

Files may be opened for exclusive use of the calling program or for
non-exclusive use of up to seven programs. A file may be opened for
update or for standard sequential write operations.

By wusing the OPENF call, a logical wunit nunber can be passed in the
first word of the INAM parameter causing a DCB to be created to allow
type 0 access to the logical unit. No type 0 file is necessary and
none is created by the call.

|
CALL OPEN (IDCB,IERR,INAM[,IOPTN] [,ISC][,ICR][,IDCBZ]) |

or |
CALL OPENF (IDCB,IERR,INAM[,IOPTN]}[,ISC][,ICR][,IDCBZ]) |

|

I

I

I

e L +
| |
| IDCB --- Data Control Block. An array of 144+n words where |
| n is positive or zero. |
I I
| IERR =--- Error return. A one-word variable that a negative |
| error code is returned to for unsuccessful calls. I
| File type is returned for successful calls. |
| |
| INAM --- File name or LU. This is either a three-word array |
I containingy the ASCII file name (for OPEN or OPENF) |
| or an integer containing a binary LU (OPENF only). :
|

D e B CONTINUED ON NEXT PAGE =—=-------———mmmmmmom e +

File Management Via FMP

IOPTN --- Open options; optional 1l-word variable set to
octal value to specify non-standard opens. If omit-
ted or set to zero, the file is opened by default
as follows:

* EXxclusive use - only the calling program can
access the file,

* Standard sequential output - each record is
written following the last, destroying any data
beyond the record being written.

* File type defined for file at creation is used
for access.

* Type 1 and 2 files are not extendable.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| To open a file with other options, set IOPTN as
| described below under OPEN OPTIONS.

|

| ISC =--- Security code. An optional one-word variable be-
| tween 0 and +/-32767. If 0 (or omitted), the file
| is not protected. 1If positive, the file is write
|

|

|

|

|

|

|

|

|

|

|

|

|

protected only. If negative, the file is write and
read protected.

|

|

|

|

|

|

|

[

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
ICR =--- Cartridge reference; optional l-word variable; if |
set, FMP searches that cartridge for file; if omit- |

ted, it searches cartridges in the caller disc add- |

ressing space and opens first file found with spec- |

ified name. |

|

IDCBZ --- DCB buffer size; optional l-word variable; set to |
number of words in DCB packing buffer if larger than|
128; if omitted, FMP assumes DCB size (control words]|
+ buffer) is 144 words regardless of IDCB dimensions]|

COMMENTS:
OPEN OPTIONS -- The IOPTN parameter is defined as follows:

(X) (A) (K) (V) (M) (EX) (F)(T) (U) (E)

|
+--~Function---+ |
| Code |
| |
+-e— Type 0 Options—---+

File Management Via FMP

The following bits can be set for any file type:

E (bit 0) = 0 File opened exclusively for this program. In an
OPENF of an LU or OPEN of a type 0 file, if the open
is exclusive and the device is not interactive, the

device 1is locked. The device becomes unlocked when
the DCB is closed.

1 File may be shared by up to seven programs

U (bit 1) = 0 File opened for standard (non-update) write
(disc files only)

1 File opened for update

T (bit 2) = 0 Use file type defined at creation
(disc files only)

1 File type is forced to type 1

The following bits are used for type 0 files only (they are ignored
when opening other file types):

F (bit 3) = 0 Use function code defined at creation (see FMGR :CR
command described in the RTE-IVB Terminal User’s
Reference Manual). If an LU is used in an OPENF
call, the defaults are as shown in Table 3-4.

1 ©Use function code defined in bits 6-10 of IOPTN.
The following bit is used for type 1 and 2 files only (it is ignored
when opening other file types):
EX (bit 5) = 0 File is not extendable.

1l File extents are to be created automatically.

Bits 6-10 correspond exactly to the function code used for the READ
or WRITE EXEC call. These are driver dependent and the appropriate
driver reference manual should be consulted for more information.

3-35

File Management Via FMP

Table 3-4. OPENF Defaults

DEVICE DEVICE TYPE EOF CODE SPACING READ/WRITE
Reader or Punch 2 LE BO BO
Minicartridge 5 subchannel 1, 2 EO BO BO
Mag/Tape, mass >17 EO BO BO
storage, other
All others — PA BO BO
Bit Bucket — PA BO WR
EOF CODE SPACING READ/WRITE
EO=subfunction 0100 FS=forward space RE=read
LE=subfunction 1000 BS=back space WR=write
PA=subfunction 1100 BO=both BO=both

EXCLUSIVE OPEN---By default, a file is opened for exclusive use of
the calling program. An exclusive open is granted to only one program
at a time. If the call 1is rejected because the file is open to
another program, the call must be made again; it is not stacked by
FMP. Exclusive open 1is wuseful 1in order to prevent one or more
programs from destructively interfering with each other.

NON-EXCLUSIVE OPEN---If more than one program needs to access the
file, it should oe opened non-exclusively by setting the IOPTN E bit.
A non-exclusive open may be granted to as many as seven programs per
file at one time. A non-exclusive open will not be granted if the
file 1is already opened exclusively. Each time an open is requested
for tne file, all programs currently having the file open are
checked. If any program is dormant, the file is closed to that
program. That type of clcose does not free the DCB and does not post
the contents of the DC3 buffer to the file. Any open flag will also
be cleared if it does not point to a valid ID segment.

File Management Via FMP

UPDATE OPEN---In update mode, IOPTN U bit set, the block containing
the record to be written is automatically read into the DCB before it
is modified. This insures that existing records in the block will not
be destroyed. This mode of open has no effect on reading or
positioning, it is only necessary when writing to a site that already
contains valid data, or when building a site in a random manner.

Update mode should be used to write to type 2 files. A type 2 file
should be opened in standard mode only when originally writing the
file or adding to the end of the file, and then only if it is to be
written sequentially.

Type 1 files should not be opened in update mode. Although, like type
2, they are designed for random access with fixed length records and
the end-of-file 1in the last word of the last block, each record is
the same length as the block transferred so that there is no danger
of writing over existing records.

For type 3 and above files, update mode is not generally used; most
writes are sequential with an end-of-file mark written after each
record. These files should be opened for update only if a record
previously written to the file is being modified. In this case, care
must be taken not to change the length of the modified record. If it
is changed, a -005 error is issued. Regardless of the mode of open
(update or standard) a record written beyond the end-of-file replaces
the end-of-file and is followed by a new end-of-file.

TYPE 1 ACCESS---Any file may be forced to type 1 access by setting
the IOPTN T bit. Type 1 access is faster because it bypasses the Data
Control Block buffer and transfers a block of data directly to the
user buffer defined as IBUF. The file type defined at creation is not
affected; the file is treated as type 1 only for the duration of this
open. The program 1is responsible for any packing or unpacking of
records in files forced to type 1.

OPEN FLAGS---Occasionally files are 1left open to a program upon
termination. The operating system and D.RTR cooperate to close these
files when necessary. A termination sequence counter is kept in the
ID segment. Each time a program is terminated or removed from an ID
segment, the termination counter in that ID segment is incremented.
The open flag placed in a file's directory entry whenever a file is
opened or created contains both the 1ID segment number and the
termination sequence counter. Whenever D.RTR finds an open flag
whose termination counter is not current with the ID segment, or the
program occupying the ID segment is dormant, it removes the flag.

Update 8 3-37

File Management Via FMP

EXAMPLE 1 -- Open a type 2 file named FIX for update in non-exclusive
mode. The security code at creation was AB.

EXAMPLE

DIMENSION NAME (3) ,IDCB1(144)
DATA NAME/2HFI,2HX 2H /

L]

set bit 1 for update and
v bit 0 for non-exclusive open

CALL OPEN(IDCB1l,IERR,NAME,3B,2HAB)

IF (IERR .NE. 2) GO TO 900 <-==w=w==-
CONT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>