[bﬁ HEWLETT

PACKARD

RTE-6/VM Programmer’s

Reference Manual

RTE-6/VM Programmer’s

Reference Manual

(D Jyrre

HEWLETT-PACKARD COMPANY

Data Systems Division

11000 Woite Road MANUAL PART NO. 92084-90005
Cupertino, California 95014 Printed In U.S.A. December 1981

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the

appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition................................ Dec 1981

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD’ TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

Preface

This manual describes the scope, format, and use of the RTE-6/VM
operating system services available to user—-written programs. It
is intended to be the primary reference source for programmers who
will be responsible for writing and maintaining software within
the RTE-6/VM operating environment.

This manual is divided into five sections as follows:

Chapter 1 gives a general description of the RTE-6/VM operating
system features.

Chapter 2 describes the use of the Executive communication module
of RTE-6/VM that provides user-written programs with
the ability to communicate with the operating system.
The Executive allows programs to perform 1/0
operations, manage programs, manage system resources,
and obtain status information about the system.

Chapter 3 describes the use of files and the File Management
Package (FMP) by user-written programs. By calling
routines contained in the File Management Package (FMP
library), user-written programs can define, access,
position within, and purge disc or non-disc files.

Chapter 4 defines and describes the use of the Virtual Memory
Area (VMA) and the Extended Memory Area (EMA) features
of RTE-6/VM.

Chapter 5 describes the format and use of the several routines
contained in the System Library. The System Library
contains user-callable subroutines that provide a
variety of utility and special purpose functions.

Appendix A Error Messages

Appendix B VMA/EMA Mapping Management Subroutines
Appendix C System Communication Area and System Tables
Appendix D Program Related Tables .

Appendix E I/0 Tables and Processing

Appendix F Memory Management and Related Tables
Appendix G DCB and Directory Formats

Appendix H Session Monitor Tables

Appendix I Record Formats

Appendix J Scheduling FMGR Programmatically

iii

For additional information on the RTE-6/VM operating system or any
of its subsystems, refer to the RTE-6/VM Index and Glossary
Manual. This guide contains a complete glossary, commonly used
tables, a general index to all RTE~6/VM manuals, and a
documentation map.

Two reference manuals that are directly related to the RTE~-6/VM
operating system are briefly described below:

* RTE-6/VM Terminal User's Reference Manual. This manual
describes the features of the RTE-6/VM operating system that
are available to the user in an interactive mode.

* RTE-6/VM System Manager's Manual. This manual contains the
information necessary to plan, generate, and maintain the
RTE-6/VM operating system.

iv

Table

Chapter 1 General Description

Introduction . . « « « .« &
Multiprogramming an
Program TYPeS « « o o o o o
Memory Management« &
Memory Maps . .« « o

Physical Memory . . « « .+ &
Common AreasS. « o« o o o o o
Memory Protection
Program Partitions.
Program Segmentation. . . .

Input/Output Processing
Hardware Considerations
Logical Unit Numbers. .
Power Fail. . «
I/0 Controller Time-Out . .

Privileged Interrupt Processing

Resource Management
Session Monitor
Language Support . . ¢« « &
Executive Communication . .
File Management System . .
System Library . « « ¢ o
Spooling System . « « « o

System Utility Programs . .

Chapter 2

Introduction . ¢« ¢« ¢ « o .
EXEC Call Formats . « + « .
EXEC Call Error Returns . .
No-Abort Option
No-Suspend I/0 Option .
EXEC Description Conventions
Standard I/0 EXEC Calls . .
Read or Write Call - EXEC

I/0 Control Call - EXEC 3

Class I/0 EXEC Calls . . .
Class I/0 Operation . .
Class Read, Write,
Class I/0 Control - EXEC
Class Get - EXEC 21 . .

Program Management EXEC Calls

Program Completion - EXEC

Timeslicing

and Write/Read

of Contents

Executive Communication

. . . . 3 3 . . e o
.
. . . o o
. o o e o o
. . . . o o
. . e o o . o e . .
. 0 . o o .) e o o
.
.
)
.)
. . . ¢ o
.
.
.
. .
. . 3 e o .
. o o . .
. . 0
.
3] 3 . .
. e o .
. e o . . 0
. o o 3 . o o . . .
. . . o o . . . e o
. . . . e o
s o o o .
. ¢ o
. . . . o o
. . e o . .) . .
. . o o . . 3 . . .
lot 2 . . .+ ¢ &« &
.
L3 L3 . L4 L . . . L] -
¢ o . o o . . . e o
.
19 . e o o . . .
. . . o o . o . . .
. . . . 3
6 . e o . o o . 3

L] L[] . L] L] L]

. . [] . . [] L]

. L] L] . L L[] []

e o o ¢ o

L] L

L] . L] . L] . L] L] . L]

L] L]

L] L . * L] L] L] L] .

. L] L] L]

. * L] L] L[] . .

L] L] L] L] L] .

L4

e
I 11
VTWNOJD W

HFJTJH
e

N0
[
[(o IR Bte)

1-20
1-21
1-21
1-22
1-23
1-24
1-26
1-27
1-28
1-29
1-30
1-31

Program Suspend - EXEC 7 . . .
Program Segment Load - EXEC 8

Program Scheduling - EXEC 9,10,23,

Program Time Scheduling - EXEC 12

String Passage - EXEC 14 . . .
Program Swapping Control
Status EXEC Calls . &+ o ¢« o o o o
Time Request - EXEC 11 . .

I/O StatUS - EXEC 13 . L3 3 . [
Partition Status - EXEC 25 . .
Memory Size - EXEC 26

Disc Track Management EXEC Calls
Disc Track Allocation - EXEC 4
Disc Track Release - EXEC 5 or

Chapter 3 File Management Via FMP

Introduction .« ¢« « ¢ o o o o o
Files .

Type 0 Files « o ¢ ¢ o o o o &
Type 1 Files o« ¢ ¢ ¢ ¢ ¢ o o &
Type 2 Files ¢ o ¢« o o o o o &
Type 3 Files « o o« ¢ ¢ o o o o«
Type 4 Files . & ¢« ¢ ¢« o o o &
Type 5 Files o ¢ ¢« ¢« ¢ o o o &
Type 6 Files o« o e
Type 7 Files . o o o o o o @
File Types Greater Than 7 . .
File ACCESS o 4 ¢ ¢ o o o o o o
File Extents . . ¢« ¢« ¢ o o o« &

File Updates . « o« o« o o o &
Cartridges . . e o & o o o
Cartridge and F11e Directories .
File Security « « ¢ o o o o o o @

Cartridges in the Session Environment

FMP Calls

The Data Control Block e e o o o
Data Transfer . ¢« « o o o o o o &
FMP Call Formats . « « &« o o o« &
Common Parameters . « « « o o o o
IDCB v o o o o o o o & . .
IERR &+« ¢ o o ¢ o o o o o o o o
INAM . ¢ o o o o ¢ o o o o o @
IBUF ¢ o ¢ o o o o o o o o o &
Optional Parameters
ISC & o o o o« o o o o o o o &
ICR & o o o o o o o o s o o
IDCBZ ¢ o o o o o o o o o o @
FMP Call Description Conventions

vi

L] L] L] L] . L] L] L] . * L] .

EXEC 22

L] L] * L[] L] L] L] Ll L] L] L] .

e o o o o o o o Qoo

or 15
16

3

. L] L] QJ. L]

o

o o o o o ¢ o ¢ Noe o
e e e e © o ° o *° o o

L] . L] . L[] L] ° ° L) ° . L] . .

L] . L] L] [[

® o o o e o o

e o o o o o o

° L] . . L] * * . . L] L] . L]

L L] * . L[] L] . L] L]

* L] . L] L] . . ° * L] L[] L] o L] L] o

L[] (] L] L] .

L] L4 L] * L] L] L] L] . L . L]

L] . . L] . L] L] L L]

* L] L . L] . * L) L]

L] L] L] L] L ° [] * *

L] . L] . . L] L] L] . L] . L] L] .

L] . L] L] L] *

L] ° L] . L[] L[] L] . *

L] L]

e @€ o o & o o o @ o o o o

e o © o o o o

2-53
2-55
2-57
2-63
2-67
2-70
2=-72
2-72
2-74
2-79
2-81
2-84
2-85
2-87

P11
HFONAAOTUMS LHAEDDBWWWNH

l WWWWWWwWwwWwwwwww w
Ll o T T | |

File Definition FMP CallS &+ « ¢ « o o o o o s o o o o o o o
CREAT and ECREA Calls e o o o & 8 8 o s ® 6 ® e » e o
CRETS Call ¢ o ¢ ¢ ¢ o o o o o o o o o o o o o s o o o o
OPEN and OPENF CallsS &« o o o o o s o o o o o o o o o o o
CLOSE and ECLOS Calls e o o o o o o e & o o o o o o s
PURGE Call ¢ o ¢ o o o o o o o o o o o s o o o » o o o o

File ACCESS o o o o o o o o o o s o o o o o s o o o o o o o
READF and EREAD CallsS &« « o o o o o o o o o o o o o o o
WRITF and EWRIT Calls e o o o o o o o o o o e o o

File Positioning .« « ¢ o ¢ o ¢ o o o o o o o o o o
LOCF and ELOCF CallsS &« o o o o s o o o o & o s o o«
APOSN and EAPOS Calls e o o & o o o o s s o o e o
POSNT and EPOSN Calls e o o o o o o o o o o o & o
RWNDF Call * L] L] L] L] L] * L] * L] L] L] L] L] L] [] L] L] L] o

Special Purpose FMP CallsS ¢ ¢ o o o o ¢ ¢ o o o o o o o o »
FCONT Call ¢ o ¢ o o o o o o o o s o s o o o o o s o o
FSTAT Call o ¢ o
IDCBS Call - ® L] . L] L] L] L] e L] L] L] L] Ll o ® ® L] * L] L] L] L]
NAME Call o o o ¢ ¢ o o o o s o o o o o o o o o o o o o
POST Call N e o o o o o & o & o o o o o o o o s o e e

Examples Using FMP Calls & o o o o o o o o s o o o o o o o

Chapter 4 VMA and EMA Programming

INtroduction « ¢ o ¢ ¢ o o o o o o o o o o o o s o o & o
Virtual Memory Area (VMA) . o o o o o o o s o o o o o o o o
Extended Memory Area (EMA) e o s o o s s o o s o o e o o o
Using Shareable EMA e o o e o o s s e e o e @
Shareable EMA Program Con31deratlons e e s o o o o e o
Partition Considerations . o ¢ o o ¢ ¢ o o o o o o o o o @
Mother Partitions . ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o » o o o o o
Shareable EMA Partitions . o « o o o o o o o o o o o o o
Programming with VMA/EMA . ¢ & o o o s o o o o ¢ o s o o o
Declaring Extended Memory Area (EMA) . o« o o o o o o o o
General Purpose VMA/EMA Subroutines . . « ¢ ¢ ¢ o o o &
EMAST Subroutine (Return Information on VMA/EMA)
VMAST Subroutine (Return Size of VMA/EMA) . o e .
VMAIO Subroutine (Perform Large VMA/EMA Data Transfers)
EIOSZ Subroutine (Determine Maximum Length of Transfer)
LKEMA/ULEMA (Lock/Unlock a Shareable EMA Partition) .« .
VMA File Subroutines . . o o« o ¢ o o o o o o o o o s e
CREVM Subroutine (Create a VMA Backing Store Flle) o o o
OPNVM Subroutine (Open a VMA Backing Store File)
PURVM Subroutine (Purge VMA Backing Store File) « o o
PSTVM Subroutine (Post Working Set to Disc) e o o o o
CLSVM Subroutine (Close the VMA Backing Store File) o o
VREAD Subroutine (Read Data From a File to a VMA/EMA) .
VWRIT Subroutine (Write Data From a VMA/EMA to a File) .
Examples Using VMA File Subroutines . .« ¢« o« o o o o « o o o«

3-28
3-29
3-34
3-37
3-44
3-47
3-49
3-50
3-56
3-60
3-61
3-64
3-67
3-71
3-72
3-73
3-76
3-80
3-81
3-82
3-84

vii

Chapter 5 Applications Using System Routines

System Library Subroutines . . .
Class I/0 Applications
CLRQ - Class I/0 Management .
Resource Numbers and Logical Unit
RNRQ - Resource Management ., .
LURQ - Logical Unit Lock . . .
Parameter Passage Applications .
RMPAR - Retrieve Parameters .
PRTN, PRTM - Parameter Return

Lock Applications

.

GETST - Recover Parameter String . . « « « o« «

Appendix A Error Messages

Executive Error Messages
Memory Protect Violations
Dynamic Mapping Violations . . .
Dispatching Errors . .« « « « o .
EX EFrfOorsS ¢« o« o« o o o o o o o + o
Unexpected DM and MP Errors . . .
TI, RE and RQ Errors . « « o o o
Disc Parity Error (Track Error) .
Parity Errors . « « o« o o o o o @
Other EXEC Errors . « « « « o« o &
Disc Allocation Error Messages .

Schedule Call Error Codes . .

I/0 Call Error Codes . o« o« o &
I/0 Error Message Format

Program Management Error Codes

Logical Unit Lock Error Codes
Executive Halt Errors
Error Routing . « o« ¢ ¢ o o o o o
FMP Error CodesS . « + o o o o o &
VMA/EMA EXrXorS =« o « o o o o o @

viii

>3’>Z>E’T:>>’y:>>'>
OO AUTU D WWNN

A-10
A-12
A-13
A-13
A-14
A-16
A-23
A-30

Appendix B VMA/EMA Mapping Management Subroutines

.IMAP Subroutine =« « o« o ¢ o o o o o o o o o o
.IRES Subroutine =« o« « o o o o o o o o o o o
.JMAP Subroutine =« « « o ¢ o o o o o o ¢ o o
.JRES Subroutine .« « o« o ¢ o o o o o o o o o o
MMAP Subroutine .« o« o ¢ o o o o o o o o o o o =
.ESEG Subroutine =« « « o ¢ o o o o o o o o o o
.LBP, .LBPR Subroutine . « « « ¢ o « ¢ o ¢ o &
.LPX, .LPXR Subroutine . « « ¢ o ¢ ¢ o o o o =
JEMIO Subroutine . « « ¢ o o o o o o o o o o

Appendix C System Communication Area and System Tables

System Communication Area . « « « « o ¢ o o o o
Program ID Segment . « o ¢ o o o o o o o o o o
ID Segment Extensions . « ¢ ¢ ¢ ¢ o o o o o o
Short ID SegmentsS o« « o o o o o o o o o o o o o
RTE-6/VM System Disc Layout . « « « & o o ¢ « =

Appendix D Program Related Tables

Program States [} . . . [. . [[} . . .

Appendix E /O Tables and Processing

Equipment Table (EQT) o+ « o o o o o o o o o o o
Device Reference Table (DRT) « o o o o ¢ o o =«
Driver Mapping Table (DMT) e o o o o o o s o @
Interrupt Table and Trap Cells . e o o o

Interrupt Handling Without M1crocode « e s

Interrupt Handling with Microcode . . « . .
Power Fail/Auto Restart « . « ¢ o o o o ¢ o o =«

Standard I/0 Request Flow. =« « o« ¢ ¢ o ¢ o o+ &

Appendix F Memory Management and Related Tables

Address Translation .« « ¢ ¢ o ¢ o o o o o o o o
Logical Memory and Base Page . . « « o o o o &
Memory Allocation Table Entry . « « « ¢ « o o &

c-1
C-5
C-10
Cc-11
c-11

"!J"ll:l"r.l
~Nw

ix

Appendix G DCB and Directory Formats

Data Control Block (DCB) Format
Cartridge Directory Format
File Directory . ¢ ¢ v« v o o o o &
Disc File Directory . . o o
Type 0 File Directory Entry . .

L] L] L] L[]
*
L]
.

® L] * .
.
]
.

Appendix H Session Monitor Tables

Session Control block (SCB) v v o o o o o o o o o .
Session Switch Table (SST) and Configuration Table
Session Table Relationship . . ¢ ¢« ¢ o o o o o o .

Appendix I Record Formats

Source Record FOrmats . o v v o o o o o o
Relocatable and Absolute Record Formats . .
Absolute Tape FOrmat . « o o o o o o o o o
Disc File Record FormatsS . o o o o o o o «
SIO Record FOormat . o o« o « o o o o o o o o
Memory-Image Program File Formats (Type 6)

*® . L] L L]

Appendix J Scheduling FMGR Programmatically

m|m:r:
=W -

WNHFHO W

o
P

List of Illustrations

Figure 1-1. Scheduling with Time-Slicing « ¢« ¢« « &« ¢ o« ¢ o« o 15
Figure 1-2. Physical Memory AllocationS. « « o« o o o o o o o 1-9
Figure 1-3. Memory Protect Fence Locations .« « « ¢ « o« o+ o o 1-14
Figure 2-1. EXEC 26 Parameter Relationships. « « o« « « o « o« 2-82
Figure 3-1. Disc Cartridge Organization. « « « « « &+ « « o « 3-8
Figure 3-2. Sequential Transfer Between Disc Files/Buffers . 3-17
Figure 3-3. Data Transfer with Type 1 FileS. « « o« « o « ¢ « 3-18
Figure 3-4. Read Type 1 File when IL Greater than 128. . . . 3-52
Figure 3-5. ©Sample WRITE to Type 1 File. ¢« ¢ o o ¢ o o o o & 3-58
Figure 4-1. Working Set and Backing Store File « 4-5
Figure 4-2. EMA in Physical Memory . . « « o & o o o o o o ¢ 4-6
Figure 5-1. Class I/O Multiple Terminal Input Example. . . . 5-8
Figure 5-2. Dispatching Input to Subtasks for Processing . . 5-12
Figure 5-3. Control Word Format (ICON) &« « « o o o o o o o = 5-17
Figure 5-4. Resource Number EXxample. o« ¢ o o o o o o o o o o 5-24
Figure 5-5. Resource Number EXampPle. « « ¢ o o o o o o o o o 5-25
Figure 5-6. "Deadly Embrace" EXampPle « « o o o o o o o o o o 5=27
Figure 5-7. "Deadly Embrace" Example « « « o o o o o o « o o 5=28
Figure B-1. VMA/EMA and Memory Structure . . . « « ¢ o « « - B-2
Figure C-1. ID Segment Format. . « « « o o o o o o o o o o o C-6
Figure C-2. ID Segment Extension . . « ¢ o ¢ o o ¢ o o o o o C-10
Figure C-3. RTE-6/VM System Disc Layout. . .« . ¢ « o o o © » Cc-12
Figure D-1. User Program State Diagram « « « o« o« o o« o« o o + D=6
Figure E-1. Equipment Table Entry FOrmat . o o« o o o o o o o E=3
Figure E-2. CONWD Word (EQT Entry Word 6) Expanded E-6
Figure E-3. Device Reference Table (DRT) « o o o o o o o o o E=7
Figure E-4. Device Reference Table Entry Format. . e « o « E-8

. . . o E—lo
.] . . E-18

Figure E_So Driver Mapping Table ° Y . 3
Figure E-6. Unbuffered EXEC Read Request Flowe. .« &

Figure F-1. Address Translation via Memory Mapping . .
Figure F-2. RTE-6/VM 32K Word Logical Memory Configurations. F-5
Figure F_3. Base Page Structure. . O Y) . 3 . . ° F—6

Figure F-4. Memory Allocation Table Entry Format . « « . o « F=7
Figure H-1. SCB and SCBE .« « & o o o o o o o o o o o o o o o H-2
Figure H-2. Session Switch Table (SST) Format. « + « « « « » H=4
Figure H-3. Configuration Table. . « ¢ o ¢ ¢ o ¢ o ¢ o o o » H-5
Figure H-4., Session Table Relationships. « « ¢« ¢ ¢« ¢« ¢« « + o H-6
Figure I-1. Source Record FormatS. . « « ¢ ¢ ¢ o ¢ ¢ ¢ o o = I-2
Figure I-2. Record FormatsS . . « o o o ¢ o o o o o o o o o = I-4

xi

List of Tables

Table 2-1. Summary of EXEC Calls e e e o o 2=1

Table 2-2. 1Index of EXEC Calls . . « o « o . . . e o e o 2=3

Table 2-3., Action Taken When the No-Suspend Bit is Set . . . 2-15
Table 2-4. Function Code . . + v v o & o o o o . . e « o o & 2=25
Table 2-5. Class I/O Terms « v o« v o o o o o o o o . . e o o 2-28
Table 2-6. Summary of EXEC Calls 9,10,23,24. . 4« v 4 4« . . . 2=61
Table 2-7. 1I/0 Status Word (ISTA1/ISTA2) Format. .« o« o« « o« . 2-76
Table 2-8. Device Status Table (EQT Word 5)e o v o o o o o o 2=77
Table 3-1. Categories of File TypeS. . . « o o . . . e o o o 3=2

Table 3-2. FMP Call Summary. . . o o o o o o . . e o o o « & 3-16
Table 3-3, Relation of Actual to Req. Packing Buffer Size. . 3-22
Table 3-4. OPENF Defaults., . . o « e e s+ o e« o o o o 3-40
Table 3-5. Effect of IL Parameter in READF . . e s o o s o « 3-51
Table 3-6. Effect of IL Parameter in WRITF . . e e o o o s o 3-57
Table 3-7. Relationship Between NUR and IR . . . e« o o o« o« o 3-68
Table 3-8. FCONT Function Codes. . . o e o ¢ o o o o 3=-74
Table 3-9. ISTAT Format I. . o+ o o o o o . . e o o o o o o » 3-78
Table 3-10. ISTAT Format II . o o o o o o o o . e e« o o s+ & « 3-79
Table 4-1. VMA and EMA Terms . . o« o o o o o . e o o o o o o 4-2

Table 4-2., Common VMA/EMA Subroutines. e o o o o o 4-15
Table A-1, EXEC Call Error Summary « « ¢ o 4 ¢ o o o o o o o A-19
Table B-1. VMA/EMA Mapping Management Subroutines. B-3

Table C-1. System Communications Area Locations. C=2

Table D-1. Summary of RTE-6/VM Program Types ¢ ¢« ¢ o« ¢ o o« o D=2

Table E-1. Interrupt Table Example . & o o o o o o . . e o o E-12

xii

Chapter 1
General Description

Introduction

RTE-6/VM 1is a disc-based operating system that provides the
supervisory functions necessary to coordinate requests for, and
allocation of, system services and resources. Being a real-time
system, RTE-6/VM processes all decision and scheduling tasks
internally unless overridden by wuser intervention. User requests
for system action can be made by a "call" from within a program or
interactively via an operator command.

As the major control element within the operating environment,
RTE-6/VM provides the user with various services and automatically
handles the machine~related functions associated with each
service. The major services provided by RTE-6/VM are briefly
summarized below:

* Executive Communication scheme that provides a communication
l1ink between user-written programs and system services.

* Segmentation techniques that allows a large program to be
separated into a main section of code and related segments,
thereby allowing it to execute in a memory partition smaller
than its total size. Segmentation can be implemented by the
MLS-LOC Loader or programmatically via an EXEC call.

* Resource Management capabilities that allow cooperating

user-written programs to share system resources (files, 1I/0
devices, etc.).

* T1/0 scheme which allows a program to continue executing while
its own I/0 requests are being processed.

* Program execution control that features multiprogramming
(allows several programs to be active: concurrently) and
time~slicing (prevents compute intensive programs from

~dominating the CPU).

General Description

* Partitioned memory technique that takes advantage of the
hardware Dynamic Mapping System (DMS) to provide access to
2048k bytes of physical memory.

* FExtended Memory Area (EMA) that allows user-written programs to
access large data arrays; the size of the arrays being limited
only by the size of physical memory. Large areas of EMA can be
shared among programs for program to program communication.
The EMA data to be shared resides in a shareable EMA partition.

* Demand-Paged Virtual Memory that provides RTE-6/VM programs
with the capability to access very large data areas up to 128
megabytes.

* Operator interface that provides the user with the ability to
control system action via operator commands.

In addition to the features listed above that are inherent to
RTE-6/VM, software modules are available with the operating system
that provide the user with additional capabilities. These
features are as follows:

File Management System

Spooling System

Session Monitor

FORTRAN Compiler

Macroassembler

Pascal/1000 Compiler

Compile Utility

Compile and Load Utility

MLS~LOC Loader

MLS—-LOC Loader Command File Utilities
Interactive Relocating Loader
Indexed Relocatable Library Utility
Interactive Editor

Debug Utilities

On~Line Generator

System Status Utilities

File Merge Utility

Disc Cartridge Save/Restore Utilities
File Backup Utility

Disc Backup Utilities

Terminal Soft Keys Utility

Track Assignment Table Log Program
Source File Comparison Utility
On-Line Driver Replacement Utility
Help Utilities

F % % % % O % N % % % F ¥ % % ¥ F & ¥ % ¥ % % * *

General Description

The features described above that relate to the programmatic
control of system action are described in later sections of this
manual along with background information on the RTE-6/VM operating
system. The features of RTE~6/VM that relate to the interactive
control of system action are described in the RTE-6/VM Terminal
User's Reference Manual and the appropriate subsystem manuals (see
documentation map in the RTE-6/VM 1Index to Operating Systems
Manuals) . For information concerning the generation and
configuring of the RTE-6/VM operating system, refer to the
RTE-6/VM On-~Line Generator Manual or obtain access to the RTE-6/VM
System Manager's Manual.

Multiprogramming and Timeslicing

RTE~-6/VM is a multiprogramming system that allows several programs
to be active concurrently. Each program executes during the unused
central processor time of the others. Scheduling/dispatching
modules in the RTE~6/VM operating system decide when to execute
programs that are simultaneously requesting system services and/or
resources. The scheduling module places programs into a scheduled
list in order of their priority (the highest priority program at
the head of the 1list) and the dispatching module initiates the
execution of the highest priority program. Programs with the same
priority are scheduled on a first-come, first-serve basis. When
the executing program completes, is terminated, or 1is suspended,
it is removed from the scheduled 1list, and the dispatching module
transfers control to the next program with the highest priority.
Note that the next program to be executed could have the same
priority as the program that was just removed from the list.

The scheduled 1list can be logically divided into two areas by
placing a time-slicing boundary at a priority level. Programs
with priorities that place them above the boundary (higher
priority, lower numerically) are executed in the 1linear fashion
described above.

Programs with priorities that place them below the boundary (lower
priority, higher numerically) are executed in a similiar fashion
with one exception; programs are assigned an execution interval
when they are scheduled. When a program exceeds its interval, it
is moved within its priority level in the scheduled 1list.

General Description

Each priority 1level below the time-slicing boundary can be
considered a queue. The program at the head of each priority
queue represents the next program of that priority to be executed.
When the execution of the program at the head of the queue is
initiated, a maximum time interval for execution (time quantum) is
calculated by the operating system. The program is allowed to
execute until one of the following occurs:

1. The program leaves the scheduled list (I/0 suspended, memory
suspended, etc.)

2. A higher priority program is ready to execute.

3. The program exceeds its time quantum.

If a program 1leaves the scheduled 1list, its time quantum is
assumed exhausted. When the program is again ready to execute, it
is placed at the end of the queue within its priority in the
scheduled list and a new time quantum is established.

If a higher priority program causes the suspension of a
time-slicing program, the remaining portion of the suspended
program's time quantum is saved in its ID segment. When the
suspended program is scheduled to continue executing, the saved
quantum value is restored.

When a time~slicing program exceeds its time quantum, it is placed
at the end of the queue within its priority in the scheduled list
and control is transferred to the new head of the queue.

The time value used to calculate the quantum and the time-slicing
boundary are manipulated by the QU command described in the
RTE-6/VM Terminal User's Reference Manual; the considerations for
manipulating them are discussed in the RTE-6/VM System Manager's
Manual. Figure 1-1 shows a diagram of scheduling with
time~-slicing.

General Description

SCHEDULED LIST

PRIORITY
10
Y
PRIORITY
20
PROGRAMS WITH SAME
PRIORITY ARE SCHEDULED
Y “FIRST-COME-FIRST-SERVE”
PRIORITY
20
BOUNDARY SET AT LEVEL 40
\
PRIORITY - PRIORITY PRIORITY
50 50 60
A
Y
PRIORITY
50 PROGRAMS WITH SAME
PRIORITY ARE SCHEDULED

WITH TIMESLICING

Figure 1-1. Scheduling with Time-Slicing

General Description

Program Types

Programs within the RTE-6/VM operating system are categorized
according to where they reside when not executing (memory-resident
or disc-resident), what type of memory partition they execute in,
by the COMMON areas they have access to, and whether or not they
may be duplicated. A program can be defined as a real-time or a
background program. A background program can be further defined
as a large background or extended background program in order to
handle large user programs. A program's type can also indicate
whether it is a main program, a program segment, a multi-level
segment program, or a subprogram (refer to Appendix D for a
summary of program types).

A program's type 1is user-defined in the program definition
statement (PROGRAM statement 1in FORTRAN, NAM statement in
Macro/1000), 1is defined by a compiler option (Pascal), or is
assigned by the user when the program is loaded. If no type
parameter is specified, a default value is determined and assigned
by the loader or generator.

A program's type, along with other necessary information, is
maintained in memory by the system in the program's ID segment
(refer to Appendix C for the ID Segment format).

Memory Management

The RTE-6/VM operating system is written to take advantage of the
hardware Dynamic Mapping System (DMS) available with the HP/1000
computers. The cooperation between the software operating system
and the hardware mapping system allows direct access to 1024K
words (2 megabytes) of physical memory. More physical memory can
be accessed with virtual memory.

The basic addressing space of the HP/1000 computer is 32,768 words
(32K) as defined by the 15-bit address 1length used by the CPU.
This 1is referred to as 1logical memory. The amount of memory
actually installed in the computer system is referred to as
physical memory. The DMS maps 32K words of physical memory into
logical memory by translating the 20-bit physical addresses into
15-bit logical addresses through "memory maps".

General Description

Memory Maps

The page pointers contained in the map registers that comprise the
memory maps are loaded by software modules within the operating
system., Each map is configured to represent the 32 pages of
physical memory (not necessarily contiguous) that contain the
tables, buffers, data, program code, etc., necessary to perform
specific ©processing tasks. Since there are four maps, four
different 32 page sections of physical memory can be described
simultaneously. The maps are altered by the operating system to
reflect dynamic changes in the operating environment, i.e., when a
program is scheduled to execute, a map has to be configured to
describe the physical memory pages it requires (known as the
program's logical address space).

The four memory maps are classified by the type of processing
tasks they are associated with. The maps are comprised of the
following:

* SYSTEM MAP-~~The System Map describes the logical address space
associated with the RTE-6/VM operating system, including its
base page, COMMON, Subsystem Global Area, Table Area I and 1I1I,
driver partition, operating system code partition, System
Driver Area (SDA), and System Available Memory (SAM). The
system map 1is 1loaded during system initialization and is
changed to map 1in different driver partitions or operating
system code partitions on demand. Since the RTE-6/VM operating
system handles all interrupt processing, the system map is
automatically enabled by the hardware whenever an interrupt
occurs.,

* USER MAP---The User Map is associated with each disc-resident
program. It is a unique set of pages that describe the logical
address space containing the program's code, the program's base
page, and optionally, Table Area I, driver partition, Table
Area II, System Driver Area, and COMMON.

All memory-resident programs use a common set of pages that
define the memory occupied by the memory-resident program and
its base page, the Memory-Resident Library, Table Area I,
driver partition, COMMON, and optionally, Table Area II and
System Driver Area. Memory-resident programs are brought into
memory at boot-up and remain in memory. Therefore, these
programs may be scheduled and executed quickly.

General Description

Each time a new memory-resident or disc-resident program is
dispatched, the system reloads the User Map with the
appropriate set of pages.

* PORT MAP A and PORT MAP B. The Port maps are associated with
DCPC transfers. DCPC transfers are software assignable direct
data paths between memory and a high speed peripheral device.

This function is provided by the Dual Channel Port Controller
(DCPC). There are two DCPC channels, each of which may be
assigned to operate with an I/0 device. Port A Map is
automatically enabled when a transfer occurs on DCPC channel 1,
and Port B Map 1is enabled when a DCPC channel 2 transfer
occurs.

DCPC transfers are accomplished by "stealing" CPU cycles
instead of interrupting the CPU and transferring to an 1I/0
service routine. Having separate maps associated with DCPC
transfers, and having the transfer implemented by
"cycle~stealing", facilitates multiprogramming since one
program can be executing via the User Map while a DCPC transfer
is in progress on another program's data buffer.

The Port Maps are reloaded by the system each time a DCPC
channel is assigned for an I/0 request. The Port Maps will be
the same as the System Map or the User Map associated with the
program being serviced, depending on the type of request. Once
initiated, the DCPC transfer is transparent to the user since
the currently enabled map (System or User) shares the CPU with
the Port Maps, i.e., during a given instruction cycle
(comprised of several CPU cycles) the System and User Map is
enabled alternately with the Port Map. Therefore, a maximum of
three memory maps may be enabled concurrently, one execute map
(System or User) and both Port Maps.

Physical Memory

At generation time, the user plans physical memory allocations and
loads the system components and drivers for the most efficient
configuration. The user determines the size of System Available
Memory (SAM), the number and size of each partition, the size of
COMMON, and the size and composition of the resident library and
memory-resident program area. Refer to the RTE-6/VM On-Line
Generator Manual and the RTE-6/VM System Manager's Manual for a
description of the procedures used to configure physical memory.

General Description

Program Partition M(1<M<64)

.
.

Program Partition 1 (+userBP)

SAM Extension

Memory-Resident Programs

Resident Library

Memory-Resident Base Page

Driver Partition n

.
.

Driver Partition 2

Operating System Code
Partitions (mappable)

System Available Memory

Operating System

Table Area 1II

System Driver Area

Background

Real~Time

Subsystem Global Area

Driver Partition 1

System Available Memory

Table Area I

System Base Page

e

COMMON

™~

Figure 1-2., Physical Memory Allocations

General Description

The following is a brief description of the Physical Memory
Configuration shown in Figure 1-2:

* ©System Base Page - Contains the operating system communication
area and 1is used by the system to define request parameters,
I/0 tables, scheduling lists, pointers, operating parameters,
memory bounds, etc. System 1links and trap cells are also
located on the system base page.

Base page 1links for the memory-resident 1library and memory-
resident programs are only in the memory-resident base page and
are not accessible by disc-resident programs. The Table Areas,
SSGA, driver links, and the system communication area are
accessible to all programs. Partition base pages, used for
disc~resident program links, are described below with
partitions. For all practical purposes, the memory-resident
programs are in a single partition separate (protected) from
all other partitions.

* Table Area I - Contains system tables, Equipment Table entries,
Driver Mapping Table, Device Reference Table, Interrupt Table,
the Disc Track Map Table, some system and HP subsystem entry
points, and all Type 15 modules.

* Driver Partition - An area, established at generation time
containing one or more drivers. All driver partitions are the
same length, and only one driver partition 1is included 1in a
32K-word address space at any one point in time. The minimum
driver partition size is two pages but may be increased when
the system is generated.

* COMMON -~ This area is divided 1into three subareas: the
Subsystem Global Area (SSGA), the Real-time COMMON area, and
the Background COMMON area. SSGA is used by Hewlett-Packard
software subsystems for buffering and communications. The
Real~-time and Background sub-areas (system COMMON) are reserved
for user-written programs that declare COMMON. All programs
relocated during generation time that declare COMMON will
reference this system COMMON. Programs relocated on~line with
LOADR or MLLDR may choose to reference system COMMON or use
local COMMON.

General Description

System Driver Area -~ An area for ©privileged drivers, large
drivers, or drivers that do their own mapping. The drivers
that go into this area are specified during the EQT definition
phase of system generation. The System Driver Area (SDA) is
included in the logical address space of the system, Type 2 and
3 programs, and optionally Type 1 programs.

Table Area II - Contains the Keyword Table, ID segments, ID
Segment Extensions, Class Table, Batch LU Switch Table,
Memory-Resident Map, and a number of entry points for system
pointers. This area has entry points that are created by the
generator and others that are defined by Type 13 modules.

System - Contains the absolute code of the Type 0 system
modules (i.e., RTIOQ, SCHED, EXEC, etc.).

Operating System Code Partitions -~ Six two page areas
(partitions) of memory containing portions of the RTE-6/VM
operating system. RTE-6/VM will map this physical area of
memory into the logical driver partition area, as it needs the
code in that area to satisfy a user's request. This area
includes certain I/0 modules.

Memory-Resident Library - Contains the re~entrant or privileged
library routines (Type 6) that are used by the memory~resident
programs, or which are force 1loaded at generation time (Type
14). It is accessible only by memory-resident programs. All
routines 1loaded into the resident 1library also go into the
relocatable 1library for appending to disc-resident programs
that require them.

Memory-Resident Programs - This area contains all Type 1
programs that were relocated during generation.

System Available Memory (SAM) -~ This is a temporary storage
area used by the system for buffered 1I/0, Class 1/0, re-entrant
I1/0, and parameter string passing.

Program Partitions - This is an area established by the user
for a disc-resident program to execute in. Each partition has
its own base page that describes the linkages for the program
running in the partition. Up to 64 partitions are allowed,
within the constraints of available physical memory.

General Description

Common Areas

The real-time and background COMMON, along with Subsystem Global
Area, occupy a contiguous area in memory and are treated as a
single group for mapping purposes (refer to Figure 1-2). The use
of COMMON is optional on a program basis, that is, any program may
use real-time COMMON, background COMMON or no COMMON. If the
program declares COMMON and the user chooses not to use 1local
COMMON, both COMMON areas and the Subsystem Global Area will be
included in the User Map. If a large background program does not
use COMMON, it will not be included in the User Map, providing the
user with a 1larger program area in the 32K-words of 1logical

address space. Refer to Chapter 4 for a description of using
shareable EMA as COMMON,

REAL-TIME AND BACKGROUND COMMON. 1If a program declares at least
one word of COMMON, the use of real-time or background COMMON is

selected by program type at generation or parameters with the
on-line loader. Program types are summarized in Appendix D.

These system COMMON areas are not to be confused with the local
COMMON area that may be specified for programs 1loaded on-line.
The system COMMON areas are shareable by programs operating in
different partitions, whereas the local COMMON area will be in its

partition and is accessible only to that program, its subroutines
and segments.

SUBSYSTEM GLOBAL AREA. The Subsystem Global Area (SSGA) consists
of all Type 30 modules input to the generator. Accessed by entry
point (using EXT statements) rather than COMMON declarations, SSGA
provides multiple communication and buffer areas for
Hewlett-Packard subsystems. SSGA access is enabled by program
type at generation or through special parameters during on-line
loading. Programs authorized for SSGA access have the COMMON area
included in their maps and have the memory protect fence set below
SSGA.

General Description

Memory Protection

Memory protection is provided by a combination of the Dynamic
Mapping System and the Memory Protect Fence. DMS provides
protection between program partitions by not allowing a program to
access memory locations that are not defined by its memory map.
The Memory Protect Fence prevents a program from addressing memory
locations below a given address within its memory map.

A combination of DMS and the Memory Protect Fence provides
protection for the driver partition, Table Area I, System Driver
Area, Table Area II, and COMMON Dby preventing stores and jumps to
locations below a specified address.

The Memory Protect Fence indicates the logical address space where
addresses are compared to the fence before translation. If a
disc-resident program does not use any of the COMMON areas, the
Memory Protect Fence is set at the bottom of the program area.
Similarly, for a memory-resident program not using COMMON, the
Memory Protect Fence is set at the base of the memory-resident
area.

For programs using system COMMON, the memory mapped includes all
COMMON areas and the Memory Protect Fence is set at one of three
possible locations, depending on the portion of COMMON being used.
A hierarchy of protection is established within COMMON due to
their physical locations. Background COMMON is the least
protected (program's wusing any system COMMON can modify 1it) and
SSGA is the most protected (only programs authorized for SSGA
access can modify it). Figure 1-3 expands the COMMON area and
shows these three fence settings as A, B, and C, respectively.

General Description

PAGE b e e —— e
BOUNDARY
BACKGROUND (BG)
COMMON
C
HIGHER
REAL-TIME (RT) PHYSICAL
COMMON MEMORY
B
SUBSYSTEM GLOBAL
AREA (SSGA)
PAGE A
BOUNDARY >

Figure 1-3.

Memory Protect Fence Locations

General Description

Program Partitions

Program partitions are blocks of contiguous physical memory
reserved for disc-resident programs. Program partitions are
defined during system generation and may be redefined during the
reconfiguration process at system boot-up (refer to the RTE-6/VM
System Manager's Manual).

The number of partitions depends on the amount of available
physical memory and the size of the defined partitions. Partition
types can be specified as a mixture of real-time and background,
all real-time, or all background. In addition, partitions may
also be specified as mother partitions or shareable EMA partitions
(refer to the discussion below). The user may optionally assign a
program to run in any partition large enough to accommodate it.
However, a program cannot be assigned to a shareable EMA
partition, a mother partition with a shareable subpartition, or a
subpartition of a shareable mother partition. Several programs
can be assigned to the same partition, but only one program can
run in that partition at a time. If a program is not assigned to
a partition, then by default, real-time programs will run in
real-time partitions, background programs in background
partitions. In this case, the operating system decides which
partition the program will execute in. 1f only one type of
partition is defined, all programs will run in that type
partition.

A mother partition 1is a large partition which is a collection of
smaller real-time or background partitions called subpartitions.
A mother partition is generally used to execute large programs Or
large VMA or EMA programs (that declare EMA data as local). When
a mother partition is not in use, its subpartitions may be used by
other programs. A mother partition or its subpartitions can also
be defined as a shareable EMA partition.

Shareable EMA partitions are used for running EMA programs that
declare EMA data as shareable data. If EMA data is to be shared
with other programs, the declaring program will execute 1in one
partition and the EMA data will reside 1in a shareable EMA
partition. When a shareable EMA partition is not being used for
data, other programs can run in the partition. Refer to Chapter
4, "VMA and EMA Programming" for more details on shareable EMA
partitions.

General Description

Program Segmentation

Program segmentation allows a program's code to exceed the amount
of logical or physical address space available to the program.
Segmentation techniques allow a large program to be separated into

a main section of code and related segments. This allows the
large program to execute in a memory partition smaller than the
total size of the program. Segmentation can be implemented

automatically by the MLS-LOC Loader or programmatically via an
EXEC call. '

The preferred method of program segmentation is with the MLS-LOC
Loader (MLLDR). MLLDR performs multilevel segmentation at load
time. This allows program transportability since no changes are
made to the source code in order to segment the program.
Multilevel segmentation (MLS) is a tree-structured segmentation
scheme which allows as much code as required to be
memory-resident. A portion of code resides in logical memory.
The remainder resides in physical memory and optionally on disc.
The load-on-call feature is set up by MLLDR and is performed at
execution time. When a subroutine is called, whether it 1is in
logical memory, physical memory, or on disc, it is automatically
made available for execution. The operating system performs any
required memory mapping and disc access operations.

Two utilities are provided to aid development of MLS programs.
The segmenter utility, SGMTR, reads a program's relocatable code
and produces a segmentation structure for the program in the form
of an MLLDR command file. The utility, SXREF, generates a program
cross reference 1listing and checks the validity of MLS command
files. Multilevel segmentation and the utilities, SGMTR and
SXREF, are described in detail 1in the RTE~6/VM Loader Reference
Manual.

Program segmentation can also be implemented programmatically via
an EXEC call. These programs can only be loaded by LOADR. The
large program 1is structured by the programmer during the coding
process into a main program and several segments.. When the code
in one of the segments is required for execution, the currently
executing program uses an EXEC 8 call to request the operating
sSystem to make a segment overlay. RTE loads the segment from the
disc into a memory block following the end of the main program,
overlaying whatever was previously there. When another segment is
required, either the main program or the segment can make the EXEC
call to request a segment overlay. Refer to Chapter 2 for an
explanation of the EXEC 8 call.

General Description

Input/Output Processing

In the RTE-6/VM operating system, centralized control and logical
referencing of 1I/0 operations effect simple, device-independent
programming. All 1I/0 and interrupt processing is controlled by
the operating system with the single exception of privileged
interrupts (privileged interrupts circumvent the system for faster
response time).

Programmatic requests for I/0 services are made by EXEC routine
calls coded into the calling program. The EXEC calls specify the
type of transfer (Read, Write, Control) and the desired device.
1/0 requests from a program with a priority greater than 40 are
gueued to the ‘controller's I/0 list according to the «calling
program's priority. All other 1I/0 requests are first-in,
first-out. Automatic buffering for write operations 1is provided
if specified at generation or with the system EQ command (refer to
the RTE-6/VM Terminal User's Reference Manual).

General Description

In addition to the standard EXEC 1I/0 scheduling processes
described above, there are a number of other 1I/0 functions
available that can improve system performance in a
multiprogramming environment:

* Device Time-Out -- sets a time-out value for a device to

prevent indefinite program suspension because of a
malfunctioning device.

* I/0 Buffering -- automatic buffering on slower devices allows a
calling program to initiate an output operation (only) without
waiting for completion before resuming execution. An input
without wait operation is a function of Class I/0 (see below) .

* Re-entrant I/0 -- allows a disc-resident program to be swapped
out of a memory partition and into disc storage when it is
suspended for 1I/0. The status of the swapped program is
maintained so that when the re—entrant I/0 request has
completed, and it once again achieves highest priority on the
scheduled 1list, it can resume execution and 1I/0 processing at
the point of interruption.

* Logical Unit Lock -- assigns a logical unit (LU) exclusively to
a specific program, thus preventing any other program from
accessing it until it is unlocked.

* Class I/0 -—- a special set of I/O calls that provides a method
for buffering data between two or more programs (mailbox I/0)
or between programs and I/0 devices. Class 1I/0 permits a

program to continue execution concurrently with its own 1I/0
(I/0 without wait).

General Description

Hardware Considerations

For a full understanding of the software I/O characteristics of

the RTE-6/VM operating system described in this manual, the user
should be familiar with two hardware-related terms:

1. 1I/0 Controller — a combination of 1I/0 card, cable and, for
some devices, a controller box used to control one or more I/0
devices associated with a computer I/0 select code. (Select
code refers to a physical card slot in the backplane of the
computer.)

2. 1I/0 Device - a physical unit (or portion of a unit) identified
in the operating system by means of an Equipment Table (EQT)
entry and a subchannel assignment.

Each 1I/0 device is interfaced to the computer through an I/0
controller that is associated with one of the computer I/O select
codes. Controller Interrupts are directed to specific computer
memory locations based on their select codes.

For details on the hardware 1/0 organization, consult the
appropriate computer hardware reference manual.

General Description

Logical Unit Numbers

Logical Unit numbers (LUs) provide RTE users with the capability
of 1logically addressing the physical devices defined by the
Equipment Table. Logical Unit numbers (LUs) are used by executing
programs to specify which I/0 device requests are to be directed
to. In an I/0 EXEC call, the program simply specifies an LU and
does not need to know which physical device or which 1I/0
controller handles the transfer. This provides the user with
system device independence.

An LU is associated with an EQT entry and a subchannel. Some I/0
devices have EQT entries with one subchannel designation (i.e.,
line printers) and are referenced by a single LU number. Other
devices (disc drives and CRT terminals) have EOQOT entries with
several subchannel designations, with an LU assignment for each
subchannel. When a user makes an I/0 request specifying an LU, he
can be addressing a total device (line printer) or a subsection of
a device (left CTU of a terminal).

Logical Unit numbers are decimal integers that range from 1 to
254, LUs greater than 63 may only be accessed when operating under
Session Monitor control. The functions of LUs 0 through 6 are
predefined in the RTE-6/VM system as follows (could be system or
session LUs):

0 - bit bucket (null device; no entry in Device Reference Table)
1l -~ system console.

2 - reserved for system (system disc subchannel).

3 ~ reserved for system (auxiliary disc subchannel).

4 -~ standard output device (left CTU of system console).

5 - standard input device (right CTU of system console).

6 - standard list device (line printer).

LU 8 is recommended for the magnetic tape device if one is present
on the systen. Peripheral disc subchannels must be assigned LUs
greater than 6 and less than 64. If the Session Monitor is used,
terminal LUs must be defined between 7 and 99. Additional logical
units may be assigned for any function desired. On-line changes
to existing LU assignments can be made by using the LU operator
command described in the RTE-6/VM Terminal User's Reference
Manual.

1-20

General Description

Power Fail

Power Fail is an optional hardware/software feature that saves all
system status and context up to the point at which the computer

signals a power failure. If generated into the system, the Power
Fail routine performs the following steps:

1. When power fails, it saves all registers, stops DCPC transfers
and saves maps. If not enough time was available, Power Fail
issues a HLT 4.

2. When power comes on, it restarts the real-time clock, restores
registers and maps, sets up a time~out entry (TO) back to its
EQT entry, and then returns to the Power Fail interrupt
location so that it can do more recovery work after the power
fail system and operating system are re-enabled.

I/0 Controller Time-Out

Each I/0 controller may have a time-out <clock to prevent
indefinite I/0 suspension. 1Indefinite I/0O suspension can occur
when a program initiates I/0O and the device's controller fails to
return a flag (possible hardware malfunction or improper program
encoding). Without the controller time-out, the program that made
the I/0 call would remain in I/O suspension indefinitely, waiting
for the "operation done" indication from the device's controller.

General Description

Privileged Interrupt Processing

RTE-6/VM allows interrupts from specified controllers to by-pass
the standard system I/O processing modules and be processed by
special routines. These I/0 operations are therefore
"privileged". Privileged interrupt processing 1is established for
time-critical tasks such as power-fail processing or processing
communication over a modem link.

I/0 controller interrupts that are allowed to be processed as
privileged are established at generation time. A special I/0 card
is placed in the backplane of the computer to physically separate
the privileged interrupt controllers from the standard system
processed controllers. The 1location of the "privileged-fence"
card (if present) is stored in the System Base Page. Privileged
controllers reside below the fence (greater priority) and
non-privileged controllers reside above the fence (less priority).

When a privileged interrupt occurs, the Privileged Fence card
holds off non-privileged interrupts. The system operates in the
"hold-off~interrupt" (not interrupt disabled) state until the
privileged interrupt has been processed.

The hold-off-interrupt state does not disable the interrupt
system. It allows a higher priority privileged interrupt to
interrupt a lower priority privileged interrupt. A non-privileged
interrupt is not allowed to interrupt a privileged interrupt. For
more information on privileged driver characteristics, see the
RTE-6/VM Driver Writing Reference Manual.

General Description

Resource Management

The RTE-6/VM operating system allows cooperating programs to
manage common system resources. A resource is defined to be any
element within the RTE-6/VM environment that can be accessed by a
user's program, e.g., an I/0 device, a file, a program, an area of
memory, or a subroutine. Cooperation between programs is
established by coding them to take advantage of a utility
subroutine (RNRQ) which allocates, deallocates, locks, and unlocks
an arbitrary identification number known as a Resource Number
(RN) .

Within the cooperating programs, the RN 1is logically related to a
particular resource by the statement stucture that comprises each
program. When a program seeks exclusive access to a resource, it
requests the system to lock the related RN. (The request is
granted only if no other program has already 1locked the RN;
otherwise the program is suspended until the RN is unlocked.) When
it is finished with the resource, the program requests the system
to unlock the RN so that other programs can lock it.

A RN is not physically assigned to any one resource. The logical
association between the RN and a resource is accomplished only by
the context of the statements within the program using the RN.
The RN is known to the system but the resource with which it is
associated is not, therefore all cooperating programs must agree
on what RN is associated with what resource. The use of resource
numbers is described in Chapter 5 of this manual.

General Description

Session Monitor

If the appropriate software modules (refer to the RTE~6/VM System
Manager's Manual) are included at generation time, the RTE-6/VM
operating system can be configured to provide controlled access to
system services and resources by multiple users.

With Session Monitor configured into the system, the user is
required to "log on" to a station (terminal) using an account ID
assigned to him by the System Manager. At system initialization,
the System Manager sets up an account file on disc which describes
the I/0 devices and the command capabilities assigned to each
account 1ID. When a wuser has successfully 1logged on, a Session
Control Block (SCB) 1is established for his "session" using
information taken from the account file. The Log—-on Processor
provides the session user with a copy of FMGR, and each command
entered is checked to verify that the user has the capability to
use the command as specified in his SCB.

The 1I/0 devices that the session user has access to must be
defined in a section of his SCB known as the Session Switch Table
(SST). The SST entries are taken from the session user's specific
account file entry (LU's associated with the user's ID) and from a
table in the account file common to all users known as the
Configuration Table (LU's associated with each session station).
The function of the SST is to link the session LUs on which a user
makes an I/0 request, to the system LUs that the I/0 request will
actually be directed to. When the user makes an I/O request, his
SST is searched for the LU specified in the request. 1If the LU is
found, it is switched to the associated system LU and the request
is processed. 1If the requested LU is not found, an error message
is returned, indicating that the LU 1is not defined for the user's
session. The SST therefore defines the system I/0 devices that
the session user can access.

General Description

When operating in the session environment, access to disc
cartridges is controlled by identifying them as belonging to a
particular user or group of users. Disc cartridges can be mounted
as:

* private cartridges - allows Read/Write access only by the
session user who mounted it and the System Manager.

* Group cartridges - allows Read/Write access only by members of

the group that the cartridge is mounted to and the System
Manager.

* System cartridges (LU 2 and LU 3) - allows Read/Write access by
the System Manager and non-session programs, read-only access
by session users. Can only be mounted or dismounted by System
Manager.

* System cartridges (global) - allows Read/Write access by any
system user. Can only be mounted or dismounted by System
Manager.

Within the account file is a table (set up by System Manager) that
indicates disc LUs that are available to session users (Spare Disc
Pool). If a session user wishes to mount a spare cartridge, and
has the capability to do so, a disc can be allocated from the pool
(a "working" copy of the Free Disc Pool maintained in memory) and
an entry is made in his SST indicating that he has access to that
cartridge. The entry in the disc pool is also flagged indicating
the disc is allocated.

Disc cartridges are mounted and dismounted via FMGR commands
discussed in the RTE-6/VM Terminal User's Reference Manual. The
formats of the session-related tables are shown in Appendix H.
Refer to Chapter 3 for further information on disc cartridges.

General Description

Language Support

The 1languages available for user program development in the
RTE~-6/VM operating environment are briefly described below. For
further information on these languages, refer to the appropriate
reference manual.

* FORTRAN---a problem oriented programming language that is
translated by a compiler. The FORTRAN compiler executes in RTE
and accepts source programs from either an input device or a
FMGR file. The resultant relocatable object programs and
listed output files are stored in FMP files or output to
specified devices. For further information, refer to the
appropriate FORTRAN Programmer's Reference Manual.

* Pascal/1000---A top-down structured programming language that
is translated by a compiler. The Pascal/1000 Compiler operates
in a similiar manner as the FORTRAN compiler. For further
information, refer to the Pascal/1000 Programmer's Reference
Manual.

* REAL-TIME BASIC/1000D---an optional, conversational programming
language that is easily learned, even by users without previous
programming experience. Each statement entered by the user is
immediately checked for correct syntax by the Real-Time BASIC
Interpreter. No separate compilations or assembly operations
are involved. A partly completed program can be run at any
time to confirm that it executes as the user intended. For
further information, refer to the Multi-User Real-Time BASIC
Reference Manual.

* Macro/1000---a machine-oriented programming language. Source
programs written in this 1language are accepted by the
Macroassembler from either input devices or disc files and
translated 1into absolute or relocatable object programs.
Absolute <code is output in binary records suitable for
execution on HP CPUs. For further information, refer to the
Macro/1000 Reference Manual.

* RTE Micro-Assembler---part of an optional support package for

on-line users of special microprogrammed instructions. The
Micro-Assembler translates source code into object
microprograms. For further information, refer to the

Micro-Assembler Reference Manual.

General Description

Executive Communication

EXEC calls are the line of communication between an executing
program and system services. The required calls are coded into a
program during its development phase. The calls have a structured
format plus a number of parameter options that further define the
specific operation to be performed.

The following is a partial list of system services available to an
executing program via calls to the EXEC processor:
* perform input and output operations

* Allocate and release disc space

* Terminate or suspend itself

* Load its segment

* Schedule other programs

* Recover scheduling strings

* Obtain the time of day

* Time—schedule program execution

* Obtain status information on partitions

Refer to Chapter 2 of this manual for complete descriptions and
format considerations associated with EXEC calls.

General Description

File Management System

The File Management Package (FMP) allows the user to manipulate
I1/0 devices and files. The user interface to the FMP can be
either interactive (using FMGR commands described in the RTE-6/VM
Terminal User's Reference Manual) or programmatic, (using FMP
calls described in Chapter 3 of this manual) .

The FMP 1library contains routines that are called from user
programs and used to manipulate disc and non-disc files (files
which reference non-disc devices). Using calls to these routines,
the user can create, access, purge, and obtain the status of
files.

Files are classified according to the record format within the
file and the type of data the system expects to find in each
record. A file's type is defined when it is created and this
information is placed in its file directory entry. When a file is
accessed, this information is used by FMP to determine the files
characteristics and initiate the appropriate action as specified
by the type of file it is manipulating.

The user must also be aware of file types. Certain files are
formatted to facilitate random access (fixed—-length records), and
others are formatted for sequential access (variable-length
records). User-written programs should be coded to recognize and
take advantage of a file's characteristics if efficient file
manipulation is to be accomplished.

A file can contain up to (2**31)-1 records and can have a total
size up to 32767 X 128 blocks (1 block = 256 bytes). For files
with fixed-length records or variable~length records, the file
size is defined at creation and is extended as needed.

The following is a summary list of the services available to user
programs via FMP calls:

Create Files (disc file only).

Open files for specific modes of access.

Read and write to files.

Position to records within a file.

Close files to access.

Purge files from the system.

Obtain position and status information on files.
Rename files.

Obtain disc cartridge list.

* ¥ F * ¥ B ¥ * ¥

General Description

Refer to Chapter 3 of this manual for complete description and
format considerations associated with FMP calls.

System Library

The Sys