(6'0 HEWLETT

PACKARD

RTE-IVB
TECHNICAL
SPECIFICATIONS

Reference Manual

RTE-IVB
TECHNICAL SPECIFICATIONS

Reference Manual

[ﬁﬁ HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY]
Data Systems Division lerary Index Number

11000 Wolfe Road 2RTE.340.92068-90013 MANUAL PART NO. 92068-90013
Cupertino, California 95014 Printed in U.S.A. January 1980

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

ii

Copyright © 1980 by HEWLETT-PACKARD COMPANY

PREFACE

This manual is intended as a tool to the advanced user of the RTE-IVB
Operating System who requires a detailed explanation of the internal
algorithms and data structures of RTE-IVB and many of its subsystems.
It 1is assumed that the user has a general understanding of RTE-IVB
and HP 1000 computers and has access to various manuals, specifically
the RTE-IVB Programmer's Reference Manual, the RTE-IVB Terminal
User's Reference Manual, the RTE-IVB System Manager's Manual, and the
RTE-IVB On-Line Generator Reference Manual. RTE-IVB software is
supported by Hewlett-Packard only at the wuser interface level
documented in the manuals supplied with the product. Subroutines or
data structures not documented there but which are described or
mentioned within this manual or the RTE-IVB sources are mentioned
solely for reference and must not be accessed directly. Their
existence, calling sequences or structures are subject to change
without notice to the user. This theory of operation makes no
attempt to provide a line-by-line discussion of the source code. For
this level of detail, the user is directed to the appropriate source
code with 1its accompanying comments which can be purchased through
any Hewlett-Packard field office.

This document was originally developed during the initial design
phase of RTE-IVB development and updated as the operating system was
implemented. Hewlett-Packard has made every effort to verify the
authenticity of this document versus the actual algorithms; however,
the wuser is cautioned that differences may exist. As modifications
occur to the operating system due to corrections or enhancements or
new subsystems are added and documented, then new revisions of this
manual will be published.

iii

TABLE OF CONTENTS

Chapter 1
DSP4--RTE-IVB DISPATCHER

DISPATCHER OPERATION OVERVIEW:eeoeooesocooescse
GENERAL OVERVIEW OF TIMESLICING OPERATION..
EXTERNAL COMMUNICATION:eeeooeesosoococccscse
ID SEGMENT (Figure l1=2)ececececceccccccccssse
MEMORY PROTECT FENCE TABLE (Figure 1-3)eeee
MEMORY ALLOCATION TABLE (Figure 1=4)cceeess
SYSTEM BASE PAGE COMMUNICATIONG:eeeeoocccees
DISPATCHER ENTRY POINTS eeecececoccocscsssscos
DISPATCHER’S EXTERNAL TABLES AND POINTERS..
TECHNICAL ASPECTS OF OPERATION:cececocecocee

INITIALIZATION: ceoeeecoccccoces
DISPATCHING: eceoeovoossososscosse
MEMORY RESIDENT PROGRAMS.:eeeees
DISC RESIDENT PROGRAMS :eoeeeeses
DISC RESIDENT MAP SET UPe¢cecseoe
SWAPPING:eoesoeoosococsosocscss
MOTHER PARTITION USAGE.cesecoess
CLEAN UPeceeceococovcscsocsnscsnse

Chapter 2
RTIOC OVERVIEW

GENERAL OVERVIEW OF OPERATION..
EXTERNAL COMMUNICATION.coecoooses

3

TABLES USED BY RTIOC e eeeocoeocsosocoscoce
EQUIPMENT TABLE (Figures 2-1 and 2-2).
INTERRUPT TABLE (Figure 2-=3)ceecscccssne
DEVICE REFERENCE TABLE (Figure 2-4 and 2
TRACK ASSIGNMENT TABLE (Figure 2=6).c¢c..
BATCH SWITCH TABLE .ceceeooocsceccssosccccscs
DRIVER PARTITION MAP TABLE (Figure 2-7)..

EQUIPMENT LOCKING TABLE

RTIOC ENTRY POINTS....I.I...l.’....‘l..
BASE PAGE COMMUNICATION.:eeeesooococoscs

DETAILED TECHNICAL ASPECTS OF OPERATION

INTERRUPT PROCESSINGeseoceeceossscososnse
SCHEDULING PROGRAMS BY INTERRUPT.eee..
UNUSED INTERRUPT TABLE ENTRIES...

$CICO...OQ..o.tooooooo.ooooo.onto

I/0 REQUESTSeueeeeneceenocoenocnnss
USER I/0 REQUESTSeeeeeeensennanns
DISC I/0 REQUESTSeeeoeeosscoscennsans
BUFFERED OUTPUT AND CLASS I/0O REQUESTS.

STANDARD USER REQUESTS AND REIO REQUESTS

.

(Figure 2'_9).-.

ERROR CONDITIONS AND DIAGNOSTICS:ceeosoccaoc

PAGE

[I |
o

el e T T Sy Sy
|
— = O WA D™D W - =

—
11
—
N = s

1-13
1-17
1-18

|
= U WWRNN = =

o O

DN DNDNNDNMNDNDNDNMDNNDNDNDND DN
] I

—

NN o

N
|

2-12
2-13
2-13
2-14
2-14
2-14
2-14

SYSTEM I/0 REQUEST PROCESSOR <8XSIO0D¢eeececesccccscccassososoncss 2-15
I/O REQUEST INITIATIONG. ceeoeoocceoscsosocsoososccsososcssossossossssssoecse 2_16

I/0 REQUEST TYPES.eeeeeeeeeooaoooessenssoscscsossssasssssssnsee 2-17
LINK SUBROUTINES . eeeeeeeeeecescesssssssssssssssssssscsssssasas 2-19
DRIVR SUBROUTINE .o eeeeeeeeecscssassossasssssssssssocsssssssssss 2-20
DRVMP « oo e oevoeoseenosoosssosesessssssssssnsssssssssssssssisasas 2-20
SDRVM SUBROUTINE . eeeeeeecooasooaoossossossssssscssscssssassens 2-21
SRSM SUBROUTINE.eeeeeens Gt eeeceeeeetaeeeeeeseccsscanaanens 2722
I/0 DRIVER INITIATION RETURN w o v v evsssm v assnannsannnnns 222
DMA CHANNEL ALLOCATIONG.: eeeeeeececssesosassssssssnssssssssaasas 2-23
I/0 COMPLETIONG.: eeeeeeoeoooooooscooesossssssasssssssssssanenese 2-24
TOCOM e eoeoeennnoneeeeeeceseassasasasassesssssscssssscsscssssne 2-24
I/0 COMPLETION ERRORS eeeeeceossocccccoccscssassssssssassnanenas 2-25
ILLCD SUBROUTINE . eeeoeoeoeaoooaooccenccoccscscssssssssnssnoese 2-27
MISCELLANEOUS ROUTINES . eeeeocceceecceoooasoscscssesscnsnnsnnas 2-28

<STOCL> SUBROUTINE «eeeeeecesosssscoossocssassscsccassassnaas 2-28

CTIODNS> SUBROUTINE «eeeeeoeosoososoocoscscsoccsccsssssannanee 2=29
CLASS I/0 REQUESTSeeeeceececeeocoooooocccscssssnssssscsnssnsces 2-29
CLASS I/0 "QUEUE FORMAT AND USE"ueeeeeeeeeeesaceooooconcccccee 2=29
EQUIPMENT LOCKING CAPABILITY eeeececccccooocasoscsscosncssssas 2-31

FUNCTIONAL DESCRIPTION 4evececceccccececcaasaassscenscscsoces 2=31

CALLING SEQUENCE «eeeeeeveoocccooccecscccccsssassnsnsncsnsee 2=32

RETURN CONDITIONS eeeeoceccccoosoooanscsccccccossoonsnnnnsns 2-33

INTERNAL OPERATION eeeeeeccccosccecoooocscsssasnssscacsnsees 2-34

Chapter 3
EXEC AND S$ALC

INTRODUCTION: ceovoeececccscsccoossssosossassssssacssssossssssscssssss 3—1
EXEC CALL PROCESSOR:eeesecosocescscsscscsscssossasssssoscsssssscsssnsses 3—2
LIBRARY EXECUTION CONTROLececococoosccscsosossoscssossscssscssssssse 3—1
RESIDENT LIBRARY SUBROUTINES:ecceeesececccossossccssssscsccssssse 3—1
UTILITY AND SINGLE-USER LIBRARY PROGRAMS cceceeecoccssccsccccsss 3—12
PRIVILEGED AND REENTRANT PROCESSING.¢eecceeeccesoccsossosssosess 3—13
REENTRANT LIST STRUCTURE:ececeoceecoceocccsocccscsosccssscsascsssssssse 3—15
FORMAT OF REENTRANT SUBROUTINE LISTeeececscccsscsscscscscssscses 3—16
DISC TRACK ALLOCATION PROCESSORS:eeceoccososscsssosacsccssscness 3—17
DISC TRACK REQUESTSeeecsoososocessscsscscscsocsscssscssssscsnssssse 3—17
TRACK ASSIGNMENT TABLE (TAT)eeececcoccccssoccsossssssssscsssces 3—19
ERROR MESSAGE PROCESSOR.ceeccescooscscsoccsossoscssssssssssssscses 3-21

MEMORY PROTECT cseosocoocscssccsocsssosscscsssosssossssssssssscssesss 3—21

DYNAMIC MAPPING VIOLATION.cecceesoocsooscossocsosscsscssosssssss 321

EX ERRORS e eececcceccsoovsosossccsososscosssssosssosssscsscssscsssossssss 3—22

UNEXPECTED DM AND MP ERRORScececeeccoccccocsscocscsossscsosssss 322
SYSTEM AVAILABLE MEMORY (SAM).cecocessccssscsscccscsssssssssess 3-23

Chapter 4
SCHEDULER

INTRODUCTIONG:eooeocooscosccoscocsososscocsoscsscscscsossoscsoscscsscsoscccscocs
LIST PROCESSORceveecosoecscscoscoscscosscsososcssscssscscsscsccsscscscsses
LIST PROCESSOR CALLING SEQUENCE:eeeceoccceccscsccscccocsccocnccs
DORMANT REQUEST ¢ eoeeccoocseocccosccsscsossossssossssnssscssscsscscse
SCHEDULE REQUEST ¢ eceeecoosccscccacscosscosscsosscsccssosscscsosssssossscse

S SSRGS
1
NN e

vi

LIST CALLS BY DRIVERS....'...‘."
OPERATOR SUSPEND REQUEST.esea.

NON OPERATOR SUSPEND REQUEST..

LINK PROCESSORceceoecsesse
MESSAGE PROCESSOReec¢eso
SYSTEM PARSE ROUTINE...
SYSTEM START UPeceeeoosee
EXEC REQUEST HANDLERS..
PROGRAM SUSPEND REQUEST
SEGMENT LOAD REQUEST...
SYSTEM TIME REQUEST....
TIME SCHEDULE REQUEST..
PROGRAM TERMINATION. ...
PROGRAM SCHEDULING.: e+
STRING PASSINGe:eoeoovsee

3

e o 0 0 0 0

.

© 0 000000060 0000 000

SCHEDULER INTERFACE WITH DISPATCHER.....

Chapter 5

PERR4 - RTE-IVB PARITY ERROR MODULE

PARITY MODULE OVERVIEWeeoeooooos

EXTERNAL COMMUNICATION.eeoecooos
SYSTEM TABLES REFERENCED.:ee¢oeeo

SYSTEM BASE PAGE COMMUNICATION
EXTERNAL SUBROUTINES CALLED

OTHER EXTERNAL REFERENCES
DETAILED TECHNICAL ASPECTS OF OPERATIONS
PARITY ERROR DETECTION:sceeovocsccocsoscos
PARITY ERROR VERIFICATION:oeoceooeooocsosse
PARITY ERROR RECOVERY PHILOSOPHY...
WHO DUNNIT?cceoesocococossoccosscscse

THE SUDDEN BLOWeeeooosoo
IT’S AN INSIDE JOBeeoos
SOFT PARITY ERROReeeesee
SYSTEM PARITY ERROR....

® o 00 00 0 0

USER PROGRAM PARITY ERROR.
DCPC PARITY ERRORScecceeceee

Chapter 6
SYSTEM LIBRARY

LN

.

® o 0o 0

e o 0o 00

SYSTEM LIBRARY CHANGES SUMMARY (RTE-III
TECHNICAL DETAILS FOR EMA ROUTINES:eeees
«EMAP SUBROUTINE.:eoecescsccces
« EMAP CALLING SEQUENCE«esose
«EMIO SUBROUTINE:seeeecocoe
«EMIO CALLING SEQUENCE..«..
MMAP SUBROUTINE.¢eeeesos
MMAP CALLING SEQUENCE...
EMAST SUBROUTINE..eeeesos
EMAST CALLING SEQUENCE..

® o0 00 00

Fo S N
1
== 0 00 N NN

[N I N N B |
DUV UV EPDEPPEDPONDNDDNON b~ -~

(SRS, IRV, RV, BV, IV, IR, U, BV, U, G, G, R, 0, IV, NV, I, |
|

|

!
OWONNOIO WN = =

(o)) e o) Ne)\ Ne) We N e e
[

vii

Chapter 7
EMA MICROCODE SPECIFICATIONS

MICROCODED ROUTINES ceeeeesocsosscscsccocscs
EMAP - MICRO CONTROL STORE ADDRESSES.....
EMIO MICRO CONTROL STORE ADDRESSES.s.se
MMAP MICRO CONTROL STORE ADDRESSES.....
EMAS MICRO CONTROL STORE ADDRESSES.....
EMAT MICRO CONTROL STORE ADDRESSES.....
GETPARM - MICRO CONTROL STORE ADDRESSES..
POSDIV - MICRO CONTROL STORE ADDRESSES...
GETAD28 - MICRO CONTROL STORE ADDRESSES..
XLOAD - MICRO CONTROL STORE ADDRESSES....

Chapter 8
ON-LINE GENERATOR

INTRODUCTION G e eoecececoocsosoooosnsosssss
OPERATIONG. e e ooseoascocsonossosssscssssssssos
GENERATION SEQUENCE . eeseoesesosocncosonss
FILE INTERFACE . eeeeeeososesaoasscnsasoses
INTERFACE ROUTINES eeeeeeeoeocecseosocncoss
SCRATCH FILEu:eeeeeseosoosssossoassnasnocnscs
RELOCATABLE INPUT.eececcoooccsccoscsososses
ANSWER FILE.eeeeeosocossosscsasasonssssse
LIST FILE . eeeeeoooseoasoossososscososncocses
ECHO e ooeoooooseoossancssosssssssassssssssss
BOOTSTRAP FILEweeoeoooooosaos
ABSOLUTE OUTPUT e eoeeoccccsccsosossoscsosas
ABSOLUTE OUTPUT FILE TRUNCATION.eoeeeseoosos
HEADER RECORDS e eeececeocceoacosaccsocsess
OUTPUT ROUTINES eeeoeoeooosoosscssocasesos
PROGRAM INPUT PHASE.eeeoeoeoscasososoncsaes
DISPLAY COMMAND PROCESSOR.eeecescocccescaes
REL(OCATE) COMMAND PROCESSORceceeoccsoscaes
MAP COMMAND PROCESSOR.eceeeecoeccsscsscsas
LINKS COMMAND PROCESSOReceeeecocccconccsces
/E COMMAND PROCESSORceeoecoccssocacococss
IDENT, LST, AND FIXUP TABLE STRUCTURES...
POINTERS AND INDICES e eoeeeeccsccosocsocscss
TABLE PROCESS ROUTINES .eeeeeeooccosoccsses
LST INDEX FOR eZRNT.eeoeoeoocoooooosooscos

.
.
.
3
.
.
.
.
.
.
]
.
3
.

L]

ENTRY POINT AVAILABILITY PER PROGRAM TYPE.

LIBRARIES:eeoeecocosossscosccssosescscsssscscs
MEMORY RESIDENT LIBRARY (MRL):eeeeoecssese
RELOCATABLE DISC RESIDENT LIBRARY.:eeeeese
LIBRARY ENTRY POINTS LIST:eceeoeoccccccsccss
UNDEFINED ENTRY POINTS DURING GENERATION.
SIZE RESTRICTIONS .teeecsceccossccssscosss
PAGE ALIGNMENTS:cceocecoocsoococsasccsccscs
MISC AREAS cececeesosococstsscsscssssscssssse
BASE PAGE . ceeoteeececoscssoscssoscsosossscsosscse
SYSTEM COMMUNICATION AREA (SCOM)eseseseos
COMMONG. e s oeoeosocococsoscsssscscsscscscossascscs
CONFIGURATOR PROGRAMeceeeoceccccocnsoscnas
BOOTSTRAP AND EXTENSION.:ceececeocosccosoes

viii

e 0o 0000 00

8-1
8-1
8-2
8-10
8-10

TABLE AREAS I AND IT teeeeccccccccscoscoososcsssossssscsscsssscnses 8—42
EQUIPMENT TABLE (EQT), DEVICE REFERENCE TABLE (DRT)

AND INTERRUPT TABLE (INT) SIZES:eseessoescososoossscossosscsecss 8-43
DRIVERS AND DVMAP . ceoosoevosssssosccsssscsscssssscncssssccsssssscce 8—bl
SYSTEM DRIVER AREA (SDA)cceeeoceoccocoosccccocss sessssssessssss 8-45
DRIVER PARTITIONS :eeeecoooccccsssocsscscssosscsccsosssosssssssssscssee 8—46
ID SEGMENTS AND EXTENSIONS:eeeeeccocesssososssssscsossscsssocssscsece 8—48
EXTENDED MEMORY AREAS (EMA):ceccececccccccoscccscscsssssscssssses 8=50
PARTITION DEFINITION PHASE.:teceeeoeesssocsccscsssocscsssosssosssass 8—52
PROGRAM PAGE REQUIREMENTS AND MAXIMUM SIZES:cececessoscccsccases 8=52
SYSTEM AVAILABLE MEMORY (SAM)cccecocosccscns 8-52
MEMORY ALLOCATION DEFINITION.ceccosoooscccscscsososcsssssscssscsssee 8=53

PARTITION DEFINITIONS . eoececoecocosososcscsccsscscsscsssossassssssses 8=55
FREE LISTS:eeeescscoscooscssasoosossssossssosssssssososssscsrosssssssssses 8=57
MODIFY PROGRAM PAGE REQUIREMENTS ceceeeceosococoscssscscscscscssss 8=58
ASSIGN PROGRAM PARTITIONS ceecocoessscocssssccssssssosssscsssscsce 8=58
MEMORY PROTECT FENCE TABLE:ccecececececcososcecsocssosssoscsssnssossss 8—59
MEMORY RESIDENT PROGRAM MAP:eeecececooccsvssscscscscsscscssossscssss 8-60
SETTING SYSTEM ENTRY POINTSeeececocsossooscsccsssocssoscsssssssses 3—62
ERROR PROCESSING:eceecsosocscsoscsscscsscssossssossscsnscscssscsssscsse 83-63
GENERATION ERRORS e ceccecsoscesoscsccsssossssosssossscscscscssscsscsss 3—64
FILE ERRORS:eceeceeececocesscsscsssoscssssosscssssosssossscssscsscssse 8—65
ABORTIVE TERMINATION.eeceoeeoooscoesscscsccososcccscscscscosssscscsssssse 8—65

\ABOR.QQ.O....0Q.Q.l.l..‘....‘.....'...000...0..00.0..0..00.. 8-65

\TERMOOQ.oooo00...oooo.otoooo0000000.oloooooooo.oo.cooooooo'o 8-66

MISC. ERROR PROCESSORS:eeeescesscecsssssossoscsscssscscscsscsscecs 3—66
ERROR SUSPENSIONS:eeoeoosossocscsocossossssscssosssssscscscsscsces 8—66
ANSWER FILE ERRORS ceececetceosocscoscscsscsossscsossscsssscssscsssccsse 8—67
DRIVER PARTITION OVERFLOWeeoeoosoooocscccsscsssscssscsssssscsssce 3—67

Chapter 9
MTM TECHNICAL SPECIFICATIONS

MESSS...000t0.ooo0000000.oooooo'o.QQQO.Q.000000000000000000000

PRMPT'—RSPN$.oooooooo.oocoooooo.ooooo-oooo.ot'-.oo.oooooo‘.oo

PRMPTO00oooooo0'00.ooo00000000ooo.0000ooooooootoooooooooo.oooo

© WO O O
I
W N =

RPN.O..000......'..0............l'..........0...'0..0.......

Chapter 10
CONFIGURATOR

GENERAL OVERVIEW OF THE SYSTEM BOOT-UP OPERATION.¢eceeceeecoees 10-1
DISC BOOT EXTENSION.:cesosocoocosscosossoscscsoscsoscssosccsocccocscsssssss 10-2
USING THE ROM LOADER:cececcsceocooscscooscsocsssssssscsssssssces 10-2
USING THE BOOT-STRAP LOADER::eceeocsoscccsoscsocssosscssscscssses 10-2
TECHNICAL DETAILS OF THE CONFIGURATOR OPERATION:cceecosccseess 10-2
STRUCTURE OF THE CONFIGURATOR PROGRAM:¢eceeecescccocssocsscss 10-2
INITIALIZATION PROCEDURE FOR SCNFGeeoeosoosoosccccsscssccssess 10-4
LOADING THE MEMORY RESIDENT PROGRAMS AND DRIVER
PARTITIONS ceeceoocoocsososscsoscssossssossssscsssscssccscsscssses 10-4
I/0 RECONFIGURATIONG . ceooesocooesscossssooasosssosssasss 10-5
I/0 RECONFIGURATION TABLES .ccecceececcecccssccsssssssassescsss 10-6
I/0 RECONFIGURATION PROCEDURES..ccecccesassccsssssssns 10-7
MEMORY RECONFIGURATION.:ceeoeoosocvccososcsoscscsscsccscsscsssoasssssssses 10-10
DEFINING SAM EXTENSION:eeooooooocoosscsoscscocscsssssscssccsscss 10-10
DEFINING USER PARTITIONSceeeecssooscosssscscocsscocsocssssscsssse 10-11
PROCEDURES TO TRANSFER DATA FROM MEMORY TO DISCececoescscesess 10-11

e e o
3
3
.
.
.
3

ix

Chapter 11
SWTCH

INTRODUCTION. ® ® 0 & 0 ¢ 0 ° 0 0 0 0 0 0 0 0 00000
OVERVIEW OF SWTCH ORGANIZATION.....
LAYOUT OF SWTCH CODE e @ & 0 0 0 0 0 0 0 o0

TURN-ON PARAMETERS.....
NAMING CONVENTIONS.....
MAJOR PROCESSING BLOCKS

OUTPUT FILE TESTeeees

3

SEGMENT LOADe¢eeececoccs
NEW SYSTEM I/0 CONFIGURATION.
TARGET DISC INFORMATION:eeeosooonn
TARGET CARTRIDGE INSERTION:oeooeoo
SAVING TARGET FILE STRUCTURE.....
SUBCHANNEL INITIALIZATION PROMPTS.
AUTO BOOT OPTION:eeeoccocsese
OVERLAY CONDITIONS:eceeeeesee
FILE PURGE¢eeseoeeccccoscsns
SYSTEM INSTALLATION:ceeecoeoo
SUBCHANNEL INITIALIZATION.
AUTO BOOT UPeeeoccecoccscs

TERMINATION. ...
MAJOR SUBROUTINES.

VFEYSYeoeeoaaeo
VTOSOeooeosoees
PARMP & SCAN..
PYNeceeoooooos
PURGToeeeeosees
UPDAT ¢ ceevoevee

.

.

e e o 0

3

SWSG1 ROUTINES FOR 7900 DISCS.
ASTDOeeoeoossoscossasssssssss
DISKDeeoeooossoooocoscannsnse

SWSG2 ROUTINES .eeeoeoseosnsens

OVERVIEW . eeoeoeescoseoansnne

BRANCH TABLE PROCESSING BLOCKS.

MAJOR SWSG2 SUBROUTINES.eeeoes.

Chapter 12

RTE-IV ASSEMBLER CHANGES

ASSEMBLER......................
EMA PSEUDO OPCODE.'... e o o 0 0 0 0 0 0
OPCODE TABLE FORMAT.¢eecocoocsese

Chapter 13

SESSION MONITOR ACCOUNT PROGRAM

INTRODUCTION: ceeveoocsen
GENERAL OVERVIEWeoeoeeooo
OPERATION: ceoeeoccscss

ACCOUNT FILE STRUCTURE..
CONFIGURATION TABLE...
DISC ALLOCATION POOL..
USER/GROUP ID MAP.ososs

®© e 006 00 0000 00

11-1
11-1
11-2
11-4
11-6
11-8
11-8
11-8
11-8
11-8
11-9
11-9
11-10
11-11
11-11
11-11
11-11
11-12
11-12
11-12
11-13
11-13
11-14
11-14
11-15
11-16
11-16
11-17
11-17
11-17
11-19
11-19
11-20
11-21

12-1
12-1
12-2

13-1
13-1
13-1
13-2
13-4
13-5
13-5

ACCOUNT FILE DIRECTORY ¢ ceeeocoeoscecscscccccsscoscccos
USER ACCOUNT ENTRIESeeeecocscecosossscscscsosososscscsce
GROUP ACCOUNT ENTRIES :ceeeeecseosscoscscosscccsscsscscos
MEMORY CONFIGURATION:eceocoeoscoescsososcsoscscsccscsccscscse

INITIALIZATION...-....o‘oo.o'Oooooooooootoooooooo.o
COMMAND PROCESSING.o-oo.ooo.ooocooo.oo-oonoo.coo-oo

INTERNAL SUBROUTINES.....-ooo-000000...;0...000"0..0

ACCRE
ACOPN
ACWRH
ACINT
ACPAS
ACPSN
ACSDN
ACAST
ACSTR
ACACP
ACNVS
ACTIM
ACSID
ACNFG
ACFDF
ACGSP
ACGTG
ACGTU
ACGID
ACGBT
ACSBT
ACASB
IVBUF
ACINM
ACLNK
ACLTM
ACOPL
ACLCK
ACROP
IFBNR
ACNXA
ACFID
ACPGA
ACTRM
ACDDV
ACDIR
ACFDA
ACFMT
ACCLL
ACCLS
ACPRM
ACREI
ACHLP
ACERR
ACWRL
ACREL
ACITA
MBYTE,
ACXFR

Creates Accounts Fileeeesseooscssccsosscansce
Opens Accounts Fileeesseoocossoscoscoscosoncoccsnse
Writes Syntax Messages for Helpeeeeoooeooeoosoe
Retrieves SDSCS and SDSCS+leeceecececcssccon
Verifies MANAGER.SYS Passwordeeseocoscocecos
Inputs and Parses PasswoTrdeesesococsosooscocscs
Shuts Down an Active SessSiONececcecsccocccs
Retrieves Entry in Active Session Block....
Prints StarSecececcscecsesccsocccoscscsosscsssssos
Does File Cleanup and Completes Shut Down..
Converses to Terminaleeeesossoccecosccscosccocos
Prints Connect and CPU Timeeseceoceosccosscecsos
Set ID Bit Mapeooeceoscoosscoscscsscsossccscccos
Retrieves Entry From Configuration Table...
Finds Free Account Entryececesccsccccsccscoccs
Schedules GASP for Spool Informationeeeseoees
Gets Group AcCOUNt.eceosossscososcosssscsscssssscs
Gets User ACCOUNCeeeoscosooossocsssossscsosse
Gets Free ID Numbereesoeeoeeoeosooocccsccscsccss
Gets Bit Out of ID Mapesesesooscsceccscocss
Sets Bit in ID MAGpPeoeossscocscsscssoscscsscsse
Searchs for Active SessiONecececseccccsccccs
Treats File as Large Arrayecceccescecscecccss
Initialize and Release Session Memoryeeeeee.
Links to Subroutines in Other SegmentsSe.eess
Prints Last Log of Timeeeesoooccosocccnsccas
Opens List Fileeeosooossosssooscsssssscssscsnsse
Locks LisSt LUccoeoocosococscsssscsscscocccscs
Opens or Creates Fileeeeeoocoeosoccscosssccsos
Determines if Device has Binary Mode.seses.
Gets Next Acct. Dir. Entry & Comp. Dire.ece..
Fix Message, User and Group Pointers.eceeee.
Clears Directory Entryeeceoscecoccscscsccsssnss
Terminates ACCTSeeeceeeoceocsscssccssocsoccss
Double Word DIVIDE.eeoeeoeocoocoscsscscccscscse
Reads and Writes Directory EntrieSceceoccecoes
Finds Account Entryececececcscocscscsccccscscs
Formats and Outputs Dat@cescecsssccscocosccsce
Closes List File or Unlocks LUseeceosssocss
Closes and Truncates File.eceeooeescosccssosncos
Prompts Interactive DevicCeeoseeoscescsoscscss
Inputs Commands From Device,File or Memory.
Process HELP CommandSeceececececscccssscscssoce
Posts and Prints ErrorSececececccccccccscsscss
Writes to List File or DeviC@eeceosoccccocscce
Read From List Device Or Fileeceeoooooecoosss
Converts Integer to ASCIIleceococeccococcocos

LBYTE-Retrieves Upper or Lower Byte of Word..

Transfer Control to Device or Command File.eeooo

.

13-5

13-6

13-6

13-7

13-8

13-9

13-19
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
13-36
13-37
13-38
13-39
13-40
13-41
13-42
13-44
13-45
13-46
13-47
13-48
13-49
13-50
13-51
13-52
13-53
13-54
13-55
13-56
13-57
13-59
13-60
13-61
13-62
13-63
13-64
13-65
13-66
13-67
13-68
13-69

xi

ACTIN - Test List Files Against Transfer Stack

File Names;0.oooooaoo-ouuoooocooooo-o.l

ACWRI - Writes to Input Device..
ACSES-Utilities..“‘..’.......

Chapter 14
SESSION TERMINAL HANDLERS

OVERVIEW:eeeeoooeoooccosscccscoscncos
OPERATING ENVIRONMENT.secoeceooocoos
RSPNS PROCESSING ececececcscsces
LOGON PROCESSING eccoceccocccces
LOG=ON FLOWeeeoooeooooesoosoccscccs
LGOFF PROCESSINGeeeoecoooccececosse
CALLING SEQUENCE cceeoecscccoscse
LGOFF FLOWeeeoooooososoososcccsas

LOGON/LGOFF MESSAGE PROCESSOR = MESSP....
MISCELLANEOUS SUBROUTINES ceececocces

DTACH ®© ® 606 0600606060060 0600000000000 0
CAPCK ®© 6 060 00 0060600000000 000000000
$SALC + $SRTN © e 0006000000 000000

MKSCB ® 6 06 0. 06000 000000000 00000000 0000 000

RLSCB © © 0 06 060606 006 0060006000000 000000000000

GLOSSARY OF TERMS USED-SESSION MONITOR...

Chapter 15
LOADER LIBRARY

INITIALIZING THE LIBRARYeeeoeoooocoonse

RECORD RELOCATIONeeeceococosocscocos
NAM RECORD PROCESSING:eeoeecesocoss
ENT RECORD PROCESSOReececoccoscocase
EXT RECORD PROCESSORc¢ececoccococes
DBL RECORD PROCESSINGeeooooescoces
END RECORD PROCESSINGeeoescooscscss
EMA RECORD PROCESSING:eoescoooscsos
LOD AND GEN RECORD PROCESSINGe.sose
DUMMY CURRENT PAGE LINK AREA....
NAM RECORD PROCESSING ceocececesee
CURRENT PAGE LINKING ceccecececcscses
DBL RECORD PROCESSING ¢ocoeccecos
END RECORD PROCESSING ceceocecssen
SPECIAL PROCESSING FOR SEGMENTS
TO OPTIMIZE CURRENT PAGE LINKING
SYMBOL TABLE ACCESS:ceccecssccccsss
LeADD:eeeecosoocsscssossossssscscscse
LeLDFeeeecoeeeecocosecosccscscnnces
LeLUNeceooeooooosoososcoscsnsonscsnse
LeSYEeeeeeeeoooaceosaososscsssconsnse
LelFXeoeeoeooeoooocossososcocoscocns

LQMATQQOOOOoolouoooon..tool.oooo
SETTING SEGMENT CONDITIONS:eeoeoeoe

LoSGO.oo..o;-oooooouoootoo‘.oooo

e o 00

L.SGN....00..Q..OQO'......‘O.I........O

L.FLG-LOADER LIBRARY GLOBAL FLAG & POINTER VARIABLES

xii

.

oo 0 0 00

13-71
13-72
13-73

14-1
14-1
14-4
14-5
14-7
14-17
14-17
14-17
14-19
14-20
14-20
14-21
14-22
14-23
14-23
14-24

15-1
15-2
15-2
15-3
15-5
15-5
15-8
15-9
15-9
15-10
15-10
15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-14
15-15
15-15
15-16
15-16
15-17
15-17
15-17
15-17

LOADER SYMBOL TABLE:eoeeooss
LOADER FIXUP TABLEeeoeooses
LOADER MEMORY ORGANIZATION.
ERROR CODE RETURNS.:eeocoosoe

Chapter 16
FMGR

INTRODUCTION: eeooeeceseccssese
ORGANIZATION: eeooosoosocosnce
CALLING SEQUENCESecceecococcsccccs
ACTION ROUTINE CALLING SEQUENCE.
FROM ONE SEGMENT TO ANOTHER.«...
FMGR GLOBAL COMMUNICATION.:eooeoe
GLOBAL LABELSceesosooscscsocccss
GLOBAL SUBROUTINES AND FUNCTIONS (SEGMENTS)
SYSTEM INITIALIZATION:eeecoeoocecococccccsccse

INTRODUCTION e ceeoscoccccsccscscsscsccccscsse
INITIALIZATION SEQUENCE ccceeeooscocoscoscscss
COMMAND CAPABILITY CHECKING:cooosesoccoccccsscs
SEQUENCE OF OPERATIONS c:vccceccccoscscsnsssecs
COMMAND CAPABILITY LEVEL ASSIGNMENTSeccecoooees
COMMAND DISPATCH TABLE:eeeeecsoocssocsccsscsscs
CAPCK SUBROUTINE . eeceesscocsccccsscsscscsccscscssss
FMGR ACTION ROUTINESceeececcoecssoscoscssossncassse
DISC ALLOCATION AND CARTRIDGE ADDRESSING:eoeos
DISC POOL cceceecocceccscscsosscsscssossssssosssscsse
PRIVATE, GROUP, SYSTEM AND NON-SESSION DISCS
MOUNT/DISMOUNT INTERNAL STRUCTURE.ceeeesccscess
DCMC PROCESSES.cececscescocososscscsssososcscscsos
DCMC INTERNAL ROUTINES :cccscscossososcascscas
D.RTR INTERFACE.: oo eceoeeoccscscscsscscsssccsccss
MOUNT PROCESSOR CALLING SEQUENCE ccecccceces
DISMOUNT PROCESSOR CALLING SEQUENCE .ececeses
CL - CARTRIDGE LIST.icececocceoscccsccscsscssscscsse
PGS eeeeecscesoscesssoscosnsossoscsscssssssossssses
ACNAM o oo oeosoosooscsossosossosssscossscsscssossssccsss
DL — DIRECTORY LIST.eeceeesocosssscscscsscscssccssos
PROGRAM RENAMING: e ceoeoooooccsocscsscssccscsss
SESSNeeeoeoesosososssosscsscsosssoscsssssscocsssoes
eRENM:ceeeeocecooocsccocccscosossoscsocsscscscscsscs
IDDUP e eceeoocsoscoscssssossosscsssssscsssscsccscsscs
IDRPL: ceoocececocosscssoscosccssssssssscscoscsssassssscscse
IDRPD: et ceocotsosocccsosscscsssossocscsscsscssscsos
ERROR PROCESSINGoeeeeooosscsoscsossssscscsscoscsscs
Chapter 17
FMP AND D.RTR
GENERAL e ceeooococcsosocscsscsosssossosscsscsssscscscss
REFERENCES . ececeececoccoscscocssscsosssosccssaccscas
SUMMARY OF CHANGES TO FMP.oeeoesooosooooscsccocscs
NUMBER OF TRACKS PER SUBCHANNEL:eeeoooococccses

.

.

oo 0

.

.

.

.

o e 0

CARTRIDGE ACCESS CHECK FOR SESSION MONITOR.

e o o

15-20
15-21
15-22
15-23

16-1

16-1

16-1

16-2

16-3

16-5

16-15
16-21
16-38
16-38
16-38
16-40
16-41
16-42
16-43
16-47
16-49
16-51
16-51
16-52
16-54
16-55
16-58
16-60
16-60
16-60
16-60
16-61
16-62
16-63
16-64
16-65
16-66
16-67
16-68
16-69
16-70

17-1
17-1
17-2
17-2
17-2

xiii

CARTRIDGE DIRECTORY CHANGES

FSTAT ROUTINE
CALL FSTAT (ISTAT,ILEN,IFORM,IOP,IADD).....
EXTENDED FILE ADDRESSABILITYeeeococoocecocosce
NEW FMP ROUTINESeeeeceeccocscososccosaccoscsccscsccscs

CALLING SEQUENCES FOR USER INTERFACE ROUTINES

FMP ROUTINES....
CREAT.........

ECREA:eeess
CRETSeeooss
OPENeeeooss
OPENFeeeosne
PURGEeeoeses
NAMF .o .

READF/WRITF
EREAD/EWRIT
READF/WRITF
EREAD/EWRIT
RWNDFeoooos
POSNTeeoesooe
EPOSNeoooss
APOSNeeooss
EAPOSceosss
FCONToeoeooos
LOCFeeeacas
ELOCFoeeeess
CLOSE..eeeses
ECLOSeeeees
POSTeeeoesss
NAMeeooossos
IDCBSeeeoss
SOPEN.eeoes
PePASceesss
RWSUBoeoowos

.

READ FUNCTIONS.
READ FUNCTION..

® © 0606 06 00 0000000000 0000000000 00

. o

WRITE FUNCTION..

WRITE FUNCTION.

LN

e o 0 0 0

$KIP ENTRY POINT.
NXS$EC ENTRY POINT.
RWNDS e eveecenaonss
R/WSeeeooeesesaconeas
SUMMARY OF D.RTR CHANGES.
NEW CALLING SEQUENCES.eeeeecens
CARTRIDGE ACCESS CHECK FOR SESSION
LARGER BUFFER.:eeoececesecececcoans

D.RTR MOUNT AND DISMOUNT PROCESSORS

.

o0 o0

D.RTR OPERATION:cecoeococoosococsocscs
DEFINITIONS e eeceosocsse
PRE-ACTION PROCESSOR..
POST ACTION FUNCTIONS.
OPEN PROCESSOReeoececes
CLOSE PROCESSORc¢eeeoee
CREATE PROCESSOR.ecess

RENAME PROCESSOReececeoses

LOCK REQUEST PROCESSING..

CLEAR LOCK PROCESSING...

o e o0

MONITO

EXTENSION OPEN PROCESSORecsoeecoccococssse
CHANGE THE WHOLE DIRECTORY PROCESSOR....
REPLACE ONE DIRECTORY BLOCK PROCESSING..

Xiv

.

e o 00

o e 00

17-3

17-3

17-3

17-4

17-4

17-5

17-6

17-6

17-8

17-9

17-10
17-11
17-12
17-13
17-14
17-16
17-17
17-19
17-21
17-22
17-23
17-24
17-25
17-26
17-27
17-28
17-29
17-30
17-31
17-32
17-33
17-34
17-36
17-37
17-38
17-39
17-40
17-41
17-43
17-43
17-43
17-46
17-47
17-47
17-47
17-48
17-50
17-50
17-51
17-52
17-53
17-54
17-54
17-54
17-55
17-55

MOUNT PROCESSINGeeosococoosns
DISMOUNT PROCESSINGeoeeeeese
CHANGE CL ENTRY PROCESSING.
D.RTR INTERNAL ROUTINES....

BAKUP
CKeLKeoosoo
CLOPFeceasns
DIRCKeeosos
DORMeeosooo
DPMMeeooass
EXSHeveooos
EXSHRe eoo oo
FLAGe o oeeuss
FORWDoeooooo
LAST? cevess

MOVE1l /MOVE2
NeSHReeoeos
NXT/Seoenne
OPNCKeoooos
PSTCLe oo oo
RDNXBeoooos
RDPASeeeess
RDPSeeeceses
RDSTReeesoe
RWSUBeeoooo
SCANDoeoeessoo
SCBCKeeoooo
SETAD: e e s s
SETDReeosoo
SETPReeosss
SSTCKeoooos
TESTLeeeoss
UDADeeeoecs
WSCReveooos

Chapter 18

FORMT UTILITY

INTRODUCTION:eooeoee

o 0

FUNCTIONAL OVERVIEW...
OPERATING ENVIRONMENT..

DISC UTILITY LIBRARY
EQT LOCK FUNCTION
MEMORY LOCK

DISC SPECIFICATIONS....
OPERATING MODESeeeoescecsocas
RESPONSE PARSING AND PROMPTING..
TASK PROCESSORScececcececsocccccs
DISKD MODESeeeeeocoscsoccsss
MODES 3 AND 4 OPERATION....
MODE 5 OPERATION:ceeeooscss
MODE 6 OPERATION.cececoeosoososse
SPECIAL TIMEOUT PROCESSING...
SPECIAL HANDLING OF THE 7910H DISC..

.

® © 0 060 00600000000 000000

e o o o

.

]

17-56
17-56
17-56
17-57
17-57
17-58
17-58
17-59
17-59
17-60
17-61
17-61
17-62
17-62
17-63
17-63
17-64
17-65
17-65
17-66
17-66
17-67
17-67
17-68
17-68
17-70
17-71
17-71
17-72
17-72
17-72
17-73
17-73
17-74

18-1
18-1
18-2
18-2
18-2
18-3
18-3
18-4
18-5
18-6
18-6
18-8
18-9
18-10
18-11
18-12

XV

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

S PLWLWWWWERNRNDNRNNNDNDNDN e e e

o

| IS O S TR |
N U pPpPWONEF~, OCONOOTUVEEWN OOV WN
e o e e o o

DVP43 POWER-FAIL AUTO-RESTART DRIVER cecceecccscses
REENTRANT LIST STRUCTURE ecccececcscecscccecscocccns
+«ZPRV/.ZRNT CALLING SEQUENCES tccceccccccccccccscse
RTE-IVB ID SEGMENT TABLE cceccccccccccscsccscscccs
DISPATCHER INTERFACE TO LIST PROCESSOR eceeeoceocos
MEMORY ADDRESSING SPACES ¢eoeoeecocoscococscsosss
RTE-IVB SYSTEM DISC LAYOUT cecococceccccccceccccs
ENTRY POINT LAYOUT ON THE DISC cceeceeccecscccsccccs
RTE-IVB PHYSICAL MEMORY ALLOCATION cccecoccscocsose
TIMESLICE QUANTUM DEFINITION cceceooescccocecccccs
SESSION MONITOR TABLES ceceeceoococecsoscocosccscs
CALLING SEQUENCE TO DeRTR coosoososcsosococsssoccs

DCB AND FILE DIRECTORY FORMATS cececeeccceccccacce

CARTRIDGE DIRECTORY AND DISC FILE FORMATS .cceeoee

ILLUSTRATIONS

Scheduled LiSt cecececossoscscoscccsscssssoccsccssssccsns
ID Segment Formateescoeecescoscosscoscscscsccscscocscasce
RTE-IVB Memory Protect Fence Tableceeseecosococoss
RTE-IVB Memory Allocation Table (MAT)eeesoosccssse
Memory Allocation Table Entry FormatSeeescecscecses
RTE-IVB Mother PartitionSeeecscessccsssccssccocscass
RTE~1IV Dispatchers Allocated Part LiStSeescecscos
RTE-IVB User Base Pageeeececosscscsocccssscosscsnssscss
RTE-IVB Equipment Tableeeoeecoscoscsocscocscsoscsscss
RTE-IVB Equipment Table Entryeeceececcscccecoescsccs
RTE-IVB Interrupt Tableeeeeececocscscsscccssoscncos
RTE-IVB Device Reference Tableeecesoocooscccscccscs
RTE-IVB Device Reference Table Entryeecececececesceces
RTE-IVB Track Assignment Tableceeoecoeoccscococscssos
RTE-IVB Driver Mapping Tableeeecoesecscsossscccssss
RTE-IVB User Base Pageesccscoscccccccscsssscssscsssocse
Equipment Locking Table ecececcccccoscocssocsscnesns
JSB EXECeeoeoooecotssscosssosccscsososcssssssnscscsa
LU2 ceoevcesooscoscscsssosscsssososcscssossccsososscscsoscss
LU3ceeeeoeoocsososesoscssscossosossossssssscsosssssnscanse
Example o0f SAM Linkageeeseesocosssecescscscccccsse
Example of SAM Linkage After Returnlng Memorye....
System Map for Start Upeceecececscosccsosscscsoscocos

Stacking of Memory BlOCkSoooooooooo.ooooooo-oo.oo

1-2

1-20
1-23
1-24
1-24
1-26
1-27
1-28
2-37
2-38
2-40
2-41
2-41
2-42
2-43
2-45
2-46
3-3

3-18
3-19
3-25
3-26
4-15
4-27

Figure 8-1. Tree Structure For Generator Command
Input and Echo/List Output RoutineS.seceececcesecee 8-14
Figure 8-2., Header Record Format — 7900 DiSCeeesscecscscescees 8-18
Figure 8-3. Header Record Format for 7905/06(H)/
20(H)/25(H) DiSCSessesscsccesssscccssssscssssssssscs 83=20
Figure l4-1, Session Terminal Handling Process eeeecesecscceees 14-2

TABLES

Table 3-1. EXEC Requests and Entry PointSeececesccsccsccsccsssces 3—7

Table 8-1., FIXUP, IDENT, LSTeeescccccsscsocssscccssscsscsccssss 825
Table 8-2. IDENT Table Entry Formateeeeccocscscscscccscosceccssese 8=27
Table 8-3. LST Entry Formateccecscscccscsccsscssscocscscesscsccsscecs 3-28
Table 8-4., Fixup Table Entry Formateceececeeseccccocccscscscccses 3-28
Table 8-5. Program TypPeSececescscsccoccssssoscossssscccsssssscssss 8=29
Table 8-6. Program Type Referenceeececscsoscscsssoscccssssseasces 8=30
Table 8-7. Base Page FOrmaAltSeeecsccscosscsscccsssscsssssssscsss 8=35
Table 8-8. ID Segment Words Set During GeneratioNeesesesecesss 8=49
Table 8-9. MAT Entry FOrmateeceeceeeececcssosscsccssssosccsssossessssss 8=55
Table 8-10¢ MPFT.ceeeceocosscccsosccssscsscasssssssssssssscssnsees 8—60
Table 8-11. Memory Resident Mapeeceoeceocosososoosssssocssssocssssss 8=61
Table 8-12. Generator Error CodeSeececceccccccacssccssssscscnssss 8-68

xvii/xviii

Chapter 1

DSP4~--RTE-IVB DISPATCHER

DISPATCHER OPERATION OVERVIEW

The Dispatcher module’s main function is to control program execution
by switching CPU control to the highest priority program in the
scheduled 1list if it is ready to run. The Dispatcher serves as the
return point from the operating system back to the user. If there
are no programs scheduled, the Dispatcher prepares for execution of
the idle loop under the user map and waits for an interrupt to occur.
An interrupt is generated by an I/0 device, a user program request,
or an error condition signal which requires entry into the operating
system for a response. The Dispatcher turns control over for program

execution until the next interrupt.

In the process of returning control to a user program, the Dispatcher
needs to perform a number of smaller tasks. Once it is determined
that a program should be executed, the Dispatcher needs to check
whether or not the program is present in memory. If the program is
not already in memory then it needs to be loaded from the disc. The
Dispatcher 1is responsible for finding an empty partition of the type
and size, if one was not previously specified. If there are no free
partitions it would be necessary to swap out a dormant program or a
lower priority executing program to make the partition available for
the load. Then finally the user map and memory protect fence are set

up before executing the progranm.

Other functions of the Dispatcher are to set up the partition 1list
headers at initialization of the operating system and to coordinate
the cleaning up of a program’s resources and system available memory
when a program is aborted.

GENERAL OVERVIEW OF TIMESLICING OPERATION

All programs competing for the central processor access it in an
orderly manner, wunder the direction of RTE-IVB. The system places
programs 1into the scheduled list in order of their priority. When a
program completes, terminates or is suspended, the RTE-IVB Dispatcher
searches the scheduled 1list for the next program of highest priority,
and transfers control to it.

The scheduled 1list (see Figure 1-1) is divided into logical areas,
each corresponding to a particular type of dispatching and priority
level. Scheduling within each priority can be performed in a linear
or a circular fashion.

The default priority range for linear scheduling is from 1 to 49 (see
QU command). Programs of this type are given processor control until
the program is either completed, terminated or suspended to await the

availability of a required resource.

DSP4--RTE-IVB DISPATCHER

Circular scheduling is performed on all program priority levels lower
(higher number) than the timeslice 1limit (see QU command). Programs
of this type are given processor control for an interval (Time
Quantum) of maximum duration (or until completed, terminated or
suspended). Control is then passed to the next program of the same
priority (queue), continuing in a round-robin fashion until all
programs of the specified priority have completed, terminated of
suspended. The RTE-IVB Dispatcher then searches the scheduled list
for the next highest priority level that has programs prepared to
execute.

PRIORITY NUMBER

linear scheduling

52 circular scheduling within
priority levels

. Slice
. Range

i
—

I

|

I

|

I

|

I

|

|

| . Time-=-
|

|

|

I

I

I

I

I

|

Figure 1-1. Scheduled List

1-2

DSP4--RTE-IVB DISPATCHER

Within the scheduled 1list, each priority level (in the timeslice
range) may be thought of as a circular queue. The program at the head
of the queue represents the next program of that priority to be
executed. All programs of a higher priority (lower number), that are
in the scheduled list will have a chance to execute before a lower
priority program is entered. When a timeslice program is entered, a
maximum execution slice is set up within the operating system. This
program is then allowed to execute until one of the following occurs:

1) The program leaves the scheduled list (such as I/0 suspend, memory
suspend or dormant).

2) A higher priority program is ready to execute.
3) The program exceeds its timeslice quantum.

If a program leaves the scheduled 1list, its execution slice 1is
assumed complete. Therefore, when the program is again ready to
execute, it is placed at the end of the queue within its priority, in
the scheduled 1list. Also, when the program is again picked to
execute, the original timeslice quantum is set up.

If a higher priority program causes your program to stop executing
(but you’re still scheduled), the remaining execution slice value is
saved in your program’s ID segment. Then, when your program is again
ready to be entered, the remaining count is set up as the timeslice
quantum to be used.

When a program exceeds its execution slice, it is moved behind (in
the scheduled 1list) all other programs of the same priority. The
program remains scheduled but execution now passes to the new head of
the scheduled list (also head of that priority’s queue).

The System Manager can control the scheduled list (Timeslicing) in
the following ways:

a) Modify the system (multiplier) timeslice quantum (QUantum
command).

b) Modify the ©priority level at which ©programs are timesliced
(QUantum command).

c) Modify a specific program’s timeslice level (PRiority command).

EXTERNAL COMMUNICATION

The Dispatcher communicates with the rest of the operating system
through the =system tables, base page communication area, and
subroutine calls to/from the rest of the system. There are no direct
paths of communication between the Dispatcher and any user program
because there are no functions 1in the Dispatcher which would be
useful to a calling program.

DSP4--RTE-IVB DISPATCHER

ID SEGMENT (Figure 1-2)

An ID segment 1is processed by the Dispatcher. Each ID segment is

linked 1into the scheduled list by word O. The priority, type, and
status are checked to determine whether or not the program may

execute. The memory protect fence table index (MPFI) and number of
pages are set 1into word 21 by the system generator or by the
relocating loader. The number of pages (which does not include a

base page) is the number of pages actually occupied by a program and
its largest segment (if any) or the override size specified by the
user. The size of an EMA program includes the mapping segment size
(still excludes the base page).

The program address bounds in words 22-25 are used by the Dispatcher
for loading the program into memory. The program’s disc address is
in word 26. If the program is swapped out, the Dispatcher keeps the
address of the swap tracks in word 27.

I/0 Segment word 28 is used by the Dispatcher to determine whether or

not a program is using an extended memory area (EMA). If this word
is zero, no EMA is used. If the word is non-zero, the ID Extension
is checked to see if the default EMA size was chosen. If it was not
defaulted then the program size (from word 21) minus the MSEG size 1is
added to the EMA size plus base page to determine the partition size
required. If the EMA size was defaulted, the 1largest Mother
partition size, $MCHN, is used as the partition size required.

Word 30 contains the timeslice quantum value (addressed by S$LICE).
This word is setup (Negative 10°s of MS) if the program is in the
timeslice priority window. Word 32 indicates 1if the program is
running under session control. If it is, the Dispatcher defines the
location of the CPU usage counter ($DCPU) in the users SCB.

MEMORY PROTECT FENCE TABLE (Figure 1-3)

The Memory Protect Fence table ($MPFT) a table of addresses used by
the Dispatcher to set the correct value for the memory protect fence.
This address is stored in the base page word FENCE (1775). Bits 7-9
of word 21 in the ID Segment contain the index into this table.

MEMORY ALLOCATION TABLE (Figure 1-4)

Each partition defined by the user at generation time will have an
entry in the Memory Allocation Table. The table starts at the entry
point $MATA and extends upwards toward high memory. The word S$MNP
contains the total number of partitions (set by the generator). Each
partition entry (see Figure 1-5) is 7 words long. The MAT Link Word
contains -1 if the partition is undefined.

DSP4--RTE-IVB DISPATCHER

There are three different types of partitions:

1. Real Time Partitions headed by $RTFR at system start-up.
2. Background Partitions headed by $BGFR at system start-up.
3. Mother Partitions headed by $CFR at system start-up.

These three lists are set up by the Generator in order of increasing
size. The primary purpose for having RT partitions and BG partitions
is to keep the two classes of programs, RT and BG, from contending
with each other for memory. There are no differences in the two
classes of partitions. Mother ©Partitions are primarily for EMA
programs.

Mother ©partitions are defined during generation by a "YES" answer to
the prompt "SUBPARTITIONS?" when a partition is 1larger than the
maximum addressable space. Although Mother partitions are in a
separate list, subpartitions may be 1linked into either a Mother
partition (see Figure 1-6) or linked into a BG or RT (either free or
allocated) 1list. When the subpartitions are part of a Mother
partition, the Mother partition’s MAT entry word 6 (Subpartition Link
Word - SLW) will point to the Link Word (word O0) of the first
subpartition whose SLW will point to the link word of the second
subpartition and so on. The SLW of the last subpartition will point
to the Link Word of the Mother. If no subpartitions were actually
defined ©but the prompt for subpartitions was answered "YES" then the
SLW of the Mother partition will point to the Link Word of the same
MAT entry.

When a Mother partition is in use, the entire chain of subpartitions
is in use and this is indicated by the C bit being set. In this case,
all partition status information is kept in the Mother partition MAT
entry; i.e.; priority, ID segment address, and Read Completion flag.
In addition, the chained partitions are treated as a single entity
while the C bit is set. Individual subpartitions are not swappable
in this case - the whole Mother partition may be swapped if needed.

The Dispatcher checks for empty partition lists at start-up (see
INITIALIZATION Section). If there are no Real Time partitions then
the header of the RT partitions list will point to the Background
partitions. If there are no BG partitions then the RT partitions are
used in the BG list. If there are no Mother partitions BG partitions
are wused wunless there are no BG partitions, in which case the RT
partitions are used.

The sizes of the largest partition of each type are kept in three
words:

1. S$MRTP - size of the largest non-reserved RT partition.
2. S$MBGP - size of the largest non-reserved BG partition.
3. &MCHN - size of the largest non-reserved Mother partition.

1-5

DSP4--RTE-IVB DISPATCHER

XIDEX
XMATA
XI
SKEDD
XEQT
SWAP
BPA2
LBORG
RTDRA
AVMEM
BGDRA
TATLG
TATSD
SECT2
SECT3
* FENCE
* BGLWA

¥ ¥ ¥ ¥ *

* %k * F

SYSTEM BASE PAGE COMMUNICATION

1645
1646
1647
1711
1717-1733
1736
1743
1745
1750
1751
1754
1755
1756
1757
1760
1775
1777

ID EXT addr of current prog or O
MAT address of current program or O
Pointer to current program’s X-Y save area
Head of scheduled list
Current program’s ID Segment pointers
Swap delay in bits 8-15
Last word user base page (add 1 for BP fence)
Logical address of Resident Library
Dynamically set address

bounds for partition

resident programs
Dispatcher locks disc tracks for FMGR
#Tracks system disc
#Sectors LU2
#Sectors LU3
Memory Protect Fence value for user
Dynamically set bound

* Set or changed by the Dispatcher.

$ALDM

$BRED

$DCPU

$DMAL

SHIGH

Subroutine,

DISPATCHER ENTRY POINTS

used by SCHEDULER to wunlink a partition’s MAT

entry from the allocated list into the dormant list.

The Calling

<A-reg> has
JSB $ALDM

Subroutine,
The Calling

{B-reg> has
JSB S$BRED

Sequence:

ID Segment Address

used by SCHEDULER to read in program segments.
Sequence:

ID Segment Address

ENTRY POINT, defines the current sessions CPU usage counter
or a dummy system location if the XEQT program is not a
session program. Used by RTIME.

Subroutine, wused by SCHEDULER to wunlink a partition’s MAT
entry from the dormant list into the allocated 1list.

The Calling Sequence:

CA-reg> has ID Segment Address
JSB S$DMAL

Page number of 1last page of last disc resident program
partition.

SLICE

SLOW

SMAXP

$PRCN

SRENT

SRVAL

$SMAP

DSP4--RTE-IVB DISPATCHER

Entry point, defines the address of word 30 (Timeslice
Quantam) of the XEQT programs ID segment or a dummy system
location if the XEQT program is not being timesliced. Used
by RTIME.

Page number of first disc resident program partition.

Subroutine, called by the routine S$PERR when a partition is
undefined or by the SCHEDULER when a partition’s "reserved"
status 1is changed by the RS command. This subroutine
searches the MAT to determine the values of $MBGP, $MRTP
and S$MCHN by scanning each MAT entry for the largest
partition of the specified type and update the appropriate
word. $MAXP may have to update more than one (and maybe
all) if the size words if any of the partition lists were
initially empty. This is necessary because the DISPATCHER
would have changed the list pointers of the empty list(s)
to point to a non-empty list.

The Calling Sequence:

JSB $MAXP
{return>

Subroutine, called by DISPATCHER and SCHEDULER to relink a
partition in the allocated list by priority.

The Calling Sequence:

{A-reg> has ID Segment Address
<{B-reg> has new priority
JSB $PRCN

Entry point, JMP there from the DISPATCHER and EXEC for
setting wup the Resident Library address in the memory
protect fence.

Entry point, defines the Timeslice reset value for the XEQT
programe. Used by RTIME if the XEQT program uses a full
timeslice and no one else of the same priority is
scheduled. In this case, the original timeslice value
(SRVAL) is restored to ID 30 and the program is allowed to
continue.

Subroutine, called by DISPATCHER and RTIOC to set up the
user map. Unused pages are write-protected.

The Calling Sequence:
{A-reg> has length of program to map in pages

<{B-reg> has MAT entry address
JSB $SMAP

1-7

DSP4--RTE-IVB DISPATCHER

SUNPE Subroutine, called by S$SPERR to wunlink partition MATA
entries and undefine the partition where a parity error is
detected in it.

The Calling Sequence:

{B-reg> has MATA address of partition

JSB $UNPE

$XCQ Entry point, actual entry for $XEQ where the main
dispatching algorithm is performed.

$XDM Subroutine, called by non-privileged drives to set up user
map.

The Calling Sequence:

<A-reg> has ID Segment Addr
JSB $XDMP (Entry via Table Area II entry point)

$22722Z Entry point, used by DISPATCHER and SCHEDULER as the head
of the program abort list. This entry point is used as a
subroutine during the start-up sequence.

DISPATCHER’S EXTERNAL TABLES AND POINTERS

All of these entry points are located 1in Table Area II unless
otherwise specified.

$BGFR Pointer, BG free list initialized by the Generator.

SCFR Pointer, free list header of Mother partitions, initialized
by Generator.

$CMST Value, start page number of COMMON area, set up by the
Generator

SEMRP Address, 1last word of memory resident program area, set by

the Generator.

SENDS Value, number of pages occupied by the system, its base
page. Both table areas, System Driver Area, driver
partition area, Common, and the first 2K of System
Available Memory. This word is initialized by the
Generator.

$IDEX Pointer, ID Extension list.

DSP4--RTE-IVB DISPATCHER

TECHNICAL ASPECTS OF OPERATION

This portion of the Technical Specifications is a detailed
description of major portions of the DISPATCHER code as outlined in
the general overview (see the Dispatcher Operation Overview Section
in this Chapter). It is assumed that the reader has a good general
understanding of the RTE operating system.

INITIALIZATION

$272ZZ7Z serves as the entry point of the initialization subroutine
which is executed only once during system initialization. The routine
first sets up S$LOW and SHIGH, the first and last words respectively
of the disc resident program partition area. Next it sets up the
starting address of SSGA in $SGAF for the EXEC. Then $ZZZZ loads the
user map with the memory resident map registers which were built by
the Generator in $MRMP. Whenever a memory resident program is
dispatched, $MRMP is used to set up the user map.

Next, the $ZZZZ routine will set the base page fence so that all
addresses Dbetween 16XX and 1777 are not mapped. The fence value
minus one is contained in base page location BP2 (1743) which is the
address of the last available user link.

A number of system dependent address and sizes are calculated and
saved so that they may be reused by the DISPATCHER without being
recalculated each time. Some of these '"constants" include the
address of the memory resident library, the number of pages in the
memory resident library the starting register number and the number
of registers to be used for mapping chunks of EMA to be swapped.

The partition free lists are also checked by the Dispatcher during
the initialization of the system. If the BG free list header ($BGFR)
is zero, meaning that it is empty, then the RT free list pointer
(SRTFR) is stored into $BGFR. If there were no RT partitions then
the RT free 1list pointer will be set equal $BGFR. The maximum
unreserved partition size words, $MRTP and $MBGP, will be updated
accordingly. If the Mother partition list is empty the $BGFR pointer
will be wused, assuming that the BG list 1is not empty since we’ve
already done the check above. $MCHN will also be updated. However,
if it turns out that the BG list is empty because the RT list was
empty, then with all three lists empty the SCHEDULER will report an
error on any scheduling attempts. This code is in subroutine LSTIN
which is also called by $MAXP.

The 1last thing done during initialization 1is the scheduling of the
File Manager program, FMGR. The Dispatcher first locks all of the
disc tracks by saving the number of tracks word (TATLG) in the FMGR’s
first parameter word and then replacing TATLG with -1.

The DISPATCHER’S initialization code is overlayed by the disc I/0
triplets which are built for doing program loads and swaps.

DSP4--RTE-IVB DISPATCHER

DISPATCHING

$XCQ (user map entry point, $XEQ) is the entry point into the
DISPATCHER code which performs the allocation of execution time to
programs. The primary objective of $XCQ 1is to execute the highest
priority program in the scheduled 1ist, SKEDD, if possible.

First the DISPATCHER checks to see if there are any programs which
were aborted (see CLEANUP Section). If no programs were aborted, then
the DISPATCHER checks the scheduled list. If there are no programs
in the scheduled list, or for some reason the programs in the list
can’t be executed at this time, the "idle loop" is executed instead
of a user program. The base page point-of-suspension word, XSUSP, is
set to the 1idle loop code address and the base page register save
area pointers (XA, XB, XEO and XI) are set up to use a two-word dummy
save area. The Timeslice and CPU usage pointers are set up to dummy
locations. The idle loop code ($IDLE) and dummy save area are located
in Table Area I so the user map may be used. The base page word XEQT
is «cleared to indicate that no program is executing, the memory
protect fence register is set to zero and stored in FENCE on base
page. Then it exits the system via $SIRT to enable memory protect,
the interrupt system and the user map.

If there are programs to be scheduled in the SKEDD 1list, the
DISPATCHER makes the decision to execute a program based on the
program’s priority, status, type, and address space needs.

If the currently executing program is of higher priority than the
program in the scheduled list, execution of the current program is
resumed. If the program in the scheduled list is higher, or, if the
program in the scheduled 1list is of an equal priority and the current
program has used a full timeslice, a check is made to see if the

program (from the scheduled 1list) is in memory and if it can be
executed.

If it can be executed, the user map registers are set up with the
program’s physical page numbers. The program’s logical address
bounds are set up in RTDRA, AVMEM, BKDRA and BKLWA. The ID segment
pointers are set up at XEQT. The X \ Y registers save area address
is also set up at XI. TIf the program’s priority is higher than the
timeslice 1limit, skip the timeslice setup. If ID word 30 is less
than zero, use it as the timeslice value. Otherwise, the timeslice
value 1is calculated by using the program’s priority in the following
equation:

Program Slice Value = Sys Slice * Z + SYS Slice

1500 ns default. This value (l.5 sec) may be

increased or decreased via the "QU" command. See
Appendix J for an explanation of the default

value.

where SYS Slice

z = bits 8-11 (isolated and shifted right 8
positions) of the program’s priority.

—
|

10

DSP4--RTE-IVB DISPATCHER

Define S$LICE to be equal to the address of ID 30. If ID 32 is a
positive value, define $DCPU to address the CPU usage location of the
session control block.

If the ©program from the scheduled list is not in memory, see if it
can be loaded.

Now that the ©program is ready to execute, the address of where to
begin or resume execution is determined. If the point of suspension
address is zero, control is given to the program at the primary entry
point. If the point of suspension 1is non-zero, control is returned
to that address. The memory protect fence is set up according to the
Memory Protect Fence Table index in the ID Segment. Then control is
turned over to the program by exiting through $IRT which enables
memory protect, enables the interrupt system, and enables the user
map.

The general dispatching procedure described above 1is slightly
different for different types of programs.

MEMORY RESIDENT PROGRAMS

If the scheduled program is a Memory Resident Program, the memory
protect fence may be set differently since these programs are the
only type which may reference the Resident Library. The Dispatcher
will «clear the Write Protect bit from the Resident Library pages in
the Memory Resident Map by clearing the sign bit from those words
when the User Map is being set up. All the other registers would
remain the same as in the Memory Resident Map Table ($MRMP) which is
never changed. Then the memory protect fence is set at LBORG if the
reentrant bit is set in the ID Segment. This code has an entry point
of SRENT for access by the EXEC.

DISC RESIDENT PROGRAMS

If the scheduled program is a disc resident program, it needs to be
loaded from the disc into a partition which was allocated for it. 1If
a partition was pre-assigned at relocation time, that MAT entry will
be checked to see if it is available or if its resident program is
swappable. If either case is true, the MAT entry will be set up for
the new program and will be linked into the allocated list of the
pertinent type. The MAT entry will not be modified or relinked if
its current resident is the program which RTE is trying to dispatch.

If a partition was not specified at load time, the MAT entry for the
partition in which the program was 1last resident will be checked to
see if the program is still resident. The MAT entry is first checked
to see if the partition still exists. The partition may be undefined
if a parity error was detected in one of its pages since the program
was last resident there. If the partition still exists and the
program was the last occupant in there, the partition is set up to be
used and the program is dispatched there after the user map is built
(see Chapter 2).

DSP4--RTE-IVB DISPATCHER

If the program 1is no longer resident in the partition or the
partition Dbecame undefined, a default partition list will be scanned
for a free partition. The default partition types are:

a. RT program (Type 2) - RT partition ($RTFR)

b. Large BG program (Type 4) - BG partition ($BGFR)
c. BG program (Type 3) - BG partition ($BGFR)

d. EMA program - Mother partition ($CFR)

For RT, BG and large BG programs, the appropriate free list will be
scanned for the smallest free partition in which the program can fit.
EMA programs which have a specific EMA size declared will get the
smallest free Mother partition. But, EMA programs which let the EMA
size default will take on the maximum Mother partition size ($MCHN).
This size minus the program code size is then put into word 29 of the
ID segment to prevent the problem where a swapped out program may be
reloaded into a smaller partition if $MCHN was changed because of a
parity error on the partition or it became reserved.

If a free partition is not available, the appropriate dormant list
(RTDM, BGDM or CDM) will be scanned for a partition with a swappable
programe. The dormant lists are a subset of the allocated lists (see
Figure 1-7). The last entry 1in the dormant list points to the
allocated list so if the dormant list is empty, the dormant list just
points to the allocated list.

Upon finding a suitable partition, the occupant will be swapped out.
The MAT entry will be reset and relinked, and prepared for loading of
the disc resident program. If no dormant partition qualifies for the
swap, the allocated 1list (RTPR, BGPR or CPR) will be scanned for the
lowest priority program which can be swapped. The same procedure
described for the dormant swap will be followed.

DISC RESIDENT MAP SET UP

Once a partition is allocated for a program, the user map is set up
for the program. If the program 1is ©being scheduled initially
(program’s first dispatch) the User Map registers must be loaded by
the DISPATCHER and a copy of it saved in the user’s protected portion
of base page (see Figure 1-8). If the program is being
re-dispatched, to continue after being suspended or after being
"bumped" by a higher priority program, the User Map registers are set
up by copying them from the saved <copy in the protected portion of
the user’s base page.

A program’s first dispatch is identified by the fact that the point
of suspension word (XSUSP) is 0 in the program’s ID Segment. The
base page register (logical page 0) is loaded with the page value in
word 3 of the MAT entry. The next registers are then loaded
sequentially with numbers starting at one end incremented by one in
each successive register. The number of registers set in this manner
depends on the program type or whether or not the program uses
COMMON.

DSP4--RTE-IVB DISPATCHER

If the program type is 2 or 3, the number of registers set
sequentially is determined by one less than the value of $SDA added
to $SDT2. Actually the number of registers mapped is one less than
$SDA. The next registers mapped (number of registers is determined
by $SDT2) have the write-protect bit set. This maps into the User
Map: Table Area I, the Driver Partition Area, COMMON (including
SSGA), write-protected System Driver Area and write-protected Table
Area II.

If the program is not type 3, the Memory Protect Fence Table Index
(in the ID Segment) is checked to see if the program uses any COMMON
or SSGA. TIf COMMON or SSGA is wused, the number of registers set up
following the base page register is determined by one less than the
value in $CMST. If COMMON or SSGA is needed, the value $SDA -1 is
the number of registers to map in Table Area 1, the Driver Partition
Area, and COMMON. The wuser program is mapped in the registers
following these registers pointing to the system areas.

The next registers are loaded with the next physical page numbers
sequentially following the page used for the user base page. These
are loaded 1into the map registers until the number of registers
specified in word 21 of the ID Segment have been set up. The
non-standard MSEG bit (bit 15 of word O in the ID Segment extension)
is set if the program is an EMA program to force the EMA subroutines

to remap.

The remaining registers in the user map will be read/write protected
to 1insure that a program cannot access memory outside of its
partition. This mapping 1is done in $SMAP which is the only code
which 1loads the user map to describe a specific program. It is also
called by RTIOC.

A copy of the user map is saved in the last 32 words of the user’s
physical ©base page (see Figure 1-8). The system’s map register for
the driver partition ($DVPT) is used to map in the user’s base page.
This portion of the base page 1is not used during the program’s
execution since the system communication area is always mapped in on
the top portion of the user base page.

With all of the above done the program is ready for dispatch.

SWAPPING

A program is swapped out of memory to make a partition available for
another program to run. The first programs chosen to be swapped are
the ones in the dormant list. These programs are the ones which have
terminated with either the save resources or serially reusable option
or are operator suspended and still in memory. Otherwise, programs
with the lowest priority will be checked for swappability.

DSP4--RTE-IVB DISPATCHER

Programs are not swappable if any of the following are true:
1. The resident memory lock is in effect.

2. 1If the resident is scheduled (State 1) and has a higher priority
than the program to be scheduled.

3. The resident is dormant but has a higher priority and is in the
time 1list to be scheduled in 1less than the minimum permissible
amount of time specified in swap (swap delay).

4, The resident is 1I/0 suspended with the buffer in the program
area, i.e., unbuffered I/0.

5. It has the same priority as the program to be scheduled and it
has not used a full timeslice.

When a swap 1is required, the necessary number of tracks needed to
swap the program out are computed and a request is made to $DREQ for
the contiguous disc tracks. The number of tracks is computed by
rounding up the number of sectors (to next even sector) needed for
the base page and rounding up the number of sectors (to the next even
sector) needed for the Main Code. The number of sectors is then
converted to tracks and it is then rounded wup to the end of a full

track. If tracks are not currently available, swapping cannot take
place and the DISPATCHER proceeds to check the next program in the
scheduled 1list (if any). If tracks are available, the necessary

$XSI0 parameters are computed.

SETUP is the subroutine which creates the parameters for the $XSIO
disc calls. SETUP guarantees that all calls to read or write disc
tracks are broken down into groups of smaller I/0 requests. Each one
of these smaller groups of 3 words each (triplets) define an I/0
request which will not cross a track boundary. The triplets have (1)
starting memory address of the piece of data, (2) the number of words
to transfer, and (3) the starting track and sector address. These
triplets are built in memory overlaying the DISPATCHER’S
initialization code (code following $ZZZZ). There may be up to seven
triplets for a $XSIO call (enough for a 32K transfer with 6K words
per track). The triplets are terminated by a zero.

There are five separate $XSIO calls, one for each type load/swap I/0
so that each call can be started independently and overlap in time.
Disc accesses for each type of partition can be completed at
different times depending on their sizes. For each of these calls,
there are triplets tables. The following table shows the names used
by DISPATCHER.

DSP4--RTE-IVB DISPATCHER

- . ——— — ——— —— — —— ————— - ———— —— —————— - = - A = . S M Wm D M e - - - - = — - - o -

| | | | | I
Type of	Code	Triplets	Triplets	Triplets
$XSIO CALL	Busy	Area	Terminator	Area
	Flag	Terminator	Address	Pointer
I I			!	
=======—=--	=====-	==m—m—————=-	===	E e
		I I		
RT	RTSWP	RTRIP	RTRPA	RTRP
BG	BGSWP	BTRIP	BTRPA	BTRP
Mother	CHSWP	CTRIP	CTRPA	CTRP
EMA	CHSW2	CTRIP	CTRPA	CTRP2
Segment	SGSWP	STRIP	STRPA	STRP

————— e - —— - - ——— ——— — —— " . ———— — ——— ———— —— - — - — - - - - G - - ————

When a swap out is completed, the disc logical unit track address and
number of tracks are stored in the ID Segment (word 27, SMAN).

When a program is 1loaded (or swapped back) into memory, S$XSIO is
called wusing parameters computed by SETUP. ID Segment value DMAN
(word 26) is used for the disc address if the program is not swapped
out; and SMAN if the program is swapped out. The program’s
dispatching status in word 5 of the MAT entry is cleared to indicate
that a program read is in progress. The "LOAD IN-PROGRESS" bit is
set in the programs ID segment. This bit (bit 8 word 15) indicates
that the program may not be dispatched. When the read is complete,
any swap tracks are released via $DREL and the program is scheduled
via SLIST. A check is made to see if the read was correct. If not,
the program is aborted via S$ABRT which sets it dormant, releases its
tracks, and removes it from the time list. If the read was correct,
the "LOAD IN-PROGRESS" bit 1is cleared. The program is ready to
execute.

When an EMA program needs to be swapped, the swap out to the disc is
done in two parts. The program’s code up to the page where the
mapping segment starts (MSEG) and the program’s base page are swapped
out first wusing the CHSWP $XSIO call. The number of swap tracks
needed is computed by adding the number of integral tracks needed for
the program code and base page to the number of integral tracks
needed for the EMA area. The program is swapped just like any other
disc resident program. Note that in the ID Segment word 27, the
number of tracks refer to just those used for the program code.

The EMA area is swapped out next, beginning at the next even sector
boundary following the program code’s swap tracks. EMA is swapped
out 1in large chunks equal in size to the maximum logical address
space 1in the user map (up to a maximum of 28K words). The User Map
registers from $CMST to the end of the map, inclusive, define the
number of pages in each chunk. The chunk is mapped in the User Map,
the triplets are built and then the chunk is swapped out using the
CHSW2 $XSIO call. When the transfer is completed, the next chunk is
mapped and swapped. This process repeats until all of the EMA is
swapped. A similar process takes place when swapping into memory.

—
1

15

DSP4--RTE-IVB DISPATCHER

The computation for the number of swap tracks needed must allow an
extra sector for each chunk. The number of tracks for the EMA area
is saved in word 2 of the program’s ID Segment Extension. The number
of tracks 1is needed so that the correct number of tracks can be
released when the program terminates or gets aborted.

When the decision to swap out a resident program has been made, that
program’s current map information (32 user map registers) must be
saved. The save area 1is from words 2 to 34 of the program area.
That is, if the program was loaded at 16000B (octal) then locations
16000B and 16001B are used to save the X and Y registers and 16002B
to 16041B are used to save the wuser map registers. The subroutine
SWOUT is called to perform this save. SWOUT does this by mapping the
first two pages of the partition into the driver map area. SWOUT
then moves the register information (words 1740B to 1777B) of the
mapped base page (now mapped into the driver partition) into the
program area.

Now, since the map information is saved, RTIOC can build a new map
for the swap out of the program. This insures that no matter what
the resident program did to his own map the whole program will be
swapped to disc as opposed to what he has mapped-in being swapped to
disc.

Sometime later the dispatcher will decide to bring the swapped out
program back into memory. RTIOC builds a map identical to the
initial load map for the swap back into memory. This map is not used
to execute the program. Rather, after the program is brought into
memory a call is made to SWPIN. SWPIN rebuilds the user map and
stores this map into words 1740B (octal) to 1777B of the user’s base
page (i.e., the first page of the partition). SWPIN does this by
mapping in the first two pages of the partition into the driver
partition and looking at the map information of the old partition

compared to the new partition. If the first register saved on
swap-out 1is the same page number as the first page of the current
partition (i.e., we swapped the program back into the same

partition), then the map information does not need modification. In
this case the o0ld map information is moved to words 1740B to 1777B of
the first page of the partition. $SMAP will use this to set up the
user map registers. If we are bringing the program into a different
partition, then the map registers must be modified. The algorithm
used to do this is:

For all 32 user map registers,
If:
SLOW =< oP# =< $HIGH

OP#-0SP# + NSP#

then NP #

[]

else NP# oP#

DSP4--RTE-IVB DISPATCHER

Where:

SLOW = Start page number of first program partition
in the system.

SHIGH = Last page number of last partition in the
system.
opP# = 01d page number of the current register we
are working on.
NP# = New page number to place into the map register.
oSP# = 01ld partition’s starting page number.
NSP# = New partition’s starting page number.

This algorithm insures that the map set up when the program executes
reflects the program’s state when the program was last swapped out.
If an EMA program is swapped into a different partition, the start
page of the EMA word in the ID extension is updated to the new
physical page number.

MOTHER PARTITION USAGE

If a program (any type) is assigned to a Mother partition or an EMA
program defaults to any Mother partition, there is more handling
involved than is the case with RT or BG partitions. If a Mother
partition 1is wused when it is 1in the free 1list ($CFR), -each
subpartition must be checked. If a subpartition is either free or is
occupied by a swappable program the C bit is set in word 4 of the MAT
entry to prevent the subpartition from getting wused while the
Dispatcher continues to check each subpartition. If all of the
subpartitions are either free or swappable, a second pass is made on
all of the subpartitions to perform the necessary swaps. The
subpartitions are unlinked from any lists they might be in. When all
of the subpartitions are free, the Mother partition is unlinked from
the free list ($SCFR) and linked into the allocated list. The program
can then be loaded into the Mother partition.

If any one of the subpartitions has a memory-locked program or a
program which is doing I/0 in its own program space the subpartition
can’t be made available by swapping. All of the C bits must be
cleared from each one of the previously scanned subpartitions and the
dispatch 1is terminated. The next program in the scheduled list is
examined.

When a program terminates and it was wusing a Mother partition, the
Mother partition 1is relinked in the free 1list. All of the
subparetitions are linked into the free list of the appropriate type
(BG or RT).

DSP4~--RTE-IVB DISPATCHER

When the C-bits are set on the subpartitions (set in chained mode),
program which are assigned to these subpartition will have to wait if
the DISPAT is still in the process of swapping out any subpartitions.
If a program 1is already 1in the Mother Partition, the normal
swappability checks apply.

In the case where a program of 1lower priority was in the process of
loading a Mother Partition and a scheduled program is assigned to a
subpartition the loading process is aborted. Then the subpartitions
are released from chained mode and relinked into the proper free
list. A special check is made (at SMABT) when a Mother Partition
load needs to be aborted to free up a specific subpartition. If the
partition type 1is BG and the BGSWP call 1is busy, the abort is not
performed. If the type is RT and the RTSWP is busy, the abort also
does not take place. This check prevents a deadlock which could keep
the interrupt system off and the busy RT or BG call would not be able
to complete. When it is necessary to clear out all the subpartitions
for a Mother Partition the CHSWP call 1is used so that regular RT/BG
partitions may continue to be used for other programs.

When a RT or BG program is scheduled and it is not assigned to a
partition, a search is made for a partition of the same type which is
large enough. If none can be found in the free list, none in the
dormant 1list, and none <can be found in the allocated list or it
contains non-swappable programs, then the dormant Mother partition
list will be searched for one which has a subpartition of the correct
type and size. If a suitable subpartition can be found, the dormant
program in the Mother partition will be swapped out or overlayed in
the case of a serial reusable termination.

CLEAN UP

Whenever a program is terminated, either by an EXEC call 6 or aborted
by the system because of an error, the program is put into the
dormant state and the list processor adds the program’s ID Segment
into a list headed by $ZZZZ. The linking is through word 8 of the ID
Segment (the point of suspension save area) since the program will
begin execution at the primary entry point if it is rescheduled.
Everytime the system goes to $XEQ, $ZZZZ is checked. If it 1is
non-zero the DISPATCHER performs five major clean up tasks.

First, 1if the program is disc resident, any swap tracks it may have
are released. This may happen if a program is aborted while it is
swapped out. When tracks are released by $DREL in the EXEC module it
will also call the list processor at $LIST to reschedule any programs
waiting for disc tracks. If the program was an EMA program, it will
be necessary to call $DREL twice; once for the program swap tracks,
and once for the EMA swap tracks.

DSP4—--RTE-IVB DISPATCHER

Next, SABRE in the $EXECUTIVE is called to return any reentrant
memory the program may have. This may happen if a program
terminates or is aborted while in a reentrant subroutine. If S$ABRE
returns any memory programs waiting for memory will be rescheduled.

Next, the DISPATCHER calls $WATR in the SCHEDULER to reschedule any
programs which were waiting to schedule (EXEC 23,24) this program.

Next, the DISPATCHER calls $TRRN which calls $SULLU to unlock any LUs
which may have been locked by the program. $TRRN also unlocks any
locally 1locked RNs and deallocates any locally allocated RNs the
program may have. Each of these processes may call $SCD3 to
reschedule any programs waiting for these resources.

Next, if the Equipment Lock Table is not empty, the DISPATCHER calls
$EQCL (in RTIO4) to release any EQT locks owned by the programs, if
required.

Next, 1if the program 1is a disc resident program and it is still
resident in the ©partition, the partition is 1linked into the free
list.

Next, 1if the program did not terminate with the save resources
option, the sequence counter (high &4 bits of ID word 31) is
incremented by one. This invalidates any FMP open flags defined for
the terminating program.

DSP4~--RTE-IVB DISPATCHER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

t-=|=-=|=-=|=-=]=-=|=-=]=-=|=-=|=-=|=-=]=-=|=-=|=-=|=-=|=--|=-—+*

| List Linkage | Word O <--XEQT
| === e — = |

| TEMP 1 | 1

| TEMP 2 | 2

| TEMP 3 | 3

| TEMP 4 | 4

| TEMP 5 | 5
|- |

| Priority | 6

| Primary Entry Point | 7 %
e e e e e itk |

| Point of Suspension] 8

| A-Register | 9

| B-Register] 10

| EO-Registers | 11

| === | == |

| Name 1 | Name 2 | 12 *
| Name 2 | Name 4 | 13 *
| [==l=-=]=--]=-=|=-======—=—- |

| Name 3 ITM|ML]//1SS| Type I 14 *
|==]==|==|==|==|=-=|=-=]=-=|==|=-=|==|=-=| === |

INAINS|NP| W| Al//| Ol L| R| DI/////]| Status | 15
l==l=-=l=-=l=-=|==|==|==|==|==|==| === | ===

| Time List Linkage I 16
|======-- == === e |

| RES | T] Multiple | 17

| === el B e e e tadebeh bt |

| Low Order 16 Bits of Time | 18

| === e !

| High Order Bits of Time] 19
[==l==l==]==]=-=|==|=—|=—| === mm e |

|BA|FW| M|AT|RM|RE|PW|RN| Father ID Segment No. | 20
|==1==l==l==]==]==|=-=]==|=-=|==| === |

IRP|#pgs. (no BP) | MPFI I//] Partition No. -1| 21
== === | ==—=———- == === |

| Low Main Address | 22 *
| === e - |

| High Main Address + 1 | 23 *

Figure 1-2. ID Segment Format (See Appendix D for a detailed description)

1-20

DSP4--RTE-IVB DISPATCHER

] Low Base Page Address | 24 *
| High Base Page Address | 25 %
:ZU:—-;;;;;;;:—Track : Sector : 26 *
01 Swap: | Track | No. Tracks | 27
|10 Extemsion No. | EHA Size : 28
| High Address + 1 of Largest Segmeme | 29
| Time sitce word T | 30
| Sequemce 1 XIDCICPI Xiowner 10 l 3
| Counter | | | | | I
| Session Pointer/Terminal LU | 32
|-——=—=— e s |
where:
* = words used in short ID segments for program segments
TM = temporary load (copy of ID segment is not on the disc
ML = memory lock (program may not be swapped)
SS = short segment (indicates a nine-word segment)

Type = specified program type (1-6)

NA = no abort (instead, pass abort errors to program)
NP = no parameters allowed on reschedule
NS = no suspend (instead pass I/0 suspension reason to

program)

W = wait bit (waiting for program whose ID segment
address is in word 2)

A = abort on next list entry for this program

O = operator suspend on next schedule attempt

R = resource save (save resources when setting dormant)
D = dormant bit (set dormant on next schedule attempt)

L = load from disc "IN-PROCESS"

Figure 1-2., 1ID Segment Format (continued)

—
|

21

DSP4--RTE-IVB DISPATCHER

Status =

T =

BA

AT =

RM

RE =

PW =

RN =
RP =
MPFI =

Timeslice
Word =

Sequence
Counter =

DC =
CpP =

Owner 1D =

Session Pointer/
If positive

If negative

Fig

1-22

current program status

time list entry bit (program is in the time 1list)
batch (program is running under batch)

father is waiting (father scheduled with wait)
Multi-Terminal Monitor bit

attention bit (operator has requested attention)

reentrant memory must be moved before dispatching
program.

reentrant routine now has control

program wait (some other program wants to schedule
this one).

Resource Number either owned or locked by this program
reserved partition (only for programs that request it)

memory protect fence index.

remaining number of 10°s of MS for this slice.
incremented each time a program terminates.
Used in FMP open Flags.

program may not be copied.

program is a copy of another program.

Session number of Session which created the
ID segment.

Terminal LU :

pointer to Session control block.

[}

terminal LU.

ure 1-2, ID Segment Format (continued)

DSP4--RTE-IVB DISPATCHER

———— - —— - —— —— ———— — —— - —— — — . —— — —— - — - — - - - — ———— -

ID SEGMENT EXTENSION
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

+-=| == ==]==|==|==] === == == === |- -~ |-—| =%

| ! | | Word O
INS | Current MSEG No. | # Pages MSEG|

|==] === == == | == |

] MSEG Start IDE| (Physical) EMA Start | Word 1
| Page (logic.)| | Page |

| == m=————————— el e |
\///7111171171111///1 # Tracks for EMA Swap I Word 2
V1P HEHrrrrrrrrrnm I

o e | =—mmmm e e +

where:

NS = 0 if the MSEG is pointing to a standard segment of

the EMA (set up by .EMAP)
if the MSEG is pointing to a non-standard segment

(set up by .EMIO)

il
=

DE = 0 if the EMA size was specified by the user
= 1 if the EMA size is allowed to default to the

maximum size available to the system.

—— i — ——————— —— — — — —— — — ———— — - - —— ——— — — — ——— = ———— — —— —— — —— ——— —— — ——

- - ————————————— - — —— — o ————————— — ————_ ————————————————————————— - ——

SMPFT -=--=- > WORD O | DISC RESIDENT ADDRESS, NO COMMON
WORD 1 | MENORY RESIENDT ADDRESS, NO COMMON

WORD 2 | ANY PROGRAN ADDRESS, COMMNON 0

WORD 3 | ANY PROGRAM ADDRESS, ComMoN 1

woro 4 | ane rrosran avpmees, seen T

WORD 5 | PRIVILEGED PROGRAM ADDRESS, N0 COMMON

e e e .

—— - ——————— ————————————————————— - — ———— ————— - ———— o ——— i~ —— - — ———

Figure 1-3. RTE-IVB Memory Protect Fence Table

1-23

DSP4--RTE-IVB DISPATCHER

IR it e Dbt +
I |
| e ———————————— + |
| SMNP | # OF PARTITIONS (n) | |
| ($MATA) === |=—===——mmm————mmm—m—— | l
	PARTITION 1	
	MAT ENTRY	
===		
(SMATA)+7	PARTITION 2	
[===mmm		
	MAT ENTRY [I	
R ikttt	I	
] :		
:		
I e		
] (SMATA)+7(n-1)	PARTITION n	
	MAT ENTRY	l
o e +		
e +		
Figure 1-4. RTE-IVB Memory Allocation Table (MAT)		
e T T P PP +		
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Word		
e e e e el e Il bl el et el el el bl Il et		
	MAT Link Word	0 I
et Sttt bt bk bbb e		
	Partition Occupant’s Priority	1
=== e e e e e e e — - — -		
]	ID Segment Address of Occupant	2
	[==	==]==
I	M\//1 DI1////////	Physical Start Page of I 3
I I t//v V////////]1 Partition		
	==]=-=]==	======-- e e ittt
	Ry ¢I///////////	Number pages in Partition
' V V////1//1/]/1 (exclude Base Page) I I		
== == ===	==m——m	==m=———-
I IRTV///717177000 00000000000 rrrrrrirrr S	5 I	
I NNy NN I I		
Rl R ntadnted bl ittt tadeindedetadetede b	==m————	
	Subpartition Link Word	6
e +		
LT T T T +

Figure 1-5. Memory Allocation Table Entry Formats

1-24

DSP4--RTE-IVB DISPATCHER

-——— —— ————— —— —— —— -~ ——— - ——— A ———— — e - - - - - . S T - ——— - - ——— -

where:

-1 if partition not defined either during
system generation or by parity error

MAT Link Word

= 0 if end of 1list
M = 1 if MAT entry is for a mother partition

D = 1 if program is dormant after save-resource
or serially reusability termination

R = 1 if partition is reserved

(] = 1 if partition is in use as part of a chained
partition

RT = 1 if MAT entry is for real-time partition
S = program’s dispatching status

- program being loaded

- program is in memory

segment is being loaded or swapped out

- program is swapped out

- subpartition swap-out started for mother
partition

5 - subpartition completed. Mother partition

cleared.

s~ OB ~O
|

Subpartition Link Word

0 if MAT entry is not a subpartition or a mother
partition

= next subpartition address if subpartition

= mother partition MAT address if this entry

is the last partition.

Figure 1-5. Memory Allocation Table Entry Format (continued)

1-25

DSP4--RTE-IVB DISPATCHER

| M=1 START PAGE (P)|
|==————m—mm——mmm e e e |
| C=1 # PAGES (xX) 1
o e +
| SUBPARTITION POINTER | ====+
5 5 5 5 k5 5 5 5 5 r s l
| 0 | {~=-+

Note: X>X1+X2+..Xn | C=1 # PAGES (Xn)|
ettt +
+-———— | SUBPARTITION POINTER |
R it +
+ __
Figure 1-6. RTE-IVB Mother Partitions
1-26

DSP4-~RTE-IVB DISPATCHER

T et

+ —+
I 1
1 =1
[|
I A
) |
+ — +
A
1
+ — 4+
1]
1 =21 + — +
[|]]
[1= 1
| | 1
+ — + [~ |
N | !
| + — +
+ — 4+ A
| 1 |
[~ | + — +
I B | |
1 A [~ |
| | [|
+ =+ -V
A 1 1
! + — +
I A
+ —-—————— + !
! + —+
~—] | |
—~ ~ + — + =21
! ! 1B
~ [I | -]
[W <P [T | | |
O H A - + — +
MmO a3 A
I << 1 1
=~ + -+] !
A A 1= 1
[I H 1
[} [I-VI |
3 [}]]
%} P+ - — - — + —+ + — +
) | | 1 A
[1 I 21)
| [| 1
e | [-"I | 1
=z |]]]
< 1 =+ —+ + - —+
= 1 wn A 1
4] L] |
o | =+ -+ 1
A | >] 1 1
| I+ —— 4+ BHBH 1 21]
I 1 I Az H
1 (| 1 =< oA + —+
~~ [| | | |
-~ ~ + -+ 1 4+ -+ e
]] I = O N [BT |
= = [| I HA | 24 [|
AAs I »n 1l 1 + —+ =3 < -4 I a
OHA [I | | | | O H [<P |
m g O I [} 1 =2 1 Mm@ O | 1
I Al + —— 1 B 4+ — +
~ - [[|-V
et + -+ 1 1
+ —+

RTE-IVB Dispatcher’s Allocated Partition Lists

Figure 1-7.

1-27

DSP4--RTE-IVB DISPATCHER

SYSTEM
SAM
AESIDENT UBP ENLARGED
SYSTEM USER
PROG
TB2 SYS DRV PROTECTED PAGES N
ER PAGES
$DVPT > DRVPTTN | DRV PTTN USER PAG COPY OF
> N e NEW DRV PAGES 32WORD | Area noT
R TABLES PAGES USER MAP { sep oN
SBP ueP USER BASE
\ UBP PASE r PAGE (SCOM)

DISP & RTIOC USE $DVPT REGISTER
TO ACCESS USER’S PHYSICAL BASE USER'S
PAGE TO SET UP NEW DRIVER BP LINKS
REGISTERS OR USER MAP.

——— ——— - ———— —————————————— ————————— - ———— - ————————— - — —— — - —— - —————————

Figure 1-8. RTE-IVB User Base Page

Chapter 2

RTIOC OVERVIEW

GENERAL OVERVIEW OF OPERATION

The RTIOC module controls all aspects of the system’s input and
output operations. It serves as the centralized 1I/0 interrupt
handler which identifies the source of an interrupt and turns control
over to the appropriate processor. All I/0 requests are made to this
module either by EXEC calls from user programs or by $XSIO calls from
the other parts of the operating system. The I/0 requests are passed
directly to the appropriate device driver if the driver is available.
The I/0 module also queues I1/0 requests for ©busy drivers or for
buffered requests. All the necessary mapping and Dbase page
communication area words needed to perform I/0 will be done by RTIOC.
Upon completion of 1I/0, the next request (if any) is started and
control is returned to any waiting programs. RTIOC also detects and
reports errors at various phases of the process and performs any
necessary clean-up.

EXTERNAL COMMUNICATION

RTIOC communicates to the rest of the operating system through table
structures, the system’s base page communication area, and by
subroutines available only to the system modules. The tables used by
RTIOC are described below. The table formats are shown in Figures
given at the end of this chapter.

EQUIPMENT TABLE (Figures 2-1 AND 2-2)

Each I/0 controller and device <controlled by the I0C/driver
relationship is defined by static and dynamic information in the
Equipment Table. Each EQT entry is composed of 15 words. If there is
an EQT extension, the address of the extension is in EQT Word 13 and
the size of the extension is in EQT Word 12. This table is built by
the Generator.

INTERRUPT TABLE (Figure 2-3)

A table, ordered by hardware interrupt priority, designates the
associated software processor and the procedure for initiating the
processor. This table 1is constructed by the System Generator on
information supplied by the user in configuring the system. The table
consists of one entry per interrupt source--each entry contains only
one word. The contents of each valid entry is the identifier of the
processor. System processors are noted by positive values, user
processors by negative values, and a zero denotes an unused entry.

RTIOC OVERVIEW

DEVICE REFERENCE TABLE (Figures 2-4 AND 2-5)

The Device Reference Table provides the user for logical addressing
of physical units defined in the Equipment Table. "DRT" consists of

two-word entries corresponding to the range of user-specified
"logical wunits,"” 1 to n where n 1is less than or equal to 254
(decimal). All word 1’s are in one table followed immediately by a

second table containing all DRT word 2°s. The contents of DRT word 1
for a given logical unit is the relative position of the EQT entry
defining the assigned physical unit, in bits 0-5, and the subchannel
of the EQT entry to be referenced by this logical unit number, in
bits 11-15. The LU lock flag (the resource number being used for the
lock) is in bits 6-10. An unassigned wunit contains entry value of

Zeroe.

DRT word 2 contains a flag (bit 15) indicating whether a device (lu)
is up or down (0/1). If a device is down, then all I/0 associated
with the device is stacked on the major LU (first LU for this device
in the DRT) in bits 0-14 of DRT word 2. If the downed LU is not the
major LU, then bits 0-14 of DRT word 2 will contain the LU number of
the device’s major LU.

Certain logical unit numbers are permanently assigned to facilitate
system, user and system support 1/0 operations. These are:

0 - Bit Bucket
1 - System Teletypewriter
2 - System Disc
3 - Auxiliary Disc
4 - "Standard" Output Unit
5 - "Standard" Input Unit
6 - "Standard" List Unit
7
. Assigned by user

254

NOTE: The RTE EXEC call will not allow direct reference of all 255
logical wunit numbers (maximum is 63 decimal). RTIOC will
however allow access of logical units greater than 63 when
accessed via a switch table. Also note that the XLUEX call

permits direct access of all 254 logical units.

TRACK ASSIGNMENT TABLE (Figure 2-6)

The TAT is a table describing the availability of each track on the
System Disc and Auxiliary Disc (if included in the configuration).
TAT 1is ordered by track number and consists of a one-word entry per
track. The value of an entry defines its availability:

RTIOC OVERVIEW

0 - Available for assignment to user or system
100000 - Assigned to system (or not available)
077777 Assigned globally
077776 - Assigned to file management package
<ID Segment Address> - The ID Segment address of the assigned
user program.

BATCH SWITCH TABLE

RTIOC will scan a two entry table for each call made for I/0 with the
BATCH flag set. If session is installed in the system, the session
switch table (see below) rather than the BATCH switch table is
checked. If the request LU does not refer to a disc and is found,
the LU will ©be switched to the table defined LU. This table will
give an LU to LU transform for BATCH programs only. The table format
is:

ENT $LULU

$LULU DEC -N
REP N

O0CT -1

Each active word is set with the address LU in the low 8-Bits and the
LU to be used in its place in the high 8-Bits. There may be up to N
entries in any order. This table will be generated by the Generator
and maintained by the BATCH monitor.

SESSION Switch Table

RTIOC will scan a two entry table for each call made for I/0 with a
positive wvalue in the session word (ID segment word 32). If the
request LU is found, the LU will be switched to the table defined LU.
If the LU is not found, the request will be rejected with an IO012
error (requested LU not defined for session use).

The SST is resident in SAM (as part of a session control block) and
is addressed by word 32 of the programs ID segment. This word points
at the length of the SST defined for this session. The table format
is:

RTIOC OVERVIEW

ID | |

Segment | | mmmmmemmme—m—e——
| | | | Session Control Block
| | | [
| === |==——————————— |

word 32->| ~—-|=--=--- >| -length | word 15

| Rest of SCB]

Free space (for on-line changes/additions) is reserved with a -1.
This table is set up (at user log-on) and maintained by the Session
Monitor Package.

NOTE: Both tables (Session Switch and BATCH Switch) use the logical
unit -1 (LU-1), rather than the actual logical unit.

DRIVER PARTITION MAP TABLE (Figure 2-7)

Each EQT will have associated with it, a two-word driver map table
entry which indicates whether the driver for that EQT is in the
System Driver Area (SDA) or is in a driver partition and whether the
driver (if it is in SDA) does its own mapping or not. If the driver
is in a partition, the entry contains the starting page number of the
partition. This page number is put into the appropriate system map
or user map registers to map in the driver.

The second word of each entry is used when I/0 is started on the
corresponding driver. The sign bit of the second word indicates
whether or not, I/0 is being done for a memory resident program. The
word is zero for system I1/0. The low 10 bits contain the page number
of the wuser’s physical base page if it is a partition resident
program. This word is used to save time on setting up the proper map
on processing interrupts.

RTIOC OVERVIEW

EQUIPMENT LOCKING TABLE

The Equipment Locking Table is a variable length, 3-word-per-entry
table with a one-word header. The table resides in Table Area II and
has a pointer to the header, SELTB, also in Table Area II.

The table header contains the table size (number of entries) in bits
0 through 1l4. Bit 15 (NOT EMPTY bit), when set, indicates that the
table has at 1least one entry. Word O of an entry contains the EQT
number. Word 1 contains the ID segment address of the locking program
in bits 14-0, Bit 15 (LOCK or ABORT bit), when set, indicates that if
the locking program aborts, the EQT should remain inaccessible unless
another program locks the EQT to itself. Word 3 points to a linked
list of $XSIO requests for that EQT issued since the EQT lock. Refer
to the EQT Locking Capability section in this chapter for further
information.

RTIOC ENTRY POINTS

SBFOT Subroutine - determines the Session (MTM) Terminal and
sets up a buffered output request (T field=01]) if all the
following conditions are true:

1) LU is not zero (LU-1=B377)

2) LU is defined (not greater than max)

3) EQT is not EQT O

4) Enough SAM is available for the request
5) LU is up

This routine will never cause a request to be initiated
(call driver) as any problems will cause the NOTRD routine
to be entered. This 1s illegal as NOTRD calls this
routine.

If no other requests are pending, $DLAY is called to cause
initiation of the request on the next TBG Tick.

Calling Sequence: LDA BUF (lst word is -LEN, buffer follows)
LDB ID SEG ADDR OF PROG FOR ECHO

JSB $BFOT

RETURN (A) is not changed
All other registers modified

The request header is defined as follows:
L T R R P R P P T L TR
BF.HD DEF BF.CN DEFINES START OF THE HEADER
LINK WORD IS ADDED IN SAM

BF.CN NOP *CONTROL WORD IS PLACED HERE
NOP PRIORITY OF REQUEST=0

RTIOC OVERVIEW

BF.TL NOP *TOTAL BLOCK LENGTH IS PLACED HERE
BF.UL NOP *MESSAGE LENGTH PLACED HERE

NOP TRACK

NOP AND SECTOR INFO

khkkhkkhkhhhhhkhhkhhkhkhkhihhhhhhhhkhhhkhhhkhhkhhhkhhhhhhkhkkhkhhkhhkhhkkhkhhkhkhhkhhkkikkk

SBITB
$BLLO
$BLUP

$CICO

$CKLO

OUTPUT BUFFER FOLLOWS IN SAM
Value - non zero if requests are queued on bit bucket
Value - low buffer limit
Value - high buffer limit

Entry point - Jjumps here from $CIC for interrupt
processing

Subroutine - check if Dbelow the Dbuffer 1limit on the
current EQT.

Calling Sequence:

$CON1

$CON2

$CON3

$CVEQ

$CXC

$SDEVT

SDLAY

JSB S$CKLO
Entry point - driver completion return.

Entry point - driver continuation return. The code to
enter the driver’s continuator section must be in all maps

since drivers return via the address resulting from a
subroutine call. RTIOC will do a JMP $UCON when ready to

enter a driver’s continuator section under the user map.

Entry point - driver needing/giving up DMA from

continuation section. If (A) = 5 , driver needs DMA; (A) =
6, driver wants to give up DMA.

Subroutine = converts an EQT entry number into the actual
EQT address and calls $ETEQ to set up the base page EQT
pointers.

Entry point - jumps here from $YCIC to skip the CLF and
LIA in RTIOC at $CIC.

Entry point - jumps here from the system clock routine
when a device times out.

Subroutine - used to set up a timeout to delay initiation
of an I/0 operation on a timed-out EQT.

Calling Sequence:

LDA EQT1 JSB S$DLAY

$DMEQ

$DMS

$DRVM

RTIOC OVERVIEW

Value—-address of the dummy EQT wused for bit bucket
operations.

Value-Dynamic Mapping System status is saved here when
$§CIC is entered. It is used by S$PERR.

Subroutine - Sets up the map registers for entry to a
driver after the base page EQT pointers are already built
in base page. See the $DRVM Subroutine section in this
Chapter for details of $DRVM. Called by RTIOC and DVP43.

Calling Sequence:

SETEQ

$IODN

$IORQ

(EQT1-EQT15 already set up)

JSB $DRVM

{returns> A-reg and B-reg same as on entry
E=0 need to enter driver in System Map

E=1 need to enter driver in User Map

Subroutine-sets up the base page EQT pointers EQT1-EQT15

Entry point - to set an LU or EQT down. This processes
any operator DN request (from the scheduler’s message
processor) that a device (LU) or an 1I/0 slot (EQT) be
down. It first determines if an LU or EQT is being set
down. If an EQT is being set down, it checks the validity
of the EQT via the <IODNS> subroutine. It also determines
if the EQT (I/0 slot) to be set down is associated with
the system console. If either error condition exists, it
prints an "INPUT ERROR" message and returns to the
Scheduler module’s message processor. Otherwise it uses
<XUPIO> to set all downed LU’s on this EQT into the "up"
state and wuses <$UNLK> to down the EQT by setting its
availability indicator (bits 14-15 of EQT 4) to 0l. After
suspending in the general wait 1list any programs queued
making unbuffered I/0 requests, it returns to the
Dispatcher.

If an LU (device) is being set down, it first checks the
validity of the LU and whether the user is trying to down
LU 1 or an LU pointing to the bit bucket. If one of these
error conditions exists, the message "INPUT ERROR" is
issued and return is made to the Scheduler module’s
message processor. If the LU’s EQT is down, then the LU
is simply marked down (set bit 15 DRT word 2). If the EQT
is wup, then set the LU and all other LU’s associated with
the device down and relink any I/0 on the device’s major -
LU (first LU for the device in the DRT). Return is made
to the Dispatcher.

Entry point - All EXEC calls for I/0 related requests are
processed here.

RTIOC OVERVIEW

$IOUP

S$IRT

$LU??

Entry point - To make an EQT available again. This
processes any operator request (from the Scheduler’s
message processor) to set a device "UP". It first checks
the validity of the EQT number of the device to be set up
via the <IODNS> subroutine. If wvalid, it next schedules
all programs waiting on a downed EQT or LU. Next it uses
<XUPIO> to set wup all LU’s associated with this EQT.
<XUPIO> will use <$XXUP> to relink on to the EQT any I/0
found on a downed LU. If the EQT was down or available,
the "up" processor will reset the EQT "up" and return to
a point in <IOCOM> to start the next request. Otherwise,
return is made to the Dispatcher.

Entry point - Common exit point from the system back to
the wuser. SIRT 1is a routine used 1in exiting from the
system back to the user program. It does nothing except
clear the memory protect flag in a non-privileged system
and restores the registers. In a privileged system, $IRT
clears control on the privileged interrupt card so that
when the interrupt system is reenabled for all devices,
all devices can interrupt. The exit from $IRT back to the
user program is a "user map enable and jump" instruction.
Note that $IRT always enables the wuser map. The map is
loaded before $IRT gets control.

Subroutine - find session terminal LU in system LU terms.
This routine interprets the passed programs ID segment
looking for the session or MTM terminal LU it 1is
associated with.

Calling Sequence:

Return P+1

$PSTE

LDB ID SEG ADDR
JSB $LU??

Not in session or MTM\ or LU 1 not defined (session)
A=SYS LU (LU~-1) of associated terminal
B=Logical address of SST if session PROG

B=- Terminal LU if MTM PROG

Subroutine - post error to session control block. This
routine determines if the specified program is under
session and if so, ©places the lst four words of the
specified error message into the error buffer in the SCB.

Calling Sequence:

LDA BUFFER ADDRESS
LDB PROG’S ID ADDRESS
JSB $PSTE

(A) and (B) are returned unchanged

$SYMG

SUNLK

$UP

$XSIO

$XXUP

RTIOC OVERVIEW

Subroutine =~ system error routine (to system console and
session terminal). This routine routes the message to
the system console (via $YMG) and then performs the
following functions:

If the XEQT program is under session control (ID word
32>0), fetch the console LU from the Session Switch
Table. Otherwise, use the two’s complement of ID word 33
as the —console LU (if the program is not under session
control, the Scheduler will place the two’s compliment of
the terminal from which the program was scheduled into
this word). If this LU equals 1, then we are all done.
Else send the message to the specified user terminal.
This 1is accomplished by calling the ©buffered system
output routine ($BFOT).

NOTE: Processors that can’t assume that the XEQT program
is responsible for the error, or must perform
session specific work, will call $YMG and/or $BFOT
directly.

Subroutines, used to unlink I/0 requests from the current

EQT I/0 request queue. This is called when an LU is set
down and all of the I/0 for that LU is moved to the LU’s

down queue.

Entry point - jumped to by $UPIO from Table Area 1 via
SJP. This entry is used by drivers to automatically "UP"
the EQT and is essentially the same code as $IOUP.

Subroutine - <called by the operating system modules to
perform I/0.

Subroutine - takes an I/0 queue and positions the I/0
requests (by calling the LINK subroutine) in the current
EQT queue according to their priority. It returns a flag
if an I/0 operation should be initiated.

Calling sequence:

A-reg is EQT address of old device

B-reg is address of first stacked I/0 requests to
be linked onto the current EQT

JSB $XXUP

B-reg is 0 on return

A-reg is the address of the head of the current queue
with an I/0 operation to be initiated.

RTIOC OVERVIEW

SYMG Subroutine, system error message output. This routine
provides for the output of system messages and error
diagnostics on the system console. The routine maintains
a "rotating" buffer area consisting of fifteen 12-word
blocks; i.e., the maximum length of a message is 22
characters (11 words) plus 1 word preceding the message
which contains the character count.

SEQCL Subroutine to handle EQT locks of terminating program.
Refer to EQT Locking Capability section in this section
for further information.

BASE PAGE COMMUNICATION

XI

EQTA
EQT#

DRT
LUMAX
INTBA
INTLG
TAT
KEYWD
EQT1-EQT15
CHAN

TBG
SYSTY
RQCNT
RQRTN
RQP1-RQP7
XEQT etc
OPATN
DUMMY
TATLG
TATSD
SECT2
SECT3
LGOTK
LGOC
MPTFL

These are all located in the System Communication Area of Base Page.

DETAILED TECHNICAL ASPECTS OF OPERATION

INTERRUPT PROCESSING

During execution of the RTE System Generation program, RTGEN, the
user can designate which one of the three basic ways each I/0
interrupt may be handled during RTE execution. One way 1is to
designate an instruction to be stored into the I/0 address’s trap
cell.

2-10

RTIOC OVERVIEW

Note that on an HP 1000 computer, a NOP or I/0 instruction in a trap
cell will cause trouble - DMS and MP will not be restored to the
correct state if an interrupt comes through on that channel.

Another way 1s to store into the trap cell a JMP to a special
interrupt handling routine embedded within the system. The other (and
most general) way is to designate that the interrupt be handled by
CIC within the Real Time Input/Output (RTIOC) module. The CIC
portion of this specification defines the handling of only those
interrupts to CIC. CIC is responsible for saving and restoring the
current state of the machine, analyzing the source of the interrupt,
and activating the appropriate software processor. This sub-module
is "table-driven" by the internal "Interrupt Table" (INTBA).

Interrupt acknowledgement by the CPU causes the instruction in the
word corresponding to the interrupt source to be executed. For the
active I/0 channels which have been specified during RTGEN to
interrupt to CIC (plus I/0 locations 5-7), the instruction set in
each interrupt location is a Jump Subroutine (JSB-,I) indirectly to
$CIC. The System Generator sets the instruction in the interrupt
locations.

After entry at $CIC, CIC performs the following:
1. Disables the interrupt system.
2. Saves status of MEU at interrupt.

3. Saves all registers plus the interrupt return point in the
executing ID segment.

4. Clears the flag of the interrupt source.
5. Sets the memory protect flag.

6. Sets <control on the privileged interrupt card (to inhibit
non-privileged device interrupts) and re-enables the interrupt
system if the system has privileged interrupt. If not, step 6 is
bypassed entirely.

7. Transfers directly to the interrupt processor for the sources:

5 - Memory Protect Violation/Parity Error
(TBG) =~ Time Base Generator

For other sources, the Interrupt Source Code (set in I/0 location 4)
is used to index to the corresponding entry in the Interrupt Table.
(Refer to Interrupt Table Section in this Chapter).

RTIOC OVERVIEW

SCHEDULING PROGRAMS BY INTERRUPT

If the interrupt table entry is mnegative, the two’s complement

address is made positive and is set up in a call to $LIST in "SCHED."
The address 1is the ID segment address of the corresponding user
program. After the program is scheduled, control is transferred to

the $XEQ section in SCHED.

Attempts to schedule a user program by an external interrupt when the
program is already scheduled or suspended cause the interrupt to be
ignored and a message (diagnostic) to be output to the system TTY.
Before «calling "LIST" to schedule the program, the current status is
examined. If dormant (status=0), the call 1is made and control
transferred to "$XEQ". Otherwise, the program name is stored in the

message
"SC03 INT XXXXX"

and a call to "$YMG" is made to perform the output request. Control
is then returned to the interrupt sequence.

UNUSED INTERRUPT TABLE ENTRIES

If the interrupt table entry 1is zero, the wundefined or illegal
(spurious) interrupt is ignored.

Illegal interrupts are ignored in that the hardware flag is cleared
and control is returned to the point of interruption. In addition, a
message (diagnostic) recording the occurrence is output on the system
console. The illegal (or undefined) interrupt code is stored in the
message

"ILL INT XX"

and a call to "$SYMG" is made to perform the output request.

§CIC

If the interrupt table entry is positive, the content of the entry is
assumed to be the FWA of an EQT entry. The addresses of the 15-word
EQT entry are set in <EQT1-EQT15>. The device time-out clock is set
from the clock reset value, and control is transferred to the driver
"completion" section address (word 3 of the EQT entry).

$DRVM is called to determine which map, user or system, is necessary
for processing the I/0 call. 1If the wuser map is needed the current
contents of the wuser map must be saved and then the map must be
reloaded to describe the program associated with 1I/0 call. The
necessary map is enabled and the driver is entered at the completion
section.

RTIOC OVERVIEW

If the user map is needed, entry to the driver’s continuator section
is entered by a JMP $UCON., If the system map is used, the simple JSB
B,I will be done.

I/0 REQUESTS

All input/output operations are performed concurrently with program
computation in the overall system. A program is I/0 suspended until
the transmission or operation is completed unless automatic buffering
(output only) was specified for the device or the request was a class
I/0 request. In these two cases the buffer is moved to system
available memory and the user program is not suspended.

If a program is I1/0 suspended with the buffer in the user program
area the program 1is not swappable. If the ©buffer is in common or
system available memory, the program is swappable. A user may call
REIO to move the buffer to system available memory and make the I/0

call.

The user program making the request is scheduled immediately if
return code 4 is used by a driver. The 5 return is made by a driver
if it needs DMA to do the current request but the DMA bit is not set
in the EQT.

USER I/0 REQUESTS

All wuser 1I/0 requests are channeled to $IORQ after initial request
processing by "EXEC". $IORQ performs validity checks on the request
parameters and sets the addresses of the referenced EQT entry.
(Error conditions and diagnostics are described later.) The buffer
address and 1length 1is examined for legality for input requests to
insure that protected memory is not altered during the transfer. The
last page of I/0 buffers in the User Map are checked for read/write
protect status to insure valid memory accesses.

If the EQT or LU specified in the request is locked to someone else,
the wuser is suspended in General Wait list. If the EQT or LU is
locked to the wuser making the request, the request is linked at
priority 7777B to 1insure that the locking program’s requests are
queued contiguously (in case there were other requests queued prior
to the lock). The suspension is overriden with the No Suspend bit in
the I1/0 request.

RTIOC OVERVIEW

DISC I/0 REQUESTS

If the referenced I/0 device is a disc unit, the request is checked
to insure that parameters are supplied. If the disc LU number is
either 2 or 3, the request is additionally checked to insure that the
disc track and sector numbers are legal and that the transfer does
not exceed a track boundary. If the request is output, a referenced
track on LU 2 or 3 must belong to the wuser (i.e., the TAT entry
address must equal the ID Segment Address of the user) unless the
track is a load-and-go track or a global track.

BUFFERED OUTPUT AND CLASS I/0 REQUESTS

If a Write or Control request references a device for which the user
designated automatic buffering, a block equal to the buffer size,
plus control information (5 words), is requested for allocation in
the system available memory area. (Call to S$ALC.) A Class I/0

request is also moved into system available memory.

If the block cannot be allocated, the user program is suspended and
linked into the memory suspension list. (The memory processor ($RTN)
will <cause the wuser program to be scheduled as soon as a block is

released.)

After a block is allocated, the control information (CONWD and buffer
length), priority and buffer (if a Write request) are moved into the
block. The first word of the block is wused for linking into the
device list. (See the I/0 Request Types Section in this Chapter).

STANDARD USER REQUESTS AND REIO REQUESTS

The parameters of a user request (which is not buffered as above) are
moved into the 5-word temporary area in the ID Segment of the

programe. Word 1 of the ID Segment is used for linking into the device
list. (See the I/0 Request Types Section in this Chapter).

The wuser program 1is suspended with a suspension code of 2 (I/O
suspension). This is also done for an REIO call. The only difference
is that the Dbuffer address will point to system available memory
instead of the user area. The sign bit of the buffer address in the
temporary words of the ID segment is set if the buffer is moved as
the result of an SREIO call. This is to tell the system that the
driver must process that I/0 request under the system map.

ERROR CONDITIONS AND DIAGNOSTICS

Detection of the following error conditions causes a diagnostic
identifying the error type, a program name and location of the
request to be printed on the system teletype. The program is then
aborted ($SABRT in EXEC).

2-14

RTIOC OVERVIEW

Code Meaning
I0 01 Insufficient # of request parameters.
02 Illegal logical unit #, or less than 5 parameters
with X-bit set.
03 Illegal EQT reference, select code = 0.
04 User buffer violates system (or Real-Time) boundary.
05 Illegal disc track or sector # in disc request.
06 Write reference to protected track.
07 Driver rejected the request as illegal for the
device (unbuffered requests only).
08 Disc transfer exceeds track boundary.
09 Overflow of load-and-go area.
10 Class GET occurred and one GET call outstanding on
this class.
11 Illegal user map request in System Driver Area.
12 Referred logical unit not defined for session user.
13 EQT or LU locked to another program (only with the

no suspend bit set).
SYSTEM I/0 REQUEST PROCESSOR <$XSIO>

A privileged entry is provided at $XSIO to allow modules of Real-Time
Executive to call for I/0 operations without incurring the overhead
and procedures involved with user I/0 requests. No error checking 1is
performed, the request is linked into the appropriate I/0 list at a
priority of zero (highest priority) except that disc request may
specify a priority, and control is immediately returned to the first
word following the request. If the equipment is locked, the request
is 1linked in the SELTB table entry for this equipment instead of in
the EQT and the driver is not called.

Request Format: A system I/0 request differs from the user I/0
request in format and power. Specifically, a system disc call can
specify a series of transfers to be performed before the next
operation is initiated.

A completion address can be specified for operation of an open
subroutine at the end of the operation. This facility is only
available to system routines and is useful for resetting flags, etc.,
because an I/0 operation is always buffered to the system. A zero
completion address indicates absence of a completion routine.

RTIOC OVERVIEW

Word
Ext $XSIO

1 JSB $XSIO

2 OCT <logical unit number>

3 DEF {completion routine address> or O

4 NOP {list pointer word-set by "LINK">

5 0CT {control information/request code>

6 DEF buffer address, or <location of disc control>
7 DEC buffer length or <disc request priority>

8 OCT map word

Word 5 is in the same field format as the control word in a user
request except that the request code replaces the logical unit.

Word 8 is set to zero if the request 1is to be processed under the
system map. If the user map is required, the word 8 must contain the
ID segment address of the program to be described. Word 8 is 100000
(octal) if the request is to be processed under the User Map as it 1is
currently-without change. Word 8 is set to an ID segment address
with the sign bit set if a modified user map is used (e.g., when the
Dispatcher is swapping a portion of EMA).

Word 2 is the LU word but its sign bit is also used to pass along
mapping information. If the sign bit is set, then the $XSIO I/0
request must go under the current USER map saved in protected base

page.

Also, the $XSIO call uses the same routine, DRIVR, to set up for and
then enter the driver.

Disc Version of Request: Word 6 points to an array containing "n"
sets of triplets designating the ©buffer control, for each transfer.

The array of triplets is open-ended and terminated by a zero word:

Word
1 DEF <buffer address>
2 DEC <buffer length>
3 OCT {track/sector#>
n OCT O

Word 7 in this case is used as the priority of the request.

I/0 REQUEST INITIATION

RTIOC OVERVIEW

I/0 REQUEST TYPES

The control word is set up as follows:

4 3 2 1 O
I 12 | 2 21 2 2]
115114113112111110f 91 81 71 61 51 41 31 2| 1} 0]
| <T> 1# 1 | CCONTROL INFO>|< SUBCH # >| <RQ >
I | I | DK | | I |
| | l I I |
RQ - User request (1=READ, 2=WRITE, 3=CONTROL)
SUBCH# - Indicated in powers of 2; contained in a 5-bit
binary word (bits 2,3,4,5 and 13).
DK - Set only for a disc request. Indicates if disc
is system auxiliary, or peripheral.
T - Request type identifier
00 = User (Normal Operation)
01 = User (Automatic Buffering)
10 = System
11 = Class I/0O

After the necessary legality checks are made, the request is linked
into the queue for the referenced I/0 device. If the request is a
normal wuser request, the parameters are set in the temporary storage
area of the ID segment. If the request 1is class I/0 or the device
has automatic buffering (output or control only), the request
parameters are moved into system available memory.

I/0 requests are linked in a 1list for each device according to
prioritye. The requests are user (normal), wuser (automatic output
buffering), class I1/0, or system. Identification of the request type
is the code in bits 15-14 of the control word in each request format.
This field, the "T" field, identifies the request as:

00 User (normal operation)

01 User (automatic buffering) or buffered system request ($BFOT)
10 System

11 Class I/0

1. User (Normal Operation)

The parameters from the request are stored in the temporary area of
the program ID Segment. The link word of the segment is used to

contain the linkage for the I/0 list.

RTIOC OVERVIEW

Word

NOUVMEsWN =

Contents

linkage word

T,control information,request code

buffer address or control parameter
buffer length

disc track # or optional parameter or zero
disc starting sector # or optional parameter or zero
program priority

remainder

of
ID Segment

2. User or System (Automatic Output Buffering)

Requests of this type are constructed in the system available memory

areae.

Word

ANV WN

n+5

Contents
linkage word
T,control information,request code
priority of requesting program (=0 if system request)
total block length in words
user buffer length
word 1 of user buffer

word n of user buffer

3. User (Class Input/Output)

Requests of this type are constructed in the section of system
available memory.

Word

CONOUVDWN

2
+
(e d]

Contents

<linkage word >
{T,control info,code >
{priority of requestor> (changed to status at comp.)

{total block length >
<eclass ID word >
<user buffer length > (changed to TLOG at comp.)
{track option word >
{sector option word >
<word 1 of user buffer>

L . L]

<word N of user buffer>

RTIOC OVERVIEW

4. System Request

The system request is linked into the I/0 list by using word 4 of the
call as a link word. A system request assumes the priority level of
zero (highest priority), except that disc request may specify
priority in word 7 of the call.

Word Contents

1 JSB $XSIO

2 logical unit number

3 completion routine address

4 linkage word

5 T,control information,request code

6 buffer address or disc control word

7 buffer length or disc request priority
8 map word

LINK SUBROUTINES

This subroutine ©provides the mechanism for 1linking an I/0 request
into the suspended list (queue) corresponding to the referenced EQT.
The procedure of adding an entry (request) into the list involves
only the alteration of the linkage value in the new entry and in the
entry preceding the new one in the priority chain.

For all requests with priorities above 40 (larger number), the
request 1is linked on a FIFO basis. For all other priorities (0-40)
the new entry is linked according to its priority and on a first-in/
first-out basis within the same priority level. The end of a list is
marked by a linkage value of zero. The pointer (or head) of the 1list
is in the word 1 of the EQT entry; word 1 = 0 if the list is empty.

If the list is empty, the link word in the EQT entry is set to point
to the new entry and an indication is given to the caller of <LINK>
that the new request may be initiated--i.e., <DRIVR> may be called.

The first entry in a 1list is skipped because it is assumed to be the
requester for the current I/0 operation on the device.

Calling Sequence:
"TEMP1" Location of the new request

"TEMP2" Priority of the new request
"TEMP3" = Disc QUEUE flag (#0 if disc)

nn

EQT1-EQT15 = Addresses of EQT entry

Registers meaningless

(P) JSB LINK

(P+1) -return-

(A) on return = 0 if the new request is the only entry in

the I/0 list.

RTIOC OVERVIEW

DRIVR SUBROUTINE

The subroutine DRIVR provides a central point for calling an I/0
driver to initiate a new operation. This routine, before calling a
driver, sets the request parameters into the appropriate words in the
EQT entry corresponding to the referenced device and assigns a DMA
channel if required.

If the device or controller is "down" or "busy", no action is taken
and return is made to the caller. If a DMA channel is required but
no channel is available, the "AV" field in the EQT is set to 3
(waiting for DMA), one is added to "DMACF" for the number of devices
waiting for DMA, and return is made to the caller.

If the device 1is available (and a DMA channel is assigned if
required), the device time-out <clock is set from the clock reset
value (in EQT14), the subchannel is set into EQT4 (from EQT6), and
preparations are made for calling the driver. DRVMP is called to do
the driver map set up (See the following Section). If a DMA channel
is being used, DRIVR also sets up the DMA map by copying either the
System Map or the User Map into the correct port map. Note that the
DMA map does not need to be reloaded until it is reallocated. If the
driver needs the wuser map, that map must be reloaded before each
entry into the driver.

DRVMP

This code is called to set up and enable the necessary maps for the
driver. The preparation for setting up the maps for the driver call
includes checking word 1 and setting up word 2 of the Driver Mapping
Table (Figure 2-7). The first word in the table is found by using the
EQT number to index from $DVMP. The second word is found by adding
EQT# to the address of the entry’s first word.

If the driver is in the System Driver Area and does its own mapping,
the driver is always entered under the System Map. NOTE: $XSIO calls
must have zero in the eighth parameter, no checks are made.

If the driver is in the System Driver Area but does not do its own
mapping, the T-field of the request is examined. If the T-field 1is
zero (normal wuser) the program must be type 2 or 3 in order to use
the wunmodified user map. The second word of the driver’s Mapping
Table entry is set to the physical page number of the program’s base
page (first page of partition). Any other types of I/0 requests or
types of programs requesting I/0 for a driver which doesn’t do
mapping and is in the System Driver Area will cause the request to be
rejected (a program will be aborted with an I0ll error message).
NOTE $XSIO calls may not be used to call a driver in the System
Driver Area if the driver does not do its own mapping! The I01l error
message will also be issued in this case, the request will be
rejected and returns control to the XSIO caller.

RTIOC OVERVIEW

If the driver is in a driver partition, the T-field is checked. If
the T-field is 2 (system request), the eighth word is checked to see
if it is either a disc program load request or a special disc I/0
request. If the eighth word of the $XSIO request is 100000 (octal),
it 1is a special request which specifies that the current User Map is
used. The special request is wused by the DISPATCHER and by the
reconfigurator. If the eighth word is a positive value, it is the ID
Segment address of a program to be loaded. The program’s map is
built by $SMAP. 1If the eighth word is negative, it is an ID segment
address with the sign bit set. This form is used by the Dispatcher
for swapping channels of EMA. A special user map is kept in the
user’s protected portion of base page just below the normal copy of
the user’s map. The physical page number of the base page is set into
the first word of the Driver Mapping Table and the second entry is
set to zero. If the eighth word of the $XSIO is a positive ID
segment address and the second word has its sign bit set, then this
is an I/0 request that must be made under the user’s existing map.
All other disc $XSIO calls use the program map.

All buffered wuser request and class I/0 requests use the modified
system map. If the T-field indicates that it is an unbuffered user
request, the second word of the Driver Mapping Table (see Figure 2-7)
is checked to see if the request was made by a Memory Resident
program. If it was, the MR bit of the second word of the Driver
Mapping Table Entry is set and the modified Memory Resident map 1is
used. If it was not a Memory Resident program request, the first
page number of the program’s partition is entered into the second
word of the Driver Mapping Table entry and the modified User Map 1is
used.

When a driver is in a driver partition, the map under which the
driver is entered must be changed to address the physical pages of
the partition. The modified map is saved if it was a user map (other
than when I/0 is being done by a Memory Resident program) that was
modified. The ©purpose of this is to save set up time on each
continuation interrupt. The page number in the second word of the
Driver Mapping Table entry is loaded into the System Map’s driver
partition register ($SDVPT) to map in the user’s physical base page
(see Figure 2-8). The copy of the modified User’s Map is then stored
in the top portion of the physical base page via a cross-map store
through the driver partition register in the system map.

$DRVM SUBROUTINE

When a driver needs to be called as a result of an interrupt
(continuation) $DRVM is called to check the Driver Mapping Table
entry. The first word of the entry determines whether or not a
driver partition’s pages need to be set up in a map. The second word
indicates which map to use.

RTIOC OVERVIEW

If the second word is zero, the System Map is used. If the driver is
in a partition (Word 1 has the partition’s starting page number) the
System Map 1is modified to address this partition. If the driver
System 1is in the Driver Area, no modification is necessary. $DRVM
returns with an indication that the System Map is to be used (E=0).

If the second word has the sign bit set the Memory Resident Map is
used. The current user map is saved in a buffer (SVUSR). Then the
User Map 1is set wup with the Memory Resident Map and the driver
partition registers are set up according to word 1 of the mapping
table. $DRVM returns with an indication that the User Map is needed
(E=1).

If the second word has a page number, the necessary user map is
already set up and is stored in the last 32 words of the indicated
page. $DRVM saves the current user map in SVUSR. Regardless of the
driver’s area of residence, the User Map is specified (E=1).

Note that the user map is saved and set up to the required map only
if it is not already mapped in the user map. This saves time in
setting up duplicate maps.

$RSM SUBROUTINE

This routine is called on every return from a driver. It checks the
flag DVMPS to see if the user map was changed. If it was, RSTUS
reloads the wuser map with its original contents (saved by DRVMP or
$DRVM) and clears flag DVMPS.

I/0 DRIVER INITIATION RETURN

Upon return from the driver $RSM is called to restore the user map
(if it was changed) to its status prior to driver entry. The driver
returns a code to DRIVR indicating whether the operation was accepted
or rejected and the cause of the reject. This code is in A on
return:

- operation successfully initiated.
- Read or Write request illegal for device.
- Control request illegal or not defined.
equipment malfunction or not ready.
- operation successful-immediate completion.
- driver requires a DMA channel for this operation but the
"D" bit is not set in EQT.
6 - initiation OK, but driver wants to give up DMA.
7-59 - Reserved for HP RTE System modules and system drivers.
60-99 - Reserved for user drivers.

VWb R o
!

If the code is 5 a DMA allocation is attempted and if successful, the
driver is reentered with the request.

RTIOC OVERVIEW

If the operation was otherwise rejected, DRIVR returns to P+2 of the
call with the reject code in A.

If the code in A is 3, the device was found to be unavailable for I/0
(not ready). The device availability indicator is set to 0l1l. If a
DMA channel was allocated, it is released. The "NR" diagnostic is
printed and IOCM is exited either back to $XEQ in the Scheduler or to

the completion routine specified in a system request. If the code in
A is 1, 2, 4, 7 or greater, control is transferred to subroutine

<ILLCD>. 1If a zero is returned, I/0 was initiated successfully, with
subsequent device interrupt expected, and <control is transferred to
SXEQ in the Scheduler module to switch to the next lower priority
which requires execution time.

DMA CHANNEL ALLOCATION

The two DMA channels are dynamically allocated to the high-speed and
synchronous devices identified to RTIOC (bit 15-1 of word 4 in the
EQT entry). The assignment process consists of setting the EQT
address of the device in the DMA channel entry in the Interrupt Table
and setting the channel number in the word '"CHAN" in the
Communications Area.

A driver with its EQT DMA bit not set may also request a DMA channel

by setting A=5 and returning to the system at initialization of the
I1/0 request, or at the (P+3) point from continuation. A driver can
also give up DMA channels allocated to it by setting A=6 and
returning to the system at initialization return point or at P+3 from
continuation.

If more than one device 1is waiting for a channel, the order of
priority for assignment 1is the order of the Positions in the
Equipment Table. There are two exceptions to this scheme:

l. If the first entry in the EQT 1is waiting for a DMA, the channel
is assigned to that device, which is assumed to be the system
disce.

2. 1If the first entry encountered (other than entry #1) just
released a DMA channel, then the next 1lower priority device
waiting for DMA is used. This allows for a "switching" operation
in the allocation of a DMA channel.

Special processing 1is required by any I/0 driver which uses the
interrupt on a DMA channel to perform data transmission with the
device. A software flag must be set after a DMA channel is initiated
to indicate that the channel is active and that a completion
interrupt 1is expected. The setting of this flag is to set Bit 15=1
in the Interrupt Table word corresponding to the DMA channel:

INTBL(1) - channel #1 (location 6)
INTBL(2) - channel #2 (location 7)

RTIOC OVERVIEW

The address of INTBL is contained in the word "INTBA" in the Base
Page Communication Area. When Bit 15 is set, the rest of the word
must not be altered. This operation must be done only if DUMMY is

non-zero. When a system has privileged drivers, i.e., DUMMY = O,
control is cleared on both DMA channels everytime an interrupt is
processed through CIC - in order to let the privileged interrupts be
the only ones "on". Thus if a driver needs that DMA interrupt, it

must set bit 15 in the appropriate word. S$IRT checks these words and
if the bit is set, it reenables the DMA interrupt.

I/0 COMPLETION

The return point by an I/0 driver (from a call by CIC) indicates the
continuation or completion of the I/0 operation. In RTE-IVB, the
user map 1is restored if it was modified for driver entry. RSTUS is
the routine called to do this.

1. Return ¢ Completion of the operation. CIC transfers directly to
at (P+1) the IOC completion section at "IOCOM".

2., Return ¢ Continuation of the Operation. CIC restores all
at (P+2) registers and returns to the point of interruption,
with the exception of special processing which must be
done for operator attention: If the flag is Base Page
Communication Area "OPATN" is set = 0, control is

transferred to STYPE in SCHED: "OPATN" is set = 0.

3. Return : Need (or want to give wup) a DMA channel (A=5 or 6
at (P+3) respectively). For A=5, if channel is allocated
immediately, then reenter driver at initiator. If no
DMA channel is available now, then queue the EQT and do
continuation return as at P+2. When the DMA channel is
allocated, then the driver will ©be entered at the
initiator. For A=6, any channels allocated are given
up, and any programs waiting are resumed. Otherwise,
this acts as the (P+2) return. These features are for
HP use only and are subject to change without notice.

IOCOM

This section 1is responsible for the initiation of stacked I/0
operations, ©placing a program back in the scheduled state when its
I1/0 operation is completed, dynamic .allocation of the two DMA
channels among synchronous devices, and calling for operator
notification of equipment errors or malfunction.

<IOCOM> is &entered directly from <CIC> when an I0 operation is

terminated and all error recovery procedures have been attempted. On
entry to this section, (B) contains the number of words (or
characters) transferred. ((B)=track # on which error occurred if

disc.)

RTIOC OVERVIEW

The addresses of the Equipment Table entry are in EQT1 to EQT15 in
the Communication Area in Base Page from the CIC pre-processing. The
device time-out clock is cleared.

After completing the processing for the completed successful
operations, IOCOM checks a stacked request for the device. If none,
IOCM transfers to "IOCX." The user program for the completed

operation has already been rescheduled.

If a request is stacked, the subroutine DRIVR is called to initiate
the operation.

The IOCOM exit section "IOCX" transfers control to:
1. <Completion Routine> if the system I/0 request specified.

2. L.136 if the bit ©bucket has I/0 stacked on it which must be
completed.

3. S$TYPE (in SCHED) if the operator attention flag is set (the flag
is also cleared by "IOCX").

I/0 COMPLETION ERRORS

An I/0 driver informs <IOCOM> of an error or malfunction at the end
of an operation. This is indicated by a non-zero value in A-register
on entry to IOCOM; these values are:

- good transmission-no error
- not ready/malfunction
end-of-information

- transmission parity error

- device time-out from driver

~FWLWN B O
I

A driver which obtained a DMA channel by returning from its
initialization section with A=5 must indicate this fact to IOCOM at
completion so that the DMA channel is released. This is done by
setting bit 15 of the A register on exit from the continuator of the
driver at the end of an operation.

In addition, an I/0 driver error value of four (device time-out) is
simulated by the $DEVT routine in RTIOC if a device times out. In
such a case, the device never interrupts and the driver is therefore
never entered. When the clock processor in the Scheduler module
finds a timed-out device, it gives control to $DEVT. This S$DEVT
routine sets the time-out bit in EQT4 of the device’s EQT entry, if
bit 12 of EQT4 1is set the driver is entered with A=channel #,
otherwise the A register 1is set to four, the B register to zero
(transmission 1log) and IOCOM entered. Thus, an entry to IOCOM from a
driver, with an 1/0 error of four, is simulated.

N
1

25

RTIOC OVERVIEW

At <IOERR> a diagnostic indicating the condition and the device is

printed on the system teletype and the LU is declared down; i.e., bit
15 of DRT word 2 is set=1l. .

The format of the diagnostic is:

NR

"IOET Lwww Exx Syy zzz"
PE
TO

where: www = the device’s logical unit number
XX the device’s EQT number
vy the subchannel for the device
zzz = device status returned by driver
NR device not ready
ET end of tape
PE = transmission parity error to/from the device
TO = the device has timed out

Additionally, any other LU pointing to the same device (as defined by
EQT # and subchannel) will be set to the down state. The first LU
defined in the DRT for this device 1is called the major LU. Any I/O
associated with this device linked on the EQT will be unlinked (at
<SUNLK>) and relinked on the major LU in DRT word 2, bits 0-14. All
other downed LU’s for this device will have the major LU’s number in
bits 0-14 of DRT word 2.

(Exceptions to this are the system teletype which is not
"downed" and disc errors which cause special processing.)

We are finished with the error reporting if:

1. The action that generated the error was a buffered completion
request.

2. The requesting program (the one that made the I/0 request) was
initiated from LU 1.

Otherwise, report the error diagnostic to the terminal from which the
program was initiated (via $BFOT). If the requesting program is under
session control, scan the program’s session switch table for every
"system" LU to be put down. For every match found ("system" lu=high
byte of switch table), 1issue the error diagnostic to the session
terminal, but use the '"session" 1lu as defined in the SST. For
example, say "system" lu 17 goes down (needs to be write enabled) and
the user has the following SST:

RTIOC OVERVIEW

ID word 32--> | -3 | length

switches

The system console will receive the following diagnostic:
"IONR L 17 E1IO0 s 0O 004"

while the session terminal (system LU 42 in this example) will
receive the following diagnostics:

"IONR L 6 E1I0 S 0 004"
"IONR L 10 E10 S O 004"

The three octal digits at the end of the message represent the device
status returned by the driver.

Disc parity Error/Abort Processing:

This error track number and the EQT number and subchannel number of

the disc are set in the diagnostic:
S
"TRnnnnn EQTxx,Uyy U"

which 1is printed on the system teletype. The S or U in the message
indicates a system or user request was involved:

System - the (B) = -1 on entry to the completion routine; the result
is that the program loading is aborted.

User - to LU2 or LU3: the referenced track is set to "100000"
(unavailable) in the TAT and $ABRT 1is called to abort the

user programe.

A disc is not declared "down'" as a result of a disc parity error.

ILLCD SUBROUTINE

This subroutine 1is entered primarily if an illegal request is
detected by an I/0 driver. The reason 1is a Read or Write operation
is illegal for the device or a control request is meaningless for the
device. An additional reason for transfer to this section is an
"Immediate Completion" (Code 4) return from the driver; it is
processed as a control reject.

27

N
|

RTIOC OVERVIEW

Additional error messages may be defined by HP system or user drivers
as follows:

6-59 Reserved for HP RTE system modules and system drivers.
20-29 Reserved for the Spool Monitor.
30-39 Reserved for Multipoint Driver (DVRO7).

60-99 Reserved for user drivers.

Error procedure 1is:

1. If the request 1is processed as buffered output, the temporary
block is released to available memory.

2. The reject is ignored if a system program generated the request
--however, a completion routine, if specified in the request, is
operated. (NOTE: this philosophy is based on the assumption
that this condition should never occur.)

3. A wuser control request (A=2 or 4, refer to 1I/0 completion

section) which is rejected is treated as if it was performed. The
program is linked back into the schedule list.

4., An unbuffered wuser read or write request reject (A=1) causes a
diagnostic to be issued ("IO 07") and the program aborted.

5. Other reject codes (A>5) for wunbuffered wuser read or write
requests will be mapped into an I0xX error message where "xx" is
the error code and the program will be aborted.

MISCELLANEOUS ROUTINES
<{$I0CL> Subroutine

The function of this routine is to remove a program from an I/0
hang-up condition resulting from an input request not being completed

by the device.

This '"clearing" procedure is initiated by the operator in using the
I/0 Abort version of the "OF,XXXXX,1" command. The "OF'" statement
processor in "SCHED" calls this section if the referenced program is
suspended for an I/0 input request.

RTIOC OVERVIEW

The list of each EQT, down DRT, and S$ELTB entries is searched to find
the queued request corresponding to the ID Segment of the referenced
programs. The entry is removed from the 1list and the 1list is
appropriately 1linked to reflect the change. If the entry was the
first one in an EQT list (i.e., an active request) and the EQT is not
down or in DMA wait then a clear request (100003B) is forced into the
initiator. This can be done only after the Driver Mapping Table
entry 1is checked and the driver is mapped in if needed. If the
request 1is accepted then an interrupt is expected and the device set
busy with an arbitrary timeout of 1 second. The sign bit of EQT word
1 1is set indicating device clearing. The timeout will be trapped in
<$DEVT> and routed to <IOCOM>. <KIOCOM> recognizes special interrupts
on timeouts associated with device clearing by checking the sign bit
of EQT word 1. If the request 1is not accepted, then the timeout is
cleared and <control is given to <IOCOM> for initiating the next
request.

<IODNS> SUBROUTINE

This subroutine checks the 1legality of an EQT number. If it is
valid, it returms to the caller; otherwise, it sets up to print out
the diagnostic "INPUT ERROR" and goes to the Scheduler module’s
message pProcessor.

CLASS I/0 REQUESTS

Class I/0 refers to no-wait I/0 in which the wuser directs the
completion information to a "class" by number. The user requests I/0
on a class. The RTIOC requests buffer memory for the request, moves
the request to the buffer memory, queues the request on the specified
EQT, and enter in the class queue that a request is pending. On
completion, the completed request is queued in the class queue, and
any program waiting for the class is restarted.

The class table 1is defined at generation time and is located at
SCLAS. The table consists of a length word defining the number of
classes, followed by one word for each class.

CLASS I/0 "QUEUE FORMAT AND USE"

The class queue can be in four different states.
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

—— - ————— —————— - —————————————————— - - ———— - —— ———— o —

State 1: Class deallocated, available
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O

. ———————————— —————————— - — - ——————— — - - ———————

| 0| ADDRESS OF FIRST ENTRY |

——— —————————— ——— ——————— — ————— ——————— - - —— — ———————— - -

RTIOC OVERVIEW

State 2: Pointer to first entry in class queue
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O

——— - —————————— - ————— — —— —— — ————— i —— i ——— - —

State 3: Class allocated, no one waiting on class. Number of pending

requests counter may be 0-255
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

| 11 1 [X| SECURITY CODE| NUMBER OF PENDING REQS|

- —— - — —— - —— . ————— —————— — ————— - — ——— - - — — - ———— o

State 4: Class allocated, someone waiting (suspended). Number of
pending requests counter may be 0-255.

Actions to be taken when handling a class I/0 or get request depend
on the current state of the class queue head.

Get Requests:

State 1. Abort the program 1000, no class

State 2. Return the data from class buffer

State 3. Set the some one waiting bit (bit 14), suspend program

State 4. Abort the Program I000, only one program may be suspended
per class.

Class I/0 Requests:

State 1. State 3 is set up, security code is low 5 bits of program
ID Number, counter is set to 1.

State 2. The counter at end of queue is incremented by 1.

State 3. The counter is incremented by 1.

State 4. The counter is incremented by 1.

On Completion of Class I/0 Requests:

State 1. TIllegal---should never happen---buffer is returned and the

completion is ignored.
State 2. The new data is added at the end of the list (FIFO) and

the counter is decremented by 1.
State 3. The new data is added at the end of the list (FIFO) and

the counter is decremented by 1.
State 4. The waiting program is scheduled and the counter is

decremented by 1 and the someone waiting bit (Bit 14) is
cleared.

RTIOC OVERVIEW

EQUIPMENT LOCKING CAPABILITY

The equipment locking capability allows a program to control access
to the device controller associated with a given LU. A program can
lock the controller connected to one or more I/0 slots and one or
more devices for the duration of the program and then unlock it.
This capability 1is needed during on-line system switching (program
SWICH) and on-line equipment diagnostics.

During on-line system switching, SWTCH reads a newly configured
operating system from one area of the disc and writes it onto the
operating system area of the system disc. In general, the operating
system on the disc is invalid during this time. Any other program
causing any part of the operating system to be accessed from the disc
needs to be prevented.

On-line diagnostic programs may change the characteristics of a
controller (e.g., by down-loading a different set of instructions in
its RAM).

FUNCTIONAL DESCRIPTION

A program can lock the 1I/0 controller associated with an LU by
calling subroutine EQTRQ. If the controller is not locked at the
time of the request to another program, and if the equipment locking
table is not full, a successful return will be made. The equipment
locking table is —currently set at two-entries long, up to two
controllers can be locked in the system at any instant by one or more
programs. After an EQT is locked to a program, no further I1I/0
requests are queued on the EQT; however, there may be some requests
already queued on it. This poses no problems for a locking program
using the operating system for its I/0, because its post lock I/0
requests will be queued after the prelock requests, but it may mix
I/0 commands issued by a privileged 1locking program with those for
I1/0 requests queued before the lock. It is up to the privileged
program to 1insure that the EQT is "Not Busy" before issuing I/0
instructions. The program may make the call with or without Wait in
the usual manner. It may further specify in the call if it wants the
equipment to stay locked if the program should be aborted (i.e.,
terminated in any way other than via an EXEC 6 call). If the program
does so specify and then if it should abort, the equipment stays
locked, though to no one in particular. Any program can then issue a
lock request for that equipment and will succeed in doing so.

A program can also unlock an equipment 1locked to it by calling the
same EQTRQ subroutine. Such a call is always without wait, and no
other options are provided. If the equipment specified in the call
is locked to the calling program, the wunlock request will be
successful.

When a diagnostic program aborts, maintaining the lock on an
equipment, a recovery program should be scheduled immediately. This
program should 1lock the equipment to itself, reset the system

2-31

RTIOC OVERVIEW

environment (the controller micro-code memory, etc.) to the standard
state for other programs, and wunlock the equipment, before exiting.
If a diagnostic program aborts after changing the characteristics of
the disc controller, a recovery program can be scheduled only if it
is in memory. This can be accomplished, for example, by the recovery
program scheduling the main diagnostic program as a son. Such
circumstances should be taken into <consideration when designing the
diagnostic procedures.

There 1is a possibility that, in the short period (window) while the
EQT is free,i.e., when a diagnostic program aborts but the recovery
program has not yet been dispatched, a wuser program may access the
"abnormal" equipment via an LU associated with it. But this
possibility 1is remote, because the user program would have to know
exactly when the window became open, and the program would have to
initiate the equipment lock to itself (at assembly time) before being
able to access it.

CALLING SEQUENCE

The following <calling sequence is used in a program to allow it to
lock or unlock the equipment associated with a given LU.

Assembler:
EXT EQTRQ

JSB EQTRQ

DEF *+3
DEF IOPT
DEF LU

Return-=-====—=-=-

LU DEC Logical Unit Number

IOPT DEC Option word

FORTRAN:
CALL EQTRQ (IOPT, LU)

Bit assignments in the option word are as follows:

Bit 0 1 = Lock, 0 = Unlock
14 1 = No Abort on Call Error; return ASCII code in
A, B registers
0 = Abort on error

In addition, for the lock request:

Bit 13 1 = Keep EQT locked on abortion
0 Release on abortion

RTIOC OVERVIEW
15 1 = Without wait; 0 = with wait

Thus, bit O specifies the main request code. Bit 14 is the No Abort
bit and has the standard RTE-IVB meaning. If it is set, any EQxx
errors defined in abort error response will be passed back in ASCII
in A and B registers at the return address, and the program will not
be aborted. If it is set, and there are no EQxx errors, return is
made at return address + 1. Bit 13 specifies that if the caller,
after having successfully 1locked the specified equipment, should
be aborted, the equipment should stay locked, though not to this
caller. A subsequent program can use it only after requesting to
relock it. Bit 15 is the without-wait bit and has the standard
RTE-IVB meaning. If it is set, a return 1is made whether or not the
lock is successful; A and B registers indicate the status of the
request as defined by the no-abort error responses.

Further, 1if a 1locking program terminates saving resources (EXEC 6
request code with INUMB parameter = 1), then the locked equipment
stays locked to that program ID segment address.

RETURN CONDITIONS
Abort Error Responses

There are two abort errors for this call:

EQO1 - System Console (LU #1) specified
EQOO0 - Illegal LU# specified (LU # specified is > LUMAX)

No—-abort Error Responses

On return from the Lock Without Wait request, content of the A
register has the following meaning:

A =0 if successful or required equipment already locked to this
program (locking a bit ©bucket is always successful and
results in an NOP); also the locked EQT # is in register B.

1 if equipment associated with specified LU locked to another
program;

-1 1if equipment lock table full.

On return from the Lock-With-Wait request, the A and B registers
contain:

(A)
(B)

0
number of locked EQT

For a Lock-With-Wait request, if the equipment associated with the
specified LU is locked to another program, or if the equipment lock

2-33

RTIOC OVERVIEW

table is full, a return is not made. The calling program is put in
State 3 (General Wait) until the request can be fulfilled.

On return from the Unlock request, register A contains the following:

A =0 1if successful (unlocking the bit bucket 1is always
successful and results in a NOP);

-1 1if the required equipment was not locked;
1 if the required equipment is locked to another program;

2 if the required equipment has not completed I/0 for the
locking program.

DRIVER INTERFACE SUBROUTINE CHEL

An Assembler subroutine, CHEL, 1is also provided to be called by
drivers to interrogate if the specified equipment is locked. The
calling sequence for CHEL is as follows:

Assembler:
EXT CHEL

.

LDB EQT #
JSB CHEL
Return----

On return, if the specified equipment was mnot locked, content in
register A is equal to 0O, otherwise, it is the ID segment address of
the locking program.

INTERNAL OPERATION

A program requiring to lock the equipment associated with a given LU
makes a call to System Library routine EQTRQ, which will be loaded
with the program. If the LU is illegal within the present system
(i.e., points to the system console or has no EQT associated with
it), the program is aborted with an EQXX error or is so informed. If
the EQT is not locked, and there is room in the equipment lock table,
SELTB, an entry of the program ID segment address is made in $ELTB
for the equipment. A table-empty bit is updated if this is the first
entry being made in the table. If the LU specified is a bit bucket
(i.e., if it is O or points to equipment number 0), the lock request
is allowed, but results in a NOP. A bit is set in the entry if the
program specifies that the equipment not be released if the program
terminates abnormally. If a program is going to bypass the
operating system to access the equipment now locked to itself, i.g.,
via a privileged driver, it must insure that all currently scheduled
requests for that equipment, if any, are completed before accessing
it. If the table was full and the call was with wait, the program is
put in the general wait list indicated in the table header. If the

2-34

RTIOC OVERVIEW

call was without wait and the table was full, the caller is so
informed. If the EQT is locked to someone else, and the call is with
wait, the program is put in the general wait list, flagged on that
equipment entry in the table. If the call was without wait, and the
equipment was locked to someone else, the caller is so informed. If
the equipment was locked but without any program ID segment address,
the caller is allowed to lock it.

In RTIO4, code 1is added within the request code analysis area to
suspend in the general wait list the calling program accessing a
locked equipment. If the program wants to access an equipment locked
to itself, the priority of the request is reduced to 77777B in order
to dispatch single program requests 1in chronological order, before
continuing the analysis.

In the ABORT processor in DISP4 (which processes all terminations,

normal or abnormal), a check is made to see if S$ELTB is Not-Empty. If
so, subroutine $EQCL in RTIO4 is called to handle the EQT lock

terminating process.

RTIOC OVERVIEW

For each EQT 1locked to the terminating process, $EQCL does the
following:

* updates the Not-Empty bit (if need be) in the S$ELTB table
header,

* clears the $ELTB entry word 1 (ID segment address) for
programs that were abnormally terminated/aborted, e.g., due to
PE, DMA violation, operator abort, etc.. This is indicated to
the ABORT processor through a flag set in the ID segment if
the programs had the Lock-on-Abort option set in the EQT lock
request.

For all other programs, $EQCL additionally does the following:
* clears the rest of the $ELTB entry.

* elevates the priority of any buffered I/0 calls to the locked
EQT to zero, to insure they are all flushed out before any new
ones. Any pre-lock, unbuffered calls have to contend for the
EQT.

* calls scheduler $SCD3 to schedule any programs waiting for
this EQT, or for a slot in the table.

* transfers the linked list of $XSIO requests in the entry just
cleared back on the EQT, after the previous locking program’s
zero-priority calls.

* calls DRIVR to initiate the first $XSIO call reentered on the
EQT, if the EQT was idle at the time.

* jumps to NOTRD for diagnostic processing, if DRIVR makes an
error return, else

* returns to the caller.

$XSI0 calls (I/0 <calls from the operating system) are handled
slightly differently. In $XSIO, if the calling request is for a
locked EQT, the request is queued in the 1list in the $ELTB entry for
that EQT.

In $IOCL (in RTIO4), if the request to be aborted is found neither in
any EQT entry nor in any DRT entry, a check is made to see if it is
in any $ELTB entry (word 3). If so, it is unlinked, leaving all
others intact, before returning to $XEQ.

Further, every time an equipment is wunlocked (this happens either
when a program issues an unlock request or when a locking program is
terminated normally not saving resources or abnormally not locking on
abort), the SELTB empty bit is updated, the list of scheduled
requests for that EQT in $SELTB is reentered in the EQT for that
device and calls are made to $SCD3 to reschedule all programs waiting
in the general wait 1list flagged either on that device or on the

RTIOC OVERVIEW

table itself (i.e., because the table was full).

EQTA —==m=—mmmmmmmmmmmm
| |
I EQT 1 |
| |
| |
| EQT 2 |
| |
————————————————— (EQT#*15) words
EQT#=N | |
l |
| EQT N |
I |

Figure 2-1. RTE-IVB Equipment Table

N
|

37

RTIO

C OVERVIEW

| Word | Contents |
I 15116 13 12011 10 918 7 615 4 312 1 01
1	RIT/O Request List Pointer		
2	RiDriver "Initiation" Section Address		
3	RiDriver "Completion" Section Address		
4	DIBIPIS T Unit#	Chammel #	
s	AV	EQ TYPE CODE	staTus
6	CONWD (Current 1/0 Request Word)		
7	Request Buffer Address		
8	Request Buffer Lemgeh		
19	Temporary Storage for Optional P;rameter i o I		
10	Temporary Storage for Optional Parameter		
11	Temporary Storage for Driver		
12	Temporary Storage for Driver		
13	Temporary Storage for Driver		
14	Device Time-Out Reset Value		
15	Device Time-Out Clock		

- ——— —————— - ——— — - ——————— - — -~ —_——— - ———————————————————————— -

Figure 2-2. RTE-IVB Equipment Table Entry

Where:

HwYhowox

Unit

RTIOC OVERVIEW

reserved for HP use

if DMA required

if automatic output buffering used

if driver is to process power fail

if driver is to process time-out

if device timed out (system sets to zero before each
I1/0 request)

e

Last sub-channel addressed

Channel= I/0 select code for the I/0 controller (lower number if

AV

STATUS

EQ
TYPE
CODE

CONWD

a multi-board interface)
I/0 controller availability indicator:

0= available for use

1= disabled (down)

2= busy(currently in operation)

3= waiting for an available DMA channel

the actual physical status or simulated status at the end
of each operation. For paper tape devices, two status
conditions are simulated: Bit 5 = 1 means end-of-tape

on input, or tape supply low on output.

type of device. When this octal number is
linked with "DVCx," it identifies the device’s
software driver routine

user control word supplied in the I/0 EXEC call
(see Chapter 3).

Figure 2-2. RTE-IVB Equipment Table Entry (continued)

RTIOC OVERVIEW

INTBA = = =—mmmmmmmm e

------------------ INTLG

|SELECT CODE |
| INTLG+4 |

|SELECT CODE |
| INTLG+5 I

Figure 2-3. RTE-IVB Interrupt Table

DRT

RTIOC OVERVIEW

——— — ——————— - ——— — v ——

| LU 1 |
| LU 2 |
| LU 3 |
------------------------ LUMAX WORDS

. FIRST WORDS ONLY
| LU LUMAX]
| LU 1 |
| LU 2 |

LUMAX WORDS

. SECOND WORDS ONLY

| LU LUMAX

Figure 2-4., RTE-IVB Device Reference Table

DRT WORD 1

DRT WORD 2

—————— - ————— ———— ————— ————— - - —————— ——— ————————————

115114113112 111110 91 8] 71 6] 51 41 31 21 1| O]

- o — ——— o ————————————————————————————————— ———————

| CSSUBCHANNEL> |<LU LOCK> | <EQT #> |

15114113112 111110) 91 81 71 61 5| 41 3| 2] 1| O}

|] Ma jor LU or Down I/0 Queue |
Up/Down

Figure 2-5. RTE-1IVB Device Reference Table Entry

RTIOC OVERVIEW

TAT ——————————————

| TRACK 2 | TATSD

| TRACK M | | ~TATLG

- —— ———— —————

Figure 2-6. RTE-IVB Track Assignment Table

RTIOC OVERVIEW

15 14 13 12 11 10} 9 8 7 6 5 4 32 10

SDUMP ~ mmmmm e e
1SD| | |
EQT 1 I I | M |
| | I |
Entry = Smmeemeeme e m e m e mm——mmm e m—m e mmm
First |SD| | |
Word EQT 2 | | | M |
| |] I
EQT# = mmm e
Words |SD| |]
EQT 3 I | | |
(static [| | M |
info) = 0 mmmmmmemmemee -
EQT =n |SD] I I
| | | M |
I | | |
EQT 1 IMR | | |
I | | N |
| I | |
EQT 2 IMR | I I
| | | N |
| | | |
Entry === mmmmem e e e
Second .
Word .
EQT n [MR] | |
EQT # - | N |
words = === 0@ mem e e e
(dynamic
info)

Figure 2-7. RTE-IVB Driver Mapping Table

N
[

43

RTIOC OVERVIEW

SD=0 Driver in driver partition and
M=starting page number in bits 0-9

=1 Driver in system driver area and
M=0 not doing own mapping or
M=1 is doing own mapping

t memory resident program 1/0,
0 System I/0
0 User I/0 physical page number of base page

=1 Memory resident program I1/0

S$DVPT = logical start page of driver partition
SDLTH number of pages per driver partition

Figure 2-7. RTE-1IVB Driver Mapping Table (continued)

| Disc |
| Resident |
| User |
| Prog |
| |
| |
| |

DISP & RTIOC use S$DVPT Register
to access user’s physical

Base Page to set up new
driver registers or user

map.

Figure 2-8.

RTIOC OVERVIEW

—— - —— ———————————

RTE-IVB User Base Page

copy of Area

32 word not

user map used
on
User
Base
Page
(scomM)

Copy of EMA
SWAP User
Map 32 words

RTIOC OVERVIEW

|

+=>1

Lock on Abort Bit---—| |
+=>1

Figure 2-9,

________________________________ +
| Table Length |
———————————————————————————————— |
Equipment # | <==-+
-------------------------- | |
Equipment # |]
--------------------------- | I
. I
. I
"""""""""""""""""""" I |
| Locker’s ID Segment Address |<--+
-------------------------- I |
| Locker’s ID Segment Address | I
-------------------------- | |
. |
. I
|
----------------------- | |
$XSI0 List Pointer | <—--+
———————————————————————————————— l
$XSIO List Pointer |
———————————————————————————————— +

Equipment Locking Table

First
Entry

Chapter 3

EXEC AND S$ALC

INTRODUCTION

This part of the Technical Specifications Manual deals with the EXEC
and system available memory portion of the RTE-IVB Operating System.
The EXEC is that portion of the operating system that checks for
legality of all wuser EXEC requests, vectors legal requests to
appropriate processors, vectors illegal requests to the abort
processors, handles reentrant processing, and allows users to execute
with the interrupt system off (privileged subroutines).

The $ALC portion of the system allocates System Available Memory
(SAM) to system processors that request memory for buffer, tables,
etc.

The EXEC modules contains five major sections:

1. System Request Analyze} (Memory Protect Violation Control)

2. Resident Library Execution Control (Dynamic Mapping Violation
Control)

3. Privileged and Reentrant Subroutine Processors
4., Disc Track Allocation and Release Processors

5. General Error Message and Program Abort Processors

In order to understand how the system receives and handles an EXEC
request, it is necessary to understand system memory protect and the
rudiments of interrupt processing. The discussion ©below is a very
brief description of interrupt processing with memory protect.

Suppose the user wishes to do output to the line printer from a high
level language like FORTRAN. He may code something like:

CALL EXEC (2,6,IBUFR,IBUFL)

where the 2 is a Write Request, the 6 is the LU, IBUFR is the buffer
to write, and IBUFL is the buffer length.

EXEC AND $ALC

The FORTRAN compiler would change this to something like:

JSB EXEC

DEF RETRN Return address

DEF IWRIT Address of Request Code
DEF LU LU to write to

DEF IBUFR Buffer Address

DEF IBUFL Buffer Length

RETURN-

When this code is executed the JSB EXEC will generate a memory
protect. In fact any JMP, JSB, 1ISZ, STA, STB, DST, CBT, JLY, JPY,
MVB, MVW, SAX, SAY, SBX, SBY, STX, or STY instruction which would
either directly or indirectly affect a memory location below the MP
fence will be inhibited and memory protect will force an interrupt to
Location 5. The lower bound of protected memory is Location 2 the
upper bound is set by the operating system with an OTA 5 (or OTB 5)
where A is the address of the highest protected word.

Thus the JSB EXEC was never executed, rather the contents of trap
cell 5 (the interrupting location) was executed. The contents of
trap cell 5 is a JSB $CIC,I. This now allows us to enter the
operating system into a module called RTIOC.

RTIOC 1is obliged to find out where the interrupt came from and what
kind of interrupt it was. By executing a LIA 4 RTIOC will receive
the interrupt code # of 1last interrupt. If the interrupt code
corresponds to the Time Base Generator RTIOC jumps to $CLCK in the
RTIME module. If the interrupt code 1is 5 (Dynamic Mapping, Memory
Protect or Parity) RTIOC jumps to EXEC. If the interrupt code is
anything else RTIOC wuses the interrupt table to 1look wup the
appropriate processor.

If the interrupt was on interrupt code 5, then a LIA 5 (or LIB 5)
will give the violation address; i.e., the address of the JSB EXEC.

Figure 3-1 shows a graphic representation of a JSB EXEC.
We now know how the system enters the EXEC.

The user tries to execute a JSB EXEC, memory protect catches this and

instead executes the contents of trap «cell 5. This causes an entry
into the module RTIOC. RTIOC turns off the interrupt system analyzes
where the request is to go and turns control over to the appropriate
processor.

EXEC CALL PROCESSOR
The primary function of this section is to provide for general

checking and examination of EXEC CALL requests (EXEC requests) and to
call the appropriate processing routine.

3-2

EXEC AND S$ALC

|
&)
23]
e
o
e~
Ay
€3]
> O
-3
(@]
=
j<a]
=
|
| | ———— - — — |
i [} !
1 | |
| I |
1 | |
| | 1
+ - —— - + -1 -t - ———— ——_———— — —— — — |l -4 ——— - — — — + -4+ —+ —+
| | | | 1 | 1 | 1] 1
| | | 1 | I 1 | | | | |
| | 1 | | 1 | | | | |
| | | 1 1 1 | | 1 | |
! | | | | | | | ! ! |
| | | | | \%4 | | 1 | 1
1 | 1 | w1 ! | |) 1
} | 1 | [@g | ! [I | 1]
1 1 | ! o ~) ! ~ 1 | |
| | | | cal] or | [TalES | [ST | | 1
| | | ! -l | =0 I I =1 | |
1 (&} 1 1 ! jen T | I W < 3 =" | (S| m <g ! [IS | 1 |
| =] 1 !] ANl O3 o ¢ o5 D on HH o o o | I o | I |
| >4 | | ! ol Z20 lar I | a ol [| | | | ! |
1 =] 1 1 =1 | [N] | [-~ | ! |
| 1 1] I | =1 1 I v] 1
} m | 1 1 o 1] |3l 1 [I T | ! |
1 wn 1 1 1 on o | o 4] | | !] |
| lap] | ! J H oo | g} [og 1 | | | }
1 | | | | H Il O | oL e~ | | 1 1 |
I | | 1 1 Moo | cal] or I | 1 1 |
| | 1 |] I 1 I — 1] |
| | | | | | | I on | 1]
+ -+ -+ - - — + - + -4+ —+ -+
| | Vas 1
! I | |
I | } 1
| | | |
| 1] |
I —— — X —> /I - - - - - - - —_ e ————— - |
1
1
|
|
1
]
|

JSB EXEC

Figure 3-1.

EXEC AND S$ALC

This section is called directly from the Central Interrupt Control
(CIC) section (in RTIOC) when a memory protect (MP) or dynamic
mapping violation (DM) is recognized. (All system requests from a
user program cause a protect violation.) This section also
determines non-legitimate protect violations in user programs such as
executing halt or I/0 instructions or attempting to write into a non
mapped or protected area. It also recognizes user calls for resident
library routines, reentrant, or privileged processing.

Upon entry from CIC EXEC must decide whether the violation was a true
memory protect, parity error, or mapping violation. The EXEC request
analyzer examines all memory protect and Dynamic Mapping violations.
If the violation 1is 1legal, the EXEC jumps to the appropriate
processor.

A DM violation is distinguished from a MP violation by executing a
SFS 05 instruction. A DM error will set the flag on channel 05, a MP
error will clear the flag.

Since ©parity error and memory protect share the same interrupt
locations, it is necessary to distinguish which type of error is
responsible for the interrupt. A parity error is indicated if, after
the LIA (or LIB) 05 instruction is executed, bit 15 of the selected
register is a logic 1; a memory protect violation is indicated if bit
15 is a logic O. In either case, the remaining 15 bits of the
selected register contains the address of the error location. Note,
however, that parity errors are detected in RTIOC not EXEC.

Only one form of DMS violation is legal. This DMS violation will
occur when a memory resident program tries to enter the memory

resident library. The memory resident library is used only by memory
resident programs. The physical address of the library will be above
the memory protect fence if the program is using common; however, the
pages containing the library are write protected. Thus any JSB, JMP,
etcs to the 1library will cause a DMS wviolation. EXEC, after
determining that the violation is a DMS wviolation, will check for
three conditions. They are:

1. That the call is a JSB

2. That the destination is in the memory resident library
3. That the program is a memory resident program-Type 1

If any condition is not satisfied, EXEC aborts the offending program
and issues a DM error message.

If all conditions are met, EXEC will jump to the routine if it is a
privileged subroutine or jump to SRENT in the dispatcher if the
routine 1is reentrant. $RENT does further processing for reentrant
subroutines (such as resetting the memory protect fence).

EXEC AND S$ALC

If the wviolation was a true Memory Protect, EXEC 1looks at the
destination. Only EXEC, SLIBR and S$LIBX are 1legal destination
addresses. All other destinations are flagged as errors and the
offending program will be aborted with an MP error. (The abortion is
only partially done within the EXEC.)

If the memory protect destination was EXEC then the EXEC further
examines the request to see if the request is legitimate.

The EXEC checks to see if there are too many parameters, too few
parameters, 1if the request itself is defined, or if the return
address is illegal. EXEC also checks to see 1if any returned
parameters would cause a store below the memory protect fence. This

is done by using the NAMTB Table.

The NAMTB has one byte for each EXEC request. Each bit corresponds
to a possible parameter. If the bit is set then the EXEC knows that
the parameter is a possible store location and checks the address of
the store. If the store address is below the memory protect fence,
then the program will be aborted with a memory protect.

For example, consider the EXEC disc track allocation request:

JSB EXEC

DEF RETRN

DEF ICODE ICODE=4 or 15

DEF #TRKS # of tracks desired

DEF STRAK Returned start track #

DEF DISC Returned Disc LU

DEF SECT# Returned Sectors per track

There would be a bit set for STRAK, DISC and SECT# because these are
returned values which must not overlay memory below the memory
protect fence. No check would be made for #TRKS as this is not a
possible store location.

This is also how the EXEC decides if a read operation should be
aborted.

That 1is, the store address (buffer location) would be below the
memory protect fence.

The octal contents of the first 3 NAMTB table entries are shown
below:

NAMTB Value Request Code

000002 0/1 not used/Read

000000 2/3 write/control

007000 4/5 disc allocate/Release

EXEC AND SALC

Note the upper byte for word 3, the octal 7, it is there because the
disc track allocate call returns the starting track number, disc LU,
and sectors per track. The lower byte on word 1 has bit 1 set to
indicate the buffer location 1is a storage 1location for a read

request.

When EXEC decides that all the EXEC call parameters are okay, it
jumps through the Request Code Table to the appropriate processor.

The request code table is a Table of EXEC request processor
addresses. For processes external to EXEC the entry would be:

EXT $XXXX
DEF $XXXX+0

This gives the direct address of $XXXX for the JMP.

EXEC requests, entry points and the modules called are listed in
Table 3-1.

EXEC AND S$ALC

Table 3-1. EXEC Requests and Entry Points

*%** This request is new for RTE-IVB and is serviced in EXEC

fmm - it e T pmmmm e s +
EXEC] PURPOSE	ENTRY	MODULE	
REQUEST		POINT	
=== M mmmmm—-	=	===	
I			
1	I/0 READ] SIORQ	RTIOC]	
2	I/0 WRITE	SIORQ	RTIOC
3	I/0 Control	SIORQ	RTIOC
4%	Local Disc Track Allocation	DISC1l	EXECD
5%	Local Disc Track Release	DIS2	EXECD
6	Program Completion] SMPT1	SCMEDM	
7	Operator Suspension	SMPT2	SCHEDM
8	Load Program Segment	SMPT3	SCHEDM
9	Program Schedule w/wait] S$MPT4	SCHEDM	
10	Program Schedule w/o wait	$SMPT5	SCHEDM
11	System Time & Date] SMPT6	SCHEDM	
12	Prog. Schedule after offset or	S$MPT7	SCHEDM
	Prog. Schedule at absolute time		
13	I/0 Device Status] $IORQ	RTIOC	
14	Get/Put String	$MPT9	SCHEDM
15%	Global Disc Track Allocation	DISCA	EXECD]
16%*	Global Disc Track Release	DISCD	EXECD
17	Class I/0 READ	$IORQ	RTIOC
18	Class I/0 WRITE	$IORQ	RTIOC]
19	Class I/0 Control	$IORQ	RTIOC
20	Class I1/0 Write/Read] SIORQ	RTIOC	
21] Class I/0 GET	SGTIO	RTIOC	
22	Prog. Swapping Control	SMPT8	SCHEDM
23	Prog. Schedule w/WAIT & w/QUEUE	$MPT4	SCHEDM
24	Prog. Schedule w/o WAIT & w/QUEUE	$MPT5	SCHEDM
25%%	Partition Status	SPTST	EXECD
] 26**%*	Memory Size Status] MEMST	EXECD	
o o e Fomm————— Fommm e +			
] * The request is serviced in EXEC.			
*k This request has changed for RTE-IVB and is serviced			
in EXEC.			

EXEC AND $ALC

Before transferring control to the appropriate processors, the EXEC
places the address of all the request parameters in the base page as
defined below:

BASE PAGE

ADDRESS LABEL USE

1676 RQCNT Request Count=# of EXEC call parameters -1
1677 RQRTN RETURN address of EXEC call
1700 RQP1 The REQUEST CODE of CALL
1701 RQP2 2nd Request Parameter

1702 RQP3 3rd Request Parameter

1703 RQP4 4th Request Parameter

1704 RQP5 5th Request Parameter

1705 RQP6 6th Request Parameter

1706 RQP7 7th Request Parameter

1707 RQP8 8th Request Parameter

1710 RQPI 9th Request Parameter

These base page locations will always be visable regardless of map.
The contents, however, refers to addresses in the user map. The EXEC
executes under control of the system map.

Extended EXEC*

The following set of extended EXEC (XLUEX) <calls will provide HP
subsystems access to logical units greater than 63 (decimal). The
XLUEX <calls will have similar calling sequences (with EXEC) and
identical functions. The only difference is in the definition of the
control word (RQP2). XLUEX will use two words to specify the logical
unit and control information while EXEC uses one.

EXEC control word:

o — - . —————— —— - - ————— - ——— — ——— — - - ———

] reserved | function | logical |
code unit

XLUEX expands the control word into Logical unit and function
code parameters:

XLUEX - Logical Unit word

——— ————— —————————————————————— —————————

(I reserved | logical unit |

EXEC AND S$ALC

- Function Code word

- ————— ———— - — ——— — —————— —— - - - — ——

l reserved | function | reserved |
code

The S bit, if set, will inhibit the session or batch switch table
mapping (i.e., the logical unit number supplied is the logical unit
number to be used).

NOTE This capability will not be documented for the user until all

supported HP subsystems have been modified to enable access
of the full range of logical unit numbers. Until that point
in time, the wuser must access logical units > 63 via the
session switch table.

CAUTION! This implementation may be a temporary solution as
future projects may alter the external
characteristics of these calls.,

The following functions will be supported by XLUEX calls:

Read, write, control, status, class read, class write, class,
write/read, class control.

Calling sequence: (refer to the RTE-IVB Programmer’'s Reference
Manual for Parameter details - other than those previously discussed.

READ/WRITE

EXT XLUEX

JSB XLUEX

DEF EXIT

DEF RCODE (READ=1, WRITE=2)

DEF CONWD Note: New or changed (2 word parameter)

DEF BUFFR

DEF BUFFL

DEF DTRAK optional

DEF DSECT optional

EXEC AND S$ALC

Exit

Rtn

Rtn

CONTROL:

EXT

JSB
DEF
DEF
DEF
DEF

XLUEX

XLUEX
RTN

RCODE
CONWD
IPRAM

STATUS:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
DEF

XLUEX

XLUEX
RTN
RCODE
LU
ISTAlL
ISTA2
ISTA3

(control =3)
Note: New or changed (2 word parameter)
optional

(Status=13)
Note: This word contains the logical unit only

optional
optional

Class Read or Write of Write/Read

EXT

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

XLUEX

XLUEX
RTN

RCODE
CONWD
IBUFR
IBUFL
IPRMI1
IPRM2
Class

CLASS I/0

EXT

JSB
DEF
DEF
DEF
DEF
DEF

XLUEX

XLUEX
RTN

RCODE
CONWD
IPRAM
ICLAS

Control

(Read=17 ,write=18,write/read=20)
Note: ©New or changed (2 word parameter)

optional
optional
optional

(Class Control=19)

Note: New or changed

EXEC AND S$ALC

LIBRARY EXECUTION CONTROL

The Relocatable Library contains the set of subroutines required for
floating point operations, intrinsic functions, FORTRAN run-time
processors and general utility functions.

A program in this 1library is structured in one of the following
formats:

l. Re-entrant: (Type 6) During the execution of the routine, it may
be suspended and entered again by a call from a higher priority
program. Subroutines in this format may not modify in-line code
(i.e., they are "read only" and all temporary variables must be
grouped into a block within the program). This block is termed
the "Temporary Data Block",TDB. The execution time of a
reentrant routine is usually greater than 1 millisecond. In
RTE-IVB only those reentrant subroutines loaded into the memory
resident 1library and called from Memory Resident programs or
those subroutines loaded into SSGA can be reentered by different
programs.

2. Privileged: (Type 6) A routine in this format is permitted to
run with the interrupt system and memory protect disabled. A
subroutine of this type should have an execution time of less
than 1 millisecond. It also may not incorporate input/output
calls, nor may it call a reentrant routine.

3. Utility: (Type 7) This classification 1is used for programs
containing 1I/0 functions or other features which do not allow
reentrant or privileged structure. Examples of this type are

the FORTRAN runtime routines PAUSE and STOP. There are no
restrictions on internal program structure or features. The
subroutine will always be appended to the end of the user’s
programe.

RESIDENT LIBRARY SUBROUTINES

The resident 1library consists of those subroutines referenced by
memory resident programs. Should that subroutine reference another
subroutine, the second subroutine will also become part of the memory
resident 1library. The memory resident 1library is shared by all
memory resident programs. The sharing prevents commonly called
subroutines from being appended to each memory resident program that
calls it, thus affecting a conservation of memory for memory resident
programs. Note that the resident library is created at generation
time and that all routines which are loaded into the resident library
are also put in the relocatable 1library for disc resident programs.
Since the subroutine is shareable it should be written in a
privileged or reentrant format.

EXEC AND S$ALC

UTILITY AND SINGLE-USER LIBRARY PROGRAMS

A "utility" subroutine can be called by only one user program.
Therefore, a copy of the utility program is appended to the absolute
version of any wuser program which references it. All programs in
reentrant or privileged format are reclassified as utility if they
are not included in the Resident Library by RTGEN. A copy of each
subroutine 1is appended to each disc-resident user program which
references it. (Thus all type 6 routines put in at generation become
type 7 after generation.)

All library type subroutines entered when the system is generated are
reclassified as "utility" and stored in packed relocatable format on
the disc for use by the LOADR in loading programs on-line.

Users who wish to write subroutines which can be loaded into the
memory resident 1library to be shared by memory resident programs
should refer to Appendix C for the required format.

Reentrant and privileged subroutines require special pre and post
processing. This processing is done by the routines $LIBR and S$LIBX.
The format is shown below. The code below the dotted line is needed

for reentrant routines only.

EXT SLIBR,$SLIBX
ENTRY NOP
JSB SLIBR
DEF TDB (or "NOP" if privileged)
-—- First program instruction--
- body
- of
- program
EXIT JSB SLIBX
DEF TDB (or DEF ENTRY if privileged)
DEC N Return adjustment for reentrant
(Return=N + ENTRY)
TDB NOP Holds linkage to previous block
DEC K Total Length of TDB in words
NOP Holds return address of call
- -Blocks used
- for temporary
- storage of values

- generated by the program

The TDB (Temporary Data Block) and return adjustment is only for
reentrant format. The return adjustment for reentrant format in the
exit call 1is used to vary the return point to the calling program.
The return address and return adjustment are added to determine the
final return address.

3-12

EXEC AND $ALC

The parameter following the JSB SLIBR (DEF TDB, or NOP) identifies
the subroutine format to the system and the type of processing that
is required. A NOP signifies a privileged subroutine.

Reentrant programs may call other reentrant and privileged programs.
However, privileged programs may only call privileged programs.

The JSB S$LIBR 1is intercepted by EXEC because it causes a memory
protect.
PRIVILEGED and REENTRANT PROCESSING

Privileged or reentrant processing starts whenever the initial memory
protect or DMA violation for that service is detected. This can
happen in two ways.

Consider the two cases below:

CASE 1 ANY PROGRAM
JSB SUB
SUB NOP
JSB $LIBR
NOP
CASE 2 MEMORY RESIDENT PROGRAM
JSB SUB
e +
| MEMORY RESIDENT LIBRARY |
I |
| SUB NOP l
I JSB $LIBR I
| NOP |
| |
I I
o e e +

EXEC AND S$ALC

In Case 1 all code is within the users program. The JSB SLIBR causes
the memory protect. As mentioned earlier SLIBR is a valid memory
protect and thus the system starts the privileged or reentrant run.

In Case 2, however, a DM violation resulted due to the JSB SUB. This
is because SUB resides in the memory resident library. Here the
privileged or reentrant run started at the JSB SUB. EXEC places the
return address (P+1 of JSB SUB) into SUB, that is, it simulates the
JSB instruction and eventually returns control to three words past
the SUB NOP (i.e., the target of the JSB). In this case the JSB
SLIBR was never executed.

As can be seen from Case 2 all subroutines that are loaded into the
memory resident library (type 6 subroutines) must be in the
privileged or reentrant format.

EXEC examines the word (P+1) following the JSB SLIBR. If (P+1)=0
(NOP), the <called subroutine is "privileged". SLIBR restores the
registers, adds 1 to "SPVCN" (privileged subroutine nest count),
leaves the interrupt system disabled, (which also means MP disabled)
and transfers control to the word following the $LIBR call (i.e.,
P+2). The return address to the program (P+1) of the JSB SUB is
stored 1in the entry ©point of the library subroutine if a protect
violation occurred on the original call.

If the (P+1) of the JSB SLIBR is non-zero, the value is the address
of the Temporary Data Block of the reentrant subroutine. The first
word of the TDB is checked. ' If it is zero, then the subroutine is
not being reentered.

The first word is then set up to point to the second word of a 4 word
block of memory set up for each JSB SLIBR used in a reentrant run.
This block is located in system available memory (SAM). The contents
of this second word is the ID address of the program using the TDB.
(More discussion on this reentrant 1list structure will be found in
the following sections. Referencing to the 1list structure 1in
Appendix B at this time should help in understanding the discussion
below.)

If the 1link word is non-zero, the subroutine 1is being reentered

(i.e., two memory resident programs want the same subroutine) and
SALC 1is called by the EXEC MTDB routine to allocate a block in

available memory equal to the length of the TDB (word 2). If $ALC
rejects the allocation request, the main wuser program is suspended
and linked into the memory suspend list.

If the block is allocated, the TDB is moved to the new block. If the
new block is one word longer than requested (refer to discussion on
$ALC), word 2 (word length of TDB) in the new block is set negative
as a flag. The first word of the moved TDB in the system map 1is
changed to point to the first word of the original TDB in the user
map.

EXEC AND S$ALC

The address of the original program call is set in word 3 of the
program TDB as the return address. The reentrant program must not
modify the first three words of the TDB. EXEC then calls $RENT in
the dispatcher who sets the memory protect fence to the beginning of
the Resident Library area, removes DMS write protect, and restores
the program registers. The interrupt system is enabled, memory
protect turned on, and control transferred to the program.

For privileged subroutines the system saves all registers going into
the subroutine and restores them when the subroutine starts to
execute. With nested privileged subroutines the system does not save
the registers on the 2,3,4, etc., call but neither does the system
destroy the registers. That is, the A,B,Y,X,E and 0 registers may be
used to pass parameters to and from privileged subroutines (and
reentrant subroutines).

The return to the main program at the end of a reentrant or
privileged subroutine is performed by a JSB $LIBX. The execution of
this instruction is executed directly if a privileged program is
executing; it causes a memory protect violation if a reentrant
program 1is executing. In the latter case, EXEC transfers control to
SLIBX indirectly after the initial protect violation processing.

If the executing program is privileged (i.e., $PVCN>0O), one is
subtracted from $PVCN. If $PVCN is still non-zero, control is
returned directly, with registers restored, to the return point in
the calling privileged program. If now $PVCN=0, control is returned
to the caller with the interrupt system enabled and the memory
protect fence set to the ©beginning of the area of the original
calling programe.

If the executing program was reentrant the return address 1is
calculated by adding the contents of the third word of the TDB which
contains the P+1 of the original JSB SUB and the P+2 of the JSB S$SLIBX
which may contain a return adjustment. This address is placed into
the 1ID segments point of suspension. In addition, the necessary
adjustments are made to the reentrant 1list and to system available
memory. This structure is discussed below.

All SLIBR calls require an associated $SLIBX call.

REENTRANT LIST STRUCTURE

Every reentrant call requires the creation of a 4-word table in
system available memory called a reentrant table. All of these
tables are connected through a list structure with its head in the
EXEC (DHED) (the reentrant list). The list"' is a two dimensional
list. The first dimension is a stack and is one entry per program.
The second dimension is for programs that make nested reentrant calls
and 1is a push down stack after the first entry (i.e., the one that
got the program in the list in the first place.

EXEC AND $ALC

The purpose, structure, and content of this reentrant ID list is
graphically documented in Appendix B.

FORMAT OF REENTRANT SUBROUTINE LIST
The reentrant Table 1is a 4 word table in system available memory

that is allocated every time a reentrant call is made (i.e., one for
every reentrant JSB S$LIBR).

Word Purpose

1 Link to next 4 word block (0=End of List)

2% ID address of user making this reentrant call
3%% Pointer to TDB buffer in reentrant subroutine

4 Used if one reentrant subroutine calls another.

It points to next 4 word entry for this program.

* Sign Bit set if K+1 words of SAM allocated instead of K words
asked for.

**Sign Bit of this word is set if TDB has been moved to system

available memory. If sign bit set, pointer points
to moved TDB in SA

The reentrant structure 1is also used to allow buffered input and
output. The S$REIO routine in EXEC is called by RTIOC (is never
called by EXEC itself) anytime I/0 is done in a reentrant subroutine.
For example, the FORTRAN callable REIO routine; i.e., CALL REIO
(1,LU, BUFR,BUFRL) does I/0 from a reentrant subroutine and causes
entry into S$REIO.

Consider the case of normal (unbuffered) input. Since the input from
the peripheral device is being placed within the program area itself,
that program will be 1I/0 suspended and wunswappable. The program
cannot be swapped because I/0 is being done to a particular part of
memory. If another program were placed there that area of the other
program would be overlayed by the incoming data. Thus the unbuffered
input has caused a lock of that partition meaning no other program
can use 1it. The —case of normal output is the same, an unusble
partition for the length of the 1I/0.

This problem can be avoided by doing I/0 from a reentrant subroutine
where the I/0 buffer is wholly within the TDB itself. $REIO is
called from RTIOC anytime I/0 is done from a reentrant subroutine.
SREIO 1looks to see if the program has an ID Reentrant TAG (i.e., is
it really reentrant and has done a JSB SLIBR) if so it then looks at
the buffer address and length. If the entire buffer is within the
TDB then $REIO has MTDB call $ALC for TDB space in system available
memory, sets the S$MVBF flag in RTIOC to the negative of the TDB
address, and returns to RTIOC. RTIOC then knows that the buffer is
not in the program area and this then makes the program swappable and
frees the partition for other uses.

EXEC AND S$ALC

The ©process for output is essentially the same. The output buffer

within the TDB is moved to S.A.M. and S$REIO gives RTIOC the negative
new address in SMUFB which will be outside the program area. The
program may then continue to execute because all the data is outside

the program area.

DISC TRACK ALLOCATION PROCESSORS

DISC TRACK REQUESTS

The system maintains complete control over the allocation and
ownership of the system (LU2) and auxiliary disc (LU3) tracks. User
programs, through EXEC requests, can allocate tracks to themselves
(local) or allocate tracks for general use by anyone (global). User
programs can also release the tracks back to the available pool via
EXEC requests.

A track, if allocated to a program, 1is such that only that program
which requested it can write on it and/or release it. Any program
can read from it.

A global track is such that any program can read from it, write on
it, and/or release it.

Track control is maintained via the Track Assignment Table (TAT).
Peripheral discs (NOT LU2 or LU3) are not managed through the track
assignment table.

Figure 3-2 shows the structure of the system disc (LU2). The system
disc has three distinct areas. The first area, from track O to
approximately track 20 (this area will vary depending on the size of
the system, 15 to 40 tracks is typical) is the system area of the
disc. The virgin copy of the operating system, drivers and all user
programs loaded at generation time are stored in this location.

The second area from approximately track 20 to track 100 is the track
pool or scratch area of the disc. The upper boundary of this area is
determined the first time a generated system is booted up. The
boundary 1is set by the File Manager initialize command. (IN, Master
sec code, -LU, cartridge ref., label, start track, # of tracks).

The Track ©Pool is wused by the system for swapping, text editing,
loading permanent program additions, etc. There must be a minimum of
8 track pool tracks on LU2, however, a minimum of 70 track pool
tracks is recommended.

If the Extended memory Feature of RTE-IVB 1is being used more track
pool area may be necessary to allow swapping of large arrays. The
additional space mneeded can be gauged by recalling that one disc
track contains space for 6144 words.

w
1
—
~

EXEC AND S$ALC

The third area of the system disc is for wuser files. The File
Manager maintains this area.

An auxiliary disc (LU3), Figure 3-3, can be used with RTE to extend
the size of the track pool if desired.

- - ——— - - ——— —————— ———— —— —— — ———— - - —— ————— - ———— ————— A - . - - - G —— — —————

FMP

R e LT | <===-- TRACK 100

TRACK
POOL

(SCRATCH TRACKS)

| SYSTEM TRACKS |

Figure 3-2. LU2

EXEC AND S$ALC

- ——— — ——————— ———————————— —— ——— - ———— T —— - ——— N ——————————————

FMP

| I
| I
I I
I |
| FILE AREA |
I I
I |
I |
I I

| I
| |
| EXTENDED |
| TRACK |
| POOL |
I I
| I
I |
. +{mmmm= TRACK 0

I |
I |
I I
I |
| |
I I
| |
| |
! |
I |
| I
| I
| e b b id | {===-- TRACK 50 |
| |
| |
| I
I |
I I
I |
| |
| |
| |
| |
I |
I I

- - - ———— ———— ——————— ——————————— - ————— ——————— — —————— —— ——————— —————— -

Figure 3-3. LU3

TRACK ASSIGNMENT TABLE (TAT)

The TAT 1is a variable length table describing the availability of
each disc track on the system and auxiliary discs. The TAT is
constructed by "RT4GN" based on user parameters declaring the size of
the system disc and the availability and size of an auxiliary disc.
Each track 1is represented by a one-word entry. The first words of
the table correspond to the "n" tracks of the system disc. The word
"TATSD" in the Base Page Communication Area contains the size of the
system disc as a positive integer. If an auxiliary disc is included,
the rest of the TAT contains one-word entries to describe the tracks
on that disc.

"RT4GN" initializes the protected tracks of the system disc to be
assigned to the system (permanently unavailable).

EXEC AND S$ALC

The contents of a track assignment entry word may be one of the five
values:

CONTENTS OF TRACK ASSIGNMENT TABLE

Contents Meaning

0 Available
100000 Assigned to System (or protected)
077777 Assigned globally (anybody can write)
077776 Assigned to FMGR (FMP Package)
XXXXXX ID segment address of owner

- - ——— - - - e = ——— — ————— - ————————— - —————— —— - —————o—

BP Word Name Purpose

1656 TAT FWA of Track Assignment Table

1755 TATLG NEGATIVE length of Track Assignment Table
1756 TATSD # of Tracks of System Disc

1757 SECT2 # of Sectors/Track on System Disc (LU2)
1760 SECT3 # of Sectors/Track on Aux Disc (LU3)

——— - ——— e ——— - ———— - — ————— — ———— - " ———— " - — - - - - — - - -

- —— ——— - —— —— ——————— - ——— - —— ————— . " - = - ——— — — —————— - —— - - - -

| | OP SYSTEM | | USER REQUEST

| | FMP | | SYSTEM REQUEST

3-20

EXEC AND S$SALC

From the diagram above, the wuser can see how to optimize system
search time for free tracks. No FMP area (or a very small area) on
LU3, 8 tracks of track pool on LU2 (minimum required) will optimize
system search time for system tracks. The wuser can also improve
system performance physically by putting LU2 and LU3 on separate
physical discs.

LU2 and LU3 are both limited to a maximum of 256 tracks.

ERROR MESSAGE PROCESSOR

The EXEC will detect five classes of errors Memory Protect (MP),
Dynamic Mapping (DM), Request Code (RQ), Reentrant Subroutine errors
(RE), and Parity ERRORS (PE).

All of these errors will cause program abortion (even if the no abort
bit is set). The error message and the error is discussed below:

MEMORY PROTECT

In RTE-IVB the operating system is protected by a hardware memory

protect. This means that any program that illegally tries to modify
or jump to the operating system will cause a memory ©protect
interrupt. The operating system intercepts the interrupt and

determines it’s legality. If the memory protect is illegal, then the
program 1is aborted and the following message is reported to the

system console:

MP INST = XXXXXX XXXXXX = OFFENDING OCTAL INSTRUCTION CODE
ABE PPPPPP QQQQQQ R CONTENTS OF A, B & E REGISTERS AT ABORT
XYO PPPPPP QQQQQQ R CONTENTS OF X, Y & O REGISTERS AT ABORT
MP YYYYY 7ZZZZ YYYYY = PROGRAM NAME

2227227 VIOLATION ADDRESS

YYYYY ABORTED

DYNAMIC MAPPING VIOLATION

A dynamic mapping violation occurs when an illegal read or write
occurs to a protected page of memory. This may happen when one user
tries to write beyond his own address space to non existant memory or
someone elses memory. In this case the program is aborted and the
following message is printed:

DM VIOL = WWWWW WWWWW = CONTENTS OF DMS VIOL REGISTER
DM INST = XXXXX

ABE PPPPPP QQQQQQ R

XY0 PPPPPP QQQQQQ R

DM YYYYY 2Z77Z

YYYYY ABORTED

EXEC AND S$ALC

EX ERRORS

It is possible to execute in the privileged mode (i.e. interrupt
system off) in this case the user may not make EXEC requests because
memory protect, which 1is the access vehicle to EXEC is off. An
attempt to make an EXEC call with the interrupt system off will cause
the calling program to be aborted and the following message printed:

EX YYYYY ZZZZ7Z
EX ABORTED

This error is detected in $§TBl. The error is detected by virtue of
the fact that EXEC was entered directly instead of causing a Memory
Protect.

UNEXPECTED DM AND MP ERRORS

The operating system handles all MP and DM violations. Certain of
these violations are legal and others are not. In any case the
operating system associates these violations with program activity.
If a DM or MP error occurs and no program was active then, this is an
unexpected MP or DM violation. Since no program is present, there is
no program to abort in this case the following message will be
printed:

DM VIOL = WWWWW
DM INST = XXXXX OR MP INST = XXXXX

ABE PPPPPP QQQQQQ R ABE PPPPPP QQQQQQ R
XYO PPPPPP QQQQQQ R XYO PPPPPP QQQQQQ R
DM <INT> 0 MP <INT> = 0

*#% WARNING *#* WARNING #** WARNING ** WARNING ** WARNING *%*

The above message which specifies <INT> as the program name is a
signal to the wuser that an unexpected memory protect or dynamic
mapping violation error has occurred. This is a serious violation of

OP system 1integrity. Most times it means user written software
(driver, privileged subroutine) has damaged the operating system
integrity or inadequately performed required (driver) system

housekeeping. It may also mean that the CPU has failed and that the
operating system caught the failure in time to avoid a system crash.

If this =error occurs it is suggested that users save whatever they
were doing (i.e., finish up editing, etc.) and reboot the system. If
only HP system modules are present in the operating system, CPU
failure is highly suspected and CPU diagnostics should be run.

3-22

EXEC AND S$ALC

SYSTEM AVAILABLE MEMORY (SAM)

Reentrant subroutine ID tags, reentrant I/0, automatic buffering to
I/0 devices, and many other operating system features require blocks
of memory to be made available at any time. In order to satisfy
these temporary needs for memory an area of memory was set aside and
called system available memory (SAM). Two routines manage SAM. The
routine $ALC allocates memory to the requestor and the routine $RTN
returns memory no longer needed back to SAM.

SAM is allocated in contiguous chunks of memory and is maintained via
a 1list of available contiguous chunks. Over the course of time
memory will be given away and returned many times. Memory that is
returned is checked to see if it is contiguous from above or below to
any existing free memory. If not it is 1linked to the currently
existing free memory. The link structure uses the first two words of
the chunk returned for the linkage. The first word is the number of
words in that block and the second word contains the address of the
first word of the next available free chunk of memory. If the
returned memory is contiguous to an existing block then the returned
memory 1is concatenated by just updating (or creating) the two word
linkage at the beginning of the block to reflect the fact that the
new block length is greater.

SALC allocates memory to the caller by giving that caller the amount
of memory requested the first time it finds that much memory in a
free block. No best fit algorithm is used as it has been found that
best fit routines are too slow and wasteful of CPU time. Due to the
way $ALC is linked, it can happen that the user will ask S$ALC for N
words and instead get N+1l. This happens when a request for N words
would only leave 1 word of system available memory left over in a
queue block. Since $ALC requires 2 words for its link structure and
only one word would be left, SALC gives the other word to the user to
force him to keep track of it. Appendix B also shows how this one
extra word 1is <carried along if the need arises. It is the users
responsibility to detect this condition and return the extra word
when SRTN is called. As mentioned memory is allocated in contiguous
chunks; however, $SALC is written so that SAM need not be contiguous
memory. The disconnected blocks of memory are linked through the
first two words of each block. A drawing of the linkage for RTE is
shown in Figure 3-4 so that the reader will wunderstand how the
routine will work in the general case.

If a block size request comes into $ALC and the size requested is
larger than any currently contiguous free block, then $ALC returns a
flag to this effect. The calling routine 1is obliged to check for
this condition and may place the program, on whose behalf the request
was made, into the memory suspend state (state 4) via a S$LIST call.
If a program does go into the memory suspend list, then the number of
words requested must also be posted into the second word of the ID
segment. ‘

EXEC AND $ALC

On all SRTN <calls a check is made of the suspend list after the
memory has been added to SAM. If enough contiguous memory has become
available to satisfy the highest priority program in the list (i.e.
the first one in the list), then $LIST is called for every program in
the suspend state until the end of the list or until a request length
is found that is greater than the currently existing largest block of
SAM. For example, if programs A and B are in the suspend list with
priorities of 10 and 20 respectively but with block requests of 1000
and 100 respectively B will never be rescheduled until enough memory
has been collected for A. The philosophy here is that he who has the
highest priority should get resources first. Note, however, that any
future $ALC requests that come in will be honored if there is enough
memory. This allows programs of lesser or greater ©priority to
continue and hopefully give block memory at a later date.

Calling Sequences:

1) $ALC (Allocate section)
(p) JSB $ALC
(P+1) (# words needed)
(P+2) -Return-

On return:

FWA of allocated block, or = 0 if reject
words allocated (may be 1 greater than # requested)

~

o~}

~
o

If no block is large enough to alloctae the requested length,
(A) = 0 on return.

2) SRTN (Return block section)
(p) JSB S$RTN
(P+1) (FWA of buffer)
(P+2) (# words returned)
(P+3) ~-Return: Registers meaningless-

There are no error conditions detected by these sections.

————————————————— ————————————————— ——— —— ————— - —— - — — - - —— ——— A Ton — ———— - ———

///////

MMMMMMMM

%

- ——— - ——— — - W m . W e — - - - . - — . - - —— — = - - - —— e -

EXEC AND S$ALC

Now

suppose the user returns 35 words.

in Figure 3-5.

See what SAM now looks like

—————— - —— —— ——— —————————————— ————— ————— ————— ———————— —————— —————————— > —— - —

77777 MEANS
LAST BLOCK

$PNTR IN $ALC

77777

200

200 WORDS OF SAM

_

THIS MEMORY
NOT IN SAM

N

POINTER TO NEXT BLOCK
50

50 WORDS OF SAM

y THIS MEMORY//
7 7

POINTER TO NEXT BLOCK

35 WORDS OF SAM

POINTER TO NEXT BLOCK

\ 100

100

WORDS OF SAM

Figure 3-5. Example of SAM Linkage After Returning Memory

Chapter 4

SCHEDULER

INTRODUCTION

The scheduler is the RTE-IVB module which oversees program state
transitions, responds to operator input commands, begins system start
up at Dboot up, and satisfies or vectors to other processors eleven
EXEC call requests (EXEC 6,7,8,9,10,11,12,14,22,23 and 24). All of
this processing is done completely from within the system map.

Calls to the scheduler may come from either the user or other parts
of the system itself and thus from either the user map or system map.
For this reason a preamble to certain sections of the scheduler are
found in Table Area 1 which is in both maps. The entry points that
start in the preamble are SLIST, $MESS, $IDNO, and $SCD3. 1In essence
the purpose of this preamble is to get the current DMS status for
return purposes, enable the system map, and jump to the appropriate
processor. While this code is mnot specifically part of the
scheduler, it is, so to speak, the front door.

The technical discussion on the scheduler which follows assumes that
the reader is completely familiar with the 33 word RTE-IVB ID segment
and 3 word ID extension. For those who are not, Appendix A at the
end of this manual contains a complete description of every word, bit
and field.

LIST PROCESSOR

The list processor is a subroutine in the scheduler that is called to
move a program from one state to another. In RTE-IVB a program is
always said to be in a state. The states are:

STATE NUMBER | STATE

| DORMANT

| SCHEDULED

| I/0 SUSPEND

| GENERAL WAIT SUSPEND
| MEMORY SUSPEND

| DISC SUSPEND

| OPERATOR SUSPEND

|

SCHEDULER

The state number is the number used in the status field (word 16) of
the 1ID segment to indicate that a program is in a particular state.
For each of these states, except the dormant state, a linearly linked
list of all programs in that state is kept. The scheduler manages 5
of these lists. The lists and their heads are:

LOCATION | MAJOR STATE

- - —————————————— ———————— ——— ————————

| 1 SCHEDULED LIST
| 3 GENERAL WAIT LIST
1714 | 4 MEMORY SUSPEND LIST
| 5 DISC TRACK WAIT SUSPEND
| 6 OPERATOR SUSPEND
I

The I/0 suspend state has a list headed at each EQT but these lists
are managed by RTIOC not the scheduler.

Programs are moved in and out of these 1lists as their major state
changes. The lists are maintained in priority order with the highest
priority programs first. Programs of the same priority are added to
the 1list behind the others of same priority. Each list is threaded
through ID segment word 1 and is terminated with a zero.

Any number of things can cause a program to move from state to state.
For example, suppose FMGR was executing, entering a *SS,FMGR on the
system console would cause the system (list processor) to move FMGR
from state 1 to state 6. Thus FMGR’s status field would change from
1 to 6, word 1 of FMGR’s 1ID segment would be taken out of the
scheduled list and put into the operator suspend list.

There 1is no user interface to the 1list processor. All calls to the
list processor come from other system modules. User requests are
first processed in the EXEC or scheduler and then go to the list
processor.

LIST PROCESSOR CALLING SEQUENCE

JSB SLIST

OCT (Address Code)(Function Code)

DEF (Address) <This word not always required>
ON RETURN

If A = 0, then no message & B = PROG ID address
If A not = 0, the A = ASCII error code address
& B contains decimal error code

Address codes of O,

6, & 7 are reserved for drivers.

The only function code allowed with these address
codes is 1 (schedule)

If successful A
B
B

0 ELSE
3 ILLEGAL STATUS
5 NO SUCH PROG

SCHEDULER

For a driver that wants to convert a program name to an

ID address: JSB SLIST

OCT 217

DEF PNAME (Prog Name)
This performs a simple list move like changes to priority. (1If
the program is dormant it’s a big NOP). Upon a successful
return (A = 0) B will be the ID address of the program. If the
program 1is scheduled many times, doing this removes the search

time for the ID segment of the program.

Function Code

SN W DN O

17

Dormant Request

Schedule Request

I/0 Suspend Request
General Wait List Request
Memory Available Request
Disc Allocation Request
Operator Suspend Request
Relink Program Request

10 thru 16 are not assigned

Address Code

DUV WN RO

ID segment address
ID segment address
ASCII program name
ID segment address
ID segment address
ID segment address
ID segment address

address (a DEF)
in work (no DEF
in B-Reg(no DEF
in XEQl (no DEF
(Next parameter
put into B Reg
ASCII program name

(5 parameters passed)
(as next octal wvalue)

addr.)

addr.)

addr.)

is value to

at suspension)

(passes 5 parameters)

SCHEDULER

For example:

---0,7,&6 (Four Drivers)—------ —=-l-=== ===2---= —--=3-----

JSB $LIST JSB $LIST JSB SLIST JSB SLIST JSB SLIST JSB SLIST

OCT 001 OCT 701 OCT 601 OCT 1XX OCT 2XX OCT 3XX

DEF RETRN DEF RETRN OCT IDADR OCT IDADR DEF PNAME ID ADR IN $WORK
OCT IDADR DEF PNAME OCT BVAL

DEF PRAM1 DEF PRAMI

DEF PRAM2 DEF PRAM2

DEF PRAM3 DEF PRAM3 (NO INDIRECT DEFS !!)

DEF PRAM4 DEF PRAM4
DEF PRAM5 DEF PRAMS

S fmmmm e
JSB SLIST JSB SLIST
OCT 4XX OCT 5XX

ID ADR IN B REG ID ADR IN XEQT

The 1list processor breaks wup the requests shown in the calling
sequence into four general cases:

1. Dormant Request
2. Schedule Request
3. Operator suspend request
4. Non-operator suspend request
a. I/0 suspend
b. Unavailable Memory suspend
c. Unavailable disc space suspend

In general, before a call to the list processor is made other modules
have done a considerable amount of error checking to see if the
change is 1legitimate. These checks are of the nature "Does the
program exist"? or "Were the parameters 1in the proper range"? etc.
The 1list processor performs a "was-will be" check. That is, what was
the last state; what will be the next state; are the two compatible?
If the compatibility answer is yes, then the requested transition is

made. If the answer is no, then the list processor decides on what
the proper new state will be. In addition, one other answer can be
made. The answer is '"yes, but not now". In this case a bit is set

to flag an action to be deferred. The R,D and O bits are deferred
action bits in the ID segment.

SCHEDULER

DORMANT REQUEST
The transition processing by the list processor is done as follows:

A. If the abort bit is set then:
1. The 5 temporary ID segment words are cleared.
2. The program is placed into a push down stack, linked through
word 9 of the 1ID segment, and headed at $ZZZZ in the

dispatcher. (Refer to Appendix E for what the dispatcher
does to this stack.)

3. XEQT is cleared (Base Page word 1717).

4. The entire status word is cleared and the CL bit.

5. If this is the currently executing program S$SPVCN, the
privileged rest counter, is cleared.

6. Link processor is <called to do the 1list move. (Link
processor is discussed in the next section.

B. If the abort bit is not set and

1. Previous status is I/0 suspend (state 2) or O bit set, then
only set D bit and call link processor.

2. Save resource bit not set then go do Al through A5 above.

3. If resource save bit set and 0O bit not set then CLEAR R&D
bits, set status to =zero; if this is not the currently
executing program set the no parameters bit, and call link

processor.
SCHEDULE REQUEST

The schedule request portion of the list processor checks actual
program status information in the ID segment to see if the program is
schedulable.

On a schedule attempt if the program’s status is not 0, 2, or 6 then:
1. If dormant bit set jump to dormant request processor.

2. If the W bit is set, change the status field to 3 and call the
link processor to put the program in the general wait list.

3. If not 1 or 2 above set entire status word = 1 this clears out
all other bits; then

SCHEDULER

4.

If

If

Call link processor to schedule program.

the current status is 6 and ...

Dormant bit set too, then set status to 0O, clear R&D bits, and
call link processor to make dormant.

Wait bit set too, then change status to 3 (general wait) and call
link processor to put program into general wait state.

Else call link processor to put program in scheduled list. That
is done Al through A4.

the current status is I/0 suspend, state 2,

If O bit set, and R or O bit set then change status field to a 6
and call link processor to make program operator suspended.

If D bit set jump to dormant request processor.

the current status is 0, that is, first dispatch, then:

Perform Cl and C2 in case the program was in the time list and C
on SS command set the 0 bit.

Check if the program is disc resident. If so, check if the
program terminated saving resources or terminated serially
reusable, or was operator suspended. If so, and the program is
still in the ©partition (i.e., has mnot been swapped out or
overlayed), then go to step 3 below, or go do Al-A4 (if the above
is not true).

If still in partition, then call the dispatcher routine $DMAL to
set the partition up to be reused.

The final step is to force the programs timeslice word to a 1.
This indicates that this is a re-dispatch or a new dispatch so
the program is to receive a full timeslice. Then go do Al through
A4,

SCHEDULER

LIST CALLS BY DRIVERS

Certain SLIST <calls have been set aside for use by drivers. These
are list calls with function codes of 0, 6, and 7. The form of the
call is:

JSB S$LIST JSB SLIST JSB SLIST
0CT 001 0CT 701 0CT 601
DEF RETRN DEF RETRN OCT IDADR
0CT IDADR DEF PNAME OCT BVAL
DEF PRAMI DEF PRAMI

DEF PRAM2 DEF PRAM2

DEF PRAM3 DEF PRAM3

DEF PRAM4 DEF PRAM4

DEF PRAMS5 DEF PRAMS5

For function codes of 0 and 7 up to 5 parameters may be passed. At
least one parameter must be supplied. The five parameters are put

into the XTEMP area of the ID segment and may be picked up by calling
RMPAR.

The DEF RETRN must delimit the parameters and no indirect DEF’s are
allowed. For function code of 1, the 1ID address (IDADR) must be in
the call. For function <code of 7 PNAM points to a 3 word array
containing the ASCII program name. For function code 6 BVAL is
placed in word 11 of the ID segment, the B register at suspension.

Only schedule requests may be made. No other requests are allowed.
Note that SLIST does almost no error checking for drivers and none
for the op system. It is assumed that if you call SLIST you know
what you are doing.

OPERATOR SUSPEND REQUEST
1. If the entire status word is 0 and the program is not in the time

list or the status field = 6, then make an "Illegal Status" error
return.

2. If current status field = 2, I/0 suspend, then set 0O bit.

3. If status field = 0 (i.e. other bits =0) then set R&D bits, make
status field = 6, and call link processor to make list move.

4. If not 1,2 or 3 above set status to 6 and call link processor.

NON OPERATOR SUSPEND REQUEST

1. Put requested future status into status field of program’s ID
segment saving all the upper bits of the same word.

SCHEDULER

2. Call link processor to make list transition.

On return from SLIST

A = 0 means success

B = ID address of program referenced
else

A = ASCII error code address and

B = numeric error code

3 means illegal status (not dormant)
5 no such program

LINK PROCESSOR

The REAL TIME EXECUTIVE "LINK PROCESSOR" function is to remove
program from one list to add the program to another list.

When removing a program from a list, a check is made of the program
status to see if it is in the I/0 suspend list. NOTE: The I/O
suspend list is not kept in SCHED, but is kept by I/0 processor
(RTIOC). Thus, 1if the program is in I/0 suspend list, the program
removal portion of the routine is bypassed. If program is not in the
I/0 suspend state, the removal request code value is used to compute
the address of the "top of list" word for the particular list. If
the program cannot be found in the list, or it is a null list, the
program returns as if the action has been performed. This should be
an impossible case. Assuming that the program is found in 1list, the
action taken depends on where the program is in the list.

The removal of program from a list consists of:

1. If I/0 1list (code 2), then this is special case and does not
require removal.

2. 1If NULL list, then error exit taken.
3. If first and only program in lisﬁ, then list value set to zero.

4, If first program 1in 1list, but not the only program in list
(linkage not zero), then set list value to the linkage value.

5. If in middle of list, the linkage of the ID segment which points
to the program to be removed is set to the linkage value of the
program that is removed.

6. If last program in list, the linkage value of previous program in
list is set to zero.

SCHEDULER

After the program has completed the removal portion of the routine,
it can then be added to another list. The addition code value is
examined to see if it is to be added to 1I/0 suspend list, in which
case return 1is made to calling program. Otherwise, the addition
request code value is wused to compute the address of the "top of
list" word for the particular list. Programs are added to a list
according to priority. The program is added to the 1list just prior
to the program of lower priority. The program is added to the 1list
in the following manner:

1. If 1I/0 list (code 2), then this 1is special case and no addition
made to list.

2. If NULL 1list, then 1list wvalue set to point to id segment or
program to be added and the linkage set to zero.

3. If not null list, the program is inserted into list according to
priority level and linkages changed to reflect this insertion.

4, If a lower priority, than any program in list, then last linkage
is set to point to the program to be added and the program
linkage is cleared.

MESSAGE PROCESSOR

The operator input message processor, SMESS, accepts input commands

programatically, generally through the system library routine MESSS

or from the system console via the $TYPE routine.

The STYPE routine is entered by an interrupt created by the operator

striking any key on the system teletype. Upon entry, the system
teletype ready flag is checked for busy. If the flag is busy, then
control is given to $XEQ. If the flag is zero, then check the

session mode flag.

If not in session ($ENBL=0), an * (asterisk) is output to the system
teletype via $XSIO0 and a request for teletype input is made via $XSIO
with the completion address TYPIO. The system teletype flag is set
and control given to $XEQ. When the operator has input his request
(signified by LF), the operator message processor routine ($MESS) is
called. Upon return from $MESS, the A-register is checked for =zero
or non-zero. If non-zero, then a message is to be output from S$MESS
on the system teletype. The A-register contains the address of the
buffer which contains the message. The first word of this buffer
contains the number of characters to be output and the ASCII message
begins at the next word. This message is output wvia $XSIO and
teletype busy flag 1is cleared and control given to $XEQ. If the
A-register 1is zero wupon return from $MESS, the teletype flag is
cleared and control given to $XEQ.

SCHEDULER

If in session ($ENBL not O and invoked by the "EN" command), then we
look for a session control block defined for LUl. This is done by
checking word 3 (session identified) of the first SCB in the 1list
headed by $SHED. If this word is not a "1", we issue the "LOGON"
prompt and start the read of the response ($XSIO with a completion
address of SESIN). When the read has completed, the user response is
sent to a communication program, $YCOM, in a string buffer. $SYCOM
then transmits the request to the "LOGON" program to perform the
actual log on. The session bit map (!BITM) is updated to indicate
that a log—on is in progress for LUl, the system console busy flag is
cleared and exit is to S$XEQ.

If a session already exists for LUl, the break mode prompt- ("S=1
command") is issued. The read of the command is then issued ($XSIO
with a completion address of BRKIN), the system console busy flag is
set, and exit 1is to $XEQ. When the input is complete, a check is
performed to see if the command entered was an "OP" command. If not
an "OPerator" command the command is sent to $YCOM who then sends the
request onto RPNS for processing. If the command was an "OP"
control is transferred to the command processor who processes the
command as 1if it was entered from the system console while not in
session mode.

Why, vyou might ask yourself, do you go to so much trouble in the
processing of the system console. The answer is simple -- you should
never be locked out of the system console. For example, if the
standard PRMPT and R$PNS processing were to replace STYPE while the
system console was enabled for session use, what would happen if you
could not dispatch a program (Disc down, or priority 1 program in a
tight 1loop)? Answer -- nothing! 1In this example the only course of

action would be to reboot the system. With the "OP" command you
simply enter a command and the problem is corrected.

NOTE: The following prompt is issued whenever standard processing
cannot be performed (no memory for string, log—-on started but
not complete, etc.).

S = ??COMMAND?0P,

When this prompt appears, the only command permitted is the
"OP" command (note that the prompt contains the first part of
the "OP" command as a reminder).

If the log=-on or log-off process cannot complete (possibly no
programs will run) commands may still be entered via this
version of the "OP" command.

The entry point $MESS is in Table Area 1. It is a front end to the
actual processing itself. It contains:

$MESS NOP
SSM $MEU
SJP $MSG

SCHEDULER

The entry point S$SMEU will then contain the DMS status of the system
when the S$MESS «call was made. This status will be restored when
SMESS returns.

SMESS is not a closed subroutine. For example, the OF command will
cause a program to be aborted and the associated clean up code to be
executed. The return is to the dispatcher not to the caller of $MESS.

The following things are done for calls to $MESS:
1. The command’s existence is verified.

2. The command is parsed.

3. The command is dispatched.

The first of these operations is done by checking the transmission
log. If zero characters were received, S$MESS just exits.

If, wupon entry to SMESS, character count is non-zero then the
internal parsing routine is called and ©parses the entire operator
input. The output of the parse routine is a 33 word internal buffer.
The calling sequence and two examples are shown below:

The Parsing routine scans the ASCII input buffer and stores the data
into parameter tables. Commas are wused to flag separation of
parameters. The character count from teletype driver is assumed to
be in the B register upon entry.

A parameter may be up to six ASCII characters in length. There may
be up to seven parameters and one operation code input with a maximum

of eighty characters. As the input is scanned, a count of parameters
and count of characters for each parameter is kept. Characters are
stored 1left justified in the ©buffer. Word PARAM contains the
parameter count and OP,Pl,...,P7 contains the ASCII parameter values.
The character count for each parameter is kept in word just prior to
buffers. PARAM is kept as positive integer and character counts are
negative integers.

SYSTEM PARSE ROUTINE

Calling sequence:

JSB $PARS
DEF PBUFR 33 word buffer for parsed output

A-REG = input buffer address
B-REG positive character count

SCHEDULER

The parse routine will accept up to 8 parameters delimited by commas.
Each parameter is parsed into 4 words where the first word describes
the type of parameter. The format is shown below:

WORD # | CONTENTS
L (TYPE) | 0 if null, 1 if numeric, 2 if ASCIT
2 : binary # if type = 1, 1lst two ASCII char’s if type = 2
3 1 used for ASCII only = 2nd two ASCII characters
4 1 used for ASCII only = 3rd two ASCII characters
I

Example:

PQ, P Q RST,55,,10B,556377X,ABCDEFGHIJ

Notes:

1. All blanks are ignored.

2. Any ASCII characters past the first 6 are ignored

3. To enter ASCII 77 enter ,77 X, where X is any ASCII character

After the command is parsed its existance must be verified. This is
done Dby a table look up. The Table is at LDOPC and is just a simple
list of ASCII opcodes. If the opcode is wvalid, then a jump is made
through table LDJMP. Each entry in LDOPC has a corresponding entry
on LDJMP. LDJMP contains the address of the various processors.

Note how easy this makes adding new commands. One merely places the
ASCII opcode into LDOPC and the address of the processor into LDJIMP.

Commands not in the table are dispatched to a routine which returns
the proper error.

Errors are returned to the caller of $MESS to be printed in the

proper place (or not at all). Recall that $MESS can be called from a
program via MESSS (see the library section of your manual).

SYSTEM START UP

When the user pushes the run button the final time on system boot up
a jump is made to the $STRT routine in the scheduler. $STRT s job is
to get the system going. This section of code is executed once and
is later overlayed.

The first thing that the start up routine does 1is to set up the
system map.

SCHEDULER

To begin with the first 32K of physical memory will be the system map
none of which will be write protected. A JSB is then made to $CNFG,
the slow boot routine. This will allow the wuser to reconfigure
system available memory, I/0, and partitions. After this the slow
boot returns to S$STRT so that set up of the =system map can be
finished. This mapping routine uses the following information about
system available memory.

lst PHYSICAL "CHUNK" of SAM

15 10 9 0
$MPSA | # of PAGES | PHYSICAL START PAGE |
BP 1660 LOGICAL START ADDRESS
BP 1661 NUMBER OF WORDS

2nd PHYSICAL "CHUNK" OF SAM

10 9

$MPS2 | # OF PAGES | PHYSICAL START PAGE |
BP 1662 LOGICAL START ADDRESS

BP 1663 NUMBER OF WORDS

BP 1664 LOGICAL START ADDRESS

BP 1665 NUMBER OF WORDS

BP 1666 LOGICAL START ADDRESS

BP 1667 NUMBER OF WORDS

BP 1670 LOGICAL START ADDRESS

BP 1671 NUMBER OF WORDS

The first area of SAM, which is a minimum of 2 pages, is set up by
the generator and does not change. Physically it is located directly
behind the operating system. The second area is set up at generation
time but 1is changable via $CNFG at boot up. It physically resides
after the memory resident program area (i.e., before the first
program partition).

Note that the second area is divided into four pieces. This allows
the user (with the slow boot) to work his way around any bad pages of
memory that may exist within SAM.

While the two areas are not physically contigious, they will be made
logically contigious. This is done by taking the physical page
numbers of both areas of SAM and placing these numbers contigiously
into the DMS registers corresponding to their logical address in the
system map. SRTN, the system available memory return routine is then
called at least twice to fill up SAM with the now contigious memory.

~
I

13

SCHEDULER

When this calculation is complete the system map is reset. Typically
it would look as shown in Figure 4-1.

The $STRT routine also initializes the contents of a few system entry
points for 1later use by other system modules. The following entry
points are set.

SCHEDULER

Z=32-[X+Y]
= Unused portion
of Sys Map

—— - —— - ——— — ——————— ——

First X pages

of Physical

Memory |
I |

|
Write Protected---

from here up

A

|

| 2nd Chunk
| AVAILABLE
|
|

| 1st Chunk
| AVAILABLE

of SYS
MEMORY

of SYS
MEMORY

+ 31K (Logical)

| *
I

| *

|
| *

Logical Stop
I
| 2+ Pages
Start
I
| $SDT2
|
{=- $SDD ~=====--
| $COML
{=- $CMST -------

+ OK (Logical)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
< Logical :
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4-1.

System Map for Start Up

SCHEDULER

SCMST Starting page of common.

Note that logical and physical pages are the same for

$CMST.

$CMST = bits 14-10 of SDLP shifted down

SDLP = disc resident program load point set up by generator
$COML Number of pages of common

$COML - bits 14-10 shifted down of [MPFI (3) + BGCOM-$DLP]

Where: BGCOM = base page 1753 length of background common

MPFI(3) = fourth entry in memory protect fence
table. Start of background common.

$SDA Starting page of system driver area.
$SDA = S$CMST + S$COML
Note that logical and physical pages are the same for

$SDT2 Number of pages occupied by the system driver area

and table area II.
$SDT2 = Bits 14-10 shifted down of SPLD-$SDA
Where: SPLD is the privileged program load point set up

by the generator.

SRLB Logical starting page of the memory resident library.
SRLB = bits 14-10 shifted down of LBORG (Base Page
location 1745) LBORG is the address of the library set
by the generator.

SRLN Number of pages in memory resident library.
g y
$RLN = bits 14-10 shifted down of [MPFI(1l) - LBORG]

After initializing these values $STRT calls the $ZZZZ routine in the
dispatcher. At this time XEQT is <cleared; the interrupt system is
cleared; the memory protect fence register is set to 0, swap delay is
set up; a check is made to see if there are background, real time,
and chained partitions and if not the partition list headers are
reset, and 1lastly FMGR is scheduled. This section of code is only
executed once and is later overlayed. A return is made to $STRT.

The 1last thing $STRT does is pick up the ID address of FMGR, D.RTR,
and SMP. These addresses are used later by the system for various
types of error checking. $STRT then jumps to the EXEC to finish the
system start up.

EXEC also saves D.RTR’s address for error checking so that its disc

tracks are not released improperly by the user. EXEC then jumps to
SCGRN in the $TRRN module to set up the resource number table. A
last jump is made then to $SCLK in RTIME to start up the real time
clock.

4-16

SCHEDULER

The $SCLK routine starts the time base generator, uses the RTIOC
routine $SYMG to print out ‘SET TIME’ and lastly jumps to $XEQ in the
dispatcher. The system is now ready to go.

EXEC REQUEST HANDLERS

Currently there are eleven EXEC REQUESTS involved in the scheduler.
They are:

EXEC REQUEST # PURPOSE ENTRY POINT
6 Program Completion SMPT1
7 Program Suspend SMP T2
8 Load Background Program SMPT3
Segment
9 Schedule w/wait SMPT4
10 Schedule w/o wait $MPT5
11 System Time Request SMPT6*
12 Schedule at absolute time SMPT7*
or with time offset
14 GET or put string SMPT9
22 Program Swap Control SMPT8
23 Schedule w/wait and w/queue $MPT4
24 Schedule w/o wait and w/queue $MPT5

* The processing of these requests is shared with the system module
RTIME.

Control is transferred to the entry points shown above from the EXEC.
Briefly, +the EXEC call creates a memory protect interrupt which goes
to the $CIC routine in the RTIOC module. $CIC transfers control to
EXEC after finding that the interrupt was due to memory protect.
EXEC checks the parameters for various error conditions (refer to the
EXEC Technical Specifications) and if all is well transfers control
to the appropriate entry point.

As can be seen from the table above many of the requests ultimately
deal with the list processor. In general, the processors pull in the
request parameters locally, check them for validity, and if the
parameters are valid, a call to the list processor is made.

Four of these requests are briefly discussed here. The other
requests are discussed in conjunction with other scheduler functions.

SCHEDULER

PROGRAM SUSPEND REQUEST

This is an EXEC 7 Request. The processor first checks the program’s

batch Dbit. If set, an SCO00 error is generated and the program
aborted. This is because programs under batch may not be suspended.

If clear, $ALDM, which is a dispatcher subroutine that will move the
partition out of the allocated list and into the dormant 1list, is
called. Lastly, $SLIST is called to operator suspend the program.

SEGMENT LOAD REQUEST

This is an EXEC 8 request. The processor first looks at the request
counte. If bad, an SC01 error 1is generated. If OK the system
subroutine TNAME is called to get the ID address of the segment. If

it is not found, an SCO5 error is generated. The entry point address
of the segment 1is then fetched and made the return address of the

segment load EXEC call. $BRED in the dispatcher is called to do the
actual load. Any parameters that are to be passed are placed in the
temporary words of the ID segment. Control is then transferred to

$XEQ.

SYSTEM TIME REQUEST

This is an EXEC 11 request. It returns the current system time. The
time 1is kept in two words. ($TIME and S$TIME+1l) in Table Area II.
Each bit corresponds to 10 MSEC with the most significant bits in the
upper byte of the second word.

The scheduler checks the input parameters for errors, picks up the
time words and turns the rest of the processing over to the S$TIMV

routine in the RTIME module. STIMV takes the words and formats them
into hours, days, minutes and 10ths of MSECs.

TIME SCHEDULE REQUEST

Only the request count and resolution codes are checked in the

scheduler. GETID 1is called to get the programs ID address. All
other processing is turned over to $TIMR in the RTIME module.

PROGRAM TERMINATION

In RTE-IVB there are 9 ways a user may terminate his program. In
addition, the system may abort programs too. The user has three
variations of the OF command, five variations of the EXEC 6 request,
and the EXEC 12 REQUEST. Some of these may be grouped, however, in
terms of what the system does.

1. TYPE 1 SOFT ABORT
a. OF,PROG
b. CALL EXEC (6,0,2)

~
|

18

SCHEDULER

2. TYPE 2 HARD ABORT
a. OF,PROG,1
b. CALL EXEC (6,0,3)
c. SYSTEM ABORT

3. TYPE 3 Remove program from System
a. OF,PROG,8

4., TYPE 4 TERMINATE SAVING RESOURCES

a. CALL EXEC (6,0,1)
b. CALL EXEC (12,...)

5. TYPE 5 TERMINATE SERIALLY REUSABLE
a. Call EXEC (6,0,-1)

6. TYPE 6 NORMAL PROGRAMMATIC COMPLETION
a. CALL EXEC (6,0,0)

We shall discuss each of these types in the order of increased system
processing requirements.

The type 6, normal completion request, requires the least processing
and 1is by far the most common of program terminations. It is mostly
done in the scheduler TERM subroutine.

The TERM routine first calls the list processor to put the program
dormant. If the father’s waiting bit (FW) is set for this program,
then the system finds the father and clears his ‘W’ bit which was
set, and if he is in state 3, the list processor is called to
schedule him. It is possible that the father is waiting but is not
in state 3. This would indicate that he is possibly dormant because
his father made him dormant or that he is in another state with the
‘W’ bit set. For this reason he is rescheduled only if he is in
state 3. For other cases the list processor picks up the fact that
he should be scheduled by the indication that was left by clearing
the ‘W’ bit. The TERM routine then clears all but the "RM","RE".

"PW and "RN" bits in words 21 of the program being put dormant, and
returns. The RN bit of the ID segment indicates that the program has
resource numbers. The RM flag 1indicates that it has re-entrant
memory that has been moved. These resources will be released by
DISPA when it finds the program linked into the abort list at "$zZZzz"
(refer to Appendix E for a description of this process).

Next, any optional parameters supplied in the termination request are
placed 1in the 5 word temporary word of the ID segment. This allows
the original scheduling parameters (or any others) to be picked up
with the system subroutine RMPAR.

Next, bit 1 is set in word 20 of the ID segment to indicate normal
termination. This flag is checked when the ABORT processor in the
Dispatcher calls $EQCL to handle EQT’s 1locked to the program. Refer
to the Equipment Locking Capability section in Chapter 2 for details.

4-19

SCHEDULER

This is the minimum processing for program completion.

The Type 1, soft abort termination, requires a little more
processing. The soft abort starts with a call to the SABRT subroutine
in the scheduler.

The first thing SABRT does is to clear the ‘R’ and D bit in the
status word. This will force the list processor (SLIST) to truly put
the program dormant. The system then calls $TREM (in RTIME), which
will remove the program from the time list. This clears the ID
segments T bit.

The W bit 1is checked next, if set then this program is a father
waiting for a son. (Recall that son’s ID address is in word 2 of
fathers ID segment.) In this case the sons FW bit is cleared. This
insures proper processing when the son terminates.

The TERM subroutine, described earlier is next called.

Lastly the SABRT routine checks to see if this program is the son of
another program. If so then a 100000B is placed into word 2 of the
fathers ID segment and the address of word 2 is placed into word 11,
the B register at suspension word. This allows the father to do a
RMPAR call and to get back a word (the first of 5) that indicates
that the son program was aborted. This is how FMGR, for example,
knows to generate the "ABEND XXXXX ABORTED" message.

Next 1in order of processing is type 2, the hard abort. The hard
abort 1is performed in the $ABRT subroutine. However, before calling
this routine a check is made of the programs current status. If the
status 1is I/0 suspend (state 2) a jump is made to the RTIOC routine
$I0CL.

Briefly, $IOCL CLEARS out any ‘hang up’ conditions caused by program
input or output. It scans all the EQT’s I/0 linked lists looking to
see 1if the program is in the list. (Linked through first word in ID
segment). If any I/0 is found the program is delinked and the I/0
cleared. $I0CL then calls $ABRT to finish the abort.

$ABRT sets the abort ("A") bit in the programs status word (recall
that we discussed this bit in the SLIST discussion). The "A" bit
being set indicates a hard abort to $LIST and forces it to set the
program dormant. SABRT then calls SABRT which we just discussed.
$ABRT then calls $SDRL in EXEC which releases any disc tracks the
program owns, and, if any are released, calls SLIST to schedule all
programs waiting for disc tracks. The exception here is that $SDRL
will not release tracks belonging to D.RTR. After $SDRL returns,
S$ABRT sets wup the program abort message and sends it to $SYMG in
RTIOC which will send it to the system console.

SCHEDULER

Next 1in order of processing is the power abort, type 3. Normally
this 1is not done programmatically (call to SMESS), it is done with
the OF command. The power abort calls $ABRT to do the hard abort
first. The TM bit is next checked if the TM bit is set, it indicates
that the program was loaded temporarily online, and there is no copy
of its ID-segment on the disc. Only 1in this case can the OF
processor clear the ID segment. The rest of the OF code computes the
number and location of the tracks holding the program (words 23-27 of
the ID segment) calls S$DREL in EXEC to release the tracks. The OF
request assumes an ID segment owns a track only if it references
sector O on that track. This convention prevents double release of
tracks in cases where background segments start in the middle of a
track. Furthermore, S$DREL will only release the tracks if they are
owned by the system (i.e., it will not free FMP tracks). S$SDREL also
reschedules any programs waiting for disc tracks by calling SLIST.

When S$DREL returns, the OF routine clears the 3 name words (except
for the SS bit, which indicates a short ID-segment, and the track
assignment words), it releases any EMA ID extension, and then goes to

$XEQ.

The type 4, save resources termination is a special case of the
normal termination. In this case the dispatcher subroutine $ALDM is
called. This routine unlinks the partition the program executed in
from the allocated list and puts the partition into the dormant list.
The S$MATA entry D bit is also set. Next the R bit in the ID segment
is set. This 1is done so that the 1list processor will not put the
program in the clean up stack headed at $2ZZZ. (Refer to Appendix E)
(SLIST will clear the R bit).

Now if this <case is a father terminating his son then all that is
left to do is a $LIST call to place the program dormant. The more
general case, however, is the program terminating itself.

In this case the SWATR routine is called. All $WATR does is check
the PW bit to see if any other program wants to schedule this program
that is doing the save resources termination. If the bit is set then
a search of the general wait list is made to see who is waiting.
(Recall word 2 of the waiting program will have the prospective son’s

ID address. The prospective son is now doing the save resources
termination). If the prospective father can be found a SLIST call is
made to reschedule him. This allows the schedule request to be

reissued. The rest of the processing is done exactly like the normal
program termination.

4-21

SCHEDULER

Lastly there is the serially reusable completion. A check is made to

make sure a father is not trying to terminate a son as serially
reusable. If this is detected a normal termination results. If the
program 1is terminating itself then the TERM subroutine is called.
Next the least significant bit of the father ID number word is set as
a flag to the dispatcher clean up routine (refer to Appendix E) that
the programs partition is not to be put in the free list. $ALDM is
then <called to take care of the partition. Lastly any optional
parameters supplied are placed in the ID segment temporary area.

PROGRAM SCHEDULING

There are four ways to schedule a program in RTE-IVB. The program
can be scheduled by time, event, operator command, or another

program.

NOTE that if a session program is in the time 1list, the following
access restrictions are enforced:

-EXEC schedule or program time value requests referencing a program
in the time list may only be issued by another program of the same
session. An attempt to reference a session’s time scheduled
program by another session or a non-session program will result in
an SCl1l error.

-The session operator commands IT, RU and ON have the same access
restrictions as described above. Attempts to reference a time
scheduled program belonging to another sssion will result in an
"ILLEGAL STATUS" error.

Note that the above restrictions apply to session programs and
operator commands only.

To schedule a program by time the program must have been in the time
list already. (This would require the operator ON request earlier).
Every time the time base generator interrupts control is transferred
to the $CLCK routine in the RTIME module. Here every program in the
time 1list (threaded through ID word 17) is checked to see if it is
time to execute. If words 19 & 20 of the ID segment equal the system
time stored at $TIME & S$TIME+1l and if the program is dormant, a call
is made to the list processor to schedule the program. Regardless of
program state, the next start time is calculated and stored back into
the ID segment. (The new time is not computed if the multiple value
is 0. This means the program is to be removed from the time list.)

Scheduling by event is typically done by drivers. DVROO and DVRO5
for example, schedule the program PRMPT due to an event, that is, an
interrupt. This scheduling is done by a $LIST call.

SCHEDULER

The ON and RU commands are another way to schedule a program. These
two commands differ in that the RU command will schedule a program
now regardless of the time 1list parameters. The ON command is
capable of putting a program in the time list and/or scheduling the
program immediately. In both cases a call is made to SLIST to do the
scheduling.

Before the SLIST call is made the program is checked to see if it 1is
dormant. If not an "illegal status" message 1is returned. If the
"IH’ was not entered in the schedule command and parameters are
allowed on schedule (i.e. NP bit Clear), then any parameters supplied
with the command are put into a string block in system available
memory. The first five of the parameters are placed into the
temporary words of the ID segment. (String processing is discussed
in the next section.) In the case of the RU command the SLIST call
is made next and that’s the end of the RU processing.

The ON processor looks at the programs ID segment resolution code to
determine the next process. If the resolution code 1is 0, only a
SLIST <call is made. If the resolution code is not O then the SONTM
processor in RTIME finishes the processing. Basically $ONTM checks
for the NO (NOW) in the command. If present then the program is put
into the time 1list and executes at the current system time and 10
milleseconds. If the NO is absent $ONTM places the program into the
time 1list. The program then executes at the time specified in words
19 and 20 of it’s ID segment.

The last way to schedule a program is programmatically (EXEC 9, 10,
23 and 24 requests). The processing here is somewhat more involved
than the ON or RU commands because a father son relationship is
involved. Most of the processing is done in the IDCHK subroutine.
The routine does the following:

1. Makes sure the program exists, else generates an SCO5 error.

2. Makes sure the mname specified 1is not a segment name, else
generates an SCO5 error.

3. Makes sure the program will find a partition large enough to
execute in, else generates an SC09 or SCO8 error.

4, Places perspective son’s NP bit and bits 0-3 of status field into
the perspective father’s A-Register at suspension word.

5. Calls the string passing routines if necessary. (i.e., if RQP9 =
0 no string passing.)

6. Makes sure that the first five optional scheduling parameters are
put into the sons ID temporary words.

4-23

SCHEDULER

For exec 9, 10, 23, and 24 requests, the RU, ON, SZ and AS commands,
the SIZIT subroutine is called to see if a partition exists that is
large enough to execute the program. Thus insuring that a program
scheduled is dispatchable. For memory resident programs the check 1is
ignored.

For non EMA programs the check uses the # of pages field, word 22, of
the ID segment and compares this against:

of pages =¢ $MBGP if the program is background

of pages =¢ SMRTP if the program is real time

Alternatively, if the program is assigned to a partition (RP bit in
ID segment set) then the partition # field is used as an index into

the SMATA table to see if the destination partition is large enough
for the program and if the ©partition is still defined. (Note

programs already in memory with an allocated partition may not have
their sizes changed. The SZ operator request error check routine
guards against this.)

It may also happen that S$SMBGP or S$MRTP is larger than a 32K address
space. In this <case the check # of pages =< MAX ADDRESS SPACE is

used.
If the program is an EMA program, the following check is used.
OF PAGES - MSEG + EMA SIZE =< $MCHN OR ASSIGNED PARTITION SIZE

where MSEG is in word 1 of the ID extension, EMA size is in word 29
of the ID segment, and $MCHAN is the size of the largest
Mother Partition.

If the check fails on SC09 or SCO08 error (SIZE ERROR) will result.
However, if the DE bit (EMA default) is set then the EMA size is
reset to 1 and the check is performed again. If the check now passes
all is well and the EMA size of 1 will be used by the dispatcher as a
flag to give the program the largest possible EMA size.

If the reader has already read the sections on the AS and SZ
commands, the question may come up "Why check for size, this is
already done in the LOADR and for on line commands?" the reason is
that the FMGR “SP’ and 'RP’ commands allow the user to save programs
whose size or assignment may not match the currently defined
partitions. The error checking prevents a mismatch of program and
partition from causing system problems.

~
U

24

SCHEDULER

NOTE that every time a program is scheduled $MCHN, $MBGP or &MRTP (or
the destination partition size) is used as a check to see if the
program can fit into a partition. If $MCHN, S$MRTP or $MBGP = 0, then
no partitions of that type is available and the program is not
dispatchable. This may happen if a parity error causes a partition
or partitions to become undefined. Should the scheduler detect this
condition, the ©program will not be scheduled and an SC08, SC09, or
"SIZE ERROR’ will be reported to the system console.

STRING PASSING

Upon scheduling a program with the RU, ON or GO commands, a section
of system—available-memory (SAM) will be allocated for storage of any
command string and entered in a push down stack linked through the
first word of each block (see Figure 4-2). The head of the stack
will have the name $STRG and reside in the SCHED module. A command
string 1is defined as everything following the prompt in a scheduling
call.

If the program is scheduled by a RUIH,ONIH, or GOIH, then the string
storage portion of the command will be inhibited. The first word of
each block of memory will contain a pointer to the next memo.y block.
The 1last block of memory in the stack will contain O in its 1link
word. The second word of each block of memory will contain the ID
address of the scheduled program. The sign bit, when set, will
indicate that the memory block has an additional word (see system
description of the memory allocation routine, ($ALC)).

The third word of each block will contain the character count of
the command string. The fourth through (N+1+3)/2 words will contain

the N characters in the command string.

Upon scheduling a program with the RU, ON or GO command, the
following steps will occur at parameter storage time:

1. If there is no parameter string, continue at Step 5.
2. Store parsed parameters into ID segment words 2 to 6 as before.

3. If the command is RUIH, ONIH or GOIH then do not store parameter
string and continue at 5.

SCHEDULER

4. Deallocate any string block(s) associated with the scheduled
program.

Allocate a block from SAM, store the entire command string into
the Dblock and enter it into the stack. If SAM is not available,
then the request 1is ignored, the following error message 1is
issued to the operator’s terminal:

CMD IGNORED - NO MEM

and control is returned to the system at $XEQ.

5. Schedule the program for execution.

The wuser can retrieve the string by using the EXEC 14 request or the
system library routine GETST. Both routines release the string
memory back to the system. Alternately, programs can still recover
the first five parameters (treated as one computer word each) by
using the RMPAR call as the first call in the program.

Any time a program goes dormant, normally or abnormally, any command
string block assigned to the program will be returned to SAM. This
is accomplished in the ABORT routine of the dispatcher.

SCHEDULER INTERFACE WITH DISPATCHER

Several portions of the scheduler interface to the dispatcher. The
list processor portion of the scheduler interfaces on program
scheduling. The list processor also interfaces with the dispatcher
on program completion as described in Appendix B. In addition, the
UR, AS and SZ operator commands affect the dispatchability of a
program. The error checking for these commands is discussed below.

4-26

SCHEDULER

—— . — ————— ——— - ———— —— ————— — ————————————— —————— o —— — — — o " = S = —_——— - —

|
I
|
| $STRG
| e + e ettt + e + fmmm +
| | Kemm | ===>| e Fmmmm | == | 0 I
[t--———-- + |——=—=——=—===== | |=====mmm—- I |===m————==—- |
| R >| |ID Address | (. l bl I
[I === mm - I |=====m===—=- I == I
I | IN characters 13 | |]]
| Extra word bit |===—===——————- I |-] | mmm I
| (set if S$SALC l[char | char |4 | | [|
jreturns n+l [==m—mm | I I | |
Jonly n requested | | e | [mmm————————— I
| |====—mm—————-- I

lchar N |(N+1)/2 + 3

I
|
I
|
|
I
I
I
I
I
I
I
|
jwords and if | | I I I Il
I
I
l
|
I
!
I
|
I
I
!
|

- —————— - —————————————— ———————————— ——————————————— - —————————— ————

Figure 4-2. Stacking of Memory Blocks

The AS and SZ both require the program referenced to be dormant and
not memory vresident. Moreover, the program must not still own the
last partition in which it executed. (Recall that a serial reusable,
save resource termination, operator suspension does not release the
partition.) The partition # field of word 22 is used as on index into
the S$MATA table and the $MATA residency word is checked to make sure
the referenced program no longer owns the partition. If any of these
conditions are not met the "ILLEGAL STATUS MESSAGE" is output.

Some other error checking is performed for the AS command. The
Partition must exist and the size of the program is checked against
the size of the referenced partition. For non EMA programs the # of
pages field 1is compared against and must not be greater than the
partitions $MATA entry. For EMA programs the formula used is:

of Pages - MSEG SIZE + EMA SIZE <= MOTHER PARTITION SIZE
where: MSEG SIZE 1is in word 1 of the ID extension, EMA SIZE is in

word 29 of the ID segment, and MOTHER PARTITION SIZE is in
the SMATA table.

4-27

SCHEDULER

EMA programs may be assigned to regular partitions in addition to
chained ones. The size check formula used in this case is

OF PAGES - MSEG+EMA SIZE <= PARTITION SIZE

If at the end of all the error checking, the AS command is determined
to be valid, then the RP bit is set and the partition # is set into
partition # field.

(Partitions count from O. That is; AS,PROGX,7 will result in a 6
being placed into the partition # field.)

The SZ command processor performs the program partition and size
checks mentioned earlier plus a few more. Word 30 of the program ID
segment for segmented programs or word 24 for non segmented programs
is wused as the lower limit of the error check. The upper limit is
defined by the program type as follows:

new SIZE-1< SMBGP for background programs
new SIZE-1< SMRTP for real time programs

If the program is assigned to a partition
new SIZE-1 <= ASSIGNED PARTITION SIZE
(The minus one is because $MBGP & S$MRTP does not include Base Page.)

If the size is found to be valid then the # of pages field is updated
to reflect the new size. (Note that the # of pages field does not
include base page.)

NOTE also that $MRTP, $SMBGP, or the partition size is not used if the
MAX address space is smaller than these values. That is, a program
plus the associated system tables may not exceed a 32K address space.

EMA programs have a special form of the SZ command (i.e., SZ,PROG,P1,
P2). As mentioned earlier checks for partition and program status
are made. Other checks are also made. The DE bit, word 1 of the ID
extension must be set to change EMA size or the command is invalid.
Recall that a set DE bit means default EMA (not necessarily MSEG) was
taken.

In this case Pl is the new EMA size and P2 is the new MSEG size. P1
is checked as:

P1 + PROG CODE SIZE <= $MCHN or assigned partition size
P2 is checked as:
P2 + PROG CODE SIZE <= PROG Address space
If both of the above are satisfied P1l, the new EMA size is placed

into the EMA size field of word 29 of the ID segment and P2 is placed
into the MSEG field of the 1lst word of the ID extension.

4-28

SCHEDULER

The last operator command that affects partitions is the UR command.
This command clears the R bit in the referenced partition’s $MATA
table entry. This command may affect the system entry points $MCHN,
SMBGP and S$SMRTP. These entry points contain the size of the largest
unreserved partition of that type (i.e. Mother, background and real
time).

If a partition is being unreserved and it would then be the largest
unreserved partition of its type then $MAXP will be called to do the

appropriate updating.

4-29

Chapter 5

PERR4 - RTE-IVB PARITY ERROR MODULE

PARITY MODULE OVERVIEW
The Parity Error module’s main task is to report parity errors
detected by the hardware and to continue operation of the RTE-IVB
system if possible. PERR4 also tries to reproduce parity errors to

identify and warn system users of soft parity errors: errors which
may be intermittent or may be generated erroneously.

EXTERNAL COMMUNICATION
The Parity Error module communicates with the rest of the operating

system through the system tables, base page communication area, and
subroutine calls to other modules in the system.

SYSTEM TABLES REFERENCED

The System tables used by PERR4 are:
a. ID Segment entry for accessing program status.
b. S$MATA table for accessing partition configuration information.

c. INT table for determining PORT map status.

SYSTEM BASE PAGE COMMUNICATION

XMATA 1646 Address of current MAP entry
INTBA 1654 Address of interrupt table

EQT1 1660 Address of current EQT entry
XEQT 1717 Address of current program ID

Segment entry.

PERR4 - RTE-IVB PARITY ERROR MODULE

EXTERNAL SUBROUTINES CALLED

SABXY - set up ABE,XYO register reporting messages
and print them on system console

$§CNV1 - convert number to ASCII (one word)

$CNV3 - convert number to ASCII (three words)

$ERMG - wused by PERR4 to print "PE" error message
and abort user program

SMAXP - reestablish maximum size words of
unreserved partitions

$§SYMG - print message on system console

SUNPE - unlink a partition entry from the proper

list and undefine the partition.

OTHER EXTERNAL REFERENCES

$CIC

entry point to Central Interrupt Control

routine (contains address of last point of

interrupt).

two word save area.

word 1 - DMS status at last interrupt

word 2 - Interrupt status at last interrupt
0 if ON, 1 if OFF.

entry point of Dispatcher. This is used

instead of the return point at $CIC when

a program is aborted.

$DMS

$XCQ

DETAILED TECHNICAL ASPECTS OF OPERATIONS

This portion of the Technical Specifications is a detailed
description of the major portions of the Parity Error module, PERR4.
It 1is assumed the reader is familiar with the detailed operations of
the Dispatcher (DISP4) and the I/0 module (RTIO4).

PARITY ERROR DETECTION

Because parity error interrupts can occur even when the interrupt
system is off, the code at $CIC must be able to save the complete
system status. The major hole in being able to save the complete
state 1is in saving the interrupt system state. In order to do this
in both the 21MX and the 21XE the instruction 103300 was used to both

test the interrupt system and turn it off.

PERR4 - RTE-IVB PARITY ERROR MODULE

Parity error interrupts may be generated at almost anytime because
DCPC transfers may be stealing memory access cycles. If it occurs
while the system is in the idle loop, $CIC can not save the registers
in XA, XB, etc. because all of these are actually one location. It
was necessary for $CIC to identify the source of interrupt before
saving all the registers. Only the A-register needs to be saved
temporarily so that LIA 4 and a LIA 5 can be done. PERR4 is entered
only when LIA 4 = 5 and LIA 5 = 1l1XXXXX.

PERR4 saves all registers in local locations. It requires that 2
words be set up at entry point $DMS by $CIC. The first word being
the DMS status register contents containing the memory protect status
and mapping information. The second word indicates the status of the
interrupt system at the last interrupt (the parity error interrupt).
The 1logical parity error address from the violation register is
saved. The contents of location 5 are saved and replaced by a JSB
indirect through a base page location to a PERR4 routine.

PARITY ERROR VERIFICATION

The routine TRYPE 1is called to test if the parity error is in the
system map. [The DMS status word cannot be used to determine the map
under which the parity error occurred Dbecause certain DMS
instructions change maps in the course of their execution and do not
change the DMS status register.] TRYPE saves the map indicator value
and then re-enables the parity error system. If the system map is
needed, a regular load is done from the logical address of the parity
error. The next instruction is executed if there is no parity error
at tested 1location. If the user map is needed, a cross—-map load
instruction is wused to read from the logical address of the parity
error. The next instruction 1is executed if no parity error is
detected. CLF 5 is wused to turn off parity error until another
verification attempt 1is made. A NOP 1is needed between the XLA
LOGPE,I and the CLF 5 because of timing delays required by the HP
1000 M, E, and F Series computers.

If a parity error cannot be reproduced in the system map an attempt
is made in the port maps. The user map is saved before the port Maps
are checked. The interrupt table is checked to see DCPC channel 1 is

busy. If it is, the Port A map registers are copied into the user
map. The TRYPE routine is called to try and reproduce the parity
error. If no error is found the next DCPC channel is tested in the

Same mannere.

After both DCPC channels have been tried without success, the user
map registers are restored and TRYPE is called once again. The user
map 1is tried last to avoid an erroneous report in the case where a
swap out was taking place in one of the port maps. The user map may
still contain a copy of the same user (left over from the set up for
the port map by RT104).

PERR4 - RTE-IVB PARITY ERROR MODULE

PARITY ERROR RECOVERY PHILOSOPHY

While it 1is possible to always detect the occurrence of a parity
error, it is not always possible to effect a complete recovery from a
parity error. There are a number of reasons why 1007 recovery is not
possible; these will be explained below. The overriding philosophy is
to maintain system Operation whenever possible and eliminate, if
feasible, the possibility of future parity errors.

WHO DUNNIT?

When a parity error is detected, the violation register records the
logical address of the word containing bad parity. The P-register
saved in the interrupt handler’s entry point may or may not point to
the instruction which caused the bad location to be referenced. This
is especially difficult to trace back when the instruction was a
multiple word instruction such as XLA, MVW, or DLD. So while we may
verify that a location in the system contains bad parity, we cannot
determine that a user program caused the reference to the bad
location via use of a XLA instruction.

THE SUDDEN BLOW

A parity error detected during a DCPC transfer while the system map
was enabled means the operating system was executing and it is a
privileged system. Since the system may still be in RTIOC following
a DCPC initiation, in the DISPATCHER in the EXEC abort routine, or in
the system console driver; these routines would have to be reentered
to print parity error messages or abort a program. So these are not
recoverable.

IT’S AN INSIDE JOB

A parity error detected within the operating system itself may cause
erroneous execution of the system. For example, if a parity error
was in a JMP instruction, it is ©possible the P-register may not get
set correctly. This type of error is also not recoverable.

SOFT PARITY ERROR

If a parity error cannot be reproduced (by reading a word at the
logical parity error address in the system map, Port A map, Port B
map, and user map) then it is considered to be a soft parity error.
This type of error usually indicates an equipment problem: There may
be intermittent memory parity errors, it may be a memory controller/
backplane problem, or even a firmware error.

PERR4 - RTE-IVB PARITY ERROR MODULE

Soft parity errors cause a message to be printed which gives the
logical ©parity error address and the DMS status register contents at
the time of the interrupt. These messages should help indicate where
intermittent failures may be located, especially if these soft parity
error messages become more frequently reported.

SYSTEM PARITY ERROR

Parity errors in memory locations in the system itself cannot be
recovered as described in Parity Error Recovery Philosophy section.
The system is halted (102005) with the A-register containing the
physical page number and the B-register containing the logical parity
error address. The table areas and system COMMON areas are also
considered to be part of the system.

USER PROGRAM PARITY ERROR

Parity =errors within the memory resident area will cause the program
to be aborted. The physical page number, ABEXYO register contents
and the logical parity error addresses are printed on the system
console in addition to the program abort message. The system then
continues operatinge.

Parity errors within a disc resident program require the partition or
partitions affected to be undefined. The program’s MATA (Memory
Allocation Table) entry is examined to see if it is in a regular
partition, a subpartition, or a mother partition.

If the parity error is detected in a program in a regular partition
or a subpartition, an attempt is made to check if the physical page
number of the parity error is actually within the partition’s
physical page definition. If the page is not in the partition, the
error is treated as if it were in the system area and halts (102005).
If the page 1is in fact part of the partition, the partition MATA
entry address 1is saved. The partition is then unlinked from any
partition 1lists and is undefined by a call to $UNPE. If there is a
Mother partition, $SUNPE is also called to undefine that partition.

If the parity error is in a program which occupies a Mother partiton.
The partition MATA entry address is saved. Then a search is made
through all of its subpartitions to see which subpartition is also
affected. That subpartition’s MATA address is then saved and the
subpartition is removed from the system by $SUNPE. SUNPE also
releases all the other subpartitions back into the appropriate
regular partition free list.

Finally the partition number or numbers are printed out as being
downed. Then the program 1is aborted along with the parity error
messages as in the case for memory resident programs.

PERR4 - RTE-IVB PARITY ERROR MODULE

DCPC PARITY ERRORS

If a parity error is verified to have occurred under a DCPC transfer,
the DMS status register is checked (this is almost the only time when
DMS status register can reliably indicate the correct map which was
enabled at the time of the parity error interrupt). If the system
was enabled at the time of the interrupt, a halt (103005) 1is
necessary Dbecause the operating system must not be reentered. If a
user or the idle 1loop was interrupted, the I/0 request currently
queued on the EQT which had the DCPC channel is examined. If the
request was a system or buffered request, a halt (102005) is done.
If it was a user request, the parity error is treated as in the case
of a user program parity error (see the System Parity Error Section).

Chapter 6

SYSTEM LIBRARY

SYSTEM LIBRARY CHANGES SUMMARY(RTE-III TO RTE-1IV)

Changes had to be made in several system library routines to make
them compatible with RTE-IV. The system entry points necessary for
$ALRN, RNRQ, LURQ, COR.A, EQLU, IFBRK, PRTN and MESSS routines are
included 1in Table Area 1. The only changes made to these routines
were to do crossmap loads and stores to entries in the system.
Routines KCVT, TMVAL,INPRS, CNUMO, CNUMD and PARSE need to use
routines in the system whose entry points are not available to the
user. The code for these routines ($CVT1l, $CVT3, S$TIMV and $PARS) is
duplicated in the system library routines that call them.

Five new routines COR.B, .EMAP, MMAP, .EMIO and EMA were added to the
system library. COR.B routine returns in the B register, the first
word of free available memory of the program 1if there are no
segments. If the program is segmented then COR.B returns the high
address + 1 of the largest segment. If the ID segment address passed
to COR.B is that of a short ID segment, COR.B makes an error return
with a -1 1in the A register. .EMAP resolves array addressing for
normal arrays and for EMA’s. MMAP maps mapping segments for EMA’'s,
+EMIO handles EMA addressing and mapping for special cases to insure
the entire buffer needed is mapped into the logical address space and
EMA returns information on EMA. These new routines are described in

the next section.

.EMAP, MMAP and .EMIO can be RP’ed in an RTE-IVB generation for use
on an HP 1000 E-series computer with instructions which will link to
microcoded versions of these routines. +.EMAP and .EMIO and MMAP are
interruptible. The opcodes for the EMA microcode are:

« EMAP 105257
«EMIO 105240
MMAP 105241

TECHNICAL DETAILS FOR EMA ROUTINES

SYSTEM LIBRARY

.EMAP SUBROUTINE

This routine is used to resolve addressing of an element in an

n-dimensional array. The algorithm wused to calculate displacement
for an array element (A , A , A ,...A , A) is:
1 2 3 n-1 n
Displacement=
((Ceea((A =L)*d +(A -L))*A +...
n n n-1 n-1 n-1 n-2

(A -L))*D +(A -L))*D +(A -L))* +#words/element
3 3 2 2 2 1 1 1

where A ,...,A are subscript values defining an element in an n-
1 n
dimensional array, L ,...,L are the lower bounds of the dimensions,
1 n
D ,¢¢.,D are the magnitudes of subscript declarators (Di=Ui-Li+l,
1 n-1
where U is the upper bound of the ith dimension) for dimensions 1
i
thru n-1, # words/elements is the number of words per element in the
array (for e.g., 2 for real constants, 3 for double precision
constants, etc.). The leftmost dimension (A is subscript value) is
1

varied the fastest to calculate the displacement.

The wuser (compiler in the case of the higher level languages) must
build a table containing the number of dimensions in the array, the
negative of the lower bounds for every dimension, the magnitude of
subscript declarators for dimensions 1 thru =n-1, and the number of
words per element, and two offset words if the array is in EMA. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>