
BASIC 5.0/5.1
Graphics Techniques

HP 9000 Series 200/300 Computers

HP Part Number 98613-90032

F/iOW HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL. INCLUDING. BUT NOT LIMITED TO.
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct. indirect. special. incidental or consequential damages in connection with the fumishing. performance.

or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local

Sales and Service Office.

Copyright © Hewlett-Packard Company 1987

This document contains information which is protected by copyright All rights are reserved Reproduction. adaptation. or translation without

prior written premission is prohibited. except as allowed under the copyright laws

Restncted Rights Legend

Use. duplication or disclosure by the US. Government Department of Defense is subject to restnctions as set for1h in paragraph (b)(3)(il) of the

Rights in Technical Data and Software clause in FAR 52.227-7013

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only Resale of the programs in their present form or with alterations. is expressly prohibited.

Copyright © AT&T. Inc. 1980.1984

Copynght © The Regents of the UniverSity of California 1979. 1980. 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the UnNersity

of California

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page wiU be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987 ... Edition 1

November 1987 ... Edition 2. This edition reflects t~e 5.0 corrections and 5.1 additions.

Printing History iii

iv Printing History

Table of Contents

Chapter 1: Introduction to Graphics
Welcome ... " 1-1

Prerequisites 1-1
Why Graphics? ... " 1-2

Drawing Lines .. " 1-5
Scaling .. 1-6
Defining a Viewport. .. 1-11
Labeling a Plot. .. 1-13
Axes and Tick Marks ... 1-15

Chapter 2: Using Graphics Effectively
More on Defining a Viewport ... " 2-2
More on Labelling a Plot .. :..... 2-6
Axes and Grids. .. 2-18

Strategy: Axes vs. Grids .. 2-22
Miscellaneous Graphics Concepts 2-26

Clipping. .. 2-26
Drawing Modes '.' , 2-27
Selecting Line Types ... 2-30
Storing and Retrieving Images '. 2-31

Data-Driven Plotting. .. 2-37
Translating and Rotating a Drawing 2-41
Incremental Plotting ... 2-45
Drawing Polygons. .. 2-47
U ser-Defined Characters .. 2-53

Multi-Plane Bit-Mapped Displays 2-59
The Graphics Write-Enable Mask 2-59
The Graphics Display-Enable Mask " 2-60
The Alpha Masks .. 2-60
Interactions Between Alpha and Graphics Masks. 2-61

Disabling and Enabling Alpha Scrolling. .. 2-64

Chapter 3: Using Printers and Plotters
Dumping Raster Images to Printers " 3-2

Dumping to HP Raster Interface Standard Devices " 3-2
Dumping to Non-Standard Printers " 3-5

Table of Contents v

Using Plotters. .. 3-7
Selecting a Plotter 3-7
Plotter Graphics with HPGL Commands. .. 3-7
Example of Using HPGL: Controlling Pen Speed 3-8
Example of Using HPGL: Controlling Pen Force 3-8
Example of Using HPGL: Selecting Character Sets 3-9
Error Detection when Using HPGL Commands 3-10

Plotting to Files .. 3-11
Plotter Paper Sizes. .. 3-11
Limitations ... 3-12
Using GSEND with PLOTTER IS Files 3-12

Using SRM Plotter Spoolers ... 3-13
What Are Spoolers? .. 3-13
Setting Up a Plotter Spooler 3-13
Preparing Plotters ... 3-13
Plotter Spooling .. 3-14

Chapter 4: Interactive Graphics and Graphics Input
Introduction. .. 4-1

An Example. .. 4-1
Elements of an Interactive Graphics System .. 4-1

Characterizing Graphic Interactivity 4-2
Selecting Input Devices .. 4-3

Single Degree of Freedom 4-3
N on-Separable Degrees of Freedom .. 4-3
Separable Degrees Of Freedom. .. 4-4

Echoes .. 4-5
The Built In Echo ... 4-5
Making Your Own Echoes. .. 4-7

Graphics Input .. 4-12
HP-HIL Devices ... 4-14

Chapter 5: Color Graphics
Non-Color-Mapped Color .. 5-2

Specifying a Non-Color-Mapped Display 5-2
Available Colors ... , 5-2
U sing the HP 98627 A Color Interface and Display , 5-3
Non-Color-Mapped Dominant Pens 5-4
Choosing Pen Colors ... , 5-5
GSTORE Array Sizes for the HP 98627 A 5-6

vi Table of Contents

Using Color-Map Displays ... 5-7
The Frame Buffer .. 5-7
Erasing Colors. .. 5-8
Default Colors. .. 5-9
The Color Map .. 5-11
Color Specification .. 5-12
Which Model? ... 5-14
Dithering and Color Maps .. 5-16
If You Need More Colors .. 5-18
Optimizing for Dithering. .. 5-18
N on-Dominant Writing .. 5-19
Complementary Writing .. 5-21

Effective Use of Color .. 5-22
Seeing Color .. 5-22
Designing Displays .. 5-24
Objective Color Use. .. 5-25
Subjective Color Use ... 5-30

Color Spaces .. 5-32
Primaries and Color Cubes. .. 5-32
HSL Color Space. .. 5-35
Color Gamuts .. 5-38
Color Hard Copy .. 5-39

Color References '.' 5-41

Chapter 6: Data Display and Transformations
Bar Charts and Pie Charts '. .. 6-2
Two-Dimensional Transformations 6-5
Three-Dimensional Transformations .. 6-7
Surface Plotting .. 6-9

Contour Plotting. .. 6-9
Gray Maps .. 6-11
Surface Plot ; , ... 6-14

Table of Contents vii

Chapter 7: Utility Routines
Drawing Arcs .. 7 -1
Simulating Wide Pens. .. 7-2
Housekeeping. .. 7-4
Program Efficiency .. 7-8
9845 Graphics System Compatibility 7-11
HPGL .. 7-12
Miscellaneous. .. 7-13

Appendix A
Example Graphics Programs .. A-7

SINE , , " ., A-8
AXES , .. '" A-I0
GRID ... A-12
LABEL , , A-14
RevLABEL .. A-15
RPLOT ... A-16
RANDOMVIEW ... A-18
COLOR ... A-20
PIVOT .. A-22
SHOWWINDOW .. A-25
Gload ... A-28

viii Table of Contents

Introduction to Graphics 1
Welcome. .. 1-1

Prerequisites ... 1-1
Why Graphics? .. 1-2

Drawing Lines .. 1-5
Scaling .. 1-6
Defining a Viewport. .. 1-11
Labeling a Plot. .. 1-13
Axes and Tick Marks ... 1-15

Introduction to Graphics 1
Welcome
One of the most exciting features of your Series 200/300 computer is its graphics
capability. Graphic messages are often a better way of communicating information using
primarily non-textual information.

Prerequisites
This manual introduces you to the powerful set of graphics statements in the BASIC
Programming Language, as well as teaches you how to orchestrate them to produce
pleasing output. This manual assumes you have read chapters 1 through 5 of the BASIC
Programming Techniques manual, and that you will refer to that manual when you
encounter any programming topics you do not understand.

If you have a question as to what binary to load for a particular keyword or option, see
the BASIC Language Reference. Note that you must load the BIN files named GRAPH
and GRAPHX before you can enter most graphics statements. You may need to load
other BIN files, depending on what computer you have. Refer to the Installing and
Maintaining the BASIC System for information about the BIN files. Finally, certain
programs in this manual require BIN files such as MAT that you might, not readily
associate with graphics.

You may have a disc called Manual Examples Disc. The part numbers vary, depending
on what disc drive you have, but the disc contents are identical. The Manual Examples
Disc disc contains programs which may be helpful, but they are not overemphasized in
this manual.

Introduction to Graphics 1-1

Why Graphics?
Below is some data. As quickly as you can, determine if its overall trend is steady. rising
or falling. Are then' any periodir motions to it? If so. how many rycles are represented
in the one hundred points?

Table 1-1. Lexically Represented Set of Voltage Data

Time (sec.) Voltage Time (sec.) Voltage

1 16.10 51 16.69

2 16.25 52 16.55

3 16.25 53 16.65

4 16.28 54 16.62

5 16.36 55 16.67

6 16.31 56 16.68

7 16.27 57 16.81

8 16.08 58 16.88

9 16.10 59 16.87

10 16.06 60 17.07

11 16.07 61 17.16

12 16.17 62 17.16

13 16.14 63 16.94

14 16.26 64 16.98

15 16.34 65 16.83

16 16.40 66 16.83

17 16.56 67 16.71

18 16.60 68 16.81

19 16.44 69 16.83

20 16.51 70 16.84

1-2 Introduction to Graphics

Table 1-1. Lexically Represented Set of Voltage Data (continued)

Time (sec.) Voltage Time (sec.) Voltage

21 16.35 71 16.81

22 16.41 72 16.98

23 16.28 73 17.05

24 16.19 74 17.23

25 16.30 75 17.30

26 16.24 76 17.34

27 16.27 77 17.14

28 16.44 78 17.22

29 16.44 79 17.16

30 16.57 80 16.96

31 16.60 81 17.02

32 16.70 82 16.99

33 16.72 83 16.84

34 16.66 84 17.06

35 16.58 85 16.96

36 16.62 86 17.15

37 16.46 87 17.30

38 16.33 88 17.37

39 16.34 89 17.39

40 16.36 90 17.51

41 16.45 91 17.32

42 16.52 92 17.47

43 16.56 93 17.29

44 16.77 94 17.17

45 16.89 95 17.10

46 16.80 96 17.07

47 16.96 97 17.06

48 16.80 98 17.09

49 16.74 99 17.13

50 16.77 100 17.20

Introduction to Graphics 1-3

Below is a graph of the data in the preceding table. Observe that the graphical
nature of the output makes it much clearer what the data is doing. This clarity and
understandability at a glance is what computer graphics is all about. Many example
programs are included in the pages that follow. Type in and run them as you progress
from simply drawing a jagged line to creating complex graphics.

VOLTAGE VARIANCE

18.88 1

17.75

17.58

17.25

II
m

17.88 It! ...
~

0
> 16.75

16.58

16.25

11 L ~
n j~ AI

\)

tI\ I ~v V

V\) IV
y

f\

J\
/Y I~AI III

~I l If'l
V

,I ,I ,I ,I ,I ,I " ,I ,1
18 28 38 48 58 68 78 98 98 188

Ti me (seconds)

Figure 1-1. Graphic Representation of Data Is Often More Useful

1-4 Introduction to Graphics

Drawing Lines
To draw lines, you can simply say PLOT, followed by the X and Y coordinates of the
point you want to draw a line to. The following program does just that.

10
20
30
40
50
60
70

GINIT
PLOTTER IS CRT. "INTERNAL"
GRAPHICS ON
FOR X=2 TO iOO STEP 2

PLOT X.RND+50
NEXT X
END

Initialize various graphics parameters.
Use the CRT screen
Turn on the graphics screen
Points to be plotted ...
Get a data pOint and plot it against X
RND returns a value between 0 and 1

Figure 1-2. Example of Plotting Random Data

As you can see, this simple seven-line program is all you need to draw a simple plot.
Granted, it would be nice to know what we are plotting, and what the units are, etc.,
but we'll get there in due time.

The GINIT statement on line 10 means Graphics Initialize. This is almost always the
first graphics statement you would execute. As its name implies, it sets various graphics
parameters to their default values, and it is a shorthand way of executing up to fourteen
other statements (see the BASIC Language Reference manual for details).

Introduction to Graphics 1-5

/

The GRAPHICS ON statement on line 30 allows you to see what the program is drawing
if you have separate alpha and graphics. On hit-mapped displays, graphics and alpha
are always on, unless you have modified the display mask. More on this later.

Line 50 contains the heart of the program. In a loop, the PLOT statement draws to each
successive point, which is determined by the loop control variable X for the X direction
and the value returned by the function RND+50 for the Y direction. The constant, 50, is
used to center the line on the screen so it is not displayed in your soft key display area.

Scaling
Probably the first reaction you had when looking at the previous plot was "That doesn't
show me anything " Thaes true; it doesn't show much information. There is not
enough variation in the curve; ies too straight to show us anything. If we exaggerated
the Y direction to the point where we could see the variations, the line would better
represent the plotted data.

This problem can be remedied by scaling. In this context, scaling is "defining the values
the computer considers to be at the edges of the plotting surface." By definition, the left
edge is the minimum X, the right edge is the maximum X, the bottom is the minimum Y,
and the top is the maximum Y. Thus any point you plot which has X and Y coordinates
within these ranges will be visible.

Two statements are available to define your own values for the edges of the plotting
surface. The first one we'll deal with is SHOW, which forces X and Y units to be equal.
This is called isotropic scaling, and it is often desirable. For example~ when drawing a
map, you will probably want one mile in the east-west direction to be the same size as a
mile in the north-south direction. Here is an example of SHOW:

SHOW 0,100,16,18

1-6 Introduction to Graphics

This causes the plotting area to be defined such that there is a rectangle in that plotting
area whose minimum X is 0, maximum X is 100, minimum Y is 16, and maximum Y is
18, using isotropic units. As mentioned above, isotropic means that one unit in the X
direction is equal to one unit in the Y direction. Hence, if the plotting area were square,
the above SHOW statement would define the minimum X to be 0, maximum X to be
100, minimum Y to be -33 (not 16) and maximum Y to be 67 (not 18). The reason for
this is that since we have to have X and Y units identical, the SHOW statement centers
the specified area in the plotting area, allowing whatever extra room it needs to ensure
that the rectangle is completely contained in the plotting area. There will be extra room
in either the X or Y direction, but not both.

Since you were defining unit sizes with the SHOW statement, you were working with
User-Defined Units (UDUs). Both the SHOW statement and the WINDOW statement
(covered next) specify user-defined units.

The next example uses a SHOW statement to define the edges of the screen to appropriate
values. The X values used in the SHOW statement (0 and 100) come from the facts that
there are 100 data points and that axes are more meaningful when the origin is at zero
and not one. The Y values (for this type of plot) must be determined either by you or
by the computer itself. We are using a random number function to simulate data being
received from some device.

Introduction to Graphics 1-7

If you want the computer to determine the X maximum, you could do it this way:

210
210
220
230

Xmax=-1.0E308
FOR 1=1 TO N

IF X(I»Xmax THEN Xmax=X(I)
NEXT I

Smaller than smallest value in array
! N is the number of elements in array

A similar set of program lines could be used to determine the minimum value of X.

The MAX and MIN functions provide an alternate method for determining the maximum
and minimum values of a set of numbers. However, these functions require the use of the
MAT binary. Below is an example of how these functions are used.

110 Ymin=INT(MIN(Y(*»)
120 Ymax=MAX(Y(*»
130 Ymax=INT(Ymax)+(Ymax<>INT(Ymax»

Line 110 calculates the "floor" of the minimum value in an array of Y values. The floor
of a number is the greatest integer less than or equal to that number, i.e., rounding down
to the nearest integer. Lines 120 and 130 calculate the "ceiling" of the maximum value
in the array of Y values. The ceiling of a number is the smallest integer greater than or
equal to that number, i.e, rounded up to the nearest integer.

Back to our example, the Y values being used (16 and 18) come from the RND function.
In real applications, you probably will not know beforehand what the range of the data
will be, in which case you can use the method described above.

1-8 Introduction to Graphics

10
20
30
40
50
60
70
80

GINIT
PLOTTER IS CRT,"INTERNAL"
GRAPHICS ON
SHOW 0,100,15,19
FOR X=2 TO 100 STEP 2

PLOT X,RND+17
NEXT X
END

Initialize various graphics parameters.
Use the internal screen
Turn on the graphics screen
Isotropic scaling: left, right, bottom, top
Points to be plotted ...
Get a data pOint and plot it against X
RND returns a value between 0 and 1

Figure 1-3. Better Use of X-Axis Scaling

As you can see, the SHOW statement takes care of centering the curve on the screen,
but since the range of X values is so much larger than the range of Y values (0 to 100
versus 16 to 18), it still does not give us enough resolution to see what the data is doing.
Isotropic scaling is desirable in many cases. In many other cases, however, it is not. In
this example, we are hypothetically graphing the voltage from a sensor versus time, and
it makes no sense at all to force seconds to be just as "long" as volts. Since we are dealing
with data types which are not equal, it would be better to use unequal, or anisotropic,
scaling. We can use the other scaling statement: WINDOW. This will not force X units
to be equal to Y units. Instead, the scaling is determined by the axis range.

Introduction to Graphics 1-9

10
20
30
40
50
60
70
80

GIN IT
PLOTTER IS CRT. " INTERNAL II
GRAPHICS ON
WINDOW 0.100.15.19
FOR X=2 TO 100 STEP 2

PLOT X.RND+17
NEXT X
END

Initialize various graphics parameters.
Use the internal screen
Turn on the graphics screen
Anisotropic scaling: left. right. bottom. top
Points to be plotted ...
Get a data point and plot it against X
RND returns a value between 0 and 1

Figure 1-4. Better Use of Y-Axis Staling

This plot looks much better than the last one; we can easily see variations in the data.
To test how the Y axis range, 15-19, affects relative variations in the data, change WINDOW
0.100.15.19 to WINDOW 0.100.30.50 and change RND+17 to RND+40. Run the program again
and note that the line is less ragged (remember that RND ranges between 0 and 1).

1-10 Introduction to Graphics

There is still one problem, though. We can see relative variations in the data, but what
are the units being used? That is, is the height of the curve signifying differences of
microvolts, millivolts, me gavolts, dozens of volts, or what? And we probably wouldn't
want the text (explaining units, etc.) to be written in the same area that the curve is in,
as it could obstruct part of the data curve. Therefore, we need to be able to specify a
subset of the screen for plotting the curve; put explanatory notes outside this area. The
next section tells you how to do this.

Defining a Viewport
A viewport is a subset of the plotting area. This is called the soft dip area, and it is
delimited by the soft clip limits. Clip, because any line segments which attempt to go
outside these limits are cut off at the edge of the subarea. Soft, because we can override
these limits by turning off the clipping with the CLIP OFF statement (more about this
later). There are hard clip limits also, and these are defined to be the absolute limits of
the plotting area. Under no circumstances can a line be drawn outside of these limits.
There is no way to override the hard clip limits, as we can with soft clip limits.

GDUs and UDUs
Before we define a viewport, we need to know about the two different types of units which
exist. These two types of units are UDUs (User-Defined Units) and GDUs (Graphics
Display Units). In order for viewports to be predictable, they must always be specified
in the same units. Since UDUs are subject to change by the user, GDUs are used when
specifying the limits of a VIEWPORT statement. GDUs are fixed for the CRT, so a
viewport is associated with the screen, rather than the graphical model used in your
program.

Unless you specify otherwise, the screen (but not necessarily an external plotter) is
considered to have the following expanse:

• In the Y direction (the shorter side), units are 0 through 100.

• In the X direction, the range of scaling units depends on the aspect ratio of the
screen (the aspect ratio is determined by executing the RATIO command); here
are some examples:

• 0 through 133.444816054 (on the Models 216 and 226)

• 0 through 131.362467866 (for the Models 236 and 236C)

• 0 through 128.0701754 (for the 98542A and 98543A)

• 0 through 133.3767927 (for the 98544,98545,98546,98547, and 98700)

Introduction to Graphics 1-11

These are GDUs. The length of a GDU is defined as "One percent of the shorter edge of
the plotting area." There are some important characteristics of GDUs which you should
know:

• The lower left of the plotting area is always 0,0 .

• GDUs are isotropic; that is, one unit in the X direction is the same distance as one
unit in the Y direction.

Since the height of the screen is shorter than the width of the screen, the shorter edge is
in the Y direction, therefore, Ymax in GDUs is 100. If the screen had been higher than
it is wide, Xmax in GDUs would have been 100. That was the easy part. Once you've
decided which edge is shorter, and thus defined the units along that edge, you need to
find out how many GDUs in extent the longer sides are. This will be covered in detail
in the "Using Graphics Effectively" chapter. For now, we'll just observe that the GDU
limits are as mentioned above.

Specifying the Viewport
The VIEWPORT statement defines the extent of the soft clip limits in GDUs. It specifies
a subarea of the plotting surface which acts just like the entire plotting surface except you
can draw outside the subarea if you tum off clipping (more about clipping later). The
VIEWPORT statement in the following program specifies that the lower left-hand corner
of the soft clip area is at 10,15 and the upper right-hand comer is at 120,90. This is the
area which the WINDOW statement affects. Also note line 50; the FRAME statement.
This draws a box around the current soft clip limits. It is used in this example so you
can see the area specified by the VIEWPORT statement.

10 GINIT
20 PLOTTER IS CRT,"INTERNAL"
30 GRAPHICS ON
40 VIEWPORT 10,120,15,90
50 FRAME
60 WINDOW 0,100,15,19
70 FOR X=2 TO 100 STEP 2
80 PLOT X,RND+17
90 NEXT X
100 END

1-12 Introduction to Graphics

Initialize various graphics parameters.
Use the internal screen
Turn on the graphics screen
Define subset of screen area
Draw a box around defined subset
Anisotropic scaling: left,right,bottom,top
Points to be plotted ...
Get a data point and plot it against X
RND returns a value between 0 and 1

Figure 1-5. Using VIEWPORT to Define Soft-Clip Limits

Labeling a Plot
With the inclusion of the VIEWPORT statement, we have enough room to include
labels on the plot. Typically, in a Y-vs.-X plot like this, there is a title for the whole plot
centered at the top, a Y-axis title on the left edge, and an X-axis title at the bottom.

There is a statement called LABEL which writes text onto the graphics screen. You can
position the label by using a MOVE or PLOT statement to get to the point at which you
want the label to be placed. The lower left corner of the label is at the point to which
you moved. In other words, move to the position on the screen at which the lower left
corner of the text is placed. Note that the LORG statement will move you to the lower
left comer of the label. (The relative origin for labels can be changed with the LORG
statement.)

Notice in the following plot that the Y-axis label on the left edge of the screen is created
by writing one letter at a time. We only need to move to the position of the first
character in that label because each label statement automatically terminates with a
carriage return/linefeed. This causes the pen to go one line down, ready for the next line
of text. (There is a better way to plot vertical labels; we'll see it in the next chapter.)

Introduction to Graphics 1-13

10 GINIT
20 PLOTTER IS CRT,"INTERNAL"
30 GRAPHICS ON
40 MOVE 45,95
50 LABEL "VOLTAGE VARIANCE"
60 MOVE 0,65
70 Label$="Voltage"
80 FOR 1=1 TO 7
90 LABEL Label$[I,I]
100 NEXT I
110 MOVE 45,10
120 LABEL "Time (seconds)"
130 VIEWPORT 10,120,15,90
140 FRAME
150 WINDOW 0,100,16,18
160 FOR X=2 TO 100 STEP 2
170 PLOT X,RND+16.5
180 NEXT X
190 END

v
o

t
a

9
e

Initialize various graphiCS parameters.
Use the internal screen
Turn on the graphics screen
Move to left of middle of top of screen
Write title of plot
Move to center of left edge of screen
Write Y-axis label
Seven letters in "Voltage"
Label one character
et cetera
X: center of screen; Y: above key labels
Write X-axis label
Define subset of screen area
Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Points to be plotted ...
Get a data point and plot it against X
et cetera
finis

VOLTRGE VRRIRNCE

Time (seconds)

Figure 1-6. Labeled Plot

1-14 Introduction to Graphics

Now we know what we are measuring-voltage vs. time-but we still do not know the
units being used. What we need is an X-axis and a Y-axis, and they need to be labelled
with numbers in appropriate places. The AXES statement fits the bill here.

Axes and Tick Marks
The AXES statement draws X and Y axes and short lines, perpendicular to the axes,
to indicate the spacing of units. These short lines are called tick marks. The axes may
intersect at any desired point; it need not be the actual origin-the point 0,0. The tick
marks may be any distance apart, and you can select the "major tick count" for each
axis. The major tick count is the total number of tick marks drawn for every large one.
This makes it convenient to count by fives or tens or whatever you chose the major tick
count to be. And finally, you can specify how long you want the major tick marks to be.
This is measured in GDUs. Insert the AXES statement in your program and rerun it to
see the difference.

10 GINIT
20 PLOTTER IS CRT, "INTERNAL"
30 GRAPHICS ON
40 MOVE 45,95
50 LABEL "VOLTAGE VARIANCE"
60 MOVE 0,65
70 Label$="Voltage"
80 FOR I=1 TO 7
90 LABEL Label$[I,I]
100 NEXT I
110 MOVE 45,10
120 LABEL "Time (seconds)"
130 VIEWPORT 10,120,15,90
140 FRAME
150 WINDOW 0,100,16,18
160 AXES 1, .1,0,16,5,5,3
170 FOR X=2 TO 100 STEP 2
180 PLOT X,RND+16.5
190 NEXT X
200 END

Initialize various graphics parameters.
Use the internal screen
Turn on the graphics screen
Move to left of middle of top of screen
Write title of plot
Move to center of left ~dge of screen
Write Y-axis label
Seven letters in "Voltage"
Label one character
et cetera
X: center of screen; Y: above key labels
Write X-axis label
Define subset of screen area
Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Draw X- and Y-axes with appropriate ticks
Points to be plotted ...
Get a data pOint and plot it against X
et cetera
finis

Introduction to Graphics 1-15

v
o

t
a

9
e

VOLTRGE VRRIRNCE

Time (seconds)

Figure 1-7. Plot with Axes and Tick Marks

Line 160 of the program contains the AXES statement and its parameters. The
parameters are explained as follows:

1, .1

0,16

5,5

,3

are the respective values for the X and Y axes tick-mark spacings. The
X axis has 1 display unit between tick marks, and the Y axis has .1
display unit between tick marks, in current display units.

are the respective values used to determine the origin of the Y and X
axes. The Y axis crosses the X axis at X equals O. The X axis crosses
the Y axis at Y equals 16.

specify the x-major and y-major counts, respectively. These counts are
the number of "minor" (shorter) ticks between "major" (longer) tick
marks on the axes. The value of 5 specifies that there will be a major
tick mark every 5th tick mark.

specifies the major tick size, in graphics display units. The value of 3
specifies that the major ticks are 3 GDU's long (the default is 2).

1-16 Introduction to Graphics

This chapter has shown you how easy it is to write a program whose output is in graphical
form. Now you have the basic knowledge needed to get into graphics in a serious way.
The next chapter discusses these statements in greater depth, so you can to make even
more effective graphical output.

Introduction to Graphics 1-17

1-18 Introduction to Graphics

Using Graphics Effectively 2
More on Defining a Viewport ... 2-2
More on Labelling a Plot .. 2-6
Axes and Grids. .. 2-18

Strategy: Axes vs. Grids. .. 2-22
Miscellaneous Graphics Concepts 2-26

Clipping .. 2-26
Drawing Modes. .. 2-27
Selecting Line Types ... 2-30
Storing and Retrieving Images. .. 2-31

Data-Driven Plotting. .. 2-37
Translating and Rotating a Drawing 2-41
Incremental Plotting ... 2-45
Drawing Polygons. .. 2-47
U ser-Defined Characters .. 2-53

Multi-Plane Bit-Mapped Displays 2-59
The Graphics Write-Enable Mask 2-59
The Graphics Display-Enable Mask 2-60
The Alpha Masks .. 2-60
Interactions Between Alpha and Graphics Masks 2-61

Disabling and Enabling Alpha Scrolling. .. 2-64

Using Graphics Effectively 2
In the last chapter we discussed the more elementary graphics operations. In this chapter,
we will discuss how to use those statements more fluently, and introduce additional
graphics statements.

The Manual Examples disc, which was shipped with this manual, contains programs
found in this chapter. If you have the disc, load the appropriate program and run it.
Otherwise, it is beneficial to take time to type in the listed programs and run them.
Either way, experiment with them until you are familiar with the demonstrated concepts
and techniques.

Note

Some programs in this chapter require the MAT (matrix) BIN file.

Using Graphics Effectively 2-1

More on Defining a Viewport
Recall that the VIEWPORT statement defines a subset of the screen in which to plot.
More precisely, the VIEWPORT statement defines a rectangular area into which the
WINDOW coordinates will be mapped. (If you didn't catch that, don't panic. It
will become clearer.) VIEWPORT immediately rescales the plotting area; thus, it is
a good programming practice to follow every VIEWPORT statement with a WINDOW
statement. The VIEWPORT also invokes clipping at its edges. There will be more about
clipping later in this chapter.

The Y direction edge values default to ° through 100 in Y. The X direction left edge value
is 0. The right edge value can vary depending on what computer you have (approximately
128-133). Technically, these are UDSs (User-Defined Units), although default UDUs are
equivalent to the GDUs until you change the UDUs with a SHOW or a WINDOW. The
length of a GDU is defined as "One percent of the shorter edge of the plotting area." To
recap the important characteristics of GDUs:

• The lower left of the plotting area is 0,0 .

• GDUs are isotropic; that is, one unit in the X direction is the same distance as one
unit in the Y direction.

As we mentioned in the last chapter, it is trivial to determine how long the shorter edge
of screen is in GDUs, but-substantially more involved to calculate the length of the longer
edge in GDUs. Since the height of the screen is shorter than the width of the screen, the
shorter edge is in the Y direction; therefore, Ymax in GDUs is 100. If the screen had
been higher than it is wide, Xmax in GDUs would have been 100. Now for the interesting
part.

Remember that GDUs are isotropic: X and Y units are the same length. This means
that the length in GDUs of the longer edges of the plotting surface is closely related to
the aspect ratio of the plotting surface. The aspect ratio is the ratio of width to height
of the plotting surface. There is a function called RATIO which returns the quotient of
these values. Thus. if the plotting area is wider than it is high~ RATIO returns a value
greater than one. If the plotting area is higher than it is wide, RATIO returns a value
less than one, and if the plotting area were perfectly square, RATIO would return 1. To
try this, type

RATIO I Return I or I ENTER I

The returned value is something like 1.33376792699. This lets you know how the X­
direction maximum range compares with the Y-direction maximum range.

2-2 Using Graphics Effectively

Using this function, we can derive two formulas which are almost indispensible when
writing a general-purpose VIEWPORT statement:

X_gdu_max=100*MAX(l,RATIO)
Y_gdu_max=100*MAX(l,l/RATIO)

These two statements define the maximum X and maximum Y in GDUs. This will work
no mattei what plotting device you are 'Using. l'-~ O\V that 'Vole have X_gau_max and Y _gau_max

defined, we have complete control of the subset we want on the plotting surface. Suppose
we want:

• the left edge of the viewport to be 10% of the hard clip limit width from the left
edge,

• the right edge of the viewport to be 1 % of the hard clip limit width from the right
edge,

• the bottom edge of the viewport to be 15% of the hard clip limit height from the
bottom, and

• the top edge of the viewport to be 10% of the hard clip limit height from the top.

Using Graphics Effectively 2-3

We would specify:

Now, armed with this new knowledge, let's return to the program which defined the
viewport, and update the VIEWPORT statement accordingly. You may load this
program from file "Sin Viewprt" on the Manual Examples Disc.

100 CLEAR SCREEN Clear the alpha display
110 GIN IT Initialize various graphics parameters.
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 X_gdu_max=100*MAX(1,RATIO) How many GDUs wide the screen is
150 Y_gdu_max=100*MAX(1,1/RATIO) How many GDUs high the screen is
160 VIEWPORT .1*X_gdu_max, . 99*X_g u_max, . 15*Y_gdu_max, .9*Y_gdu_max
! Define subset of screen area
170 FRAME
180 WINDOW 0,100,16,18
190 FOR X=2 TO 100 STEP 2
200 PLOT X,RND+16.5
210 NEXT X
220 END

2-4 Using Graphics Effectively

Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Points to be plotted ...
Get a data pOint and plot it against X
RND returns a value between 0 and 1

r 1

Figure 2-1. General-Purpose VIEWPORT (SinViewprt)

Using Graphics Effectively 2-5

More on Labelling a Plot
There are three statements which complement the LABEL statement.

The first is CSIZE, which means character size. CSIZE has two parameters: character
cell height (in GDUs) and aspect ratio. The height measures the character cell size.
A character cell contains a character and some blank space above, below, left of, and
right of the character. This blank space allows packing character cells together without
making the characters illegible. The amount of blank space depends, of course, on which
character is contained in the cell. Focus on CSIZE in the program. Other statements
are described later.

This small program shows how the CSIZE statement changes the size of characters. You
may load this program from file "Csize" on the Manual Examples Disc.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

CLEAR SCREEN
DIM TextS[50]
GINIT
PLOTTER IS CRT."INTERNAL"
GRAPHICS ON
FRAME
WINDOW -1.1.10.1
LORG 4
FOR 1=1 TO 6

Clear the alpha display
Allow the long strings
Initialize various graphics parameters
Use the internal screen
Turn on the graphics screen
Draw a box around the screen
Anisotropic units
Bottom center of labels is ref. pt.
Six labels total

READ Csize.TextS Read the characters cell size and text
CSIZE Csize Use Csize
MOVE 0.SQR(I)*3+1 Move to appropriate place
LABEL TextS Write the text

NEXT I Looplooplooplooplooploop
DATA 30.T.20.his.l0.isjustlike.7.thosecutelittlecharts
DATA 5.thatyoualwaysseeinyourfriendly
DATA 3.neighborhoodoptometristsoropticiansoffice.
END

2-6 Using Graphics Effectively

rl T 11

hlS
sjust 1 ike

those cute 1 itt 1 ech arts

thatyoualwaysseelnyourfrlendly

netghborhoodoptometrtstsoropttctansofftce.

Figure 2-2. Changing Graphics Character Size

The FOR .. NEXT loop writes lines of text on the screen with different character sizes.
The DATA statements contain both pieces of information. Incidentally, notice also the
WINDOW statement. It specifies a Ymin larger than the Ymax. This causes the top of
the screen to have a lesser V-value than the bottom. This is perfectly legal.

Using Graphics Effectively 2-7

The next program deals with the relationship between the size of the character, per se,
and the size of the character cell-that rectangle in which the character is placed. This
program is on file "CharCell" on the Manual Examples Disc.

100 CLEAR SCREEN Clear the alpha display
110 GINr! Initialize various graphiCS parameters
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 FRAME Draw a box around the screen
150 SHOW 0,36,-7.5,22.5 Isotropic units; Left/Right/Bottom/Top
160 FOR X=O TO 36 \
170 FOR Y=O TO 15 \
180 MOVE X-.1,Y+.1 \
190 DRAW X+.1,Y-.1 \
200 MOVE X+.1,Y+.1 > Draw all the little Xs.
210 DRAW X-.1,Y-.1 /
220 NEXT Y /
230 NEXT X /
240 FOR I=O TO 27 STEP 9 \
250 CLIP I,I+9,O,15 \
260 FRAME > Draw boxes around the character cells
270 NEXT I /
280 CLIP OFF Deactivate clipping so LABELs will work
290 CSIZE 50 Character cells half the screen high
300 MOVE 0,0 Starting pOint (LORG 1 by default)
310 LABEL "AbCd" Sample letters
320 CSIZE 7,.45 \
330 LORG 6 \
340 MOVE 18,22 > Write the title
350 LABEL "Size of Character in Character Cell" /
360 END

2-8 Using Graphics Effectively

Size of Character in Character Cell

;" J '" '" "'" "' i •••••••• XXXxx ••••• x.xxxx xxx.xx.x

.xxx •••• xxxx ••• x x.x.x.xx xxx.xx.x

Figure 2-3. Character Cells (CharCell)

As the diagram shows, a character is drawn inside a rectangle, with some space on all
four sides. The character's height and width are measured in GDUs and are specified
by the CSIZE statement. Program lines 250 through 280 subdivide the rectangle into
four 9 wide by 15 high grids. Characters are drawn in this framework, called the symbol
coordinate system. Of course, the little Xs in the plot above are not drawn when you
label a string of text; they are there solely to show the position of the characters within
the character cell.

Again, character cell height is measured in GDUs, and the definition of aspect ratio for
a character is identical to the definition of aspect ratio for the hard clip limits mentioned
earlier: the width divided by the height. Thus, if you want short, fat letters, use an
aspect ratio of 1.5 or larger. If you want tall, skinny letters, use an aspect ratio less than
0.5.

CSIZE 3 Cell 3 GDUs high, aspect ratio 0.6 (default).

CSIZE 6,.3 Cell 6 GDUs high, aspect ratio 0.3 (tall and skinny).

Using Graphics Effectively 2-9

CSIZE 1.2 Cell 1 GDU high, aspect ratio 2 (short and fat).

Note that you do not have to specify a second parameter (the aspect ratio) in the CSIZE
statement. This defaults to 0.6.

The second statement you need is LORG, which means label origin. This lets you specify
which point on the label ends up at the point moved to before writing the label. You
may load the following program from file "Lorg" on the Manual Examples Disc.

100 CLEAR SCREEN
110 GINIT
120 PLOTTER IS CRT."INTERNAL"
130 GRAPHICS ON
140 SHOW 0.10.10.5.0
150 FRAME
160 FOR Lorg=1 TO 9
170 LORG 2
180 CSIZE 4
190 MOVE O.Lorg
200 LABEL "LORG";Lorg;"="
210 MOVE 8+.1.Lorg+.1
220 DRAW 8-.1.Lorg-.1
230 MOVE 8-.1.Lorg+.1
240 DRAW 8+.1.Lorg-.1
250 LORG Lorg
260 CSIZE 6
270 MOVE 8.Lorg
280 LABEL "TEST"
290 NEXT Lorg
300 END

2-10 Using Graphics Effectively

Clear the alpha screen
Initialize various graphics parameters
Use the internal screen
Turn on the graphics screen
Isotropic scaling: Left/Right/Bottom/Top
Draw a box around the screen
Loop on LORG parameters
Left-center origin for the "LORG n ="
Characters cell 4 GDUs high
Move to position for "LORG n =" label
Write the label
\
\

> Draw an "X" to show where pen is
/

Specify LORG for "TEST".
... and larger letters
Move the center of the "X"
Write "TEST". using current LORG
And so forth

rl LORG
TEST

11
x

LORG 2 xTEST

LORG 3

TE~rST
LORG 4 X

LORG 5 T86T

LORG 6

TE~~T
LORG 7 X

LORG 8 - TESTx

LORG 9
TESf

Figure 2-4. Label Origins (Lorg)

The x's indicate where the pen was moved to before labelling the word "TEST". What
this diagram means is that, for example, if LORG 1 is in effect, and you move to 4,5 to
write a label, the lower left of that label would be at 4,5. This automatically compensates
for the character size, aspect ratio, and label length. It makes no difference whether there
is an odd or even number of characters in the label. If LORG 6 had been in effect, and
you had moved to 4,5, the center of the top edge of the label would be at 4,5. You
can readily see how useful this statement is in centering labels, both horizontally and
vertically.

Using Graphics Effectively 2-11

The third statement you need to know is LDIR, meaning label direction. This specifies
the angle at which the subsequent labels will be drawn. The angle is specified in the
current angular units, and is either DEG (degrees) or RAD (radians). For example,
assuming degrees is the current angular mode:

LDIR 0

LDIR 90

Writes label horizontally to the right.

Writes label vertically, ascending.

LDIR 14

LDIR 180

Writes label ascending a gentle slope, up and right.

Writes label upside down.

LDIR 270 Writes label vertically, descending.

In the program below, (which is in the file "Ldir" on the Manual Examples Disc) you'll
note that LORG 2 was specified, and this remained in effect for many LDIRs. Each label
is centered on the left edge (relative to the label, remember).

100 CLEAR SCREEN
110 GIN IT
120 PLOTTER IS CRT,"INTERNAL"
130 GRAPHICS ON
140
150 FRAME
160 WINDOW -1,1,-1.1,1
170 DEG
180 LORG 2
190 FOR Angle=O TO 350 STEP 10
200 LDIR Angle
210 MOVE 0,0
220 LABEL "-------LDIR";Angle
230 NEXT Angle
240 END

2-12 Using Graphics Effectively

Clear the alpha display
Initialize various graphics parameters
Use the internal screen
Turn on the graphics screen
(Series 200 computers)
Draw a box around the screen
Anisotropic units; Left/Right/Bottom/Top
Angular mode: Degrees
Label origin is left center
Every 10 degrees
Labelling angle
Move to center of screen
Write using the current LDIR
And so on

Figure 2-5. Changing Label Directions (Ldir)

The label origin specified by LORG is relative to the label, not the plotting surface, and
it is independent of the current label direction. For example, if you have specified

LORG 3
OEG
LOIR 90
MOVE 6.8

and then write the label, it is written going straight up, not horizontally. Therefore, it
is the upper left corner of the label which is at point 6,8 relative to the rotated label.
Relative to the plotting device, however, it is the lower left corner of the label which is
at 6,8 (in this example) because the label has been rotated.

Now we can discuss the statement which actually causes labels to be written: LABEL.
LABEL takes into account the most recently-specified CSIZE, LDIR and LORG when it
writes a label. You must position the label, however, by using (for example) a MOVE
statement to get to the point at which you want the label to be placed.

Using Graphics Effectively 2-13

All four statements have been utilized in the following update to our progressive plotting
program. You may load this program from file "SinLabel" on the Manual Examples Disc.

100 CLEAR SCREEN Clear the alpha display
110 GIN IT Initialize various graphics parameters.
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 X_gdu_max=100*MAX(l,RATIO) Determine how many GDUs wide the screen is
150 Y_gdu_max=100*MAX(l,l/RATIO) Determine how many GDUs high the screen is
160 LORG 6 Reference pOint: center of top of label
170 MOVE X_gdu_max/2,Y_gdu_max Move to middle of top of screen
180 LABEL "VOLTAGE VARIANCE" Write title of plot
190 DEG Angular mode is degrees (used in LDIR)
200 LDIR 90 Specify vertical labels
210 CSIZE 3.5 Specify smaller characters
220 MOVE O,Y_gdu_max/2 Move to center of left edge of screen
230 LABEL "Voltage" Write Y-axis label
240 LORG 4 Reference pOint: center of bottom of label
250 LDIR 0 Horizontal labels again
260 MOVE X_gdu_max/2, .07*Y_gdu_max. X: center of screen; Y: above key labels
270 LABEL "Time (seconds)" ! Write X-axis label
280 VIEWPORT .1*X_gdu_max, . 99*X_gdu_max, .15*Y_gdu_max,.9*Y_gdu_max
! Define subset of screen area
290 FRAMl:
300 WINDOW 0,100,16,18
310 FOR X=2 TO 100 STEP 2
320 PLOT X,RND+16.5
330 NEXT X
340 END

2-14 Using Graphics Effectively

Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Points to be plotted ...
Get a data pOint and plot it against X
et cetera

r
VOLTRGE VRRIRNCE

1

-o
>

Time (seconds)

Figure 2-6. Example of Labeling (SinLabel)

Many times it's nice to have the most important titles not only in large letters, but bold
letters, to make them stand out even more. It is possible to achieve this effect by plotting
the label several times, moving the label origin just slightly each time. In the following
version of the program (in file "SinLabeI2" on your Manual Examples Disc), notice lines
180 through 210. The loop variable, I, goes from -.3 to .3 by tenths. This is the offset in
the X direction (in GDUSl) of the label origin. Since this is being labelled with LORG 6
in effect, the label origin (the point moved to immediately prior to labelling) represents
the center of the top edge of the label.

1 Technically, a MOVE uses UDUs for its units, but until a SHOW or WINDOW is executed, UDUs are
identical to GDUs.

Using Graphics Effectively 2-15

100 CLEAR SCREEN Clear the alpha display
110 GINIT Initialize various graphics parameters.
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 X_gdu_max=100*MAX(1,RATIO) Determine how many GDUs wide the screen is
150 Y_gdu_max=100*MAX(1,1/RATIO) Determine how many GDUs high the screen is
160 LORG 6 Reference point: center of top of label
170 FOR I=-.3 TO .3 STEP .1 Offset of X from starting point
180 MOVE X_gdu_max/2+I,Y_gdu_max! Move to about middle of top of screen
190 LABEL "VOLTAGE VARIANCE" Write title of plot
200 NEXT I Next position for title
210 DEG Angular mode is degrees (used in LDIR)
220 LDIR 90 Specify vertical labels
230 CSIZE 3.5 Specify smaller characters
240 MOVE 0,Y_gdu_max/2 Move to center of left edge of screen
250 LABEL "Voltage" Write Y-axis label
260 LORG 4 Reference point: center of bottom of label
270 LDIR 0 Horizontal labels again
280 MOVE X_gdu_max/2, .07*Y_gdu_max! X: center of screen; Y: above key labels
290 LABEL "Time (seconds)" ! Write X-axis label
300 VIEWPORT .1*X_gdu_max, .99*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
! Define subset of screen area
310 FRAME
320 WINDOW 0,100,16,18
330 FOR X=2 TO 100 STEP 2
340 PLOT X,RND+16.5
350 NEXT X
360 END

2-16 Using Graphics Effectively

Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Points to be plotted ...
Get a data pOint and plot it against X
et cetera

o
>

VOLTAGE VARIANCE

Time (seconds)

Figure 2-7. Bold Labels (SinLabeI2)

This method can also be used for offsetting in the Y direction. Or, offset both X and Y.
This will give you characters which are thick in a diagonal direction, which makes them
look like they are coming out of the page at you. However, a more typical bolding is
produced by offsetting only in the X direction.

Now we know what we are measuring - voltage vs. time - but still the units are not
shown. As we saw in the last chapter, what is needed is an X-axis and a Y-axis, and
they need to be labelled with numbers in appropriate places.

Using Graphics Effectively 2-17

Axes and Grids
The AXES statement and the GRID statement do similar operations. We saw in the last
chapter how to use the AXES statement. The GRID statement causes the major tick
marks to extend all the way across the plotting surface.

Once we have the axes drawn, we must label various points along them with numbers
designating the values at those points. Once again, we use the LABEL statement. You
may load this program from file "SinAxes" on the Manual Examples Disc.

100 CLEAR SCREEN Clear the alpha display
110 GINIT Initialize various graphics parameters.
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 X_gdu_max=100*MAX(1,RATIO) Determine how many GDUs wide the screen is
150 Y_gdu_max=100*MAX(1,1/RATIO) Determine how many GDUs high the screen is
160 LORG 6 Reference pOint: center of top of label
170 FOR 1=-.3 TO .3 STEP .1 Offset of X from starting point
180 MOVE X_gdu_max/2+I,Y_gdu_max Move to about middle of top of screen
190 LABEL "VOLTAGE VARIANCE" Write title of plot
200 NEXT I Next position for title
210 DEG Angular mode is degrees (used in LDIR)
220 LDIR 90 Specify vertical labels
230 CSIZE 3.5 Specify smaller characters
240 MOVE 0,Y_gdu_max/2 Move to center of left edge of screen
250 LABEL "Voltage" Write Y-axis label
260 LORG 4 Reference pOint: center of bottom of label
270 LDIR 0 Horizontal labels again
280 MOVE X_gdu_max/2, .07*Y_gdu_max. X: center of screen; Y: above key labels
290 LABEL "Time (seconds)" ! Write X-axis label
300 VIEWPORT .1*X_gdu_max, . 98*X_gdu_max, . 15*Y_gdu_max, .9*Y_gdu_max
! Define subset of screen area
310 FRAME
320 WINDOW 0,100,16,18
330 AXES 1, .05,0,16,10,5,3
340 CLIP OFF
350 CSIZE 2.5,.5
360 LORG 6

2-18 Using Graphics Effectively

Draw a box around defined subset
Anisotropic scaling: left/right/bottom/top
Draw axes with appropriate ticks
So labels can be outside VIEWPORT limits
Smaller chars for axis labelling
Ref. pt: Top center 1\

370
380
390
400
410
420
430
440
450
460
470
480
490
500

FOR 1=0 TO 100 STEP 10 Every 10 units I \
MOVE 1,15.99 A smidgeon below X-axis I > Label X-axis
LABEL USING "',K";I Compact; no CR/LF I /

NEXT I et sequens 1/
LORG 8 Ref. pt: Right center 1\
FOR 1=16 TO 18 STEP .25 Every quarter I \

MOVE -.5,1 Smidgeon left of Y-axis I > Label Y-axis
LABEL USING "',00.00";1 00.00; no CR/LF I /

NEXT I et sequens 1/
PENUP
FOR X=2 TO 100 STEP 2 Points to be plotted

PLOT X,RND+16.5 Plot a data point
NEXT X
END

VOLTAGE VARIANCE

18.00.------------------------------,

III
CJ
11:1

+'
~

o
>

17.75

Time (seconds)

Figure 2-8. Labeled Axes (SinAxes)

Using Graphics Effectively 2-19

Note that the tick marks drawn by the AXES statement extend only toward the interior
of the graph. This was deliberate. Clipping (automatically put into effect by the
VIEWPORT statement) was still active at the soft clip limits. If the CLIP OFF statement
had been placed before the AXES statement, the tick marks would have extended on both
sides of the axes. However, the axes themselves would have extended across the entire
width of the hard clip limits and right through the axes' labels.

The CLIP OFF statement was necessary, though. The LABEL statement draws the
letters as a series of vectors (lines), and any lines which are outside the current soft
clip limits (when CLIP is ON) are cut off. Which means that had line 350 (the CLIP
OFF) been missing from the program, none of the axis labels would have been drawn,
since they are all outside the VIEWPORT area. Of course, the main titles ("VOLTAGE
VARIANCE", "Voltage", and "Time (seconds)") would still have been drawn, because
they are done before the VIEWPORT is executed.

If your graph needs to be read with more precision than the AXES statement affords,
you can use the GRID statement. This is similar to AXES, except the major ticks extend
across the entire soft clip area, and the minor ticks for X and Y intersect in little crosses
between the grid lines. The previous program has only one change: the AXES statement
has been replaced by a GRID statement.

GRID 5, .25,0,16,2,2,1 ! Draw grid with appropriate ticks

2-20 Using Graphics Effectively

r

Gl
en
tcJ
+'

o
>

17.75 +

VOLTAGE VARIANCE

1
+ + + + +

Time (seconds)

Figure 2-9. Labeled Grid

Note that not only was the keyword AXES replaced by GRID, some of the parameters
were changed also. The reason for this is that the minor ticks specified in the AXES
statement were so close together that the minor tick crosses drawn by the GRID
statement would have overlapped. The end result would have been a grid with even
the minor ticks extending all the way across the soft clip area.

Using Graphics Effectively 2-21

Strategy: Axes vs. Grids
On many occasions, an application is defined such that there is no question as to which
statement to use. Other times, however, it is not such a cut-and-dried situation and you
want to weigh the alternatives carefully before setting your program in concrete. To aid
you in the decision, here are some pros and cons to both statements.

Advantages of AXES:

• It executes much faster than GRID. This is for two reasons. First, there is much less
calculating the computer must do, and second, there is much less actual drawing of
lines the computer must do. This becomes especially evident when sending a plot
to a hard-copy plotting device where physical pen must be hauled around.

• It does not clutter the plot as much. Reference points are available at the axes, but
there is no question about where the data curve is. When using GRID, it is possible
to lose the data curve among the reference lines if it is close to being horizontal or
vertical.

Advantages of GRID:

• Interpolation and estimation are much more accurate due to the great number of
reference ticks and lines; one need not estimate horizontal and vertical lines to refer
back to the axis labels.

• Usually there is no need to use a FRAME statement to completely enclose the
soft clip limits, as is often desired, because the major tick marks from the GRID
statement would probably redraw the lines. Of course, this is dependent upon the
Major Tick count.

There is a way to get the best of both worlds, however. If you want to be able to
estimate data points very accurately from the finished plot, but also want to prevent the
plot from appearing too cluttered, it can be done. Below is a plot drawn by a program
identical to the previous one except for the GRID statement. The GRID statement used
specifies exactly the same parameters as the AXES statement (two programs ago) with
one exception: the Major Tick Length parameter is reduced. This causes the tick crosses
(the little plus signs) to be reduced to dots. Using this strategy allows easy interpolation
of data points (to the same accuracy previously used in the AXES statement), but does
not clutter the graph nearly as much as normal ticks would. In fact, had we used the
default minor tick length, the length of the lines making up the tick crosses would have
been greater than the distance between the ticks. Thus they would have merged together
to make solid lines, extending all the way across and cluttering the graph.

2-22 Using Graphics Effectively

GRID 1, .05,0,16,10,5,.0001 Draw grid with appropriate ticks

r VOLTAGE VARIANCE 1
18.11111 _________ I_ - ------I- --------I- --------I- -- -----I- --------I- -:: -----I- -------: I::::: --- -I- ----- : -I

�7.75/----+---t--f----+-----+---+---+--f----+------l

IS.88B~--:-'IB::----::':211-----,3:i:-1I--4I:-B ----I511---::':SIl--7:i:-a--eL..a ------19a-----II88

Time (seconds)

Figure 2-10. Labeled Grid with More Tkk Marks

Be aware when using this strategy of making huge numbers of degenerate tick crosses that
the computer still thinks of them as crosses, which means that both the horizontal and
vertical components must be drawn. This looks to you like drawing and then redrawing
each dot. Therefore, when sending this type of grid to a hard-copy plotter, do not be
averse to starting your plot, and then reading the remainder of this chapter.

Another way to reach a compromise between ease of interpolation and lack of clutter is
to use both AXES and GRID in the same program. Note the program below. GRID
is used for the major tick lines, but since the minor tick crosses are not desired within
each rectangle between the major tick lines, AXES is used to specify minor ticks. This
program is in the file "SinGrdAxes" on the Manual Examples Disc.

Using Graphics Effectively 2-23

100 CLEAR SCREEN Clear the alpha display
110 GINIT Initialize various graphics parameters.
120 PLOTTER IS CRT,"INTERNAL" Use the internal screen
130 GRAPHICS ON Turn on the graphics screen
140 LORG 6 Reference point: center of top of label
150 X_gdu_max=100*MAX(l,RATIO) Determine how many GDUs wide the screen is
160 Y_gdu_max=100*MAX(l,l/RATIO) Determine how many GDUs high the screen is
170 FOR 1=-.3 TO .3 STEP .1 Offset of X from starting point
180 MOVE X_gdu_max/2+I,Y_gdu_maxl Move to about middle of top of screen
190 LABEL "VOLTAGE VARIANCE" Write title of plot
200 NEXT I Next position for title
210 DEG Angular mode is degrees (used in LDIR)
220 LDIR 90 Specify vertical labels
230 CSIZE 3.5 Specify smaller characters
240 MOVE O,Y_gdu_max/2 Move to center of left edge of screen
250 LABEL "Voltage" Write Y-axis label
260 LORG 4 Reference point: center of bottom of label
270 LDIR 0 Horizontal labels again
280 MOVE X_gdu_max/2,.07*Y_gdu_max X: center of screen; Y: above key labels
290 LABEL "Time (seconds)" ! Write X-axis label
300 VIEWPORT .1*X_gdu_max, . 98*X_gdu_max, . 15*Y_gdu_max, .9*Y_gdu_max
! Define subset of screen area
310 WINDOW 0,100,16,18
320 AXES 1, .05,0,16,5,5,3
330 AXES 1, .05,100,18,5,5,3
340 GRID 10, .25,0,16,1,1
350 CLIP OFF
360 CSIZE 2.5, .5
370 LORG 6
380 FOR 1=0 TO 100 STEP 10
390 MOVE 1,15.99
400 LABEL USING "#,K";I
410 NEXT I
420 LORG 8
430 FOR 1=16 TO 18 STEP .25
440 MOVE -.5,1
450 LABEL USING "#,00.00";1
460 NEXT I
470 PENUP
480 FOR X=2 TO 100 STEP 2
490 PLOT X,RND+16.5
500 NEXT X
510 END

2-24 Using Graphics Effectively

Anisotropic scaling: left/right/bottom/top
Draw axes intersecting at lower left
Draw axes intersecting at upper right
Draw grid with no minor ticks
So l~bels can be outside VIEWPORT limits
Smaller chars for axis labelling
Ref. pt: Top center 1\
Every 10 units 1 \

A smidgeon below X-axis 1 > Label X-axis
Compact; no CR/LF 1 /
et sequens 1/
Ref. pt: Right center 1\
Every quarter 1 \
Smidgeon left of Y-axis 1 > Label Y-axis
00.0; no CR/LF 1 /

et sequens 1/
LABEL statement leaves the pen down
Points to be plotted ...
Get a data point and plot it against X
et cetera

r
VOLTAGE VARIANCE

::]''''''''1'''''''''1'''''''' 1 "'''''I' "'"''I''' '"''I''''''' I" """I'" '''''I''''''']
5

17.5 8

17.25

III

~ 17.l1li
+>

o
> 16.75

16.58

16.25

!\ I ~
n J"\ AI \)

tI\ / _~V V

V\) IV
y

(\

J\
/~ I~AI lit

~/ l III
V

.1 01 ,I 01 01 01 ,I
18 28 38 48 58 68 78 B8 98 IBfiI

Time (seconds)

Figure 2-11. Using AXES and GRID (SinGrdAxes)

1

Note that two AXES statements were used. The parameters are identical save for the
position of the intersection. The first AXES specifies an intersection position of 0,16:
the lower left corner of the soft clip area. The second specifies an intersection position
of 100,18: the upper right corner of the soft clip area.

Also note that the FRAME statement was removed; the lines around the soft clip limit
were being drawn by both the pair of AXES statements and the GRID statement anyway.

This is the final version of our illustrative series of examples. The series of examples was
used to help you grow in ability to create graphics programs and see how they can be
structured to illustrate information generated from raw data (hypothetically input using
the RND function). In actual practice the data source could have been a voltmeter or
other device.

Using Graphics Effectively 2-25

Miscellaneous Graphics Concepts

Clipping
Something that occurs completely "behind the scenes" in your computer when drawing
is a process called clipping. Clipping is the process whereby lines that extend over the
defined edges of the drawing surface are cut off at those edges. There are two different
clipping boundaries at all times: the soft clip limits and the hard clip limits. The hard
clip limits are the absolute boundaries of the plotting surface, and under no circumstances
can the pen go outside of these limits. The soft clip limits are user-definable limits, and
are defined by the CLIP statement.

CLIP 10,20.5,Ymin,Ymax

This statement defines the soft clip boundaries only; hard clip limits are completely
unaffected. After this statement has been executed, all lines which attempt to go outside
the X limits (in UDUs) of 10 and 20.5, or the Y limits (in UDUs) of Ymin and Ymax will
be truncated at the appropriate edge. Clipping at the soft clip limits can be turned off
by the statement:

CLIP OFF

and it can be turned back on, using the same limits, by

CLIP ON

If you want the soft clip limits to be somewhere else, use the CLIP statement with four
different limits. Only one set of soft clip limits can be in effect at anyone time. Clipping
at the hard clip limits cannot be disabled.

The VIEWPORT statement, in addition to defining how WINDOW coordinates map
into the VIEWPORT area, turns on clipping at the specified VIEWPORT edges.

2-26 Using Graphics Effectively

Drawing Modes
On a monochromatic CRT, there are three different drawing modes available. (For
selecting pens with a color CRT, see the "Color Graphics" chapter.) The three pens
perform the following actions:

Table 2-1. Monochromatic Pens

Pen
Number Function

1 Draws lines (turns on pixels)

-1 Erases lines (turns off pixels)

0 Complements lines (changes pixels' states)

A characteristic of drawing with pen -lor pen 1 is that if a line crosses a previously­
drawn line, the intersection will be the same "color" as the lines themselves. When
drawing with pen 0, and a line crosses a previously-drawn line, the intersection becomes
the opposite state of the lines. For example, assume a black background (like right after
a GCLEAR). You select PEN 0, then draw a pair of AXES. When the first axis is drawn,
all pixels are off, so the line being drawn causes all pixels to be turned on along its length.
However, when the second axis is drawn, it will turn on pixels until it gets to the other
axis. At that point, the pixel is on, so it gets turned off. After that, the rest of the pixels
are off, so they are again turned on.

This concept is illustrated by the following program (file "Pen" on the Manual Examples
Disc). The listing is given so you can see it in action, but since it is a dynamic display, it
makes little sense to show a snapshot of it. Line 150 of the program defines the type of
operation the program will exhibit. If Pen equals zero, all lines will complement, because
lines 610 and 680 select pen -0 and +0, which are identical. When you wish to change
the program to drawing and erasing mode, change line 150 to say Pen=1. Then lines 610
and 680 will select pens -1 and + 1, respectively.

Using Graphics Effectively 2-27

100 CLEAR SCREEN Clear the alpha display
110 INTEGER Polygon,Polygons,Side,Sides,Pen Make loops faster
120 Polygons=20 How many polygons?
130 Sides=3 How many sides apiece?
140 Pen=O 1: Draw/erase; 0: Complement
150 ALLOCATE INTEGER X(O:Polygons-l,l:Sides),Y(O:Polygons-l,l:Sides)
160 ALLOCATE INTEGER Dx(Sides),Dy(Sides)
170 RANDOMIZE Different each time
180 GIN IT Initialize graphics parameters
190 PLOTTER IS CRT,"INTERNAL" Use the internal screen
200 GRAPHICS ON Turn on graphics screen
210 WINDOW 0,511,0,389 Integer arithmetic is faster
220 PEN Pen Select appropriate pen
230 FOR Side=l TO Sides For each vertex ...
240 X(O,Side)=RND*512 ... define a starting point ...
250 Y(O,Side)=RND*390 ... for both X and Y ...
260 PLOT X(O,Side),Y(O,Side) ... then draw to that pOint.
270 NEXT Side et cetera
280 IF Sides>2 THEN PLOT X(O,l),Y(O,l) If simple line, don't close
290 GOSUB Define_deltas Get dx and dy for each vertex
300 FOR POlygon=l TO Polygons-l Draw all the pOlygons
310 PENUP Don't connect polygons
320 FOR Side=l TO Sides Each vertex of each pOlygon
330 Temp=X(Polygon-l,Side)+Dx(Side) Avoid recalculation
340 IF Temp>511 THEN \
350 Dx(Side)=-Dx(Side) \
360 ELSE! (it's not off right side) > Is X out of range?
370 IF Temp<O THEN Dx(Side)=-Dx(Side) /
380 END IF ! (off right side?) /
390 X(Polygon,Side)=X(Polygon-l,Side)+Dx(S de) ! Calculate next X
400 Temp=Y(Polygon-l,Side)+Dy(Side) ! Avoid recalculation
410 IF Temp>389 THEN ! \
420 Dy(Side)=-Dy(Side) \
430 ELSE! (it's not off top) > Is Y out of range?
440 IF Temp<O THEN Dy(Side)=-Dy(Side) /
450 END IF ! (off the top?) ! /
460 Y(Polygon,Side)=Y(Polygon-l,Side)+Dy(Side)! Calculate new Y
470 PLOT X(Polygon,Side),Y(Polygon,Side) ! Draw line to new point
480 NEXT Side ! Loop for next side of polygon
490 IF Sides>2 THEN PLOT X(Polygon,l),Y(Polygon,l)! If line, don't close
500 NEXT Polygon ! Get each pOlygon
510 New=O Start re-use at entry 0
520 ON CYCLE 10 GOSUB Define_deltas Change deltas periodically
530 LOOP Ad infinitum ...

2-28 Using Graphics Effectively

540 IF New=O THEN
550 Previous=Polygons-l
560 ELSE! (new>O)
570 Previous=(Previou8+1) MOD Polygons
580 END IF (new=O?)
590 PENUP
600 PEN -Pen
610 DISABLE
620 FOR Side=l TO Sides
630 PLOT X(New,Side),Y(New,Side)
640 NEXT Side
650 IF Sides>2 THEN PLOT X(New,l),Y(New,l)
660 PENUP
670 PEN Pen
680 FOR Side=l TO Sides
690 Temp=X(Previous ,Side) +Dx(Side)
700 IF Temp>511 THEN
710 Dx(Side)=-Dx(Side)
720 ELSE
730 IF Temp<O THEN Dx(Side)=-Dx(Side)
740 END IF
750 X(New,Side)=X(Previous,Side)+Dx(Side)
760 Temp=Y(Previous,Side)+Dy(Side)
770 IF Temp>389 THEN
780 Dy(Side)=-Dy(Side)
790 ELSE
800 IF Temp<O THEN Dy(Side)=-Dy(Side)
810 END IF
820 Y(New,Side)=Y(Previous,Side)+Dy(Side)
830 PLOT X(New,Side),Y(New,Side)
840 NEXT Side
850 IF Sides>2 THEN PLOT X(New,l),Y(New,l)
860 ENABLE
870 New=(New+l) MOD Polygons
880 END LOOP
890 Define_deltas: ! -------------------------
900 FOR Side=l TO Sides
910 Dx(Side)=RND*3+2
920 IF RND<.5 THEN Dx(Side)=-Dx(Side)
930 Dy(Side)=RND*3+2
940 IF RND<.5 THEN Dy(Side)=-Dy(Side)
950 NEXT Side
960 RETURN
970 END

Boundary condition?
Start re-using over

Re-use next entry

Don't connect polygons
This works either way for Pen
Don't interrupt in "Side" loop
\
\

/
/

> Erase oldest line

Drawing pen
\
\

/
/

\
\

/
/

\
\

/
/

\
\

/

\ Draw the new line
/ same way as before.

/

Interrupts OK again
Next one to re-use.
End of infinite loop

For each vertex
Magnitude of this dx
Sign of this dx
Magnitude of this dy
Sign of this dy
et cetera
back to the main program

Observe when running the program in complementing mode that a pixel is on only if it
has been acted upon by an odd number of line segments.

Using Graphics Effectively 2-29

Selecting Line Types
When a graph is attempting to convey several different kinds of information, colors are
often used: The red curve signifies one thing, the blue curve signifies another thing,
etc. But when only one color is available, as on a monochromatic CRT, this method
cannot be used. Something that can be used, however, is different line types. Even on a
monochrome CRT, it makes sense to say that the solid line signifies one thing, the dotted
line signifies another thing, and the dashed line signifies still another.

There are ten line types available:

LIt"'"JE T\(PE 1 E1

LINE T\'"PE B
--------,

-----" LINE T"'"(PE 8
-------,

,------ LINE T\'"PE ?
-------,

'-------- LINE T"'lPE G
-- ---,

LINE TV"PE c-
"_I

........... _---------,

1 .. - ____ --------- L I t~"JE T"'"(PE 4

LINE T"'"(PE :3

LINE T\fPE "::.
'-

LINE T"'"(PE 1

Figure 2-12. Series 200 Line Types

2-30 Using Graphics Effectively

As you can see, LINE TYPE 1 draws a solid line. LINE TYPE 2 draws only the end
points of the lines and is the same as moving to a new point, dropping the pen, lifting
the pen, and repeating. LINE TYPEs 3 through 8 are patterned sequences of on and off.
With these, the length of each pattern, i.e, the distance the line extends before the on/off
pattern begins to repeat, can be specified by supplying a second parameter in the LINE
TYPE statement. This second parameter specifies distance in GDUs. For example,

LINE TYPE 5.15

tells the computer to start using a simple dashed line, and to proceed a total of 15 GDUs
before starting the pattern over. On the CRT, the repeat length will be rounded to a
multiple of five, with a minimum value of five.

LINE TYPEs 9 and 10 are solid lines with a minor and major tick mark at the end of each
line, respectively. The tick mark will be either horizontal or vertical. The orientation
of the tick marks will be whatever is farther from the angle of the line just drawn. For
example, if you draw a line at a thirty-degree angle, it is closer to being horizontal than
it is to being vertical. Thus, tick mark at the end of the line will be vertical. The value
for major tick size is 2 GDUs, and minor tick length is one half the major tick length.

For all line types, the computer remembers where in the pattern a line segment ended.
Therefore, when you start drawing another line segment, the line pattern will continue
from where it left off. If you want the pattern to start over, just re-execute the LINE
TYPE statement.

Storing and Retrieving Images
If a picture on the screen takes a long time to draw, or the image is used often, it may
be advisable to store the image itself-not the commands used to draw the image-in
memory or on a file.

This may be done with the GSTORE command. First, you must have an INTEGER
array of sufficient size to hold all the data in the graphics raster. The array size varies
depending on what computer system you have in general and what monitor you have in
particular. A formula for calculating array size is:

Using Graphics Effectively 2-31

A monochromatic display has 1 bit per pixel. The Model 236C color computer has 4 bits
per pixel. The Series 300 color monitors have either 4, 6 or 8 bits per pixel. But rather
than having to get intimately involved with screen resolution and the number of bits per
pixel, there is a shortcut. The fifth and sixth elements of the integer array passed back
by GESCAPE operation selector 3 specify the number of rows and columns an integer
array must have to contain the entire graphics image. For example:

20 INTEGER A(1:6)
30 GESCAPE CRT,3;A(*)
40 PRINT USING "K";"Array must have ";A(5)*A(6);" elements (",A(5),"x",
A(6),")."
50 ALLOCATE Gscreen(A(5),A(6»
60 GSTORE Gscreen(*)

The array Gscreen is allocated of the size specified by the "rows" and "columns" numbers
from the GESCAPE return array. This array holds the picture itself, and it doesn't care
how the information got to the screen, or in what order the different parts of the picture
were produced.

In the following program, the image is drawn with normal plotting commands, and then,
after the fact, the image is read from the graphics area in memory, and placed into the
array. After the array is filled by the GSTORE, a curve is plotted on top of the image
already there. Then, turning the knob changes the value of a parameter, and a different
curve results. But we do not have to replot the grid, axes and labels. We merely need
to GLOAD the image (which has everything but the curve and the current parameter
value). This allows the curve to be inspected almost in real time. This program is
contained in file "Gstore" on the Manual Examples Disc.

This progrom uses the GSTORE method mentioned above.

100
110
120
130
140
150
160
170
180
190
200
210

CLEAR SCREEN
GINIT
PLOTTER IS CRT,"INTERNAL"
INTEGER A(1 :6)
GESCAPE CRT,3;A(*)
ALLOCATE INTEGER Screen(1:A(5)
GRAPHICS ON
CSIZE 6
LORG 6
X_gdu_max=100*MAX(l,RATIO)
Y_gdu_max=100*MAX(l,l/RATIO)
FOR 1=-.25 TO .25 STEP .1

2-32 Using Graphics Effectively

Clear the alpha display
Initialize various graphics parameters.
Use the internal screen
Declare array A
Store operation selector 3 info. in A(*).

1:A(6»
Turn on the graphics screen
Large letters for main title
Reference pOint: center of top of label
Determine how many GDUs wide the screen is
Determine how many GDUs high the screen is
Offset of X from starting point

220 MOVE X_gdu_max/2+I,Y_gdu_maxl Move to about middle of top of screen
230 LABEL "Blackbody Radiation" Write title of plot
240 NEXT I Next position for title
250 CSIZE 4 Smaller letters for temperature legend
260 MOVE X_gdu_max/2,Y_gdu_max*.95 Right below main title
270 LABEL "Temperature (K): Label offset to left so value will fit
280 DEG Angular mode is degrees (used in LDIR)
290 LDIR 90 Specify vertical labels
300 CSIZE 3.5 Specify smaller characters
310 MOVE O,Y_gdu_max/2 Move to center of left edge of screen
320 LABEL "Intensity of Radiation"! Write Y-axis label
330 LORG 4 Reference point: center of bottom of label
340 LDIR 0 Horizontal labels again
350 MOVE X_gdu_max/2,.07*Y_gdu_max! X: center of screen; Y: above key labels
360 LABEL "Wavelength (microns)" ! Write X-axis label
370 VIEWPORT .1*X_gdu_max,.98*X_gdu_max,.15*Y_gdu_max,.9*Y_gdu_max
! Define subset of screen area
380 Xmin=-4
390 Xmax=3
400 Xrange=Xmax-Xmin
410 Dx=.1
420 Ymin=-5
430 Ymax=25
440 Yrange=Ymax-Ymin
450 Dy=1
460 WINDOW Xmin,Xmax,Ymin,Ymax
470 CLIP OFF
480 FOR Decade=Xmin TO Xmax

\

I

\
\
\
I

I
I

Calculate X and Y internal data

Anisotropic scaling: left/right/bottom/top
So labels can be outside VIEWPORT limits

1\
490 FOR Units=1 TO 1+8*(Decade<Xmax)! I \
500 X=Decade+LGT(Units)
510 MOVE X,Ymin
520 DRAW X,Ymax
530 NEXT Units
540 NEXT Decade
550 FOR X=Xmin TO Xmax STEP Dx*10
560 LORG 6
570 CSIZE 3
580 MOVE X,Ymin-Yrange*.01
590 LABEL USING "#,K";"10 "
600 CSIZE 2
610 LORG 1

I \
I > Draw logarithmic X-axis
I I
I I
II

A smidgeon below X-axis
Compact; no CR/LF

1\
I \
I \
I \

Label the
X-axis

620 MOVE X+Xrange*.01,Ymin-Yrange*.03

I \
I I
I I
I I

630 LABEL USING "#,K";X ! I I
640 NEXT X et sequens II
650 CLIP ON I \

Using Graphics Effectively 2-33

660 AXES Xrange,Dy,Xmin,Ymin,1,5 \
670 AXES Xrange,Dy,Xmax,Ymax,1,5 > Only powers of 10 on Y-axis
680 GRID 1,Dy*5,Xmin,Ymin /
690 CLIP OFF /
700 FOR Y=Ymin TO Ymax STEP Dy*5 Logarithmic Y-axis 1\
710 CSIZE 4 Big chars for "10" I \
720 LORG 8 I \
730 MOVE Xmin-Xrange*.03,Y Smidgeon left of Y-axis I \
740 LABEL USING "#,K";"10" I \ Label the
750 CSIZE 2 Small chars for exponent I / Y-axis
760 LORG 1 I /
770 MOVE Xmin-Xrange*.025,Y+Yrange*.01 I /
780 LABEL USING "#,K";Y ! Compact; no CR/LF I /
790 NEXT Y ! et sequens 1/
800 ! Here is where the action starts .. .
810 GSTORE Screen(*) Store the screen image in the array
820 CSIZE 4 Same size letters as before
830 LORG 1 Lower left label origin
840 Per=10 Number of knob pulses before action taken
850 Mantissa=9 \ These three statements define the
860 Exponent=2 > temperature in a way which can be
870 Temperature=Mantissa*10-Exponent / changed logarithmically.
880 Rotation=10 ! Make the subroutine notice first pass
890 GOSUB New_curve Load the screen and plot the curve
900 ON KNOB .5 GOSUB New_curve ! Look at the knob every half a second
910 Spin: GOTO Spin ! Looplooplooplooplooplooplooplooplooploop
920 New_curve: ! ---
930 Rotation=Rotation+KNOBX ! Accumulate knob pulses
940 IF ABS(Rotation)<Per THEN RETURN ! If not enough, return
950 GLOAD Screen(*) ! Load grid (in effect, erase old curve)
960 Delta=SGN(Rotation) ! Which way was knob turned?
970 IF Mantissa=3 AND Exponent=2 AND Delta<O OR Mantissa=2 AND Exponent=14 AND
Delta>O THEN ! Reached the limits
980 BEEP 100,.01 ! Let user know
990 ELSE ! (in range)
1000 FOR 1=1 TO INT(ABS(Rotation)/Per)! Allow rapid change of temperature
1010 GOSUB Delta ! Increment/decrement logarithmically
1020 NEXT I
1030 END IF (out of range?)
1040 Temperature=Mantissa*10-Exponent ! Build temperature value
1050 Rotation=O Start knob rotation accumulation again
1060 CLIP OFF Allow label to be written outside viewport
1070 MOVE 0,25.4 Go to label location
1080 LABEL USING "K";Temperature Write new temperature
1090 PENUP Label leaves pen down
1100 CLIP ON Turn clipping back on
1110 FOR X=Xmin TO Xmax STEP Dx*2 # data points: CEIL«Xmax-Xmin)/Dx+eps)

2-34 U sing Graphics Effectively

1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

Y=FNIntensity (10 A X, Temperature) ! Calculate intensity
PLOT X,LGT(Y) ! Get a data pOint and plot it against X

NEXT X ! et cetera
RETURN

Delta: --
IF Mantissa=3 AND Exponellt=2 AND Delta<O THEN RETURN \ Have you reached
IF Mantissa=2 AND Exponent=14 AND Delta>O THEN RETURN ! / a boundary yet?
IF Delta>O THEN Clockwise rotation

IF Mantissa=9 THEN Need to increment order of magnitude yet?
Exponent=Exponent+l Increment order of magnitude
Mantissa=l Start over with mantissa

ELSE ! (mantissa<9)
Mantissa=Mantissa+l

END IF ! (mantissa=9?)
ELSE , (delta<O)

IF Mantissa=l THEN
Exponent=Exponent-l
Mantissa=9

ELSE ! (mantissa>l)
Mantissa=Mantissa-l

END IF ! (mantissa=l?)
END IF ! (delta>O?)
RETURN
END

In the middle of an order of magnitude

Counterclockwise rotation
Need to decrement order of magnitude yet?
Decrement order of magnitude
Start mantissa over again at top end

In the middle of an order of magnitude

! **
Intensity:DEF FNIntensity(Wavelength,Temperature)

Intensity=37410/WavelengthA 5/(EXP(14.39/(Wavelength*Temperature»-l)
RETURN Intensity

FNEND

Using Graphics Effectively 2-35

The curve looks like the following display.

10
25

10
2a

c
0

.... 10 IS
ftI
~

-u
ftI

Il::
10

1a

<t-
o

>.
10

5 .-
\II
C
Il ~
c

10
a

H

II
-

Blackbody Radiation
Temperature (K): 1000

/ i'-.....
...........

.............
....

r........

............ ~

-10 3 -10 2 10-1 10a

Wavelength (microns)

r........

Figure 2-13. Using GSTORE and GLOAD (Gstore)

2-36 Using Graphics Effectively

..........

Data-Driven Plotting
Often, when plotting data points, they do not form a continuous line like the those in the
last chapter's programs. One must have the ability to control the pen's position. In the
last chapter, a passing reference was made to a third parameter in the PLOT statement.
This third parameter is the pen-control parameter, and its function is to raise or lower
the pen so many lines can be drawn with one set of data, not just one continuous line.

When using a single X-position and V-position in a PLOT statement (as opposed to
plotting an entire array; we'll cover this a little later), the third parameter is defined in
the following manner. Though it need not be of type INTEGER, its value should be
an integer. If it is not, it will be rounded. The third parameter is either positive or
negative, and at the same time, either even or odd. The evenness/oddness of the number
determines which action will be performed on the pen, and the sign of the number
determines when that action will be performed: before or after the pen is moved.

Table 2-2. Pen Control Parameters

Even (Up) Odd (Down)

Positive (After) Pen Up After Move Pen Down After Move

Negative (Before) Pen Up Before Move Pen Down Before Move

The default parameter is + 1-positive odd-therefore, the pen will drop after moving,
and if the pen is already down, it will remain down, drawing a line. Indeed, this is what
happened in the first example in Chapter 1. (Zero is considered positive.)

Using Graphics Effectively 2-37

Following is a program (program "Leml" on the Manual Examples Disc) which uses pen
control. It draws a LEM (Lunar Excursion Module). In particular, see how the PLOT
statement was used with an array specifier. Notice that the X and Y values are in the
same array as the pen-control parameters.

100 CLEAR SCREEN Clear the alpha display
110 OPTION BASE 1 Arrays start at one
120 DIM Lem(33,3) Data and pen-control array
130 READ Lem(*) Define the LEM data
140 GINIT Initialize various graphics parameters
150 PLOTTER IS CRT,"INTERNAL" Use the internal screen
160 SHOW -10,10,-10,10 Isotropic scaling
170 GRAPHICS ON Turn on the graphics screen
180 AREA INTENSITY . 125, . 125, . 125 12.5% gray
190 PLOT Lem(*) Plot the data
200 Lem:! X Y Pen X Y Pen I X Y Pen X Y Pen
210 DATA 0, 0, 11 Start of pOlygon with FILL and EDGE
220 DATA 1.5, 1, -2, 2.5, 2, -1, 2.5, 3, -1, 1.5, 4, -1 ! Octagon
230 DATA -1. 5, 4, -1, -2.5, 3, -1, -2.5, 2, -1, -1.5, 1, -1
240 DATA 0, 0, 7 End of first polygon
250 DATA 0, 0, 6 Start of pOlygon with FILL
260 DATA -2.5, 1, -2, 2.5, 1, -1, 2.5, -2, -1, -2.5, -2, -1 Box
270 DATA -2.5, 1, -1
280 DATA 0, 0, 7 End of second polygon
290 DATA -2.5, -2, -2, -4.5, -4, -1, -2.5, 0, -1, -5, -4, -2 Left Leg
300 DATA -4, -4, -1
310 DATA 2.5, -2, -2, 4.5, -4, -1, 2.5, 0, -1, 5, -4, -2 Rt. leg
320 DATA 4, -4, -1
330 DATA 0, 0, 10 Start of polygon with EDGE
340 DATA -0.5, -2, -2, -1, -3, -1, 1, -3, -1, 0.5, -2, -1 Nozzle
350 DATA 0, 0, 7 End of third polygon
360 END

2-38 Using Graphics Effectively

Figure 2-14. Example of Data-Driven Plotting (Lem2)

Having the pen-control parameter in a third column of the data array is generally a
good strategy; it reduces the number of array names you must declare, and when you
have the data points for the picture, you also have the information necessary to draw it.
Nevertheless, an array must be entirely of one type, and usually you'll want the data to
be REAL. If you're pressed for memory, INTEGER numbers take only one-fourth the
memory REAL numbers take to store.

Using Graphics Effectively 2-39

The PLOT keyword can plot an entire array in one statement, but you must have just
one array holding both the data and pen-control parameters. That is, you cannot have
the data in a two-column REAL array and the pen-control parameters in a one-column
INTEGER array, unless you are plotting one point at a time, as above. The array it
plots must be a single two-column or three-column array. If it is a two-column array, the
pen-control parameter is assumed to be + 1 for every point (pen down after move). If
you have a third column in the array, the array columns are interpreted in these ways:

Table 2-3. Pen Control when Plotting Entire Arrays

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y 0 Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen number ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored 7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 Color

blue value ignored 15 Value

ignored ignored >15 Ignored

For a detailed description of these parameters, see IPLOT, PLOT, RPLOT, or SYMBOL
in the BASIC Language Reference manual.

2-40 Using Graphics Effectively

The AREA INTENSITY statement is how you get shades of gray on a black-and-white
CRT whose electron gun is either fully on or completely off. You can get seventeen shades
of gray. This is done through a process called dithering. Dithering is accomplished
through selecting small groups of pixels 1 , a four-by-four square of them on the Series
200/300 computers. Various pixels in the dithering box are turned on and off to arrive
at an "average" shade of gray. There are only seventeen possible shades because out of
sixteen pixels (the 4 x 4 box), you can have none of them on, one of them on, two of them
on, and so forth, up to all sixteen of them on. And it makes no difference which pixels
are on; they are chosen to minimize the striped or polka-dotted pattern inherent to a
dithered image.

For more detail on the AREA INTENSITY and other color-related statements, see the
"Color Graphics" chapter.

Translating and Rotating a Drawing
Often, there is an application where a segment of a drawing must be replicated in many
places; the same sub-picture needs to be drawn many times. Using the PLOT statement,
it is possible but rather tedious to do. There is another statement called RPLOT, which
draws a figure relative to a point of your choice. RPLOT means Relative PLOT, and
it causes a figure to be drawn relative to a previously-chosen reference point. RPLOT's
parameters may be two or three scalars, or a two-column or three-column array; the
parameters are identical to those of PLOT.

The picture defined by the data given to an RPLOT statement is drawn relative to a
point called the current relative origin. This is not necessarily the same as the pen
position. The current relative origin is the last point resulting from anyone of the
following statements:

AXES

IDRAW

PLOT

DRAW

IMOVE

POLYGON

FRAME

IPLOT

POLYLINE

GINIT

LABEL

RECTANGLE

GRID

MOVE

Typically, a MOVE is used to position the current relative origin at the desired location,
then the RPLOT is executed to draw the figure. After the RPLOT statement has
executed, the pen may be in a different place, but the current relative origin has not
moved. Thus, executing two identical RPLOT statements, one immediately after the
other, results in the figure being drawn precisely on top of itself.

1 The word "pixel" is a blend of the two words "picture element," and it is the smallest addressable point
on a plotting surface. A Model 236 computer has 512x390-pixel resolution; thus there can be no more
than 512 dots drawn on any row, or scan line, of the CRT, or 390 dots drawn in any column.

Using Graphics Effectively 2-41

A figure drawn with RPLOT can be rotated by using the PIVOT or PDIR statement
before the RPLOT. The single parameter for a PIVOT or PDIR is a numeric expression
designating the angular distance through which the figure is to be rotated when drawn.
This value is interpreted according to the current angular mode: either DEG or RAD.

Here is a program using an RPLOT. It is found on the Manual Examples Disc under
the file name "Rplot". Various figures are defined with DATA statements: a desk, a
chair, a table, and a bookshelf. The program displays a floor layout. Here again, the
"end polygon mode" codes (the 0,0, 7s in the desk and chair definitions) are unnecessary;
when a polygon mode starts, any previous one ends by necessity.

100 CLEAR SCREEN ! Clear the alpha display
110 OPTION BASE 1 ! Make arrays start at one
120 DIM Room(10,3),Desk(18,3),Chair(14,3),Bookshelf(4,3),Table(4,3)
130 READ Room(*),Desk(*),Chair(*),Bookshelf(*),Table(*)
140 GIN IT Initialize various graphics parameters
150 PLOTTER IS CRT,"INTERNAL" Use the internal screen
160 GRAPHICS ON Display the graphics screen
170 SHOW 0,120,-10,100 Need isotropic units for a map
180 PLOT Room(*) Draw outline of room
190 DEG Set degrees mode for angles
200 READ ObjectS What to draw?
210 WHILE ObjectS<>"***STOP***" Until done ...
220 READ X,Y,Angle Read where and at what angle
230 MOVE X,Y Move in unrotated coordinates
240 PIVOT Angle Set rotation for RPLOTs
250 SELECT ObjectS
260 CASE "Desk"
270 AREA INTENSITY .125, .125, .125 ! 87.5% gray: dark gray
280 RPLOT Desk(*)
290 CASE "Chair"
300 AREA INTENSITY .5, .5,.5 50% gray: half-and-half
310 RPLOT Chair(*)
320 CASE "Bookshelf"
330 RPLOT Bookshelf(*),EDGE
340 CASE "Table"
350 AREA INTENSITY 0,0,0 100% gray scale: Black
360 RPLOT Table(*),FILL,EDGE
370 END SELECT
380 READ ObjectS
390 END WHILE
400 Room: DATA 0,60,-2, 0,100,-1, 120,100,-1, 120,30,-1

2-42 Using Graphics Effectively

410
420
430 Desk:
440
450
460 Chair:
470

DATA 120,20,-2, 120,0,-1,
DATA 0,25,-1, 0,50,-1
DATA 0,0,11, 0,0,-2,
DATA 0,0,10, 2,-10,-2,
DATA 0,0,10, 17,-10,-2,
DATA 0,0,11, -3,9,-2,
DATA -3,2,-1, -4,8,-1,

480 DATA O,O,iO, -4,i,-2,
490 Bookshelf:DATA 0,0,-2, 20,0,-1,
500 Table: DATA 0,0,-2, 25,0,-1,
510 Objects: DATA Chair, 14,75,90
520 DATA Desk, 1,65,90
530 DATA Table, 1,99,0
540 DATA Bookshelf ,27,99,0
550 DATA Chair, 66,44,30
560 DATA Desk, 50,50,30
570 DATA Chair, 45,65,210
580 DATA Desk, 60,58,210
590 DATA Bookshelf,41,5,O
600 DATA Bookshelf,62,5,O
610 DATA Bookshelf,83,5,O
620 DATA Chair, 6,26,0
630 DATA Chair, 16,26,0
640 DATA Chair, 26,26,0
650 DATA Chair, 36,26,0
660 DATA Chair, 63,96,220
670 DATA Chair, 85,83,3
680 DATA Chair, 112,83,0
690 DATA Chair, 100,83,355
700 DATA Table, 68,99,0
710 DATA Table, 94,99,0
720 DATA Chair, 105,50,270
730 DATA Desk, 119,60,270
740 DATA ***STOP***
750 END

40,0,-1, 40,25,-1

20,0,-1,
2,-10.5,-1,
17,-10.5,-1,

20,-10,-1, 0,-10,-1, 0,0,7
3,-10.5,-1, 3,-10,-1, 0,0,7
18,-10.5,-1,18,-10,-1, 0,0,7

3,9,-1,
0,0,7
4,i,-i,
20, -4, -1,
25, -12, -1,

\

4,8,-1, 3,2,-1

4,O,-i,
0, -4,-1
0,-12,-1

-4,0,-1, 0,0,7

> Upper left corner of the room
/

!/
\

> Center of the room
/

!/
!\
! > Bottom center of room
!/
!\

/

\
> Four chairs by west door

/
\
> Four chairs by northeast tables

/

\
> Two tables in upper right

\
> Desk and chair by east door

Using Graphics Effectively 2-43

Figure 2-15. Relative Plotting of a Floor Layout (Rplot)

There are two points of interest in this program. First, notice that you can specify the
EDGE and/or FILL parameters in the RPLOT statement itself, in addition to in the
array. (FILLs and EDGEs are specified in the array by having a 6, a 10, or an 11 in
the third column of the array.) If FILL and/or EDGE are specified both in the PLOT
statement and in the data, and the instructions differ, the value in the data replaces the
FILL or EDGE keyword on the statement.

The second interesting point is that some of the chairs appear to be under the desks and
tables; that is, parts of several chairs are hidden by other pieces of furniture. This is
accomplished by drawing the chair, and then drawing the desk or table partially over the
chair, and filling the desktop or tabletop with its own fill pattern, which may be black.

2-44 Using Graphics Effectively

Incremental Plotting
Incremental plotting is similar to relative plotting, except that the origin~the point
considered to be O,O~is moved every point. Every time you move or draw to a point,
the origin is immediately moved to the new point, so the next move or draw will be with
respect to that new origin.

There are three incremental plotting statements available: IPLOT, which ha.." the same
parameters as PLOT and RPLOT; and IMOVE and IDRAW, which have the same
parameters as MOVE and DRAW, respectively.

Using Graphics Effectively 2-45

Below is an example program using IPLOTs. It reads data from data statements
describing the outlines of certain letters of the alphabet, and then plots them. (See
"Iplot" on the Manual Examples Disc.)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240 F:
250
260 L:
270
280 A:
290
300
310 X:
320
330
340

CLEAR SCREEN
OPTION BASE 1
DIM Array(20,3)
GINIT

Clear the alpha display
Make the arrays start at 1

PLOTTER IS CRT,"INTERNAL"
GRAPHICS ON

Set aside space for the array
Initialize various graphics parameters
Use the internal screen
Turn on graphics screen

SHOW 1,35,-15,15
FOR Letter=1 TO 4

READ Points
REDIM Array(Points,3)
READ Array(*)
MOVE Letter*6,O
IPLOT Array(*)

NEXT Letter
DATA 10, 0,5,-1,
DATA 3,0,-1,
DATA 6, 0,5,-1,
DATA -5,0,-1
DATA 12, 2,5,-1,
DATA -2.2,0,-1,
DATA .7,-2,-1,
DATA 12, 1.9,2.5,-1,
DATA 1,0,-1,
DATA -1.5,-2,-1,
END

Isotropic scaling
Four letters total
How many pOints in this letter?
Adjust the array size accordingly
Read the correct number of points
Move to lower-left corner of letter
Draw letter
et cetera

5,0,-1, 0,-1,-1,
0,-1,-1, -3,0,-1,
1,0,-1, 0,-4,-1,

1,0, -1,
-.4,-1,-1,
-1.4,0,-1

2,-5,-1,
-1,0,-1,

-1.9,2.5,-1, 1,0,-1,
-1.9,-2.5,-1,1.9,-2.5,-1,
-1,0,-1

-4,0,-1,
0,-2,-1,
4,0, -1,

-1,0,-1,
1.8,2,-2,

1.5,-2,-1,
-1,0,-1,

0,-1,-1
-1,0,-1
0,-1,-1

-.4,1,-1
.7,2,-1

1.5,2,-1
-1.5,2,-1

2-46 Using Graphics Effectively

Figure 2-16. Incrementally Plotting Letters (Iplot)

Drawing Polygons
When you want a regular! polygon, or a part of one, drawn on the screen, there are two
statements which will help. The first is called POLYGON.

One attribute of POLYGON is that it forces polygon closure, that is, the first vertex is
connected to the last vertex, so there is always an inside and an outside area2 . There are
two final keywords which may be included in a POLYGON statement, and they are FILL
and EDGE. FILL causes the interior of the polygon or polygon segment to be filled with
the current fill color as defined by AREA PEN, AREA COLOR, or AREA INTENSITY.
FILL specified without EDGE causes the interior of the polygon to be indistinguishable
from the edge. EDGE causes the edges of the polygon go be drawn using the current
pen and line type. If both FILL and EDGE are specified (and FILL must be first), the
interior will be filled, then the edge will be drawn. If neither FILL nor EDGE is specified,
EDGE is assumed. On an HPGL plotter, only EDGE works.

1 In this discussion, polygons drawn when anisotropic units are in effect will also be considered "regular".
Anisotropic units will cause stretching or compression of the polygons in the X or Y direction.

2 Technically, this is true even for the degenerate case of drawing only one side of a polygon, in which
case a "single" line results. This is actually two lines, from the first point to the last point, and back to
the first.

Using Graphics Effectively 2-47

Polygons can be rotated by specifying a non-zero value in a PIVOT or PDIR statement
before the POLYGON statement is executed. Also, a PDIR statement can be used
to specify the angle of rotation. PDIR works with IPLOT, RPLOT, POLYLINE,
POLYGON, and RECTANGLE. The rotation occurs about the origin of the figure. For
example, PDIR 15 would rotate a figure 15 units (degrees, radians).

The shape of the polygon is affected by the viewing transformation specified by SHOW
or WINDOW. Therefore, anisotropic scaling causes the polygon to be stretched or
compressed along the X and Y axes.

The pen status also affects the way a POLYGON statement works. If the pen is up at
the time POLYGON is specified, the first vertex specified is connected to the last vertex
specified, not including the center of the polygon, which is the current pen position. If
the pen is down, however, the center of the polygon is also included in it. Thus, for
piece-of-pie shaped polygon segments, like are used in pie charts, cause the pen to be
down before the POLYGON statement is executed.

After POLYGON has executed, the current pen position is in the same position it was
before the statement was executed, and the pen is up.

But I don't want polygon closure ...
There is another statement called POLYLINE which acts much in the same way as
POLYGON, except it does not connect the last vertex to the first vertex; it does not
close the polygon. Obviously, then, since the polygon is not closed, there is no "inside"
or "outside," hence it is meaningless to say FILL or EDGE.

As in the case of POLYGON, a PIVOT or PDIR statement prior to execution of
POLYLINE will cause the figure to be rotated. Anisotropic scaling will cause stretching
or compression along the axes, and if the pen is down prior to invocation of the statement,
a line will be drawn from the center to the first perimeter point.

After POLYLINE has executed, the current pen position is in the same position it was
before the statement was executed, and the pen is up.

Following is a program which demonstates the use of POLYGON, POLYLINE, PLOT,
RPLOT, polygon filling, and gray-shading. The program may be loaded from file
"Scenery" on the Manual Examples Disc.

2-48 Using Graphics Effectively

100 CLEAR SCREEN
110 OPTION BASE 1

Clear the alpha display
Arrays start at 1.

120 DIM Horizon (20 ,2) ,Tree(24,2) ,Tree2(24,2)
130 GINIT

For PLOT, RPLOT
Initialize graphics parameters
Use the internal screen 140 PLOTTER IS CRT,"INTERNAL"

150 GRAPHICS ON Turn on graphics screen
160 WINDOW 0,511,0,389 1 UDU = 1 pixel
i70
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

RANDOMIZE i23456789 "Looks De't'ter" 'tnan aezaUi't
! Draw sunrise---

Sun_diameter=30 Diameter of outer layer
Sun_delta=6 Shrinkage of each brightness
MOVE 256,190 Center of sun
FOR 1=1/16 TO 1 STEP 1/16 All non-black gray shades

AREA INTENSITY 1,1,1 Define dithered gray shade
POLYGON Sun_diameter+(16-16*I)*Sun_delta,30,FILL ! Draw sun

NEXT I ! and so forth
! Draw horizon--------------------------­

Horizon(l, 1)=0
Horizon(l,2)=0
Dx=511/ (20-3)
X=-Dx
FOR 1=2 TO 19

X=X+Dx
Horizon(I,l)=X
Horizon(I,2)=185+RND*10

NEXT I
Horizon(20,l)=511
Horizon (20 ,2)=0
AREA INTENSITY 0,0,0
PLOT Horizon(*) ,FILL
PENUP
FOR 1=2 TO 20-1

PLOT Horizon(I,l),Horizon(I,2)
NEXT I

\ Lower left corner of screen,
/ for blacking bottom of sun
Delta X for horizon
Starting pOint for X
All except end points
Increment X
Put it in the array
Random height for roughness
and so forth
\ Lower right corner of screen
/ for blacking bottom of sun
Black
Erase bottom of sun
PLOT left pen down
\ Draw the horizon polygon,

> but don't include first
/ and last pOints (corners).

! Draw clouds---------------------------- -------------------------------
WINDOW -2,2,-15,15 Anisotropic scaling
AREA INTENSITY .25,.25,.25 251. gray shade
FOR 1=1 TO 10 10 ellipses

MOVE RND-.8*4-2,RND*8 Random position
POLYGON RND*.8,FILL random size, fill it

NEXT I and so forth
WINDOW 0,511,0,389 Back to 1 UDU = 1 pixel

! Draw birds---
DEG Angular mode: Degrees
Phi=70 Arc subtended by each wing
FOR Bird=l TO 10 Ten birds enough

Position_angle=RND*360 Bird's direction from 100,300
Distance=SQR(RND) *70 Bird's distance from 100,300

Using Graphics Effectively 2-49

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

X=100+Distance*COS(Position_angle)
Y=300+Distance*SIN(Position_angle)
Theta=RND*20-10
R=RND*10+10
Left_angle=180+(90-Phi/2)+Theta
X2=X+R*COS(Left_angle)
Y2=Y+R*SIN(Left_angle)
PIVOT 0
MOVE X2,Y2
PIVOT Theta+90-Phi/2
POLYLINE R,60,60*Phi/360
Right_angle=Theta-90+Phi/2
X3=X+R*COS(Right_angle)
Y3=Y+R*SIN(Right_angle)
PIVOT 0
MOVE X3,Y3
PIVOT Theta+90-Phi/2
POLYLINE R,60,60*Phi/360

NEXT Bird
PIVOT 0

! Draw trees----------------------------­
AREA INTENSITY .5, .5, .5
Tree(1,1)=-.5
Tree (1 ,2) =0
Tree(2,1)=-.5
Tree(2,2)=1
FOR 1=3 TO 12 STEP 2

Tree(I,1)=-«13-I)/4)
Tree(I,2)=(I-l)/2
Tree(I+l,1)=(Tree(I,1)+.5)/2
Tree(I+l,2)=Tree(I,2)+1

NEXT I
FOR 1=13 TO 24

Tree(I,1)=-Tree(25-I,1)
Tree(I,2)=Tree(25-I,2)

NEXT I
Y=180
WHILE Y>10

FOR 1=1 TO Y-(Y/180)/2
Y2=RND*20
MOVE RND*511,Y+Y2-15
Size=(200-(Y+Y2»*.1
MAT Tree2= Tree*(Size)
RPLOT Tree2(*),FILL

NEXT I
Y=Y*.8

END WHILE
END

2-50 Using Graphics Effectively

Bird's actual X position
Bird's actual Y position
Bird's tilt
Radius of arcs of birds' wings
Direction of left arc's center
Center of left wing's arc (X)
Center of left wing's arc (Y)
Unrotated coords for MOVE
Left arc's center
Rotated coords for POLYLINE
Left wing's arc
Right arc's center's direction
Center of right wing's arc (X)
Center of right wing's arc (Y)
Unrotated coords for MOVE
Right arc's center
Rotated coords for POLYLINE
Right wing's arc
and so forth
Back to normal for trees

50% gray
\

/
\

/

\ Define by hand the trunk
/ of the tree

\
\ Define programmatically
/ the branches of the trees

/

\ The right half of the tree
\ (and thus the tree array,)
/ is the mirror image of the

/ left half.
Starting value
For a few iterations ...
No. of trees dependent upon Y
Random variation
Bottom of center of tree
Size of tree dependent upon Y
Scale tree appropriately
FILL, but don't EDGE
and so forth
Go lower on the screen
for a while ...

Figure 2-17. Using POLYGON and POLYLINE (Scenery)

Points of note in this program:

1. The sunrise was created with graduated gray shades in successively smaller "circles"
(actually 30-sided polygons).

2. The horizon was created by defining a rough edge on the top half of a polygon
which blacked out the bottom section of the screen. This covered up the bottom
of the sun. The white line of the horizon was simple plotting of the horizon array
without the first and last points. We didn't want the lower corners of the screen to
be included.

Using Graphics Effectively 2-51

3. The clouds were created by plotting "circles" after having invoked anisotropic units;
thus long, thin ellipses resulted.

4. The seagulls were created by drawing two arcs with POLYLINE. An arc is created
by defining an N-sided polygon and drawing less-than-N sides. Note that PIVOT
was used to cause the starting angle of the arcs to be other than straight to the
right.

5. The trees were created by defining an array whose left side is a mirror image of the
right side. The array is centered around zero in the X direction to allow for scaling
of the tree simply by multiplying the array by a constant. RPLOT was used to
place the trees in their various positions.

Rectangles
One of the most-used polygons in computer graphics is the rectangle. You can cause a
rectangle to be drawn by moving to the point at which you want one of the corners to be
and then specifying which directions to proceed from there, first in the X direction, then
in the Y direction. Which corner of the rectangle ends up at the current pen position
depends on the signs of the X and Y parameters. For example, if you want a rectangle
whose lower left corner is at 3,2 and which is 4 units wide and 5 units high, there are
four ways you could go about it:

MOVE 3,2
RECTANGLE 4,5

or

MOVE 7,2
RECTANGLE -4,5

or

MOVE 3,7
RECTANGLE 4,-5

or

MOVE 7,7
RECTANGLE -4,-5

(Reference point is the lower left corner)

(Reference point is the lower right corner)

(Reference point is the upper left corner)

(Reference point is the upper right corner)

Again, you can specify FILL, EDGE, or both. FILL will cause the rectangle to be
filled with the current fill color as specified by AREA PEN, AREA COLOR, or AREA
INTENSITY. EDGE causes the edge of the rectangle to be drawn in the current pen
color and line type. If both are specified, FILL must be specified first, and if neither is
specified, EDGE is assumed. The current pen position is not changed by this statement,
and pen status prior to execution makes no difference in the resulting rectangle.

2-52 Using Graphics Effectively

User-Defined Characters
For many special-purpose programs, there is a drastic shortage of characters that can be
displayed on the screen!. Greek letters-7r, ~, E, and so forth-are quite often needed
for mathematics-intensive communication as well as many non-alphabetic symbols like
V, 00, and ±. To alleviate this shortage of symbols, the SYMBOL statement allows you
to draw any definable character. In function, it is similar to PLOT using an array, except
the figure drawn by SYMBOL is subject to the three transformations which deal with
character labelling: CSIZE, LDIR, and LORG.

The first argument needed by the SYMBOL statement is the array containing the
instructions on what to draw. As in PLOT, this array may either have two or three
columns. If the third column does not exist, it is assumed to be + 1 for every row of the
array. If it does exist, the valid values for the third-column entries are identical to those
for PLOT, RPLOT, and IPLOT when using an array. The possible values for the third
column are listed again here for your convenience.

1 User-defined alpha character fonts are available on bit-mapped alpha displays. See the "Communicating
with the Operator" chapter of BASIC Programming Techniques.

Using Graphics Effectively 2-53

Table 2-3. Pen Control when Plotting Entire Arrays (Repeated)

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y 0 Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen number ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored 7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 Color

blue value ignored 15 Value

ignored ignored >15 Ignored

For more detail on the meaning of these values, see the BASIC Language Reference
manual.

Moves and draws specified in an array to be used in a SYMBOL statement are defined
in the symbol coordinate system. This coordinate system is a character cell, as defined
earlier in the chapter-a 9x 15 rectangle. Figures drawn in this coordinate system may
be filled or edged or both. The FILL and EDGE keywords may appear in the SYMBOL
statement itself, or they may be specified in the data array. If FILL and/or EDGE are
specified in both places, the instruction in the data array overrides that of the statement.

2-54 Using Graphics Effectively

One interesting feature of this statement is that values outside the character cell
boundaries are valid. Thus, you can define characters that are several lines high, several
characters wide, or both. This feature is used in the following program. The SYMBOL
statement, by virtue of its syntax, can only be used for one User-Defined Character
(UDC) at a time; the pen must be moved to the new position before each character.
Therefore, UDCs cannot be embedded in a string of text. If the situation remained
this way, the utility of the SYMBOL statement would be limited by its cumbersome
implementation. The following program makes UDCs much easier to use. It is a special­
purpose program which calls two general-purpose subprograms. The first subprogram
(New_udc) is called to define a new UDC. Its parameters are: 1) the character to be
replaced by the UDC, and 2) the array defining the character. The second subprogram
(Label) is called after all desired UDCs have been defined. This allows text to be labelled
(written in graphics mode) intermixing ASCII characters with user-defined characters at
will. As mentioned above, all user-defined characters are affected by CSIZE, LDIR and
LORG, so no matter how the label is being written, the UDCs will act properly.

Four characters are defined below: a Greek capital sigma (the summation sign), infinity
(a figure eight who's expired), a fat arrow pointing to the right, and a large box. Note
that the box is three characters wide; it is perfectly legal to have points going outside the
9x15 bounds of the character cell. This program may be loaded from the file "Symbol"
on the Manual Examples Disc.

100 OPTION BASE 1
110 COM /Udc/ Old_charsS[20] ,Size(20),Chars(20,30,3)
120 REAL Sigma(7,3) ,Infinity(16,3) ,Arrow(9,3) ,Box(12,3)
130 READ Sigma(*) ,Infinity(*) ,Arrow(*) ,Box(*)
140 Sigma: DATA 7,5,-2, 7,4,-1, 1,4,-1,
150 DATA 1,13,-1, 7,13,-1, 7,12,-1
160 Infinity:DATA 4,9,-2, 5,10,-1, 6,10,-1,
170 DATA 7,8,-1, 6,7,-1, 5,7,-1,
180 DATA 4,9,-1, 3,10,-1, 2,10,-1,
190 DATA 1,8,-1, 2,7,-1, 3,7,-1,
200 Arrow: DATA 0,0,6, 4,4,-2, 7,8,-1,
210 DATA 4,10,-1, 1,10,-1, 1,6,-1,
220 DATA 0,0,7

5.5,8.5,-1

7,9,-1
4,8,-1
1,9,-1
4,8,-1
4,12,-1
4,6,-1

230 Box: DATA 0,0,6, 3,0,-2, 27,0,-1, 27,15,-1
240 DATA 0,15,-1, 0,0,-1, 3,0,-1, 3,3,-1
250 DATA 24,3,-1, 24,12,-1, 3,12,-1, 0,0,7
260 Old_charsS="1 In case anything is left in COM from the last run ...
270 New_udc(CHR$(168),Sigma(*» ! \
280 New_udc(CHR$(169),Infinity(*» > Replace unneeded characters with
290 New_udc(CHR$(170),Arrow(*» / User-Defined Characters
300 New_udc(CHR$(171) ,Box(*» /

Using Graphics Effectively 2-55

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

KEY LABELS OFF
CLEAR SCREEN
GINIT
PLOTTER IS CRT. II INTERNAL II
GRAPHICS ON
SHOW 0.10.-.5.10
DEG
FOR Csize=10 TO 2 STEP -1

CSIZE Csize
FOR Ldir=O TO 90 STEP 90

LORG 2
LDIR Ldir
MOVE 10-Csize.l0-Csize

! Clear the alpha display

Use the internal screen

Label (II Chars: • "&CHR$(168)&CHR$ (169)&CHR$ (170)&CHR$(171)&" • II)
NEXT Ldir

NEXT Csize
END
! ***

New_udc: SUB New_udc(Char$.Array(*»
This allows up to twenty new characters to be defined. each having up
to thirty elements (rows in the array) for definition.

OPTION BASE 1
COM /Udc/ Old_chars$[20] .Size(20).Chars(20.30.3)
IF LEN(Old_chars$)=20 THEN

PRINT "User-defined Character table full. II

ELSE ! (still room)
Pos=LEN(Old_chars$)+1
Old_chars$ [Pos] =Char$
Size(Pos)=SIZE(Array.l)
FOR Row=l TO Size(Pos)

FOR Column=l TO 3
Chars(Pos.Row.Column)=Array(Row.Column)

NEXT Column
NEXT Row

END IF ! (room left?)
SUBEND
! ***

Label: SUB Label(Text$)

2-56 Using Graphics Effectively

690 This prints a character string at the current pen position and using
700 the current LORG, LOIR and CSIZE. The LORG will need to be redeclared
710 upon returning to the calling context, as this routine needs LORG 1 if
720 the text is longer than one character.
730 OPTION BASE 1
740 COM /Udc/ Old_chars$[20] ,Size(20),Chars(20,30,3)
750 REAL Array(31,3)
760 FOR Char=l TO LEN(Text$)
770 IF Char=2 THEN LORG 1 Necessary when doing one character at a time
780 Char$=Text$[Char;l]
790 Pos=POS(Old_chars$,Char$) ! Is this to be replaced by a UDC?
800 IF Pos THEN
810 REOIM Array(Size(Pos) ,3) \
820 FOR Row=l TO Size(Pos) \ Take a slice out
830 FOR Column=l TO 3 > of the 3D array
840 Array (Row , Column) =Chars (Pos ,Row, Column) / and put it in the
850 NEXT Column / 20 array for
860 NEXT Row ! / SYMBOL.
870 WHERE X,Y
880 SYMBOL Array(*)
890 MOVE X,Y
900 LABEL USING "#,K";"" ! Tell the computer to update the pen position
910 ELSE! (regular character)
920 LABEL USING "#,K";Char$
930 END IF ! (this character been redefined?)
940 NEXT Char
950 SUBENO

Using Graphics Effectively 2-57

Figure 2-18. Implementing User-Defined Characters (Symbol)

Of course, the limits (twenty UDCs and thirty rows maximum) may be reduced or
expanded to fit whatever purpose for which you need it. Note that in lines 180 through
210 of the program, characters 168 through 171 were replaced by the four UDCs. There
is nothing magical about these four characters. The characters replaced could have been
any characters between 0 and 255, and they need not be consecutive.

Also note that in line 450 of the program, there are two spaces after the CHR$(171). This
is because character 171 was replaced by the box, which was three character cells wide.
The two extra spaces prevent the right two-thirds of the box from being overwritten by
whatever is to be labelled after it.

2-58 Using Graphics Effectively

Multi-Plane Bit-Mapped Displays
When using multi-plane (color) bit-mapped displays, BASIC provides the ability to
specify which planes to write-enable for alpha and graphics and which planes to display.
This feature provides for several useful features on bit-mapped displays. But before we
look at the uses, let's look at what these masks are.

There are four main areas of interest that we'll cover:

• The graphics write-enable mask,

• The display-enable mask,

• The alpha write-enable mask (this is similar in structure and operation to the
graphics write-enable mask, so little will be said here about it), and

• Interactions between the alpha masks and graphics masks.

The Graphics Write-Enable Mask
First, we'll look at the graphics write-enable mask. As its name (partially) implies,
its function is to specify which frame buffer planes are to be written to by graphics
operations.

For the purposes of illustration, assume that your machine has four planes in the frame
buffer. Suppose you want to set the graphics write-enable mask such that graphics
operations use only the first two planes ot the frame buffer. This is effected by setting
the first element of an integer array to the value desired, and then executing the GESCAPE
with operation selector 7:

INTEGER Graphics_masks(O:O)
Graphics_masks (0) =IVAL("0011 ",2)
GESCAPE CRT,7,Graphics_masks(*)

Set graphics write mask: planes 1&2
Set write mask; display mask is unchanged

If, as in this example, the graphics write-enable mask has the value 0011 (in decimal,
the value is 3, but the masks will be shown in binary for clarity), this indicates that
only planes 1 and 2 of the frame buffer will be used for graphics write operations. For
example, drawing a line can change bits only in planes 1 and 2.

A graphics write-enable mask of 0011 also implies that there are only four color-map
"pens" available for use by graphics operations: 0 through 3.

Using Graphics Effectively 2-59

The Graphics Display-Enable Mask
In addition to the graphics write-enable mask, there is a graphics display-enable mask.
The difference between them is indicated by their respective names: the former specifies
which planes are actually modified by graphics operations (regardless of whether or
not they are displayed), and the latter specifies which planes can be seen by the user
(regardless of whether or not anything has been or can be written to them).

Suppose you want to set the graphics display-enable mask such that only the contents of
the first two planes of the frame buffer are visible to the user. This is effected by setting
the second element of an integer array to the value desired, and then executing GESCAPE
with operation selector 7:

INTEGER Graphics_masks(O:l)
Graphics_masks (0) =< some value>
Graphics_masks (1) =IVAL("OOl1 " ,2)
GESCAPE CRT,7,Graphics_masks(*)

Set display-enable mask: planes 1&2
Set masks

Although for many operations, the graphics write-enable mask and the graphics display­
enable mask will have the same value, they need not be the same. In fact, there are
many instances where they will be different. In many of these cases, one or both of the
graphics masks will change regularly as the program executes.

The Alpha Masks
The alpha write-enable mask and display-enable mask do the same jobs for the alpha
display as their graphics counterparts do for the graphics display.

Note

When the PLOTTER IS device is the same as the ALPHA crt device,
the alpha display mask is the graphics display mask. Even though
they are the same entity, it can be accessed either by GESCAPE CRT, 7
or CONTROL CRT, 20 (see below).

To set and read the alpha write-enable mask, use the following statements:

SET ALPHA MASK IVAL(" 1100" ,2)
STATUS CRT,18;Alpha_writemask

Set alpha WRITE-enable mask: planes 3&4
! Read alpha WRITE-enable mask

To set and read the alpha display-enable mask, use the following statements:

SET DISPLAY MASK IVAL("1100",2)
STATUS CRT,20;Alpha_disp_mask

2-60 Using Graphics Effectively

Set alpha DISPLAY-enable mask: planes 3&4
! Read alpha DISPLAY-enable mask

Interactions Between Alpha and Graphics Masks
The alpha and graphics write-enable masks both default at power-up and SCRATCH
A to all planes in the machine. Thus (again, assuming you have a four-plane machine),
both write-enable masks would be 1111. All four planes are at once both alpha planes and
graphics planes. One implication to this is that when you write graphical information,
the alpha display may be modified/overwritten, and vice versa.

Alternately, if you set the alpha write-enable mask to 0011 (alpha uses planes 1 and 2),
and the graphics display-enable mask to 1000 (graphics uses plane 4), plane 3 is neither
alpha nor graphics.

This is a departure from older machine architectures where there was a fixed alpha area
and a fixed graphics area, and in which "alpha" equals "not graphics" and "graphics"
equals "not alpha." Now, planes can be "both alpha and graphics" or "neither alpha nor
graphics," and you can choose where to put them.

When a plane is designated as both an alpha plane and a graphics plane (default state),
alpha and graphics share the bit-mapped plane so that writing to the display overwrites
existing information. A plane designated as a graphics plane only can be written to
by graphics statements only, such as DRAW, LABEL, but not with alpha statements.
Similarly, an alpha-only plane can be written to with statements such as PRINT and
DISP, but not with graphics statements!.

One use of this feature is to simulate separate alpha and graphics planes for compatibility
with older systems which did not have bit-mapped alpha. Assuming you have a four­
plane display, you could designate planes 1 through 3 for graphics, and plane 4 for alpha.
This gives you eight pure graphics colors, and a single alpha color. This gives you some
of the capabilities of a separate alpha/graphics system on bit-mapped hardware:

• Turning alpha and graphics on and off independently,

• Dumping the graphics display or the alpha display independently2.

• Scrolling alpha without scrolling graphics along with it.

1 There is also an interaction with the color map setup when executing PLOTTER IS: PENs with bits in
non-graphics planes are not updated when the color map is initialized. The graphics write-enable mask
also affects GSTORE and GLOAD; see the BASIC Language Reference for details.

2 It has always been the case that you could dump alpha when using bit-mapped displays. However, this
capability is afforded by the presence of an "alpha buffer ," a spare storage place for all alpha information.
This enables alpha to be dumped to a printer which does not have raster graphics capabilities.

Using Graphics Effectively 2-61

There is one tricky condition that may occur if you're not careful. Suppose your program
has executed ALPHA PEN 1, and at some point it changes the alpha write-enable mask
to 1100. All of a sudden, the output stops appearing, the run light remains on, and the
"live" keyboard appears dead. By all appearances, your machine is hung. This is not
the case, however.

What actually happened was this. Before the write-enable mask was changed, everything
was going as expected. When you changed the write-enable mask to 1100, you caused the
machine to only turn on pixels when using pens whose numbers had some bits in common
with the write-enable mask, now 1100. The only pens which satisfy this condition are
pens 4 through 15. In other words, nothing appeared when you were "writing" because
on one hand you said "write pixels in planes 3 and 4 only," and on the other hand you
said "I am going to write with a pen which doesn't turn on pixels in planes 3 and 4."

The following program illustrates the concept of simulating separate alpha and graphics.
(You can also use the SEPARATE ALPHA FROM GRAPHICS and MERGE ALPHA
WITH GRAPHICS statements to accomplish these tasks; however, this program shows
the intermediate steps in how the alpha write-enable and display-enable masks interact).
The program will write some text which will be visible. Next, it will change the display
mask so the alpha display mask and the current pen are disjoint. After writing a bit
more, the program will pause, so you can see just how hung it really looks. When you
press I CONTINUE I (@] in the System menu of an ITF keyboard), the alpha display mask
and the pen will OFlce again come into agreement, and all will be as it should be.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

! This program demonstrates proper and improper use of alpha masks.
! (Return everything to its default state if the program didn't finish)
SET ALPHA MASK IVAL("1111" ,2) Set alpha write-enable mask.
SET DISPLAY MASK IVAL("1111",2) ! Set alpha display-enable mask.
CLEAR SCREEN
GINIT
PLOTTER IS CRT,"INTERNAL";COLOR MAP
! (Start the demo)
ALPHA PEN IVAL("OOl1" ,2)
SET ALPHA MASK IVAL("OOl1 " ,2)
SET DISPLAY MASK IVAL("OOl1" ,2)
PRINT "I'm printing visibly."
WAIT 4

Set alpha pen
Set alpha write-enable mask.
Set alpha display-enable mask.

PRINT "Changing the alpha display mask this text will vanish."
WAIT 4
SET DISPLAY MASK IVAL("1100",2) ! Set alpha display-enable mask.
WAIT 4
FOR 1=1 TO 10

PRINT" I'm printing stuff now but you can't see it."
NEXT I
SET DISPLAY MASK IVAL("0011",2) ! Set alpha display-enable mask.

2-62 Using Graphics Effectively

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

WAIT 1
PRINT "The above text just became viSible."
WAIT 4
PRINT "The above text will disappear again and the machine will"
PRINT "appear hung lL"1til you press CONTINUE."
PRINT "(Note the run light stays on after the computer pauses.)"
WAIT 9
SET DISPLAY MASK IVAL("1100".2)
PAUSE
SET DISPLAY MASK IVAL("OOl1" .2)
WAIT 1
PRINT

Set alpha display-enable mask.

Set alpha display-enable mask.

PRINT "The above text just became visible again."
WAIT 4
SET ALPHA MASK IVAL("l1l1". 2) Set alpha write-enable mask.
SET DISPLAY MASK IVAL("111P.2) Set alpha display-enable mask.
SET ALPHA PEN IVAL("OOOl" .2) Set alpha pen
PRINT "I just set the alpha masks and pen back to normal."
END

Another use of the graphics write-enable mask is the fast display of multiple pictures.
For example, you could:

1. Disable all planes displayed. This makes the screen blank.

2. Enable plane 1 for writing.

3. Create a single-color picture in plane 1.

4. Enable plane 1 for display. Now the picture in plane 1 appears on the screen.

5. Disable plane 1 for writing and enable plane 2.

6. Create a different single-color picture in plane 2.

7. Disable plane 1 for display and enable plane 2. Now the picture in plane 2 appears
on the screen.

Cycling through this sort of a loop-flashing consecutive pictures on the screen­
simulates a rudimentary animation; i.e., "motion" pictures. Be aware, however, that
the drawing speed is much too slow to describe smooth, non-jerky movements.

The selection of graphics planes to be write-enabled and display-enabled is accessed via
the GESCAPE statement (in the GRAPHX binary).

Using Graphics Effectively 2-63

Disabling and Enabling Alpha Scrolling
Series 300 computers (and Series 200 Model 237 computer) have alpha and graphics
on the same raster (this is called "bit-mapped alpha"). One of the most important
implications of this architecture for graphics is that when you scroll alpha information,
you also scroll graphics. If you want to disable scrolling, of both alpha and graphics, due
to the cursor-control keys (such as m and [!]), you can execute this statement:

CONTROL KBD,16;1

If scrolling is currently disabled and you want to re-enable it, execute this statement:

CONTROL KBD,16;O

On non-bit-mapped alpha displays, CONTROL KBD 16, 1 will also disable alpha scrolling.
Because the alpha and graphics are physically separate, however, graphics will never be
affected by alphu. scrolling on non-bit-mapped displays.

2-64 Using Graphics Effectively

Using Printers and Plotters 3
Dumping Raster Images to Printers 3-2

Dumping to HP Raster Interface Standard Devices 3-2
Dumping to Non-Standard Printers 3-5

Using Plotters .. 3-7
Selecting a Plotter .. 3-7
Plotter Graphics with HPGL Commands. .. 3-7
Example of Using HPGL: Controlling Pen Speed 3-8
Example of Using HPGL: Controlling Pen Force 3-8
Example of Using HPGL: Selecting Character Sets 3-9
Error Detection when Using HPGL Commands 3-10

Plotting to Files .. 3-11
Plotter Paper Sizes. .. 3-11
Limitations ... 3-12
Using GSEND with PLOTTER IS Files 3-12

Using SRM Plotter Spoolers .. 3-13
What Are Spoolers? .. 3-13
Setting Up a Plotter Spooler 3-13
Preparing Plotters ... 3-13
Plotter Spooling .. 3-14

Using Printers and Plotters 3
Preceding chapters described how to generate graphics images on your computer's CRT
display. In this chapter, we will be discussing the selection of external! plotting devices
which you can use to generate "hard copy" graphics on paper.

• First we'11 show how to dump graphics images from a CRT display to a printer.

• Then we'll show how to use the PLOTTER IS statement to select HP-IB plotters,
which may be connected through the built-in HP-IB (Hewlett-Packard Interface
Bus) port in the back of your computer. This section also describes how to
use "Hewlett-Packard Graphics Language" (HPGL) commands to talk directly to
plotters.

• The next section shows how to send plotting commands to a file.

• The last part of the chapter describes using SRM plotter spoolers.

1 "External" CRT displays, which may be connected to your computer through 98627 A or 98700 display
interfaces, are discussed in the "Color Graphics" chapter.

Using Printers and Plotters 3-1

Dumping Raster Images to Printers
After generating an image on your CRT display, you can print it on paper using a
printer!. This operation is called a graphics dump or a screen dump. It is accomplished
by copying data from the frame buffer to be reproduced on the printer in dot-for-dot
fashion.

First, the image must be generated. Any CRT display may be used. The BASIC system
"takes a snapshot" of the graphics screen at some point in time, and sends it to a printer.
BASIC doesn't care how the dots came to be turned on or off. Thus, filled areas can be
dumped to the printer; indeed, all CRT graphics capabilities (except color2) are available.

Dumping to HP Raster Interface Standard Devices
If your printer conforms to the HP Raster Interface Standard3 , dumping graphics images
is trivial. For example:

100 DUMP DEVICE IS 701
110 DUMP GRAPHICS

or
100 DUMP GRAPHICS #701

Both of these program segments would take the image in the last specified graphics frame
buffer (the internal CRT display by default) and send it to the printer at address 701.
(If no source device is specified, the image is taken from the last active CRT or it is
the default graphics display.) 701 is the default factory setting for printers. You would
probably use the two-statement version in an application where you wish to specify
the destination device once, and have it apply to many different DUMP GRAPHICS
statements. The one-statement version would probably be used where there are few and
isolated DUMP GRAPHICS statements.

1 The subsequent section called "Using SRM Plotter Spoolers" describes how to dump the raster to an
SRM spooler.

2 Note that you can do a color dump display to a PaintJet@ using the GDUMP _C utility. For more
information on this, read the "BASIC Utilities Library" section of the Installing and Maintaining the
BASIC System manual.

3 In order to determine whether or not your printer conforms to this standard, see your printer's manual
or the Config'l.l.raton Reference.

3-2 Using Printers and Plotters

Dumping from a Color Display
When dumping an image from a color display to a printer, the state of each bit sent to
the dump device is calculated by performing an inclusive OR operation on all color-plane
bits for each pixel (in other words, a dot is printed if the pen used to write the dot was
not equal to 0). Thus, no color information is dumped.

Dumping from a High-Resolution Display
If the source device is a high-resolution display, the image will not fit on one page of
most HP printers. In such cases, you should only use the portion of the screen that is
dumped to the printer. You can see which portion is not used by drawing a grid, for
instance, and then dumping it to the printer. When you see which part is not displayed
on the printer, you can change the region of the graphics display (with VIEWPORT, for
example) so that you do not use that region.

Using the DUMP GRAPHICS Key
The I DUMP GRAPHICS I key! will also dump a graphics display to a printer. If a DUMP
DEVICE IS statement has not been executed, the dump device is expected to be at
address 701.

Aborting Graphics Dumps
If a DUMP GRAPHICS operation is aborted with the I CLR 1/0 I key (I Break Ion an ITF
keyboard), the printer mayor may not terminate its graphics mode. Sending 192 null
characters (ASCII code zero) to a printer such as "an HP 9876 terminates its graphics
mode. For example:

OUTPUT Dump_dev USING "#.K";RPT$(CHR$(O).192)

To dump a graphics image from an external color monitor which is interfaced through a
98627 A at address 28, you could execute either of the following:

DUMP DEVICE IS Dump_dev
DUMP GRAPHICS 28

or
DUMP GRAPHICS 28 TO #Dump_dev

1 On an ITF keyboard, press I Shift I with the third-from-the-Ieft unlabeled key above the numeric keypad.

U sing Printers and Plotters 3-3

Expanded Dumps
If you want the image to be twice as large in each dimension as the actual screen size,
you can execute the following two statements:

100 DUMP DEVICE IS 701,EXPANDED
110 DUMP GRAPHICS

This will cause the dumped image to be four times larger than it would be if ,EXPANDED
had not been specified. Each dot is represented by a 2 x 2 square of dots, and the resulting
image is rotated 90° to allow more of it to fit on the page. Depending on your screen
size and printer size, the image being dumped may not entirely fit on the printer. If it
doesn't, it will be truncated.

Dumping Displays with Non-Square Pixels
If you have an HP 98542A or HP 98543A display, the pixels are not square. Your images
are not distorted because of this, however, because the BASIC system compensates for
the rectangularity. Also, when dumping graphics, the image is not distorted; again, the
BASIC system compensates for the non-square pixels.

For machines which have a display with non-square pixels (such as the HP 98542A and the
HP 98543A), a non-expanded DUMP GRAPHICS will produce an image that matches
the CRT only if no alpha appears in the graphics planes. Since most printers print square
pixels, this routine treats graphics pixel pairs as single elements and prints one square for
each pixel pair in the frame buffer. Because alpha works with individual pixels, and not
with pixel pairs, mixed alpha and graphics will appear blurred on a DUMP GRAPHICS
non-expanded output. Using the EXPANDED option causes the vertical length (the
height on the CRT) to be doubled as before, but dumps each separate pixel. In this
mode, mixed alpha and graphics will appear the same on the dump as on the CRT.

Note that on multiplane bit-mapped displays, only graphics write-enabled planes are
dumped.

3-4 U sing Printers and Plotters

Dumping to Non-Standard Printers
If you have a printer which does not confonn to the HP Raster Interface Standard, all is
not lost. It must, however, be capable of printing raster-image bit patterns. There are
two main methods by which printers print bit-sequences .

• The first is when a printer receives a series of bits, it prints them in a one-pixel-high
line across the screen. The paper then advances one pixel's distance, and the next
line is printed .

• The other method (which lends itself to user-defined characters more than graphics
image dumping) takes a series of bits, breaks it up into 8-bit chunks, and prints
them as vertical bars 8 pixels high and one pixel wide. The next eight bits compose
the next 1 x 8-pixel bar, and so forth.

Example of Dumping to an HP 82905A Printer
This latter method listed above is that used by the HP 82905A printer. The image (which
is printed out sideways) takes a GSTOREd image and breaks the 16-bit integers into two
8-bit bytes, and sends them to the printer one row at a time. This is the reason for the
Hi$ and Lo$, the high-order (left) and low-order (right) bytes of the current integer. The
following subprogram perfonns the function of a DUMP GRAPHICS statement from a
medium-resolution display to an HP82905A printer:

10 Dump_graphics: SUB Dump_graphics(OPTIONAL Dev_selector_)
20 OPTION BASE 1 ! Arrays start at 1
30 INTEGER Y_pixels,Row,Column,Element,Char,Return_array(6)! Speed it up ...
40 DIM Pad$[45] ! Padding for centering
50 IF NPAR=l THEN Is output device specified?
60 Dev_selector=Dev_selector_ If so, use it.
70 ELSE Otherwise,
80 Dev_selector=701 Default to 701
90 END IF
100 GESCAPE CRT,3;Return_array(*) Get the screen size
110 Words_per_row=Return_array(5) Width of screen (in words)
120 Y_pixels=Return_array(6) Height of screen (in pixels)
130 ALLOCATE Hi$[Y_pixels] ,Lo$[Y_pixels] High- and low-order bytes
140 ALLOCATE INTEGER Screen(Y_pixels,Words_per_row) ! Screen array
150 Pad$=RPT$(CHR$(O) ,45) ! 45 nulls centers the image
160 GSTORE Screen(*) ! Store the picture
170 Esc$=CHR$(27)II;"K"II;CHR$«Y_pixels+45) MOD 256)II;CHR$«Y_pixels+45) DIV 256)
180 OUTPUT Dev_selector USING "K";CHR$(27)II;"A"II;CHR$(8) ! 1 line=8/72 inch
190 FOR Column=l TO Words_per_row For every 16-bit swath across ...
200 FOR Row=Y_pixels TO 1 STEP -1 and for every pixel down ...
210 Element=Screen(Row,Column) get appropriate array element,
220 Char=Y_pixels-Row+l determine the string subscript,
230 Hi$[Char]=CHR$(INT(Element/256» fill up the high-order byte ...
240 Lo$[Char]=CHR$(Element MOD 256) and the low-order byte.
250 NEXT Row

U sing Printers and Plotters 3-5

260 OUTPUT Dev_selector USING "K";Esc$&Pad$&Hi$
270 OUTPUT Dev_selector USING "K";Esc$&Pad$&Lo$
280 NEXT Column
290 OUTPUT Dev_selector USING "K";CHR$(27)&"A"&CHR$(12)
300 SUBEND

1 line=12/72 inch

To DUMP GRAPHICS to other types of printers, modify the preceding subprogram
appropriately for the destination device. See your printer's manual for information about
its "raster-image" mode.

Negative Images
Note that on a CRT, an "on" pixel is light on an otherwise dark background, and on a
printer, an "on" pixel is dark on an otherwise light background. Thus, the hard copy
is a negative image of that on the screen. To dump light images on a dark background,
you can invert every bit in the stored image. You can use the BINCMP function to
complement the bits in every word before you send the image to the printer, or you can
invert the bits of an integer by using this program segment:

IF N=-32768 THEN
N=32767

ELSE
N=-N-l

END IF

The reason for the subtraction is that Series 200/300 computers use two's-complement
representation of integers. Also, you must consider -32 768 as a special case because
you cannot negate -32 768 in an integer; +32 768 cannot be represented in a signed,
sixteen-bit, two's-complement number.

3-6 Using Printers and Plotters

Using Plotters
In Chapter 1, the program listings contained a line which said:

PLOTTER IS CRT,"INTERNAL"

This caused the computer to activate the internal CRT graphics raster as the plotting
device, and thus all subsequent commands were directed to the screen.

Selecting a PloHer
If you want a plotter to be the output device, only the PLOTTER IS statement needs
to be changed. If your plotter is at interface select code 7 and address 5 (the factory
settings), the modified statement would be:

PLOTTER IS 705,IHPGL"

"HPGL" stands for Hewlett-Packard Graphics Language, and it is the low-level language
which the plotters actually speak behind the scenes. Specifying "HPGL" tells BASIC to
generate HPGL commands when it executes graphics statements, and to send them to
the current plotting device. We'll take a look at HPGL in subsequent sections.

PloHer Graphics with HPGL Commands
When you are executing BASIC graphics statements and they are doing operations
on a HP plotter, there is nothing preventing you from interspersing your own HPGL
commands between the BASIC commands. HPGL commands can be sent to the device
with OUTPUT statements; however, the preferred way is to use the GSEND statement.

PLOTTER IS 705,IHPGL"
FRAME
GSEND II HPGL command(sJII
MOVE X,Y
GSEND II HPGL command(sJII
DRAW X+10,Y-20

HPGL command sequences are terminated by a line-feed, a semicolon, or an EOI
indication, which is sent by the HP-IB (Hewlett-Packard Interface Bus) END keyword.
Individual commands within a sequence are typically delimited by semicolons. Note that
the GSEND command sends a carriage return/line feed after the specified string.

U sing Printers and Plotters 3-7

There are many HPGL commands available, but the exact ones you will be able to use
depend on the device itself. Plotters are not the only devices which use HPGL; some
digitizers and graphics tablets do also. By their nature, however, they use a different
subset of commands than plotters do. Following are a few of the more common or useful
HPGL commands.

Example of Using HPGL: Controlling Pen Speed
If your plotter pens are getting old and tired, you probably would want to make them
draw more slowly to get a better quality line. (In actuality, there are other factors which
can affect line quality. For example, humidity can alter the line quality of a fiber-tipped
pen.) To accomplish this, you could have a statement:

GSEND "VS10;"

"VS" stands for" Velocity Select" and the "10" specifies centimeters per second. Thus,
this statement would tell the plotter to draw at a maximum speed of ten centimeters
per second. It specifies a maximum speed rather than an only speed, because on short
line segments, the pen does not have time to accelerate to the specified speed before the
midpoint of the line segment is reached and deceleration must begin. The range and
resolution of pen speeds, and default maximum speed depend on the plotter.

Example of Using HPGL: Controlling Pen Force
On the HP 7580 and HP7585 drafting plotters, you can specify the amount of force
pressing the pen tip to the drawing medium. This is useful when matching a pen type
(ball-point, fiber-tip, drafting pens, etc.) to a drawing medium (paper, vellum, or mylar,
etc.). Again, if a pen is partially dried out, it may help line quality to adjust the pen
force.

An example statement is:

GSEND "FS3.6;"

This statement (Force Select) would specify that pen number 6 should be pressed onto
the drawing medium with force number 3. As you can see, the force specifier occurs first,
the pen number second. The reason for this is that if you do not specify a pen number,
all pens will be affected.

3-8 Using Printers and Plotters

The force number is translated into a force in grams. If, for example, you have an
HP 7580A plotter, the force number is converted to force as follows:

1 = 10 grams

2 = 18 grams

3 = 26 grams

4 = 34 grams

5 = 42 grams

6 = 50 grams

7 = 58 grams

8 = 66 grams

Example of Using HPGL: Selecting Character Sets
Some plotters contains internal character sets which may be much more pleasing to
the eye or more appropriate for your application than the character set provided by the
BASIC operating system. Through HPGL, you can tell the plotter to use these character
sets.

GSEND ICS1;"

tells the plotter to use Character Set 1 until further notice. This means, however, that
to actually get these characters, you cannot use the LABEL statement in BASIC. This
is because the BASIC graphics system generates all its characters as a series of line
segments, and the plotter can't tell when it is told to draw a line segment whether it is
going to be part of a character or not. Thus, you must use the HPGL label command,
LB:

GSEND "LBThis is an example string. l tCHR$(3)t l
;"

CHR$(3) is the End-of-Text, or ETX, control character. It is the default terminator for
the LB command. If you wish, you can specify other characters to signal the end of a
line of text to label. You use the Define Terminator command:

GSEND IDTt;"

This statement instructs the plotter to consider the ampersand to be the terminator.
Thus, every LB command must have an ampersand as the final character.

U sing Printers and Plotters 3-9

NOTE

When using a printable ASCII character as the terminator, it will
be labelled in addition to terminating the LB command.

NOTE

There must be a terminator as the final character in the string to
indicate the end of the text, or all subsequent commands will be
considered text and not commands; that is, they will merely be
labelled, not executed.

Error Detection when Using HPGL Commands
When using HPGL commands, there is always a possibility of making an error. When this
occurs, the program should be able to respond in a friendly way, and not just hang then
and there. With HPGL, it is possible to interrogate the plotting device and determine
the problem. The following statements in an error-trapping routine would determine the
type of error that occurred:

GSEND "DE;"
ENTER 705;Error

After these two statements have executed, the variable Error will contain the number
of the most recent error. What the error code means depends on the particular device
being used.

This is not by any means an exhaustive list of HPGL commands, but it serves to acquaint
you with the concept of using the HPGL language, and the amount of control it gives you
over the peripheral device. A thorough understanding of HPGL can only be obtained by
combining information from the owner's manual of the particular device you have with
actual hands-on experience.

3-10 U sing Printers and Plotters

Plotting to Files
The preceding PLOTTER IS statements in this chapter were used to direct HPGL
commands to a plotter. You can also direct these commands to a file. This is useful when
you want to check what is being sent to a plotter, or when you want to generate a special
sequence of HPGL commands that you cannot generate with BASIC graphics statements;
it is also useful when using an SR~Y1 plotter spooler, as discussed in a subsequent section.

The following statement would cause subsequent plotter output (HPGL commands) to
go to a file named Plot.

CREATE BOAT "Plot:, 700" ,20
PLOTTER IS "Plot:, 700" ; "HPGL"
FRAME
MOVE 0,0
DRAW 100,100
MOVE 0,100
DRAW 100,0
MOVE 50,50
CSIZE 15
LABEL "Big X"
PLOTTER IS CRT,"INTERNAL"

Plot must be a BDAT file. Another PLOTTER IS statement, SCRATCH A, or GINIT
statement closes the file. A Reset also closes the file.

Plotter Paper Sizes
The PLOTTER IS statement also provides you with the capability of specifying a non­
default paper size. Here is the general syntax you can use; just substitute the limits (in
millimetres) for the four parameters:

PLOTTER IS "File", "HPGL", Xmin, Xmax, Ymin, Ymax

See the BASIC Language Reference and your plotter's manual for additional information.

Using Printers and Plotters 3-11

Limitations
If you are performing an operation on one plotting device, and attempt to send the plot
to another device which does not support that operation, it won't work.

For example: area fills, which are valid operations on most displays, are not available on
plotters. Color map operations, which are valid on displays, are not valid on a plotter.
Erasing lines can be done on displays, but, naturally, not on a hard-copy plotter. On the
other hand, HPGL commands will be interpreted correctly by a hard-copy plotter, but
not by a display.

Using GSEND with PLOTTER IS Files
This statement sends a string of characters to the current PLOTTER IS device, which
may be a file or a plotter.

GSEND "LBThis is an example HPGL command string. "tCHR$(3)t"; "

The string is to contain Hewlett-Packard Graphics Language (HPGL) command(s).
GSEND is useful when the PLOTTER IS device is a file, since it is not possible to
OUTPUT an HPGL command to the file while it is the PLOTTER IS device.

CREATE BDAT "Plot:. 700" . 20
PLOTTER IS "Plot:. 700" ; "HPGL"
FRAME
MOVE 0.0
DRAW 100.100
MOVE 0.100
DRAW 100.0
MOVE 20.20
GSEND "CS2;"
GSEND "LBThis is X in the plotter's character set 2. "tCHR$(3)t";"
PLOTTER IS CRT."INTERNAL"

Note that HPGL syntax is not checked by the BASIC system. Therefore, you will need
to takp pxtra carp whpn using HPGL commands in this mannpr.

3-12 Using Printers and Plotters

Using SRM Plotter Spoolers
The SRM system not only provides shared access to plotters, but also manages their use
so that workstations never need to wait for output to be generated.

What Are Spoolers?
To use shared plotters, you place files to be output into a special directory where they
are held until the plotter is free. This method is called "spooling," and the directory
where the files are kept is called the "spooler directory." After a file is placed in a spooler
directory, the workstation is free to do other processing.

Setting Up a Plotter Spooler
Spooler directories are created for the SRM server's use when the shared peripherals
are installed on the SRM system. Setting up a spooler directory is explained in the
"Interfaces and Peripherals" chapter of the SRM System Manager's Guide. The examples
in this section assume that a spooler directory named PL (for "PLotter") has already been
created in the SRM root directory.

Preparing Plotters
If your plotter does not feed its paper automatically, a message appears on the SRM
server's screen indicating that the plotter needs to be set up. After you have put paper
on the plotter, you may begin the plotting by using the server's SPOOL CONTINUE
command (described in the SRM System Manager's Guide). Plotters with automatic
paper feed require no operator intervention.

Using Printers and Plotters 3-13

Plotter Spooling
These are the steps in using the SRM plotter spooler:

1. Create a file.

2. Specify it as the PLOTTER IS device.

3. Perform BASIC or HPGL plotting operations.

4. When finished, close the file and if it is not already there COPY or RENAME it
into the spooler directory.

5. Wait for the file to be output to the plotter.

Example of Plotting to a File
You can use the PLOTTER IS statement to send data to a file, which you can later send
to an SRM plotter. The following command sequence illustrates this spooling method:

CREATE BDAT "/PL/Plot_file",l
PLOTTER IS "/PL/Plot_file"
FRAME
MOVE 0,0
DRAW 100, 100
MOVE 0,100
DRAW 100,0
GSEND "CS2;" .
GSEND "LBThis is X in the plotter's character set 2."ctCHR$(3)ct";"
PLOTTER IS CRT, "INTERNAL"

PLOTTER IS works only with BDAT files. Because the SRM 1.0 operating system's
spooling works only with ASCII files, you cannot use PLOTTER IS for plotter spooling
with that version of SRM.

Note

The DUMP DEVICE IS statement does not support directing data
to files as shown above, so it cannot be used for plotter spooling.

3-14 Using Printers and Plotters

Checking the Spooler's Status
The SRM spooler waits until the file is non-empty and closed before sending its contents
to the output device. If your file is not plotted within a reasonable amount of time, you
may not have closed it. You can verify that your file is ready to be plotted by cataloging
the spooler directory:

CAT "/PL" I Return I or I ENTER I

The open status (OPEN STAT) of the file currently being printed or plotted is listed as
locked (LOCK). Files currently being written to the spooler directory are listed as OPEN.
Files that do not have a status word in the catalog are ready for plotting.

Version 2.0 (and later versions) of the SRM operating system allow BDAT files to be
sent to the printing device as a byte stream. (With SRM version 1.0, only ASCII files
can be used.)

Aborting Plotting In Progress
To abort an in-progress plotting, use the SPOOL ABORT command from the SRM
server. The system stops sending data to the output device and doses, then purges
the file. For details on bringing the spooler UP and DOWN, see the description of the
SPOOLER command in the "Language Reference" section of the SRM System Manager's
Guide.

With the SRM 2.0 operating system, if a plotter is taken off-lirie while a file is being
spooled, the spooler stops and resumes when the plotter is put back on-line. No data is
lost during such an interruption. The SRM 1.0 operating system also resumes plotting,
but from the beginning of the file.

Dumping Graphics to a Printer Spooler
This program shows an example of using GSTORE to capture the pixels on a graphics
raster, which is then sent to an SRM printer spooler file.

100 Program to DUMP GRAPHICS to an SRM plotter spooler.
110 Works with 2608A/S. 2631G. 293x. 2563A. and other printers.
120
130 Parameters will vary for different graphics raster sizes.
140 Picture(*) is: 300x25 for 9816 t 9826 (300*400 pixels)
150 390x32 for 9836 (390*512 pixels)
160
170 Buffer_(*) is: 1:8704 for 9816 t 9826
180 1:14044 for 9836
190
200
210

Rowlength 25 for 9816 t 9826
32 for 9836

Using Printers and Plotters 3-15

Rows 300 for 9816 t 9826
390 for 9836

220
230
240
250
260
270
280
290
300
310

INTEGER Picture(1:300,1:25),Buffer_(1:8704) ! For 9816 t 9826.
INTEGER Bufptr,Word_,Row_,Rows,Rowlength,Bytel,Byte2,Temp
Rowlength=25
Rows=300

Draw picture on display raster (using BASIC graphics).

400 GSTORE Picture(*)
410 Generate "escape" sequences for graphics mode.
420 Buffer_(1)=6954 "Esc*"
430 Buffer_(2)=29249 II rA II
440 Bufptr=3
450 Temp=Rowlength+Rowlength
460 Bytel=NUM(lb")*256+((Temp DIV 10)+48)
470 Byte2=((Temp MOD 10)+48)*256+NUM(IW")
480
490 FOR Row_=l TO Rows
500 Identify number of bytes for this line.
510 Buffer_(Bufptr)=6954 "Esc*"
520 Buffer_(Bufptr+l)=Bytel "bn"
530 Buffer_(Bufptr+2)=Byte2 InW"
540 Bufptr=Bufptr+3
550 FOR Word_=l TO Rowlength
560 Buffer_(Bufptr)=Picture(Row_,Word_)
570 Bufptr=Bufptr+l
580 NEXT Word_
590 NEXT Row_
600 ! Terminate graphics mode.
610 Buffer_(Bufptr)=6954 "Esc*"
620 Buffer(Bufptr+l)=29250 ! II rB II
630 !
640 ! Store Picture in spooler directory, so that it will be printed.
650 CREATE BDAT I/LP/PICTIJRE",l
660 ASSIGN ClDump TO "/LP/PICTIJRE"
670 OUTPUT ClDump;Buffer_(*)
680 ASSIGN ClDump TO *
690 !
700 END

3-16 U sing Printers and Plotters

Interactive Graphics and Graphics Input4

Introduction. .. 4-1
An Exampie .. 4-1
Elements of an Interactive Graphics System .. 4-1

Characterizing Graphic Interactivity 4-2
Selecting Input Devices .. 4-3

Single Degree of Freedom .. 4-3
N on-Separable Degrees of Freedom .. 4-3
Separable Degrees Of Freedom. .. 4-4

Echoes .. 4-5
The Built In Echo. .. 4-5
Making Your Own Echoes. .. 4-7

Graphics Input .. 4-12
HP -HIL Devices ... 4-14

Interactive Graphics
and Graphics Input

Introduction

4
It has already been pointed out that graphics is a very powerful tool for communication.
The high speed of graphics operations on Series 200/300 computer makes possible a
powerful mechanism for communicating with the computer: Interactive Graphics.

An Example
One way to understand interactive graphics is to see it in action. If your computer
has a knob or mouse, LOAD and RUN the program "BAR_KNOB", from your Manual
Examples disc.

If you turn the knob clockwise, the bar graph displayed on the screen will indicate a
larger value. At the same time, the numeric readout underneath the bar will increase
it's value. Turning the knob counterclockwise has the opposite effect. This is an effective
demonstration of all the key characteristics of an interactive graphics system.

Elements of an Interactive Graphics System
The elements of this type of graphics system are as follows:

• A graphic display that represents the contents of the data structure.

• An input mechanism for interacting with the displayed image (the knob or mouse,
in this case.)

• A data structure. (The value displayed underneath the bar is the contents of
a variable that we are modifying. The BASIC variable containing the value is
considered a degenerate case of a data structure.)

This is the minimum set of requirements for an interactive graphics system. A key feature
of interactive graphics is that it is a closed loop system. This means that the operator
can immediately see the effect of his action on the system, and thus base his next action
not only on the state of the system, but also on the effect his last action had on the
system. A few points are worth noting about this system:

• The knob or mouse is used because it is functionally appropriate. While we could
have used softkeys, a tablet or mouse, or entered numeric values to control the bar
graph, the knob "feels" right. We are used to using knobs to control bar graph
metered readouts.

Interactive Graphics and Graphics Input 4-1

• Control of the value with the knob is fairly intuitive. The normal range markings
make it readily apparent when the value is in range. Little explanation is needed,
due to the immediate feedback from the displayed image.

• A system is "modeled." The user's input must have a well defined relation to
the output of the system. This relation, or rule, should be easy to learn (via
experimentation and immediate feedback).

Thus, interactive graphics can be as simple as representing a single value on the screen
and providing the user a method for interacting with it. It can also be as complex as
a Printed Circuit layout system. This chapter will not tell you how to build a Printed
Circuit layout system, but it will provide some hints on implementing interactive graphics
systems that work.

Characterizing Graphic Interactivity
One of the most important things in designing a good interactive graphics system is
characterizing the interaction with the system correctly. Properly characterizing the
in\eractivity allows selection of the most appropriate device for interaction with the
system. Three things have to be considered in characterizing the interaction:

• The number of degrees of freedom in the system. This is the number of ways in
which a system can be changed.

• The quality of each of the degrees of freedom. This describes how the input to a
degree of freedom can be changed.

• The separability of the degrees of freedom.

The BAR_KNOB program has limitations in these regards. Read on to see why.

4-2 Interactive Graphics and Graphics Input

Selecting Input Devices
The purpose of the discussion on characterization of graphic interaction was to lay the
groundwork for discussing when various input devices are appropriate. There are several
available computers, and choosing the correct one is critical to the design of a highly
productive human interface for an interactive graphics program.

Single Degree of Freedom
Many interactive graphics programs need deal only with a single degree of freedom. The
appropriate control device for such programs depends on whether continuous control or
quantizable control is needed.

The program "BAR_KNOB" is a good example of a single degree of freedom that is
continuous. The knob is ideal for controlling a program like this. If "fine tuning" is
needed, the shift key can be used as a multiplier to change the interpretation of the
knob. It is also possible to use the softkeys for fine tuning.

Softkeys can be used for quantizable control of a degree of freedom. It is also possible
to use keyboard entry of numeric values for quantizable information. Remember that
sofkey labels range from [IT] through []!] on some keyboards, and from [ill through
[ill on others. Also, if you have an ITF keyboard which provides different menus for
the System menu and User 1 through 3 menus, then the SYSTEM KEYS and USER n
KEYS statements enable you to switch from one menu to another. For example, USER 1

KEYS displays the menu for User 1 softkeys, and SYSTEM KEYS displays the System softkeys
menu. Use a 2 or 3 for User 2 or User 3 menus.

Non-Separable Degrees of Freedom
One characteristic of multiple, non-separable degrees of freedom is that they are generally
continuous. The most common operation of this type is free-hand drawing. This is most
easily accomplished with a graphics tablet.

Interactive Graphics and Graphics Input 4-3

Separable Degrees Of Freedom
In many programs, the degrees of freedom are completely separable. In fact, for some
operations, it is definitely preferable to have totally independent control of the degrees
of freedom of the model.

All Continuous
If all the degrees are continuous, a good choice is using the softkeys to select the degree
of freedom and then using the knob to control the input to that degree of freedom. An
even better choice is to use an HP 46085 Control Dial Box, which has nine knobs. See
the "CDials" program on the Manual Examples disc.

All Quantizable
If all the degrees are quantizable, using softkeys is ideal.

Mixed Modes
In most sophisticated graphics systems, several degrees of freedom in the system interact
with each other. A good example is a graphics editor. In a graphics editor, your primary
interaction is with a visual image, and the degrees of freedom (X and Y location) for
that operation are partially separable, at best. (They are non-separable if it supports
freehand drawing.) There is also a degree of freedom involved in controlling the program.
The program control is strongly separable from the image creation operation.

The most appropriate device for supporting mixed modes is a graphics tablet. The
HP 9111A tablet supports two modes of interaction by partitioning the digitizing surface
into two areas. Sixteen small squares along the top of the tablet are used as soft keys to
provide a control menu. The large, framed area underneath the softkeys is the active
digitizing area. The active digitizing area is used for interacting with the image you are
creating. Some HP-HIL tablets (such as the HP 46087 A and HP 46088A) use a 4-button
stylus, or "puck," which has physical buttons on the cursor device.

It is possible to combine the quantized, separable control operations with continuous,
non-separable image editing. This is done by using the active digitizing area for
interacting with the image and using the menu area for controlling the operations
available in the editing program. The operator does not have to change control devices
to access the different interaction modes.

4-4 Interactive Graphics and Graphics Input

Echoes
An important part of interactive graphics is letting the operator know "where he is at."
This can be done by updating the image (as in "BAR_KNOB".) In other operations­
such as menu selection, object positioning, and freehand drawing-it is important to
show the operator where he is. In many cases, this can be done with the SET ECHO
statement.

The Built In Echo
Many graphics applications can be handled using the built in echo. Executing
TRACK .. .IS ON sets up the system to track the graphics input device with the built in
echo during a DIGITIZE. The following program shows how to do single-point digitizing
with the built in echo.

100
110
120
130
140
150
160
170
180
190
200
210
220

GINIT
GRAPHICS INPUT IS 706. "HPGL"
PLOTTER IS CRT. "INTERNAL"
TRACK CRT IS ON

GRAPHICS ON
VIEWPORT 0.133.0.100
WINDOW .50.50 •. 20.20
FRAME
AXES 10.10.0.0.5.5
MOVE 0.0

Restore defaults
9111 is input
(Redundant)
Enable tracking

Match aspect ratios
Define GDUs
Draw bounds
Draw axes
Begin at origin

230 Track:
240

DIGITIZE X.Y.Status$! Request coords
updating cursor until coords received

250
260 DRAW X.Y ! Connect points
270
280 GOTO Track
290
300 END

The TRACK . .IS ON statement merely enables the tracking feature; the actual tracking
is performed while the DIGITIZE statement is being executed. The locator is "tracked"
by moving the output device's "cross-hair" (or pen) correspondingly. Notice that the
definition of the DIGITIZE statement has been modified slightly-now its execution
causes the locator to be tracked and "echoed" on the output device until the stylus (or
Digitize button) is pressed.

Interactive Graphics and Graphics Input 4-5

After the stylus is pressed, the DIGITIZE statement has finished execution and the
DRAW statement is executed. This program draws lines between the digitized points,
but you may want to change this response as desired with the appropriate software.

If accuracy is not exceptionally important, you can do continuous digitizing with the
READ LOCATOR statement.

This program, as it stands, will only work with an HP 9111 graphics tablet at address
706. If you wish to use a mouse or an HP-HIL tablet, change the GRAPHICS INPUT
IS statement to :

GRAPHICS INPUT IS KBD,"KBD" (for HP-HIL Mouse)
or

GRAPHICS INPUT IS KBD, "TABLET" (for HP-HIL Tablet)

The following program continuously tracks the input locator and monitors the
pressed/not-pressed status of the Digitize button (or stylus). The cursor position is
continuously echoed on the output device, and lines are drawn if the Digitize button (or
stylus point) is pressed.

100
110
120
130
140
150
160
170

GINIT
GRAPHICS INPUT IS 706,IHPGL"
PLOTTER IS CRT, II INTERNAL II
GRAPHICS ON
VIEWPORT 0,133,0,100
WINDOW 0,100,1,100
FRAME

180 LOOP
190 READ LOCATOR X,Y,Status$
200 SET ECHO X,Y
210 Button$=Status$[l,l]
220 GOSUB Action
230 END LOOP
240
250 Action:
260
270
280
290 END

IF Button$=IO" THEN MOVE X,Y
IF Button$=ll" THEN DRAW X,Y
RETURN

4-6 Interactive Graphics and Graphics Input

Restore defaults
Define input
Define output

! Match aspect ratios
Define UDUs

! Draw limits

Making Your Own Echoes
In some applications, the cross-hair generated by SET ECHO is not sufficient. You may
want to generate a rubber band line or box. A rubber band line is stretched from an
anchor point to the echo position. In these cases, it is necessary to draw your own echo.

Since an echo needs to be repositioned as the operator interacts with it, it must be
constantly dra\vn and redra\v'n. If it is just dra\'/n and then erased, the background
it is drawn over will soon become littered with erased images of the echo. What we
really want to do is find a way to draw it and then "undraw" it, rather than erasing
it. The complementary drawing mode is used to do this. In the complimentary drawing
mode, the bits specified by the current pen selector are complimented in the frame buffer,
rather than just overwriting the contents. If a second complimenting is done, the image
is restored to whatever was there before the echo was written to it. The echo generated
by SET ECHO is automatically drawn in the complimentary mode.

It is important to remove any echo you have drawn on the screen before updating the
image. The complimenting of a bit pattern does not restore the image if the image was
altered between the complimentary drawing and undrawing. This is done automatically
by SET ECHO, but you must handle it yourself if you are building your own echoes.
The following loop will support a tablet with several different echoes, when used with
the echo routines discussed below.

570 LOOP Main Tracking Loop
580 READ LOCATOR Xin,Yin
590 DISABLE
600 CALL Make_echo(Xin,Yin,Echo_type) Several Echo Types
610 ENABLE
620 END LOOP

Two sets of echo routines are provided, one set for monochrome and one set for color
systems. Both a Kill_echo and a Set_echo routine are provided for each case.

Interactive Graphics and Graphics Input 4-7

Monochrome Echoes
The complementary drawing mode can be accessed for making your own echo by selecting
PEN O. The subroutines which follow are used to implement rubber band line and rubber
band box echoes. Be aware that the subroutines would be a part of some greater program
that you create. The intent is to demonstrate techniques.

Kill_echo:SUB Kill_echo
!***
!* *

2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
Current
3050
3060
3070
3080
3090

!*
!*
!*

This routine gets rid of whatever echo is left over on the *
screen. *

*
!***
!
COM /Echo_local/ Last_x,Last_y,Last_anchor_x.Last_anchor_y
COM /Echo_loca12/ Last_pen.Last_echo_type
COM /Echo_global/ Echo_drawn.Anchor_x.Anchor_y
COM /Booleans/ INTEGER True.False
COM /Modals/ INTEGER Drawmode.Normal.Complement.Current_pen.
fill
COM /Echo_global1/ Rubber_line.Cross.Rubber_box
!
PEN 0
SELECT Last_echo_type
CASE Rubber_line

3100 MOVE Last_anchor_x.Last_anchor_y
3110 DRAW Last_x.Last_y
3120 CASE Rubber_box
3130 MOVE Last_anchor_x,Last_anchor_y
3140 RECTANGLE Last_x-Last_anchor_x,Last_y-Last_anchor_y
3150 CASE ELSE
3160 END SELECT
3170 Echo_drawn=False
3180 PEN 1
3190 SUB END
3200
3210 Make_echo:SUB Make_echo(X.Y.Echo_type)
3220 !***
3230 !* *
3240 !* This routine makes the an echo of the current Echo_type at the *
3250 !* specified (X.Y) location. It also updates the variables for *
3260 !* the Kill_Echo Subprogram. *
3270 !* *
3280 !***
3290 !
3300 COM /Echo_local/ Last_x.Last_y,Last_anchor_x,Last_anchor_y
3310 COM /Echo_loca12/ Last_pen.Last_echo_type
3320 COM /Echo_global/ Echo_drawn.Anchor_x.Anchor_y
3330 COM /Booleans/ INTEGER True,False

4-8 Interactive Graphics and Graphics Input

3340 COM /Modals/ INTEGER Drawmode,Normal,Complement,Current_pen,
Current_fill
3350 COM /Echo_globa11/ Rubber_line,Cross,Rubber_box
3360 COM /Bounds/ Max_clip_y
3370 !
3380 IF Echo_drawn THEN CALL Kill_echo
3390 IF Y<Max_clip_y THEN
3400 PEN 0
34iO SELECT Echo_type
3420 CASE Rubber_line
3430 MOVE Anchor_x,Anchor_y
3440 DRAW X,Y
3450 CASE Rubber_box
3460 MOVE Anchor_x,Anchor_y
3470 RECTANGLE X-Anchor_x,Y-Anchor_y
3480 CASE ELSE
3490 END SELECT
3500 SET ECHO X,Y
3510 Last_x=X
3520 Last_y=Y
3530 Echo_drawn=True
3540 END IF
3550 SET ECHO X,Y
3560 Last_echo_type=Echo_type
3570 Last_anchor_x=Anchor_x
3580 Last_anchor_y=Anchor_y
3590 PEN 1
3600 SUBEND

Interactive Graphics and Graphics Input 4-9

Color Echoes
Accessing the complementary drawing mode is slightly different in color. The complimen­
tary drawing mode can be accessed for making your own echo by specifying a negative
pen number after a GESCAPE to select the non-dominant writing mode (operation se­
lector of 5). The subroutines are used to implement rubber band lines, and have hooks in
place for rubber band boxes. Complement has been initialized to 5, and Drawmode contains
the current drawing mode. Again, remember to study the subroutine listing to examine
programming techniques.

9900 Kill_echo:SUB Kill_echo
9910 **
9920 * *
9930 * This routine gets rid of whatever echo is left over on the *
9940 * screen. *
9950 * *
9960 **
9970
9980 COM /Echo_local/ Last_x.Last_y.Last_anchor_x.Last_anchor_y
9990 COM /Echo_loca12/ Last_pen.Last_echo_type
10000 COM /Echo_global/ Echo_drawn.Anchor_x.Anchor_y
10010 COM /Booleans/ INTEGER True.False
10020 COM /Modals/ INTEGER Drawmode.Normal.Complement.Current_pen.
Current_fill
100$0 COM /Echo_globa11/ Rubber_line.Cross.Rubber_box
10040 !
10050 GESCAPE 3.Complement
10060 IF Last_pen<>O THEN
10070 PEN -Last_pen
10080 ELSE
10090 PEN -1
10100 END IF
10110 SELECT Last_echo_type
10120 CASE Rubber_line
10130 MOVE Last_anchor_x.Last_anchor_y
10140 DRAW Last_x.Last_y
10150 CASE ELSE
10160 END SELECT
10170 GESCAPE 3.Drawmode
10180 PEN Current_pen
10190 Echo_drawn=False
10200 SUBEND
10210
10220 Make_echo:SUB Make_echo(X.Y.Echo_type)
10230
10240
10250
10260
10270
10280

!**
!* *
!* This routine makes the an echo of the current Echo_type at the *

specified (X.Y) location. It also updates the variables for * !*
!* the Kill_Echo Subprogram. *
!* *

4-10 Interactive Graphics and Graphics Input

10290 !**
10300 !
10310 COM /Echo_local/ Last_x.Last_y.Last_anchor_x.Last_anchor_y
10320 COM /Echo_locaI2/ Last_pen.Last_echo_type
10330 COM /Echo_global/ Echo_drawn.Anchor_x.Anchor_y
10340 COM /Booleans/ INTEGER True.False
10360 COM /Modals/ INTEGER Drawmode.Normal.Complement.Current_pen.
Current_fill
10360 vUM /Echo_globall/ Rubber_line.Cro88.Rubber_box
10370 COM /Bounds/ Max_clip_y
10380
10390 IF Echo_drawn THEN CALL Kill_echo
10400 IF Y<Max_clip_y THEN
10410 GESCAPE 3.Complement
10420 IF Current_pen<>O THEN
10430 PEN -Current_pen
10440 ELSE
10460 PEN -1
10460 END IF
10470 SELECT Echo_type
10480 CASE Rubber_line
10490 MOVE Anchor_x.Anchor_y
10600 DRAW X.Y
10610 Echo_drawn=True
10620 CASE Cross
10630 CASE ELSE
10640 END SELECT
10660 GESCAPE 3.Drawmode
10660 SET ECHO X.Y
10670 Last_x=X
10680 Last_y=Y
10690 END IF
10600 SET ECHO X.Y
10610 Last_echo_type=Echo_type
10620 Last_anchor_x=Anchor_x
10630 Last_anchor_y=Anchor_y
10640 Last_pen=Current_pen
10660 PEN Current_pen
10660 SUBEND

Interactive Graphics and Graphics Input 4-11

Graphics Input
In many interactive graphics applications the tablet is used as an echo mover. The
transformation between the graphics tablet and the display should be linear in such
applications, but the axes do not have to transform through the same scaling. It doesn't
matter if a square on the tablet represents a square on the display if you are just using the
tablet to move a cross-hair on the display. However, if you are trying to copy an image
from paper image to the display (using a graphics tablet) it is important to preserve both
the linearity and the aspect ratio in the transformations.

The maximum usable area of a graphics device is bounded by its hard clip limits; for
example, the pen cannot be made to draw outside these limits on an output device.

The current usable area is bounded by the rectangle defined by the points PI and P2;
the lower-left corner is PI, and the upper-right corner is P2. On many devices, these
points can be moved manually or by the program.

When the GINIT statement or a PLOTTER IS statement is executed, points PI and P2
are read from the plotting device; with GINIT, the plotting device is assumed to be the
internal CRT. The value of RATIO is then set to the result of the following calculation:

RATIO=(P2x-PIx) / (P2y-Ply)

GINIT does a WINDOW for the internal CRT only; PLOTTER IS does not do implicit
windowing. You must explicitly do the following statements:

If RATIO >= 1: VIEWPORT O.100*RATIO.O.l00
WINDOW O.100*RATIO.O.l00

If RATIO < 1: VIEWPORT O.100.0.100/RATIO
WINDOW O.100.0.100/RATIO

4-12 Interactive Graphics and Graphics Input

As seen above, the X and Y coordinates of PI are always both 0 Graphic Display Units.
The default Graphic Display Unit coordinates of P2 depend on the device; however, the
smaller coordinate of this point is always 100 Graphic Display Units. Two examples are
shown below:

.... �.i----'""J 133 GDUs ---~~I
i
I

P2
(100,133)

MODEL 226
100 GDUs CRT Graphics Roster

Pl

-'-- f-
(0,0)

U sable-Area Boundaries:

Left edge = X coordinate of PI

Bottom edge = Y coordinate of PI

100

(

i
GDUs

1

DODD DODD DODD DODD

•
Default P2
(100,141)

HP 9111

Graphics Tablet Platen

Default Pl

• (0,0)

'""J141 GDUs

Right edge = X coordinate of P2

Top edge = Y coordinate of P2

Figure 4-1. Default Locations of PI and P2 Using a Model 226 and HP 9111

1

When a PLOTTER IS statement is executed, the locations of points P2 and P2 on the
specified device are determined. The current VIEWPORT statement parameters are
then used to define the physical area (in GDUs) which is to be scaled (in UDUs) by the
WINDOW or SHOW statement currently in effect.

When a subsequent GRAPHICS INPUT IS statement is executed, the operating system
attempts to apply the current VIEWPORT and WINDOW (or SHOW) parameters to
the P1,P2 rectangle of the input device. In the preceding example, the two usable
areas are not identical in size (in GDUs), since the HP 9111 has a smaller horizontal­
to-vertical aspect ratio. This difference in aspect ratios may produce two types of
potentially undesirable results when using these two devices together for interactive
graphics capabilities. The GRAPHICS INPUT IS sets the hard clip limits of the input
device to the largest space possible that has the same aspect ratio as the output device.

Interactive Graphics and Graphics Input 4-13

HP-HIL Devices
The HP-HIL family of peripherals is a relatively new set of devices which communicate via
HP-HIL (Hewlett-Packard Human Interface Loop). The HP-HIL graphics input devices
include the knob, mouse, and graphics tablets. The KBD binary is required for all HP-HIL
devices except keyboards.

HP-HIL Relative Locators (Such as Cursor Keys, Knob, or Mouse)
The term "relative locator," in the context of a graphics input device, refers to a device
which returns incremental X,Y offsets. The computer uses these incremental values to
update the logical coordinates of the graphics locator. No fixed physical reference exists.

Relative locators can also provide "keystrokes" to represent the various buttons, but this
capability is not available while the relative locator is being used for graphics input.

The button which is pressed is reported to the main program by the seventh and
eighth bytes of the status string returned by DIGITIZE and READ LOCATOR. To determine
if any buttons were pressed, check VAL(Status$). If the value is non-zero, a button
was pressed. To determine which button was pressed, check the appropriate bit in the
number represented by the ASCII characters in positions seven and eight of the string.
For example:

ALLOCATE Button(O:Max_buttons)

FOR Bit=O TO Max_buttons
Button(Bit)=BIT(VAL(Status$[7]).Bit)

NEXT Bit

IF Button«(n) THEN . .

The keyboard is a relative device, also. For example, pressing I Enter I will trigger a
DIGITIZE with a status string of "1.2.0.00". However, this does not show up in a READ
LOCATOR operation.

Executing GRAPHICS INPUT IS KBD. "KBD" turns on all relative locators and the results
are combined. Thus, you can safely intermix input from arrow keys, an internal knob~
external knobs, and mice.

4-14 Interactive Graphics and Graphics Input

HP-HIL Absolute Locators (Such as a Tablet or TouchScreen)
An "absolute locator" is a locator which has a finite mapping area, such as the HP 9111
tablet or the 35723A Touchscreen. On these devices, the data returned are X,Y
coordinate pairs. Each possible value of these pairs corresponds to a fixed location
on the physical surface of the digitizing device.

"Proximity," in the context of the following paragraphs, is defined as the area in which
a locator can detect that you are pointing to something. For example, on a 35723A
Touchscreen, proximity is where your finger is close enough to the screen that the
computer can assign a location to your finger's "shadow." For a graphics tablet, proximity
is where the tablet can detect the presence of the stylus or puck.

The Touchscreen is supported as a GRAPHICS INPUT device-a low-resolution TABLET. Going
into proximity on a Touchscreen-pointing to something, with your finger touching the
screen-causes the Touchscreen to sense your finger's location. Going out of proximity
on a Touchscreen-removing your finger from the screen-triggers a DIGITIZE. On the
Touchscreen and the 45911A, 46087A and 46088A tablets, when out of proximity, bytes
7 and 8 of the "device status" string contain the ASCII characters "64".

The HP-HIL tablets consider all buttons unpressed when out of proximity. Buttons
which are held down while moving into proximity are sent as key presses at the proximity
transition. This can trigger a digitize at that point.

Similar to the combining of relative locators, executing GRAPHICS INPUT IS KBD, "TABLET"
turns on all absolute locators and combines the results. However, since the display can
be scaled to only one absolute locator at a time, and since the inputs replace each other
(as opposed to adding to each other), this is not a useful feature.

For an program that supports the use of all of these devices, LOAD and RUN the
"KBD_ICONS" program on the Manual Examples disc.

The GESCAPE statement, in conjunction with the device selector KBD, allows you to both
set and read hard clip limits for absolute locators on the HP-HIL bus. Note that the
hard clip limits are only the right-most and uppermost limits; the left and bottom edges
of the plotting surface are always zero. For example, to set the hard clip limits for an
HP-HIL Touchscreen in spite of the presence of a tablet on the bus:

10 INTEGER Parameter_array(1:2)
20 Parameter_array (1) =52
30 Parameter_array(2)=46
40 GESCAPE KBD,20,Parameter_array(*) Set absolute-locator hard limits

Interactive Graphics and Graphics Input 4-15

To read the hard clip limits for all the absolute locators on the HP-HIL bus, you can use
GESCAPE with operation selector 21 or 22. For example:

10 INTEGER Param_array(1:4) ! We have TWO absolute locators on the HP-HIL
20 GESCAPE KBD,22;Param_array(*) ! Read ALL absolute locator limits

If Par am_array had been larger that four elements, the first unused element-after using
two elements for each absolute locator on the loop-would contain -1. This special value
is to indicate that there are no more coordinate pairs.

Unlike other GESCAPE operation selectors, operation selectors 20 through 22 do not require
the device at the specified select code to be currently active. Indeed, if you want to
set the hard clip limits, GESCAPE KBD, 20 must be executed before the GRAPHICS INPUT IS

KBD,"TABLET".

Operation selectors 20 and 21 will give DEVICE NOT PRESENT errors if no tablet, Touch­
screen, or HP-HIL interface exists. An operation selector 22, under the same circum­
stances, will return a -1 for the first entry in the return array.

The HP-HIL Tablets can be treated as a superset of the HP 9111A when used with the
built-in GRAPHICS INPUT IS, READ LOCATOR, and DIGITIZE commands. The
HP-HIL Tablets are a superset because of the extra button information available in the
READ LOCATOR and DIGITIZE status strings.

There is one important difference between the HP 9111A and the HP-HIL Tablets which
may cause programs that work with the HP 9111A to have problems with the HP­
HIL Tablets. When a READ LOCATOR or DIGITIZE command is executed for an
HP 9111A, the system sends a request to the HP 9111A for the current location of the
stylus. The HP-HIL Tablets, on the other hand, send the current location only when
it changes. They cannot be asked for the current location. When GRAPHICS INPUT IS

KBD, "TABLET" is executed, the internal variables representing the state of the HP-HIL
Tablet are initialized. Since BASIC does not know the true state of the tablet at the
time, the initialization sets up a unique state which can become valid with any set of
received data for the tablet, but which can also be easily recognized as invalid. This
state is in proximity with negative device coordinates.

The difference between the HP 9111A and the HP-HIL Tablets should not be a problem
for a program which executes the GRAPHICS INPUT IS statement initially and leaves
graphics input active while it runs. However, it may be a problem if the program was
written to do a GRAPHICS INPUT IS before each call to READ LOCATOR because
this causes initilization to occur just before input. Note that after GRAPHICS INPUT IS

KBD, "TABLET" is executed, the data returned by READ LOCATOR will be recognizably
invalid until a transaction on the tablet causes valid data to be sent to the controller.

4-16 Interactive Graphics and Graphics Input

Support of HP-HIL Devices for Graphics Input
Here is a generic description of the HP-HIL devices for which BASIC provides drivers l :

• Relative locators with 1 to 3 dimensions and with up to 6 buttons;

• Absolute locators with 1 or 2 dimensions and with up to 6 buttons and/or proximity.

For both of these categories of devices, extra dimensions or multiple sets of a.xes disqualify
the device. Note that the maximum number of buttons is six; any "seventh" button would
be ignored.

Note

BASIC only configures the HP-HIL bus at power-up and SCRATCH

A. Reconfiguring the bus physically without doing a SCRATCH A

can result in devices not being recognized and/or in data being
misinterpreted as coming from another type of device.

You can also write your own drivers for other devices. See the "HP-HIL Interface" chapter of BASIC
Interfacing Techniques.

Interactive Graphics and Graphics Input 4-17

Dealing With Multiple Buttons
One feature of the 46060A mouse and the 46089A digitizer puck is that there are multiple
buttons available to press when digitizing. This means that there is a choice, when
digitizing, of how to signal the computer that you've made your choice.

The way that the computer finds out which button you pressed is by the status string
returned from DIGITIZE and READ LOCATOR. The following example program merely tracks,
on the CRT, the stylus movements on the digitizer. Note the use of this status string in
the following example program.

10 ! Program "Multibutn"
20 GINIT
30 PLOTTER IS CRT,"INTERNAL"
40 VIEWPORT O,100*RATIO,O,100
50 WINDOW 0,100,0,100
60 TRACK CRT IS ON
70 GRAPHICS INPUT IS KBD,"TABLET"
80 Status$="O,O,O,OO"
90 REPEAT
100 REPEAT
110 Old_status$=Status$
120 READ LOCATOR.X,Y,Status$
130 SET ECHO X,Y
140 Buttons=VAL(Status$[7,8])
150 UNTIL Buttons-BINAND(Buttons,VAL(Old_status$[7]»! Note button
presses,
160 IF Buttons=64 THEN
170 PRINT "You exited proximity."
180 ELSE
190 PRINT USING "I,K";"You pressed"
200 Num_buttons=O
210 FOR Button=1 TO 6

ignore releases

\ Count
\ the

220 IF BIT(Buttons,Button-1) THEN Num_buttons=Num_buttons+1! / buttons
/ pressed 230 NEXT Button

240 IF Num_buttons=O THEN PRINT USING "I,K";"no "
250 PRINT USING "I,K";"button"
260 IF Num_buttons<>1 THEN PRINT USING "I,K";"s"
270 FOR Button=1 TO 6
280 IF BIT(Buttons,Button-1) THEN
290 PRINT USING "I,K";" ",Button
300 Num_buttons=Num_buttons-1
310 SELECT Num_buttons
320 CASE 0
330 ! Do nothing
340 CASE 1
350 PRINT USING "I,K";" and"
360 CASE 2 TO 6
370 PRINT USING "I,K";","

4-18 Interactive Graphics and Graphics Input

380 END SELECT
390 END IF
400 NEXT Button
410 PRINT "."
420 END IF
430 UNTIL Buttons=ll ! Stop on simultaneous buttons 1, 2, and 4
440 GINIT ! Get rid of the cursor
450 PRINT "Program finished."
460 END

Menu-Picking
Perhaps one of the most common uses for the Touchscreen is that of presenting several
options on the screen, and having the user select one by pointing to it. The following
example program does just that. It presents five options on the screen, and the user
picks one. All the main program does after that is state which option the user picked;
you may enhance and modify the example to fit your application.

Points of note in the example:

• The function FNMenu is a general-purpose function to which a menu array can be
passed, and from which the selected option is returned.

• The user must indicate a location within the option boxes; if not, a warning will be
given, and the user must try again. This prevents invalid data from being returned
to the calling routine.

• The options are LABELed in graphics, rather than being PRINTed in alpha. This
avoids the difficulty in aligning alpha text and graphics scaling, which is where the
DIGITIZE works from.

10 ! Program "Pick"
20 OPTION BASE 1
30 DIM Menu$(5) [20]
40 READ Menu$(*)
50 DATA Accounts Receivable,Accounts
Payable ,Personnel ,Payroll ,Manufacturing
60 OUTPUT KBD USING "#,B,K";255,"K" ! Clear the alpha
70 Selection=FNMenu(Menu$(*»
80 PRINT USING "#,K";"You selected option #",Selection,"."
90 END
100 ! **
110 Menu:DEF FNMenu(Menu$(*»
120 GINIT
130 PLOTTER IS CRT,"INTERNAL"
140 WINDOW 0,1,6.5,.5
150 GRAPHICS ON
160 LORG 5

screen

Interactive Graphics and Graphics Input 4-19

170 GRAPHICS INPUT IS KBD,"TABLET"
180 Field_length=20
190 FOR 1=1 TO SIZE(Menu$,1)
200 MOVE 0,1-.25
210 RECTANGLE .5,.5,EDGE
220 MOVE .25,1
230 LABEL Menu$(I)
240 NEXT I
250 TRACK CRT IS ON
260 REPEAT
270 DIGITIZE X,Y
280 Rounded=INT(Y+.5)
290 Ok=(Rounded>=1) AND (Rounded<=SIZE(Menu$,1» AND (ABS(Y-Rounded)<.25)
300 Ok=Ok AND (X>O) AND (X<.5)
310 IF NOT Ok THEN
320 BEEP
330 DISP "Please place the cursor in an option box before selection."
340 WAIT 2
350 DISP
360 END IF
370 UNTIL Ok
380 GINIT Get rid of the cursor
390 GCLEAR Clear the graphics screen
400 RETURN INT(Y+.5) Return the menu option selected
410 FNEND

4-20 Interactive Graphics and Graphics Input

Color Graphics 5
N on-Color-Mapped Color 5-2

Specifying a Non-Color-Mapped Display 5-2
Available Colors 5-2
U sing the HP 98627 A Color Interface and Display. 5-3
N on-Color-Mapped Dominant Pens. .. 5-4
Choosing Pen Colors .. 5-5
GSTORE Array Sizes for the HP 98627 A 5-6

Using Color-Map Displays ... 5-7
The Frame Buffer .. 5-7
Erasing Colors. .. 5-8
Default Colors .. 5-9
The Color Map .. 5-11
Color Specification. .. 5-12
Which Model? .. 5-14
Dithering and Color Maps :......... 5-16
If You Need More Colors .. 5-18
Optimizing for Dithering .. 5-18
Non-Dominant Writing : 5-19
Complementary Writing " 5-21

Effective Use of Color .. 5-22
Seeing Color .. 5-22
Designing Displays .. 5-24
Objective Color Use. .. 5-25
Subjective Color Use ... 5-30

Color Spaces .. 5-32
Primaries and Color Cubes. .. 5-32
HSL Color Space. .. 5-35
Color Gamuts ... 5-38
Color Hard Copy .. 5-39

Color References ... 5-41

Color Graphics 5
Color can be used for emphasis, for clarity, and just to present visually pleasing images.
Color is a very powerful tool and it follows directly that it is very easy to misuse. Be
careful in using color and it will serve as a valuable tool for communication. Misuse it
and it will garble the communication.

The biggest benefit of the color computer is that it makes experimenting with color so
easy. It is easy to test out ideas before you fully implement them. It is also possible to
use the color map for simple animation effects and some just plain impressive images.

Color Graphics 5-1

Non-Color-Mapped Color
There are two types of color displays available with Series 200/300 computers: color­
mapped displays, and non-color-mapped displays. This section discusses the latter type.
(Subsequent sections discuss color-mapped displays.)

Specifying a Non-Color-Mapped Display
When either of the following statements are executed:

PLOTTER IS CRT,"INTERNAL"
or

PLOTTER IS 28,"98627A"

a non-color-mapped display is selected as the plotting device. With the first statement,
the non-color-mapped mode is chosen, even though the display may be capable of
operating in the color-mapped mode.

Available Colors
With non-color-mapped displays, eight colors are available through the PEN and AREA
PEN statements:

• Black and White

• Red, Green, and Blue (the additive color primaries)

• Cyan, Magenta, and Yellow (the complements of the additive color primaries)

5-2 Color Graphics

Using the HP 98627 A Color Interface and Display
The HP 98627 A interface allows you to connect an RGB color monitor to your computer.
The HP 98627 A does not support color map operations; thus, you cannot change the color
of an area on the screen without redrawing that area. Nor can you define your own color­
addition scheme as you can with a color-mapped device (see subsequent sections of this
chapter). In addition to this, there are only eight pure colors!; to get others, you must

If you have an HP 98627 A interface connected to a 60 Hz, non-interlaced color monitor2 ,

you could send graphics to it by executing the following statement:

PLOTTER IS 28. "98627A"

There are many types of color monitors which you can connect to your computer through
an HP 98627 A color monitor interface. In the PLOTTER IS statement, you must specify
accordingly:

Table 5-1. UP 98627 A Display Formats

Desired Display Format Plotter Specifier

Standard Graphics "98627A" or
512 by 390 pixels, "98627A;US STD"
60 Hz, non-interlaced

512 by 390 pixels, "98627A;EURO STD"
50 Hz, non-interlaced .

High-Resolution Graphics "98627A;HI RES"
512 by 512 pixels,
46.5 Hz, non-interlaced

TV Compatible Graphics "98627A;US TV"
512 by 474 pixels,
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels, "98627A;EURO TV"
50 Hz, interlaced
(25 Hz refresh rate)

1 Only eight pure colors can be created on an external color monitor. This is because there is no control
over the intensity of each color gun. Each color can be either off or on, and there are three colors: red,
green, and blue. Two states, three colors: 23 =8.

2 Depending on your choice of color monitor, there may be more specification necessary in the string
expression part of the PLOTTER IS statement. See the subsequent table for further information.

Color Graphics 5-3

The HP98627 A1s display memory is composed of three "color planes" of as many bits as
necessary to compose a full picture. Following is a description of how the various pen
selectors affect the operation of an external color monitor.

For the an external color monitor connected through the HP98627 A, pen selectors are
mapped into the range -7 through 7. Thus:

If pen selector>O then use PEN (pen selector-I) MOD 7+1
If pen selector=O then use PEN 0 (complement 1)

If pen selector<O then use PEN -((ABS(pen selector)-I) MOD 7+1)

Non-Color-Mapped Dominant Pens
The meanings of the different pen values are shown in the table below. The pen value
can cause either a 1 (draw), a 0 (erase) 1 nlc (no change), or complement (invert) the
value in each memory plane.

Table 5-2. Non-Color-Map Dominant-Pen Mode

Plane 1 Plane 2 Plane 3
Pen Action (red) (green) (blue)

-7 Erase Magenta 0 nle 0

-6 Erase Blue nle nle 0

-5 Erase Cyan nle 0 0

-4 Erase Green nle 0 nle
-3 Erase Yellow 0 0 nle
-2 Erase Red 0 nle nle
-1 Erase White 0 0 0

0 Complement invert invert invert

1 Draw White 1 1 1

2 Draw Red 1 0 0

3 Draw Yellow 1 1 0

4 Draw Green 0 1 0

5 Draw Cyan 0 1 1

6 Draw Blue 0 0 1

7 Draw Magenta 1 0 1

"Complement" means to change the state of pixels; that is, to draw lines where there are none, and to
erase where lines already exist.

5-4 Color Graphics

Choosing Pen Colors
The colors can be selected the same way they are for other display devices-with the
PEN statement. If all you are after is highlighting a portion of a graph or chart, this may
be all the color that you need. (In non-color-map mode, other graphics displays behave
exactly like the HP 98627 A Color Interface Card.) The colors and their pen selectors are
listed below:

Table 5-3. Default Non-Color-Map Values

Pen Frame Buffer
Value Color Entry

0 Black 0

1 White 7

2 Red 1

3 Yellow 3

4 Green 2

5 Cyan 6

6 Blue 4

7 Magenta 5

If you are in this mode, you can draw lines in the eight colors listed above. It is possible,
however, to fill areas with other shades. These tones are achieved through dithering.

Color Graphics 5-5

Dithering produces different shades by combining dots of the 8 colors described above.
The screen is divided up into 4-by-4 cells and patterns of dots within the cells are
turned on to match, as closely as possible, the color you specify. Dithered colors are
defined with the AREA COLOR and AREA INTENSITY statements. The color models
available are discussed in a subsequent section entitled "Color Specification." (The actual
color matching process used in dithering is described under "Dithering and the Color
Map.") Filling is specified by using the secondary keyword FILL in any of the following
statements:

IPLOT PLOT

RECTANGLE RPLOT

GSTORE Array Sizes for the HP 98627 A

POLYGON

SYMBOL

As mentioned above~ different color monitors display different numbers of pixels. To
figure the array size necessary to GSTORE an image, multiply the number pixels in the
X direction by the number of pixels in the Y direction, multiply that by the number of
color planes (three) and divide by sixteen (the number of bits per word). For example,
say you want to calculate the array size needed for storing an image created on a U.S.
standard monitor (see the first entry in the table above): 512x390x3-:-16=37 440 words.
However, you cannot specify an array which has any more than 32767 elements in any
dimension. To get around this restriction, what is typically done is to make one dimension
the number of memory planes (three) and the other dimension the number of pixels
(512x390-:-16). Thus, the statement declaring an array for storing an image from a
"U .S. Standard" external color monitor could look like this:

INTEGER Image(1:12480.1:3)

If your array is larger than necessary to store an image, it will be filled only to the point
w here the image is exhausted. If your image is larger than your array, the array will be
filled completely, and the remainder of the image will be ignored.

The GSTORE and GLOAD statements store the graphics image into this array and load
it back into graphics memory, respectively.

5-6 Color Graphics

Using Color-Map Displays
If you are trying to define a complex human interface, you will need more colors and
more control over the colors. The system described in the rest of this chapter (except
for dithering) is available only after you turn on the color map. To do so, execute:

PLOTTER IS CRT.!!INiERNAL";COLOR MAP

If you have a 98782A color monitor connected through a 98700 display controller, and it
is set to address 25, you could execute:

PLOTTER IS 25. I INTERNAL";COLOR MAP

In this way, plots can easily be plotted on various devices with a minimum of program­
ming effort.

The Frame Buffer
Most Series 200/300 color displays have bit-mapped color graphics. An area in memory
called a frame buffer provides 1, 4, 6, or 8 bits of memory for each pixel location. (The
number of bits available for describing each pixel is sOqIetimes called the depth of the
frame buffer.) A 4 bit frame buffer allows each pixel location to contain a number
between 0 and 15 (inclusive). Thus a four-plane frame buffer can display lines in 16
different colors on the CRT, simultaneously. At any given time, the values written to the
frame buffer fall into four categories: '

• Background Value-Whenever GCLEAR is executed, all the pixel locations in the
frame buffer are set to O. Thus, 0 is the background color.

• Line Value-The PEN statement is used to determine the value written to the frame
buffer for all lines drawn. This includes all lines (including characters created by
LABEL) and outlines (specified by the secondary keyword EDGE).

• Fill Value-The AREA PEN statement is used to specify the value written to the
frame buffer for filling areas (specified by the secondary keyword FILL).

• Dithered Colors-AREA INTENSITY and AREA COLOR can be used for speci­
fying a fill color, but the results can be surprising when the COLOR MAP option
has been selected (see "Dithering and Color Maps"). In addition, the dithered col­
ors have a tendency to introduce texturing into the areas and may not accurately
reproduce the color you specify.

Color Graphics 5-7

The PEN, AREA PEN, AREA INTENSITY, and AREA COLOR statements control
what are referred to as modal attributes. This means that the value established by one
of the statements stays in effect until it is altered by another statement. (GINIT alters
all of them.)

Erasing Colors
Erasing is a fairly simple concept in frame buffers that are a single bit deep. You just
restore the background by setting the portion of the frame buffer you wish to erase to o.
The concept is a little more complex in frame buffers with more depth. As long as the
graphics system is in the dominant writing mode (see "Non-Dominant Writing"), there
are three ways of erasing:

• The easiest is GCLEAR. However, GCLEAR destroys the entire image. If you want
to erase only part of the image, it is necessary to be more precise.

• If you know the pen used to write the line, you can use a negative pen selector of
the same magnitude. This will erase the pen value from the frame buffer. (It works
for PEN and AREA PEN.)

• If you don't know the pen used to create the image, you can overwrite the image
with the background color. This can be PEN 0, or, if you are on a filled area,
whatever pen the area was filled with. A fairly simple extension of this is to use
the RECTANGLE statement to implement a local GCLEAR to erase portions of
the screen.

5-8 Color Graphics

Default Colors
Throughout the discussion of the frame buffer, only values were talked about. If you do
not modify the color map (see the next section for how to do that) the colors selected by
the PEN and AREA PEN values depend on the default color map values, which are:

Table 5-4. Default Color Map Values

Value Color

0 Black

1 White

2 Red

3 Yellow

4 Green

5 Cyan

6 Blue

7 Magenta

8 Black

9 Olive Green

10 Aqua

11 Royal Blue

12 Maroon

13 Brick Red

14 Orange

15 Brown

Pens 16 through the end of the color map are also defined for displays with more than
four planes. You can interrogate the color map with GESCAPE for exact values.

Color Graphics 5-9

The Primary Colors
The lower eight pens of the default color map are the same as are available without
enabling the color map, but they do not write the same value into the frame buffer (see
the PEN statement in the BASIC Language Reference.) The colors are:

• Black and White (the extremes of no-color)

• Red, Green, and Blue (the additive primaries)

• Cyan, Magenta, and Yellow (the complements of the additive primaries - which
happen to be the subtractive primaries)

The Business Colors
The upper 8 colors (8 through 15) were selected by a graphic designer to produce graphs
and charts for business applications. The colors are:

• Maroon, Brick Red, Orange, and Brown (warm colors)

• Black, Olive Green, Aqua, Royal Blue (cool colors)

These colors are one designer's idea of appropriate colors for business charts and graphs.
~They were chosen to avoid clashing with each other. A technique for using them is
described under "Color Hard Copy" in the "Color Spaces" section at the end of this
chapter.

It is possible to use the color computer with the default color map. The color used will
depend directly on the value in the frame buffer. This is fine if the work you are doing
can be accomplished using the 16 colors supplied as the system defaults. This is often not
the case, and this overlooks one of the most powerful features of the color computer-the
color map.

5-10 Color Graphics

The Color Map
The color-mapped system uses the value in the frame buffer as an index into a color map.
The color map contains a much larger description of the color to be used and, just as
importantly, the color description used is indirect. Thus, the value in the frame buffer
does not say "use color 12," but rather "use the color described by register number 12."
Note that 8-bit binary numbers are stored in the color map in the diagram below. This
is not the case for a ~v1odel 236C; it stores 4-bit binary nW'1lbers. All other color-mapped
systems use 8-bit binary numbers in their color map.

Frame Buffer

Display

Red Green Blue

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
o

1001 1100

Color

- -
Red ~ 0

D/R {)
1" --- -

~r -reenl
~

~g. Q. -
~- -

Blue .l.
~ D/R .}..
1 -

1011

Map

-
"""'I

--- 7

Figure 5-1. Color Map (Model 236C)

Color Graphics 5-11

The CRT refresh circuitry reads the value from the pixel location in the frame buffer,
uses it to look up the color value in the color map, and displays that color at that pixel
location on the CRT. Thus, it is possible to draw a picture with a given set of colors in the
color map (a set of colors is called a palette) and then change palettes and produce a new
picture by redefining the colors, rather than having to redraw the picture. (The binary
numbers in the color map are created by the system. The user deals with normalized
values, as described under "Color Specification.")

Color Specification
The SET PEN statement is used to control the values in the color registers in the color
map. The SET PEN statement supports two color models for selecting the color each
pen represents, the RGB (Red, Green, Blue) model and the HSL (Hue, Saturation,
Luminosity) model. Since the color models are dynamically interactive, it is much easier
to understand them by experimenting with them.

The RGB Model (Red, Green, Blue)
The RGB model can be thought of as mixing the output of three light sources (one
each of Red, Green, and Blue). The parameters in the model specify the intensity of
each of the light sources. The RG B model is accessed through the secondary keyword
INTENSITY with the SET PEN statement. The RGB model is closest to the actual
physical system used by color displays. The Red, Green, and Blue values represent the
value modulating the electron guns that excite the colored phosphors on the CRT. The
values are normalized (range from 0 through 1). The normalized values are converted to
8-bit1 binary numbers to store in the color map. Each of the values is used to control a
8-bit1 digital-to-analog converter, providing 2561 intensity levels from full-off to full-on
for each of the colors. Thus,

SET PEN 0 INTENSITY 7/255.7/255.7/255

sets pen 0 (the background color) to approximately a "50%" gray value. (Whenever all
the guns are set to the same intensity, a gray value is obtained.) It is simpler to think
in 1/255ths2 and let the computer do the conversion to a decimal fraction, since the
intensity parameters can be numeric expressions. The parameters for the INTENSITY
mode of SET PEN are in the same order they appear in the name of the model (Red,
Green, Blue).

1 The Model 236C stores 4-bit binary numbers in the color map.
2 The Model 236C uses 1/15ths for its intensity value.

5-12 Color Graphics

The HSL Model (Hue, Saturation, Luminosity)
The HSL model is closer to the intuitive model of color used by artists, and is very
effective for interactive color selection. The three parameters represent hue (the pure
color to be worked with), saturation (the ratio of the pure color mixed with white), and
luminosity (the brightness-per-unit area.) The following plate is of a screen from the
program "NEW _MODELS", and provides a physical model to relate the parameters of
the HSL model to.

Figure 5-2. HSL Phy8i~al Model

The Hue parameter rotates a color wheel to select a "pure" color to use. This color is
then mixed with white light. The ratio of the pure colored light to the white light is
controlled by the Saturation slider. Finally, the output passes through the luminosity
iris (think of it as a hole you can adjust the size of) that controls the brightness of the
output.

The HSL model is accessed through the SET PEN statement with the secondary keyword
COLOR:

SET PEN Current_pen COLOR H(Current_pen) ,S(Current_pen) ,L(Current_pen)

Color Graphics 5-13

HSL Resolution
The resolution of the HSL model is not specified anywhere. This is because the resolution
for the various parameters is not a fixed value. The resolution for any parameter of the
HSL system is dependent on all three of the parameters. The resolution is not only
changed by the other two parameters, but also by the magnitude of the parameter you
are varying. If resolution of the system becomes important in a program, it is possible
to use a GESCAPE to read the RGB values back from the color map to watch for a
change in the actual value being written in the color map. Change the HSL parameters
by very small increments (on the order of 0.001) until a change in the color map entry is
detected. This is best done using color map entry 0, since you will only need to read a
single entry from the color map to check for the change.

Which Model?
Two models are provided for your color computer. The INTENSITY option of the SET
PEN statement is faster than the COLOR option, because it directly reflects the hardware
in the system. If you are working with primaries only, or want gray scale output, the
RGB model is great. If, on the other hand, you are trying to deal with pastels and shades,
you are better off with a color model that is intuitive in nature, and that is where the
HSL model shines.

It is possible to get the best of both worlds by using the HSL model for the human
interaction, then reading the color map with a GESCAPE statement to get the RGB
color values. The RGB values can then be used to rapidly load a palette into the color
map. The "SET _COLOR" program does exactly that to calculate the correct cursor and
text color to use when the user sets a background color. This is done by reading in the
RGB color map values, calculating which corner of the color cube is farthest from the
background color, setting the foreground pen and text displays to that color, and then
writing the RGB array back into the color map. Even though the primary interaction
is with the HSL model, the RGB is used because it is more convenient to find distances
between colors in it.

1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

GESCAPE CRT,2;Rgb(*)
IF Rgb(O,l)<.5 THEN

Rgb(l,l)=l
ELSE

Rgb(l,l)=O
END IF

IF Rgb(O,2)<.5 THEN
Rgb(1,2)=1

ELSE
Rgb(1,2)=0

END IF

5-14 Color Graphics

Read the color map

1400 IF Rgb(0.3)<.5 THEN
1410 Rgb(1.3)=1
1420 ELSE
1430 Rgb(1.3)=0
1440 END IF
1450
1460 Print_color=O
1470 FOR 1=1 TO 3
i480 Print_color=Print_color*2+Rgb(1.I)
1490 NEXT I
1500
1510 CONTROL 1.5;Funny_number(Print_color)
1520 SET PEN 0 INTENSITY Rgb(*) ! Refill the color map

By the way, lines 1280 through 1490 can be replaced by the following:

1280 Print_color=4*(Rgb(0.1)<.5)+2*(Rgb(0.2)<.5)+(Rgb(0.3)<.5)
1290 FOR 1=1 TO 3
1300 RGB(1.I)=BIT(Print_color.3-I)
1310 NEXT I

These lines will execute faster, but are harder to understand.

One point brought out by the preceding example is that the models can be mixed freely.
There is nothing to prevent using INTENSITY to set a gray background color and a
black pen, and then using COLOR to produce the rest of the palette. Use whatever is
easiest for what you'want to do.

If you are interested in pursuing the color models, the RGB model is formally referred to
as a color cube and the HSL model is called the Color Cylinder. These models represent
idealized color spaces and are described under "Color Spaces" at the end of this chapter.

Color Graphics 5-15

Dithering and Color Maps
In early color systems which did not provide control of the intensity of individual pixels,
dithering became a very popular method of increasing the number of shades available
to the machine. By reducing the effective resolution of the system, it was possible to
provide a large variety of shades.

Your color computer provides dithering for applications that require more shades than 16,
64 or 256 colors that are available at any single time with the color map on your particular
color-mapped system. The AREA INTENSITY and AREA COLOR statements provide
access to the dithered colors, although they will fill with a single pen if the color requested
exists in the current color map.

If you are not in the color-map mode, AREA INTENSITY and AREA COLOR will
produce the same results on a color computer that they produce on non-color-map
devices, such as the 98627 Color Interface Card.

Creating A Dithered Color
The following discussion gets a little abstract, and it is not absolutely necessary to
understand how dithering works to use it. It is interesting information and can be useful
knowledge if dithered areas don't do what you expect.

A color vector is a directed line connecting two points in RGB color space. The dithering
process tries to match a target vector by constructing a solution vector from colors in the
color map. The actual dithered color to be produced will be 16 times the target vector,
since 16 points in the dither area will be combined to create it.

The color matching process requires sixteen steps. First, the target vector is compared
to the vectors produced by all the colors in the color map. The one which is closest! to
the target vector is selected as the first component of the solution vector.

1 The distance between the points in the RGB color space is used. The RGB color space is a 3-dimensional
Cartesian coordinate system.

5-16 Color Graphics

The following process is then repeated 15 times:

1. The target vector is added to itself to produce a new target vector.

2. A trial solution vector is created for each color in the color map by adding the
vector for the color map entry to the previous solution vector. The trial solution
vector that is closest to the target vector is selected as the new solution vector.

At this point, the target vector is 16 times the original target vector, and the solution
vector consists of a summation of color vectors from the color map that produce, at each
iteration, the vector closest to the target vector.

The colors are then sorted by luminosity and filled into the following precedence matrix
(the most luminous color is filled into the lowest numbered pixel):

Table 5-5. Dithering Precedence Matrix

1 13 4 16

9 5 12 8

3 15 2 14

11 7 '10 6

The dither precedence matrix is actually tied to pixel locations on the CRT. The matrix
is repeated across the CRT and from the top to the bottom of the CRT. Areas to be
filled are mapped against the fixed dithering pattern. All dither cells completely within
an outline to be filled are turned on according to the precedence pattern. Cells which
are only partially within the border are only partially enabled. If the area fill pattern
calls for a pixel outside the boundary to be set, it will not be.

There are problems with dithering, especially when used with the color map:

• The dithered color selection tends to produce textures. In some cases, the textures
overwhelm the shade produced.

• The dithered colors are not necessarily accurate representations of the color
specified. This is especially true if the color map is loaded with a palette that
is less than ideal for dithering. A 4-by-4 dither cell with one full intensity green
pixel does not look the same as the same cell filled with the color map color 1/15
green.

Color Graphics 5-17

• The dithered colors are not stable if the color map is altered. (If you change the
color map after doing a fill based on an AREA COLOR or AREA INTENSITY,
the fill value can change.)

• The dithering operation produces anomalies when the area to be filled is thin. If
it is less than four pixels wide or high, it cannot contain the entire dither cell and
the results can be surprising for colors which turn on small portions of the cell.

If You Need More Colors
If you have an application that requires more than 16 (4-plane systems), 64 (6-plane
systems) or 256 (8-plane systems) colors, the first thing to do is see if you can redefine
it to use 16, 64 or 256 colors. In many cases this is possible, and the higher quality of
the color mapped palette is worth a little checking to see if you can use it.

If you absolutely have to get at a larger palette, then load a palette optimized for dithering
(optimizing for dithering is described below) and stick with dithering. Don't try to mix
color map redefinition and dithering-it will probably cause you a lot of grief. Especially,
do not try to do interactive redefinition of the color map in a system that also does
dithering.

Optimizing for Dithering
The actual color palette you require determines the optimum color map values. The
following program leaves the additive primaries and their complements in the lower eight
locations and replaces the designer colors in the upper half of the color map with half­
luminosity values for each of the lower eight colors.

10 "DITHER_PAL"
20 ! This program creates a palette for dithering
30 'on a 16 color map system.
40 GIN IT
50 PLOTTER IS CRT,"INTERNAL";COLOR MAP
60 GRAPHICS ON
70 WINDOW 0,16,-.1.1
80 DIM Colors(O:15.1:3)
90 GESCAPE CRT.2;Colors(*)
100 FOR 1=0 TO 7
110 Colors(I+8.1)=Colors(I.l)/2
120 Colors(I+8.2)=Colors(I,2)/2
130 Colors(I+8.3)=Colors(I.3)/2
140 NEXT I
150 SET PEN 0 INTENSITY Colors(*)
160 FOR 1=0 TO 15
170 MOVE 1.0
180 AREA PEN I
190 RECTANGLE 1.1.FILL

5-18 Color Graphics

200 NEXT I
210 END

The color map generated by "DITHER_PAL" is optimized for producing the widest
selection of colors. If you have specialized needs you can create palettes that are even
more optimum for specific applications. For example, you could load the color map
with 16 shades of red to produce an optimum palette for producing an image that only
contained red objects.

Non-Dominant Writing
All the techniques described up until now have dealt with dominant writing to the frame
buffer. In the dominant writing mode, the pen selector is written directly to the color
map, and overwrites whatever is currently in the frame buffer. In non-dominant writing,
a bit-by-bit logical-OR is performed on the contents of the frame buffer and the pen
selector value being written to the frame buffer. Thus, if pen 1 is written to a buffer
location that has already been written to with pen 6, the buffer location will contain 7,
but writing pen 2 to a buffer location that has already been written to with pen 6 will
not change the contents.

Non-dominant writing can be used to create a properly defined palette of colors in the
color map. Using this palette of colors, it is fairly easy to create a copy of the primary
color circles. An additive palette is created in lines 490 through 540, by modeling
the three least-significant bits of the frame buffer as color planes. Bit 0 is treated as
representing red, bit 1 as representing green, and bit 2 as representing blue.

470 !******************* Create the Additive Palette ***
480 !
490 FOR 1=0 TO 7
500 Red=BIT(I,O)
510 Green=BIT(I,1)
520 Blue=BIT(I,2)
530 SET PEN I INTENSITY Red,Green,Blue
540 NEXT I

The palette is created in the color map and then read into an array, using GESCAPE.

620 GESCAPE CRT,2;Additive(*) ! Read additive palette

The subtractive palette is created in lines 750 through 840. The palette is created by
converting between the RGB map created for the additive palette, above, and a CMY
(Cyan, Magenta, and Yellow) system. (The technique is described in more detail in the
next section, "Color Spaces.")

Color Graphics 5-19

750 FOR 1=0 TO 15 Create subtractive palette
760 FOR J=l TO 3
770 Point(l,J)=Additive(I,J) Read a pOint from additive palette
780 NEXT J
790 MAT New_point= Unit-Point
800 !
810 ! The next line prints out PEN INTENSITY values for both palettes
820 IF 1<8 THEN PRINT USING Pen_image2;White$,I,Point(l,l) ,Point(l,2) ,
Point(l,3) ,Black$,I,New_point(l,l) ,New_point (1 ,2) ,New_ point(l,3)
830 SET PEN I INTENSITY New_point(*) !
840 NEXT I

The Surprise palette is created by reading from data statements.

210
220
230
240
250
260
270
280
290
300
310
320
330

!************** Create the Surprise Palette ****************
!
SET PEN 0 INTENSITY .6, .6, .6
RESTORE Surprise

Gray background
Make sure you read the right data

Surprise: ! DATA for surprise palette
DATA .9 Pen 1
DATA .2 Pen 2
DATA .5 Pen 3
DATA .7 Pen 4
DATA .1 Pen 5
DATA .8 Pen 6
DATA .3 Pen 7

340 FOR 1=1 TO 7
350 READ Hue
360 SET PEN I COLOR Hue,l,l
370 NEXT I
380
390 MAT Point= (.6)
400 SET PEN 8 INTENSITY Point(*)
410 SET PEN 9 INTENSITY Point(*)
420 MAT Point= (0)
430 SET PEN 10 INTENSITY Point(*)
440
450 GESCAPE 3,2,Surprise(*)

!\
\

!/

> Pens for labels
/

The surprise palette relates to no known color system, but it demonstrates an important
point- the non-dominant color map is arbitrary, and can represent any system you can
dream up. You may want to write in four shades of blue, have any overlap of two pens
be yellow, any overlap of three pens be orange, and any overlap of four pens be red. The
following lines set up such a color map.

5-20 Color Graphics

230 DIM Yellow(1:l,l:3),Orange(1:l,l:3)
240 RESTORE Colors
250 READ Yellow(*),Orange(*)
260 Colors:DATA .87, .87,0, 1,.47,0
270
280 SET PEN 0 INTENSITY .6, .6,.6 Gray background
290 SET PEN 1 INTENSITY 0,0, .4 0001 - Blue Plane 1
300 SET PEN 2 INTENSITY 0,0,. 6 0010 - Blue Plane 2
310 SET PEN 3 INTENSITY Yellow(*) 0011
320 SET PEN 4 INTENSITY 0,0,.8 0100 - Blue Plane 3
330 SET PEN 5 INTENSITY Yellow(*) 0101
340 SET PEN 6 INTENSITY Yellow(*) 0110
350 SET PEN 7 INTENSITY Orange(*) 0111
360 SET PEN 8 INTENSITY 0,0,1 1000 - Blue Plane 4
370 SET PEN 9 INTENSITY Yellow(*) 1001
380 SET PEN 10 INTENSITY Yellow(*) 1010
390 SET PEN 11 INTENSITY Orange(*) 1011
400 SET PEN 12 INTENSITY Yellow(*) 1100
410 SET PEN 13 INTENSITY Orange(*) 1101
420 SET PEN 14 INTENSITY Orange(*) 1110
430 SET PEN 15 INTENSITY 1,0,0 1111
440 !
450 GESCAPE 3,2,Surprise(*)

Backgrounds
One nice feature available with non-dominant writing is backgrounds that aren't altered
by your foreground. By restricting your foreground to pens 0 through 7, a background
written with pen 8 will not be damaged by writing over it.

Complementary Writing
The concept of complementary writing was introduced in the "Interactive Graphics"
chapter, under "Making Your Own Echoes." On a color computer, the concept of a
complementary pen is extended to deal with the 4-bit or 8-bit values in the color map.
With the non-dominant writing mode enabled, negative pen numbers will be exclusively­
ORed with the contents of the frame buffer.

The complement occurs only for the bits which are one in the pen selector. Thus a pen
selector of -6 would complement bits 1 and 2 of the frame buffer. If a 1 exists in a frame
buffer location and a line is drawn over it with PEN -6, a 7 will now be in the location.
Writing over the pixel with the same pen selector will return it to a 1.

Color Graphics 5-21

Making Sure Echoes Are Visible
It is important to understand that the complementing is of the frame buffer, not the color
map. You are responsible for making sure that the complemented frame buffer values
are visible against one another. Be careful of placing the same color in two locations on
the color map that are complements of one another. If you pick one of them as an echo
color and then try to use the echo over an area filled with the other value, you will not
be able to see it.

Effective Use of Color
At the beginning of this chapter, it was pointed out that color is a very powerful tool,
and that it was also easy to misuse. While it is beyond the scope of this book to provide
an exhaustive guide to color use, a few comments can be made on using color effectively.

This section will deal with seeing color first, to lay the groundwork. This is followed
by a discussion on designing effective display images, since effective color use is almost
impossible if the image is fundamentally unsound.

After laying the groundwork, effective color use is discussed, from both the objective and
subjective standpoints.

Seeing Color
The human eye responds to wavelengths of electromagnetic radiation from about 400
nm to about 700 nm (4000 to 7000 angstrom.) We call this visible light. Visible light
ranges from violet (400 nm) to red (700 nm.) If all the frequencies of visible light are
approximately equally mixed, the result is called white light.

The eye's ability to discriminate color is reduced as the light level is reduced. This
means that the variety of colors perceivable at low light levels is smaller than the variety
at higher light levels.

5-22 Color Graphics

The eye is most sensitive to colors in the middle of the visible spectrum, a yellow-green
color. The eye is least sensitive to the shorter wavelengths, which are at the blue end of
the spectrum. Sensitivity to red is between that of yellow-green and blue. Two things
seem to be associated with the sensitivity of the eye to various colors:

• The eye can distinguish the widest range of colors in the yellow-green region, and
the smallest variety of colors in the blue region.

• The eye is most sensitive to detail in the yellow-green region.

Why and how any of the above works is explained by color theorists. There are a large
number of theories of color and all of them work for explaining the specific phenomena
the researchers were studying when they developed the theory, but none of them seem to
be able to explain it all. The list of references at the end of this chapter include several
on how vision works.

It's All Subjective Anyway
One of the reasons that there are so many color theories is that no two people seem to
perceive color the same way. In fact, the same person will many times perceive color
differently at different times. In addition to the physiological and psychological variables
in color perception, many environmental factors are important. Ambient lighting and
surrounding color affect the perceived color tremendously.

Mixing Colors
If two distinct audio tones are played simultaneously, you will hear both of them. If the
same area is illuminated by two or more different colors of light, you will not perceive the
original colors of light, but rather a single color, and it will be not be one of the original
colors. What you will perceive is called the dominant wavelength.

The CRT uses three different colored phosphors (Red, Green, and Blue) and mixes
various intensities of the resulting lights to produce one of XXXX colors at any point
on the CRT. What you actually see is the resulting dominant wavelength. This is an
additive color system.

Mixing with pigments is a little different. Pigments in inks and paints absorb light. The
idea with pigments is to subtract all but the color you want out of a white light source.
This is a subtractive color system, and the primary colors are cyan, magenta, and yellow.

The different mechanisms for mixing additive and subtractive colors make it difficult
to reproduce images created with additive colors (like a CRT) in a subtractive medium
(like a plotted or printed page.) Photographing the CRT is the best method currently
available for color hard copy. This problem is discussed in more depth at the end of this
chapter under "Color Gamuts" and "Color Hard Copy."

Color Graphics 5-23

Designing Displays
While the design of displays is not really a color topic, a few words about it are in order
before we get into the effective use of color. If the design of an image is fundamentally
unsound, all the good color usage in the world is not going to help it.

Whenever you put an image on a CRT, you have created a graphic design. The design
will either be a good one or a bad one, and if you know this, you have automatically
increased your chances of creating a good design. If you are going to be creating a lot
of displays, either in a lot of programs or in a single large program, you need a graphic
designer. Many people have a natural talent for graphics -an ability to look at an image
and tell whether it is graphically sound or not. If you don't have that talent (or feel you
could use some help) there are two courses of action that might be productive for you;
you can hire a graphics designer or become one. Renting one is expensive and becoming
one is time-consuming, but if you are trying to communicate with users, you have to
understand graphic design. While getting a degree in graphic arts may be impractical, a
course or two in the field will prove very useful if you do much programming.

While this book can't turn you into a graphic designer, a few simple hints may help you
on your next program.

The most important thing in communicating with people is to keep it simple. Don't try
to communicate the total sum of human knowledge in a single image. It is much more
effective to have several screens of information that a user can call up as required than
a single screen so complicated that the user can't find what he wants on it.

Try to redundantly encode everything in case one of the encoding methods fails. For
example, if you color code information, use positional coding (the location of the
information tells something about the nature of the information) too. Remember, the
person reading the screen is probably not the person who wrote the program, and even if
you are writing the program for yourself, you may forget how it works by the next time
you try to use it.

Another important thing to remember is to be consistent. Always try to place the same
type of information in the same area of the CRT and use the same encoding methods for
similar messages. Don't using flashing to encode important information on one display
and then using inverse video for the same thing seven displays into the program.

5-24 Color Graphics

Objective Color Use
In spite of the subjectivity of color, there are some fairly objective things that you should
know about color. Some of the things that can be done with color don't depend heavily
on subjective interpretation.

Color Blindness
A fact of life that it is dangerous to ignore is that some people are color-blind. The most
common form of color blindness is red-green color blindness (the inability to distinguish
red and green). Avoid encoding information using red-green discrimination, or these
people will have difficulty using the system.

Color Map Animation
One very powerful communication tool is motion. Some simple forms of animation can be
achieved by changing the colors in the color map. This technique of color map animation
is capable of adding simple motions to an image. Color map animation can be combined
with frame buffer animation, which is based on creating images and storing them, to
produce more dramatic animated effects.

The basic technique of color map animation can be broken into 3 steps:

1. Create the palettes (or starting palette.)

2. Create the image.

3. Load or modify the palette to add motion.

A look at a simple program example will help show how color map animation works.
Load and run "Marquee" from the Manual Examples disc. The moving color bands
around the label are not redrawn to produce the motion-the color they represent is
changed in the color map. Let's look at each section of the program to see how color
map animation works.

The first step is declaring some arrays. Most of the arrays will hold RGB pen values to
use with SET PEN to define new color palettes. Black contains all black pens, so the
image can be drawn without being seen. Message$ is used to hold strings to print on the
alpha screen while the image is being created. Pall through Pal4 are palette arrays that
contain the color maps for the animation. New_order will be used to create the palette
arrays.

10 ! "MARQUEE" - a demo of color map animation
20
30 DIM Black(0:15.1:3).Message$[80]
40 DIM Pall(1:6.1:3).PaI2(1:6.1:3).PaI3(1:6.1:3).PaI4(1:6.1:3)
50 INTEGER New_order(1:6)

Color Graphics 5-25

The first three lines in the following block of code are used to put a message on the alpha
screen for the person running the program. It takes several seconds for the program to
set up the animation. Messages are printed on the screen to keep the viewer from getting
bored.

The next step is to create the palettes. The palette will be loaded into pens 1 through
6. An initial palette is read into Pall from data statements. Pens 1 through 4 will be
used for the actual animation. These are red, green, blue, and black. The black band is
necessary to produce a strong illusion of motion. The other colors can be whatever you
want.

Pen 5 provides a stable background to label the marquee message in, and pen 6 is used
for two purposes:

• Each rectangle is framed with a fixed pen to provide reference points for the motion.
Perception of motion is relative, and the illusion is much more pronounced when
the rectangles are framed.

• The message in the marquee is labeled in a fixed pen, to make it easy to read.

Once the initial palette is loaded, MAT REORDER is used to rearrange the colors,
rotating them by one position in each successive palette. Only the lower four pens are
rotated.

60 OUTPUT KBD USING "#,B";255,75
70 ALPHA ON
BO PRINT "What's that?"
90 Pause_time=.OB4
100 MAT Black= (0)
110 RESTORE Pal
120 READ Pall(*)
130 READ New_order(*)
140 Pal:DATA 1,0,0, 0,1,0, 0,0,1,
150 DATA 2,3,4,1,5,6
160 MAT Pa12= Pall
170 MAT REORDER Pal2 BY New_order
lBO MAT Pa13= Pal2
190 MAT REORDER Pal3 BY New_order
200 MAT Pa14= Pal3
210 MAT REORDER Pal4 BY New_order

Clear alpha screen
Obvious
Give them something to read
Display each palette this long
All pens black
Rp,ad the right data
Read the base palette
Read the reordering vector

0,0,0, 0,0,0, 0,1,1

!\
\ Copy preceding palette

\ and reorder the lower
/ four entries to rotate

/ the colors for the
!/ lower four pens.

Next, we set up the graphics system. It must be in the color map mode. The scaling was
set up to be convenient for generating the border of bars. The scaling allows for soft keys
to be included under the image.

5-26 Color Graphics

220 GIN IT
230 PLOTTER IS CRT,"INTERNAL";COLOR MAP
240 SET PEN 0 INTENSITY Black(*)
250 GRAPHICS ON
260 WINDOW 0,30,-3,30
270 PEN 6

Set defaults
Set color map
All pens black
Obvious
Arbitrary scale
Border and text pen

A set of concentric rectangles are generated with the RECTANGLE statement, framed
(EDGE) with pen 6 (one of the stable colors) and filled (FILL) with one of the pens (1
through 4) that will be used for the animation. The inner rectangle is filled with pen 5
to provide a stable background for the labels. Messages are read from data statements
and printed on the screen to keep the viewer's attention.

280 RESTORE Text
290 FOR 1=1 TO 9
300 AREA PEN I MOD 4+1
310 IF 1=9 THEN AREA PEN 5
320 MOVE (0+1*.5),0+1*.5
330 RECTANGLE (30-1) ,30-1 ,FILL ,EDGE
340 IF I MOD 2 THEN
350 READ Message$
360 PRINT Message$
370 END IF
380 NEXT I

Read the right data
8 nested rectangles
Use pens 1 through 4
Inner rectangle for message
Corner of the rectangle
Draw a filled rectangle

\ Print a message after
\ every other rectangle;
/ (Don't let them get

/ bored while setting up.)

.390 Text:DATA "You're tired of the same old computer programs?1I
400 DATA "Ready for something new~", II Don 't Move. ", II Don 't Go Away. II, II II

Now we add the text in the marquee. The delay in line 530 is for dramatic effect.

410 CSIZE 10
420 LORG 5
430 MOVE 15,17
440 LABEL USING IK";IComing soon"
450 LABEL USING IKI;"To a Model 36C"
460 LABEL USING IKI;"Near You."
470 FOR 1=-.04 TO .04 STEP .01
480 MOVE 15+1,22
490 LABEL USING IKI;"The Tiger"
500 NEXT I
510 OUTPUT KBD USING 1#,B";255,75
520 PRINT lilt's time for: II

530 WAIT 2
540 OUTPUT KBD USING 1#,B";255,75

!\ Set up for the labels
!/

Location for labels
\

/
\

/

> Labels in Marquee

\ Make this label bold
/

Clear the Alpha screen
Last text message
Let them read it
Clear the Alpha screen

Color Graphics 5-27

The following code begins the actual animation. The palettes are loaded in succession
to create the motion effect. Varying the value of Pause_time (defined in line 90) changes
the speed of the apparent motion. Since each palette is a single positional rotation of
the preceding palette, and the last palette looks like it is one rotation away from the first
palette, we can simply loop back to the first palette.

550 LOOP
560 SET PEN 1 INTENSITY Pal1(*)
570 WAIT Pause_time
580 SET PEN 1 INTENSITY Pal2(*)
590 WAIT Pause_time
600 SET PEN 1 INTENSITY Pal3(*)
610 WAIT Pause_time
620 SET PEN 1 INTENSITY Pal4(*)
630 WAIT Pause_time
640 END LOOP
650 END

! Do forever
!\

\

/
!/

\
\ Load the four palettes,
/ waiting after each load.

/

Study this program segment to conceptualize a technique for color animation.

A color wheel is animated using a similar technique, except that the color map is
calculated each time, . rather than being a pre-calculated set of values.

9080 Make_color_pens:!
9090 Wheel_hue(11)=Hue-4*Del_hue
9100 IF Wheel_hue(11)<O THEN Wheel_hue(11)=1+Wheel_hue(11)
9110 Wheel_hue (10)=Hue-3*Del_hue
9120 IF Wheel_hue(10)<0 THEN Wheel_hue(10)=1+Wheel_hue(10)
9130 Wheel_hue (9) =Hue-2*Del_hue
9140 IF Wheel_hue(9)<0 THEN Wheel_hue(9)=1+Wheel_hue(9)
9150 Wheel_hue (8)=Hue-Del_hue
9160 IF Wheel_hue(8)<0 THEN Wheel_hue(8)=1+Wheel_hue(8)
9170
9180 Wheel_hue (7)=Hue
9190 Wheel_hue(6)=(Hue+Del_hue) MOD 1
9200 Wheel_hue(5)=(Hue+2*Del_hue) MOD 1
9210 Wheel_hue(4)=(Hue+3*Del_hue) MOD 1
9220

In addition, the palette is loaded in ascending order (pen 1 first, then pen 2, etc.) to
rotate the wheel in one direction and in descending order to rotate in the other direction.

9230 IF Hue_up=True THEN
9240 FOR Ij=4 TO 11
9250 SET PEN Ij COLOR Wheel_hue(Ij) ,1,1
9260 NEXT Ij
9270 ELSE
9280 FOR Ij=11 TO 4 STEP -1

5-28 Color Graphics

9290 SET PEN Ij COLOR Wheel_hue(Ij).l.l
9300 NEXT Ij
9310 END IF

The speed at which the wheel can be rotated is limited by the computation and by the
fact that the HSL model is used.

"RIPPLES" and "STORM" (on the Manual Examples disc) are two more examples of
color map animation.

3D Stereo Pairs
The program "STEREO" on the Manual Examples disc demonstrates a method for
viewing three-dimensional information on a two dimensional display device. The program
produces a pair of images on the CRT. The two images form what is called a stereo pair.
The stereo pair consists of an image representing the scene as it would be seen by the
left eye and one representing the scene as it would be seen by the right eye. When the
two images are viewed correctly, the brain merges them together into a single, three­
dimensional image.

One of the easiest ways to do that is to use different colored images and then put matching
fil ters over the eyes.

In "STEREO", one image is written in red and the other in blue. A red filter should be
placed over the left eye and a blue filter over the right eye. This is the same arrangement
used for broadcasting stereo movies over NTSC (American) color television.

The filters normally available for viewing television stereo transmissions are not very
narrow, and some "ghosting" occurs (faint images intended for one eye visible in the
other.) Narrower filters would actually be better. The CIE coordinate ranges for each
of the phosphors are listed below:

Table 5-5.

Color X Range Y Range

Red 0.620 through 0.640 0.325 through 0.350

Green 0.280 through 0.315 0.600 through 0.673

Blue 0.150 through 0.153 0.055 through 0.062

Color Graphics 5-29

If you don't want to get into CIE coordinates, borrow a set of filters, and look for two
that produce the images with the least ghosting from the other color. Those are the two
you want to use.

The images are written in a non-dominant mode, with a palette set up to allow the
intersection of the two images to be visible in both eyes.

The program could be improved by using true perspective, instead of view-plane
projection to produce the images.

Subjective Color Use
Choosing appropriate colors for a program to use can be tricky, and constitutes a
significant part of the job of a good graphic designer. In the final analysis, it is a largely
a matter of trying combinations until you come up with a set of colors that look good
together. If your application is complex, it will be well worth your while to consult with
a graphic designer about the color scheme and layout of information displays for your
program. There are, however, a few fairly fundamental things to remember in designing
your programs.

Choosing Colors
First, and probably most important, is to use color sparingly. Color always has a
communication value and using it when it carries no specific information adds noise
to the communication.

Use some method for selecting the colors-one of the best is a color wheel (see the SET
PEN entry in the BASIC Language Reference).

• 'fry varying the luminosity or saturation of a color and its complement (opposite
it on the color wheel).

• 'fry color triplets (three equally-spaced colors) and other small sets of colors equally­
spaced around the color wheel.

Pastels (less than fully-saturated colors) tend not to clash.

Give careful attention to your background color. Remember that a filled area can become
the background color for a portion of the image on the CRT.

• If you are using a small number of colors, use the complement of one of them for
the background.

5-30 Color Graphics

• If you are using a large number of colors, use a gray background.

If two colors are not harmonious, a thin black border between them can help.

Use subtle changes (such as varying the saturation or luminosity of a hue) for differenti­
ating subtly different messages and major changes (such as large changes in the hue of
saturated colors) to convey major differences.

Most of all, think and experiment. The final criteria is "Does this display communicate
the message?"

Psychological Color Temperature
Temperatures ranging from cool to hot are associated with colors ranging from blue to
red (ice blue-fire red). This is actually the opposite of physical reality, where the higher
the temperature, the shorter the wavelength (blue is a black body radiation of about
7600° K while red is about 3200° K) but this is what people perceive as the relation
between temperature and color. This is probably because people very seldom deal with
the high temperatures and associate the blues with non-temperature related natural
phenomena (oceans and ice). If you are trying to portray temperature, electrical field
strength, stress, or some other continuous physical system, using the psychological color
temperature can serve as a useful starting point for color coding the values.

Cultural Conventions
When trying to use color for communicating, cultural conventions are useful. Red is
widely associated with danger in most western cultures, giving extra emphasis to a
flashing red indicator. By the same token, a flashing green indicator would be less
effective for communicating an out of range value in a system. In any specific application,
it is important to understand the color associations that are common for the group using
the application.

Color Graphics 5-31

Color Spaces
If you ask a broadcast engineer what the primary colors are, he will probably tell you
"Red, green, and blue." If you ask a printer what the primary colors are, he will probably
tell you "Cyan, magenta, and yellow." If you ask a physicist, he will probably smile and
say "That's not the right question." Let's see if we can get enough information about
color systems to ask the right question.

Primaries and Color Cubes
The reason is that there are two sets of color primaries. Red, green and blue are additive
primaries. Cyan, magenta, and yellow are subtractive primaries. Each of these sets of
primaries can be used to construct what is referred to as a color cube. These are called
the RGB color cube and the CMY color cube.

Each of the color cubes can be used to describe a color space. Color spaces are
mathematical abstractions which are convenient for scientific descriptions of color. This
is because the color spaces provide a coordinate system for describing colors. Once you
have a coordinate system, you can talk about and manipulate colors mathematically.

In addition to the color cubes, other color coordinate systems exist. While there are
many, we will only look at HSL Color Space, because it is one of the available color
models on your color computer. First, the cubes.

The RGB Color Cube
The RGB color cube describes an additive color system. In an additive color system,
color is generated by mixing various colored light sources. (Color mixing is discussed in
"Effective Use of Color," above.)

The origin (0,0,0) of the RGB color cube is black. Increasing alues of each of the additive
primaries (Red, Green, and Blue) move towards white (the opposite corner of the cube.)
The maximum for all three colors is white (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally.

The RGB color cube can be accessed directly, in 16 steps (4-plane systems) or 256
steps (8-plane systems) for each axis, by the INTENSITY option for the color definition
statements (SET PEN, AREA INTENSITY, and AREA COLOR).

5-32 Color Graphics

The CMY Color Cube
The CMY color cube represents a subtractive color system. In a subtractive color system,
colors are created by subtracting colors out of a pure white (containing all colors equally)
light source. This most often occurs when light is reflected off of surfaces containing or
coated with pigments. This happens in printing and painting, among other operations.

The origin (0;0;0) for the CMY color cube is white. This represents all the colors in a
perfect white (containing all colors) light source being reflected by a white (reflecting all
colors) surface. Increasing values of each of the subtractive primaries (Cyan, Magenta,
and Yellow) move towards black (the opposite corner of the cube). The maximum for all
three colors is black (1,1,1).

A diagonal of the cube connecting (0,0,0) and (1,1,1) represents gray shades, which are
generated by incrementing all three color axes equally.

Converting Between Color Cubes
It is sometimes useful to convert from one color coordinate system to another.

The CMY color cube can be converted to RGB coordinates (or RGB to CMY) by
producing a color triplet (a 1 by 3 matrix) containing the CMY coordinate and
subtracting this from a color triplet representing a unit color vector (1,1,1). This
operation represents rotating the color cube to bring the CMY black (1,1,1) to the RGB
black (0,0,0).

The following program lines convert the RGB color map intQ CMY values. This is done to
provide separations of an RGB image into CMY values for printing (remember-printing
is a subtractive process). Since the system is color mapped, you only need to convert 16
(4-plane systems), 64 (6-plane systems) or 256 (8-plane systems) values-remember, the
frame buffer values only point to a register in the color map.

• The contents of the color map are copied into Old_colors using a GESCAPE in line
14680.

• Each color triplet in the color map is copied into Rgb_point in lines 14720 through
14740.

• The actual RGB to CMY conversion is done in line 14750.

• The CMY triplet is copied into the CMY array in lines 14760 through 14780.

Color Graphics 5-33

14660 Convert_colors:!
14670 ALPHA ON
14680 GESCAPE 3,2;01d_colors(*)
14690 PRINT" OLD COLORS NEW COLORS"
14700 PRINT "Index R G B C M Y"
14710 FOR 1=0 TO 15
14720 FOR J=l TO 3
14730 Rgb_point(J)=Old_colors(I,J)
14740 NEXT J
14750 MAT Cmy_point= Unit_point-Rgb_point
14760 FOR J=l TO 3
14770 New_colors(I,J)=Cmy_point(J)
14780 NEXT J
14790 PRINT USING Image$; I ,Rgb_point(l) ,Rgb_point(2) ,Rgb_point(3) ,

Cmy_point(1),Cmy_point(2) ,Cmy_point(3)
14800 NEXT I
14810 Converted=True
14820 RETURN

A subprogram can be used to provide drivers to produce monochromatic gray-scale dis­
plays representing the cyan, magenta, and yellow contents of the color map (and a sepa­
rate black image that printers like to have around). The monochromatic representation
is easier to photograph than the actual color content.

This color conversion just described is mathematical. If you really want to print it, you
will have to work with a printer to calibrate the frames you are giving him against a good
color photo of the actual image. The printer may also want the CMY information to be
inverted for his process. This can be achieved photographically or by subtracting each of
the CMY values from one during the color map conversion (this is an element-by-element
subtraction, not a matrix subtraction). The conversion can be achieved easily with the
MAT statement:

14805 MAT New_colors

5-34 Color Graphics

HSL Color Space
The color cubes are very useful for working with physical systems that are based on color
primaries. They are not always intuitive, though.

The H8L color cylinder resides in a cylindrical coordinate system. A cylindrical
coordinate system is one in which a polar coordinate system representing the X-Y plane
is combined with a Z-axis from a rectangular coordinate system.

• The coordinates are normalized (range from 0 through 1).

• Hue (H) is the angular coordinate.

• Saturation (8) is the radial coordinate.

• Luminosity (L) is the altitude above the polar coordinate plane.

Color Graphics 5-35

WHITE

I GRAY SCALE

Figure 5-3. HSL Color Cylinder

The cylinder rests on a black plane (L = 0) and extends upward, with increasing altitude
(Luminosity) representing increasing brightness. Whenever luminosity is at 0, the values
of saturation and hue do not matter.

White is the center of the top of the cylinder (L=I, 8=0). The center line of the cylinder
(8 = 0) is a line which connects the center of the black plane (L=O, 8=0) with white
(L=I, 8=0) through a series of gray steps (L from 0 to 1, 8=0). Whenever saturation

5-36 Color Graphics

is 0, the value of hue does not matter. The outer edge of the cylinder (S=l) represents
fully saturated color.

DESIRED

CYAN
HUE=3/6
SAT = 1
LUM=1

LUMINOSITY = 1
SATURATION =0

COLOR ""~=S=A=T=U::;RA=T=IO=N=:.I

Figure 5-4. HSL Color Specification

SAT = 1
LUM=1

Using the above drawing (HSL Color Specification,) hue is the angular coordinate,
saturation is the radius, and luminosity is the altitude of the desired color.

Color Graphics 5-37

HSL to RGB Conversion
Converting from HSL to RGB is simple. Do a SET PEN for the HSL point you want and
then read it out of the color map with a GESCAPE. You are limited to the resolution
of the color map, but it is very simple. The following line reads the color map into
Old_colors.

14680 GESCAPE 3,2;Old_colors(*)

RGB to HSL conversion is not described, due to the fact that it is a one-to-many
conversion (the entire bottom plane of the HSL color space is represented by a single
point in the RGB color space, and hue is indeterminate if saturation equals 0).

Color Gamuts
The range of colors a physical system can represent is called its COIOT gamut. Color
gamuts are important when you want to convert between different physical systems,
because the source system may be able to produce colors the destination system cannot
reproduce. An exhaustive treatment of color gamuts is beyond the scope of this book.
However, here are some rules of thumb:

• The color gamuts for CRTs and photographic film are not the same, but are fairly
close. If you are lucky, you can photograph the CRT and catch it on film. It may
take more than one exposure, so be careful and bracket everything with several
exposures.

• The color gamut for printing is significantly smaller than that of either photographic
film or of a CRT. The fact that you have a picture of a CRT does not mean you
can hand it to a printer and get a faithful reproduction of it.

• The color gamut of a plotter is much smaller than that of a CRT. You have to
create images with the limitations of a plotter in mind if you intend to reproduce
them on a plotter (see "Plotting and the CRT," below.)

The different color gamuts available are not a problem unless you forget the differences
and try to act like all physical systems have the same gamut. Think ahead if you have
to reproduce images-it will save a lot a trouble.

5-38 Color Graphics

Color Hard Copy
It may seem strange to find "Color Hard Copy" a topic under "Color Spaces." The
reason it is here is that color hard copy represents a translation between color systems,
and many of the problems in color hard copy arise from the fact that the color gamuts
available to the CRT and the hard copy device are different.

There are three basic ways to get a color hard copy of what is displayed on a color
computer:

• Take a picture of the CRT.

• Re-run the program that generated the image with an external plotter selected as
the display device (PLOTTER IS 705, "HPGL").

• Use the PaintJet@ Utility.

The first method is the easiest and can capture (usually) whatever is on the CRT,
regardless of what colors are used (see "Color Gamuts," above.) The second requires
setting up the color map to match the pens in a plotter, and is not as likely to capture
what you see on the screen. The third method requires the PaintJet@ color printer
and the GDUMP _C Utility (on the Utilities 2 Disc). See the "BASIC Utilities Library"
section of the Istalling and Maintaining the BASIC System manual for information about
GDUMP_C.

Photographing the CRT
Photography is an art, not a science. Capturing images off a CRT is relatively
straightforward, but sometimes unpredictable due to the different color gamuts available
for film and the CRT. The following guidelines will provide a starting point. If your
images are not "typical" (whatever that means) you may have to go back and re­
photograph some of them. All the CRT images in this manual were captured using
these guidelines.

• Use ISO 64 Color film. (The color photos in this manual were taken on Kodak
Ektachrome 64.)

• Set up your equipment in a room that can be darkened. It will have to be darkened
for the one-second exposure.

• Use a telephoto lens (the longer the better, up to about 500mm). This minimizes
the effects of the curvature of the CRT.

• Use a tripod.

• Darken the room and take a one-second exposure.

• Bracket the aperture around f5.6. (One stop above and below.)

Color Graphics 5-39

Plotting and the CRT
There are two basic reasons the CRT is hard to capture on a plotter.

• The CRT is an additive color device and a plotter is a subtractive color device.

• The color gamut of the CRT is much larger than that of the plotter.

The conversion from additive to subtractive colors is not a huge problem if the plot
is a simple line drawing with few intersections and area fills. If the plot is complex,
especially with lots of intersections and overlapping filled areas, the plot is much less
likely to capture the display image accurately.

A possible technique described below purposely limits the color gamut of the CRT to give
the plotter some chance of capturing it.

To set up the color map and plotter to match one another:

• Set your background to white (SET PEN 0 INTENSITY 1,1,1).

• Set up pens matching the color map colors in slots 1 through 8 in the same order
they are presented in the default color map listed under "Default Colors."

• Use penselectors from 8 through 15 to select your pens.

• Run the program with the color mapped CRT as the display device, modifying it
as necessary to produce the image you want on the CRT.

• Re-run the program with the plotter as the display device. You will need to subtract
8 from the pens to properly select the set available on the plotter.

While it is possible to get some idea of the plot that will be produced on the plotter,
don't be surprised if they don't look exactly the same. Colors on a CRT are different in
source and form from colors on a plotter, as described under "Seeing Color," earlier.

5-40 Color Graphics

Color References
The following references deal with color and vision. Texts that serve as useful introduc­
tions to the topic are starred.

* Cornsweet, T., Visual Perception. New York: Academic Press, 1970

Farrell, R. J. and Booth, J. M., Design Handbook for Imagery Interpretation Equipment
(AD / A-025453) Seattle: Boeing Aerospace Co., 1975

Graham, C. H., (Ed.) Vision and Visual Perception New York: J. Wiley & sons, Inc.,
1965

* Hurvich, 1. M., Color Vision: An introduction. Sunderland, MA: Sinauer Assoc., 1980

Judd, D. B., Contributions to Color Science (Edited by D. MacAdam; 545) NBS special
publication Washington: U. S. Government Printing Office, 1979

* Rose, A., Vision: human and electronic. New York: Plenum, 1973

Color Graphics 5-41

5-42 Color Graphics

Data Display and Transformations 6
Bar Charts and Pie Charts ... 6-2
Two-Dimensional Transformations 6-5
Three-Dimensional Transformations .. 6-7
Surface Plotting .. 6-9

Contour Plotting. .. 6-9
Gray Maps. .. 6-11
Surface Plot .. 6-14

Data Display and Transformations 6
In this chapter, various more advanced topics will be briefly discussed. You are
encouraged to load these example routines and try them out after reading the discussion.
No program listings will be provided, but the programs/subprograms are on the Manual
Examples Disc which came with your BASIC software. Every file has at least some
code which is general-purpose enough that you can copy program segments into your
own applications. The files which are programs can be loaded with a LOAD command.
The files which just contain subprograms which can be bodily moved into an application
program are in ASCII format; they must be gotten with a GET command. Some of the
following routines will work on either monochromatic (black-and-white) or color CRTs,
but a few will only work on a color computer. These will be noted as such.

There are several external routines which are called by the following subprograms. They
are short, convenient utility subprograms. Listings of these and other utility routines are
provided in the "Utility Routines" chap~er.

Note that the subprograms stored on the Manual Examples Disc and the utility subpro­
grams provided in the "Utility Routines" chapter were included for your convenience.
You would need to create applications programs (files of type PROG) to use them.

Data Display and Transformations 6-1

Bar Charts and Pie Charts
The bar chart routine, which may plot on either a CRT or a plotter, is a general purpose
routine.

Below are two sample (random) outputs from the bar chart program. The first shows a
"comparative" bar chart; that is, a bar chart in which comparisons between individual
bars may easily be made. The second shows a "stacked" bar chart; that is, a bar chart
in which bars from the same group are stacked one on top of the other, so that the sums
of the bars in each group may be compared.

u,ee

91iK!1

eliK!l

7B1i!1

SIiK!I

see

41iK!1

3B1i!1

21iK!1

lliK!I

B

Test Bar o.art
(Here 1. the .ubtltle)

~----------~~
~----------~~
~----------~ll1IllU

-----t~
f-----------IIJI

ca.-OYP 1 0,..0...... _

Figure 6-1. Typical Bar Charts

6-2 Data Display and Transformations

,

Test Bar Dlart
(Her. te the eubtttl.)

2.~--------------------------------------~

sUlIJiIJ
a~oup 1 a~oup _ a~oup a a~oup ~

Figure 6-1. Typical Bar Charts (eont.)

The pie-chart subprogram (on the Manual Examples Disc) can use both the color map
and area fills. This program may be loaded from the Manual Examples Disc from the
file named Pie_Chart. The program sends random data to the subprogram.

Data Display and Transformations 6-3

Figure 6-2. Output of "Pie_Chart" Program

Study the program as you require.

6-4 Data Display and Transformations

Two-Dimensional Transformations
When you want a two-dimensional figure to be drawn after having been scaled, translated,
rotated, or sheared, you need to know about the generalized 2D transformations. The.
purpose of this manual is not to go into theoretical discussions in depth, but some
excellent sources will be cited1 .

For 2D graphics, there needs to be a three-column data array: the first two columns
are the X and Y coordinates, and the third column is something necessary to keep the
mathematics working correctly (refer to the cited works for further discussion).

The transformation matrices for scaling, translation, rotation, and shearing are defined
as follows. They all start out as an identity matrix and are modified thus:

2D Scaling Transformation Matrix

o
Sy
o ~)

Sx is the scaling factor in the X direction, and Sy is the scaling factor in the Y direction.
This means that you can stretch or compress the image along both axes independently.

2D Translation Transformation Matrix

o
1
Ty

Tx and Ty are the translation factors in the X and Y directions, respectively. Translation
(moving the image) can take place in the X and Y directions independently.

For an in-depth discussion into many areas of computer graphics, we recommend these books:

Principles of Interactive Computer Graphics, William M. Newman and Robert F. Sproull, 2nd Edition,
McGraw-Hill, 1979.

Fundamentals of Interactive Computer Graphics, J. D. Foley and A. Van Dam, Addison-Wesley, 1982.

Mathematical Elements for Computer Graphics, David F. Rogers and J. Alan Adams, McGraw-Hill, 1976.

Seeing: Illusion, Brain, and Mind, John P. Frisby, Oxford University Press.

Data Display and Transformations 6-5

2D Rotation Transformation Matrix

(

cosO
sinO

o

- sinO
cosO

o

This allows you to rotate the image about the origin. 0 is the angular distance through
which the object is to be rotated, and it is expressed in current units. If you want to
rotate the object about some other point than the origin, you must translate that point
to the origin, do the rotation, and translate it back to the original point.

2D Shearing Transformation Matrix

Shy
1
o ~)

Shearing is translating different parts of the image different amounts, depending on the
value in the other axis. For example, if your data array is the outline of a capital "R",
shearing in the X direction with a positive value would "italicize" it; that is, shift the top
of the letter farther to the right than the middle of the letter. It would become slanted.

These transformations &re applied to the data array by a matrix multiplication (see the
MAT statement in the BASIC Language Reference manual). To see these operations in
action, load the program Lem2D from the Manual Examples disc.

The different transformations are selected by pressing "T" for translation, "R" for
rotation, "s" for scaling, and "H" for shearing. Rotating the knob controls the values
put into the transformation matrix. Study the program and accomodate techniques to
your system and situation.

6-6 Data Display and Transformations

Three-Dimensional Transformations
In a logical extension of the two-dimensional transfonnations, the three dimensional
transformations have four columns. Again, this allows the matrix multiplies to work.

3D Sealing Transformation Matrix

[r
0 0

~) Sy 0
0 Sz
0 0

3D Translation Transformation Matrix

[t
0 0

~) 1 0
0 1
Ty Tz

When rotating in three dimensions, there are three different axes about which rotation
can occur. When rotating points about the X-axis, the V and Z coordinates of the points
change, but not the X coordinates. When rotating about the Y-axis, X and Z coordinates
change, but not Y coordinates. When rotating about the Z-axis, X and Y coordinates
change, but not Z coordinates. These characteristics become apparent after seeing how
the rotation matrices are constructed.

3D Rotation Transformation Matriees

[~
Rotation about X-axis

o
cosO
sinO

o

o
- sinO

cosO
o

Data Display and Transformations 6-7

Rotation about Y-axis

[cosO 0 sinO

~] -Si~O
1 1
0 cosO
0 0

Rotation about Z-axis

[c~ -sinO 0

~] sinO cosO 0
0 0 1
0 0 0

Again, in rotation about an axis in three dimensions, the values in that axis are not
changed, only the values in the other two axes are changed. For example, in rotation
about the first axis (the X-axis), the first row and first column of the matrix are straight
from the identity matrix and therefore do not cause a change in the X-values of the
resultant matrix.

3D Shearing Transformation Matrix

Syx

1
Syz

o ~]
This shearing transformation is a little bit more tricky. Sxy is the shear in the X direction
which is proportional to Y, and Sxz is the shear in the X direction which is proportional
to Z. The other values work in a similar manner. As you can see, with 3D shearing, the
amount of shear is dependent upon the values in both the other dimensions.

6-8 Data Display and Transformations

Surface Plotting
There are three different methods included on the Manual Examples Disc for plotting a
surface; that is, plotting a two-dimensional array the value of whose elements represent
the third dimension at that point. Each method will display the same data so that you
can get a feel for the advantages and disadvantages of each method of display. The data,
a 100xl00 array, is r&'1dom "mountains" and ''valleys'' and looks somewhat like old hills
worn smooth by erosion.

Contour Plotting
A contour map is a display of a surface from directly above the surface, from an infinite
distance. "Infinite" in this context merely means that no perspective effects are included.

The subprogram is passed the surface array, the minimum and maximum contour levels,
the contour interval, and three logical variables. These specify

1. whether or not you want the local minima and maxima noted on the output,

2. whether or not you want two lines of "stats"; infonnationallines concerning array
size and contour intervals, and

3. whether or not the plot is to be sent to a CRT. For more infonnation, see the file
Contour on the Manual Examples Disc.

Both the following plots were made with this subprogram. Only the contour interval was
changed between the first and second plots. The subprogram was instructed to note the
local highs and lows, and also to print the array infonnation at the bottom of the plot.

Data Display and Transformations 6-9

Figure 6-3. Output of "Contour" Subprogram

6-10 Data Display and Transformations

r 1

Figure 6-4. More "Contour" Output

Gray Maps
This concept goes back to the days before graphics output devices were in widespread use,
and line printers were called upon to plot pictures. Basically, the darkness of a character
printed by the printer was proportional to the range in which an element in the array fell.
The darkness was caused by overstriking characters in various combinations to produce
different amounts of black ink on the page.

The same concept can be used with graphics output devices. The output looks better, of
course, because of the increased resolution of graphics output devices over line printers,
but the overall result is similar. A gray map can be output to a monochrome or color
CRT, and both kinds are presented here. First, the monochrome version. The probability
of a pixel being turned on is proportional to the value of the array at that point. To
make computation easier, the routine scales the array such that the lowest point becomes
zero, and the highest point becomes one. Therefore, the light areas are the high points,
the darker areas are the low points, and the average brightness of an area on the screen
is proportional to the value in the array at that point.

Data Display and Transformations 6-11

The program is called Gray_Map on the Manual Examples Disc.

Figure 6-5. Output of "Gray _Map" Program

Next is a Gray Map as drawn on a color-mapped display. It must be a color-mapped
display (and not an external color monitor interfaced with an HP 98627 A) because the
color-map capabilities are needed. The main difference is that instead of the probability
of a pixel being turned on being dependent on the array value, all pixels are turned on,
and it's the color of each pixel which is dependent on the array value.

In Figure 6-6, Pen 0 is not redefined, as it is the background color, but pens 1 through
15 are defined to be varying shades of gray:

FOR Pen=l TO 15
SET PEN Pen COLOR 0.0. (Pen-l)/14

NEXT Pen

Figure 6-7 makes the difference between the highs and the lows more obvious:

FOR Pen=l TO 15
SET PEN Pen COLOR 2/3+1/3*(Pen>8).ABS(9-Pen) .. 7

NEXT Pen

This will cause the levels below the main level to be shades of blue (hue=2/3) and shades
above the main level to be shades of red (hue=2/3+1/3=l.O).

6-12 Data Display and Transformations

Figure 6-6. "Gray _Map" on a Color-Mapped Display

Figure 6-7. "Gray_Map" with Varying Hues

Data Display and Transformations 6-13

Surface Plot
Another way to look at an array is to look at it from some other angle than straight
above. The following routine allows you to look at the surface from above or below.
Again, this is the same data as before; notice that the highs and lows are in the same
places.

This routine (found on the file Surface on the Manual Examples Disc) functions by
plotting each row of the array as one line on the plotting device. The points of each
line are defined to be an offset (determined by which row is currently being plotted
and the "height" from which you are looking at the surface) plus the value of the array
element you're on. A height array is maintained, the first row of which is the highest
point encountered thus far for that column number, and the second row contains the
lowest points encountered thus far. If a point is higher than the highest point seen so
far, it is visible, and then it becomes the new highest point. The low points are similarly
maintained.

The parameter Front_edge and BaCk_edge are the height, in GDUs, that the front edge
and the back edge of the array are to be from the bottom of the plotting surface. If
Front_edge is less than BaCk_edge, more of the top surface will be visible. Conversely, if
Front_edge is greater than BaCk_edge, more of the bottom surface will show.

6-14 Data Display and Transformations

In the first of the three plots, the variable Opaque is passed to the subprogram with a
value of 0 (false). Therefore, the surface is treated as if it were transparent, and no
hidden lines are removed. This makes the surface hard to interpret because you cannot
tell which surface is supposed to be closer to you; everything is visible. In the next two
plots, Opaque is 1 (true), and hidden lines are removed. In the first of the two opaque
surfaces, the top is more visible; in the second, the bottom is more visible.

Figure 6-8. "Surface" Program'8 Output

Data Display and Transformations 6-15

Figure 6-9. "Surface" with Opaque=1 (Top Visible)

Figure 6-10. "Surface" with Opaque=1 (Bottom Visible)

6-16 Data Display and Transformations

Utility Routines 7
Drawing Arcs .. 7-1
Simulating Wide Pens ... " 7-2
Housekeeping ... " 7-4
Progran:l Efficiency. .. 7-8
9845 Graphics System Compatibility 7-11
HPGL .. 7-12
Miscellaneous. .. 7-13

Utility Routines 7
This chapter consists of several utility routines which are called by some of the subpro­
grams in the "Data Display and Transformation" chapter. Others are included which
would be convenient for many graphics applications. A small amount of discussion is
included before the routine, if it is necessary.

Drawing Arcs
Note that only two parameters are required. Everything from Radius on is optional. The
two ON ... GOTO statements (lines 130 and 200) take care of the number of parameters
passed, assigning default values for only those parameters which were not passed by the
calling context.

10
20 Arc:
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

SUB Arc(I.Y.OPTIONAL Radius_.Start_.End_.Intervals_.Penup_.Aspect_)

This subroutine draws an arc of a circle with the center at I.Y and a
radius of "Radius". The arc starts at a position of "Start" degrees
and ends at "End" degrees and has a total of "Interval" individual
line segments. The greater "Intervals" is. the more rounded the arc
will look. but also the longer the routine will take to finish. If
"'Penup" is non-zero. the pen will be picked up before the arc is
started. If not. it will be left down (assuming it was down before).
Often you want to draw a straight line to the arc you are starting
to draw. If "Radius" is positive. the arc will proceed counter­
clockwise; if negative. clockwise.

N 9-NPAR GOTO 140.150.160.170.180.190.200 ! ON <maxparms>+l-NPAR
Aspect=Aspect_
Penup=Penup_
Intervals=Intervals_
End=End_
Start=Start_
Radius=Radius_
ON NPAR-l GOTO 210.220.230.240.250.260.270
Radius=l.
Start=O.
End=360.
Intervals=INT«End-Start)/5.)
Penup=l
Aspect=l.
DEG
IF Penup THEN PENUP
IF (Radius>O.) AND (End<=Start) THEN End=End+360.
IF (Radius<O.) AND (End>=Start) THEN End=End-360.
Step=(End-Start)/Intervals

NPAR+l-<req. parms>

Utility Routines 7-1

320 Radius=ABS(Radius)
330 FOR I=Start TO End STEP Step
340 PLOT X+Radius*Aspect*COS(I),Y+Radius*SIN(I)
350 NEXT I
360 SUBEND

Simulating Wide Pens
With the next two subprograms, you can draw pictures that will look like your plotter
pen is extremely wide. Theoretically, you could specify that your pen is wider than the
whole plotting surface, although not much of a picture would result.

10 ! ***
20 Fat_line: SUB Fat_Iine(Xl,Yl,X2,Y2,Thickness,Delta)
30 This routine makes a line from pOint Xl,Yl to point X2,Y2 simulating a
40 pen whose tip is width "Thickness". Delta is the approximate (it may
50 be tweaked) distance between actual lines. The smaller delta is, the
60 darker and more accurate the simulation will be, but the execution
70 time will suffer.
80 DEG
90 Distance=SQR«X2-Xl)-2+(Y2-Yl)-2)
100 Angle=FNAtan(Y2-Yl,X2-Xl)
110 Cos_angle=COS(Angle)
120 Sin_angle=SIN(Angle)
130 Perp=Angle+90
140 Cos_perp=COS(Perp)
150 Sin_perp=SIN(Perp)
160 Delta=Thickness/INT(Thickness/Delta)
170 Semithick=Thickness/2
180 Direction=l
190 PENUP
200 FOR Y=-Semithick TO Semithick STEP Delta
210 Dx=SQR(Semithick-2-Y-2)
220 IF Direction THEN
230 PLOT Xl+Y*Cos_perp-Dx*Cos_angle,Yl+Y*Sin_perp-Dx*Sin_angle
240 PLOT X2+Y*Cos_perp+Dx*Cos_angle,Y2+Y*Sin_perp+Dx*Sin_angle
250 ELSE
260 PLOT X2+Y*Cos_perp+Dx*Cos_angle, Y2+Y*Sin_perp+Dx*Sin·_angle
270 PLOT Xl+Y*Cos_perp-Dx*Cos_angle,Yl+Y*Sin_perp-Dx*Sin_angle
280 END IF
290 Direction=NOT Direction
300 NEXT Y
310 SUBEND

10 ! ***
20 Fat_arc: SUB Fat_arc(X,Y,Radius,Thetal,Theta2,Delta_theta,Thickness,Delta)
30 This routine makes an arc centered around point X,Y and radius Radius
40 going from Thetal to Theta2 by Delta_theta, simulating a plotter
50 pen whose tip is width "Thickness". Delta is the approximate (it may
60 be tweaked) distance between actual lines. The smaller delta is, the

7-2 Utility Routines

70 ! darker and more accurate the simulation will be. but the execution.
80 ! time will suffer.
90 DEG
100 Semithick=Thickness/2
110 Delta=Thickness/INT(Thickness/Delta)-1.E-13
120 Perp1=Theta1+90
130 Cos_perp1=COS(Perp1)
140 Sin_perp1=SIN(Perp1)
150 Perp2=Theta2+90
160 Cos_perp2=COS(Perp2)
170 Sin_perp2=SIN(Perp2)
180 FOR R=Radius-Semithick TO Radius+Semithick STEP Delta
190 Dx=SQR(Semithick-2-(R-Radius)-2)
200 IF Direction THEN
210 PLOT X+R*COS(Theta1)-Dx*Cos_perp1.Y+R*SIN(Theta1)-Dx*Sin_perp1
220 FOR Theta=Theta1 TO Theta2 STEP Delta_theta
230 PLOT X+R*COS(Theta).Y+R*SIN(Theta)
240 NEXT Theta
250 PLOT X+R*COS(Theta2)+Dx*Cos_perp2.Y+R*SIN(Theta2)+Dx*Sin_perp2
260 ELSE
270 PLOT X+R*COS(Theta2) +Dx*Cos_perp2. Y+R*SIN(Theta2) +Dx*Sin_per p2
280 FOR Theta=Theta2 TO Theta1 STEP -Delta_theta
290 PLOT X+R*COS(Theta).Y+R*SIN(Theta)
300 NEXT Theta
310 PLOT X+R*COS(Theta1)-Dx*Cos_perp1.Y+R*SIN(Theta1)-Dx*Sin_perp1
320 END IF
330 Direction=NOT Direction
340 NEXT R
350 SUBEND

Utility Routines 7-3

Housekeeping
The next few subprograms deal with the humdrum housekeeping chores that need to be
done to start and/or end a plot.

10 ! **
20 Plotter_is: SUB Plotter_is(Crt)
30 ! This subroutine defines the plotting device to be used.
40 Crt=FNAsk("Do you want the plot on the CRT?","YES")
50 IF Crt THEN
60 GINIT
70 PLOTTER IS CRT,"INTERNAL"
80 ELSE
90 ON TIMEOUT 7,5 GOTO 140
100 GINIT
110 PLOTTER IS 705, "HPGL II
120 OFF TIMEOUT 7
130 SUBEXIT
140 Message("I've tried for 5 seconds to raise select code 7; no answer.
Defaulting to CRT.")
150 OFF TIMEOUT 7
160 GINIT
170 PLOTTER IS CRT,"INTERNAL"
180 Crt=l
190 END IF
200 SUBEND

7-4 Utility Routines

This next routine forces the user to set PI and P2 (the lower-left and upper-right corners
of the plotting surface, respectively) before the PLOTTER IS statement is executed. The
reason this is necessary is that the PLOTTER IS statement reads PI and P2, which
define the hard-clip limits. Therefore, if they are set after the PLOTTER IS is executed,
they will be ignored, and the old values (the ones in effect when the PLOTTER IS was
executed) will be used.

10 ! **********************************.**********************************
20 Load_paper: SUB Load_paper(OPTIONAL Orientation_$)
30 ! This prompts the user to put the paper in the plotter in the
40 ! orientation. and to define the corners of the paper. BEFORE the
50 ! PLOTTER IS statement is executed.
60 IF NPAR=O THEN
70 Ori entation$= " "
80 ELSE
90 Orientation$=Orientation_$
100 END IF
110 SELECT UPC$(TRIM$(Orientation$»
120 CASE "H"
130 Orient$=" horizontally"
140 CASE "V"
150 Orient$=" vertically"
160 CASE ELSE
170 Orient$=""
180 END SELECT
190 BEEP

, 200 DISP "Put the paper in the plotter"; Orient$; ". define the corners. and hi
t 'CONT'."
210 PAUSE
220 DISP
230 GINIT
240 PLOTTER IS 705."HPGL"
250 SUBEND

Utility Routines 7-5

10
20 Gdu:
30
40
50
60
70
80
90
100
110
120
130
140
150
160

SUB Gdu(X_gdu_max,Y_gdu_max,OPTIONAL Gdu_xmid,Gdu_ymid)

This returns Xright, Yhigh and their respective midpoints in GDUs.
Note that if Gdu_xmid is defined, Gdu_ymid must be also.

COM IG_unitsl Gdu_xmax,Gdu_ymax,Udu_xmin,Udu_xmax,Udu_ymin,Udu_ymax,Show
IF Gdu_xmax=O THEN

Gdu_xmax=100*MAX(1,RATIO)
Gdu_ymax=100*MAX(1,1/RATIO)

END IF
X_gdu_max=Gdu_xmax
Y_gdu_max=Gdu_ymax
IF NPAR>2 THEN

Gdu_xmid=Gdu_xmax*.5
Gdu_ymid=Gdu_ymax*.5

END IF
SUBEND

Note that in the following routine, the ALPHA and GRAPHICS statements have no
effect on multi-plane bit-mapped displays unless the alpha and graphics planes have
been separated by appropriate definitions of the write-enable masks.

10 ! ***
20 Pause: SUB Pause(OPTIONAL Graphics_)
30 ! This indicates that the output is finished, so push 'CONT' to go on.
40 IF NPAR=O THEN
50 Graphics=O
60 ELSE
70 Graphics=Graphics_
80 END IF
90 IF Graphics THEN
100 BEEP
110 GRAPHICS OFF
120 ALPHA ON
130 END IF
140 DISP "Push 'CONTINUE' when you're ready to go on."
150 IF Graphics THEN
160 WAIT 2
170 ALPHA OFF
180 GRAPHICS ON
190 END IF
200 PAUSE
210 DISP
220 IF Graphics THEN
230 GRAPHICS OFF
240 ALPHA ON
250 END IF
260 SUBEND

7-6 Utility Routines

10 ! ***
20 End_plot: SUB End_plot(Crt,Copy,Device)
30 This is just a housekeeping routine that takes care of some sundries
40 at the end of a plot. "Crt" is a logical variable that tells whether
50 the plot was done on the CRT or not. "Copy" is a variable that is
60 returned to the calling routine that tells you whether you want
70 another copy of the plot on the hard-copy plotter (Note that if Crt is
80 true, Copy is forced to be false). "Device" is the address of the
90 DUMP DEVICE.
100 F Crt THEN
110 CALL Pause(l)
120 Copy=O
130 IF FNAsk("Shall I 'DUMP GRAPHICS'?", "NOli) THEN
140 Expanded=FNAsk(" ... 'EXPANDED'?", "NO")
150 OUTPUT KBD USING "#,K";Device
160 INPUT "Dump device?" ,Device
170 IF Expanded THEN
180 DUMP DEVICE IS Device
190 ELSE
200 DUMP DEVICE IS Device,EXPANDED
210 END IF
220 DUMP GRAPHICS
230 END IF
240 ELSE
250 PENUP
260 PEN 0
270 CALL Gdu(X_gdu_max,Y_gdu_max)
280 Setgu
290 MOVE X_gdu_max,Y_gdu_max
300 IF Copy THEN
310 Copy=FNAsk("Do you want another copy of the plot?" ,"NO")
320 IF Copy THEN CALL Load_paper
330 END IF
340 END IF
350 SUBEND

Utility Routines 7-7

Program Efficiency
The following subprogram, Label, becomes useful only if there are several labels to be
plotted which have different character sizes, orientations, label origins, etc. One call
of this routine allows you to set all of the parameters dealing with labelling. Thus, in
the calling routine, you need only have one line per label, rather than a CSIZE, LDIR,
LORG, PEN, and MOVE for each label.

10 ! ***
20 Label: SUB Label(Csize,Asp_ratio,Ldir,Lorg,Pen,X,Y,Text$)
30 ! This defines several systems variables (in CSIZE, LOIR, etc.), and
40 ! labels the text (if any) accordingly.
50 OEG
60 CSIZE Csize,Asp_ratio
70 LOIR Ldir
80 LORG Lorg
90 PEN Pen
100 MOVE X,Y
110 IF Text$<>"" THEN LABEL USING "#,K";Text$
120 PENUP
130 SUBENO

7-8 Utility Routines

The next routine returns the arc tangent in the correct quadrant of Y IX, both of which
are passed in. If X=O, the routine takes care of it; it doesn't attempt a divide by zero.

10 ***
DEF FNAtan(Y,X) 20 Atan:

30 This figures the arc of Y/X in the correct quadrant and takes
40
50

care of multiples of 90 degrees where X=O. The value returned is in
current units.

60 Radians=(ACS(-i)=PI)
70 DEG
80 IF X=O THEN
90 Arctan=(90+180*(Y<0»*(Y<>0)! If X=O and Y=O, Arctan=O.
100 ELSE
110 Arctan=ATN(Y/X)+180*(X<0)+360*«X>0) AND (Y<O»
120 END IF
130 IF Radians THEN
140 RAD
150 Arctan=Arctan/57.2957795131
160 END IF
170 RETURN Arctan
180 FNEND

Utility Routines 7-9

This next routine was called by the Gray Map routine in the Data Display and
Transformations chapter. It takes an array and re-scales it to fit a new minimum and
maximum.

10 ! ***
20 Scale: SUB Scale(Surface(*) ,New_min, New_max)
30 ! This routine scales a matrix such that it will have a new lowest
40 ! value of New_min and a new highest value of New_max.
50 DISP USING IKI;"Scaling the surface array from ",New_min," to
II ,New_max,". II

60 Min=MIN(Surface(*»
70 Max=MAX(Surface(*»
80 IF Min=Max THEN ! Array is completely flat
90 MAT Surface= (New_min)
100 SUBEXIT
110 END IF
120 MAT Surface= Surface-(Min)
130 Range_recip=(New_max-New_min)/(Max-Min)
140 MAT Surface= Surface*(Range_recip)
150 MAT Surface= Surface+(New_min)
160 DISP
170 SUBEND

7-10 Utility Routines

9845 Graphics System Compatibility
The HP 9845 graphics system allowed the user to go between UDUs and GDUs at will,
merely by executing the statements SETUU and SETGU. Series 200/300 BASIC does
not have these statements, but they can be simulated by the following short subprograms.
(See also subprogram Gdu in the "Housekeeping" section, above. It can set the Xmax
and Ymax in GDUs.)

10 ! ***
20 Setgu: SUB Setgu
30 ! This simulates the 9845 graphics statement SETGU.
40 COM /G_units/ Gdu_xmax.Gdu_ymax.Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax.Show
50 WINDOW O.Gdu_xmax.O.Gdu_ymax
60 SUBEND

10 ! ***
20 Setuu: SUB Setuu
30 ! This simulates the 9845 graphics statement SETUU.
40 COM /G_units/ Gdu_xmax.Gdu_ymax.Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax.Show
50 IF Show THEN
60 SHOW Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax
70 ELSE
80 WINDOW Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax
90 END IF
100 SUBEND

10 ***
20 Show: SUB Show(Xleft.Xright.Ylow.Yhigh)
30 This simulates the system command SHOW. but saves the variables so
40 the routines Setgu and Setuu work.
50 COM /G_units/ Gdu_xmax.Gdu_ymax.Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax.Show
60 IF Gdu_xmax=O THEN
70 Gdu_xmax=100*MAX(1.RATIO)
80 Gdu_ymax=100*MAX(1.1/RATIO)
90 END IF
100 Udu_xmin=Xleft
110 Udu_xmax=Xright
120 Udu_ymin=Ylow
130 Udu_ymax=Yhigh
140 Show=l
150 SHOW Xleft.Xright.Ylow.Yhigh
160 SUBEND

Utility Routines 7-11

10 ! ***
20 Window: SUB Window(Xleft.Xright.Ylow.Yhigh)
30 ! This simulates the system command WINDOW. but saves the variables so
40 ! the routines Setgu and Setuu work.
50 COM /G_units/ Gdu_xmax.Gdu_ymax.Udu_xmin.Udu_xmax.Udu_ymin.Udu_ymax.Show
60 IF Gdu_xmax=O THEN
70 Gdu_xmax=100*MAX(1.RATIO)
80 Gdu_ymax=100*MAX(1.1/RATIO)
90 END IF
100
110
120
130
140
150
160

HPGL

Udu_xmin=Xleft
Udu_xmax=Xright
Udu_ymin=Ylow
Udu_ymax=Yhigh
Show=O
WINDOW Xleft.Xright.Ylow.Yhigh
SUBEND

The following subprogram specifies the maximum speed at which a plotter should draw.
This was made specifically for an HP 9872 plotter, which has a maximum pen speed of
36 cm/sec. If your plotter has a different maximum speed, you will need to change line
100 to reflect the new maximum speed.

10 ! ***
20 Pen_speed: SUB Pen_speed(Speed.OPTIONAL Device_)
30 ! This sends an HPGL plotter the command to draw at a maximum speed.
40 IF NPAR=l THEN
50 Device=705
60 ELSE
70 Device=Device_
80 END IF
90 IF Speed=O THEN INPUT "What should the maximum plotter speed?".Speed
100 Speed=MIN(MAX(1.INT(Speed+.5».36)
110 OUTPUT Device USING "#.K";"VS"&VAL$(Speed)&";"
120 SUBEND

7-12 Utility Routines

Miscellaneous
The next two subprograms are not explicitly graphics routines, but they are very useful
general-purpose routines and they are used both in previous routines in this chapter, and
in the large programs of the Data Display and Transformations chapter.

10 ***
20 Ask: DEF FNAsk(Question$,Default$,OPTIONAL Timeout)
30 This is a Yes-or-no question-answering function. The question is
40 in to the function, asked of the user, and the default answer can be
50 accepted. If the user answers intelligibly, that answer is returned
60 through the function name; 1 for yes, and 0 for no. If the user
70 responds unintelligibly, the computer beeps, draws attention to the
80 fact that an illegal answer was given, re-asks the question, and will
90 again accept the default answer.
100 If Timeout is passed the question will be asked for that specified
110 number of seconds before the default answer is assumed. If Timeout is
120 not passed, it will wait indefinitely for user response.
130 DIM Answer$[160]
140 IF NPAR=3 THEN
150 ON DELAY Timeout GOTO Take_default
160 DISP Question$
170 ON KBD ALL GOTO Process_key
180 Spin: GOTO Spin ! "at warp 10, we're goin' no~here mighty fast ... "
190 Process_key: OFF DELAY
200 KeyS=KBDS
210 SELECT KeyS[l,l]
220 CASE CHRS(255) ! It was a non-ASCII keypress
230 SELECT Key$[2,2]
240 CASE "E","C" ! Enter or Continue?
250 GOTO Take_default
260 CASE ELSE ! Illegal non-ASCII key
270 BEEP
280 END SELECT ! (select key$[2,2])
290 CASE ELSE ! ASCI I keystroke
300 OUTPUT KBD USING "#,K";Key$
310 END SELECT ! (select keyS[l,l])
320 OFF KBD
330 END IF ! (if npar=3)
340 LOOP! Now that we're in this loop, we'll stay until we get a good answer
350 DISP QuestionS;
360 LINPUT "",AnswerS
370 AnswerS=UPCS(TRIM$(AnswerS»
380 IF AnswerS="1 THEN Answer$=UPC$(TRIM$(Default$»
390 Convert_answer: SELECT AnswerS
400 CASE "YES" ,"Y" , "1" ! Affirmative
410 RETURN 1
420 CASE "NO","N","O" ! Negative
430 RETURN 0
440 CASE ELSE ! Huh?!? .. .

Utility Routines 7-13

450 CALL Message("Please answer with a YES or a NO.")
460 END SELECT
470 END LOOP
480 Take_default: DISP
490 OFF DELAY
500 Answer$=UPC$(TRIM$(Default$»
510 GO TO Convert_answer
520 FNEND

10 ! ***
20 Message: SUB Message (Message$,OPTIONAL Wait_)
30 This subroutine displays a message on the DISPlay line of the CRT,
40 usually to notify the user of an error, or that a section of code has
50 finished executing, etc. If Wait_ is not defined [passed], the
60 computer will beep, and the message will be displayed for two seconds,
70 then disappear. If Wait_ is defined, the computer will beep if it is
80 greater than or equal to zero, it will not beep if it is less than
90 zero, and in either case, the wait will be the absolute value, rounded
100 to the nearest millisecond, unless it is zero, in which case the
110 message will not be erased at all.
120 DISP Message$
130 IF NPAR=l THEN Default:
140 BEEP
150 WAIT 2 Wai~ 2 seconds, then
160 DISP clear the message.
170 ELSE! (npar=2)
180 IF Wai~_>=O THEN BEEP Note that the rounding occurs AFTER the
190 Wait=PROUND(ABS(Wait_) ,-3) BEEP. This allows "negative zero" which
200 IF Wait>O THEN not only will not beep, but it will leave
210 WAIT Wait the message displayed, avoiding the WAIT
220 DISP and DISP. A "negative zero" is simulated
230 END IF ! (if wait>O) by passing a negative number which will
240 END IF (if npar=l) round to zero; e.g., -.0001.
250 SUBEND

7-14 Utility Routines

Appendix A
Example Graphics Programs .. A-7

SIr~E ... A-8
AXES ... A-IO
GRID... A-12
LABEL .. A-14
RevLABEL .. A-15
RPLOT ... A-16
RANDOMVIEW ... A-18
COLOR ... A-20
PIVOT .. A-22
SHOWWINDOW .. A-25
Gload ... A-28

Appendix A
For your convenience, below is a table and a description of the programs and subprograms
on the Manual Examples Disc. First is a table of the concepts and capabilities that the
various progra.lllS e~l:libit. Follmving that is a.l·l alphabetic listing of the file mulles with
a short description of them.

Appendix A-I

Table A-I. Example Programs and Their Characteristics

File Name (;0 Qrr, 'l1 ~ ",0 ~ Qrr, 0 q ~ .;f ~ .::;,~ (;0 (;0 ~
"V "r

SinViewprt E •
Csize E •
CharCell E •
Lorg E •
Ldir E •
SinLabel E • •
SinLabel2 E • •
SinAxes E • •
SinGrdAxes E • •
Pen E • •
Gstore M • • • • • •
Lem2 E • •
Rplot E • • •
Iplot E • •
Scenery E • •
Symbol E • •
BAR_KNOB E • • • • •
CIRCLES C • • • • • •
BACKGROUND C • • • • • • • • • •
MARQUEE C • • • •
RIPPLES C • • • • • •
STORM C • • • •
Animation C • • •
STEREO C • • • • • • •
Pie_Chart C • •
Lem2D E • • • • •
Contour1 E • • •
Gray_Mapl E • •
Surface 1 E • •
DumpGraph 1 M •

These are subprograms only, and must be called from a main program. All others are stand-alone
programs.

A -2 Appendix

Animation
Any of three scenes can be portrayed as flashing by at high speed; some rushing at you,
some rushing away. Demonstrates color map animation.

BACKGROUND
Demonstrates color map definition, non-dominant drawing, three-dimensional transfor­
mations, and knob interaction. A box is rotated (repeatedly drawn and erased) in front
of a grid without damaging the grid. The display is flicker-free because one image is
drawn invisibly while the last image remains. The color map is altered to make the new
image visible, while the old, now invisible, image is erased and a new one is drawn.

BAR_KNOB
Demonstrates the use of the knob to control dynamic displays.

CharCell
Shows the relationship between the actual character size and the character cell size.

CIRCLES
This shows that the color map can be defined to simulate an additive color scheme, a
subtractive color scheme, or any arbitrary color scheme.

Contour
This subprogram accepts a two-dimensional array and plots a contour map. The user
may specify low and high contour level and contour interval.

Csize
Demonstrates how to use the CSIZE statement to change the size of the character cells
into which labelled characters are placed.

DumpGraph
This subprogram takes an image from the frame buffer of a monochromatic CRT and
sends it to an HP 82905A printer.

Gray_Map
This subprogram accepts a two-dimensional array and plots a gray map from it. The
data is scaled from zero to one.

Appendix A-3

Gstore
Demonstrates the use of G8TORE and GLOAD in quickly replotting the unchanging
part of an otherwise dynamic image.

Iplot
Uses incremental plotting to create characters for plotting labels in a user-defined
character set.

Ldir
Demonstrates how the LDIR statement allows labelling of text on the graphics screen at
any desired angle.

Lem2
Lem2 shows how the pen-control parameter lifts and drops the pen. It takes the same
data and plots it in one statement. Uses area fills.

Lem2D
This demonstrates the four basic two-dimensional graphics transformations: translation,
rotation, scaling and shearing. The knob controls the values entered, and "T", "R", "8",
and "H", respectively, select the operations.

Lorg
Demonstrates how the LORG statement allows centering or cornering of labels in both
the X and Y directions.

MARQUEE
Uses color-map animation to create a movie marquee announcing the coming attractions.

Pen
Demonstrates drawing modes on monochromatic CRTs. Lines are drawn, erased and
complemented.

Pie_Chart
This program runs a subprogram which accepts pie chart data: up to fourteen segments,
each with its own label, plus title and subtitle.

A-4 Appendix

RIPPLES
Color map animation with concentric circles. The luminosity of the color represents the
height of the ripple on the water.

Rplot
Uses RPLOT statement to move subpictures, PIVOT to rotate them, and AREA
INTENSITY to define shading.

Scenery
Uses POLYGONS, POLYLINES, RPLOTS, and area fills to create an idyllic scene of
rustic simplicity.

SinAxes
This is part of the "Progressive Example" in Chapters 1 and 2. Axes are added, along
with labels at approriate points along them.

SinGrdAxes
This is part of the "Progressive Example" in Chapters 1 and 2. Both a GRID and two
AXES statements are used to allow ease of interpolation of values on the data curve and
also to avoid clutter.

Sin Label
This is part of the "Progressive Example" in Chapters 1 and 2. Labels are plotted after
having used CSIZE, LORG and LDIR.

SinLabel2
This example is similar to SinLabel except that it draws a "bold" label.

SinViewprt
This is part of the "Progressive Example" in Chapters 1 and 2. A viewport is defined
using GDU measurements of the screen.

STEREO
Uses non-dominant drawing and three-dimensional transformations to display red-blue
stereo images which can be viewed through ,bi-colored glasses.

Appendix A-5

STORM
Demonstrates the use and speed of color map animation. A little house on the prairie is
besieged by a thunderstorm.

Surface
This subprogram draws a surface represented by a two-dimensional array. Hidden lines
may be removed, and the viewing angle can be selected by the user.

Symbol
Demonstrates how to define and label user-defined characters with the SYMBOL
statement.

A -6 Appendix

Example Graphics Programs
The following programs use graphics to help illustrate the operation of several of the
graphics statements available in BASIC. You may wish to modify or entirely rewrite the
programs to better understand how the statements work.

Appendix A-7

SINE
10 Program: SINE
20
30 Shows some basics of drawing and labeling.
40
50 DEG DEGREES
60 GINIT INITIALIZE
70 GRAPHICS ON RASTER ON
80 PRINT CHRS (12) ; CLEAR ALPHA
90 WINDOW -100,800,-2,2 SET WINDOW
100 AXES 90, .5 DRAW AXES
110
120 LORG 6 LABEL X AXIS
130 FOR 1=0 TO 720 STEP 90
140 MOVE 1,0
150 LABEL I
160 NEXT I
170
180 LORG 8 LABEL Y AXIS
190 FOR 1=-1. 5 TO 1.5 STEP .5
200 MOVE 0,1
210 LABEL I
220 NEXT I
230
240 LORG 5 LABEL PLOT
250 MOVE 450,1.75
260 LABEL IIPlot of SI~(X)II
270
280 MOVE 0,0 PLOT SINE
290 FOR X=O TO 720
300 DRAW X,SIN(X)
310 NEXT X
320
330 END

A-8 Appendix

T Plot of' SIN(X)
1 .5

.5

-.5

-1

-1 .5

Appendix A-9

AXES
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

Program: AXES

Draw and label the AXES statement.

GINIT
GRAPHICS ON
ALPHA OFF

Xloc=20
Yloc=20
Xmaj=4
Ymaj=2
Size=8

FOR 1=100 TO 10 STEP -1
PEN -1

X AXIS LOCATION
Y AXIS LOCATION
MAJOR TICK COUNT
MAJOR TICK COUNT
LENGTH OF TICKS

AXES Xtic,Ytic,Xloc,Yloc,Xmaj,Ymaj,Size
Xtic=I
Ytic=I
PEN 1
AXES Xtic,Ytic,Xloc,Yloc,Xmaj ,Ymaj ,Size
NEXT I

MOVE Xloc,Yloc
IDRAW 20,20
LABEL "Xloc,Yloc:
MOVE Xloc+40,Yloc
IDRAW 20,30
LABEL "Major Tick"
MOVE Xloc+50,Yloc
IDRAW 10,15
LABEL "Minor Tick"
MOVE Xloc-Size/2,Yloc+40
DRAW 40,80
MOVE Xloc+Size/2,Yloc+40
DRAW 40,80
LABEL "Tick Size"

END

LABEL THE AXES

A-IO Appendix

T
Tick Size

Appendix A-II

GRID
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

Program: GRID

Shows various size grids.

GINIT
GRAPHICS ON
PRINT CHR$(12);

WINDOW -110.100.-110.110

Yloc=O
Xloc=O
Xmaj=6
Ymaj=2
Size=20

LORG 4

FOR 1=10 TO 100 STEP 2
Xtic=I
Ytic=I
GCLEAR
MOVE I/2.0
LABEL I

! CENTER AT 0.0

GRID Xtic.Ytic.Xloc.Yloc.Xmaj.Ymaj.Size
WAIT (100-1)/100

NEXT I

WAIT 2
GRAPHICS OFF
END

A-12 Appendix

110

Appendix A-13

LABEL

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

he----:::::i

! Program: LABEL
!
OEG
GINIT
GRAPHICS ON
Clear_crt$=CHR$(255)kCHR$(75)
OUTPUT 2;Clear_crt$;
SHOW -100,100,-100,100

d4-----:::::iI

FOR 1=0 TO 360 STEP 22.5 Non-rotated
MOVE -60,0
PIVOT I
IORAW 40,0
Orgx=40*COS(I)-60
Orgy=40*SIN(I)
MOVE Orgx,Orgy
LORG 5
LABEL "hp"

NEXT I

FOR 1=0 TO 360 STEP 22.5
MOVE 60,0
PIVOT I
IORAW 40,0
Orgx=40*COS(I) +60
Orgy=40*SIN (1)
MOVE Orgx,Orgy
LORG 2
LOIR I
LABEL "hp"

NEXT I

ENO

Rotated

Note LOIR used

A-14 Appendix

p..----np

RevLABEL

10 ! Program "RevLABEL".
20 GINIT
30 PLOTTER IS CRT,"INTERNAL"
40 GRAPHICS ON
50 CSIZE 8,-.6 ! Note negative aspect ratio.
60 MOVE 90,50
70 LABEL "Reverse Graphics"
80 END

Appendix A-15

RPLOT
10 Program: RPLOT
20
30 Repeats an image at various locations.
40
50 DEG
60 GINIT
70 GRAPHICS ON
80 WINDOW -10,370,-100,100
90 PRINT CHR$(12) ; ! CLEAR SCREEN
100 DISP" RPLOT"
110 FRAME
120
130 FOR 1=0 TO 360 STEP 12
140 MOVE I,SIN(I)*80
150 GOSUB Shape
160 NEXT I
170
180 GOTO Quit
190
200 Shape:
210

! DRAW A RESISTOR

220 RPLOT -10,0,1
230 RPLOT -6,0
240 RPLOT -4,2
250 RPLOT -2,-2
260 RPLOT 0,2
270 RPLOT 2,-2
280 RPLOT 4,2
290 RPLOT 6,0
300 RPLOT 10,0
310 RETURN
320
330 Quit: END

A-i6 Appendix

Appendix A-17

RANDOMVIEW
10 ! Program: RANDOMVIEW
20 !
30 RANDOMIZE
40
50 Start: ! Demonstration of VIEWPORT and WINDOW
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

DEG
GINIT
GRAPHICS ON
ALPHA OFF

! Generate some random numbers

Xmin=RND*131
Xmax=Xmin+RND*(131-Xmin)
Ymin=RND*100
Ymax=Ymin+RND*(100-Ymin)

! Set VIEWPORT to random area

VIEWPORT Xmin,Xmax,Ymin,Ymax
WINDOW -50,50,-50,50
FRAME

! Draw a rose within the area

FOR 1=0 TO 200
P=40*COS(11*I) ELEVEN LEAF ROSE
X=P*COS(I)
Y=P*SIN(I)
DISP INT(Xmax-Xmin);":";INT(Ymax-Ymin)

IF 1=0 THEN MOVE X,Y
DRAW X,Y

NEXT I

GOTO Start
END

DO IT AGAIN

A-18 Appendix

I ~ ~ A I

~
I~EE-I

I =J)~(:: I . [I

Appendix A-19

COLOR
10 Program: COLOR
20
30 This program works with the 98627A
40 Color Output Interface.
50
60
70 Note that a 'PLOTTER IS' statement must
80 immediately follow 'GINIT' statement.
90
100 Note different pen assignments.
110
120 GIN IT
130 PLOTTER IS 28,"98627A"
140 GRAPHICS ON
150 PEN 1
160 FRAME
170
180 FOR X=O TO 120 STEP 40
190 MOVE X,70
200 PEN 1
210 LABEL "WHITE"
220 PEN 2
230 LABEL "RED"
240 PEN 3
250 LABEL "YELLOW"
260 PEN 4
270 LABEL "GREEN"
280 PEN 5
290 LABEL "CYAN"
300 PEN 6
310 LABEL "BLUE"
320 PEN 7
330 LABEL "MAGENTA"
340 NEXT X
350 END

A -20 Appendix

~HITE WHITE WHITE WHIT
RED RED RED RED
YELLOW YELLOW YELLOW YELL
GREEN GREEN GREEN GREE
CYAN CYAN CYAN CYAN
BLUE BLUE BLUE BLUE
MAGENTA MAGENTA MAGENTA MAGE

Appendix A-21

PIVOT MODEL

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

WITH PIVOT
------ --.::::.::::.:::::::::::::-------------------

+
--------- -----------------.. _ .. _ .. _._ .. _ .. _ .. _ .. _ ..

~--------------------~--~~~

Program: PIVOT

Shows pivoting around a point.

DEG
GINIT
GRAPHICS ON
PRINT CHR$ (12) ;
DIM X(4),Y(4)
DATA 40,20,0,14,-6,6,-14,0,-20,-40 SHAPE
FOR 1=0 TO 4

READ X(I), Y(I)
NEXT I

DATA 80,130,35,85,0,40,50,90 'WINDOWS'
READ Sl,Sr,Sb,St,Ml,Mr,Mb,Mt

DIM Orgx(3),Orgy(3)
DATA 40,60,40,40,20,20,0,0 ORIGINS
FOR 1=0 TO 3

READ Orgx(I),Orgy(I)
NEXT I
MOVE 10,95
LABEL "MODEL"
MOVE 90,90
LABEL "WITH PIVOT"
LINE TYPE 8
MOVE Ml,Mb CONNECT LINES
DRAW Sl,Sb
MOVE Mr,Mb
DRAW Sr,Sb
MOVE Mr,Mt
DRAW Sr,St

A-22 Appendix

340 MOVE Sl,St
350 DRAW Ml,Mt
360
370 MOVE Ml,Mt
380 P=l
390 LINE TYPE 1
400 Ox=Orgx(Index)
410 Oy=Orgy(Index)
420 GOSUD Model
430 !
440 VIEWPORT Sl,Sr,Sb,St
450 SHOW -25,100,-25,100
460 GOSUB Shape
470 DISP "Angle =";Angle
480 Angle=Angle+5
490 IF Angle<361 THEN 460
500 CALL Cursor(Ox,Oy,-l)
510 P=-l
520 GOSUB Model
530 Angle=O
540 Index=Index+l
550 IF Index>3 THEN Quit
560 GOTO 380
570
580 Model:
590
600

VIEWPORT MI,Mr,Mb,Mt
SHOW -25,100,-25,100
FRAME

610 GOSUB Shape
620 RETURN
630 Shape: ! DRAW IN CURRENT 'WINDOW'
640 PEN -1
650 MOVE 20,20
660 FOR 1=0 TO 4
670 IDRAW X(I),Y(I)
680 NEXT I
690 MOVE OX,Oy
700 PEN 1
710 CALL Cursor(Ox,Oy,P)
720 PIVOT Angle
730 PEN 1
740 FRAME
750 MOVE 20,20
760 FOR 1=0 TO 4
770 IDRAW X(I),Y(I)
780 NEXT I
790 RETURN
800 Quit:DISP
810 END
820

PIVOT POINT

830 ------- SUB PROGRAM ---------

Appendix A-23

840
850 SUB Cursor(X,Y,P)
860 PEN P
870 PIVOT 0
880 MOVE X,Y
890 IMOVE 5,0
900 IDRAW -10,0
910 IMOVE 5,5
920 IDRAW 0,-10
930 MOVE X,Y
940 SUBEXIT
950 SUBEND

A-24 Appendix

SHOWWINDOW
MODEL

~\. / .
/. '\.

/ . '\.

// / \ " / \ '\'\ / / \/y \ '\
/ / I'·, .\ ',\

/ / 1\/', .\ ". / / y .. \ '\
/ / II / \ \. .\ .'\.

/ / / ., . '\
SHOW \. INDOW .

/ / \
/ \

/ \ / .
/ \

10 Program "SHOWWINDOW"
20 DIM X(180) ,Y(180) ,Prompt$[40] ,Pad$[40]
30 ! This program compares the mapping of SHOW and WINDOW.
40 ! --- Do all the setup ---
50 CONTROL CRT,12;1 ! Turn key labels off
60 Crt_id$=SYSTEM$("CRT ID")
70 Width=VAL(Crt_id$[4,5])
80 Prompt$="New aspect ratio: II
90 Pad$=RPT$(" ", (Width-LEN (Prompt$» DIV 2)
100 DISP "Calculating the pOints ... "
110 DEG
120 FOR Theta=O TO 180
130 Radius=COS(5*Theta)! (change 5 to another odd number for neat effects)
140 X(Theta)=Radius*COS(Theta)
150 Y(Theta)=Radius*SIN(Theta)
160 NEXT Theta
170 DISP
180 READ Show_left,Show_right,Show_bottom,Show_top
190 READ Model_left,Model_right,Model_bottom,Model_top
200 DATA 0,50,0,30, 57,77,75,95
210 REPEAT
220 GINIT
230 PLOTTER IS CRT,"INTERNAL"
240 GRAPHICS ON
250 Window_right=131

Appendix A-25

260 Window_left=Window_right-Show_right
270 Window_bottom=Show_bottom
280 Window_top=Show_top
290 Ratio=(Window_right-Window_left)/(Window_top-Window_bottom)
300 PRINT USING 310;CHR$(12) ,"Aspect ratio: ",INT(Ratio),FRACT(Ratio)
310 IMAGE K,K,K, .2D
320 ! --- Draw the three plotting surfaces -------------------------------
330 VIEWPORT Model_left,Model_right,Model_bottom,Model_top
340 FRAME
350 VIEWPORT Show_left,Show_right,Show_bottom,Show_top
360 FRAME
370 VIEWPORT Window_left ,Window_right ,Window_bottom ,Window_top
380 FRAME
390 VIEWPORT O,RATIO*100,O,100
400 ! --- Indicate the Model/Show relationship ---------------------------
410 LINE TYPE 5
420 MOVE Model_left,Model_bottom
430 DRAW Show_left,Show_bottom
440 MOVE Model_left,Model_top
450 DRAW Show_left,Show_top
460 MOVE Model_right,Model_top
470 DRAW Show_right,Show_top
480 MOVE Model_right,Model_bottom
490 DRAW Show_right,Show_bottom
500 ! --- Indicate the Model/Window relationship -------------------------
510 LINE TYPE 6
520 MOVE Model_left,Model_bottom
530 DRAW Window_left ,Window_bottom
540 MOVE Model_left,Model_top
550 DRAW Window_left ,Window_top
560 MOVE Model_right,Model_top
570 DRAW Window_right ,Window_top
580 MOVE Model_right,Model_bottom
590 DRAW Window_right ,Window_bottom
600 ! --- Label the various plotting surfaces ----------------------------
610 LINE TYPE 1
620 MOVE Model_left+(Model_right-Model_left)/2,Model_top
630 LORG 4
640 LABEL "Model"
650 MOVE Show_left,Show_top
660 LORG 1
670 LABEL "Show"
680 MOVE Window_right,Window_top
690 LORG 7
700 LABEL "Window"
710 LORG 1
720 ! --- Plot three curves simultaneously -------------------------------
730 FOR Theta=l TO 180
740 VIEWPORT Model_left ,Model_right ,Model_bottom ,Model_top
750 SHOW -1,1,-1,1

A-26 Appendix

760 MOVE X(Theta-l),Y(Theta-l)
770 DRAW X(Theta),Y(Theta)
780 VIEWPORT Show_left ,Show_right ,Show_bottom , Show_top
790 SHOW -1,1,-1,1
800 MOVE X(Theta-l),Y(Theta-l)
810 DRAW X(Theta),Y(Theta)
820 VIEWPORT Window_left ,Window_right ,Window_bottom, Window_top
830 WINDOW -1,1,-1,1
840 MOVE X(Theta-l),Y(Theta-l)
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

DRAW X(Theta),Y(Theta)
NEXT Theta
! --- Ask for the next aspect ratio
DISP Pad$;Prompt$;
OUTPUT KBD USING "#,K";Pad$
Ratio=O
INPUT "",Ratio
IF Ratio>O THEN

IF Ratio>l THEN
Show_right=50
Show_top=50/Ratio

ELSE
Show_top=50
Show_right=50*Ratio

END IF
END IF

UNTIL Ratio<=O
CONTROL CRT,12;0
PRINT CHR$(12)
GRAPHICS OFF
END

Indent the prompt
! Indent the response

Key labels back to default state
Clear the alpha screen
Turtn off the graphics screen

Appendix A-27

Gload
10 ! Program "Gload"
20 OPTION BASE 1
30 INTEGER Return_array(6)
40 GINIT
50 PLOTTER IS CRT,"INTERNAL"
60 SHOW -1,1,-1,1
70 GRAPHICS ON
80 GESCAPE CRT,3;Return_array(*)
90 Size=Return_array(5)*Return_array(6)
100 ALLOCATE INTEGER PO (Size) ,Pl(Size) ,P2(Size) ,P3(Size) ,P4(Size)
110 DEG
120 POLYGON l,FILL
130 AREA PEN -1
140 MOVE. 1 , .5
150 PDIR 0
160 POLYGON .1,FILL
170 FOR 1=0 TO 4
180 IF 1>0 THEN
190 PLOT 0,0
200 PDIR -1*6
210 POLYGON l,60,I*2,FILL
220 END IF
230 SELECT I
240 CASE 0
250 GSTORE PO(*)
260 CASE 1
270 GSTORE Pl(*)
280 CASE 2
290 GSTORE P2(*)
300 CASE 3
310 GSTORE P3(*)
320 CASE 4
330 GSTORE P4(*)
340 END SELECT
350 NEXT I
360 LOOP
370 GLOAD PO(*)
380 GLOAD Pl(*)
390 GLOAD P2(*)
400 GLOAD P3(*)
410 GLOAD P4(*)
420 GLOAD P3(*)
430 GLOAD P2(*)
440 GLOAD Pl(*)
450 END LOOP
460 END

A-28 Appendix

123 4

Appendix A-29

A-30 Appendix

Index

a
Aborting graphics dumps .. 3-3
Absolute locators .. 4-14
Additive palette ... 5-19
Alpha mask .. 2-60
Alpha:

Bit-mapped .. 2-64
Display-Enable mask .. 2-60
Scrolling, enable and disable .. 2-64
Separate from graphics .. 1-6
Write-Enable mask .. 2-60

Alpha/Graphics interaction ... 2-61
Angular direction (for labels) ... 2-12
Animation ... 2-63, 5-25
Ansiotropic scaling .. -.. 1-9, 2-48
Arc utility ... 7-1
Arcs .. 7-1
AREA COLOR stateme~t 2-47, 2-52, 5-7
AREA INTENSITY statement ... , .. " , ,. 2-40,2-47,2-52,5-7
AREA PEN statement .. 2-47,2-52,5-7
Area:

soft clip ... 1-11, 2-26
Array size (for GSTORE) . '.' .. 5-6
Aspect ratio ... 2-2, 2-9
AXES program .. A-10
AXES statement .. 1-15

b
BACKGROUND program .. A-3
Background value .. 5-7
Backgrounds .. 5-21
BAR_KNOB program .. 4-1, A-3
BDAT files ... 3-11

Index 1

BIN files:
GRAPH .. 1-1
GRAPHX ... 1-1
KBD .. 4-14
MAT ... 2-1

BIN CMP statement .. 3-6
Bit-mapped alpha ... 2-64
Bit-mapped displays ... 2-59
Blindness, color ... 5-25
Bold labels ... 2-15
Business colors .. 5-10

C
CDials program .. 4-4
Ceiling of a number .. 1-8
Cell, character ... 2-6
Character aspect ratio .. 2-9
Character cell .. 2-6
Character set selection .. 3-9
Characters, user-defined .. 2-53
CharCell program : .. 2-8, A-3
CIRCLES program .. A-3
CLIP OFF statement ... 1-11, 2-20
CLIP statement ... 2-26
Clipping:

Hard ... 1-11, 2-26
hard '" , " 4-12
Soft .. 1-11, 2-26

Closure, polygon ... 2-47, 2-48
CLR I/O key .. 3-3
CMY color cube .. 5-32
Color blindness ... 5-25
Color cubes:

CMY .. 5-32
Color Cubes:

RGB .. 5-32
Color displays .. 2-59

2 Index

Color graphics:
Additive palette ... 5-19
Animation .. 5-25
Backgrounds .. 5-21
Business colors .. 5-10
CMY color cube .. 5-32
Color selection ... 5-2
Color-mapped displays .. 5-7

Color Graphics:
Colors, choosing ... 5-30

Color graphics:
Complementary writing .. 5-21
Default colors .. 5-9

Color Graphics:
Display design .. 5-24

Color graphics:
Dithering. .. 5-6, 5-16
Dominant pens 5-4
Effective color use ... 5-22
Erasing colors .. 5-8
Frame buffer ... :............... 5-7
Fundamentals : ... 0...... 5-1
Gamuts, color .. : 5-38
HP 98627 A Color Interface .. 5-3
HSL color cylinder .. 5-36
Mixing colors ... 5-23
Non-color-mapped displays .. 5-2
Non-dominant writing ... 5-19
Pen colors, choosing .. 5-5
Plotting .. 5-39

Color Graphics:
Primary colors .. 5-10

Color graphics:
RGB color cube ... 5-32
Spaces, color .. 5-32
Subtractive palette .. 5-19
Temperature, color .. 5-31

Color Map ... 5-11
Color Models:

HSL ... 5-12
RGB .. 5-12

Index 3

COLOR program ... A-20
Color-mapped displays .. 5-7
Compatibility, HP 9845 .. 7-11
Complement lines ... 2-27
Complementary drawing mode ... 4-7
Complementary writing .. 5-21
Contour plotting ... 6-9
Contour program ... 6-9, A-3
Control dial box ... 4-4
CONTROL KBD statement .. 2-64
Coordinate system, symbol ... 2-9, 2-54
Cross-hair ... 4-5
Crossbars .. 1-15
CS (character set) command ... 3-9
Csize program ... 2-6, A-3
CSIZE statement ... 2-6
Cube, color ... 5-32
Current relative origin ... 2-41
Current usable area .. 4-12
Cursor keys ... 4-14
Cylinder, HSL color ... 5-36

d
Data-driven plotting ... 2-37
DEG statement ... 2-12
Degrees of freedom ... 4-2
DIGITIZE statement .. 4-5, 4-18
Direction, label ... 2-12
Disable alpha scrolling ... 2-64
Display design .. 5-24
Display-enable mask ... 2-60
Displays:

Color-mapped ... 5-7
Non-color-mapped .. 5-2

Dithering. .. 2-40, 5-6, 5-16
DITHER_PAL program .. 5-18
Dominant pens 5-4
Drawing lines .. 1-5
Drawing mode, complimentary ... 4-7
Drawing Modes ... 2-27

4 Index

DUMP DEVICE IS statement ... 3-2
Dump graphics ... , 3-2, 3-15
DUMP GRAPHICS key ... 3-3
DUMP GRAPHICS statement ... 3-2
DumpGraph program .. A-3

e
Echoes ... 4-5, 5-22
EDGE keyword .. 2-47, 2-52
EDGE parameter ... 2-44
Edges, screen .. 1-7
Efficiency, program ... 7-8
Enable alpha scrolling ... 2-64
End_plot utility .. 7-7
Equal units (isotropic scaling) ... 1-6, 2-2
Erasing colors .. 5-8
Error detection ... 3-10
Example programs ... 2-1
Example programs disc ... 1-1
Example programs:

AXES .. A-I0
BACKGROUND ... "........... A-3
BAR_KNOB .. 4-1, A-3
CDials .. 4-4
CharCell .. 2-8, A-3
CIRCLES .. A-3
COLOR ... A-20
Contour ... 6-9, A-3
Csize ... 2-6, A-3
DITHER_PAL .. 5-18
DumpGraph .. A-3
Gload ... A-28
Gray_Map .. 6-12, A-3
GRID... A-12
Gstore ... 2-32, A-4
Iplot ... 2-46, A-4
KBD_ICONS ... 4-15
LABEL ... A-14
Ldir ... 2-12, A-4
Leml .. 2-38

Index 5

Example programs (continued):
Lem2 .. A-4
Lem2D , A-4
Lorg ... 2-10, A-4
MARQUEE .. A-4
Marquee ... 5-25
Pen .. 2-27, A-4
Pie_Chart .. A-4
PIVOT ... A-22
RANDOMVIEW ... A-18
Rev LABEL .. A-15
RIPPLE ... 5-29
RIPPLES .. A-5
RPLOT ... A-16
Rplot .. 2-42, A-5
Scenery .. 2-48, A-5
SET COLOR ... 5-14
SHOW WINDOW .. A-25
SinAxes .. A-5
SINE .. A-8

Example Programs:
SinGrdAxes .. 2-23

Example programs:
SinGrdAxes .. A-5
SinLabel ... 2-14, A-5
SinLabel2 .. 2-15, A-5
Sin Viewprt .. 2-4, A-5
STEREO ... 5-29, A-5
STORM ... 5-29, A-6
Surface .. 6-14, A-6
Symbol .. 2-55, A-6

Example statements:
LINE TYPE .. 2-31

Expanded graphics dumps ... 3-4

f
Fat_arc utility ... 7-2
Fat_line utility ... 7-2
Files, plotting to .. 3-11
FILL keyword ... 2-47, 2-52
FILL parameter ... 2-44

6 Index

Fill value .. 5-7
Floor of a number .. 1-8
FNAsk utility ... 7-13
FNAtan utility ... 7-9
Force, pen ... 3-8
Frame buffer ... 5-7
Freedom, degrees of .. 4-2
FS (force select) command .. 3-8
FUnctions:

RATIO ... 2-2
RND ... 1-6, 1-8

9
Gamuts, color .. 5-38
GCLEAR statement .. 5-8
Gdu utility .. 7-6
GDUs ... 1-11, 2-2, 7-6
GESCAPE statement .. 2-32, 2-59, 2-60
GINIT statement .. 1-5, 4-12
GLOAD command ' 2-32
Gload program... A-28
GRAPH BIN file ... 1-1
Graphics and alpha, separate ;............. 1-6
Graphics Dipslay Units .. 1-11, 2-2
GRAPHICS INPUT IS statement .. 4-6
GRAPHICS ON statement .. 1-6
Graphics tablet ... 4-4, 4-14
Graphics:

Binary files .. 1-1
Character size ... 2-6
Color ... 5-1
Display-Enable mask .. 2-60
Dumps ... 3-2, 3-15
Echoes .. 4-5
Example programs ... 1-1
GRID vs. AXES .. 2-22
Housekeeping .. 7-4
Initialization ... 1-5
Input .. 4-12
Interactive .. 4-1
Labels ... 1-13, 2-6

Index 7

Graphics (continued):
Line types .. 2-31
Plotting ... 3-7
Rotation ... 2-41
Scaling, isotropic ... 1-6, 2-2
Statement requirements ... 1-1
Storing and retrieving images ... 2-31
'I'ranslation ... 2-41
Turning on .. 1-6
Write-Enable mask .. 2-59

Graphics/ Alpha interaction ... 2-61
GRAPHX BIN file ... 1-1
Gray maps ... 6-11
Gray _Map program .. 6-12, A-3
GRID program. .. A-12
GSEND statement .. 3-7, 3-12
GSTORE command ... 2-31
Gstore program ... 2-32, A-4
GSTORE statement .. 5-6

h
Hard clip limits .,.. 1-11, 2-26, 4-12
Hewlett-Packard Graphics Language (HPGL) 3-7
Housekeeping .. 7-4
HP 9845 Compatibility .. 7-11
HP Raster Interface Standard .. 3-2
HP-HIL devices:

Cursor keys 4-14
Knob .. 4-14
Mouse ... 4-14
Support .. 4-17
Tablet ... 4-14
Touchscreen .. 4-14

HP 98627 A Color Interface .. 5-3
HPGL commands:

CS (character set) .. 3-9
Error detection ... 3-10
FS (force select) .. 3-8
Fundamentals .. 3-7
Termination ... 3-7
VS (velocity select) ... 3-8

8 Index

HSL color cylinder .. 5-36
HSL color model .. 5-12

.
I

IDRAW statement 2-45
Images, negative ... 3-6
Images, storing and retrieving ... 2-31
IMOVE statement ... 2-45
Incremental plotting ... 2-45
Initialization, graphics .. 1-5
Input devices .. 4-3
Input, graphics .. 4-12
Inverse video images .. 3-6
Iplot program ... 2-46, A-4
IPLOT statement .. 2-40, 2-45
Isotropic scaling .. 1-6, 2-2

k
KBD BIN file ... 4-14
KBD_ICONS program ... 4-15
Keywords AXES .. 1-15
Keywords:

AREA COLOR .. 2-47,2-52,5-7
AREA INTENSITY 2-40,2-47,2-52,5-7
AREA PEN ... 2-47,2-52,5-7
BINCMP .. 3-6
CLIP .. 2-26
CLIP OFF .. 1-11, 2-20
COLOR MAP ... 5-7
CONTROL KBD 2-64
CSIZE .. 2-6
DEG .. 2-12
DIGITIZE 4-5, 4-18
DUMP DEVICE IS ... 3-2
DUMP GRAPHICS .. 3-2
EDGE .. 2-47, 2-52
EXPANDED (DUMP DEVICE IS) 3-4
FILL ... 2-47, 2-52
GCLEAR ... 5-8
GESCAPE ... 2-32,2-59,2-60

Index 9

Keywords (continued):
GINIT ... 1-5, 4-12
GLOAD .. 2-32
GRAPHICS INPUT IS ... 4-6
GRAPHICS ON ... 1-6
GSEND .. 3-7,3-12
GSTORE .. 2-31, 5-6
IDRAW .. 2-45
IMOVE .. 2-45
IPLOT .. 2-40, 2-45
LABEL ... 1-13, 2-6, 2-13
LDIR .. 2-12
LORG ... 2-10
MAT REORDER ... 5-26
MERGE ALPHA WITH GRAPHICS 2-62
MOVE ... 1-13
OUTPUT ... 3-3
PDIR ... 2-42, 2-48
PEN '" ... 5-7
PIVOT !.. 2-42, 2-48
PLOT ... 1-5, 1-13, 2-37, 2-40
PLOTTER IS 3-7, 5-2
POLYGON ... 2-47
POLYLINE ... 2-48
RAD .. 2-12
RATIO .. 2-2, 4-12
READ LOCATOR .. 4-6, 4-18
RECTANGLE .. 2-52
RND ... 1-6, 1-8
RPLOT .. 2-41
SEPARATE ALPHA FROM GRAPHICS 2-62
SET ECHO ... 4-5
SHOW .. 1-6, 2-2
SYMBOL ... 2-40, 2-53
TRACK IS ON .. 4-5
VIEWPORT. .. 1-11, 1-12, 2-2, 2-3, 2-26
WINDOW .. 2-2,2-7

Knob .. 4-14

10 Index

I
Label direction .. 2-12
Label origin .. 2-10
LABEL program ... A-14
LABEL statement .. 1-13, 2-6, 2-13
Label utility ... 7-8
Labeling .. 7-8
Labels ... 1-13, 2-6
Labels, bold .. 2-15
Ldir program ... 2-12, A-4
LDIR statement ... 2-12
Lem1 program .. 2-38
Lem2 program .. A-4
Lem2D program .. A-4
Letters, bold .. 2-15
Limits, hard clip .. 4-12
Limits, screen .. 1-7
Limits:

Hard clip .. 1-11, 2-26
Screen ... 1-11
Soft clip '.' '.': 1-11, 2-26

Line, rubber band .. 4-7
LINE TYPE statement .. 2-31
Line types .. 2-30
Line value ... 5-7
Lines, drawing ... 1-5
Load_paper utility .. 7-5
Locators, absolute ... 4-14
Locators, relative .. 4-14
Lorg program ... 2-10, A-4
LORG statement .. 2-10

m
Manual Examples disc .. 1-1, 2-1
Map, color ... 5-11
Maps, gray ... 6-11
Marks, tick ... 1-15
MARQUEE program .. A-4
Marquee program ... 5-25

Index 11

Mask:
Alpha .. 2-60
Display-enable .. 2-60
Write-enable .. 2-59

MAT BIN file .. 2-1
MAT REORDER statement .. 5-26
Maximum usable area .. 4-12
Menu-picking ... 4-19
MERGE ALPHA WITH GRAPHICS statement 2-62
Message utility .. 7-14
Mode, dominant pen .. 5-4
Models, color ... 5-12
Modes, drawing ... 2-27
Monochromatic pens ... 2-27
Mouse ... 4-14
MOVE statement ... 1-13
Multi-plane bit-mapped displays .. 2-59
Multiple picture display .. 2-63

n
Negative images .. 3-6
Non-color-mapped displays .. 5-2
Non-dominant writing ... 5-19
Non-dominant writing mode .. 4-10
N on-separable degrees of freedom .. 4-3
N on-square pixels .. 3-4
Number:

Ceiling, calculating ... 1-8
Floor, calculating .. 1-8

o
Origin, label .. 2-10
Origin, relative .. 2-41
OUTPUT statement .. 3-3

p
PI and P2 parameters .. 7-5
PI and P2 points .. 4-12
Pairs, stereo .. 5-29

12 Index

Palette:
Additive 5-19
Subtractive 00000 0 0 0 0 0 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 00000 0 0 0 0 0 0 0 000000 0 5-19
Surprise 0 5-20

Paper size (plotter) 0 3-11
Pause utility 0 7-6
PDIR statement 0 2-42, 2-48
Pen colors, choosing 0 5-5
Pen force, controlling 0 3-8
Pen program 0 2-27, A-4
Pen speed, controlling 0 3-8
PEN statement 0 5-7
Pen-control parameter 0 2-37
Pen-control parameters 0 2-54
Pens 00 0 0 0 0 0 0 0 0 0 0 0 0000 2-27
Pens, dominant 0 5-4
Pens, wide 0 7-2
Pen_speed utility 0 7-12
Photographing the CRT 0 5-39
Pie_Chart program 00 0 0 A-4
PIVOT program 00 0 0 0 A-22
PIVOT statement 0 2-42, 2-48
Pixels 0000000000 0 0 0 0 0 0000000000000 0 0 0000000000 0 00000000 0 0 0 0 0 0 0 0 0 0 0 0 2-27, 2-40
Plot labeling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 1-13
Plot labelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 0 '0 0 0 0 0 0 0 0 2-6
PLOT statement 0 1-5, 1-13, 2-37, 2-40
Plotter, defining a 0 7-4
PLOTTER IS statement 00 3-7,5-2
Plotter paper size 0 3-11
Plotter_is utility 0 7-4
Plotters 0 3-7
Plotting, data driven 0 2-37
Plotting, incremental 0 2-45
Plotting:

character set selection 0 3-9
Color plots 0 5-39
Contour plots 0 6-9
Defining plotting device 0 7-4
Ending a plot 0 7-7
Files, plotting to 0 3-11
Fundamentals 0 3-7

Index 13

Plotting (continued):
HPGL commands .. 3-7
Labels .. 7-8
Limitations ... 3-12
Paper size specification .. 3-11
Pen force .. 3-8
Pen speed ... 3-8
PLOTTER IS statement .. 3-7
SRM .. 3-13
Surface plots 6-9, 6-14
Wide pen simulation .. 7-2

Polygon rotation .. 2-48
POLYGON statement ... 2-47
Polygons ... 2-47
POLYLINE statement ... 2-48
Primary colors .. 5-10
Printers, non-standard .. 3-5
Printing graphics .. 3-2, 3-15
Programs, example ... 1-1, 2-1
Programs:

AXES .. A-I0
BACKGROUND .. A-3
BAR_KNOB .. 4-1, A-3
CDials .. 4-4
CharCell .. 2-8, A-3
CIRCLES .. A-3
COLOR ... A-20
Contour ... 6-9, A-3
Csize ... 2-6, A-3
DITHER_PAL .. 5-18
DumpGraph .. A-3
Gload ... A-28
Gray_Map .. 6-12, A-3
GRID ... A-12
Gstore ... 2-32, A-4
Iplot ... 2-46, A-4
KBD_ICONS ... 4-15
LABEL ... A-14
Ldir ... 2-12, A-4
Leml .. 2-38
Lem2 .. A-4

14 Index

Programs (continued):
Lem2D ... A-4
Lorg ... 2-10, A-4
MARQUEE .. A-4
Marquee ... 5-25
Pen .. 2-27, A-4
Pie_Chart .. A-4
PIVOT ... 1\-~~

RANDOMVIEW ... A-18
Rev LABEL .. A-15
RIPPLE ... 5-29
RIPPLES .. A-5
RPLOT ... A-16
Rplot .. 2-42, A-5
Scenery .. 2-48, A-5
SET COLOR ... 5-14
SHOW WINDOW .. A-25
SinAxes .. A-5
SINE .. A-8
SinGrdAxes ... 2-23, A-5
SinLabel ... 2-14, A-5
SinLabel2 .. 2-15, A-5
Sin Viewprt .. 2-4, A-5
STEREO ... 5-29, A-5
STORM .. ' 5-29, A-6
Surface .. 6-14, A-6
Symbol .. 2-55, A-6

r
RAD statement ... 2-12
RANDOMVIEW program ... A-18
Raster images, dumping .. 3-2, 3-15
Raster Interface Standard ... 3-2
Ratio, aspect .. 2-2, 2-9
RATIO function ... 2-2
RATIO statement ... 4-12
READ LOCATOR statement ... 4-6,4-18
RECTANGLE statement ... 2-52
Rectangles ... 2-52
Relative locators .. 4-14

Index 15

Relative origin .. 2-41
RevLABEL program.... A-15
RGB color cube ... 5-32
RGB color model .. 5-12
RG B displays .. 5-3
RIPPLES program .. 5-29, A-5
RND function 1-6, 1-8
Rotating a drawing .. 2-41
Rotation, polygon ... 2-48
Rotation transformation matrix:

3D ... 6-7
RPLOT program.... A-16
Rplot program .. 2-42, A-5
RPLOT statement ... 2-41
Rubber band line 4-7

S
Scale utility .. 7-10
Scaling transformation matrix:

3D ... 6-7
Scaling:

Ansiotropic ... 1-9, 2-48
Isotropic .. 1-6, 2-2
X-axis .. 1-9, 2-2, 2-3
Y-axis ... 1-10, 2-2, 2-3

Scenery program .. 2-48, A-5
Screen, defining edges ... 1-7
Screen dumps ... 3-2, 3-15
Screen limits .. 1-11
Scrolling, alpha ... 2-64
Separable degrees of freedom .. 4-4
Separate alpha and graphics ... 1-6
SEPARATE ALPHA FROM GRAPHICS statement 2-62
SET ECHO statement .. 4-5
SET_COLOR program ... 5-14
Setgu utility .. 7-11
Setuu utility .. 7-11
Shearing transformation matrix:

3D ... 6-8

16 Index

Shearing:
Definition ... 6-6
Transformation matrix, 2D .. 6-6

SHOW statement .. 1-6, 2-2
Show utility .. 7-11
SHOW WINDOW program .. A-25
SinAxes program.... A-5
SINE program .. A-8
SinGrdAxes program .. 2-23, A-5
SinLabel program ... 2-14, A-5
SinLabel2 program .. 2-15, A-5
Sin Viewprt program .. 2-4, A-5
Soft clip limits ... 1-11, 2-26
Softkeys ... 4-4
Spaces, color .. 5-32
Speed, pen .. 3-8
Spoolers, plotter .. 3-13
SRM plotter spoolers .. 3-13
Statements:

AREA COLOR .. 2-47,2-52,5-7
AREA INTENSITY 2-40,2-47,2-52,5-7
AREA PEN ... 2-47, 2-52, 5-7
AXES ... 1-15
BINCMP .. 3-6
CLIP , 2-26
CLIP OFF .. 1-11, 2-20
CONTROL KBD 2-64
CSIZE .. 2-6
DEG .. 2-12
DIGITIZE .. 4-5, 4-18
DUMP DEVICE IS ... 3-2
DUMP GRAPHICS .. 3-2
GCLEAR ... 5-8
GESCAPE ... 2-32,2-59,2-60
GINIT ... 1-5,4-12
GLOAD .. 2-32
GRAPHICS INPUT IS ... 4-6
GRAPHICS ON ... 1-6
GSEND .. 3-7,3-12
GSTORE .. 2-31, 5-6

Index 17

Statements (continued):
IDRAW .. 2-45
IMOVE .. 2-45
IPLOT .. 2-40, 2-45
LABEL ... 1-13, 2-6, 2-13
LDIR .. 2-12
LINE TYPE .. 2-31
LORG ... 2-10
MAT REORDER ... 5-26
MERGE ALPHA WITH GRAPHICS 2-62
MOVE ... 1-13
OUTPUT ... 3-3
PDIR ... 2-42, 2-48
PEN .. 5-7
PIVOT ... 2-42, 2-48
PLOT ... 1-5, 1-13, 2-37, 2-40
PLOTTER IS .. 3-7,5-2
POLYGON ... 2-47
POLyLINE .. : .. 2-48
RAD .. 2-12
RATIO .. 2-2,4-12
READ LOCATOR .. 4-6,4-18
RECTANGLE .. 2-52
RND ... 1-6, 1-8
RPLOT .. 2-41
SEPARATE ALPHA FROM GRAPHICS 2-62
SET ECHO ... 4-5
SHOW .. 1-6, 2-2
SYMBOL ... 2-40, 2-53
TRACK IS ON .. 4-5
VIEWPORT. .. 1-11, 1-12, 2-2, 2-3, 2-26
",lINDOW .. 2-2,2-7

STEREO program ... 5-29, A-5
S tero pairs, 3D .. 5-29
STORM program ... 5-29, A-6
Subtractive palette .. 5-19
Surface plotting ... 6-9, 6-14
Surface program .. 6-14, A-6
Surprise palette ... 5-20

18 Index

Symbol coordinate system .. 2-9, 2-54
Symbol program .. 2-55, A-6
SYMBOL statement .. 2-40, 2-53

t
Tablet, graphics 4-14
Tablets, graphics ... 4-4
Temperature, color .. 5-31
Termination, HPGL command ... 3-7
Three-D Stero pairs ... 5-29
Tick marks ... 1-15
Titles .. 1-13, 2-6
Touchscreen .. 4-14
TRACK IS ON statement ... 4-5
Transformation matrices:

Rotation, 3D .. 6-7
Scaling, 3D .. 6-7
Shearing, 2D .. 6-6
Shearing, 3D ... 6-8
Translation, 3D .. 6-7

Translating a drawing .. 2-41
Translation transformation matrix:

3D ... 6-7
Thrning on Graphics .. 1-6
Type, Line ... 2-30

U
UDC .. 2-55
UDUs 1-7, 1-11, 2-2
Unequal units (ansiotropic scaling) ... 1-9
Units:

Ansiotropic .. 1-9
Equal (isotropic scaling) .. 1-6, 2-2
GDUs ... 1-11, 2-2
Graphics display .. 1-11, 2-2
Isotropic .. 1-7, 2-2
UDUs .. 1-11, 2-2
Unequal (ansiotropic scaling) .. 1-9
User-defined .. 1-11, 2-2
User-defined (UD Us) ... 1-7

Index 19

User-defined characters .. 2-53
User-defined Units .. 2-2
User-defined units .. 1-7
Utilities:

Arc ... 7-1
End_plot .. 7-7
Fat_arc ... 7-2
Fat_line ... 7-2
FNAsk ... 7-13
FNAtan ... 7-9
Gdu .. 7-6
Label ... 7-8
Load_paper 7-5
Message .. 7-14
Pause ... 7-6
Pen_speed .. 7-12
Plotter_is ... 7-4
Scale .. 7-10
Setgu .. 7-11
Setuu .. 7-11
Show .. 7-11
Window .. 7-12

v
Video, inverse .. 3-6
VIEWPORT statement 1-11, 1-12, 2-2, 2-3, 2-26
VS (velocity select) command .. 3-8

w
Wide pen simulation .. 7-2
WINDOW statement ... 2-2,2-7
Window utility .. 7-12
Write-enable mask ... 2-59
Writing, complementary .. 5-21
Writing mode, non-dominant ... 4-10
Writing, non-dominant ... 5-19

20 Index

x
X-axis scaling .. 1-9, 2-2, 2-3
Xmax ... 2-3

y
Y-axis scaling 1-10, 2-2, 2-3
,,---- <)
I lllCLX ••• ~-.:>

Index 21

fold-

MANUAL COMMENT CARD

BASIC 5.0/5.1
Graphics Techniques

HP Part Number 98613-90032 11/87

Please help us improve this manual. Circle the numbers in the following
statenlent that best indicate how useful you found this manuaL Then add
any further comments in the spaces below. In appreciation of your time, we
will enter your name in a quarterly drawing for an HP calculator. Thank
you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very ~curate

Particular pages with errors?" _________________ _

Comments: ________________________ _

Name: _______________________________ _

Job Title: _______________________ _

Company: ___________________________ _

Address: ____________________________ _

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
98613-90032
Microfiche No. 98613-99032
Printed in U.S.A. 11/87

Flin- HEWLETT
~~ PACKARD

98613-90675
For Internal Use Only

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	replyA
	replyB
	xBack

