Session Monitor

User's Student Course Book
Volume I

dato systems
training tenter

22999-90220 September 1, 1979
updated August 1, 1980

22999-90220 Session Monitor User Student Workbook

The following pages were updated in this manual Aug.80:

1-28 2-35 3-2 4-2 5-10 thru 14 6-3

-32 -7 -6 -16 -12

-34 -9 -32 -18 -13

-35 -14 -21 -26

-18 thru -45 -22

7-6 8-9 9-4 10-12 12-20 Title pg.
-7 -13 -6 -32 Chpt. 17
20-2

-3

=6 thru -20

Total=80 pages

TABLE OF CONTENTS — VOLUME 2

CHAPTER

11.

DISC CARTRIDGES

A. More on Using Disc Cartridges

- B. Saving/Restoring Cartridges

12.

13.

14.
15.

16.

SPOOLING

A. What is Spooling?

B. Using Spooling Interactively
C. How Spooling Works

D. Monitoring Spooling — GASP

BATCH PROCESSING OF JOBS

A. FMGR and Batch Jobs
B. Using Batch Processing
C. Monitoring Jobs — GASP

SYSTEM CONSOLE
TIME-SCHEDULED PROGRAMS

PROGRAMS SCHEDULING OTHER PROGRAMS

A. EXEC Scheduling Calls
B. Passing and Returning Information
C. Program Termination

TABLE OF CONTENTS — VOLUME 2

CHAPTER

17.

18.

19.

20.

APPENDIX
A.

CLASS /O

Program to Program Communication

CLASS /O for Program to Program Communication
CLASS I/0 — a Summary of Features

CLASS 1/Q for Device I/0 and Control

Variations with CLASS /0

Terminal Handlers .

aAmoowp

MORE RTE SERVICES

A. Resource Numbers and LU Locks
B. EXEC Calls to the Disc
C. Large Programs

EXTENDED MEMORY AREA (EMA)

A. What is EMA?
B. Using EMA from FORTRAN
C. How EMA Works

LIBRARIES

A. System Library
B. Relocatable Library
C. Decimal String Arithmetic Library

LAB EXERCISES
Labs 11 to 20

HP 1000 RTE-IVB/SESSION MONITOR
USER’S COURSE
STUDENT WORKBOOK — VOLUME 2

This volume of the Student Workbook is for use during week 2 of the
2 week HP 1000 RTE-IVB/Session Monitor User's Course.

The schedule below indicates the chapters of the Student Workbook
to be used during the week and the corresponding lab exercises.
The topics to be discussed in each chapter are summarized in the

Table of Contents.

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
8 Review Review Review Review Review 8
11. DISC CARTRIDGES | 14. SYSTEM CONSOLE | 17. CLASS 1O 18. MORE RTE 20. LIBRARIES
9 - T15. TIME-SCHEDULED T © Program fo SERVICES - 9
PROGRAMS program
cammunication
10 4 . S -+ 10
12. SPOOLING
LAB 14,15 LAB 173 LAB 18 LAB 20
11 4 -+ -+ 11
12 12
- . 1
! LAB 11, 12 Review Review Review COURSE SUMMARY
16. PROGRAMS (MORE CLASS //0) 19. EXTENDED —_—
2 4 SCHEDULING OTHERL. . MEMORY AREA { OPEN LAB - 2
PROGRAMS {EMA)
3 T Review 3
13. BATCH LAB 16 LAB 178 LAB 19
PROCESSING W
41 OF J08S
LAB 13
5 5

USING DISC
CARTRIDECES

Yo P
| . > ,‘ ,’ 5
%\l\ pC

[Y/
=

——tey
X

=

S

SECTION

A USING CARTRIDGES 11-3

B8 SAVING/RESTORING CARTRIDGES 11-14

11A. USING CARTRIDGES

Before you can access a cartridge, the cartridge must be
entered in two lists.

SYSTEM CARTRIDGE LIST — a permanent list

(on LU 2) of all cartridges currently mounted in
the system.

SCB CARTRIDGE LIST -— a temporary list (in
your SCB) of the cartridges currently mounted to
your account (P). or to your group (G).

® When you allocate a cartridge (AC command); the

File Management System adds the cartridge to both
lists. |

® When you log-off and save private and/or group
cartridges, the cartridges are not removed from the
System Cartridge List.

11-3

LOG ON

When you log-on, the system builds an SCB in
SAM for your session. The SCB describes your
session’s capabilities and limitations.

SCB

GENERAL INFO

SST

system

session

CARTRIDGE LIST

Z 4

.\
\

ACCOUNT FILE

—4+.. GENERAL
INFO

user SST

user
_account

ulll entry

SYSTEM CARTRIDGE LIST

11-4

WHAT TYPE OF CARTRIDGES?

Disc cartridges can be either dedicated cartridges
or spare pool cartridges. For example,

7906

~

r < LU ?D system carti‘idge
Dedicated (LU 3;> auxiliary cartridge
cartridges
(L s

(
Spare | (LU 3@

Cartridge .

Pool
* | @

-

ALLOCATING CARTRIDGES
tAC

You request the use of a disc cartridge from the
spare cartridge pool with the FMGR AC command.

:Ac,crn[,g [,slze[,id[,‘dlrectory track:]]}]

:CL-
LU LAST TRACK CR LOCK P/G/S
02 00255 00002)
03 002585 00003 S
31 00400 00031 S

tAC,SS

:CL
LU LAST TRACK CR LOCK P/G/S
32 00140 SS P
02 00255 00002 S
03 00285 00003 S
31 00400 00031 S

:DL,SS

CR= SS

ILAB=DC0032 NXTR= 00000 NXSEC=000 #SEC/TR=096 LAST TR=00140 #DR TR=01
NAME TYPE SIZE/LU OPEN TO

sCB System Cartridge List

SST

system | session

CARTRIDGE LIST

| Dedicated |
Cartridges
:AC,CPT],.... ' ﬁ‘
< > Spare Cartridge
Pool
" P

NG C
MQUN“N: ; ARTRIDGE

M

You can also mount a cisc cartridge with the FMGR
MC command.

Pl _. . .
:MC, lu 6| size |, id [,#dlrectory tracks [,crn]
~ s —"
used only if there is not a valid file directory on the
first directory track
:CL
LU LAST TRACK CR LOCK P/G/S
02 00255 00002 S
03 00255 00003 S
31 00400 00031]
tMC,-32
FMGR 043
Hirard
FMGR 043 LU NOT FOUND IN SST
+SL,32,32
tMC,-32
:CL
LU LAST TRACK CR LOCK P/G/S
32 00140 ss P
02 00255 0co002 S
03 00255 00003 S
3N 00400 00031 S
:DL,-32
CR=SS

ILAB=DC0032 NXTR= 00078 NXSEC=090 #SEC/TR=096 LAST TR=00140 #DR TR=01
NAME TYPE SIZeE/LU OPEN TO

ATCL 00005 00024 BLKS
ATP3 00005 00024 BLKS
ATEMA 00005 00024 BLKS
XTTYP 00005 00024 BLKS.
TXTSPL 00004 00040 BLKS
&TCL 00004 00003 BLKS
TRSPL 00003 00003 BLKS
bacC 00003 00024 BLKS

11-8

sSCB

SST

system | session

CARTRIDGE LIST

:MC,lu,...

-\

System Cartridge
List

> Dedicated
Cartridges

> Spare Cartridge
Pool

:DC

Cartridges may be dismounted in two ways:
(@D Setting a cartridge inactive
:DC, cartridge

positive crn
negative LU

This marks the cartridge as inactive in your SCB
Cartridge List.

e the cartridge remains in the System
Cartridge List and in your SCB Cartridge List.

e the cartridge is omitted in any file searches

11-10

Actually dismounting a cartridge
:DC,cartridge,RR

Release Resources

This deletes the cartridge from

® your SCB’s cartridge list

® the system cartridge list

and removes the disc LU from your SCB’s SST.

11-11

31¢ PACKING CARTRIDGES 3¢

Users can pack their private or group
cartridges to reclaim space released by
purged files and close any gaps left between
files.

:PK, cartridge

positive CRN,
negative LU

® if no cartridge is specified, all of the
" user’s private and group cartridges are
packed.

® all files on the cartridge must be closed.

11-12

COPYING CARTRIDGES TO
OTHER CARTRIDGES

You can copy all files on a mounted cartridge to another
* mounted cartridge with the FMGR CO command.

:C0, cartridge 1, cartridge 2

cartridge to be copied destination cartridge
positive CRN or positive CRN or
negative LU negative LU

® Files of the same name on both cartridges are not
transferred.

® The original contents of cartridge 2 are not affected.

® Any records >128 words are truncated as they are
transferred to cartridge 2.

11-13

118. SAVING/RESTORING
CARTRIDGES

N

4%

Users can save the contents of their private or group
cartridges on magnetic tape with the WRITT utility.

:RU, WRITT [,cartridge [,rnag tape lu”

positive crn
negative LU of disc cartridge

e WRITT will rewind the mag tape before and after
the save operation.

e if the tape already contains a save of a different
CRN, WRITT will ask if you want to overlay the

cartridge already on the tape.
11-14

RESTORING CARTRIDGES

Users éa,n restore cartridges from magnetic tape
back to private or group disc cartridges with the
READT utility.

:RU,READT[, cartridge[,mag tape lu[,z [, size]]]]

|

positive crn
negative LU of disc cartndge

e if 3 CRN is specified and the cartridge is not
already mounted, READT will mount a
cartridge from the spare cartridge pool and
restore it from tape.

e if a disc LU is specified, the specified cartridge
is restored.

11-18

SPOOILING

SECTION

A

8
- C
D

WHAT iS SPOOLING?
USING SPOOLING INTERACTIVELY
HOW SPOOLING WORKS

MONITORING SPOOLING — GASP

12-2

12-3

12-6

12-14

12-18

12A. WHAT IS SPOOLING?

Consider a program ou#puﬁmg data ’ro fhe |
line pnnfer —

LU 6 |
PROGRAM LINE PRINTER] -

1. If the program outputs a line of data
every few minutes, how do you
prevent interleaved listings from other
programs? |

2. If the program outputs large amounts
of data, how do you insure that the
- program will execute as quickly as
possible?

12-3

A SOLUTION......

Use an intermediate disc file in the output
process.

- LU 6 .
PROGRAM f—— LINE PRINTER
ppme———
- J\o J
Y Y~
first, the program then, the data

outputs to the disc file is output to the line printer

- 1. The program may execute faster since
disc accesses are faster than line printer
speeds.

2. The line printer may operate as fast as it
can, rather than waiting for output
requests to be made by a program.

12-4

@) THE SPOOL SYSTEM

e allows both INPUT and OUTPUT spooling

® must be initialized by the System Manager before
you can use spooling. In the initialization process,
the System Manager sets up:

SPOOL FILE POOL — the System Manager defines
a group of disc files
available for use as spool
files. Individual spool files in
the pool are called SPOOL
POOL FILES.

OUTSPOOL LU’s — the System Manager
identifies which devices
(LU’s) can be the destination
of an output spooling
operation. |

® can be used

INTERACTIVELY
PROGRAMMATICALLY
FROM BATCH JOBS

12-5

128. USING SPOOLING
INTERACTIVELY

Using SPOOLING involves three simple steps. For example,
consider a program outputting to the line printer (LU 6) via a
WRITE (6,101) statement.

SPOOL POOL FILE
\ (looks like LU 6)

P

PROGRAM PROGA
: LU 6
WRITE ¢(6,101) - - LINE PRINTER
Step 1 Set up a spool file by — allocating a spool pool file

— associating it with LU 6
Step 2 Run the program

Step 3 Close the spool file by — reassociating LU 6 with
the line printer

— letting the Spool System
dump the spool file to
the line printer and then
return the spool file to

the spool file pool.
12-6

NEW FMGR COMMANDS

STEP 1 — another version of the SL command sets up
spooling |

:SL,6,,WR,6
$ 4
OUTSPOOL LU — the lu where

the output will eventually be
dumped

ATTRIBUTE — says the spool file
will be used for output

SPOOL FILE — defaulted parameter
says use a spool pool file

SPOOL LU — the lu to be associated
with the spool file and to be referenced
by programs or FMGR commands

STEP 2 — run the program (or use FMGR commands)

STEP 3 — the CS command completes the spooling
operation

:CS,6

closes the spool file associated
with this LU by — reassociating LU 6
with its former device
— queuing the spool file
to be dumped to the
specified outspool lu.
12-7 |

EXAMPLE 2 Spooled output via a user defined
spool file.

Instead of using a file from the spool file pool, you
can use one of your own disc files as a spool file.

tCR,file::crn:3:24
:SL,6,file::crn,WR,7
:RU,PROGA

:CS,6

PROGA \

LU 7
WRITE(E,101)... a 2nd LINE PRINTER

12-8

e

EXAMPLE 3 Formatted output to disc fileé_s using
FORTRAN WRITES or EXEC WRITES
to non-disc LU’s

PROGA

WRITE(6,101)...

:CR,file::crn:3:24
:SL,6,file::crn,WRST
:RU, PROGA

:CS,6

12-9

EXAMPLE 4 Input spooling

program

LU 11, paper q _
tape reader _ »IREAD(11,102)...
file::ern l

:ST,11,filet:crn:3:24
:SL,11,file::crn,RE
:RU,program

:CS,11

12-10

SPOOL FILE SETUP

The SL command associates an LU with a spool

file; the spool file can be either a spool pool file
or a user defined file.

:SL,lu,namr,attributes,outspool lu,prioritf,prog

|

program
scheduled
when

the

spool

file

is closed

outspool priority

lu where the spool
file will be dumped

how the spool file
will be used

file to be used
as the spool file

lu to be associated
with the spool file

12-11

CHANGING SPOOL FILE
ATTRIBUTES

In addition to closing spool files, the FMGR CS
command can be used to change a spool file’s
attributes.

,EN
» RW
:CS,1lu| ,PU
» SA
, PA
,NB
, BU
_,NP,outlu,priorit)j

12-12

SPOOLING @ o

e EASY TO USE
e TRANSPARENT TO YOUR PROGRAMS

e ALLOWS INCREASED UTILIZATION OF
SYSTEM RESOURCES

e PERMITS 170 TO DISC FILES VIA READS
AND WRITES TO NON-DISC LU’s

@®

12-13

12C. HOW SPOOLING WORKS

The Spool System consists of:

SPOOL FILE POOL

JOBFIL

SPLCON

ar

SPOOL SYSTEM
MODULES

12-14

a set of disc files
which the Spool
System lets you use as
spool files

a disc file containing
information about the
availability of the
spool pool files

a disc file containing
information about the
spool files currently in
use |

programs to manage
spooling

SPOOL SYSTEM MODULES

Three of the Spool System Modules are

SMP

SPOUT

GASP

assigns and manages spool files.

dumps spool files in the outspool
queues to their appropriate
outspool LU’s. SMP schedules
SPOUT as needed. |

allows the System Manager to
initialize the Spool System.

allows users to interactively enter
commands to examine and modify
the status of their spool files.

12-15

SYSTEM SPOOL LU’s

When generating RTE, the System Manager
defines a set of LU numbers to be used by the

Spool System.

Table of System Spool LU's

Spool file

SPOLO1

Used?
no
no
no
no

yes

12-16

System Spool LU
16
17
18
19
20

SPOOLING AND YOUR SST

When you set up a spool file, the Spool System
adds an entry to the SST in your Session
Control Block.

sSL
SLU 1=L0 § 9 =E 9
SLU 2=LU ¢4 2= E 1
SLU 3=LU % 3=E 1S 6
SCB SLU 4=LU ¢ 32 = E 951
SLU S=LU 4 33 = E 985 2
KAREN.PROGDEYV SLU 6=LU + 6 =E 6
30 SLU 7=LU 4 10 = E1O0
SLU 8=LU ¢ 8 = E 8
SLU 25=LU # 25 = E 1 S16
SST SLU 28=LU 4 28 = E- 16§ 1
: SLU 38=LU % 38 =E 18 2
system LU |session LU SLU 47-LU 4 47 = B 1 811
SLU 50=LU # S0 = E 1 Sl4
332161016
9 1 SLU 1=LU 4 9 = E 9
2 2 SLU 2=LU ¢ 2 =E 1
3 3 SLU 3aLU # 3= E 15 6
SLU 4=LU ¢ 32 = E 95 1
32 4 SLU SsLU $ 33 =E 95 2
33 5 SLU 6=LU 4§ 19 = E19
6 6 SLU 7=LU 4 10 = E10
SLU 8=LU 4 8 =E 8
10 7 SLU 25=LU ¢ 25. = E 1 S16
. . SLU 28=LU % 28 = E 1S 1
SLU 38=LU ¢ 38 «=E 1 S 2
SLU 47=LU § 47 = E 1 sll
¢ 50 = E 1 514

SLU 350=LU

12-17

120. MONITORING SPOOLING —
GASP

GASP allows you to interactively enter commands to
examine and modify the status of your spool files.

You run GASP by

:RU,GASP[,1ul
! GASP responds with a
prompt for a command

or

:RU,GASP,command
GASP processes the
command and terminates

Two useful commands are

t29 error explanation
YEX exit GASP

12-18

DISPLAYING SPOOL STATUS

sRU,GASP ,DS
SESLU SYSLU NAME PRIORITY JOB# STATUS

6 6 SPOLO3 99 == W

- -= IFILE 99 - W
END GASP
:RU,GASP,DSAL _
SESLU SYSLU NAME PRIORITY JOB# STATUS USER.GROUP
6 6 SPOLOl 99 -- AH MANAGER.SYS
6 6 SPOLO2 99 -— W YIT.HP
6 6 SPOLO3 99 - W COREY.HP
- -~ IFILE 99 - W COREY.HP
END GASP

The status of a spool file is represented by 1 of 4 states.

W WAITING — the spool file has been setup but
not closed.

— the spool file has been closed and
is in an outspool queue.

A ACTIVE — the spool file is being durhped to
an outspool LU.

AH ACTIVE HOLD — the spool file was being dumped
but was held by a GASP operator
request or a down device.

H HOLD — the spool file was in state W but
was held by a GASP operator
request.

12-19

MODIFYING SPOOL STATUS

 CHANGE SPOOL FILE STATUS

outspool priority
tCS,spool file,H

R

RESTART AN ACTIVE SPOOL FILE

}RS,spool filel,outspool lul

KILLING SPOOL FILES

}KS,spool file
UP AN OUTSPOOL DEVICE

{UPL ,RS]

12-20

EATCH PROCESSING
OF JOBS '

Section
A FMGR AND BATCH J0BS 13-3
B USING BATCH PROCESSING 13-6

C MONITORING JOBS — GASP 13-14

13-2

13A. FMGR AND BATCH JOBS

FMGR performs three main functions:

1. Interfacing users to RTE
2. Allowing interactive file manipulation

3. Processing jobs in batch mode

Only FMGR (not FMGxx) can process jobs!

13-3

BATCH PROCESSING
USES SPOOLING

[P Q JOB PROCESSING © JOB1

JoB3 _ - LIST OuT FIRST
PRIORITY 1 JOB3 >| JoB1 | 1st | " Jos
o . ; JOB3 | 2nd > LIST OUT J08B3
PRIORITY 3 1082 - A SECOND
JOB1 » JOB2 | 3rd
PRIORITY 2 > [~ LIST OUT »| JOB2
JoBt JoB2 LAST
INPUT BATCH N——— NS /
SPOOL FILES USED SPOOL FILES USED OouUTPUT
TO HOLD JOBS TO HOLD JOB OUTPUT FROM JOBS

® Jobs execute on a priority basis,
except for the first job which goes
into execution as soon as it is
entered.

® Job output is printed on a priority
basis, except for the first job, whose

output is printed as soon as the job
ends.

13-4

HOW JOBS ARE PROCESSED

You run program JOB to submit a bhatch job. l?rogram
JOB will initiate batch processing, scheduling the
necessary programs automatically. |

JOBFIL SPLCON

~
OUTPUT
JOB 1

R,

QUTPUT!
JOB 3

]

y
JOoB 3

Ve
JoB 2

/ B
OUTPUT
JOB 1 JOB 1 108 2
INPUT BATCH N’ N’ OUTPUT
SPOOL FILES SPOOL FILES FROM JOBS
CONTAINING JOBS CONTAINING
JOB OUTPUT

13-5

138. USING BATCH PROCESSING

3 EASY STEPS

¢ Define the job

2 new FMGR commands

¢ Submit the job

Program ‘‘JOB”’

o Get the answers!

13-6

DEFINING JOBS

The format of any batch job is:

~— job name

~a time limit for the job

~the user submitting the job

~ priority for job processing

priority for outspooling
job output

listing job output

Iroptmns for

:JO,name:hr:min:sec,user,priority,spool priority, outspooi option

FMGR commands (and possibly programs and/or
data) comprising the job

:£0(0 ,RP[,RG1]

For example,
:J0,J0B5:0:5:30,VIC,.HP/%VO
:RU,FTN4, &4PROGF ,6, -
1RU,LOADR, , “PROGF,6
:RU,106
tEQ

13-7

A JOB’S SESSION

When a job executes, it runs in a session, just as if
the user specified in the JO command had logged
on at a terminal.

If no user was specified in the JO command, the
user who submitted the job is used.

e The job has access to the same LU’s as does
that user, with three exceptions:

LU 1 is the system console
LU 5 is the job’s inspool file (the job itself)
LU 6 is the job’s outspool file

e The job has access to the same disc
cartridges as does that user.

e FMGR’s devices are initially set as follows:
input device LU 5
list device LU 6
log device LU1

o FMGR’s severity code is initially set to 0.

When a job terminates, it ends its session, just as
if the user had logged off at a terminal. Private
and group cartridges may be saved (default) or
released when the job ends.

13-8

SUBMITTING JOBS

Jobs are submitted by running program JOB.

iRU,J0B,namrl ,priority]

If namr is

® afile, program JOB inputs a single job éfrc>m
the file.

:RU,JOB, JOBE

¥ a non-interactive lu, program JOB inputs one
or more jobs from the device specified.

:RU,J0B, 8
¥ an interactive lu, program JOB prompts for a
command.
:RU, J0OB, 1
» 1 XE, JOBF ;rg;;)x(:nd
; :XE,JOBG inputs a single
;{control D) jogl;tored ingthe

specified file.

13-9

A JOB INPUT PROBLEM

Assume the card reader (LU 5) contains a
FORTRAN source program. Will this job
compile, load, and run the FORTRAN program?

:J0,JCLR,KAREN.PROGDEV
:RU,FTN4,5,6, 4TEMP
:RU,LOADR, , 4TEMP,06
:RU,106G

:E0

13-10

SOLUTION 1

In a job, LU 5 references the spool file containing
the job. itself; you could put the FORTRAN program
in the “job deck”.

:J0,JCLR,KAREN.PROGDEV
:RU,FTN4,5,6, 4TEMP
FTN4,L

PROGRAM APROG

:RU,LOADR, ,4TEMP,6
:RU,106
:EOQ

13-11

SOLUTION 2

Suppose the card reader is session LU 5 but
system LU 15. Use the SL command to define a
new session LU pointing to the same system LU.

:JO0,JCLR,KAREN.PROGDEV
:SL,11,15
:RU,FTN4,11,6, 4TEMP
:RU,LOADR, , 4TEMP, 6
:RU,106

:E0

13-12

MORE COMMANDS TO USE
WITH JOBS

® Setting a program execution time limit

:TL:hr:min:sec

* Aborting a job

:AB

- 13-13

13C. MONITORING J0OBS — GASP

GASP lets you enter commands to
examine and modify the status of
your jobs.

13-14

DISPLAYING JOB STATUS

:RU,GASP,DJ
JO# NAME

1 JOB1
END GASP
:RU,GASP,DJ
JO# NAME

1 JOB1
2 JOB2
3 JOB3
END GASP

STATUS SPOOLS

S 99 A 1

AL |
STATUS USER.GROUP SPOOLS
S 99 A COREY.HP 1

S 99 R YIT.HP
S 99 R DENNIS.HP

A job's status is represented by 1 of 5 states.
I the job is in the process of being INSPOOLED

IH the job was being INSPOOLED but was HELD
by a GASP operator request

IA the job was being INSPOOLED but was
- ABORTED by a GASP operator request

R the job is READY to be processed

RH the job was READY but was HELD by a GASP
operator request

A the job is being processed by FMGR (ACTIVE)

CS the job has COMPLETED and is ready for
OUTSPOOLING

13-15

MODIFYING JOB STATUS

e Changing a job’s status

TCJ,job number, job priority
H

R

e Removing pending jobs

TAB,job number

13-16

ABORTING THE CURRENTLY
EXECUTING BATCH JOB

The system AB command

® aborts the currently executing batch job

® must be entered from the system console

0
5[, |

13-17

SESSION MODE

The System Console is enabled as a “session
terminal” by using the following command.

*EN, master security code[,bption]

The System Console then operates like any éther
terminal.

PLEASE LOG ON : KAREN.PROGDEV/%KRP

The System Console remains enabled as a session
terminal until

— the system is re-booted

— the System Console is disabled via the
program ACCTS

14-3

SYSTEM LEVEL OPERATOR COMMANDS

The system OP command lets the operator
enter a single system command without having

the command subject to command capability
checking.

S = 01 COMMAND?0P,master security code,command

(Note: the command is still processed in

session; only command capability checking is
bypassed)

14-4

SOt
Vi

TIME=-SCHEDULFD
PROGRAMS

TIME-SCHEDULED PROGRAMS

RTE, the REAL-TIME EXECUTIVE, allows you to
schedule programs to execute at specific times
during the day. |

e RTE keeps a list (the TIME LIST) of those
programs which are fime-scheduled.

o RTE keeps a REAL-TIME SYSTEM CLOCK which is
used to time-schedule programs.

» the system Tl command displays the
current system time

S = xx COMMAND?TI
1978 345 13 17 43

» the system TM command lets the operator
set the System Clock

S = xx COMMAND?TM,1979,150,11,45,30

15-3

TIME BASE GENERATOR

RTE uses the TIME BASE GENERATOR (TBG) to
update its System Clock. The TBG interrupts the
CPU every 10 milliseconds. While processing the
interrupt, RTE

e updates the time in its System Clock

e checks the time-list to see if any
programs need to be scheduled

¥*
¥*

15-4

TYPES OF TIME-SCHEDULING

RTE allows you to schedule programs to execute:

€ at an absolute time }“ sta rting
:) times”’
® at a specified offset from the present |
4 only once
y } “interval
® repeatedly, at specific intervals time™

A program’s “starting time” and ‘“‘interval time” are
referred to as its time parameters.

15-5

WAYS TO TIME-SCHEDULE A PROGRAM

INTERACTIVELY
® define the program’s time parameters in its
PROGRAM (or NAM) statement

issue the system ON command to put the
program in the time list

® use the system IT command to set the
program’s time parameters

issue the system ON command

PROGRAMMATICALLY

® have the program make an EXEC 12 call to
define a program’s (or its own) time parameters
and place that program (or itself) in the time
list

15-6

DEFINING TIME PARAMETERS

e PROGRAM (or NAM) statement

' PROGRAM name (type,priority,res,mpt,hr,min,sec,ms)

defines defines
interval time starting time

e System IT command

:SYIT,program,res,mpt ,hr,min,sec,ms
v —— T ———— p———

defines defines
interval time starting time

(1 10’s of milliseconds
. 2 seconds
res 3 minutes
For interval time ! 4 hours
mpt — number of units (in “res”) to
wait between repeated time
y scheduling
¢ hr — hour
For starting time | ™" — minutes
sec — seconds
. ms — 10’s of milliseconds

15-7

TIME PARAMETER EXAMPLES

:8YIT,APROG,3,5,12,0,0,0

:SYIT,BPR0OG,1,10,3,15,45,10

:SYIT,CPROG,1,0,18,0,0,0

15-8

PLACING THE PROGRAM IN THE TIME
LIST

The system ON command places the specified program
in the time list, using previously defined time parameters.

:SYON,program,NOW,p1,p2,p3,p4,p5

optional parameters to be
passed to the program

if specified, ignore starting time and schedule the
program immediately

if omitted, place the program in the time list qccordmg fo
its time parameters

For example,

:SYIT,YOURP,4,1,17,0,0,0
:SYON, YOURP

:SYIT,MYPRG,2,100,18,0,0,0
:SYON,MYPRG, NOW

15-9

PROGRAMMATIC TIME SCHEDULING

The EXEC 12 call allows a program to put a
specified program or itself into the time list. The
program may be scheduled to initially execute:

at a specified offset from the present time

CALL EXEC €12, INAME,IRESL, IMULT, IOFST)

resolution code, execution multiple, offset starting time,
defining units of time defining interval time a negative value

at an absolute time

CALL EXEC (12, INAMEﬁRESL,IMULT,IHRS,IMIN,ISEC,IMSEC)

E—

\

resolution code execution multiple absolute starting time

15-10

Examples

. IRESL

= 4

IMULT = 1

IHRS = 15

IMIN = 45

ISEC = 0

IMSEC = 0

CALL EXEC €12, INAME, IRESL, IMULT, IHRS, IMIN, ISEC IMSEC)
. IRESL = 2

IMULT = 0

10FST = -600
CALL EXEC (12, INAME, IRESL, IMULT, IOFST)

. IRESL = 3

IMULT = 15

IOFST = -30

CALL EXEC €12, INAME,IRESL, IMULT,IOFST).
. IRESL = 3

IMULT = 0

IHRS = -§

IMIN =0

ISEC =0

IMSEC = 0

CALL EXEC €12, INAME, IRESL, IMULT, IHRS, IMIN, ISEC, IMSEC)

15-11

A QUESTION

When you run a program
(:RU,program), FMGR waits for the

program to complete and then issues
another prompt.

When you time schedule a program
(:SYON,program), FMGR requests RTE to
place the program in the time list and
immediately issues another prompt.

Can you log-off before the time-scheduled
program executes?

+*

15-12

DROGDAMS
SCHEDULING OTHED
PROGDRAMS

m"ne -~
qut ~
158 N
H .. 2
“‘ \
T [ooggod
HEHHE gageos
TV RRALL gaaoad
TIRIR AN uuauaﬂ
e ggoancy
A aoooon
N daoidd
piuity gnoong
ey Sagans]
iy =
:mumu DDDBBDE
i 100Ooooc
n
;:m'\:m: D D DDD DE
i g 100000 0cC

ety

SECTION
A EXEC SCHEDULING CALLS 16-3

B PASSING AND RETURNING INFORMATION 16-7

C PROGRAM TERMINATION 16-12

16-2

16A. EXEC SCHEDULING CALLS

The EXEC 9, 10, 23 and 24 calls allow a program fo
schedule another program.

A program that schedules another program is
called a FATHER; a program that is scheduled by
another program is called a SON.

To schedule a Son use:

CALL EXEC CICODE, INAME)D

array containing the
name of the program to
be scheduled

type of scheduling:

EXEC 9 — Immediate Schedule, wait for
completion

EXEC 10 — Immediate Schedule, no wait

EXEC 23 — Queue Schedule, wait for completion

EXEC 24 — Queue Schedule, no wait

16-3

IMMEDIATE SCHEDULE vs. QUEUE SCHEDULE

(= Immediate Schedule — The Son program
should be scheduled
immediately.

® If the Son is dormant, it is immediately
scheduled and runs at its own priority.

® If the Son is not dormant it is not
scheduled and its state is returned in the
A-register.

(=& Queue Schedule — The Son program éhould be
scheduled whenever it is
dormant.

¢ If the Son is dormant, it is immediately
scheduled and runs at its own priority.

e If the Son is not dormant, the schedule

request is placed in a queue but the Son’s
state is not returned in the A-register.

16-4

WAIT SCHEDULE vs. NO WAIT
SCHEDULE

A A A A A A A A A A A e Ao e A Ao

Schedule with wait implies that the Father
waits for the Son to complete before
resuming execution. '

Schedule without wait implies that the
Father does not wait for the Son to
complete; rather, the Father and the Son .
will compete for execution time on a
priority basis.

16-5

AN EXAMPLE TO PROGRAM

FATHR SONPG

input a set of values. Sorts a set of values,
/ deleting duplicate values in
Schedule SONPG to sort the process.

values and cdelete duplicate
values.

Print the sorted values.

16-6

16B. PASSING AND RETURNING
INFORMATION

Consider running a program from FMGR —
e you can pass information to the program

:RU, PROGA, 8, AF, IL,E

PROGA can then retrieve the
information.

e the program can also return information to FMGR

PROGRAM PROGA
INTEGER PARM(S)

CALL PRTN C(PARM)
END —

PROGA returns the values in PARM to
FMGR.

16-7

FATHER TO SON COMMUNICATION

A Father can send information to a Son via the EXEC
scheduling call.

IOP1 to IOPS5 are optional parameters,
whose values are passed to the Son.
The Son uses RMPAR to retrieve the

values.
'.

g

~

-
CALL EXEC (ICODE, INAME, 10P1,10P2,10P3,10P4,I10PS, IBUFF,ILEN)
\ J/

sl

IBUFF is an array of data to be
passed to the Son. ILEN specifies
the positive number of words or
negative number of characters to
be transferred.

The Son uses an EXEC 14 call to
retrieve the data.

16-8

SON TO FATHER
COMMUNICATION

kK K 3k kK

If the Father scheduled the Son with wait, the Son can
return information to the Father.

Via PRTN and RMPAR

® the Son calls PRTN to pass up to 5 values back to
the “waiting” Father.

® the “waiting” Father retrieves the values with a call
to RMPAR.

Via EXEC 14

® the Son uses an EXEC 14 call to pass a buffer of
data back to the “waiting” Father.

® the “waiting” Father retrieves the buffer with
another EXEC 14 call.

16-9

THE FATHER

GPATHR T=00004 IS ON CR01500 USING 00005 BLKS R=0000

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
go32
0033
0034
0035
0036
0037
0038

PTN4,L

Cc
o

(e XsXeReKe ononn

QNN

102

PROGRAM FATHR
INTEGER NSON(3), MTDATA(100) , PARM(5)
DATA NSON/2HSO,2HNP,2HG /

INPUT DATA VALUES FROM THE MAG TAPE (LU 8),
FIRST VALUE IS A HEADER VALUE.

READ(8,*) IVALS, (MTDATA(I),I=1l,IVALS)

SCHEDULE THE SON WITH WAIT, PASSING THE NUMBER
OF DATA VALUES AND THE ARRAY CONTAINING THE VALUES..

ICODE = 23
CALL EXEC(ICODE,NSON,IVALS,J,K,L,M,MTDATA,IVALS)

LET THE SON SORT THE VALUES AND DELETE DUPLICATE VALUES.
WHEN THE SON COMPLETES, RETRIEVE THE NEW NUMBER OF VALUES

CALL RMPAR (PARM)
IVALS = PARM(1)

AND RETRIEVE THE SORTED DATA

CALL EXEC(14,1,MTDATA, IVALS)

CALL ABREG(IA,IB)

IF(IA .EQ. 0) GOTO 75
WRITE(1,102)
PORMAT (" NO SORTED DATA RECEIVED FROM SON".)
STOP

PRINT THE RESULTS

WRITE(1,103) (MTDATA(I),I=1,IVALS)
FORMAT(10(10(I5,1X)/))

END

16-10

THE SON

&SONPG T=00004 IS5 ON CRO1500 USING 00004 BLKS R=0000

000l
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042

PTN4,L
PROGRAM SONPG
INTEGER VALUES (100), PARM(S)

RETRIEVE THE NUMBER OF VALUES TO BE SORTED

aoan

CALL RMPAR (PARM)
NVALS = PARM(1)

o AND THE ARRAY OF DATA VALUES.

CALL EXEC(l14,1,VALUES,NVALS)
CALL ABREG(IA,IB)
IF(IA .EQ. 0) GOTO 50
WRITE(1,101)
101 FORMAT ("NO DATA BUFFER FROM FPATHER FOUND".) -
STOP

SORT THE VALUES, DELETING DUPLICATE VALUES IF ANY

(=]

CONTINUE

(VALUES WILL THEN CONTAIN THE SORTED DATA,
NVALS WILL CONTAIN THE NEW NUMBER OF VALUES.)

RETURN THE SORTED VALUES TO THE FATHER

Qoo ouann

CALL EXEC(14,2,VALUES,NVALS)
CALL ABREG(IA,IB)
IF (IA .EQ. 0) GOTO 60
WRITE(1,102)
102 FORMAT (*NO FATHER FOUND TO ACCEPT RESULTS")
STOP |

AND THE NEW NUMBER OF VALUES

aOG

0 CONTINUE
PARM(l) = NVALS
CALL PRTN (PARM)

END

16C. PROGRAM TERMINATION

A Father can use an EXEC 6 call to terminate itself or a
Son.

CALL EXEC (&, INAME,ICMCD,{UP‘I,IDP2,IDP3,IDP4,IDPE§)

——
0 — terminate self if a program is terminating

or an array containing itself, up to 5 parameters
the name of a Son may be stored in its ID segment

Completion code, specifies the type of termination

0 — normal termination

-1 — terminate serially reusable

1 — terminate saving resources and point of suspension

2 — terminate immediately after current I/O operation
completes, remove from time list (same as
:SYOF,program,0)

J — terminate immediately (clear any 1/O), remove from

time list (same as :SYOF,program,1).

16-12

EXAMPLE

Program COUNT is used to print a message each time
program UPDAT is run.

0001 PTN4,L

0002 PROGRAM UPDAT

0003 C

0004 INTEGER NAME (3)

3002 DATA NAME/2HCO,2HUN,2HT /
00 c :

0007 C SCHEDULE COUNT TO PRINT MESSAGE THAT
0008 C WE ARE EXECUTING AGAIN.
0009 C

0010 CALL EXEC(24,NAME)

0011 C

0012 END

0013

0001 ~PTN4,L

0002 PROGRAM COUNT

0003 ¢

0004 INTEGER ICNT(5)

0005 DATA ICNT/0/

0006 C :
0007 C RETRIEVE PREVIOUS COUNT STORED IN MY ID SEGMENT
0008 C

0009 CALL RMPAR(ICNT)

0010 C :

ggié g INCREMENT COUNT AND PRINT MESSAGE

0013 ICNT(1) = ICNT(1l) + 1

0014 WRITE(1,101) ICNT(1)

0015 101 FORMAT (/" PROGRAM UPDAT WAS RUN AGAIN, NUMBER ",I5)
0016 ¢

0017 ¢ TERMINATE, STORING CURRENT COUNT IN MY ID SEGMENT
g0l8 C

0019 CALL EXEC(6,0,0,ICNT)

0020 END

0021

16-13

TERMINATE SERIALLY REUSABLE

When a program executes an EXEC 6 with a
“terminate serially reusable” completion code, RTE
marks the program as being serially reusable.

When the terminated program is scheduled again,
RTE checks to see if it is still resident in memory.

If so, the program in memory is executed.

If not, the program is loaded from disc and then
executed.

Program resumes —
at main entry point

NAME = 0
CALL EXEC(&,NAME,-1)
10 CONTINUE

16-14

TERMINATE SAVING RESOURCES

When a program executes an EXEC 6 with a “terminate
savings resources” completion code, RTE will not
deallocate any resources allocated to the program being
terminated.

When the terminated program is rescheduled, it will
resume execution at its “point of suspension.”

If @ program terminates itself saving resources, any run
stimulus will reschedule it; if a Father terminates a Son
saving resources, then only the Father or the RU or ON
commands can reschedule it.

NAME = 0
Program resumes CALL EXEC(B,NAME,1)
here ————» 10 CONTINUE

16-15

SECTION

A

PROGRAM TO PROGRAM
COMMUNICATION

CLASS 1/0 FOR PROGRAM TO PROGRAM
COMMUNICATION

CLASS 1/0 — A SUMMARY OF FEATURES
CLASS 1/0 FOR DEVICE 1/0 AND CONTROL
VARIATIONS WITH CLASS I1/0

TERMINAL HANDLERS

17-2

17-3

17-5

17-21

17-23

17-35

17-39

17A. PROGRAM TO PROGRAM
COMMUNICATION

¢ RMPAR and PRTN

o EXEC 14

e SYSTEM COMMON

17-3

17-4

178. CLASS I/0 FOR PROGRAM TO
PROGRAM COMMUNICATION

CLASS 1/0 (or MAILBOX 1/0) is another means of
letting programs talk to each other. With CLASS 1/0O - -

o the size of the data blocks passed between
programs is limited only by the size of SAM.

¢ any number of programs can communicate with
each other and share data.

® a program can send many data buffers before
another program accepts one.

e if a program asks for a data buffer before one is
sent, RTE can put that program “to sleep’” until
a buffer is “sent” to the program.

e only programs knowing a special “key”gcan
access data being passed.

17-5

DATA TRANSFERS BY CLASS I/0 ARE DONE
THROUGH SAM

Physical Memory

©

PROGA transfers data to PROGB
by “dropping” the data in SAM.

®

PROGB then “gets” the data and
completes the transfer.

PROGA

Data
PROGD

» Data

SAM

Data |}=
RTE
TABLES

17-6

S5

MANUFACTURERS and
CONSUMERS |

EXEC 20 (CLASS WRITE/READ)

A program initiates a CLASS 1/0O program to
program data transfer by making an EXEC 20 call.
The CLASS WRITE/READ call will “manufacture” a
buffer in SAM and fill it with data from the calling
program.

EXEC 21 (CLASS GET)

The receiving program retrieves the data in SAM by
making an EXEC 21 call. The CLASS GET will
“consume” the buffer in SAM by storing the data in
the program and releasing the SAM buffer for use
by other programs.

“Every call that “‘manufactures’” a buffer in SAM must
have a corresponding call that ““consumes”’ the buffer.

CLASS 1I/0 is said to be “double call.”

*Programs can execute independently of the data
transfers, which are handled by RTE. |

17-7

WHO GETS WHICH BUFFER?
THE CLASS NUMBER IS THE KEY!

When generating an RTE system, the System

Manager specifies how many class numbers
are to be in the system.

Class numbers are used to protect the CLASS
/O data buffers in SAM —

e when a program uses CLASS |/0O for
program to program communication, it
must

— request a class number from RTE

— make the CLASS WRITE/READ request,
specifying the class number

e the program retrieving the data makes a
CLASS GET call, specifying the

appropriate class number

_;:9

17-8

COMPLETED CLASS QUEUE

RTE keeps lists of the data buffers in SAM which were
manufactured by a CLASS WRITE/READ and are waiting to be
consumed by a CLASS GET. These lists are referred to as
COMPLETED CLASS QUEUES. |

CLASS #

1. 0

2 0

3 0

4 »| CONTROL

5 0

: DATA

63 0 '

64 »| CONTROL }———»{ CONTROL
DATA DATA

The buffer in SAM manufactured by a CLASS WRITE/READ is
called a CLASS BUFFER. There are two parts to each class
buffer:

CONTROL INFORMATION includes

® the class number
o the size of the data area
e other information

DATA BUFFER which contains the data being tranéfened‘.
17-9

A SAMPLE PROBLEM

Suppose you are conducting an experiment which
will produce 20 data values every minute for 10
minutes. You might design two programs to input
and analyze each set of 20 values.

Program DATIN is to be scheduled when the
experiment begins —

(DATIN)

f

Input a set of 20 values

Drop the 20 values in
a “mailbox”

More
Yes Data

No

Schedule ANLYZ to
retrieve the data and
analyze it

DONE

17-10

Program ANLYZ will be scheduled by DATIN
after all of the data sets have been input and
dropped in the mailbox. ANLYZ will then
retrieve and analyze each ‘set of data values.

(ANLYZ

s

Get a set of values from
the mailbox

-Analyze the data, print
results

/ -

More

Yes Data>
No

DONE)

17-11

An EXEC 20 call manufactures a buffer in SAM, fills it with
data from the program and links it to the appropriate
completed class queue.

CALL EXEC (20, ICNWD, IBUFF,ILEN,I0P1,10P2,ICLAS)

where

ICNWD 0

IBUFF
ILEN
I10P1,

I10P2

ICLAS

the request is issued to LU 0

array containing the data to be
transferred

positive number of words or negative
number of characters to be transferred

optional parameters; their values are
placed in the control part of the
manufactured class buffer and can be
retrieved by the CLASS GET which
consumes the buffer

the class number allocated by RTE
17-12

ALLOCATING A CLASS
NUMBER

You request a class number by making an EXEC 20 call
with ICLAS having a value of 0.

LU = 0
ICLAS = 0
CALL EXEC €20,LU,IAR1,NWD1,IPA, IPB, ICLAS)

RTE will return the class
number allocated to you

® You can then use ICLAS to tell another program
what class number to use when retrieving data sent
to it.

® You can also use ICLAS to do additional CLASS
WRITE/READS on the already allocated class
number.

éALL EXEC (20,LU,IAR2,NWD2,IPC,IPD,ICLAS)

RTE uses a previously ailocated class number

17-13

EXEC 21 - CLASS GET

An EXEC 21 consumes one buffer in the completed class
queue of the specified class number.

CALL EXEC

where
ICLAS

IBUFF

ILEN

10P1
I10P2

(21, ICLAS, IBUFF,ILEN, IOP1,10P2)

previously allocated class number

array where the retrieved data is to be
stored

positive number of words, negative
number of characters to be retrieved

two optional parameters; if specified, they
are assigned the values passed when the
buffer was manufactured

17-14

DEALLOCATING THE CLASS
NUMBER

After RTE consumes a buffer in SAM in
response to an EXEC 21 call, RTE checks
to see if there are more buffers queued on
the class number.

If the last buffer was just consumed, RTE

deallocates the class number and makes it
available for use by other programs.

17-15

THE MANUFACTURER.......

0001 FTN4,L

0002 PROGRAM DATIN

0003 C

0004 INTEGER DATA(C20), SPROG(3)
0005 DATA SPROG/2HAN,2HLY,2HZ /
0006 C

0007 C INPUT THE 10 SETS OF 20 VALUES
ooog C

0009 ICLASS = 0

0010 DO 20 I = 1,10

0011 C

0012 C INPUT A SET OF VALUES

0013 C

0014 CALL EXEC(1,45,DATA,20)
0015 CALL ABREG(IA,IB)

0016 C

0017 C DROP IN THE MAILBOX

0018 C

0012 CALL EXECC20,0,DATA,IB,K,L,ICLASS)
0020 C

0021 20 CONTINUE

0022 C

0023 C AFTER THE DATA HAS BEEN PUT IN THE MAILBOX,
0024 C SCHEDULE THE ANALYSIS PROGRAM.
0025 C

0026 CALL EXEC(10,SPROG, ICLASS)
0027 C

0028 END

17-16

0001 FTN4,L

0002 PROGRAM ANLYZ
0003 C

0004 INTEGER DATAC20), PARM(S)

0005 C

0006 C RETRIEVE THE CLASS NUMBER

0007 ¢

0008 CALL RMPARCPARM)

0009 ICLASS = PARMC1)

0010 ¢C

0011 ¢ GET EACH SET OF VALUES AND ANALYZE
0012 ¢

0013 DO 30 I = 1,10

0014 C

0015 € GET ONE SET OF VALUES

0016 C |

0017 CALL EXECC21,ICLASS,DATA,20)
0018 CALL ABREGCIA,1B)

0019 ¢

0020 ¢ ANALYZE THE SET OF VALUES
0021 ¢©

0022 WRITEC1,101) (DATACJ),J=1,1B)
0023 101 FORMAT(20A2)

0024 ¢ '

0025 30 CONT INUE

0026 C

0027 END

17-17

ANOTHER WAY TO PROGRAM OUR
EXAMPLE

Why not let DATIN schedule ANLYZ to process the
data as it is input rather than waiting until all of the
data has been received?

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0018
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034

FTN4,L
PROGRAM DATIN

INTEGER DATAC20), SPROG(3)
DATA SPROG/2HAN,2HLY,2HZ /

INPUT THE FIRST SET OF 10 VALUES,
DROP THEM IN THE MAILBOX, AND
SCHEDULE THE ANALYSIS PROGRAM.

OO0

CALL EXEC(1,45,DATA,20)
CALL ABREG(IA,IB)

(@]

ICLASS = 0
CALL EXEC(20,0,DATA,IB,K,L, ICLASS)

CALL EXEC(C10,SPROG, ICLASS)
NOW INPUT AND SEND THE REMAINING SETS OF VALUES.
Db201I = 1,9

INPUT A SET OF VALUES

OO0 OO0 (@]

CALL EXEC(1,45,DATA,20)
CALL ABREG(IA,IB)

DROP IN THE MAILBOX
CALL EXEC(20,0,DATA,IB,K,L,ICLASS)
0 CONTINUE

OO OO0

END

17-18

s

RETAINING THE CLASS NUMBER

When a program makes an EXEC 21 call (CLASS
GET), the specified class number will be
deallocated if the last buffer queued on that
class number is consumed by the GET.

Set bit 13 of ICLAS for a "no cleallocate” option; the
class number will not be returned to the system
when the last buffer is consumed.

CALL EXEC (21,ICLAS+20000B,IBUFF,ILEN,IOP1,10P2)

17-19

0001

0002
0003
0004
0005
0006
0007
0008
0008
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

ooz2
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033

.+....AND THE CONSUMER — @
VERSION 2

FTN4,L
PROGRAM ANLYZ
C
INTEGER DATAC20), PARM(S)

RETRIEVE THE CLASS NUMBER

o XN e

CALL RMPARCPARM)
ICLASS = PARM(1)

GET EACH SET OF VALUES AND ANALYZE
DO 30 1 = 1,10

GET OMNE SET OF VALUES,
BUT DON’T DEALLOCATE THE CLASS NUMBER.

OO0 OO0

CALL EXEC(C21,ICLASS+20000B,DATA,20)
CALL ABREG(IA,IB)

ANALYZE THE SET OF VALUES

OO0

WRITEC1,101) (DATACJ),J=1,1B)
FORMATC20A2)

o
-

CONTINUE

o

NOW THAT ALL THE DATA SETS HAVE BEEN ANALYZED,
USE AN EXTRA GET CALL TO DEALLOCATE THE CLASS NUMBER.

CALL EXEC(21,ICLASS,DATA,20)

(@] QOO0 WOHO =

END

17-20

17C. CLASS 1/0 — A SUMMARY OF
FEATURES

Programs may use class 1/O for —

® program to program communication
® input/output requests to peripheral devices
® control requests to peripheral devices

All types of class 1/O share these features —
® data transfers are done via buffers in SAM

® CLASS 1I/O is “double call”
— one call manufactures a buffer in SAM
— a second call consumes a buffer in SAM

® buffers are queued on class numbers, the "keys” to
accessing data

® buffers may be manufactured and consumed
asynchronously

17-21

CLASS 1I/0 vs OTHER /O

All types of I/O must specify the:

e LU of the device
® buffer containing or receiving the data
e the number of words or characters to be transferred

Various forms of I/O differ by:

Number of Location of Program Prog}-am
EXEC calls Duffer used swappable waits
by driver ? ?
Normal I/0
(unbuffered)
Automatic

. output buffering

REIO, input

REIO, output

CLASS 1/0

17-22

17D0. CLASS I/O FOR DEVICE 1/0 AND
CONTROL

The class /0 EXEC requests are:

EXEC 17 — CLASS READ

EXEC 18 — CLASS WRITE

EXEC 19 — CLASS CONTROL
EXEC 20 — CLASS WRITE/READ
EXEC 21 — CLASS GET

17-23

CLASS 1O FOR INPUT

Suppose PROGB wants to input some values
from a terminal info an array. Using CLASS
1/0O, the program might look like this —

PROGRAM PROGB

C
C REQUEST INPUT OF DATA - CLASS READ
C
CALL EXECC17,......)
C
C CONTINUE EXECUTION WHILE RTE DOES THE I/0
C .
c _
C RETRIEVE THE DATA THAT WAS INPUT - CLASS GET
c

CALL EXECC21,.....)

17-24

CLASS READ OPERATION

Physical Memory

PROGB
PROGB in ¢
Partition

([sAM @

RTE

System <

17-25

&

CLASS 1/0 FOR OUTPUT

Suppose PROGA wants to output a buffer to the line
printer (LU 6). Using CLASS 1/0, the program might
be structured like this —

PROGRAM PROGA

C
C OUTPUT DATA - CLASS WRITE
C
CALL EXECC18,........)
C .
C CONTINUE EXECUTION WHILE RTE DOES THE 1/0
C
C
C COMPLETE THE OPERATION - CLASS GET
C

CALL EXECC(21,...0cvenns)

17-26

CLASS WRITE OPERATION

Physical Memory

PROGA
PROGA in a Dafa
Partition
([SAM Line Printer,
LU 6
RTE
System <

17-27

CLASS 1/0 FOR DEVICE CONTROL

Suppose PROGC wants to rewind the tape on the

mag tape drive. Using CLASS I/O the program might
be —

PROGRAM PROGC

C
C REQUEST RTE REWIND THE TAPE - CLASS CONTROL
c .
CALL EXECC19,.......)
C
c CONTINUE EXECUTION WHILE RTE REWINDS THE TAPE
C
C
C COMPLETE THE OPERATION - CLASS GET
C

CALL EXECC21,......) *

17-28

CLASS CONTROL OPERATION

PROGC in a
Partition

System

|

Physical Memory

PROGC

Contml

([SAM

RTE

17-29

Mag
Tape

e CLASS WRITE/READ e
® CLASS WRITE e CLASS READ e

The CLASS WRITE/READ, CLASS WRITE, and CLASS
READ all have the same call format.

CALL EXEC CICODE, ICNWD, IBUFF,ILEN,10P1,I0P2,ICLAS)

/ \
class

17 — CLASS READ
18 — CLASS WRITE

20 — CLASS WRITE/READ optional parameters,
retrieved by CLASS GET

number

control word for
request length of buffer

buffer

These calls manufacture one buffer in SAM.

17-30

® CLASS CONTROL

The CLASS CONTROL call format is:

CALL EXEC €19, ICNwWD,10P1, ICLAS,IOP2,10P3)

o

control word,
specifies LU and
control function

optional parameters,
retrieved by class get

optional parameter, class number
further specifying the
control request

This call manufactures one buffer in SAM.

17-31

¢ CLASS GET

A CLASS GET call consumes one buffer in SAM,
regardless of how the buffer was manufactured.

CALL EXEC (21, ICLAS,IBUFF,ILEN,IOP1,I0P2,10P3)
N —

class number
buffer

buffer length

optional parameters
passed when the buffer
was created

how was this buffer
manufactured? — returned

with

1 — READ, WRITE/READ
2 — WRITE

3 — CONTROL

17-32

A QUICK EXAMPLE
These FORTRAN statements prompt for an input
of 2 characters:

INTEGER IPRMT(4)
DATA IPRMT/2HIN,2HPU,2HT? ,2H_b/

CALL EXEC (2,1,IPRMT,4)
CALL EXEC (1,1+400B,IANS,1)

Using CLASS 1/O for the I/O operations:

INTEGER IPRMT(4)
DATA IPRMT/2HIN,2HPU,2HT?,2H_b/

a CLASS WRITE, CLASS READ
and 2 CLASS GETS

17-33

&

GET A BUFFER IN WHAT ORDER?

* SAM buffers manufactured by CLASS
WRITE/READS are retrieved in the order
in which they were created.

* SAM buffers manufactured by CLASS
READS, CLASS WRITES, or CLASS
CONTROLS are retrieved in the order in
which they were completed.

@

17-34

17E. VARIATIONS WITH CLASS 1/0

The ICLAS parameter of the CLASS I/0O calls allows
for several options in using CLASS 1/0. .

CLASS WRITE/READ, CLASS WRITE, CLASS READ, CLASS CONTROL

15 14 13 12 0
ICLAS:
class number
“no wait bit”
CLASS GET
15 14 13 12 0
ICLAS: '
class number
“deallocate bit”
"save bit” ﬁ}"%
"no wait bit” YN

17-35

WAITING FOR A CLASS
NUMBER OR SAM?

When a program makes an EXEC 17, 18, 19 or 20 call, it
will be suspended if: |

® there were no available class numbers and one
was requested

® there was not enough SAM to hold the class
buffer

Set bit 15 of ICLAS for a ““no wait” option. The
program will not be suspended if a resource is
unavailable and the A-register will be set to:

e —1 if no available class number

® —2 if insufficient SAM

17-36

&

WHY WAIT FOR YOUR DATA?

If a program does a CLASS GET on a class number
before a buffer has been manufactured by a CLASS
READ, CLASS WRITE or CLASS CONTROL, RTE will suspend
the program until a buffer is available.

When a buffer is placed in the appropriate class queue,
RTE will "wake up” the suspended program.

*This feature allows class 1/O to be used for
PROGRAM SYNCHRONIZATION

To avoid being "put to sleep” until the data is available,
set bit 15 of ICLAS to select the "no wait” option. Upen
return from the CLASS GET call, the A register will be

positive — if data was available and consumed

negative — if no data was avaiiable

&

17-37

GETTING YOUR DATA TWICE

When a program makes a CLASS GET
call, the first data buffer in the
appropriate class queue is consumed. A
subsequent CLASS GET will consume the
next data buffer.

Set bit 14 of ICLAS to retrieve the contents
of a data buffer but leave the data buffer
in the class queue. A subsequent CLASS
GET will get the same data buffer.

-

17-38

17F. TERMINAL HANDLERS

Suppose coperators at several terminals are
entering data which is used to update a disc
file.

=000

l

17-39

< «,
F';ERMINAL HANDLER@

Since CLASS 1/0 allows input without wait, one program can
easily handle inputs from several terminals
‘““simultaneously.”

¢ the program can issue CLASS READS to several
terminals without waiting for completion.

¢ the program (or another program) uses CLASS GETS
to retrieve the inputs from the terminals as they are
completed.

(==
N7

Receive inputs
&
Process

17-40

A VERY SIMPLE EXAMPLE

Consider a program which will
— prompt 3 terminals for a string of 10 characters

— process the input by printing each string on the
line printer, along with the LU of the terminal
which supplied the string

PROGRAM TERMS
INTEGER LUS(3)
DATA LUS/15,16,17/

C
C ISSUE 3 PROMPTS AND READS
C
DO 10 I=1,3
LU=LUSCI)
WRITECLU,101)
101 FORMATC/"INPUT 10 CHARACTERS:_")

issue CLASS READ
10 CONTINUE

RETRIEVE INPUTS

OO0

DO 20 I=1,3
iasue CLASS GET

print string and LU
20 CONTINUE

17-41

-

/i -

A AN Y R P ISR AN S
- (-

NN

SECTION
A RESOURCE NUMBERS AND LU LOCKS 18-3
8 EXEC CALLS TO THE DISC 18-14

C LARGE PROGRAMS : 18-19

18-2

18A. RESOURCE NUMBERS AND LU

LOCKS

Suppose you have two programs, each
accepting operator requests to examine and
possibly modify the records in one disc file.

DISC FIL.EB

\

operator looks at a record operator looks at a record

if desired, operator modifies if desired, operator modifies
the record the record

PROGRAM 1 PROGRAM 2

18-3

CRITICAL SECTIONS

If you have several programs trying to use the same
resource,

e a disc file
® a memory location
® a peripheral device
® a program
and only one program should use the resource at a

time, then the segment of code in each program

which manipulates the resource can be considered
to be a CRITICAL SECTION.

Only one program at a time should be executing in
its critical section!

18-4

RESOURCE NUMBERS

One of RTE's services is the management of RESOURCE
NUMBERS.

Your programs can use Resource Numbers to protect
critical sections of code so that only one program will use a
protected resource at a time.

The number of Resource Numbers in an RTE system is
specified when the system is generated.

E DisC FIIB

Lock a R.N. // Lock a R.N.

look at a record look at a record
if desired, modify the record lf desired, modify the record

Release the R.N. Release the R.N..

.
L d L]

PROGRAM 1 PROGRAM 2

18-5

RNRQ
RESOURCE NUMBER MANAGEMENT

The library routine RNRQ lets you allocate,
deallocate, lock and clear RESOURCE
NUMBERS (RN’s). Cooperating programs
can use RNRQ to coordinate their use of
shared resources.

CALL RNRQCICODE, IRN, ISTAT)
/

specifies opération resource number, returned status
desired allocated or of request

— allocate manipulated

— deallocate

— lock
— unlock

18-6

TYPES OF REQUESTS
In a call to RNRQ,

® the first parameter indicates the
request —

15 145 | 4 | 3| 2| 1] o
WAIT ALLOCATE LOCK
OPTION OPTION OPTION

ICODE= no [no | 2l e L |u|ae]|t
w AlAa|lL]o| N|L]|oO

A B | |o|lc|t]|olc

| olol| 8| Al o] B]| A

T RIS | Al L]c|altL

Tl T | L K | L
| e

® the last parameter indicates the
status of the request —

ISTAT= 0 NORMAL DEALLOCATE
(RETURNED) 4 pn |5 CLEAR (UNLOCKED)
RN IS LOCKED LOCALLY TO CALLER
RN IS LOCKED GLOBALLY
NO RN AVAILABLE NOW
RN IS LOCKED LOCALLY TO ANOTHER PROGRAM

RN WAS LOCKED GLOBALLY WHEN REQUEST
WAS MADE

NOTE: STATUS 4, 6, AND 7 ARE RETURNED ONLY
IF “NO WAIT” BIT IS SET.

18-7

~N OO B O =

TO WAIT OR NOT TO WAIT

A program will be suspended if it tries to
® allocate a RN and none are available

® lock a previously locked RN

A program may continue execution if bit 15 of
ICODE is set. For example,

60 ICODE = 1 B
CALL RNRQ (ICODE+100000B,IRN,ISTAT)
IFCISTAT.GE.4) GO TO 77

critical section

77 CONT INUE

work if RN
is already locked, try again later

GO TO 60

18-8

TO ABORT OR NOT TO ABORT

If a call to RNRQ causes an error, RTE will abort the
calling program. By setting bit 14 of ICODE, a program
can process its own errors (i.e., continue execution).

CALL RNRQCICODE+40000B, IRN,ISTAT)
error — GO TO 99

no error — 4.4 CONTINUE

continue processing

99 CONTINUE
CALL ABREG(IA,IB)
WRITEC1,101) IA,IB

101 FORMATC(/"RN ERROR"™,2A2)
STOP

18-9

EMBRACE

Programs using RN’s can become deadlocked ina
“deadly embrace”’.

This occurs when each program has what the other one
wants, so neither program can proceed.

Example:
PROG1 PROG?2

LOCK RN1 «-—— Both locks 0., — = LOCK RN2

LOCK RN2 «<—— PROG 1 gets blocked

PROG2 gets blocked —— LOCK RN1

RELEASE RN1
RELEASE RN2
$ RELEASE RN2
RELEASE RN1

18-10

AVOIDING DEADLY EMBRACE

1. All programs lock RN’s in same order.

Example:
PROG1 PROG2
LOCK RN 1 LOCK RN 1
LOCK RN3
LOCK RN2
RELEASE RN3
LOCK RN3
RELEASE RN1

RELEASE RN3
RELEASE RN2
RELEASE RN1

2. Logically associate the resources to be protected
with one RN instead of several RN's.

18-11

LU LOCK

® Use the library subroutine LURQ to
exclusively dominate (lock) a group of LUs.

¢ LURQ uses one RN to lock all the specified
LU’s to the program.

CALL LURQGCICON,LUARY,NUM)

N\

control option, array containing number of
specifies type LU’s to be LU’s to be
_of request locked/unlocked locked/unlocked
= lock

- unlock all
— unlock some

18-12

CONTROL OPTIONS

o Let ICON have these values to:

000000 B — unlock the specified LU’s
100000 B — unlock all LU’s currently locked
00000 1B — lock (with wait) the specified LU’s
10000 1B — lock (without wait) the specified LU’s

e Ifthe lock without wait option is selected, the A-register is
returned with:

0 lock successful
-1 no RN available
1 one or more LU’s are already locked

e Bit 14 is the "no abort bit”
CALL LURQ CICON+40000B,LUARY,NUM)

error —» GO TO 99
no error —»45 CONTINUE

18-13

188. EXEC CALLS TO THE DISC

LU 2 —

the system cartridge

The File
Management
System manages
this area, letting
you access the disc
via named files.

18-14

3l STEM AR54
SYSTEM
TRACK POOL

FMP AREA

Programs can use
tracks in the
system track pool
as temporary
storage space.

reference data.

Mother
Partition

18 Page|
EMA

EMA IN A NUTSHELL

* User map registers change to point to different physical pages as needed to

o o - - - -

o aws oo @wu» wes ems -

One extra register is always mapped
in case an element “spills over” to

next page.

—— —— — - o]

—~ PROGRAM —
~ = ~CODE- — —

— = MSEG = =~ =

e |
/‘-“-—"-—.—__.

<

<

} Read/Write Protected

Extra mapped register.

These registers point to
whichever MSEG contains
the referenced element.

These registers
always point
to program code.

These registers always
point to system
pages.

USER MAP
32 Registers

Physical
Memory

(System Pages + Program Size + MSEG size + EXTRA PAGE) = 32.

18-15

ALLOCATING TRACKS

Use an EXEC 4 or 15 request to allocate space from the
system track pool:

type of allocation number of tracks <0G &< You specify

4 — local needed
15 — global

CALL EXECCICODE,ITRAK,ISTRK,IDISC,ISECT)

RTE returns OO DO starting disc LU of number of 64
track allocated word sectors
tracks per track
(2 or 3

18-16

ACCESSING TRACKS

The normal EXEC 1/0 calls are used to access allocated
tracks.

CALL EXECCICODE,IDISC, IBUFF,ILEN,ITRK, ISEC)

0 1N

1 — read LU of disc array of data positive words, track &
2 — wrile to be transferred negative characters sector
to be transferred address for
transfer

18-17

DEALLOCATING TRACKS

The EXEC 5 or 16 calls deallocate tracks from the
system track pool.

CALL EXEC C(ICODE, ITRAK, ISTRK,IDISC)

-/

5 - release local number of tracks starting track LU of tracks
16 — release global to release (2 or 3)

18-18

18C. LARGE PROGRAMS

A sample memory configuration might be —

PHYSICAL
MEMORY

perhaps the no.

program
is 28 pages
L | B LOGICAL

largest partition
\
: MEMORY
. (32K)

SAM

19 pages

RTE fora

program

perhaps TABLES & TABLES &
13 pages { COMMON COMMON 13 pages

18-19

LARGE BACKGROUND PROGRAMS

Many programs do not need access to all of the
information in RTE’s “tables area’’. Such programs may
be loaded as LARGE BACKGROUND PROGRAMS or
TYPE 4 PROGRAMS.

PHYSICAL
MEMORY
(
perhaps the
largest partition -
is 28 pages
|-———-
SAM
LOGICAL
oTE MEMORY
(32K)
maybe [|TABLE 27 pages
6 pages | | AREA Il for a
maybe m
2 oares COMMON program
maybe ([TABLE TABLE
5 pages AREAI AREAI | { 5 pages

Use the “OP,LB” op code when using LOADR to load a
LARGE BACKGROUND PROGRAM.

18-20

STILL TOO BIG?

A USER PROGRAM

finish
LOGICAL MEMORY
”
user
program 4
area
.
tables {
- STArY

Program segmentation invoives breaking up a
large program into small pieces so that the
pieces fit into logical memory.

18-21

EXEC SEGMENT LOADS

An EXEC 8 request tells RTE to load a segment
from disc into memory and transfer control to it.

CALL EXEC(8, INAME, I0P1,10P2,10P3,10P4,10P5)
array containing optional parameters passed
the name of a segment to the segment

CALL EXEC(8..)

Unused

>

Segment 1

Segment
Overlay
Area

Segment 2

Main I CALL EXEC(B..)

User Partition

18-22

EXAMPLE

FTN4, L

10

10

10

PROGRAM HOWC3)
DIMENSION NAME(3)

DATA NAME/2HHO,2HW1 ,2H
WRITEC1,10)
FORMAT("HOW ')

CALL EXEC(8,NAME)

END

PROGRAM HOW1 (5)
DIMENSION MNAME(3)

DATA NAME/2HHO,2HW2,2H
WRITEC1,10)
FORMAT("ARE ')

CALL EXEC(8,NAME)

END

PROGRAM HOW2¢(5)

WRITEC1,10)

FORMATC'"YOU?')
CALL EXEC(&)
END

END$

18-23

LOADING SEGMENTED PROGRAMS

Since LOADR must process segmented programs
differently than ordinary programs, some pre-load
preparation will help reduce loading time.

The modules associated with a segmented program
can be grouped as —

® the main

® the segments

® subprograms referenced by the main
and/or one or more of the segments

18-24

LOADR COMMAND FILES
FOR SEGMENTED PROGRAMS

A LOADR command file for a segmented program might
be organized like this:

RE, main

SE, library
RE, segment 1
SE, library
RE, segment 2
SE, library

RE, segment n
SE, library
EN

18-25

LONG vs SHORT ID
SEGMENTS

Main programs are identified by “long ID
Segments.” Program segments are identified by
“short ID Segments.”

When a segmented program is loaded, LOADR fills in
a blank long ID Segment for the main and one blank
short ID Segment for each program segment.

To remove a segmented program from the system,
you must release

— the long ID Segment
— each short ID Segment

18-26

SEGMENTED PROGRAMS and
TYPE 6 FILES

To save a segmentéd program as a type 6 file, the main
and each of the program segments need to be “‘SP’d”.

:SP,MAIN

:SP,5EG01

:SP,5EGO02

:SP,5EGO3

:SP,5EG04

:0F ,MAIN

:0F ,5EGO1

:0F ,5EG02

:0F ,5EGO03

:0F ,5EG04

:RP,5EGO1

:RP,3EGO2

:RP,5EG03

:RP,5EG04

:RU N MA I N «<———runs the segmented
program from the
type 6 file

18-27

EXTENDED MWODV

DOLQO

SECTION

A WHAT IS EMA? 19-3

8 USING EMA FROM FORTRAN 19-7

C HOW EMA WORKS 19-14

19-2

19A. WHAT IS EMA?

PHYSICAL
MEMORY

PARTITION n

. LOGICAL
| . \ MEMORY (32K)

SAM

RTE \

TABLE AREAS
I&1I

A user’s program (code & data) must fit into 32K
words (minus some space for RTE tables, etc.)

19-3

MOTHER PARTITIONS

PHYSICAL
MEMORY
4
EMA
MOTHER | DATA
PARTITION)|
PROGRAM
\
LOGICAL MEMORY
(32K)
SAM PART OF EMA |MSEG
DATA
RTE PROGRAM
TABLE AREAS TABLE AREAS
1& 1 &N

REAL-TIME and BACKGROUND partitions may be
combined to form a MOTHER PARTITION
containing

- a program

— an EMA data area

The sizé of a Mother Partition is limited only by the
amount of physical memory available for
partitions.

19-4

€ WHAT IS EMA? »

® A means fo store and access large amounts of
data IN MEMORY.

— data is stored beyond a program’s logical
address space.

— the size of the EMA data area may extend
to all available physical memory.

® RTE dynamically "maps in” that part of the EMA
data area which is being referenced by a
program.

— EMA operation is "transparent” to the
FORTRAN programmer.

— customized mapping schemes can be
implemented in Assembly Language.

19-5

WHEN TO USE EMA?
* brg

e Linear Programming or Matrix Manipulation with many
large data arrays.

DIMENSION AC10000), BC10000), CC10000)..., 2€¢10000)
DO 10 J = 1,10000
ACJ) = BCJ) = BQY) + CCJ) ... + 2CJ) » QCP)

10 CONTINUE

Virtual schemes off the disc will page fault for each array
access leading to thrashing. EMA only has fo modify user
map registers to access the elements needed.

e Random access of large amounts of data (e.g., hashing)

INTEGER HASH
DIMENSION 1A€20000), IBC20000), [C(20000), IDATAC10), ISYM(10)
DO 10 L = 1,10
IKEY = HASHCISYM(L))
IDATACL) = IBCIKEY)*ICCIKEY)
- 10 CONTINUE

Subroutine HASH returns a key used to index into arrays IB
and IC.

e When fast coding is necessary.

When writing FORTRAN programs, the program
developer can let the system resolve references to EMA
elements.

e When real-time acquisition and processing of large
amounts of data is needed.

Using customized mapping schemes written in Assembly
Language, large amounts of data may be stored and
processed in real-time.

19-6

198. USING EMA FROM FORTRAN

FORTRAN thinks of the EMA data area as a
NAMED COMMON block. To use EMA in a
FORTRAN program:

® Use a COMMON statement to identify
your variables in a NAMED COMMON
block.

® [dentify this NAMED COMMON block as
the EMA data area by using the $EMA
statement.

® Manipulate the EMA variables just like
any other variables in your program.

19-7

DECLARING AN EMA DATA AREA

The FORTRAN $EMA statement declares that the

variables in the specified NAMED COMMON
block are to be EMA variables.

$EMA (blockname, mseg)

coluInn 1 /
/

the name of a NAMED . number of pages in the
COMMON block to be MSEG, a 0 defaults to the
further defined in a largest possible MSEG

COMMON statement

The $EMA statement must be the first non-comment
statement in a program module.

19-8

EXAMPLE EMA DECLARATION

FTN4,L

$SEMACXYZ,0)
PROGRAM EXMPL
COMMON/XY2Z/1AC1000,100),1BC(32767),REAL(10000)

CALL SUBR (I,J)

END

$SEMACXYZ, @) :
SUBROUTINE SUBR (I,J
COMMON/XYZ/1A€1000,100),1B(32767),REALC10000)

RETURN
END

19-9

INPUTTING AND OUTPUTTING EMA
VARIABLES

e Use FORTRAN READ or WRITE
statements. The READ or WRITE can be
formatted or unformatted.

¢ EMA variables CANNOT be used with
FMP calls or EXEC calls.

£

19-10

EMA VARIABLES AND FORTRAN

SUBPROGRAMS

A FORTRAN subprogram may be written to

e accept ordinary variables as parameters

20

SUBROUTINE SUMAR C(IARRAY,NELE, ISUM)
DIMENSION IARRAY (NELE?D
IsuM=g
DO 29 I=1,NELE
ISUM = ISUM+IARRAY(I)D
CONTINUE
RETURN
END

e accept EMA variables as parameters

29

"SUBROUTINE SUMAR C(IARRAY,NELE,ISUM)

EMA IARRAY (NELE)D
ISUM=9
DO 208 I=1, NELE
ISUM = ISUM+IARRAYCI)D
CONTINUE
RETURN
END

18-11

PASSING EMA VARIABLES TO
SUBPROGRAMS
— CALL BY VALUE —

If a subprogram is written to accept ordinary
variables as parameters, a calling program (or
subprogram) can pass an EMA variable if the
program uses ‘‘call by value” when invoking the
subprogram.

FTN4,L
$EMACXYZ,0)

PROGRAM E XMPL.

COMMON/XYZ/1A€1000,100), IBC32767),REALC10000)

CALL ADDCIB(15)+g, CIBC30000)), IsSum)

END

SUBROUTINE ADD (I,J,ISUM)
ISUM=]+J

RETURN

END

19-12

PASSING EMA VARIABLES TO SUBPROGRAMS
— CALL BY REFERENCE —

If a subprogram is written to accept EMA variables as
parameters, the calling program (or subprogram) must
pass EMA variables to the EMA parameters using ““call by
reference’” when invoking the subprogram.

FTN4,L
$EMACXYZ, 8)
PROGRAM E XMPL
COMMON/XY2/1A€1000,100), IBC32767),REALC10000)

CALL ADD(IAC15), IBC(30000), ISuMmd

END

SUBROUTINE ADD CI,J,ISUM)D
EMA I,J

ISUM=T+J

RETURN

END

19-13

19C. HOW EMA WORKS

The “load map” of an EMA program might be:

:RU,LOADR,, $TEMA

TEMA
SUM

FMTIO
FMT.E
PNAME
REIO
ERRO
. ERO.E
FRMTR
«CFER

32042
55553

55632
57126
57127
57175
57322
57412
57413
63040

55552
55631

57125
57126
57174
57321
57411
57412
63037
63115

14 PAGES RELOCATED
/LOADR: TEMA

/LOADR: SEND

READY AT 1l:41 PM SUN., 24 JUNE,

24998-16002 REV,190
24998-16002 REV.190
771121 24998-16001
92067-16268 REV.1903
771122 24998-16001
750701 24998-16001

24938-16002 REV.190
750701 24998-16001

32 PAGES REQ D

19-14

1l 781107
1 781107
790316
1 781107

18 PAGES EMA

1979

3 PAGES MSEG

USING TRACKS FROM THE
SYSTEM TRACK POOL

Programs using tracks from the system track
pool need tg —

® alilocate tracks

EXEC 4 or 15

® access the tracks

EXEC 1T or2

® deailocate the tracks

EXEC 5 or 168

DEFAULTING MSEG
Largest MSEG possible is used.

All user map registers not pointing to program and
system are used as MSEG.

Default MSEG size is set at load time; the MSEG size can
be modified on-line with SZ command.

Default value = (32 — #mapped system pages
— program size —1).

$EMACXYZ,2)
MSEG Default MSEG Specified as 2
Extra { '
= = Read/Write } F————-
_____ Protected | | — — — — ..
G| s |
_] Extra {
————— MSEG=2{ - ———
Program | - — — — — Program | |—— — — -
Code | - - — — — Code | |— — — —

USER MAP USER MAP

REGISTERS (016 REGISTERS

CONSIDERATIONS OF MSEG SIZE

In an all FORTRAN program executing
with EMA firmware, MSEG size makes
absolutely no difference. The EMA
firmware always maps two pages (one
page containing the data and one extra

page).

The Assembly Language programmer
may want to specify MSEG size since
subroutines .EMIO and MMAP use the
MSEG size.

19-17

DISPATCHING EMA
PROGRAMS

® RTE will dispatch an EMA program to any
mother partition large enough to hold it. An
EMA program can be dispatched to a
subpartition if it is assigned to it.

¢ [f a Mother partition is chosen, RTE will
dispatch an EMA program when:

1) All programs in the subpartitions are
swappable.

2) The EMA program has a higher priority
than all the programs in the
subpartitions.

® RTE then swaps all the programs out of the
subpartitions. They will vie for other available
partitions and subpartitions.

¢ RTE then loads the EMA program into the
Mother partition where it gets CPU time just like
any other program.
19-18

SWAPPING OUT AN EMA PROGRAM

® RTE will not swap out an EMA program
that has been loaded into a Mother
partition. This avoids thrashing.

EXCEPTION: RTE will swap out an
EMA program in a Mother
partition if a |
higher-priority program
has been assigned to a

subpartition within the
Mother partition.

19-19

EMA vs. DISC

DATA IN EMA

NON-TRANSPARENT
(USER MAPPING)

TRANSPARENT
(FORTRAN EMA)

DATA ON DISC

NON-TRANSPARENT
(USER SEGMENTS)

ommow

LOCAL
ACCESS
(SEQUENTIAL)

BEST

3rd BEST

2nd BEST

RANDOM
ACCESS

BEST

2nd BEST

TERRIBLE

EASE OF
CODING

HARD

EASY

HARD

LOCAL ACCESS EXAMPLES: SOME LINEAR SORTS; ACCESSING SINGLE

ARRAY; FOURIER TRANSFORMS

RANDOM ACCESS EXAMPLES: QUICKSORTS; ACCESSING MULTIPLE

19-20

ARRAYS; HASHING

SECTION
A SYSTEM LIBRARY - 20-3
8 RELOCATABLE LIBRARY. 20-14

C DECIMAL STRING ARITHMETIC 20-17
LIBRARY

20-2

20A. SYSTEM LIBRARY

General purpose subprograms for using RTE services,
including — |

RMPAR — retrieve parameters for a program

PRTN _— return parameters to a “waiting’’ Father
ABREG — retrieve the contents of the A and B registers
I FBRK — checks a program’s break bit

GETST — retrieve parameter strings from interactive

commands to schedule programs or
buffers of data from programmatic
schedule requests

REIO — allows programs doing /O to be swappable

RNRQ — allows programs to use RTE resource
numbers

LURG — allows programs to lock devices.

AND MORE . . .

20-3

PARSE

This routine parses an ASCIl string containing up to 8
parameters, separated by commas.

CALL PARSE (IBUFA,ICON, IRBUF)

array containing number of characters - 33 word array to
the string to be in the string receive the parsed
parsed results

PARSE returns the parsed sfring in blocks of 4 words, one per
parameter.

type of parameter parsed
null numeric ASCII
a 4 word word 1 0 1 2
block in word 2 0 value 2 characters
IRBUF word 3 0 0 2 characters
word 4 0 0 2 characters

IRBUF (33) contains the number of parameters parsed.

20-4

PARSE EXAMPLE

FTN4,L
PROGRAM PARSR

DIMENSION IBUFAC40), IRBUF(33)

OO0

READ AN ASCII STRING INTQ IBUFA

CALL EXEC(1,1+400B, IBUFA,-80)
CALL ABREG(IA,IB)

AND PARSE IT

DISPLAY RESULTS

OO0 OO0

WRITE(G,100)IBUFA

CALL PARSE(CIBUFA, 113, IRBUF)

100 FORMAT("™ ASCII STRING: ",40A2)
WRITE(S,101)IRBUF

101 FORMAT("0 TYPE VALUE VALUE VALUE"/
c 8(3X,12,4X,86,2X,86,2X,086/)
c "0",12," PARAMETERS RECEIVED."™)

END

ASCII STRING:

TYPE VALUE
044108
000014
000071
041501
000007
000000
000000
000000

COO=N= =N

HELLO,14B,57,CARL,7

VALUE
046114
000000
000000
051114
000000
000000
000000
000000

5 PARAMETERS RECEIVED.

20-5

VALUE
047440
000000
000000
020040
000000
000000
000000
000000

NAMR

Parse a FMGR namr parameter string.

IFC(NAMRCIPBUF, INBUF,LENTH, ISTRC)210,20

10 word buffer to buffer containing number of starting character
receive ASCIl namr string characters in number (must be
parameters string - a variable)

The returned buffer IPBUF is structured as:

N\

/

~ file name (ASCH)

null
— indicates type of subparameters {numeric
ASCIl

- subparameters

OV NOULEOND

=

(O if a string
The value of the function has been parsed

NAMR is returned as —1 if no characters

\ are in INBUF

20-6

NAMR EXAMPLE

FTN4, I

100

i0

104

PROGRAM N
DIMENSION IPBUF(10),INBUF(40)
LU=LOGLU(ISES)

WRITE(LU,$00)

FORMAT("ENTER A NAMR.™)

CALL EXEC(i,LU+400E,INBEUF,-80)

CALL AKREG(IA,IE)

ISTRC=1

IF (NAMR ¢ IPEUF , INEUF, IR, ISTRC) 99,410
WRITE(LU,$04)INKUF, IPRBUF
WRITE(6,401) INBUF, IPRUF

FORMAT(" INBUF NAMR : *,40A2/
c /" 1 P BUF PARAMETER BUFFER"/
c nORKKKKKKKKKKIKKKKKKKKKEKKKKAE "/
c /" WORD 4 = ",A2/
C " WORD 2 = ",AR/
C " WORD 3 = ",A2/
c " WORD 4 = ",@&,"H"/
C " WORD S = “,A2/
» " WORD & = “,@5,"R"/
c " WORD 7 = “,86,"B"/
C " WORD 8 = ",B6,"R"/
c " WORD 9 = "“,R6,"R"/
c " WORD 10 = ",@6,"E")

GO TO S

STOP

END

INRUF NAMR = NEWFIL:SC:42:3:40

I PEBUF PARAMETER BUFFER
KRR KKK AR KK KKK K KKK KK KKK

WORD 41 = NE
WORD 2 = WF
WORD 3 = IL
WORD 4 = Q00S37H
WORD 5 = 3BC
WORD 6 = 00004i4E
WORD 7 = 000003E
WORD 8 = DO00042F
WORD 9 = 000000H
WORD 40 = 000000E

20-7

MESSS

Allows programs to issue interactive system

commands.

o) — no
message
returned
by RTE

e negative number
of characters if
RTE returns a
message

IA =

/

MESSS (I Ui;jﬂyM,LQi\\\

array cuﬁiaining number of replacement LU for
the ASCII characters in the RU or ON
command string; command command

RTE returns any

message in this

array

IBUF should be at least 14 words long to allow for the
largest possible system return.

20-8

e%"\?w

Program LABIL calls MESSS to change its priority
during execution.

FTN4,L
PROGRAM LABIL(3,39)
DIMENSION IPRS0€20), IPR99¢20)
DATA IPRS0/2HPR,2H,L,2HAB, 2HIL,2H,5,2H0 /
DATA IPR99/2HPR,2H,L . 2HAB, 2HIL,2H,9,2H3 /
c
¢ SET PRIORITY UP TO S0 FOR CRITICAL SECTION
c
I = MESSSCIPRS0,11)
IFCI.NE.0)GO TO 99
. CRITICAL CODE
c
¢ SET PRIORITY BACK TO 99
¢

[= MESSSCIPR99,11)
IFCI.NE.0)GO TO 999

STOP
99 WRITEC1,100)

100 FDRMAT("MESSAGE RETURNED WHEN SETTING PR TO S50:')
CALL EXEC(2,1,IPR50,ID
GO TO 1000

999 WRITEC1,101)

101 FORMAT("MESSAGE RETURNED WHEN SETTING PR TO 99:')
CALL EXEC(C2,1,IPRS99,I)

1000 STOP

20-9

ASCII EQUIVALENTS OF INTEGERS

integer—ASCII decimal

caLL CNuMD CIVAL, IBUF)

3 word array to receive the 6
character ASCIl representation,
leading zeros suppressed

positive _~
integer

integer——ASCII octal

CALL CNUMO CIVAL,IBUF)

integer—ASCIl decimal, only 2 digits

I = KCVT (IVAL)

ASCII decimal integer value, 0--99
equivalent

20-10

CONCERNING LU’s

Is this LU an interactive device?

INT IFTTYCLU)D

—1 interactive LU under question
0 not interactive

Who scheduled me?

LU = LOGLU CLUSYS)

LU of device from system LU of the

which the program session terminal
was scheduled

What is the system LU?

LU = LUTRU C(ITEST)

/

corresponding session LU
system LU

20-11

FINE

Supplies the system time in formatted mode.

CALL FTIME C(IBUF)

a 15 word array where the
formatted time is returned, for
example

2:09 PM THU., 5 JAN., 1978

WHERE IS MY ID SEGMENT?

IDGET returns the address of a specified program’s ID
segment.

IDSEG = IDGETCINAM)D

e address of ID segment 3 word array containing
a program name
e O if program has no ID prog

segment

20-12

AND MORE

0 O 0O
O v O

o Refrieve memory contents
IMYAL = IGET CIADDR)
contents of memory address in memory
o Set the S register
CALL ISSR (N)

value to be set into the
S register

® Retrieve a program’s name (possibly renamed)
CALL PNAME C(NAME)

3 word array returned with
program’s name

e Check and then clear the overflow register
IF COVFCIDUMMY))10,20

is set is clear

20-13

208. RELOCATABLE LIBRARY

Math and general purpose utility routines, including,

¢ _ENTR — retrieve parameters for a subprogram

e AND OTHERS

20-14

MATH ROUTINES

Square root A = SQRTCX)D

Logs A & ALOGCX) A = ALOGT(X)
Mods A = AMODC(X,Y) J = MODCI,K)
Trig functions A = TANCX) | A = SINCX) etc.
Complex values A = CSQRTCX) A = CEXP(X)
Exponentials A = EXPCX)

Absolute values A = ABS(X) J = IABSCI)

LOGICAL FUNCTIONS

And K = IANDCI,J)
Or (inclusive) K = I0ORCI,JD
Or (exclusive) K = IXORCI,J)D
7
&
OO

20-15

MANIPULATING TWO WORD
INTEGERS

Callable from FORTRAN:

FIXDR converts a real value to a double length record
number

FLTDR converts a double length record number to a
real value

Callable from Assembler:

.DADS double integer addition/subtraction

.DMP multiplication

.DDI division

. DNG negation

.DCO ‘ comparison

.DIN increment

.DIS increment and skip if zero
.DDE decrement

.DDS decrement and skip if zero
.FIXD converts real to double integer

. XFXD extended real to double integer
.TFXD double real to double integer
.FLTD converts double integer to real

.XFTD to extended real
.TFTD to double real

20-16

20C. DECIMAL STRING
ARITHMETIC LIBRARY

Routines for handling large character (decimal)
strings. |

— math functions
— string code conversions

— string editing

20-17

GETTING A CHARACTER FROM A
STRING

SGET will extract a character from a string:

CALL SGET (JUSTR,J,JHOLD)

J
\ 2

JSTR

L 2
JHOLD

PUTTING A CHARACTER INTO A
STRING

SPUT will place a character into a string:

CALL SPUT (JSTR,J,JHOLD)

JHOLD
]

JSTR

3
J

20-18

MOVING CHARACTERS BETWEEN
STRINGS

Routine SMOVE moves a string of characters
from one string array to another.

CALL sSmOVE (JSTR,JBEG,JEND,KSTR,KBEG)

JBEG JEND
3 L
JSTR 5 :
\\
" KSTR : E
3
KBEG

20-19

COMPARING CHARACTER STRINGS

JSCOM will compare two character strings according to
the ASCIl collating sequence.

IRES = JSCOM (JSTR,JBEG,JEND,KSTR,KBEG, IERR)

JBEG JEND
R \ 4

JSTR

character strings to be compared,
character by character

KSTR

KBEG

<0, string in JSTR < string in KSTR
JSCOM returns 0, strings are equal
>0, string in JSTR > string in KSTR

IERR indicates an invalid character in a character string.

20-20

APDPERDIX A
LAB FEXEFIRCISES

LAB 11 - DISC CARTRIDGES

l. If you "accidently" dismount your private cartridge,
how can you remount the cartridge without losing any
data? Can you guarantee that this process will prevent
the loss of any data?

If you try this exercise, you might want to back up
your cartridge on tape first;

A-3

LAB 12 - SPOOLING

1. Usipg spooling, list several files to the line printer,
making sure that no interleaved listing will occur.

2. File &LB122 contains a FORTRAN source program designed

to input and process a data deck (cards) which has
the following structure:

—~7

one value per card
\\ I real value in format F4.2
- number of data cards -«—- one integer value
following in format 12

The program calculates and prints the average of the
real values, The integer value acts as a “header"
value, specifying how many real values are following.
The program inputs from LU 5.

Create a disc file with these records:

b5
1154
1132

1167 (‘b’ represents a blank)
1159
1173

Make a copy of the FORTRAN program for your use (with
a new program name) and then compile and load the program,

Using spooling, run the program to input and process

the data in the disc file (without having to modify
the program’s code!l). :

A-5

J., Write a

program which will

write several records on a tape
(minicartridge or magnetic tape).

rewind the tape

read the records just output to the tape

Use ordinary FORTRAN READS and WRITES (and a REWIND call).

Create a type 4 file, 5 blocks in length. Repeat the exercise

but use

spooling so that the program you just wrote will

manipulate the disc file.

4, Turn the line printer off line, then use spooling to list
a file on the printer. What happens when you close the spool
file? How do you recover?

LAB 13 - BATCH PROCESSING

l. Create and run a batch job which consists of
:JO,ooocotuoo

:CL

tEO

Notice where the output is printed. Modify

the job so that the output appears at your
terminal,

LAB 14 - SYSTEM CONSOLE

Create and run a batch job which consists of

:JO'..'.....QOC.
:IF, ,EQ,,~-1
:EO
Submit the job and then abort it while
* the System Console is in Non-session mode

* the System Console is in Session mode

File &LB1l42 contains a FORTRAN source program which
* prompts for an LU

* prints a message on that device

Make a copy of the source file, giving the program a
new name. Then compile and load the program.,

Run the program from the System Console so that the
message appears at your (peripheral) terminal,
Try this with

* the System Console in Non-session mode

* the System Console in Session mode
(or is this possible?)

A-11

1.

LAB 15 - TIME-SCHEDULED PROGRAMS

File &LB1l51 contains a FORTRAN source program which
pPrints a message at your terminal. Make a copy of

the source file, giving the program a new name and
compile and load the program,

Using the syétem IT and ON commands, time schedule
the program to execute

- every 5 seconds, starting immediately,
- every 5 seconds, starting 20 seconds from

the time you schedule it. (Or is this
possible to do?)

2. Write a program which will time schedule the program

you used in problem 1 to execute every 5 seconds,

starting 5 seconds from the time of the scheduling
Lequest,

Hodify the program used in problem 1 so that it will
place itself in the time list and print out the message

* every 5 seconds, starting 5 seconds from
the time when the program is initiallly run,

* every 5 seconds, starting 20 seconds from
the time wnen the program is initially rua,

You might include an EXEC time reguest in your program
to be sure that the message is being printed at the
correct intervals,

Place program WHZAT into the time list to execute
every 10 seconds. Wnat happens when anothar user
enters a Wd command?

l.

LAB 16 -~ PROGRAMS SCHEDULING OTHER PROGRAMS

Write two programs which will be a Father and a Son.
The Fatner should prompt the operator for a string

of characters and an LU (where the string will

eventually be printed) and then schedule the Son
program. The Son should print tne string of characters

on the device specified by the operator.

Files &LBl61 and &LBl62 contain FORTRAN source programs.

* Program LBl6l writes a message and suspends
itself

* Program LB162 tries to schedule program LB161
"queue witn wait."

Make a copy of each source file and then compile and
load the programs.

a) Follow these steps:
- use the FMGR RU command to run projram LB162

- from breakmode, run WHZAT to see what is
happening

- from breakmode, run program LBl62 again,

Explain what nappens next.

b) Reschedule program LB1l6l1 and then try these steps:

- run program LB1l62 from FMGR

- from breakmode, run WHZAT

- from breakmode, restart your FMGR
- from FMGR, run program LBl62 again
-~ from breakmode, run WHZAT.

Explain the WHZAT display.

A-15

LAB 17 - CLASS 1,0
* PART A - PROGRAM TO PROGRAM COMMUNICATION
l. Write two programs (a Father and a Son). The Father
will :

- prompt the user to enter a string of
characters

- place the string in a "mailbox"

- schedule the Son to retrieve and print
the string.

a) Schedule the Son "without wait" and let the Son
deallocate the class number.

b) Schedule the Son "with wait." When the son completes,
the Father should deallocate the class number.

2. Write two programs (a Father and a Son). The Father
sheculd

- go into a loop, prompting the user for a string

of characters and placing the string in a
*mailbox"

- terminate the loop when the string "XX" is
entered, then

- schedule the Son.

The Son should then retrieve and print the strings,

terminating after all the strings have been retrieved
and printed.

3. Modify the programs you wrote for problem 2 so that
the Son is scheduled after the first string of
characters is entered, rather than waiting until an
“XX" (the last string) is entered.

A-17

4. In problem 3, if the Son "hangs up" for some reason
(the printer is down perhaps), the Father could end

up having many buffers in S8AM, all waiting to be
retrieved by the Son.

Arrange your programs sc that there will be a maximum
of 4 buffers in SAM at any one time.

(Perhaps use a second class number and let the Son
tell the Father when a buffer is consumed. This way,
the Fatner can keep a running count of the number

of buffers in saM.)

* PART B8 - DEVICE I/0 AND CONTROL

5. Write a program which prompts you for a string of
Characters. Let the program repeatedly print a message
on the line printer until you respond with your input.

6. Write a program which goes into a loop, inputting strings
of characters from your terminal (CLASS I,/Q) and

outputting them to the line printer. Terminate the loop
wher. the string "XX" is.entered.

Modify the program to accept input from several terminals,
until an "XX" is entered at each one. When the string is
output to the line printer, also identify the terminal
which input the string,

A-19

LAB 18 - MORE RTE SERVICES

1, Write a program wnich insures itself exclusive access
to the line printer by using an LU Lock. Have the
program PAUSE before unlocking the printer. While the
program is suspended, restart your FMGR and try to list
a file on the printer,

2, Write two programs which will compete for use of the
line printer.

Program 1 should write the message *"I'M PROGRAM 1"
25 times on the printer,

Program 2 should write the message "I'M PROGRAM 2"
25 times on the printer.

Program 1 snould schedule program 2 without wait
before starting to print its messages. This way,

the two programs will be competing for the sanme
resource,

Consider these guestions:

* If the line printer is BUFFERED, what will the
output look like?

* If the line printer is UNBUFFERED, what will the
output look like?

Modify the programs to use a Resource Number SO that the
output will alternate between 5 lines from program 1 and
5 lines from program 2, ’

Some suggestions:
- use an unpuffered line printer.
- - after a program unlocks the RN, have the program
output a message to the line printer. (Perhaps
print "PROGRAM x S TURN QVER").

- which program should deallocate the RN?

A-21

3. File &LB183 contains a FORTRAN source program which will
- request a local allocation of 5 tracks

- print out the location of the tracks allocated

PAUSE

- when rescheduled, deallocate the tracks ani
terminate.

a) Make a copy of the source file, giving the prograa a
new name, Compile, load and run the program. While
the program is suspended, run LGTAT and identify the
allocated tracks. Reschedule the program and run
LGTAT after the program terminates.

b) Run the program again, While it is suspended, abort
the program (OF,program,l). Then run LGTAT.

€) Remove the EXEC track deallocation call and repeat
part a.

4. For the system you are using, how many words (locations)
are gained by making a program "large-background“?

A-23

LAB 19 - EXTENDED MEMORY AREA (EMA)

l. RNDFIL is a type 1 disc file containing 16384 real
values. Write a program which will =

* input the values and store them in EMA.

* compute and output the average of the
EMA values,

2., Modify the program you wrote for problem 1 to
determine the average value and the value closest
to the average value for the values in EMA. Write
two subprograms as follows to implement this
modification,

Subprogram l: Write a FUNCTION subprogram to be
invoked as follows =

I = function (value 1, value 2, EMA value)

the function will an EMA variable
return -
1 if the EMA wvalue is a second real variable

closer to value 1

than is value 2
a real variable

if value 2 is closer
to value 1 than is

the EMA value
(or if value 2 is

equal to the EMA value)

A-25

Subprogram 2: Write a SUBROUTINE subprogram which uses the
above FUNCTION subprogram to determine
which EMA value is closest to the average,

The SUBROUTINE is to be invoked by -

CALL subroutine (average, index)

//

the subroutine is the subroutine is to
Passed the average return the index of
of the real values the value closest to

the average

A-27

1.

2.

LAB 20 - LIBRARIES

Write a program which will accept a 5 character
program name and "rename" it for the user’s
Session, Print out the new name,

Write a program whicn places itself into the time
list, waking up every second to "up the line
printer."

Write a program whicn looks at its ID Segment and
prints out its type: real-time, background or
large~background.

Can your program be a large-background program?

Write a program to flash the display register in
a clever pattern,

A-29

* PART B *

S. Is “random access" using POSNT really slower than "true random

access" using LOCF and APOSN (not counting set up time) for
a sequential (type 3 and above) file?

File TLB1l05 contains a source program which you can use to
test out this idea. You should write two programs:

Program 1. This program should use POSNT to randomly
access the file. The program should go into a loop,
prompting for a record number and then displaying the
contents of that record. Terminate the program when
a record number of 0 is entered,

Program 2. This program should operate similarily to
the first program except that it should access the file
using LOCF and APOSN for "true random access."

Notice any speed difference?

A-31

SECTION

A SYSTEM LIBRARY 20-3

8 RELOCATABLE LIBRARY. 20-14

C DECIMAL STRING ARITHMETIC 20-17
LIBRARY

A-33

AVOIDING DEADLY EMBRACE

1. All programs lock RN’s in same order.

Example:
PROG1 PROG2
LOCK RN LOCK RN 1
LOCK RN3
LOCK RN2
RELEASE RN3
LOCK RN3
RELEASE RN1

RELEASE RN3
RELEASE RN2
RELEASE RN1

2. Llogically associate the resources to be protected
with one RN instead of several RN's.

A 35

RESTORING CARTRIDGES

Users can restore cartridges from magnetic tape
back to private or group disc cartridges with the
READT utility.

:RU,READT[, cartridge[,mag tape lu[,z [,size]n]

positive crn
negative LU of disc cartridge

® if a CRN is specified and the cartridge is not
already mounted, READT will mount a
cartridge from the spare cartridge pool and
restore it from tape.

® if a disc LU is specifiecl, the specified cartridge
is restored.

G C
MOUN“N : MC ARTRIDGES

You can also mount a disc cartridge with the FMGR
MC command.

:MC,lu ,g ,Size Eid L#directory tracksEcr{u

-~ _—

v

used only if there is not a valid file directory on the
first directory track
:CL
LU LAST TRACK CR LOCK P/G/S

02 00255 00002 S
03 00255 00003)
31 00400 00031)

tMC, -32 |

FMGR 043

1?72

FMGR 043 LU NOT FOUND IN SST

tSL,32,32

:MC, -32

:CL
LU LAST TRACK CR LOCK P/G/S
32 00140 SsS P
02 002585 00002)
03 00255 00003 S
31 00400 00031 S

:DL,~-32

CR=SS

ILAB=DC0032 NXTR= 00078 NXSEC=090 #SEC/TR=096 LAST TR=00140 #DR TR=01
NAME TYPE SIZE/LU OPEN TO

ATCL 00005 00024 BLKS
4TP3 00005 00024 BLKS
4TEMA 00005 00024 BLKS
ATTYP 00005 00024 BLKS
TXTSPL 00004 00040 BLKS
&TCL 00004 00003 BLKS
TRSPL 00003 00003 BLKS
DacC 00003 00024 BLKS

ALLOCATING A CLASS
NUMBER

You request a class number by making an EXEC 20 call
with ICLAS having a value of 0.

LU = 0
ICLAS = 0
CALL EXEC €20,LU,IAR1,NWD1,IPA, IPB, ICLAS)

RTE will return the class
number allocated to you

® You can then use ICLAS to tell another program
what class number to use when retrieving data sent
to it.

e You can also use ICLAS to do additional CLASS

WRITE/READS on the already allocated class
number.

CALL EXEC €20,LU, IAR2,NWD2, IPC, IPD, ICLAS)

RTE uses ¢ previously allocated class number

DISPATCHING EMA
PROGRAMS

® RTE will dispatch an EMA program to any
mother partition large enough to hold it. An
EMA program can be dispatched to a
Subpartition if it is assigned to it.

® If a Mother partition is chosen, RTE will
dispatch an EMA program when:

1) All programs in the subpartitions are
swappable.

2) The EMA program has a higher priority
than all the programs in the
subpartitions.

® RTE then swaps all the programs out of the
subpartitions. They will vie for other available
partitions and subpartitions.

® RTE then loads the EMA program into the
Mother partition where it gets CPU time just like
any other program.

S5
MANUFACTURERS and
CONSUMERS

EXEC 20 (CLASS WRITE/READ)

A program initiates a CLASS I/0 program to
program data transfer by making an EXEC 20 call.
The CLASS WRITE/READ call will “manufacture” a
buffer in SAM and fill it with data from the calling
program.

EXEC 21 (CLASS GET)

The receiving program retrieves the data in SAM by
making an EXEC 21 call. The CLASS GET will
“consume” the buffer in SAM by storing the data in-
the program and releasing the SAM buffer for use
by other programs.

"Every call that “manufactures” a buffer in SAM must
have a corresponding call that “consumes” the buffer.

CLASS 1/0 is said to be ‘““double call.”

*Programs can execute independently of the data
transfers, which are handled by RTE.

READER COMMENT
SHEET

Manual Name:
(Please Print)

Part Number:

We welcome your evaluation of this publication. Your comments and
suggestions will help us improve our training materials. Please use additional
pages if necessary.

Is this book technically accurate?

Did it meet your expectations?

Was it complete?

ls it easy to read and use?

Other comments?

FROM:
Name

Company
Address

Training Coordinator/Technical Marketing
Hewlett-Packard Co.

11000 Wolfe Road

Cupertino, California 95014

	001
	002
	003
	004
	005
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	14-03
	14-04
	15-01
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	A-01
	A-03
	A-05
	A-07
	A-09
	A-11
	A-13
	A-15
	A-17
	A-19
	A-21
	A-23
	A-25
	A-27
	A-29
	A-31
	A-33
	A-35
	A-37
	A-39
	A-41
	A-43
	A-45
	replyA
	replyB

