HP 9800 Computer Systems

BASIC Language Reference

for the HP 9826 Computer

(é HEWLETT
PACKARD

BASIC Language Reference
for the |
HP 9826 Computer

Manual Part No. 09826-90055
Microfiche No. 09826-99055

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1981

\

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorporated

at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.

November 1981...First Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated to another program language without the prior written
consent of Hewlett-Packard Company.

Table of Contents
Keyword Dictionary
Information Provided 1
Syntax Drawings Explained 1
KeUYWOIAS ot 3
GlOSSATY. . . .o 271
Interface Registers
/O Path Status and Control Registers. e 283
CRT Status and Control Registers. i 284
Keyboard Status and Control Registers 285
HP-IB Status and Control Registers i, 287
RS-232 Status and Control Registers i 291
GPIO Status and Control Registers. i 295
Useful Tables
Interface Select Codes it 297
US ASCII Character Codes oottt e 298
European Display Characters. i 300
Katakana Display Characters. i 301
Master Reset Table i 302
Interface Reset Table i 304
Second Byte of Non-ASCII Key Sequences. 306

Keyword SUMMAry 309

i

iv

Keyword Dictionary

Information Provided

This section contains an alphabetical reference to all the keywords currently available with the
standard BASIC language system of the 9826. Each entry defines the keyword, shows the
proper syntax for its use, gives some example statements, and explains relevant semantic
details. A cross reference is provided in the back that groups the keywords into several function-
al categories.

Above each drawing is a small table indicating the legal uses of the keyword. ‘“Keyboard
Executable” means that a properly constructed statement containing that keyword can be
typed into the keyboard input line and executed by a press of the key. ‘“‘Program-
mable”” means that a properly constructed statement containing that keyword can be placed
after a line number and stored in a program. Certain non-programmable keywords can be
“forced” into a program by sending them to the keyboard buffer with an OUTPUT 2 statement.
This is not what is meant by ‘‘Programmable’’.

“Inan IF...THEN...” means that a properly constructed statement containing that keyword can
be placed after “THEN” in a single-line IF... THEN statement. Keywords that are prohibited in
a single-line IF.. THEN are not necessarily prohibited in a multiple-line IF...THEN structure.
IF.. THEN and FOR...NEXT statements are executed conditionally when they are included in a
multiple-line IF... THEN structure. All other prohibited statements (see IF... THEN) are used
only during pre-run. Therefore, the action of those statements will not be conditional, even
though the IF... THEN wording may make them appear to be conditional.

Syntax Drawings Explained

Statement syntax is represented pictorially. All characters enclosed by a rounded envelope
must be entered exactly as shown. Words enclosed by a rectangular box are names of items
used in the statement. A description of each item is given either in the table following the
drawing, another drawing, or the Glossary. Statement elements are connected by lines. Each
line can be followed in only one direction, as indicated by the arrow at the end of the line. Any
combination of statement elements that can be generated by following the lines in the proper
direction is syntactically correct. An element is optional if there is a valid path around it.
Optional items usually have default values. The table or text following the drawing specifies the
default value that is used when an optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing an exclamation
point after a statement or after a line number. The text following the exclamation point may
contain any characters in any order.

The drawings do not deal with the proper use of spaces (ASCII blanks). The computer uses
spaces, as well as required punctuation, to distinguish the boundaries between various
keywords, names, and other items. In general, at least one space is required between a
keyword and a name if they are not separated by other punctuation. Spaces cannot be placed
in the middle of keywords or other reserved groupings of symbols. Also, keywords are recog-
nized whether they are typed in uppercase or lowercase. Therefore, to use the letters of a
keyword as a name, the name entered must contain some mixture of uppercase and lowercase
letters. The following are some examples of these guidelines.

Space Between Keywords and Names

The keyword NEXT and the variable Coun t are properly entered with a space between them,
as in NEXT Count. Without the space, the entire group of characters is interpreted as the
name Nextcount.

No Spaces in Keywords or Reserved Groupings

The keyword DELSUB cannot be entered as DEL SUB. The array specifier (#) cannot be
enteredas (*). A function call to “A$”’ must be entered as FNA%, notas FN A $%. The /O
path name ‘“@Meter”’ must be entered as BMeter, notas @ Meter. The “‘exceptions’ are
keywords that contain spaces, such as END IF and SCRATCH A.

Using Keyword Letters for a Name

Attempting to store the line IF X=1 THEN END will generate an error because END is a
keyword not allowed in an IF...THEN. To create a line label called ““End”’, type
IF ¥=1 THEN ENd. This or any other mixture of uppercase and lowercase will prevent the
name from being recognized as a keyword.

ABORT

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement ceases HP-IB activity. When the 9826 is system controller but not active control-
ler, ABORT causes the 9826 to assume active control.

interface
—
@ 1'0 path

name

. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
/O path name name assigned to an HP-IB interface select | any valid name (see ASSIGN)
code
Example Statements
ABORT 7
IF Storp_code THEN ABORT B@Source
Summary of Bus Actions
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
. ATN
Active IFC (duration =100psec) MTA
. REN
Controller ATN UNL
ATN
Not Active IFC (duration =100 psec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

ABS

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This function returns the absolute value of its argument. The result will be of the same type
(REAL or INTEGER) as the argument. (Except for the ABS of the INTEGER —32 768, which
causes an error).

CINOSE=NG

Range
Restrictions

Item Description/Default |

argument ' numeric expression | —

Example Statements

Magnitude=ABS(Vector)
PRINT "WValue ="3ABS(X1)

ACS

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This function returns the principal value of the angle which has a cosine equal to the argument.
This is the arccosine function.

N NONE=NO

s Range
[tem I Description/Default I Restrictions
argument Inumamemx%ﬁm1 I —1thru +1

Example Statements

Andle=ACS5(Cosine)
PRINT "Angle ="3ACS(X1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is O thru
180 degrees. If the current angle mode is RAD, the range of the result is O thru 7 radians. The
angle mode is radians unless you specify degrees with the DEG statement.

ALLOCATE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement dynamically allocates memory for arrays and string variables during program
execution.

05
string - string
s € R

O
> - array ({ > - upper
name bound

INTEGER

. Range

Item Description/Default Restrictions

array name name of a numeric array any valid name
lower bound numeric expression, rounded to an integer; —32 768 thru +32 767
Default = OPTION BASE value (0 or 1) (see “‘array’ in Glossary)
upper bound numeric expression, rounded to an integer —32 768 thru +32 767
(see ‘“‘array’ in Glossary)

string name name of a string variable any valid name

string length numeric expression, rounded to an integer 1 thru 32 767

Example Statements

ALLOCATE Temp(Low:High)
ALLOCATE R$LCLEN(A®)+11]

Semantics

Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE statement.
However, because of the stack discipline used when allocating, the freed memory space does
not become available unless all subsequently allocated items are also deallocated. For example,
assume that A$ is allocated first, then B$, and finally C$. If a DEALLOCATE A$ statement is
executed, the memory space for A$ is not reclaimed until B$ and C$ are deallocated. This same
stack is used for setting up ON-event branches, so subsequent ON-event statements can also
block the reclamation of deallocated memory.

Variables listed in the ALLOCATE statement can be passed in a parameter list. The variables in
an ALLOCATE statement cannot have appeared in COM, DIM, INTEGER or REAL declaration
statements or be implicitly declared within the same program context. Numeric variables which
are not specified as INTEGER are implicitly declared as REAL. A variable can be re-allocated in
its program context only if it has been deallocated and its type and number of dimensions
remain the same.

Exiting a subprogram automatically deallocates any memory space allocated within that pro-
gram context.

ALLOCATE can be executed from the keyboard while a program is running or paused. Howev-
er, the variable must have been declared in an ALLOCATE statement in the current program
context, and the variable must have already been allocated and deallocated.

ALPHA

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement turns the alphanumeric display on or off.

Dy

Example Statements

ALPHA ON
IF Grarh THEN ALPHA OFF

Semantics

Items sent to the printout area while the alphanumeric display is disabled are placed in the
display memory even though they are not visible. Items sent to the keyboard input line, the
display line, or the system message line will turn on the alphanumeric display. The alpha-
numeric and graphic displays can both be on at the same time.

The alphanumeric area is enabled after power-on, RESET and SCRATCH A. Pressing the
ALPHA key on the keyboard also enables the alphanumeric display.

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

—P-Iﬁumem—,-—h-(AND)—-D-I argument }—->

Range

Item | Description/Default | Restrictions

argument | numeric expression ' —

Example Statements

IF Flag AND TestZ2 THEN Process
Final=Initial AND Valid

Semantics

A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a logical
0.

The logical AND is shown in this table:

AAND B

AB
00
01
10
11

= O OO

10

ASN

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the principal value of the angle which has a sine equal to the argument.
This is the arcsine function.

GOz -0

. Range
Item ‘ Description/Default i Restrictions
argument |numamemn%ﬁm1 | —1thru +1

Example Statements

Andle=ASN(Sine)
PRINT "Andle ="3A8N{X1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is —90
thru +90 degrees. If the current angle mode is RAD, the range of the resultis — /2 thru + /2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

ASSIGN

Keyboard Executable Yes

Programmable Yes
In an IF... THEN... Yes

This statement assigns an /O path name and attributes to a device, or group of devices, or a
mass storage file.

/0 path
name

literal form of file specifier:

" file - - ALl
name - o
protect
code

Protect code not
allowed for ASCII files.

attributes:

)
e

.. Range

[tem Description/Default Restrictions
I/O path name name identifying an [/O path any valid name
device selector numeric expression, rounded to an integer (see Glossary)
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal, first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

11

12

Example Statements

ASSIGN BFile TO Name$BMsus®
ASSIGN EBSource TO IsciFORMAT OFF
ASSIGN @Listerners TO 711:+712,7153
ASSIGN @Dest TO *

Semantics

The ASSIGN statement has three primary purposes. Its main purpose is to create an [/O path
name and assign that name to an /O resource and attributes that describe the use of that
resource. The statement is also used to change the attributes of an existing I/O path and to close
an /O path.

Associated with an I/O path name is a unique data type that uses about 200 bytes of memory.
/O path names can be placed in COM statements and can be passed by reference as para-
meters to subprograms. They cannot be evaluated in a numeric or string expression and cannot
be passed by value.

Once an /O path name has been assigned to a resource, OUTPUT, ENTER, STATUS, and
CONTROL operations can be directed to that /O path name. This provides the convenience of
re-directing 1/O operations in a program by simply changing the appropriate ASSIGN state-
ment. The resource assigned to the 1/0O path name may be an interface, a device, a group of
devices on HP-IB, or a mass storage file.

Specifying FORMAT ON causes items to be output or entered in ASCII format. Specifying
FORMAT OFF causes items to be output or entered using internal representation. ASCII files
use LIF ASCII format regardless of the FORMAT specified. A FORMAT OFF specification is
ignored in an assignment to an ASCII file. If an attribute is not explicitly declared, a default
value is assumed. The default attributes are:

Resource l Default Attributes
interface/device FORMAT ON
ASCII file (always ASCII format)
BDAT file FORMAT OFF

Using Devices

1/0 path names are assigned to devices by placing the device selector after the keyword TO. For
example, ASSIGN @Displav TO 1 creates the I/O path name “@Display’ and assigns it
to the internal CRT. The statement ASSIGN @Meters TO 710.:711 712 creates thel/O
path name “@Meters” and assigns it to a group of three devices on HP-IB. When multiple
devices are specified, they must be on the same interface.

When an I/O path name which specifies multiple devices is used in an OUTPUT statement, all
devices referred to by the /O path name receive the data. When an I/O path name which
specifies multiple devices is used in an ENTER statement, the first device specified sends the
data to the computer and to the rest of the devices. When an I/O path name which specifies
multiple HP-IB devices is used in either CLEAR, LOCAL, PPOLL CONFIGURE, PPOLL
UNCONFIGURE, REMOTE, or TRIGGER statement, all devices associated with the I/O path
name receive the HP-IB message.

A device can have more than one I/O path name associated with it. Each I/O path name can
have different attributes, depending upon how the device is used. The specific [/O path name
used for an I/O operation determines which set of attributes is used for that operation.

Using Files

Assigning an 1/O path name to a file name associates the I/O path with a file on the mass storage
media. The mass storage file must be a data file, either ASCII or BDAT. The file must already
exist on the media, as ASSIGN does not do an implied CREATE.

ASCII and BDAT files have a position pointer which is associated with each I/O path name. The
position pointer identifies the next byte to be written or read, and the value of the position
pointer is updated with each ENTER or OUTPUT that uses that I/O path name. The position
pointer is reset to the beginning of the file when the file is opened. A file is opened by any
ASSIGN statement that includes the file specifier. It is best if a file is open with only one I/O path
name at a time.

BDAT files have an additional pointer for end-of-file. The end-of-file value from the media is
read when the file is opened. The end-of-file pointer is updated on the media at the following
times:

e When the current end-of-file changes.
® When END is specified in an OUTPUT statement directed to the file.

® When a CONTROL statement directed to the I/O path name changes the position of the
end-of-file pointer.

Changing Attributes

The attributes of an 1/O path may be changed without otherwise disturbing the state of that /O
path or its resource. This is done by deleting the “TO...”” clause. For example,
ASSICGN E@File SFORMAT OFF assigns internal format to the I/O path name “@File”’. If this
name were associated with a mass storage file, the pointers would be unaffected. A statement
like ASSIGN @Dum restores the default values to all atributes.

Closing 1/0 Paths

There are a number of ways that /O paths are closed and the I/O path names are rendered
invalid. Closing an [/O path cancels any ON-event actions for that I/O path. I/O path names that
are not included in a COM statement are closed at the following times:

e When they are explicitly closed; for example, ASSIGN @File TOD #*

® When a currently assigned I/O path name is re-assigned to a resource, the original I/O path
is closed before the new one is opened. The re-assignment can be to the same resource or
a different resource. No closing occurs when the ASSIGN statement only changes attri-
butes and does not include the “TO...” clause.

® When an /O path name is a local variable within a subprogram, it is closed when the
subprogram is exited by SUBEND, SUBEXIT, RETURN <expression>, or ON <event>
RECOVER.

® When any form of SCRATCH statement is executed, any form of STOP occurs, or an
END, LOAD, or GET is executed.

13

14

1/0 path names that are included in a COM statement remain open and valid during a LOAD,
GET, STOP, END, or simple SCRATCH. I/O path names in COM are only closed at the
following times:

e When they are explicitly closed; for example, AGSIGN BFile TO *
e When SCRATCH A or SCRATCH C is executed.

e When a LOAD, GET, or EDIT operation brings in a program that has a COM statement
that does not exactly match the COM statement containing the open I/O path names.

Additionally, when RESET is pressed, all /O path names are rendered invalid without going
through some of the updating steps that are normally taken to close an I/O path. This is usually
not a problem, but there are rare situations which might leave file pointers in the wrong state if
their 1/O path is closed by a RESET. Explicit closing is preferred and recommended.

ATN

Keyboard Executable Yes
Prograrnmable Yes
In an IF...THEN... Yes

This function returns the principal value of the angle which has a tangent equal to the argu-
ment. This is the arctangent function.

DD (D

Item ‘ Description/Default I Range

Restrictions

argument I numeric expression | —

Example Statements

Andle=ATN(Tandent)
PRINT "Andle ="3ATN(X1)

Semantics

The value returned is REAL. If the current angle mode is DEG, the range of the result is —90
thru + 90 degrees. If the current angle mode is RAD, the range of the resultis — /2 thru + /2
radians. The angle mode is radians unless you specify degrees with the DEG statement.

15

AXES

Keyboard Executable

Programmable
In an IF...THEN...

This statement draws a pair of axes, with optional, equally-spaced tick marks.

(AxES } >
A
x tick

spacing T
y tick -
spacing o

y axis

location

X axis
location

X major
count g

y major
count
major _J
tick size

Applicable Graphics Transformations
| scaling | PivoT | csize | LbiR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2. The starting point for labels drawn after other labels is affected by LDIR.

Yes
Yes
Yes

s e Range
Item Description/Default Restrictions
x tick spacing numeric expression in current units; (see text)
Default = 0, no ticks
y tick spacing numeric expression in current units; (see text)

y axis location

x axis location

X major count

y major count

major tick size

Default = 0, no ticks

numeric expression specifying the location
of the y axis in x-axis units;
Default = 0

numeric expression specifying the location
of the x axis in y-axis units;
Default = 0

numeric expression, rounded to an integer,
specifying the number of tick intervals be-
tween major tick marks;

Default = 1 (every tick is major)

numeric expression, rounded to an integer,
specifying the number of tick intervals be-
tween major tick marks;

Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Example Statements

AXES 10,10

KES XY sMidxsMidy sMaxx/10sMaxy /10

Semantics

The axes are drawn so they extend across the soft clip area. The tick marks are symmetric about
the axes, but are clipped by the soft clip area. Tick marks are positioned so that a major tick
mark coincides with the axis origin, whether or not that intersection is visible. Both axes and tick
marks are drawn with the current line type and pen. Minor tick marks are drawn half the size of
major tick marks.

The X and Y tick spacing must not generate more than 32 768 tick marks in the clip area

(including the axis), or error 20 will be generated.

If either axis lies outside the current clip area, that axis and its associated tick marks are not

drawn.

1 thru 32 767

1 thru 32 767

17

18

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes
This statement produces one of 63 audible tones.
(BEEP /L > .|
©

Item Description/Default Re?t?il::st;iims Reccl)an:r:;eended

frequency numeric expression, rounded to the — 81 thru 5127
nearest tone; Default = 1220.7 Hz

seconds numeric expression, rounded to the — 0.01 thru 2.55

nearest hundredth; Default = 0.2

Example Statements
BEEP B1.,38%Tones.5

BEEP

Semantics

The frequency and duration of the tone are subject to the resolution of the built in tone
generator. The frequency specified is rounded to the nearest frequency shown below. For
example, any specified frequency from 40.7 to 122.08 produces a beep of 81.38 Hz. If the
frequency specified is larger than 5086.25, a tone of 5126.94 is produced. If it is less than
40.69, it is considered to be a 0 and no tone is produced. The following list shows the frequen-
cies available:

0.0

81.38
162.76
24414
325.52
406.90
488.28
569.66

The resolution of the seconds parameter

651.04 1302.08 1953.12 2604.16
732.42 1383.46 2034.50 2685.54
813.80 1464.84 2115.88 2766.92
895.18 1546.22 2197.26 2848.30
976.56 1627.60 2278.64 2929.68
1057.94 1708.98 2360.02 3011.06
1139.32 1790.36 2441.40 3092.44
1220.70 1871.74 2522.78 3173.82

3255.20 3906.24
3336.58 3987.62
3417.96 4069.00
3499.34 4150.38
3580.72 4231.76
3662.10 4313.14
3743.48 4394.52
3824.86 4475.90

is .01 seconds. Any duration

4557.28
4638.66
4720.04
4801.42
4882.80
4964.18
5045.56
5126.94

shorter than .005

seconds is treated as near zero. Any duration longer than 2.55 seconds is treated as 2.55

seconds.

19

20

BINAND

Keyboard Executable
Programmable
In an IF... THEN...

This function returns the value of the bit-by-bit complement of its argument.

w)-(D o ®

Yes
Yes
Yes

o . Range
Item ‘ Description/Default | Restrictions
argument | numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

Low_bits=BINAND(Bvte»13)
IF BINAND(Stat:3) THEN Bit_set

Semantics

The argument for this function is represented as a 16-bit two’s-complement integer. Each bit in

the representation of the argument is complemented, and the resulting integer is returned.

For example, the complement of —9:
bit 15 bit 0

-9 =1111111111110111
00000000 00001000 = 8

BINCMP

Keyboard Executable Yes

Programmable Yes
In an [F...THEN... Yes

This function returns the value of a bit-by-bit logical-and of its arguments.

o)D) ®

: o . Range
Item I Description/Default I Restrictions
argument | numeric expression, rounded to an integer | —-32 768 thru +32 767

Example Statements

True=BINCMP{(Inverse)
PRINT X sBINCMP ()

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is anded with the corresponding bit in the other argument. The results of all the
ands are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINAND(Ctrl_word-9) clears bit 3 of Ctrl_
word without changing any other bits.

bit 15 bit 0

12 = 00000000 00001100 old Ctrl_word
—9 = 11111111 11110111 mask to clear bit 3

4 = 00000000 00000100 new Ctrl_word

21

22

BINEOR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the value of a bit-by-bit exclusive-or of its arguments.

o)D) © ®

. Range
Item | Description/Default | Restrictions
argument | numeric expression, rounded to an integer | —32 768 thru +32 767

Example Statements

Toddle=BINEOR(Toddlesl)
True_byte=BINEOR(Inverse_bvte »255)

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is exclusively ored with the corresponding bit in the other argument. The results
of all the exclusive ors are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINEOR(Ctrl_word4) inverts bit 2 of Ctrl_
word without changing any other bits.

bit 15 bit 0

12 = 00000000 00001100 old Ctrl_word

2
4 = 00000000 00000100 mask to invert bit 2
8 = 00000000 00001000 new Ctrl_word

BINIOR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the value of a bit-by-bit inclusive-or of its arguments.

EDS0 o ®

. Range
Item I Description/Default | Restrictions
argument | numeric expression, rounded to an integer I —32 768 thru +32 767

Example Statements

Bits_set=BINIOR{Valuel Value2)
Tor_on=BINIOR(AL1l.bits+2°13)

Semantics

The arguments for this function are represented as 16-bit two’s-complement integers. Each bit
in an argument is inclusively ored with the corresponding bit in the other argument. The results
of all the inclusive ors are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINIOR(Ctrl_word:B) sets bits 1 & 2 of
Ctrl_word without changing any other bits.

bit 15 bit O

19 = 00000000 00010011 old Ctrl_word
6 = 00000000 00000110 mask to set bits 1 & 2

23 = 00000000 00010111 new Ctrl_word

23

24

BIT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns a 1 or 0 representing the value of the specified bit of its argument.

® oREE= NGO

.. Range
Item | Description/Default | Restrictions
argument numeric expression, rounded to an integer —32 768 thru + 32 767
bit position numeric expression, rounded to an integer 0 thru 15

Example Statements

Flag=BIT(Info,0)
IF BIT(WordsTest) THEN PRINT "Bit #"3Testi"is set"

Semantics

The argument for this function is represented as a 16-bit two’s-complement integer. Bit O is the
least-significant bit and bit 15 is the most-significant bit. The following example reads the
controller status register of the internal HP-IB and takes a branch to ““‘Active’ if the interface is
currently the active controller.

control status
active control

100 STATUS 74338 ! Reg 3
110 IF BIT(S5:6) THEN Active ! Bit G

25

26

subprogram]
C CALL)—--l progr

The keyword CALL may be
omitted if it would be the
first word in a program line.

pass parameters
A

vanable

el

stnng or numeric

array element |

Passed by Reference *
Passed by Value *

variable
name

string or numeric
array element

Jl substring II

OO

‘I numeric I

\

Y

v | constant |

string expression containing
monadic operators, dyadic operators, or functions

numeric expression containing
monadic operators, dyadic operators, or functions

CALL

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement transfers program execution to the specified SUB subprogram and may pass
items to the subprogram. SUB subprograms are created with the SUB statement.

subprogram L -
(CALL }—>-| name >
pass

parameters

Y

.. Range
Item Description/Default Restrictions

subprogram name name of the SUB subprogram to be called any valid name
I/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
variable name name of a string or numeric variable any valid name
substring string expression containing substring nota- (see Glossary)

tion
literal string constant composed of characters from —

the keyboard, including those generated us-

ing the ANY CHAR key
numeric constant numeric quantity expressed using numerals, —

and optionally a sign, decimal point, or

exponent notation

Example Statements

CALL Process(Refs(Value) @BPath)
CALL Transform(Arrav (%))
IF Flag THEN CALL Sepecial

Semantics

A subprogram may be invoked by a stored program line, or by a statement executed from the
keyboard. Invoking a subprogram changes the program context. Subprograms may be invoked
recursively. The keyword CALL may be omitted if it would be the first word in a program line.
However, the keyword CALL is required in all other instances (such as a CALL from the
keyboard and a CALL in an IF... THEN... statement).

28

The pass parameters must be of the same type (numeric, string, or I/O path name) as the
corresponding parameters in the SUB statement. Numeric values passed by value are con-
verted to the numeric type (REAL or INTEGER) of the corresponding formal parameter.
Variables passed by reference must match the corresponding parameter in the SUB statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowest-numbered subprogram is
invoked by a CALL.

Program execution generally resumes at the line following the subprogram CALL. However, if
the subprogram is invoked by an event-initiated branch (ON END, ON ERROR, ON INTR, ON
KEY, ON KNOB, or ON TIMEOUT), program execution resumes at the point at which the
event-initiated branch was permitted.

When CALL is executed from the keyboard, the current state of the computer determines the
computer’s state when the subprogram executes a STOP. If the computer was paused or
stopped when CALL was executed, its state does not change. If the computer was running
when the CALL was executed, the program pauses at the program line which was interrupted
by the CALL for the subprogram, and resumes execution at that point after the subprogram is
exited.

CAT

Keyboard Executable Yes
Prograrnmable Yes
In an IF...THEN... Yes

This statement lists the contents of the mass storage media’s directory.

(cart)} — » >
media device
()

literal form of media specifier:

e Range
Item Description/Default Restrictions
media specifier string expression (see drawing)
msus literal; INTERNAL
Default = MASS STORAGE IS device
device selector numeric expression, rounded to an integer; (see Glossary)
Default = PRINTER IS device

Example Statements
CAT

CAT TO #701

CAT ":INTERNAL"

Semantics

A directory entry is listed for each file on the media. The catalog shows the name of each file,
whether or not it is protected, the file’s type and length, the number of bytes per logical record,
and the starting location (address) of the file on the media.

A protected file has an asterisk in the PRO column entry. The types recognized in BASIC are
ASCII, BDAT (BASIC data), BIN (binary program), PROG (BASIC program), or SYSTM
(language system). An ID number is listed for any unrecognized file types.

29

30

CHR$

Keyboard Executable Yes

Programmable Yes
In an IF... THEN... Yes

This function converts a numeric value into an ASCII character. The low order byte of the
16-bit integer representation of the argument is used; the high order byte is ignored. A table of
ASCII characters and their decimal equivalent values may be found in the back of this book.

D ®

. Range Recommended
Item | Description/Default l Restrictions Range
argument numeric expression, rounded to an integer —32 768 thru 0 thru 255
+32 767

Example Statements

A$lMarKerilI=CHR#%(Digit+12Z8)
Esce=CHR$(27)

31

CLEAR

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement allows the active controller to put HP-IB devices into a defined device-
dependent state.

(: 1/0 path
CLEAR @ name
- device l

selector

. Range
Item l Description/Default Restrictions
I/O path name name assigned to a device or devices any valid name (see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

CLEAR 7
CLEAR Isc+Address
CLEAR BSource

Semantics

The computer must be the active controller to execute this statement. When primary addresses
are specified, the bus is reconfigured and the SDC (Selected Device Clear) message is sent to all
devices which are addressed by the LAG message.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controller DCL UNL DCL UNL
LAG LAG
SDC SDC
N\\ot Active Error
Controller

32

CLIP

Keyboard Executable
Programmable
In an IF... THEN...

This statement redefines the soft clip area and enables or disables the soft clip limits.

(cLIP

right bottom top
O O &

Yes
Yes
Yes

_J
I .. Range
tem Description/Default Restrictions
left edge numeric expression —
right edge numeric expression —

bottom edge

top edge

numeric expression

numeric expression

Example Statements
CLIP LeftsRidght 0,100

CLIP OFF

Semantics

Executing CLIP with parameters allows the soft clip area to be changed from the boundary set
by PLOTTER IS and VIEWPORT to the soft clip limits. If CLIP is not executed, the area most
recently defined by either VIEWPORT or the PLOTTER IS statement is the clipping area. All

plotted points, lines or labels are clipped at this boundary.

The hard clip area is specified by the PLOTTER IS statement. The soft clip area is specified by
the VIEWPORT and CLIP statements. CLIP ON sets the soft clip boundaries to the last speci-
fied CLIP or VIEWPORT boundaries, or to the hard clip boundaries if no CLIP or VIEWPORT
has been executed. CLIP OFF sets the soft clip boundaries to the hard clip limits.

See the SEND statement.

CMD

33

declared items

~
-
B (D
N 1
. ;l numeric - -
> name | L] l
(N
N4
INTEGER .‘,’gﬁﬁé
P,
string -
s

\ m >

/0 path
name
.

L

COM

Keyboard Executable = No
Programmable Yes
In an IF...THEN... No

This statement dimensions and reserves memory for variables in a special ‘‘common’’ memory
area so more than one program context can access the variables.

COM . »| declared
o o items
block
name

.. Range
Item Description/Default Restrictions

block name name identifying a labeled COM area any valid name

numeric name name of a numeric variable any valid name

string name name of a string variable any valid name
lower bound integer constant; —32 767 thru +32 767
Default = OPTION BASE value (0 or 1) (see “array’ in Glossary)
upper bound integer constant —-32 767 thru +32 767
(see “‘array’ in Glossary)

string length integer constant 1 thru 32 767

/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)

Example Statements

COM XY ,2

COM /Graph/ Title$,@Device »INTEGER Points (%)
COM INTEGER I,JsREAL Arrav(-128:127)

Semantics

Storage for COM is allocated at prerun time in an area of memory which is separate from the
data storage used for program contexts. This reserved portion of memory remains allocated
until SCRATCH A or SCRATCH C is executed. Changing the definition of the COM space is
accomplished by a full program prerun. This can be done by:

® Pressing the (_RUN) or (STEP) key when no program is running.

® Executing a RUN command when no program is running.
® Executing any GET or LOAD from a program.
® Executing a GET or LOAD command that tells program execution to to begin.

When COM allocation is performed at prerun, the new program’s COM area is compared
against the COM area currently in memory. Where the two areas agree exactly in type, size, and
shape, the COM area is preserved. Any variable values are left intact. All other COM areas are
rendered undefined, and their storage area is not recovered by the computer. New COM
variables are initialized at prerun: numeric variables to 0, string variables to the null string.

Each context may have as many COM statements as needed (within the limits of computer
memory), and COM statements may be interspersed between other statements. If there is an
OPTION BASE statement in the context, it must appear before the COM statement. COM
variables do not have to have the same names in different contexts. Formal parameters of
subprograms are not allowed in COM statements. A COM mismatch between contexts causes
an error.

If a COM area requires more than one statement to describe its contents, COM statements
defining that block may not be intermixed with COM statements defining other COM areas.

Numeric variables in a COM list can have their type specified as either REAL or INTEGER.
Specifying a variable type implies that all variables which follow in the list are of the same type.
The type remains in effect until another type is specified. String variables and I/O path names

are considered a type of variable and change the specified type. Numeric variables are assumed
to be REAL unless their type has been changed to INTEGER.

COM statements (blank or labeled) in different contexts which refer to an array or string must
specify it to be of the same size and shape. The lowest-numbered COM statement containing an
array or string name must explicitly specify the subscript bounds and/or string length. Subse-
quent COM statements can reference a string by name or an array by using an asterisk specifier.

No array can have more than six dimensions. The total number of elements is limited by the
computer’s memory size. The lower bound value must be less than or equal to the upper bound
value. The default lower bound is specified by the OPTION BASE statement.

Any LOADSUB which attempts to define or change COM areas while a program is running
generates error 145.

Unlabeled or Blank COM

Blank COM does not contain a block name in its declaration. Blank COM (if it is used) must be
created in a main context. The main program can contain any number of blank COM state-
ments. Blank COM areas can be accessed by subprograms, if the COM statements in the
subprograms agree in type and shape with the main program COM statements.

Labeled COM

Labeled COM contains a name for the COM area in its declaration. Memory is allocated for
labeled COM at prerun time according to the lowest-numbered occurrence of the labeled COM
statement. Each context which contains a labeled COM statement with the same label refers to

the same labeled COM block.

CONT

Keyboard Executable Yes
Programmable No

This command resumes execution of a paused program at the specified line.

(CONT }—v > —>—
line
number

LrE-

label

. Range
Item Description/Default Restrictions
line number integer constant identifying a program line; 1 thru 32 766
Default = next program line
line label name identifying a program line any valid name

Example Statements

CONT 350
CONT Sort

Semantics

Continue can be executed by pressing the key or by typing a CONT command and
pressing (EXECUTE). Variables retain their current values whenever CONT is executed. CONT
causes the program to resume execution at the next statement which would have occurred,
unless a line is specified.

When a line label is specified, program execution resumes at the specified line, provided that
the line is in either the main program or the current subprogram. If a line number is specified,
program execution resumes at the specified line, provided that the line is in the current program
context. If there is no line in the current context with the specified line number, program
execution resumes at the next higher-numbered line. If the specified line label does not exist in
the proper context, an error results.

37

CONTROL

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement sends control information to an interface or to the internal table associated with
an [/O path name.

interface
select code

word

P
o

register
number

CONTROL

s Range Recommended
Item Description/Default Restrictions Range
interface select numeric expression, rounded to an integer 1 thru 31 —
code
I/0 path name name assigned to a device, devices, or | any valid name —
mass storage file (see ASSIGN)
register number numeric expression, rounded to an integer; interface —
Default = 0 dependent
control word numeric expression, rounded to an integer — 231 thru 0 thru 65 535
+2311 (interface
dependent)

Example Statements

CONTROL BRand_files73iFile_length
CONTROL 13iRow::Column

CONTROL 73329

When the Destination is an I/O Path Name

The only time CONTROL is allowed to an I[/O path name is when the I/O path name is assigned
to a BDAT file. /0O path names have an association table that can be thought of as a set of
registers. Control words are written to the association table, starting with the specified ‘‘regis-
ter’” and continuing in turn through the remaining ‘‘registers’” until all control words are used.
The number of control words must not exceed the number of ‘‘registers’’ available. The ac-
cessible ‘‘registers’” for a BDAT file are:

“Register’”” Number Contents

current record

byte within current record
EOF record

byte within EOF record

0~

When the Destination is an Interface

Control words are written to the interface registers, starting with the specified register number,
and continuing in turn through the remaining registers until all the control words are used. The
number of control words must not exceed the number of registers available. Register assign-
ments can be found in the Interface Registers section at the back of the book.

39

40

COS

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the cosine of the argument. The range of the returned real value is —1

thru + 1.

CEOSEEIN0

. Range
Item Description/Default Restrictions
argument numeric expression in current units of angle absolute value less than:

Example Statements

Cosine=COS(Angle)
PRINT COS(X+43)

1.708 312 772 2 E+ 10 deg.
or in radians:
2.981 568 244 292 04 E+8

CREATE ASCII

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement creates an ASCII file on the mass storage media.

file number of

literal form of file specifier:

. Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
msus literal; INTERNAL
Default = MASS STORAGE IS device
number of records numeric expression, rounded to an integer 1thru 23 -1

Example Statements

CREATE ASCII "TEXT"+100
CREATE ASCII Name$8&":INTERNAL",Lendth

Semantics

CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
CREATE ASCII does not open the file. Opening of files is done by the ASSIGN statement. The
records of an ASCII file have a fixed length of 256 bytes. In the event of an error, no directory
entry is made and the file is not created.

41

CREATE BDAT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement creates a BDAT file on the mass storage media.

]

file number of >
((create BDAD_"I SF)eciiifrfi}_bG)_-'lElL j o
record
size

literal form of file specifier

file - > »{ "
: .
OO~ -G

protect code is ignored

for ASCII files
Item Description/Default Range
Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal, first two characters are significant “>"" not allowed
msus literal; INTERNAL
Default = MASS STORAGE IS device
number of records numeric expression, rounded to an integer 1 thru 23! - 256
record size numeric expression, rounded to next even 1 thru 65 534
integer (except 1). Specifies bytes/record.
Default = 256

Example Statements

CREATE BDAT "Georde" :4d8
CREATE BDAT "Sepecial«“PC:"sLendth 128
CREATE BDAT Name%&Msus$Brtes sl

Semantics

CREATE BDAT creates a new BDAT file and directory entry on the mass storage media.
CREATE BDAT does not open the file. Opening of files is done by the ASSIGN statement. If a
protect code is included after the file name, the first two characters become the protect code of
the file. In the event of an error, no directory entry is made and the file is not created. A sector is
created at the beginning of the file for system use. This sector cannot be accessed by BASIC
programs.

CSIZE

Keyboard Executable Yes
Programmable Yes
In an IF..THEN... Yes

This statement sets the size and aspect (width/height) ratio of the character cell used by the
LABEL statement.

Ccsus}—»—[height } -

Y

o
ratio
Item Description/Default Range
Restrictions
height numeric expression; Default = 5 —
width/height ratio numeric expression; Default = 0.6 —

Example Statements

C5IZE 10
CSIZE SizesWidth

Semantics

At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GDUs), and the aspect
ratio is 0.6 (width = 3 GDUs, or 0.6 x 5 GDUs). A negative number for either parameter
inverts the character along the associated dimension. The drawing below shows the relation
between the character cell and a character.

Character in a Character Cell

43

44

DATA

Keyboard Executable = No
Programmable Yes
In an IF...THEN... No

This statement contains data which can be read by READ statements. (For information about
DATA as a secondary keyword, see the SEND statement.)

SRS
@ | rumeric |

P |
" [_constant | A -

O~ O

Range

Item Description/Default Restrictions

numeric constant numeric quantity expressed using numerals, —
and optionally a sign, decimal point, or
exponent notation

literal string constant composed of characters from —
the keyboard, including those generated us-
ing the ANY CHAR key

Example Statements

DATA 1,1.414,1.732:2
DATA wordiswordZ ,word3
DATA "ex-point(!)"y"auote("")"y"commal)"

Semantics

A program or subprogram may contain any number of DATA statements at any locations.
When a program is run, the first item in the lowest numbered DATA statement is read by the
first READ statement encountered. When a subprogram is called, the location of the next item
to be read in the calling context is remembered in anticipation of returning from the subpro-
gram. Within the subprogram, the first item read is the first item in the lowest numbered DATA
statement within the subprogram. When program execution returns to the calling context, the
READ operations pick up where they left off in the DATA items.

45

A numeric constant must be read into a variable which can store the value it represents. The
computer cannot determine the intent of the programmer; although attempting to read a string
value into a numeric variable will generate an error, numeric constants will be read into string
variables with no complaint. In fact, the computer considers the contents of all DATA state-
ments to be literals, and processes items to be read into numeric variables with a VAL function,
which can result in error 32 if the numeric data is not of the proper form (see VAL).

Unquoted literals may not contain quote marks (which delimit strings), commas (which delimit
data items), or exclamation marks (which indicate the start of a comment). Leading and trailing
blanks are deleted from unquoted literals. Enclosing a literal in quote marks enables you to
include any punctuation you wish, including quote marks, which are represented by a set of two
quote marks.

DEALLOCATE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement deallocates memory space reserved by the ALLOCATE statement.

o
iab! -
(DeEALLocATE i y (%)
L@
Item Description/Default Range
: P Restrictions
variable name | name of an array or string variable | any valid name

Example Statements

DEALLOCATE A%,:B%:C%
DEALLOCATE Arrav (%)

Semantics

Memory space reserved by ALLOCATE exists in the same section of memory as that used by
ON-event statements. Since entries in this area are ‘‘stacked’” as they come in, space for
variables which have been DEALLOCATED may not be available immediately. It will not be
available until all the space ‘“‘above it” is freed. This includes variables allocated after it, as well
as ON-event entries. Exiting a subprogram automatically deallocates space for variables which
were allocated in that subprogram.

Strings and arrays must be deallocated completely. Deallocation of an array is requested by the
(*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in the current context
results in an error. When DEALLOCATE is executed from the keyboard, deallocation occurs
within the current context.

47

48

required parameters

optional parameters

G

function |

program
segment
RETURN

program
segment

:

name [> >)
o
> _ [numeric | - > >@_/
name || I I
(¢)
(®
_/

/0 path
name

a l numeric | -

\H OPTIONAL} P

numeric

expression

string
expression

INTEGER
string
name
1/0 path
name

Note:

L_name [&

(%)

A user-defined function
may contain any number of
RETURN statements.

DEF FN

Keyboard Executable No
Programmable Yes
In an IF.. THEN... No

This statement indicates the beginning of a function subprogram. It also indicates whether the
function is string or numeric and defines the formal parameter list.

>

function -]
(DEF FN/}—-I name ll > - |
required > -)
parameters i
i

\

OPTIONAL optional

1

parameters
Item Description/Default Range
Restrictions

function name name of the user-defined function any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
[/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
program segment any number of contiguous program lines not —

containing the beginning or end of a main

program or subprogram

Example Statements

DEF FNTrim$(Strings$)
DEF FNTransform{(BPrinter»INTEGER Arrav(*) 0PTIONAL Text$)

49

50

Semantics

User-defined functions must appear after the main program. The first line of the function must
be a DEF FN statement. The last line must be an FNEND statement. Comments after the
FNEND are considered to be part of the function.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the user-defined function is invoked (see FN). Parameters to the right of OPTIONAL are
optional, and only need to be supplied if they are needed for a specific operation. Optional
parameters are associated from left to right with any remaining pass parameters until the pass
parameter list is exhausted. An error is generated if the function tries to use an optional
parameter which did not have a value passed to it. The function NPAR can be used to deter-
mine the number of parameters supplied by the function call.

Parameters in the formal parameter list may not be duplicated in COM statements. A user-
defined function may not contain any SUB statements or DEF FN statements. User-defined
functions can be called recursively and may contain local variables. A unique labeled COM
must be used if the local variables are to preserve their values between invocations of the
user-defined function.

The RETURN <expression> statement is important in a user-defined function. If the program
actually encounters an FNEND during execution (which can only happen if the RETURN is
missing or misplaced), error 5 is generated. The <expression> in the RETURN statement must
be numeric for numeric functions, and string for string functions. A string function is indicated
by the dollar sign suffix on the function name.

The purpose of a user-defined function is to compute a single value. While it is possible to alter
variables passed by reference and variables in COM, this can produce undesirable side effects,
and should be avoided. If more than one value needs to be passed back to the program, SUB
subprograms should be used.

DEG

Keyboard Executable Yes
Programmable Yes
In an [F.. THEN... Yes

This statement selects degrees as the unit of measure for expressing angles.

(Cose)~

Semantics

All functions which return an angle will return an angle in degrees. All operations with param-
eters representing angles will interpret the angle in degrees.

A subprogram “‘inherits”’ the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context. If no angle mode is specified in a program, the default is radians (see RAD).

51

52

DEL

Keyboard Executable Yes
Programmable No

This command deletes program lines.

DEL - ending line
number
—_—s
beginning line
label
Item Description/Default Range
Restrictions
beginning line | integer constant identifying a program line 1 thru 32 766
number

beginning line label
ending line number

ending line label

name of a program line
integer constant identifying a program line

name of a program line

any valid name
1 thru 32 766

any valid name

Example Statements

DEL 13
DEL Sort 9999

Semantics

DEL cannot be executed while a program is running. If DEL is executed while a program is
paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line which has
the label. If the label does not exist, error 3 is generated. An attempt to delete a non-existent
program line is ignored when the line is specified by a line number. An error results if the ending
line number is less then the beginning line number. If only one line is specified, only that line is
deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the state-
ments delimiting the beginning and ending of the subprogram (DEF FN and FNEND for user-
defined function subprograms; SUB and SUBEND for SUB subprograms), as well as all com-
ments following the delimiting statement for the end of the subprogram. Contiguous subpro-
grams may be deleted in one operation.

DELSUB

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement deletes one or more SUB subprograms or user-defined function subprograms
from memory.

()
S G w
DELSUED > subprogram -]

[_name | j i o
function > ; TO END
name | I

e Range
Item | Description/Default | Restrictions
subprogram name name of a SUB subprogram any valid name
function name name of a user-defined function any valid name

Example Statements

DELSUB FNTrim$
DELSUB SepeciallsSpeciald

Semantics

Subprograms being deleted do not need to be contiguous in memory. The order of the names
in the deletion list does not have to agree with the order of the subprograms in memory. If there
are subprograms with the same name, the one occurring first (lowest line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB or DEF
FN) and include the comments following the line delimiting the end of the subprogram (SUB-
END or FNEND).

You cannot delete:

e Busy subprograms (ones being executed).
e Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DELSUB statement, the
subprogram is not deleted, and neither are subprograms listed to the right of the subprogram
which could not be deleted.

53

DIM

Keyboard Executable No
Programmable Yes
In an IF.. THEN... No

This statement dimensions and reserves memory for REAL numeric arrays, strings and string
arrays.

()=
U/
()=
%

e Range
Item Description/Default Restrictions

numeric array name | name of a numeric array any valid name

string name name of a string variable any valid name

lower bound integer constant; —32 767 thru +32 767
Default = OPTION BASE value (0 or 1) (see “‘array’’ in Glossary)

upper bound integer constant —32 767 thru +32 767

(see “‘array’’ in Glossary)

string length integer constant 1 thru 32 767

Example Statements

DIM Strings[100] Names(12)L321]
DIM Arrav(-128:127+106)

Semantics

A program can have any number of DIM statements. The same variable cannot be declared
twice within a program (variables declared in a subprogram are distinct from those declared in a
main program, except those declared in COM). The DIM statements can appear anywhere
within a program, as long as they do not precede an OPTION BASE statement. Dimensioning
occurs at pre-run or subprogram entry time. Dynamic run time allocation of memory is pro-

vided by the ALLOCATE statement.

No array can have more than six dimensions. Each dimension can have a maximum of 32 767
elements. The actual maximum number of elements for an array depends on available
memory.

All numeric arrays declared in a DIM statement are REAL, and each element of type REAL
requires 8 bytes of storage. A string requires one byte of storage per character, plus two bytes of
overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for these
elements is reserved whether you use them or not.

55

DISABLE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement disables event-initiated branches which were defined by ON KEY, ON KNOB,
and ON INTR statements.

DISABLE

Sematics

If an event occurs while the event-initiated branches are disabled, the fact that an event has
occurred is logged. Although there is an « .cnt log for each of the ON-event statements in-
volved, it only records the fact that an event has occurred, there is no record of how many of
each type of event has occurred.

If event-initiated branches are enabled after they have been disabled, any ON-event branches
for which an event is logged are taken if the system priority permits.

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

DISABLE INTR

This statement disables interrupts from an interface by turning off the interrupt generating

mechanism on the interface.

interface
(DISABLE INTR)—-»-I select code]——H

Item | Description/Default | Reth?ir::St!iims
l 7 thru 31

interface select code I numeric expression, rounded to an integer

Example Statements

DISABLE INTR 7
DISABLE INTR Isc

57

58

X

(opisp }* —

image line
number

2]
E
2 - -
® image line
D label
©
£
image
specitier

?

.

string) o
expression 1 |
string
Ol -
numeric -
expression
trailing
numeric o punctuation
’ l array name l' ((*E n%Lade'\?g
wi

=D y

tab function not allowed with USING

display items
A

literal form of image specifier:

image
specifier list

-

Keyboard Executable

Programmable

In an IF... THEN...

Yes
Yes
Yes

DISP

This statement causes the display items to be sent to the display line on the CRT.

P

(DISP }

Y
Y

image
USING }—b{ items

display
items

.. Range Recommended
Item Description/Default Restrictions Range
image line label name identifying an IMAGE statement any valid name —
image line number | integer constant identifying an IMAGE | 1 thru 32 766 —
statement

image specifier string expression (see drawing) —
string array name name of a string array any valid name —
numeric array name of a numeric array any valid name —
name
column numeric expression, rounded to an integer —32 768 thru 1 thru 50

+32 767
image specifier literal {see next —
list drawing)

repeat factor

literal

integer constant

string constant composed of characters
from the keyboard, including those gener-
ated

using the ANY CHAR key

Example Statements

DISP Prompt$s

DISP TAB(3):First»TAB(20)5econd

DISP USING

"SZ2.DD" iMonev

1 thru 32 767

quote mark
not allowed

59

60

image specifier list

4

()=
S

[

i

[

eycyelo

[

\

[

repeat
factor

OMOXC)

Y

()
T\

—

repeat
factor

.5
o)

repeat
factor

repeat
factor

> @

x

repeat
factor

¢

repeat
factor

repeat
factor

@ @

repeat
factor

A

3

61

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E—4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits, it is
displayed in scientific notation. The standard numeric format is used unless USING is selected,
and may be specified by using K in an image specifier.

Automatic End-Of-Line Sequence
After the display list is exhausted, an End Of Line (EOL) sequence is sent to the display line,
unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier.

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character | Keystroke Name Action
CHR$(7) CTRL-G bell Sound the beeper
CHR$(8) CTRL-H backspace Move the cursor back one character.
CHR$(12) CTRL-L formfeed Clear the display line.
CHR$(13) CTRL-M carriage Move cursor to column 1. The next
return character sent to the display clears
the display line, unless it is a carriage
return.
Arrays

Arrays may be displayed in their entirety by using the asterisk specifier. They are displayed in
row-major order (right-most subscript varies most rapidly) and their format depends on the
print mode selected.

Display Without Using

If DISP is used without USING, the punctuation following an item determines the width of the
item’s display field; a semicolon selects the compact field, and a comma selects the default
display field. When the display item is an array with the asterisk array specifier, each array
element is considered a separate display item. Any trailing punctation will suppress the automa-
tic EOL sequence, in addition to selecting the display field to be used for the display item
preceding it.

The compact field is slightly different for numeric and string items. Numeric items are displayed
with one trailing blank. String items are displayed with no leading or trailing blanks.

The default display field displays items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is displayed with one leading blank if the number is positive, or with a minus sign
if the number is negative, whether in compact or default field.

62

In the TAB function, a column parameter less than one is treated as one. A column parameter
greater than fifty is treated as fifty.

Display With Using

When the computer executes a DISP USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the display items, the field specifier is acted upon without
accessing the display list. When the field specifer requires characters, it accesses the next item in
the display list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
display item. If the image specifiers are exhausted before the display items, they are reused,
starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If
it is shorter than the specifer, trailing blanks are used to fill out the field.

The effect of the image specifiers on a DISP statement is shown below:

Image
Specifier Meaning

K Compact field. Displays a number or string in standard form with no leading
-K or trailing blanks.

Displays the number’s sign (+ or —).
M Displays the number’s sign if negative, a blank if positive.

Displays one digit character. A leading zero is replaced by a blank. If the
number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is displayed, it will ““float’’ to the left
of the left-most digit.

z Same as D, except that leading zeros are displayed.

B Displays the character represented by one byte of data. This is similar to the
CHR$ function. The least significant eight bits of the number are sent. The
number is rounded to an integer. If the number is greater than 32 767, 255
is used; if the number is less than —32 768, O is used.

w Displays two characters represented by the two bytes in a 16 bit word. The
number is rounded to an integer. If the number is larger than 32 767,
32 767 is used; if the number is less than — 32 768, then — 32 768 is used.
The most significant byte is displayed first, followed by the least significant
byte.

Image
Specifier Meaning
A Displays a string character. Trailing blanks are output if the number of
characters specified is greater than the number available in the correspond-
ing string. If the image specifier is exhausted before the corresponding
string, the remaining characters are ignored.
X Displays a blank.
Displays a decimal point radix indicator.
E Displays an E, a sign, and a two digit exponent.
ESZZ
ESZ Displays an E, a sign, and a one digit exponent.
ESZZZ Displays an E, a sign, and a three digit exponent.
Suppresses the automatic output of the EOL (End-Of-Line) sequence at the
end of the display list.
% Ignored for display lists.
L Sends an EOL sequence to the display line.
@ Sends a form-feed to the display line.
/ Sends a carriage-return and a line-feed to the display line.
literal Displays the characters contained in the literal.

63

64

DIV

Keyboard Executable
Programmable
In an IF...THEN...

This operator returns the integer portion of the quotient of the dividend and the divisor.

—>{ dividend |-—>C Div >—>-| divisor 1—»—

Yes
Yes
Yes

i Range
Item | Description/Default Restrictions
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements

Quotient=Dividend DIV Divisor
PRINT "Hours ="iMinutes DIV BO

Semantics

DIV returns a REAL value unless both arguments are INTEGER. In the latter case the returned

value is INTEGER. A DIV B is identical to SGN(A/B) x INT(ABS(A/B)).

65

DRAW

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement draws a line from the pen’s current position to the specified X and Y coordinate
position using the current line type and pen number.

CHRENO

Range

It escription/Default . 2
em D P / Restrictions
X coordinate numeric expression, in current units —_

y coordinate numeric expression, in current units —_

Example Statements

DRAW 10,80
DRAW Next_x:Next_v

Semantics
The X and Y coordinate information is interpreted according to the current unit-of-measure.

The line is clipped at the current clipping boundary. The PIVOT statement rotates the coordin-
ates for the DRAW, but the logical pen position receives the value of the unpivoted coordinates.
The logical pen may bear no obvious relationship to the physical pen’s position.

A DRAW to the current position generates a point. DRAW updates the logical pen position at
the completion of the DRAW statement, and leaves the pen down on an external plotter.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE LDIR
Lines (generated by moves and draws) X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X
Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.

66

DROUND

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function rounds a numeric expression to the specified number of digits. If the specified
number of digits is greater than 15, no rounding takes place. If the number of digits specified is
less than 1, O is returned.

number of
oo)~(0 O o

. Range Recommended
Item | Description/Default I Restrictions Range
argument numeric expression — —
number of digits numeric expression, rounded to an integer — 1 thru 15

Example Statements

Test_real=DROUND{(True_real 12)
PRINT "Approx. Yolts ="3iDROUND(Volts 3)

DUMP

Keyboard Executable Yes
Prograrnmable Yes
In an IF...THEN... Yes

This statement copies the contents of the alphanumeric or graphics display to the specified
printing device.

(oump ALPHA > >
D

. Range
[tem Description/Default | Restrictions
device selector numeric expression, rounded to an integer; external interfaces only
Default = DUMP DEVICE IS device (see Glossary)

Example Statements

DUMP ALPHA
DUMP GRAPHICS #702

Semantics
DUMP ALPHA copies the contents of the CRT alphanumeric display to the specified printer.

DUMP GRAPHICS copies the contents of the CRT graphics display to a printer. Doing a DUMP
GRAPHICS to a printer which does not support the HP Raster Interface Standard will produce
unpredictable results. The HP 9876A and the HP 2631G are among the devices which support
the standard.

If a DUMP GRAPHICS operation is stopped by pressing the key, the printer may or may
not terminate its graphics mode. Sending the printer 75 null characters [CHR$(0)] can be used
to terminate the graphics mode on a printer such as the HP 9876.

67

68

DUMP DEVICE IS

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement specifies which device receives the data when either DUMP ALPHA or DUMP
GRAPHICS is executed without a device selector.

DUMP device | - |
DEVICE IS selector [> >
o
Item Description/Default Ra.ng.e
Restrictions

device selector external interfaces only

(see Glossary)

numeric expression, rounded to an integer;
Default = 701

Example Statements

DUMP DEVICE IS 721
DUMP DEVICE IS Printer »EXPANDED

Semantics

Doing a DUMP GRAPHICS to a printer which does not support the HP Raster Interface
Standard will produce unpredictable results. The HP 9876 and the HP 2631G are among the
devices which support the standard.

Specifying EXPANDED results in graphics dumps that are twice as big (on each axis) and
turned sideways. This gives four dots on the printer for each dot on the display. The resulting
picture does not fit on one page of a 9876 or 2631G printer.

EDIT

Keyboard Executable Yes
Programmable No

This command allows you to enter a new program or edit a program already in memory.

Y -~ —
o) > I
line .
number g o
©
Item Description/Default Range
Restrictions
line number integer constant identifying a program line; 1 thru 32 766
Default (see text)
line label name of a program line any valid name
increment integer constant; Default = 10 1 thru 32 766

Example Statements

EDIT
EDIT 1000,5

Semantics

The EDIT command allows you to scroll through a program in the computer using the arrow
keys or knob. Lines may be added to the end of the program by scrolling to the bottom of the
program. A new line number will be provided automatically. Lines may be added between
existing lines by using the key. Lines may be deleted using the key. Lines may be
modifed by typing over the current contents of the line. The key is used to store newly
created or modified lines.

The editor is exited by pressing (CONTINUE), ((CLR SCR), (PAUSE), (RESET), (_RUN), or (_STEP). If the
program was changed while paused, pressing (CONTINUE) generates an error, since modifying a
program moves it to the STOP state.

EDIT Without Parameters

If no program is currently in the computer, the edit mode is entered at line 10, and the line
numbers are incremented by 10 as each new line is stored. If a program is in the computer, the
line number at which the editor enters the program is dependent upon recent history. If an error
has paused program execution, the editor enters the program at the line in which the error
occurred. Otherwise, the editor enters the program at the line most recently edited (or the
beginning of the program after a LOAD or GET operation). The line increment defaults to 10 if
it is not specified.

69

70

EDIT With Parameters

If no program is in the computer, a number (not a label) must be used to specify the beginning
line for the program. The increment will determine the interval between line numbers. If a
program is already in the computer, any increment provided is not used until lines are added
past the end of the existing program. If a line number is specified between two existing lines, the
lowest numbered line greater than the specified line is used. If a line label is used to specify the
entry point, the lowest numbered line having that label is used. If the label cannot be found, an

error is generated.

ELSE

See the IF...THEN statement.

ENABLE
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement re-enables all ON KEY, ON KNOB, and ON INTR branches which were sus-
pended by DISABLE.

()~

71

72

ENABLE INTR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement enables the specified interface to generate an interrupt which can cause end-of-
statement branches.

interface l
GNABLE INM samrace. |

\
Y

bit
mask

. Range
Item | Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
bit mask numeric expression, rounded to an integer —32 768 thru +32 767

Example Statements

ENABLE INTR 7
ENABLE INTR IsciMask

Semantics

If a bit mask is specified, its value is stored in the interface’s interrupt-enable register. Consult
the documentation provided with each interface for the correct interpretation of its bit mask
values.

If no bit mask is specified, the previous bit mask for the select code is restored. A bit mask of all
zeros is used when there is no previous bit mask.

END

Keyboard Executable = No
Programmable Yes
In an [F...THEN... No

This statement marks the end of the main program. (For information about END as a secondary
keyword, see the OUTPUT and SEND statements.)

(oo)~

Semantics

END must be the last statement (other than comments) of a main program. Only one END
statement is allowed in a program. (Program execution may also be terminated with a STOP
statement, and multiple STOP statements are allowed.) END terminates program execution,
stops any event-initiated branches, and clears any unserviced event-initiated branches. CON-
TINUE is not allowed after an END statement.

Subroutines used by the main program must occur prior to the END statement. Subprograms
and user-defined functions must occur after the END statement.

END IF

See the IF... THEN statement.

73

74

enter items

r

ENTER ——{ : F"‘I e }

source image items
A A Al
- > :
record > image line
number USING number

device
selector
source string
name

$

image fine
label

image
specifier

numeric
name

string
s

subscript

beginning
position

literal form of image specitier:

specifier

G

list

Keyboard Executable

Programmable

In an IF... THEN...

Yes
Yes
Yes

ENTER

This statement is used to input data from a device, file, or string and assign the values entered to

variables.

(ENTER}-«»{ source 1| >
image
L'CUS'NGH items

Item

Description/Default

Range
Restrictions

I/O path name

record number
device selector
source string name

subscript

image line number

image line label
image specifier
numeric name
string narne

beginning position

ending position

substring length

image specifier list
repeat factor

literal

name assigned to a device, devices, or mass
storage file

numeric expression, rounded to an integer
numeric expression, rounded to an integer
name of a string variable

numeric expression, rounded to an integer

integer constant identifying an IMAGE state-
ment

name identifying an IMAGE statement
string expression

name of a numeric variable

name of a string variable

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

literal
integer constant

string constant composed of characters from
the keyboard, including those generated
using the ANY CHAR key

any valid name (see ASSIGN)

1thru 231 -1
(see Glossary)
any valid name

—32 767 thru +32 767
(see “‘array’’ in Glossary)

1 thru 32 766

any valid name
(see drawing)
any valid name

any valid name

1 thru 32 767
(see “‘substring” in Glossary)

0 thru 32 767
(see “‘substring’’ in Glossary)

0 thru 32 767
(see ‘‘substring”’ in Glossary)

(see next drawing)
1 thru 32 767

quote mark not allowed

75

76

image specifier list

>

clck

b

5

SJfexe

repeat
factor

oL

3

repeat
factor

repeat
factor

IIH

repeat
factor

repeat
factor

I ‘ I ‘ I ‘

repeat
factor

0] ¢ ¢

3

G

)

repeat
factor

repeat
factor

G

Example Statements

ENTER 703 iNumber»Stringds$

ENTER BFilesArravy (%)

ENTER @Source USING FmtS5iltem(1),Item(2):Item(3)
ENTER 12 USING "#,B6A"A%[2361]

Semantics

The Number Builder

If the data being received is ASCII and the associated variable is numeric, a number builder is
used to create a numeric quantity from the ASCII representation. The number builder ignores
all leading non-numeric characters, ignores all blanks, and terminates on the first non-numeric
character, or the first character received with EOI true. (Numeric characters are 0 thru 9, +, —,
decimal point, e, and E, in a meaningful numeric order.) If the number cannot be converted to
the type of the associated variable, an error is generated. If more digits are received than can be
stored in a variable of type REAL, the rightmost digits are lost but any exponent will be built
correctly. Overflow occurs only if the exponent overflows.

Arrays

Entire arrays may be entered by using the asterisk specifier. Each element in an array is treated
as an item by the ENTER statement, as if the elements were listed separately. The array is filled
in row major order (rightmost subscript varies fastest.)

Files as Source

If an I/O path has been assigned to a file, the file may be read with ENTER statements. The file
must be an ASCII or BDAT file. The attributes specified in the ASSIGN statement are used only
if the file is a BDAT file. Data read from an ASCII file is always in ASCII format. Data read from
a BDAT file is considered to be in internal format if FORMAT is OFF, and is read as ASCII
characters if FORMAT is ON.

Serial access is available for both ASCII and BDAT files. Random access is available for BDAT
files. The file pointer is important to both serial and random access. The file pointer is set to the
beginning of the file when the file is opened by an ASSIGN. The file pointer always points to the
next byte available for ENTER operations.

Random access uses the record number parameter to read items from a specific location in a
file. The record specified must be before the end-of-file. The ENTER begins at the beginning of
the specified record.

It is recommended that random and serial access to the same file not be mixed. Also, data
should be entered into variables of the same type as those used to output it (e.g. string for
string, REAL for REAL, etc.).

Devices as Source

An I/O path name or a device selector may be used to ENTER from a device. If a device selector
is used, the default system attributes are used (see ASSIGN). If an I/O path name is used, the
ASSIGN statement determines the attributes used. If multiple devices were specified in the
ASSIGN, the ENTER sets the first device to be talker, and the rest to be listeners.

77

78

If FORMAT ON is the current attribute, the items are read as ASCIIL. If FORMAT OFF is the
current attribute, items are read from the device in the computer’s internal format. Two bytes
are read for each INTEGER, eight bytes for each REAL. Each string entered consists of a four
byte header containing the length of the string, followed by the actual string characters. The
string must contain an even number of characters.

CRT as Source

If the device selector is 1, the ENTER is from the CRT. The ENTER reads characters from the
CRT, beginnning at the current print position (print position may be modified by using TABXY
in a PRINT statement.) The print position is updated as the ENTER progresses. After the last
non-blank character in each line, a line-feed is sent with a simulated “EOI”’. After the eigh-
teenth line is read, the print position is off the screen. If the print position is off screen when an
ENTER is started, the off-screen text is first scrolled into line eighteen of the display.

Keyboard as Source

ENTER from device selector 2 may be used to read the keyboard. An entry can be terminated
by pressing (ENTER), (CONTINUE), or ((STEP). Using (ENTER) or (STEP) causes a CR/LF to be
appended to the entry. The key adds no characters to the entry and does not
terminated the ENTER statement. If an ENTER is stepped into, it is stepped out of, even if the
key is pressed. An HP-IB EOI may be simulated by pressing (_E) before the
character to be sent, if this feature has been enabled by an appropriate CONTROL statement to
the keyboard (see the Interface Registers in the back of this book).

Strings as Source

If a string name is used as the source, the string is treated similarly to a file. However, there is no
file pointer; each ENTER begins at the beginning of the string, and reads serially within the
string.

ENTER With USING

When the computer executes an ENTER USING statement, it reads the image specifier, acting
on each field specifier (field specifiers are separated from each other by commas) as it is
encountered. If no variable is required for the field specifier, the field specifier is acted upon
without referencing the enter items. When the field specifer references a variable, bytes are
entered and used to create a value for the next item in the enter list. Each element in an array is
considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
enter item. If the image specifiers are exhausted before the enter items, the specifiers are
reused, starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string is
reached. If more variables remain in the enter list when this happens, the next character
received is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is always
assumed with USING, regardless of any attempt to specify FORMAT OFF.

Effects of the image specifiers on an ENTER statement are shown in the following table.

Image
Specifier Meaning

K Freefield Entry.

Numeric: Entered characters are sent to number builder. Leading
non-numeric characters are ignored. All blanks are
ignored. Trailing non-numeric characters and characters
sent with EOIl true are delimiters. Numeric characters in-
clude digits, decimal point, +, —, e, and E.

String: Entered characters are placed in the string. Carriage-return
not immediately followed by line-feed is entered into the
string. Entry to a string terminates on CR/LF, LF, a charac-
ter received with EQI true, or when the dimensioned length
of the string is reached.

-K Like K except that LF is entered into a string, and thus CR/LF and LF do not
terminate the entry.

S Same action as D.

M Same action as D.

Demands a character. Non-numerics are accepted to fill the character
count. Blanks are ignored, other non-numerics are delimiters.

Z Same action as D.

B Demands one byte to become a numeric quantity.

W Demands two bytes. The two bytes are considered to be a sixteen-bit, two’s
complement integer. The first byte entered on an eight-bit interface is the
most significant byte. A byte of a file or string will be skipped, if necessary,
to align data read with a word boundary.

A Demands a string character. Any character received is placed in the string.

X Skips a character.

Same action as D.

E Same action as 4D.

ESZZ
ESZ Same action as 3D.
ESZ77Z Same action as 5D.

Suppresses all statement terminating conditions; enter data until variable
list is satisfied.

% EOI (or end-of-file) is an immediate statement terminator. No statement

terminator is required.

79

80

Image
Specifier Meaning
/ Demands a new field; skips all characters to the next line-feed. EOI is
ignored.
L Ignored for ENTER.
@ Ignored for ENTER.
literal Skips one character for each character in the literal.

ENTER Statement Termination

A simple ENTER statement (one without USING) expects to give values to all the variables in
the enter list and then receive a statement terminator. A statement terminator is an EOI, a
line-feed received at the end of the last variable or within 256 characters after the end of the last
variable, or an end-of-file. If a statement terminator is received before all the variables are
satisfied, or no terminator is received within 256 bytes after the last variable is satisfied, an error
occurs. The terminator requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier, is different from a
simple ENTER in one respect. EOl is not treated as a statement terminator unless it occurs on or
after the last variable. Thus, EOl is treated like line-feed and can be used to terminate entry into
each variable.

An ENTER statement with USING that specifies a # image requires no terminator. EOI and
line-feed serve to end the entry into individual variables. The ENTER statement terminates
when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOI as a statement termina-
tor. Like the # specifier, no terminator is required. Unlike the # specifier, if an EOI is received,
it is treated as a statement terminator. If the EOI occurs at a normal boundary between items,
the ENTER statement terminates without error and leaves the value of any remaining variables
unchanged.

Keyboard Executable = No
Programmable Yes
In an IF..THEN... Yes

ERRL

This function returns a value of 1 if the most recent error occurred in the specified line.
Otherwise, a value of 0 is returned. The specified line must be in same context as the ERRL

function.

—emme

ll line number '

line label

s Range
Item | Description/Default Restrictions
line number integer constant 1 thru 32 766
line label name of a program line any valid name

Example Statements

IF ERRL(220) THEN Parse_error
IF NOT ERRL(Parameters) THEN Other

81

82

ERRN

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the number of the most recent program execution error. If no error has
occurred, a value of O is returned.

Example Statements

IF ERRN=8B0O THEN Disc_out
DISP "Error Number" SERRN

EXOR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its arguments.

—P-l argurnentHEXOR)—P—{ argument |—>

Range

Item | Description/Default | Restrictions

argument | numeric expression | —

Example Statements

OK=First_pass EXOR Old_data
IF A EXOR Flag THEN Exit

Semantics

A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as a logical
0.

The EXOR function is summarized in this table.

A | B | AEXORB

0 0 0
0 1 1
1 0 1
1 1 0

83

84

EXP

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function raises e to the power of the argument. In the computer, Naperian
e~ 2.718 281 828 459 05.

GO -0

i Range
Item I Description/Default Restrictions
argument numeric expression —708.396 418 532 264
thru

+709.782 712 893 383 8

Example Statements
Y=EXP(-X"2/2)
PRINT "e to the"3Z3i"="3;EXP(Z)

85

86

O

function |

name

|

pass parameters

Y

Y

(e

AN

> /O path
'<@) ’ | name I

’
o | Vvariable >
o | name | o

Y
\

(%)
| string or numeric | .

'l array element |

Passed by Reference f
Passed by Value *

variable
name

J substring l -

] B -
(D= e ()

) | numeric l

| constant | T

. string expression containing
*| monadic operators, dyadic operators, or functions

\ numeric expression containing

monadic operators, dyadic operators, or functions |

Y

FN

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This keyword transfers program execution to the specified user-defined function and may pass
items to the function. The value returned by the function is used in place of the function call
when evaluating the statement containing the function call.

function | . > |
(FN >_’.| name | ” o ol
pass
parameters

.. Range
Item Description/Default Restrictions

function name name of a user-defined function any valid name
[/O path name name assigned to a device, devices, or mass any valid name

storage file {see ASSIGN)
variable name name of a numeric or string variable any valid name
substring string expression containing substring nota- (see Glossary)

tion
literal string constant composed of characters from —

the keyboard, including those generated us-

ing the ANY CHAR key
numeric constant numeric quantity expressed using numerals, —

and optionally a sign, decimal point, or

exponent notation

Example Statements

PRINT X3FNChange (X)
Final$=FNTrim$(First%$)
Result=FNPround(ItemPower)

Semantics

A user-defined function may be invoked as part of a stored program line or as part of a
statement executed from the keyboard. If the function name is typed and then is
pressed, the value returned by the function is displayed. In order to be invoked from the
keyboard, the program containing the function must be running or must have been run. The
dollar sign suffix indicates that the returned value will be a string. User-defined functions are
created with the DEF FN statement.

87

88

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted to the
numeric type (REAL or INTEGER) of the corresponding formal parameter. Variables passed by
reference must match the type of the corresponding parameter in the DEF FN statement
exactly. An entire array may be passed by reference by using the asterisk specifier.

Invoking a user-defined function changes the program context. The functions may be invoked
recursively.

If there is more than one user-defined function with the same name, the lowest numbered one
is invoked by FN.

FNEND

See the DEF FN statement.

FOR...NEXT

Keyboard Executable = No
Programmable Yes
In an IF...THEN... No

This construct defines a loop which is repeated until the loop counter passes a specific value.
The step size may be positive or negative.

,l loop I » (:) ,l initial) ,I final | - —
(FOR)— counter valueH To value | o
program
srer)|
() > | loop | .|
NEXT counter

step
size

Range
iption/Def: . o
Item Description/Default Restrictions
loop counter name of a numeric variable any valid name
initial value numeric expression —
final value numeric expression —_
step size numeric expression; Default = 1 —
program segment any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram

Example Program Segments

100 FOR I=4 TO O STEP -.1
110 PRINT I3iSQR(I)
120 NEXT I

1220 INTEGER Point

1230 FOR Point=1 TO LEN(A%)

1240 CALL Convert(A$LPointill)
1250 NEXT Point

Semantics

The loop counter is set equal to the initial value when the loop is entered. Each time the
corresponding NEXT statement is encountered, the step size (which defaults to 1) is added to
the loop counter, and the new value is tested against the final value. If the final value has not
been passed, the loop is executed again, beginning with the line immediately following the FOR
statement. If the final value has been passed, program execution continues at the line following
the NEXT statement. Note that the loop counter is not equal to the specified final value when
the loop is exited.

90

The loop counter is also tested against the final value as soon as the values are assigned when
the loop is first entered. If the loop counter has already passed the final value in the direction
the step would be going, the loop is not executed at all. The loop may be exited arbitrarily (such
as with a GOTO), in which case the loop counter has whatever value it had obtained at the time
the loop was exited.

Each FOR statement is allowed one and only one matching NEXT statement. The NEXT
statement must be in the same context as the FOR statement. FOR...NEXT loops may be
nested, and may be contained in IF... THEN...ELSE constructs, as long as the loops and con-
structs are properly nested and do not improperly overlap.

The initial, final and step size values are calculated when the loop is entered and are used while
the loop is repeating. If a variable or expression is used for any of these values, its value may be
changed after entering the loop without affecting how many times the loop is repeated. Howev-
er, changing the value of the loop counter itself can affect how many times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size
values. The previous value of the loop counter is not changed until after the initial, final, and

step size values are calculated.

If the step value evaluates to 0, the loop repeats infinitely and no error is given.

FORMAT

See the ASSIGN statement.

FRAME

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement draws a frame around the current clipping area using the current pen number
and line type. After drawing the frame, the current pen position coincides with the lower left
corner of the frame, and the pen is down.

(Frowe)~

91

92

GCLEAR

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement clears the graphics display or sends a command to an external plotter to advance
the paper.

GCLEAR }—

93

94

GET

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement reads the specified ASCII file and attempts to store the strings into memory as

program lines.

file |

Ch

specifier l

literal form of file specifier:

file
name

append

line number

append
line label

-

O]

run line
number

run line
label

. Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
msus literal; INTERNAL

append line number
append line label
run line number

run line label

Default = MASS STORAGE IS device
integer constant identifying a program line
name of a program line

integer constant identifying a program line

name of a program line

1 thru 32 766
any valid name
1 thru 32 766

any valid name

Example Statements

GET "George"
GET Next_pProd%,180,10

Semantics

When GET is executed, the first line in the specified file is read and checked for a valid line
number. If no valid line number is found, the current program stays in memory and error 68 is
generated. If the GET was attempted from a running program, the program remains active and
the error 68 can be trapped with ON ERROR. If there is no ON ERROR in effect, the program
pauses.

If there is a valid line number at the start of the first line in the file, the GET operation proceeds.
Values for all variables except those in COM are lost and the current program is deleted from
the append line to the end. If no append line is specified, the entire current program is deleted.

As the file is brought in, each line is checked for proper syntax. Any lines which contain syntax
errors are listed on the PRINTER IS device. Those erroneous lines which have valid line
numbers are converted into comments and stored in the program. The syntax checking during
GET is the same as if the lines were being typed from the keyboard, and any errors that would
occur during keyboard entry will also occur during GET. If any line caused a syntax error, an
error 68 is reported at the completion of the GET operation. This error is not trappable because
the old program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append location. If an
append line number is specified, the lines from the file are renumbered by adding an offset to
their line numbers. This offset is the difference between the append line number and the first
line number in the file. This operation preserves the line-number intervals that exist in the file. If
renumbering would create an invalid line number, the line causing the error is listed on the
PRINTER IS device showing the line number it had in the file. Any programmed references to
line numbers that would be renumbered by REN are also renumbered by GET. If no append
line is specified, the lines from the file are entered without renumbering.

If a successful GET is executed from a program, execution resumes automatically after a prerun
initialization (see RUN). If no run line is specified, execution resumes at the lowest-numbered
line in the program. If a run line is specified, execution resumes at the specified line. The
specified run line must be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is executed
from the keyboard with no run line specified, RUN must be executed to start the program. GET
is not allowed from the keyboard while a program is running.

95

96

GINIT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement establishes a set of default values for variables affecting graphics operations.

Semantics
The following operations are performed when GINIT is executed:

PLOTTER IS 3,,"INTERNAL"
CLIP OFF

PIVOT O

PEN 1

LINE TYPE 1,5

LORG 1

CSIZE 3,0.6

LDIR ©

MOVE 0,0

In addition, if the next graphics statement encountered is not a PLOTTER IS with an HPGL
specifier, the CRT graphics raster is cleared, and the following statements are executed:

VIEWPORT 0,133.444816034,0,100
WINDOW ©0,133.444816054,0,100

If the next graphics statement is a PLOTTER IS with an HPGL plotter specifier, and the plotter
has a horizontal aspect ratio (X-axis longer than the Y-axis) the following statements are
executed:

VIEWPORT 0O,RATID*100,0,100
WINDDW O RATIO*100,0,100

If the next graphics statement is a PLOTTER IS with an HPGL plotter specifier, and the plotter
has a vertical aspect ratio (Y-axis longer than the X-axis) the following statements are executed:

UIEWPORT 0,100,0,RATIO*100
WINDDW 04+100,0,,RATIO*100

GLOAD

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement loads the contents of an INTEGER array into the graphics display memory (also
see GSTORE).

™ N
integer

| Range

Item | Description/Default Restrictions

name of an INTEGER array with exactly any valid name

7500 elements

integer array name

Example Statements

GLOAD Picture(*)
IF Flag THEN GLOAD Arrav (%)

Semantics

A binary one represents a pixel that is turned on, while a binary zero represents a pixel that is
turned off. A pixel is the smallest point that can be independently turned on and off on a CRT.
The graphics display on the 9826 is 300 by 400 pixels.

The upper left corner of the CRT is represented by the most significant bit of the lowest
numbered element in the array. Each array element represents 16 pixels on the CRT. A full row
of dots is contained in 25 sequential array elements (16 x 25 = 400 dots).

97

98

GOSUB

Keyboard Executable No
Programmable Yes
In an [F...THEN... Yes

This statement transfers program execution to the subroutine at the specified line. The specified

line must be in the current context. The current program line is remembered in anticipation of
returning (see RETURN).

line

number

label
=

. Range
Item I Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

Example Statements
GOSUB 120
IF Numbers THEN GOSUB Process

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

GOTO

This statement transfers program execution to the specified line. The specified line must be in

the current context.

‘ GOTO

.. Range
Item | Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

Example Statements
GOTO 550

GOTO Loorp_start

IF Full THEN Exit

99

100

GRAPHICS
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement turns the graphics display on or off. This statement has no effect on the contents
of the graphics memory, it just controls whether it is displayed or not. At power-on, after
RESET, or after SCRATCH A, the graphics display is off.

vSs

Example Statements

GRAPHICS ON
IF Flag THEN GRAPHICS OFF

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

GRID

This statement draws a full grid pattern. The pen is left at the intersection of the X and Y axes.

Y

(AY -~
GRID -
/
x tick
spacing

y tick
spacing

y axis

location

X axis
location

X major
count

\

y major
count

minor
tick size

_J
Item Description/Default Range
Restrictions
X tick spacing numeric expression in current units; (see text)
Default = 0, no ticks
y tick spacing numeric expression in current units; (see text)
Default = 0O, no ticks
y axis location numeric expression specifying the location —
of the y axis in x-axis units;
Default = 0
X axis location numeric expression specifying the location —
of the x axis in y-axis units;
Default = 0
X major count numeric expression, rounded to an integer, 1 thru 32 767

specifying the number of tick intervals be-
tween major tick marks;
Default = 1 (every tick is major)

y major count numeric expression, rounded to an integer,
specifying the number of tick intervals be-
tween major tick marks;

Default = 1 (every tick is major)

minor tick size numeric expression in graphic display units;
Default = 2

1 thru 32 767

101

102

Example Statements

GRID 10,1000
GRID Xmins¥minsXintercerts¥intercert »3:15

Semantics

Grids are drawn with the current line type and pen number. Major tick marks are drawn as lines
across the entire soft clipping area. A cross tick is drawn at the intersection of minor tick marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip area, or
error 20 will be generated. To insure generation of a complete grid, the X and Y axis locations
must both lie within the current clip area.

Applicable Graphics Transformations

| scaling | PIvoT | csize | Loir

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2: The starting point for labels drawn after other labels is affected by LDIR.

GSTORE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement stores the contents of the graphics display memory into an INTEGER array (also
see GLOAD).

(astome)| meser Lo (%))

Range

[tem | Description/Default | Restrictions

name of an INTEGER array with exactly any valid name

7500 elements

integer array name

Example Statements

GCSTORE Picture(*)
IF Final THEN GSTORE A(*)

Semantics
A binary one represents a pixel that is turned on, while a binary zero represents a pixel that is

turned off. A pixel is the smallest point that can be independently turned on and off on a CRT.
The graphics display on the 9826 is 300 by 400 pixels.

The upper left corner of the CRT is represented by the most significant bit of the lowest
numbered element in the array. Each array element represents 16 pixels on the CRT. A full row
of dots is contained in 25 sequential array elements (16 x 25 = 400 dots).

103

104

IDRAW

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement draws a line from the current pen position to a position calculated by adding the
X and Y displacements to the current pen position.

GDHAD—-D-[)(displacement ° y displacement

Range
Item Description/Default .
ption/ Restrictions
x displacement numeric expression in current units —

y displacement numeric expression in current units —

Example Statements

IDRAW X+50:0
IDRAW Delta_xsDelta_v

Semantics
The X and Y displacement information is interpreted according to the current unit-of-measure.

The line is clipped at the current clipping boundary. The PIVOT statement rotates the coordin-
ates for the IDRAW, but the logical pen position receives the value of the unpivoted coordin-
ates. The logical pen may bear no obvious relationship to the physical pen’s position.

An IDRAW 0,0 generates a point. IDRAW updates the logical pen position at the completion
of the IDRAW statement, and leaves the pen down on an external plotter.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

105

106

[F...THEN

This statement provides conditional branching.

Cannot be a statement
used during prerun.

(IF)-—»-l °°°'ea”—J—-—CTHEN

expression

=s
line

labet
=

number

F boolean
expression

G

program
segment

QF)_,_l booleanHTHEN}H

expression

program
segment

program
segment

Item

Description/Default

Keyboard Executable
Programmable
In an IF...THEN...

Range
Restrictions

No
Yes
No

boolean expresion

line label
line number
statement

program segment

numeric expression; evaluated as true if
non-zero and false if zero

name of a program line

integer constant identifying a program line

a programmable statement

any number of contiguous program lines not

containing the beginning or end of a main
program or subprogram

any valid name
1 thru 32 766

(see following list)

107

Example Program Segments

150 IF Flag THEN Next_file
160 IF Pointer<l THEN Pointer=1l

380 IF First_pass THEN

390 Flag=0
GO0 INPUT "Command?" sCmd¢$
610 IF LEN(Cmd%) THEN GOSUB Parse

620 END IF

1000 IF X<0 THEN

1010 BEEP

1020 DISP "Improrper Ardument”
1030 ELSE

1040 Root=80QR(X)

1050 END IF

Semantics

If the boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero, it is
considered true. Note that a boolean expression can be constructed with numeric or string
expressions separated by relational operators, as well as with a numeric expression.

Single Line IF...THEN

If the conditional statement is a GOTO, execution is transferred to the specified line. The
specified line must exist in the current context. A line number or line label by itself is considered
an implied GOTO. For any other statement; the statement is executed, then program execution
resumes at the line following the IF... THEN statement. If the tested condition is false, program
execution resumes at the line following the IF... THEN statement, and the conditional statement
is not executed.

Prohibited Statements

The following statements must be identified at prerun time or are not executed during normal
program flow. Therefore, they are not allowed as the statement in a single line IF... THEN
construct.

COM END IMAGE REM
DATA ENDIF INTEGER SUB
DEFFN FNEND NEXT SUBEND
DIM FOR OPTION BASE

ELSE IF REAL

Multiple Line IF...THEN...ELSE...END IF

The IF... THEN...END IF construct allows a multiple-statement program segment to be specified
between the IF and the END IF. This conditional program segment is executed if the numeric
expression is true (non-zero). Program execution continues with the statement after the END IF
if the expression is false (zero).

108

When ELSE is specified, only one of the program segments will be executed. When the
condition is true, the segment between IF... THEN and ELSE is executed. When the condition is
false, the segment between ELSE and END IF is executed. In either case, when the construct is
exited, program execution continues with the statement after the END IF.

Branching into an IF...THEN construct (such as with a GOTO) results in a branch to the
program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF...THEN constructs.
However, these statements are not executed conditionally. The exceptions are FOR...NEXT
loops and other IF...THEN statements or constructs. These are executed conditionally, but
need to be properly nested. To be properly nested, the entire FOR...NEXT loop or IF... THEN
construct must be contained in one program segment (see drawing). Similarly, when IF... THEN
constructs are used in FOR...NEXT loops, they must be entirely contained in the loop.

109

110

IMAGE statement items

O

()=
K

Y

)

D @ G

\
!
X

@ G

y

@

o

repeat
factor

¢

repeat
factor

o

repeat
factor

0090

repeat
factor

repeat
factor

@ @ d@]

repeat
factor

5

repeat
factor

¢

repeat
factor

Ivlvl‘ji|1I1

5

"

literal

"

IMAGE

Keyboard Executable No
Programmable Yes
In an IF...THEN... No

This statement provides image specifiers for the ENTER, OUTPUT, DISP, LABEL, and PRINT
statements. Refer to the appropriate statement for details on the effect of the various image
specifiers.

A

IMAGE
statement items

repeat
factor

IMAGE
statement items

.. Range
Item Description/Default Restrictions

IMAGE statement literal (see drawing)
items
repeat factor integer constant 1 thru 32 767
literal string composed of characters from the quote mark not allowed

keyboard, including those generated

using the ANY CHAR key

Example Statements

IMAGE 4Z.DDs3X K/
IMAGE "Result = ":;SDDDE3(XX:ZZ)
IMAGE #=.,B

111

112

IMOVE

This statement updates the logical pen position, by adding the X and Y displacements to the
current logical pen position. The physical pen is not moved until an operation is performed
which requires the pen to draw something. The logical pen may bear no obvious relation to the
physical pen. The X and Y increments are interpreted according to the current unit-of-measure.

Keyboard Executable

Programmable
In an IF...THEN...

CHNE==—mNe

L. Range
Item Description/Default ng
Restrictions
x displacement numeric expression in current units —
y displacement numeric expression in current units —

Example Statements

IMOVE
IMOVE

H+30,0
Delta_.xDelta.r

Applicable Graphics Transformations

| scaling | PivoT | csize | Loir

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.

INITIALIZE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement prepares mass storage media for use by the 9826. When INITIALIZE is ex-
ecuted, any data on the media is lost.

media | - |
QNITIALIZ\E)—D—I specifier [P >
interleave
factor

literal form of media specifier:

OO O~

. Range Recommended
[tem Description/Default Restrictions Range
media specifier string expression (see drawing) —
msus literal INTERNAL —
interleave factor numeric expression, rounded to an integer | —32 768 thru 1 thru 15
and evaluated MOD 16; +32 767
0 is treated as 1; Default = 1

Example Statements

INITIALIZE ":INTERNAL"
INITIALIZE Disc%$.2

Semantics

Any media used by the computer must be initialized before its first use. Initialization rewrites
the directory, eliminating any access to old data. The media is partitioned into 256-byte physic-
al records. The quality of the media is checked during initialization. Defective tracks are
“spared’’ (marked so that they will not be used).

The interleave factor establishes the distance in physical records between consecutively num-
bered records. If the interleave factor evaluates to O, 1 is used. The interleave factor is ignored if

the mass storage device is not a disc.

The msus for the internal mini-floppy disc drive is INTERNAL.

113

114

input items
A

ot

Q=IO

string
name

$

©

beginning
position

numeric
- name

iy

subscript

{ k))

g

Keyboard Executable = No
Programmable Yes
In an [F...THEN... Yes

INPUT

This statement is used to assign keyboard input to program variables.

D
N4]
o ippul

item

(weut '} (-
®

Item Description/Default

Range
Restrictions

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;

Default = question mark

prompt

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer
numeric expression, rounded to an integer

ending position

substring length numeric expression, rounded to an integer

numeric name name of a numeric variable

Example Statements

INPUT "Name?" sN$4+"ID Number?",Id
INPUT Arrav (%)

Semantics

any valid name

-32 767 thru +32 767
(see “array’’ in Glossary)

1 thru 32 767
(see “‘substring’’ in Glossary)

0 thru 32 767
(see ‘“‘substring’’ in Glossary)

0 thru 32 767
(see ‘“‘substring’’ in Glossary)

any valid name

Values can be assigned through the keyboard for any numeric or string variable, substring,

array, or array element.

115

116

A prompt, which is allowed for each item in the input list, appears on the CRT display line. If the
last DISP or DISP USING statement suppressed its EOL sequence, the prompt is appended to
the current display line contents. If the last DISP or DISP USING did not suppress the EOL
sequence, the prompt replaces the current display line contents.

Not specifying a prompt results in a question mark being used as the prompt. Specifying the null
string (" ") for the prompt suppresses the question mark.

To respond to the prompt, the operator enters a number or a string. Leading and trailing blank
characters are deleted. Unquoted strings may not contain commas or quote marks. Placing
quotes around an input string allows any characters to be used as input. If " is intended to be a
character in a quoted string, use " ".

Multiple values can be entered individually or separated by commas. Press the (CONTINUE),
(ENTER) or (STEP) after the final input response. Two consecutive commas cause the correspond-
ing variable to retain its original value. Terminating an input line with a comma retains the old
values for all remaining variables in the list.

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
(comma or key) is encountered. Not entering data and pressing (CONTINUE), (ENTER), or (STEP)
retains the old values for all remaining variables in the list.

If (CONTINUE) or (ENTER) is pressed to end the data input, program execution continues at the next
program line. If is pressed, the program execution continues at the next program line in
single step mode. (If the INPUT was stepped into, it is stepped out of, even if or
is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are accepted in
row major (right most subscript varies most rapidly).

Live keyboard operations are not allowed while an INPUT is awaiting data entry. can be
pressed so live keyboard operations can be performed. The INPUT statement is re-executed,
beginning with the first item, when (CONTINUE) or (_STEP) is pressed. All values for that particular
INPUT statement must be re-entered.

ON KEY and ON KNOB events are deactivated during an INPUT statement. Errors do not
cause an ON ERROR branch. If an input response results in an error, re-entry begins with the
variable which would have received the erroneous response.

INT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the greatest integer which is less than or equal to the expression. The
result will be of the same type (REAL or INTEGER) as the argument.

DROREENG

| Range

Item | Description/Default Restrictions

argument | numeric expression | —

Example Statements

Whole=INT(Number)
IF X/2=INT(X/2) THEN Ewven

117

118

INTEGER

Keyboard Executable = No

Programmable Yes
In an IF... THEN... No

This statement declares INTEGER variables, dimensions INTEGER arrays, and reserves mem-
ory for them. (For information about INTEGER as a secondary keyword, see the ALLOCATE,
COM, DEF FN, or SUB statements.)

'O
U

numeric - W
INTEGER name

(e
o/

((- upper
o | bound

lower

bound

Y

I Range
Item Description/Default Restrictions
numeric name name of a numeric variable any valid name
lower bound integer constant; —32 767 thru +32 767
Default = OPTION BASE value (0 or 1) (see “‘array’ in Glossary)
upper bound integer constant —32 767 thru +32 767
(see ‘“‘array’ in Glossary)

Example Statements

INTEGER I:JsK
INTEGER Arrav(-12B:235)

Semantics

An INTEGER variable (or an element of an INTEGER array) uses two bytes of storage space.
An INTEGER array can have a maximum of six dimensions. The maximum number of elements
is a function of your computer’s memory size, but no single dimension can have more than
32 767 total elements.

119

KNOBX

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the net number of knob pulses counted since the last time the KNOBX
counter was zeroed.

Example Statements
Position=KNOBX
IF KNOBX<0 THEN BacKwards

Semantics

Sampling occurs during the time interval established by the ON KNOB statement. The counter
is zeroed when the KNOBX function is called and at the times specified in the Reset Table at the
back of this manual. Clockwise rotation gives positive counts; counter-clockwise rotation gives
negative counts. There are 120 counts for one revolution of the knob. If there is no active ON
KNOB definition, KNOBX returns zero.

Counts are accumulated by the KNOBX function during each ON KNOB sampling interval. The
pulse count during each sampling interval is limited to —127 thru +128. The limits of the
KNOBX function are —32 768 thru + 32 767.

120

{ LABEL } > . >{

image line
number
(2}
£
2 - -
. image line
> label
@
£
image
specifier
~
string g
expression] |
123
% l
= string
5 OpCl -
Qo
«©
numeric
expression >
J trailing
numeric punctuation
| array name l » ((*) } not allowed
with USING

literal form of image specifier:

%

specifier

Keyboard Executable

Programmable
In an [F...THEN...

Yes
Yes
Yes

LABEL

This statement produces alphanumeric labels on graphic devices. (For information about
LABEL as a secondary keyword, see the ON KEY statement.)

Item

Description/Default

Range
Restrictions

image line number
image line label
image specifier
string array name
numeric array name
image specifier list
repeat factor

literal

integer constant identifying a program line
name of a program line

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from

the keyboard, including those generated
using the ANY CHAR key

Example Statements
LABEL Number sStrings

LABEL USING

"SZ2.DD" iMoney

1 thru 32 766
any valid name
{see drawing)
any valid name
any valid name
(see next drawing)
1 thru 32 767

quote mark not allowed

121

122

image specifier list

()=
N

y

SJOXO

CV

A

oy

® G

repeat
factor

clfe

)|

repeat
factor

repeat
factor

¢

repeat
factor N

repeat
factor

repeat
factor

9 Y &

repeat
factor

G

)

repeat
factor

C

" o literal

Semantics

The label begins at the current logical pen position, with the current pen. Labels are clipped at
the current clip boundary. Other statements which affect label generation are PEN, LINE TYPE,
CSIZE, LORG, and LDIR. The current pen position is updated at the end of the label operation.

Standard Numeric Format

The standard numeric format depends on the value of the number being output. If the absolute
value of the number is greater than or equal to 1E —4 and less than 1E + 6, it is rounded to 12
digits and output in floating point notation. If it is not within these limits, it is output in scientific
notation. The standard numeric format is used unless USING is selected, and may be specified
by using K in an image specifier.

Automatic End-Of-Line Sequence

After the label list is exhausted, an End-Of-Line (EOL) sequence is sent to the logical pen,
unless it is suppressed by trailing punctuation or a pound-sign image specifier. The EOL
sequence is also sent after every hundred characters. This ‘‘plotter buffer exceeded” EOL is not
suppressed by trailing punctuation, but is suppressed by the pound-sign specifier.

Control Codes
Some ASCII control codes have a special effect in LABEL statements.

Character Keystroke Name Action

CHR$(8) CTRL-H backspace Back up the width of one
character cell.

CHR$(10) CTRL-J linefeed Move down the height of

one character cell.

CHR#$(13) CTRL-M carriage Move back the length of
return the label just completed.

Any control character that the LABEL statement does not recognize is treated as an ASCII
blank [CHR$(32)].

Applicable Graphics Transformations
| scaling | PIVOT | csizE | LDIR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.

123

124

Arrays

Arrays may be output as labels by using the asterisk specifier. They are output in row-major
order (right-most subscript varies most rapidly) and their format depends on the label mode
selected.

LABEL Without Using

If LABEL is used without USING, the punctuation following an item determines the width of the
item’s label field; a semicolon selects the compact field, and a comma selects the default label
field. When the label item is an array with the asterisk array specifier, each array element is
considered a separate label item. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the label field to be used for the label item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are output
with one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is output with one leading blank if the number is positive, or with a minus sign if
the number is negative, whether in compact or default field.

LABEL With Using

When the 9826 executes a LABEL USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the label items, the field specifier is acted upon without
accessing the label list. When the field specifer requires characters, it accesses the next item in
the label list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
label item. If the image specifiers are exhausted before the label items, they are reused, starting
at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than provided by
the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If
it is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on a LABEL statement are shown in the following table.

Image
Specifier Meaning
K Compact field. outputs a number or string as a label in standard form with
-K no leading or trailing blanks.
Outputs the number’s sign (+ or —) as a label.

M Outputs the number’s sign as a label if negative, a blank if positive.
Outputs one digit character as a label. A leading zero is replaced by a blank.
If the number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is labeled, it will ““float” to the left of
the left-most digit.

Z Same as D, except that leading zeros are output as a label.

B Outputs as a label the character represented by one byte of data. This is
similar to the CHR$ function. The least significant eight bits of the number
are sent. The number is rounded to an integer. If the number is greater than
32 767, 255 is used; if the number is less than —32 768, 0 is used.

w Outputs as a label the two characters represented by the two bytes in a
16-bit word. The number is rounded to an integer. If the number is larger
than 32 767, 32 767 is used; if the number is less than —32 768, then
—32 768 is used. The most-significant byte is output first, followed by the
least-significant byte.

A Outputs a string character as a label. Trailing blanks are output if the num-
ber of characters specified is greater than the number available in the cor-
responding string. If the image specifier is exhausted before the correspond-
ing string, the remaining characters are ignored.

X Outputs a blank as a label.

Outputs a decimal point radix indicator as a label.
E Outputs an E, a sign, and a two digit exponent as a label.
ESZZ
ESZ Outputs an E, a sign, and a one digit exponent as a label.
ESZZ7 Outputs an E, a sign, and a three digit exponent as a label.

Suppresses all automatic output of the EOL (End-Of-Line) sequence.

% Ignored in LABEL images.

L Sends an EOL sequence.

@ Sends a form-feed; produces a blank.

/ Sends a carriage-return and a line-feed.

literal Outputs the characters contained in the literal as a label.

125

126

LDIR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement defines the angle at which labels are drawn. The angle is interpreted as counter-
clockwise, from horizontal. The current angle mode is used.

RSN

s Range
Item | Description/Default l Restrictions
angle numeric expression in current units of angle; (same as COS)

Default = 0

Example Statements

LDIR 90
LDIR ACS(Bide)

LDIR EXAMPLES (in Degrees)

S
@/

&
%
@

NG
@
&
o

LDIR S8

@81 oI01 LDIR O

N
S
%}
v

$

Ble dIdT]
©

127

128

LEN

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the current number of characters in the argument. The length of the null
string (" ") is O.

string
O D

Range

Item Description/Default Restrictions

argument string expression —

Example Statements

Last=LEN(String%)
IF NOT LEN(A%) THEN Emptvy

LET

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This is the assignment statement, which is used to assign values to variables.

»| numeric — -

-

subscript
string
name

numeric
expression

string
expression

beginning
position

ending
' I position '
substring
length

. Range
Item Description/Default Restrictions
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
subscript numeric expression, rounded to an integer —-32 767 thru +32 767
(see “‘array’ in Glossary)
beginning position numeric expression, rounded to an integer 1 thru 32 767
(see ‘‘substring” in Glossary)
ending position numeric expression, rounded to an integer 0 thru 32 767
(see ‘‘substring”” in Glossary)
substring length numeric expression, rounded to an integer 0 thru 32 767
(see ‘‘substring”’ in Glossary)

Example Statements

LET Number=33
Arrav(I+1)=Arrav(I)/2
String$="Hello Scott"
A$(7)L1321=CHR&(27)&"2Z"

129

130

Semantics

The assigment is done to the variable which is to the left of the equals sign. Only one assign-
ment may be performed in a LET statement; any other equal signs are considered relational
operators, and must be enclosed in a parenthetical expression (i.e. A=A+ (B=1)+5). A vari-
able can occur on both sides of the assignment operator (i.e. I=1+1 or
Source$=Source$bTempr$).

A real expression will be rounded when assigned to an INTEGER variable, if it is within the
INTEGER range. Out-of-range assignments to an INTEGER give an error.

The length of the string expression must be less than or equal to the dimensioned length of the
string it is being assigned to. Assignments may be made into substrings, using the normal rules
for substring definition. The string expression will be truncated or blank-filled on the right (if
necessary) to fit the destination substring when the substring has an explicitly stated length. If
only the beginning position of the substring is specified, the expression must fit within the
substring.

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This function returns the logarithm (base 10) of its argument.

NN OSEE=N0

LGT

o . Range
Item | Description/Default Restrictions
argument | numeric expression greater than O

Example Statements

Decibel=20%LGT(Volts)
PRINT "Log of"3iXi"="3LGT(})

131

132

LINE TYPE

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This statement selects a line type and repeat length for lines, labels, frames, axes and grids.

type L ; >
Q.INE TYPE>—>-| number | >
repeat
length

Y

. Range Recommended
Item Description/Default Restrictions Range
type number numeric expression, rounded to an integer; 1 thru 10 —
Default = 1
repeat length numeric expression, rounded to an integer; | —32 768 thru greater
Default = 5 +32 767 than 0

Example Statements

LINE TYPE 1
LINE TYPE Select 20

Semantics

At power-up the default line type is a solid line (type 1), and the default repeat length is 5
GDUs. While a negative pen number (erase) is selected, the line type used is not necessarily the
most recently selected line type. If the most recent line type was 1 thru 8, erasures are done with
line type 1. Line types 9 and 10 are erased with themselves. When a non-negative pen is
selected, the line type is restored to the most recently selected line type.

The repeat length establishes the number of GDUs required to contain an arbitrary seqment of
the line pattern. When the plotter is the internal CRT, the repeat length is evaluated and taken
as the next lower multiple of 5, with a minimum value of 5.

When the plotter is an external plotter, the line produced by the line identifier is device
dependent. Refer to your plotter’s documentation for further information.

The available CRT line types are shown here.

LIME
LIME
LIME
LIME
LINE
LINE
LIMNE
LIME
LIMNE

LIME

TYPFE

TVPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TvPE

18

i

]

133

134

LINPUT

Keyboard Executable = No
Programmable Yes
In an IF... THEN... Yes

This statement accepts alphanumeric input from the 9826 keyboard for assignment to a string
variable. The LINPUT statement allows commas or quotation marks to be included in the value
of the string, and leading or trailing blanks are not deleted.

- string
{ uNPUT } > “ | name o
@ O~

beginning
position

.. Range
Item Description/Default Restrictions

prompt a literal composed of characters from the —

keyboard, including those generated using

the ANY CHAR key;

Default = question mark
string name name of a string variable any valid name
subscript numeric expression, rounded to an integer ~32 767 thru +32 767

(see “array’’ in Glossary)

beginning position numeric expression, rounded to an integer 1 thru 32 767
(see “‘substring” in Glossary)

ending position numeric expression, rounded to an integer 0 thru 32 767
(see “substring’” in Glossary)

substring length numeric expression, rounded to an integer 0 thru 32 767
(see “‘substring”’ in Glossary)

Example Statements

LINPUT "Mext Command?":;Resronse®
LINPUT Arrave(I)L[3]

Semantics

A prompt, which remains until the LINPUT item is satisfied, appears on the CRT display line. If
the last DISP statement suppressed its CR/LF, the prompt is appended onto the current display
line contents. If the last DISP did not suppress the CR/LF, the prompt replaces the current
display line contents. Not specifying a prompt results in the question mark being used as the
prompt. Specifying the null string (" ") for the prompt suppresses the question mark.

(CONTINUE), (ENTER) or (STEP) must be pressed to indicate that the entry is complete. If no value is
provided from the keyboard, the null string is used. If (CONTINUE) or (ENTER) is pressed to end the
data input, program execution continues at the next program line. If is pressed, the
program execution continues at the next program line in single step mode. (If the LINPUT was
stepped into, it is stepped out of, even if (CONTINUE) or (ENTER) is pressed.)

Live keyboard operations are not allowed while a LINPUT is waiting for data entry. can
be pressed so live keyboard operations can be performed. The LINPUT statement is re-
executed from the beginning when (CONTINUE) or (_STEP) is pressed.

ON KEY and ON KNOB events are deactivated during an LINPUT statement. Errors do not
cause an ON ERROR branch. If an input response results in an error, the LINPUT statement is
re-executed.

135

136

LIST

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement lists the program currently in memory to the selected device. Beginning and
ending line labels or numbers may be specified to list parts of the program.

(LIST }
3 \

device
selector
;] beginning >

N [line number

beginning
line label

Y

ending
line number

ending
line label

. Range
Item Description/Default Restrictions
device selector numeric expression, rounded to an integer; (see Glossary)
Default = PRINTER IS device
beginning line integer constant identifying a program line; 1 thru 32 766
number Default = first program line
beginning line label | name of a program line any valid name
ending line number | integer constant identifying a program line; 1 thru 32 766
Default = last program line
ending line label name of a program line any valid name

Example Statements

LIST #701
LIST 110,250

137

Semantics

When a label is used as a line identifier, the lowest-numbered line in memory having the label is
used. When a number is used as a line identifier, the lowest-numbered line in memory that has
a number equal to or greater than the specified number is used.

Executing LIST from the keyboard while the program is running causes the program execution
to pause at the end of the current program line. The listing is sent to the specified device, and
program execution resumes.

The available memory in the 9826 is displayed after the listing is finished.

An error occurs if the ending line identifier occurs before the beginning line identifier or if a
specified line label does not exist in the program.

LISTEN

See the SEND statement.

138

LOAD

Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This statement loads PROG files into memory. PROG files are created by the STORE state-
ment.

) | file |
(LOAD specifier [

label

literal form of file specifier

file - > "
name o
protect msus
code

protect code is ignored

Item Description/Default Re?t?ir::st;ieons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant —
msus literal; INTERNAL

Default = MASS STORAGE IS device
run line number integer constant identifying a program line 1 thru 32 765
run line label name of a program line any valid name

Example Statements

LOAD "Georde"
LOAD Next_file% 300

Semantics

Any BASIC program, and all variables not in common are lost when LOAD is executed. If the
COM area of the newly-loaded program does not match the existant COM area, the values in
the old COM area are lost. Binary programs currently in the computer are preserved. If a PROG
file contains a binary program with a name identical to the binary program in the computer, the
new binary program is not loaded into memory.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified, RUN
must be pressed to begin program execution. If a run line is specified, prerun initialization (see
RUN) is performed and program execution begins at the specified line. The specified line must
be in the main program context of the newly-loaded program.

Executing LOAD from a program causes a prerun, and program execution begins at either the
specified run line or the lowest numbered program line in memory. If a run line is specified, it
must be in the main program context of the newly-loaded program.

139

140

LOAD BIN

Keyboard Executable Yes
Programmable No

This command loads a BIN file into memory. BIN files are created with the STORE BIN
statement.

file
CLOAD sm}-—-{ spectier I—-—-{

literal form of file specifier:

file _ - - 1
> > >
name
protect
msus
) -

protect code is ignored

Item Description/Default Re?tarlillst;ieons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

LOAD BIN "BEB™
LOAD BIN Name$&Msus$

Semantics
Executing LOAD BIN does not affect either the currently loaded BASIC program or the values
of any variables.

A BIN file may contain more than one binary program. Any binary program which is already in
memory will not be loaded.

LOAD BIN may not be executed while a program is running. If LOAD BIN is executed while the
computer is paused, the computer enters the stopped state.

LOADSUB

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement loads BASIC subprograms in a file of type PROG into memory. Files of type
PROG are created by the STORE statement.

fle
(LOADSUIB}-P-(ALL)—»—(FROM)—"I specifier |‘”‘1

literal form of file specifier:

file - > 1"
name -
protect
code

protect code is ignored

Item Description/Default Re?t?i'::!t!izns
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

LOADSUB ALL FROM "Georgde"
LOADSUB ALL FROM Name%B&Msus$

Semantics

LOADSUB ALL FROM loads all the subprograms in a file into memory. If a subprogram in the
file has the same name as a subprogram already in memory, it is loaded anyway. Both subpro-
grams will be resident at the same time. The subprogram with the lowest beginning line number
is used by CALL or FN, so the most recently loaded one is ignored.

LOADSUB does not:

o Affect the main program currently in the machine,
® Bring in any binary programs,
e Change the contents of any variables.

Subprograms brought into memory are renumbered as necessary.

141

142

If a LOADSUB is executed by a program, a prerun initialization (see RUN) of the new program
segments is performed. Program execution resumes at the statement following the LOADSUB.
Since this does not perform a full program prerun, any attempt to change the layout of the
existing COM area generates a non-recoverable error. Executing a LOADSUB statement from
the keyboard while a program is running pauses the program while the subprograms are
loaded. The program resumes after the subprograms are loaded, as if the last statement ex-
ecuted had been a LOADSUB.

Keyboard Executable

Programmable
In an IF... THEN...

This statement returns all specified devices to their local state.

1’0 path
name
L=

selector

LOCAL

Item

Yes
Yes
Yes

Description/Default

LOCAL

Range
Restrictions

I/O path name

device selector

name assigned to a device or devices

numeric expression, rounded to an integer

Example Statements

LOCAL @Dum
LOCAL 7

Semantics

any valid name

(see ASSIGN)

(see Glossary)

If only an interface select code is specified by the I/O path name or device selector, all devices
on the bus are returned to their local state by setting REN false. Any existing LOCAL LOCK-

OUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners. LOCAL
LOCKOUT is not cancelled.

Summary of Bus Actions

System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controll ATN UNL GTL UNL
ontroller LAG LAG
GTL GTL
Not Active REN
Controller ATN Error Error

143

144

LOCAL LOCKOUT

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This HP-IB statement sends the LLO (local lockout) message, preventing an operator from
returning the specified device to local (front panel) control.

LOCAL /O path
LOCKOUT name

select code

.. Range
Item Description/Default Restrictions
/O path name name assigned to an interface select code any valid name
(see ASSIGN)
interface select code | numeric expression, rounded to an integer 7 thru 31

Example Statements

LOCAL LOCKOUT 7
LOCAL LOCKOUT @Hreib

Semantics
The computer must be the active controller to execute LOCAL LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not take effect on that device
until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus command

received by all devices on the interface whether addressed or not. The command sequence is
ATN and LLO.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN Error ATN Er
Controller LLO LLO ror
Not Active Error
Controller

145

LOG

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This function returns the natural logarithm (base e) of the argument.

NC S OSEEN0

. Range
Item | Description/Default | Restrictions
argument | numeric expression | greater than 0

Example Statements

Time=-1%Rc*¥L0OG(Yolts/Emf)
PRINT "Natural log of"i¥i"="3iL0G(Y)

146

LORG

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement specifies the relative origin of labels with respect to the current pen position.

) > | label ' >
(LORG origin position

. Range
Item l Description/Default | Restrictions
label origin position | numeric expression, rounded to an integer; 1thru9

Default = 1

Example Statements

LORG 4
IF Y:*Limit THEN LORG 3

Semantics

The following drawings show the relationship between a label and the logical pen position. The
pen position before the label is drawn is represented by a cross marked with the appropriate
LORG number.

Eor
IS I N

e + E

Label Origins for Labels with an Even Number of Characters

+ +
2 S j__B{_
i

Label Origins for Labels with an Odd Number of Characters

_1_ﬁ
__l_

148

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement specifies the system mass storage device.

MASS media
STORAGE IS, specifier
‘ MSI

literal form of media specifier:

,

MASS STORAGE IS

‘ L. Range

Item | Description/Default Restrictions
media specifier string expression (see drawing)
msus literal INTERNAL

Example Statements

MASS STORAGE IS ":INTERNAL"
MASS STORAGE IS5 Msuss

Semantics

All mass storage operations which do not specify a source or destination by either an I/O path
name or msus in the file specifier use the current system mass storage device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line, but MSI is

always listed in a program as MASS STORAGE IS.

149

150

MLA

See the SEND statement.

MOD

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This operator returns the remainder of an integer division.

—>-| dividend l——-(MOD)——[divisor—l-—>

e Range
Item | Description/Default Restrictions
dividend numeric expression —
divisor numeric expression not equal to 0

Example Statements

Remainder=Dividend MOD Divisor
PRINT "Seconds ="35Time MOD GO

Semantics

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the returned
value is REAL.

MOD is equivalent to X — Y X (X DIV Y). This may return a different result from the modulus
function on other computers when negative numbers are involved.

151

152

MOVE

Keyboard Executable

Programmable
In an IF...THEN...

This statement updates the logical pen position.

MOVE x coordinate o

Yes
Yes
Yes

. Range
Item | Description/Default Restrictions
X coordinate numeric expression in current units -—
y coordinate numeric expression in current units —

Example Statements

MOVE 10,735
MOVE Next_x sNext_v

Semantics

The actual pen is not moved until an operation is performed which requires the pen to draw

something. The logical pen may bear no obvious relation to the actual pen.

Applicable Graphics Transformations
| scaling | PivoT | csize | Loir

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2. The starting point for labels drawn after other labels is affected by LDIR.

153

MTA

See the SEND statement.

154

NEXT

See the FOR...NEXT statement.

NOT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This operator returns 1 if its argument equals 0. Otherwise, 0 is returned.

—>(NOT)—D—l argument I——>

Item I Description/Default Restrictions

l Range

argument | numeric expression | —

Example Statements

Invert_flag=NOT Std_device
IF NOT Pointer THEN Next_op

Semantics

When evaluating the argument, a non-zero value (positive or negative) is treated as a logical 1;
only zero is treated as a logical 0.

The logical complement is shown below:

A | NOTA

0 1
1 0

155

156

NPAR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the number of parameters passed to the current subprogram. If execution
is currently in the main program, NPAR returns 0.

Example Statements

IF NPAR>3 THEN Extra
Factors=NPAR-2

NUM

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the decimal value of the ASCII code of the first character in the argument.

The range of returned values is O thru 255.

NCDEOS =m0

. Range
Item | Description/Default | Restrictions
argument | string expression I not a null string

Example Statements

Letter=NUM(Strings)
A$LIS11=CHR$(NUM(ASLII)+32)

157

158

OFF END

Keyboard Executable No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously enabled and defined by an ON END
statement.

/O path
(orrem }~(@)

s Range
Item | Description/Default I Restrictions
[/O path name I name assigned to a mass storage file | any valid name (see ASSIGN)

Example Statements

OFF END @File
IF Sepecial THEN OFF END @Source

Semantics

If OFF END is executed in a subprogram and cancels an ON END in the context which called
the subprogram, the ON END definitions are restored when the calling context is restored.

159

160

OFF ERROR

Keyboard Executable = No

Programmable Yes
In an IF...THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
ERROR statement. Further errors are reported to the user in the usual fashion.

OFF ERROR

OFF INTR

Keyboard Executable No

Programmable Yes
In an IF...THEN... Yes

This statement cancels event-initiated branches previously defined by an ON INTR statement.

(OfFf INTFD -
interface
select code

Y

Item I Description/Default I Re?t?il::?ieons
interface select code | numeric expression, rounded to an integer; 7 thru 31

Default = all interfaces

Example Statements

OFF INTR
OFF INTR Heib

Semantics

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the OFF INTR to apply to the event-initiated log
entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts are
ignored.

161

162

OFF KEY

Keyboard Executable = No
Programmable Yes
In an [F...THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON KEY
statement.

(OFF KEY ,L -

-]
=

. Range
Item I Description/Default I Restrictions
key number numeric expression, rounded to an integer; 0 thru 19

Default = all keys

Example Statements

OFF KEY
OFF KEY 4
Semantics

Not specifying a softkey number disables the event-initiated branches for all softkeys. Specify-
ing a softkey number causes the OFF KEY to apply to the specified softkey only. If OFF KEY is
executed in a subprogram and cancels an ON KEY in the context which called the subprogram,
the ON KEY definitions are restored when the calling context is restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an undefined softkey
generates a beep.

163

OFF KNOB

Keyboard Executable ~ No
Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by the ON
KNOB statement. Any pending ON KNOB branches are lost. Further use of the knob will result
in normal scrolling or cursor movement.

(OFfF KNOD—H

164

OFF TIMEOUT

Keyboard Executable No

Programmable Yes
In an IF... THEN... Yes

This statement cancels event-initiated branches previously defined and enabled by an ON
TIMEOUT statement.

(OFF TIMEOUT) -]
interface
select code

. Range
Item | Description/Default | Restrictions
interface select code | numeric expression, rounded to an integer; 7 thru 31

Default = all interfaces

Example Statements

OFF TIMEOUT
OFF TIMEOUT Isc

Semantics

Not specifying an interface select code disables the event-initiated branches for all interfaces.
Specifying an interface select code causes the ON TIMEOUT to apply to the event-initiated
branches for the specified interface only. When OFF TIMEOUT is executed, no more timeouts
can occur on the effected interfaces.

ON

Keyboard Executable = No
Programmable Yes
In an [F...THEN... Yes

This statement transfers program execution to one of several destinations selected by the value
of the pointer.

number

Con n o

line
label

. Range
Item Description/Default Restrictions
pointer numeric expression, rounded to an integer 1 thru 45
line number integer constant identifying a program line 1 thru 32 766
line label name of a program line any valid name

Example Statements

ON X1 GODTO 1004+150,170
IF Point THEN ON Point GOSUB FirstsSecondsThirdslast

Semantics

If the pointer is 1, the first line number or label is used. If the pointer is 2, the second line
identifier is used, and so on. If GOSUB is used, the RETURN is to the line following the
ON...GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error 19 is
generated. The specified line numbers or line labels must be in the same context as the ON
statement.

165

166

ON END

Keyboard Executable No

Programmable Yes
In an IF...THEN... Yes

This statement defines and enables an event-initiated branch to be taken when end-of-file is
reached on the mass storage file associated with the specified 1/O path.

1O path ;
e G

subprogram

. Range
Item Description/Default Restrictions
/0O path name name assigned to a mass storage file any valid name
(see ASSIGN)
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB subprogram any valid name

Example Statements

ON END BSource GOTO Next.file
ON END @Dest CALL Exerand

Semantics
The ON END branch is triggered by any of the following events:

® When the physical end-of-file is encountered.

® When an ENTER statement reads the byte at EOF or beyond.

® When an invalid record number is specified by a random access ENTER or OUTPUT.

® When a random access OUTPUT requires more than one defined record.

® When a random access OUTPUT is attempted beyond the next available record. (If EOF is

the first byte of a record, then that record is the next available record. If EOF is not at the
first byte of a record, the following record is the next available record.)

The priority associated with ON END is higher than priority 15. ON TIMEOUT and ON ERROR
have the same priority as ON END, and can interrupt an ON END service routine.

Any specified line label or line number must be in the same context as the ON END statement.
CALL and GOSUB will return to the line immediately following the one during which the
end-of-file occurred. RECOVER forces the program to go directly to the specified line in the
context containing the ON END statement.

CALL and RECOVER remain active when the context changes to a subprogram, if the I/O path
name is known in the new context. CALL and RECOVER do not remain active if the context
changes as a result of a keyboard-originated call. GOSUB and GOTO do not remain active
when the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by ON
ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE does not
affect ON END.

167

168

ON ERROR

Keyboard Executable No

Programmable Yes
In an [F...THEN... Yes

This statement defines and enables an event-initiated branch which results from a trappable
error. This allows you to write your own error handling routines.

ON ERROR line label

1

subprogram

. Range
Item Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB subprogram any valid name

Example Statements

ON ERROR GOTO 1200
ON ERROR CALL Rerort

Semantics

The ON ERROR statement has the highest priority of any event-initiated branch. ON ERROR
can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON END statement.
RECOVER forces the program to go directly to the specified line in the context containing the
ON END statement.

Returns from ON ERROR GOSUB or ON ERROR CALL routines are different from regular
GOSUB or CALL returns. When ON ERROR is in effect, the program resumes at the beginning
of the line where the error occurred. If the ON ERROR routine did not correct the cause of the
error, the error is repeated. This causes an infinite loop between the line in error and the error
handling routine.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. In this case, the error is reported to
the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram. If an
error occurs, the error is reported to the user, as if ON ERROR had not been executed.

It an execution error occurs while servicing an ON ERROR CALL or ON ERROR GOSUB,
program execution stops. If an execution error occurs while servicingan ON ERROR GOTO or
ON ERROR RECOVER routine, an infinite loop can occur between the line in error and the
GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for the
computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

169

170

ON INTR

Keyboard Executable No
Programmable Yes
In an [F...THEN... Yes

This statement defines an event-initiated branch to be taken when an interface card generates
an interrupt. The interrupts must be explicitly enabled with an ENABLE INTR statement.

interface |____ >
Q)N lNTFD—D-[seloct code | > line label
©

subprogram

.. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
priority numeric expression, rounded to an integer; 1 thru 15
Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB subprogram any valid name

Example Statements

ON INTR 7 GOSUB 300
ON INTR Isc 4 CALL Service

Semantics

The occurrence of an interrupt performs an implicit DISABLE INTR for the interface. An
ENABLE INTR must be performed to re-enable the interface for subsequent event-initiated
branches. Another ON INTR is not required, nor must the mask for ENABLE INTR be rede-
fined.

The priority can be specified, with highest priority represented by 15. The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can interrupt other
ON INTR, ON KNOB, or ON KEY service routines if the ON INTR priority is higher than the
priority of the service routine. CALL and GOSUB service routines get the priority specified in
the ON... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the interrupt
had not been serived. RECOVER forces the program to go directly to the specified line in the
context containing the ON INTR statement.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

171

172

ON KEY

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

This statement defines and enables an event-initiated branch which occurs when a softkey is
pressed.

() > | key] -
ON KEY number - >
e O

»{ GOTO

I I RECOVER I

CALL

I line label I

line number

subprogram
name

e Range
Item Description/Default Restrictions
key number numeric expression, rounded to an integer 0 thru 19
prompt string expression —
priority numeric expression, rounded to an integer; 1 thru 15
Default = 1

line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB subprogram any valid name

Example Statements

ON KEY © GOTO 130
ON KEY 5 LABEL "Print",3 GOSUB Rerort

Semantics

The most recently executed ON KEY definition (and label) for a particular softkey overrides any
previous key definition, except when changing contexts.

Labels appear at the two bottom lines of the CRT. When a subprogram is invoked, the labels
are transferred into the new context. If a subprogram contains ON KEY definitions of its own,
the old labels and branch definitions are saved, and restored when the calling context is
restored.

The priority can be specified, with highest priority represented by 15. The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON KEY can interrupt other ON
INTR, ON KNOB, or ON KEY service routines if the ON KEY priority is higher than the priority
of the service routine. CALL and GOSUB service routines get the priority specified in the ON...
statement which set up the branch that invoked them. The system priority is not changed when
a GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the interrupt
had not been serviced. RECOVER forces the program to go directly to the specified line in the
context containing the ON KEY statement.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deactivated when
the program is paused or executing LINPUT, INPUT, or ENTER 2.

173

174

ON KNOB

Keyboard Executable = No

Programmable Yes
In an IF...THEN... Yes

This statement defines and enables event-initiated branches which result from turning the knob.

ON KNOB seconds [-
©
¥>-< CALL s“brﬁ’a'%géaml—/
Item Description/Default Range
Restrictions
seconds numeric expression, rounded to the nearest 0.01 thru 2.55
hundredth
priority numeric expression rounded to an integer; 1 thru 15
Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766

subprogram name

name of a SUB subprogram

Example Statements

ON KNOB .1 GOSUB 250
ON KNOB .333)Priority CALL Pulses

any valid name

Semantics

Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re-
activated), the first pulse received starts a sampling interval. The “‘seconds’ parameter estab-
lishes the length of that sampling interval. At the end of the sampling interval, the ON KNOB
branch is taken if the net number of pulses received during the interval is not zero. The KNOBX
function can be used to determine the number of pulses received during the interval. If the ON
KNOB branch is held off for any reason, the KNOBX function accumulates the pulses (see
KNOBX).

The priority can be specified, with highest priority represented by 15. The highest priority is less
than the priority for ON ERROR, ON END, and ON TIMEOUT. ON KNOB can interrupt other
ON INTR, ON KNOB, or ON KEY service routines if the ON KNOB priority is higher than the
priority of the service routine. CALL and GOSUB service routines get the priority specified in
the ON... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB statement.
CALL and GOSUB will return to the next line that would have been executed if the interrupt
had not been serviced. RECOVER forces the program to go directly to the specified line in the
context containing the ON KNOB statement.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch cannot be taken until the calling
context is restored.

ON KNORB is disabled by DISABLE and canceled by OFF KNOB.

175

176

ON TIMEOUT

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

This statement defines and enables an event-initiated branch which results from an I/O timeout
on the specified interface.

interface

line label
line number

subprogram

. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
seconds numeric expression, rounded to the nearest 0.001 thru 32.767
thousandth

line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name name of a SUB subprogram any valid name

Example Statements

ON TIMEOUT 7.4 GOTO 770
ON TIMEDUT PrintersTime GOSUB Messade

Semantics

There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a device
can cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the interface has

not responded within the number of seconds specified. This time limit is approximate within
+25%.

Timeouts apply to ENTER and OUTPUT statements, and operations involving the PRINTER
IS, PRINTALL IS, and PLOTTER IS devices when they are external. Timeouts do not apply to
CONTROL, STATUS, READIO, WRITEIO, CRT alpha or graphics 1/O, real time clock 1/O,
keyboard [/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON ERROR
have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT service routine.

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one during
which the timeout occurred. RECOVER forces the program to go directly to the specified line in
the context containing the ON TIMEOUT statement.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard originated call. GOSUB and GOTO do not remain
active when the context changes to a subprogram.

ON TIMEOUT is canceled by OFF TIMEOUT. DISABLE does not affect ON TIMEOUT.

177

178

OPTION BASE

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

This statement specifies the default lower bound of arrays.

OPTION BASE

Example Statements

OPTION BASE O
OPTION BASE 1

Semantics

This statement can occur only once in each context. If used, OPTION BASE must precede any
explicit variable declarations in a context. Since arrays are passed to subprograms by reference,
they maintain their orginal lower bound, even if the new context has a different OPTION BASE.
Any context that does not contain an OPTION BASE statement assumes default lower bounds
of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared without
explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well as with all
implicitly dimensioned arrays. OPTION BASE is also used at runtime for any arrays declared
without lower bounds in ALLOCATE.

OPTIONAL

See DEF FN and SUB statements.

OR

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This operator returns a 1 or a 0 based on the logical inclusive-or of the arguments.

—-D-l argurnent I—D-COR)—h—' argument }—b—

Range
Restrictions

Item | Description/Default |

argument numeric expression I —_

Example Statements
®=Y OR Z
IF File_tvpe OR Device THEN Process

Semantics

An expression which evaluates to a non-zero value is treated as a logical 1. An expression must
evaluate to zero to be treated as a logical O.

The truth table is:

A|B| AORB
oo 0
of1 1
1|0 1
1] 1 1

179

180

destination image items

A A
s N 7 A}

1:O path
name

A
record image line
number o USING number
device - image line
selector o l label '
destination s image
string name specifier

[T sting .

expression] o
string
array name
numeric
expression e
Trailing punctuation

ar?:;’]r?ar!lr%e][{ (%) } ~/ not allowed with USING

output items

literal form of image specifier:

image
specifier list

repeat
factor

R (") >
image
specifier list

Keyboard Executable

Programmable
In an IF...THEN...

Yes
Yes
Yes

This statement outputs items to a specified destination.

OUTPUT

OUTPUT destination -
L—(usma)—»-l

image A
items

. Range
Item Description/Default Restrictions
[/O path name name assigned to a device, devices, or mass any valid name

record number
device selector

destination string
name

subscript

image line number
image line label
image specifier
string array name
numeric array name
image specifier list
repeat factor

literal

storage file
numeric expression, rounded to an integer
numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

integer constant identifying a program line
name of a program line

string expression

name of a string array

name of a numeric array

literal

integer constant

string constant composed of characters from

the keyboard, including those generated
using the ANY CHAR key

1thru 23! -1
(see Glossary)
any valid name
—32 767 thru +32 767
(see “‘array’’ in Glossary)
1 thru 32 766
any valid name
(see drawing)
any valid name
any valid name
(see next drawing)
1 thru 32 767

quote mark not allowed

181

182

image specifier list

()=
N

»

D G

c

D

A

A\

clfcyoxe

9:0 r

repeat
factor

A

ol
®)

repeat
factor

repeat
factor

0990

repeat
factor

repeat
factor

repeat
factor

© @ @] @

repeat
factor

repeat
factor

literal

183

Example Statements

OQUTPUT 701 iNumbersString$s
OUTPUT @FileiArrav (%) sEND

QUTPUT @Rand»5 USING Fmtliltem(3)
QUTPUT 12 USING "#,6A"iB$[23i61]
QUTPUT @PrintersRankildiName$

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1IE—4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits, it is
displayed in scientific notation. The standard numeric format is used unless USING is selected,
and may be specified by using K in an image specifier.

Arrays

Entire arrays may be output by using the asterisk specifier. Each element in an array is treated
as an item by the OUTPUT statement, as if the items were listed separately, separated by the
punctuation following the array specifier. If no punctuation follows the array specifier, a comma
is assumed. The array is output in row major order (rightmost subscript varies fastest.)

Files as Destination

If an I/O path has been assigned to a file, the file may be written to with OUTPUT statements.
The file must be an ASCII or BDAT file. The attributes specified in the ASSIGN statement are
used if the file is a BDAT file.

Serial access is available for both ASCII and BDAT files. Random access is available for BDAT
files. The end-of-file marker (EOF) and the file pointer are important to both serial and random
access. The file pointer is set to the beginning of the file when the file is opened by an ASSIGN.
The file pointer always points to the next byte to be written by OUTPUT operations. The EOF
pointer is read from the media when the file is opened by an ASSIGN. On a newly-created file,
EOF is set to the beginning of the file. After each OUTPUT operation, the EOF is updated
internally to the maximum of the file pointer or the previous EOF value. The EOF pointer is
updated on the media at the following times:

e When the current end-of-file changes.
® When END is specified in an OUTPUT statement directed to the file.

e When a CONTROL statement directed to the I/O path name changes the position of the
EOF.

Random access uses the record number parameter to write items to a specific location in a file.
The OUTPUT begins at the start of the specified record and must fit into one record. The record
specified cannot be beyond the record containing the EOF, if EOF is at the first byte of a record.
The record specified can be one record beyond the record containing the EOF, if EOF is not at
the first byte of a record. Random access is always allowed to records preceding the EOF
record. If you wish to write randomly to a newly created file, either use a CONTROL statement
to position the EOF in the last record, or write some ‘‘dummy” data into every record.

184

When data is written to an ASCII file, each item is sent as an ASCII representation with a 2-byte
length header. Data sent to a BDAT file is sent in internal format if FORMAT is OFF, and is sent
as ASCII characters if FORMAT is ON. (See ‘‘Devices as Destination’’ for a description of these
formats.)

Devices as Destination

An I/O path or a device selector may be used to direct OUTPUT to a device. If a device selector
is used, the default system attributes are used (see ASSIGN). If an I/O path is used, the ASSIGN
statement used to associate the I/O path with the device also determines the attributes used. If
multiple listeners were specified in the ASSIGN, the OUTPUT is directed to all of them. If
FORMAT ON is the current attribute, the items are sent in ASCII. Items followed by a semicolon
are sent with nothing following them. Numeric items followed by a comma are sent with a
comma following them. String items followed by a comma are sent with a CR-LF following
them. If the last item in the OUTPUT statement has no punctuation following it, the current
end-of-line sequence (EOL) is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in the 9826’s internal
format. Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL. Each string output consists of a four byte header
containing the length of the string, followed by the actual string characters. If the number of
characters is odd, an additional byte containing a blank is sent after the last character.

CRT as Destination

If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT differ in
their treatment of separators and print fields. OUTPUT 1 USING and PRINT USING to the CRT
produce similar actions.

Keyboard as Destination

Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can be sent
directly (i.e. “‘hello”’). Non-ASCII keys (such as ((EXECUTE)) are simulated by a two byte se-
quence. The first byte is CHR$(255) and the second byte can be found in the Keycode Diagram
in the back of this book.

When simulating keystrokes, unwanted characters (such as the EOL sequence) can be avoided
with an image specifier (such as “#,B” or “#,K’). See ““‘OUTPUT with USING”".

Strings as Destination

If a string name is used for the destination, the string is treated similarly to a file. However, there
is no file pointer; each OUTPUT begins at the beginning of the string, and writes serially within
the string.

OUTPUT With USING

When the 9826 executes an OUTPUT USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the output items, the field specifier is acted upon without
accessing the output list. When the field specifier requires characters, it accesses the next item in
the output list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
output item. If the image specifiers are exhausted before the output items, they are reused,

starting at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to

the right of the decimal point than specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If

it is shorter than the specifier, trailing blanks are used to fill out the field.

Effects of the image specifiers on an OUTPUT statement are shown below:

Image
Specifier

Meaning

K
-K

Compact field. Outputs a number or string in standard form with no leading
or trailing blanks.

Outputs the number’s sign (+ or —).
Outputs the number’s sign if negative, a blank if positive.

Outputs one digit character. A leading zero is replaced by a blank. If the
number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is output, it will “‘float” to the left of
the left-most digit.

Same as D, except that leading zeros are output.

Outputs the character represented by one byte of data. This is similar to the
CHRS$ function. The least significant eight bits of the number are sent. The
number is rounded to an integer. If the number is greater than 32 767, 255
is used; if the number is less than —32 768, 0 is used.

Outputs two characters represented by the two bytes in a 16 bit word. The
number is rounded to an integer. If the number is larger than 32 767,
32 767 is used; if the number is less than —32 768, then — 32 768 is used.
On an 8-bit interface, the most significant byte is sent first, followed by the
least significant byte.

Outputs a string character. Trailing blanks are output if the number of
characters specified is greater than the number available in the correspond-
ing string. If the image specifier is exhausted before the corresponding
string, the remaining characters are ignored.

Outputs a blank.

Outputs a decimal point radix indicator.

185

186

Image
Specifier Meaning
E Outputs an E, a sign, and a two digit exponent.
ESZZ
ESZ Outputs an E, a sign, and a one digit exponent.
ESZ77 Outputs an E, a sign, and a three digit exponent.
Suppresses automatic output of the EOL (End-Of-Line) sequence at the
end of the output list.
% Ignored in PRINT images.
L Outputs an EOL sequence.
@ Outputs a form-feed.
/ Outputs a carriage-return and a line-feed.
literal Outputs the characters contained in the literal.

187

PAUSE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement suspends program execution.

Semantics

PAUSE suspends program execution before the next line is executed, until the key is
pressed or CONT is executed. If the program is modified while paused, RUN must be used to
restart program execution.

When program execution resumes, the computer attempts to service any ON INTR events that
occurred while the program was paused. ON END, ON ERROR, or ON TIMEOUT events
generate errors if they occur while the program is paused. ON KEY and ON KNOB events are
ignored while the program is paused.

Pressing the key, or typing PAUSE and pressing will suspend program execu-
tion at the end of the line currently being executed.

188

PEN

Keyboard Executable Yes

Programmable Yes
In an IF... THEN... Yes
This statement selects a pen on the current plotting device.
(Cren] nope |
.. Range Recommended
Item I Description/Default Restrictions Range
pen number numeric expression, rounded to an integer; —32 768 thru —1 thru 8
Default = 1 +32 767 (device
dependent)

Example Statements

PEN -1
PEN Select

Semantics
On an external plotter, no checking is done to verity if the pen actually exists on the plotter.

When the CRT is the plotter, any positive value is treated as PEN 1 and draws lines; any
negative value is treated as PEN —1 and erases lines. PEN 0 complements whatever it passes
over (draws lines where there are none, and erases lines where they exist).

189

PENUP

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement lifts the pen on an external plotter.

190

PI
Keyboard Executable Yes
Programmable Yes
In an IF..THEN... Yes

This function returns 3.141 592 653 589 79, which is an approximate value for .

Example Statements

Area=PI*Radius"2
PRINT X iH*2%PI

PIVOT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement specifies a rotation of coordinates which is applied to all lines drawn with DRAW
and IDRAW statements.

N

. Range
Item | Description/Default | Restrictions
angle | numeric expression in current units of angle | (same as COS)

Example Statements

PIVOT 30
IF Special THEN PIVOT Radians

Semantics

The angle is interpreted according to the current angle mode (DEG or RAD). The rotation is
performed about the logical pen position at the time PIVOT is executed. The logical pen
position may bear no obvious relationship to the physical pen position.

The PIVOT operation is applied to drawn lines, not to graphics statements. Therefore, it cannot
be said that PIVOT does or does not affect MOVE. Lines that are drawn with a combination of
MOVE and DRAW are effected by PIVOT. Labels that are created with a combination of MOVE
and LABEL are not effected by PIVOT.

191

192

PLOTTER IS

This statement selects a plotting device.

GLOTTER '9_." selector

Item

plotter
specifier

Description/Default

Keyboard Executable
Programmable
In an IF...THEN...

Range
Restrictions

Yes
Yes
Yes

device selector

plotter specifier

numeric expression, rounded to an integer

string expression

Example Statements

PLOTTER IS 3:1%
PLOTTER IS 705 ,"HPGL"

Semantics

(see Glossary)

INTERNAL
HPGL

The hard clip limits of the plotter are read in when this statement is executed. The PLOTTER IS

device is 3, “INTERNAL” at power-on, after GINIT, after reset, and after SCRATCH A.

193

POS

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the first position of a substring within a string.

string string
searched searched for

Range

Item | Description/Default | Restrictions

string searched string expression —

string searched for string expression —

Example Statements

Point=POS(Bigs,Little%$)
IF POS(A%,CHR$(10)) THEN Line_end

Semantics

If the value returned is greater than 0, it represents the position of the first character of the string
being searched for in the string being searched. If the value returned is O, the string being
searched for does not exist in the string being searched (or the string searched for is the null
string).

194

PPOLL

Keyboard Executable Yes

Programmable Yes
In an IF... THEN... Yes

This function returns a value representing eight status-bit messages of devices on the HP-IB.

/O path
name
==

select code

. Range
Item Description/Default Restrictions
I/O path name name assigned to an interface select code any valid name
(see ASSIGN)
interface select code | numeric expression, rounded to an integer 7 thru 31
Example Statements
Stat=PPOLL(7)
IF BIT(PPOLL(@BHPib) +3) THEN RespPpond
Semantics
The computer must be the active controller to execute this statement.
Summary of Bus Actions
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25us) (duration=25us)
Active Read byte Error Read byte E
Controller EOI EOI rror
Restore ATN to Restore ATN to
previous state previous state
Not Active Error
Controller

PPOLL CONFIGURE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

PPOLL configure
CONFIGURE byte

device
selector

i Range Recommended
Item Description/Default Restrictions Range
[/O path name name assigned to a device or devices any valid name —
device selector numeric expression, rounded to an integer must contain a —
primary address
(see Glossary)
configure byte numeric expression, rounded to an integer —32 768 thru 0 thru 15
+32 767

Example Statements

PPOLL CONFIGURE 71132
PPOLL CONFIGURE @BDumisResponse

Semantics

This statement assumes that the device’s response is bus-programmable. The computer must
be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line for the
response. The fourth bit determines the logical sense of the response.

195

196

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active Error UNL Error UNL
Controller LAG LAG
PPC PPC
PPE PPE
Not Active

Controller

Error

PPOLL UNCONFIGURE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement disables the parallel poll response of a specified device or devices.

PPOLL /0 path
UNCONFIGURE name
device

selector

. Range
Item | Description/Default Restrictions
[/O path name name assigned to a device or devices any valid name
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

PPOLL UNCONFIGURE 7
PPOLL UNCONFIGURE @GPlotter

Semantics

The computer must be the active controller to execute PPOLL UNCONFIGURE.

If multiple devices are specified by an i/O path name, all specified devices are deactivated from
parallel poll response. If the device selector or I/O path name refers only to an interface select

code, all devices on that interface are deactivated from parallel poll response.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active
Controller Error

197

198

image items

print items

image line
number

image line

. label '
image

specifier

A

D
2/

string
expression y

string >
Ol

numeric >
expression -

Y

- ararome (0)

GO~ ~

CRT CRT
mex)0 O 0

tab functions not allowed with USING

literal form of image specifier:

Q

specifier
list

repeat
factor

trailing
punctuation
not allowed
with USING

X

Keyboard Executable

Programmable

In an IF...THEN...

Yes
Yes
Yes

This statement sends items to the PRINTER IS device.

PRINT

s Range Recommended

Item Description/Default Restrictions Range
image line label name of a program line any valid name —
image line number | integer constant identifying a program line 1 thru 32 766 —
image specifier string expression (see drawing) —
string array name name of a string array any valid name —
numeric array name of a numeric array any valid name —
name
column numeric expression, rounded to an integer —32 768 thru device

+32 767 dependent

CRT column numeric expression, rounded to an integer 0 thru 32 767 1 thru 50
CRT row numeric expression, rounded to an integer 0 thru 32 767 1 thru 18

image specifier
list

repeat factor

literal

literal

integer constant

string constant composed of characters
from the keyboard, including those gener-
ated using the ANY CHAR key

(see next
drawing)

1 thru 32 767

quote mark
not allowed

200

image specifier list

repeat
factor

4

Lo

()
T\

repeat
factor

repeat
factor

0960

repeat
factor

201

Example Statements

PRINT "LINE" iNumber

PRINT Arrav(#%)3

PRINT TABXY(1:1) sHeader$ TABXY(Col+3) +Messades
PRINT USING "SZ.DD"iMonev

PRINT USING Fmt3ildsItem$sKilodrams/2.2

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If the
absolute value of the number is greater than or equal to 1E—4 and less than 1E+6, it is
rounded to 12 digits and displayed in floating point notation. If it is not within these limits, it is
displayed in scientific notation. The standard numeric format is used unless USING is selected,
and may be specified by using K in an image specifier.

Automatic End-Of-Line Sequence

After the print list is exhausted, an End-Of-Line (EOL) sequence is sent to the PRINTER IS
device, unless it is suppressed by trailing punctuation or a pound-sign (#) image specifier. The
EOL sequence is also sent after every fifty characters if the CRT is the PRINTER IS device, and
after every eighty characters for an external printer. This ‘‘printer width exceeded’” EOL is not
suppressed by trailing punctuation, but can be suppressed by the use of an image specifier.

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER IS device
is the CRT (device selector=1):

Character Keystroke Name Action

CHR$(7) CTRL-G bell Sounds the beeper

CHR$(8) CTRL-H backspace Moves the print position back one
character.

CHR$(10) CTRL-J line-feed Moves the cursor down one line.

CHR$(12) CTRL-L form-feed Prints two line-feeds, then ad-

vances the CRT buffer enough
lines to place the next item at the

top of the CRT.
CHR$(13) CTRL-M carriage- Moves the print position to col-
return umn 1.

The effect of ASCII control codes on a printer is device dependent. See your printer manual to
find which control codes are recognized by your printer and their effects.

202

Arrays

Entire arrays may be printed using the asterisk specifier. Each element in an array is treated as a
separate item, as if the elements were all listed and separated by the punctuation following the
array specifier. If no punctuation follows the array specifier, a comma is assumed. The array is
printed in row-major order (right-most subscript varies fastest).

PRINT Fields

If PRINT is used without USING, the punctuation following an item determines the width of the
item’s print field; a semicolon selects the compact field, and a comma selects the default print
field. Any trailing punctation will suppress the automatic EOL sequence, in addition to selecting
the print field to be used for the print item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are printed
with one trailing blank. String items are printed with no leading or trailing blanks.

The default print field prints items with trailing blanks to fill to the beginning of the next
10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus sign if
the number is negative, whether in compact or default field.

TAB

The TAB function is used to position the next character to be printed on a line. In the TAB
function, a column parameter less than one is treated as one. A column parameter greater than
zero is subjected to the following formula: TAB position = ((column — 1) MOD width) + 1;
where ‘“‘width’’ is 50 for the CRT and 80 for an external printer. If the TAB position evaluates to
a column number less than or equal to the number of characters printed since the last EOL
sequence, then an EOL sequence is printed, followed by (TAB position — 1) blanks. If the TAB
position evaluates to a column number greater than the number of characters printed since the
last EOL, sufficient blanks are printed to move to the TAB position.

TABXY

The TABXY function provides X-Y character positioning on the CRT. It is ignored if a device
other than the CRT is the PRINTER IS device. TABXY(1,1) specifies the upper left-hand corner
of the CRT. If a negative value is provided for CRT row or CRT column, it is an error. Any
number greater than 50 for CRT column is treated as 50. Any number greater than 18 for CRT
row is treated as 18. If O is provided for either parameter, the current value of that parameter
remains unchanged.

PRINT With Using

When the computer executes a PRINT USING statement, it reads the image specifier, acting on
each field specifier (field specifiers are separated from each other by commas) as it is encoun-
tered. If nothing is required from the print items, the field specifier is acted upon without
accessing the print list. When the field specifer requires characters, it accesses the next item in
the print list, using the entire item. Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no matching
print item. If the image specifiers are exhausted before the print items, they are reused, starting
at the beginning.

If a numeric item requires more decimal places to the left of the decimal point than are provided
by the field specifier, an error is generated. A minus sign takes a digit place if M or S is not used,
and can generate unexpected overflows of the image field. If the number contains more digits to
the right of the decimal point than are specified, it is rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters are lost. If
it is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on a PRINT statement are shown in the following table.

203

204

Image
Specifier Meaning

K Compact field. Prints a number or string in standard form —K with no

-K leading or trailing blanks.

S Prints the number’s sign (+ or —).

M Prints the number’s sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the
number is negative and no sign image is specified, the minus sign will
occupy a leading digit position. If a sign is printed, it will ““float’ to the left of
the left-most digit.

z Same as D, except that leading zeros are printed.

B Prints the character represented by one byte of data. This is similar to the
CHRS$ function. The least significant eight bits of the number are sent. The
number is rounded to an integer. If the number is greater than 32 767, 255
is used; if the number is less than —32 768, 0 is used.

W Prints two characters represented by the two bytes in a 16-bit word. The
number is rounded to an integer. If the number is larger than 32 767,
32 767 is used; if the number is less than —32 768, then —32 768 is used.
On an 8-bit interface, the most significant byte is sent first, followed by the
least significant byte.

A Prints a string character. Trailing blanks are output if the number of charac-
ters specified is greater than the number available in the corresponding
string. If the image specifier is exhausted before the corresponding string,
the remaining characters are ignored.

X Prints a blank.

Prints a decimal point radix indicator.
E Prints an E, a sign, and a two digit exponent.
ESZZ
ESZ Prints an E, a sign, and a one digit exponent.
ESZ77 Prints an E, a sign, and a three digit exponent.

Suppresses all automatic output of the EOL (End-Of-Line) sequence.

% Ignored in PRINT images.

L Sends an EOL sequence to the PRINTER IS device.

@ Sends a form-feed to the PRINTER IS device.

/ Sends a carriage-return and a line-feed to the PRINTER IS device.

literal

Prints the characters contained in the literal.

PRINTALL IS

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This statement assigns a logging device for recording operator interaction and troubleshooting
messages.

C PRINTALL IS H device selector l—H

. Range
Item I Description/Default | Restrictions
device selector | numeric expression, rounded to an integer | (see Glossary)

Example Statements

PRINTALL IS 701
PRINTALL IS Geio

Semantics

The printall device must be enabled by the key on the computer. The key
is a toggle action device, enabling and disabling the printall operation. When the printall mode
is enabled, all items generated by DISP, all operator input followed by the (ENTER), (CONTINUE), or
key, and all error messages from the computer are logged on the printall device. All
TRACE activity is logged on the printall device if tracing is enabled.

At power-on and SCRATCH A, the printall device is the CRT (device selector =1).

205

206

PRINTER IS

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement specifies the system printing device for all PRINT, CAT and LIST statements
which do not specify a destination. The PRINTER IS device is 1 (the CRT) at power-on and
after SCRATCH A.

G’RINTEH@—P—'dewce selector I—P-l

Restrictions

Item I Description/Default I Range
device selector |

numeric expression, rounded to an integer | (see Glossary)

Example Statements

PRINTER IS 701
PRINTER IS Grio

PROTECT

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement specifies the protect code used on PROG, BDAT, and BIN files.

file new protect

literal form of file specifier:

file > > {1
name = T

Not an

ASCII file. old
protect code msus

. Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
old protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL
Default = MASS STORAGE IS device
new protect code string expression; first two characters are sig- “>"" not allowed
nificant

Example Statements

PROTECT NamePc
PROTECT "Georde<xy i INTERNAL" s"NEW"

Semantics

A protect code guards against accidental changes to an individual file. Once a file is protected,
the protect code must be included in its file specifier for all operations except LOAD, LOAD-
BIN, and LOADSUB.

Removing a protect code from a file is accomplished by assigning a protect code that contains
blanks for the first two characters of the string expression or is the null string.

207

208

PURGE

Keyboard Executable
Programmable
In an IF.. THEN...

This statement deletes a file entry from the directory of the mass storage media.

) I file I > I
(PURGE specifier

literal form of file specifier:

file - - AL
name - o
O~ ())

protect code is ignored

Yes
Yes
Yes

for ASCI! files
. Range

Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

PURGE Name%
PURGE "George<PC>"

Semantics

Once a file is purged, you cannot access the information which was in the file. The records of a
purged file are returned to ‘“‘available space’’. An open file must be closed before it can be

purged. Any file can be closed by ASSIGN...TO * (see ASSIGN).

209

Keyboard Executable Yes
Programmable Yes
In an [F.. THEN... Yes

This statement selects radians as the unit of measure for expressing angles.

Semantics

All functions which return an angle will return an angle in radians. All operations with param-
eters representing angles will interpret the angle in radians. If no angle mode is specified in a
program, the default is radians (also see DEG).

A subprogram ‘“‘inherits’’ the angle mode of the calling context. If the angle mode is changed in
a subprogram, the mode of the calling context is restored when execution returns to the calling
context.

210

RANDOMIZE

Keyboard Executable Yes

Programmable Yes
In an [F.. THEN... Yes
This statement selects a seed for the RND function.
o . Range Recommended
Item | Description/Default | Restrictions Range
seed numeric expression, rounded to an integer, — 1 thru
Default = pseudorandom 2312

Example Statements

RANDOMIZE
RANDOMIZE Old_seed#*PI

Semantics

The seed actually used by the random number generator depends on the absolute value of the
seed specified in the RANDOMIZE statement.

Absolute Value of Seed I Value Used
less than 1 1
1 thru 23 -2 INT(ABS(seed))
greater than 2°' -2 281 -2
The seed is reset to 37 480 660 by power-up, SCRATCH A, SCRATCH,

and program prerun.

211

RATIO
Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the current
PLOTTER IS device.

Example Statements

WINDOW 0»10#RATIOD-10,10
Turn=1/RATIO

212

READ

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

This statement reads values from DATA statements and assigns them to variables.

(READ >—£4>(stng
name

beginning
position

ending
' . position '
substring
length
numeric - -~/
namne

(l subscript] l)

| ——
{ (k))
TN
Item Description/Default Range
Restrictions
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
subscript numeric expression, rounded to an integer —32 767 thru +32 767
(see ‘‘array’’ in Glossary)
beginning position numeric expression, rounded to an integer 1 thru 32 767
(see “‘substring”’ in Glossary)
ending position numeric expression, rounded to an integer 0 thru 32 767
(see “‘substring’’ in Glossary)
substring length numeric expression, rounded to an integer 0 thru 32 767
(see “‘substring”’ in Glossary)

Example Statements

READ Number:Strinds
READ Arrav(%)
READ Item(1s1)sltem(2+1)+Item(3+1)

Semantics

The numeric items stored in DATA statements are considered strings by the computer, and are
processed with a VAL function to be read into numeric variables in a READ statement. If they
are not of the correct form, error 32 may result. Real DATA items will be rounded into an
INTEGER variable if they are within the INTEGER range (—32 768 thru 32 767). A string
variable may read numeric items, as long as it is dimensioned large enough to contain the
characters.

The first READ statement in a context accesses the first item in the first DATA statement in the
context unless RESTORE has been used to specify a different DATA statement as the starting
point. Successive READ operations access following items; progressing through DATA state-
ments as necessary. Trying to READ past the end of the last DATA statement results in error 36.
The order of accessing DATA statements may be altered by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The array entries
are made in row major order (right most subscript varies most rapidly).

213

214

READIO

Keyboard Executable
Programmable
In an IF...THEN...

Yes
Yes
Yes

This function reads the contents of the specified hardware register on the specified interface.

Note

Unexpected results may occur with select codes outside the given

range.

interface register
reavio () 0 0

Item | Description/Default

Range
Restrictions

interface select code | numeric expression, rounded to an integer

register number numeric expression, rounded to an integer

Example Statements

Uprper_byte=READIO(Grio +4)
PRINT "Register"$I3i"="3READIO(7.,1I)

1 thru 31

interface dependent

REAL

Keyboard Executable = No

Programmable Yes
In an IF...THEN... No

This statement reserves storage for floating point variables and arrays. (For information about
REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or SUB statements.)

N 1
(rea numere | >
(e

- > upper

bound
lower
bound

/

.. Range
Item Description/Default Restrictions
numeric name name of a numeric variable any valid name
lower bound integer constant; —32 767 thru + 32 767
Default = OPTION BASE value (0 orl) (see “‘array’ in Glossary)
upper bound integer constant —32 767 thru +32 767
(see ‘“‘array” in Glossary)

Example Statements

REAL XY »Z
REAL Arrav(-128B:127,15)

Semantics

Each REAL variable or array element requires eight bytes of number storage. The maximum
number of subscripts in an array is six, and no dimension may have more than 32 767 ele-
ments. The total number of elements in an array is limited by memory.

RECOVER

See the ON ERROR, ON END, ON KEY, ON KNOB, ON INTR, and ON TIMEOUT statements.

215

216

REM

Keyboard Executable No

Programmable Yes
In an IF.. THEN... No
This statement allows comments in a program.
REM > >
o) L=y
. Range
Item Description/Default Restrictions
literal string constant composed of characters from —
the keyboard, including those generated
with the ANY CHAR key
Example Program Lines
100 REM Prodram Title
190 1
200 IF BIT(Infos2) THEN Branch ! Test overrande bit
Semantics

REM must be the first keyword on a program line. If you want to add comments to a statement,
an exclamation point must be used to mark the beginning of the comment. If the first character
in a program line is an exclamation point, the line is treated like a REM statement and is not

checked for syntax.

REMOTE

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This statement places HP-IB devices having remote/local capabilities into the remote state.

/0 path
name
=

selector

REMOTE

. Range
Item Description/Default Restrictions
[/O path name name assigned to a device or devices any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

REMOTE 712
REMOTE @HPib

Semantics

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used, only the
specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is executed,
bus devices are automatically enabled for the remote state and switch to remote when they are
addressed to listen.

The computer must be the system controller to execute this statement, and it must be the active
controller to place individual devices in the remote state.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

REN
Acti ATN

C r::t:vﬁer REN MTA Error
vontro UNL
LAG

N\Ot Active REN Error Error

Controller

217

218

REN

This command renumbers the lines in a program.

P f|

first line
number

’ increment

Keyboard Executable
Programmable

Yes
No

.. Range
Item Description/Default Restrictions
first line number integer constant identifying a program line; 1 thru 32 766
Default = 10
increment integer constant; Default = 10 1 thru 32 765

Example Statements

REN 1000
REN 100,2

Semantics

The renumbered program will begin with the specified first line number, and subsequent lines
will be separated by the increment. If a renumbered line is referenced by a statement such as
GOTO or GOSUB, the reference to that line is adjusted to reflect the new line number. REN on
a paused program causes it to move to the stopped state.

RENAME

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement changes a file’s name in the mass storage media’s directory.

) | old file I () new file l)
(RENAME specifier To specifier

literal form of file specifier:

file - .) "
name » P
protect
©

protect code and msus are ignored in new file specifier

all protect codes are ignored for ASCII files

. Range

Item Description/Default Restrictions
old file specifier string expression (see drawing)
new file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

RENAME "TEMP<pc>" TO "FINAL"
RENAME Name$BMsus$ TO Tempr$

Semantics

The new file name must not duplicate the name of any other file currently in the directory. A
protected file retains its old protect code, which must be included in the old file specifier.

219

220

RE-SAVE

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement creates an ASCII file and copies program lines as strings into that file.

file —I
GE'SAVE) l specifier [~

Y

beginning
line number

beginning
line label

line label

literal form of file specifier:

file - 1]
name g o
o

o . Range
Item Description/Default Restrictions
file specifier string expression (see drawing)
file name literal any valid file name
msus literal, INTERNAL
Default = MASS STORAGE IS device
beginning line integer constant identifying a program line; 1 thru 32 766
number Default = first program line
beginning line label | name of a program line any valid name
ending line number | integer constant identifying a program line; 1 thru 32 766
Default = last program line
ending line label name of a program line any valid name

Example Statements

RE-SAVE "George"
RE-SAVE Name%:1:50rt

Semantics

An entire program can be saved, or the portion delimited by providing beginning and (if
needed) ending line labels or numbers. If the file named already exists, the old file entry is
removed from the directory after the new file is successfully saved on the mass storage media.
Pressing RESET during a RE-SAVE operation results in the old file being retained. Attemping to
RE-SAVE any file that is not an ASCII file results in an error.

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs.

221

222

RESTORE

Keyboard Executable No
Programmable Yes
In an IF...THEN... Yes

RESTORE specifies which DATA statement will be used by the next READ operation.

‘ RESTORE)

- Range
Item Description/Default Restrictions
line label name of a program line any valid name
line number integer constant identifying a program line; 1 thru 32 766
Default = first DATA statement in context

Example Statements

RESTORE
RESTORE Third_arrav

Semantics

If a line is specified which does not contain a DATA statement, the computer uses the first
DATA statement after the specified line. RESTORE can only refer to lines within the current
context.

RE-STORE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement creates a PROG file and stores an internal form of the BASIC program and all
normal binary programs into that file.

file
CHE'STOREH specifier l""l
literal form of file specifier:
file . - [N
name o o
S O~ -0

Item Description/Default Resli?il::stziims
file specifier string expression (see drawing)
file name literal | any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

RE-STORE "MYPROG<Pc:>"
RE-STORE Name$&Msus$

Semantics

If the file named already exists, the old file entry is removed from the directory after the new file
is successfully saved on the mass storage media. Pressing RESET during a RE-STORE opera-
tion results in the old file being retained. If the file being replaced had a protect code, the same
protect code must be used in the RE-STORE operation. Attemping to RE-STORE any file that is
not a PROG file results in an error.

223

224

RE-STORE BIN

Keyboard Executable
Programmable

This statement creates a BIN file and stores all normal binary programs into that file.

file
(RE-STORE BlN)—»-I opoior]—-—{
literal form of file specifier:
file > - "
name g o
® O~ G

Yes
No

Item Description/Default Re?t?irgt}ieons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant *>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

RE-STORE BIN "BINPROG<pc:>"
RE-STORE BIN Name$&Msus$

Semantics

[f the file named already exists, the old file entry is removed from the directory after the new file
is successfully saved on the mass storage media. Pressing RESET during a RE-STORE BIN
operation results in the old file being retained. If the file being replaced had a protect code, the

same protect code must be used in the RE-STORE BIN operation.

225

RETURN

Keyboard Executable No
Programmable Yes
In an IF...THEN... Yes

This statement returns program execution to the line following the invoking GOSUB. The
keyword RETURN is also used in user-defined functions (see DEF FN).

226

RND

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This function returns a pseudo-random number greater than 0 and less than 1.

Example Statements

Percent=RND*100
IF RND< .5 THEN Casel

Semantics

The random number returned is based on a seed set to 37 480 660 at power-on, SCRATCH,
SCRATCH A, or program prerun. Each succeeding use of RND returns a random number
which uses the previous random number as a seed. The seed can be modified with the
RANDOMIZE statement.

ROTATE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified. The shift is performed
with wraparound.

bit position
(rorare)=() O 220

s Range Recommended
Item Description/Default Restrictions Range
argument numeric expression, rounded to an integer —32 768 thru —
+32 767
bit position numeric expression, rounded to an integer —32 768 thru —15 thru
displacement +32 767 +15

Example Statements

New_.word=ROTATE(Old.word »2)
O=ROTATE(GsPlaces)

Semantics

The argument is converted into a 16-bit, two’s-complement form. If the bit position displace-
ment is positive, the rotation is towards the least-significant bit. If the bit position displacement
is negative, the rotation is towards the most-significant bit. The rotation is performed without
changing the value of any variable in the argument.

227

228

RUN

Keyboard Executable Yes

Programmable No
This command starts program execution at a specified line.
RUN > >
=y
label
number
Item Description/Default Range
Restrictions
line number integer constant identifying a program line; 1 thru 32 766
Default = first program line

line label name of a program line any valid name

Example Statements

RUN 10
RUN Part?

Semantics

Pressing the key is the same as executing RUN with no label or line number. RUN is
executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

® Reserving memory space for variables specified in COM statements (both labeled and
blank).

® Reserving memory space for variables specified by DIM, REAL, INTEGER, or implied in
the main program segment. This does not include variables used with ALLOCATE, which
is done at run-time.

® Checking for syntax errors which require more than one program line to detect. Included
in this are errors such as incorrect array references, and mismatched parameter or COM
lists.

If an error is detected during prerun phase, prerun halts and an error message is displayed on
the CRT.

After successful completion of prerun initialization, program execution begins with either the
lowest numbered program line or the line specified in the RUN command. If the line number
specified does not exist in the main program, execution begins at the next higher-numbered
line. An error results if there is no higher-numbered line available within the main program, or if
the specified line label cannot be found in the main program.

Keyboard Executable

Programmable
In an IF...THEN...

Yes
Yes
Yes

SAVE

This statement creates an ASCII file and copies program lines as strings into that file.

) , | fle |
CSAVE specifier [’

literal form of file specifier:

1" file

name_l

Item

beginning

|
[T 1

line number

O~]

Description/Default

ending
. line number '
ending

Range
Restrictions

file specifier

file name

msus

beginning line
number

beginning line label

ending line number

ending line label

string expression
literal

literal;
Default = MASS STORAGE IS device

integer constant identifying a program line;
Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line

Example Statements

SAVE "WHALES"

SAVE "TEMP" +1:50rt

(see drawing)
any valid file name

INTERNAL

1 thru 32 766

any valid name

1 thru 32 766

any valid name

229

230

Semantics

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files. Attempting to SAVE a file
name that already exists causes error 54. If you need to replace an old file, see RE-SAVE.

If a specified line label does not exist, error 3 occurs. If a specified line number does not exist,
the program lines with numbers inside the range specified are saved. If the ending line number
is less than the beginning line number, error 41 occurs.

SCRATCH

Keyboard Executable Yes
Programmable No

This command erases all or selected portions of memory. See the Reset Table in the back of this
book for details on the effects of SCRATCH.

SCRATCH m
II C I

Example Statements

SCRATCH
SCRATCH A

Semantics
SCRATCH clears the BASIC program from memory. All variables not in COM are also cleared.

SCRATCH C clears all variables, including those in COM. The program is left intact.

SCRATCH A clears the BASIC program memory, all normal binary programs, and all variables,
including those in COM. Most internal parameters in the computer are reset by this command.

SEC

See the SEND statement.

231

232

SEND

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes
This statement sends messages to an HP-IB.
ASCII space
(space bar)
M
NN

CMD T P

numeric
expression
string

expression

1 O path
name
L=

select code

DATA

primary >
TALK address

primary
address

LISTEN

secondary
address

UNL >
UNT >
MLA >

MTA

L. Range
Item Description/Default Restrictions
interface select code | numeric expression, rounded to an integer 7 thru 31
I/O path name name assigned to an interface select code any valid name
(see ASSIGN)
primary address numeric expression, rounded to an integer 0 thru 31
secondary address numeric expression, rounded to an integer 0 thru 31

Example Statements

SEND 73UNL MTA LISTEN 1 DATA "HELLO" END
SEND @Hpib3iUNL MLA TALK Device CMD 24+128

Semantics

CMD

The expressions following a CMD are sent with ATN true. The ASCII characters representing
the evaluated string expression are sent to the HP-IB. Numeric expressions are rounded to an
integer MOD 256. The resulting byte is sent to the HP-IB. CMD with no items sets ATN true.

DATA

The expressions following DATA are sent with ATN false. The ASCII characters representing
the evaluated string expression are sent. Numeric expressions are rounded to an integer MOD
256. The resulting byte is sent to the HP-IB. If END is added to the data list, EOI is set true
before sending the last byte. DATA with no items sets ATN false without waiting to be addres-
sed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent immediately. If
the computer is not active controller, it waits until it is addressed to talk before sending the data.

TALK
TALK sets ATN true and sends the specified talk address. Only one primary address is allowed

for a single talker. An extended talker may be addressed by using SEC secondary address after
TALK. A TALK address of 31 is equivalent to UNT (untalk).

UNT
UNT sets ATN true and sends the untalk command. (There is no automatic untalk.) A TALK
address of 31 is equivalent to UNT.

LISTEN
LISTEN sets ATN true, sends one or more primary addresses, and addresses those devices to
listen. A LISTEN address of 31 is equivalent to UNL (unlisten).

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.) A
LISTEN address of 31 is equivalent to UNL.

233

234

SEC
SEC sets ATN true and sends one or more secondary addresses (commands).

MTA

MTA sets ATN true and sends the interface’s talk address. It is equivalent to performing a status
sequence on the interface and then using the returned talk address with a SEND..TALK se-
quence.

MLA

MLA sets ATN true and sends the interface’s listen address. It is equivalent to performing a
status sequence on the interface and then using the returned listen address with a SEND..LIS-
TEN sequence.

Summary
The computer must be the active controller to execute SEND with CMD, TALK, UNT, LISTEN,
UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent when the
computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages, and the
secondary keywords required to send the messages. Any numeric values are decimal.

Mnemonic Description Secondary Keyword and Value

DAB Data Byte DATA 0 thru DATA 255

DCL Device Clear CMD 20 or CMD 148

EQI End or Identify DATA (data) END

GET Group Execute Trigger CMD 8 or CMD 136

GTL Go To Local CMD 1 or CMD 129

[FC Interface Clear Not possible with SEND. An ABORT statement
must be used.

LAG Listen Address Group LISTEN O thru LISTEN 31 or CMD 32 thru CMD
63

MLA My Listen Address MLA

MTA My Talk Address MTA

PPC Parallel Poll Configure CMD 5 or CMD 133

PPD Parallel Poll Disable PPC (CMD 5 or CMD 133), followed by CMD
112, or CMD 240, or SEC 16.

PPE Parallel Poll Enable PPC (CMD 5 or CMD 133), followed by CMD 96
thru CMD 111, or CMD 224 thru CMD 239, or
SEC 0 thru SEC 15. SEC 0 allows a mask to be
specified by a numeric value.

PPU Parallel Poll Unconfigure CMD 21 or CMD 149

PPOLL Parallel Poll Not possible with SEND. PPOLL function must

be used.

REN Remote Enable Not possible with SEND. REMOTE statement
must be used.

SDC Selected Device Clear CMD 4 or CMD 132

SPD Serial Poll Disable CMD 25 or CMD 153

SPE Serial Poll Enable CMD 24 or CMD 152

TAD Talk Address TALK 0 thru TALK 31, or CMD 64 thru CMD 95,
or CMD 192 thru CMD 223.

TCT Take Control CMD 9 or CMD 137

UNL Unlisten UNL, or LISTEN 31, or CMD 63, or CMD 191.

UNT Untalk UNT, or TALK 31, or CMD 95, or CMD 223.

235

236

SET TIME

Keyboard Executable
Programmable
In an IF... THEN...

This statement resets the time-of-day given by the real-time clock.

CSET TIME}—D{ seconds }—H

Yes
Yes
Yes

. Range
Item | Description/Default | Restrictions
seconds numeric expression, rounded to the nearest 0 thru 86 399.99

hundredth

Example Statements

SET TIME ©
SET TIME Hours#3B00+Minutes*G0

Semantics

SET TIME changes only the time within the current day, not the date. The new clock setting is

equivalent to (TIMEDATE DIV 86 400) x 86 400 plus the specified setting.

SET TIMEDATE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

{ SET TIMEDATE}—b-l seconds |—>-I

.. Range
Item | Description/Default | Restrictions
seconds numeric expressidn, rounded to the nearest 2.086 629 12 E+ 11 thru

hundredth 2.143 252 2239999 E +11

Example Statements

SET TIMEDATE TIMEDATE+B8G6400
SET TIMEDATE Strande_number

Semantics

The clock is set to 2.086 629 12 E+ 11 (midnight March 1, 1900) at power-on. The clock
values represent Julian time, expressed in seconds.

237

238

SGN

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns 1 if the argument is positive, O if it equals zero, and —1 if it is negative.

CNOREENG

Range

Item | Description/Default | Restrictions

argument | numeric expression | -—_

Example Statements

Root=8GN(X)*5QR(ABS (X))
Z=2%PI*SGN(Y)

SHIFT

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns an integer which equals the value obtained by shifting the 16-bit binary
representation of the argument the number of bit positions specified, without wraparound.

- bit position
o O

L. Range Recommended
Item Description/Default Restrictions Range
argument numeric expression, rounded to an integer —32 768 thru —
+32 767
bit position numeric expression, rounded to an integer —32 768 thru —15 thru
displacement +32 767 +15

Example Statements

New_word=5HIFT(O0ld_word,»-2)
Mask=SHIFT(1,Position)

Semantics

If the bit position displacement is positive, the shift is towards the least-significant bit. If the bit
position displacement is negative, the shift is towards the most-significant bit. Bits shifted out
are lost. Bits shifted in are zeros. The SHIFT operation is performed without changing the value
of any variable in the argument.

239

240

SHOW

Keyboard Executable Yes
Programmable Yes
In an [F...THEN... Yes

This statement is used to define an isotropic current unit-of-measure for graphics operations.

G~ O ©

e Range
Item Description/Default g
Restrictions
left numeric expression —
right numeric expression —
bottom numeric expression —
top numeric expression —

Example Statements

SHOW -5354+0,100
SHOW LeftsRight:Bottom:ToPr

Semantics

SHOW defines the values which must be displayed within the hard clip boundaries, or the
boundaries defined by the VIEWPORT statement. SHOW creates isotropic units (units the
same in X and Y). The direction of an axis may be reversed by specifying the left greater than
the right or the bottom greater than the top. (Also see WINDOW.)

SIN

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns the sine of the angle represented by the argument.

NECD S OSEE=N0

Range

Item Description/Default Restrictions

argument numeric expression in current units of angle absolute value less than:
1.708 312 781 2 E+ 10 deg.
or
2.981 568 26 E + 8 rad.

Example Statements

Sine=SIN(Andle)
PRINT "Sine of"3iThetai"="3i5IN(Theta)

241

242

SPOLL

Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This function returns an integer containing the serial poll response from the addressed device.

'O path
name
=

selector

.. Range
Item Description/Default Restrictions
I/O path name name assigned to a device any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer must include a primary
address (see Glossary)

Example Statements

Stat=SP0OLL(707)
IF SPOLL(@Device} THEN Resrond

Semantics

The computer must be the active controller to execute this statement. Multiple listeners are not
allowed. One secondary address may be specified to get status from an extended talker. Refer
to the documentation provided with the device being polled for information concerning the
device’s status byte.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active Error SPE Error SPE
Controlier ATN ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active Error
Controller

Keyboard Executable Yes
Programmable Yes
In an [F... THEN... Yes

This function returns the square root of the argument.

EDNOREE=ING

243

SQR

. Range
Item i Description/Default Restrictions
argument | numeric expression =0

Example Statements

Amps=50R (Watts/0Ohms)
PRINT "Sauare root of"sXi"="3i5QR(X

244

STATUS

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement returns the contents of interface or [/O path name status registers.

1:0 path
name

interface
select code

o

register
number

name

. Range
Item Description/Default Restrictions
/O path name name assigned to a device, devices, or mass any valid name
storage file (see ASSIGN)
interface select code | numeric expression, rounded to an integer 1 thru 31
register number numeric expression, rounded to an integer; interface dependent
Default = 0
numeric name name of a numeric variable any valid name

Example Statements

STATUS 13Xpos¥rPos
STATUS BFilesSiRecord

Semantics

The value of the beginning register number is copied into the first variable, the next register
value into the second variable, and so on. The information is read until the variables in the list
are exhausted, there is no wraparound to the first register and an attempt to read a nonexistent
register generates an error.

The register meanings depend on the item currently associated with the [/O path name, or the
specified interface. Refer to the Interface Registers section to determine the register meanings.

STEP

See the FOR...NEXT statement.

STOP

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement terminates execution of the program.

Semantics

Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed to
restart the program. PAUSE should be used if you intend to continue execution of the program.

A program can have multiple STOP statements. Encountering an END statements or pressing
the key has the same effect as executing STOP. After a STOP, variables that existed in
the main context are available from the keyboard.

245

246

STORE

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement creates a PROG file and stores an internal form of the BASIC program and all
normal binary programs into the file.

file
CSTORE) > | specifier | 3 I

literal form of file specifier

file - - AL
name o
protect
)

Item Description/Default Re:;?itst;ieons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>"" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

STORE "PROGZ<pPc:"
STORE Name$BMsuss

Semantics

This statement creates a new file; to replace an old file, see RE-STORE. If a protect code is
specified, it becomes the protect code of the new file.

STORE BIN

Keyboard Executable Yes
Programmable No

This command creates a BIN file and stores all normal binary programs into the file.

file
(STOFIE BIN}-D-{ spech erH
literal form of file specifier:
file . - "
name - o
O =0~ ~O

Item Description/Default Re?t?;::%fons
file specifier string expression (see drawing)
file name literal any valid file name
protect code literal; first two characters are significant “>’" not allowed
msus literal; INTERNAL

Default = MASS STORAGE IS device

Example Statements

STORE BIN "FFT"
STORE BIN "NAME<pc:>:INTERNAL"

Semantics

This statement is for creating a new file, to replace an old file, see RE-STORE BIN. If a protect
code is specified, it becomes the protect code of the new file.

STORE BIN is not allowed while a program is running. If it is executed while the program is
paused, the program moves to the stopped state.

247

248

required parameters

optional parameters

G

subprogram l

X

name |

kl numeric l

()=
U

program
segment

INTEGER

@

string
name

/O path

name I A

(%)

name

(D
O/

a | numeric I

OPTIONAL,

INTEGER

string
name
I/O path
name

| name I A

(*)

SUB

Keyboard Executable No
Programmable Yes
In an IF.. THEN... No

This is the first statement in a SUB subprogram and can specify the subprogram’s formal
parameters.

subprogram1
(sus >—-—| progem | > >
required -)
parameters o
Y

optional
OPTIONAL

. Range
Item Description/Default Restrictions

subprogram name name of the SUB subprogram any valid name
numeric name name of a numeric variable any valid name
string name name of a string variable any valid name
/O path name name assigned to a device, devices, or mass any valid name

storage file (see ASSIGN)
program segment any number of contiguous program lines not —

containing the beginning or end of a main

program or subprogram

Example Statements

SUB Parse(Strindg$)
SUB Transform{(@PrintersINTEGER Arrav (%) 0PTIONAL Text$)

249

250

Semantics

SUB subprograms must appear after the main program. The first line of the subprogram must
be a SUB statement. The last line must be a SUBEND statement. Comments after the SUBEND
are considered to be part of the subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be supplied whenever
the subprogram is invoked (see CALL). Parameters to the right of OPTIONAL are optional, and
only need to be supplied if they are needed for a specific operation. Optional parameters are
associated from left to right with any remaining pass parameters until the pass parameter list is
exhausted. An error is generated if the subprogram tries to use an optional parameter which did
not have a value passed to it. The function NPAR can be used to determine the number of
parameters supplied by the CALL statement invoking the subprogram.

Parameters in the formal parameter list may not be duplicated in COM statements. A subpro-
gram may not contain any SUB statements, or DEF FN statements. Subprograms can be called
recursively and may contain local variables. A unique labeled COM must be used if the local
variables are to preserve their values between invocations of the subprogram

SUBEXIT may be used to leave the subprogram at some point other than the SUBEND.
Multiple SUBEXITs are allowed, and SUBEXIT may appear in an IF... THEN statement.
SUBEND is prohibited in IF... THEN statements, and may only occur once in a subprogram.

SUBEND

See the SUB statement.

251

SUBEXIT

Keyboard Executable = No
Programmable Yes
In an IF...THEN... Yes

This statement may be used to return from a SUB subprogram at some point other than the
SUBEND statement. It allows multiple exits from a subprogram.

252

253

TAB
See the PRINT and DISP statements.
TABXY
See the PRINT statement.
TALK

See the SEND statement.

254

TAN

This function returns the tangent of the angle represented by the argument. Error 31 occurs

Keyboard Executable
Programmable
In an IF...THEN...

when trying to compute the TAN of an odd multiple of 90 degrees.

oS ERNO

o Range
Item Description/Default Restrictions
argument numeric expression in current units of angle absolute value less than:

Example Statements
Tandent=TAN(Angdle)

PRINT “"Tandent of"3i23"="3TAN(Z)

8.541 563 906 E + 9 deg.
or

1.490 784 13 E+8 rad.

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function returns the current value of the real-time clock.

TIMEDATE

Example Statements

Elapsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics

TIMEDATE

The value returned by TIMEDATE represents the sum of the last time setting and the number of
seconds that have elapsed since that setting was made. The clock value set at power-on is
2.086 629 12 E+ 11, which represents midnight March 1, 1900. The time value accumulates

from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set, TIME-

DATE MOD 86400 gives the number of seconds since midnight.

See the ASSIGN and FOR...NEXT statements.

TO

255

256

TRACE ALL

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement allows tracing program flow and variable assignments during program execu-
tion.

(TRACE ALL } > >
beginning ending

' line number ' l line number '
beginning ending

line labet line label

Y

. Range
Item Description/Default Restrictions

beginning line integer constant identifying a program line; 1 thru 32 766
number Default = first program line
beginning line label | name of a program line any valid name
ending line number | integer constant identifying a program line; 1 thru 32 766

Default = last program line
ending line label name of a program line any valid name

Example Statements

TRACE ALL Sort
TRACE ALL 13500,2430

Semantics

The entire program, or any part delimited by beginning and (if needed) ending line numbers or
labels, may be traced.

The ending line is not included in the trace output. The trace output stops immediately before
the ending line is executed. When the program is traced, execution of the lines within the
tracing range causes the line number and any variable which receives a new value to be output
to the DISP line of the CRT. Any type of variable (string, numeric or array) can be displayed.
For simple string and numeric variables, the name and the new value are displayed. For arrays,
a message is displayed stating that the array has a new value rather than outputting the entire
array contents.

TRACE ALL output can also be printed on the PRINTALL printer, if PRINTALL is ON. TRACE
ALL is disabled by TRACE OFF. The line numbers specified for TRACE ALL are not affected
by REN.

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement turns off all tracing activity.

TRACE OFF

TRACE OFF

257

258

TRACE PAUSE

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement causes program execution to pause before executing the specified line, and
displays the next line to be executed on the CRT.

(TRACE PAUSE }

Y
Y

paused
l line number '
paused

line label

. Range
Item Description/Default Restrictions
paused line number | integer constant identifying a program line; 1 thru 32 766
Default = next program line
paused line label name of a program line any valid name

Example Statements

TRACE PAUSE
TRACE PAUSE Loor_end

Semantics

Not specifying a line for TRACE PAUSE results in the pause occurring before the next line is
executed. Only one TRACE PAUSE can be active at a time. TRACE PAUSE is cancelled by
TRACE OFF.

TRIGGER

Keyboard Executable Yes
Programmable Yes
In an IF.. THEN... Yes

This statement sends a trigger message to a selected device, or all devices addressed to listen,
on the HP-IB.

TRIGGER

/O path
name
device

selector

. Range
Item Description/Default Restrictions
I/O path name name assigned to a device or devices any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer (see Glossary)

Example Statements

TRIGGER 712
TRIGGER @Hrib

Semantics
The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are addressed to
listen are triggered. If a primary address is given, the bus is reconfigured and only the addressed

device is triggered.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controller GET UNL GET UNL
olle LAG LAG
GET GET
Not Active Error
Controller

259

260

261

UNL
See the SEND statement.
UNT
See the SEND statement.
USING

See the PRINT, OUTPUT, DISP, LABEL or ENTER statement.

262

VAL

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This function converts a string expression into a numeric value.

VAL string
expression

. Range
Item | Description/Default I Restrictions
argument string expression numerals, decimal point, sign

and exponent notation

Example Statements

Dav=UAL{(Date%$)
IF VAL(Response$)<0 THEN Nedative

Semantics

The first non-blank character in the string must be a digit, a plus or minus sign, or a decimal
point. The remaining characters may be digits, a decimal point, or an E, and must form a valid
numeric constant. If an E is present, characters to the left of it must form a valid mantissa, and
characters to the right must form a valid exponent. The string expression is evaluated when a
non-numeric character is encountered or the characters are exhausted.

263

264

VAL$

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This function returns a string representation of the value of the argument. The returned string is

in the default print format, except that the first character is not a blank for positive numbers. No
trailing blanks are generated.

numeric
wis (0 O

s s Range
Item | Description/Default | Restrictions

argument I numeric expression I

Example Statements

PRINT Esc$¢iVAL$(Cursor-1)
Special$=TextsRVAL$(Number)

VIEWPORT

Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement defines an area onto which WINDOW and SHOW statements are mapped. It
also sets the soft clip limits to the boundaries it defines.

left right bottom top
(ueweorr)~ g P O O

[tem Description/Default R e?tirlir?t!ieons
left edge numeric expression —
right edge numeric expression —
bottom edge numeric expression —
top edge numeric expression —

Example Statements

UIEWPORT 0:+35,50,:80
VIEWPORT LeftsRidhtBottomsTopP

Semantics

The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display Units
are 1/100 of the shorter axis of a plotting device. The units are isotropic (the same length in X
and Y).

For the plotter specifier “INTERNAL” (the CRT), the shorter axis is Y. The longer axis is X,
which is 133.444 816 054 GDUs long. For the plotter specifier “HPGL” (which deals with
devices other than the CRT), the RATIO function may be used to determine the ratio of the
length of the X axis to the length of the Y axis. If the ratio is greater than one, the Y axis is 100
GDUs long, and the length of the X axis is 100 x RATIO. If the ratio is less than one, then the
length of the X axis is 100 GDUs and the length of the Y axis is 100 Xx RATIO. (RATIO also
works with INTERNAL.)

A value of less than zero for the left edge or bottom is treated as zero. A value greater than the
hard clip limit is treated as the hard clip limit for the right edge and the top. The left edge must
be less than the right edge, and the bottom must be less than the top, or error 704 results.

265

266

WAIT

Keyboard Executable Yes
Programmable Yes
In an [F..THEN... Yes

This statement will cause the computer to wait approximately the number of seconds specified
before executing the next statement. Numbers less than 0.001 do not generate a WAIT interval.

CWAIT}—D-I seconds }—H

| Range

Item ‘ Description/Default Restrictions

numeric expression, rounded to the nearest less than 2 147 483.648

thousandth

seconds

Example Statements

WAIT 3
WAIT Dld-time/2

267

268

WINDOW

Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement is used to define the current-unit-of-measure for graphics operations.

left right bottom top
Comoon)~ gt () O O

Item Description/Default Re?t?illst;ieons
left edge numeric expression —
right edge numeric expression —
bottom edge numeric expression —
top edge numeric expression —

Example Statements

WINDOW ~3:+3:04+100
WINDOW LeftsRightBottom:sTopr

Semantics

WINDOW defines the values represented at the hard clip boundaries, or the boundaries de-
fined by the VIEWPORT statement. WINDOW may be used to create non-isotropic (not equal
in X and Y) units. The direction of an axis may be reversed by specifying the left edge greater
than the right edge, or the bottom edge greater than the top edge. (Also see SHOW.)

WRITEIO

Keyboard Executable Yes
Programmable Yes
In an IF...THEN... Yes

This statement writes an integer representation of the register-data to the specified hardware
register on the specified interface. The actual action resulting from this operation depends on
the interface and register selected.

interface register | register
(ommeo)of St () ()

. L. Range Recommended
Item Description/Default Restrictions Range
interface select numeric expression, rounded to an integer 1 thru 31 —
code
register number numeric expression, rounded to an integer - 231 thru interface
+231 1 dependent
register data numeric expression, rounded to an integer - 23! thru —32 768 thru
+231-1 +32 767
Note

Unexpected and possibly undesirable results may occur with select
codes outside the given range.

Example Statements

WRITEID 12:038et_pPctl
WRITEIDO Hpib 23312

269

270

Glossary

angle mode The current units used for expressing angles. Either degrees or radians may be
specified, using the DEG or RAD statements, respectively. The default at power-on and
SCRATCH A is radians.

A subprogram ‘“‘inherits” the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

array A structured data type that can be of type REAL, INTEGER, or string. Arrays are
created with the DIM, REAL, INTEGER, ALLOCATE, or COM statements. Arrays have 1 to
6 dimensions; each dimension is allowed 32 767 elements. The lower and upper bounds for
each dimension must fall in the range —32 767 (—32 768 for ALLOCATE) thru +32 767,
and the lower bound must not exceed the upper bound. The default lower bound is the
OPTION BASE value; the OPTION BASE statement can be used to specify 0 or 1 as the
default lower bound. The default OPTION BASE at power-on or SCRATCH A is zero.

Each element in a string array is a string whose maximum length is specified in the declaring
statement. The declared length of a string must be in the range 1 thru 32 767.

To specify an entire array, the characters (#) are placed after the array name. To specify a
single element of an array, subscripts are placed in parentheses after the array name. Each

subscript must not be less than the lower bound or greater than the upper bound of the
corresponding dimension.

array - -

If an array is not explicitly dimensioned, it is implicitly given the number of dimensions used
in its first occurrence, with an upper bound of 10. Undeclared strings have a default length
of 18.

ASCII This is the actonym for ‘“‘American Standard Code for Information Interchange’’. It is a
commonly used code for representing letters, numerals, punctuation, special characters,
and control characters. A table of the characters in the ASCII set and their code values can
be found in the back of this manual.

bit This term comes from the words “‘binary digit”’. A bit is a single digit in base 2 that must be
eitheraloraO.

byte A group of eight bits processed as a unit.

command A statement that can be typed on the input line and executed (see ‘‘statement”’).

271

272

context An instance of an environment. A context consists of a specific instance of all data
types which may be accessed by a program at a specific point in its execution.

device selector A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a combination of an
interface select code and a primary address. To construct a device selector with a primary
address, multiply the interface select code by 100 and add the primary address.

Secondary addresses may be appended after a primary address by multiplying the device
selector by 100 and adding the address. This may be repeated up to 6 times, adding a new
secondary address each time. A device selector, once rounded, can contain a maximum of
15 digits.

When a device selector contains an odd number of digits, the leftmost digit is the interface
select code. For an even number of digits, the leftmost two digits are the interface select
code. For example, 70502 selects interface 7, primary address 05, and secondary address
02. Device selector 1516 selects interface 15 and primary address 16.

dyadic operator An operator that performs its operation on two expressions. It is placed
between the two expressions. The following dyadic operators are available:

Operator | Operation

+ REAL or INTEGER addition
- REAL or INTEGER subtraction
* REAL or INTEGER mulitiplication
/ REAL division
Exponentiation
B String concatenation
DIy Gives the integer quotient of a division

MOD Gives the integer remainder (modulus) of a division
= Comparison for equality
L Comparison for inequality

Comparison for less than

Comparison for greater than

Comparison for less than or equal to

Comparison for greater than or equal to

g

AND Logical AND (Boolean A)
oR Logical inclusive OR (Boolean V)
EXOR Logical exclusive OR (Boolean)

file name A file name consists of one to ten characters. 9826 file names can contain upper-
case letters, lowercase letters, numerals, the underbar (_), and CHR$(161) thru
CHR$(254). LIF-compatible file names can contain only uppercase letters and numerals.
The first character in a LIF-compatible file name must be a letter.

function A procedural call that returns a value. The call can be to a user-defined-function
subprogram (such as FNInvert) or a machine-resident function (such as COS or EXP). The
value returned by the function is used in place of the function call when evaluating the
expression containing the function call.

graphic display unit This is 1/100 of the shortest axis on the plotting device. Graphic display
units are the same size on both the X and Y axes. Abbreviated ‘“‘GDU”’.

hard clip limits These are the physical limits of the plotting device.

hierarchy When a numeric or string expression contains more than one operation, the order
of operations is determined by a precedence system. Operations with the highest prece-
dence are performed first. Multiple operations with the same precedence are performed in
order, left to right. The following tables show the hierarchy for numeric and string opera-
tions.

Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operations.
Functions, both user-defined and machine-resident
Exponentiation: *

Muitiplication and division: #* / MOD DIV

Addition, subtraction, monadic plus and minus: + -
Relational operators: = <> < > <= =

NOT

AND

Lowest OrR EXOR
String Hierarchy

Precedence Operator

Highest Parentheses

Functions, both user-defined and machine-resident

Lowest Concatenation: &

I/O path A combination of firmware and hardware that can be used during the transfer of
data to and from a BASIC program. Associated with an I/O path is a unique data type that
describes the 1/0 path. This association table uses about 200 bytes and is referenced by an
[/O path name. For further details, see the ASSIGN statement.

273

274

INTEGER A numeric data type stored internally in two bytes. Two’s-complement representa-
tion is used, giving a range of —32 768 thru + 32 767.

If a numeric variable is not explicitly declared as an INTEGER, it is a REAL.
integer A number with no fractional part; a whole number.

interface select code A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface select codes 8
thru 31 are used for external interfaces. The internal HP-IB interface with select code 7 can
be specified in statements that are restricted to external interfaces. (Also see ‘‘device
selector’’.)

keyword A group of uppercase ASCII letters that has a predefined meaning to the computer.
Keywords may be typed using all lowercase or all uppercase letters.

LIF This is the acronym for ‘“‘Logical Interchange Format”’. This HP standard defines the
format of mass storage files and directories. It allows the interchange of data between
different machines. 9826 files of type ASCII are LIF compatible.

literal This is a string constant. When quote marks are used to delimit a literal, those quote
marks are not part of the literal. To include a quote mark in a literal, type two consecutive
quote marks (except in response to a LINPUT statement). The drawings showing literal
forms of specifiers (such as file specifiers) show the quote marks required to delimit the
literal.

logical pen See “‘pen’’.

monadic operator An operator that performs its operation on one expression. It is placed in
front of the expression. The following monadic operators are available:

Operator | Operation

- Reverses the sign of an expression
+ Identity operator
NOT Logical complement (Boolean over-bar)

msus This is the acronym for ‘‘mass storage unit specifier’. It is a string expression that
specifies a device to be used for mass storage operations.

name A name consists of one to fifteen characters. The first character must be an uppercase
ASCII letter or one of the characters from CHR$(161) thru CHR$(254). The remaining
characters, if any, can be lowercase ASCII letters, numerals, the underbar (_), or
CHR$(161) thru CHR$(254). Names may be typed using any combination of uppercase
and lowercase letters, unless the name uses the same letters as a keyword. Conflicts with
keywords are resolved by mixing the letter case in the name. (Also see “‘file name’’.)

275

276

numeric expression

.| numeric |

Y

monadic

operator

numeric
expression

expression I

numeric
constant

numeric
name

Y

subscript

numeric function
keyword

parameter

numeric function
name

parameter

string comparison
expression operator

string 1

expression [

numeric
expression

Item

Description

monadic operator

dyadic operator

numeric constant

numeric name

subscript

numeric function keyword

numeric function name

parameter

comparison operator

pen All graphical objects are ‘‘drawn’’ using mathematical representations in the computer’s
memory. This is done with the ‘‘logical pen”. The logical pen creates four classes of objects:
lines, labels, axes, and label locations (label locations are actually the position of an object,

rather than an object).

Before these objects can be viewed, they are acted upon by various transformation ma-
trixes, such as scaling and pivoting. No single transformation affects all the objects, and no

An operator that performs its operation on the expression im-
mediately to its right: + - NOT

An operator that performs its operation on the two expressions it
is between: * % / MOD DIV + - = <> 4 » «= &=
AND OR EXOR

A numeric quantity whose value is expressed using numerals,
decimal point, and exponent notation

The name of a numeric variable or the name of a numeric array
from which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
uarrayn)

A keyword that invokes a machine-resident function that returns
a numeric value

The name of a user-defined function that returns a numeric value

A numeric expression, string expression, or /O path name that is
passed to a function

An operator which returns a 1 (true) or a 0 (false) based on the
the result of a relational test of the operands it separates:

., ;) -,
W & = - -
K %, L= o= =

&
L

object is effected by all the transformations.

The output of the transformations is used to control the “‘physical pen’’. The physical pen
creates the image that you actually see on the plotter or CRT. Since the graphics statements
used to create objects act directly upon the logical pen, and you can see only the output of
the physical pen, the location of the logical pen may not always be readily discernable from

what you see.

277

278

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

| scaling | PivoT | csize | LoiR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR

primary address A numeric expession in the range of O thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device. The HP-IB
interface can service multiple devices. (Also see ‘“‘device selector’’.)

program line A statement that is preceded by a line number (and an optional line label) and
stored with the ENTER key into a program (see ‘‘statement’’).

protect code This is a non-listable, two-character code kept with a file description in the
directory of a mass storage media. It guards against accidental changes to an individual file.
When protect codes are specified, they may contain any number of characters. When the
specified protect code contains more than two characters, the first two are used as the actual
protect code. When the specified protect code contains only one character, a blank is
assumed as the second character in the actual protect code. A protect code that is all blanks,
the null string, or begins with at least two blanks is interpreted the same as no protect code.
The character * is not allowed in a protect code.

REAL A numeric data type that is stored internally in eight bytes using sign-and-magnitude
representation. One bit is used for the number’s sign, 11 bits for a biased exponent (bias =
1023), and 52 bits for a mantissa. There is an implied ““1.”” preceding the mantissa (this can
be thought of as the 53rd bit). The range of REAL numbers is approximately:

—1.797 693 134 862 315 E+ 308 thru —2.225 073 858 507 202 E-308, 0, and
+2.225 073 858 507 202 E — 308 thru +1.797 693 134 862 315 E + 308.

If a variable is not explicitly declared as an INTEGER, it is a REAL.

record The records referred to in this manual are defined records. Defined records are the
smallest unit of storage directly accessible on the mass storage media. The length of a record
is determined when a BDAT file is created by a CREATE BDAT statement. All records in a
file are the same size.

There is another type of record called a ‘‘physical record” which is the unit of storage
handled by the mass storage device and the operating system. Physical records contain 256

bytes and are not accessible to the user via standard BASIC statements.

recursive See ‘‘recursive’’.

secondary address A device-dependent command sent on HP-IB. It can be interpreted as a
secondary address for the extended talker/listener functions or as part of a command
sequence. (Also see ‘‘device selector’.)

soft clip limits These are plotter clipping limits that are defined by the programmer. Lines
drawn on a plotting device are drawn only inside the clipping limits.

statement A keyword combined with any additional items that are allowed or required with
that keyword. If a statement is placed after a line number and stored, it becomes a program
line. If a statement is typed without a line number and executed, it is called a command.

string A data type comprised of a contiguous series of characters. Each character in the string
is stored in one byte using an extended ASCII character set. The first character in a string is
in position 1. The maximum length of a string is 32 767 characters. The current length of a
string can never exceed the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18 characters. Each
element in an implicitly dimensioned string array is dimensioned to 18 characters.

When a string is empty, it has a current length of zero and is called a “‘null string”’. All strings
are null strings when they are declared. A null string can be represented as an empty literal
(for example: A%$="") or as one of three special cases of substring. The substrings that
represent the null string are:

1. Beginning position one greater than current length
2. Ending position one less than beginning position
3. Maximum substring length of zero

279

280

string expression

Y

Y

string string
expression expression

o literal "

Y

string

s I -
beginning
position

ending
position
substring

length

281

Item Description

literal A string constant composed of any characters available on the
keyboard, including those generated with the ANY CHAR key.

string name The name of a string variable or the name of a string array from
which a string is extracted using subscripts

subscript A numeric expression used to select an element of an array (see
uarrayﬂ)
beginning position A numeric expression specifying the position of the first character in

a substring (see ‘‘substring’’)

ending position A numeric expression specifying the position of the last character in
a substring (see ‘‘substring’’)

substring length A numeric expression specifying the maximum number of charac-
ters to be included in a substring (see ‘‘substring’’)

string function keyword A keyword that invokes a machine-resident function that returns a
string value. String function keywords always end with a dollar sign.

string function name The name of a user-defined function that returns a string value

parameter A numeric expression, string expression, or I/O path name that is is
passed to a function

subprogram Can be either a SUB subprogram or a user-defined-function subprogram (DEF
FN). The first line in a SUB subprogram is a SUB statement. The last line in a SUB
subprogram (except for comments) is a SUBEND statement. The first line in a function
subprogram is a DEF FN statement. The last line in a function (except for comments) is an
FNEND statement. Subprograms must follow the END statement of the main program.

SUB subprograms are invoked by CALL. Function subprograms are invoked by an FN
function occurring in an expression. A function subprogram returns a value that replaces the
occurrence of the FN function when the expression is evaluated. Either type of subprogram
may alter the values of parameters passed by reference or variables in COM. It is recom-
mended that you do not let function subprograms alter values in that way.

Invoking a subprogram establishes a new context. The new context remains in existence
until the subprogram is properly exited or program execution is stopped. Subprograms can
be recursive.

subroutine A program segment accessed by a GOSUB statement and ended with a RETURN
statement.

282

substring
strin beginnin
$ al positiong

A substring is a contiguous series of characters that comprises all or part of a string. Sub-
strings may be accessed by specifying a beginning position, or a beginning position and an
ending position, or a beginning position and a maximum substring length.

The beginning position must be at least one and no greater than the current length plus one.
When only the beginning position is specified, the substring includes all characters from that
position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater
than the dimensioned length of the string. When both beginning and ending positions are
specified, the substring includes all characters from the beginning position to the ending
position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus the
dimensioned length of the string minus the beginning position. When a beginning position
and substring length are specified, the substring starts at the beginning position and includes
the number of characters specified by the substring length. If there are not enough charac-
ters available, the substring includes only the characters from the beginning position to the
current end of the string.

283

Interface Registers

I/O Path Status and Control Registers

Status Register 0 0 = Invalid [/O path name
1 = /O path name assigned to a device
2 =]/O path name assigned to a data file

If Assigned to a Device:

Status Register 1
Status Register 2
Status Register 3

Interface select code
Number of devices

1st device selector

If assigned to more than one device, the other device selectors are available starting in

Status Register 4.

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Status Register 6

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Control Register 5
Status Register 6
Control Register 6
Status Register 7
Control Register 7
Status Register 8
Control Register 8

If Assigned to an ASCII file:

File type = 3

Device selector of mass storage device
Number of physical records

Bytes per record = 256

Current physical record

Current byte within physical record

If Assigned to a BDAT file:

File type = 2

Device selector of mass storage device
Number of defined records
Defined record length (bytes)
Current record

Set current record

Current byte within record
Set current byte within record
EOF record

Set EOF record

Byte within EOF record

Set byte within EOF record

CRT Status and Control Registers

Status Register 0
Control Register 0
Status Register 1
Control Register 1
Status Register 2
Control Register 2
Status Register 3
Control Register 3
Status Register 4
Control Register 4
Status Register 5
Control Register 5
Status Register 6
Control Register 6
Status Register 7
Control Register 7
Status Register 8
Control Register 8
Status Register 9
Control Register 9
Status Register 10
Control Register 10

Status Register 11
Control Register 11

Current PRINT position (X)

Set PRINT position (X)

Current PRINT position (Y)

Set PRINT position (Y)

Insert character mode

Set insert character mode if non-0
Number of lines in offscreen memory above top of CRT.
Undefined

Display functions mode

Set display functions mode if non-0
Undefined

Undefined

ALPHA ON flag

Undefined

GRAPHICS ON flag

Undefined

Display line position (X)

Set display line position (X)
Screenwidth (number of characters)
Undefined

Cursor enable flag

Cursor enable; 0 = cursor not visible
non-0 = cursor visible

CRT character mapping flag
Disable CRT character mapping if non-0

Keyboard Status and Control Registers

Status Register 0
Control Register 0
Status Register 1
Control Register 1
Status Register 2
Control Register 2
Status Register 3
Control Register 3

Status Register 4
Control Register 4

CAPS LOCK flag

Set CAPS LOCK if non-0
PRINTALL flag

Set PRINTALL if non-0
Undefined

Undefined

Undefined

Set auto-repeat interval.If 1 thru 255, repeat rate in milliseconds is 10
times this value. 256 = turn off auto-repeat. (Default at power-on or
SCRATCH A is 80 ms.)

Undefined

Set delay before auto-repeat. If 1 thru 256, delay in milliseconds is 10
times this value. (Default at power-on or SCRATCH A is 700 ms.)

Status Register 5 Undefined
Control Register 5 Undefined
Status Register 6 Undefined
Control Register 6 Undefined
Status Register 7 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INITIALIZE Reserved | Reserved RESET Keyboard
Timeout Key and Knob
0 0 0 For Future | For Future
Interrupt Use Use Interrupt Interrupt
Disabled Disabled Disabled
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value =2 | Value = 1
Control Register 7 (Set bit to disable) Interrupt Disable Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved | Reserved
INITIALIZE RESET Keyboard
Not Used . For Future | For Future
Timeout Use Use Key and Knob
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

285

286

Status Register 8

Control Register 8
Status Register 9
Control Register 9

Status Register 10
Most Significant Bit

Keyboard language jumper
0 = US ASCII

1 = French

2 = German

3 = Swedish/Finnish

4 = Spanish
5 = Katakana
Undefined

Keyboard configuration jumper (0 thru 8)
Undefined

State at Last Knob Interrupt
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CTRL SHIFT
0 0 0 0 0 0 Key Key
Pressed Pressed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 10 Undefined
Status Register 11 Reserved for future use
Control Register 11 Undefined

Status Register 12
Control Register 12
Status Register 13
Control Register 13

“Pseudo-EOI for CTRL-E” flag
Enable pseudo-EOI for CTRL-E if non-0
Katakana flag

Set Katakana if non-0

HP-IB Status and Control Registers

Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Card identification =

1

Reset interface if non-zero

Interrupt and DMA Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrrupts | Interrupt Hardware Interrupt DMA DMA
Enabled Requested Level Switches 0 0 Channel 1 | Channel 0
Enabled Enabled
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = | did it Device Dependent Status
Status 0 = 1 didn’t
Value = 128| Value = 64 | Value =32 [Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 2
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved |Handshake Interrupts Reserved
0 0 0 0 For Future In P For Future
Enabled
Use Progress Use
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Control Register 2 Parallel Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 D102 DIO1
1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True 1 = True
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

287

288

Controller Status and Address

Status Register 3
Least Significant Bit

Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active 0 Primary Address of Interface

Controller | Controller

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Set My Addrress

Control Register 3
Least Significant Bit

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not Used Primary Address

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Status Register 4 Interrupt Status

Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel | v Talk | My Listen Remote/ | ' 2Iker/
Active Poll EOI Listener

) . Address Address . SPAS Local

Controller |Configuration Received | Received Received Change Address
Change g Change
Value = Value = Value = Value = Value = Value = Value = Value =

—-32768 16 384 8192 4 096 2048 1024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger Handshake cog Command Clear g SRQ IFC
Universal . . Addressed . :
While Received Received Received

Received Error Command

Command Addressed

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

Control Register 4 Wiriting anything to this register releases NDAC holdoff. If non-zero,
accept last secondary address as valid. If zero, don’t accept last secon-
dary address (stay in LPAS or TPAS state).

Status Register 5
Most Significant Bit

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel | v\ Taic | My Listen Remote/ | laiker/
Active Poll EOI Listener
Controller |Configuration Address Address Received SPAS Local Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger Handshake cog Command Clear 9 SRQ IFC
: Universal . . Addressed . .
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 6 Interface Status
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

* Least-significant bit of last address recognized

Status Register 7
Most Significant Bit

Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Vailue = Value = Value = Value = Value =
—32768 16 384 8192 4096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.
Interrupt Enable Register (ENABLE INTR)
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel |\ Talk | My Listen Remote/ | . alker
Active Poll EOI Listener
) . Address Address . SPAS Local
Controller {Configuration)) Received Address
Received Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake ; Command Clear SRQ IFC
; Universal .) Addressed .)
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value = 1

RS-232 Status and Control Registers

Card ldentification

Status Register 0

Least Significant Bit

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 = Future
Use Jumper 0 0 0 0 0 1 (0]
Installed
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 0 Reset interface if non-zero
Status Register 1 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupts Interrupt Hardware Interrupt 0 0 0 0
Enabled | Requested Level Switches
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 1 Send break if non-zero
Status Register 2
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Interrupts Reserved
0 0 0 0 0 In P For Future
Enabled
Progress Use
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 2 Undefined
Status Register 3 Baud Rate
Control Register 3 Set Baud Rate

291

292

Status Register 4
Most Significant Bit

Character Control
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00 = Odd Parity 0 = One
Reserved for 01 = Even Parity Parity Stop Bit Character Length
Future Use 10 = Parity Bit “1” Enabled 1 = Two (add this value to 5)
11 = Parity Bit “0” Stop Bits*
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
*1.5 stop bit if character length is 5.

Control Register 4 Character Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00 = Odd parity 0 = One
Not Used 01 = Even Parity 1 = Enable | Stop Bit Character Length
10 = Parity Bit “1” parity 1 = Two (add this value to 5)
11 = Parity Bit “0” Stop Bits*
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
*1.5 stop bits if character length is 5.

Status Register 5 Modem Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Loop Secondary Data Request Data
0 0 0 Back Request Rate To Terminal
Mode To Send Select Send Ready
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 5 Modem Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 = Set RTS* DTR**
1 = Set 1 = Set
Not Used Loopback secondary | o Rate | | o ?et 1 = Set
Mode Request Select 0= 0=
To Send Handshake |Handshake
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

* 0 = Set only during an OUTPUT statement.
** 0 = Set only during an OUTPUT or ENTER statement.

Status Register 6

Data In (8 bits)

Control Register 6 Data Out (8 bits)

Status Register 7 Optional Circuits
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 Optional Optional Optional Optional
Driver 3 Driver 4 | Receiver 2 | Receiver 3
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 7 Optional Circuits
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Optional Optional
Not Used Driver 3 Driver 4 Not Used
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 8 Interrupt Enable Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modem Receiver Tragls dr?r:tter Receiver
0 0 0 0 Status Line ing Buffer
Register
Change Status Full
Empty
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 9 Interrupt Cause
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
11 = Receiver Line Status
10 = Receiver Buffer Full 0 = UART
0 0 0 0 0 01 = Transmitter Holding Requesting
Register Empty Interrupt
00 = Modem Status Change
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value=1

293

294

Status Register 10

UART Status

Least Significant Bit

Most Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Transmit Receiver
Shift Holding Break Framing Parity Overrun
0 . ; . Buffer
Register Register Received Error Error Error
Full
Empty Empty
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 11 Modem Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Change In Ring Change In | Change In
Carrier Ring Data Set Clear To Carsr;ier Indicator DatagSet Clegaer
Detect Indicator Ready Send Changed
Detect Ready To Send
To False
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Interrupt Enable Register (ENABLE INTR)
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Modem Receiver Trgr;lsdr?:ter Receiver
Not Used" Status Line Re iste?r Buffer
Change Status 9 Full
Empty
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

295

GPIO Status and Control Registers

Status Register 0 Card identification = 3

Control Register 0 Reset interface if non-zero

Status Register 1 Interrupt and DMA Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupt Interrupt Hardware Interrupt DMA DMA DMA DMA
Enabled | Requested Level Switches Burst Word Channel 1| Channel 0
Mode Mode Enabled Enabled
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Control Register 1 Set PCTL if non-zero
Status Register 2

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Reserved
0 0 0 0 0 In I?:;g;gés For Future
Process Use
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

Control Register 2 Peripheral Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PSTS

Set CTL1 | Set CTLO

Not Used Error 1=1Low | 1= Low
1=Report)| o _ ih | 0 = High
0 = Ignore 9 - Hig

Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Status Register 3 Data In (16 bits)
Control Register 3 Data Out (16 bits)
Status Register 4 1 = Ready; 0 = Busy

296

Status Register 5
Most Significant Bit

Peripheral Status
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 PSTS EIR ST STIO
Line True Line Low Low Low
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Interrupt Enable Register (ENABLE INTR)
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PFLG EIR
Not Used Line Line
Ready Low
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

297

Useful Tables

Interface Select Codes

Internal Select Codes

Display (alpha)
Keyboard
Display (graphics)

(not used)

NO O D WN

HP-IB interface (built-in)

Factory Presets for External Interfaces

8 HP-IB

9 RS-232
10 (not used)
11 BCD
12 GPIO

298

US ASCII Character Codes

EQUIVALENT FORMS

ASCII HP-1B
Char. Binary Oct | Hex | Dec
NULL [00000000 | 000 00 0
SOH | 00000001 | 001 01 1 GTL
STX | 00000010 | 002 02 2
ETX | 00000011 [003 03 3
EOT | 00000100 | 004 04 4 sDC
ENQ | 00000101 | 005 05 5 PPC
ACK | 00000110 | 006 06 6
BELL | 00000111 | 007 07 7
BS 00001000 | 010 08 8 GET
HT 00001001 | Ot1 09 9 TCT
LF 00001010 | 012 0A 10
vT 00001011 | 013 oB 11
FF 00001100 | 014 oC 12
CR | 00001101 | 015 oD 13
SO | 00001110 | 016 OE 14
Sl 00001111 017 OF 15
DLE | 00010000 | 020 10 16
DC1 | 00010001 | 021 1t 17 LLO
DC2 | 00010010 | 022 12 18
DC3 | 00010011 | 023 13 19
DC4 | 00010100 | 024 14 20 DCL
NAK | 00010101 | 025 15 21 PPU
SYNC | 00010110| 026 16 22
ETB | 00010111 027 17 23
CAN | 00011000 030 18 24 SPE
EM | 0001100t | 031 19 25 SPD
SUB | 00011010| 032 1A 26
ESC | 00011011 033 1B 27
FS 00011100| 034 1C 28
GS | 0001110t| 035 1D 29
RS 00011110 036 1E 30
us 00011111 | 037 1F 31

Ascil EQUIVALENT FORMS HP-1B

Char. Binary Oct | Hex | Dec

space | 00100000 | 040 20 32 LAO
! | oo100001 | 041 [21 33 | LAt
” 1oo100010| 042 | 22 | 34 | LA2
| 00100011 | 043 [23 | 35 [LA3
$ | 00100100 | 044 | 24 | 36 | LA4
% | 00100101 | 045 | 25 | 37 | LAs
& | ootoo110| 046 | 26 | 38 | LA6
“ [00100111 | 047 | 27 | 39 | LA7
(| ooto1000| 050 | 28 | 40 | LA8
) | ooto1001| 051 | 29 [41 | LAg
* | ootot010| 052 | 2A | 42 | LA10
+ | 00101011 | 053 | 2B | 43 | LA11
s 00101100 | 054 | 2C | 44 | LA12
— | ooto1101| 055 | 20 | 45 | LA13
. | ooto1110| os6 | 26 | 46 | LA14
/ | co101111| 057 | 2F | 47 | LA1S
0 | oot10000| 060 { 30 | 48 | LA16
1 | oo110001 | 061 | 31 43 | LA17
2 | oot110010| 062 [32 | 50 | LA18
3 |oo0110011] 063 [33 | 51 | LA19
4 | 00110100 | 064 | 34 | 52 | LA20
5 | 00110101 | 065 | 35 | 53 | LA21
6 | oot10110| 066 [36 | 54 | LA22
7 | 00110111| 067 | 37 | 55 | LA23
8 | 0o111000| 070 | 38 | 56 | LA24
9 |oo111001| 071] 39 | 57 | LA25
. | oo111010] 072 | 3a | s8 | LA26
, | oo1t1c11| 073 | 38 | 59 | LA27
< | 00111100 074 | 3C [60 | LA28
= | oo111101| o075 | 3D | 61 | LA29
> | oot11110| 076 | 3E | 62 | LA30
? | oo1111t1| o77 [3F | 63 | UNL

EQUIVALENT FORMS

ASCIl HP-IB
Char. Binary Oct | Hex | Dec
@ 01000000 | 100 40 64 TAO
A 01000001 | 101 4 65 TA1
B 01000010 | 102 42 66 TA2
C 01000011 | 103 43 67 TA3
D 01000100 | 104 44 68 TA4
E 01000101 | 105 45 69 TAS
F 01000110 | 106 46 70 TA6
G 01000111 | 107 47 71 TA7
H 01001000 [110 48 72 TA8
| 01001001 | 111 49 73 TA9
J 01001010 | 112 4A 74 | TA10
K 01001011 { 113 4B 75 TA11
L 01001100 | 114 4C 76 TA12
M 01001101 | 115 40 77 | TA13
N 01001110 | 116 4E 78 TA14
[¢] 01001111 | 117 4F 79 TA1S
P 01010000 | 120 50 80 | TA16
Q 01010001 | 121 51 81 TA17
R 01010010 | 122 52 82 TA18
S 01010011 | 123 53 83 TA19
T 01010100 | 124 54 84 TA20
U 01010101 | 125 55 85 TA21
v 01010110 126 56 86 | TA22
w 01010111 127 57 87 TA23
X 01011000 (130 58 88 TA24
Y 01011001 | 131 59 89 TA25
z 01011010 132 5A 90 | TA26
{ 01011011 | 133 58 91 TA27
\ 01011100 [134 5C 92 TA28
] 01011101 | 135 5D 93 TA29
A 01011110 136 5E 94 | TA30
— 01011111 | 137 5F 95 UNT

EQUIVALENT FORMS

ASCH HP-1B

Char. Binary Oct | Hex | Dec
* | 01100000 | 140 | 60 | 96 | sco
a | 01100001 | 141 | 61 97 | sc1
b | 01100010 | 142 | 62 98 | Sc2
c | 01100011 | 143 | 63 99 | scs
d | 01100100 | 144 | 64 | 100 | SC4
a2 | 01100101 | 145 | 65 | 101 | sC5
f | o1100110 | 146 | 66 | 102 | SC6
g | 01100111 | 147 | 67 | 103 | SC7
h | 01101000 | 150 | €8 | 104 | sc8
i 01101001 | 151 | 69 | 105 | ScC9
j 01101010 | 152 | 6A | 106 | SC10
k | 01101011 | 153 [6B | 107 | SC11
| 01101100 | 154 | 6C | 108 | SC12
m | 01101101 [155 | 6D | 109 | SC13
n | 01101110 | 156 [6E | 110 | SC14
o | 01101111 | 157 [6F | 111 | SC15
p | 01110000 | 160 [70 | 112 | SC16
q | o1110001 [161 [7t | 113 | SC17
r | 01110010 | 162 [72 | 114 | SC18
s | 01110011 | 163 | 73 | 115 | SC19
t 01110100 | 164 | 74 | 116 [SC20
u | 01110101 | 165 | 75 | 117 [sC21
v | o1110110| 166 | 76 | 118 | sc22
w | 01110111 167 | 77 | 119 | sc23
x | 01111000 | 170 | 78 | 120 [SC24
y | o1111001 | 171 | 79 | 121 | sc2s
z [01111010 | 172 | 7A | 122 | SC26
{ 01111011 | 173 | 78 | 123 | scz27
I 01111100 | 174 | 7C | 124 | sc28
} 01111101 | 175 7D | 125| SC29
- 01111110 176 | 7€ | 126 | SC30
DEL| o1111111| 177| 7F | 127 sca1

299

300

European Display Characters

Charactar Decimal Character Decimal Character Decimal
Value Walue Value

l*;. 1 :_.1 3

1 -

I

on

~domdmd

oroCn g

e,
DO |

—
R

[xx]
b IR T I SN PR SR

[xx]

00 T 00

0L

LB T
e}

o

[O I O B = o B

nE
oo

L
N

“

e e
Lhouf

-
—
N
o0 e

—
oo
s

yq)
RS B T Y

d

) YRR
Do
=
X

! D
S LN
Ve T e

h
=4

-
Dux

(Y
FRRAL I SRR O

_n
[Xx]
Pul

N

g
DOCREN AR W

D H | (T TH

L
—
]

a
LI £
b

5

1
1
1
1
1
1
1
1
1
1l
1
1
1
1
159
134
1
1
1
1
1
1
1
1
1

S
T e T

1
R

aa]

=

=
E
el 215
1

217

- -
T
l}

-
et bt b b b ek b bt b b b et b b e
1]
U U LV
—
RERN | i N

B B BRSSO

- T
| (Al
—
[x§

301

Katakana Display Characters

Character Iecimal Character Decimal Character Decimal
Walue Value Malue

b 128 a 173

-
—
oy
XX
X

-

Y L

2 144
b 145
b 145
2 147
[142
b 142
e 156
b 151
b 152
b 152
by 154

'r 129 a 174

by 126 " =]

' 121 - e

e 132 T T

b 1253 4 e

b 124 ".J =
. 125 I =] Y z
12 136 | a1 b o
e 137 n 2 U 2
I 133 + a3 % 2
b 129 a =g e 2
h 14@ ¥ 55 e 2
by 141 ! 2E ' z
. 142 " 7 U z

T
Wl

w0

g oS
l{'

.
[¥x)

LN WY RN % N

¥}

b b b b b b b e b b b b e e b s e e e e e e
DOCIX

L
D W B R | I S I O = A IS A X
-

wl b o+ T o~

by 155 T 1% A
b 156) '

CURY I (I T
-

b 157 1 b
13 S8 E

b 159 2 b
3 158 "]

. 161
4 163
164

lee

=t

SRR SRR R SN N N X S S T T

(RN RN Nl fo da b b B B B e B

[1 B U ORI o R w T w R B ' 1 I O N N (O I o Y §

-1 Ty

<]

RO I o R I o B I o I o S)
- .

-

I

n
SO |
2

oSN CSURE CRTNN OSCN C N OO N ORI DU LB DV O
Dex)
fuy Fu |

a) ol e
—
SERLL]
=
. I

3 e -
o0

—
oy
i)

RO (I T I S I i
)
-
i)

e B B B

T 4 H
L o
P o—

I

—

1Ty

302

Master Reset Table

w w
2 2| 3 Note 2 5
Power | 3 $ | 3 |reser| eno/ [LoaD froap [GET | GET [& | Man | sus | sus
on | = ¢ 5 sTOP %Go &Go | G |Prerun| Enty | Ext

CRT
CRT DISP Line Clear | Clear — — Clear — — — — — — — — —
CRT Display Functions Off Off — — — — — — - — —
CRT Message Line Ready | Clear | Clear | Clear | Reset — — — — — — Clear — —
CRT Input Line (Note 6) Clear Clear Clear — Clear — — — — - — — -— —
CRT Printout Area Clear | Clear — — - — — — — — —_ — — —
CRT Print Position (TABXY) 1.1 1.1 — — — — — — — — — — — —
ALPHA ON/OFF (Note 3! On On On On On On On — On — — — — —
KEYBOARD
Keyboard Recall Buffer Clear _ —_ — — — — — — — —_ — — —
Keyboard Result Buffer Empty | Empty — — — — — — — — — — — —
Keyboard Knob Mode ! ? ? oy ! — — — — - — — -— -
Tabs On Input Line None None — — — — — — — — — — — —
Keyboard Katakana Mode Off Off Off — Off — — — — — — — — —
PRINTING
Print column 1 1 — — 1 — — — — — —_ — — _
PRINTALL Off Off — — Oft — — — — — — — — —
PRINTALL IS 1 1 — — — — — — — - — — — —
PRINTER IS 1 1 — — — — e — — — — — - —
ENVIRONMENTS & VARIABLES
Allocated Variables None | None | None | None | Note1l | Notel | None | None | None | None — None | None | Pre-ent
Normal Variables None | None | None | None — — None | None | None | None — Note 11[Note 11| Pre-ent
COM Variables None | None — None — — — Note 9 — Note 9 — — — —
OPTION BASE 0 0 0 - — — — Note 9 — Note 9 — Note 9 | Note 9 | Pre-ent
1’0 Path Names None | Closed | Closed | Closed | None | Closed | Closed | Closed | Closed | Closed — Closed — sub clsd
‘O Path Names in COM None | Closed - Closed | None — |Note 10| Note 10| Note 10| Note 10| — — — —
Keyboard Variable Access No No No No Main Main No Incent No Incent. | Inent. | Main SUB { Pre-ent
BASIC Program Lines None | None | None —_ — — Note 4 | Note 4 | Note 4 | Note 4 | Note 4 — — —
BASIC Program Environment Main Main Main Main Main Main Main Main Main Main — Main SUB | Pre-ent
Binary Programs None | None — — — — Note 5 | Note 5 — _— — — — _—
SUB Stack Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear Push Pop
NPAR 0 0 0 0 0 0 0 0 0 0 — 0 Actual | Pre-ent
CONTINUE Allowed No No No No No No No Yes No Yes Yes Yes Yes Yes
ON <event > ACTIONS
ON <event> Log Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty | Empty — Empty | Note 8 | Note 8
ON <event:> Setup None | None | None | None | None | None { None | None | None | None — None | Note 8 | Note 8
System Priority 0 ¢ 0 0 0 0 0 0 0 0 — 0 Note 7 | Pre-ent
ON KEY Labels None | None | None | None | None None | None | None | None | None — None — Pre-ent
ENABLE/DISABLE Enable | Enable | Enable | Enabie | Enable | Enable | Enable | Enable | Enable | Enable - Enable — —
KNOBX 0 0 0 0 0 0 0 0 0 0 — 0 — —
MISC.
FOR/NEXT Loops None | None | None | None | None | None | None | None | None | None — None | Local | Pre-ent
GOSUB Stack Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear | Local | Pre-ent
TIMEDATE Note 14 — — — — — — — — — — — — —_
ERRL/ERRN 0,0 0,0 — — — — — 0.0 — 0.0 — 0.0 — —
DATA Pointer None | None | None | None | None | None | None |ls:main| None |lstmain] — Istmain | 1st sub | Pre-ent
MASS STORAGE IS Note 12 | Note 12 — — — — — — — — — — - —_
Random Number Seed Note 13| Note 13| Note 13 — — — — Note 13 — Note 13 — Note 13 — -
TRACE ALL Off Off Off — — e — — — — — - — —
Angle Mode RAD RAD RAD RAD — — RAD RAD RAD RAD — RAD — Pre-ent

g L, 8 _
b o ES Note 2 2
Power 8’ g F)' RESET | END’ | LOAD | LOAD | GET GET 2 Main SUB SUB
On z 2 3 STOP &Go &Go | & |Prerun| Entry | Exit
GRAPHICS
PLOTTER IS CRT CRT — — CRT — — — — — — — — —
Graphics Memory Clear Clear — — Note 15 — — — — — — _ — ..
VIEWPORT hed clip | hed clip | — — |hdeip| — - - — — — _ _
Xand Y Scaling GDU GDU — — GDU — — — — — — — — —
Soft Clip hrd clip | hrd clip — — hrd clip — — — — — — — — _
Current Clip hrd clip | hrd clip | — — |hdclip| — — — — — — - — —
CLIP ON/OFF Off Off — — Off — — — — — — — — —
PIVOT 0 0 — — 0 — — — — — — — — —
PEN 1 1 — — 1 — — — — — — — — —
LINE TYPE 15 15 — — 15 — — — — — — — —
Pen Position 0.0 0.0 — — 0.0 — — — — — — — — —
LORG 1 1 —_ — 1 — — — — — —_ — — —
CSIZE 5.6 5.6 — — 5.6 — — R — — — — — —
LDIR 0 0 —_ — 0 — — — — — — — —
GRAPHICS ON/OFF Off Off — — — — — — — — — — — —
ALPHA ON/OFF (Note 3) On On On On On On — — — — — — — —
DUMP DEVICE IS 701 701 — — — — — — — — — — — —
— = Unchanged

Pre-ent = As existed previous to entry into the subprogram.

In cnt. = Access to variables in current context only.

1st main = Pointer set to first DATA statement in main program.
1st sub = Pointer set to first DATA statement in subprogram.
hrd clip = The default hard clip boundaries of the CRT.

sub clsd = All local /O path names are closed at subexit.

Note 1: Only those allocated in the main program are available.

Note 2: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the program

to go into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.

(These last three are defaulted only at SCRATCH A and Power On.)

Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.
Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close /O path names. If [/O path names exist in a labeled COM, and a LOAD or GET
brings in a program which does not contain that labeled COM, those I/O path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to 0.

Note 12: The default mass storage device is “INTERNAL".

Note 13: The default random number seed is INT(PIx (23! —2)/180). This is equal to 37 480 660.

Note 14: The default TIMEDATE is 2.086 629 12 E+ 11 (midnight March 1, 1900, Julian time).
Note 15: Although RESET leaves the graphics memory unchanged, it will be cleared upon execution of the next graphics statement

following the RESET.

303

304

Interface Reset Table

»
% a Note 5 Note 6
Power a g BASIC | END/ | LOAD | GET | Reset | Main | SUB SUB CLR
On i g RESET |} STOP Cmd | Prerun | Entry Exit o

GPIO CARD
GPIO Card Enable Bit Clear § Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — - —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — -
Hardware Reset of Card Reset | Note 1 | Note 1 | Reset } Note 1 | Note 1 | Note 1 | Reset | Note 1 — — Note 1
PSTS Error Flag Clear Clear Clear | Clear | Clear | Clear | Clear Clear Clear — — —
RS-232 CARD
RS-232 Card Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
Enable Interrupt Mask Clear Clear | Clear | Clear | Clear | Clear | Clear Clear | Clear — —_ —
Hardware Reset of Card Reset | Reset — Reset — — — Reset — — — —
Baud/Parity/Char. Length Registers Clear | Clear — —- — — — — — — — —
RTS-DTR Flag Clear Clear — Clear — — — Clear — — — —
Request to Send Line Clear | Clear — Clear — — — Clear — — — Note 2
Data Terminal Ready Line Clear | Clear — Clear — — — Clear — — — Note 2
User's Line Status Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
User's Modem Status Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
Data-In Buffer Read Read Read Read Read Read | Read Read Read — — Read
Error-Pend. Flag Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — Clear
HP-IB
HP-IB Card Enable Bit Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear — — —
Active Timeout Counter Clear | Clear | Clear | Clear | Clear | Clear | Clear — Clear — — —
[nterrupt Enable Mask Clear Clear Clear Clear Clear Clear Clear Clear Clear — — —_
User Interrupt Status Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear Clear — — —
Serial Poll Register Clear | Clear — Clear — — — Clear — - — —
Parallel Poll Register Clear | Clear — Clear — — — Clear — — —_ —
My Address Register Note 4 | Note 4 — — - — — — — — — —
IFC Sent Note 3 | Note 3 — Note 3 — — — Note 3 — -— — —
REN Set True Note 3 I Note 3 — Note 3 — — — Note 3 — — - —
— = Unchanged

Note 1: Reset only if card is not ready.

Note 2: Cleared only if corresponding modem CTL bit not set.

Note 3: Sent only if System Controller.

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20.

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the
program to go into the stopped state.

Note 6: Caused by sending a non-zero value to CONTROL register 0.

Further Comments

The only permanent effects of the sequence ‘“PAUSE...CONTINUE” on a running program are:

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored.

3. INPUT, LINPUT, and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

The PAUSE key, the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:

— a PAUSE

— a beep

— an error message in the message line

— setting the values of the ERRL and ERRN functions

— setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On, LOAD “AUTOST”, RUN.

CLR IO terminates all /O (i.e. ENTER and OQUTPUT) on all interfaces, handshake setup operations, HP-IB control operations, DISP,
ENTER from CRT or keyboard, CAT, LIST, external plotter output, and output to the PRINTER IS, PRINTALL IS, and DUMP DEVICE IS
devices when they are external. CLR 10 does not terminate CONTROL, STATUS, READIO, WRITEIO, real-time clock operations, mass

storage operations (other than CAT), OUTPUT 2 (keyboard), or message output.

CLR IO clears any pending closure key action.

I[f CLR IO is used to abort a DUMP GRAPHICS to an external device, the external device may be in the middle of an escape-code sequence.
Thus, it might be counting characters to determine when to return to normal mode (from graphics mode). This means that a subsequent /O
operation to the same device may yield “‘strange’ results. Handling this situation is the responsibility of the user and is beyond the scope of

the firmware provided with the product. Sending 75 ASCII nulls is one way to “clear” the 9876 Graphics Printer.

305

306

Second Byte of Non-ASCII Key Sequences
(Numeric)

97 98 99 100 101 84 87 64 70 79 78 36

N RN R

8 h k K k
48 49 50 51 52 86 94 42 47 63 68 77 76 83
102 103 104 105 106 72 71 75 93 91 33

K

S D R I B .

k . K K
53 54 55 56 57 60 62 43 45 37 35 61 65 73

00000000000600 0000
BG..BB.ED.GDQ 0000
G 00000000000 0000
85 69
EGo000000060O0ED 0000
D 0000
88

Non-ASCII keypresses can be simulated by outputting a two-byte sequence to the keyboard. For
example, OUTPUT 2 USING "#,B"3i255,75. The decimal value of the first byte is 255.
This table shows the decimal value of the second byte that corresponds to each non-ASCII key.
Numbers below a key are for unshifted keystrokes; numbers above are for shifted keystrokes.

Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence on the
CRT. The first character is an “inverse-video” K. This table can be used to look up the key that
corresponds to the second character of the sequence.

Second Byte of Non-ASCII Key Sequences
(String)

G

RECALL

Character Key Character Key Character Key
space ! @ (SHIFT) -(_RECALL) : !
! A a
" 1 B b)
C ¢ (k)
% D d (k)
s E e
& ! F DISPLAY FCTNS f (ks)
' ‘ G =) g
(sHiFT) -(TAB H <) h k7
) I CLR 10 i
* J Katakana Mode J
+ K k 1
' 1 L 1 :
- M m '
' Ignored N DUMP GRAPHICS I !
/ o 0 !
0 P P 1
1 Q ! g !
2 () R r ‘
3 5 STEP 5 !
4 T) t :
5 u CAPS LOCK u !
B Y ‘
7 W SHIFT — W 1
8 ¥ EXECUTE X !
9 ¥ Roman Mode v !
u 1 2 1 z 1
; 1 [¢ 1
\ 1 1 1
=] ¥ 1
1 1

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these characters follows CHR$(255) in an
output to the keyboard, an erroris reported (Error 131 Badrnon-alphanumeric Kevcode).

307

Selected High-Precision Metric Conversion Factors

English Units

Metric Units

To convert from
English to Metric,

To convert from
Metric to English,

multiply by: multiply by:
Length
mil micrometre (micron) 254x 10 % 3.937 007 874 x 1072
inch millimetre 254x 10" % 3.937 007 874 x 1072
foot metre 1 3.048x 107 '» 3.280 839 895
mile (intl.) kilometre 1.609 3445 6.213711922x 107!
Area
inch millimetre® 6.451 6 x 102 1.550 003 100 x 1072
foot? metre 9.290 304 x 107 2% 1.076 391 042 x 10?
mile kilometre® 2.589988 110 3.861 021 585x 107!
acre hectare 4.046 873 x 107! 2.471 044
(U.S. survey)
Volume
inches millimetres® 1.638 706 4 x 10*# 6.102 374409 x 107°
feet® metres 2.831 684 659 x 1072 3.531 466 672 x 10!
ounces centimetres 2.957 353 x 10! 3.381402 x 1072
(U.S. fluid)
gallon litre £ 3.785412 2.641721x107!
(U.S. fluid)
Mass
pound (avdp.) kilogram 45359237 x10 '« 2.204 622 622
ton (short) ton (metric) 9.0718474x 107 % 1.102 311 311
Force
ounce (force) dyne 2.780 138 510 x 10* 3.596 943 090 x 107
pound (force) newton 4.448 221 615 2.248 089 431 x 107!
Pressure
psi pascal 6.894 757 293 x 10° 1.450 377 377 x 107°
inches of Hg millibar 3.3864 x 10! 2.952 9 x 1072
(at 32°F)
Energy
BTU (IST) Calorie 2.521 644 007 x 107! 3.965 666 831
(kg, thermochem.)
BTU (IST) watt-hour 2930710702 x 107} 3.412 141 633
BTU (IST) joule § 1.055 055 853 x 103 9.478 171203 x 10~*
ftelb joule 1.355 817 948 7.375621493x 107!
Power
BTU (IST) / hr watt 2.930 710 702 x 107! 3.412 141 633
horsepower watt 7.456 998 716 x 102 1.341 022 090 x 1072
(mechanical)
horsepower watt 7.46 x 10%x 1.340 482 574 x 1073
(electric)
ftelb/s watt 1.355 817 948 7.375 621493 x 107!
Temperature
°Rankine kelvin 1.8% 5.555 555 556 x 107!
°Fahrenheit °Celsius °C=(°F-32) /1.8% °F = (°Cx 1.8)+32«

¥ Exact conversion
1 Conversion redefined in 1959

t Conversion redefined in 1964
§ Conversion redefined in' 1956

Note:
force is the newton; for pressure, the
pascal; and for energy, the joule.

The preferred metric unit for

Prefix | Symbol | Multiplier Prefix | Symbol | Multiplier
exa E 1018 deci d 107!
peta P 10! centi c 1072
tera T 10'2 milli m 1073
giga G 10° micro 7 1076
mega M 10° nano n 10~°
kilo k 103 pico p 10712
hecto h 102 femto f 10715
deka da 10! atto a 10718

Sources

American Society for Testing and Materials (ASTM), ‘“‘Standard for Metric Practice”. Reprinted from Annual

Book of ASTM Standards.

U.S Department of Commerce, National Bureau of Standards, “NBS Cuidelines for the Use of the Metric
System’’. Reprinted from Dimensions/ NBS. (October 1977).

(ép HEWLETT

PACKARD

Part No. 09826-90055 Printed in U.S.A.
Microfiche No. 09826-99055 First Edition, November 1981

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	xBack

