
HP 9000 Series 200/500 Computers

HP-OX Reference

-

F/iOW HEWLETT
~~ PACKARD

."

HP-UX Reference
for the HP 9000 Series 2001500

Manual Part No. 09000-90006

© Copyright 1983, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend
Use. duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California.

© Copyright 1980, Bell Telephone Laboratories. Inc.

© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution und'er license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road. Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

November 1983 ... First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship, For Hewlett-Packard Fort Collins
Systems Division products sold in the U,SA and Canada, this warranty applies for ninety (90) days from the date of delivery,'
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period, This
warranty includes labor, parts, and surface travel costs, if any, Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid, Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty,

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU HP does not warrant that the operation of the CPU, software, or firmware will be uninter­
rupted or error free,

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, Hewlett­
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

• For other countries, contact your locat Sales and Support Office to determine warranty terms,

TABLE OF CONTENTS

1. Commands

adb .. debugger
admin .. create and administer sees files
ar .. archive and library maintainer
as .. assembler for MC68000
asainterpret ASA carriage control characters
at. .. execute commands at a later time
aterm ... general purpose asynchronous terminal emulation
atrans .. translate assembly language
awk .. text pattern scanning and processing language
banner ... make posters in large letters
basename ... extract portions of path names
bdiff ... big diff
calendar .. reminder service
cat. ... concatenate, copy, and print files
cb ... C program beautifier, formatter
cc .. C compiler
cd .. change working directory
cdc .. change the delta commentary of an sees delta
chatr .. change program's internal attributes
chmod ... change mode
chown ... change file owner or group
chroot. ... change root directory for a command
cmp ... compare two files
col .. " ~ ... '" ... filter reverse line-feeds and backspaces
comm .. select/reject common lines of two files
cp .. copy, link or move files
cpio .. copy file archives in and out
cpp ... C language preprocessor
crypt .. encode/decode files
ct ... call terminal
cu .. ; call another UNIX system
cut ... cut out selected fields of each line of a file
date .. print and set the date
dd , ... convert, reblock, translate, and copy a (tape) file
delta .. make a delta (change) to an sees file
deroff .. remove nroff/troff, tbl, and eqn constructs
df ... report number of free disk blocks
diff ... differential file comparator
diffmk ... mark differences between files
dircmp ... directory difference comparison
du ... summarize disk usage
echo .. echo (print) arguments
ed ... text editor
env ... set environment for command execution
err ... report error information on last failure
ex .. text editor commands
expand .. expand tabs to spaces, and vice versa
expr .. evaluate arguments as an expression
f77 ... FORTRAN 77 compiler
fe .. FORTRAN 77 compiler
find .. find files
get ... get a version of an sees file
getopt .. parse command options
grep ... search an Asell file for a pattern
help .. , ask for help
hostname ... set or print name of current host system

-1-

Table of Contents

id ... print user, group IDs and names
intro .. .introduction to commands
join .. relational database operator
kill. .. terminate a process
Id .. link editor
lex ... generate programs for lexical analysis of text.
lif .. Logical Interchange Format description
lifcp .. copy to or from LIF files
lifinit. , , .. write LIF volume header on file
lifls ... list contents of LIF directory
lifrename .. rename LIF files
lifrm .. remove a LIF file
line ... read one line from user input
link ... exercise link and unlink system calls
lint .. a C program checker/verifier
login .. sign on
logname ... get login name
lorder .. find ordering relation for object library
Ipd ... 1ine printer daemon
Ipr .. line printer spooler
Is " ... , ... list contents of directories
Isdevlist device drivers in the system
mail. ... send mail to users or read mail
make .. maintain, update, recompile programs
man .. on-line manual command
mesg ... : permit or deny messages to terminal
mkdir .. make a directory
mm .. print documents formatted with MM macros
more .. file perusal filter for crt viewing
mount .. mount and unmount file system
mt .. magnetic tape manipulating program
mvdir .. move a directory
ncheck ... generate names from i-numbers
newgrp .. .Iog in to a new group
news .. print news items
nice .. run a command at low priority
nm .. print name list (symbol table) of object file
nohup .. run a command immune to hangups, logouts, and quits
nroff .. format text
od .. octal and hexadecimal dump
passwd .. change login password
paste .. merge lines in one or more files
pc ... Pascal compiler
pr ... print files
prof ... display profile data
prs ... print and summarize an sees file
ps " .. , .. report process status
pwd ... working directory name
r2780 .. 2780/3780 terminal emulation
r2780trace .. format a trace dump from r2780
ranlib ... convert archives to random libraries
revision .. get HP-UX revision information
rm .. , .. remove files or directories
rmdel ... remove a delta from an sees file
rmnl ... remove extra new-line characters from file
rsh .. restricted shell (command interpreter)
sact .. print current sees file editing activity

-2- ,

Table of Contents

sccsdiff ... compare two versions of sees file
sed ... stream text editor
sh .. shell, the standard command programming language
size .. size of an object file
sleep .. suspend execution for an interval
sort ... sort and/or merge files
spelL ... find spelling errors
split ... split a file into pieces
strip .. remove symbols and relocation bits
stty ... set the options for a terminal port
su ... become another user
tabs .. set tabs on a terminal
tail ... deliver the last part of a file
tar ... tape file archiver
tbl .. format tables for nroff or troff
tcio .. Command Set 80 Cartridge Tape Utility
tee .. pipe fitting
test. ... condition evaluation command
time .. time a command
touch .. update access/modification/change times of file
tr ... translate characters
true .. provide truth values
tset .. terminal dependent initialization
tsort .. topological sort
tty ... get the terminal's name
ul ... do underlining
umask. .. set file-creation mode mask
uname ... print name of current HP-UX version
unget .. undo a previous get of an sees file
uniq ... report repeated lines in a file
upm ... unpack cpio archives from HP media
uucico .. uucp copy in and copy out
uucp .. UNIX to UNIX copy; file transfer
uustat .. uucp status inquiry and job control
uuto .. public UNIX-to-UNIX file copy
uux .. UNIX to UNIX command execution
uuxqt. ... uucp command execution
val ... validate sees file
vi. " .. visual text editor
wait. ... await completion of process
wall .. write to all users
wc ... word, line, and character count
what. ... identify files for sees information
whereis ... ,1ocate source, binary, and/or manual for program
who .. which users are on the system
whodo .. which users are doing what
writeinteractively write (talk) to another user
yacc ... yet another compiler-compiler

2. System Calls

access ... determine accessibility of a file
alarm .. set process's alarm clock
brk .. change data segment space allocation
chdir .. change working directory
chmod ... change access mode of file

-3-

Table of Contents

chown .. change owner and group of a file
chroot. ... change root directory
close ... close a file descriptor
creat ... create new file, rewrite existing file
dup .. duplicate an open file descriptor
ems ... Extended Memory System
errinfo ... error indicator
errno ... error indicator for system calls
exec ... execute a file
exit .. terminate process
fent! .. file control
fork ... create a new process
gethostname .. get name of current host
getpid .. get process, process group, and parent process IDs
getuid .. get real/effective user, real/effective group IDs
introintroduction to system calls
ioct!. .. control device
kill ... send signal to process(s)
link. ... link to a file
lseek .. move read/write file pointer; seek
memadvise .. advise OS about segment reference patterns
me malic .. allocate and free address space
memchmd .. change memory segment access modes
memlck .. lock/unlock process address space or segment
memvary ... modify segment length
mknod ... make directory, special or ordinary file
mount ... mount a file system
nice .. change priority of a process
open ... open file for reading or writing
pause ... suspend process until signal
pipe .. create an interprocess channel
profil ... execution time profile
ptrace ... process trace
read ... read from file
sethostname .. set name of host cpu
setpgrp .. set process group 10
setuid .. set user and group IDs
signal. ... set up signal handling for program
stat. ... get file status
stime .. set time and date
stty .. control device
sync .. update super-block
time .. get time
times ... get process and child process times
trapno .. hardware trap numbers
ulimit. ... get and set user limits
umask ... get and set file creation mask
umount ... unmount a file system
uname .. get name of current HP-UX system
unlink. ... remove directory entry; delete file
ustat ... get file system statistics
utime .. set file access and modification times
vsadv .. advise system about backing store usage
vson ... advise OS about backing store devices
wait ... wait for child process to terminate
write ... write on a file

-4-

Table of Contents

3. Subroutines

a641 .. convert between long and base-64 ASCII
abort. .. generate an lOT fault
abs .. integer absolute value
assert ... program verification
atof .. convert ASCII to numbers
bessel ... bessel functions
conv .. character translation
crypt ... OES encryption
ctermid .. generate file name for terminal
ctime .. convert date and time to ASCII
ctype .. character classification
cuserid ... character login name of the user
ecvt .. output conversion
end ... last locations in program
exp ... exponential, logarithm, power, square root functions
fclose .. close or flush a stream
ferror ... stream file status inquiries
floor .. absolute value, floor, ceiling, remainder functions
fopen .. open or re-open a stream file; convert file to stream
fread .. buffered binary input/output to a stream file
frexp .. split into mantissa and exponent
fseek. ... reposition a stream
gamma .. Iog gamma function
getc ... get character or word from stream file
getenv ... value for environment name
getgrent ... get group file entry
getlogin .. get login name
getopt ... get option letter from argv
getpass .. , ... read a password
getpw .. get name from UlO
getpwent .. get password file entry
gets ... get a string from a stream file
hypot ... Euclidean distance
intro .. .introduction to subroutines and libraries
13tol .. convert between 3-byte integers and long integers
malloc ... main memory allocator
mktemp .. make a unique file name
monitor .. prepare execution profile
nlist .. get entries from name list
perror ... system error messages
popeninitiate pipe I/O to/from a process
printf .. output formatters
putc .. put character or word on a stream
putpwent ... write password file entry
puts ... put a string on a stream file
qsort ... quicker sort
rand ... random number generator
scanf .. formatted input conversion, read from stream file
setbuf .. assign buffering to a stream file
se~mp .. non-Iocal goto
sinh ... hyperbolic functions
sleep ... suspend execution for interval
ssignal .. software signals
stdio .. standard buffered input/output stream file package
string .. character string operations

-5-

Table of Contents

swab .. swap bytes
system .. issue a shell command
termcap .. access terminal capabilities in termcap(5)
tmpfile .. create a temporary file
tmpnam .. create a name for a temporary file
trig .. trigonometric functions
ttyname ... find name of a terminal
ungetc ... push character back into input stream

4. Special Files

disc " .. direct disc access
graphicsinformation for crt graphics devices
hpib .. hpib interface information
intro .. .introduction to special files
lp ... printer information
mem .. core memory
mt ... magnetic tape interface and controls
null ... null file ("bit bucket")
tty .. general terminal interface

5. File Formats

a. out. ... assembler and link editor output
ar .. archive file format
checklistlist of file systems processed by fsck
core ... format of core image file
cpio .. .format of cpio archive
crontab .. scheduling file for cron(8)
dir .. SDF directory format
errfile .. system error logging file
fs .. format of system volume
fspec .. format specification in text files
group ... group file
inittab .. control information for init(8)
inode .. format of an i-node
intro .. .introduction to file formats
magic .. magic numbers for HP-UX implementations
mknod .. create a special file entry
mnttab ... mounted file system table
model ... HP-UX machine identification
passwd .. password file
profile .. set up user's environment at login time
ranlib .. table of contents format for object libraries
sccsfile .. format of sees file
termcap ... terminal capability data base
ttytype .. data base of terminal types by port
utmp .. utmp and wtmp entry format

6. Games

No games are currently supported.

-6-

Table of Contents

7. Miscellaneous Facilities

environ .. user environment
fcntl .. file control options
introintroduction to miscellany
man .. macros for formatting entries in this manual
mm .. the MM macro package for formatting documents
regexp ... regular expression compile and match routines
stat ... data returned by stat/fstat system call
term .. conventional device names
types ... primitive system data types

8. System Maintenance Procedures

backup ... backup or archive file system
catman ... create the cat files for the manual
chsys ... change to different operating system or version
c1ri .. clear i-node
cron .. clock daemon
devnm .. device name
fsck ... file system consistency check, interactive repair
fsdb ... file system debugger
fwtrnp .. manipulate wtmp records
getty .. set the modes of a terminal
init. ... process control initialization
install ... install commands
intro ... introduction to system maintenance procedures
killall ... send signal to all user processes
makekey .. generate encryption key
mkdev .. make device files
mkfs .. construct a file system
mknod ... create special, fifo, files
optinstall .. .install/update optional HP-UX products
osck ... check integrity of as in SDF boot area(s)
oscp ... copy, create, append to, split operating system
osmark .. mark SDF as file as loadable/unloadable
osmgr .. operating system manager package description
pwck .. password/group file checkers
rc .. system initialization shell script
revck ... check internal revision numbers of HP-UX files
rootrnark ... mark/unmark volume as HP-UX root volume
sconfig ... system swap space reconfiguration
sdfinit.initialize Structured Directory Format volume
setmnt. .. establish mnttab table
shutdown ... terminate all processing
stopsys , " .. stop operating system with optional reboot
sync ... update the super block
uconfig .. system reconfiguration
uuclean ... uucp spool directory clean-up
uusub ... monitor uucp network

-7-

Table of Contents

9. Glossary

-8-

PERMUTED INDEX

[... test(l)
a641 .. a641(3C)
abort ... abort(3C)
abs ... abs(3C)
absolute value, floating point .. floor(3M)
absolute value, integer .. abs(3C)
access ., .. access(2)
access modes, change memory segment .. memchmd(2)
accessing discs, description of blocked/unblocked disc interface .. disc(4)
accounting, convert binary wtmp records to ASCII .. fwtmp(8)
accounting, correct time/date stamps on wtmp records .. fwtmp(8)
accounting, record login names and times .. utmp(5)
acos ... trig(3M)
activity, terminate all current system activity ... shutdown(8)
adb .. adb(l)
add backing store devices .. vson(2)
address space, allocate and free ... memallc(2)
address space, lock/unlock for process .. memlck(2)
addresses, get for program ... end(3C)
admin .. admin(l)
advance .. regexp(7)
advise as about segment reference patterns ... memadvise(2)
alarm .. alarm(2)
alarm clock, set. ... alarm(2)
allocate a block of memory .. malloc(3C)
allocate and free address space .. memallc(2)
allocate backing store space to backing store device ... vsadv(2)
allocate data segment space for process ... brk(2)
a.out file format, description of .. a.out(5)
append to an existing operating system .. oscp(8)
appointments, reminder service for .. calendar(l)
ar .. ar(l)
arc cosine function ... trig(3M)
arc sine function ... trig (3M)
arc tangent function .. trig (3M)
archive file format, description of ... ar(5)
archive file format, description of cpio archive file format .. cpio(5)
archive files on tape .. tar(l)
archive library, find ordering relation for .. 10rder(l)
archive, table of contents format description ... ranlib(5)
archives and libraries, create and maintain ... ar(1)
archives, convert to random libraries .. ranlib(l)
archives, copy out to media .. cpio(l)
archives, create table of contents for ... ranlib(1)
archives, extract archive files from media .. cpio(1)
argv, get next option letter from .. getopt(3C)
array, allocate memory space for ... malloc(3C)
array, print formatted data into ... printf(3S)
array, read and format data from .. scanf(3S)
as ... as(l)
ASA carriage control characters, interpret .. asa(1)
asa .. asa(1)
ASCII, convert base 64 ASCII to long integer .. a641(3C)
ASCII, convert binary wtmp records to .. fwtmp(8)
ASCII, convert floating point value to ... ecvt(3C)
ASCII, convert non-ASCII to ASCII .. conv(3C)
ASCII, convert to floating point, integer, or long integer .. atof(3C)
asctime ... ctime(3C)

- 1-

Permuted Index

asin .. trig(3M)
assembler for MC68000 .. as(l)
assemblerllinker executable output file, description of ... a.out(5)
assembly language, translate ... atrans(1)
assert .. assert(3X)
assign buffering to an open file .. setbuf(3S)
assistance, get for SCCS ... , ... '" ... , help(1)
asynchronous terminal emulation ... aterm(lC)
at .. at(l)
atan ... trig(3M)
atan2 ... trig (3M)
aterm ... aterm(lC)
atof .. atof(3C)
atoi. ... atof(3C)
ato!. ... atof(3C)
atrans ... atrans(l)
attributes, change program's internal .. chatr(l)
awk ... awk(l)
backing store devices, add/remove device from those available .. vson(2)
backing store devices, allocate backing store space to ... vsadv(2)
backing store usage, advise system about. .. vsadv(2)
backspaces and reverse line-feeds, interpret for nroff(1) .. col(1)
backup ... backup(8)
backup Command Set 80 cartridge tape ... tcio(1)
backup or archive file system ... backup(8)
banner .. banner(1)
banners, make using large letters ... banner(1)
base-64 ASCII, convert to long integer .. a64I(3C)
basename .. basename(1)
baud rate, settings for terminal .. tty (4)
bdiff .. bdiff(1)
Berkeley compatibility for magnetic tape, description of .. mt(4)
bessel functions ... bessel(3M)
bit bucket, special file eqUivalent to ... null(4)
block of memory, allocate .. malloc(3C)
block of memory, change size of .. malloc(3C)
block of memory, deallocate .. malloc(3C)
block size, find for mounted file system .. ustat(2)
block special file, create .. mknod(2), mknod(8)
blocked disc interface, description of ... disc(4)
blocks, find number of free blocks for mounted file system ... ustat(2)
blocks, report number of free disc blocks ... df(l)
boot area, allocate bytes for. .. , ... sdfinit(8)
boot area, copy OS from one or more SDF boot areas to another .. oscp(8)
boot area, set or get current settings for system parameters in ... uconfig(8)
break. ... sh(l)
break-pOint debugging, enable for child process .. ptrace(2)
break value, get maximum for process ... ulimit(2)
break value, set or get ... brk(2)
brk. ... brk(2)
buffered file I/O package, description of.. ... stdio(3S)
buffering, assign to open file .. setbuf(3S)
buffers, flush those associated with an open file .. fclose(3S)
byte offset of next I/O operation on file, set ... fseek(3S)
byte swapping ... swab(3C)
C compiler .. cc(l)
C compiler, preprocessor for. .. cpp(1)

- 2 -

Permuted Index

C preprocessor ... cpp(l)
C program checker/verifier .. lint(l)
C program formatter ... cb(l)
C program, error message generator for ... perror(3C)
cache buffers, specify size and number of .. uconfig(8)
calendar .. calendar(1)
call another UNIXlHP-UX system ... cu(IC)
calloc .. malloc(3C)
cancel previous uucp commands .. uustat(1 C)
carriage control characters, interpret ASA .. asa(1)
cartridge tape, Command Set 80 utility ... tcio(1)
cartridge tape, perform input/output from/to .. tcio(1)
cartridge tape, unpack/extract files from Command Set 80 ... upm(l)
cat ... cat(l)
catman ... catman(8)
cb ... cb(l)
cc ... cc(l)
cd ... cd(I), sh(l)
cdc ... cdc(l)
ceiL .. floor(3M)
certify SDF volume ... sdfinit(8)
certify file system consistency .. fsck(8)
change SCCS file parameters ... admin (1)
change bars, create file containing ... diffmk(l)
change data segment space allocation ... brk(2)
change delta commentary of SCCS delta .. cdc(l)
change file mode .. chmod(I), chmod(2)
change file owner or group .. chown(1), chown(2)
change group 10 of user .. newgrp(1), sh (1)
change login password .. passwd(l)
change memory segment access modes ... memchmd(2)
change program's internal attributes ... chatr(l)
change root directory for duration of command .. chroot(1), chroot(2)
change size of preViously-allocated block of memory .. malloc(3C)
change system state .. .init(8)
change to another user ... su (1)
change to different operating system or version .. chsys(8)
change working directory .. cd(I), sh(1), chdir(2)
character classification ... ctype(3C)
character conversion, lower-case to upper-case .. conv(3C)
character conversion, non-ASCII to ASCII .. conv(3C)
character conversion, upper-case to lower-case .. conv(3C)
character size, settings for terminal .. tty (4)
character special file, create .. mknod(2), mknod(8)
character, deSCription of special characters in terminal interface ... tty(4)
character, push back into input stream ... ungetc(3S)
character, read from buffered open file ... getc(3S)
character, search for in string ... string(3C)
character, write on buffered open file or standard output.. .. putc(3S)
characters, count number contained in file .. wc(1)
characters, process characters from regular expression ... regexp(7)
characters, translate into other characters ... tr(1)
chatr .. chatr(1)
chdir .. chdir(2)
check C program ... lint(l)
check file for accessibility .. access(2)
check file system consistency .. fsck(8)

-3-

Permuted Index

check integrity of as in SDF boot area(s) ... osck(S)
check internal revision numbers of HP-UX files ... revck(S)
check password and group files .. pwck(S)
checklist, list of file systems to be checked by fsck(S) ... checklist(5)
chgrp ... chown(1)
child process, enable break-point debugging of ... ptrace(2)
child process, time execution of .. times(2)
child process, wait for termination of ... sh(1)
chmod ... chmod(1), chmod(2)
chown ... chown(1), chown(2)
chroot. ... chroot(1), chroot(2)
chsys ... chsys(S)
clean up uucp spool directory ... uuclean(S)
clear error indicator on open file ... ferror(3S)
clear i-node by zeroing it out .. clri(S)
clearerr .. ferror(3S)
clock, set/print time and date .. date(1)
close .. close(2)
close a file descriptor ... close(2)
close group file .. getgrent(3C)
close or flush a stream ... fclose(3S)
close password file ... getpwent(3C)
close pipe between process and command ... popen(3S)
close-on-exec flag, get/set .. fcntl(2)
clri ... clri(S)
cmp .. cmp(1)
code portability between HP-UX implementations, typedefs for .. model(5)
code segments, specify maximum number of .. uconfig(S)
col ... coI(1)
colon (:) command ... sh(1)
combine object files into programld(1)
comm .. comm(1)
Command Set SO Cartridge Tape Utility .. tcio(1)
command interpreter, restricted ... rsh (1)
command interpreter, standard ... sh(1)
command line options, parse .. getopt(1)
command substitution .. sh(1)
command, create/close pipe between process and command .. popen(3S)
command, execute from program .. system(3S)
command, execute on another system ... uux(1 C)
command, execute uucp commands on local system ... uuxqt(1C)
command, execute with different root directory .. chroot(1), chroot(2)
command, report error information for ... err(1)
command, run at lower or higher priority ... nice(1), nice(2)
command, run immune to hangups, logouts, and quits ... nohup(1)
command, set environment for ... env(1 i
command, time the execution of .. timet 11.
commands, execute at specified date(s) and time(s) .. at(1), cron(SJ'
commands, install in file system .. instaII(S)
commands, schedule for cron(S) ... crontab(5)
common lines, find after comparing two files ... comm (1)
common logarithm .. exp(3M)
communication, establish interactive communication with another UNIXlHP-UX system cu(1C)
compare two directories ... dircmp(1)
compare two files .. bdiff(1), cmp(1), diff(1)
compare two strings ... ; ... string(3C)
compare two versions of SCCS file .. sccsdiff(1)

-4-

Permuted Index

compile ... regexp(7)
compiler development. .. yacc(1)
compiler, C ... cc(l)
compiler, FORTRAN 77 ... fc(l), f77(1)
compiler, Pascal ... pc(l)
compiler-compiler ... yacc(l)
concatenate lines in one or more files .. paste(l)
concatenate two strings ... string(3C)
concatenate, copy, and/or print files ... cat(1)
conditional expressions, evaluate and test. ... sh(l), test(l)
construct file system on special file ... mkfs(8)
contents of directory, list.1s(l)
context-free grammar, create ... yacc(1)
continue ... sh(l)
control characters', interpret ASA carriage .. asa(l)
control device .. .ioctl(2), stty(2)
control-flow constructs, shell programming language ... sh(l)
conventional terminal names ... term(7)
convert ASCII to floating point, integer, or long integer ... atof(3C)
convert between 3-byte integers and long integers .. .13to1(3C)
convert between long and base-64 ASCII .. a641(3C)
convert binary wtrnp records into ASCII .. fwtmp(8)
convert date and time to ASCII .. ctime(3C)
convert floating point value to ASCII string ... ecvt(3C)
convert tape file .. dd(l)
.;onvert, reblock, translate, and copy a (tape) file ... dd(l)
copy an open file descriptor ... dup(2), fcnt1(2)
copy files between two systems .. uucp(lC), uuto(lC)
copy files out to media ... cpio(l)
copy files while simultaneously editing them .. sed(1)
copy line from standard input to standard output... .. line(1)
copy operating system from one or more SDF boot areas to another .. oscp(8)
copy string .. string(3C)
copy tape file .. dd(l)
copy to or from LIF files .. .1ifcp(l)
copy, concatenate, and/or print files ... cat(l)
copy, link, or move files .. cp(l)
core image, examine and/or modify for child process ... ptrace(2)
core image file, description of. .. core(S)
cos ... trig(3M)
cosh ... sinh(3M)
cosine function ... trig(3M)
cosine, hyperbolic .. sinh(3M)
cp ... cp(1)
cpio ... cpio(1)
cpio archive format, description of.. .. cpio(S)
cpio archives, unpack! extract from 5.25 11 flexible discs .. upm (1)
cpio archives, unpack!extract from Command Set 80 cartridge tape ... upm(l)
cpp .. cpp(l)
creat. .. creat(2)
create a directory ... mkdir(1)
create a name for a temporary file .. tmpnam(3S)
create a new processfork(2)
create a special file entry .. mknod(S)
create an interprocess channel ... pipe(2)
create and open temporary file .. tmpfile(3S)
create cat files for the manual .. catrnan(8)

-5-

Permuted Index

create delta (change) for SCCS file .. delta(l)
create device files ... mkdev(8)
create directory, block/character special, fifo, or ordinary file ... mknod(2), mknod(8)
create encryption key ... makekey(8)
create libraries, archives .. ar(l)
create link to file .. link(l), link(2)
create mnttab table .. ,.I, setmnt(8)
create new file, overwrite existing file ... ;' creat(2)
create new operating system from ordinary files ... oscp(8)
create or change parameters of SCCS files .. admin(l)
create unique file name ... mktemp(3C)
creation mask, get/set for file ... sh(1), umask(l), umask(2)
cron ... cron(8)
cron(8), schedule commands for cron(8) .. crontab(5)
crontab .. crontab(5)
CRT, facilitate viewing of continuous text on ... more(1)
CRT, information about graphics devices with .. graphics(4)
crypt .. crypt(l), crypt(3C)
ctermid ... ctermid(3S)
ctime .. : .. ctime(3C)
cu .. cu(lC)
current directory, print name of .. pwd(l)
current events, print ... news(1)
current working directory, change ... cd(l), sh(l), chdir(2)
current working directory, print name of ... pwd(l)
cuserid .. cuserid(3S)
cut. .. cut(l)
cut out selected fields of each line of a file ... cut(l)
daemon, line printerlpd(l)
Data Encryption Standard .. crypt(3C)
data base, relational data base operator .. join{l)
data segment, change space allocation for ... brk(2)
data segments, specify maximum number of ... uconfig(8)
data types, include file defining data types for system code , ... types(7)
datacomm, accept/reject files received through uucp or uuto ... uuto{l C)
datacomm, copy files between two systems .. uucp(lC), uuto(1C)
datacomm, execute command on another system .. uux(1 C)
datacomm, get status of, or cancel, previous uucp commands ... uustat(l C)
datacomm, list of known system names .. uucp(l C)
datacomm, log of uucp and uux transactions .. uucp(lC)
date ... date(l)
date and time, convert to ASCII string .. ctime(3C)
date, set ... stime(2)
date, set and/or print. ... date{l)
dates, reminder service for important ... calendar(1)
daylight. .. ctime{3C)
daylight saving time, time corrected for .. ctime(3C)
dd .. dd(l)
deallocate a block of memory .. malloc(3C)
debug damaged file system .. fsdb(8)
debugger ... adb{l)
debugging, enable break-point debugging for child process ... ptrace(2)
delays, settings and controls for terminal output .. tty (4)
delta ... delta{l)
delta, add to SCCS file .. delta(l)
delta, change commentary of SCCS .. cdc(l)
delta, inform user of any deltas being created for specific SCCSfile ... sact{ 1)

-6-

Permuted Index

delta, remove from sees file .. rmdel(1)
demand loadable, set for program .. chatr(1)
deroff .. deroff(1)
DES encryption ... crypt(3e)
description of /etc/passwd, pwd.h files ... passwd(5)
description of as management commands ... osmgr(8)
description of environment ... environ (7)
description of group file ... group(5)
description of magic.h and magic numbers .. magic(5)
descriptor, close file .. close(2)
descriptor, copy/duplicate file .. dup(2), fcntl(2)
descriptor, get value of file ... ferror(3S)
device driver, select virtual device driver .. uconfig(8)
device drivers, list ... lsdev(1)
device file, create block/character ... mknod(2), mknod(8)
device files, create .. mkdev(8)
device files, perform functions on .. ioctl(2), stty(2)
device names, pack/unpack for mknod(2) ... mknod(5)
deVice, description of hpib interface to ... hpib(4)
devices, backing store ... v50n(2)
deVices, information about those with graphics crt's .. graphics(4)
devnm .. devnm(8)
df .. df(l)
diagnostics, add to program ... assert(3X)
diff .. diff(1)
differences between files, mark ... diffmk(I)
diffh .. diff(I)
diffmk .. diffmk(I)
digitizer, description of hpib interface to ... hpib(4)
dircmp .. dircmp(I)
directory clean-up for uucp spool directory ... uuclean(8)
directory, change root for duration of command ... chroot(1), chroot(2)
directory, change working ... cd(I), sh(I), chdir(2)
directory, compare two .. dircmp(I)
directory, create ... mkdir(I), mknod(2)
directory, description of internal SDF format of ... dir(5)
directory, extract from path name ... basename(I)
directory, list contents of. .. ls(1)
directory, list contents of LIF .. lifls(1)
directory, move : .. mvdir(1)
directory, print name of current working ... pwd(1)
directory, remove ... rm(I)
dirname ... basename(l)
disc blocks, report number of free .. df(1)
disc drivers, information about blocked/unblocked interface .. disc(4)
disc usage, summarize .. du(I)
disc, write current contents of memory to .. sync(2), sync(8)
display buffering, specify number of pages of.. ... uconfig(8)
documentation, on-line ... man{I)
documents, print using mm macros .. mm(l)
dot (.) command ... sh{I)
driver, information about blocked/unblocked disc interface ... disc(4)
drivers, list device ... lsdev{ 1)
du .. du{I)
dump, format trace dump from r2780(1 e) ... r2780trace(1)
dump, octal or hexadecimal ... 0d(I)
dup .. dup(2)

- 7 -

Permuted Index

duplicate an open file descriptor .. dup(2), fcntl(2)
e .. ex(1)
echo ... echo(l)
echo (print) arguments after shell interpretation ... echo(1)
ecvt. .. ecvt(3C)
ed .. ed(l)
edata ... end(3C)
edit. .. ex(l)
editing activity, print for SCCS file ... sact(1)
editor, stream text ... sed(l)
editor, text. ... ed(I), ex(l)
editor, visual text ... vj(l)
effective user/group 1D's, get for process .. getuid(2)
egrep .. grep(l)
EMS .. ems(2)
EMS, description of. ... ems(2)
emulation of asynchronous terminal. ... aterm(IC)
emulation, IBM 2780/3780 terminals ... r2780(IC) .
encode/decode files .. crypt(l)
encrypt .. crypt(3C)
encrypt/decrypt files ... crypt(l)
encryption key, generate .. makekey(8)
end ... end(3C)
endgrent ... getgrent(3C)
endpwent. ... getpwent(3C)
env ... env(l)
environment variable, get value of ... getenv(3C)
environment, description of parameters and usage .. sh(I), environ(7)
environment, install parameters in ... sh(l)
environment, print current .. env(l)
environment, set for duration of one command ... env(1)
environment, set up at login time .. profile(5)
EOF (end-of-file) character, description of ... tty(4)
EOF, indicate receipt of when reading file .. ferror(3S)
EOL (end-of-line) character, description of ... tty(4)
eqn, tbl, nroff, troff constructs, remove from text.. .. deroff(l)
erase character, deSCription of ... tty(4)
err ... err(l)
errfile .. errfile(5)
errinfo .. errinfo(2)
errinfo, report value for last command failure .. err(1)
errno ... errno(2)
ermo, report value for last command failure .. err(l)
ERROR ... regexp(7)
error indicator .. errinfo(2)
error indicator for system calls .. errno(2)
error indicator while reading file ... ferror(3S)
error indicator, reset status of ... ferror(3S)
error information on last command failure .. err(1)
error logging file for system .. errfile(5)
error message generator from C programs .. perror(3C)
etext. ... end(3C)
eval .. sh(l)
evaluate arguments as an expression ... expr(l)
ex ... ex(l)
examine text, facilitate on soft-copy terminals ... more(l)
exec .. sh(I), exec(2)

-8-

Permuted Index

execl ... exec(2)
execle ... exec(2)
execlp ... exec(2)
executable file, extract symbol table (name list) entries from ... nlist(3C)
executable file, get size of .. size(l)
executable linker/assembler output file, description of ... a.out(5)
execute a file in current process ... exec(2)
execute command at lower or higher priority .. nice(l), nice(2)
execute command immune to hangups, logouts, and quits ... nohup(l)
execute command on another system .. uux(lC)
execute command using different root directory .. chroot(1)
execute commands at specified date(s) and time(s) ... at(l), cron(8)
execute commands from file ... sh(l)
execute new program in existing process .. sh(1), exec(2)
execute uucp commands on local system .. uuxqt(1 C)
execute work requests on remote system ... uucico(1C), uux(lC)
execution profile, create for program ... profil(2), monitor(3C)
execution, suspend process execution for time interval ... sleep(1), sleep(3C)
execv .. exec(2)
execve .. exec(2)
execvp .. exec(2)
_exit ... exit(2)
exit ... sh(l), exit(2)
exit from enclosing for or while loop .. sh (1)
exp ... exp(3M)
expand ... expand(l)
expand tabs to spaces, and vice versa .. expand(l)
exponent, raise 2 to a power .. frexp(3C)
exponential function .. exp(3M)
export .. sh(l)
expr .. expr(1)
expreserve ... ex(l)
expression, evaluate arguments as ... expr(1)
exrecover ... ex(l)
Extended Memory System description ... ems(2)
external symbols, examine execution profile for .. prof(1)
extract entries from symbol table (name list) of executable file ... nlist(3C)
extract files from 5.25" flexible discs .. upm(1)
extract files from Command Set 80 cartridge tape archives ... upm(1)
extract files from media .. cpio(1)
extract portions of path names .. basename(1)
f77 .. f77(1)
fabs ... floor(3M)
false ... true(l)
fe ; ... fc(l)
felose .. fclose(3S)
fent! ... fentl(2)
fentI(2), description of requests and arguments for.. .. fentI(7)
fentl.h, description of ... fcntI(7)
fcvt. ... ecvt(3C)
fdopen .. fopen (3S)
feof ... ferror(3S)
ferror ... ferror(3S)
fflush ... fclose(3S)
fgetc .. getc(3S)
fgets ... gets(3S)
fgrep ... grep(1)

-9-

Permuted Index

fifo special file, create ... mknod(2), mknod(8)
file attributes file, description of .. fs(5)
file control ... fcntl(2)
file control constants, file containing definitions of. .. fcntl(7)
file creation mask, set ... sh(l), umask(l), umask(2)
file descriptor, assign stream to .. fopen(3S)
file descriptor, close .. close(2)
file descriptor, copy/duplicate .. dup(2), fcntl(2)
file descriptor, create file pointer using ... fopen(3S)
file descriptor, determine if associated with terminal ... ttyname(3C)
file descriptor, get value of ... ferror(3S)
file name, create file name vs. i-node list... .. ncheck(l)
file name, create unique .. mktemp(3C)
file name, extract from path name ... basename(1)
file name, find special file for mounted file system on which file lies ... devnm(8)
file name, generate for temporary file ... tmpnam(3S)
file name, generate forterminal. , ... ctermid(3S)
file pointer, create using file descriptor .. .fopen(3S)
file pointer, move read/write (seek) .. .lseek(2)
file pointer, obtain for file ... fopen(3S)
file pointer, re-assign to another file ... fopen(3S)
file size limit, get for process .. ulimit(2)
file system consistency check and interactive repair ... fsck(8)
file system debugger .. fsdb(8)
file system name, get for mounted ... ustat(2)
file system pack name, get for mounted ... ustat(2)
file system, backup file system on cpio archive ... backup(8)
file system, construct on special file .. mkfs(8)
file system, find special file associated with ... devnm(8)
file system, install commands ininstall(8)
file system, list of those to be checked by fsck(8} ... checklist(5}
file system, mount or unmount .. mount(1), mount(2), umount(2)
file system, table of mounted file systems ... mnttab(5)
file, assign another file name to already open filefopen(3S)
file, assign buffering to open .. setbuf(3S)
file, buffered read from ... fread(3S)
file, buffered write to .. fread(3S)
file, change group ID of ... chown(1), chown(2)
file, change mode of ... chmod(l), chmod(2)
file, change owner ... chown(l), chown(2)
file, change permission bits ... chmod(l), chmod(2)
file, check revision number for. ... revck(8)
file, close a buffered open file .. .fclose(3S)
file, copy LIF in or outlifcp(l)
file, copy to tape while performing certain conversions .. dd(1)
file, count words, lines, and characters contained therein .. wc(1)
file, create and open temporary ... tmpfile(3S)
file, create device/special .. mkdev(8)
file, create or overwrite ordinary .. creat(2)
file, create or remove link tolfrom .. link(l), link(2), unlink(2)
file, create ordinary .. mknod(2)
file, description of SCCS file format.. .. sccsfile(5)
file, description of buffered I/O .. stdio(3S)
file, deSCription of password file, /etc/passwd .. passwd(5)
file, determine accessibility of .. access(2)
file, error logging file for system .. errfile(5)
file, find and/or remove duplicate lines in ... uniq(1)

- 10 -

Permuted Index

file, find spelling errors in .. , spell(1)
file, generate name for temporary .. tmpnam(3S)
file, get information about ... stat(2)
file, get/set status flags for ... fcnt1(2)
file, indicate the occurrence of an error while reading .. .ferror(3S)
file, indicate when EOF is encountered when reading from ... ferror(3S)
file, locate in file systemfind(l)
file, move to new position inlseek(2)
file, open for reading or writing ... open(2)
file, open with assigned buffering .. .fopen(3S)
file, print last part of .. tail (1)
file, put line length specifications in text filesfspec(5)
file, put margin specifications in text files ... fspec(5)
file, put tab specifications in text files .. .fspec(5)
file, read and execute commands from .. sh(l)
file, read and format data from .. scanf(3S)
file, read character from ... getc(3S)
file, read from .. read(2)
file, read string from ... gets(3S)
file, read word from ... getc(3S)
file, remove .. rm(l)
file, remove a LIF .. lifrm(l)
file, remove extra new-line characters from .. rmnl(1)
file, remove selected fields from each line in ... cut(1)
file, remove selected table column entries from. .. cut(l)
file, rename LIF ... lifrename(l)
file, rewind before next I/O operation .. fseek(3S)
file, search contents of for specified string(s) ... grep(1)
file, set/clear set-user-ID, set-group-ID, sticky bits .. chmod(l), chmod(2)
file, sort contents of ... sort(l)
file, split into pieces .. splitt 1)
file, system's" bit bucket" special file .. null(4)
file, update access/modification/change times of .. touch(1), utime(2)
file, write LIF volume header on .. lifinit(1)
file, write character onto .. putc(3S)
file, write formatted data onto ... printf(3S)
file, write string onto .. puts(3S)
file, write to ... write(2)
file, write word onto ... putc(3S)
file-creation mode mask, get/set ... umask(1), umask(2)
fileno ... ferror(3S)
files, archive on tape ... tart 1)
files, check password and group files ... pwck(8)
files, compare two ... bdiff(l), cmp(1), diff(1)
files, compare two and create change bars ... diffmk(1)
files, compare two and find lines common to both ... comm(1)
files, compare two and find lines unique to each .. comm(l)
files, concatenate two or more .. cat(l)
files, copy .. cat(l)
files, copy and simultaneously edit. .. sed(l)
files, copy between two systems ... uucp(1C), uuto(lC)
files, copy out to media .. cpio(1)
files, description of /etc/profile and $HOME/.profile ... profile(5)
files, encrypt/ decrypt (encode/decode) contents of .. crypt(1)
files, extract from media ... cpio(l)
files, format and print .. pr(l)
files, merge lines in one or more ... paste(l)

- 11 -

Permuted Index

files, move, link, or copy ... cp(l)
files, print. .. cat(1)
files, queue for printing ... lpr(l)
files, unpack/extract from S.2S" flexible discs .. upm(l)
files, unpack/extract from Command Set 80 cartridge tape archives ... upm(l)
filter reverse line-feeds and backspaces .. col(l)
find .. find(1)
find duplicate lines in file .. uniq(l)
find files .. .find(l)
find name of a terminal. ... ttyname(3C)
flag, get/set close-on-exec .. fentI(2)
flags, mapping pwbN6 UNIX terminal flags into current HP-UX .. tty(4)
flags, setshelI .. sh(l)
flexible discs, unpack/extract files from ... upm(1)
floating point number, split into integer and fractional parts ... frexp(3C)
floating point to ASCII conversion ... ecvt(3C)
floor ... floor(3M)
flush buffers associated with an open filefclose(3S)
fmod .. floor(3M)
fopenfopen(3S)
for loop, exit from enclosing .. sh (1)
for loop, resume the next iteration of ... sh (1)
fork .. fork(2)
format C program ... cb(l)
format SDF volume ... sdfinit(8)
format and print files ... pr(1)
format data into string .. printf(3S)
format data on buffered open file ... printf(3S)
format data on standard output .. printf(3S)
format of SCCS file, description of ... sccsfile(S)
format of a.out file, description of.. .. a.out(S)
format of an i-node, description of .. .inode(S)
format of core image file, description of .. core(S)
format of cpio archive, deSCription of.. .. cpio(S)
format of library/archive file, description of ... ar(S)
format specifications, put in text file ... fspec(S)
format tables for nroff or troff .. tbl(l)
format text .. nroff(1)
format trace dump from r2780(IC) ... r2780trace(l)
formatting text with the man macros .. man(7)
formatting text with the mm macros .. mm(7)
FORTRAN 77 compiler .. fe(I), f77(1)
fprintf .. printf(3S)
fputc ... putc(3S)
fputs .. puts(3S)
fread .. fread(3S)
free ... malIoc(3C)
free blocks, find for mounted file system .. ustat(2)
free disc blocks, report number of.. .. df(l)
free i-nodes, find for mounted file system ... ustat(2)
free memory space .. memalIc(2)
freopen ... fopen(3S)
frexp .. .frexp(3C)
fscanf ... scanf(3S)
fsckfsck(8)
fsck .. fsck(8)
fsck(8), list of file systems to be checked by .. checklist(S)

-12 -

Permuted Index

fsdb .. .fsdb(8)
fseek .. fseek(3S)
fstat .. stat(2)
fstat(2)/stat(2), description of structure returned by these calls .. stat(7)
ftell .. fseek(3S)
fwrite ... fread(3S)
fwtmp .. fwtmp(8)
gamma .. gamma(3M)
gcvt. .. ecvt(3C)
generate encryption key ... makekey(8)
get. .. get(l)
get entries from symbol table (name list) of executable file .. nlist(3C)
get name of current host ... gethostname(2)
get password file entry ... getpwent(3C)
get real/effective user, real/effective group lOs .. getuid(2)
GETC ... regexp(7)
getc ... getc(3S)
getchar .. getc(3S)
getegid ... getuid(2)
getenv ... getenv(3C)
geteuid ... getuid(2)
getgid ... getuid(2)
getgrent .. getgrent(3C)
getgrgid .. getgrent(3C)
getgrnam .. getgrent(3C)
gethostname .. gethostname(2)
getlogin ... getlogin(3C)
getopt .. getopt(1)
getopt. .. , .. getopt(3C)
getpass ... getpass(3C)
getpgrp ... getpid(2)
getpid ... getpid(2)
getppid ... getpid(2)
getpw ... getpw(3C)
getpwent ... getpwent(3C)
getpwnam ... getpwent(3C)
getpwuid ... getpwent(3C)
gets .. gets(3S)
getty ... getty(8)
getuid ... getuid(2)
getw .. getc(3S)
gmtime ... ctime(3C)
goto, non-local .. seijmp(3C)
grammar, create context-free ... yacc(1)
graphics devices, information for those with crt's .. graphics(4)
grep .. ., .. grep(1)
group .. group(5)
group 1D, change for file .. chown(l), chown(2)
group 1D, change for user .. newgrp(l), sh(l)
group 1D, get for process ... getpid(2)
group 1D, print.id(l)
group 10, search group file for matching .. getgrent(3C)
group 1D, set ... setuid(2)
group 1D, set for process .. setpgrp(2)
group file, close ... getgrent(3C)
group file, description of /etc/group .. group(5)
group file, read one line from ... getgrent(3C)

-13 -

Permuted Index

group file, rewind .. getgrent(3C)
group file, search for matching group ID .. getgrent(3C)
group file, search for matching group name ... getgrent(3C)
group name, search group file for matching ... getgrent(3C)
group, change 10 of user ... newgrp(l)
group/password file checkers .. pwck(8)
grpck ... pwck(8)
grp.h ... group(5)
gsignal. .. sSignal(3C)
gtty ... stty(2)
hangups, run command immune to .. nohup(l)
hardware name, get. ... uname(l), uname(2)
hardware trap numbers, list of .. trapno(2)
header, write LIF volume on file .. lifinit(l)
heap size, change for program .. chatr(1)
help .. help(l)
help, get for SCCS routines ... help(1)
hexadecimal, octal dump ... od(l)
host name, get. ... gethostname(2)
host name, set .. sethostname(2)
host system, set/print name of current. ... hostname(l)
hostname .. hostname(1)
hpib interface, description of ... hpib(4)
HP-UX implementations, conditional compilation depending on ... model(5)
HP-UX implementations, definition of constants which identify ... model(5)
HP-UX machine identification .. model(5)
HP-UX revision information, get. .. revision(1)
HP-UX version name, get ... uname(l), uname(2)
hyperbolic functions .. sinh(3M)
hypot ... hypot(3M)
hypotenuse, function for calculating .. hypot(3M)
IBM 2780/3780 terminal emulation .. r2780(lC)
idid(l)
ID's, set user and group ... setuid(2)
INIT .. regexp(7)
init. .. init(8)
init(8), control information for .. .inittab(5)
initialization of system state and processesinit(8)
initialize SDF volume ... sdfinit(8)
initialize operating system .. rc(8)
initialize terminal type and mode on login .. tset(l)
inittab .. .inittab(5)
i-node, clear i-node by zeroing it out.. ... clri(8)
i-node, description of i-node format ... ; .. .inode(5)
i-node, enable access to i-node for file system repair ... fsdb(8)
i-nodes, create file name vs. i-node list ... ncheck(l)
i-nodes, find number of free i-nodes in mounted file system ... ustat(2)
input and format data from buffered open file ... scanf(3S)
input and format data from standard input. ... scanf(3S)
input and format data from string .. scanf(3S)
input commands to shell ... sh(l)
input control, description of input control for terminaL ... tty(4)
input/output between process and command ... popen(3S)
input/output operation, get current byte offset of...fseek(3S)
input/output operation, reposition next.fseek(3S)
input/output redirection .. sh(l)
input/output, description of buffered file .. stdio(3S)

- 14-

Permuted Index

input/output, output character/word to open file or standard output ... putc{3S)
input/output, push character back into input stream .. ungetc{3S)
input/output, write string to open file or standard output.. ... puts{3S)
installinstall(8)
install commands into file system .. .install(8)
install/update optional HP-UX products .. optinstall(8)
integer, get largest integer smaller than x ... floor{3M)
integer, get smallest integer larger than x ... floor{3M)
integers, convert between 3-byte and long .. .13to1{3C)
integrity check of operating system in SDF boot area{s) .. osck(8)
interactively write (talk) to another user ... write { 1)
interface to blocked/unblocked disc, description of.. .. disc(4)
interface to terminal I/O, description of. ... tty(4)
interface, description of hpib .. hpib(4)
interleave factor, establish for SDF volume .. sdfinit(8)
interprocess communication, create ... pipe(2)
interrupt character, description of ... tty(4)
I/O between process and command .. popen{3S)
I/O operation, get current byte offset of .. .fseek{3S)
I/O operation, reposition next ... fseek{3S)
110 redirection .. sh{l)
110, description of buffered file .. stdio{3S)
I/O, output character/word to open file or standard output ... putc{3S)
I/O, push character back into input stream .. ungetc{3S)
110, write string to open file or standard output.. ... puts{3S)
ioctl ... ioct1(2)
ioctl(2) system calls, description of .. tty(4)
isalnum ... ctype(3C)
isalpha .. ctype{3C)
isascii .. ctype{3C)
isatty ... ttyname(3C)
iscntrl .. ctype{3C)
is digit .. ctype{3C)
isgraph .. ctype{3C)
islower .. ctype(3C)
isprint. ... ctype{3C)
ispunct .. ctype{3C)
isspace .. ctype{3C)
isupper. ... ctype{3C)
isxdigit .. ctype{3C)
jO ... besse1{3M)
jl ... besse1{3M)
jn ... bessel{3M)
join .. join{l)
join, perform join of two data base relations .. join{l)
key, generate encryption .. makekey(8)
kill ... kill{ 1)
kill character, description of .. tty(4)
killall .. killall (8)
1.1s{l)
13tol ... ;13to1{3C) ,
164a .. a641{3C)
last-accessed time, update for file .. touch{l), utime(2)
last-changed time, update for file ... toucfiU)
last-modified time, update for file .. touch{l), utime(2)
Idld{l)
Idexp .. .frexp(3C)

- 15-

Permuted Index

length of string, get .. string(3C)
lex ... Iex(l)
lexical analysis of text, generate programs for ... Iex(1)
libraries and archives, create and maintain ... ar(1)
library file format, description of ... ar(5)
library file format, description of cpio archive format ... cpio(5)
library, find ordering relation for objectIorder(1)
library, table of contents format description .. ranlib(5)
LIF .. lif(l)
LIF directory, list contents ofIifls(l)
LIF file, remove .. .Iifrm(l)
LIF file, rename ... lifrename(l)
LIF files, copy in or out.Iifcp(l)
LIF volume header, write on file .. lifinit(l)
LIF, description ofIif(l)
lifcp .. .Iifcp(1)
lifinit ... , ... lifinit(1)
lifls .. lifls(l)
lifrename .. .Iifrename(l)
lifrm .. lifrm(l)
line ... line(1)
line length, put line length specifications in text files ... fspec(5)
line printer daemon .. .Ipd(1)
line printer spooler .. , .. Ipr(1)
line, copy from standard input to standard output... .. .line (1)
lines, count number contained in file .. wc(1)
lines, find common lines in two files ... comm(l)
lines, find unique lines in two files .. comm(l)
lines, merge in one or more files ... paste(l)
link .. .Iink(l), link(2)
link editorld(l)
link, copy, or move files .. cp(l)
link, create to or remove from file .. .link(l), Iink(2), unlink(2)
linker ... ;ld(l)
linker/assembler executable output file, description of ... a.out(5)
Iint. .. lint(1)
list active processes in system .. ps(l)
list contents of LIF directory .. .lifls(l)
list contents of directories .. .Is(l)
list current users on system ... who(l)
list device drivers .. lsdev(l)
list file names with associated i-nodes ... ncheck(l)
list users and their current processes ... whodo(l)
11 .. ls(l)
In ... cp(1)
localtime ... ctime(3C)
locate files in file system .. find (1)
locate source, binary, and/or manual for program ... whereis(l)
lock/unlock process address space or segment .. memlck(2)
log ... exp(3M)
log gamma function ... gamma(3M)
log results of work requests on remote system .. uucico(1 C)
log10 .. exp(3M)
logarithm, common ... exp(3M)
logarithm, natural .. exp(3M)
logging file for system errors ... errfile(5)
logging in on HP-UX ... 10gin(1)

- 16-

Permuted Index

Logical Interchange Format description .. lif(1)
logical block, set number of bytes per logical block ... sdfinit(8)
login " .. " '" login (1)
login name, getlogname(1), getlogin(3C)
login name, get ASCII string representing .. cuserid(3S)
login name, print .. .id(1)
login name, record for each user (accounting) ... utmp(5)
login time, record for each user (accounting) ... utmp(5)
login, establish baud rate and communication with terminal during .. getty(8)
logname ... logname(l)
logouts, run command immune to .. nohup(l)
long integer, convert to base-64 ASCII .. a641(3C)
long integers, convert to/from 3-byte integers .. 13tol(3C)
longjmp ... setjmp(3C)
lorderlorder(1)
lower-case to upper-case character conversion ... conv(3C)
Ipd .. Ipd(1)
Ipr .. 1pr(l)
Is ... 1s(l)
Isdev .. lsdev(l)
Iseek.lseek(2)
Isf .. Is(1)
Isr .. Is(1)
Isx .. ls(l)
ItoI3l3to1(3C)
machine 10, get .. uname(l), uname(2)
macros for formatting entries in the HP-UX Reference manual ... man(7)
macros for formatting text. .. mm(7)
magic numbers, description of ... magic(5)
magic.h, description of .. magic(5)
magnetic tape, description of raw interface and controls .. mt(4)
magnetic tape, manipulate and/or position .. mt(1)
mail ... mail(l)
mail, read or send to other users ... mail (1)
maintain libraries, archives .. ar(l)
maintain, update, recompile programs ... make(l)
make ... make(l)
make file system on special file .. mkfs(8)
make posters in large letters ... banner(1)
makekey .. makekey(8)
malloc ... malloc(3C)
man .. man(l)
man macros, description of .. man(7)
manipulate wtmp records ... fwtmp(8)
mantissa, get from floating point value .. frexp(3C)
manual page (on-line), locate for program .. whereis(l)
manual, create preformatted manual pages for on-line ... catman(8)
manual, on-line ... man(l)
map characters into other characters during copy to standard output.. ... tr(1)
margins, put margin specifications in text files .. fspec(5)
mark Command Set 80 cartridge tape ... t,cio(1)
mark SDF operating system file as loadable/non-Ioadable .. osmark(8)
mark/unmark volume as HP-UX root volume ... rootmark(8)
mask, get/set file-creation ... sh(l), umask(l), umask(2)
MC68000 assembler ... as(l)
memadvise .. memadvise(2)
memallc .. memallc(2)

-17 -

Permuted Index

memchmd ... memchmd(2)
memfree ... memallc(2)
memlck. ... memlck(2)
memory management, inform operating system about segment reference patterns memadvise(2)
memory management, modify segment length ... memvary(2)
memory segment access modes, change .. memchmd(2)
memory space, allocate and free .. memallc(2)
memory, allocate a block of ... malloc(3C)
memory, allocate for array ... malloc(3C)
memory, change size of previously-allocated block. .. , malloc(3C)
memory, deallocate block of .. malloc(3C)
memory, write to disc ... sync(2), sync(8)
memulck. ... memlck(2)
memvary ... memvary(2)
merge contents of several files ... sort(l)
merge lines in one or more files .. paste(l)
mesg .. mesg(l)
messages, permit/deny to your terminal .. mesg(l)
messages, read or send to other users ... mail(l)
messages, send to all users ... wall(l)
messages, send to another user interactively .. write(l)
mkdev ... mkdev(8)
mkdir ... , .. mkdir(1)
mkfs ... mkfs(8)
mknod ... mknod(2), mknod(8)
mknod.h, description of ... mknod(5)
mktemp .. mktemp(3C)
mm .. mm(l)
mm macros, description of ... mm(7)
mm macros, print documents formatted with .. mm(l)
mnttab table, create ... setmnt(8)
mnttab.h, description of. .. mnttab(5)
mod function, floating point ... floor(3M)
mode, change for file .. chmod(I), chmod(2)
model.h, deSCription of ... model(5)
modf ... frexp(3C)
modify parameters of SCCS files .. admin(l)
modify segment length ... memvary(2)
monitor ... monitor(3C)
monitor uucp network .. uusub(8)
more .. more(l)
mount ... mount(l), mount(2)
mount or un mount file system ... mount(I), mount(2), umount(2)
mounted devices, create table of .. setmnt(8)
mounted devices, table of those mounted by mount(1) .. mnttab(5)
mounted file system statistics ... ustat(2)
mounted file system, find special file associated with ... devnm(8)
move a directory ... mvdir(1)
move read/write file pointer; seek..lseek(2)
move to new working directory ... cd(I), sh(I), chdir(2)
move, link, or copy files .. cp(l)
mt. ... mt(l)
mv ... cp(l)
mvdir .. mvdir(1)
name list (symbol table), extract entries from executable file's name list... .. nlist(3C)
name list (symbol table), print from object file .. nm(l)
name, get loginlogname(l), getiogin(3C)

- 18-

Permuted Index

natural logarithm ... exp(3M)
ncheck .. ncheck(1)
network special file, create .. mknod(2), mknod(8)
network, monitor uucp activity on ... uusub(8)
newgrp ... newgrp(l), sh(l)
new-line character, description of ... tty(4)
new-line characters, remove extras from file ... rmnl(l)
news .. news(1)
news, print current events ... news(l)
nice ... nice(l), nice(2)
nlist ... nlist(3C)
nm .. nm(l)
nodename, get ... revision(1), uname(l), uname(2)
nodename, set/print name of current ... hostname(1)
nohup .. nohup(1)
nroff ... nroff(1)
nroff, format tables for .. tbl(1)
nroff, interpret output from nroff for printing ... col(l)
nroff, troff, tbl, eqn constructs, remove from text.. .. deroff(l)
object code, locate for program ... whereis(1)
object file, debugger for .. adb(l)
object file, extract symbol table (name list) entries from ... nlist(3C)
object file, get size of ... size(l)
object file, print symbol table (name list) of... .. nm(l)
object file, remove symbol table and relocation bits from .. strlp(l)
object files, combine into program .. .1d(l)
object library, find ordering relation for1order(l)
octal, hexadecimal dump ... 0d(1)
od .. od(1)
on-line manual command : .. man(l)
on-line manual, create preformatted manual pages for ... catman(8)
open .. open(2)
open a file and assign buffering to it ... fopen(3S)
open file for reading or writing .. open(2)
open file, assign buffering to .. setbuf(3S)
operating system management package description .. osmgr(8)
operating system, append to an existing operating system .. oscp(8)
operating system, change to different as or different version of same as .. chsys(8))
operating system, check integrity of as in SDF boot area(s) ... osck(8)
operating system, copy from one or more SDF boot areas to another ... oscp(8)
operating system, create new operating system from ordinary files ... oscp(8)
operating system, mark as loadable or non-Ioadable .. osmark(8)
operating system, perform start-up tasks for and initialize .. rc(8)
operating system, shut down as with optional re-boot... .. stopsys(8)
operating system, split into one or more ordinary files .. oscp(8)
optarg .. getopt(3C)
opterr .. getopt(3C)
optind .. getopt(3C)
optinstall .. optinstall (8)
option letter, get from argv ... getopt(3C)
options, parse command line .. getopt(l)
options, set for terminal ... stty(l)
options, set shell ... sh(l)
optupdate .. optinstall(8)
ordering relation, find for object library or archive file .. .lorder(l)
ordinary file, create .. mknod(2)
ordinary file, create or overwrite .. creat(2)

-19 -

Permuted Index

as management package description ... osmgr(8)
as, append to an existing operating system ... oscp(8)
as, change to different as or different version of same as .. chsys(8)
as, check integrity of operating system in SOF boot area(s) ... osck(8)
as, copy from one or more SOF boot areas to another.. .. oscp(8)
as, create new operating system from ordinary files .. oscp(8)
as, mark as loadable or non-loadable ... osmark(8)
as, perform start-up tasks for and initialize .. rc(8)
as, shut down operating system with optional re-boot ... stopsys(8)
as, split operating system into one or more ordinary files .. oscp(8)
osck .. osck(8)
oscp .. oscp(8)
osmark ... osmark(8)
osmgr ... osmgr(8)
output character or word to open file or standard output .. putc(3S)
output string to open file or standard output ... puts(3S)
output, description of formatted/unformatted output to printer .. .lp(4)
output, deSCription of system handling of terminal output .. tty (4)
output, print formatted data into string .. printf(3S)
output, print formatted data on buffered open file ... printf(3S)
output, print formatted data on standard output ... printf(3S)
overlay program onto existing process and execute .. sh(I), exec(2)
owner, change for file .. chown (1), chown (2)
page .. more(l)
page size, set for paged data .. uconfig(8)
paged data, set for program .. chatr(1)
parameter substitution .. sh(l)
parameters, environment. ... sh(I), environ(7)
parameters, install in environment. .. sh(l)
parameters, mark as readonly ... sh(l)
parameters, perform left-shift on positional. ... sh(l)
parameters, set for terminal ... stty(1)
parameters, set for terminal on login .. tset(1)
parent process 10, get for process .. getpid(2)
parity, settings for terminal .. tty (4)
parse command line options ... getopt(1)
Pascal compiler .. pc(l)
passwd ... passwd(l)
password file, dose .. getpwent(3C)
password file, description of .. passwd(5)
password file, get line containing matching user 10 .. getpw(3C)
password file, output line similar to those contained in ... putpwent(3C)
password file, read one line from .. getpwent(3C)
password file, rewind ... getpwent(3C)
password file, search for matching user 10 .. getpwent(3C)
password file, search for matching user name ... getpwent(3C)
password, change login ... passwd (1)
password, encrypt. ... crypt(3C)
password, read from /dev/tty or standard input ... getpass(3C)
password/group file checkers .. pwck(8)
paste .. paste (1)
path name, get for terminal. ... ttyname(3C)
path name, isolate directory name from .. basename(l)
path name, isolate file name from ... basename(l)
pattern, find and process within text ... awk(l)
pattern, search contents of file for .. grep(l)
pause .. pause(2)

-20 -

Permuted Index

pause, suspend process for interval .. sleep(3C)
pc ... pc(l)
pclose .. popen(3S)
PEEKC .. regexp(7)
permission bits, change for file .. chmod(l), chmod(2)
perror .. perror(3C)
pipe .. pipe(2)
pipe, create/close between process and command .. popen(3S)
pipe, get intermediate data from ... teet 1)
pipeline, create .. pipe(2)
pipeline, get intermediate data from ... teet 1)
plotter, description of hpib interface to ... hpib(4)
popen ... : .. popen(3S)
port, database listing terminal type connected to each ... tty type (5)
portable code between HP-UX implementations, typedefs for ... model(5)
position magnetic tape ... mt(l)
positional parameters, perform left-shift on .. sh (1)
posters, make using large letters ... banner(1)
pow .. exp(3M)
power function .. exp(3M)
pr ... pr(1)
preprocessor for C compiler .. cpp(l)
print and format files ... pr(1)
print and summarize an SCCS file .. · prs(l)
print arguments after shell interpretation .. echo(l)
print current SCCS file editing activity ... sact(1)
print documents formatted with mm macros ... mm(l)
print formatted data on standard output, open file, or string .. printf(3S)
print last part of file ... tail (1)
print list of users and their current processes ... whodo(1)
print name list (symbol table) of object file .. nm(1)
print name of current working directory .. pwd(1)
print news items ... news(l)
print time and date .. date(l)
print user, group IDs and names .. .id(l)
print, copy, and/or concatenate files ... cat(l)
printer daemon ... lpd(l)
printer spooler .. lpr(l)
printer, description of formatted/unformatted output. .. .Ip(4)
printer, description of hpib interface to ... hpib(4)
printf ... printf(3S)
priority, run command at lower or higher ... nice(l), nice(2)
process and system state initialization .. .init(8)
process group ID, set ... setpgrp(2)
process number, get ... getpid(2)
process status, report .. pst 1)
process, change data segment space allocation for ... brk(2)
process, change root directory of .. chroot(l), chroot(2)
process, enable break-point debugging of child process ... ptrace(2)
process, create a new ... fork(2)
process; create/close pipe between process and command .. popen(3S)
process, format of core image of terminated process ... core(5)
process, get ID, group ID, and parent process ID of.. .. : getpid(2)
process, get real/effective user and real/effective group ID's for .. getuid(2)
process, get/set file size limit for .. ulimit(2)
process, lock/unlock address space or segment ... memlck(2)
process, overlay new program onto existing ... sh(l), exec(2)

- 21-

Permuted Index

process, print accumulated user and system time elapsed for ... sh{l)
process, send SIGIOT to .. abort{3C)
process, send signal to .. kill{l), kill(2), abort{3C)
process, set group 10 for .. setpgrp(2)
process, suspend execution for interval of time ... sleep{l), sleep{3C)
process, suspend until signal. ... pause(2)
process, terminate ... kill{l), sh{l), exit(2), kill(2), abort{3C)
process, time execution of .. times(2)
process, wait for completion of ... sh{l), wait{l), wait(2)
processes, list active .. ps{ 1)
processes, send signal to all user processes .. killall(8)
processes, specify maximum number of processes per user .. uconfig(8)
processes, terminate all user processes ... shutdown(8)
products, instalVupdate optional HP-UX products ... optinstall(8)
prof ... prof{ 1)
profil .. profil(2)
profile, create for program during execution ... profil(2), monitor{3C)
profile data, display .. prof{ 1)
profile files, description of /etdprofile and $HOME/.profile .. profile(5)
program, add diagnostics to ... assert{3X)
program, change internal attributes of ... chatr{l)
program, check/verify C .. lint{l)
program, create execution profile for ... profil(2), monitor{3C)
program, create from object filesld{ 1)
program, debugger for ... adb{ 1)
program, execute command from .. system{3S)
program, force action associated with signal to be taken ... ssignaI{3C)
program, format C .. cb{l)
program, generate for lexiCal analysis of text .. .lex{ 1)
program, get particular addresses associated with ... end{3C)
program, get size of. .. size { 1)
program, locate source, binary, and/or on-line manual page for ... whereis{ 1)
program, maintain, update, and recompile ... make{l)
program, overlay onto existing process and execute ... sh{ 1), exec(2)
program, run immune to hangups, logouts, and quits ... nohup{l)
program, set up signal handling for ... signaI(2), sSignal{3C)
program verification .. assert{3X)
prs ... prs(I)
ps ... ps{l)
ptrace ... ptrace(2)
public UNIX-to-UNIX file copy ... uuto{lC)
push character back into input stream .. ungetc{3S)
putc .. putc{3S)
putchar ... putc{3S)
putpwent .. putpwent{3C)
puts ... puts{3S)
putw ... putc{3S)
pwck .. pwck(8)
pwd .. pwd{l)
pwd. h ... passwd(5)
Pythagorean theorem function ... hypot{3M)
qsort .. qsort{3C)
queUe files for printing .. lpr{ 1)
quit character, description of ... , .. tty(4)
quits, run command immune to .. nohup{l)
quoting, as used by the shell .. sh{l)
r2780 ... r2780{lC)

- 22-

Permuted Index

r2780, format trace dump from .. r2780trace(1)
r2780trace ... r2780trace(1)
rand ...•... rand(3C)
random number generator ... rand(3C)
randomize an archive .. ranlib(l)
randomized library/archive, table of contents format description ... ranlib(5)
ranlib .. ranlib(l)
ranlib.h, description of ... ranlib(5)
raw interface to disc, description of ... disc(4)
raw mode, description of raw mode interface to magnetic tape .. mt(4)
raw mode, description of raw output to printer .. .lp(4)
rc .. rc(8)
read .. sh(l), read(2)
read and format data from buffered open file .. scanf(3S)
read and format data from standard input. .. scanf(3S)
read and format data from string ... scanf(3S)
read character from buffered open file .. getc(3S)
read error indicator on open file .. .ferror(3S)
read from a file using buffers .. .fread(3S)
read from file ... read(2)
read from standard input. .. sh(l)
read operation, reposition next.. ... fseek(3S)
read password from /dev/tty or standard input .. getpass(3C)
read text in convenient chunks on soft-copy terminal .. more(1)
read word from buffered open file .. getc(3S)
read-ahead, set number of buffers allocated to .. uconfig(8)
readonly ... sh(1)
read/write file pointer, move (seek) .. .lseek(2)
real group ID, get for process ... getuid(2)
real user ID, get for process ... getuid(2)
realloc ... malloc(3C)
reblock tape file .. dd(l)
re-boot operating system after shut-down .. stopsys(8)
record login names, login times, and tty names for user ... utmp(5)
regexp.h, description of ... regexp(7)
regular expression compile and match routines .. regexp(7)
relational database operator ' ... join(l)
release Command Set 80 cartridge tape .. tcio(1)
release number, get current .. revision(1), uname(l), uname(2)
relocation bits, remove from object file ... strip(l)
reminder service ... calendar(1)
remote system, execute work requests on .. uucico(lC), uux(lC)
remove a LIF file .. lifrm(l)
remove backing store devices .. vson(2)
remove delta from SCCS file ... rmdel(1)
remove duplicate lines in file .. uniq(1)
remove extra new-line characters from file ... rmnl(l)
remove files or directories ... rm(l)
remove link to filelink(l), unlink(2)
remove nroff/troff, tbl, and eqn constructs .. deroff(l)
remove selected fields from each line of a file .. cut(1)
remove selected table column entries from file .. cut(l)
remove symbol table and relocation bits from object file ... strip(l)
rename LIF files ... lifrename(1)
repair file system inconsistencies .. fsck(8), fsdb(8)
reset error indicator on open file .. .ferror(3S)
restricted shell (command interpreter) .. rsh(l)

- 23-

Permuted Index

RETURN ... regexp(7)
revck ... revck(8)
reverse line-feeds and backspaces, interpret for nroff(1) .. co1(1)
reverse previous get(1) of sees file ... unget(1)
revision .. revision (1)
revision information, get HP-UX : .. revision(1)
revision numbers, check for HP-UX files ... revck(8)
rewind ... fseek(3S)
rewind a file ... fseek(3S)
rewind group file ... getgrent(3e)
rewind magnetic tape ... mt(1)
rewind password file .. getpwent(3e)
rm ... rm(1)
rmail. ... mail (1)
rmdel .. rmdel(1)
rmdir ... rm(1)
rmnl. ... rmnl(1)
root directory, change for duration of command ... chroot(1), chroot(2)
root volume, mark/unmark volume as HP-UX root volume ... rootmark(8)
rootmark .. rootmark(8)
rsh ... rsh(1)
run a command at low priority ... nice(1), nice(2)
run a command immune to hangups, logouts, and quits ... nohup(1)
sact .. sact(1)
sbrk .. brk(2)
scan text for pattern and process ... awk(1)
scanf .. scanf(3S)
sees file, change delta commentary of .. cdc(1)
sees file, check for validity ; ... val(1)
sees file, compare two versions of ... sccsdiff(1)
sees file, create delta (change) for ... delta(1)
sees file, description of sees file format ... sccsfile(5)
sees file, get identification information from .. what(1)
sees file, get version of , .. , get(1)
sees file, print and summarize ... prs(1)
sees file, print current editing activity for ... sact(1)
sees file, print delta summary of .. get(1)
sees file, remove delta from .. rmdel(1)
sees file, reverse previous get(1) of : ... unget(1)
sees files, create or change parameters of ... admin(1)
sees, ask for help concerning .. help(1)
sccsdiff " .. sccsdiff(1)
schedule commands at specified date(s) and time(s) ... at(1), cron(8)
schedule commands for cron(8), description of crontab ... crontab(5)
sconfig .. sconfig(8)
SDF boot area, copy as from one or more SDF boot areas to another ... oscp(8)
SDF volume, format, initialize, and certify .. sdfinit(8)
SDF, description of .. dir(5)
SDF, description of SDF volume .. fs(5)
sdfinit. .. " ... sdfinit(8)
search an ASCII file for pattern ... grep(1)
sed ... sed(1)
seek to new position in file .. lseek(2)
segment length, modify ... ; .. memvary(2)
segment reference patterns, inform operating system about.. .. memadvise(2)
segment, lock/unlock for process .. memlck(2)
select/reject common lines of two files ... comm (1)

-24 -

Permuted Index

send mail to users or read mail ... mail(l)
send signal to all user processes .. killall(8)
set .. sh(l)
set name of host cpu ... sethostname(2)
set options for terminal port ... stty(l)
set or print name of current host system ... hostname(1)
set process's alarm clock .. alarm(2)
set system parameters ... uconfig(8)
set tabs on a terminal ... tabs(1)
set the modes of a terminal.. .. getty(8)
set time and date ... date(I), stime(2)
set user and group IDs ... setuid(2)
setbuf ... setbuf(3S)
setgid .. setuid(2)
setgrent. .. getgrent(3C)
set-group-ID bit, set/clear for file ... chmod(I), chmod(2)
sethostname ... sethostname(2)
setjmp ... setjmp(3C)
setkey .. crypt(3C)
setmnt ... setmnt(8)
setpgrp ... setpgrp(2)
setpwent ... getpwent(3C)
setuid .. setuid(2)
set-user-ID bit, set/clear for file .. chmod(I), chmod(2)
sh ... sh(l)
shareable, mark or unmark program code as ... chatr(1)
shell .. sh (1)
shell command, issue from program ... system(3S)
shell programming language , .. sh(l)
shell, input commands to .. sh(l)
shell, restricted ... rsh (1)
shell, set/clear flags to .. sh (1)
shift .. sh(l)
shut down operating system with optional re-boot ... stopsys(8)
shutdown ... shutdown (8)
sign on ... 10gin(l)
signal .. signal(2)
signal handling for program, set up ... signa1(2), sSignal(3C)
signal, force action associated with signal to be taken .. ssigna1(3C)
signal, send SIGIOT to process .. abort(3C)
signal, send to all user processes ... killall(8)
signal, send to process .. kill(1), kill(2), abort(3C)
signal, set trap for .. sh (1)
signal, suspend process until receipt of ... pause(2)
signgam ... gamma(3M)
signs, make using large letters .. banner(1)
sin .. trig(3M)
sine function ... trig(3M)
sine, hyperbolic .. sinh(3M)
sinh .. sinh(3M)
size ... size(1)
size of an object file ... size(l)
sleep .. sleep(l)
sleep ... sleep(3C)
sort. ... , .. sort(1)
sort algorithm ... qsort(3C)
sort and/or merge files .. sort(l)

- 25-

Permuted Index

sort, topological ... tsort(1)
source code, locate for program .. whereis(1)
spaces, convert to tabs, and vice versa ... expand(1)
special characters in terminal interface, description of .. ~ tty (4)
special file, create block/character/network. .. mkdev(8), mknod(2), mknod(8)
special file, create fifo ... mknod(2), mknod(8)
special file, identify for file name on mounted file system ... devnm(8)
special file, system "bit bucket" .. null(4)
special files, perform functions on .. .ioctl(2), stty(2)
special files, utilities used in creating special files : .. mknod (5)
spell .. , , spell (1)
spellin ... spell(l)
spelling errors, find .. spell (1)
spellout ... spell(1)
split. ... split(1)
split a file into pieces ... split(l)
split operating system into one or more ordinary files ... oscp(8)
spool directory clean-up for uucp ... uuclean(8)
sprintf .. printf(3S)
sqrt ... exp(3M)
square root function .. ; ... exp(3M)
srand .. rand(3C)
sscanf .. scanf(3S)
ssignal ... ssignal(3C)
stack size, specify size in bytes .. uconfig(8)
standard input, copy one line from to standard output .. .line(l)
standard input, read from .. sh(l)
start character, resume output, description of .. tty(4)
stat ... stat(2)
stat(2)/fstat(2), description of structure returned by these calls .. stat(7)
state, defining system states for init(8)inittab(5)
state, initialization of system state and processes .. .init(8)
stat. h, deSCription of .. stat(7)
status flags, get/set for file ... fcntl(2)
status, get for file ... stat(2)
status, get for previous uucp commands .. uustat(1 C)
stdio ... stdio(3S)
step ... regexp(7)
sticky bit, set/clear for file .. chmod(l), chmod(2)
stime .. stime(2)
stop character, suspend output, description of ... tty(4)
stop operating system with optional re-boot ... stopsys(8)
stopsys .. stopsys(8)
strcat ... string(3C)
strchr .. string(3C)
strcmp ... string(3C)
strcpy .. , ... string(3C)
strcspn .. string(3C)
stream text editor .. sed(l)
stream, close or flush .. .fclose(3S)
string, copy ... string(3C)
string, get length of .. ; .. string(3C)
string, print formatted data into .. printf(3S)
string, read and format data from .. scanf(3S)
string, read from buffered open file ... gets(3S)
string, search contents of file for specified ... grep(1)
string, search for particular character in .. string(3C)

- 26-

Permuted Index

string, write to open file or standard output... .. puts(3S)
strings, compare two : .. string(3C)
strings, concatenate two .. string(3C)
strip ... strip(l)
strlen ... string(3C)
strncat. .. string(3C)
strncmp ... string(3C)
strncpy .. string(3C)
strpbrk .. string(3C)
strrchr ... string(3C)
strspn .. string (3C)
strtok .. string(3C)
structure, definition of structure returned by stat(2) and fstat(2) .. stat(7)
Structured Directory Format volume, format, initialize, and certify .. sdfinit(8)
Structured Directory Format, description of .. dir(5)
Structured Directory Format, description of SDF volume .. fs(5)
stty ... stty(1)
stty ... stty(2)
su ... su(l)
summarize and print SCCS file .. prs(1)
superblock, description of superblock in SDF volume ... fs(5)
suspend process execution for interval of time .. sleep(1), sleep(3C)
suspend process until signaL .. pause(2)
swab ... swab(3C)
swap bytes ... swab(3C)
swap parameters, reconfigure .. sconfig(8)
swap space reconfiguration .. sconfig(8)
swap time, set for virtual segment .. uconfig(8)
symbol table, extract entries from executable file's symbol table (name list) ... nlist(3C)
symbol table, print from object file ... nm(l)
symbol table, remove from object file ... strip(l)
symbols, examine execution profile for ... prof(l)
sync ... sync(2), sync(8)
sys_errlist ... " perror(3C)
sys_nerr ... perror(3C)
System III compatibility for magnetic tape, description of... .. mt(4)
system ... system (3S)
system activity, terminate all current activity ... shutdown(8)
system calls, error indicator for ... errno(2)
system error logging file ... errfile(5)
system initialization shell script ... rc(8)
system name, get. ... revision(l), uname(l), uname(2)
system names, list of those known to uucp .. uucp(lC)
system parameters, set or list ... uconfig(8)
system reconfiguration .. uconfig(8)
system state, defining states for init(8)inittab(5)
system state, initialization of .. .init(8)
system swap space reconfiguration .. sconfig(8)
table of contents format description for archivesllibraries .. ranlib(5)
table of contents, create for archive .. ranlib(1)
table of devices mounted by mount(l) ... mnttab(5)
table of mounted devices, create .. setmnt(8)
tables, format for nroffltroff ... tbl(1)
tabs ... tabs(l)
tabs, expand to spaces, and vice versa ... expand(l)
tabs, put tab specifications in text files ... fspec(5)
tabs, set on terminal ... tabs(l)

- 27 -

Permuted Index

tail ... tail(1)
tan ... trig(3M)
tangent function ... trig(3M)
tangent, hyperbolic ... sinh(3M)
tanh .. sinh(3M)
tape density, how to set for magnetic tape ... mt(4)
tape file archiver .. , .. tar(1)
tape file, convert, reblock, translate and/or copy ... dd(1)
tape, Command Set 80 cartridge utility ... tcio(1)
tape, archive files on ... tar(1)
tape, description of magnetic tape raw interface and controls ... mt(4)
tape, manipulate and/or position .. mt(1)
tape, unpack/extract files from Command Set 80 cartridge ... upm(1)
tar .. tar(1)
tbl ... , .. tbl(1)
tbl, nroff, troff, eqn constructs, remove from text.. .. deroff(1)
tcio ... tcio(1)
tee ... tee(1)
temporary file, create and open ... tmpfile(3S)
temporary file, generate name for .. tmpnam(3S)
termcap ... termcap(5)
terminal capabilities in termcap(5), access ... termcap(3)
terminal capabilities, database for vi editor ... termcap(5)
terminal commands, description of ioct1(2) system call commands ... tty(4)
terminal dependent initialization .. tset(1)
terminal emulation, IBM 2780/3780 ... r2780(1C)
terminal emulation, asynchronous .. aterm(1C)
terminal flags, mapping between pwbN6 UNIX and current HP-UX .. tty(4)
terminal input control, description of ... tty (4)
terminal, database listing terminal type for each port ... tty type (5)
terminal, deSCription of general interface to ... tty (4)
terminal, establish communication with terminal for login .. getty(8)
terminal, facilitate viewing of continuous text on ... more(1)
terminal, find baud rate of terminal during login process .. getty(8)
terminal, generate file name for ; .. ctermid(3S)
terminal, get path name of ... ttyname(3C)
terminal, get path name of user's .. tty(1)
terminal, permit/deny messages to .. mesg(1)
terminal, set options for ... : stty(1)
terminal, set tabs on ... tabs(1)
terminal, set type and mode on login ... tset(1)
terminal, test file deSCriptor for association with .. ttyname(3C)
terminals, list of recognized terminal names .. term(7)
terminals, list of supported terminals in termcap(5) ... term(7)
terminate a process ... kil1(1), sh(1), exit(2), kil1(2), abort(3C)
terminate all users' processes ... shutdown(8)
test .. sh(1), test(1)
test conditional expressions ... sh(1), test(1)
text editor ... ed(1), ex(1)
text editor, database of terminal capabilities for vi ... termcap(5)
text editor, stream ... sed(1)
text editor, visual ... vi(1)
text file, put format specifications in ... fspec(5)
text format specifications, put in text file .. fspec(5)
text formatter ... , .. nroff(1)
text formatting, description of man macros ... man(7)
text formatting, description of mm macros .. mm(7)

- 28-

Permuted Index

text formatting, remove nroffitroff/tbVeqn constructs from text ... deroff(1)
text pattern scanning and processing language .. awk(1)
text, facilitate CRT viewing of continuous .. more(1)
text, find spelling errors in .. spell (1)
text, generate programs for lexical analysis of ... lex(1)
text, print using mm macros .. mm(1)
tgetent ... terrncap(3)
tgetfiag .. terrncap(3)
tgetnum ... termcap(3)
tgetstr .. termcap(3)
tgoto ... terrncap(3)
time ... time(1)
time ... time(2)
time a command .. time (1)
time and date, convert to ASCII string .. ctime(3C)
time execution of a process and its child processes .. times(2)
time zone, time corrected for .. ctime(3C)
time, corrected for daylight saving time and time zone .. ctime(3C)
time, get seconds since 00:00:00 GMT, January 1, 1970 .. time(2)
time, print elapsed user and system time for process .. sh(1)
time, set and/or print ... date(1), stime(2)
time/date stamps, correct those on wtmp records .. fwtmp(8)
times .. sh(1), times(2)
timezone ... ctime(3C)
trnpfile ... tmpfile(3S)
tmpnam .. trnpnam(3S)
toascii .. conv(3C)
_tolower .. conv(3C)
tolower .. conv(3C)
topological sort .. tsort(1)
touch , .. touch(1)
_toupper .. conv(3C)
toupper .. conv(3C)
tputs .. terrncap(3)
tr ... tr(1)
trace dump, format from r2780(1 C) .. r2780trace(1)
transfer files between two systems .. uucp(1C), uuto(1C)
translate assembly language .. atrans(1)
translate characters during copy from standard input to standard output... ... tr(1)
translate tape file .. dd(1)
trap .. sh(1)
trap numbers for hardware ... trapno(2)
trap, set for particular signal... .. sh(1), signal(2), sSignal(3C)
trapno .. trapno(2)
trapno, report value for last command failure .. err(1)
trigonometric functions ... trig(3M)
troff, format tables for ... tbl(1)
troff, nroff, tbl, eqn constructs, remove from text.. .. deroff(1)
true .. true(l)
truth values .. true (1)
tset ... tset(l)
tsort ... tsort(1)
tty .. tty(1)
tty name, record for each user (accounting) .. utmp(5)
tty port, database listing terminal type connected to each .. ttytype(5)
ttyname .. ttyname(3C)
type declarations, data type definitions for system code ... types(7)

- 29-

Permuted Index

typedefs for code portability between HP-UX implementations ... model(5)
types.h, description of .. types(7)
tzname .. ctime(3C)
tzset .. ctime(3C)
uconfig ... uconfig(S)
ul .. ul(l)
ulimit ... ulimit(2)
umask. ... sh(l), umask(l), umask(2)
umount ... mount(l), umount(2)
uname ... uname(l), uname(2)
unblocked disc interface, description of ... disc(4)
underlining, translate underscores to terminal escape sequence .. ul(1)
underscores, translate to terminal escape sequence for underlining ... ul(1)
unexpand ... expand(l)
unget .. unget(1)
UNGETC .. regexp(7)
ungetc ... ungetc(35)
uniq .. uniq(l)
unique lines, find after comparing two files .. comm (1)
UNIXlHP-UX system, establish communication with another. ... cu(lC)
unlink ... link(l), unlink(2)
unlock/lock process address space or segment .. memlck(2)
unmount or mount file system ... mount(l), mount(2), umount(2)
unpack cpio archives from HP media ... upm(l)
update access/modification/change times of file ... touch (1), utime(2)
update optional HP-UX products .. optinstall(S)
update super-block .. sync(2), sync(S)
update, maintain, recompile programs ... make(l)
upm .. upm(l)
upper-case to lower-case character conversion ... conv(3C)
user ID, get line from password file with matching ... getpw(3C)
user ID, print .. .id(l)
user ID, search password file for matching .. getpwent(3C)
user ID, set. ... setuid(2)
user environment, description of ... environ(7)
user name, printid(l)
user name, search password file for matching ... getpwent(3C)
user processes, terminate all .. shutdown(S)
user, switch to another .. su(l)
users, print list of current .. who(1)
users, print list of users and their current processes ... whodo(1)
ustat ... ustat(2)
utime .. utime(2)
utmp accounting file, description of .. utmp(5)
utmp.h, description of .. utmp(5)
uucico ... uucico(1 C)
uuclean .. uuclean(S)
uucp .. uucp(lC)
uucp command execution .. uuxqt(lC)
uucp connections, get status of ... uustat(1 C)
uucp network, monitor activity ... uusub(S)
uucp spool directory clean-up ... uuclean(S)
uucp status inquiry and job control ... uustat(1 C)
uucp system names, list of .. uucp(lC)
uucp/uux transactions, log of .. uucp(1C)
uulog ... uucp(lC)
uuname ... uucp(lC)

- 30-

Permuted Index

uupick .. uuto(lC)
uustat. .. uustat(lC)
uusub ... uusub(8)
uuto ... uuto(lC)
uux ... uux(lC)
uuxqt ... uuxqt(1 C)
val ... va1(1)
validate SCCS file .. val(l)
validate password and group files ... pwck(8)
verify C program .. .1int(1)
verify Command Set 80 cartridge tape .. tcio(1)
verify file system consistency ... fsck(8)
verify password and group files ... pwck(8)
version name, get for HP-UX .. uname(l), uname(2)
version number, get ... revision(l)
versions, compare two SCCS file versions .. sccsdiff(1)
vforkfork(2)
vi ... vi(l)
vi editor, database of terminal capabilities for. ... termcap(5)
view .. vi(l)
viewing text, facilitate on soft-copy terminals ... more(1)
virtual memory page pool, specify maximum size of ... uconfig(8)
virtual memory usage, set or clear for program .. chatr(1)
virtual memory working set ratio, set ... uconfig(8)
virtual segment, establish time segment remains memory resident... ... uconfig(8)
visual text editor .. vj(l)
volume header, write LIF on file1ifinit(l)
volume, description of SDF volume superblock .. fs(5)
volume, format, initialize, and certify SDF volume .. sdfinit(8)
volume, mark/unmark as HP-UX root volume .. rootmark(8)
vsadv .. vsadv(2)
vsoff ... vson(2)
vson ... vson(2)
wait ... sh(l), wait(l), wait(2)
wait for completion of process .. sh(l), wait(l), wait(2)
wall .. wall(l)
wc ... wc(l)
what ... what(l)
whereis .. whereis(l)
while loop, exit from enclOSing .. sh(l)
while loop, resume the next iteration of ... sh(1)
who .. who(l)
whodo .. whodo(l)
word, read from buffered open file ... getc(3S)
word, write on buffered open file or standard output .. putc(3S)
words, count number contained in file .. wc(l)
working directory, change ... cd(1), sh(l), chdir(2)
working directory, print name of .. pwd(l)
write ... write(l), write(2)
write LIF volume header on file .. .1ifinit(l)
write character on buffered open file or standard output.. ... putc(3S)
write current contents of memory to disc ... sync(2), sync(8)
write interactively to another user .. write(l)
write on a file .. write(2)
write operation, reposition nextfseek(3S)
write password file entry .. putpwent(3C)
write string to open file or standard output... ... puts(3S)

- 31-

Permuted Index

write to a file using buffersfread(3S)
write to all users .. wall(1)
write word on buffered open file or standard output. .. putc(3S)
wtmp accounting file, description of .. utmp(5)
wtmp records, convert from binary to ASCII ... fwtmp(8)
wtmp records, correct time/date stamps on .. fwtmp(8)
wtmpfix .. fwtmp(8)
xd .. od(l)
yO .. besse1(3M)
yl .. bessel(3M)
yacc .. yacc(1)
yn .. besse1(3M)

- 32-

Introduction

This manual describes the features of HP-UX in an alphabetical reference format. It is written for the
user who is already familiar with UNIX or UNIX-like operating systems (UNIX is a trademark of Bell
Telephone Laboratories, Inc.). The manual is intended for referencing specific details concerning
the HP-UX operating system.

For a general overview of HP-UX, see the supplied tutorial text entitled Introducing the UNIX System.
For details of the implementation and maintenance of the system, see the HP-UX System
Administrator Manual.

This manual is divided into nine sections, some containing sub-classes that are interspersed
throughout the section:

1. Commands and Application Programs:
1. General-Purpose Commands.
I C. Communications Commands.
IG. Graphics Commands.

2. System Calls.
3. Subroutines:

3C. C Library Routines.
3M. Mathematical Library Routines.
3S. Standard I/O Library Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games (none are currently implemented).
7. Miscellaneous Facilities.
8. System Maintenance Procedures.
9. Glossary.

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to system calls (section 2) or
subroutines (section 3), which are intended to be called by the user's programs. Commands
generally reside in the directory Ibin (for binary programs). Some programs also reside in lusr/bin,
to save space in Ibin, and to reduce search time for commonly-used commands. These directories
are normally searched automatically by the command interpreter called the shell (sh(I)). Sub-class
IC contains communication programs such as cu, jget, etc. These entries may differ from system to
system. A few commands are also located in !lib and lusr/lib.

Section 2 (System Calls) describes the entries into the HP-UX kernel, including the C language
interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions reside in various
system libraries in the directories !lib and lusr/lib. See intro(3) for descriptions of these libraries and
the files in which they are stored.

-1-

Section 4 (Special Files) discusses the characteristics of each special file (device driver) that actually
refers to an input/output device. The names in this section generally refer to Hewlett-Packard's
device names for the hardware, rather than to the names of the special files themselves.

Section 5 (File Formats) documents the structure of particular kinds of files. For example, the
format of the output of the link editor is given in a.out(S). Excluded are files used by only one
command (for example, the assembler's intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory /usr/games. This section mayor may not exist, depending on whether or not games are
supported in each implementation of HP-UX.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses those commands which are useful for crash
recovery and booting the system, plus commands used to perform system integrity checks and other
maintenance procedures. Information in this section is mostly of interest to the super-user.

Section 9 (Glossary) defines terms used in this manual.

Each section (except 9) consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
number of each entry starts at 1. Some entries may describe several routines, commands, etc. In
such cases, the entry appears only once, alphabetized under its" major" name.

All entries are based on a common format, not all of whose parts always appear:

NAME
gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS
summarizes the use of the entry (program) being described. A few conventions are used:

Boldface strings are literals and are to be typed just as they appear.

Italic strings represent substitutable argument names and program names found elsewhere in
the manual.

Square brackets [] around an argument name indicate that the argument is optional. When
an argument name is given as "name" or "file" , it always refers to afile name.

Ellipses (...) are used to show that the previous argument may be repeated.

-2-

A final convention is used by the commands themselves. An argument beginning with a dash (-), a
plus sign (+), or an equal sign (=) is often taken to be some sort of flag argument, even if it appears
in a position where a file name could appear. Therefore, it is unwise to have files whose names
begin with -, +, or =.

HP-UX COMPATIBILITY
shows the entry's HP-UX level and its origin, according to the HP-UX Compatibility Model (see
HP-UX Compatibility Model following this introduction). This section also shows whether an
optional HP software package is required.

DESCRIPTION
discusses the function and behavior of each entry.

HARDWARE DEPENDENCIES
points out variations from HP-UX standard due to the specific hardware involved.

EXAMPLE(S)
gives example(s) of usage, where appropriate.

FILES
gives the file names that are built into the program.

RETURN VALUE
discusses the meaning of values which are returned by the program.

SEE ALSO
gives pointers to related information.

DIAGNOSTICS
discusses the diagnostic indications that may be produced. Messages that are intended to be
self-explanatory are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate section number in parentheses. This is
important because there is considerable duplication of names among the sections, arising principally
from commands that exist only to exercise a particular system call.

-3-

How to Get Started

This discussion provides the basic information you need to get started on HP-UX: how to log in and
log out, how to communicate through your machine, and how to run a program. (See the supplied
tutorial text for a more complete introduction to the system.)

Logging in. To log in you must have a valid user name, which may be obtained from the system
administrator of your system. Keep pressing the "break" or "del" key until the login: message
appears.

When a connection has been established, the system types login: and you then type your user
name followed by the "return" key (or "enter" key, on some terminals). If you have a password
(and you should!), the system asks for it, but does not print it on the terminal.

It is important that you type your login name in lower case if possible; if you type upper-case letters,
HP-UX assumes that your terminal cannot generate lower-case letters, and that all subsequent
upper-case input is to be treated as lower case. When you have logged in successfully, the shell
types a $. (The shell is described below under How to run a program.)

For more information, consult login (1) and getty (8), which discuss the login sequence in more detail,
and stty(l), which tells you how to describe the characteristics of your terminal to the system
(projile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. You can log out by typing an end-of-file indication (ASCII EOT character, usually
typed as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to HP-UX, the system usually
gathers your characters and saves them. These characters will not be given to a program until you
type a "return" (or a "new-line").

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can type at
any time, even while a program is printing on your display or terminal. Of course, if you type during
output, the output will have the input characters interspersed in it. However, whatever you type will
be saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but
it is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters.

On an input line from a terminal, the character (it "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line; (it and # can be typed as themselves by preceding them with
"- (thus, to erase a ,,-, you need two #s). These default erase and kill characters can be changed,
and usually are (see stty(l)).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. Output is resumed when any
character is typed. If DCI (control-q) or DC3 are used to restart the program, they are not saved and
passed to later programs. Any other characters are saved and passed as input to later programs.

-4-

The ASCII DEL character (sometimes labelled "rubout" or "rub") is not passed to programs, but
instead generates an interrupt signal, just like the "break", "interrupt", or "attention \I signal. This
signal generally causes whatever program you are running to terminate. It is typically used to stop a
long printout that you don't want. However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of being terminated). The editor ed(l), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an interrupt
can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII octal 34 (control-"') character. It causes a running
program to terminate.

Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a
terminal with the" new-line" key, or whether it must be simulated with a \I carriage-return" and
"line-feed" pair. In the latter case, all input "carriage-retum \I characters are changed to "line­
feed" characters (the standard line delimiter), and a "carriage-return" and "line-feed" pair is
echoed to the terminal. If you get into the wrong mode, see stty(1).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed as
spaces during input (not currently supported on the Series 500). The stty(l) command will set or
reset this mode. The system assumes that tabs are set every eight character positions. The tabs (1)
command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into HP-UX, a program called the shell
is listening to your terminal. The shell reads the lines you type, splits them into command names
and arguments, and executes the command. A command is simply an executable program.
Normally, the shell looks first in your current directory (see The current directory below) for a
program with the given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories where the shell
can find them. You can also keep commands in your own directories and arrange for the shell to
find them there.

The command name is the first word on an input line to the shell; the command and its arguments
are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to indicate
that it is ready for another command. The shell has many other capabilities, which are described in
detail in sh(l).

The current directory. HP-UX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you (ordinarily
with the same name as your user name, and known as your login or home directory). When you log
in, that directory becomes your current or working directory, and any file name you type is assumed
to be in that directory by default. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. The permissions you have in other
directories and files will have been granted or denied to you by their respective owners, or by the
system administrator. To change the current working directory use cd (1).

-5-

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with f, which is the name of the root directory of the whole file system. After the slash
comes the name of each directory containing the next sub-directory (followed by a I), until finally
the file name is reached (e.g., fusrfaeffilex refers to file filex in directory ae, while ae is itself a
subdirectory of usr; usr springs directly from the root directory). See the glossary for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the name
of the corresponding subdirectory (without a prefixed f). Without important exception, a path name
may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(l), mv(l), and rm(1), which
respectively copy, move (Le., rename), and remove files. To find out the status of files or
directories, use ls(l). Use mkdir(l) for making directories and rmdir(1) for destroying them.

For a more complete discussion of the file system, see the references cited at the beginning of the
Introduction above. It may also be useful to glance through Section 2 of this manual, which
discusses system calls, even if you don't intend to deal with the system at that level.

Writing a program. To enter the text of a source program into an HP-UX file, use ed(1), ex(1), or
vi(l). The three principal languages available under HP-UX are C (see cc(l)), Fortran (seefc(l) or
}77(1)), and Pascal (see pc(l)). After the program text has been entered with the editor and written
into a file (whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language processor
will be left in a file in the current directory named a.out (if that output is precious, use mv (1) to give it
a less vulnerable name). If the program is written in assembly language, you will probably need to
link library subroutines with it (see ld(l)). Fortran, C, and Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting
program can be run by giving its name to the shell in response to the $ prompt.

Your programs can receive arguments from the command line just as system programs do by using
the argc, argv, and envp parameters. See the supplied C tutorial for details.

Text processing. Almost all text is entered through the editors ed(l), ex(l), or vi(l). The
commands most often used to write text on a terminal are cat(l) and pr(l). The cat(l) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(l) command paginates
the text, supplies headings, and has a facility for multi-column output.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may direct them
toward you. To communicate with another user currently logged in, write (1) is used; mail (1) will
leave a message whose presence will be announced to another user when he or she next logs in.
The corresponding entries in this manual also suggest how to respond to these two commands if
you are their target.

When you log in, a message-of-the-day may greet you before the first $ prompt.

-6-

HP-UX Compatibility Model

HP-UX is Bell System III plus "HP value added". HP value added includes both Hewlett-Packard
capabilities, such as graphics, and features from other UNIX systems, such as those from University
of California at Berkeley.

Levels
The various HP-UX systems are listed below in order of increasing completeness; each contains all
the elements of the previous one.

HP-UXIRUN ONLY
This describes a run-only kernel with no commands or applications attached.

HP-UXINUCLEUS
This is the run-only kernel plus a minimum set of commands. It also provides a minimum
command interpreter to permit access to the commands.

HP-UXIDEVELOPMENT
This is the first "normal" UNIX, but it does not include the full UNIX command set.

HP-UXISTANDARD
This is a nearly complete UNIX. It includes most of the capabilities from Bell, but not
everything that HP will make available.

HP-UXlEXTENDED
This is the largest standard package. It contains almost everything HP-UX has to offer (a few
Bell capabilities are not included).

OPTIONAL
For the purposes of the model, there are also capabilities that are never required, even at
the HP-UXlEXTENDED level. The term OPTIONAL designates capabilities in this
category.

NON-STANDARD
This designation is given to those keywords which have either not yet been approved as part
of standard HP-UX, or never will be.

-1-

INTRO(1) INTRO(1)

NAME
intro - introduction to commands

SYNOPSIS
Unless otherwise noted, commands described in this section accept options and other arguments accor­
ding to the following syntax:

name [option (s) 1 [cmdarg(s) 1

where:

name

option

noargletter

argleller

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter<>optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with - or, - by itself indicating
the standard input.

HP-UX COMPATIBILITY
Level:

Origin:

This describes where in the HP-UX compatibility model this capability appears. See the
Introduction to this manual for a detailed explanation of the model.

This gives authorship credit as appropriate. The following abbreviations are used:

System III means from Bell UNIX System Ill.

HP means written by HP.

VCB means derived from U. C. Berkeley 4.1BSO.

V7 means included for UNIX Version 7 compatibility (and not in Bell System Ill).

Requires: This indicates any special hardware or software requirements for the code to operate pro­
perly.

If a capability deviates from the HP-UX standard. the deviations will be displayed in one of
two ways. Minor deviations will be in separate sections in the body of the manual. New
pages will be generated where necessary. and the top center of the page will indicate the
deviation.

Remarks: identifies which implementation(s) are described by the manual page.

DESCRIPTION
This section describes. in alphabetical order. publicly-accessible commands. Certain distinctions of pur­
pose are made in the headings:

(1) Commands of general utility.
(IC) Commands for communication with other systems.
(lG) Commands used primarily for graphics and computer-aided design.

HARDWARE DEPENDENCIES
This section gives details about specific implementations of HP-UX that deviate from information already
given for that manual entry. It is very important that you check this section, if present, to make sure that
certain options and/or capabilities are implemented on your computer. If there are extensive changes,
new manual pages are generated and flagged as being implementation specific.

SEE ALSO
The SEE ALSO entries are chosen in part to gUide the reader to related topics that might prove useful.
The list may not always be relevant. depending on the user's needs. SEE ALSO entries may refer to

-1-

INTRO(1) INTRO(l)

capabilities not available in all implementations if they are relevant in the more complete implementa­
tions. Examples of SEE ALSO entries are:

getopt(l}, getopt(3C).
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of status. one supplied by the system and giving
the cause for termination. and (in the case of "normal" termination) one supplied by the program (see
wait(2) and exit(2}}. The former byte is 0 for normal termination; the latter is customarily 0 for suc­
cessful execution and non-zero to indicate troubles such as erroneous parameters, bad or inaccessible
data. or some other inability to cope with the task at hand. It is called variously "exit code", "exit sta­
tus" , or "return code" , and is described only where special conventions are involved.

-2-

ADB(l) Series 200 Only ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

HP-UX COMPATIBILITY
Level: HP-UXIOEVELOPMENT

Origin: System III

Remarks: Adb is implemented on the Series 200 only.

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a control­
led environment for the execution of HP-UX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the sym­
bolic features of adb cannot be used although the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil; the default for corfil is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the -w
flag is present then objfil is created if necessary and opened for reading and writing so that it can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to O. For most commands count specifies
how many times the command will be executed. The default count is 1. Address and count are expres­
sions.

The interpretation of an address depends on the context in which it is used. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subprocess. For
further details of address mapping see ADDRESSES.

EXPRESSIONS

+

"

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by Ox; a decimal
number if preceded by Od; otherwise the base of integer is whatever the default number base
for input is. This base is initialized to hexadecimal.

integer .fraction
A 32 bit floating point number.

I cccc I The ASCII value of up to 4 characters. "may be used to escape a I.

< name The value of name, which is either a variable name or a register name. Adb maintains a number
of variables (see VARIABLES) named by single letters or digits. If name is a register name
then the value of the register is obtained from the system header in corfil. The register names
are aO ... a6 dO ... d7 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the symbol table in objfil. An initial _ will be
prepended to symbol if needed.

_symbol
In C, the "true name" of an external symbol begins with. It may be necessary to utter this

-1-

ADB(l) Series 200 Only

name to distinguish it from a symbol generated in assembly language.

(exp) The value of the expression expo

Monadic operators:

*exp The contents of the location addressed by exp in corfii.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

-exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.

el + e2 Integer addition.

el-e2 Integer subtraction.

el *e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

ell e2 Bitwise disjunction.

el #e2 E 1 rounded up to the next multiple of e2.

COMMANDS

ADB(l)

Most commands consist of a verb followed by a modifier or list of modifiers. The folloWing verbs are
available. (The commands? and I may be followed by *; see ADDRESSES for further details.)

?f Locations starting at address in objfil are printed according to the format f. dot is incremented
by the sum of the increments for each format letter.

If Locations starting at address in corfil are printed according to the formatf and dot is incremen­
ted as for?

= f The value of address itself is printed in the styles indicated by the format f. (For i format? is
printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping through
a format dot is incremented by the amount given for each format letter. If no format is given then the last
format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by O.
o 4 Print 4 bytes in octal.
q 2 Print 2 bytes in signed octal.
Q 4 Print 4 bytes in signed octal.
d 2 Print 2 bytes in decimal.
o 4 Print 4 bytes in decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print 2 bytes as an unsigned decimal number.
U 4 Print 4 bytes as an unsigned decimal number.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in hexadecimal.
B 1 Print the addressed byte in octal.
c 1 Print the addressed character. (The sign bit is ignored.)
C 1 Print the addressed character using the following escape convention. Character values

000 to 040 are printed as @ followed by the corresponding character in the range
0100 to 0140. The character@ is printed as @@. (The sign bit is ignored.)

s n Print the addressed characters until a zero character is reached. N is the length of the

-2-

ADB(l) Series 200 Only ADB(l)

string, including the zero terminator.
S n Print a string using the @ escape convention. n is the length of the string including its

zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3C)).
i n Print as MC68000 instructions. n is the number of bytes occupied by the instruction.
I n Same as i, except that immediate constants are printed in decimal.
a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have

an appropriate type as indicated below.

I local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for symbol lookup as
a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a new-line.
II ••• II 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

new-line
Repeat the previous command with a count of 1. Also can be used to repeat a :s or :c com­
mand.

[?/ll value mask
Words starting at dot are masked with mask and compared with value until a match is found. If
L is used then the match is for 4 bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is omitted then -1 is used.

[?/lw value ...
. Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd

addresses are not allowed when writing to the subprocess address space.

[?/lm bl el fl[?/l
New values for (bl, el, fll are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ? or I is followed by * then the second
segment (b2, e2 ,12) of the mapping is changed. If the list is terminated by ? or I then the file
(objfil or corfi! respectively) is used for subsequent requests. (So that, for example, 1m? will
cause I to refer to objfil.)

>name Dot is assigned to the variable or register named.

A shell is called to read the rest of the line follOwing I.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
> f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is set to pc.
b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the current frame

(instead of a6). If count is given then only the first count frames are printed.
e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o The default for all integers input is octal.

-3-

ADB(l)

new-line

:modifier

Series 200 Only ADB(l)

d The default for all integers input is decimal.
x The default for all integers input is hexadecimal.
q Exit from adb.
v Print all non zero variables in octal.
n Set the number of Significant digits for floating point dump to address.
m Print the address map. '

print the process id and register values.

Manage a subprocess. Available modifiers are:

bc Set breakpoint at address. The breakpoint is executed count-l times before causing a
stop. Each time the breakpoint is encountered the command c is executed. If this
command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.
d* Delete all breakpoints
r Run objfil as a subprocess. If address is given explicitly then the program is entered at

this point; otherwise the program is entered at its standard entry point. count specifies
how many breakpoints are to be ignored before stopping. Arguments to the sub­
process may be supplied on the same line as the command. An argument starting with
< or > causes the standard input or output to be established for the command. All sig­
nals are turned on on entry to the subprocess.

e Setup a subprocess as in r; no instructions are executed.
cs The subprocess is continued with signal s (see signal(2)). If address is given then the

subprocess is continued at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as for r.

ss As for c except that the subprocess is single stepped count times.
Ss As for c except that a temporary breakpoint is set at the next instruction. Useful for

stepping across subroutines.
xa [b) ...

Execute subroutine a with parameters [b] ...
k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used subse­
quently. Numbered variables are reserved for communication as follows.

o The last value printed.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a core
file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (Oxl07, Ox108)
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (bI, eI, f1) and (b2, e2,]2) and the file address
corresponding to a written address is calculated as follows:

bI address<el
file address = address + fI-b I

-4-

ADB(l) Series 200 Only ADB(l)

FILES

Otherwise,

b2 address < e2
file address = address + j2-b2

Otherwise, the requested address is not legal. If a ? or / is followed by an * then only the second triple is
used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected then, for that file, bl is set to 0, el is set to the maximum file size andfl is set to 0; in this
way the whole file can be examined with no address translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32 bit integers.

/dev/mem
/dev/swap
a.out
core

SEE ALSO
a.out(5), core(5).

DIAGNOSTICS
"Adb" when there is no current command or format, and comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or returned
non-zero status.

-5-

ADMIN(l) ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admio [-01 [-i[namell [-rrell [-t[namell [-fflag[flagvalll [-dflag[flagvalll [-aloginl [-eloginl
[-m[mrlistll [-y[commentll [-hl [-zl files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Admin is used to create new sees files and change parameters of existing ones. Arguments to admin,
which may appear in any order, consist of keyletter arguments, which begin with -, and named files
(note that sees file names must begin with the characters s.). If a named file doesn't exist, it is created,
and its parameters are initialized according to the specified keyletter arguments. Parameters not initial­
ized by a keyletter argument are assigned a default value. If a named file does exist, parameters
corresponding to specified key letter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed. Again, non-SeeS files and
unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be pro­
cessed since the effects of the arguments apply independently to each named file.

-0

-i[namel

-rrel

-t[namel

-'fjlag

b

This keyletter indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is to be taken. The
text constitutes the first delta of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encountered. If
this keyletter is omitted, then the sees file is created with an empty initial delta.
Only one sees file may be created by an admin command on which the i
keyletter is supplied. Using a single admin to create two or more sees files
requires that they be created empty (no -i keyletter). Note that the -i keyletter
implies the -0 keyletter.

The release into which the initial delta is inserted. This keyletter may be used
only if the -i keyletter is also used. If the -r keyletter is not used, the initial delta
is inserted into release 1. The level of the initial delta is always 1 (by default ini­
tial deltas are named 1. 1).

The name of a file from which descriptive text for the sees file is to be taken. If
the -t keyletter is used and admin is creating a new sees file (the -0 and/or-i
keyletters also used), the deSCriptive text file name must also be supplied. In the
case of existing sees files: (1) a -t keyletter without a file name causes removal
of descriptive text (if any) currently in the sees file, and (2) a -t keyletter with a
file name causes text (if any) in the named file to replace the descriptive text (if
any) currently in the sees file.

This keyletter specifies ajlag, and, possibly, a value for thejlag, to be placed in
the sees file. Several f keyletters may be supplied on a single admin command
line. The allowable jlags and their values are:

Allows use of the -b keyletter on a get (1) command to create branch deltas.

-1-

ADMIN(l) ADMIN(l)

cceil The highest release (i.e., "ceiling"), a number less than or equal to 9999, which
may be retrieved by a get (1) command for editing. The default value for an
unspecified c flag is 9999.

ffloor The lowest release (i.e., "floor"), a number greater than 0 but less than 9999,
which may be retrieved by a get(l) command for editing. The default value for
an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(l) command.

Causes the "No id keywords (cm7) " message issued by get(l) or delta (1) to be
treated as a fatal error. In the absence of this flag, the message is only a war­
ning. The message is issued if no sees identification keywords (see get(l)) are
found in the text retrieved or stored in the sees file.

Allows concurrent get (1) commands for editing on the same SID of an sees file.
This allows multiple concurrent updates to the same version of the sees file.

llist A list of releases to which deltas can no longer be made (get -e against one of
these "locked" releases fails). The list has the following syntax:

<list> :: = <range> I <list> , <range>
<range> :: = RELEASE NUMBER I a

The character a in the list is eqUivalent to specifying all releases for the named
sees file. Omitting any list is eqUivalent to a.

n Causes delta (1) to create a "null" delta in each of those releases (if any) being
skipped when a delta is made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null deltas serve as "anchor
points" so that branch deltas may later be created from them. The absence of
this flag causes skipped releases to be non-existent in the sees file preventing
branch deltas from being created from them in the future.

qtext User definable text substituted for all occurrences of the %Q% keyword in sees
file text retrieved by get(l).

mmod Mod ule name of the sees file substituted for all occurrences of the %M%
keyword in sees file text retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the leading s. removed.

ttype Type of module in the sees file substituted for all occurrences of the % Y%
keyword in sees file text retrieved by get(l).

v[pgm] Causes delta(l) to prompt for Modification Request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an MR
number validity checking program (see delta(l)). (If this flag is set when
creating an SCCS file, the m keyletter must also be used even if its value is mill).

-dflag Causes removal (deletion) of the specified flag from an sees file. The-d
keyletter may be specified only when processing existing sees files. Several-d
keyletters may be supplied on a single admin command. See the -f key letter for
allowable flag names.

Ilist

-alogin

A list of releases to be "unlocked". See the -f keyletter for a description of the I
flag and the syntax of a list.

A login name, or numerical HP-UX group 10, to be added to the list of users
which may make deltas (changes) to the sees file. A group 10 is eqUivalent to
specifying all login names common to that group ID. Several a keyletters may
be used on a single admin command line. As many logins, or numerical group
IDs, as desired may be on the list Simultaneously. If the list of users is empty,
then anyone may add deltas.

-2-

ADMIN(l) ADMIN(l)

FILES

-elogin

-y[commentl

-m[mrlistl

-h

-z

A login name, or numerical group ID, to be erased from the list of users allowed
to make deltas (changes) to the sees file. Specifying a group ID is equivalent to
specifying all login names common to that group ID. Several e keyletters may
be used on a single admin command line.

The comment text is inserted into the sees file as a comment for the initial delta
in a manner identical to that of delta (1). Omission of the -y keyletter results in a
default comment line being inserted in the form:
date and time created YY/MMIDD HH:MM:SS by login
The -y keyletter is valid only if the -i and/or -0 keyletters are specified (Le., a
new sees file is being created).

The list of Modification Requests (MR) numbers is inserted into the sees file as
the reason for creating the initial delta in a manner identical to delta(l). The v
flag must be set and the MR numbers are validated if the v flag has a value (the
name of an MR number validation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

Causes admin to check the structure of the sees file (see sccsftle(5)) , and to
compare a newly computed check-sum (the sum of all the characters in the
sees file except those in the first line) with the check-sum that is stored in the
first line of the sees file. Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing
files.

The sees file check-sum is recomputed and stored in the first line of the sees
file (see -h, above).

Note that use of this keyletter on a truly corrupted file may prevent future detec­
tion of the corruption.

The last component of all sees file names must be of the form s.ftle-name. New sees files are given
mode 444 (see chmod(l)). Write permission in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called x.file-name, (see get(1)), created with mode
444 if the admin command is creating a new sees file, or with the same mode as the sees file if it exists.
After successful execution of admin, the sees file is removed (if it exists), and the x-file is renamed with
the name of the sees file. This ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode 755 and that sees files themselves be
mode 444. The mode of the directories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be changed to 644 by the
owner allowing use of ed(l). Care must be taken! The edited file should always be processed by an
admio -h to check for corruption followed by an admio -z to generate a proper check-sum. Another
admio -h is recommended to .ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.ftle-name), which is used to prevent simultaneous
updates to the sees file by different users. See get (1) for further information.

SEE ALSO
delta(1), ed(l), get(l), help(l), prs(l), what(l), sccsfile(5).
Source Code Control System User's Guide in HP-UX: Selected Articles.

DIAGNOSTICS
Use help(l) for explanations.

-3- /

AR(1) AR(l)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname 1 afile name ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and update
library files for use by the link editor. It can be used, though, for any similar purpose.

The archive file format is consistent across all HP-UX implementations. It is only useful to port source
archives. Individual files are inserted without conversion into the archive file. Note that ar files from
other UNIX systems are not readable on HP-UX, even if those files contain ASCII text.

Key must be present, and is one character from the set drqtpmx, optionally concatenated with one or
more of vuaibcl. Afile is the archive file. The names are constituent files in the archive file. The mean­
ings of the key characters for operations on an archive are:

d Delete the named constituents from the archive file.

r Replace the named files, or add a new file to the archive. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the posname argument must be present and
specifies that new copies of the named files are to be placed after (a) or before (b or i) posname. In
the absence of a positioning character, new files are placed at the end. Ar will create afile if it does
not already exist. If there are no file names, ar may create an empty archive file whose only contents
is the archive magic number (see magic(5)).

q QUickly append the named files to the end of the archive file. Optional positioning characters are
invalid. The command does not check whether the added members are already in the archive.
This is useful only to avoid quadratic behavior when creating a large archive piece-by-piece. Ar will
create afile if it does not already exist.

t Print a table of contents of the archive file. If no names are given, all files in the archive are descri­
bed. If names are given, information about only those files appears.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved. Note
that, when used with a positioning character, the files are moved in the same order that they currently
appear in the archive, not in the order specified on the command line. See EXAMPLES.

x Extract the named files. If no names are given, all files in the archive are extracted. In neither case
does x alter (i.e. delete entries from) the archive file.

The meanings of the remaining optional modifying characters are:

v Verbose. When used with t, it gives a long listing of all information about the files from the
archive headers. When used with the d, m, p, q, and x options, the verbose option causes ar to
print the key letter and file name associated with each file for that operation. For the r opera­
tion, ar will show an "a" if it added a new file, or an "r" if it replaced an existing one.

c Create. Normally ar will create afile when it needs to (for the rand q operations). The create
option suppresses the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory Itmp. This option causes them to
be placed in the current working directory. Only the d, m, and r options use temporary files.

-1-

AR(l)

Only the following combinations are meaningful:
d: v,1
r: u, v, C, I, and a I b I i
q: V,C

t: v
p: v
m: v, I, and a I b I i
x: v

AR(l)

For other combinations of modifiers with operations not shown in the above table, the modifier has no
effect.

EXAMPLES

FILES

The command

ar r newlib.a f3 f2 fl f4

will create a new file (if one does not already exist) in archive format with its constituents entered in the
order shown in the above command line.

If you want to replace files f2 and f3 such that the new copies follow file fl, the commands

ar rna f2 newlib.a f3
ar ra fl newlib.a f2 f3

will produce the desired effect. The archive will now be ordered

newlib.a: f1 f2' f3' f4

where the single quote marks indicate updated files. The first command says "move f3 after f2 in
newlib.a " , thus creating the order

f2 f3 fl f4

The second command above says "replace files f2 and f3 in newlib.a, and put the new copies after fl" .
Note that the new files must be replaced in the same order as they already occur in the archive. This is
why the first command above is used to create a new order that will be preserved in the replace opera­
tion. Thus, the two commands above cannot be replaced by

ar ra fl newlib.a f2 f3

because the previous order of f2 and f3 in the archive will be preserved (no matter how the files are
specified on the command line), producing the following archive:

newlib.a: f1 f3' f2' f4

/tmp/v* temporary files

SEE ALSO
ld(l), lorder(1), ranlib(l), ar(5).

WARNING

BUGS
If you are the super-user, ar will alter any archive file, even if it is write-protected.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Ar reports cannot create file. a, where file.a is an ar-format archive file, even if file.a already exists. This
message is triggered when file. a is write-protected or inaccessible.

-2-

AS(l) Series 200 Only AS(l)

NAME
as - assembler for MC68000

SYNOPSIS
as [-A 1 [-a afile 1 [--0 objfile 1 [file 1

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPPMENT

Origin: System III

Remarks: As is implemented on the Series 200 only.

DESCRIPTION

FILES

As assembles the named file, or the standard input if no file name is specified. The optional arguments
-A or -a may be used to obtain an assembly listing with offsets and instruction codes listed in hex. If-A
is used the listing goes to standard output. If -a is used the listing goes to afile. All undefined symbols in
the assembly are treated as global. The output of the assembly is left on the file objfile; if that is omitted,
.s is stripped from the end of the file name (if there) and .0 is appended to it. This becomes the name of
the output file. As does not invoke ld.

lusrltmp/*
file.o

temporary
object

SEE ALSO
adb(1), Id(1), nm(1), a.out(5).
MC68000 Assembler on HP-UX, in HP-UX Selected Articles.

DIAGNOSTICS
If the name chosen for the output file is of the form *?[csl, the assembler issues an appropriate com­
plaint and quits. When syntactic or semantic errors occur, a Single-line diagnostic is typed out together
with the line number and the file name in which it occurred.

-1-

ASA(l) ASA(l)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System V

Rernarks: A$a is in a preliminary state. and could change in the future.

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It processes
either the files whose names are given as arguments. or the standard input if no file names are supplied.
The first character of each line is assumed to be a control character. Their meanings are:

(blank) single new-line before printing:

o double new-line before printing:

1 new page before printing;

+ overprint previoUS line.

Lines beginning with other than the above characters are treated as if they began with - -. The first
character of a line is not printed. If any such lines appear, an appropriate diagnostic will appear on stan­
dard error. This program forces the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage control characters, asa
could be used as a filter as follows:

a.out I asa Ilpr

and the output, properly formatted and pagenated, would be directed to the line printer. FORTRAN out­
put sent to a file could be viewed by:

asa file

SEE ALSO
fe(l), f77(l)

-1-

AT(1) AT(1)

NAME
at - execute commands at a later time

SYNOPSIS
at time [day 1 [file 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: Version 7

DESCRIPTION

FILES

At stores a copy of the named file (standard input default) to be used as input to sh (1) at a specified later
time. Fife must be a shell script. A cd (1) command to the current directory is inserted at the beginning,
followed by assignments to all environment variables. When the script is run. it uses the user and group
ID of the creator of the copied file.

Time is one to four digits, with an optionally appended 'A'. 'P'. 'N'. or 'M', standing for AM, PM, noon,
or midnight, respectively. One and two digit numbers are taken to be hours; three and four digit num­
bers are taken to be hours and minutes. If none of the above-mentioned letters follow the digits, a 24
hour clock time is assumed.

Day is either a month name followed by a day number. or a day of the week. If the word 'week' follows
day. invocation is moved seven days further off. Three-letter abbreviations for month and day names
may be used. Examples of legal commands are

at 8am jan 24 scriptfile 1
at 1530 fri week scriptfile2

At programs are executed by periodic execution of the command lusrlliblatrun from cron(8). The time
interval accuracy of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

lusrispool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of day ddd of year yy. uu is a unique number.

lusrlspool/at/lasttimedone
contains hhhh for last hour that atrun was executed.

lusrlspool/at/past
directory of activities now in progress.

lusr/lib/atrun
program that executes activites that are due.

pwd(l)

SEE ALSO
calendar(1), cron(8).

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the time interval accuracy of the execution of lusr/liblatrun, there may be bugs in scheduling
things almost exactly 24 hours into the future.

-1-

ATERM(lC) Series 500 Only ATERM(lC)

NAME
aterm - general purpose asynchronous terminal emulation

SYNOPSIS
aterm configfile

HP-UX COMPATIBILITY
Level:

Origin:

Data Communications - HP-UXISTANDARD

HP

Remarks: Aterm is implemented on the Series 500 only. Aterm for HP-UX is part of an optional pro­
duct numbered 97076A.

DESCRIPTION
Aterm is a general purpose asynchronous terminal emulator designed for maximum connection flexibil­
ity and simple file transfers without remote host support. Transparent pass-through mode provides all
user terminal capabilities in multi-user systems.

Configfile is used by aterm to match the particular terminal configuration needed for the remote system
you are logging onto. This file consists of configuration commands, one to a line. Each line consists of
the command name and its arguments, if any. Only configuration parameters which differ from the
standard default need be specified. Most configuration commands can also be given from the keyboard
while the emulator is running.

The following list shows the recognized configuration command names:

da Serial device file name (no default);
hn Name of remote computer system (no default);
db Number of data bits per character: 5, 6, 7, or 8 (default = 7);
sb Number of stop bits per character: 1, 1.5, or 2 (default = 1);
pa Character parity: none (n), odd (0), even (e), zero (0), or one (1) (default = 0);
dr Rate for data sent and received: 50, 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600,

4800,9600, or 19200 baud (default = 2400 baud);
me Modem control: enabled (+) for full-duplex modem, or disabled H for full-duplex hard-wired

connection (default = -);
ss Switched service: auto-answer (a) or manual originate (0) (default = 0);
ga Gap: number of character transmission times to delay between successive output characters;

values range from 0 to 254 (default = 0);
ec Echo: enabled (+) if the host computer echos characters sent by the emulator, disabled H

otherwise (default = +);
te Terminal ENQ/ACK: enabled (+) or disabled H (default = +);
he Host ENQ/ACK: enabled (+) or disabled H (default = -);
tx Terminal XON/XOFF: enabled (+) or disabled H (default = -);

hx Host XON/XOFF: enabled (+) or disabled H (default = -);
im Input mode: block (b), character (c), or line (I) (default = b);
om Output mode: character (c) or line (I) (default = c);
ph Prompt handshake: if enabled (+), the emulator waits for the prompt sequence before sen­

ding each line of data during an input diversion; if disabled H, no wait is performed (default =
-);

pt Prompt timeout: number of seconds to allow for receipt of a prompt sequence during an input
diversion; values range from 1 to 600, with 0 disabling the timeout altogether (default = 0);

st Single text terminators: list of characters, any of which terminates a line sent by the host com­
puter when the emulator is in input line mode; up to eight characters may be specified (default
= no characters);

dt Double text terminator: a pair of characters which together terminate a line sent by the host
computer when the emulator is in input line mode (default = carriage-return/line-feed);

ps Prompt sequence: one or two characters which terminate a line sent by the host computer
when the emulator is in input line mode, and which satisfy the prompt handshake if enabled

-1-

ATERM(1C) Series 500 Only ATERM(lC)

(default = DC 1);
bl Beginning of line: character to be prefixed to each line sent to the host computer (default =

none):
el End of line: one or two characters to be postfixed to each line sent to the host computer

(default = carriage-return);
es Local command character: character which designates a local command to be interpreted by

the emulator if it comes at the beginning of a line read from the standard input (default = -).
Note that emulation does not include block or format modes.

SEE ALSO
cu(lC) if simple connections are adequate or if you are calling another UNIX system;
uucp(lC) for file transfers with other UNIX systems.

HP-UX Asynchronous Communications Guide (HP part number 97076-90001).

BUGS
Core capabilities, as well as standard extensions for graphics or color, are not yet formally defined.

-2-

ATRANS(l) Series 200 Only ATRANS(l)

NAME
atrans - translate assembly language

SYNOPSIS
atrans [-j 1 [-n 1 [filename 1

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: HP

Remarks: Atrans is implemented on the Series 200 only.

DESCRIPTION
Atrans translates an assembly language source file from Series 200 Pascal workstation assembly langu­
age syntax to Series 200 HP-UX assembly language syntax. If no filename is given, input is assumed to
come from stdin.

All uppercase characters are converted to lowercase characters, except those in comments or in quoted
strings.

Hexadecimal constants are converted from Series 200 Pascal workstation syntax, $<hex number> to
the Series 200 HP-UX syntax, Ox<hex number>.

Operands whose effective address is program counter with displacement will have the string pc inserted
in them (e.g. 8(d6) will become 8(pc,d6)).

Lines containing the following list of Series 200 Pascal workstation pseudo-ops have no parallel in
Series 200 HP-UX syntax and are translated as comment lines: decimal, end, llen, list, lprint, nolist,
noobj, nosyms, page, spc, sprint, ttl.

Lines containing the mname or src pseudo-ops are translated as comment lines, and a warning is printed
stating that modules are not supported by the Series 200 HP-UX assembler.

The pseudo-ops, def, refa, and refr, are translated as globl.

The file name operand of an include pseudo-op will have quote marks put around it.

Certain pseudo-ops require manual intervention to translate. Each Line containing these pseudo_ops
will cause a message to be printed stating that an error will be generated by the Series 200 HP-UX
assembler. These pseudo-ops are: com, lmode, org, rorg, rmode, smode, start.

The -j option converts opcodes with the bcc[.sl.ll branch syntax to the jcc syntax. It also converts
bsr{ .sl.lJ to jbsr

The -n option converts groups of blanks to tabs.

SEE ALSO
as(1).

-1-

AWK(1) AWK(1)

NAME
awk - text pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With each pat­
tern in prog there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog. or in a file specified as -f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Files are read in order: if there are no files. the standard input is read. The file name - means the stan­
dard input. Each line is matched against the pattern portion of every pattern-action statement; the asso­
ciated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
see below). The fields are denoted $1. $2 : $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A miSSing action means print the line: a missing pattern always matches. An action is a sequence of sta­
tements. A statement can be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression : conditional : expression) statement
break
continue
{ [statement 1 . . . }
variable = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons. new-lines. or right braces. An empty expression-list stands
for the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, -, *, I, %, and concatenation (indicated by a blank). The C operators + +, --, + =,
- =, * =, 1=, and % = are also available in expressions. Variables may be scalars, array. elements
(denoted xli]) or fields. Variables are initialized to the null string. Array subscripts may be any string, not
necessarily numeric: this allows for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is present), separa­
ted by the current output field separator, and terminated by the output record separator. The printf sta­
tement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole line if no
argument. There are also built-in functions expo log, sqrl. and into The last truncates its argument to an
integer; substr(s, m, n) returns the n-character substring of s that begins at position m. The function
sprinlfifml, expr, expr, ...) formats the expressions according to the prinlf(3S} format given by fmt and
returns the resulting string.

Patterns are arbitrary Boolean combinations (I. II. &&, and parentheses) of regular expressions and
relational expressions. Regular expressions must be surrounded by slashes and are as in egrep (see
grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also

-1-

AWK(l) AWK(1)

occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains) or ,- (for
does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean com­
bination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern. END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN {FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME. the name of the current input file; OFS, the out­
put field separator (default blank); ORS. the output record separator (default new-line); and OFMT, the
output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposit~ order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s + = $1 }
END { print "sum is" , s, " average is", s/NH }

Print fields in reverse order:

{ for {i = NF: i > 0; -0 print $i }

Print all lines between start/stop pairs:

/ start/, / stop/

Print all lines whose first field is different from previous one:

$1 ! = prev { print; prev = $1 }

SEE ALSO

BUGS

grep(1), lex(l), sed(l).
Awk-A Pattern Scanning and Processing Language in HP-UX: Selected Articles.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add a to it; to force it to be treated as a string concatenate the null string (" ") to it.

-2-

BANNER(l)

NAME
banner - make posters in large letters

SYNOPSIS
banner strings

HP-UX COMPATIBILITY
Level: System III Compatibility - HP-UX/STANDARD

Origin: System III

DESCRIPTION

BANNER(l)

Banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

Each argument is on a separate line.

-1-

BASENAME(l) BASENAME (1)

NAME
basename, dirname - extract portions of path names

SYNOPSIS
basename string [suffix 1
dirname string

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string) from string, and prints the
result on the standard output. It is normally used inside command substitution marks C ... -) within shell
procedures. If string does not contain the indicated suffix, basename returns an unpredictable value con­
sisting either of a single character string, or the null string.

Dirname delivers all but the last level of the path name in string. If string is null or does not contain a
directory component, dirname returns" . " , indicating the current working directory.

EXAMPLES
The follOWing shell script. invoked with the argument /usr/srcicmd/cat.c, compiles the named file and
moves the output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

The following example will set the shell variable NAME to /usr/src/cmd:

NAME = 'dirname /usr/src/cmd/cat.c'

RETURN VALUE
Both commands return a for success, 1 for failure. Dirname always succeeds, and thus always returns O.

SEE ALSO

BUGS

expr(1), sh(1).

When using basename, be aware that suffixes are not guaranteed to occur at the end of the string. Thus,

base name file.c.old .c

returns "file" .

-1-

BDlFF(1) BDlFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff file1 file2 [n1 [-s1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diJf(1) to find which lines must be changed in two files to bring
them into agreement. Its purpose is to allow processing of files which are too large for di/f. Bdif!
ignores lines common to the beginning of both files. splits the remainder of each file into n-Iine seg­
ments. and invokes diff upon corresponding segments. The value of n is 3500 by default. If the
optional third argument is given. and it is numeric. it is used as the value for n. This is useful in those
cases in which 3500-line segments are too large for diff, causing it to fail. Iffilel (file2) is -, the standard
input is read. The optional -s (silent) argument specifies that no diagnostics are to be printed by bdiff
(note, however, that this does not suppress possible exclamations by diff. If both optional arguments
are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff. with line numbers adjusted to account for the segmenting of
the files (that is. to make it look as if the files had been processed whole). Note that because of the seg­
menting of the files, bdiff does not necessarily find a smallest sufficient set of file differences.

Itmp/bd?????

SEE ALSO
diff(1).

DIAGNOSTICS
Use help (1) for explanations.

-1-

CALENDAR (1) CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [- 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines that contain today's or
tomorrow's date anywhere in the line. Most reasonable month-day dates such as "Dec. 7" or "decem­
ber 7" are recognized, but not "7 December" or "7112". On weekends, "tomorrow" extends
through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in his login
directory and sends him any positive results by mail(l). Normally this is done daily in the early morning
hours under control of cron(8).

calendar
lusrllib/calprog
letc/passwd
Itmp/cal*
lusr/lib/crontab

to figure out today's and tomorrow's dates

SEE ALSO

BUGS

mail(1), cron(8).

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

-1-

CAT(l) CAT(l)

NAME
cat - concatenate, copy, and print files

SYNOPSIS
cat [-5 1 [-u 1 [file I - 1 ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat file 1 file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the standard input file, ena­
bling you to merge the standard input with other files. Output is buffered in 512-byte blocks unless the
-u (unbuffered) option is specified, in which case output is character-by-character.

The -5 option makes cat silent about non-existent files, identical input and output, and write errors.

No input file may be the same as the output file unless it is a special file. Thus, the following command
destroys one of its input files before it is read:

cat file 1 file2 > file 1

SEE ALSO
cp(1), pr(1).

-1-

CB(l)

NAME
cb - C program beautifier. formatter

SYNOPSIS
cb [file]

HP-UX COMPATIBILITY
Level: C-Compiler - HP-UX/EXTENDED

Origin: System III

DESCRIPTION

CB(l)

Cb places a copy of the C program in file (standard input if file is not given) on the standard output with
spacing and indentation that displays the structure of the program.

-1-

CC(1) CC(l)

NAME
cc - C compiler

SYNOPSIS
cc [option 1 ... file ...

HP-UX COMPATIBILITY
Level: C Compiler - HP-UX/DEVELOPMENT

Origin: System III

DESCRIPTION
Cc is the HP-UX C compiler. It accepts several types of arguments:

Arguments whose names end with .c are taken to be C source programs: they are compiled, and each
object program is left on the file whose name is that of the source with .0 substituted for .c. The.o file is
normally deleted. however. if a single C program is compiled and linked all in one step.

In the same way. arguments whose names end with .s are taken to be assembly source programs and
are assembled. producing a .0 file.

The following options are interpreted by cc. Options may not be concatenated. See ld (1) for link editor
options.

-c

-p

-g

-0

-S

-E

-Bstring

-t[pOI2)

-C
-Dname = def
-Dname
-Idir
-P
-Uname

Suppress the link edit phase of the compilation. and force an object (.0) file to be
produced even if only one program is compiled. Produces a .0 file for each .c file.

Arrange for the compiler to produce code which counts the number of times each
routine is called: also. if link editing takes place, replace the standard startoff
routine by one which automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

Cause the compiler to generate additional information needed for the use of a
symbolic debugger.

Invoke an object-code optimizer.

Compile the named C programs. and leave the assembler-language output on
corresponding files suffixed .s.

Run only the macro preprocessor on the named C programs. and send the result
to the standard output. The result is compatible with the Ilihlccom step of cc.

Find substitute compiler passes in the files named string with the suffixes cpp,
ccom. c1 and c2. String must be specified for -B to be meaningful.

Find only the designated compiler passes in the files whose names are constructed
by a -B option. In the absence of a -8 option, the string is taken to be IUb/n. Any
or all of the pass designators p. O. 1, or 2 may be specified, with the following
meanings:

p - preprocessor:
o - first pass of C compiler:
1 - second pass of C compiler:
2 - optimizer.

These options are passed through to the C preprocessor. cpp. Refer to cpp(1) for

-1-

CC(l) CC(l)

details.

Other arguments are taken to be either link editor option arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are linked (in the order given) to produce an exe­
cutable program with the name a.out.

The Kernighan and Ritchie C text, and the various addenda to it, comprise the best available reference
on C. The documents are intentionally ambiguous in some areas. HP-UX specifies some of these.

char
The char type is treated as signed by default. It may be declared unsigned.

pointers
Dereference of a NULL (zero) pointer is illegal and may cause a SIGSEGV error. This applies
whether the access is for reading or writing. Some implementations may not be able to detect this
error, in this case the result of such an access is undefined. Programs which rely on being able to
derefrence a null pointer are not considered portable within HP-UX.

identifiers
Identifiers are Significant up to (at least) 255 characters. Whether or not longer identifiers are handled
is machine dependent. The assembler and loader must also support long identifiers to 255 charac­
ters.

HARDWARE DEPENDENCIES
Series 200:

FILES

The -g option is not currently supported.

An additional option, -XE, is supported. This option causes source code lines to be printed on
the assembly (.s) file as assembly comments, thus showing the correspondence between C source
and the resulting assembly code.

Series 500:
The -p and -g options are not currently supported.

An additional option, -v, is supported. This option enables verbose mode, which produces a
step-by-step description of the compilation process.

The Id options p and v conflict with cc options, and thus cannot be accessed via cc.

The -B option is supported, but no substitute compiler passes are provided.

Cc currently supports I6-character identifiers, and I5-character external names.

The file llib/mcrtO.o is not currently supported.

file.c
file.o
a.out
Itmp/ctm*
llib/cpp
Ilib/ccom
llib/c2
llib/crtO.o
llib/mcrtO.o
llib/libc.a
lusr/include

input file
object file
linked output
temporary
preprocessor
compiler, cc
optional optimizer
runtime startoff
startoff for profiling
standard library, see section 3 of this manual
standard directory for #include files

-2-

CC(l)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
as(l), Id(l), prof(l), monitor(3C).

DIAGNOSTICS

CC(l)

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or the link editor.

-3-

CD(l)

NAME
cd - change working directory

SYNOPSIS
cd [directory I

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

CD(1)

If specified. directory becomes the new working directory: otherwise. the value of the shell parameter
$HOME is used. The process must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective if it were written as
a normal command: therefore, it is recognized and executed by the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

-1-

CDC(1) CDC(l)

NAME
cdc - change the delta commentary of an sees delta

SYNOPSIS
cdc -rSID [-m[mrlistll [-y[commentll files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Cdc changes the delta commentary. for the SID specified by the -r keyletter. of each named sees file.

Delta commentary is defined to be the Modification Request (MR) and comment information normally
specified via the delta (1) command (-m and -y keyletters).

If a directory is named. cdc behaves as though each file in the directory were specified as a named file.
except that non-sees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given. the standard input is read (see WARNINGS): each line
of the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc. which may appear in any order. consist of key letter arguments. and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of a delta for which the
delta commentary is to be changed.

-m[mrlistl If the sees file has the v flag set (see admin(l)) then a list of MR numbers to be
added and/or deleted in the delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no effect.

-y[comment 1

MR entries are added to the list of MRs in the same manner as that of delta (1).
In order to delete an MR. precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in the list of MRs. it is remo­
ved and changed into a "comment" line. A list of all deleted MRs is placed in
the comment section of the delta commentary and preceded by a comment line
stating that they were deleted.

If -m is not used and the standard input is a terminal. the prompt MRs? is issued
on the standard output before the standard input is read: if the standard input is
not a terminal. no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin(l)). it is taken to be the name of a
program (or shell procedure) which validates the correctness of the MR num­
bers. If a non-zero exit status is returned from the MR number validation pro­
gram. cdc terminates and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already existing for the delta speci­
fied by the -T keyletter. The previous comments are kept and preceded by a
comment line stating that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminaL the prompt com­
ments? is issued on the standard output before the standard input is read; if the
standard input is not a terminal. no prompt is issued. An unescaped new-line
character terminates the comment text.

The exact permissions necessary to modify the sees file are documented in the Source Code Con­
trol System User's Guide. Simply stated. they are either (1) if you made the delta, you can change
its delta commentary: or (2) if you own the file and directory you can modify the delta

-1-

COC(1) COC(1)

commentary.

EXAMPLES
cdc -r1.6 -m "bI78-12345 !bI77-54321 b179-00001 II -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list. removes b177-54321 from the MR list. and adds the
comment trouble to delta 1.6 of s.fiIe.

FILES

cdc -r1.6 s.file
MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

x-file (see delta(l))
z-file (see delta(l))

SEE ALSO
admin(l), delta(l), get(l), help(1), prs(l). sccsfile(5).
Source Code Control System User's Guide in HP-UX: Selected Articles.

DIAGNOSTICS
Use help (1) for explanations.

WARNINGS
If sees file names are supplied to the cdc command via the standard input (- on the command line).
then the -m and -y key letters must also be used.

-2-

CHATR(l) Series 500 Only CHATR(l)

NAME
chatr - change program's internal attributes

SYNOPSIS
Ilbio/chatr [+cI-c] [+gl-g] [+hl-h] [-mn] [+nl-o] [+pl-p] [-s] [+21-2] file ...

HP-UX COMPATIBILITY
Level: HP-Ux/OPTIONAL

Origin: HP

Remarks: Chatr is implemented on the Series 500 only.

DESCRIPTION
Chatr, by default, prints each file's magic number and file attributes to the standard output. With one or
more optional arguments, chatr performs the follOwing operations:

+ c set the virtual bit for each code segment.
-c clear the virtual bit for each code segment.

+ 9 set the virtual bit of the global data segment.
-g clear the virtual bit of the global data segment.

+ h set the virtual bit for the heap of a two data segment program.
-h clear the virtual bit for the heap of a two data segment program.

-mn
change the maximum heap size to n bytes.

+ 0 mark code as shareable (magic number = SHARLMAGIC).
-0 mark code as unshareable (magic number = EXEC_MAGIC).

+ P set the paged and virtual bits for the heap of a two data segment program.
-p clear the paged and virtual bits for the heap of a two data segment program.

-s perform action silently.

+ 2 set the demand load bit for each segment.
-2 clear the demand load bit for each segment.

Upon completion, chatr prints the file's old and new values to the standard output file, unless -s is in
effect.

RETURN VALUE
Chatr returns zero on success. If the call to chatr is syntactically incorrect, or one or more of the specified
files cannot be acted upon, chatT returns the number of files whose attributes could not be modified. If
no files are specified, chatT returns decimal 255.

SEE ALSO
Id(1), a.out(5), magic(5).

DIAGNOSTICS
ChatT generates an error message for the following conditions:

no arguments are supplied - in this case the syntax is printed to the standard error file;

cannot open a file;

a request is made to modify a file which is not EXEC~GIC or SHARE~GIC.

ChatT generates a warning message for the following conditions:

the + p, -p, + h, or -h option is specified for a file which is a one data segment program;

the -m option is specified for a file which is a one data segment program, or a file for which the
data is unpaged.

-1-

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
The permissions of each named file are changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who 1 op permission [op permission 1
The who part is a combination of the letters u (for user's permissions), 9 (group) and 0 (other). The let­
ter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file's mode, - to take away permission, or = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or group ID) and
t (save text - sticky); u, 9 or 0 indicate that permission is to be taken from the current mode. Omitting
permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or 9 and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file executable:

chmod o-w file

chmod + x file

SEE ALSO
Is(1), chmod(2).

-1-

CHOWN(l)

NAME
chown, chgrp - change file owner or group

SYNOPSIS
chown owner file .. .

chgrp group file .. .

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

CHOWN(l)

Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login
name found in the password file.

FILES

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or a
group name found in the group file.

In order to change the owner or group, you must own the file or be the super-user.

letc/passwd
lete/group

SEE ALSO
chown(2l, group(5l, passwd(5).

-1-

CHROOT(l)

NAME
chroot - change root directory for a command

SYNOPSIS
chroot newroot command

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

CHROOT(l)

The given command is executed relative to the new root. The meaning of any initial slashes (I) in path
names is changed for a command and any of its children to newroot. Furthermore, the initial working
directory is newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

Command includes both the command name and any arguments.

This command is restricted to the super-user.

Chroot does not search PATH for the location of command, so the absolute path name of command must
be given.

The new root path name is always relative to the current root. Even if a chroot is currently in effect, the
newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
Command cannot be in a shell script.

-1-

CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-IJ [-5 J file 1 file2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

CMP(l)

The two files are compared. (If file 1 is -, the standard input is used.) Under default options, cmp makes
no comment if the files are the same; if they differ. it announces the byte and line number at which the
difference occurred. If one file is an initial subsequence of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each difference.

-5 Print nothing for differing files; return codes only.

SEE ALSO
comm(l). diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files. and 2 for an inaccessible or missing
argument.

-1-

COL(1) COL(1)

NAME
col- filter reverse line-feeds and backspaces

SYNOPSIS
col [-bflpxl

HP-UX COMPATABILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It performs the line overlays
implied by reverse line-feeds (ASCI! code ESC-7), and by forward and reverse half-line-feeds (ESC-9
and ESC-B). It also will remove backspaces in favor of multiply overstruck lines. Col is particularly
useful for filtering multi-column output made with the .rt command of nroff(1) and output resulting from
use of the tbl (1) preprocessor.

If the -b option is given. col assumes that the output device in use is not capable of backspacing. In this
case, if two or more characters are to appear in the same place, only the last one read will be output.

If the -I option is given, col assumes the output device is a line printer (rather than a character printer)
and removes backspaces in favor of multiply overstruck full lines. It generates the minim un number of
print operations necessary to generate the required number of overstrikes. (All but the last print opera­
tion on a line are separated by carriage returns (",r); the last print operation is terminated by a newline
("'n).)

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full-line boundary. This treatment can
be suppressed by the -f (fine) option: in this case, the output from col may contain forward half-Iine­
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output wherever possible to shorten
printing time.

The ASCI! control characters SO (",017) and 51 (",016) are assumed by col to start and end text in an
alternate character set. The character set to which each input character belongs is remembered, and on
output 51 and SO characters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace. tab, return, new-line, 51, SO, VT
(",013). and ESC followed by 7, B. or 9. The VT character is an alternate form of full reverse line-feed,
included for compatibility with some earlier programs of this type. All other non-printing characters are
ignored.

Normally, col will ignore any unrecognized escape sequences found in its input; the -p option may be
used to cause col to output these sequences as regular characters. subject to overprinting from reverse
line motions. The use of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

Note that the input format accepted by col matches the output produced by nroff(1) with either the - T37
or -Tip options. Use - T37 (and the -f option of col) if the ultimate disposition of the output of col will be
a device that can interpret half-line motions. and -Tip otherwise.

SEE ALSO

BUGS

nroH(1), tbl(l).

Cannot back up more than 128 lines.
Allows at most 800 characters. including backspaces. on a line.
Local vertical motions that would result in backing up over the first line of the document are ignored. As
a result, the first line must not have any superscripts.

-1-

COMM(I) COMM(1)

NAME
comm - select/reject common lines of two files

SYNOPSIS
comm [- [12311 file1 file2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Comm reads/ilel andfile2, which should be ordered in ASCII collating sequence (see sort(1)), and pro­
duces a three-column output: lines only in file J; lines only in file2; and lines in both files. The file name
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the lines
common to the two files; comm -23 prints only lines in the first file but not in the second; comm -123 is
a no-op.

SEE ALSO
cmp(1), diff(1), sdiff(l), sort(l), uniq(l).

-1-

CPIO(l) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBvx 1
cpio -i [BcdmPrstuvx6 1 [patterns 1
cpio -p [adlmuvx 1 directory

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and copies those files onto the
standard output together with path name and status information.

Cpio -i (copy in) extracts from the standard input (which is assumed to be the product of a previous
cpio -o) the names of files selected by zero or more patterns given in the name-generating notation of
sh(I}. In patterns, metacharacters ?, *, and [... J match the slash / character. Multiple patterns may be
specified. If no patterns are specified, the default is * (Le., select all files). The extracted files are condi­
tionally created and copied into the current directory tree based upon the options described below.

Cpio -p (pass) reads the standard input to obtain a list of path names of files that are conditionally
created and copied into the destination directory tree based upon the options described beiow.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5120 bytes to the record (does not apply to the pass option;

recommended only with data directed to or from /dev/rmt?).
d Dir.ectories are to be created as needed.
c Write header information in ASCII character form for portability.
P Read a file written on a PDP-ll or VAX system (with byte swapping) that did not use the-c

option. Only useful with -i (copy in). Only bytes contained in the header are swapped. Non­
ascii files will probably need further processing to be readable; this processing requires
knowledge of the content of the file and thus cannot be done by this program. (PDP-ll and
VAX are registered trademarks of Digital EqUipment Corporation).

r Interactively rename files. If the user types a null line, the file is skipped.
s Identical to the P option, except that all bytes in the file are swapped (including the header).
t Print only a table of contents of the input. No files are created, read, or copied.
u Copy unconditionally (normally, an older file will not replace a newer file with the same name).
x Save or restore device special files. Mknod(2) will be used to recreate these files on a restore,

and thus -ix can only be used by the super-user. Restoring device files onto a different system
can be very dangerous. This is intended for intrasystem (backup) use.

v Verbose: causes a list of file names to be printed. When used with the t option, the table of con­
tents looks like the output of an Is -I command (see 1s(I)}.
Whenever possible, link files rather than copying them. Usable only with the -p option.

m Retain previous file modification time. This option is ineffective on directories that are being
copied.

6 Process an old (Le., UNIX Sixth Edition format) file. Only useful with -i (copy in).

When the end of the tape is reached, cpio will prompt the user for a new special file and continue.

Note that cpio archives created using a raw device file must be read using a raw device file.

If you want to pass one or more metacharacters to cpio without the shell expanding them, be sure to pre­
cede each ofthem with a backslash ("'-.).

-1-

CPIO(1) CPIO(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBvx 1

cpio ~i [BcdmPrstuvx6 1 [patterns 1
cpio -p [adlmuvx 1 directory

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and copies those files onto the
standard output together with path name and status information.

Cpio -i (copy in) extracts from the standard input (which is assumed to be the product of a previous
cpio -oj the names of files selected by zero or more patterns given in the name-generating notation of
sh (1). In patterns, metacharacters ?, *, and [... J match the slash I character. Multiple patterns may be
specified. If no patterns are specified, the default is * (Le., select all files). The extracted files are condi­
tionally created and copied into the current directory tree based upon the options described below.

Cpio -p (pass) reads the standard input to obtain a list of path names of files that are conditionally
created and copied into the destination directory tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5120 bytes to the record (does not apply to the pass option;

recommended only with data directed to or from /dev/rmt?).
d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
P Read a file written on a PDP-ll or VAX system (with byte swapping) that did not use the-c

option. Only useful with -i (copy in). Only bytes contained in the header are swapped. Non­
ascii files will probably need further processing to be readable; this processing requires
knowledge of the content of the file and thus cannot be done by this program. (PDP-ll and
VAX are registered trademarks of Digital Equipment Corporation).

r Interactively rename files. If the user types a null line, the file is skipped.
s Identical to the P option, except that all bytes in the file are swapped (including the header).
t Print only a table of contents of the input. No files are created, read, or copied.
u Copy unconditionally (normally, an older file will not replace a newer file with the same name).
x Save or restore device special files. Mknod(2) will be used to recreate these files on a restore,

and thus -ix can only be used by the super-user. RestOring device files onto a different system
can be very dangerous. This is intended for intrasystem (backup) use.

v Verbose: causes a list of file names to be printed. When used with the t option, the table of con­
tents looks like the output of an Is -I command (see Is(l)}.
Whenever possible, link files rather than copying them. Usable only with the -p option.

m Retain previous file modification time. This option is ineffective on directories that are being
copied.

6 Process an old (Le., UNIX Sixth Edition format) file. Only useful with -i (copy in).

When the end of the tape isreached, cpio will prompt the user for a new special file and continue.

If you want t9 pass one or more metacharacters to cpio without the shell expanding them, be sure to pre­
cede each of them with a backslash (,,).

Device files written with the -ox option (e.g. /dev/tty03) will not transport to other implementations of
HP-UX.

-1-

CPIO(1) CPIO(l)

Device files written with the -ox option (e.g. /dev/tty03) will not transport to other implementations of
HP-UX.

HARDWARE DEPENDENCIES
Series 200/500:

All files with i-nodes greater than or equal to 65535 are unlinkable with the -i option. A
separate copy of each file is made instead.

The number of blocks reported by cpio is always in units of 512-byte blocks, regardless of the
block size of the initialized media.

The -B option must be used when writing directly (Le. without using tcio(1)) to a CS-80 car­
tridge tape unit (HP 88140LlS). Warning: using cpio to write directly to a cartridge tape unit
can severely damage the tape drive in a short amount of time, and is therefore strongly
discouraged. The recommended method of writing to the cartridge tape unit is to use tcio(1) in
conjunction with cpio (note that -B must not be used when tcio(l) is used). Tcio(1) buffers data
into larger pieces, yielding better system performance and less wear and tear on the media and
tape drive. A minimum buffer size of 64K bytes is recommended. Note that the -B option also
must not be used when performing raw 110 to the internal miniature flexible disc drive (HP
9130K), if the I/O requires more than one volume.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second duplicates a direc­
tory hierarchy:

Is I cpio -0 >/dev/mtO

cd olddir
find . -print I cpio -pdl newdir

The trivial case II find . -print I cpio -oB > /dev/rmtO" can be handled more efficiently by:

find • -epio /dev/rmtO

SEE ALSO
ar(1), find(1), tar(1), tcio(1), cpio(5).

WARNING

BUGS

Do not redirect the output of cpio to a named cpio archive file which resides in the same directory as the
original files which are part of that cpio archive. This can cause loss of data.

Path names are restricted to 128 characters. If there are too many unique linked files, the program runs
out of memory to keep track of them and, thereafter, linking information is lost. Only the super-user can
copy special files.

Cpio tapes written on HP machines with the -ox[e] options can mislead (non-HP) versions of cpio
which do not support the -x option. If a non-HP (and non-Bell) version of cpio happens to be modified
so that (HP) cpio recognizes it as a device special file, a spurious device file could be created.

If /dev/tty is not accessible, cpio issues a complaint, or refuses to work.

The -pd option will not create the directory typed on the command line.

The -idr option will not make empty directories.

Cpio will fail while restoring files from a backup tape (epio -i) if the following conditions are met:

your working directory during the restore is not the root directory (I), and the files being res­
tored have multiple links, and their path names begin with slash (I).

If these conditions are met, the following occurs:

(1) The first file on the backup tape is restored correctly;
(2) The second file is removed, and the restore fails.

-2- '

CPIO(1) CPIO(l)

Note that the second file is removed before the restore fails!

Cpio then writes the message "Cannot link file] & file2" to stderr, but also writes "filel linked to file2 II

on stdout, as if everything went fine. The correct message is that written to stderr.

There are two work-arounds for this bug, either of which will solve the problem. The first is to make
sure that your working directory is the root directory during the restore process. The second is to use
relative file names (path names not beginning with slash) in your backup.

-3-

CPP(l) CPP(l)

NAME
cpp - C language preprocessor

SYNOPSIS
/lib/cpp [option ... 1 [ifile [ofile 11

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using the
cc(1) command. Its purpose is to process include and conditional compilation instructions, and macros.
The output of cpp is designed to be in a form acceptable as input to the next pass of the C compiler. As
the C language evolves, cpp and the rest of the C compilation package will be modified to follow these
changes. Therefore, the use of cpp other than in this framework is not suggested. The preferred way to
invoke cpp is through the cc(1) command, since the functionality of cpp may someday be moved
elsewhere.

Cpp optionally accepts two file names as arguments. [file and ofile are respectively the input and output
for the preprocessor. They default to standard input and standard output if not supplied.

The following options are recognized:

-P Preprocess the input without producing the line control information used by the next pass of
the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified, all comments (except
those found on cpp directive lines) are passed along.

-Uname

-Dname

Remove any initial definition of name, where name is a reserved symbol that is predefined by the
particular preprocessor. The current list of these possibly reserved symbols includes:

operating system: mert, ibm, gcos, os, tss, unix
hardware: hp9000s500, hp9000s200, interdata, pdpU,

u370, u3b,vax
UNIX System variant: RES, RT, TS, PWB

-Dname = def
Define name as if by a #define directive. If no = defis given, name is defined as 1.

-Idir Change the algorithm for searching for #include files whose names do not begin with / to look
in dir before looking in the directories on the standard list. Thus, #include files whose names
are enclosed in " " will be searched for first in the directory of the ifile argument, then in direc­
tories named in -I options, and last in directories on a standard list. For #include files whose
names are enclosed in < >, the directory of the ifile argument is not searched.

Two special names are understood by cpp. The name __ LINE __ is defined as the current line number
(as a decimal integer) as known by cpp, and __ FILE __ is defined as the current file name (as a C string)
as known by cpp. They can be used anywhere (including in macros) just as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string (token-string may be null).

#define name(arg, ... , arg) token-string
Replace subsequent instances of name, followed by (, a list of comma separated tokens, and a),
by token-string, where each occurrence of an arg in the token-string is replaced by the correspon­
ding token in the comma separated list. Note that there must be no space between name and (.

-1-

CPP(1)

FILES

CPP(l)

#undefname
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run through cpp). When the
<filename> notation is used, filename is only searched for in the standard places. See the -I
option above for more detail.

#line integer-constant "filename"
Cause cpp to generate line control information for the next pass of the C compiler. Integer­
constant is the line number of the next line and filename is the file from which it comes. If
"filename" is not given, the current file name is unchanged.

#endif Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test directive
must have a matching #endif.

#ifdefname
The lines folloWing will appear in the output if and only if name has been the subject of a pre­
vious #define without being the subject of an intervening #undef, or if it is a currently defined
reserved symbol.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of pre­
vious #define without being the subject of an intervening #undef.

#if constant-expression
Lines folloWing will appear in the output if and only if the constant-expression evaluates to non­
zero. All binary non-assignment C operators, the ?: operator, the unary -, !, and - operators
are all legal in constant-expression. The precedence of the operators is the same as defined by
the C language. There is also a unary operator defined, which can be used in constant­
expression in these two forms: defined (name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer constants, and names which are
known by cpp should be used in constant-expression. In particular, the sizeof operator is not
available.

#else Reverses the notion of the test directive which matches this directive. Thus, if lines previous to
this directive are ignored, the following lines will appear in the output, and vice-versa.

The test directives and the possible #else directives can be nested.

lusr/include

SEE ALSO

standard directory for #include files

cc(l).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

-2-

CRYPT(l) CRYPT(l)

NAME
crypt - encode/decode files

SYNOPSIS
crypt [password 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key that .
selects a particular transformation. If no password is given. crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve;
direct search of the key space must be infeasible: "sneak paths" by which keys or clear text can become
visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a
256-element rotor. Methods of attack on such machines are known, but not Widely; moreover the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be
expensive, i.e. to take a substantial fraction of a second to compute. However. if keys are restricted to
(say) three lower-case letters. then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.

Since the key is an argument to the crypt command. it is potentially visible to users executing ps (1) or a
derivative. To minimize this possibility. crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l), makekey(8).

If output is piped to nroff(1) and the encryption key is not given on the command line, crypt can leave
terminal modes in a strange state (see st{Y (1)).

-1-

CU(1C) CU(1C)

NAME
cu - call another UNIX system; terminal emulator

SYNOPSIS
eu [-sspeed 1 [-aacu 1 [-Iline 1 [-h 1 [-q 1 [-ol-e 1 telno
eu [-sspeed 1 [-h 1 [-q 1 [-0 I -e 1 -Iline dir

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Cu on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an interactive
conversation with possible transfers of ASCII files. Speed gives the tral'll6mission speed (110, 150, 300,
1200, 4800, 9600); 300 is the default value. Most modems restrict you to choose between 300 and
1200.

When using a direct-connect line, the -s option has no effect. The first line which matches the -I option
is used, and its speed is taken from L-devices.

The -a and -I options may be used to specify device names for the ACU and communications line dev­
ices. They can be used to override searching for the first available ACU with the right speed.

The -h option emulates local echo, supporting calls to other computer systems which expect terminals
to be in half-duplex mode.

The -q option invokes the use of ENQ/ACK handshake.

The -e (-0) option deSignates that even (odd) parity is to be generated for data sent to the remote.

Telno is the telephone number, with equal signs for secondary dial tone or minus signs for delays, at
appropriate places. The string dir for telno must be used for directly connected lines, and implies a null
ACU.

Cu will try each line listed in the file lusr/lib/uuep/L-devices until it finds an available line with appropri­
ate attributes or runs out of entries. After making the connection, cu runs as two processes: the transmit
process reads data from the standard input and, except for lines beginning with -, passes it to the remote
system; the receive process accepts data from the remote system and, except for lines beginning with -,
passes it to the standard output. Normally, an automatic DC3/DC1 protocol is used to control input from
the remote so the buffer is not overrun. Lines beginning with - have special meanings.

The transmit process interprets the following:

-!

-!cmd .. .

-$cmd .. .

-%take from [to 1

-%put from [to 1

-nostop

terminate the conversation.

escape to an interactive shell on the local system.

run cmd on the local system (via sh -e).

run cmd locally and send its output to the remote system.

copy file from (on the remote system) to file to on the local system. If to is omit­
ted, the from argument is used in both places.

copy file from (on local system) to file to on remote system. If to is omitted, the
from argument is used in both places.

send the line -. .. to the remote system. If you use cu on the remote system to
access a third remote system, send -. to cause the second remote cu to exit.

turn off the DC3/DC1 input control protocol for the remainder of the session.
This is useful in case the remote system is one which does not respond properly
to the DC3 and DCI characters,

-1-

CU(lC) CU(1C)

FILES

The receive process normally copies data from the remote system to its standard output. A line from the
remote that begins with -> initiates an output diversion to a file. The complete sequence is:

->[> l:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file. The trailing -> terminates the
diversion.

The use of -%put requires stty(l) and cat(l) on the remote side. It also requires that the current erase
and kill characters on the remote system be identical to the current ones on the local system.
Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo(1) and cal(l) on the remote system. Also, stty tabs
mode should be set on the remote system if tabs are to be copied without expansion.

lusr/lib/uucp/L-devices
lusrlspoolluucp/LCK .. (tty-device)
Idev/null

SEE ALSO
cat(l), echo(l), stty(1), uucp(lC), dh(4), dn(4), tty(4).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

There is an artificial slowing of transmission by cu during the -%put operation so that loss of data is
unlikely.

-2-

CUT(1) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -c list [file 1 file2 ... J
cut -flist [-d char J [-s J [file 1 file2 ... J

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file: in data base parlance, it
implements the projection of a relation. The fields as specified by list can be fixed length, Le., character
positions as on a punched card (-c option). or the length can vary from line to line and be marked with
a field delimiter character like tab (-f option). Cut can be used as a filter: if no files are given, the stan­
dard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order). with optional - to indi­
cate ranges as in the -0 option of nroffitrofffor page ranges: e.g., 1,4,7: 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field).

-elist The list following -c (no space) specifies character positions (e.g., -c1-72 would pass the first
72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file by a delimiter character
(see -d); e.g .. -fl,7 copies the first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings). unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default is tab. Space or other
characters with special meaning to the shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option. Unless specified, lines with
no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

Hints
Use grep (1) to make horizontal "cuts" (by context) through a file. or paste (1) to put files together
column-wise (Le., horizontally). To reorder columns in a table. use cut and paste.

EXAMPLES
cut -d: -fl ,5 letc!passwd mapping of user [D to names

name = 'who am i I cut -fl -d" ", to set name to current login name.

SEE ALSO
grep(1). paste (1).

DIAGNOSTICS
line too long A line can have no more than 511 characters or fields.

bad list for c If option Missing -c or -f option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

no fields The list is empty.

-1-

DATE(1) DATE(1)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+ format]

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and time are printed. Oth­
erwise, the current date is set. The first mm is the month number; dd is the day number in the month; hh
is the hour number (24 hour system); the second mm is the minute number; yy is the last 2 digits of the
year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The system
operates in GMT. Date takes care of the conversion to and from local standard and daylight time.

Attempting to set the date backwards generates a warning, and requires an extra confirmation from the
(super-) user.

If the argument begins with +, the output of date is under the control of the user. The format for the
output is similar to that of the first argument to printj(3S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by % and will be replaced in the output by its correspon­
ding value. A single % is encoded by % %. All other characters are copied to the output without
change. The string is always terminated with a new-line character.

Date writes an accounting record on the file lusr/adm/wtmp.

Field DeSCriptors:
n insert a new-line character
t insert a tab character
m month of year- 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour-00t023
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

Julian date - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

HARDWARE DEPENDENCIES
Series 500:

The file Idev/kmem is not used.

Do not change the date and/or time in the BASIC language system if your machine also runs HP-

-1-

DATE(1)

Ux. The two operating systems' date and time are incompatible.

EXAMPLE
date' + DATE: %m/%d/%y%nTIME: %H:')\,M:%S'

FILES

would generate as output:

DATE: 08/01176
TIME: 14:45:05

/dev/kmem
/usr/adm/wtmp

SEE ALSO
ctime(3C).

DIAGNOSTICS
No permission if you aren't the super-user and you try to change the date:

bad conversion if the date set is syntactically incorrect:

bad format character if the field descriptor is not recognizable.

-2-

DATE(l)

DD(1) DD(1)

NAME
dd - convert. reblock. translate. and copy a (tape) file

SYNOPSIS
dd [option = value 1 ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block size may be specified to take advantage of
raw physicalliO.

option
if= file
of= file
ibs=n
obs=n
bs=n

cbs=n
skip = n
seek=n
count=n
conv = ascii

ebcdic
ibm
lease
uease
swab
noerror

values
input file name: standard input is default.
output file name: standard output is default.
input block size. n bytes (default 512).
output block size (default 512).
set both input and output block size. superseding ibs and obs: also. if no conversion is
specified. it is particularly efficient since no in-core copy need be done.
conversion buffer size.
skip n input records before starting copy.
seek n records from beginning of output file before copying.
copy only n input records.
convert EBCDIC to ASCII.
convert ASCII to EBCDIC.
slightly different map of ASCII to EBCDIC.
map alphabetics to lower case.
map alphabetics to upper case.
swap every pair of bytes.

do not stop processing on an error.
sync pad every input record to ibs .
. . . , .. , several comma-separated conversions.

Where sizes are specified. a number of bytes is expected. A number may end with k. b, or w to specify
multiplication by 1024, 512, or 2 respectively: a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and trailing blanks are trimmed and a new-line is added
before sending the line to the output. In the latter case ASCII characters are read into the conversion
buffer, converted to EBCDIC. and blanks added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten SO-byte EBCDIC card images per record into the
ASCII file x :

dd if = Idev/rmtO of = x ibs = sao cbs = SO conv = ascii.lcase

Note the use of raw magtape. Dd is especially suited to IiO on the raw physical devices because it allows
reading and writing in arbitrary record sizes.

SEE ALSO
cp(1), tr(l).

-1-

00(1) 00(1)

DIAGNOSTICS

BUGS

f + P records in(out) numbers of full and

The ASCll/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov,
1968. The ibm conversion. while less widely accepted as a standard. corresponds better to certain IBM
print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCll; padding is done only on conversion to EBCDIC.
These should be separate options.

-2-

DELTA(1) DELTA(l)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID1 [-sl [-n1 [-glist1 [-m[mrlist11 [-y[comment11 [-p1 files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes that were made to the file
retrieved by get(l) (called the g-file. or generated file).

Delta makes a delta to each named sees file. If a directory is named. delta behaves as though each file
in the directory were specified as a named file. except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of - is given. the stan­
dard input is read (see WARNINGS): each line of the standard input is taken to be the name of an sees
file to be processed.

Delta may issue prompts on the standard output depending upon certain key letters specified and flags
(see admin (1)) that may be present in the sees file (see -m and -y key letters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the sees file. The use of this
keyletter is necessary only if two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person (login name). The SID value
specified with the -r key letter can be either the SID specified on the get com­
mand line or the SID to be made as reported by the get command (see get(1)).
A diagnostic results if the specified SID is ambiguous. or, if necessary and omit­
ted on the command line.

-s

-n

-glist

-m[mrlist1

-y[comment1

Suppresses the issue. on the standard output, of the created delta's SID, as well
as the number of lines inserted. deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally removed at completion of delta
processing).

Specifies a list (see get(l) for the definition of list) of deltas which are to be
ignored when the file is accessed at the change level (SID) created by this delta.

If the sees file has the v flag set (see admin(1)) then a Modification Request
(MR) number must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal. the prompt MRs? is
issued on the standard output before the standard input is read: if the standard
input is not a terminal. no prompt is issued. The MRs? prompt always precedes
the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin(l)). it is t<;lken to be the name of a
program (or shell procedure) which will validate the correctness of the MR num­
bers. If a non-zero exit status is returned from MR number validation program,
delta terminates (it is assumed that the MR numbers were not all valid).

Arbitrary text used to describe the reason for making the delta. A null string is
. considered a valid comment.

If -y is not specified and the standard input is a terminal. the prompt com­
ments? is issued on the standard output before the standard input is read; if the
standard input is not a terminal. no prompt is issued. An unescaped new-line

-1-

DELTA(l) DELTA(l)

FILES

-p

character terminates the comment text.

Causes delta to print (on the standard output) the sees file differences before
and after the delta is applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code Control System User's Guide. The naming con­
vention for these files is also described there. All files below except the g-file are created in the same
directory as the s-file. The g-file is created in the user's working directory.

g-file Existed before the execution of delta; removed after completion of delta (unless -n was

p-file
q-file
x-file
z-file
d-file
/usrlbinlbdiff

specified).
Existed before the execution of delta; may exist after completion of delta.
Created during the execution of delta; removed after completion of delta.
Created during the execution of delta; renamed to sees file after completion of delta.
Created during the execution of delta; removed during the execution of delta.
Created during the execution of delta; removed after completion of delta.
Program to compute differences between the "gotten" file and the g-file.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(1), sccsfile(5).
Source Code Control System User's Guide in HP-UX: Selected Articles.

DIAGNOSTICS
Use help (1) for explanations.

WARNINGS
Lines beginning with an SOH ASCII character (octal 001) cannot be placed in the sees file unless the
SOH is escaped. This character has special meaning to sees (see sccsfile(5)) and will cause an error.

A get of many sees files, follow.ed by a delta of those files, should be avoided when the get generates a
large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y keyletters
must also be present. Omission of these key letters causes an error to occur.

-2-

DEROFF(l) DEROFF(l,

NAME
deroff - remove nroffltroff, tbL and eqn constructs

SYNOPSIS
deroff [-w 1 [-mx 1 [files 1

HP-UX COMPATIBILITY
Level:

Origin:

Text processing - HP-UX/EXTENDED

System III

DESCRIPTION
Deroff reads each of the files in sequence and removes alltroff(1) requests, macro calls, backslash con­
structs, eqn(l) constructs (between .EQ and .EN lines, and between delimiters), and tbl(l) descriptions,
and writes the remainder of the file on the staJ;dard output. Deroff follows chains of included files (.so
and .nx troff commands); if a file has already been included, a .so naming that file is ignored and a .nx
naming that file terminates execution. If no input file is given, deroff reads the standard input.

The -m option may be followed by an m, s, or I. The resulting -mm or -ms option causes the mm or
ms macros to be interpreted so that only running text is output (Le .. no text from macro lines.) The -ml
option forces the -mm option and also causes deletion of lists associated with the mm macros.

If the -w option is given, the output is a word list, one II word" per line, with all other characters deleted.
Otherwise, the output follows the originaL with the deletions mentioned above. In text, a II word II is any
string that contains at least two letters and is composed of letters. digits, ampersands (&). and apos­
trophes (/); in a macro call, however. a "word" is a string that begins with at least two letters and con­
tains a total of at least three letters. Delimiters are any characters other than letters, digits, apostrophes,
and ampersands. Trailing apostrophes and ampersands are removed from II words ".

SEE ALSO

BUGS

eqn(l), tbl(l), troff(l).

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most such errors
result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

-1-

DF(1)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t 1 [-f 1 [file-systems 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

DF(l)

Df prints out the number of free blocks and free i-nodes available for on-line file systems by examining
the counts kept in the super-blocks: file-systems may be specified either by device name or by mounted
directory name. If the file-systems argument is unspecified, the free space on all of the mounted file sys­
tems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free i-nodes are not repor­
ted). With this option, dfwill report on raw devices.

HARDWARE DEPENDENCIES
Series 500:

Df cannot report on unmounted raw devices.

FILES
Idev/HP79*
Idev/HP91 *
Idev/HP98*
Idev/HP829* 1
letc/mnttab

SEE ALSO
du(l), fs(5), mnttab(5), fsck(8).

-1-

DlFF(l) DlFF(l)

NAME
diff, diffh - differential file comparator

SYNOPSIS
diff [-efbh 1 file 1 file2

lusr/lib/diffh file1 file2

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to bring them into agreement. If filel (file2) is -, the
standard input is used. If filel (file2) is a directory. then a file in that directory with the name file2 (filel)
is used. The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 cn3,n4

These lines resemble ed commands to convert file! into file2. The numbers after the letters pertain to
file2. In fact, by exchanging a for d and reading backward one may ascertain equally how to convert
file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <, then all the
lines that are affected in the second file flagged by >.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to com­
pare equal.

The -e option produces a script of a, c and d commands for the editor ed. which will recreatefile2 from
filel. The -f option produces a similar script. not useful with ed. in the opposite order. In connection
with -e, the follOWing shell program may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-version ed scripts ($2,$3, ...) made by diff need be on hand. A "latest
version" appears on the standard output.

(shift; cat$*; echo 'l,$p') ed-$l

Except in rare circumstances. diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches of text are short and
well-separated, but does work on files of unlimited length. Options -e and -f are unavailable with -h.

Diffh is equivalent to diff-h. It must be invoked as shown above in the synopsis. unless the PATH vari­
able in your environment includes the directory lusr/Jib.

Itmp/d?????
lusr/lib/diffh for-h

SEE ALSO
cmp(l), comm(l), diff3(1). diffmk(l), dircmp(l}, ed(l), sccsdiff(l), sdiff(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines consisting of a single
period (.).

The specified files must contain ASCII text in the same format as that produced by the HP-UX editors (ed,
ex, vi). That is, all lines (including the last) must end with a new-line. Diffwill not recognize a final line if
the terminating new-line is not there.

-1-

D1FFMK(1) D1FFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk name 1 name2 name3

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes "change mark" commands
for nroff(l) or troff(l). Name] and name2 are the old and new versions of the file. Diffmk generates
name3, which contains the lines of name2 plus inserted formatter" change mark" (.mc) requests. When
name3 is formatted, changed or inserted text is shown by at the right margin of each line. The position
of deleted text is shown by a single *.

If anyone is so inclined, he can use diffmk to produce listings of C (or other) programs with changes
marked. A typical command line for such use is:

diffmk old.c new.c tmp: moff macs tmp I pr

where the file macs contains:

.pl 1

.11 77

.nf

.eo

.nc

The .11 request might specify a different line length, depending on the nature of the program being prin­
ted. The .eo and .nc requests are probably needed only for C programs.

If the characters I and * are inappropriate, a copy of diffmk can be edited to change them (diffmk is a
shell procedure).

SEE ALSO

BUGS

diff(1), moff(1).

Aesthetic considerations may dictate manual adjustment of some output. File differences involving only
formatting requests may produce undesirable output i.e., replacing .sp by .sp 2 will produce a "change
mark" on the preceding or following line of output.

-1-

DlRCMP(l)

NAME
dircmp - directory difference comparison

SYNOPSIS
dircmp dir 1 dir2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

DlRCMP(l)

Dircmp examines dirl and dir2 and generates various tabulated information about the contents of the
directories. Listings of files that are unique to each directory are generated in addition to a list that indi­
cates whether the files common to both directories have the same contents.

SEE ALSO
cmp(l), diff(l).

-1-

DU(1) DU(1)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars 1 [names 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) directories within each directory
and file specified by the names argument. The block count includes the indirect blocks of the file. If
names is missing, . is used.

The optional argument -s causes only the grand total (for each of the specified names) to be given. The
optional argument -a causes an entry to be generated for each file. Absence of either causes an entry to
be generated for each directory only.

Du is normally silent about directories that cannot be read. files that cannot be opened, etc. The-r
option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more than once.
Files with holes in them will get an incorrect block count.
If multiple links are involved, du can give different results, depending on the order of names.

-1-

ECHO(l)

NAME
echo - echo (print) arguments

SYNOPSIS
echo [arg J ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

ECHO(l)

Echo writes its arguments separated by blanks and terminated by a new-line on the standard output. It
also understands C-Iike escape conventions; beware of conflicts with the shell's use of "-.:

"-. b backspace
"-.c print line without new-line
"-.f form-feed
"-.0 new-line
"-.r carriage return
"-.t tab
"-. "-. backslash
"-.n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n, which must

start with a zero.

Echo is useful for producing diagnostics in command files and for sending known data into a pipe.

SEE ALSO
sh(1).

-1-

ED(1) ED(1)

NAME
ed - text editor

SYNOPSIS
ed [- 1 [-x 1 [file 1

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: System III

DESCRIPTION
Ed is the standard (line-oriented) text editor. If the file argument is given, ed simulates an e command
(see below) on the named file; that is to say, the file is read into ed's buffer so that it can be edited. The
optional- suppresses the printing of character counts bye, r, and w commands, of diagnostics from e
and q commands, and of the! prompt after a !shell command. If -x is present, an x command is simula­
ted first to handle an encrypted file. Ed operates on a copy of the file it is editing; changes made to the
copy have no effect on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a single­
character command, possibly followed by parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has default addresses, so that the
addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This
text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (e.g., s) to specify portions of a line that are to be substituted. A
regular expression (RE) specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:

The follOWing one-character RE s match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE that matches
itself.

1.2 A backslash (,,) followed by any special character mentioned below is a one-character RE that
matches the special character itself. The special characters are:

a. " *, [, and " (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([]; see 1.4 below).

b. A (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 3.2 below),
or when it immediately follows the left of a pair of square brackets ([]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is special for that RE (for
example, see how slash (I) is used in the g command, below.)

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches anyone character in that string. If, however, the first character of the string is a circumflex
n, the one-character RE matches any character except new-line and the remaining characters in
the string. The A has this special meaning only if it occurs first in the string. The minus (-) may be
used to indicate a range of consecutive ASCII characters; for example, [0-9] is eqUivalent to
[0123456789]. The -loses this special meaning if it occurs first (after an initial A, if any) or last in
the string. The right square bracket (]) does not terminate such a string when it is the first character
within it (after an initial A, if any); e.g., []a-f] matches either a right square bracket (]) or one of the

-1-

ED(I) ED(I)

letters a through f inclusive. The four characters listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest leftmost string that permits a match is
chosen.

2.3 A one-character RE followed by "{m"}, "{m, "}, or "{m,n,,} is a RE that matches a range of
occurrences of the one-character RE. The values of m and n must be non-negative integers less
than 256; "{ m "} matches exactly m occurrences; "{ m, "} matches at least m occurrences;
"{ m,n "} matches any number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the strings matched by each
component of the RE.

2.5 A RE enclosed between the character sequences "(and ") is a RE that matches whatever the
unadorned RE matches.

2.6 The expression "n matches the same string of characters as was matched by an expression
enclosed between "(and ") earlier in the same RE. Here n is a digit; the sub-expression speci­
fied is that beginning with the n-th occurrence of "(counting from the left. For example, the
expression A,,(.* ,,),,1$ matches a line consisting of two repeated appearances of the same
string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a line (or
both):

3.1 A circumflex n at the beginning of an entire RE constrains that RE to match an initial segment of a
line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match afinal segment of a
line. The construction Aentire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last paragraph before FILES
below.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; the exact effect on the current line is
discussed under the description of each command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ' x addresses the line marked with the mark name character x, which must be a lower-case letter.
Lines are marked with the k command described below.

5. A RE enclosed by slashes (I) addresses the first line found by searching forward from the line fol­
lowing the current line toward the end of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the beginning of the buffer and con­
tinues up to and including the current line, so that the entire buffer is searched. See also the last
paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching backward from the
line preceding the current line toward the beginning of the buffer and stopping at the first line con­
taining a string matching the RE. If necessary, the search wraps around to the end of the buffer and
continues up to and including the current line. See also the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number specifies

-2-

ED(l) ED(l)

that address plus (respectively minus) the indicated number of lines. The plus sign may be omit­
ted.

8. If an address begins with + or -, the addition or subtraction is taken with respect to the current
line: e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the address, respectively. As
a consequence of this rule and of rule 8 immediately above. the address - refers to the line pre­
ceding the current line. (To maintain compatibility with earlier versions of the editor, the character
• in addresses is entirely equivalent to -.) Moreover, trailing + and - characters have a cumulative
effect. so - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for the
pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the
presence of an address as an error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given: if more addresses are given than such a
command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (.). They may also be separated by a
semicolon (;). In the latter case, the current line (.) is set to the first address. and only then is the second
address calculated. This feature can be used to determine the starting line for forward and backward
searches (see rules 5. and 6. above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address: they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command (except
e, f, r, or w) may be suffixed by p or by I, in which case the current line is either printed or listed, respec­
tively, as discussed below under the p and I commands.

(.)a
<text>

(.)c
<text>

(.,.)d

efile

Efile

The append command reads the given text and appends it after the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this
command: it causes the" appended" text to be placed at the beginning of the buffer.

The change command deletes the addressed lines. then accepts input text that replaces these
lines: . is left at the last line input, or, if there were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the
new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and then the named
file to be read in; . is set to the last line of the buffer. If no file name is given, the currently­
remembered file name, if any, is used (see the f command). The number of characters read is
typed; file is remembered for possible use as a default file name in subsequent e, r, and w com­
mands. If file begins with!, the rest of the line is taken to be a shell (sh (1)) command whose
output is to be read. Such a shell command is not remembered as the current file name. See
also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any changes have
been made to the buffer since the last w command.

-3-

ED(l)

ffile

ED(1)

If file is given, the file-name command changes the currently-remembered file name to file;
otherwise, it prints the currently-remembered file name.

(l,$)gIRElcommand list
In the global command, the first step is to mark every line that matches the given RE. Then, for
every such line, the given command list is executed with. initially set to that line. A single .com­
mand or the first of a list of commands appears on the same line as the global command. All
lines of a multi-line list except the last line must be ended with a "'-: a, i. and c commands and
associated input are permitted; the. terminating input mode may be omitted if it would be the
last line of the command list. An empty command list is eqUivalent to the p command. The g, G,
v, and V commands are not permitted in the command list. See also BUGS and the last
paragraph before FILES below.

(l,$)GIREI

h

H

(.)i
<text>

In the interactive Global command, the first step is to mark every line that matches the given
RE. Then, for every such line, that line is printed, . is changed to that line, and anyone com­
mand (other than one of the a, c, i, g. G, v, and V commands) may be input and is executed.
After the execution of that command, the next marked line is printed, and so on; a new-line acts
as a null command; an & causes the re-execution of the most recent command executed within
the current invocation of G. Note that the commands input as part of the execution of the G
command may address and affect any lines in the buffer. The G command can be terminated
by an interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that explains the reason for the most recent?
diagnostic.

The Help command causes ed to enter a mode in which error messages are printed for all sub­
sequent ? diagnostics. It will also explain the previous ? if there was one. The H command
alternately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; . is left at the last inserted
line, or, if there were none, at the addressed line. This command differs from the a command
only in the placement of the input text. Address 0 is not legal for this command.

(.,. + 1)j

(.)kx

(• , .)1

The join command joins contiguous lines by removing the appropriate new-line characters. If
only one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a lower-case letter.
The address I x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing
characters (e.g., tab, backspace) are represented by (hopefully) mnemonic overstrikes, all other
non-printing characters are printed in octal, and long lines are folded. An I command may be
appended to any other command other than e, f, r, or w.

(.,.)ma
The move command repositions the addressed line(s) after the line addressed by a. Address 0
is legal for a and causes the addressed liners) to be moved to the beginning of the file; it is an
error if address a falls within the range of moved lines: . is left at the last line moved.

-4-

ED(l)

(.,.)n

(.,.)p

p

q

Q

($)r file

ED(1)

The number command prints the addressed lines, preceding each line by its line number and a
tab character; . is left at the last line printed. The n command may be appended to any other
command other than e, f, r, or w.

The print command prints the addressed lines; . is left at the last line printed. The p command
may be appended to any other command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a '* for all subsequent commands. The P command alternately
turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done (but see
DIAGNOSTICS below).

The editor exits without checking if changes have been made in the buffer since the last w com­
mand.

The read command reads in the given file after the addressed line. If no file name is given, the
currently-remembered file name, if any, is used (see e and f commands). The currently­
remembered file name is not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at the beginning of the buf­
fer. If the read is successful, the number of characters read is typed; . is set to the last line read
in. Iffile begins with !, the rest of the line is taken to be a shell (sh(1)) command whose output
is to be read. Such a shell command is not remembered as the current file name.

(.,.)s/RE/replacement/ or
(. , ')s/RE/replacement/g

(.,.)ta

The substitute command searches each addressed line for an occurrence of the specified RE. In
each line in which a match is found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator 9 appears after the command. If the global indi­
cator does not appear, only the first occurrence of the matched string is replaced. It is an error
for the substitution to fail on all addressed lines. Any character other than space or new-line
may be used instead of / to delimit the RE and the replacement; . is left at the last line on which a
substitution occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the RE on
the current line. The special meaning of & in this context may be suppressed by preceding it by
"". As a more general feature, the characters ""n, where n is a digit, are replaced by the text
matched by the n-th regular subexpression of the specified RE enclosed between ""(and "").
When nested parenthesized sub expressions are present, n is determined by counting
occurrences of "" (starting from the left. When the character % is the only character in the
replacement. the replacement used in the most recent substitute command is used as the repla­
cement in the current substitute command. The % loses its special meaning when it is in a repla­
cement string of more than one character or is preceded by a "".

A line may be split by substituting a new-line character into it. The new-line in the replacement
must be escaped by preceding it by"". Such substitution cannot be done as part of a g or v
command list.

This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which may be 0); . is left at the last line of the copy.

-5-

ED(l)

FILES

u

ED(l)

The undo command nullifies the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i,j, m, r, s, t, v, G, or V command.

(1 , $)vlRElcommand list
This command is the same as the global command g except that the command list is executed
with. initially set to every line that does not match the RE.

(1, $)VIREI
This command is the same as the interactive global command G except that the lines that are
marked during the first step are those that do not match the RE.

(1, $)w file

x

($)=

The write command writes the addressed lines into the named file. If the file does not exist, it is
created with mode 666 (readable and writable by everyone), unless your umask setting (see
sh (1)) dictates otherwise. The currently-remembered file name is not changed unless file is the
very first file name mentioned since ed was invoked. If no file name is given, the currently­
remembered file name, if any, is used (see e and f commands); . is unchanged. If the com­
mand is successful, the number of characters written is typed. If file begins with I, the rest of the
line is taken to be a shell (sh(l)) command whose output is written to the specified file, or to the
currently-remembered file. Such a shell command is not remembered as the current file name.

A key string is demanded from the standard input. Subsequent e, r, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(l). An explicitly empty key
turns off encryption.

The line number of the addressed line is typed; . is unchanged by this command.

Ishell command
The remainder of the line after the 1 is sent to the HP-UX shell (sh(l)) to be interpreted as a
command. Within the text of that command, the unescaped character % is replaced with the
remembered file name; if a 1 appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus. II will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; . is unchanged.

(. + 1)<new-Iine>
An address alone on a line causes the addressed line to be printed. A new-line alone is
eqUivalent to. + Ip; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Some size limitations: 512 characters per line. 256 characters per global command list, 64 characters per
file name, and 128K characters in the buffer. The limit on the number of lines depends on the amount
of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last new-line. Files
(e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g .. I) would be the last character before a
new-line, that delimiter may be omitted, in which case the addressed line is printed. The following pairs
of commands are equivalent:

Itmp/e#
ed.hup

s/s1ls2 s/s1ls2/p
gls1 g/s1lp
?sl ?sl?

temporary; # is the process number.
work is saved here if the terminal is hung up.

-6-

ED(1) ED(1)

SEE ALSO
awk(1), crypt(l), ex(l), grep(l), sed(l), sh(l), vi(l).
The ed Editor, in HP-UX: Selected Articles.

DIAGNOSTICS

BUGS

? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns
the user if an attempt is made to destroyed's buffer via the e or q commands: it prints? and allows one
to continue editing. A second e or q command at this point will take effect. The - command-line option
inhibits this feature.

A! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if the the editor is
invoked from a restricted shell (see sh(l)).
The sequence '" n in a RE does not match any character.
The I command mishandles DEL.
Files encrypted directly with the crypt(l) command with the null key cannot be edited.
Because 0 is an illegal address for the w command, it is not possible to create an empty file with ed.

-7-

ENV(1) ENV(1)

NAME
env - set environment for command execution

SYNOPSIS
env [-J [name = value J ... [command args J

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Env obtains the current environment. modifies it according to its arguments. then executes the command
with the modified environment. Arguments of the form name = value are merged into the inherited
environment before the command is executed. The - flag causes the inherited environment to be
ignored completely, so that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed. one name-value pair per line.

SEE ALSO
sh(l), exec(2). profile(5), environ(7).

-1-

ERR(1) Series 500 Only ERR(l)

NAME
err - report error information on last failure

SYNOPSIS
err

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

Remarks: Err is implemented on the Series 500 only.

DESCRIPTION
Err produces error information on the standard output for the last command which failed. The erma,
errinfa, and octal trapna values are listed.

Error information on the last child process which reported a failure is inherited across afark and cleared
by exec. The error values are also passed back from child to parent to grandparent as long as no errors
were detected in the intermediate parent. Intervening commands which are executed successfully have
no effect on the saved error information. If a command thinks it successfully completed, and returns an
exit status of zero, no error information will be returned.

In general, the values reported are for a kernel intrinsic which failed, although values of erma or errinfa
which are set by libraries or commands will also be reported.

SEE ALSO
errno(2), errinfo(2), trapno(2).

WARNING

BUGS

This command may change in future releases of HP-UX. Err is intended for diagnostic purposes only.

Information on a real error can be masked by "normal" errors caused by library routines or commands.
For example, the library routine isatty will generate the error ENOTTY during normal operation.

-1-

EX(1) EX(1)

NAME
ex, edit, e, expreserve, exrecover - text editor commands

SYNOPSIS
ex [-] [-v] [-ttag] [-r] [-I] [-wn] [-x] [-R] [+ command] name ...
edit [ex options]
e [ex options]
lusr/lib/expreserve
lusr/lib/exrecover

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION

FILES

Ex is the root of a family of editors: edit, ex, e, vi, and view. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient for you. It
avoids some of the complexities of ex, which is used mostly by systems programmers and persons very
familiar with ed.

A display-based editor is often preferred with a CRT terminal. Vi(l) which is a command that focuses
on the display editing portion of ex.

The options have the following meanings:

-v

-ttag

-r

-I

-wn

-x

-R
+ command

suppresses all interactive-user feedback and is useful in processing editor scripts in
command files;

eqUivalent to using vi rather than ex;

equivalent to an initial tag command, editing the file containing the tag and positioning
the editor at its definition;

used in recovering after an editor or system crash, retrieving the last saved version of
the file name, or, if no file is specified, typing a list of saved files;

sets the showmatch and lisp options;

sets the default window size to n lines;

causes ex to prompt for a key, which is used to encrypt and decrypt the contents of the
file (which should already be encrypted using the same key);

sets the readonly option;

indicates that the editor should begin by executing the specified command. If command
is omitted, then it defaults to $, positioning the editor at the last line of the first file ini-
tially.

Expreserve saves the temporary files created during a vi, ex, edit, or e editing session that are left after a
crash or editor abort. It looks in Itmp and moves all such files to lusr/preserve. Do not run expreserve
while an editor is currently being used. Expreserve is normally invoked automatically by rc(8).

Exrecover is used by any of the above-mentioned editors when invoked with the -r option. It is rarely
used in a stand-alone fashion.

lusr/Jibl exrecover
lusr/libl expreserve
letc/termcap
$HOME/.exrc
Itmp/Exnnnnn
Itmp/Rxnnnnn

recover command
preserve command
describes capabilities of terminals
editor startup file
editor temporary
named buffer temporary

,-1-

EX(1) EX(1)

/usr/preserve preservation directory

SEE ALSO

BUGS

awk(l), ed(1). grep(1). sed(1), vi(1). environ(S). termcap(S).
Edit: A Tutorial, in HP-UX Selected Articles
Ex Reference Manual- Version 3,5, in HP-UX Selected Articles
The vi Editor, in HP-UX Selected Articles

The undo command causes all marks to be lost on lines changed and then restored if the marked lines
were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screenful of output
may result if long lines are present.

File input/output errors do not print a name if the command line "-" option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the editor.

Null characters are discarded in input files. and cannot appear in resultant files.

-2-

EXPAND(l) EXPAND(l)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop 1 [-tab1,tab2, ... ,tabn 1 [file ...
unexpand [-a 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Expand processes the named files or the standard input writing the standard output with tabs changed
into blanks. Backspace characters are preserved into the output and decrement the column count for
tab calculations. Expand is useful for pre-processing character files (before sorting, looking at specific
columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the default 8. If mul­
tiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the result
on the standard output. By default only leading blanks and tabs are reconverted to maximal strings of
tabs. If the -a option is given, then tabs are inserted whenever they would compress the resultant file by
replacing two or more characters.

-1-

EXPR(1) EXPR(1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
The arguments are taken as an expression. After evaluation. the result is written on the standard output.
Terms of the expression must be separated by blanks. Characters special to the shell must be escaped.
Note that 0 is returned to indicate a zero value. rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be preceded by a unary
minus sign. Internally, integers are treated as 32-bit. 2's complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by ,,-.
The list is in order of increasing precedence, with equal precedence operators grouped within { } sym­
bols.

expr "- 1 expr
returns the first expr if it is neither null nor 0, otherwise returns the second expr.

expr "-& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr { =, = =, "->, "-> =, "-<, "-< =, ! = } expr
returns the result of an integer comparison if both arguments are integers, otherwise returns the
result of a lexical comparison (note that = and = = are identical, in that both test for equality).

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr{ "-*, I, % }expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator: compares the first argument with the second argument which must be
a regular expression; regular expression syntax is the same as that of ed(l), except that all pat­
terns are II anchored II (Le., begin with .) and. therefore .• is not a special character, in that con­
text. Normally, the matching operator returns the number of characters matched (0 on failure).
Alternatively, the "-(... "-) pattern symbols can be used to 'return a portion of the first
argument.

length expr
The length of expr.

substr expr expr expr
Takes the substring of the first expr, starting at the character specified by the second expr for the
length given by the third expr.

index expr expr
Returns the position in the first expr which contains a character found in the second expr.

match Match is a prefix operator equivalent to the infix operator :.

EXAMPLES
1. a = -expr $a + 1-

adds 1 to the shell variable a.

2. # -For $a equal to either II lusr/abclfile II or II file II -

expr $a: -.*1,,-(.*,,-,- "-I $a

-1-

EXPR(1) EXPR(l)

returns the last segment of a path name (Le .. file). Watch out for / alone as an argument: expr
will take it as the division operator (see BUGS below).

3. # -A better representation of example 2. -
expr I/$a: .*/,,(.*,,)

The addition of the // characters eliminates any ambiguity about the division operator and sim­
plifies the whole expression.

4. expr $VAR: -.*-

returns the number of characters in $VAR.

RETURN VALUE
As a side effect of expression evaluation, expr returns the following exit values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

SEE ALSO
ed(l), sh(l), test(1).

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell. expr cannot tell the difference between an operator and an
operand except by the value. If $a is an =. the command:

expr $a = '=-

looks like:

expr =

as the arguments are passed to expr (and they will all be taken as the = operator). The following works:

expr X$a = X=

-2-

F77(1) Series 200 Implementation F77(1)

NAME
f77 - FORTRAN 77 compiler

SYNOPSIS
£77 [options] filelist

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: This manual page describes the FORTRAN 77 compiler as implemented on the Series 200
computers. Refer to fe(1) for a description of the FORTRAN 77 compiler as implemented
on the Series 500 computers.

DESCRIPTION
F77 is the HP-UX FORTRAN 77 compiler. It accepts two types of file arguments:

(1) Arguments whose names end with J are taken to be Fortran 77 source programs. They are com­
piled, and each object program is left in the current directory in a file whose name is that of the
source, with .0 substituted for J. (The.o file will not be created for a single source which is com­
piled and loaded, nor for any source which fails to compile correctly.) In the same way, arguments
whose names end with .c or .s are taken to be C or assembly source programs and are compiled
or assembled, producing

(2) Arguments whose names end with .0 are passed on to the linker (Id(1)) to be linked into the final
program.

The following options are recognized:

-c Compile, but do not link. The compiler produces a relocatable file (.0) for each file in
filelist. This includes

-C enable range checking (same as $OPTION RANGE ON).

-12

-14

-k

-K

makes the default size of integers and logicals equal to one-half word size (same as
$OPTION SHORT).

This is the default. This option causes the compiler to generate code to store integers and
logicals in four byte quantities unless specifically declared otherwise.

This option forces dynamic ctorage for local arrays. If specified, arrays are subject to the
32K byte limitation for local data space.

This option forces static storage for all local variables. This is to provide a convenient path
for importing FORTRAN 66 and FORTRAN 77 programs which were written to depend
on static allocation of memory (Le. variables retaining their values between invocations of
the repective program units.)

-N[qsxcn] [N]

-ooutfile

-onetrip

-p

This option adjusts the size of internal compiler tables. The compiler uses fices arrays for
certain internal tables. The tables are specified by a secondary letter as follows:

q max size of equivalence table (default = 150 table entries)

s max size of statement label table (default = 201 table entries)

x max size of external symbol table (default = 200 table entries)

c max size of control statements table (default = 200 table entries)

n max size of the hash table of symbols (default = 401 table entries)

name the output file from the linker outfile instead of a.out;

causes the compiler to generate code that executes any DO loop at least once.

prepares object files for profiling (see prof(1)).

-1-

F77(l)

FILES

Series 200 Implementation F77(l)

-s issue warnings for non-ANSI features (same as $OPTION ANSI ON).

-S compiles the named programs and leaves the assembler language output in correspon­
ding files whose names are suffixed with

-u

-u
-v
-w
-w66

force types of identifiers to be implicitly undeclared (same as specifying IMPLICIT
NONE; no other IMPLICIT statements are permitted);

do not convert upper-case letters to lower-case (default is to convert to lower-case);

write expanded compiler and linker runstrings to stderr;

suppress warning messages (same as $OPTION WARNINGS OFF).

supresses warnings about FORTRAN 66 features used.

F77 also recognizes the following options, but they have no effect if they are encountered. This is for
compatibility with other FORTRAN systems.

-m, -f, -0, -E, -R, -F

A warning is written to stderr if any of these options is used.

Any other options are taken to be arguments to ld, and are passed along to the linker.

file.f input file (FORTRAN source file)
file.s input file (assembly source file)
file.c input file (C source file)
file. 0 object file
a.out linked executable output file
lusrlbinlf77 mother program (linked to lusr/binlfc)
lusrlliblf77pass1 compiler pass 1
Ilib/fl compiler pass 2
lusrllibllibF77.a Intrinsic function library
lursllibllibI77.a FORTRAN 1/0 library
lusr/libc.a C library; See Section 3 of this manual
Ilib/libm.a math library

SEE ALSO
as(1), asa(1), cc(1), Id(1); Fortranl9000 Language Reference Manual, HP Part No. 97081-90001. and
F ortranl9000 Language Reference Supplement, Part No. 98680-90005.

DIAGNOSTICS
The diagnostics produced by]77 are intended to be self-explanatory. Errors are written to stderr.

-2-

FC(l) Series 500 Implementation FC(l)

NAME
fc - FORTRAN 77 compiler

SYNOPSIS
fc [options 1 files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes the FORTRAN 77 compiler as implemented on the Series 500
computers. Refer to 177(1) for a description of FORTRAN 77 as implemented on the Series
200 computers.

DESCRIPTION
Fe is the HP-UX FORTRAN 77 compiler. It accepts two types of file arguments:

(1) Arguments whose names end with .f are taken to be FORTRAN 77 source programs. They are
compiled, and each object program is left in the current directory in a file whose name is that of
the source, with .0 substituted for .f. (The.o file will not be created for a single source which is
compiled and loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with .0 are passed on to the linker (ld(1)) to be linked into the final
program.

The following options are recognized:

-e suppress linking and produce object (.0) files from source files;

-C enable range checking (same as $OPTION RANGE ON);

-D

-e

-12

-K
-L
-ooutfile

-onetrip

-Q dfile

-5

-u

-U
-v
-Ve

-Vd

-Vf

-w

compile debug lines (source lines with a "D" or "d" in column 1 are treated as com­
ments by default);

write errors to stderr;

make default size of integers and logicals half a word (same as $OPTION SHORT);

automatically SAVE all local variables in all subprograms;

write a program listing to stdout during compilation;

name the output file from the linker out file instead of a.out;

execute any DO loop at least once;

specify dfile as the option file;

issue warnings for non-ANSI features (same as $OPTION ANSI ON).

force types of identifiers to be implicitly undeclared (same as specifying IMPLICIT
NONE; no other IMPLICIT statements are permitted);

use upper case for external names (default is lower case);

write expanded compiler and linker runstrings to stderr;

put all COMMONs in the virtual data area;

put all SAVE'd and initialized (DATA statement) variables in the virtual data area;

put all FORMAT strings in the virtual data area;

suppress warning messages (same as $OPTION WARNINGS OFF).

Any other options are taken to be arguments to ld, and are passed along to the linker. Note, however,
that, because the -5 option is recognized by the compiler, it is not possible to pass the strip option to the
linker. Programs which are to be stripped may be compiled with the -c option, then linked separately.

-1-

FC(l)

FILES
file. f
file. 0

a.out
Ibinlfc
lusr/liblf77 comp
lliblfrtO.o
llibllibI77.a
llib/libF77.a
lusr/tmp/*

Series 500 Implementation

input file (FORTRAN source file)
object file
linked executable output file
mother program
compiler
runtime startup
FORTRAN 1/0 library
FORTRAN math library
temporary files used by the compiler; names are created by tmpnam(3S).

FC(l)

SEE ALSO
asa(l), Id(l). FORTRANI9000 Language Reference Manual, HP Part No. 97081-90001; Structured
FORTRAN 77, by Seymour Pollack.

DIAGNOSTICS
The diagnostics produced by fc are intended to be self-explanatory. If a listing is requested (-L option),
errors are written to the listing file. If no listing is being generated, errors are written to stderr. Errors will
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional mes­
sages may be produced by the linker.

-2-

FIND(l) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the path-name-list (Le., one or
more path names) seeking files that match a boolean expression written in the primaries given below. In
the descriptions, the argument n is used as a decimal integer where + n means more than n, -n means
less than nand n means exactly n.

-name string

-permonum

-type c

-links n

-useruname

-group gname

-size n

-atimen

-mtimen

-ctime n

-execcmd

-okcmd

-print

-cpio device

-newer file

(expression)

-inumn

True if string matches the current file name. Normal shell argument syntax may be
used if escaped (watch out for [, ? and *).

True if the file permission flags exactly match the octal number onum (see chmod(l)).
If onum is prefixed by a minus sign, more flag bits (017777, see stat(2)) become sig­
nificant and the flags are compared:

(flags&onum) = = onum

True if the type of the file is c, where c is b, c, d, p, or f for block special file, character
special file, directory, fifo (a.k.a named pipe), or plain file.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not appear
as a login name in the letc/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does not appear
in the letcigroup file, it is taken as a group ID.

True if the file is n blocks long.

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument {} is replaced by the
current path name.

Like -exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

Always true; causes the current path name to be printed.

Write the current file on device in cpio(5) format (5120 byte records).

True if the current file has been modified more recently than the argument file.

True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

True if the file has inode number n.

-ncpio Same as -cpio but adds the -c option to cpio.

The primaries may be combined using the following operators (in order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

-1-

FIND(l) FIND(l)

3) Alternation of primaries (-0 is the or operator).

EXAMPLE
To remove all files named a.out or *.0 that have not been accessed for a week:

find / "" (-name a. out -0 -name '*. a I "") -atime + 7 -exec rm {} "";

Note that the spaces delimiting the escaped parentheses are required.

FILES
/etc/passwd, /etc/group

SEE ALSO
cpio(l), sh(l), test(l), stat(2), cpio(5), fs(5).

-2-

GET(1) GET(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e] [-l[pJ] [-p] [-m] [-0] [-s] [-b] [-g] [-t] file

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Get generates an ASCI! text file from each named sees file according to the specifications given by its
keyletter arguments, which begin with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named sees files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-sees files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from the sees
file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one sees file is to be processed, but
the effects of any key letter argument applies independently to each named file.

-rSID The sees IDentification string (SID) of the version (delta) of an sees file to be retrieved.
Table 1 below shows, for the most useful cases, what version of an sees file is retrieved (as
well as the SID of the version to be eventually created by delta (1) if the -e key letter is also
used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SSlllll

No changes (deltas) to the sees file which were created after the specified cutoff date-time
are included in the generated ASCI! text file. Units omitted from the date-time default to their
maximum possible values; that is, -c7502 is equivalent to -c750228235959. Any number
of non-numeric characters may separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form: "-c77/2/2 9:22:25 ". Note that
this implies that one may use the 83/04/30 and 13:03:44 identification keywords (see below)
for nested gets.

-e Indicates that the get is for the purpose of editing or making a change (delta) to the sees file
via a subsequent use of delta (1). The -e key letter used in a get for a particular version (SID) of
the sees file prevents further gets for editing on the same SID until delta is executed or the j
(jOint edit) flag is set in the sees file (see admin(l)). Concurrent use of get -e for different
SIDs is always allowed.

If the g-file generated by get with an -e keyletter is aCcidentally ruined in the process of editing
it, it may be regenerated by re-executing the get command with the -k key letter in place of
the -e key letter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in the sees
file (see admin (1)) are enforced when the -e keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should have an SID in a n~w branch
as shown in Table 1. This keyletter is ignored if the b flag is not present in the file (see
admin(l)) or if the retrieved delta is not a leaf delta. (A leaf delta is one that has no successors
on the sees file tree.)
Note: A branch delta may always be created from a non-leaf delta.

-ilist A list of deltas to be included (forced to be applied) in the creation of the generated file. The

-1-

GET(l)

list has the following syntax:

<list> :: = <range> I <list> , <range>
<range> :: = SID I SID - SID

GET(l)

SID, the sees Identification of a delta, may be in any form shown in the II SID Specified II
column of Table 1. Partial SIDs are interpreted as shown in the II SID Retrieved II column of
Table 1.

-x/ist A list of deltas to be excluded (forced not to be applied) in the creation of the generated file.
See the -i keyletter for the list format.

-k Suppresses replacement of identification keywords (see below) in the retrieved text by their
value. The....,k keyletter is implied by the -e keyletter.

-I[PJ Causes a delta summary to be written into an I-file. If -Ip is used then an I-file is not created;
the delta. summary is written on the standard output instead. See FILES for the format of the
I-file. The user must have read permission for the s-file in order to use the -I option.

-p Causes the text retrieved from the sees file to be written on the standard output. No g-file is
created. All output which normally goes to the standard output goes to file deSCriptor 2
(stderr) instead, unless the -5 keyletter is used, in which case it disappears.

-5 Suppresses all output normally written on the standard output. However, fatal error mes­
sages (which always go to file deSCriptor 2) remain unaffected.

-m Causes each text line retrieved from the sees file to be preceded by the SID of the delta that
inserted the text line in the sees file. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line.

-0 Causes each generated text line to be preceded with the %M% identification keyword value
(see below). The format is: %M% value, followed by a horizontal tab, followed by the text
line. When both the -m and -0 keyletters are used, the format is: %M% value, followed by a
horizontal tab, followed by the -m keyletter generated format.

-g Suppresses the actual retrieval of text from the sees file. It is primarily used to generate an 1-
file, or to verify the existence of a particular SID.

-t Used to access the most recently created ("top") delta in a given release (e.g., -rl), or
release and level (e.g., -rl.2).

-aseq-no. The delta sequence number of the sees file delta (version) to be retrieved (see sccsfile(5)).
This keyletter is used by the comb (I) command; it is not a generally useful keyletter, and users
should not use it. If both the -r and -a keyletters are specified, the -a keyletter is used. Care
should be taken when using the -a keyletter in conjunction with the -e keyletter, as the SID of
the delta to be created may not be what one expects. The -r keyletter can be used with the
-a and -e keyletters to control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being accessed and with the
number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID accessed and before the
number of lines generated. If there is more than one named file or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed folloWing the notation II Included "; if the -x keyletter is used, excluded
deltas are listed folloWing the notation II Excluded II •

-2-

GET(I) GET(I)

SID* - b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

nonet no R defaults to mR mRmL mR(mL+ 1)
nonet yes R defaults to mR mRmL mRmL.(mB+ 1).1

R no R>mR mRmL R1 ***
R no R=mR mRmL mR(mL+ 1)
R yes R>mR mRmL mRmL.(mB+ 1).1
R yes R=mR mRmL mRmL.(mB+ 1).1

R
R<mRand

hRmL** hRmL. (mB + 1).1 -
R does not exist

Trunk succ. # in
R - release> Rand R RmL RmL.(mB+ 1).1

exists

RL no No trunk succ. RL R(L+ 1)
RL yes No trunk succ. RL RL.(mB+ 1).1

RL
Trunk succ. in

RL RL.(mB+ 1).1 -
release ~R

RL.B no No branch succ. RL.B.mS RL.B.(mS + 1)
RL.B yes No branch succ. RL.B.mS RL.(mB+ 1).1

RL.B.S no No branch succ. RL.B.S RL.B.(S+ 1)
RL.B.S yes No branch succ. RL.B.S RL.(mB + 1).1
RL.B.S - Branch succ. RL.B.S RL.(mB+1).1

* "R", "L", "B", and "5" are the "release", "level". "branch", and "sequence" components of the SID, respectively; "m" means
"maximum'. Thus, for example, "RmL" means "the maximum level number within release R"; "RL.(mB + 1).1" means "the first
sequence number on the new branch (Le., maximum branch number plus one) of level L within release R". Note that if the SID
specified is of the form "R.L", "RL.B", or "RL.B.S", each of the speCified components must exist.

** "hR" is the highest existing release that is lower than the specified. nonexistent, release R

*** This is used to force creation of the first delta in a new release.

Successor.

t The - b keyletter is effective only if the b flag (see admin(l)) is present in the file. An entry of - means "irrelevant".

* This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, then the SID obtained from the d
flag is interpreted as if it had been specified on the command line. Thus. one of the other cases in this table applies.

Identification Keywords
Identifying information is inserted into the text retrieved from the sees file by replacing identification
keywords with their value wherever they occur, The following keywords may be used in the text stored
in an sees file:

Keyword
%M%

%1%
%R%
%L%
%8%
%S%
%0%
%H%
%T%
%E%
%G%

Value
Module name: either the value of the m flag in the file (see admin(1)), or if absent, the name
of the sees file with the leading s. removed.
sees identification (SID) (%R%. %L %. %B%. %S%) ofthe retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DDIYY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DDIYY).

-3-

GET(l)

%U%
%Y%
%F%
%P%
%Q%
%C%

%2%
%W%

%A%

Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see admin(1)).
sees file name.
Fully qualified sees file name.
The value of the q flag in the file (see admin(l)).

GET(l)

Current line number. This keyword is intended for identifying messages output by the pro­
gram such as "this shouldn't have happened" type errors. It is not intended to be used on
every line to provide sequence numbers.
The 4-character string (a (#) recognizable by what(l).
A shorthand notation for constructing what(l) strings for UNIX program files. %W% =

%2% %M%<horizontal-tab> %1%
Another shorthand notation for constructing what(l) strings for non-UNIX program files.
%A % = %2%% Y% %M% %1% %2%

HARDWARE DEPENDENCIES

FILES

Series 200/500:
Comb(1) is not currently supported.

Several auxiliary files may be created by get, These files are known generically as the g-file, l-file, p-file,
and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from the
sees file name: the last component of all sees file names must be of the form s.module-name, the auxi­
liary files are named by replacing the leading s with the tag. The g-file is an exception to this scheme:
the g-file is named by removing the s. prefix. For example, S.XYZ.C, the auxiliary file names would be
XYZ.C, l.xyz.c, p.XYZ.C, and Z.XYZ.C, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the -p keyletter
is used). A g-file is created in all cases, whether or not any lines of text were generated by the get. It is
owned by the real user. If the -k keyletter is used or implied its mode is 644; otherwise its mode is 444.
Only the real user need have wm,te permission in the current directory.

The I-file contains a table shoWing which deltas were applied in generating the retrieved text. The I-file
is created in the current directory if the -I keyletter is used; its mode is 444 and it is owned by the real
user. Only the real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
.J!: otherwise.

b. A blank character if the delta was applied or wasn't applied and ignored;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or was not applied:
" 1 ": Included.
" X ": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MMIDD HHMM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character.
A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter along to delta. Its contents
are also used to prevent a subsequent execution of get with an -e keyletter for the same SID until delta is
executed or the joint edit flag, j, (see admin(l)) is set in the sees file. The p-file is created in the direc­
tory containing the sees file and the effective user must have write permission in that directory. Its

-4-

GET(1) GET(1)

mode is 644 and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by
a blank, followed by the SID that the new delta will have when it is made, followed by a blank, followed
by the login name of the real user, followed by a blank, followed by the date-time the get was executed,
followed by a blank and the -i key letter argument if it was present, followed by a blank and the -x
keyletter argument if it was present, followed by a new-line. There can be an arbitrary number of lines
in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary (2
bytes) process ID of the command (Le., get) that created it. The z-file is created in the directory con­
taining the sees file for the duration of get. The same protection restrictions as those for the p-file apply
for the z-file. The z-file is created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(ll, sccsfile(5).
Source Code Control System User's Guide in HP-UX: Selected Articles.

DIAGNOSTICS

BUGS

Use help (1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory containing the
sees files, but the real user doesn't, then only one file may be named when the -e keyletter is used.

An I-file cannot be generated when -g is used. In other words, -g -I does not work

-5-

GETOPT(l) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
-getopt optstring args-

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell procedures, and to check
for legal options. Optstring is a string of recognized option letters (see getopt(3C)); if a letter is followed
by a colon, the option is expected to have an argument which mayor may not be separated from it by
white space. The special option -- is used to delimit the end of the options. Getopt will place -- in the
arguments at the end of the options, or recognize it if used explicitly. The shell arguments ($1 $2 ...)
are reset so that each option is preceded by a - and placed in its own shell argument. Each option
argument is also placed in its own shell argument.

The most common use of getopt is in the shell's set command (see the example below). There, getopt
converts the command line to a more easily parsed form. Getopt writes the modified command line to
the standard output.

EXAMPLE
The follOWing code fragment shows how one might process the arguments for a command that can take
the options a and b, and the option 0, which requires an argument.

set - - -getopt abo: $ * -
if [$? ! = 01
then

fi

echo $USAGE
exit 2

for i in $*
do

case $i in
-a -b) FLAG = $i; shift;;
-0) OARG = $2; shift; shift;;
--) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg - - file file

SEE ALSO
sh(l), getopt(3C).

DIAGNOSTICS

BUGS

Getopt prints an error message on the standard error when it encounters an option letter not included in
optstring.

The output of getopt cannot be more than 256 characters.

-1-

GREP(l) GREP(l)

NAME
grep, egrep, fgrep - search an ASCII file for a pattern

SYNOPSIS
grep [options 1 [expression 1 [files 1
egrep [options 1 [expression 1 [files 1
fgrep [options 1 [strings 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Commands of the grep family search the inputftles (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output. Grep patterns are limited regular expressions
in the style of ed(l); it uses a compact non-deterministic algorithm. Egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes needs exponential space. Fgrep pat­
terns are fixed strings; it is fast and compact. The following options are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
-c Only a count of matching lines is printed.
-I Only the names of files with matching lines are listed (once), separated by new-lines.
-0 Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is sometimes useful in

locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression begins with a - (does not
work with grep).

-ffile The regular expression (egrep) or s!rings list (fgrep) is taken from theftle.

In all cases, the file name is output if there is more than one input file. Care should be taken when using
the characters $, *, [, " I, (,), and "- in expression, because they are also meaningful to the shell. It is
safest to enclose the entire expression argument in single quotes ' ... '.

F grep searches for lines that contain one of the strings, each of which is separated from the next by a
new-line.

Egrep accepts regular expressions as in edt 1), except for "-(and "-), with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular expression.
2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression.
3. Two regular expressions separated by 1 or by a new-line match strings that are matched by

either.
4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then *? +, then concatenation, then 1 and new-line.

EXAMPLES
The following example searches two files, finding all lines containing occurrences of any of four strings:

fgrep -if
then
else
fj' script! script2

Note that the single quotes are necessary to tell fgrep when the strings have ended and the file names
have begun.

-1-

GREP(1) GREP(l)

This example searches for a new-line in a file:

grep -v -".- file 1

The -v option causes grep to print those lines that do not match the expression. Since a new-line cannot
be matched with dot, only lines containing a new-line are printed.

SEE ALSO
ed(1), sed(1), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a-z], in character classes.
Grep finds lines in the input file by searching for a new-line. Thus, if there is no new-line at the end of
the file, grep will ignore the last line of the file.

-2-

HELP(I) HELP(I)

NAME
help - ask for help

SYNOPSIS
help [argsl

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Help finds information to explain a message from a command or explain the use of a command. Zero
or more arguments may be supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in parentheses following mes­
sages) or command names, of one of the following types:

type 1

type 2

type 3

Begins with non-numerics. ends in numerics. The non-numeric prefix is usually an abbrevi­
ation for the program or set of routines which produced the message (e.g., ge6, for message
6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the argument, if there is any.

When all else fails, try "help stuck" .

lusr/lib/help

DIAGNOSTICS

directory containing files of message text.

Use help (1) for explanations.

BUGS
Only sees and a very few other commands currently use help.

-1-

HOSTNAME(l)

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [nameofhost 1

HP-UX COMPATABILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

HOSTNAME(l)

The hostname command prints the name of the current host, as given in the uname system call. The
super-user can set the hostname by giving an argument; this is usually done in the startup script letelre.

SEE ALSO
uname(l), gethostname(2), sethostname(2), uname(2).

-1-

ID(1)

NAME
id - print user, group IDs and names

SYNOPSIS
id

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

ID(1)

I d writes a message on the standard output giving the user and group IDs and the corresponding names
of the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
logname(1), getgid(2}, getuid(2).

-1-

JOIN(1) JOIN(l)

NAME
join - relational database operator

SYNOPSIS
join [options 1 file 1 file2

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of file] and file2. If
file] is -, the standard input is used.

File] andfile2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in file] and file2 that have identical join fields. The
output line normally consists of the common field, then the rest of the line from file] , then the rest of the
line from file2 .

Fields are normally separated by blank, tab or new-line. In this case, multiple separators count as one,
and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n, where n is 1 or
2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

-0 list Each output line comprises the fields specifed in list, each element of which has the form n.m,
where n is a file number and m is a field number.

-tc Use character c as a separator (tab· character). Every appearance of c in a line is significant.

SEE ALSO

BUGS

awk(l), comm(l), sort(l).

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is that of a
plain sort.

The conventions of join , sort, comm, uniq and awk(1) are incongruous.

-1-

KILL(1) KILL (1)

NAME
kill- terminate a process

SYNOPSIS
kill [-signo 1 processid ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will normally kill processes that do not
catch or ignore the signal. The process number of each asynchronous process started with & is reported
by the Shell (unless more than one process is started in a pipeline, in which case the number of the last
process in the pipeline is reported). Process numbers can also be found by using ps(1).

The details of the kill are described in kill(2). For example, if process number 0 is specified, all pro­
cesses in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent instead of terminate (see
signal (2)). In particular "kill -9 ... " is a sure kill.

SEE ALSO

BUGS

ps(1), sh(1), kill(2), signal(2).

If a process becomes hung during some operation (such as 1/0) so that it is never scheduled, that
process will not die until it is allowed to run. Thus, such a process may never go away after the kill.

-1-

LD(l) Series 200 Implementation LD(l)

NAME
ld -link editor

SYNOPSIS
Id [-sulxrdnm 1 [-0 name 1 [-h name 1 [-e name 1 [-R value 1 [-v num 1 file ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP and System III

Remarks: This manual page describes the linker as implemented on the Series 200 computers. Refer
to other ld(1) manual pages for information valid for other implementations.

DESCRIPTION
Ld combines several object programs into one; resolves external references; and searches libraries (as
created by ar(1)). In the simplest case several object files are given, and ld combines them, producing
an object module which can be either executed or become the input for a further ld run. (In the latter
case, the -r option must be given to preserve the relocation bits.) The output of ld is left on a.out. This
file is made executable if no errors occurred during the load and the -r flag was not specified.

The argument routines are concatenated· in the order specified. The entry point of the output is the
beginning of the first routine (unless the -e option is used).

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library
references another routine in the library, and the library has not been processed by ranlib(1), the
referenced routine must appear after the referencing routine in the library. Thus the order of programs
within libraries is important. If the first member of a library is named _.SYMDEF, then it is understood
to be a dictionary for the library such as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols etext, edata and end (etext, edata and end in C) are reserved, and if referred to, are set to
the first location above the program, the first location above initialized data, and the first location above
all data respectively. It is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a -. Except for -I, they should
appear before the file names.

-d Force definition of common storage even if the -r flag is present.

-e The following argument is taken to be the name of the entry point of the loaded program; loca-
tion Ox2000 is the default.

-h For -r output, hide the named symbol by clearing the external bit in the symbol table.

-I This option is an abbreviation for a library name. -I alone stands for llib/libc.a, which is the
standard system library for C and assembly language programs. -Ix stands for llibllibx .a,
where x is a string. If that does not exist, ld tries /usr/lib/libx.a A library is searched when its
name is encountered, so the placement of a -I is significant.

-m The names of all files and archive members used to create the output file are written to the stan­
dard output.

-0 Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up to the first possible
512K word boundary follOWing the end of the text.

-0 The name argument after -0 is used as the name of the ld output file, instead of a.out.

-r Generate relocation bits in the output file so that it can be the subject of another ld run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
"undefined symbol" diagnostics.

-R The next argument is a hexadecimal number which sets the text segment origin. The default

-1-

LD(l)

FILES

Series 200 Implementation LD(1)

value if Ox2000.

-s "Strip" the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed by strip(l). This
option is turned off if there are any undefined symbols.

-u Take the following argument as a symbol and enter it as undefined in the symbol table. This is
useful for loading wholly from a library, since initially the symbol table is empty and an unresol­
ved reference is needed to force the loading of the first routine.

-V The num argument is taken as a decimal version number identifying the a.out that is produced.
Num must be in the range 0-32767. The version stamp is stored in the a.out header; see
a.out(5).

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter external sym­
bols. This option saves some space in the output file.

llib/lib? a
lusr/lib/lib?a
a.out

libraries
more libraries
output file

SEE ALSO
ar(1), as(l), cc(1), a.out(5).

-2-

LD(l) Series 500 Implementation LD(l)

NAME
Id -link editor

SYNOPSIS
Id [[option] ... [file] ...] ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

Remarks: This manual page describes ld as implemented on the Series 500 computers. Refer to other
ld(1) manual pages for information valid for other implementations.

DESCRIPTION
Ld combines several object files into a final executable program, resolves external references (such as
procedure calls and accesses of COMMON), and searches libraries (in the format generated by ar(l)).
In the simplest case, ld combines several named object files (those ending in .0) to produce an object
module loadable by the HP-UX program loader, exec. An alternative is to generate output that is sui­
table as input for future re-linking (see -r below). By default, ld leaves its output in the file a.out. The
-0 option overrides this. The linker will not mark the output file as executable if any errors occur during
its operation.

Ld processes files (and libraries) in the same order that they appear on the command line. If an
argument file is an archive, the linker searches it once, sequentially, at that point in the argument list.
The linker keeps track of unresolved external references in the user's program, and includes a library
element with the user's program if it defines a needed symbol. (The linker includes library code as it
scans the library.) Order is important here: the linker will only include a definition from a library if it has
already seen an unresolved reference to that name.

Ld recognizes the special library format generated by ranlib(l). The first element of such a library is a
directory of all the external symbols defined by the remaining archive elements. The linker normally
scans a library only once, even if that scan produces new unresolved references to previously ignored
elements. If there is a symbol directory, however, ld iteratively searches the library as long as there are
unsatisfied references to objects in that library. lf a directory for a library is out of date, ld treats the
library as a normal (sequential) one.

The linker recognizes several names as having special meanings. By default, _main (main in C) is the
main entry point for a user program. The user can override this with the -e option. In addition, the
names _end, _edata, and _etext (end, edata, and etext in C) are predefined (see section 3). User pro­
grams cannot define these names for external use. Also, the name _start (start in C) is reserved if you
link via cc. Cc links programs to the clean-up file crtO.o and arranges for the entry point to be _start in
that file. Thus, if you use cc to link a program, you cannot define the external symbol "start" in your C
program.

The linker sets memory management attributes for the output file to default values. These are shared
text, virtual code, virtual data (O-data and I-data), and paged I-data. Use chatr(l) on the program to
change these characteristics, or enable new ones, like demand-load.

Ld options may occur anywhere on the command line, as long as they follow the command name itself.
Some options take a modifier immediately following the option letter (e.g -0 outputname). Ld
recognizes modifiers either as part of the word containing the option letter, or as a separate word fol­
lowing the option letter (as with getopt(3)).

Ld recognizes the following options. Note that, in the follOWing options, a colon indicates that an
argument is accepted. The colon itself is not literal, and must not appear when specifying arguments.

-A keep the O-data and I-data areas apart (in separate segments).

-N mark the program as not shareable.

-T put the O-data and I-data areas together in the same global data segment (GOS).

-V: assign a 32-bit integer as a version number for the resulting output file.

-1-

LD(l) Series 500 Implementation LD(l)

-X: indicates the starting size for the global symbol table.

-d force definition of COMMON storage (Le. assign addresses and sizes), even for -r output.

-e: names an alternate entry point for the user program. other than _main. The loader calls this
alternate entry point to initiate the program.

-h: (use only with -r) prior to writing the output file. mark the named symbol so that it is no longer
externally visible. This hides the symbol in the course of future processing by ld.

-I: is an abbreviation for a library name. Ld searches a default set of directories to locate the
desired library. These directories are:

llib
lusrllib

The linker searches these directories in the above order. looking for the library Iibxxx .a, where
xxx is a string of one or more ASCII characters specified as the modifier for the -I option. Since
ld searches a library when it encounters its name on the command line, the placement of the -I
option is important. Note that it may be necessary to specify a sequential library several times
on the command line in order to resolve all references, including those stemming from use of
code in the library. A -I with no modifier is the same as -Ie. It causes ld to search the standard
C library.

-n mark the program as shared (magic number of 108 hexadecimal). This is the default.

-0: specify a name for the resulting output object file produced by the linker (the default is a.out).

-r arranges for the output file to be re-linkable. Ld preserves all symbol table and relocation infor-
mation necessary for linking. In this case the linker does not make final definitions of
COMMON, nor does it issue" undefined symbol" messages. -r output is not executable.

-s tells the linker to strip the final output file; that is, symbol table and relocation information is not
a part of the output. This impairs the effectiveness of your system's debugger (if any). The
linker ignores this option if there are any undefined symbols. (You can use strip (1) to remove
this information from an existing executable file.)

-t print a trace of the files that ld is including in the final output. If -v is also in effect, ld lists all
library components relevant to this job. (This information appears twice - once for each pass
over the input.) This option conflicts with the -t option for cc(1).

-u: specifies a name to enter in the linker's symbol table as undefined. It appears as an unresolved
reference to the linker. Thus, you can force loading object information solely from a library.

-v causes the linker to output verbose information showing the progress of the link. This option is
not available via cc (1) because it conflicts with the compiler's verbose option.

SEE ALSO
ar(l), chatr(1), getopt(1), nm(l), ranlib(l), strip(l), end(3), a.out(5).

DIAGNOSTICS
Ld returns the following exit codes:

o - no errors:
1 - abort (killed by signal):
2 - error during link:

-2-

LEX (1) LEX(l)

NAME
lex - generate programs for lexical analysis of text

SYNOPSIS
lex [-rctvn] [file] ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The inputjiles (standard input default) contain strings and expressions to be searched for, and C text to
be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output except
when a string specified in the file is found; then the corresponding program text is executed. The actual
string matched is left inyytext, an external character array. Matching is done in order of the strings in the
file. The strings may contain square brackets to indicate character classes, as in [abx-z] to indicate a, b,
x, y, and z; and the operators *, +, and? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrences of, the previous character or character class. The charac­
ter . is the class of all ASCII characters except new-line. Parentheses for grouping and vertical bar for
alternation are also supported. The notation r{ d ,e} in a rule indicates between d and e instances of regu-
1ar expression r. It has higher precedence than I, but lower than *, ?, +, and concatenation. The
character ~ at the beginning of an expression permits a successful match only immediately after a new­
line, and the character $ at the end of an expression requires a trailing new-line. The character 1 in an
expression indicates trailing context; only the part of the expression up to the slash is returned inyytext,
but the remainder of the expression must follow in the input stream. An operator character may be used
as an ordinary symbol if it is within" symbols or preceded by"". Thus [a-zA-Z] + matches a string of
letters.

Three subroutines defined as macros are expected: inputO to read a character; unput(c) to replace a
character read; and output(c) to place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named yylexO, and the library contains
a mainO which calls it. The action REJECT on the right side of the rule causes this match to be rejected
and the next suitable match executed; the function yymoreO accumulates additional characters into the
same yytext; and the function yyless(p) pushes back the portion of the string matched beginning at p,
which should be between yytext and yytext + yyleng. The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes % % it is
copied into the external definition area of the lex.yy.c file. All rules should follow a %%, as in YACC.
Lines preceding % % which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with {}. Note that curly brackets do not
imply parentheses; only string substitution is done.

EXAMPLE
D
%%
if
[a-zl+
O{D} +
{D}+
"+ +"
"+ "
"1* "

[0-9]

printf(" IF statement""n");
printf(" tag, value %s ""n" ,yytext);
printf("octal number %s ""n " ,yytext);
printf("decimal number %s ""n" ,yytext);
printf(" unary op ""n");
printf(" binary op ""n");
{ loop:

while (input() ! = I * ');
switch (input())

-1-

LEX(l)

case ' /': break;
case '*': unput('*');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or YY.

LEX(l)

The flags must appear before any files. The flag -r indicates RA TFOR actions, -c indicates C actions
and is the default, -t causes the lex.yy.c program to be written instead to standard output, -v proVides a
one-line summary of statistics of the machine generated, -n will not print out the - summary. Multiple
files are treated as a single file. If no files are specified, standard input is used.

I

Certain table sizes for the resulting finite state machine can be set in the definitions section:

%p n number of positions is n (default 2000)

%n n number of states is n (500)

%t n number of parse tree nodes is n (1000)

%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option, unless the -0 option is used.

SEE ALSO
yacc(l).
LEX - Lexical Analyzer Generator, in HP-UX: Selected Articles.

BUGS
The -r option is not yet fully operational.

-2-

LIF(1) LIF(1)

NAME
LIF - Logical Interchange Format description

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP

DESCRIPTION
LIF (Logical Interchange Format) is a Hewlett-Packard standard disc format that may be used for inter­
change of files among various HP computer systems. A LIF volume contains a header (identifying it as a
LIF volume) and a directorY that defines the contents (Le. files) of the volume. The size of the directory is
fixed when the volume is initialized (see lifinit(1)} and sets an upper bound on the number of files that
may be created on the volume.

HP-UX contains a set of utilities (referred to hereafter as lif*(1)} that may be used to initialize a LIF
volume (Le. create a header and an empty directory), copy files to and from LIF volumes, list the con­
tents of LIF volumes, remove LIF files, and rename LIF files.

The lif*(1} utilities are the only utilities within HP-UX where the internal contents of a LIF volume are
known. To the rest of HP-UX a LIF volume is simply a file containing some unspecified data. The term
'LIF volume' should in no way be confused with the HP-UX notion of a file system volume or moun­
table volume.

A LIF volume may be created on any HP-UX file (either regular disc file or device special file) that sup­
ports random access via Iseek(2}. Note that you should not mount the special file before using the
lif*(1} routines. See lifinit(1} for details. Within a LIF volume, individual files are identified by 1 to 10
character file names. File names may consist of upper-case alphanumeric characters (A through Z, 0
through 9) and the underscore character (_). The first character of a LIF file name must be a letter. The
lif*(1} utilities will accept any file name, including illegal file names generated on other systems, but will
only create legal names. For example, file names containing lower-case letters will be read but not
created.

LIF file names are specified to the lif*(1} utilities by concatenating the HP-UX path name for the LIF
volume with the LIF file name, separating the two with a colon (:). For example,

Idev/fd.O:ABC specifies LIF file ABC within HP-UX device special file Idev/fd.O.

myfile:ABC specifies LIF file ABC within HP-UX disc file 'myfile'.

Note that this file naming convention is applicable only for use as arguments to the lif* (1) utilities and
do not constitute legal path names for any other use within HP-UX.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

SEE ALSO
lifcp(1}, lifinit(1}, lifIs(1}, lifrename(1}, lifrm (1).

-1-

LIFCP(l) LIFCP(l)

NAME
lifep - copy to or from LlF files

SYNOPSIS
lifcp [-aJ [-bJ [-tJ file1 file2
lifcp [-aJ [-bJ [-tJ file1 [file2 ... J directory

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP

DESCRIPTION
Lifcp copies a LlF file to an HP-UX file, an HP-UX file to a LlF file, or a LlF file to another LlF file. It also
copies a list of (HP-UX/LlF) files to a (LlF/HP-UX) directory. The last name on the argument list is the
destination file or directory.

The -a option will cause an ASCII copy. In case of HP-UX to LlF copy, a LlF ASCII file is created. The
-b option will force binary copy, creating LlF BINARY files. If neither of the -a or -b options are given,
lifcp will guess whether to do an ASCII or a binary copy based on the magic number of the file. Text
files are ASCII and object files are treated as binary.

If the -t option is given, the HP-UX file names will be translated to a name acceptable by a LlF utility.
That is, all the lower-case letters will be substituted by upper-case letters and all other characters except
numeric will be substituted by an underscore (_). If the HP-UX file name starts with a non-letter, the file
name will be preceded by the capital letter (X). Note that if there are two files named colon (:) and sem­
icolon (;), both of them will be translated to X-. File names will be truncated to a maximum of 10
characters.

A LlF file name is recognized by the embedded colon (:) delimiter (see lif(l) for LlF file naming conven­
tions). A LlF directory is recognized by a trailing colon. If an HP-UX file name containing a colon is
used, the colon must be escaped with two backslash characters (".. "..) (the shell removes one of them).
The file name '-' (dash) will be interpreted to mean standard in or standard out, depending on its posi­
tion in the argument list.

The LlF file naming conventions are known only by the LlF utilities. Since file name expansion is done
by the shell, this mechanism cannot be used for expansion of LlF file names.

Note that the media should not be mounted before using lifcp.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
lifcp abc liffile:CDE

copy file abc to LlF file CDE within HP-UX file liffile.

lifcp abc".. "..: liffile:CDE
copy file abc: to LlF file CDE in liffile.

lifcp -t abc def liffile:
copy files abc and def to lif files ABC and DEF within liffile.

lifcp liffile:ABC .
copy LlF file ABC within liffile to file ABC within current directory.

lifcp - Idev/fd.O:A-FILE
copy standard input to LlF file A_FILE on LlF volume Idev/fd.O.

lifcp liffile:ABC Idev/fd.O:CDE
copy LlF file ABC in liffile to LlF file CDE in Idev/fd.O.

lifcp liffile:ABC -
copy LlF file ABC in liffile to standard out.

-1-

LlFCP(l) LlFCP(l)

lifcp * liffile:
copy all files within current directory to LIF files of the same name on LIF volume liffile (may cause
errors if file names in the current directory do not obey LIF naming conventions!).

SEE ALSO
Iif(l), Iifinit(l), Iifls(l), Iifrename(l), lifrm(l).

DIAGNOSTICS
Lifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and returns
non-zero.

-2-

L1FINIT(l) L1F1NIT(l)

NAME
lifinit - write LIF volume header on file

SYNOPSIS
Iifinit [-vnnn] [-dnnn] [-n string] file

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP

DESCRIPTION
Lifinit writes a LIF volume header on a volume or file. Options may appear in any order. Their mean­
ings are:

-vnnn

-dnnn

-n string

Sets the volume size to nnn bytes. If nnn is not a multiple of 1024, it will be rounded down
to the next such multiple.

Sets the directory size to nnn file entries. If nnn is not a multiple of 8, it will be rounded up to
next such multiple.

sets the volume name to be string. If the -n option is omitted, the volume name is set to
the last component of the path name specified by file. If string is longer than 6 characters, it
is truncated.

Iffile does not exist, a regular HP-UX disc file is created and initialized.

The default values for volume size are 256K bytes for regular files, and the actual capacity of the device
(as determined by volsize(3)) for device files.

The default directory size is a function of the volume size. A percentage of the volume size is allocated to
the volume directory as follows:

VOLUME SIZE
<2MB
> 2MB

DIRECTORY SIZE
-1.3%
-0.5%

Each directory entry occupies 32 bytes of storage. The actual directory space is subject to the rounding
rules stated above.

Note that you should not mount the special file before using lifinit.

HARDWARE DEPENDENCIES
Series 200:

If your media has never been initialized, it must be initialized using systemJni before lifinit can
be used. (Refer to the System Administrator Manual for details concerning system_mi.)

Series 500:

EXAMPLES

You must use a character special file to access the media.

If your media has never been initialized, it must be initialized using sdfinit(8) before lifinit can be
used.

Iifinit -v500000 -dlO x
Iifinit Idev/rfd.O

SEE ALSO
lif(1), lifcp(1), lifis(1), lifrename(1), lifrm(l), sdfinit(8).

DIAGNOSTICS
Lifinit returns exit code 0 if the volume is initialized successfully. Otherwise it prints a diagnostic and
returns non-zero.

-1-

LlFINIT(l) LlFINIT(l)

WARNING
Do not terminate lifinit once it has started executing. Otherwise, your media could become corrupted.

-2-

LIFLS(l) LIFLS(l)

NAME
lifls - list contents of LIF directory

SYNOPSIS
lifts [option 1 name

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION
Lifts lists the contents of a LIF directory on STDOUT. The default output format calls for the file names
to be listed in multiple columns (as is done by Is(1), except unsorted) if STDOUT is a character special
file. If STDOUT is not a teletype, the output format is one file name per line. Name is a path name to an
HP-UX file containing a LIF volume and optional file name. If name is a volume name, the entire
volume is listed. If name is of the form volume,file, then only the file is listed. There are two options:

-I List in long format, giving volume name, volume size, directory start, directory size, file type, file
size, file start, extension, date created, last volume and volume number.

-C Force multiple column output format regardless of STDOUT type.

Note that you should not mount the special file before using lifts.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
lifts -1 . .!TEST/header
lifts Idev/rfd.O

SEE ALSO
lif(l), lifcp(l), lifinit(l), lifrename(l), lifrm(l).

DIAGNOSTICS
Lifts returns exit code 0 if the directory was listed successfully. Otherwise it prints a diagnostic and
returns non-zero.

-1-

L1FRENAME(1)

NAME
lifrename - rename LIF files

SYNOPSIS
Iifrename oldfile newfile

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

L1FRENAME(1)

Oldfile is a full LIF file specifier (see lij{1) for details) for the file to be renamed (e.g. Iiffile:AJILE).
Newfile is new name to be given to the file (only the file name portion). This operation does not include
copy or delete. Old file names must match the name of the file to be renamed, even if that file name is
not a legal LIF name.

Note that you should not mount the special file before using lifrename.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
Iifrename Iiffile:A-FILE B_FlLE
Iifrename Idev/fd.O:ABC CDE

SEE ALSO
lif(1), lifcp(1), lifinit(1), lifls(1), lifrm(1).

DIAGNOSTICS
Lifrename returns exit code 0 if the file name is changed successfully. Otherwise it prints a diagnostic
and returns non-zero.

-1-

LIFRM(l)

NAME
Iifrm - remove a LIF file

SYNOPSIS
lifrm file 1 ... filen

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

LIFRM(l)

Lifrm removes one or more entries from a LIF volume. File name specifiers are as described in lif(1).

Note that you should not mount the special file before using lilrm.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
lifrm liffile:MAN
lifrm /dev/rfd.O:F

SEE ALSO
Iif(l), Iifcp(l), Iifinit(1), Iifls(1), Iifrename(l).

DIAGNOSTICS
Lifrm returns exit code 0 if the file is removed successfully. Otherwise it prints a diagnostic and returns
non-zero.

-1-

L1NE(l)

NAME
line - read one line from user input

SYNOPSIS
line

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

L1NE(1)

Line copies one line (up to a new-line) from the standard input and writes it on the standard output. It
returns an exit code of 1 on EOF and always prints at least a new-line. It is often used within shell files to
read from the user's terminal.

SEE ALSO
read (documented under sh(l)), read(2).

-1-

L1NK(!)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
/etc/link file1 file2
/etc/unlink file

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

L1NK(!)

Link and unlink perform their respective system calls on their arguments, abandoning most error check­
ing. These commands may only be executed by the super-user.

RETURN VALUE
o -successful link .
1 - input syntax error.
2 -link call failed (unlink will never report failure).

SEE ALSO
rm(l), link(2), unlink(2).

-1-

L1NT(1) L1NT(l)

NAME
lint - a C program checker/verifier

SYNOPSIS
lint [-abchnpuvxDUI 1 file ...

HP-UX COMPATIBILITY
Level: C Compiler - HP-UXISTANDARD

Origin: System III

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, non-portable, or
wasteful. It also checks type usage more strictly than the compilers. Among the things which are
currently detected are unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant. Moreover, the usage of func­
tions is checked to find functions which return values in some places and not in others, functions called
with varying numbers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked for mutual compatibility. By
default, lint uses function definitions from the standard lint library lIib-lc.ln; function definitions from
the portable lint library IIib-port.ln are used when lint is invoked with the -p option.

Any number of lint options may be used, in any order. The following options are used to suppress cer­
tain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs produced by
lex or yaee will often result in a large number of such complaints.)

-c Suppress complaints about casts that have questionable portability.

-h Do not apply heuristic tests that attempt to intuitively find bugs, improve style, and reduce
waste.

-u Suppress complaints about functions and external variables used and not defined, or defined
and not used. (This option is suitable for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

The following arguments alter lint's behavior:

-n Do not check compatibility against either the standard or the portable lint library.

-p Attempt to check portability to other dialects of C.

The -D, -U, and -I options of ee(1) are also recognized as separate arguments.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

/ * VARARGSn * /
suppresses the usual checking for variable numbers of arguments in the follOWing func­
tion declaration. The data types of the first n arguments are checked; a missing n is
taken to be O.

/*ARGSUSED*/
turns on the -v option for the next function.

/* UNTUBRARY */
at the beginning of a file shuts off complaints about unused functions in this file.

-1-

UNT(1) UNT(l)

FILES

Lint produces its first output on a per source file basis. Complaints regarding included files are collected
and printed after all source files have been processed. Finally, information gathered from all input files is
collected and checked for consistency. At this point, if it is not clear whether a complaint stems from a
given source file or from one of its included files, the source file name will be printed followed by a ques­
tion mark.

lusr/lib/lint[12] programs
lusr/liblllib-lc.ln declarations for standard functions (binary format; source is in lusr/lib/llib-le)
lusr/liblllib-port.ln declarations for portable functions (binary format; source is in lusr/lib/llib-port)
lusr/tmpl * lint* temporaries

SEE ALSO
cc(l).

BUGS
Exit(2) and other functions which do not return are not understood.

-2-

LOGIN(l) LOGIN(l)

NAME
login - sign on

SYNOPSIS
/ete/login [name [hangup 11

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

The login command is used at the beginning of each terminal session and allows you to identify yourself
to the system. It cannot be invoked explicitly (except by the super-user), but is invoked by the system
when a connection is first established, or after the previous user has logged out by sending an "end-of­
file" (control-D) to his or her initial shell. (See How to Get Started at the beginning of this volume for
instructions on how to dial up initially.)

Login asks for your user name (preferably lower-case), and, if appropriate, your password. Echoing is
turned off (where possible) during the typing of your password, so it will not appear on the written
record of the session. Note that, if you have a password, you will be asked for it whether your user
name is valid or not. This is done to make it more difficult for an unauthorized user to log in on the sys­
tem by trial and error.

If password aging has been invoked by the super-user on your behalf, your password may have
expired. In this case, you will be diverted into passwd(l) to change it, after which you may attempt to
login again.

If you do not complete the login successfully within a certain period of time (e.g., one minute), you are
likely to be silently disconnected.

After a successful login, the accounting files are updated, and the user and group id's and the working
directory are initialized. Login then executes a command interpreter (usually sh(l)), according to speci­
fications found in the /etc/passwd file .. If the shell is executed, the profile files /ete/profile and
$HOME/.profile are executed, if they exist. Depending on what these profile files contain, you are noti­
fied of mail in your mail file or any messages you may have received since your last login. Argument 0
of the command interpreter is - followed by the last component of the interpreter's path name. The
environment (see environ (7)) is initialized to:

HOME = your-login-directory
PATH = :/bin:/usr/bin
LOGNAME = your-login-name

For the super-user, PATH is augmented to include letc.

The presence of name suppresses the login: prompt, and uses name as the login name. H angup is the
time, in seconds, before hanging up if the login is unsuccessful. The default is 60 seconds. Zero (0)
seconds indicates an indefinite wait.

letc!utmp
lusr/adm/wtmp
lusr/maillyour-name
letc!motd
letc/passwd
letc/profile
$HOME/. profile

users currently logged in
history of logins, logouts, and date changes
mailbox for user your-name
message-of -the-day
password file - defines users, passwords, and groups
system profile (initialization for all users)
personal profile (individual user initialization)

SEE ALSO
mail(1), newgrp(l), passwd(l), sh(l), su(l), passwd(5), profile(5), environ(7), getty(8).

-1-

LOGIN(1)

DIAGNOSTICS
Login incorrect

if the user name or the password is incorrect.
No shell, cannot open password file, no directory:

consult your system manager.
Your password has expired. Choose a new one.

if password aging is implemented.
No entry in utmp:

LOGIN(1)

utmp file exists but your terminal is not listed there. Caused by serious trouble in file system or
ttyname(3).

No root directory:
attempted to log into a subdirectory that does not exist (Le., passwd file entry had shell name
"*", but the system cannot chroot to the given directory).

No login in letc or Ibin on root:
same as above except sub-root login command not found.

Invalid ID:
setuid or setgid failed.

No directory:
cannot chdir to your home directory.

No shell:
your shell (or Ibin/sh if your shell name is null in letc/passwd) could not be exec' d.

Warning: Had to set home directory to 'I'
occurs if you are the super-user and login's attempt to chdir(2) to your home directory fails
(because the directory is missing or corrupted). You are logged in anyway.

Sorry, single-user
occurs if the version field from uname(2) starts with A (or if the uname system call fails) and if your
terminal name is not Idev/console and if your home shell is not named lusr/lib/uucp/uucico. You
are not logged in.

-2-

LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
logname

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

LOGNAME(l)

Logname returns the contents of the environment variable $LOGNAME, which is set when a user logs
into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(1), logname(3X), environ(7).

-1-

LORDER(l) LORDER(l)

NAME
lorder - find ordering relation for object library

SYNOPSIS
lorder file ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

The input is one or more object or library archive files (see art 1)). The standard output is a list of pairs
of object file names, meaning that the first file of the pair refers to external identifiers defined in the
second. The output may be processed by tsort(l) to find an ordering of a library suitable for one-pass
access by Id(l).

This one-line example intends to build a new library from existing .0 files.

ar cr library 'lorder *.0 I tsorf

Ranlib (1) serves a similar purpose and is more efficient for libraries.

*symref, *symdef temp files

SEE ALSO

BUGS

ar(1), ld(l), tsort(1)' ranlib(l).

Object files whose name do not end with .0, even when contained in library archives, are overlooked.
Their global symbols and references are attributed to some other file.

-1-

LPD(l) LPD(l)

NAME
lpd - line printer daemon

SYNOPSIS
lusrllib/lpd [printername 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Lpd is the daemon for the line printer. It is automatically initiated by the line printer spooling command,
lpr.

Printername is the name of a printer device file, without the initial" Idev/" (Le. IpS). If printername is not
specified, the default printer Ip is used.

Lpd searches the directory lusrlspool for a directory of the same name as the specified printername.
Thus, lusrispooi/ip is used by default. To be able to use other printers, a directory for each printer must
be created in lusrlspool by the super-user. (Other spool directories can be specified by lpr with the -d
option.)

The file lock is used to prevent two daemons from becoming active on the same spool directory.
Several daemons can be active simultaneously, as long as they are working on different spool direc­
tories. After the program has successfully set the lock, it forks and the main path exits, thus spawning the
daemon. The directory is scanned for files beginning with "df". Each such file is submitted as a job.
Each line of a job file must begin with a key character to specify what to do with the remainder of the
line. The key characters are:

L specifies that the remainder of the line is to be sent as a literal.
I is the same as L, but signals the $IDENT card which is to be mailed back by the mail option.
B specifies that the rest of the line is a file name. That file is to be printed.
F is the same as B except a form-feed is prepended to the file.
U specifies that the rest of the line is a file name. After the job has been transmitted, the file is

unlinked.
M is followed by a user 10; after the job is sent, a message is mailed to the user via the mail (1) com-

mand to verify the sending of the job.
D specifies that the remainder of the line is a path name for a specific printer.

Any error encountered will cause the daemon to give up, wait 10 seconds, and start over. This means
that an improperly constructed "df" file may cause the same job to be submitted every 1 0 seconds.

To restart lpd (in the case of hardware or software malfunction), it is necessary to first kill the old dae­
mon (if it is still alive), and remove the lock file (if present), before initiating the new daemon. This is
done automatically by letclrc when the system is brought up, in case there were any jobs left in the
spooling directory when the system last went down.

Lpd will pass ASCII escape sequences to the output device. This enables users to access special capabili­
ties like expanded type fonts, alternate character sets, etc.

lusrispoolllpi *
lusrlspoollprinternamei*
letc/passwd
Idev/lp
Idev/lp*

default spool area for line printer daemon.
spool area for additional printers
used to get the user's name.
default line printer device.
additional printer devices.

SEE ALSO
Ipr(l).

-1-

LPR(1) LPR(l)

NAME
lpr - line printer spooler

SYNOPSIS
Ipr [option ... 1 [name ... 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System 1Il

DESCRIPTION

FILES

Lpr causes the named files to be queued for printing on a line printer. If no names appear, the standard
input is assumed; thus lpr may be used as a filter. If the -d option is absent, the printer /dev/lp is
assumed.

The following options may be given (each as a separate argument and in any order) before any file name
arguments:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
-m When printing is complete, reports that fact by mail(1).
-n Does not report the completion of printing by mail(1). This is the default option.
-d Is followed by a printer name, and causes output to be sent to that printer.

Note that lpr does not force a page-eject at the end of a printing. Thus, if printing stops in the middle of
a page, the upcoming header will not begin at the appropriate place. The most common solution to this
is to pipe your printing through pr(1).

/etc/passwd
/usr/lib/lpd
/usr/spoollprintername/ *

user's identification and accounting data.
line printer daemon.
spool area.

SEE ALSO
Ipd(1), pr(1).

-1-

LS(l) LS(l)

NAME
Is, 1, 11, lsf, lsr, lsx -list contents of directories

SYNOPSIS
Is [-abcdfgilmnoqrstuxlACFR] [names]
I [Is options] [names]
II [Is options) [names)
Isf [Is options] [names]
Isr [Is options) [names]
Isx [Is options) [names]

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III and UCB

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each file named, Is repeats its name
and any other information requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments are processed before directories and their contents.

If you are the super-user, Is defaults to listing all files except. and ...

There are three major listing formats. The format chosen depends on whether the output is going to a
login device, and may also be controlled by option flags. The default format for a teletype is to list the
contents of directories in multi-column format, with the entries sorted down the columns. (When indivi­
dual file names (as opposed to directory names) appear in the argument list, those file names are always
sorted across the page rather than down the page in columns. This is because the individual file names
may be arbitrarily long.) If the standard output is not a teletype, the default format is to list one entry per
line. Finally, there is a stream output format in which files are listed across the page, separated by ", II
characters. The -m flag enables this format.

There are several options:

-I List in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file (see below). If the file is a special file, the size field will contain the
major device number in decimal and the minor device number in hexadecimal, rather than a
size.

-0 The same as -I, except that the group is not printed.

-n The same as -I, except that the owner number is printed, and all group information is omitted.
I

-g The same as -I, except that the owner is not printed (overrides -0 if both options are specified),

-t Sort by time of last modification (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin with a period (.) are not
listed.

-A The same as -a, except that the current directory ". " and parent directory " .. " are not listed.
For the super-user, this flag defaults to ON, and is turned off by-A.

-s Give size in blocks (inclUding indirect blocks) for each entry.

-d If argument is a directory, list only its name; often used with -I to get the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as appropriate.

-u Use time of last access instead of last modification for sorting (with the -t option) and/or printing
(with the -I option).

-c Use time of last modification of the inode (mode, etc.) instead of last modification of the file for
sorting (-t) and/or printing (-I).

-i For each file, print the i-number in the first column of the report.

-1-

LS(1)

-f

LS(1)

Force each argument to be interpreted as a directory and list the name found in each slot. This
option turns off -I, -t, -s, and -r, and turns on -a; the order is the order in which entries
appear in the directory.

-m Force stream output format, i. e. a comma separated list.

-1 The file names will be listed in single column format regardless of the output device. This will
force single column format to the user's terminal.

-C Force multi-column output to a file or a pipe.

-q Force printing of non-graphic charaters in file names as the character "?"; this normally hap-
pens only if the output device is a teletype.

-b Force printing of non-graphic characters to be in ""-.ddd notation, in octal.

-x Force columnar printing to be sorted across rather than down the page.

-F Cause directories to be marked with a trailing ., /., and executable files to be marked with a trail-
ing "*".

-R Recursively list subdirectories encountered.

Ls normally is known by several names which provide shorthands for the various formats:

I is equivalent to Is -m.
II is equivalent to Is -I.
Isf is equivalent to Is -F.
Isr is equivalent to Is -R.
Isx is equivalent to Is -x.

The shorthand notations are implemented as links to Is. Option arguments to the shorthand versions
behave exactly as if the long form above had been used with the additional arguments.

The mode printed under the -I option consists of 11 characters that are interpreted as follows:
The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a. ka . ., named pipe") special file;

if the entry is an ordinary file.
The next 9 characters are interpreted as three sets of three bits each. The first set refers to the
owner's permissions; the next to permiSSions of others in the user-group of the file; and the last
to all others. Within each set, the three characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.
The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.
The group-execute permission character is given as s if the file has set-group-ID mode; likewise,
the user-execute permission character is given as s if the file has set-user-ID mode. The last
character of the mode (normally x or -) is t if the 1000 (octal) bit of the mode is on; see
chmod(l) for the meaning of this mode. The indications of set-ID and 1000 bit of the mode are
capitalized if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is
printed.

-2-

lS(1) LS(l)

HARDWARE DEPENDENCIES
Series 200:

FILES

Network and SRM files are not implemented.

Series 500:
The -a and -A options perform the same function.

/etc/passwd
/etc/group

to get user IDs for Is -I and Is -0.

to get group IDs for Is -I and Is -g.

SEE ALSO

BUGS
chmod(l), find(l).

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as Is -5 is much different
than Is -5 I Ipr. On the other hand, not using this setting would make old shell scripts which used is
error-prone.

Column widths choices are poor for tenninals which can tab.

-3-

LSDEV(l)

NAME
lsdev -list device drivers in the system

SYNOPSIS
/etc/lsdev [major ...]

HP-UX COMPATIBILITY

Series 500 Only

Level: HP-UXINON-STANDARD

Origin: HP

Remarks: Lsdev is implemented on the Series 500 only.

DESCRIPTION

LSDEV(1)

With no arguments, lsdev lists, one pair per line, the major device numbers and driver names of all dev­
ice drivers configured into the system and available for invocation via special files.

H there are any arguments, they must represent major device numbers. For each, lsdev lists the
corresponding driver name (if any).

Lsdev is simply a qUick-reference aid. In some implementations, it may only read an internal list of dev­
ice drivers, not the actual list in the operating system.

SEE ALSO
Section 4.

DIAGNOSTICS
Lists the drivername as II no such driver II when appropriate.

-1-

MAIL(l) MAIL(l)

NAME
mail, rmail- send mail to users or read mail

SYNOPSIS
mail [-rpqe 1 [-f file 1
mail persons

rmail persons

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last-in, first-out order. For each
message, the user is prompted with a ?, and a line is read from the standard input to determine the
disposition of the message:

<new-line>
+

Go on to next message.
Same as <new-line>.

d
p

Delete message and go on to next message.
Print message again.
Go back to previous message.

s [files 1 Save message in the named files (mbox is default).
w (files 1 Save message, without its header, in the named files (mbox is default).
m [persons 1 Mail the message to the named persons (yourself is default).
q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.
x Put all mail back in the mailfile unchanged and stop.
I command Escape to the shell to do command.
* Print a command summary.

The optional arguments alter the printing of the mail:

-r causes messages to be printed in first-in, first-out order.
-p causes all mail to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt only causes the termination of

the printing of the current message.
-ffile causes mail to use file (e. g., mbox) instead of the default mailfile.
-e The mail is simply tested for existence and the exit code returned.

o = mail present
1 = no mail
2 = other error

When persons are named, mail takes the standard input up to an end-of-file (or up to a line consisting of
just a.) and adds it to each person's mailfile. The message is preceded by the sender's name and a post­
mark. Lines that look like postmarks in the message, (i. e., "From ... ") are preceded with a >. A person
is usually a user name recognized by login (1). If a person being sent mail is not recognized, or if mail is
interrupted during input, the dead.letter will be saved to allow editing and resending.

To denote a recipient on a remote system, prefix person by the system name and exclamation mark (see
uucp (1 C)). Everything after the first exclamatiol1 mark in persons is interpreted by the remote system. In
particular, if persons contains additional exclamation marks, it can denote a sequence of machines
through which the message is to be sent on the way to its ultimate destination. For example, specifying
alblcde as a recipient's name causes the message to be sent to user blcde on system a. System a will
interpret that destination as a request to send the message to user cde on system b. This might be
useful, for instance, if the sending system can access system a but not system b, and system a has access
to system h.

-1-

MAIL(1) MAIL(1)

FILES

The mailfile may be manipulated in two ways to alter the function of mail. The other permissions of the
file may be read-write, read-only, or neither read nor write to allow different levels of privacy. If
changed to other than the default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of themailfiletobeforwardedtoperson.This is especially
useful to forward all of a person's mail to one machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp (1 C) uses rmail as a security precaution.

When a user logs in, he is informed of the presence of mail, if any.

letc/passwd
lusr/maill *
$HOME/mbox
$MAIL
Itmp/ma*
lusr/maill * .Jock
dead.Jetter

to identify sender and locate persons
incoming mail for user *; mail file
saved mail
mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
login(l), uucp(1C), write(1).

BUGS
Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by typing a p.

-2-

MAKE(l) MAKE(l)

NAME
make - maintain, update, recompile programs

SYNOPSIS
make [-fmakefile] [-p] H] [-k] [-s] [-r] [-n] [-b] [-el [-t] [-q] [-d] [names]

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
The following is a brief description of all options and some special names. Options may occur in any
order.

-f makefile Description file name. Makefile is assumed to be the name of a description file. A file name
of - denotes the standard input. The contents of makefile override the built-in rules if they
are present. Note that the space between -f and makefile must be present.

-p Print out the complete set of macro definitions and target deSCriptions.

-i Ignore error codes returned by invoked commands. This mode is also entered if the fake
target name .IGNORE appears in the description file.

-k Abandon work on the current entry, but continue on other branches that do not depend on
that entry.

-s Silent mode. Do not print command lines before executing. This mode is also entered if the
fake target name .SILENT appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines beginning with
an @ are printed.

-b Compatibility mode for old (Version 7) makefiles.

-e Environment variables override assignments within makefiles.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual com-
mands.

-d Debug mode. Print out detailed information on files and times examined. (This is intended
for debugging the make command itself.)

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up-to-date.

The II built-in II dependency targets are:

.DEFAULT
If a file must be made but there are no explicit commands or relevant built-in rules, the com­
mands associated with the name .DEFAUL T are used if it exists .

. PRECIOUS
Dependents of this target will not be removed when quit or interrupt are hit.

.SILENT
Same effect as the -s option .

.IGNORE
Same effect as the -i option.

Make executes commands in makefile to update one or more target names. Name is typically a pro­
gram. If makefile is -, the standard input is taken. If no -f option is present, makefile, Makefile,
s.makefile, and s.Makefile are tried in order. More than one -f make file argument pair may appear.

-1-

MAKE(l) MAKE(l)

Make updates a target only if it depends on files that are newer than the target. All prerequisite files of a
target are added recursively to the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank­
separated, non-null list of targets, followed by a colon (:), followed by a (possibly null) list of prerequisite
files or dependencies. Text following a ; and all folloWing lines that begin with a tab are shell commands
to be executed to update the target. The first line that does not begin with a tab or # begins a new
dependency or macro definition. Shell commands may be continued across lines with the
<backslash> <new-line> sequence. Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and that they in tum depend on
their corresponding source files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. A line is printed when it is executed
unless the -5 option is present, or the entry .SILENT: is in makefile, or unless the first character of the
command is @. The -n option specifies printing without execution; however, if the command line has
the string $(MAKE) in it, the line is always executed (see discussion of the MAKEFLAGS macro under
Environment). Note that this feature does not work if MAKE is enclosed in braces, as in ${MAKE}. The
-t (touch) option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is present, or the entry
.IGNORE: appears in makefile, or if the line specifying the command begins with <tab> <hyphen>, the
error is ignored. If the -k option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to run without errors. The
difference between the old version of make and this version is that this version requires all dependency
lines to have a (possibly null) command associated with them. The previous version of make assumed if
no command was specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target depends on the special name
.PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro definitions and processed as
such. The environment variables' are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables. The -e option causes the environ­
ment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal input option
(except -f, -p, and -d) defined for the command line. Further, upon invocation, make "invents" the
variable if it is not in the environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This proves very useful for
"super-makes". In fact, as noted above, when the -n option is used, the command $(MAKE) is execu­
ted anyway; hence, one can perform a make -n recursively on a whole software system to see what
would have been executed. This is because the -n is put in MAKEFLAGS and passed to further invoca­
tions of $(MAKE). This is one way of debugging all of the makefiles for a software project without actu­
ally doing anything.

Macros
Entries of the form stringl = string2 are macro definitions. Subsequent appearances of $ (stringl [:substl
= [subst2])) are replaced by string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl = subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are replaced by subst2. Strings

-2-

MAKE(l) MAKE(l)

(for the purposes of this type of substitution) are delimited by blanks, tabs, new-line characters, and
beginnings of lines. An example of the use of the substitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules for building targets.

$* The macro $* stands for the file name part of the current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for expli­
citly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module which
is out of date with respect to the target (Le., the "manufactured" dependent file name). Thus, in
the .c.o rule, the $< macro would evaluate to the .c file. An example for making optimized .0 files
from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the list of
prerequisites that are out of date with respect to the target; essentially, those modules which must
be rebuilt.

$% The $% macro is only evaluated when the target is an archive library member of the form
Iib(file.o). In this case, $@ evaluates to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case 0 or F is appended to any of
the four macros the meaning is changed to "directory part" for 0 and "file part" for F. Thus, $(@D)
refers to the directory part of the string $@. If there is no directory part, .1 is generated. The only macro
excluded from this alternative form is $? The reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prerequisites such as .c, .s, etc. If no
update commands for such a file appear in makefile, and if an inferable prerequisite exists, that prere­
quisite is compiled to make the target. In this case, make has inference rules which allow bUilding files
from other files by examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c- .sh .sh- .c.o .C-.O .C-.C .s.o .S-.O .y.o .y-.o .1.0 .1-.0

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h

To print out the rules compiled into the make on any machine in a form suitable for recompilation, the
following command is used:

make -p -f - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(3S) prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(S)). Thus, the rule £.0 would transform an
sees C source file into an object file (.0). Because the s. of the sees files is a prefix it is incompatible
with make's suffix point-of-view. Hence, the tilde is a way of changing any file reference into an sees
file reference.

A rule with only one suffix (Le .. c:) is the definition of how to build x from x.c. In effect, the other suffix
is null. This is useful for building targets from only one source file (e.g., shell procedures, simple C pro­
grams).

-3-

MAKE(l) MAKE(l)

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the first possible
name for which both a file and a rule exist is inferred as a prerequisite.

The default list is:

.SUFFIXES: .0 .c .y .1 .s

Here again, the above command for printing the internal rules will display the list of suffixes implemen­
ted on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no dependencies clears
the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may add rules to this list by
simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any
resulting commands. For example, CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
cc(1), lex(l), and yacc(l) respectively. Again, the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .0 from a file with
suffix .C is specified as an entry with .c.o: as the target and no dependents. Shell commands associated
with the target define the rule for making a .0 file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parenthesis, it is assumed to be an archive library, the string
within parenthesis referring to a member within the library. Thus lib(file.o) and $(LlB)(file.o) both refer
to an archive library which contains file.o. (This assumes the LIB macro has been previously defined.)
The expression $(LlB)(filel.o file2.0) is not legal. Rules pertaining to archive libraries have the form
.XX.a where the XX is the suffix from which the archive member is to be made. An unfortunate bypro­
duct of the current implementation requires the XX to be different from the suffix of the archive mem­
ber. Thus, one cannot have Iib(file.o) depend upon file.o explicitly. The most common use of the
archive interface follows. Here, we assume the source files are all C type source:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
(ciecho lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $((i' $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this example. A more interes­
ting, but more limited example of an archive library maintenance .construction follows:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o = .c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined to be the set of
object file names (inside lib) whose C source files are out of date. The substitution mode translates the
.0 to .c. (Unfortunately, one cannot as yet transform to .c-; however, this may become possible in the
future.) Note also, the disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This type of construct

-4-

MAKE(1) MAKE(l)

FILES

becomes cumbersome if the archive library contains a mix of assembly programs and C programs.

[Mmlakefile
s.[Mmlakefile

SEE ALSO
sh(l).

WARNING

BUGS

Be wary of any file (such as an include file) whose access, modification, and last change times cannot be
altered by the make-ing process. For example, if a program depends on an include file which in turn
depends on another include file, and if one or both of these files are out-of-date, make will try to update
these files each time it is run, thus unnecessarily re-makeing up-to-date files dependent on the include
file. The solution is to manually update these files with the toueh(l) command before running make.
(Note that it is generally a bad idea to include the toueh(l) command in your makefile, because it can
cause make to update a program that otherwise did not need to be updated.)

Some commands return non-zero status inappropriately; use -i to overcome the difficulty.

Commands that are directly executed by the shell, notably ed(l), are ineffectual across new-lines in
make.

The syntax (lib(filel.o file2.o file3.o) is illegal.

You cannot build Iib(file.o) from file.o.

The macro $(a:.o = .c-) doesn't work.

There is a limit of 2500 characters, including the terminating new-line, for expanded dependency lines.

Make will not properly expand a macro within another macro when string substitution is involved.

-5-

MAN(1) MAN(1)

NAME
man - on-line manual command

SYNOPSIS
man -k keyword ...
man -f file ...
man [- 1 [-t 1 [section 1 title ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Man is a program which gives information from the programmers manual. It can be asked to form one
line descriptions of commands specified by name, or for all commands whose description contains any
of a set of keywords. It can also provide on-line access to the sections of the printed manual.

When given the option -k and a set of keywords, man prints out a one line synopsis of each manual sec­
tion whose listing in the table of contents contains that keyword.

When given the option -f and a list of file names, man attempts to locate manual sections related to
those files, printing out the table of contents lines for those s'ections.

The -t option causes man to use troffinstead of nroff -t is ignored when specified with -k or -f.

When neither -k nor -f is specified, man formats a specified set of manual pages. If the section specifier
section is given, man looks in that section of the manual for the given titles. Section can be a digit (0 - 9),
or one of the words local, new, or public. If section is a digit, it may be followed by a single letter classi­
fier (Le. 19 indicating a graphics program in section 1). Classifiers may not be specified if a word is given
for section. If local, new, or public is specified, then the manual section manl, mann, or manp is sear­
ched, respectively.

If section is omitted, man searches the on-line manual sub-directories in the following order: man1,
mann, manl, man6, man8, man2, man3, man4, man5, man7, and finally manp. Man prints the first
title it finds, if any.

If no section value is specified, or if the first attempt fails, man appends default section classifiers onto the
given titles in an effort to locate the file. The list below gives the default classifiers used for each manual
section, in the order in which they are used:

manual section 1: none, h, m, c, g;
manual section 2: none, h, j, v;
manual section 3: none, h, j, x, m, s, f, c;
manual sections 4-8: none, h.

If the standard output is a teletype, or if the flag - is given, then man pipes its output through rmnl(l) to
delete useless blank lines, ul(l) to create proper underlines for different terminals, and through more(1)
to stop after each page. Hit a space to continue.

If the lusr/man/cat? directory is present and the file is not in it, but the file exists in lusr/man/man?, then
the page is formatted and installed in lusr/man/cat? on first access. If only the lusr/man/cat? directories
are present and/or nroff is not installed then only those pages which have been preformatted are
displayable.

HARDWARE DEPENDENCIES
Series 200/500:

FILES

Troffis not currently supported.

lusr/man/man?l*
lusr/man/cat?l*

-1-

MAN(1) MAN(l)

SEE ALSO
rmnl(l), ul(l), more(l), whereis(l), catman(8).

BUGS
The section words local, new, or public may not be abbreviated by I, n, or p. They must be completely
spelled out.

-2-

MESG(l)

NAME
mesg - permit or deny messages to terminal

SYNOPSIS
mesg [n)[y]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

MESG(l)

Mesg with argument n forbids messages via write (1) by revoking non-user write permission on the user's
terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the current state
without changing it.

FILES
Idev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

-1-

MKDlR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname '"

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

MKDIR(l)

Mkdir creates specified directories in mode 777, masked by the current value of umask. Standard
entries, " for the directory itself, and ", for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(l), umask(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it prints a diagnostic and
returns non-zero.

-1-

MM(I) MM(I)

NAME
mm - print documents formatted with MM macros

SYNOPSIS
mm [options 1 [files 1

HP-UX COMPATIBILITY
Level: Text Processing - HP-UXlEXTENDED

Origin: System III

DESCRIPTION
Mm can be used to type out documents using nroff(l) and the MM text formatting macro package. It
has options to specify preprocessing by tbl(l) and/or neqn(l) and postprocessing by various terminal­
oriented output filters. The proper pipelines and the required arguments and flags for nroff(l) and MM
are generated, depending on the options selected.

Options for mm are given below. Any other arguments or flags (e.g., -rC3) are passed to nroff(l) or to
MM, as appropriate. Such options can occur in any order, but they must appear before the files
arguments. If no arguments are given, mm prints a list of its options.

- Tterm Specifies the type of output terminal; for a list of recognized values for term, type help term2.
If this option is not used, mm will use the value of the shell variable $TERM from the environ­
ment (see profile(S) and environ (7)) as the value of term, if $TERM is set; otherwise, mm will
use 450 as the value of term. If several terminal types are specified, the last one takes pre­
cedence.

-12 Indicates that the document is to be produced in 12-pitch. May be used when $TERM is set
to one of 300, 3005, 450, and 1620. (The pitch switch on the DASI 300 and 300s terminals

. must be manually set to 12 if this option is used.)
-c Causes mm to invoke col(l); note that col(l) is invoked automatically by mm unless term is

one of 300,3005,4'50,37, 4000A, 382, 4014, tek, 1620, and X.
-e Causes mm to invoke neqn(l).
-t Causes mm to invoke tbl(l).
-E Invokes the -e option of nroff(1).
-y Causes mm to use the non-compacted version of the macros (see mm(7)).

As an example (assuming that the shell variable $TERM is set in the environment to 450), the two com­
mand lines below are equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* I nroff -cm -T4S0 -12 -h -rC3

Mm reads the standard input when - is specified instead of any file names. (Mentioning other files
together with -leads to disaster.) This option allows mm to be used as a filter, e. g.:

cat dws I mm-

The following helpful hints should aid you in using these macros:

1. Mm invokes nroff(1) with the -h flag. With this flag, nroff(1) assumes that the terminal has tabs
set every 8 character positions.

2. Use the -olist option of nroff(l) to specify ranges of pages to be output. Note, however, that
mm, if invoked with one or more of the -e, -t, and - options, together with the -olist option of
nroff(l) may cause a harmless II broken pipe II diagnostic if the last page of the document is not
specified in list.

3. If you use the -5 option of nroff(l) (to stop between pages of output), use line-feed (rather than
return or new-line) to restart the output. The -5 option of nroff(l) does not work with the -c
option of mm, or if mm automatically invokes col(l) (see -c option above).

4. If you lie to mm about the kind of terminal its output will be printed on, you'll get (often subtle)
garbage; however, if you are redirecting output into a file, use the - T37 option, and then use
the appropriate terminal filter when you actually print that file.

-1-

MM(l)

SEE ALSO
col(l), nroff(l), tbl(l), profile(5), mm(7), term(7).
MM-MemorandumMacros in HP-UX Selected Articles.

DIAGNOSTICS
II mm: no input file II if none of the arguments is a readable file and mm is not used as a filter.

-2-

MM(l)

MORE(l) MORE(l)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-cdfl5U 1 [-n 1 [+ linen umber 1 [+ Ipattern 1 [name ... 1
page [more options 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UeB

DESCRIPTION
More is a filter which allows examination of continuous text, one screenful at a time, on a soft-copy ter­
minal. It normally pauses after each screenful, printing --More-- at the bottom of the screen. If the
user then types a carriage return, one more line is displayed. If the user hits a space, another screenful is
displayed. Other possibilites are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the default.

-c More will draw each page by beginning at the top of the screen and erasing each line just before
it draws on it. This avoids scrolling the screen, making it easier to read while more is writing.
This option will be ignored if the terminal does not have the ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at the
end of each screenful. This is useful if more is being used as a filter in some setting, such as a
class, where many users may be unsophisticated.

-f This causes more to count logical lines, rather than screen lines. That is, long lines are not fol­
ded. This option is recommended if nroff output is being piped through ul, since the latter may
generate escape sequences. These escape sequences contain characters which would ordi­
narily occupy screen postions, but which do not print when they are sent to the terminal as part
of an escape sequence. Thus more may think that lines are longer than they actually are, and
fold lines erroneously.

-I Do not treat 'L (form feed) specially. If this option is not given, more will pause after any line
that contains a 'L, as if the end of a screenful had been reached. Also, if a file begins with a
form feed, the screen will be cleared before the file is printed.

-5 Squeeze multiple blank lines from the output, producing only one blank line. Especially helpful
when viewing nroff output, this option maximizes the useful information present on the screen.

-u Normally, more will handle underlining such as produced by nroffin a manner appropriate to
the particular terminal: if the terminal can perform underlining or has a stand-out mode, more
will output appropriate escape sequences to enable underlining or stand-out mode for under­
lined information in the source file. The -u option suppresses this processing.

+ linenumber
Start up at linenumber.

+ pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed (but only if a
full screenful is being printed), and k - 1 rather than k - 2 lines are printed in each screenful, where k is
the number of lines the terminal can display.

More looks in the file letc!termcap to determine terminal characteristics, and to determine the default win­
dow size. On a terminal capable of displaying 24 lines, the default window size is 22 lines.

-1-

MORE(l) MORE(l)

More looks in the environment variable MORE to pre-set any flags desired. For example, if you prefer
to view files using the -c mode of operation, the shell command sequence MORE = '-c' ; export MORE
would cause all invocations of more, including invocations by programs such as man and msgs, to use this
mode. Normally, the user will place the command sequence which sets up the MORE environment
variable in the .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
--More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an optional
integer argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argument is given).

'0 display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.

d same as '0 (control-D).

1 z same as typing a space except that i, if present, becomes the new window size.

1 s skip i lines and print a screenful of lines.

if skip i screenfuls and print a screenful of lines.

q or Q Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i /expr search for the i -th occurrence of the regular expression expr. If there are less than i occurrences
of expr, and the input is a file (rather than a pipe), then the position in the file remains
unchanged. Otherwise, a screenful is displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters may be used to edit the regular
expression. Erasing back past the first column cancels the search command.

in search for the i -th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no search has been perfor­
med in the current file, this command goes back to the beginning of the file.

!command
invoke a shell with command. The characters "%" and "!" in "command" are replaced with
the current file name and the previous shell command respectively. If there is no current file
name, "%" is not expanded. The sequences "~%" and "~!" are replaced by "%" and
"!" respectively.

l:n skip to the i -th next file given in the command line (skips to last file if n doesn't make sense).

l:p skip to the i -th previous file given in the command line. If this command is given in the middle
of printing out a file, then more goes back to the beginning of the file. If i doesn't make sense,
more skips back to the first file. If more is not reading from a file, the bell is rung and nothing else
happens.

:f display the current file name and line number.

:q or:Q exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to the time
when the command character itself is given, the user may hit the line kill character to cancel the numeri­
cal argument being formed. In addition, the user may hit the erase character to redisplay the
--More--(xx%).

-2-

MORE(l) MORE(l)

FILES

At any time when output is being sent to the terminal, the user can hit the quit key (normally con­
trol-",). More will stop sending output, and will display the usual--More-- prompt. The user may
then enter one of the above commands in the normal manner. Unfortunately, some output is lost when
this is done, due to the fact that any characters waiting in the terminal's output queue are flushed when
the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous. What you type
will thus not show on your terminal, except for the I and! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is printed before
each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms + 2 doc. n I more -s

letc/termcap
lusr/lib/more. help

terminal data base
help file

SEE ALSO
man(l), msgs(l), sh(l), termcap(5).

-3-

MOUNT(1) MOUNT(l)

NAME
mount, umount - mount and un mount file system

SYNOPSIS
letclmount [special directory [-f]]

letc/umount special

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special. The direc­
tory must exist already; it becomes the name of the root of the newly mounted file system. Directory
must be given as an absolute path name.

These commands maintain a table of mounted devices. If invoked with no arguments, mount prints the
table.

The optional last argument indicates that the file is to be mounted read-only. Physically write-protected
and magnetic tape file systems must be mounted in this way or errors will occur when access times are
updated, whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously mounted on device special is
to be removed.

HARDWARE DEPENDENCIES
Series 500:

FILES

Warning: if virtual memory is brought up on a volume other than the root volume, and if that
volume is then mounted, it cannot be unmounted.

letclmnttab

SEE ALSO

mount table

mount(2), mnttab(5).

DIAGNOSTICS

BUGS

Attempts to mount a currently-mounted volume under another name will result in an error [EBUSY].

If an attempt to read and (partially) verify the disc label information fails, the mount will fail.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it contains an
open file or some user's working directory.

Some degree of validation is done on the file system, however it is generally unwise to mount garbage
file systems.
The third parameter may be anything which has the effect of -f.
An error will occur if mnttab does not exist.
Names are truncated to MNTLEN bytes (see mnttab(5)).

-1-

MT(l)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
rot [-t tapename 1 command [count 1

HP-UX COMPATABILITY
Level: Magnetic Tape Support - HP-UXISTANDARD

Origin: UCB

DESCRIPTION

MT(l)

Mt is used to give commands to the tape drive. If tapename is not specified, /dev/rmt12 is used. If count
is not specified, 1 is assumed.

FILES

Here are the commands:
eof write count end-of-file marks
fsf space forward count files
fsr space forward count records
bsf space backward count files
bsr space backward count records
rew rewind tape
om rewind tape and go offline.

/dev/mt* Magnetic tape interface
/dev/rmt* Raw magnetic tape interface

/dev/rmt12 (or whatever drive is used) must be described as a Berkeley compatibility-mode tape drive
without rewind for mt to operate as expected.

SEE ALSO
mt(4).

-1-

MVDlR(1) MVDlR(l)

NAME
mvdir - move a directory

SYNOPSIS
/etc!mvdir dirname name

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Mvdir moves and/or renames directories within a file system. Dirname must be a directory. If name
exists, then the directory dirname is moved. If name does not exist, dirname is simply renamed.

Name cannot be a subdirectory of dirname. Dirname may be a subdirectory of name, but the shorthand
notations. and .. must be used in naming the directories, because mvdir does not allow explicit directory
names to be used when one directory is a subdirectory of the other.

Only the super-user can use mvdir.

SEE ALSO
mkdir(l).

BUGS
The restriction on names is intended to prevent creation of a (cyclic) sub-tree that cannot be reached
from the root. The test is strictly by name, thus creating such a sub-tree is still possible. The super-user
is cautioned to be very careful in his use of the names. and .. while moving directories.

-1-

NCHECK(l) Series 200 Only

NAME
ncheck - generate names from i-numbers

SYNOPSIS
letclncheck [-i numbers 1 [-a 1 [-s 1 [file-system 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

Remarks: Ncheck is implemented on the Series 200 only.

DESCRIPTION

NCHECK(l)

Ncheck with no argument generates a path name vs. i-number list of all files on the volumes specified by
the file letclchecklist. Names of directory files are followed by I .. The options are as follows:

-i reduces the report to only those files whose i-numbers are specified on the command line in the
numbers list.

-a allows printing of the names. and ", which are ordinarily suppressed.

-s reduces the report to special files and files with set-user-ID mode; it is intended to discover con-
cealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort(l}, checklist(5l, fsck(8}.

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a parentless file and a path name
beginning with ... denotes a loop.

-1-

NEWGRP(l) NEWGRP(l)

NAME
newgrp -log in to a new group

SYNOPSIS
newgrp [group 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

N ewgrp changes the group identification of its caller. The same user remains logged in, and the current
directory is unchanged, but calculations of access permissions to files are performed with respect to the
new group ID.

N ewgrp without an argument changes the group identification to the group in the password file; in effect
it changes the group identification back to the caller's original group.

A password is demanded if the group has a password and the user himself does not, or if the group has a
password and the user is not listed in jete/group as being a member of that group.

N ewgrp is recognized by the shell, and causes the newgrp program to execute on top of the shell (instead
of as the usual sub-process). If newgrp fails, you cannot be returned to your old shell, and you are thus
logged out.

/etc/group
/ete/passwd

SEE ALSO
10gin(1), group(5).

DIAGNOSTICS
Sorry: You didn't qualify as a group member.

The group name was not in jete/group.

BUGS

Unknown group:

Permission denied:

You have no shell:

If a password must be given, it can only come from a teletype port. If the stdin is
a non-tty file, this message is given.

Exec of the shell failed.

There is no convenient way to enter a password into fete/group.
Use of group passwords is not encouraged, because, by their very nature, they encourage poor security
practices. Group passwords may disappear in the future.
Shell variables which are not exported are lost.

-1-

NEWS(l) NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a 1 [-n 1 [-5 1 [items 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these events are described by
files in the directory lusr/news.

When invoked without arguments, news prints the contents of all current files in lusr/news, most recent
first, with each preceded by an appropriate header. News stores the "currency" time as the modifica­
tion date of a file named .news_time in the user's home directory (the identity of this directory is deter­
mined by the environment variable $HOME); only files more recent than this currency time are con­
sidered "current. "

The -a option causes news to print all items, regardless of currency. In this case, the stored time is not
changed.

The -n option causes news to report the names of the current items without printing their contents, and
without changing the stored time.

The -s option causes news to report how many current items exist, without printing their names or con­
tents, and without changing the stored time. It is useful to include such an invocation of news in one's
.profile file, or in the system's letciprofile.

All other arguments are assumed to be specific news items that are to be printed.

If an interrupt is typed during the printing of a news item, printing stops and the next item is started.
Another delete within one second of the first causes the program to terminate.

lete/profile
lusr/news/*
$HOME/.news_time

SEE ALSO
mail(l), profile(5), environ(7).

-1-

NICE(1)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION

NICE(1)

Nice executes command with a lower CPU scheduling priority. If the increment argument (in the range
1-19) is given, it is used; if not, an increment of 10 is assumed.

The super-user may run commands with priority higher than normal by using a negative increment,
e.g., --10.

HARDWARE DEPENDENCIES
Series 500:

A note to the super-user: be careful about increasing the priority of your processes. Your key­
board process is running at a nice value of 1,2,3, or 4. If you should assign a process a nice
value of 0, you winlock out your keyboard, forcing you to reboot the system.

SEE ALSO
nohup(I), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

-1-

NM(l) Series 200 Implementation NM(l)

NAME
nm - print name list (symbol table) of object file

SYNOPSIS
nm [-gnoprsu 1 [filename ... J

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

Remarks: This manual page describes nm as implemented on the Series 200 computers. Refer to
other nm(1) manual pages for information valid for other implementations.

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is an
archive, a listing for each object file in the archive will be produced. If no file is given, the symbols in
a.out are listed.

Each symbol name is preceded by its value printed in a representation appropriate to the architecture of
the machine (blanks if undefined) and one of the letters U (undefined), A (absolute), T (text segment
symbol), D (data segment symbol), B (bss segment symbol), R (register symbol), F (file symbol), or C
(common symbol). If the symbol is local (non-external) the type letter is in lower case. The output is
sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once. This option
can be used to make piping to grep (1) more meaningful.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-s Sort according to the size of the external symbol (computed from the difference between the
value of the symbol and the value of the symbol with the next highest value). This difference is
the value printed. This flag turns on -g and -n and turns off -u and -po

-u Print only undefined symbols.

If the symbol was an align symbol, the letter L will be printed after the letter describing its type.

SEE ALSO
ar(1), a.out(S), artS).

-1-

NM(1) Series 500 Implementation NM(l)

NAME
nm - print name list (symbol table) of object file

SYNOPSIS
nm [-gnopru 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

Remarks: This manual page describes nm as implemented on the Series 500 computers. Refer to
other nm manual pages for information valid for other implementations.

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is an
archive, a listing for each object file in the archive will be produced, preceded by the member name on a
separate line. If no file is given, the symbols in a.out are listed.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once. This option
can be used to make piping to grep (1) more meaningful.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

The output from nm consists of five columns of data. The following is a portion of a typical output:

X IDATA 00000108 A_iob
X IDATA 000002aO A_sctab
X ICOMM 00000400 0 00000440 A_sibuf
X ICOMM 00000400 0 00000840 A_sobuf

UDATA 00000c40 Aallocs
X FUNC EDS c04 002a8 00000003 _cleanup
X DDATA DR 00000098 _ctype
X FUNC EDS cOc 00000 00000001 _doscan
X SYSTEM EPP 004 OOOOe _exit
X DDATA DR 00000038 _iob
X DCOMM 00000004 OOOOOObO _pfile
X DDATA DR 00000090 _sctab
X PTR 1 OOOOOa 000000b4 ~ibuf

X PTR 1 OOOOOc 000000b8 ~obuf
FILENAME OOOOOOOa _exit. a
FILENAME OOOOOOOf _print. a

From left to right, the first column specifies whether the symbol is defined (.) or undefined (U). The
second column specifies whether the symbol is non-external (.) or external (X). The third column gives
the linker symbol type (as defined in a.out.h and described below). The fourth column lists the data
associated with the specified symbol type. The fifth column gives the name of the system call, file, vari­
able, array, common, etc., described by that entry in the symbol table.

-1-

NM(1) Series 500 Implementation NM(1)

Up to four data elements are reported in the fourth column. If they are not symbolic values (such as
'EDS' or 'DR'), then they are hexadecimal values. The number of data elements reported depends on
the symbol type. Each symbol type has one to four parameters associated with it, whose values are
given by the data elements in the fourth column. The symbol types and associated parameters are dis­
cussed below.

The following symbol types are supported:

ABS not currently generated; reserved for future use.

FUNC or ENTRY specifies that the entry refers to a function or procedure call. Four numbers,
ptr _type, segment, offset, and stLindex, are associated. Their values are given in
order, from left to right, by the data elements. PtLtype consists of a single bit that
is always cleared. It is symbolically represented by 'EDS'. PtLtype is meaningful
to the linker (see Id(l», and specifies the storage format of the call in the symbol
table. Segment specifies the code segment number (a number in the range 3073
to 4095, that indicates which code segment in the user's program space contains
the desired code). Offset specifies the number of bytes from the beginning of the
code segment where the function or procedure code begins. StLindex is an
indirect reference to the beginning of the function or procedure code.

SYSTEM specifies that the entry refers to a procedure call directly into the system kernel.
Three numbers, entry_type, segment, and su, are associated. Their values are
given by the data elements. Entry_type consists of a single bit that is always set.
Its value is symbolically represented by 'EPP'. Entry_type is meaningful to the
linker, and specifies the storage format of the call in the symbol table. Segment
specifies the system code segment number (the number of a code segment
among those set aside for system use; typically in the range 0 to 64). Su is an
indirect pointer to the beginning of the procedure code.

LABEL specifies that the entry is the destination address for a branch instruction. Three
numbers, ptr_type, segment, and offset, are associated. Their values are given by
the data elements. PtLtype consists of a single bit which is always cleared. Its
value is symbolically represented by 'EDS'. Ptr_type is meaningful to the linker,
and specifies the storage format of the address in the symbol table. Segment
specifies the user code segment number. Offset specifies the number of bytes
from the beginning of the code segment where the label begins.

DDATA specifies that the entry is a directly-addressable, initialized data structure (a vari­
able, or the beginning of an array, common, structure, etc.). Two numbers,
basLreg and displacement, are associated. Their values are given by the data
elements. BasLreg is assigned one of nine possible symbolic values which
describe the addreSSing scheme used to find the data structure. It is meaningful
to the linker. The possible symbolic values are P +, P-, DB, DL, Q +, Q-, SB,
S-, and DR. Displacement specifies the byte offset where the data structure is
located. Note that this offset is measured relative to the beginning of the data
space of the file for which the nm listing is made. The actual byte offset of the
data structure in the executable a.out file could change.

IDATA or UDATA specifies that the entry refers to an indirectly-addressable, uninitialized array, or
an indirectly-addressable, initialized common block. One number, displacement,
is associated. Its value is given by the data element. It is identical to the displa­
cement described above under DDAT A.

DCOMM or ICOMM specifies that the entry is treated as a common block. Three numbers, blocksize,
needLlength_word, and displacement, are associated. Their values are given by
the data elements. Blocksize is the size, in bytes, of the common block.
NeedLlength_word is a boolean value which appears in a print-out as either 0 or
1. If its value is 1, the linker places the value of (blocksize - 4) in the first four

-2-

--- .---~---.--------

NM(l)

PTR

SEGMENT

FILENAME

Series 500 Implementation NM(l)

bytes of the common block. This information is necessary when linking
FORTRAN programs. Displacement is identical to that described under DDATA
above.

specifies that the entry is a pointer to an indirectly-addressable data structure
(variable, array, common block, etc.). Three numbers, ptY-to_common, target,
and address, are associated. Their values are given by the data elements.
Pty-to_common is an eight-bit boolean expression. Its value is given as 1 (true) or
o (false). If true, then the entry is a pointer to a common block. If false, the entry
is a pointer to some other type of data structure. Target is an index into the sym­
bol table to the entry that describes the target of the data structure pointer.
Address is a pointer to the data structure pointer; that is, an indirect pointer to the
data structure.

not currently generated; reserved for future use.

specifies that the entry is a file name. One number, sequence, is associated. Its
value is given by the data element. Sequence reflects the order in which the linker
encountered each file name.

SEE ALSO
ar(1), a.out(5), ar(5).

DIAGNOSTICS
Nm generates an error message for the following conditions:

invalid option
cannot open file
bad magic number
read error

-3-

NOHUP(l)

NAME
nohup - run a command immune to hangups, logouts, and quits

SYNOPSIS
nohup command [arguments 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

NOHUP(l)

Nohup executes command with hangups and quits ignored. If output is not re-directed by the user, it will
be sent to nohup.out. If nohup.out is not writable in the current directory, output is redirected to
$HOME/nohup.out; otherwise, nohup will fail.

If output from nohup is redirected to a terminal, or is not redirected at all, the output is sent to nohup.out.

SEE ALSO
nice(l), signal(2).

-1-

NROFF(1) NROFF(1)

NAME
moff - format text

SYNOPSIS
nroff [options 1 [files 1

HP-UX COMPATIBILITY
Level: Nroff - HP-UX/STANDARD

Origin: System III

DESCRIPTION
Nroff formats text contained in files (standard input by default) for printing on typewriter-like devices
and line printers. Its capabilities are described in the NROFFITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name corresponding to the standard input.
The options, which may appear in any order, but must appear before the files, are:

-olist Print only pages whose page numbers appear in the list of numbers and ranges, separated by
commas. A range N -M means pages N through M; an initial -N means from the beginning
to page N; and a final N - means from N to the end. (See BUGS below.)

-nN Number first generated page N.
-sN Stop every N pages. Nroffwill halt after every N pages (defaultN = 1) to allow paper loading

or changing, and will resume upon receipt of a line-feed or new-line (new-lines do not work in
pipelines, e.g., with mm(1)). When nroffhalts between pages, an ASCII BEL is sent to the ter­
minal.

-raN Set register a (which must have a one-character name) to N.
-i Read standard input after files are exhausted.
-q Invoke the simultaneous input-output mode of the .rd request.
-z Print only messages generated by .tm (terminal message) requests.
-mname Precede the input files with the non-compacted (ASCII text) macro file

lusr/lib/tmac/tmac.name.
-cname Precede the inputfiles with the compacted macro files lusr/lib/macros/cmp.[nt].[dt].name

and lusrllib/macros/ucmp. [nt].na
-kname Compact the macros used in this invocation of nroff, placing the output in files [dt].name in the

current directory (see the May 1979 Addendum to the NROFFITROFF User's Manual for
details of compacting macro files).

-Tname Prepare output for specified terminal. Known names are 37 for the (default) TELETYPE®
Model 37 terminal, tn300 for the GE TermiNet 300 (or any terminal without half-line capabil­
ity), 300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI 450, Ip for a (generic)
ASCII line printer, 382 for the DTC-382, 4000A for the Trendata 4000A, 832 for the Ander­
son Jacobson 832, X for a (generic) EBCDIC printer, and 2631 for the Hewlett Packard 2631
line printer.

-e Produce equally-spaced words in adjusted lines, using the full resolution of the particular ter­
minal.

-h Use output tabs during horizontal spacing to speed output and reduce output character count.
Tab settings are assumed to be every 8 nominal character widths.

-un Set the emboldening factor (number of character overstrikes) for the third font position (bold)
to n, or to zero if n is missing.

HARDWARE DEPENDENCIES
Series 500:

FILES

The -c and -k options are not currently supported.

lusr/lib/suftab
Itmp/ta$#

suffix hyphenation tables
temporary file

-1-

NROFF(l) NROFF(l)

lusrllib/tmac/tmac. * standard macro files and pointers
lusr/lib/macrosl * standard macro files
lusr/lib/term/* terminal driving tables for nroff

SEE ALSO

BUGS

mm(l).
NROFF ITROFF User's Manual in HP-UX: Selected Articles.

Nroff is keyed to Eastern Standard Time; as a result, depending on the time of the year and on your
local time zone, the date that nroff generates may be off by one day from your current date.
When nroffis used with the -olist option inside a pipeline, it may cause a harmless II broken pipe II diag­
nostic if the last page of the document is not specified in list.

-2-

-----,------------ -

00(1) 00(1)

NAME
ad, xd - octal and hexadecimal dump

SYNOPSIS
od [-bcdox] [file] [[+]offset[.][b]]
xd [-bcdox] [file] [[+]offset[.][b]]

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III and HP

DESCRIPTION
Od (xd) dumps file in one or more formats as selected by the first argument. If the first argument is mis­
sing, -0 (-x) is the default. Each line is prepended with an offset fieH For ad, the offset is in octal. for xd
the offset is in hexadecimal. The meanings of the format options are:

-b Interpret bytes in octal (hexadecimal).

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: null = "'-0
backspace = ",-b, form-feed = "'-f, new-line = "'-n, return = "'.r, tab = "'-t; others appear as 3-
digit octal numbers.

-d Interpret 16-bit words in decimal.

-0 Interpret 16-bit words in octal.

-x Interpret 16-bit words in hexidecimal.

The file argument specifies which file is to be dumped. If no file argumem is specified, the standard
input is used.

The offset argument specifies the offset in the file where dumping is to commence. This argument is nor­
mally interpreted as octal bytes. If. is appended, offset is interpreted in decimal. If Ox is prepended
offset is interpreted in hexadecimal. If b is appended, offset is interpreted in blocks of 512 bytes. If the
file argument is omitted, offset must be preceded by +.

Dumping continues until end-of-file.

HARDWARE DEPENDENCIES
Series 500:

Xd is not currently implemented.

SEE ALSO
adb(1).

-1-

PASSWD(l) PASSWD(1)

NAME
passwd - change login password

SYNOPSIS
passwd [name 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

This command changes (or installs) a password associated with the login name. If name is omitted, it
defaults to getlogin(3) name.

The program prompts for the old password (if any) and then for the new one (twice). The caller must
supply these. New passwords should be at least four characters long if they use a sufficiently rich alpha­
bet and at least six characters long if monocase. Only the first eight characters of the password are signi­
ficant.

Only the owner of the name or the super-user may change a password; the owner must prove he knows
the old password, if any. The super-user need not supply the old password when he changes another
user's password. Only the super-user can create a null password.

The password file is not changed if the new password is the same as the old password, or if the password
has not "aged" sufficiently; see passwd (5)).

/etc/passwd

SEE ALSO
10gin(1), crypt(3C), passwd(5).

DIAGNOSTICS
Permission denied.

name is not in password file, or you are not user name or the super-user.

Sorry. the old password does not match.

Sorry: <x weeks since the last change
password aging is in effect, and it is too soon to change yours.

You may not change this password
the super-user has made it impossible to change your password.

Too short
passwords must be at least 4 characters long.

Please use at least one non-numeric character
your new password does not utilize a sufficiently varied selection of characters. You can over­
ride this rule by re-entering your new password 2 more times.

Please use a longer password.
your new password is not long enough to be sufficiently secure. You can override this rule by
re-entering your new password 2 more times.

They don't match, try again.
the two entries of your new password are not identical.

Temporary file busy; try again later
only one user can change his password at a time.

Cannot create temporary file
see the super-user.

Cannot unlink 'filename'
see the super-user.

-1-

PASSWD(1) PASSWD(1)

cannot link 'file' to 'file'.
see the super-user.

cannot recover 'file'.
see the super-user.

Password unchanged.
the new and old passwords are the same.

-2-

PASTE(1) PASTE(1)

NAME
paste - merge lines in one or more files

SYNOPSIS
paste file I file2 ...
paste -d list file I file2 ...
paste -s [-d list] file 1 file2 ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input files filel , file2, etc. It
treats each file as a column or columns of a table and pastes them together horizontally (parallel mer­
ging). If you will, it is the counterpart of cal(l) which concatenates vertically, i.e., one file after the other.
In the last form above, paste subsumes the function of an older command with the same name by com­
bining subsequent lines of the input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is to the standard output, so it
can be used as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or last line in case of the -5

option) are replaced by a tab character. This option allows replacing the tab character by one
or more alternate characters (see below).

list One or more characters immediately following -d replace the default tab as the line concatena­
tion character. The list is used circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no -s option), the lines from the last file are always terminated with a new-line character,
not from the list. The list may contain the special escape sequences: "'n (new-line), "'t (tab),
'" '" (backslash), and ",0 (empty string, not a null character). Quoting may be necessary, if
characters have special meaning to the shell (e.g. to get one backslash, use II II -d II '" '" '" '" II

) .
-s Merge subsequent lines rather than one from each input file. Use tab for concatenation, unless

a list is specified with -d option. Regardless of the list, the very last character of the file is forced
to be a new-line.

May be used in place of any file name, to read a line from the standard input. (There is no
prompting).

EXAMPLES
Is paste -d II II _ list directory in one column

Is paste - - - -

paste -s -d" '" t '" n" file

list directory in four columns

combine pairs of lines into lines

SEE ALSO
grep(l), cut(l),
pr(1): pr -t -m ... works Similarly, but creates extra blanks, tabs and new-lines for a nice page layout.

DIAGNOSTICS
line too long

too many files

Output lines are restricted to 511 characters.

Except for -5 option, no more than 12 input files may be specified.

-1-

PC(l) Series 200 Implementation PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [options 1 files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: This manual page describes the Pascal compiler as it is implemented on the Series 200 com­
puter. Refer to other pc(1) manual pages for information valid for other implementations.

DESCRIPTION

FILES

Pc is the HP standard Pascal compiler. It accepts two types of file arguments:

(1) Arguments whose names end with.p are taken to be Pascal source programs. They are compiled,
and each object program is left in the current directory in a file whose name is that of the source,
with .a substituted for .p. (The.a file will not appear for a single source which is compiled and
loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with .a are passed on to the linker (ld(1)) to be linked into the final
program.

The following options are recognized:

-c Suppress linking and produce object (.a) files from source files;

-w Suppress warning messages (same as $WARN OFF$);

-L Write a program listing to stdout or to the file given in $LIST filename $option in source
during compilation;

-ooutfile Name the output file from the linker outfile instead of a.out;

-e Write lines containing errors to stderr;

-v Write expanded compiler and linker runstrings to stderr.

Other options are taken to be arguments to ld, and are passed along to the linker.

The compiler generates object code in archive file format, putting each module in a separate .0 format
file and archiving them into a .a file.

file.p
file. a
a.out
Ibin/pc
lusr/lib/pascomp
llib/crtO.o
llib/libpc.a
lusr/tmp/*
lusr/lib/paserrs
luser/lib/escerrs
lusr/lib/syserrs
lusrllib/ioerrs

input file (Pascal source file)
archive file of object file(s)
linked executable output file
mother program
compiler
runtime startoff
Pascal run-time library
temporary files used by the compiler
compiler errors
Pascal escape codes
unix system messages
Pascal ioresults

SEE ALSO
HP Pascal Language Reference, HP Part No. 98680-90015

DIAGNOSTICS
The diagnostics produced by pc are intended to be self-explanatory. If a listing is requested (-L option),
errors are written to the listing file. If no listing is being generated, errors are written to stderr. Errors will
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional

-1-

PC(l) Series 200 Implementation PC(l)

messages may be produced by the linker.

A list of all compiler errors may be found in lusr/lib/paserrs.

-2-

PC(l) Series 500 Implementation PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [options] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes the Pascal compiler as implemented on the Series 500 compu­
ters. Refer to other pc(1) manual pages for information valid for other implementations.

DESCRIPTION

FILES

Pc is the HP standard Pascal compiler. It accepts two types of file arguments:

(1) Arguments whose names end with.p are taken to be Pascal source programs. They are compiled,
and each object program is left in the current directory in a file whose name is that of the source,
with .0 substituted for .p. (The.o file will not be created for a single source which is compiled and
loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with .0 are passed on to the linker (ld(l)) to be linked into the final
program.

The following options are recognized:

-c Suppress linking and produce object (.0) files from source files;

-w Suppress warning messages (same as $WARN OFF$);

-L Write a program listing to stdout during compilation;

--ooutfile Name the output file from the linker outfile instead of a.out;

-e Write lines containing errors to stderr;

-v Write expanded compiler and linker runstrings to stderr;

-W [bytes] Display (if bytes is omitted) or set a Pascal program's working set size. Bytes is the number
of bytes in the program's working set;

-H [bytes] Display (if bytes is omitted) or set a Pascal program's maximum heap size. Bytes is the
maximum number of bytes in the heap.

Any other options are taken to be arguments to ld, and are passed along to the linker.

file.p
file. 0

a.out
/bin/pc
/usr/lib/pascomp
/usrllib/paserrs
/lib/prtO.o
/libllibpc.a
/usr/tmp/*

input file (Pascal source file)
object file
linked executable output file
mother program
compiler
error message file
runtime startup
Pascal run-time library
temporary files used by the compiler; names are created by tmpnam(3S).

SEE ALSO
Pascal/9000 Language Reference Manual, HP Part No. 97082-90001; Programming in Pascal with
Hewlett-Packard Pascal, by Peter Grogono.

DIAGNOSTICS
The diagnostics produced by pc are intended to be self-explanatory. If a listing is requested (-L option),
errors are written to the listing file. If no listing is being generated, errors are written to stderr. Errors will
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional mes­
sages may be produced by the linker.

-1-

PC(l) Series 500 Implementation PC(l)

A list of all errors may be found in /usr/lib/paserrs.

-2-

PR(1) PR(1)

NAME
pr - print files

SYNOPSIS
pr [options 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files are specified, the standard input
is assumed. By default, the listing is separated into pages, each headed by the page number, a date and
time, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines which do not fit are trun­
cated. If the -s option is used, lines are not truncated and columns are separated by the separation
character.

If the standard output is associated with a terminal, error messages are withheld until pr has completed
printing.

Options may appear singly or be combined in any order. Their meanings are:

+ k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i are assumed for multi-column
output.

-a Print multi-column output across the page.

-m Merge and print all files Simultaneously, one per column (overrides the -k, and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k + 1, 2*k + 1, 3*k + 1, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. Tab characters in the input are
expanded into the appropriate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to character positions k + 1,
2*k + 1, 3*k + 1, etc. If k is 0 or is omitted, default tab settings at every eighth position are
assumed. If c (any non-digit character) is given, it is treated as the output tab character (default
for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occupies the first k + 1 charac­
ter positions of each column of normal output or each line of -m output. If c (any non-digit
character) is given, it is appended to the line number to separate it from whatever follows
(default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for equal-width multi-column out­
put, no limit otherwise).

-ok Offset each line by k character positions (default is OJ. The number of character pOSitions per
line is the sum of the width and offset.

-Ik Set the length of a page to k lines (default is 66).

-h Use the next argument as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a terminal (pr will ring the bell at
the terminal and wait for a carriage return).

-f Use form-feed character for new pages (default is to use a sequence of line-feeds). Pause
before beginning the first page if the standard output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-1-

PR(I)

-t

-sc

PR(I)

Print neither the five-line identifying header nor the five-line trailer normally supplied for each
page. Quit printing after the last line of each file without spacing to the end of the page.

Separate columns by the single character c instead of by the appropriate number of spaces
(default for c is a tab).

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by "file list":

pr -3dh "file list" file 1 file2

Write filel on file2, expanding tabs to columns 10, 19, 28,37, ... :

pr -e9 -t <file1 >file2

Idev/tty* to suspend messages

SEE ALSO
cat(1), lpr(1), ul(1).

-2-

PROF(l) Series 200 Only PROF(1)

NAME
prof - display profile data

SYNOPSIS
prof [-a) [-I) [file)

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Remarks: Prof(1) is implemented on the Series 200 only.

DESCRIPTION

FILES

Prof interprets the file mon.out produced by the monitor(3C) subroutine. Under default modes, the
symbol table in the named object file (a.out default) is read and correlated with the mon.out profile file.
For each external symbol, the percentage of time spent executing between that symbol and the next is
printed (in decreasing order), together with the number of times that routine was called and the number
of milliseconds per call.

If the -a option is used, all symbols are reported rather than just external symbols. If the -I option is
used, the output is listed by symbol value rather than decreasing percentage.

In order for the number of calls to a routine to be tallied, the -p option of cc must have been given when
the file containing the routine was compiled. This option also arranges for the mon.out file to be produ­
ced automatically.

man. out for profile
a.out for name list

SEE ALSO
cc(l), profil(2), monitor(3C).

BUGS
Beware of quantization errors.

-1-

PRS(l) PRS(l)

NAME
prs - print and summarize an sees file

SYNOPSIS
prs [-d [dataspec 11 [-r [SID 11 [-e] [-I] [-a] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (see sccsfile(5)) in a user supplied format.
If a directory is named, prs behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin with s.), and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-sees files and unreadable files are
silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter arguments, and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec] Used to specify the output data specification. The dataspec is a string
consisting of sees file data keywords (see Data Keywords) interspersed
with optional user supplied text.

-r[SID] Used to specify the sces IDentification (SID) string of a delta for which
information is desired. If no SID is specified, the SID of the most recently
created delta is assumed.

-e

-I

-a

Data Keywords

Requests information for all deltas created earlier than and including the
delta deSignated via the -r keyletter.

Requests information for all deltas created later than and including the
delta designated via the -r keyletter.

Requests printing of information for both removed, Le., delta type = R,
(see rmdel(l)) and existing, Le., delta type = D, deltas. If the -a keylet­
ter is not specified, information for existing deltas only is provided.

Data keywords specify which parts of an sees file are to be retrieved and output. All parts of an sees
file (see sccsfile(5)) have an associated data keyword. There is no limit on the number of times a data
keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and (2) appropriate values (extrac­
ted from the sees file) substituted for the recognized data keywords in the order of appearance in the
dataspec. The format of a data keyword value is either Simple (S), in which keyword substitution is
direct, or Multi-line (M), in which keyword substitution is followed by a carriage return.

-1-

PRS(l) PRS(l)

Keyword Data Item File Selection Value Format

:Dt: Delta information Delta Table Seebelow* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn S
:Ld: Lines deleted by Delta " nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type " DorR S
:1: SCCS 10 string (SID) " :R:.:L:.:B:.:S: S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:0: Date Delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created " nn S
:Dm: Month Delta created " nn S
:Dd: Day Delta created " nn S
:T: Time Delta created " :Th:::Tm:::Ts: S
:Th: Hour Delta created " nn S
:Tm: Minutes Delta created " nn S
:Ts: Seconds Delta created " nn S
:P: Programmer who created Oelta " logname S
:OS: Delta sequence number " nnnn S
:DP: Predecessor Delta seq-no. " nnnn S
:01: Seq-no. of deltas incl., excl., ignored , " :On:/:Ox:/:Dg: S
:On: Deltas included (seq#) " :OS::DS: ... S
:Ox: Deltas excluded (seq#) " :OS::OS: ... S
:Og: Oeltas ignored (seq#) " :DS::DS: ... S
:MR: MR numbers for delta " text M
:C: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Rags text M
:Y: Module type flag " text S
:MF: MR validation flag " yes or no S
:MP: MR validation pgm name " text S
:KF: Keyword error/warning flag " yes or no S
:BF: Branch flag " yes or no S
:J: Joint edit flag " yes or no S
:LK: Locked releases " :R: ... S
:Q: User defined keyword " text S
:M: Module name " text S
:FB: Roor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Os: Default SID " :1: S
:ND: Null delta flag " yes or no S
:FD: File descriptive text Comments text M
:BO: Body Body text M
:GB: Gotten body " text M
:W: A form of what(1) string N/A :Z::M: "t:l: S
:A: A form of what(l)string N/A :Z::Y: :M: :I::Z: S
:Z: what(l) string delimiter N/A @(#) S
:F: SCCS file name N/A text S
:PN: SCCS file path name N/A text S

• :01: = :OT: :1: :0: :T: :P: :05: :OP:

-2-

PRS(l) PRS(l)

User supplied text is any text other than recognized data keywords. Escapes may be used as follows:

tab "t
new-line "n
colon ,,:
backspace "b
carriage-return "r
formfeed "f
backslash " "
single quote ,,-

The default dataspec is:

:Dt::DL:OMRs:OMR:COMMENTS:OC:

If no option letters (or only -a) are given, prs prints the file name, using the default dataspec, and the-e
option; thus, information on all deltas is produced.

EXAMPLES

FILES

prs -d "Users and/or user IDs for :F: are: "n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d "Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/1211 By cas

As a special case (when no -d keyletter is given):

prs s.ftle

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000100000100000
MRs:
b178-12345
bI79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type.

Itmp/pr?????

SEE ALSO
admin(l), delta(1), get(1), help(1), sccsfile(5).
Source Code Control System User's Guide iri HP-UX: Selected Articles.

DIAGNOSTICS
Use help (1) for explanations.

-3-

PS(l) PS(l)

NAME
ps - report process status

SYNOPSIS
p5 [-edafl] [-5 swapdev] [-n namelist] [-t tlist] [-p plist] [-u ulist] [-g glist]

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Ps prints certain information about active processes. With no options, information is printed about pro­
cesses associated with the current terminal. Otherwise, the information that is displayed is controlled by
the following options:

-e Print information about all processes.
-d Print information about all processes, except process group leaders.
-a Print information about all processes, except process group leaders and processes not

associated with a terminal.
-f Generate a full listing. (Normally, a short listing containing only process ID, terminal

(II tty ") identifier, cumulative execution time, and the command name is printed.) See
below for meaning of columns in a full listing.

-I Generate a long listing. See below.
-5 swapdev Use the file swapdev in place of /dev/swap. This is useful when examining a corefile; a

swapdev of /dev/null will cause the user block to be zeroed out.
-n namelist The argument will be taken as the name of an alternate namelist (lunix is the default).
-t tlist Restrict listing to data about the processes associated with the terminals given in tlist,

where tlist can be in one of two forms: a list of terminal identifiers separated from one
another by a comma, or a list of terminal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or more spaces.

-p plist Restrict listing to data about processes whose process ID numbers are given in plist,
where plist is in the same format as tlist.

-u ulist Restrict listing to data about processes whose user ID numbers or login names are given in
ulist, where ulist is in the same format as tlist. In the listing, the numerical user ID will be
printed unless the -f option is used, in which case the login name will be printed.

-g glist Restrict listing to data about processes whose process groups are given in glist, where glist
is a list of process group leaders and is in the same format as tlist.

The column headings and the meaning of the columns in a ps listing are given below. The letters f and 1
indicate the option (full or long) that causes the corresponding heading to appear. All means that the
heading always appears. Note that these two options only determine what information is provided for a
process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process:
01 in core;
02 system process;
04 locked in core (e.g., for physical I/O);
10 currently being swapped out;
20 being traced by another process;
40 another trace flag;
100 text pointer valid;
200 partially swapped out.

S (I) The state of the process:
o non-existent;
S sleeping;
W waiting;
R running;
I intermediate;

-1-

PS(1)

UID (f,l)

PID (all)
PPID (f,l)
C (£,1)
STIME (f)
PRI (1)
NI (1)
ADDR (1)
SZ (1)
WCHAN (1)

TTY (all)
TIME (all)
CMD (all)

PS(l)

Z terminated;
T stopped.

The user ID number of the process owner; the login name is printed under the -f
option.
The process ID of the process; it is possible to kill a process if you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
Starting time of the process.
The priority of the process; higher numbers mean lower priority.
Nice value; used in priority computation.
The memory address of the process, if resident; otherwise, the disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if blank, the process is run­
ning.
The controlling terminal for the process (without the initial II tty II , if any).
The cumulative execution time for the process (reported in the form II min:sec II).
The command name; the full command name and its arguments are printed under
the -f option.

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked
<defunct> (see "zombie process" inexit(2)}.

Under the -f option, ps tries to determine the command name and arguments given when the process
was created by examining memory or the swap area. Failing thiS, the command name, as it would
appear without the -f option, is printed in square brackets.

HARDWARE DEPENDENCIES
Series 200:

FILES

ADDR is the page frame number of the u_area, if resident.

Series 500:
The F field is always Ol.
In the S field, I means "waiting for input from terminal" .
In the S field, the P (paused) state is added.
In the S field, the T state is not currently supported.
The C field is always zero.
The ADDR field reports the partition number.
In the SZ field, the block size is lK bytes.
The WCHAN field is always blank.
The CMD field is renamed COMMAND except when the -fl option is specified.

The definition of STIME is as follows:
The time when the process was forked, not the time when it was modified by exec; the
date is included only if the elapsed time is greater than 24 hours.

The sand n options are not currently supported. A diagnostic is printed if they are used.

lunix
Idev/mem
Idev

system namelist
memory
searched to find swap device and terminal (tty) names

SEE ALSO

BUGS

kill(l}, nice(l), exec(2), exit(2).

Things can change while ps is running; the picture it gives is only a snapshot in time. Some data printed
for defunct processes are irrelevant.

-2-

PS(l) PS(l)

If two special files for terminals are located at the same select code, they are reported in the order in
which they appear in /dev, not in alphabetical order.

-3-

PWD(l)

NAME
pwd - working directory name

SYNOPSIS
pwd

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS

PWD(l)

II Cannot open .. II and II Read error in .. II indicate possible file system trouble and should be referred to
the super-user.

-1-

R2780(1C) Series 500 Only R2780(1C)

NAME
r2780 - IBM 2780/3780 terminal emulation

SYNOPSIS
r2780 [options] device file

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks: R2780 is implemented on the Series 500 only. R2780 is part of an optional product num­
bered 97077 A (Single-user) or 97087 A (multi-user).

DESCRIPTION
R2780 emulates an IBM 2780 or 3780 remote job entry station. In addition, support for character set
translation and tracing is prOvided.

Options

-sspeed Data rate (1200 2400 3600 48007200960019200 e). Default is e.

-3 Emulate 3780 instead of 2780.

-b Suppress character set translation.

-f Enable full duplex.

-p Enable primary station (shorter timeouts).

-m[amr] Select type of modem connection: Manual Dial (m), AutoAnswer with ring (a),
Autoanswer without Ring (r). Default is m.

-t Enable truncation of trailing blanks.

-c Enable compression of imbedded blanks.

-Iretrylimit Select limit for retries on bad blocks (1-255). The default is (7).

-orecsize Set maximum record size for outgoing records (1-509 bytes for 3780,1-397 bytes for
2780). Default is 80.

-irecsize Set maximum record size for incoming records (1-509 bytes for 3780, 1-397 bytes
for 2780). Default is 160.

-wtimeout Select timeout for modem connection (0-255 seconds). 0 disables this timeout. The
default is 60.

-ntimeout Select no activity timeout (0-65535 seconds). 0 disables the no activity timeout. The
default is 26.

-r Signal Rate select. Enable alternate (lower) modem speed.

-v Enable MSV2 protocol.

-k[artcdbmf] Trace mask. All events (a), received data characters (r), transmitted data characters
(t), received control characters (c), transmitted control characters (d), backplane state
machine transitions (b), midplane state machine transitions (m), frontplane state
machine transitions (f).

-ydevicefile Enable tracing and read trace data from specified device file.

-z[file or shell command]
Output filter program (if tracefile begins with "I") or file to receive raw trace data.

Commands
R2780 interprets the follOWing commands from standard input:

* [> or > >outfile or loutfilter]
configuration display.

-1-

R2780(1C)

1 [> or > >outfile or loutfilter]
interface card status display.

?[> or »outfileor loutfilter]
emulator status display.

enter new local shell.

!shell command

Series 500 Only

execute one local shell command.

-[config option]
set one of the following configuration options: t, C, b, k, Z, or i.

+ [config option]
reset one of the following configuration options: t, c, b, k, Z, or i.

> [I] [>] [:] [file or filter]
receive one file, pipe to filter (I), append to existing file (>), suppress echo (:).

<[#][:][file]
transmit one file, transparent (#), suppress echo (:).

< ((I send EOT.

R2780(lC)

The interrupt signal (e.g. AC or BREAK) can be used to abort file transfers. End of file (e.g. AD from ter­
minal) can be used to terminate r2780 or to terminate a file transfer from standard input.

SEE ALSO
r2780trace(Ic).

-2-

R2780TRACE(1) Series 500 Only R2780TRACE(1)

NAME
r2780trace - format a trace dump from r2780

SYNOPSIS
r2780trace

HP·UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks: R2780trace is implemented on the Series 500 only. R2780trace is part of an optional pro­
duct numbered 97077 A (Single-user) or 97087 A (multi-user).

DESCRIPTION

FILES

R2780trace reads from standard input the results of a trace done by r2780(1). The format of the input is
expected to be the same as the format of the output of r2780 when the trace feature of that program is
on.

If the overhead information at the beginning of the trace (includes date and time of trace) is not present
or is in the wrong format, the trace will immediately abort with an error message. If not, the trace input
as a whole will be considered valid, and any subsequent invalid data will result in error messages but not
termination.

The output of the trace appears in 3 columns. A transmitted byte is printed in column 2 in each of three
formats: octal, ascii, and ebcdic. A received byte is printed in column 3 in each of the above three for­
mats. For both of these cases, the value of the trace timer appears in column 1. Control bytes have no
trace time associated with them, are interpreted according to tables of messages found in
lusr/lib/tracetable and are interpreted on the output without regard for alignment with the three
columns mentioned above.

Note: any trace data following an end of trace and preceding a new beginning of trace will not be inter­
preted, but a count of these thrown-away bytes will be printed.

lusrllib/tracetable

SEE ALSO

names of state machines, events, and sub-functions.

r2780(1).

-1-

RANLIB(l) RANLIB(l)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ranlib archive ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: Version 7

DESCRIPTION
Ranlib converts each named archive to a form which can be loaded more rapidly by the link editor (ld).
It does this by adding a table of contents named _.SYMDEF to the beginning of the archive. It uses
ar(1) to reconstruct the archive, so that sufficient temporary file space must be available in the file system
containing the current directory. A library's table of contents must be updated each time that library is
modified, or ld refuses to use the table of contents. The table of contents is updated by running the
library through ranlib again.

SEE ALSO

BUGS

ar(1), Id(1), ranlib(5).

Because generation of a library by ar and creation of the table of contents by ranlib are separate, phase
errors are possible. The link editor ld warns when the modification date of a library is more recent than
the creation of its table of contents, but this means that you get the warning even if you only copy the
library.

-1-

REVISION (1) Series 500 Only

NAME
revision - get HP-UX revision information

SYNOPSIS
IIbin/revision

HP-UX COMPATIBILITY
Level: HP-UXJEXTENDED

Origin: HP

Remarks: Revision is implemented on the Series 500 only.

DESCRIPTION

REVISION (1)

This command prints six lines to standard output. Those six lines consist of the six data items output by
uname(2), which give information on the kernel.

The following is a sample output from a machine whose loader chip was not programmed with a serial
number:

System:
Release:
Version:
Machine:
Identity:
Nodename:

SEE ALSO
uname(2).

HP-UX
TEST23#
B

hpfcla

-1-

RM(l) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri 1 file ...

rmdir dir ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link to the file, the
file is destroyed. Removal of a file requires write permission in its directory, but neither read nor write
permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed and a line
is read from the standard input. If that line begins with y the file is deleted, otherwise the file remains.
No questions are asked when the -f option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the optional argument -r has been
used. In that case, rm recursively deletes the entire contents of the specified directory, and the directory
itself. (Note that rm can recursively remove a maximum of 17 directory levels.)

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r, whether to
examine each directory.

Rmdir removes entries for the named directories, which must be empty and have execute permission
for the user trying to remove them.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file .. merely to avoid the consequences of
inadvertently doing something like:

rm-r .*

-1-

RMDEL(l) RMDEL(l)

NAME
rmdel- remove a delta from an sees file

SYNOPSIS
rmdel-rSID files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named sees file. The delta to be removed
must be the newest (most recent) delta in its branch in the delta chain of each named sees file. In addi­
tion, the SID specified must not be that of a version being edited for the purpose of making a delta (i. e.,
if a p-file (see get (1)) exists for the named sees file, the SID specified must not appear in any entry of the
p-file).

If a directory is named, rmdel behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-sees files and unreadable files are
silently ignored.

The exact permissions necessary to remove a delta are documented in the Source Code Control System
User's Guide Simply stated, they are either (1) if you make a delta you can remove it; or (2) if you own
the file and directory you can remove a delta.

x-file (see delta(1))
z-file (see delta(1))

SEE ALSO
delta(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User's Guide in HP-UX Selected Articles.

DIAGNOSTICS
Use help (1) for explanations.

-1-

RMNL(1)

NAME
rmnl - remove extra new-line characters from file

SYNOPSIS
rmnl

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

RMNL(l)

Rmnl is useful for removing excess white space from files for display on a crt terminal. Groups of more
than one "n character are compressed to one "n character. This is used by the man command. Rmnl
provides the same functionality as UCB cat -so

SEE ALSO
man(I).

-1-

RSH(l) RSH(l)

NAME
rsh - restricted shell (command interpreter)

SYNOPSIS
rsh [flags 1 [name [arg1 ... 11

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Rsh is a restricted version of the standard command interpreter sh(1). It is used to set up login names
and execution environments whose capabilities are more controlled than those of the standard shell.
The actions of rsh are identical to those of sh, except that the following are disallowed:

cd
setting the value of $PATH
command names containing /
> and »

When invoked with the name -rsh, rsh reads the user's .profile (from $HOME/.profile). It acts as the
standard sh while doing this, except that an interrupt causes an immediate exit, instead of causing a
return to command level. The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to execute it. Thus, it
is possible to provide to the end user shell procedures that have access to the full power of the standard
shell, while restricting him to a limited menu of commands; this scheme assumes that the end user does
not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user actions, by
performing guaranteed setup actions, then leaving the user in an appropriate directory (probably not the
login directory).

Rsh is actually just a link to sh and any flags arguments are the same as for sh(1).

The system administrator often sets up a directory of commands that can be safely invoked by rsh.
Some systems also proVide a restricted editor red.

SEE ALSO
sh(1), profile(S).

BUGS
An illegal command (such as cd) included in a trap 0 (logout) will cause a memory fault in the shell.

-1-

SACT(l) SACT(1)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Sact informs the user of any impending deltas to a named secs file. This situation occurs when get(1)
with the -e option has been previously executed without a subsequent execution of delta(1). If a direc­
tory is named on the command line, sact behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed. Non-Sees files and unreadable files are
ignored. The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the SCCS file to which changes will be
made to make the new delta.

Field 2

Field 3

Field 4

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (Le. executed a get -e).

contains the date that get -e was executed.

Field 5 contains the time that get -e was executed.

SEE ALSO
delta(1), get(1), unget(1).

DIAGNOSTICS
Use help (1) for explanations.

-1-

SCCSDIFF (1)

NAME
sccsdiff - compare two versions of sees file

SYNOPSIS
sccsdiff-rSID1-rSID2 [-p] [-sn] files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

SCCSDIFF (1)

Sccsdiff compares two versions of an sees file and generates the differences between the two versions.
Any number of sees files may be specified, but arguments apply to all files.

-rSID?

-p
-sn

FILES

SID1 and SID2 specify the deltas of an sees file that are to be compared. Versions are
passed to bdiff(1) in the order given. The SID's accepted, and the corresponding version
retrieved for the comparison are the same as for get(1).

pipe output for each file through pr(1).

n is the file segment size that bdiff will pass to diff(1). This is useful when diff fails due to
a high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(1), diff(l), get(1), help(l), pr(l).
Source Code Control System User's Guide in HP-UX Selected Articles.

DIAGNOSTICS
II File: No differences II if the two versions are the same.
Use help (1) for explanations.

-1-

SED(l) SED(l)

NAME
sed - stream text editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a script
of commands. The -f option causes the script to be taken from file sfile; these options accumulate. If
there is just one -e option and no -f options, the flag -e may be omitted. The -n option suppresses the
default output. A script consists of editing commands, one per line, of the following form:

[address [, address 1 1 function [arguments 1
In normal operation, sed cyclically copies a line of input into a pattern space (unless there is something left
after a D command), applies in sequence all commands whose addresses select that pattern space, and at
the end of the script copies the pattern space to the standard output (except under -n) and deletes the
pattern space.

Some of the commands use a hold space to save all or part of the pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across files, a $ that addresses
the last line of input, or a context address, i. e., a Iregular expression I in the style of ed (1) modified thus:

In a context address, the construction "-,?regular expression?, where? is any character, is identi­
cal to Iregular expressionl. Note that in the context address "-,xabc "-,xdefx, the second
x stands for itself, so that the regular expression is abcxdef.

The escape sequence "-,n matches a new-line embedded in the pattern space.
A period. matches any character except the terminal new-line of the pattern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.
A command line with two addresses selects the inclusive range from the first pattern space that

matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected,
only one line is selected.) Thereafter the process is repeated, looking again for the first
address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation function!
(below).

In the following list of functions the maximum number of permissible addresses for each function is indi­
cated in parentheses.

The text argument consists of one or more lines, all but the last of which end with "-, to hide the new­
line. Backslashes in text are treated like backslashes in the replacement string of an s command, and
may be used to protect initial blanks and tabs against the stripping that is done on every script line. The
rfile or wfile argument must terminate the command line and must be preceded by exactly one blank.
Each wfile is created before processing begins. There can be at most 10 distinct wfile arguments.

(1) a"-,
text Append. Place text on the output before reading the next input line.
(2) b label Branch to the: command bearing the label. If label is empty, branch to the end of the script.
(2) c"-,
text Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address range,

place text on the output. Start the next cycle.
(2) d Delete the pattern space. Start the next cycle.
(2) D Delete the initial segment of the pattern space through the first new-line. Start the next

-1-

SED(l)

(2)g
(2)G
(2)h
(2)H
(1)i"'-
text
(2) I

(2)n

(2)N

(2)p
(2)P

cycle.
Replace the contents of the pattern space by the contents of the hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.

SED(l)

List the pattern space on the standard output in an unambiguous form. Non-printing
characters are spelled in two-digit ASCII and long lines are folded.
Copy the pattern space to the standard output. Replace the pattern space with the next line
of input.
Append the next line of input to the pattern space with an embedded new-line. (The
current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new-line to the standard out­
put.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading the next input line.
(2) s/regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression in the pattern space.
Any character may be used instead of I. For a fuller description see ed(l). Flags is zero or
more of:

9 Global. Substitute for all nonoverlapping instances of the regular expres­
sion rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label Test. Branch to the: command bearing the label if any substitutions have been made since
the most recent reading of an input line or execution of a t. If label is empty, branch to the
end of the script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) ylstringllstring2/

(2)1 function

(0): label
(1)=
(2){

Transform. Replace all occurrences of characters in string 1 with the corresponding charac­
ter in string2. The lengths of string 1 and string2 must be equal.

Don't. Apply the function (or group, if function is {) only to lines not selected by the
address(es).
This command does nothing; it bears a label for band t commands to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching} only when the pattern space is selec­
ted. The syntax is:

{cmdl
cmd2
cmd3

}

(0) An empty command is ignored.

SEE ALSO
awk(l), ed(l), grep(l).

-2-

SED(l) SED(l)

BUGS
There is a limit of 100 commands in the script.

-3-

SH(l) SH(l)

NAME
sh - shell, the standard command programming language

SYNOPSIS
sh [-ceiknrstuvx 1 [args 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
S h is a command programming language that executes commands read from a terminal or a file. See
Invocation below for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a blank is a tab or a space).
The first word specifies the name of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command. The command name is passed as
argument 0 (see exec(2)). The value of a simple-command is its exit status if it terminates normally, or
(octal) 200 + status if it terminates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The standard output of each com­
mand but the last is connected by a pipe (2) to the standard input of the next command. Each command
is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, &&, or II, and optionally terminated by ;
or &. Of these four symbols, ; and & have equal precedence, which is lower than that of && and I I.
The symbols && and I I also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (Le.,
the shell does not wait for that pipeline to finish). The symbol && (II) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of
new-lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value
returned by a command is that of the last simple-command executed in the command.

for name [in word ... 1 do list done
Each time a for command is executed, name is set to the next word taken from the in word list.
If in word . .. is omitted, then the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execution ends when there are no
more words in the list.

case word in [pattern [I pattern 1 ...) list ;; 1 ... esac
A case command executes the list associated with the first pattern that matches word. The form
of the patterns is the same as that used for file-name generation (see File Name Generation
below).

if list then list [elif list then list 1 ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status, the list following the first then
is executed. Otherwise, the list following elif is executed and, if its value is zero, the list fol­
lowing the next then is executed. Failing that, the else list is executed. If no else list or then list
is executed, then the if command returns a zero exit status.

while list do list done

(list)

{list;}

A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do
list are executed, then the while command returns a zero exit status; until may be used in place
of while to negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.

-1-

SH(1)

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.

SH(1)

A word beginning with # causes that word and all the following characters up to a new-line to be
ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (••) may be used as part or all
of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be assigned
values by set. Variables may be set by writing:

name = value [name = value 1 ...
Pattern-matching is not performed on value.

${parameter }
A parameter is a sequence of letters, digits, or underscores (a name), a digit, or any of the charac­
ters *, @, #, ?, -, $, and I. The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or underscore that is not to be inter­
preted as part of its name. A name must begin with a letter or underscore. If parameter is a digit
then it is a positional parameter. If parameter is * or @, then all the positional parameters, star­
ting with $1, are substituted (separated by spaces). Parameter $0 is set from argument zero
when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise substitute word.

${parameter: = word}
If parameter is not set or is null then set it to word; the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise, print word and exit from
the shell. If word is omitted, then the message "parameter null or not set" is printed.

${parameter: + word}
If parameter is set and is non-null then substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the fol­
lowing example, pwd is executed only if d is not set or is null:

echo ${d:-'pwd'}

If the colon (:) is omitted from the above expressions, then the shell only checks whether parameter is set
or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below).
MAIL If this variable is set to the name of a mail file, then the shell informs the user of

SHELL
PS1
PS2

the arrival of mail in the specified file.
a string specifying which shell to run.
Primary prompt string, by default "$ ".
Secondary prompt string, by default "> ".

-2-

SH(I) SH(I)

IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PSI, PS2, and IFS, while HOME and MAIL are not set at all by
the shell (although HOME is set by login(l)).

Blank Interpretation.
After parameter and command substitution, the results of substitution are scanned for internal field
separator characters (those found in IFS) and split into distinct arguments where such characters are
found. Explicit null arguments (.,., or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters *, ?, and [. If one of these
characters appears then the word is regarded as a pattern. The word is replaced with alphabetically sor­
ted file names that match the pattern. If no file name is found that matches the pattern, then the word is
left unchanged. The character. at the start of a file name or immediately following a /, as well as the
character / itself, must be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters separated by -

matches any character lexically between the pair, inclusive. A NOT operator, !, can be
specified immediately following the left bracket to match any single character not
enclosed in the brackets.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () I < > new-line space tab

A character may be quoted (Le., made to stand for itself) by preceding it with a ","". The pair ",""new-line
is ignored. All characters enclosed between a pair of single quote marks (--), except a single quote, are
quoted. Inside double quote marks (., .,), parameter and command substitution occurs and"", quotes
the characters ","", -, ", and $. ., $*" is equivalent to ., $1 $2 ... ", whereas" $@" is equivalent to
"$1" "$2"

Prompting.
When used interactively, the shell prompts with the value of PSI before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, then the secondary
prompt (Le., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected using a special notation inter­
preted by the shell. The following may appear anywhere in a simple-command or may precede or fol­
Iowa command and are not passed on to the invoked command; substitution occurs before word or digit
is used:

<word
>word

»word

«[-lword

<&digit

Use file word as standard input (file descriptor 0).
Use file word as standard output (file deSCriptor 1). If the file does not exist then it is
created; otherwise, it is truncated to zero length.
Use file word as standard output. If the file exists then output is appended to it (by
first seeking to the end-of-file); otherwise, the file is created.
The shell input is read up to a line that is the same as word, or to an end-of-file. The
resulting document becomes the standard input. If any character of word is quoted,
then no interpretation is placed upon the characters of the document; otherwise,
parameter and command substitution occurs, (unescaped) ",""new-line is ignored,
and","" must be used to quote the characters ","", $, -, and the first character of word.
If - is appended to < <, then all leading tabs are stripped from word and from the
document.
The standard input is duplicated from file descriptor digit (see dup(2)). Similarly for

-3-

SH(l) SH(l)

the standard output using>.
<&- The standard input is closed. Similarly for the standard output using >.

If one of the above is preceded by a digit, then the file descriptor created is that specified by the digit
(instead of the default 0 or 1). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file deSCriptor 1. Note that this type of 110 redirection is
necessary if you want to synchronously collect stdout and stderr output in the same file. Redirecting
stdout and stderr separately will cause asynchronous collection of data at the destination (Le. things
written to stdout can subsequently be over-written by things written to stderr, and vice-versa).

If a command is followed by & then the default standard input for the command is the empty file
Idev/null. Otherwise, the environment for the execution of a command contains the file descriptors of
the invoking shell as modified by input/output specifications.

Environment.
The environment (see environ(7» is a list of name-value pairs that is passed to an executed program in
the same way as a normal argument list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of these affects the environment unless the export
command is used to bind the shell's parameter to the environment. The environment seen by any exe­
cuted command is thus composed of any unmodified name-value pairs originally inherited by the shell,
plus any modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus:

TERM = 450 cmd args and
(export TERM; TERM = 450; cmd args)

are eqUivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The follOWing first prints a = b c and then c:

Signals.

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by
&; otherwise signals have the values inherited by the shell from its parent, with the exception of signal
11 (but see also the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out. Except for the Special Com­
mands listed below, a new process is created and an attempt is made to execute the command via
exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alterna­
tive directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying the
current directory, Ibin, and lusr/bin, in that order). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between the colon delimiters
anywhere else in the path list. If the command name contains a I then the search path is not used. Oth­
erwise, each directory in the path is searched for an executable file. If the file has execute permission but
is not an a.out file, it is assumed to be a file containing shell commands. A sub-shell (Le., a separate
process) is spawned to read it. A parenthesized command is also executed in a sub-shell.

-4-

SH(1) SH(1)

Special Commands.
The following commands are executed in the shell process and, except as specified, no input/output
redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path specified by PATH is used

to find the directory containing file. Note that this command does not spawn another shell to
execute file, and thus differs in behavior and output from executing file as a shell script.

break [n 1
Exit from the enclosing for or while loop, if any. If n is specified then break n levels.

continue [n 1
Resume the next iteration of the enclosing for or while loop. If n is specified then resume at the
n-th enclosing loop.

cdr arg 1
Change the current directory to argo The shell parameter HOME is the default argo

eval[arg ... 1
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ... 1
The command specified by the arguments is executed in place of this shell without creating a
new process. Input/output arguments may appear and, if no other arguments are given, cause
the shell input/output to be modified.

exit [n 1
Causes a shell to exit with the exit status specified by n. If n is omitted then the exit status is that
of the last command executed (an end-of-file will also cause the shell to exit.)

export [name. .. 1
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, then a list of all names that are exported in this shell is
printed.

newgrp [arg . .. 1
Equivalent to exec newgrp arg

read [name... 1
One line is read from the standard input and the first word is assigned to the first name, the
second word to the second name, etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

readonly [name. .. 1
The given names are marked readonly and the values of the these names may not be changed
by subsequent assignment. If no arguments are given, then a list of all readonly names is prin­
ted.

set [-ekntuvx [arg . .. 1 1

shift

-e If the shell is non-interactive then exit immediately if a command exits with a non-zero
exit status.

-k All keyword arguments are placed in the environment for a command, not just those
that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to-.
Using + rather than - causes these flags to be turned off. These flags can also be used upon
invocation of the shell. The current set of flags may be found in $--. The remaining arguments
are positional parameters and are assigned, in order, to $1, $2, If no arguments are given
then the values of all names are printed.

The positional parameters from $2 ... are renamed $1

-5-

SH(l)

FILES

SH(l)

test
Evaluate conditional expressions. See test (1) for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

trap [arg 1 [n 1 ...
arg is a command to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are exe­
cuted in order of signal number. Any attempt to set a trap on a signal that was ignored on entry
to the current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces an
error. If arg is absent then all trap(s) n are reset to their original values. If arg is the null string
then this signal is ignored by the shell and by the commands it invokes. If n is 0 then the com­
mand arg is executed on exit from the shell. The trap command with no arguments prints a list
of commands associated with each signal number.

umask [nnn 1
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted, the current value of
the mask is printed.

wait Wait for all child processes to terminate, and report the termination status. If n is not given then
all currently active child processes are waited for. The return code from this command is always
zero.

Invocation.
If the shell is invoked through exec(2) and the first character of argument zero is -, commands are ini­
tially read from letciprofile and then from $HOME/.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is invoked as Ibin/sh. The flags below are
interpreted by the shell on invocation only; Note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the remaining arguments are
passed as positional parameters to that command file:

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read from the stan-

dard input. Any remaining arguments specify the positional parameters. Shell output is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal, then this
shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interac­
tive shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all cases,
QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell (see rsh(1)).

The remaining flags and arguments are described under the set command above.

If the SHELL parameter appears in the environment, and the first character to the right of the right-most
slash is an II r ", then the shell becomes restricted. The following lines should be included in the .profile
files of restricted login names:

SHELL = lusr/rsh
export SHELL

This causes whoever logs in under the restricted login names to be given a restricted shell (see rsh(1)).

letciprofile
$HOME/.profile
Itmp/sh*
Idev/null

RETURN VALUE
The error codes returned by the shell are:

-6-

SH(1)

O-success;
1 - a built-in command failure (see Special Commands);
2 - syntax error;
3 - signal received that is not trapped.

SH(1)

If the shell is non-interactive, it will terminate and pass one of the above as its exit status. If it is interac­
tive, it will not terminate, but $7 will be set to one of the above values.

Whenever a child process of the shell dies due to a signal, the shell returns an exit status of 80 hexade­
cimal + the number of the signal.

SEE ALSO

BUGS

cd(1), env(l), login(l), newgrp(l), rsh(l), test(l), umask(l), dup(2), exec(2), fork(2), pipe(2), signa1(2),
umask(2), wait(2), a.out(S), profile(S), environ(7).

The command readonly (without arguments) produces the same output as the command export.

If < < is used to provide standard input to an asynchronous process invoked by &, the shell gets mixed
up about naming the input document; a garbage file Itmp/sh* is created and the shell complains about
not being able to find that file by another name.

A is a synonym for I; the use of A is discouraged.

The shell assumes it is talking to terminals that only process the least significant seven bits of a character.
If your terminal uses all eight bits, you may see some strange strings.

When the shell encounters > >, it does not open the file in append mode. Instead, it opens the file for
writing and seeks to the end.

-7-

SIZE(1)

NAME
size - size of an object file

SYNOPSIS
size [object ... 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Series 200 Only

Remarks: Size(1) is implemented on the Series 200 only.

DESCRIPTION

SIZE(1)

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their sum in
octal and decimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5).

-1-

SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

SLEEP(l)

Sleep suspends execution for time seconds. It is used to execute a command after a certain amount of
time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm(2l, sleep(3C).

BUGS
Time must be less than 2'32 seconds.

-1-

SORT(1) SORT(1)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmubdfinrTtx 1 [+ pos1 [-pos2 11 ... [-0 output 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Sart sorts lines of all the named files together and writes the result on the standard output. The name­
means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine collating
sequence. The ordering is affected globally by the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d " Dictionary" order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more digits
with optional decimal point, is sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx "Tab character" separating fields is x.

The notation + pas] -pas2 restricts a sort key to a field beginning at pas] and ending just before pas2.
Pas] and pas2 each have the form m.n, optionally followed by one or more of the flags bdfinr, where m
tells a number of fields to skip from the beginning of the line and n tells a number of characters to skip
further. If any flags are present they override all the global ordering options for this key. If the b option
is in effect n is counted from the first non-blank in the field; b is attached independently to pas2. A mis­
sing .n means .0; a missing -pas2 means the end of the line. Under the -tx option, fields are strings
separated by x; otherwise fields are non-empty non-blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal.
Lines that otherwise compare equal are ordered with all bytes Significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless the file is
out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do not parti­
cipate in this comparison.

o The next argument is the name of an output file to use instead of the standard output. This file
may be the same as one of the inputs.

T The next argument is the name of a directory where sart should put its temporary files.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words (capitalized words differ from uncapi­
talized):

sort -u + Of + 0 list

Print the password file (passwd(5}) sorted by user ID (the third colon-separated field):

sort -t: + 2n /etc/passwd

-1-

SORT(l) SORT(l)

FILES

Print the first instance of each month in an already sorted file of (month-day) entries (the options -urn
with just one input file make the choice of a unique representative from a set of equal lines predictable):

sort -urn + 0 -1 dates

/usr/tmp/stm*
/tmp/stm*

default temporary files

SEE ALSO
comm(l), join(l), uniq(l).

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble conditions and for disorder discovered
under option -c.

Lines that exceed 512 characters (including the new-line) are silently truncated (Le., the excess charac­
ters are ignored).

Sort will not recognize the line in a file if it is not terminated with a new-line character.

Sort uses signed characters for comparison (unlike strcmp(3)), so you may get unexpected results when
sorting a file that contains ASCII characters with the most significant bit set (characters 128 - 255).

Sort does not understand II missing II fields. For example, if you have a file with the following contents:

Doe,John mailman 17550 8
Spencer,Joe plumber 4
Johns,Ann secretary 15950
Malley, Dean engineer 26750 4

you may get unexpected results if you try to sort on the third or fourth fields (all names and associated
data are fictitious).

Sort does not expand tabs when counting characters to locate a field.

-2-

SPELL(l) SPELL(l)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [options 1 [files 1
/usr/lib/spell/spellin [list 1
/usr/lib/spell/spellout [-d 1 list

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Spell collects words from the named/iles and looks them up in a spelling list. Words that neither occur
among nor are derivable (by applying certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no files are named, words are collected from the stan­
dard input.

Spell ignores most tro//(l), tbl(l), and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plausible derivations from
the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour, speciality, travelled,
etc., this option insists upon -ise in words like standardise, Fowler and the OED to the contrary notwith­
standing.

Under the -x option, every plausible stem is printed with = for each word.

The spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is
also more effective with respect to proper names and popular technical words. Coverage of the special­
ized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default settings.
Copies of all output are accumulated in the history file. The stop list filters out misspellings (e.g.,
thier = thy-y + ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell (both expect a list of words, one per line, from
the standard input): spellin adds the words on the standard input to the preexisting list and places a new
list on the standard output. If no list is specified, the new list is created from scratch. Spellout looks up
each word read from the standard input, and prints on the standard output those that are missing from
(or, with the -d option, present in) the hash list.

D_SPELL = /usr/lib/spell/hlist[ab 1
S_SPELL = /usr/lib/spell/hstop
H_SPELL = /usr/lib/spell/spellhist
/tmp/spell.$$
/usr/lib/speIVspellprog

hashed spelling lists, American & British
hashed stop list
history file
temporary
program

SEE ALSO

BUGS

deroff(l), eqn(l), sed(1), sort(l), tbl(l), tee(l), troff(l), typo(l).

The spelling list's coverage is uneven; new installations will probably wish to monitor the output for
several months to gather local additions; typically, these are kept in a separate local dictionary that is
added to the hashed list via spellin.
British spelling was done by an American.

-1-

SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

SPLIT(l)

Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of output
files. The name of the first output file is name with aa appended, and so on lexicographically. If no out­
put name is given, x is default.

If no input file is given, or if - is given instead, then the standard input file is used.

-1-

STRIP(l) Series 200 Only

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

HP-UX COMPATIBILITY
Level: HP-UXIOEVELOPMENT

Origin: System III

Remarks: S trip (1) is implemented on the Series 200 only.

DESCRIPTION

STRIP(l)

Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler
and link editor. This is useful to save space after a program has been debugged.

FILES

The effect of strip is the same as use of the -s option of ld.

If name is an archive file, strip will remove the local symbols from any a.out format files it finds in the
archive. Certain libraries, such as those residing in /lib, have no need for local symbols. By deleting
them, the size of the archive is decreased and link editing performance is increased.

/tmp/stm * temporary file

SEE ALSO
Id(1), a.out(5).

-1-

STTY(1) STTY(1)

NAME
stty - set the options for a terminal port

SYNOPSIS
stty [-a 1 [-g 1 [options 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Stty sets certain terminal 110 options for the device that is the current standard input; without arguments,
it reports the settings of certain options; with the -a option, it reports all of the option settings; with the
-g option, it reports current settings in a form that can be used as an argument to another stty com­
mand. Detailed information about the modes listed in the first five groups below may be found in tty(4).
Options in the last group are implemented using options in the previous groups. Note that many com­
binations of options make no sense, but no sense checking is performed. The options are selected from
the following:

Control Modes

parenb (-parenb)

parodd (-parodd)

cs5 cs6 cs7 cs8

enable (disable) parity generation and detection.

select odd (even) parity.

select character size (see tty(4)).

o hang up phone line immediately.

5075110134.51502003006009001200
1800240036004800720096001920038400 exta extb

hupcl (-hupcl)

hup (-hup)

cstopb (-cstopb)

cread (-cread)

crts (-crts)

clocal (-clocal)

Input Modes

ignbrk (-ignbrk)

ienqak (-ienqak)

brkint (-brkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpck (-inpck)

istrip (-istrip)

inler (-inler)

igncr (-igncr)

icrnl (-icrnl)

iuclc Hucle)

ixon (-ixon)

Set terminal baud rate to the number given, if the hardware will support it.

hang up (do not hang up) modem connection on last close.

same as hupcl (-hupcl).

use two (one) stop bits per character.

enable (disable) the receiver.

enable (disable) request-to-send.

assume a line without (with) modem control.

ignore (do not ignore) break on input.

enable (disable) ENQ-ACK handshaking.

signal (do not signal) INTR on break.

ignore (do not ignore) parity errors.

mark (do not mark) parity errors (see tty(4)).

enable (disal~l.e) input parity checking.
..

strip (do not strip) input characters to seven bits.

map (do not map) NL to CR on input.

ignore (do not ignore) CR on input.

map (do not map) CR to NL on input.

map (do not map) upper-case alphabetics to lower case on input.

enable (disable) START/STOP output control. Output is stopped by sending an
ASCII DC3 and started by sending an ASCII DCl.

-1-

STTY(I)

ixany Hxany)

ixoff (-ixoff)

Output Modes

opost (-opost)

oleue (-oleue)

onler (-onler)

oeml (-oeml)

onoer (-onoer)

onlret (-onlret)

ofill (-ofill)

of del {-of del)

erO erl er2 er3

nlO nil

tabOtabltab2tab3

bsObsl

ffO ffl

vtOvtl

Local Modes

isig (-isig)

icanon (-icanon)

xease (-xease)

echo (-echo)

eehoe (-eehoe)

eehok (-eehok)

Ifke (-Ifke)

eehonl (-eehonl)

noflsh(-noflsh)

Control Assignments

control-character c

line i

Combination Modes

evenp or parity

STTY(I)

allow any character (only DCI) to restart output.

request that the system send (not send) START/STOP characters when the input
queue is nearly empty/full.

post-process output (do not post-process output; ignore all other output
modes).

map (do not map) lower-case alphabetics to upper case on output.

map (do not map) NL to CR-NL on output.

map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

on the terminal NL performs (does not perform) the CR function.

use fill characters (use timing) for delays.

fill characters are DELs (NULs).

'select style of delay for carriage returns (see tty(4)).
\

select style of delay for line-feeds (see tty(4)).

sele~t style of delay for horizontal tabs (see tty(4)).

select style of delay for backspaces (see tty(4)).

select style of delay for form-feeds (see tty (4)).

select style of delay for vertical tabs (see tty(4)).

enable (disable) the checking of characters against the special control characters
INTR and QUIT.

enable (disable) canonical input (ERASE and KILL processing).

canonical (unprocessed) upper/lower-case presentation.

echo back (do not echo back) every character typed.

echo (do not echo) ERASE character as a backspace-space-backspace string.
Note: this mode will erase the ERASEed character on many CRT terminals;
however, it does not keep track of column position and, as a result, may be con­
fusing on escaped characters, tabs, and backspaces.

echo (do not echo) NL after KILL character.

the same as eehok (-eehok); obsolete.

echo (do not echo) NL.

disable (enable) flush after INTR or QUIT.

set control-character to c, where control-character is erase, kill, intr, quit, eof, eol,
min, or time (min and time are used with -icanon; see tty (4)). If c is preceded
by an (escaped from the shell) caret n, then the value used is the correspon­
ding CTRL character (e.g., 'd is a CTRL-d); '? is interpreted as DEL and '- is
interpreted as undefined.

set line discipline to i (O < i < 127). (See tty(4).)

enable parenb and es7.

-2-

STTY(l) STTY(l)

oddp enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp
disable parenb, and set cs8.

raw (-raw or cooked) enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, EOT, or
output post processing).

nl (-nl)

lease (-lease)

LCASE (-LCASE)

tabs (-tabs ortab3)

ek

sane

unset (set) icrnl, onler. In addition -nl unsets inler, igncr, ocrnl, and onlret.

set (unset) xcase, iuclc, and oleuc.

same as lease (-lease).

preserve (expand to spaces) tabs when printing.

reset ERASE and KILL characters back to normal # and ((1:.

resets all modes to some reasonable values.

term set all modes suitable for the terminal type term, where term is one of tty33,
tty37, vt05, tn300, ti700, hp, ortek.

HARDWARE DEPENDENCIES
Series 200/500:

Refer to tty(4) for a description of the capabilities that are not supported.

SEE ALSO
tabs{l), ioctl(2), tty(4).

-3-

,,'

SU(1) SU(1)

NAME
su - become another user

SYNOPSIS
su [- 1 [name [arg ... 11

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Su allows one to become another user without logging off. The default user name is root (Le., super­
user).

To use su, the appropriate password must be supplied (unless one is already super-user). If the
password is correct, su will execute a new shell with the user ID set to that of the specified user. To res­
tore normal user ID privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting execution of the shell procedures with res­
tricted privileges (an arg of the form -c string executes string via the shell). After the procedure has exe­
cuted, the new user is logged out, and the original user becomes the current user. When additional
arguments are passed, Ibin/sh is always used. When no additional arguments are passed, su uses the
shell specified in the password file.

An initial - flag causes the environment to be changed to the one that would be expected if the user
actually logged in again. This is done by invoking the shell with an argO of-su causing the .profile in the
home directory of the new user ID to be executed. Otherwise, the environment is passed along
unchanged. The super-user's $PATH is unconditionally set to Ibin:/etc:/usr/bin. Note that the .profile
can check argO for -sh or -su to determine how it was invoked.

The - option always resets $PATH to Ibin:/etc:/usr/bin for the super-user, and Ibin:/usr/bin for all oth­
ers. However, the files letclprofile and .profile are normally executed anyway, thus restoring the inten­
ded value of $PATH.

Su will ensure that the super-user gets a "#" prompt to remind him of his additional responsibilities.

Su logs all attempts to su in lusrladm/sulog, including failures. Successful attempts are flagged with
" + " , failures with "-".

letclpasswd
$HOME/.profile

system's password file
user's profile

SEE ALSO
env(l}, 10gin(1), sh(l}, environ(7}.

-1-

TABS(l) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec 1 [+ mn 1 [- Ttype 1

HP-UX COMPATIBILITY
Level: HP-UX/5TANDARD

Origin: System 111

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab specification tabspec, after clearing any
previous settings. The user must of course be logged in on a terminal with remotely-settable hardware
tabs.

If you are using a non-HP terminal, you should keep in mind that behavior will vary for some tab set­
tings.

Four types of tab specification are accepted for tabspec: "canned", repetitive, arbitrary, and file. If no
tabspec is given, the default value is -8, i.e., HP-UX "standard" tabs. The lowest column number is 1.
Note that for tabs, column 1 always refers to the leftmost column on a terminal, even one whose column
markers begin at 0.

-code Gives the name of one of a set of "canned" tabs. The legal codes and their meanings are as
follows:

-a 1,10,16,36,72
Assembler, IBM 5/370, first format

-a21,10,16,40,72
Assembler, IBM 5/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first typed character
corresponds to card column 7, one space gets you to column 8, and a tab reaches
column 12. Files using this tab setup should include a format specification as follows:
<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than -c2. This is the
recommended format for COBOL. The appropriate format specification is:
<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PUI

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 + n, 1 + 2*n, etc. Of particular impor­
tance is the value -8: this represents the HP-UX "standard" tab setting, and is the most
likely tab setting to be found at a terminal. It is required for use with the nroff(1) -h option
for high-speed output. Another special case is the value -0, implying no tabs at all.

-1-

TABS(1) TABS(l)

nl,n2, ...

--file

The arbitrary format permits the user to type any chosen set of numbers, separated by
commas, in ascending order. Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an increment to be added to the previous
value. Thus, the tab lists 1,10,20,30 and 1,10, + 10, + 10 are considered identical.

If the name of a file is given, tabs reads the first line of the file, searching for a format specifi­
cation. If it finds one there, it sets the tab stops according to it, otherwise it sets them as -8.
This type of specification may be used to make sure that a tabbed file is printed with correct
tab settings, and would be used with the pr(l) command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more than once, the last value given takes
effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs and always needs to know
the type to set margins. Type is a name listed in term (7). If no - T flag is supplied, tabs searches
for the $TERM value in the environment (see environ(7)). If no type can be found, tabs tries a
sequence that will work for many terminals.

+ mn The margin argument may be used for some terminals. It causes all tabs to be moved over n
columns by making column n + 1 the left margin. If + m is given without a value of n, the
value assumed is 10. The normal (leftmost) margin on most terminals is obtained by + mO.
The margin for most terminals is reset only when the + m flag is given explicitly.

Tab and margin setting is performed via the standard output.

SEE ALSO
nroff(l), tset(1), environ(7), term(7).

DIAGNOSTICS

BUGS

illegal tabs when arbitrary tabs are ordered incorrectly.

illegal increment when a zero or missing increment is found in an arbitrary specification.

unknown tab code when a "canned" code cannot be found.

can't open

file indirection

if --file option used, and file can't be opened.

if --file option used and the specification in that file points to yet another file.
Indirection of this form is not permitted.

There is no consistency among different terminals regarding ways of clearing tabs and setting the left
margin.
It is generally impossible to usefully change the left margin without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 40.

-2-

TAIL(1) TAIL(1)

NAME
tail- deliver the last part of a file

SYNOPSIS
tail [[±[numberHlbcHflll [-fJ 1 [file 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is named,
the standard input is used.

Copying begins at distance + number from the beginning, or -number from the end of the input (if num­
ber is null, the value 10 is assumed). Number is counted in units of lines, blocks, or characters, according
to the appended option I, b, or c. When no units are specified, counting is by lines.

With the -f (" follow") option, if the input file is not a pipe, the program will not terminate after the line
of the input file has been copied, but will enter an endless loop, wherein it sleeps for a second and then
attempts to read and copy further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process.

EXAMPLES
Tail accepts at most two arguments: the first consists of specified options, and the second specifies the
file of interest. If the number and f options are both desired, they must be concatenated to create a single
option argument, as follows:

tail -31£ john

This example prints the last three lines in the file john to the standard output, and leaves tail in "follow"
mode.

If only the f option is desired, it must be preceded by a -, as follows:

tail -f fred

This example prints the last ten lines of the file fred, followed by any lines that are appended to fred
between the time tail is initiated and killed. Note that this output may build up very qUickly for rapidly
changing input files, perhaps too fast to read on a CRT.

SEE ALSO
dd(1).

BUGS
Tails relative to the end of the file are stored in a buffer, and thus are limited in length. Thus, be wary of
the results when piping output from other commands into tail.

Various kinds of anomalous behavior may happen with character special files.

Tail can pick up a maximum of 4K bytes of data from the specified file.

-1-

TAR(1) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
tar [key 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UX/OEVELOPMENT

Origin: System III and UCB

DESCRIPTION
Tar saves and restores files on magnetic tape or flexible disc. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possibly one or
more function modifiers. The key string may be preceded by a dash (-) (similar to the way options are
specified in other HP-UX commands), but it is not necessary. Other arguments to the command are
files (or directory names) specifying which files are to be dumped or restored. In all cases, appearance
of a directory name refers to the files and (recurSively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

c Create a new archive; writing begins at the beginning of the archive.
r The named files are added to the end of the archive.
u The named files are added to the archive if they are not already there, or have been modi­

fied since last written on that archive.
x The named files are extracted from the archive. If a named file matches a directory whose

contents had been written onto the archive, this directory is (recurSively) extracted. If no
files argument is given, the entire content of the archive is extracted. Note that if several
files with the same name are on the archive, the last one overwrites all earlier ones. The
file and directory ownership written on the archive is only restored for the super-user.

t Produces a listing of the names of files on the archive. Adding the v option will expand
this listing to include the file modes and owner numbers.

The following function modifiers may be used in addition to the function letters listed above:

0, ... ,8 This modifier selects the drive on which the 9 track tape is mounted. The default is 8 (as
Idev/rmtS).

v Normally, tar does its work silently. The v (verbose) option causes it to type the name of
each file it treats, preceded by the function letter.

w causes tar to print the action to be taken, followed by the name of the file, and then wait
for the user's confirmation. If a word beginning with y is given, the action is performed.
Any other input means "no". .

f causes tar to use the next argument as the name of the archive instead of Idev/rmt? If the
name of the file is -, tar writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a pipeline. Tar can
also be used to move hierarchies with the command:

b

m

o

p

cd fromdir; tar cf - . I (cd todir; tar xf -)

causes tar to use the next argument as the blocking factor for archive records. This option
should only be used when a blocking factor of less than 20 is desired. The default is 20
and the minimum is 1 (512 bytes). The blocking factor is determined automatically when
reading 9 track tapes. The blocking factor must be specified when reading flexible discs
and cartridge tapes if they were written with a blocking factor different than 20.
tells tar to complain if it cannot resolve all of the links to the files being dumped. If I is not
specified, no error messages are printed.
tells tar to not restore the modification time written on the archive. The modification time
of the file will be the time of extraction.
This option will suppress the directory information written to the archive. Former versions
of tar could not handle this information on input.
This option causes files to be restored to the original modes written on the archive. Setuid

-1-

TAR(1) TAR(l)

and sticky information will also be restored for the super-user.

If a 9 track tape drive is used as the output device, it must be configured in Berkeley compatability
mode; see mt(4).

EXAMPLE

FILES

tar cvf /dev/rfd.O filel file2

This example creates a new archive on /dev/rfd.O and copies filel and file2 onto it, using a blocking fac­
tor of 20. The key is made up of one function letter (c) and two function modifiers (v, and f).

/dev/rmt?
/dev/rfd.*
/tmp/tar*

SEE ALSO
ar(l), cpio(l), mt(4).

DIAGNOSTICS

BUGS

Complains about bad key characters and archive read/write errors.
Complains if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
If the archive is on a flexible disc or cartridge tape, and if the blocking factor specified on output was not
20, the same blocking factor must be specified on input. This is because the blocking factor is not expli­
citly stored on the archive.
The current limit on file-name length is 100 characters.
Some previous versions of tar have claimed to support selective listing of file names using the t option
with a list. To our knowledge this was an error in the documentation and does not appear in the original
source code.
There is no way to restore an absolute path name to a relative position.
The arguments required by the f and b modifiers must be specified in the same order in which the modi­
fiers are specified in the key.
Tar always pads information written to an archive up to the next multiple of the block size. Therefore, if
you are creating a small archive and write out one block of information, tar reports that one block was
written, but the actual size of the archive is (for the default case) 20 blocks.

-2-

TBL(l) TBL(l)

NAME
tbl- format tables for nroff or troff

SYNOPSIS
tbl [-TX 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff(I} or troff(I}. The input files are copied to the stan­
dard output, except for lines between .TS and .TE command lines, which are assumed to describe
tables and are re-formatted by tbl. (The .TS and .TE command lines are not altered by tbl) .

. TS is followed by global options. The available global options are:

center center the table (default is left-adjust);
expand make the table as wide as the current line length;
box enclose the table in a box;
double box enclose the table in a double box;
allbox enclose each item of the table in a box;
tab (x) use the character x instead of a tab to separate items in a line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such format line describes one line
of the actual table, except that the last format line (which must end with a period) describes all
remaining lines of the table. Each column of each line of the table is described by a single key-letter,
optionally followed by specifiers that determine the font and point size of the corresponding item, that
indicate where vertical bars are to appear between columns, that determine column width, inter-column
spacing, etc. The available key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units positions of numbers are aligned vertically;
s span previous item on the left into this column; .
a center longest line in this column and then left-adjust all other lines in this column with

respect to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respectively; the character indicates a vertical
line between columns.

The format lines are followed by lines containing the actual data for the table, followed finally by . TE.
Within such data lines, data items are normally separated by tab characters.

If a data line consists of only _ or =, a single or double line, respectively, is drawn across the table at that
point; if a single item in a data line consists of only _ or =, then that item is replaced by a single or double
line.

Full details of all these and other features of tbl are given in the reference manual cited below.

The - TX option forces tbl to use only full vertical line motions, making the output more suitable for dev­
ices that cannot generate partial vertical line motions (e. g., line printers).

If no file names are given as arguments, tbl reads the standard input, so it may be used as a filter. When
it is used with eqn(l} or neqn(l}, tbl should come first to minimize the volume of data passed through
pipes.

-1-

TBL(1)

EXAMPLE
If we let - represent a tab (which should be typed as a genuine tab). then the input:

yields:

.TS
center box;
cB s s
cIlcIs
" Icc
I Inn.
Household Population

Town-Households
-Number-Size .

Bedminster-789-3.26
Bernards Twp.-3087-3.74
Bernardsvill~ 2018-3.30
Bound Brook-3425-3.04
Bridgewater-7897-3.81
Far Hills-24D-3.19
.TE

Household Population

Town Households
Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

SEE ALSO

BUGS

TBL -A Program to Format Tables in HP-UX Selected Articles.
mm(l). nroff(l). mm(7).

See BUGS under nroff(l).

-2-

TBL(l)

TCIO(1) TClO(l)

NAME
tcio - Command Set 80 Cartridge Tape Utility

SYNOPSIS
Ilbin/tcio -0 [dervSVC 1 [buffersize 1 filename
Ilbin/tcio -i [drvS 1 [buffersize 1 filename
Ilbin/tcio -u [cmrvV 1 [blocknumber 1 [save t restore 1 filename [discfilename 1

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

DESCRIPTION
Tcio -0 (copy out) reads the standard input and writes the data to the raw Command Set 80 Cartridge
Tape Unit specified by filename.

Tcio -i (copy in) reads the Command Set 80 Cartridge Tape Unit specified by filename in raw mode and
writes the data to the standard output.

Tcio -u (utility) performs utility functions on the cartridge tape. such as image backup and restore,
release, mark. and/or verify cartridge.

In all cases, filename MUST refer to a character special file associated with a Command Set 80 cartridge
tape unit.

With the output and input operations. tcio utilizes a large buffer to transfer data to/from the cartridge
tape, yielding a significant increase in performance. as well as a savings in wear and tear on the media
and the mechanism. In addition. tcio puts a tape mark in the first block on each tape to prevent the tape
from being image restored over a disc: it also utilizes the last block on each tape to flag whether the tape
is the last tape in a multi-tape sequence or not.

With the utility operation, tcio proVides functions that are unique to cartridge tapes.

One of the options 0, i. or u must be speCified. The meanings of the available modifiers are:

v Verbose mode; prints information and error messages to stderr.

d Prints a checksum to stderr. The checksum is a 32-bit unsigned addition of the bytes, providing an
extra check of the validity of the tape in addition to tape verification. The value is only reported to
the user and is not written on the media: thus, it's left up to the user to manually record and check
it. The checksum is valid only for the i and 0 operations, and if the same number of bytes are read
from the tape as were written to it. This option is independent of the verbose modifier.

e Applies only to the output operation, and causes a tape mark to be written on the nearest 1024-
byte boundary following the end of the data. When a tape containing an end-of-data tape mark is
read back. the read will terminate upon encountering the tape mark. Thus. with the use of this
option, the checksums generated by the input and output operations are guaranteed to agree.

S Enables specification of buffer size. This option forces the allocation of a block of memory to be
used in reading or writing the tape. The size in bytes of the buffer is 1024 times the value specified
for buffersize. A buffersize less than 32 or greater than 512 will cause the program to terminate. If
buffersize is not speCified, tcio will attempt to allocate buffer sizes in powers of 2 from 512 down to
64, taking the largest one possible. The primary uses of this option are to allow buffer sizes smaller
than 64 Kbytes, and to allow the user to pick a buffer size that is most suitable for his application.

V This option turns off tape verification. It is suggested that this option not be used, for the sake of the
integrity of the data output to tape.

m This option writes a tape mark on a tape at the specified block. If a tape is created by some other
means than tcio, a tape mark in block 0 of the tape will prevent it from being image restored to a
disc. Note that blocknumber must be specified.

r Releases the tape from the mechanism, unlocking the door.

-1-

TCIO(l) TCIO(l)

c Image copy option. Provides the same capability as the push-button save and restore available in
the HP 79XX single controller drive. The save and restore keywords are the same as the labels on
those switches. Save implies disc to tape; restore implies tape to disc. Currently only single con­
troller disc/tape units can be backed up in this way.

C Check read option. Provides a measure of data security not found in the tape verification or check
digit options. Check read requires two I/O buffers of the size indicated by buffersize, one for writing
and one for reading. The data in the first buffer is written to the tape. Then the tape is backspaced
and read into the second buffer. The two buffers are then compared. If a-difference occurs, tcia
reports the error and terminates. This option forces no tape verification. Note that this option pro­
motes wear and tear on both the media and the drive, and should only be used when complete
assurance of the data's integrity is required.

HARDWARE DEPENDENCIES
Series 200:

The C option is not supported.

The c option is not supported (thus, the WARNING below does not apply to the Series 200).
The separate stand-alone utility CS80 Tape Backup provides this functionality.

Due to I/O software architecture, a buffersize greater than 64 would proVide no increase in per­
formance, but would merely tie-up system memory. Thus, the default for buffersize is 64, and if
buffersize is specified greater than 64, it is silently truncated back to 64.

Series 500:
In general, tapes which have any tape marks other than in the first or the last block cannot be
read successfully.

The e option is not supported, and because of the above restriction, tapes which have been
written under the e option cannot be read successfully.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second restores it:

Is I cpio -0 I tcio -0 /dev/rct

tcio -i /dev/rct I cpio -i

SEE ALSO
cpio(l).

WARNING

BUGS

To be able to use the save/restore facility, the following two conditions must be met:

your system must be in single-user mode;

you must never have used networking on your system. If networking has been used on your
system, you must reboot the system before using the save/restore facility.

Tcia can tie up substantial portions of memory, creating a situation where progress on other processes
(including those processes feeding tcia) is hindered. If this should occur, it is best to kill tcia and re­
execute using a smaller buffersize. This problem is especially acute when using the C option, because
two buffers are required.

If the cartridge drive cannot read the manufacturer's block on the tape, the cartridge is locked in the
drive and cannot be extracted without turning off the disc/tape drive. This failure is usually the result of
faulty tapes or a dirty drive mechanism.

-2-

TEE(1)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i 1 [-a 1 [file 1 ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

TEE(l)

Tee transcribes the standard input to the standard output and makes copies in the files. The -i option
ignores interrupts: the -a option causes the output to be appended to the files rather than overwriting
them.

-1-

TEST(l) TEST(l)

NAME
test, [- condition evaluation command

SYNOPSIS
test expr
[expr]

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero (true) exit status; otherwise, a
non-zero (false) exit status is returned; test also returns a non-zero exit status if there are no arguments.
The following primitives are used to construct expr:

-r file true if file exists and is readable.

-wfile

-x file

-ffile

-dfile

-cfile

-bfile

-ufile

-gfile

-kfile

-sfile

-t [fildes 1

-zs1

-ns1

s1 = s2

s1 ! = s2

s1

n1 -eq n2

true iffile exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true iffile exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and its set -user -ID bit is set.

true iffile exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file deSCriptor number isfildes (1 by default) is associated with a
terminal device.

true if the length of string s1 is zero.

true if the length of the string s1 is non-zero.

true if strings s1 and s2 are identical.

true if strings s1 and s2 are not identical.

true if s1 is not the null string.

true if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, -gt,
-ge, -It, and -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-0

(expr)

unary negation operator.

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses are
meaningful to the shell and, therefore, must be escaped.

Test is directly interpreted by the shell.

SEE ALSO
eva!(l), expr(l), find(l), shill.

-1-

TEST(l) TEST(l)

WARNING
In the second form of the command (Le .. the one that uses []. rather than the word test), the square
brackets must delimited by by blanks.

-2-

TIME(1) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during the command,
the time spent in the system, and the time spent in execution of the command. Times are reported in
seconds.

The execution time can depend on the performance of the memory in which the program is running.
Also, note that I/O-intensive programs will show an elapsed time which is considerably more than the
CPU time, since only CPU time is monitored - not I/O time.

The times are printed on standard error.

HARDWARE DEPENDENCIES
Series 500:

For those computers with multiple CPU's, the child CPU times listed may be greater than the
actual real elapsed time, since CPU time is counted on a per-CPU basis. Thus, if three CPUs are
executing, the times listed are obtained by adding the execution times of each CPU.

SEE ALSO
times command in sh(l), timex(l), times(2).

-1-

TOUCH(l)

NAME
touch - update access/modification/change times of file

SYNOPSIS
touch [-arnc] [mmddhhmm[yy]] files

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

TOUCH(l)

Touch causes the access, modification, and last change times of each argument to be updated. If no
time is specified (see date(l)) the current time is used. The -a and -rn options cause touch to update
only the access or modification times respectively (default is -am). The -c option silently prevents touch
from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be successfully modified
(including files that did not exist and were not created).

SEE ALSO
date(l). utime(2).

-1-

TR(l) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds 1 [string1 [string211

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters.
Input characters found in stringl are mapped into the corresponding characters of string2. Any com­
bination of the options -cds may be used:

-c Complements the set of characters in stringl with respect to the universe of characters whose
ASCII codes are 001 through 377 octal.

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated
characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from character a to character z,
inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n is
taken to be decimal. A zero or missing n is taken to be huge; this facility is useful for padding
string2.

The escape character "-. may be used as in the shell to remove special meaning from any character in a
string. In addition, "-. followed by 1, 2, or 3 octal digits stands for the character whose ASCII code is
given by those digits.

EXAMPLE
The following creates a list of all the words in filel one per line in file2, where a word is taken to be a
rhaximal string of alphabetics. The strings are quoted to protect the special characters from interpreta­
tion by the shell; 012 is the ASCII code for newline.

tr -cs II [A-Z][a-zl" II ["-.012*]" <file1 >file2

SEE ALSO
ed(1), sh(1), ascii(7).

BUGS
Won't handle ASCII NUL in stringl or string2; always deletes NUL from input.

-1-

TRUE(1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

TRUE(1)

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in input to
sh(l} such as:

SEE ALSO
sh(l}.

DIAGNOSTICS

while true do
command

done

True has exit status zero, false nonzero.

-1-

TSET(l) Series 200 Only TSET(l)

NAME
tset - terminal dependent initialization

SYNOPSIS
tset [options 1 [-m [ident 1 [test baudratel:type 1 ... [type 1
reset ...

HP-UX COMPATIBILITY
Level: Vi editor- HP-UX/STANDARD

Origin: UCB

Remarks: Tset is implemented on the Series 200 only.

DESCRIPTION
Tset sets up your terminal when you first log in to an HP-UX system. It does terminal dependent proces­
sing, such as setting erase and kill characters, setting or resetting delays, and sending any sequences
needed to properly initialize the terminal. It first determines the type of terminal involved, and then does
the necessary initializations and mode settings. The type of terminal attached to each HP-UX port is
specified in the letc!ttytype data base. Type names for terminals may be found in the termcap(5) data
base. If a port is not wired permanently to a specific terminal (not hardwired), it will be given an
appropriate generic identifier, such as dialup.

In the case where no arguments are specified, tset simply reads the terminal type out of the environment
variable TERM and re-initializes the terminal. The rest of this manual entry concerns itself with mode
and environment initialization, typically done once at login, and options used at initialization time to
determine the terminal type and set up terminal modes.

When used in a startup script (.profile), it is desirable to give information about the type of terminal you
will usually use on ports which are not hardwired. These ports are identified in letc!ttytype as dialup or
plugboard, etc. To specify what terminal type you usually use on these ports, the -m (map) option flag is
followed by the appropriate port type identifier, an optional baud rate specification, and the terminal
type. (The effect is to "map" from some conditions to a terminal type, that is, to tell tset, "If I'm on this
kind of port, then I'll probably be on this kind of terminal" .) If more than one mapping is specified, the
first applicable mapping prevails. A missing port type identifier matches all identifiers. A baudrate is
specified as with stty(l), and is compared with the speed of the diagnostic output (which should be the
control terminal). The baud rate test may be any combination of >, (oJ, <, and!. (W means "at" and!
inverts the sense of the test. To avoid problems with metacharacters, it is best to place the entire
argument to -m within single quotes.

Thus,

tset -m -dialup>300:2622- -m -dialup: 2624- -m -plugboard:?2623-

causes the terminal type to be set to an HP 2622 if the port in use is a dialup at a speed greater than 300
baud, or to an HP 2624 if the port is otherwise a dialup (i. e. at 300 baud or less). If the type finally deter­
mined by tset begins with a question mark, the user is asked if he or she really wants that type. A null
response means to use that type; otherwise, another type can be entered. Thus, in the above case, if the
user is on a plugboard port, he or she will be asked whether or not he or she is actually using an HP
2623.

If no mapping applies and a final type option, not preceded by a -m, is given on the command line, then
that type is used. Otherwise, the identifier found in the letc!ttytype data base will be taken to be the ter­
minal type. The latter should always be the case for hardwired ports.

It is usually desirable to return the terminal type, as finally determined by tset, and information about the
terminal's capabilities to a shell's environment. This can be done using the -s option. Using the Bourne
shell (sh(l)), the command

export TERM; TERM = -tset -s options .. .-

-1-

TSET(l) Series 200 Only TSET(l)

or

eval 'tset -s options ... '

causes tset to place the name of your terminal in the variable TERM in the environment.

Once the terminal type is known, tset engages in terminal driver mode setting. This normally involves
sending an initialization sequence to the terminal, setting the single character erase (and optionally the
full line erase or line-kill) characters, and setting special character delays. Tab and new-line expansion
are turned off during transmission of the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase character is the
default erase character (" #" on standard systems), the erase character is changed to BACKSPACE (,H).

The options are:

-ec sets the erase character to be the named character c; c defaults to 'H (BACKSPACE). The
character c can either be typed directly, or entered using the "hat" notation used here (e. g. the
"hat" notation for control-H is 'H).

-kc sets the kill character to c. The default c is 'X. If c is not specified, the kill character will remain
unchanged unless the original value of the kill character is null. In this case, the kill character is
set to an "at" sign (((L).

-5 outputs setenv commands for TERM. This can be used with 'tset -s ... ', and is preferred to
"setenv TERM 'tset - ... ''', because -5 sets the TERM CAP variable also.

-I suppresses transmitting terminal initialization strings.

-Q suppresses printing the" Erase set to" and" Kill set to" messages.

-A asks the user for the TERM type.

-S outputs two strings suitable for use in .profile files as follows:

set noglob set term = etset -S ... ') set TERM $term[l]
set TERMCAP "$term[2]" unset term unset noglob

-u do not update letclhtemp.

-h forces a read of letclttytype. When -h is not specified, the termnal type is determined by reading
letclhtemp or the environment, unless some mapping is specified. This is useful when letclhtemp
is not correct.

For compatibility with earlier versions of tset, the following flags are accepted, but their use is
discouraged:

report terminal type. Whatever type is decided on is reported. If no other flags are stated, the
only effect is to write the terminal type on the standard output.

-r report to the user in addition to other flags.

-Ec sets the erase character to c only if the terminal can backspace. C defaults to 'H.

EXAMPLES
These examples all assume the Bourne shell (sh(l)) and use the - option. Note that a typical use of tset
in a .profile will also use the -e and -k options, and often the -n or -Q options as well. These options
have not been included here to keep the examples small.

At the moment, you are on an HP 2622. This is suitable for typing by hand but not for a .profile, unless
you are always on a 2622.

export TERM; TERM = 'tset - 2622'

You have an HP 2623 at home which you dial up on, but your office terminal is hardwired and known
in letclttytype.

export TERM; TERM = 'tset - -m dialup:2623'

-2-

TSET(1) Series 200 Only TSET(l)

FILES

You have a switch which connects everything to everything, making it nearly impossible to key on what
port you are coming in on. You use an HP 2622 in your office at 9600 baud, and dial up to switch ports
at 1200 baud from home on an HP 2623. Sometimes you use someone else's terminal at work, so you
want it to ask you to make sure what terminal type you have at high speeds, but at 1200 baud you are
always on a 2623. Note the placement of the question mark, and the quotes to protect the > and ?
from interpretation by the shell.

export TERM; TERM = -tset - -m 'switch> 1200:?2622' -m 'switch < = 1200:2623--

All of the above entries will fall back on the terminal type specified in letclttytype if none of the conditions
hold. The following entry is appropriate if you always dial up, always at the same baud rate, on many
different kinds of terminals. Your most common terminal is an HP 2622. It always asks you what kind
of terminal you are on, defaulting to 2622.

export TERM; TERM = -tset - ?2622-

If the file letclttytype is not properly installed and you want to key entirely on the baud rate, the following
can be used:

export TERM; TERM = -tset - -m '> 1200:2624' 2622-

letclttytype
letc/termcap

port name to terminal type mapping data base;
terminal capability data base.

SEE ALSO
sh(1), stty(1), ttytype(5), termcap(5), environ(7).

-3-

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file I

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

TSORT(l)

Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file . If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indi­
cate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
10rder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

-1-

ITY(l)

NAME
tty - get the terminal's name

SYNOPSIS
tty[-sl

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION

TTY(l)

Tty prints the path name of the user's terminal. The -s option inhibits printing, allowing one to test just
the exit code.

RETURN VALUE
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
" not a tty" if the standard input is not a terminal and -5 is not specified.

-1-

UL(1) UL(l)

NAME
ul- do underlining

SYNOPSIS
ul [-i] [-t terminal] [name ...]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
VI reads the named files (or standard input if none are given) and translates occurences of underscores
to the sequence which indicates underlining for the terminal in use, as specified by the environment vari­
able TERM. The -t option overrides the terminal kind specified in the environment. The file
letcltermcap is read to determine the appropriate sequences for underlining. If the terminal is incapable
of underlining, but is capable of a standout mode then that is used instead. If the terminal can over­
strike, or handles underlining automatically, ul degenerates to cat(I). If the terminal cannot underline,
underlining is ignored.

The -i option causes ul to indicate underlining onto by a separate line containing appropriate dashes '-';
this is useful when you want to look at the underlining which is present in an nroff output stream on a
crt-terminal.

SEE ALSO

BUGS

man(1), nroff(I).

N roff usually outputs a series of backspaces and underlines intermixed with the text to indicate under­
lining. No attempt is made to optimize the backward motion.

-1-

UMASK(1) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [0001

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
The user file-creation mode mask is set to 000. The octal three digits refer to read/write/execute permis­
sions for owner, group, and others, respectively (see chmod(2) and umask(2)). The value of each speci­
fied digit is subtracted from the corresponding "digit" specified by the system for the creation of a file
(see creat(2)). For example, umask 022 removes group and others write permission (files normally
created with mode 777 become mode 755; files created created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed with four octal digits. The first digit, a zero,
specifies that the output is expressed in octal.

Umask is recognized and executed by the shell.

Note that the file creation mask does not affect the set-user-ID, set-group-ID, or "sticky" bits.

SEE ALSO
chmod(l), sh(l), chmod(2), creat(2), umask(2).

-1-

UNAME(l)

NAME
uname - print name of current HP-UX version

SYNOPSIS
uname [-snrvmia 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

UNAME(l)

Uname prints the current system name of HP-UX on the standard output file. It is mainly useful to deter­
mine what system you are using. The options cause selected information returned by uname(2) to be
printed:

-5 print the system name (default).

-n print the node name (the nodename is a name that the system is known by on a communica-
tions network). (e.g. uucp).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-i print the machine identification number.

-a print all the above information.

SEE ALSO
hostname(1), gethostname(2), sethostname(2), uname(2).

-1-

UNGET(l) UNGET(l)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSID] [-s] [-n] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Unget undoes the effect of a get -e done prior to creating the intended new delta. If a directory is
named, unget behaves as though each file in the directory were specified as a named file, except that
non-sees files and unreadable files are silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an SCCS file to be processed. Refer to sact(l), which
describes how to determine what deltas are currently binding for an s-file. Keyletter arguments apply
independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. (This would have been
specified by get as the "new delta"). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same SCCS file were done by the
same person (login name). A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line (see sact(1)).

-s Suppresses the printout, on the standard output, of the intended delta's SID.

-n Causes the retention of the gotten file which would normally be removed from
the current directory.

Note: unget can only be executed by the user who did the corresponding get -e. If a system adminis­
trator needs to unget a get -e done by another user, he must either use su(1) to change into that user, or
edit the p-file directly (which can be done either by the s-file owner of the super-user).

p-file see delta(l).

g-file see delta(l).

SEE ALSO
delta(l), get(l), sact(l).

DIAGNOSTICS
Use help (1) for explanations.

-1-

UNIQ(1) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+ n 1 [-n 11 [input [output 11

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding
copies of repeated lines are removed; the remainder is written on the output file. Input and output
should always be different. Note that repeated lines must be adjacent in order to be found; see sort(l).
If the -u flag is used, just the lines that are not repeated in the original file are output. The -d option
specifies that one copy of just the repeated lines is to be written. The normal mode output is the union
of the -u and -d mode outputs.

The -c option supercedes -u and -d and generates an output report in default style but with each line
preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is defined as a string
of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
comm(l), sort(l).

-1-

UPM(1) Series 500 Only UPM(l)

NAME
upm - unpack cpio archives from HP media

SYNOPSIS
upm -E [cdmtuvx 1 pathname chardevice [patterns 1
upm -iM [cdmtuvx 1 [patterns 1 </dev/rmf?

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks: Upm is implemented on the Series 500 only.

DESCRIPTION
Upm is similar to cpio(l), and is included to enable you to restore files from 88140LlS tape cartridges or
5.25-inch flexible discs more efficiently.

Upm -E (copy in from tape cartridge) extracts all files specified by patterns from the file named by path­
name (assumed to be the product of a previous cpio -0). Patterns is a series of zero or more blank­
separated character strings given in the name-generating notation of sh(1). Note that the metacharacters
?, *, and [... J match the slash (I) when used in patterns. The default pattern is '*', which selects all files.
Chardevice identifies the character special device file describing the volume containing pathname. (Note
that, if this volume is not the root, it must be mounted at the time upm is used, and pathname must
include the directory name on which the volume is mounted.)

Upm -iM (copy in) extracts all files selected by zero or more of the specified patterns (see above for a
description of patterns). The files are extracted from the standard input, which is redirected from a raw
miniature flexible disc device Idev/rmf? The resulting standard input is assumed to be the product of a
previous cpio -0.

Any other options specified must be concatenated with the initial E or iM options. The options have the
following meanings:

c read header information which was previously written in ASCII character form for portability;
d directories are to be created as needed;
m retain previous file modification time. This option is ineffective on directories that are being copied;
t print a table of contents of the input; no files are created;
u copy unconditionally (normally, an older file will not replace a newer file with the same name);
v verbose; causes a list of file names to be printed. When used with the t option, the table of contents

looks like the output of an Is -I command (see lsi 1));
x restore device special files; mknod(2) is used to recreate these files, and thus -Ex or -iMx can only

be used by the super-user. Restoring device files onto a different system can be very dangerous.
This is intended for backup use;

When the end of a volume is reached, upm will prompt the user for the next flexible disc and continue.

The number of blocks reported by upm is always in units of 512-byte blocks, regardless of the block size
of the initialized media.

SEE ALSO
cpio(l), tcio(l), mknod(2).

WARNING

BUGS

The -B option must not be used when performing raw 110 using the HP 9130K miniature flexible disc
drive.

Only the super-user can copy special files.

H Idev/tty is not accessible, upm issues a complaint, or refuses to work.

-1-

UPM(1) Series 500 Only UPM(l)

The -Edr and -iMdr options will not make empty directories.

-2-

UUCICO(1C) UUCICO(lC)

NAME
uucico - uucp copy in and copy out

SYNOPSIS
lusr/lib/uucp/uucico [-rl] [-ssys] [-xnum]

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uucico on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION

FILES

Uucico scans the lusrlspool directory for work files. If such files exist, a connection to a remove system is
attempted using the line protocol for the remote system specified in the L.sys file. Uucico then executes
all requests for work and logs the results.

The options are as follows:

-rl Start uucico in the MASTER mode: The default is SLAVE mode.

-ssys Do work only for the system specified by sys. If there is no work for sys on the local spool
directory, initiate a connection to sys to determine if sys has work for the local system.

-xnum Use debugging option. Num is an integer in the range 1- 9. More debugging information
is given for larger values of num.

Uucico is usually started by a local program (cron(8), uucp(lC), uuc(lC), uuxqt(1C), or uucico(lC)). It
should only be directly initiated by a user when debugging.

When started by a local program, uucico is considered the MASTER and attempts a connection to a
remote system. If uucico is started by a remote system, it is considered to be in SLAVE mode.

For the uucico connection to a remote system to be successful, there must be an entry in the letc!passwd
file on the remote system of the form:

uucp:: 5:5: : lusrlspool/uucppublic:lusr/lib/uucp/uucico

Refer to Uucp File System chapter in the HP-UX Asynchronous Communications Guide, part number
97076-90001.

SEE ALSO
HP-UX Asynchronous Communications Guide, part number 97076-90001.

-1-

UUCP(lC) UUCP(1C)

NAME
uucp, uulog, uuname - UNIX to UNIX copy; file transfer

SYNOPSIS
uucp [option 1 ' .. source-file ... destination-file

uulog [option 1 ...
uuname

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uucp, uu/og. and uuname on the Series 500 are part of an optional product numbered
97076A.

DESCRIPTION
Uucp copies files named by the source-file arguments to the destination-file argument. A file name may
be a path name on your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names in the L.sys file which uucp knows about. Shell
metacharacters?"* [1 appearing in path-name will be expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on the specified system and is repla­
ced by that user's login directory;

(3) a path name preceded by -/user where user is a login name on the specified system and is repla-
ced by that user's directory under PUBDIR (see FILES):

(4) anything else is prefixed by the current directory.

The local and remote system access to the path name is specified in the USERFILE. If the result is an
erroneous path name for the remote system the copy will fail. If the destination-file is a directory, the last
part of the source-file name is used. The accessibility of the file or path name is specified in USERFILE.

Uucp preserves execute permissions across the transmission and gives 0666 read and write permissions
(see chmod(2)).

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file to the spool directory
(default).

-C Copy the source file to the spool directory immediately and use the copy.

-m Send mail to the requester when the copy is complete.

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there. (Note - this will only be successful
if the remote machine allows the uucp command to be executed by /usrllib/uucp/uuxqt.)

-ggrade Request grade as a priority for the work sequencing. Grades are specified in the order A - Z, a-­
Z, with A specifying that the work should be done first. and z specifying that the work should be
done last. All other grades specify a sequence somewhere in between. The default is n.

-1-

UUCP(1C) UUCP(lC)

FILES

Uulog maintains a summary log of uucp and uux(lC) transactions in the file lusrlspool/uucp/LOGFILE
by gathering information from partial log files named lusrlspool/uucp/LOG.*.? (These files will only be
created if the LOG FILE is being used by another process when a uucp, uux, uucico, or uuxqt process
needs to log an entry.) It removes the partial log files only if issued with no parameters.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

-uuser Print information about work done for the specified user.

Uuname lists the uucp names of known systems. Duplicate lines are not shown, but blank lines are. The
-I option returns the local system name.

lusrlspool/uucp
lusrlspoolluucppublic
lusr/lib/uucpl *

spool directory
public directory for receiving and sending (PUBDlR)
other data and program files

SEE ALSO
mail(l), uux(lC).

WARNING

BUGS

The domain of remotely accessible files can be (and for obvious security reasons, usually should be)
severely restricted. You will very likely not be able to fetch files by path name; ask a responsible person
on the remote system to send them to you. For the same reasons you will probably not be able to send
files to arbitrary path names. As distributed, the remotely accessible files are those whose names begin
lusrlspool/uucppublic (equivalent to -uucp or just -). Note that, if letclpasswd contains a blank line, a
null user entry, or an entry for -uucp, then - and -uucp will not expand properly. Because of this, the
uuto script will not send files to the proper directory.

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a single file. (Receiving multiple files specified by
special shell characters? * [1 will not activate the -m option.)

If uulog is issued with no parameters when a uucp process is writing to a temporary logfile, some log
information (that information written after the LOG. * files are unlinked) may be lost.

Uucp, when used to copy files locally, will create the new file with mode 644 instead of 666.

-2-

UUSTAT(1C) UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [[-jaIl -v]l-jalll-mmch I-kjobn I-chour]1 [-uuser -ssys -ohour -yhour -v]

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uustat on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp commands, or provide general sta­
tus on uucp connections to other systems. At most one of the following options may be specified:

-jaIl Report the status of all uucp requests. The -v option may appear with -jaIl.
-mmch Report the status of accessibility of machine mch. If mch is specified as all, then the status

of all machines known to the local uucp are provided.
-kjobn Kill the uucp request whose job number is jobn. The killed uucp request must belong to

the person issuing the uustat command unless he is the super-user.
-chour Remove the status entries (i.e. spool files in lusrlspool/uucp) which are older than hour

hours. This administrative option can only be initiated by the user uucp or the super-user.

If none of the above options are specified, any or all of the following options may appear:

-uuser
-ssys
-ohour
-yhour
-v

Report the status of all uucp requests issued by user.
Report the status of all uucp requests which communicate with remote system sys.
Report the status of all uucp requests which are older than hour hours.
Report the status of all uucp requests which are younger than hour hours.
Report the uucp status verbosely. If this option is not specified, a status code is printed
with each uucp request.

When no options are given, uustat outputs the status of all uucp requests issued by the current user.

For example, the command

uustat -uhdc -smhtsa -y72 -v

will print the verbose status of all uucp requests that were issued by user hdc to communicate with sys­
tem mhtsa within the last 72 hours. The meanings of the job request status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description. The octal code corresponds to
the following description:

OCTAL
00001
00002
00004
00010
00020
00040
00100
00200
00400
01000
02000
04000

STATUS
the copy failed, but the reason cannot be determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated
remote system cannot create temporary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary file
cannot execute uucp
copy succeeded
copy finished, job deleted
job is queued

-1-

UUSTAT(lC)

The meanings of the machine accessibility status are:

system-name time status

UUSTAT(lC)

where time is the latest status time and status is a self-explanatory description of the machine status.

FILES
lusrlspool/uucp
lusr/lib/uucp/L~tat
lusr/lib/uucp/R~tat

SEE ALSO
uucp(lC).

spool directory
system status file
request status file

-2-

UUTO(1C) UUTO(1C)

NAME
uuto, uupick - public UNIX-to-UNIX file copy

SYNOPSIS
uuto [options 1 source-files destination
uupick [-s system 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uuto and uupick on the Series 500 are part of an optional product numbered 97076A.

DESCRIPTION

FILES

Uuto sends source-files to destination. Uuto uses the uucp(1C) facility to send files, while it allows the
local system to control the file access. A source-file name is a path name on your machine. Destination
has the form:

system!user

where system is taken from a list of system names that uucp knows about (see uucp(1C)). User is the
login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory immediately, and send the copy.
-m Send mail to the requester when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR is the
uucp public directory (lusrlspool/uucppublic). Specifically the files are sent to

PUBDIR/receiveluserlmysystemlfiles.

The recipient is notified by mail (1) of the arrival of files.

Uupick accepts or rejects the files transmitted to the recipient. Specifically, uupick searches PUBDIR for
files destined for the user. For each entry (file or directory) found, the follOWing message is printed on
the standard output:

from system: [file file-name 1 [dir dirname 1 ?

Uupick then reads a line from the standard input to determine the disposition of the file:

<new-line>

d

m [dir 1

a [dir 1
p

q

EOT (control-d)

!command

*

Go on to next entry.

Delete the entry.

Move the entry to named directory dir (current directory is default). Note that, if the
current working directory is desired for dir, you should not specify any parameter
with m. A construction like m. is erroneous, and results in loss of data.

Same as m except move all the files sent from system.

Print the contents of the file.

Stop.

Same as q.

Escape to the shell to do command.

Print a command summary.

Uupick invoked with the -ssystem option will only search PUBDIR for files sent from system.

PUBDIR = lusrlspool/uucppublic public directory

-1-

UUTO(lC) UUTO(lC)

SEE ALSO
mail(l), uucp(lC), uustat(1C), uux(lC), uuclean(8).

-2-

UUX(JC) UUX(lC)

NAME
uux - UNIX to UNIX command execution

SYNOPSIS
lusr/lib/uucp/uux [- 1 [-z 1 [-n 1 command-string

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uux on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION

FILES

Uux will gather zero or more files from various systems, execute a command on a specified system and
then send standard output to a file on a specified system. Note that, for security reasons, many installa­
tions will limit the list of commands executable on behalf of an incoming request from uux. Many sites
will permit little more than the receipt of mail (see mail (1)) via uux.

The command-string is made up of one or more arguments that look like a Shell command line, except
that the command and file names may be prefixed by system-name!. A null system-name is interpreted as
the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the specified system and is repla-
ced by that user's login directory;

(3) anything else is prefixed by the current directory.

The - option will cause the standard input to the uux command to be the standard input to the
command-string. For example, the command

uux II !diff usg!/usr/danlfl pwba!/a4/dan/fl > !f1.diff II

will get the f1 files from the II usg II and II pwba II machines, execute a dill command and put the results
in f1.diff in the local directory.

Any special shell characters such as <>; should be quoted either by quoting the entire command-string,
or quoting the special characters as individual arguments.

Uux will attempt to get all files to the execution system. For files which are output files, the file name
must be escaped using parentheses. For example, the command

uux a!uucp b!/usrifile ,,(c!/usr/file ,,)

will send a uucp command to system II a II to get lusr/file from system II b II and send it to system II c II •

Uux notifies you of the execution status (success or failure) of all commands except mail. The response
comes by remote mail from the remote machine. The amount of mail notification can be reduced with
the -z option, which notifies the remote system only if the command failed. Notification can be disabled
totally with the -n option.

lusr/lib/uucp/spool
lusr/lib/uucpl *

spool directory
other data and programs

SEE ALSO

BUGS

uucp(lCl, uuclean(8).

Only the first command of a shell pipeline may have a system-name!. All other commands are executed
on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do. The shell tokens < <
and> > are not implemented.

-1-

UUXQT(lC) UUXQT(lC)

NAME
uuxqt - uucp command execution

SYNOPSIS
lusr/lib/uucp/uuxqt [-xnum 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uuxqt on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION

FILES

The uuxqt daemon performs local command execution of execution files (X. *) on the lusrlspool/uucp
directory. Uux generates work files with an execution (X) grade which become execution files when
transferred to the remote system. The command requested by the execution file is checked against the
list of remotely executable commands in the COMMANDS file. The USERFILE is then searched to find
the first NULL system field for path access permission.

The option -xnum is a parameter specifying debugging information. Num is an integer in the range 1 -
9. The amount of debugging information increases as the value of num increases.

Refer to the Uucp File System chapter in the HP-UX Asynchronous Communications Guide, part number
97076-90001.

SEE ALSO
HP-UX Asynchronous Communications Guide, part number 97076-90001.

-1-

VAL(l) VAL(l)

NAME
val- validate sees file

SYNOPSIS
val-
val [-s] [-rSID] [-mname] [-ytype] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteristics specified by the optional
argument list. Arguments to val may appear in any order. The arguments consist of keyletter
arguments, which begin with a -, and named files.

Val has a special argument, -, which causes reading of the standard input until an end-of-file condition
is detected. Each line read is independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command line and file processed
and also returns a single 8-bit code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any key letter argument apply indepen­
dently to each named file on the command line.

-s

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message normally genera­
ted on the standard output for any error that is detected while processing each
named file on a given command line.

The argument value SID (SeeS IDentification String) is an sees delta num­
ber. A check is made to determine if the SID is ambiguous (e. g., rl is ambi­
guous because it physically does not exist but implies 1.1, 1.2, etc. which may
exist) or invalid (e. g., r1.0 and r1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambiguous, a check is made
to determine if it actually exists.

The argument value name is compared with the sees %M% keyword infile.

The argument value type is compared with the sees %Y% keyword infile.

The 8-bit code returned by val is a disjunction of the possible errors, i.e., can be interpreted as a bit
string where (moving from left to right) set bits are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file orfile not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = % Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in turn can process multiple
command lines (when reading the standard input). In these cases an aggregate code is returned - a log­
ical OR of the codes generated for each command line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

DIAGNOSTICS
Use help(l) for explanations.

-1-

VAL(l)

BUGS

VAL(l)

Val can process up to 50 files on a single command line. Any number above 50 will produce a fatal
error.

-2-

VI(1) VI(1)

NAME
vi, view - visual text editor

SYNOPSIS
vi [-t tag] [-r] [+command] [-I] [-wn] [-R] [-x] name ...

view [vi options]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Vi (visual) is a display oriented text editor based on ex (1). Ex and vi run the same code; it is possible to
get to the command mode of ex from within vi, and vice-versa. View is a read-only version of vi. The
following options are recognized:

-ttag equivalent to an initial tag command. The file containing the tag is edited, with the editor
positioned at the definition of the tag.

-r used to recover from the last editor or system crash. The last saved version of name is
retrieved, or, if no name is specified, a list of saved files is printed.

+ command The editor begins the editing session by executing the specified ex(1) command. If com-
mand is omitted, it defaults to $, positioning the editor at the last line of the current file.

-I automatically sets the showmatch and lisp options.

-wn sets the default window size to n lines.

-R sets the readonly option at the start of the editing session.

-x causes vi to prompt for a key, which is used to encrypt and decrypt the contents of the file
(which should already be encrypted using the same key).

The Vi Editor proVides full details on using vi.

HARDWARE DEPENDENCIES
Series 500:

The CTRL-f command does not work if ENQ-ACK handshake is enabled.

SEE ALSO

BUGS

ex(l), The Vi Editor in HP-UX Selected Articles.

Software tabs using -T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete character operations in
the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are typed. If a long
word passes through the margin and onto the next line without a break, then the line will not be broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the terminals need
help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the :append,
:change, and :insert commands, since it is not possible to give more than one line of input to a : escape.
To use these on a :global you must Q to ex command mode, execute them, and then reenter the screen
editor with vi or open.

If the system crashes or vi is killed aCcidentally, the terminal may be left in raw mode. To get out of raw
mode, type the following sequence:

-1-

Vl(l).

CTRL-j
sttysane
CTRL-j

VI(l)

This sequence may alter the baud rate and the erase and kill characters (see stty(l)}. To restore the
erase and kill characters, type:

. /etc/profile
cd
. . profile

-2-

WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal terminations.

WAIT(l)

Because the wait(2) system call must be executed in the parent process, the shell itself executes wait,
without creating a new process.

SEE ALSO
sh(l).

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus cannot be waited
for.

-1-

WALL(1)

NAME
wall- write to all users

SYNOPSIS
letc!wall

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

WALL(1)

Wall reads its standard input until an end-of-file. It then sends this message to all currently logged in
users preceded by "Broadcast Message from ... ". It is used to warn all users, typically prior to shutting
down the system.

The sender should be super-user to override any protections the users may have invoked.

Wall has timing delays, and will take at least 30 seconds to complete.

FILES
Idev/tty*

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
" Cannot send to ... " when the open on a user's tty file fails.

-1-

WC(1) WC(l)

NAME
wc - word, line, and character count

SYNOPSIS
wc [-Iwc 1 [names 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

BUGS

We counts lines, words and characters in the named files, or in the standard input if no names appear. It
also keeps a total count for all named files. A word is a maximal string of characters delimited by spaces,
tabs, or new-lines.

The options I, w, and c may be used in any combination to specify that a subset of lines, words, and
characters are to be reported. The default is -Iwc.

When names are specified on the command line, they will be printed along with the counts.

We counts the number of new-lines to determine the line count. If an ASCII text file has a final line that is
not terminated with a new-line character, the count will be off by one.

If there are very many characters, words, and/or lines in an input file, the output may be hard to read.
This is because we reserves a fixed column width for each count.

-1-

WHAT(1) WHAT(l)

NAME
what - identify files for sees information

SYNOPSIS
what files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
What searches the given files for all occurrences of the pattern that get(l) substitutes for %2% (this is
(ci(#) at this printing) and prints out what follows until the first" , >, new-line, "', or null character. For
example, if the C program in file f.c contains

char ident[] = " (cJ(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get(l), which automatically inserts iden­
tifying information, but it can also be used where the information is inserted manually.

SEE ALSO
get(l), help(l).

DIAGNOSTICS

BUGS

Use help(l) for explanations.

It's possible that an unintended occurrence of the pattern (cu(#) could be found just by chance, but this
causes no harm in nearly all cases.

-1-

WHEREIS(l) WHEREIS(l)

NAME
whereis -locate source, binary, and/or manual for program

SYNOPSIS
where is [-sbm 1 [-u 1 [-SBM dir ... -f 1 name ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Whereis locates source/binary and manuals sections for specified files. The supplied names are first strip­
ped of leading path name components and any (single) trailing extension of the form ". ext" , e. g. ". c " .
Prefixes of "s." resulting from use of SCCS are also dealt with. Whereis then attempts to locate the
desired program in a list of standard places. If any of the -b, -s or -m flags are given then whereis
searches only for binaries, sources or manual sections respectively (or any two thereof). The -u flag
may be used to search for unusual entries. A file is said to be unusual if it does not have one entry of
each requested type. Thus "whereis -m -u *" asks for those files in the current directory which have no
documentation.

Finally, the -B -M and -S flags may be used to change or otherwise limit the places where whereis
searches. The -f file flag is used to terminate the last such directory list and signal the start of file names.

EXAMPLE

FILES

BUGS

The following finds all the files in /usr/bin which are not documented in lusr/man/man1 with source in
/usr/srclcmd:

cd /usrlbin
whereis -u -M /usrlman/man1 -S /usr/srclcmd -f *

/usr/srcl*
/usrl {doc, man }/*
/lib, /etc, /usr/{lib,bin,ucb,old,new,local}

Since the program uses chdir(2) to run faster, pathnames given with the -M -S and -B must be full; i.e.
they must begin with a "/".

-1-

WHO(l) WHO(l)

NAME
who - which users are on the system

SYNOPSIS
who [who-file 1 [am I 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Who, without an argument, lists the login name, terminal name, and login time for each current HP-UX
user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is given, that file
is examined. Typically the given file will be /usr/adm/wtmp, which contains a record of all the logins
since it was created. Then who lists logins, logouts, and crashes since the creation of the wtmp file. Each
login is listed with user name, terminal name (with /dev/ suppressed), and date and time. When an
argument is given, logouts produce a similar line without a user name. Reboots produce a line with x in
the place of the device name, and a fossil time indicative of when the system went down.

With two arguments, as in who am I (and also who are you), who tells who you are logged in as.

/etc/utmp

SEE ALSO
getuld(2), utmp(5).

-1-

WHODO(1)

NAME
whodo - which users are doing what

SYNOPSIS
letclwhodo

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

WHODO(l)

Whodo produces merged, reformatted, and dated output from the who (1) and ps (1) commands.

SEE ALSO
ps(l), who(l).

-1-

WRITE(l) WRITE(l)

NAME
write - interactively write (talk) to another user

SYNOPSIS
write user [tty 1

HP·UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Communication continues until an end of
file is read from the terminal or an interrupt is sent. At that point, write writes EOF on the other terminal
and exits.

If you want to write to a user who is logged in more than once, the tty argument may be used to indicate
the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(l) command. At the outset, writing is
allowed. Certain commands, in particular nroff(1) and pr(l), disallow messages in order to prevent
messy output.

If the character I is found at the beginning of a line, write calls the shell to execute the rest of the line as a
command.

The following protocol is suggested for using write: when you first write to another user, wait for him or
her to write back before starting to send. Each party should end each message with a distinctive signal
((0) for "over" is conventional), indicating that the other may reply; (00) for "over and out" is sug­
gested when conversation is to be terminated.

letc!utmp
Ibin/sh

to find user
to execute I

SEE ALSO
mail(l), mesg(l), who(l).

-1-

YACC(l) YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vd 1 grammar

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple automaton which executes an
LR(l} parsing algorithm. The grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse. This pro­
gram must be loaded with the lexical analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user; lex(l} is useful for creating lexical
analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing tables and
a report on conflicts generated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements that associate the yacc­
assigned "token codes" with the user-declared "token names". This allows source files other than
y.tab.c to access the token codes.

y.output
y.tab.c
y. tab. h defines for token names
yacc. tmp, yacc. acts temporary files
/usr/lib/yaccpar parser prototype for C programs

SEE ALSO
lex(l}.
YACC - Yet Another Compiler Compiler in HP-UX: Selected Articles.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a more
detailed report is found in the y.output file. Similarly, if some rules are not reachable from the start sym­
bol, this is also reported.

Because file names are fixed, at most one yacc process can be active in a given directory at a time.

-1-

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls

HP-UX COMPATIBILITY
Level:

Origin:

DESCRIPTION

This entry describes where in the HP-UX compatibility model this capability appears.

System III, HP, or UCB

This section describes all of the system calls. All of these calls return a function result. This result indi­
cates the status of the call. Typically, a zero or positive result indicates that the call completed suc­
cessfully, and -1 indicates an error. The individual descriptions specify the details. An error number is
also made available in the external variable errno (see errno(2)).

HARDWARE DEPENDENCIES
Series 500:

A second error indicator, errinfo, is implemented in addition to errno. See errinfo(2).

SEE ALSO
intro(3).

-1-

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility according to the
bit pattern contained in amade, using the real user 10 in place of the effective user 10 and the real group
ro in place of the effective group ro. The bit pattern contained in amade is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a null path name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

Write access is requested for a file on a read-only file system. [EROFS]

Write access is requested for a' pure procedure (shared text) file that is being executed.
[ETXTBSY]

Permission bits of the file mode do not permit the requested access. [EACCES]

Path points outside the process's allocated address space. [EFAULT]

The owner of a file has permission checked with respect to the "owner" read, write, and execute mode
bits, members of the file's group other than the owner have permissions checked with respect to the
"group" mode bits, and all others have permissions checked with respect to the "other" mode bits.
Access will always report accessibility when executed by the super-user.

Access will report that a file currently open for execution is not writable, regardless of the setting of its
mode.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned and
errna is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

-1-

ALARM(2)

NAME
alarm - set process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

ALARM(2)

Alarm instructs the calling process's alarm clock to send the signal SIGALRM to the calling process after
the number of real time seconds specified by sec have elapsed; see signal(2).

The alarm is guaranteed to occur within a 0.5 second tolerance. For example, if you specify an alarm
time of 1 second, the alarm is guaranteed to occur between 0.5 seconds and 1.5 seconds.

Alarm requests are not stacked; successive calls reset the calling process's alarm clock.

If sec is 0, any previously made alarm request is canceled.

Alarms are not inherited by a child process across a fork.

RETURN VALUE
Alarm returns the amount of time previously remaining in the calling process's alarm clock.

SEE ALSO
sleep(1), pause(2), signal(2), sleep(3).

-1-

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Brk "and sbrk are used to change dynamically the amount of space allocated for the calling process's
data segment; see exec(2). The change is made by resetting the process's break value. The break value
is the address of the first location beyond the end of the data segment. The amount of allocated space
increases as the break value increases.

Brk sets the break value to endds and changes the allocated space accordingly. Newly allocated space is
automatically zeroed out.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. [ncr can be nega­
tive, in which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated space if such a change would result in
more space being allocated than is allowed by a system-imposed maximum (see ulimit(2)). [ENOMEM]

HARDWARE DEPENDENCIES
Series 500:

Brk sets the break value to endds.

Brk and sbrk will also fail without making any change in the allocated space if such a change
would move the program break below the beginning of your process' data area. Note that it is not
possible to release the direct data area with this system call.

If your process' data area is paged, the the size of that data area changes in increments of the page
size, which is configurable. Consequently, increasing a paged process data area by one byte may
cause it to increase by one page, and decreasing it by one byte may do nothing. If your process'
data area is not paged, then the size of the process data area changes similarly in increments of 32
bytes.

The pointer returned by sbrk is not necessarily word-aligned. Loading or storing words through
this pointer could cause word alignment problems.

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), end(3), malloc(3).

-1-

CHDlR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

CHDlR(2)

Path points to the path name of a directory. Chdir causes the named directory to become the current
working directory, the starting point for path searches for path names not beginning with I.

Chdir will fail and the current working directory will be unchanged if one or more of the following are
true:

A component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path name. [EACCES]

Path points outside the process's allocated address space. [EFAULT]

Path is null. [ENOENT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
cd(1), chroot(2).

-1-

CHMOD(2) CHMOD(2)

NAME
chmod - change access mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
intmode;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission portion of the named file's
mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution.
Save text image after execution
Read by owner
Write by owner
Execute (or search if a directory) by owner
Read, write, execute (search) by group
Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be super-user to change the
mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text image on execution) is
cleared.

If the effective user ID of the process is not super-user or the effective group ID of the process does not
match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from abandoning
the swap-space image of the program-text portion of the file when its last user terminates. Thus, when
the next user of the file executes it, the text need not be read from the file system but can simply be
swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR)

The named file does not exist. [ENOENT)

Search permission is denied on a component of the path prefix. [EACCES)

The effective user ID does not match the owner of the file and the effective user ID is not
super-user. [EPERM)

The named file resides on a read-only file system. [EROFS)

Path points outside the process's allocated address space. [EFAULT)

Path is null. [ENOENT)

HARDWARE DEPENDENCIES
Series 500:

Chmod changes the mode of files created only in the HP~UX environment (that is, not those
created by the HP 9000 BASIC Language System).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

-1-

CHMOD(2) CHMOD(2)

SEE ALSO
chmod(l), chown(2), mknod(2).

-2-

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. The owner 10 and group 10 of the named file are set to the
numeric values contained in owner and group respectively. Note that owner and group should be less
than or equal to 65535, since only the least significant 16 bits are used.

Only processes with effective user 10 equal to the file owner or super-user may change the ownership of
a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the file mode,
04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if one or more of the
following are true:

A component of the path prefix is not a directory. [ENOTOIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

The effective user ID does not match the owner of the file and the effective user ID is not
super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

HARDWARE DEPENDENCIES
Series 500:

Chown changes the owner and group of files created only in the HP-UX environment (that is,
not those created by the HP 9000 BASIC Langauge System).

RETURN VALUE
Upon successful completion, a value of a is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
chown(1}, chmod(2}.

-1-

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory to become the root
directory, the starting point for path searches for path names beginning with I. (Chroat does not affect
the current working directory, ., thus it is still possible to access files outside the tree which is the new
root unless or until a chdir is done to move the current working directory under the new root.)

The effective user [0 of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. can not be used
to access files outside the subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if one or more of the following are true:

Any component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space. [EFAULT]

Path is null. [ENOENT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and erma is
set to indicate the error.

SEE ALSO
chroot(1), chdir(2).

-1-

CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a ereat, open, dup, lentl, or pipe system call. Close closes the file
descriptor indicated by lildes.

Close will fail ifJildes is not a valid open file descriptor. [EBADF)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

-1-

CREAT(2) CREAT(2)

NAME
creat - create new file, rewrite existing file

SYNOPSIS
iot creat (path, mode)
char *path;
iot mode;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named by the path name pOinted
to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Otherwise, the
file's owner 10 is set to the process's effective user 10, the file's group ID is set to the process's effective
group 10, and the low-order 12 bits of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).

The" save text image after execution bit" of the mode is cleared. See chmod(2).

Upon successful completion, a non-negative integer, namely the file descriptor, is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set to the beginning of the
file. The file deSCriptor is set to remain open across exec system calls. See fcntl(2). No process may
have more than 20 files open simultaneously. A new file may be created with a mode that forbids wri­
ting.

Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDlR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be created does not permit writing.
[EACCES]

The named file resides or would reside on a read-only file system. [EROFS]

The file is a pure procedure (shared text) file that is being executed. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [E1SDlR]

Twenty (20) file descriptors are currently open. [EMFlLE]

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), dup(2), Iseek(2), open(2), read(2), umask(2), write(2).

-1-

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
iot dup (fildes)
iot fildes;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

DUP(2)

Fildes is a file descriptor obtained from a creat, open, dup, Jcntl, or pipe system call. Dup returns a new
file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pOinter.)

Same access mode (read, write or read/write).

Same file status flags (seeJcntl(2), F -DUPFD).

The new file descriptor is set to remain open across exec system calls. See Jcntl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
c1ose(2), creat(2), exec(2), fcntI(2), open(2), pipe(2).

-1-

EMS(2) Series 500 Only EMS(2)

NAME
ems - Extended Memory System

SYNOPSIS
#include <sys/ems.h>

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UX/EXTENDED

Origin: HP

Remarks: The Extended Memory System is implemented on the Series 500 only.

DESCRIPTION
Extended Memory System consists of intrinsics which allocate and deallocate address space, map files
into address spaces, support shared memory, and change the protection of address spaces. There are
separate manual pages for the intrinsics. This page describes features in common to all the intrinsics in
EMS.

Definitions

memory space
This is the actual physical memory of a machine.

address space
This refers to the logical memory of a process. Memory space is shared by having processes'
address space refer to the same memory space.

segment
A contiguous piece of address space.

Properties of a Segment

During the allocation of a segment, the following types of segments can be requested:

MEM_SHARED
The address space is to be sharable with other processes. The data is shared across fork (2) (Le.
not copied on a fork).

MEM_PRIVATE
The address space is process local, and is copied on a fork (2). All memory segments will be
either MEM_SHARED or MEM_PRIVATE; the default is MEM_PRIVATE.

MEM_CODE
The address space may, at some time in its lifetime, be made executable.

MEM_DATA
The address space may, at some time in its lifetime, be read and/or written. A segment may be
MEM_CODE, MEM_DATA, or both. The default type is derived from the initial access permis­
sions:

MEM...PAGED

MEM_RIMEM_W
MEM_X
(MEM_R I MEM_W) && MEM_X

~ MEM_DATA
~ MEM_CODE
~ MEM_CODE I MEM_DATA.

Requests that a segment be created as a paged object. (This is ignored if not significant for a
particular implementation).

File Mapping

EMS proVides the facility for mapping a file into process address space. This is done via memallc(2).
Files can be either private or shared.

-1-

EMS(2) Series 500 Only EMS(2)

For private file mapped segments, the address space will contain an image of the file as it existed at the
time of the memallc(2) call. Subsequent alterations of the file will have no effect on the contents of the
address space, and vice-versa.

For shared file mapped segments, the address space is identically the file (at least the mapped portion
thereof). Changes to the address space represent changes to the file, and vice-versa. For example, a
write or read to or from the address space is, in all ways, equivalent to a file system write or read. Simi­
larly, re-creating (using creat(2)) the file will result in the address space containing all zeros.

The access permissions (e.g. read, write) applied to a shared mapped file are established by the first
memallc(2) referencing that file. Subsequent mappings of the same file by other processes must request
identical access permissions.

File mapping, as described above, is only guaranteed to apply to regular local files and block structured
device files. File mapping is not applicable to remote files at this time. Attempting to map an unsuppor­
ted file type will result in error EINVAL.

Note that file mapping, either MEM_PRIVATE or ME~SHARED, always requires read permission on
fileid. Access modes cannot exceed those onjileid for shared, mapped files.

Shared Memory
It is possible to share a memory space between processes. Access to shared memory can occur in two
ways. The first way is to associate a file name as the name of the shared memory space. Each related or
unrelated process performs a memallc(2) to gain access to the shared memory through mapping the file.

Another method of sharing, without the file, is for related processes: a process can allocate a non-file­
mapped shared segment; upon ajork(2), the child process will have access to the same memory space
as the parent.

SEE ALSO
memadvise(2), memallc(2), memchmd(2), memlck(2), memvary(2), vsadv(2), vson(2).

-2-

ERRINFO(2) Series 500 Only ERRlNFO(2)

NAME
errinfo - error indicator

SYNOPSIS
extern int errinfo;

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks: Errinfo is implemented on the Series 500 only.

DESCRIPTION
When an error occurs in a system call, the external variable errno is set to the standard HP-UX error
number, and more detailed information is stored in the external variable errinfo. Errinfo obtains its value
from the escape code returned by the underlying HP-UX kernel.

Errinfo is not cleared on successful system calls, so it should only be checked after an error has been
indicated.

Software that is intended to be portable across HP-UX implementations should not reference errinfo.

The errinfo values and their meanings are as follows:

VALUE MEANING

*4 NVM address out of range;
5 buffer request is not within valid range;
6 buffer address space overflow;
* 7 address specified does not reference a valid buffer;
* 10 specified process priority level out of range;
* 11 a non-existent code segment is specified;
* 12 attempt to delete non-existent partition;
* 13 system parameter not addressable;
* 14 system parameter cannot be referenced with an EDS pointer;
*20 message link not found;
*21 invalid message link;
*22 message limit exceeded;
*23 message link limit exceeded;
*24 link being deleted contains processes waiting for messages;
*30 timer cancelled;
*31 timer stopped;
*32 cancel already done for specified timer ID;
*33 stop already done for specified timer 10;
*34 timer ID not stopped before cleared;
*35 timer 10 not cancelled before cleared;
*36 attempt to set time and date to a value outside accessible range (midnight January 1,

1900 to midnight December 31, 25599);
*37 stack extension error;
40 memory overflow (private partition);
41 memory overflow;
42 no free partition available for allocation;
43 segment table overflow;
44 memory controller block overflow;
45 partition overflow;
46 pointer passed as an argument does not point to a valid segment;
47 segment size is out of range;
*48 free space chains are inconsistent, segment map corruption;
*49 free space chains are inconsistent, block map corruption;

-1-

ERRINFO(2) Series 500 Only ERRINFO(2)

50 pointer passed as an argument does not point to a valid segment;
*51 block address within a segment is invalid;
56 device or interface card timed out;
57 system call aborted by signal(2);
*59 improper resource management in operating system;
*60 improper resource management in operating system;
*63 routine called for wrong I/O device or at wrong time;
*64 routine called for wrong I/O device or at wrong time;
66 hardware or firmware error in interface card;
*67 110 transaction aborted by device or interface card;
68 an HP-IO interface card failed its self test;
*69 used during power-up, produces" System halted - incompatible lOP's" message;
* 70 no such object;
* 73 out of timer ID's;
* 74 timer ID out of range;
* 75 starLpartition parameters not consistent;
* 76 parameter to starLpartition not addressable;
* 77 attempt to change to non-existent partition;
* 78 must be a system process to change to partition;
80 device not ready for request; may be busy with some otner operation, media may not

be present, or power may be off;
81 media is write-protected and cannot be altered;
82 media has been mis-inserted; please remove and re-insert;
83 format enable switch disables driver from doing a media format operation;
84 media error was detected, usually a CRC, parity, or checksum error; data may not be

valid;
85 cannot find record on media; usually indicates trouble in reading the header/servo

information on the media;
86 the read check of data written to a record has failed;
88 media may have been changed since last access; buffered data may have to be

thrown away;
*89 used to implement internally generated re-tries;
*90 software failure was detected; perhaps data structures were corrupted, or an unexpec-

ted event occurred;
91 unknown error; indicates some type of device or interconnect malfunction;
*94 driver usage error; mis-ordered driver requests;
95 a parameter for a particular request is not supported by this driver; usually indicates

that the type of device does not support a special function;
97 read termination mode is not supported by this device driver;
98 EOI must have a data byte associated with it before it can be written;
*99 driver usage error; mis-ordered driver requests;
100 record number out of allowed range; usually indicates corrupt directory structure;
* 101 the transfer length was negative, zero, or odd for a halfword read or write request; can

also indicate a transfer past the end of the media volume;
102 halfword or byte mode transfers are not supported by this driver;
* 103 cannot close a locked driver; this is a fault of the calling code;
107 an attempt was made to attach two different drivers to the same device; these drivers

are incompatible and cannot co-exist; the new driver is not attached, but the old
driver remains unchanged;

108 the size of the string is not correct for this string register access;
109 interleave factor not supported by disc; it is either zero, negative, or too big;
110 invalid address was detected by the driver, or the interface card occupies the same

sub address (e.g. HP-IB address) as the device;
* 111 capacity of disc exceeds 32-bit record address range assumed by driver;
112 reference to an unsupported pseudo-register was made; if the request accessed

-2-

ERRINFO(2) Series 500 Only ERRINFO(2)

multiple registers, the previous (if valid) register accesses were made;
113 HP-1B TCT byte must be at the end of the ATN sequence because you have passed

control;
114 a request is not supported by this driver;
115 no driver with that name was found;
116 no driver is available for that card, or the device address value is out of range;
117 write verify is not supported for this mass storage device;
119 an invalid value was assigned to a pseudo-register;
120 data transfer was terminated due to the reception of an HP-lB secondary address;
121 for buffered devices, a data transfer cannot be satisfied due to un-transferred data

from the other direction; for example, a write may not be possible if there is still
unread data present on the device;

122 device cannot satisfy this request because of a previous request or the current state of
the device;

123 the beginning of the tape was encountered before the operation could be completed;
124 the interface cannot be the HP-lB active controller when doing this operation;
125 synchronous data rate could not be met to complete the operation; system may be

too heavily loaded, or the specified bandwidth parameters for this or another device
may be wrong;

126 a hardware fault was detected; controller/status card should be examined for further
information;

127 the device/interface was not found at the specified address; power may be off, or the
address could be wrong;

128 the end of tape was encountered before the operation was complete;
129 the device failed its self test or a diagnostic; no further access to this device should be

attempted;
130 the HP-1B interface is too slow for this device;
131 tape end of file was encountered before request could be completed;
132 the device was busy and could not handle the request;
133 the media is absent from the device;
134 the media is not formatted, and must be formatted before use;
135 too many media errors prevent formatting to complete; formatting operation may be

only partially done;
136 the media has no more spares left but had to spare some data; the sparing was not

done;
137 the HP-1B interface must be the active controller to execute this operation;
138 the HP-1B interface must be the system controller to execute this operation;
139 no data seen on media after a device specific length of media; this is a sequential tape

error;
140 more data was found in the record than was requested for the read operation; the

remaining data was lost, and cannot be read by the next read request;
141 the media physical format is incorrect for this disc;
142 media failure has occurred, or the media has deteriorated such that replacement is

suggested; media may only last long enough for a back-up;
143 the HP-IB interface is not addressed to read or write as requested, and because it is

active controller, it cannot become addressed;
144 the read or write request data transfer was aborted by an HP-IB IFC or an HP-IB dev­

ice clear operation; usually indicates hardware or connection problems;
145 not all the data (or commands) were accepted by the device; usually indicates

hardware or connection problems;
146 not all the data was sourced by the device; usually indicates hardware or connection

problems;
147 controller or unit fault was reported by the device;
148 some failure occurred in receiving the device status result; usually means that not all

the status was returned, or the controller reported a failure when the driver attempted

-3-

ERRINFO(2)

149

*150
*151
152
153
154
155
156
157

160
161

162
163
164

165

167
168

169

170
171
*172
173
174
*175
176
177
*178

181
182
183
184
185

186
187
189
193
198

201

Series 500 Only ERRINFO(2)

to receive the status; can also mean hardware or connection problems;
the operation cannot be completed because a user programmed holdoff has
occurred;
system problem or failure;
successful completion of task; should not be visible;
there is a cache versus block size conflict;
out of memory;
unsupported file operation;
remote mounting is not supported;
remote FIFO is not supported;
the volume label specified in the volume specifier does not match the volume label on
the volume;
links may not be removed if the file has been opened with the "no purge link"
option;
cannot open a directory with write access;
two or more volumes have the same volume label and the file system is unable to dis­
tinguish between them for this request;
an attempt was made to access an open file in a way forbidden by the file system;
the disc format does not support the requested operation;
the file cannot be opened for writing because it is currently being execed, or the file
may not be opened with execute access because it is currently opened for writing;
the file/device could not be opened because the system open file table is full; this is
caused by a memory error;
a file may not be opened in both "shared" and "exclusive" modes; your access
mode conflicts with the current mode;
a signal was received while waiting to read or write to a pipe;
the request cannot be performed because the designated file is open or in use at the
current time;
an attempt was made to purge a link to the file without obtaining the necessary access
rights;
not enough disc space could be allocated to satisfy the request;
a file with the same name already exists in the directory;
the file IO passed to the system was bad;
an attempt was made to read beyond the physical end of the file;
tried to write to a pipe for which there are no readers;
the request made is not supported by the file system;
same as error 162; request requires super-user capability;
a "position" (lseek) request was made on a pipe;
the device driver specified in the volume specifier does not match the current device
driver being used for the volume;
the disc format specified in the volume specifier does not match the disc format on the
volume;
some file in the file path could not be found;
the device specified is not a random access blocked device;
the disc format on the disc does not support volume labels;
the disc format on the disc does not support file passwords;
the disc does not contain a recognizable disc format; the disc format name given for
an initialize request is not known to the system;
access mode was not requested;
mounted for read only;
a volume may not be initialized while there are open files on it;
a non-directory was specified where a directory was required;
the request cannot be satisfied because another file cannot be added to the directory;
no i-nodes were available;
the request cannot be satisfied because the directory is not empty;

-4-

ERRINFO(2) Series 500 Only ERRINFO(2)

202 the volume was not found;
*203 invalid protect code;
204 the file system was unable to extend a "contiguous" file without creating another

extent;
*210 invalid file code;
216 the select code in the device address in the volume specifier is not within the accep­

table range for this hardware configuration;
*217 an attempt was made to remove or change a password which does not exist;
*218 an attempt was made to put two identical passwords on a file with different capability

sets;
*219 a simple deadlock was encountered when locking a file;
221 the file name is too long (LIF discs support 10 characters, HP 9845 format discs sup-

port 6 characters, and SDF discs support 14 characters);
*222 invalid character in LIF or HP 9845 format disc file name;
*223 invalid character in LIF or HP 9845 format disc password;
*224 volume label is too long on a LIF or HP 9845 format disc;
*225 password too long on a LIF or HP 9845 format disc;
*226 invalid character in volume label on a LIF or HP 9845 format disc;
*227 invalid date on LIF or HP 9845 format disc;
*228 invalid record size on LIF or HP 9845 format disc;
229 invalid record mode on LIF or HP 9845 format disc;
230 a file name was expected and none was specified, or an attempt was made to purge

the ". " or " .. " links from a directory;
231 a subdirectory was specified when the disc format does not support subdirectOries;
232 links not supported on LIF or HP 9845 format discs;
233 non-UNIX systems are not allowed to establish duplicate links to a directory;
234 the device (file) specified for the mountlumount request is not a block special device;
235 the device (file) specified for the umount request is not currently mounted;
236 a volume could not be unmounted because it is currently being used (there are open

files or working directories established on the mounted volume); a volume could not
be mounted because it is already mounted; the directory being mounted on is open
or is the root directory;

237 an attempt was made to establish a link from one volume to another;
241 the byte address on a file access was outside the acceptable range for the file; the byte

address must be non-negative;
242 the file system saw a directory, i-node, or bit map record which contains inconsistent

data;
244 an attempt was made to read beyond the logical end of the file;
249 an attempt was made to unlock an unlocked file;
*252 time value out of range;
*253 hours, minutes, or seconds value out of range;
*254 day, month, or year value out of range;
*255 invalid date;
256 specified segment does not exist;
257 page table has not been initialized;
258 page has not been initialized;
259 lock count has overflowed;
260 lock count has underflowed;
261 entire working set cannot be locked;
262 lock length is invalid;
263 segment is not locked;
264 locked segment cannot be extended;
265 page is not locked;
266 segment is not paged;
267 segment is not shared;

-5-

ERRINFO(2) Series 500 Only ERRINFO(2)

268 requested segment lengths are inconsistent;
269 minimum working set request cannot be satisfied;
270 frame pool cannot be expanded;
271 virtual memory device table overflow;
272 virtual memory device index is invalid;
273 default virtual memory device cannot be removed;
274 virtual memory device index is inactive;
275 virtual memory device index is in use;
276 a locked page was encountered;
301 exee escape to release user stack space; not an error;
302 target process not found in kill call;
303 target process has the wrong real user ID in kill call;
304 no processes found in a broadcast signal attempt;
305 signal number out of range;
306 not super-user; requires super-user permission;
307 a bad argument was supplied to a system call;
308 an attempt was made to wait with no children;
309 an intrinsic was aborted by a signal;
310 process stack overflow;
311 unrecognized ulimit command;
312 your DB relative argument had an offset greater than 512 Kbytes;
313 fix-up offset exceeds segment size (see a.out(5));
314 stack pointer passed to brk, or DB pointer when heap is not in DB;
315 invalid segment number in unfixed pointer; see a.out(5);
316 an attempt was made to kill(O,sig) with no current process group;
317 file number out of range;
318 specified file ID not open;
319 ioetl call not implemented;
320 inappropriate ioetl command for device;
321 ID not in the range 0 to 65535;
323 floating point divide-by-zero;
324 floating point overflow;
325 floating point underflow;
327 wrong number of system call parameters;
328 inconsistent executable file;
330 graphics to internal CRT timed out;
331 graphics hardware does not respond;
*332 unexpected error when performing an open;
*333 unexpected error when performing a close;
334 illegal mode of driver was requested;
335 a buffer was passed to an intrinsic that is too large;
336 DMA terminated abnormally;
337 received one more x coordinate than y coordinate;
338 an illegal operation code was sent to the graphics CRT driver;
345 attempt to execute a file which is too small;
346 attempt to execute a file with a bad magic number;
347 unimplemented configure function;
348 maximum stack exceeded;
349 fatal stack overflow;
350 the program break point passed to sbrk or brk is less than the heap base or greater

than the heap base + maximum heap size (see a.out(5));
*440 internal error;
441 protection modes do not match with existing segment;
442 device is not a 'CS80' device;
443 attempt to add a device not specified with a device file;

-6-

ERRINFO(2) Series 500 Only ERRINFO(2)

444 attempt to pass an EMS intrinsic a parameter which is out of range;
445 attempt to memchmd segment codes which are shared by more than one process;
446 attempt to filemap a file which has already been filemapped by process;
447 insufficient memory available to complete memallc request;
448 the specified memory address is invalid;
449 attempt to use EMS intrinsic on memory not allocated by memallc.

All errinfo values greater than or equal to 450 indicate a network error, and are documented in LAN
9000 Node Manager's Guide, part number 97059-90001.

All errinfo values marked with an asterisk (*) indicate a serious system problem which should be
checked by qualified HP personnel.

SEE ALSO
err(l), errno(2), perror(3C).

WARNING
Errinfo is intended for diagnostic purposes only. Values and meanings may change in future releases of
HP-UX.

-7-

ERRNO(2) ERRNO(2)

NAME
errno - error indicator for system calls

SYNOPSIS
#include <errno.h>
extern int ermo;

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Erma is an external variable whose value is set whenever an error occurs in a system call. This value can
be used to obtain a more detailed description of the error. Erma is not cleared on successful system
calls, so its value should be checked only when an error has been indicated.

The following is a complete list of the error numbers and their names as defined in errno.h.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its owner
or super-user. It is also returned for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or when one of
the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill or ptrace, or is not acces­
sible.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it will appear as if the
interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on a call following the one to which
it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a sub device which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not on-line or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number (see a.aut(5)), or the file is too small to have a valid executable file
header.

9 EBADF Bad file number
Either a file descriptor refers to no open file, a read (respectively write) request is made to a file
which is open only for writing (respectively reading), or the file descriptor is not in the range 0 to
19.

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A/ark failed because the system's process table is full or the user is not allowed to create any more

-1-

ERRNO(2) ERRNO(2)

processes.

12 ENOMEM Not enough space
During an exec, brk, fork, or sbrk, a program asks for more space than the system is able to supply.
This is not a temporary condition; the maximum space size is a system parameter. The error may
also occur if the arrangement of text, data, and stack segments requires too many segmentation
registers, or if there is not enough swap space during afork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system call; can
also result from passing the wrong number of parameters to a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to dismount a
device on which there is an active file (open file, current directory, mounted-on file, active text
segment). It will also occur if an attempt is made to enable accounting when it is already enabled,
or if a non-shareable device file is in use.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g., read a write-only
device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix or as an
argument to chdir(2).

21 EISDIR Is a directory
An attempt to open a directory for writing.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mentioning an undefined sig­
nal in signal, or kill; reading or writing a file for which lseek has generated a negative pointer).
Also set by the math functions described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

25 ENOTTY Not a typewriter
The command is inappropriate to selected device type.

26 ETXTBSY Text file busy
An attempt to execute an executable file which is currently open for writing. Also, an attempt to
open for writing a writable file which is currently open for execution.

27 EFBIG File too large
The size of a file exceeded the maximum file size (for the file system) or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

-2-

· ERRNQ(2) ERRNO(2)

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally generates
a Signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine precision.

HARDWARE DEPENDENCIES
Series 500:

SEE ALSO

In the definition of error 12 (ENOMEM), the maximum space size is not a system parameter. Also,
the terms II text, data, and stack segments ", II segmentation registers ", and II swap space II are
invalid.

In the definition of error 31 (EMLINK), the maximum number of links is 32767.

Two additional errno values are implemented. They are:

35 ENET Local area network error
An error occurred in the software or hardware associated with your local area network.

99 Unexpected error
An unexpected error was returned from the system, indicating some type of system problem. This
error should never occur; if it does, it indicates a system bug.

A second error indicator, minJo, is implemented in addition to errno. See errinJo(2).

err(l), errinfo(2).

-3-

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
iot execI (path, argO, argl, ... , argo, 0)
char *path, *argO, *argl, ... , *argo;

iot execv (path, argv)
char *path, *argv[];

iot execIe (path, argO, argl, ... , argo, 0, eovp)
char *path, *argO, *argl, ... , *argo, *eovp[];

iot execve (path, argv, eovp);
char *path, *argv[], *eovp[];

iot execIp (file, argO, argl, ... , argo, 0)
char *file, *argO, *argl, ... , *argo;

iot execvp (file, argv)
char *file, *argv[];

HP-UX COMPATABILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Exec, in all its forms, loads a program from an ordinary, executable file onto the current process. This
file consists of a header (see a.out(5)), a text segment, and a data segment. The data segment contains
an initialized portion and an uninitialized portion (bss). There can be no return from a successful exec
because the calling program is overlaid by the new program.

Path points to the absolute path name that identifies the executable file containing the new program.

File points to a file name identifying the executable file containing the new program. The path prefix for
this file is obtained by a search of the directories passed as the environment line "PATH =" (see
environ(7)). The environment is supplied by the shell (see sh(l)). If file does not have an executable
magic number (magic(5)), then it is passed to Ibinlsh under the assumption thatfile is a shell script.

ArgO, arg 1, "', argn are pointers to null-terminated character strings. These strings constitute the
argument list available to the new command. By convention, at least argO must be present and point to
a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings constitute the argument
list available to the new command. By convention, argv must have at least one member, and it must
point to a string that is the same as path (or its last component). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings constitute the environ­
ment in which the new command will run. Envp is terminated by a null pointer. Note that, in exec calls
not requiring envp, the environment for the new command defaults to the current environment.

File descriptors open in the calling process remain open, except for those whose close-on-exec flag is
set; seefcntl(2). For those file descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling program will be set to terminate the new program. Signals set to be
ignored by the calling program will be set to be ignored by the new program. Signals set to be caught by
the calling program will be set to terminate the new program; see signal(2).

If the set-user-ID mode bit of the executable file pOinted to by path or file is set (see chmod(2)), exec sets
the effective user ID of the new program to the owner ID of the executable file. Similarly, if the set­
group-ID mode bit of the executable file is set, the effective group ID of the new program is set to the
group ID of the executable file. The real user ID and real group ID of the new program remain the same
as those of the calling program.

-1-

EXEC(2) EXEC(2)

The new program also inherits the following attributes from the calling program:

nice value (see nice(2))
process ID
parent process ID
process group ID
tty group ID (see exit(2) and signal(2))
time left until an alarm clock signal (see alarm (2))
current working directory
root directory
file mode creation mask (see umask (2))
file size limit (see ulimit(2))
utime, stime, cutime, and cstime (see times (2))

The super-user cannot exec a file unless at least one of the three execute bits is set in the file's mode.

Exec will fail and return to the calling program if one or more of the following are true:

One or more components of the executable file's path name do not exist. [ENOENT)

A component of the executable file's path prefix is not a directory. [ENOTDIR)

Search permission is denied for a directory listed in the executable file's path prefix. [EACCES)

The executable file is not an ordinary file. [EACCES)

The file pOinted to by path or file is not executable. [EACCES)

The executable file has the appropriate access permission, but has an invalid magic number in
its header. [ENOEXEC)

The executable file is currently open for writing. Note: normal executable files are only open
for a short time when they start execution. Other executable file types may be kept open for a
long time, or indefinitely under some circumstances. [ETXTBSY)

The new program requires more memory than is available, or than is allowed by the system­
imposed maximum MAXMEM. [ENOMEM)

The number of bytes in the new program's argument list is greater than the system-imposed
limit of 5120 bytes. [E2BIG)

The executable file is not as long as indicated by the size values in its header, or is otherwise
inconsistent. [EFAUL T)

Path, argv, or envp point to an illegal address. [EFAULT)

Path is null. [ENOENT)

HARDWARE DEPENDENCIES
Series 500:

References to memory, such as "text segment", "data segment", "initialized portion",
"uninitialized portion" , and" bss", are invalid. See a.out(5) for the Series 500.

RETURN VALUE
If exec returns to the calling program, an error has occurred; the return value will be -1 and errno will be
set to indicate the error.

SEE ALSO
exit(2), fork(2), environ(7).

-2-

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
exit (status)
int status;

_exit (status)
int status;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed, and s!clio buffers are flushed
(see stdio(3S)).

If the parent process of the calling process is executing a wait, it is notified of the calling
process's termination and the low order eight bits (i.e., bits 0377) of status are made available to
it; see wait(2).

If the parent process of the calling process is not executing a wait, the calling process is transfor­
med into a zombie process. A zombie process is a process that only occupies a slot in the process
table, it has no other space allocated either in user or kernel space. Time accounting informa­
tion is recorded for use by times (see <sys/proc.h».

The parent process 1D of all of the calling process's existing child processes and zombie pro­
cesses is set to 1. This means the initialization process (procl, see intro(2)) inherits each of
these processes.

An accounting record is written on the accounting file if the system's accounting routine is ena­
bled; see accl (2).

If the process rD, tty group 1D, and process group 1D of the calling process are equal, the
SIGHUP signal is sent to each process that has a process group 1D equal to that of the calling
process.

---.exit is equivalent to exit except that stdio buffers are not flushed.

HARDWARE DEPENDENCIES
Series 200/500:

Accounting is not currently supported.

The include file sys/proc.h is not proVided.

SEE ALSO
signal(2), wait(2).

WARNING
See WARNING insignal(2).

-1-

FCNTL(2) FCNTL(2)

NAME
fcntl- file control

SYNOPSIS
#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Fentl provides for control over open files. Fildes is an open file descriptor obtained from a ereat, open,
dup, tentl, or pipe system call.

The cmds available are:

F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (Le., both file descriptors share one file pOinter).

Same access mode (read, write or read/write).

Same file status flags (Le., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain open
across exec(2} system calls.

LGETFD Get the close-on-exec flag associated with the file descriptor tildes. If the low-order bit
is 0 the file will remain open across exec, otherwise the file will be closed upon execu­
tion of exec.

Set the close-on-exec flag associated with tildes to the low-order bit of arg (0 or 1 as
above).

LGETFL

LSETFL

Gettile status flags.

Setfile status flags to argo Only certain flags can be set; seetcntl(7}.

F cntl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADFj

Cmd is LDUPFD and 20 file descriptors are currently open. [EMFILEj

Cmd is F _DUPFD and arg is negative or greater than 20. [EINVALj

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

LDUPFD A new file descriptor.
LGETFD Value of flag (only the low-order bit is defined).
LSETFD Value other than-l.
F _GETFL Value of file flags.
F _SETFL Value other than-l.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
close(2}, exec(2}, open(2}, fcntl(7}.

-1-

FORK(2) FORK(2)

NAME
fork, vfork - create a new process

SYNOPSIS
int fork ()
int vfork ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the calling
process (parent process) except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (Le., the process ID of the parent process).

The child process has its own copy of the parent's file descriptors. Each of the child's file
descriptors shares a common file pointer with the corresponding file deSCriptor of the parent.

The child process does not inherit a ptrace-ed attribute.

The child process's utime, stime, cutime, and cstime are set to 0; see times(2).

The child's alarm time is cleared.

Fork returns a value of 0 to the child process.

Fork returns the process ID of the child process to the parent process.

Fork will fail and no child process will be created if one or more of the following are true:

The system-imposed limit on the total number of processes under execution would be
exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under execution by a single user
would be exceeded. [EAGAIN]

The parent and child processes resume execution immediately after the fork call; they are identified by
the value returned by fork.

Note that standard 1/0 buffers are duplicated in the child. Thus, if you fork after a buffered va opera­
tion that was not flushed, you may get duplicate output.

Vfork is a synonym forfork. Vfork is included for compatibility with other UNIX systems.

HARDWARE DEPENDENCIES
Series 200:

Fork will also fail if there is not enough swapping memory to create the new process.
[ENOSPC]

Series 500:
Fork will also fail if there is not enough physical memory to create the new process.
[ENOMEM]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no
child process is created, and errno is set to indicate the error.

SEE ALSO
exec(2), wait(2).

-1-

GETHOSTNAME(2)

NAME
gethostname - get name of current host

SYNOPSIS
char hostname[];
gethostname(hostname, sizeof (hostname));

HP-UX COMPATABILITY
Level: HP-UXIRUN ONLY

Origin: UCB
DESCRIPTION

GETHOSTNAME(2)

Gethostname returns the standard host name for the current processor, as set by sethostname(2}. The
name is truncated to sizeof(hostname}-1 and is null-terminated.

SEE ALSO
hostname(1}, uname(1}, sethostname(2}, uname(2}.

-1-

GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group IO of the calling process.

Getppid returns the parent process IO of the calling process.

SEE ALSO
exec(2), fork(2), setpgrp(2), signal(2).

-1-

GETPID(2)

GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real/effective user, real/effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Getuid returns the real user 10 of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group 10 of the calling process.

Getegid returns the effective group 10 of the calling process.

SEE ALSO
setuid(2).

-1-

GETUID(2)

IOCTL(2)

NAME
ioctl- control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl(fildes, request, arg)

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

IOCTL(2)

Ioctl performs a variety of functions on special files (devices). The writeups of various devices in Section
4 discuss how ioctl applies to them.

Ioctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

The request is not appropriate to the selected device. [ENOTTY]

Request or arg is not valid. [EINVAL]

HARDWARE DEPENDENCIES
Series 500:

The include file sys/ioctl.h is not currently supported. Use instead termio.h (see tty(4)) or
sys/mtio.h (see mt(4)), depending on the device. Note that these are only two of the available
include files. The actual include file you use depends on the device.

RETURN VALUE
If an error has occurred, a value of -1 is returned and erma is set to indicate the error.

SEE ALSO
Section 4.

-1-

KILL(2) KILL(2)

NAME
kill- send signal to process(s)

SYNOPSIS
int kill (pid, sig)
int pid, sig;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal that is to be sent is specified by sig and is either one
from the list given in signal(2), or O. If sig is 0 (the null signal), error checking is performed but no signal
is actually sent. This can be used to check the validity of pid.

The effective user ID of the sending process must match the real user ID of the receiving process, unless
the effective user ID of the sending process is super-user, or the process is sending to itself.

The processes with a process ID of 0 and a process ID of 1 are special processes (see intro(2)) and will be
referred to below as procO and procl respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal to pid. Pid may equal
1.

If pid is 0, sig will be sent to all processes excluding procO and procl whose process group ID is equal to
the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent to all processes exclu­
ding procO and proc1 whose real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent to all processes excluding
procO and procl.

If pid is negative but not -1, sig will be sent to all processes (excluding proc1) whose process group ID is
equal to the absolute value Qfpid.

The algorithm for determining signal access rights to a prospective process (that meets pid reqUirements)
is as follows:

if sender effective user id = super-user
or sender effective user id = target real user id
or sender process = target process
then It is legal to send the signal.

Also, if pid is less than or equal to zero, the signal is not sent to proc1.

Kill will fail and no signal will be sent if one or more of the folloWing are true:

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified by pid. [ESRCH]

The sending process is not sending to itself, its effective user ID is not super-user, and its effec­
tive user ID does not match the real user ID of the receiving process. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2).

-1-

L1NK(2) L1NK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, *path2;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Pathl points to a path name naming an existing file. Path2 points to a path name naming the new
directory entry to be created. Link creates a new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are true:

A component of either path prefix is not a directory. [ENOTDIR]

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission. [EACCES]

The file named by pathl does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by pathl is a directory and the effective user ID is not super-user. [EPERM]

The link named by path2 and the file named by path] are on different logical devices (file sys­
tems). [EXDEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a mode that denies write permission.
[EACCES]

The requested link requires writing in a directory on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

Pathl or path2 is null. [ENOENT]

Too many links to pathI. [EMLINK]

HARDWARE DEPENDENCIES
Series 500:

For Structured Directory Format (SDF) discs, if path2 is " .. ", then that directory's i-node will be
altered such that its" .. " entry points to the directory specified by pathl. In this way, the super­
user can establish the parent directory of an existing directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and erma is
set to indicate the error.

SEE ALSO
cp(l}, link(1}, unlink(2}.

-1-

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer; seek

SYNOPSIS
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system call. Lseek sets the file pointer
associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pOinter is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from the beginning of
the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ESPIPE]

Whence is not 0,1 or 2. [EINVAL and SIGSYS signal]

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer associated with such a device is
undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer value is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcnt1(2), open(2).

-1-

MEMADVISE(2) Series 500 Only MEMADVISE(2)

NAME
memadvise - advise OS about segment reference patterns

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

memadvise(addr, len, behav, adrtype)
caddLt addr;
int len, behav;
enum memtype {mem_code, mem_data} adrtype;

HP-UX COMPATIBILITY
Level: Backing Store Control- HP-UXlEXTENDED

Origin: HP

Remarks: Memadvise is implemented on the Series 500 only.

DESCRIPTION
The purpose of this call is to allow an application program to notify the system of its known patterns of
reference in specific areas of process memory. The intent is to allow the system to then adapt its
memory management algorithms and/or policies based on this knowledge to maximize the performance
of the program. For example, a program that uses a very large hash table might inform the system of its
random patterns of reference to this area. The system might, then, elect not to do any pre-fetching or
clustered reads in this area.

Addr is the starting address of the area in question and len is the length in bytes. Addr may be any legal
address in the process's address space. Since some implementations use different (and indis­
tinguishable) addreSSing formats for code and data space, adrtype is used to indicate whether addr is a
code or data address. On systems with a uniform addreSSing format for code and data, adrtype will have
no effect.

The boundaries of the address space for which the advice is applied may be rounded up and/or down to
appropriate system dependent values (e.g. pages, segments, blocks, etc).

Variable behav describes the reference pattern in the specified area:

MEM_NORMAL
No known extraordinary patterns of reference.

MEM_SEQ
References are highly sequential in nature.

MEM_RANDOM
References are totally random and unpredictible.

MEM_NEEDED
Area is expected to be highly referenced in near future.

MEM_NOTNEEDED
Area is not expected to be referenced in the near future.

Memadvise may be reduced to a no-op, or some of the behaviour types may be ignored (treated as no­
ops).

SEE ALSO
ems(2), memallc(2)

-1-

MEMALLC(2) Series 500 Only MEMALLC(2)

NAME
memallc, memfree - allocate and free address space

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

caddct
int

memallc(fiIeid, offset, len, maxlen, type, mode);
fileid, offset, len;

int maxlen, type, mode;

int memfree(addr);
caddct addr;

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UXlEXTENDED

Origin: HP

Remarks: Memallc and memfree are implemented on the Series 500 only.

DESCRIPTION
Memallc allocates a memory segment (Le. a contiguous piece of process address space) and returns a
pointer to it. The memory segment may be shared (Le. accessible by other processes) or private.
Private segments are copied on fork (2), giving separate, per-process images of the segment. Shared
segments are not copied across fork(2} but, instead, both processes have access to the same memory
space. The segment may optionally be initialized to the contents of a specific open file (private mapped
file) or can be made equivalent to a specific file (shared mapped file).

Fileid is the HP-UX file id of an open file which will be mapped into the process's address space. Fileid
must refer to a file on a CS-80 disc. Iffileid is -1, the allocated address space will be initialized to zeros.
A mapping of a file (either shared or private) generates an implicit reference to the file (similar to the
result of dup(2)}. Subsequent to the mappingJileid may safely be closed.

Offset specifies the starting point infileid (Le. byte offset) where mapping is to begin. The value returned
by memallc is a pointer to the byte in the new address space that corresponds to byte offset. Iffileid is not
specified (Le. set to -1), offset is ignored.

Len specifies the"size (in bytes) of the address space. The guaranteed range of accessability is from ptr
thru ptr + len-I (where ptr is the value returned by the memallc call). Depending on the value of offset,
len, and the specific implementation, additional data space MAY be accessible at addresses less than ptr
and/or greater than ptr + len-I but the effects of reading and/or writing these areas are undefined.

If len + offset is greater than the size of the file, the additional address space is initialized to zeros. If the
segment is shared, the file is extended to the required size (if fileid is not writable, the call fails). A
creat(2} call on a file that has a shared mapping applied to it will zero the file but will not alter the file size.

Maxlen specifies the maximum length to which a segment may grow using memvary(2}.

Type specifies the attributes assigned to the segment, which is constructed by taking the union of the
desired attributes: MEM_SHARED, MEM_PRIVATE, MEM_PAGED, MEM_DATA, or MEM_CODE
(see ems(2)).

Mode specifies the access permissions assigned to the segment for the requesting process.

MEM_R. MEM_W, MEM--X:
Initial access modes to be assigned to segment (see memchmd(2)}.

Note that all MEM_SHARED mappings of a specific file must use identical access modes. An attempt to
map a file with access modes different than those already in effect will return an error [EACCESS J.
Memfree deallocates a memory segment created by memallc. It takes, as an argument, a pointer retur­
ned by memallc. When the segment is shared, the memory will not be deallocated until the last
reference to the memory is removed.

-1-

MEMALLC(2) Series 500 Only MEMALLC(2)

The number of segments allocated to a given process at anyone time may be limited to a system depen­
dent maximum of MAXSEGS found in ems.h.

RETURN VALUE
Upon successful completion, memallc returns the byte pointer to the address space. Otherwise, a value
of -1 is returned and errno is set to indicate error.

SEE ALSO
ems(2), memvary(2), memchmd(2).

-2-

MEMCHMD(2) Series 500 Only MEMCHMD(2)

NAME
memchmd - change memory segment access modes

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddLt
int

memchmd (addr, mode);
addr;
mode;

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UXlEXTENDED

Origin: HP
Remarks: Memchmd is implemented on the Series 500 only.

DESCRIPTION
This procedure may be used to change the access mode of a memory segment created by memallc(2}.
The procedure returns the previous access mode (or -1 if there is an error).

Addr is the segment pointer returned by memallc(2}.

The access modes for a shared segment is an attribute of the segment and is the same for all processes
sharing the segment or any portion thereof. The access mode of a segment may not be changed if it is
being shared with any other process (e.g. more than one memallc of a paricular file, or a memallc fol­
lowed by afark(2)}. An attempt to memchmd such a shared segment will return an error [EACCESS].

The access mode of a MEM_PRIVA TE segment may be changed without restrictions.

The definition of the access modes are:

Execute capability

Write capability

Read capability

An error is returned if addr is not a valid segment pointer.

Access modes granted to a MEM_SHARED file mapped segment may not exceed the access modes
granted to the user of the file when it was opened.

RETURN VALUE
Upon successful completion, memchmd(2} returns the old set of access modes. Otherwise, a value of-1
is returned and erma is set to indicate the error.

SEE ALSO
ems(2}, memallc(2}, memvary(2}.

-1-

MEMLCK(2) Series 500 Only MEMLCK(2)

NAME
memlck, memulck -lock/unlock process address space or segment

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddLt
int
enum

memlck (addr, len, adrtype);
addr;
len;
memtype {mellLcode, mem_data} adrtype;

int memulck (addr, len, adrtype);
caddLt addr;
int len;
enum memtype {mem_code, mem_data} adrtype;

HP-UX COMPATIBILITY
Level: Backing Store Control- HP-UX/RUN ONLY

Origin: HP

Remarks: Memlck and memulck are implemented on the Series 500 only.

DESCRIPTION
Memlck is used to lock a section of process address space into physical memory. This call may take a
substantial amount of time to complete, but the address space in question is guaranteed to be in
memory and locked upon successful completion of the call. The locked address space will not migrate
to backing store regardless of process state and will, furthermore, remain at the same physical address
space for the duration of the lock. Locks are not inherited across fork (2). Multiple locks on any address
range can occur (unlocking requires that as many unlocks as locks occur). The locks will be segment
local, and unlocking may be done by a process unrelated to the one which did the locking. A locked
segment will be released when there are no processes with references to the locked segment. (This may
occur either via memfree (2) or process death.)

Addr is the starting address of the area in question and len is the length in bytes. Addr may be any legal
address in the process's address space. Since some implementations use different (and indis­
tinguishable) addressing formats for code and data space, adrtype is used to indicate whether addr is a
code or data address. On systems with a uniform addressing format for code and data, adrtype will have
no effect.

The boundaries of the locked address space may be rounded up (on the upper end of the address
range) and down (on the lower end of the address range) to appropriate system dependent values (e.g.
pages, segments, blocks, etc). Locking will not cross segment boundaries. For example, one memlck call
cannot lock part of a text segment and part of a data segment.

M emulck undoes the effects of a memlck.

The use of this call is restricted to the super-user.

This call may be reduced to a no-op.

RETURN VALUE
Upon successful completion, memlck and memulck return a value of O. Otherwise, a value of -1 is retur­
ned and ermo is set to indicate the error.

SEE ALSO
ems(2), memallc(2).

-1-

MEMVARY(2) Series 500 Only MEMVARY(2)

NAME
memvary - modify segment length

SYNOPSIS
#include <sys/ems.h>
#include <sys/types.h>

int
caddLt
int

memvary(addr, len);
addr;
len;

HP-UX COMPATIBILITY
Level: Extended Memory - HP-UXlEXTENDED

Origin: HP

Remarks: Memvary is implemented on the Series 500 only.

DESCRIPTION
Memvary allows the modification of the size of the memory space allocated by memallc(2).

Addr is the pointer to the address space which can be either shared or private. If the address space has
been file mapped and is extended beyond the the end of the file, then the file will also reflect the change
in length. When the file mapped address space is reduced, the actual file length will be unchanged and
the file space after the end of the mapped file space will also remain unchanged. A change in length for
a private file mapped address space will have no effect on the source file.

Len specifies the new length of the address space. In the case of an error, the address space and file
space will be the same as before the intrinsic call.

When private file mapped address space is extended, the additional address space is initialized to zeroes.
When shared file mapped address space is extended, the additional space is initialized to the contents of
the file, or zeros if the file is extended.

The address space cannot be extended beyond the 'maxlen' specified during the memallc(2) intrinsic
call.

RETURN VALUE
Upon successful completion, memvary returns O. Otherwise, a value of -1 is returned and errna is set to
indicate the error.

SEE ALSO
ems(2), memallc(2), memchmd(2).

-1-

MKNOD(2) MKNOD(2)

NAME
mknod - make directory, special or ordinary file

SYNOPSIS
#include <mknod.h>
int mknod (path, mode, dev)
char *path;
int mode;
dev_tdev;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new file is ini­
tialized from mode, where the value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

Values of mode other than those above are undefined and should not be used.

The file's owner ID is set to the process's effective user ID. The file's group ID is set to the process's effec­
tive group ID.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set in the
process's file mode creation mask are cleared. See umask(2).

Dev is meaningful only if mode indicates a block or character special file, and is ignored otherwise. It is
an implementation dependent specification of a character or block I/O device. A device name is created
by using the makedev macro defined in mknod.h. The arguments to makedev are the major and minor
device numbers, the value and interpretation of which are implementation dependent. The result is an
object of type dev_t.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read-only file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space. [EFAULT]

Path is null. [ENOENT]

-1-

MKNOD(2) MKNOD(2)

Path is in a directory that denies write permission, mode is for fifo special file, and the caller is
not super-user. [EACCES 1

HARDWARE DEPENDENCIES
Series 500:

An additional value is available for network special files under file type. Its value is 0110000.

RETURN VALUE
Upon successful completion a value of a is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
mkdir(l), chmod(2), exec(2), umask(2), fs(5), mknod(5), mknod(8).

-2-

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwfJag;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Mount requests that a removable file system contained on the block special device identified by spec be
mounted on the directory identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory on the mounted file
system.

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user 10 is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTOIR]

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space. [EFAUL T]

Dir is currently mounted on, is someone's current working directory or is otherwise busy.
[EBUSY]

The device associated with spec is currently mounted. [EBUSY]

Spec or diris null. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

RETURN VALUE'
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO

BUGS

mount(1), umount(2).

If mount is called from the program level (i.e. not called from mount(1)), the table of mounted devices
contained in letc/mnttab is not updated.

-1-

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's nice value is a positive
number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests for
values above or below these limits result in the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative and the effective user ID of the calling
process is not super-user. [EPERM]

Note that nice assumes a user process priority value of 20. If the super-user of your system has changed
the user process priority value to something less than 20, certain increments can cause nice to return -1,
which is indistinguishable from an error return.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
nice(l), exec(2).

-1-

OPEN(2) OPEN(2)

NAME
open - open file for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag[, mode])
char *path;
int oflag, mode;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for the named file and sets the file
status flags according to the value of oflag. Oflag values are constructed by or-ing flags from the fol­
lowing list. Note that one and only one of the first three flags below must be used.

O_RDONL Y Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes. See read(2} and write(2}.

When opening a FIFO with O_RDONL Y or O_WRONL Y set:

If O~DELA Y is set:

An open for reading-only will return without delay. An open for writing-only will
return an error if no process currently has the file open for reading.

If O~DELA Y is clear:

An open for reading-only will block until a process opens the file for writing. An
open for writing-only will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O~DELA Y is set:

The open will return without waiting for carrier.

If O~DELA Y is clear:

The open will block until carrier is present.

O-APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the file's owner ID is set to the
process's effective user ID, the file's group ID is set to the process's effective group ID,
and the low-order 12 bits of the file mode are set to the value of mode modified as follows
(see creat(2)}:

All bits set in the process's file mode creation mask are cleared. See umask (2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2}.

0_ TRUNC If the file exists, its length is truncated to 0 and the mode and owner are unchanged.

O_EXCL If O_EXCL and O_CREA T are set, open will fail if the file exists.

Upon successful completion a non-negative integer, the file deSCriptor, is returned.

The file pointer used to mark the current position within the file is set to the beginning of the file.

-1-

OPEN(2) OPEN(2)

The new file descriptor is set to remain open across exec system calls. Seefcntl(2).

No process may have more than 20 file descriptors open Simultaneously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREA T is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

Ojlag permission is denied for the named file. [EACCES]

The named file is a directory and ajlag is write or read/write. [EISDIR]

The named file resides on a read-only file system and ajlag is write or read/write. [EROFS]

Twenty (20) file deSCriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the device associated with this
special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being executed and ajlag is write or
read/write. [ETXTBSY]

Path points outside the process's allocated address space .. [EFAUL T]

O_CREA T and O_EXCL are set, and the named file exists. [EEXIST]

O--NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has the file
open for reading. [ENXIO]

Path is null. [ENOENT]

Ojlag specifies both O_WRONL Y and O_RDWR. [EINVAL]

HARDWARE DEPENDENCIES
Series 500:

Execute and write access are mutually exclusive.

Shared program files remain open for execution as long as there exists a process executing the
program.

Once a shared program file with its sticky bit set has been loaded, it appears to be open indefini­
tely, even if the actual number of processes executing the program drops to zero. Refer to the
System Administrator Manual for a discussion of the sticky bit.

Demand loaded program files that are not shared remain open until all of the code and data
have been loaded. Then they are closed.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file descriptor, is returned. Otherwise, a
value of -1 is returned and errna is set to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fcntI(2), Iseek(2), read(2), write(2).

-2-

PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

PAUSE(2)

Pause suspends the calling process until it receives a signal. The signal must be one that is not currently
set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal catching-function (see
signal(2)), the calling process resumes execution from the point of suspension; with a return value of-1
from pause and erma set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

-1-

PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

PIPE(2)

Pipe creates an I/O mechanism called a pipe and returns two file descriptors, fildes[O] and fildes[l].
Fildes [0] is opened for reading andfildes[l] is opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writing process is blocked. A read
on file descriptor fildes[O] accesses the data written to fildes[l] on a first-in-first-out basis.

No process may have more than 20 file deSCriptors open simultaneously.

Pipe will fail if 19 or more file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

SEE ALSO
sh(l), read(2), write(2), popen(3S).

-1-

PROFIL(2) Series 200 Only PROFlL(2)

NAME
profil- execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

. Remarks: Profil is implemented on the Series 200 only.

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user's pro­
gram counter (pc) is examined each clock tick (every 60th of a second), offset is subtracted from it, and
the result is multiplied by scale. If the resulting number corresponds to a word inside buff, that word is
incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 0177777 (octal)
gives a one-to-one mapping of pc's to words in buff; 077777 (octal) maps each pair of instruction words
together. 02(8) maps all instructions onto the beginning of buff (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of O. Profi­
ling is turned off when an exec is executed, but remains on in child and parent both after a fork. Profiling
will be turned off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), monitor(3C).

-1-

PTRACE(2) Series 200 Only PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: System III

Remarks: Ptraee is implemented on the Series 200 only. Much of the functionality of this capability is
highly dependent on the underlying hardware. An application which uses this intrinsic
should not be expected to be portable across architectures or implementations.

DESCRIPTION
Ptraee provides a means by which a parent process may control the execution of a child process. Its pri­
mary use is for the implementation of breakpOint debugging; see adb(1). The child process behaves
normally until it encounters a signal (see signal(2) for the list), at which time it enters a stopped state and
its parent is notified via wait(2). When the child is in the stopped state, its parent can examine and
modify its" core image" using ptraee. Also, the parent can cause the child either to terminate or con­
tinue, with the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptraee and is one of the following:

o This request must be issued by the child process if it is to be traced by its parent. It turns on the
child's trace flag that stipulates that the child should be left in a stopped state upon receipt of a
signal rather than the state specified by June; see signal(2). The pid, addr, and data arguments
are ignored, and a return value is not defined for this request. Peculiar results will ensue if the
parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the process ID of
the child. The child must be in a stopped state before these requests are made.

1,2 With these requests, the word at location addr in the address space of the child is returned to
the parent process. If instruction (I) and data (D) space are separated, request 1 returns a word
from I space, and request 2 returns a word from D space. If I and D space are not separated,
either request 1 or request 2 may be used with equal results. The data argument is ignored.
These two requests will fail if addr is not the start address of a word, in which case a value of-1
is returned to the parent process, and the parent's errno value is set to EIO.

3 With this request, the word at location addr in the child's USER area in the system's address
space (see <sys/user.h» is returned to the parent process. Addresses in this area are system
dependent, but start at zero. The limit can be derived from <sys/user.h>. The data argument
is ignored. This request will fail if addr is not the start address of a word or is outside the USER
area, in which case a value of -1 is returned to the parent process, and the parent's errno value
is set to EIO.

4, 5 With these requests, the value given by the data argument is written into the address space of
the child at location addr. If I and D space are separated, request 4 writes a word into I space,
and request 5 writes a word into D space. If I and D space are not separated, either request 4 or
request 5 may be used with equal results. Upon successful completion, the value written into
the address space of the child is returned to the parent. These two requests will fail if addr is a
location in a pure procedure space and another process is executing in that space, or addr is not
the start address of a word. Upon failure a value of -1 is returned to the parent process, and
the parent's errno value is set to EIO.

6 With this request, a few entries in the child's USER area can be written. Data gives the value
that is to be written and addr is the location of the entry. The few entries that can be written are
dependent on the architecture of the system, but include the user data registers, aUxillary data
registers, and status register (the set of registers, or bits in registers, which the user's program

-1-

PTRACE(2) Series 200 Only PTRACE(2)

could modify).

7 This request causes the child to resume execution. If the data argument is 0, all pending signals
including the one that caused the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execution as if it had incurred that
signal and any other pending signals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of data is returned to the parent. This
request will fail if data is not 0 or a valid signal number, in which case a value of -1 is returned
to the parent process, and the parent's errno value is set to EIO.

S This request causes the child to terminate with the same consequences as exit(2).

9 This request causes a flag to be set so that an interrupt will occur upon the completion of one
machine instruction, and then executes the same steps as listed above for request 7. This effec­
tively allows single stepping of the child.

Whether or not the trace bit remains set after this interrupt is a function of the hardware.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If a traced
process calls exec, it will stop before executing the first instruction of the new image shOWing signal
SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not executed a ptrace with request O. [ESRCH]

SEE ALSO
adb(1), exec(2), signa1(2), wait(2).

-2-

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentZ, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by the file pointer associated
withfildes. Upon return from read, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the buffer;
this number may be less than nbyte if the file is associated with a communication line (see ioetl(2) and
try(4)), or if the number of bytes left in the file is less than nbyte bytes. A value of 0 is returned when an
end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O-NDELAY is set, the read will return a O.

If O-NDELA Y is clear, the read will block until data is written to the file or the file is no longer
open for writing.

When attempting to read a file associated with a tty that has no data currently available:

If O-NDELAY is set, the read will return a O.

If O-NDELAY is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBADF]

Buf points outside the allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the number of bytes actually
read. Otherwise, a -1 is returned and ermo is set to indicate the error.

SEE ALSO

BUGS

creat(2), dup(2), fcntl(2), ioctl(2), open(2), pipe(2), ustat(2), tty(4).

Reading from raw disc device files must be done in multiples of the device's physical record size (see
ustat(2)), and must begin on a physical sector boundary.

-1-

SETHOSTNAME(2) SETHOSTNAME(2)

NAME
sethostname - set name of host cpu

SYNOPSIS
sethostname(name, namelen)
char *name;
int namelen;

HP-UX COMPATABILITY
Level: HP-UXIRUN ONLY

Origin: UCB

DESCRIPTION
This call sets the name of the host processor to be name, which has a length of namelen characters. The
maximum value of namelen is determined by the uname structure. This is normally executed when the
system is bootstrapped, executed out of the file letc/re. The name set should not be a nickname for the
machine, but the full name of the machine, i.e. "hpdcda". This intrinsic sets the nodename field in the
utsname structure returned by uname(2).

Sethostname can only be executed by the super-user.

SEE ALSO
hostname(1), uname(l), gethostname(2), uname(2).

-1-

SETPGRP(2)

NAME
setpgrp - set process group 10

SYNOPSIS
int setpgrp ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group ID of the calling process to the process ID of the calling process and
returns the new process group ID. The new process group ID is always identical to the process ID of the
calling process.

Setpgrp breaks the calling process's terminal affiliation. See t~(4).

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), kill(2), signal(2).

-1-

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
S etuid is used to set the real user ID and effective user 10 of the calling process. S etuid is successful,
resulting in the calling process's real and effective user IDs being set to uid, if anyone of the following
three conditions is true:

The calling process's real user 10 is equal to uid;

The calling process's effective user lD is equal to uid;

The calling process's effective user lD is that of the super -user.

Setgid is used to set the real group 10 and effective group 10 of the calling process. Setgid is successful,
resulting in the calling process's real and effective group IDs being set to gid, if anyone of the following
three conditions is true:

The calling process's real group lD is equal to gid;

The calling process's effective group ID is equal to gid;

The calling process's effective group ID is that of the super-user.

Setuid and setgid will fail if none of the above-mentioned conditions are met (ermo = [EPERMj), or if uid
(gid) is not a valid user (group) ID (ermo = [EINVALj).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

SEE ALSO
getuid(2).

-1-

SIGNAL(2) SIGNAL(2)

NAME
signal- set up signal handling for program

SYNOPSIS
#inc1ude <signal.h>

int (*signal (sig, func))()
int sig;
int (*func)();

func(sig [, code, scp 1)
int sig, code;
struct sigcontext *scp;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is possible to handle the receipt
of a specific signal. Sig specifies the signal and/unc specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

01
02
03*
04*
05*
06*
07*
08*
09
10*
11*
12*
13
14
15
16
17
18
19

hangup
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
software generated (sent by abort(3C))
software generated
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user defined signal 1
user defined signal 2
death of a child (see WARNING below)
powerfail (see WARNING below)

See below for the Significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a/unction address. The actions prescribed
by these values of are as follows:

SIGj)FL - terminate process upon receipt of a signal.
Upon receipt of the signal sig, the receiving process is to be terminated with the follOWing
consequences:

All of the receiving process's open file deSCriptors will be closed.

If the parent process of the receiving process is executing a wait, it will be notified of the
termination of the receiving process and the terminating signal's number will be made
available to the parent process; see wait(2).

-1-

SIGNAL(2) SIGNAL(2)

If the parent process of the receiving process is not executing a wait, the receiving
process will be transformed into a zombie process (except in the case where SIGCLD is
set to be ignored; see WARNING). Refer to glossary(9) for a definition of zombie
process.

The parent process ID of each of the receiving process's existing child processes and
zombie processes will be set to 1. This means the initialization process (procl) (see
intro(2)) inherits each ofthese processes.

An accounting record will be written on the accounting file if the system's accounting
routine is enabled; see acct(2).

If the receiving process's process ID. tty group ID. and process group ID are equal, the
signal SIGHUP will be sent to all of the processes that have a process group ID equal to
the process group ID of the receiving process.

A "core image" will be made in the current working directory of the receiving process
if sig is one for which an asterisk appears in the above list and the following conditions
are met:

The effective user ID and the real user ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the file
must be created, it will have the following properties:

a mode of 0666 modified by the file creation mask (see umask (2))

a file owner ID that is the same as the effective user ID of the
receiving process

a file group ID that is the same as the effective group ID of the
receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the signal-catching function
pointed to by Junc. The signal number sig will be passed as the first parameter to the signal­
catching function. The HP-UX kernel will also pass two additional (optional) parameters to
signal handler routines. The complete parameter list for Junc is:

Slg signal number

code a word of information usually proVided by the hardware.

scp a pointer to the machine dependent structure sigcontext defined in the include file
signal.h.

Depending on the value of sig, code may be zero andlor scp may be NULL. The meanings
of code and scp and the conditions upon which they are other than zero or NULL are
implementation dependent. It is permissible for code and sig to always be zero, and scp to
always be NULL.

The pointer scp will only be valid during the context of the signal handler.

The optional parameters can be omitted from the handler parameter list, in which case the
handler is exactly compatible with System III UNIX.

Truly portable software should not use the optional parameters in Signal-catching routines.

Upon return from the Signal-catching function. the receiving process will resume execution
at the point it was interrupted and the value of Junc for the caught signal will be set to
SIG_DFL unless the signal is SIGILL SIGTRAP, SIGCLD, or SIGPWR.

-2-

SIGNAL(2) SIGNAL(2)

When a signal that is to be caught occurs during a read, a write, an open, or an ioctl system
call on a slow device (like a terminal; but not a file), during a pause system call, or during a
wait system call that does not return immediately due to the existence of a previously stop­
ped or zombie process, the signal catching function will be executed and then the interrup­
ted system call will return a -1 to the calling process with errno set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL signal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, or is equal to SIGKILL. [EINVALj

Func points to an illegal address. [EFAULTj

HARDWARE DEPENDENCIES
Series 200:

The signal SIGPWR is not currently generated.

The structure pointer scp is always undefined.

The code word is always zero for all signals except signal 4 (SIGlLL) and signal 8 (SIGFPE). For
SIGILL, code has the following values:

o illegal instruction;
6 check instruction;
7 TRAPV;
8 privilege violation.

For SIGFPE, code has the following values:

o floating point exception;
5 divide-by-zero.

Refer to the M68000 processor documentation prOVided with your system for more detailed
information about the meaning of these errors.

Series 500:
Accounting is not currently supported.

Core image files are currently files with zero length.

The SIGEMT signal means "out of memory" , and is generated by the HP-UX Operating Sys­
tem. When sent by the system, this signal is always fatal to the process, and cannot be caught
or ignored.

SIGIOT can be sent if an invalid string operation is attempted, or if a bounds range check trap is
encountered.

The signals SIGBUS and SIGPWR are not currently generated by the operating system.

The signal handler parameter code contains the trap number prOVided by the hardware in the
event a trap occurs in the user's program; see trapno(2) for a list of these trap numbers. Oth­
erwise, code will be zero.

The structure pointer scp is defined when a trap occurs in the user's program, and points to the
structure sigcontext defined in signal.h. If no trap occurs, scp will be NULL.

A zero value is returned on floating point underflow. Floating point overflow, divide-by-zero,
integer divide-by-zero, and illegal floating point operation exceptions result in the signal

-3-

SIGNAL(2) SIGNAL(2)

SIGFPE being sent to the process. An undefined value is returned as the result of the operation
if the signal SIGFPE is ignored or caught.

SIGFPE is not sent on integer overflow.

SIGKILL can be sent in the event of an unsuccessful exec, if the original program has already
been deleted.

RETURN VALUE
Upon successful completion, signal returns the previous value of June for the specified signal sig. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
kill(l), kill(2), Iseek(2), pause(2), trapno(2), wait(2), abort(3C), seljmp(3C).

WARNING
Two signals that behave differently from the signals described above exist in this release of the system;
they are:

SIGCLD
SIGPWR

18 death of a child (not reset when caught)
19 power fail (not reset when caught)

For these signals, June is assigned one of three values: SIG_DFL, SIG_IGN, or a Junction address. The
actions prescribed by these values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's child processes will
not create zombie processes when they terminate; see exit(2).

Junction address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above for June
equal to Junction address. The same is true if the signal is SIGCLD, except that while the
process is executing the Signal-catching function, any received SIGCLD signals will be
queued, and the signal-catching function will be continually reentered until the queue is
empty.

The SIGCLD affects two other system calls (wait(2), and exit(2)) in the following ways:

wait If the June value of SIGCLD is set to SIG_IGN and a wait is executed, the wait will block
until all of the calling process's child processes terminate; it will then return a value of -1
with errno set to ECHILD.

exit If in the exiting process's parent process the June value of SIGCLD is set to SIG_IGN, the
exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the pre­
ceding processes. A process that may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

Some implementations do not generate SIGPWR. For systems without non-volatile memory, it is not
useful. If SIGPWR is generated, it occurs when power is restored and the system has done all neces­
sary re-initialization. Processes will re-start by responding to SIGPWR.

-4-

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path. buf)
char *path;
struct stat * buf;

int fstat (fildes. buf)
int fildes;
struct stat * buf;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permission of the named file is not
required, but all directories listed in the path name leading to the file must be searchable. Stat obtains
information about the named file.

Similarly, Jstat obtains information about an open file known by the file deSCriptor fildes, obtained from
a successful open, creat, dup, Jcntl, or pipe system call.

BuJ is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buJ include the follOWing members:

dev_t sLdev; /* ID of device containing a */

ino_t sLino;
ushort sLmode;
short sLnlink;
ushort sLuid;
ushort sLgid;
dev_t sLrdev;

/* directory entry for this file * /
/* Inode number * /
/* File mode; see mknod(2) */
/* Number of links * /
/* User ID of file owner * /
/* Group ID of file group * /
/* Device ID; this entry defined * /
/* only for char or blk spec files * /

ofLt sLsize; /* File size (bytes) */
time_t sLatime; /* Time of last access * /
time_t sLmtime; /* Last modification time * /
time_t sLctime; /* Last file status change time * /

/* Measured in secs since * /
/* 00:00:00 GMT, Jan 1, 1970 */

sLsize Contains the size of an ordinary file in bytes.

st_atime Time when file data was last accessed. Changed by the following commands and system
calls: touch(1), creat(2), mknod(2), pipe (2), utime(2), and read(2).

sLmtime Time when data was last modified. Changed by the following commands and system calls:
touch(1), creat(2), mknod(2), pipe (2), utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by the following commands and system
calls: touch(1), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), unlink(2), utime(2),
and write (2).

Stat will fail if one or more of the follOWing are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

-1-

STAT(2) STAT(2)

Search permission is denied for a component of the path prefix. [EACCES J

Buf or path points to an invalid address. [EFAUL TJ

Path is null. [ENOENT]

F stat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Buf points to an invalid address. [EFAUL T]

HARDWARE DEPENDENCIES
Series 500:

Besides the definition given above, sLsize also has meaning in the case of special files which
refer to discs. In such a case, sLsize either returns the total physical size (in bytes) of the mass
storage volume, when appropriate, or -1 otherwise. This is a property of the physical device,
not any directory structure imposed upon it.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and erma is set
to indicate the error.

SEE ALSO
touch(l), chmod(2l, chown(2), creat(2), link(2), mknod(2), time(2), unlink(2), stat(7).

-2-

STIME(2)

NAME
stime - set time and date

SYNOPSIS
int stime (tp)
long *tp;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

STIME(2)

Stime sets the system's idea of the time and date. Tp points to the value of time as measured in seconds
from 00:00:00 GMT January 1, 1970.

Stime will fail if the effective user ID of the calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

SEE ALSO
time(2).

-1-

STIY(2) STIY(2)

NAME
stty, gtty - control device

SYNOPSIS
#include <sgtty.h>

stty(fildes,argp)
struct sgttyb *argp;

gtty(fildes,argp)
struct sgttyb *argp;

HP-UX COMPATIBILITY
Level: Version 6 Compatibility - HP-UXISTANDARD

Origin: Version 6

Remarks: This system call is preserved for backward compatibility with Bell Version 6. It provides as
close an approximation as possible to the old Version 6 function. All new code should use
the TCSETNTCGETA ioctl calls described in tty(4). Note that these calls are incompatible
with the Version 7 calls of the same names.

DESCRIPTION
For certain status setting and status inquiries about terminal devices, the functions stty and gtty are
equivalent to

ioct1(fildes, TIOCSETP, argp)
ioct1(fildes, TIOCGETP, argp)

respectively; see tty (4).

SEE ALSO
stty(1), exec(2), tty(4).

DIAGNOSTICS
Zero is returned if the call was successful; -1 if the file descriptor does not refer to the kind of file for
which it was intended.

-1-

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

SYNC(2)

Sync causes all information in memory that should be on disc to be written out. This includes modified
super blocks, modified i-nodes, and delayed block 110.

It should be used by programs which examine a file system, for example fsck, df, etc. It is mandatory
before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

Sync may be reduced to a no-op. This is permissible on a system which does not cache buffers, or in a
system that in some way ensures that the discs are always in a consistent state.

SEE ALSO
sync(8).

-1-

TlME(2) TlME(2)

NAME
time - get time

SYNOPSIS
long time ((long *) 0)

long time (tloc)
long *tloc;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tZoe (taken as an integer) is non-zero, the return value is also stored in the location to which tZoe points.

Time will fail if tloe points to an illegal address. [EFAUL TJ

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
stime(2).

-1-

TIMES(2) TlMES(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/times.h>
#include <sys/types.h>

long times (buffer)
struct tms * buffer;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Times fills the structure painted to by buffer with time-accounting information. This information comes
from the calling process and each of its terminated child processes for which it has executed a wait. The
structure defined in sys/times.h looks as follows:

struct tms {

};

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tmLcstime;

/* user time * /
/* system time * /
/* user time, children * /
/* system time, children * /

All times are in 60ths of a second.

Utime is the CPU time used while executing instructions in the user space of the calling process.

Stime is the CPU time used by the system on behalf of the calling process.

Cutime is the sum of the utimes and cutimes of the child processes.

Cstime is the sum of the stimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. [EFAULTj

HARDWARE DEPENDENCIES
Series 500:

For computers with multiple CPU's, the child CPU times listed can be greater than the actual elap­
sed real time, since the CPU time is counted on a per-CPU basis. Thus, if all three CPUs are exe­
cuting, the CPU time is the sum of the three execution times of the CPUs.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths of a second, since an arbitrary
point in the past (e.g., system start-up time). This point does not change from one invocation of times to
another. If times fails, a -1 is returned and errno is set to indicate the error.

SEE ALSO

BUGS

exec(2), fork(2), time(2), wait(2).

Not all CPU time expended by system processes on behalf of a user process is counted in the system
CPU time for that process.

-1-

TRAPNO(2) Series 500 Only TRAPNO(2)

NAME
trapno - hardware trap numbers

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

Remarks: The following description of hardware trap numbers is valid for the Series 500 only.

DESCRIPTION
The following trap numbers refer to hardware traps occurring on the HP 9000 Series 500 computers.
Trapno values are reported by the err(l) command, and are passed to signal handlers (see signal(2))
when hardware traps cause signals to be sent to the current process.

The trapno value, trap name, and description are listed below for each possible trap condition. By con­
vention, trap numbers are shown in octal.

VALUE

01

02
03
04
05
06
07
010
011

012

013

014
015

016

017
020

021
022
023

024

025

026

027

NAME: DESCRIPTION

Bounds Violation: An address is outside the limits for the program, stack,
or global data segments. [2]
Check Trap: A user value is outside a prescribed range. [1]
Breakpoint Trap: Debugging trap. [1]
Machine Instruction Trap: Used by the operating system.
String Trap: Illegal string operation or data. [2]
Unused.
Unused.
Reset: Used by the operating system.
Page Table Violation: The page table entry referenced is beyond the
current length of the page table. [2]
Inconsistent Registers: An attempt was made to set up an inconsistent set
of registers describing the global data segment, stack segment, or program
segment. [2]
External Data Segment Bounds Violation: An address is outside the limits
of an external data segment. [2]
System Error: Used by the operating system.
External Data Segment Pointer Violation: Illegal data segment pointer;
probably a pointer between 0 and 524287 decimal. [2]
Pointer Conversion Violation: An attempt was made to form a data seg­
ment pointer with an offset which is too large for the type of pointer being
used. [2]
External Program Pointer Violation: Illegal procedure pointer. [2]
Unimplemented Instruction: Attempt to execute an undefined instruction.
[1]
STT Violation: Illegal procedure pointer. [2]
CST Violation: Illegal procedure pointer. [2]
DST Violation: Illegal segment number in an external data segment poin­
ter. [2]
Stack Overflow: The operating system normally handles this trap by
extending the stack segment.
Stack Underflow: An attempt to pop a word from the local stack when the
local stack is empty. [2]
Privileged Mode Violation: An attempt to execute a privileged instruction
or return to a privileged procedure while in unprivileged mode. [2]
Privileged Mode Data Violation: An attempt to reference a privileged data
segment while in unprivileged mode. [2]

-1-

TRAPNO(2)

030

031
032

033

034

035

036

037
040
041

042
043
044
045
046
047
050
051
052
053
054
055

056
057

The footnotes are as follows:

Series 500 Only TRAPNO(2)

Unexpected Pointer Type: An instruction has encountered a pointer type
which it cannot handle. [2]
User Traps: Integer divide by zero. [1]
Illegal Decimal Number: A decimal math instruction has been supplied an
illegal operand. [2]
Exponent Size Trap: Exponent too large during a number conversion
instruction. [2]
Floating Point Operand Trap: Attempt to operate on illegal numbers,
divide by zero, or convert a 64-bit number to a 32-bit number which can­
not accommodate the exponent. [1]
Floating Point Result Trap: Floating point overflow; also caused by an
explicit request to trap on an inexact result. [1]
Unexpected External Data Segment Type: A paged external data segment
was encountered when an unpaged segment was expected, or vice versa.
[2]
Absent Code Segment: Handled by the operating system.
Absent Page: Handled by the operating system.
Uncallable Procedure: Attempt to call an uncallable privileged procedure
while in unprivileged mode. [2]
Absent Data Segment: Handled by the operating system.
Absent Page Table: Handled by the operating system.
Start -of -Line: Debugging trap. [1]
Variable Trace: Debugging trap. [1]
Start-of-Procedure: Debugging trap. [1]
End-of-Procedure: Debugging trap. [1]
Start-of-Subroutine: Debugging trap. [1]
End-of-Subroutine: Debugging trap. [1]
Code Segment Violation: Attempt to modify a code segment. [2]
Branch Violation: Illegal branch instruction. [2]
Message Trap: Used internally by the operating system.
Instruction Sequencing Bounds Violation: Program destination is out of
bounds; probably a stack marker has been incorrectly modified.
Start-of-Line-Check Trap: Debugging trap. [1]
Data Segment Write Violation: Attempt to modify a write-protected data
segment. [2]

[1]: If the program returns from the trap (signal) handler, execution will resume with the next
instruction.

[2]: If the program returns from the trap (signal) handler, execution will resume at the current
instruction.

SEE ALSO
err(I), signal(2).

WARNING
Trapno is intended for diagnostic purposes only. Values and meanings may change in future releases of
HP-UX.

-2-

ULlMIT(2) ULlMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
intcmd;
long newlimit;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
This function provides for control over process limits. The cmd values available are:

1 Get the process's file size limit. The limit is in units of 1024-byte blocks and is inherited by child
processes. Files of any size can be read.

2 Set the process's file size limit to the value of newlimit. Any process may decrease this limit, but
only a process with an effective user 10 of super-user may increase the limit. Ulimit will fail and
the limit will be unchanged if a process with an effective user 10 other than super-user attempts to
increase its file size limit [EPERM] Note that the limit must be specified in units of 1024-byte
blocks.

3 Get the maximum possible break value. See brk (2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. If cmd is not in the correct range, a -1 is
returned, and erma is set to EINVAL (see intra(2)). Other errors also return a -1, with erma set appropri­
ately.

SEE ALSO
brk(2), write(2).

-1-

UMASK(2)

NAME
umask - get and set file creation mask

SYNOPSIS
int urn ask (crnask)
int crnask;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to the octal number cmask and returns the previous
value of the mask. Only the low-order 9 bits of cmask and the file mode creation mask are used.

The bits that are set in cmask specify which permission bits to turn off in the mode of the created file. For
example, suppose a value of 007 is specified for cmask. Then, if a file is normally created with permis­
sions of 777, its mode after creation would be 770.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2), mknod(8).

-1-

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Umount requests that a previously mounted file system contained on the block special device identified
by spec be unmounted. Spec is a pointer to a path name. After unmounting the file system, the direc­
tory upon which the file system was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user 10 is not super-user. [EPERM]

Spec does not exist. [ENOENT]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINVAL]

A file on spec is busy. [EBUSY]

Spec points outside the process's allocated address space. [EFAULT]

The device associated with spec does not exist. [ENXIO]

A component of spec is not a directory. [ENOTDIR]

Spec is null. [ENOENT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO

BUGS

mount(l), mount(2).

If umount is called from the program level (Le. not from the mount(l) level), the table of mounted devices
contained in /etc/mnttab is not updated.

-1-

UNAME(2) UNAME(2)

NAME
uname - get name of current HP-UX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Uname stores information identifying the current HP-UX system in the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

#define UTSLEN
#define SNLEN

struct utsname {
char
char
char
char
char
char

};

9
15

sysname[UTSLEN];
nodename[UTSLEN];
release[UTSLEN] ;
version[UTSLEN];
machine[UTSLEN];
idnumber[SNLEN];

extern struct utsname utsname;

Uname returns a null-terminated string in each field. Sysname contains" HP-UX". Similarly, nodename
contains the name that the system is known by on a communications network and is accessible via host­
name(I), sethostname(2) , and gethostname(2). Release contains the release number of the operating sys­
tem, e.g. "1.0" or "3.0.1". Version contains additional information about the operating system.
Machine contains a standard name that identifies the hardware on which the HP-UX system is running.
I dnumber contains an identification number which is unique within that class of hardware, possibly a
hardware or software serial number. This field may return the null string to indicate the lack of an identi­
fication number.

Uname will fail if name points to an invalid address. [EFAULT]

HARDWARE DEPENDENCIES
Series 200/500:

The first character of the version field is set to "A" for single user, and" B" for multi-user.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and errno is set
to indicate the error.

SEE ALSO
hostname(I), revision(I), uname(I), gethostname(2), sethostname(2).

-1-

UNLINK(2) UNLINK(2)

NAME
unlink - remove directory entry; delete file

SYNOPSIS
int unlink (path)
char *path;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Unlink removes the directory entry named by the path name pOinted to by path.

The named file is unlinked unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR)

The named file does not exist. [ENOENT)

Search permission is denied for a component of the path prefix. [EACCES)

Write permission is denied on the directory containing the link to be removed. [EACCES)

The named file is a directory and the effective user IO of the process is not super-user.
[EPERM)

The entry to be unlinked is the mount point for a mounted file system. [EBUSY)

The entry to be unlinked is the last link to a pure procedure (shared text) file that is being execu­
ted. [ETXTBSY)

The directory entry to be unlinked is part of a read-only file system. [EROFS)

Path pOints outside the process's allocated address space. [EFAUL T)

Path is null. [ENOENT)

A component of path does not exist. [ENOENT)

When all links to a file have been removed and no process has the file open, the space occupied by the
file is freed and the file ceases to exist. If one or more processes have the file open when the last link is
removed, the removal is postponed until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

SEE ALSO

BUGS

rrn(l), close(2), link(2), open(2).

If the link count is 1, then a directory must be empty to be unlinked. If a directory is not empty, it may
be unlinked if its link count is greater than 1.

-1-

USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#ioclude <sys/types.h>
#ioclude <ustat.h>

iot ustat (dev, buf)
dev_t dev;
struct ustat * buf;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

USTAT(2)

Ustat returns information about a mounted file system. Dev is a device number identifying a device
containing a mounted file system. Buf is a pointer to a ustat structure (defined in ustat.h) that includes
the following elements:

daddLt Ltfree; 1* Total free blocks *1
ino_t Ltinode; 1* Number of free in odes *1
char Lfname[6]; 1* Filsys name *1
char Lfpack[6]; 1* Filsys pack name *1
int Lblksize; 1* Block size *1

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file system. [EINVAL]

Buf points outside the process's allocated address space. [EFAUL T]

HARDWARE DEPENDENCIES
Series 500:

In the above structure, Lfname[6] is the driver name, not the file system name.

RETURN VALUE
Upon successful completion, a value of a is returned. Otherwise, a value of -1 is returned and em-to is
set to indicate the error.

SEE ALSO
stat(2), fs(5).

-1-

UTIME(2) UTIMI;:(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf Himes;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the named
file.

If times is NULL, the access and modification times of the file are set to the current time. A process must
be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and modifica­
tion times are set to the values contained in the designated structure. Only the owner of the file or the
super-user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {

};

time_t actime; /* access time */
time_t modtime; /* modification time */

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix. [EACCES]

The effective user ID is not super-user and not the owne! of the file and times is not NULL.
[EPERM]

The effective user ID is not super-user and not the owner of the file and times is NULL and write
access is denied. [EACCES]

The file system containing the file is mounted read-only. [EROFS]

Times is not NULL and points outside the process's allocated address space. [EFAUL T]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

SEE ALSO
stat(2).

-1-

VSADV(2) Series 500 Only VSADV(2)

NAME
vsadv - advise system about backing store usage

SYNOPSIS
#include <sys/ems.h>

vsadv (index);
int index;

HP-UX COMPATIBILITY
Level: Backing Store Control- HP-UXISTANDARD

Origin: HP

Remarks: Vsadv is implemented on the Series 500 only.

DESCRIPTION
This call requests that all future backing store space allocated for this process be placed on the backing
store device specified by index (see vson(2)). It may be used to tune an application to the local system
environment. This request remains in effect until the next call to vsadv by this process. An index of -1
will set backing store allocation back to the default system policy.

This call is advisory in nature and will never cause subsequent program failures (e.g. if the device has no
room, the system will simply override the request and use another deVice).

This characteristic is inherited across/ork (2) and exec(2).

This call may be reduced to a no-op.

SEE ALSO
ems(2), vson(2).

-1-

VSON(2) Series 500 Only VSON(2)

NAME
vson, vsoff - advise OS about backing store devices

SYNOPSIS
#include <sys/ems.h>

int vson(pathname, size, q);
int size, q;
char *pathname;

int vsoff(index, force);
int index, force;

HP-UX COMPATIBILITY
Level: Backing Store Control- HP-UX/STANDARD

Origin: HP

Remarks: Vson and vsoff are implemented on the Series 500 only.

DESCRIPTION
Vson is used to make the block special file pathname available for use by the system as a backing store
device for whatever form of backing store is needed by the system. The call returns an id by which the
backing store device may be referenced in subsequent vsoff or vsadv(2) calls. Multiple vson calls for the
same device will return the same id (here "same device" means identical devno - major and minor -
and not necessarily the same file name).

Pathname specifies a block special device file, which mayor may not contain a mounted file system, and
which must be a CS-80 device. If device does not contain a file system (Le. an "empty" disc), size
specifies the availible backing storage space (in blocks) to be made availible (the storage space is
assumed to start at block 0 in this case). If size is set to -1 and the device does not contain a file system,
the whole block special device will be used for backing store.

Q is a quality (Le. performance) factor for the device. It is used by the system in load balancing
decisions. Higher values suggest secondary choices for backing store devices. There is no inherent sig­
nificance to the value of q other than its value relative to the q factor of the other devices in the list. This
parameter may be ignored on some implementations.

Vsoffis used to remove a device from the list of backing store devices availible to the system. Index is the
value returned by vson when the device was added to the list.

Ifforce is not set (i.e. is 0) the system attempts to "gracefully" eliminate backingstore usage of device by
migrating backing store space onto other devices. If force is set (if, for instance, the device has failed) no
attempt is made to salvage images stored on the disc. Processes with images on the device will, in all
probability, be rather ungracefully terminated in the near future (Le. when the images are required).

Only the super-user may add or remove backing store devices. A normal user may call vson to get the id
for a device already known to the system as a backing store device (for subsequent use in a vsadv(2)
call).

RETURN VALUES
Upon successful completion, vson returns the index for the device and vsoffreturns O. If there is an error,
a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
ems(2), memallc(2), vsadv(2)

-1-

WAIT(2) WAIT(2)

NAME
wait - wait for child process to terminate

SYNOPSIS
int wait (staLloc)
int * staLloc; ,

int wait ((int *)0)

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be caught (see signal(2)), or until any
one of the calling process's child processes terminates. If a child process terminated prior to the call on
wait, return is immediate.

If staLloc (taken as an integer) is non-zero, status information is stored in the location pointed to by
staLloc (only the 16 low bits are Significant). Status can be used to differentiate between stopped and
terminated child processes. If the child process is terminated, status identifies the cause of termination
and passes useful information to the parent. This is accomplished in the follOWing manner:

If the child process is stopped, the high order 8 bits of status will contain the signal number cau­
sing the stopped state, and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit or _exit call, the low order 8 bits of status will be
zero and the high order 8 bits will contain the low order 8 bits of the argument that the child
process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status will be zero and the
low order 8 bits will contain the number of the signal that caused the termination. In addition, if
the low order seventh bit (i. e., bit 0200) is set, a "core image" will have been produced; see
signal(2).

If a parent process terminates without waiting for its child processes to terminate, the parent process ID
of each child process is set to 1. This means the initialization process inherits the child processes; see
intro(2).

Wait will fail if one or more of the follOWing are true:

The calling process has no existing unwaited-for child processes. [ECHILD] In this case, wait
returns immediately.

StaLloc points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and errno is
set to EINTR. If wait returns due to a stopped or terminated child process, the process 10 of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), ptrace(2), signa1(2).

WARNING
See WARNING in signal(2).

-1-

WRITE(2) WRITE (2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, Jcntl, or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by buJto the file associated with thefildes.
If the user is not the owner of the file, or is not the super-user, the set-user-id bit of the file is cleared.

On devices capable of seeking, the actual writing of data proceeds from the position in the file indicated
by the file pointer. Upon return from write, the file pointer is incremented by the number of bytes actu­
ally written.

On devices incapable of seeking, writing always takes place starting at the current position. The value of
a file pointer associated with such a device is undefined.

If the O-APPEND flag of the file status flags is set, the file pointer will be set to the end of the file prior to
each write.

Write will fail and the file pointer will remain unchanged if one or more of the following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading by any process. [EPIPE and
SIGPIPE signal]

An attempt was made to write a file that exceeds the process's file size limit or the maximum file
size. See ulimit(2}. [EFBIG]

BuJpoints outside the process's allocated address space. [EFAULT]

If a write requests that more bytes be written than there is room for (e.g., the ulimit (see ulimit(2)) or the
physical end of a medium), only as many bytes as there is room for will be written, and a value of -1 will
be returned with ermo set to EFBIG. For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return -1, but 20 bytes will actually have been written.
The next write of a non-zero number of bytes will give a failure return (-1), except as noted below.

If the file being written is a pipe (or FIFO), no partial writes will be permitted. The follOWing conditions
apply:

if the O_NDELA Y flag of the file flag word is set:

if nbyte is less than or equal to 5120 and there is sufficient room in the pipe or FIFO,
then the write is successful and returns the number of bytes written;

if nbyte is greater than 5120 and there is sufficient room in the pipe or FIFO, the write
fails and returns -1 ;

if nbyte is less than or equal to 5120 but there is not enough room in the pipe or FIFO,
the write executes correctly and returns O.

if the O_NDELAY flag of the file flag word is clear:

the write always executes correctly and returns the number of bytes written.

":"'1-

WRITE(2) WRITE(2)

HARDWARE DEPENDENCIES
Series 500:

If you perform a write operation following an [seek past the previous end-of-file, all "unused"
bytes from the previous end-of-file up to your new position are zeroed-out before writing your
data.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise, -1 is returned
and erma is set to indicate the error.

SEE ALSO

BUGS

creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2).

Writing to raw disc device files must be done in multiples of the device's physical record size (see
ustat(2)), and must begin on a physical sector boundary.

-2-

INTRO(3) INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include <stdio.h>

#include <math.h>

HP-UX COMPATIBILITY
Level: The level given is the level for which the library is available, not the level at which the lin­

kable object code appears. The supporting host will contain appropriate libraries for HP­
UXiRUN ONLY and HP-UXINUCLEUS systems.

Origin: System III

DESCRIPTION

FILES

This section describes functions found in various libraries, other than those functions that directly invoke
HP-UX system primitives, which are described in Section 2 of this volume. Certain major collections are
identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S), constitute library libe,
which is automatically loaded by the C compiler, ee(l). The link editor ld(l) searches this library
under the -Ie option. Declarations for some of these functions may be obtained from #include
files indicated on the appropriate pages.

(3M) These functions constitute the math library, [ibm. The link editor searches this library under the
-1m option. Declarations for these functions may be obtained from the #include file
<math.h>.

(3S) These functions constitute the" standard 1/0 package" (see stdio(3S)). These functions are in
the library libc, already mentioned. Declarations for these functions may be obtained from the
#include file <stdio.h>.

(3X) Various specialized lioraries. The files in which these libraries are found are given on the
appropriate pages.

The descriptions of some functions refer to NULL. This is the value that is obtained by casting 0 into a
character pointer. The C language guarantees that this value will not match that of any legitimate poin­
ter, so many functions that return pointers return it, for example, to indicate an error. NULL is defined
in <stdio.h> as 0; the user can include his own definition if he is not using <stdio.h>.

llib/libc. a
llib/libm.a

SEE ALSO
ar(l), cc(l), fe(l), Id(1), nm(l), ranlib(l), stdio(3S).

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is undefined for
the given arguments or when the value is not representable. In these cases, the external variable errno
(see errno(2)) is set to the value EDOM or ERANGE.

-1-

A64L(3C) A64L(3C)

NAME·
a641, 164a - convert between long and base-64 ASCII

SYNOPSIS
long a641 (5)
char *5;

char *164a (I)
long I;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

BUGS

These routines are used to maintain numbers stored in base-64 ASCII. This is a notation by which long
integers can be represented by up to six characters; each character represents a "digit" in a radix-64
notation.

The characters used to represent "digits" are . for 0, I for 1, 0 through 9 for 2-11, A through Z for
12-37, and a through z for 38-63 (see passwd(S)).

The leftmost character is the least most significant digit. For example,

aO = (38 x 64'0) + (2 x 64'1) = 166

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding long
value. L64a takes a long argument and returns a pointer to the corresponding base-64 representation.

The value returned by 164a is a pointer into a static buffer, the contents of which are overwritten by each
call.

-1-

ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
abort(}

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

ABORT(3C)

Abort causes the SIGIOT signal to be sent to the process. This usually results in termination with a core
dump.

It is possible for abort to return control if SIGIOT is caught or ignored. The result is identical to that of
kiU(2).

SEE ALSO
adb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
Usually "abort - core dumped" from the shell.

I -1-

ABS(3C)

NAME
abs - integer absolute value

SYNOPSIS
int abs (i)
int i;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Abs returns the absolute value of its integer operand.

HARDWARE DEPENDENCIES
Series 200/500:

The largest negative integer returns itself.

SEE ALSO
floor(3M}.

-1-

ABS(3C)

ASSERT(3X)

NAME
assert - program verification

SYNOPSIS
#include <assert.h>

assert (expression);

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

ASSERT(3X)

This macro is useful for putting diagnostics into programs. When it is executed, if expression is false, it
prints "Assertion failed: file xyz, line nnn" on the standard error file and exits. Xyz is the source file and
nnn the source line number of the assert statement. Compiling with the preprocessor option
-DNDEBUG (see cc (1)) will cause assert to be ignored.

-1-

ATOF(3C)

NAME
atof, atoi, atol- convert ASCII to numbers

SYNOPSIS
double ato£ (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long atol (nptr)
char *nptr;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

ATOF(3C)

These functions convert a string pOinted to by nptr to floating, integer, and long integer representation
respectively. The first unrecognized character ends the string.

Atol recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or E followed by an optionally signed integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string of
digits.

HARDWARE DEPENDENCIES
Series 2001500:

Atoi and atol are identical.

SEE ALSO
scanf(3S).

BUGS
There are no provisions for overflow.

-1-

BESSEL(3M) BESSEL(3M)

NAME
iO, iI, in, yO, yl, yn - bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double j 1 (x)
double x;

double jn (n, x);
int n;
double x;

double yO (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and integer
orders.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return the value of HUGE (defined in math.h), and sets
ermo to EDOM.

-1-

CONV(3C) CONV(3C)

NAME
_toupper, _tolower, toupper, tolower, toascii - character translation

SYNOPSIS
int toupper (c)
int c;

int tolower (c)
int c;

#include <ctype.h>

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Toupper and tolower have as domain the range of getc: the integers from -1 through 255. If the
argument of toupper represents a lower-case letter, the result is the corresponding upper-case letter. If
the argument of tolower represents an upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

_toupper and _to lower are macros that accomplish the same thing as toupper and tolower but have res­
tricted domains and are faster. _toupper requires a lower-case letter as its argument; its result is the
corresponding upper-case letter. _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause garbage results. Use of this form
will never work with foreign character sets.

Toascii yields its argument with all bits turned off that are not part of a standard 7 bit ASCII character; it
is intended for compatibility with other systems.

SEE ALSO
ctype(3C).

-1-

CRYPT(3C) CRYPT(3C)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt (block, edflag)
char *block;
int edflag;

HP-UX COMPATIBILITY
Level: HP-UXIRUNONLY

Origin: System III

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard (DES), with
variations intended (among other things) to frustrate use of hardware implementations of the DES for
key search.

The first argument to crypt is a user's typed password. The second is a 2-character string chosen from
the set [a-zA-ZO-9.1]; this salt string is used to perturb the DES algorithm in one of 4096 different ways,
after which the password is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password, in the same alphabet as the salt. The first two characters are the salt
itself.

The setkey and encrypt entries provide (rather primitive) access to the actual DES algorithm. The
argument of setkey is a character array of length 64 containing only the characters with numerical value
o and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored, leading to a
56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing 0' sand l' s. The
argument array is modified in place to a similar array representing the bits of the argument after having
been subjected to the DES algorithm using the key set by setkey. If edflag is 0, the argument is encryp­
ted; if non-zero, it is decrypted.

SEE ALSO
10gin(1), passwd(l), getpass(3C), passwd(5).

BUGS
The return value points to static data that are overwritten by each call.

-1-

CTERMID(3S) CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(s)
char *s;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Ctermid generates a string that refers to the controlling terminal for the current process when used as a
file name.

If (int)s is zero, the string is stored in an internal static area, the contents of which are overwritten at the
next call to ctermid, and the address of which is returned. If (int)s is non-zero, then s is assumed to point
to a character array of at least Lctermid elements; the string is placed in this array and the value of s is
returned. The manifest constant Lctermid is defined in <stdio.h>.

The difference between ctermid and t(yname(3C) is that t(Yname must be handed a file descriptor and
returns the actual name of the terminal associated with that file descriptor, while ctermid returns a magic
string (ldev/tty) that will refer to the terminal if used as a file name. Thus t(Yname is useless unless the
process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

-1-

CTIME(3C) CTIl\1E(3C)

NAME
ctime, daylight, localtime, gmtime, asctime, timezone, tzset, tzname - convert date and time to ASCII

SYNOPSIS
char *ctime (clock)
long *clock;

#include <tirne.h>

struct tm *Iocaltime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

tzset ()

extern long timezone;

extern daylight;

extern char *tzname[2];

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a pointer to
a 26-character string in the following form. All the fields have constant width.

SunSep 1601:03:521973"-n"-0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime corrects
for the time zone and possible daylight savings time; gmtime converts directly to GMT, which is the time
the HP-UX system uses. Asctime converts a broken-down time to ASCII and returns a pointer to a 26-
character string.

The structure declaration from the include file is:

/* UNISRC_ID: @(#)time.h 1.1 82/11122 */
struct tm { /* see ctime(3) */

int trTLsec;
int trTLmin;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11), day of
week (Sunday = 0), year -1900, day of year (0-365), and a flag that is non-zero if daylight saving time
is in effect.

The external long variable timezone contains the difference, in seconds, between GMT and local stan­
dard time (in EST, timezone is 5*60*60); the external variable daylight is non-zero if and only if the stan­
dard U.S.A. Daylight Savings Time conversion should be applied. The program knows about the pecu­
liarities of this conversion in 1974 and 1975; if necessary, a table for these years can be extended.

-1-

CTIME(3C) CTlME(3C)

If an environment variable named TZ is present, asctime uses the contents of the variable to override the
default time zone. The value of TZ must be a three-letter time zone name, followed by a number
representing the difference between local time and Greenwich time in hours, followed by an optional
three-letter name for a daylight time zone. For example, the setting for New Jersey would be
EST5EDT. The effects of setting TZ are thus to change the values of the external variables timezone and
daylight; in addition, the time zone names contained in the external variable

char *tzname[2] = {" EST ". II EDT" };

are set from the environment variable. The function tzset sets the external variables from TZ; it is called
by asctime and may also be called explicitly by the user.

SEE ALSO
time(2), getenv(3C), environ(7).

BUGS
The return values point to static data whose content is overwritten by each call.

-2-

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii -
character classification

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int c;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning
nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined only where
isascii is true and on the single non-ASCII value EOF (see stdio(3S)). Note that c is specified in octal.

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

lsascu

SEE ALSO
ascii(7).

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit [0-9]

c is a hexidecimal digit [0-91. [A-F] or [a-f]

c is an alphanumeric

c is a space, tab, carriage return, new-line, vertical tab, or form-feed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, code 040 (space) through 0176 (tilde)

c is a printing character, like isprint except false for space

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

-1-

CUSERID(3S) CUSERID(3S)

NAME
cuserid - character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Cuserid generates a character representation of the login name of the owner of the current process. If
(int)s is zero, this representation is generated in an internal static area, the address of which is returned.
If (int)s is non-zero, s is assumed to point to an array of at least Lcuserid characters; the representation
is left in this array. The manifest constant Lcuserid is defined in <stdio.h>.

SEE ALSO
getiogin(3C), getpwuid(3C).

DIAGNOSTICS

BUGS

If the login name cannot be found, euserid returns NULL; if s is non-zero in this case, '\... 0 will be placed
at *s.

Cuserid uses getpwnam(3C); thus the results of a user's call to the latter will be obliterated by a subse­
quent call to the former.

-1-

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *buf;
int ndigit;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto.
The position of the decimal point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). If the sign of the result is negative, the word pointed to
by sign is non-zero, otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except has been rounded for Fortran F-format output (fw.d), where d is equal to
ndigits.

Gcvt converts the value to a null-terminated ASCII string in but and returns a pointer to buf. It attempts
to produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
printf(3S).

BUGS
The return values point to static data whose content is overwritten by each call.

-1-

END(3C) END(3C)

NAME
end, etext, edata -last locations in program

SYNOPSIS
extern char end;
extern char etext;
extern char edata;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is
the first address above the program text, edata above the initialized data region, and end above the unin­
itialized data region. Note that the definition of each of these is implementation-dependent. See
HARDWARE DEPENDENCIES below.

When execution begins, the program break coincides with end, but the program break may be reset by
the routines of brk(2), malloc(3C), standard input'output (stdio(3S)), the profile (-p) option of cc(I),
and so on. Thus, the current value of the program break should be determined by "sbrk(O)" (see
brk(2)).

These symbols are accessible from assembly language provided you prefix them with an underscore
(Le. _end, ~text, _edata).

HARDWARE DEPENDENCIES
Series 500:

SEE ALSO

End is the lowest heap address available to the user. Etext is the lowest available address in the
O-data segment. Edata is the first available address in the I-data area.

Use memallc(2) instead of malloc(3C) to set the program break.

In C, these names must look like addresses. Thus, you would write &end instead of end to access
the current value of end.

brk(2), malloc(3C).

-1-

EXP(3M)

NAME
exp, log, logl0, pow, sqrt-exponential, logarithm, power, square rootfunctions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

HP-UX COMPATIBILITY
Level: HP-UXIRUNONLY

Origin: System III

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x.

LoglO returns the common logarithm of x.

Pow returns x'y.

Sqrt returns the square root of x.

HARDWARE DEPENDENCIES
Series 200/500:

The algorithms used are those from HP 9000 BASIC.

SEE ALSO
hypot(3M), sinh(3M).

DIAGNOSTICS

EXP(3M)

Exp returns a huge value when the correct value would overflow. An argument out of range may also
result in ermo being set to ERANGE. Underflow returns a zero.

Log returns a huge negative value and sets ermo to EDOM when x is non-positive.

Pow returns a huge negative value and sets ermo to ED OM when x is non-positive and y is not an
integer, or when x andy are both zero. It also returns a huge value when the correct value would over­
flow. A truly outrageous argument may also result in ermo being set to ERANGE. Underflow causes
pow to return zero and set ermo to ERANGE.

Sqrt returns a and sets ermo to ED OM when x is negative.

-1-

FCLOSE(3S)

NAME
klose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

FCLOSE(3S)

F close causes any buffers for the named stream to be emptied, and the file to be closed. Buffers allo­
cated by the standard input/output system are freed.

F close is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream to be written to that file. The stream
remains open.

These functions return 0 for success, and EOF if any errors were detected.

SEE ALSO
close(2), fopen(3S), setbuf(3S).

-1-

FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream file status inquiries

SYNOPSIS
#indude <stdio.h>

int feof (stream)
FILE * stream;

int ferror (stream)
FILE * stream

dearerr (stream)
FILE *stream

fileno(stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

FERROR(3S)

F eof returns nonczero when end of file is read on the named input stream, otherwise zero.

F error returns non-zero when error has occurred reading or writing the named stream, otherwise zero.
Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open (2).

F eof, ferror, and fileno are implemented as macros; they cannot be re-declared.

SEE ALSO
open(2), fopen(3S).

-1-

FLOOR(3M)

NAME
floor, fabs, ceil, fmod - absolute value, floor, ceiling, remainder functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
F abs returns I x I .

Floor returns the largest integer (as a double precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the number I such that x = iy + I, for some integer i, and 0 ~ 1< y.

SEE ALSO
abs(3C).

-1-

FLOOR(3M)

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open or re-open a stream file; convert file to stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
F open opens the file named by file-name and associates a stream with it. F open returns a pointer to be
used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"rl!

IIW Il

lIa li

"r+ "

"w+"

"a+ "

open for reading

create for writing

append; open for writing at end of file, or create for writing

open for update (reading and writing)

create for update

append; open or create for update at end of file

Freopen substitutes the named file in place of the open stream. It returns the original value of stream.
The original stream is closed, regardless of whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names stdin, stdout, and stderr to specified
files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The type of
the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek or rewind, and
input may not be directly followed by output without an interveningfseek, rewind, or an input operation
which encounters end of file.

SEE ALSO
open(2), fclose(3S), popen(3S).

DIAGNOSTICS
F open and freopen return the pointer NULL if file-name cannot be accessed, if there are too many open
files, or if the arguments are incorrect.

F dopen returns a NULL if there are too many open files, or if the arguments are i\l-formed.

-1-

FREAD(3S)

NAME
fread, fwrite - buffered binary input/output to a stream file

SYNOPSIS
#include <stdio.h>

int fread ((char *) ptr, size of (*ptr), nitems, stream)
FILE * stream;

int fwrite ((char *) ptr, sizeof (*ptr), nitems, stream)
FILE * stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

FREAD(3S)

Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named input
stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *ptr beginning atptr to the named output stream. It
returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S).

-1-

FREXP(3C) FREXP(3C)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double value;

double modf (value, iptr)
double value, *iptr;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1, and
stores an integer n indirecly through eptr, such that value = x * 2An.

Ldexp returns the quantity value * 2 Aexp. If this quantity overflows, then a positive or negative huge
value is returned, depending on the sign of value, and errna is set to ERANGE. If this quantity under­
flows then 0 is returned and errna is set to ERANGE.

Mod! returns the signed fractional part of value and stores the integer part indirectly through iptr.

-1-

FSEEK(3S) FSEEK(3S)

NAME
fseek, £tell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

long ftell (stream)
FILE *stream;

rewind(stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is at the
signed distance offset bytes from the beginning, the current position, or the end of the file, according as
ptrname has the value 0,1, or 2.

Fseek undoes any effects of ungetc(3S).

After fseek or rewind, the next operation on an update file may be either input or output.

Ftell returns the current value of the offset relative to the beginning of the file associated with the named
stream. The offset is measured in bytes on HP-UX; on some other systems, the unit of measure varies,
and is the only foolproof way to obtain an offset for fseek.

Rewind(stream) is equivalenttofseek(stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
F seek returns -1 for improper seeks, otherwise zero.

F tell returns -1 for error conditions.

-1-

GAMMA(3M)

NAME
gamma, signgam -log gamma function

SYNOPSIS
#include <math.h>
extern int signgam;

double gamma (x)
double x;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System 1Il

DESCRIPTION

------ -------~-

GAMMA(3M)

Gamma returns In I r(I x I) I. The sign of r(I x I) is returned in the external integer signgam. The fol­
lowing C program fragment might be used to calculate f:

y = gamma (x);
if (y > logmax)

error ();
y = exp (y) * signgam;
1* logmax is floor(ln(maxreal)) *1

DIAGNOSTICS
For negative integer arguments, a huge value is returned, and emlO is set to EDOM.

-1-

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream file

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE * stream;

int getchar ()

int fgetc (stream)
FILE * stream;

int getw (stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin).

F getc behaves like getc, but is a genuine function, not a macro; it may therefore be used as an argument.
F getc runs more slowly than getc, but takes less space per invocation.

Getw returns the next word (int) from the named input stream. It returns the constant EOF upon end of
file or error, but since that is a valid integer value, feof and ferror(3S) should be used to check the
success of getw. Getw assumes no special alignment in the file.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon read error.

Getc and its variant getchar return EOF on end of file.
Because it is implemented as a macro, getc treats incorrectly a stream argument with side effects. In par­
ticular, getc(*f + +); doesn't work sensibly.

1 .-

.>r).
",~, .

GETENV(3C)

NAME
getenv - value for environment name

SYNOPSIS
char *getenv (name)
char *name;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ (7)) for a string of the form name = value and returns
value if such a string is present, otherwise 0 (NULL). Name may be either the desired name, null­
terminated, or of the form name = value, in which case getenv uses the portion to the left of the " = " as
the search key.

SEE ALSO
environ(7).

. .
'-1-:-

GETGRENT(3C) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

int setgrent ();

int endgrent ();

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure containing
the broken-out fields of a line in the group file.

struct group {/* see getgrent(3C) */
char *gLname;
char *gLpasswd;
int gLgid;
char *gLmem;

};

The members of this structure are:

gLname The name of the group.
gLpasswd The encrypted password of the group.
gLgid The numerical group lD.
gLmem Null-terminated vector of pointers to the individual member names.

Getgrent reads the next line of the file, so successive calls may be used to search the entire file. Getgrgid
and getgrnam search from the beginning of the file until a matehing gid or name is found, or EOF is
encountered.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may be
called to close the group file when processing is complete, although that is usually not necessary.

jete/group

SEE ALSO
getlogin(3C), getpwent(3C), group(5).

DIAGNOSTICS
A NULL pointer (0) is returned on EOF or error. Nothing is returned by endgrent or setgrent.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

-1-

GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ();

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

GETLOGIN (3C)

Getlogin returns a pointer to the login name as found in letc!utmp. It may be used in conjunction with
getpwnam to locate the correct password file entry when the same user 10 is shared by several login

FILES

names.

If getlogin is called within a process that is not attached to a terminal, it returns NULL. The correct pro­
cedure for determining the login name is to call cuserid, or to call getlogin and if it fails, to call getpwuid.

letc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(5).

DIAGNOSTICS
Getlogin returns NULL if the name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

-1-

GETOPT(3C) GETOPT(3C)

NAME
getopt, optarg, optind, opterr - get option letter from argv

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char * * argv;
char *optstring;
extern char *optarg;
extern int optind; extern int opt err;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Getopt returns the next option letter in argv (starting from argv[lj) that matches a letter in optstring.
Optstring is a string of recognized option letters; if a letter is followed by a colon, the option is expected to
have an argument that mayor may not be separated from it by white space. Optarg is set to point to the
start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Optind is initialized to one
automatically before the first call to getopt.

When all options have been processed (i.e .. up to the first non-option argument), getopt returns EOF.
The special option may be used to delimit the end of the options: EOF will be returned, and - will
be skipped.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can take
the mutually exclusive options a and b, and the options f and 0, both of which require arguments:

main (argc. argv)
int argc:
char * *argv:
{

int c;
extern int optind;
extern char *optarg:

while ((c = getopt (argc, argv, "abf:o:"))!= EOF)
switch (c) {
case 'a':

case 'b':

case 'f';

case '0':

if (bflg)
errflg + +:

else
aflg+ +:

break:

if (aflg)
errflg + +:

else
bproc():

break:

ifile = optarg:
break;

-1-

GETOPT(3C) GETOPT(3C)

case '?':

}
if (errflg) {

ofile = optarg:
bufsiza = 512:
break:

errflg+ +:

fprintf (stderr. "usage: . . . "):
exit (2):

DIAGNOSTICS

BUGS

Getopt prints an error message on stderr and n'!turns a question mark (?) when it encounters an option
letter not included in optstring. The error message may be suppressed by setting opterr to zero.

Options can be any ASCII charact"rs except colon (:). question mark (7). or null (",-0). It is impossible
to distinguish between a ? used as a legal option. and the character that getopt returns when it encoun­
ters an invalid option character in the input.

-2-

GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

GETPASS (3C)

Getpass reads a password from the file Idev/tty, or if that cannot be opened, from the standard input,
after prompting with the null-terminated string prompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters.

FILES
Idev/tty

SEE ALSO
crypt(3C).

BUGS
The return value points to static data whose content is overwritten by each call.

-1-

GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
getpw (uid, buf)
int uid;
char *buf;

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in bufwith the corresponding line; it
returns non-zero if uid could not be found. The line is null-terminated.

This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(5).

DIAGNOSTICS
Getpw returns non-zero on error.

-1-

GETPWENT (3C) GETPWENT(3C)

NAME
getpwent. getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ();

int endpwent ();

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

FILES

Getpwent. getpwuid and getpwnam each returns a pointer to an object with the following structure con­
taining the broken-out fields of a line in the password file.

struct passwd {

} :

char
char
unsigned int
unsigned int
char
char
char
char
char

*pw_name:
*pw_passwd:
pw_uid:
pW_9id:
*pw_age:
*pw_comment:
*pw_gecos:
*pw_dir:
*pw_shell:

The pw_comment field is unused: the others have meanings described in passwd(5).

Getpwent reads the next line in the file. so successive calls can be used to search the entire file. Getpwuid
and getpwnam search from the beginning of the file until a matching uid or name is found. or EOF is
encountered.

A call to setpwent has the effect of rewinding the password file to allow repeated searches. Endpwent
may be called to close the password file when processing is complete.

/etc/passwd

SEE ALSO
getiogin(3C). getgrent(3C), passwd(5).

DIAGNOSTICS
Null pointer (0) returned on EOF or error. Nothing is returned by endpwent or setpwent.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

-1-

GETS(3S)

NAME
gets, fgets - get a string from a stream file

SYNOPSIS
#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

GETS(3S)

Gets reads a string into s from the standard input stream stdin. The string is terminated by a new-line
character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n-1 characters, or up to a new-line character (which is retained), whichever comes first,
from the stream into the string s. The last character read into s is followed by a null character. Fgets
returns its first argument.

SEE ALSO
ferror(3S), fopen(3S), fread(3S). getc(3S), puts(3S). scanf(3S).

DIAGNOSTICS
Gets andfgets return the constant pointer NULL upon end-of-file or error.

-1-

HYPOT(3M)

NAME
hypot - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Hypot returns

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
sqrt(3M).

-1-

HYPOT(3M)

L3TOL(3C) Series 200 Only

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
13tol (lp, cp, n)
long *lp;
char *cp;
int n;

ltol3 (cp, lp, n)
char *cp;
long *lp;
int n;

HP-UX COMPATIBILITY
Level: Bell File System - HP-UX/RUN ONLY

Origin: System III

Remarks: L3tol(3) is implemented on the Series 200 only.

DESCRIPTION

L3TOL(3C)

L3tol converts a list of n three-byte integers packed into a character string pOinted to by cp into a list of
long integers pointed to by lp.

Lto13 performs the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three bytes long.

SEE ALSO
£s(5).

-1-

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size) unsigned size;

free (ptr)
char *ptr;

char *realloc (ptr. size)
char *ptr;
unsigned size;

char *calloc (nelem. elsize)
unsigned elem. elsize;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Malloe andfree provide a simple general-purpose memory allocation package. Malloe returns a pointer
to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloe; this space is made available
for further allocation, but its contents are left undisturbed.

Needless to say, serious disorder will result if the space assigned by malloe is overrun or if some random
number is handed to free.

Malloe allocates the first big enough contiguous reach of free space found in a circular search from the
last block allocated or freed, coaleSCing adjacent free blocks as it searches. It calls sbrk (see brk (2)) to get
more memory from the system when there is no suitable space already free.

Realloe changes the size of the block pOinted to by ptr to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the lesser of the new and old sizes.

Realloe also works if Ptr points to a block freed since the last call of malloe, realloe, or ealloe; thus
sequences of free, malloe and realloe can exploit the search strategy of malloe to do storage compaction.

Calloe allocates space for an array of nelem elements of size elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer coer­
cion) for storage of any type of object.

DIAGNOSTICS

BUGS

Malloe, realloe and ealloe return a null pointer (0) if there is no available memory or if the arena has
been detectably corrupted by storing outside the bounds of a block. When realloe returns 0, the block
pointed to by ptr may be destroyed.

Free does not check its pointer argument for validity. When passed a null pointer (value 0), it causes a
memory fault.

-1-

MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

MKTEMP(3C)

Mktemp replaces template by a unique file name, and returns the address of the template. The template
should look like a file or path name with six trailing Xs, which will be replaced with a letter and the
current process !D. The letter will be chosen so that the resulting name does not duplicate the name of
an existing file. If there are less than 6 Xs, the letter will be dropped first, and then high order digits of
the process 10 will be dropped.

RETURN VALUE
Mktemp returns its argument except when it runs out of letters, in which case the result is a pointer to the
string" /" .

SEE ALSO
getpid(2).

BUGS
It is possible to run out of letters.

Mktemp does not check to see if the file name part of template exceeds the system limit of 14 characters.

-1-

MONITOR (3C) Series 200 Only MONITOR(3C}

NAME
monitor - prepare execution profile

SYNOPSIS
monitor (Iowpc, highpc, buffer, bufsize, nfunc)
int (*Iowpc)(), (*highpc)();
short buffer[];
int bufsize, nfunc;

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

Remarks: Monitor is implemented on the Series 200 only.

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for monitor with default
parameters. Monitor needn't be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions. Buffer is the
address of a (user supplied) array of bufsize short integers. Monitor arranges to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain functions, in the
buffer. The lowest address sampled is that of lowpc and the highest is just below highpc. At most nfune
call counts can be kept. Only calls of functions compiled with the profiling option -p of ee(1) are recor­
ded. For the results to be significant, especially where there are small, heavily used routines, it is sug­
gested that the buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext();

monitor(2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text (see end(3C)).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

Praf(1) can then be used to examine the results.

mon.out

SEE ALSO
cc(l), prof(l), profil(2).

-1-

NLlST(3C) Series 200 Only NLlST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <ntist.h>
ntist (file-name, nl)
char *file-name;
struct ntist nl[];

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Remarks: Nlist is implemented on the Series 200 only.

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of values.
The name list consists of an array of structures containing names, types and values. The list is termina­
ted with a null name. Each name is looked up in the name list of the file. If the name is found, the type
and value of the name are inserted in the next two fields. If the name is not found, both entries are set to
O. The structure ntist is defined in the include file nlist.h.

This subroutine is useful for examining the system name list kept in the file Ihp-ux. In this way programs
can obtain system addresses that are up to date.

SEE ALSO
a.out(5).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

-1-

PERROR(3C) PERROR(3C)

NAME
perror, sys-errlist, sys_nerr - system error messages

SYNOPSIS
perror (5)
char *s;

int sys_nerr;
char *sys_errlist[];

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Perror produces a short error message on the standard error, describing the last error encountered
during a system call from a C program. First the argument string s is printed, then a colon, then the mes­
sage and a new-line. To be of most use, the argument string should be the name of the program that
incurred the error. The error number is taken from the external variable erma, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sYLerrlist is provided; erma can
be used as an index in this table to get the message string without the new-line. SYLnerr is the largest
message number provided for in the table; it should be checked because new error codes may be added
to the system before they are added to the table.

HARDWARE DEPENDENCIES
Series 500:

The error indicator errinfa is implemented in addition to erma, enabling you to obtain a more
detailed deSCription of the error. See errin/a(2).

SEE ALSO
errinfo(2), errno(2).

-1-

POPEN{3S) POPEN{3S)

NAME
popen, pclose - initiate pipe I/O tolfrom a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing, respectively, a shell com­
mand line and an I/O mode, either r for reading or w for writing. Popen creates a pipe between the cal­
ling process and the command to be executed. The value returned is a stream pointer that can be used
(as appropriate) to write to the standard input of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to ter­
minate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter, and a type w as an out­
put filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or if the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a "popened" command.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard input of that filter mispositioned.
Similar problems with an output filter may be forestalled by careful buffer flushing, e.g. with [flush; see
[close (3S).

-1-

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - output formatters

SYNOPSIS
#include <stdio.h>

int printf (format [, arg 1 ...
char *format;

int fprintf (stream, format [, arg 1 ...
FILE *stream;
char *format;

int sprintf (s, format [, arg 1 ...
char *s, *format;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Printf places output on the standard output stream stdout. F printf places output on the named output
stream. Sprintfplaces "output", followed by the null character (",-0) in consecutive bytes starting at *s;
it is the user's responsibility to ensure that enough storage is available. Each function returns the num­
ber of characters transmitted (not including the "'-0 in the case of sprintj) , or a negative value if an out­
put error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string that contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which results in fetching of zero or more args. The
results are undefined if there are insufficient args for the format. If the format is exhausted while args
remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field Width, it will be padded on the left (or right, if the left-adjustment
flag (see below) has been given) to the field Width;

A precision that gives the minimum number of digits to appear for the d, 0, u, x, or X conver­
sions, the number of digits to appear after the decimal point for the e and f conversions, the
maximum number of significant digits for the 9 conversion, or the maximum number of charac­
ters to be printed from a string in s conversion. The precisi9n takes the form of a period (.) fol­
lowed by a decimal digit string: a null digit string is treated as zero.

An optional 1 specifying that a follOWing d, 0, u, x, or X conversion character applies to a long
integer arg, or an optional h specifying that a following d, 0, U, x, or X conversion character
applies to a short integer argo

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:

+
blank

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign (+ or-).
If the first character of a signed conversion is not a sign, a blank will be prepended to the

-1-

PRINTF(3S)

PRINTF(3S)

result. This implies that if the blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate form." For c, d, S, and u
conversions, the flag has no effect. For ° conversion, it increases the precision to force the
first digit of the result to be a zero. For x (X) conversion, a non-zero result will have Ox (OX)
prepended to it. For e, E, f, g, and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a decimal point appears in the result of
these conversions only if a digit follows it). For 9 and G conversions, trailing zeroes will not
be removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, decimal, or hexadecimal
notation (x and X), respectively; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. The default precision is 1. The result of converting a zero value with a
precision of zero is a null string (unless the conversion is 0, x, or X and the # flag is present).

f The float or double arg is converted to decimal notation in the style" [-lddd.ddd", where
the number of digits after the decimal point is equal to the precision specification. If the pre­
cision is missing, 6 digits are output; if the precision is explicitly 0, no decimal point appears.

e,E The float or double arg is converted in the style" [-]d.ddde±ddd", where there is one digit
before the decimal point and the number of digits after it is equal to the precision; when the
precision is missing, 6 digits are produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of e introdUcing the exponent.
The exponent always contains exactly three digits.

g,G The float or double arg is printed in style for e (or in style E in the case of a G format code),
with the precision specifying the number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent resulting from the conversion is
less than -4 or greater than the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.
S The arg is taken to be a string (character pointer) and characters from the string are printed

until a null character ("'-.0) is encountered or the number of characters indicated by the pre­
cision specification is reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply expanded to contain the conversion result. Characters
generated by printf andfprintf are printed as if putchar had been called (see putc(3S)).

EXAMPLES
To print a date and time in the form" Sunday, July 3, 10:02" , where weekday and month are pointers to
null-terminated strings:

printf(" %s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);

To print 'iT to 5 decimal places:

printf("pi = %.5f" , 4*atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

-2-

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
charc;
FILE *stream;

putchar (c)

fputc (c, stream)
FILE *stream;

putw (w, stream)
intw;
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Pute appends the character e to the named output stream. It returns the character written.

Putehar(e) is defined as pute(e, stdout).

Fpute behaves like pute, but is a genuine function rather than a macro; it may therefore be used as an
argument. F pute runs more slowly than pute, but takes less space per invocation.

Putw appends the word (Le., int) w to the output stream. Putw neither assumes nor causes special
alignment in the file.

The standard stream stdout is normally buffered. However, if the output refers to a terminal then the
stream is line-buffered. When a stream is line buffered, its buffer will be flushed when a read(2) from the
standard input is necessary, when a -"n- is written to stdout, when the buffer is full, or when
fflush(stdout) is called. This default may be changed by setbuJ(3S).

The standard stream stderr is by default unbuffered unconditionally, but use of Jreopen (3S) will cause it
to become unbuffered; setbuJ, again, will set the state to whatever is desired. When an output stream is
unbuffered information appears on the destination file or terminal as soon as written; when it is buffered
many characters are saved up and written as a block. See also Jflush (3S).

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), getc(3S), printf(3S), puts(3S).

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, Jerror(3S) should be
used to detect putw errors.

Line buffering may cause confusion or malfunctioning of programs which use standard I/O routines but
use read(2) themselves to read from standard input. In cases where a large amount of computation is
done after printing part of a line on an output terminal, it is necessary to fflush(3) the standard output
before going off and computing so that the output will appear.

Because it is implemented as a macro, pute treats incorrectly a stream argument with side effects. In par­
ticular, putc(c, *f+ +); doesn't work sensibly.

-1-

PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>
#include <stdio.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

PUTPWENT(3C)

Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure as created by getpwent
(or getpwuid(3C) or getpwnam(3C)), putpwent writes a line on the stream/which matches the format of
letclpasswd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.

-1-

PUTS (3S)

NAME
puts, fputs - put a string on a stream file

SYNOPSIS
#include <stdio.h>

int puts (s)
char *s;

int £puts (s, stream)
char *s;
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

PUTS(3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a new-line
character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminating null character. Note that puts appends a new-line character, but
[puts does not.

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), gets(3S), printf(3S), putc(3S).

DIAGNOSTICS
Both routines return EOF on error.

-1-

QSORT(3C) QSORT(3C)

NAME
qsort - qUicker sort

SYNOPSIS
qsort (base, nel, width, compar)
char *base;
int nel, width;
int (*compar)();

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Qsort is an implementation of the qUicker-sort algorithm. It sorts vectors of arbitrarily-sized elements
based on user-supplied size information and a comparison routine.

The first argument is a pointer to the base of the data; the second is the number of elements; the third is
the width of an element in bytes; the last is a user-supplied reference to the comparison routine that qsort
will use. It is called with two arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0 according as the first argument is to
be considered less than, equal to, or greater than the second. This is the same return convention that
strcmp uses.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), strcmp(3C).

BUGS
If width is zero, a divide-by-zero error is generated.

-1-

RAND(3C)

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
unsigned seed;

rand ()

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

RAND(3C)

Rand uses a multiplicative congruential random number generator with period 2 A 15 to return successive
pseudo-random numbers.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random starting point
by calling srand with whatever number you like as the argument.

-1-

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion, read from stream file

SYNOPSIS
#include <stdio.h>

scanf (format [, pointer 1 ...
char *format;

fscanf (stream, format [, pointer 1 ...
FILE * stream;
char *format;

sscanf (s, format [, pointer 1 ...
char *s, *format;

HP-UX COMPATIBILITY
Level: HP-UXIRUNONLY

Origin: System III

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream. Sscanf
reads from the character string s. Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a control string format described
below, and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. Blanks, tabs, or new-lines, which cause input to be read up to the next non-white-space character.
2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing charac-

ter *, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in the vari­
able pOinted to by the corresponding argument, unless assignment suppression was indicated by *. An
input field is defined as a string of non-space characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. The following conversion characters are legal:

% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
o an octal integer is expected; the corresponding argument should be an integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
s a character string is expected; the corresponding argument should be a character pointer poin­

ting to an array of characters large enough to accept the string and a terminating'" 0, which will
be added automatically. The input field is terminated by a space character or a new-line. Note
that scanf will not read a null string.

c a character is expected; the corresponding argument should be a character pointer. The nor­
mal skip over space characters is suppressed in this case; to read the next non-space character,
use %1s. If a field width is given, the corresponding argument should refer to a character array;
the indicated number of characters is read.

e,f a floating point number is expected; the next field is converted accordingly and stored through
the corresponding argument, which should be a pointer to afloat. The input format for floating
point numbers is an optionally signed string of digits, possibly containing a decimal point, fol­
lowed by an optional exponent field consisting of an E or an e, followed by an optionally signed
integer.
indicates a string that is not to be delimited by space characters. The left bracket is followed by
a set of characters and a right bracket; the characters between the brackets define a set of

-1-

SCANF(3S) SCANF(3S)

characters making up the string. If the first character is not a circumflex (-), the input field con­
sists of all characters up to the first character that is not in the set between the brackets; if the first
character after the left bracket is a -, the input field consists of all characters up to the first
character that is in the set of the remaining characters between the brackets. The correspon­
ding argument must point to a character array.

The conversion characters d, 0, and x may be capitalized and/or preceded by I to indicate that a pointer
to long rather than to int is in the argument list. Similarly, the conversion characters e and f may be cap­
italized and/or preceded by I to indicate that a pointer to double rather than to float is in the argument
list. The character h, similarly, indicates short data items.

Scanf conversion terminates at EOF, at the end of the control string, or when an input character con­
flicts with the control string. In the latter case, the offending character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input items; this number can be zero in
the event of an early conflict between an input character and the control string. If the input ends before
the first conflict or conversion, EOF is returned.

Trailing white space (including a new-line) is left unread unless matched in the format.

EXAMPLES
The call:

int i; float x; char name[50];
scanf (" %d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to i the value 25, to x the value 5.432, and name will contain thompson,,", O. Or:

int i; float x; char name[50l;
scanf (" %2d%f%*d %[1234567890]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56,,",0 in name. The next call to getchar
(see getc (3S)) will return a.

SEE ALSO
atof(3C), getc(3S), printf(3S).

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

-2-

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream file

SYNOPSIS
#include <stdio.h>

setbuf (stream. buf)
FILE *stream;
char *buf;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or written. It causes the character
array buf to be used instead of an automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloe(3C) upon the first gete or pute(3S) on the file, except that out­
put streams directed to terminals are normally line buffered, and the standard error stream stderr is nor­
mally not buffered.

A common source of error is allocation of buffer space as an "automatic" variable in a code block, and
then failing to close the stream in the same block.

HARDWARE DEPENDENCIES
Series 500:

The system call memalle(2) is used instead of maUoe.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S).

-1-

SETJMP(3C) SETJMP(3C)

NAME
se~mp, longjmp - non-local goto

SYNOPSIS
#include <setjrnp.h>

int setjrnp (env)
jrnp_buf env;

longjrnp (env, val)
jrnp_buf env;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level subroutine of
a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value O.

Longjmp restores the environment saved by the last call of setjmp. It then returns in such a way that exe­
cution continues as if the call of setjmp had just returned the value val to the corresponding call to setjmp,
which must not itself have returned in the interim. Longjmp cannot return the valueO. If longjmp is
invoked with a second argument of 0, it will return 1. All accessible data have values as of the time
longjmp was called.

Upon the return from a setjmp call caused by a longjmp, the values of any register variables are unde­
fined. Depending on such values renders code using register variables non-portable.

If a longjmp is executed and the environment in which the setjmp was executed no longer exists, errors
can occur. The conditions under which the environment of the setjmp no longer exists include: exiting
the procedure which contains the setjmp call, and exiting an inner block with temporary storage (e.g. a
block with declarations in C, a with statement in Pascal). This condition mayor may not be detectable.
An attempt is made by determining if the stack frame pointer in env points to a location not in the
currently active stack. If this is the case, longjmp will return a -1. Otherwise, the longjmp will occur, and if
the environment no longer exists, the contents of the temporary storage of an inner block are unpredic­
table. This condition may also cause unexpected process termination. If the procedure has been exited
the results are unpredictable.

Passing longjmp a pointer to a buffer not created by setjmp, or a buffer that has been modified by the
user, can cause all the problems listed above, and more.

The Pascal language may support a try/recover mechanism, which also creates stack marker information.
If a longjmp operation occurs in a scope which is nested inside a try/recover, and the corresponding
setjmp is not inside the scope of the try/recover, the recover block will not be executed and the currently
active recover block will become the one enclosing the setjmp (if there is one).

HARDWARE DEPENDENCIES
Series 500:

Register variables remain defined upon returning from a setjmp call caused by a longjmp. Note that
depending on these variables is discouraged for the sake of portable code.

SEE ALSO
signa1(2).

-1-

SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

"'-1-

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned long sleep (seconds)
unsigned long seconds;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the argument.
The actual suspension time may be less than that requested for two reasons: (1) Because scheduled
wakeups occur at fixed I-second intervals, and (2) because any caught signal will terminate the sleep fol­
lowing execution of that signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the system. The value retur­
ned by sleep will be the "unslept" amount (the requested time minus the time actually slept) in case the
caller had an alarm set to go off earlier than the end of the requested sleep time, or premature arousal
due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal) occurs.
The previous state of the alarm signal is saved and restored. The calling program may have set up an
alarm signal before calling sleep. If the sleep time exceeds the time till such an alarm signal, the process
sleeps only until the alarm signal would have occurred, and the caller's alarm catching routine is execu­
ted just before the sleep routine returns. If the sleep time is less than the time till such an alarm, the prior
alarm time is reset to go off at the same time it would have without the intervening sleep.

Seconds must be less than 2~32.

SEE ALSO
alarm(2), pause(2), signa1(2).

-1-

SSIGNAL(3C) Series 200 Only SSIGNAL(3C)

NAME
ssignal, gsignal- software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Remarks: Ssignal and gsignal are implemented on the Series 200 only.

DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal(2). This facility is used by the Standard
C Library to enable the user to indicate the disposition of error conditions, and is also made available to
the user for his own purposes.

Software signals made available to users are associated with integers in the inclusive range 1 through 15.
An action for a software signal is established by a call to ssignal, and a software signal is raised by a call to
gsignal. Raising a software signal causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to be esta­
blished. The second argument defines the action; it is either the name of a (user defined) action function
or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal returns the action
previously established for that signal type. If no action has been established or the signal number is
illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and the
action function is entered with argument sig. Gsignal returns the value returned to it by the action
function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value 0 and
takes no other action.

There are some additional signals with numbers outside the range 1 through 15 which are used by the
Standard C Library to indicate error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the operation of the Standard C Library.

-1-

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input/output stream file package

SYNOPSIS
#include <stdio.h>

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient, user-level I/O
buffering scheme. The in-line macros gete(3S) and pute(3S) handle characters qUickly. The macros
getehar, putehar, and the higher-level routines Jgete, Jgets, Jprintf, Jpute, Jputs, Jread, JseanJ, Jwrite, gets,
getw, printJ, puts, putw, and seanJ all use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type FILE.
Fopen(3S) creates certain descriptive data for a stream and returns a pointer to designate the stream in
all further transactions. Normally, there are 3 open streams with constant pointers declared in the
" include" file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant "pointer" NULL (0) designates the null stream.

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that deal
with streams (see the individual descriptions for details).

Any program that uses this package must include the header file of pertinent macro definitions, as fol­
lows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual are declared in that
"include" file and need no further declaration. The constants and the following "functions" are
implemented as macros (redeclaration of these names is perilous): gete, getehar, pute, putehar, JeoJ, Jer­
ror, andfileno.

SEE ALSO
close(2), open(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S),
fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system(3S), tmpnam(3S).

DIAGNOSTICS
Invalid stream pointers will cause serious disorder, possibly including program termination. Individual
function descriptions describe the possible error conditions.

-1-

STRING(3C) STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strien, strchr, strrchr, strpbrk, strspn, strcspn, strtok -
character string operations

SYNOPSIS
char *5trcat (51, 52)
char *51, *52;

char *5trncat (51, 52, n)
char *51, *52;
int n;

int 5trcmp (51, 52)
char *51, *52;

int 5trncmp (51, 52, n)
char *51, *52;
int n;

char *5trcpy (51, 52)
char *51, *52;

char *5trncpy (51, 52, n)
char *51, *52;
int n;

int 5trlen (5)
char *5;

char *5trchr (5, c)
char *5, c;

char *5trrchr (5, c)
char *5, c;

char *5trpbrk (51, 52)
char *51, *52;

int 5tr5pn (51, 52)
char *51, *52;

int 5trc5pn (51, 52)
char *51, *52;

char *5trtok (51, 52)
char *51, *52;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any receiving
string.

Strcat appends a copy of string s2 to the end of string s1. Strncat copies at most n characters. It copies
less if s2 is shorter than n characters. Both return a pointer to the null-terminated result (the original
value of s1).

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, according as
s1 is lexicographically greater than, equal to, or less than s2. (Nil pointers for s1 and s2 are treated the
same as pointers to null strings.) Strncmp makes the same comparison but looks at at most n characters
(n less than or equal to zero implies equality). Both of these routines use unsigned char for character
comparison.

-1-

STRING (3C) STRING(3C)

Strcpy copies string s2 to s1, stopping after the null character has been moved. Strncpy copies exactly n
characters, truncating or null-padding s2; the target may not be null-terminated if the length of s2 is n or
more. Both return s1. Note that strncpy should not be used to copy 11 bytes of an arbitrary structure. If
that structure contains a null byte anywhere, strncpy will terminate the copy when it encounters the null
byte, thus returning less than n bytes.

Strlcn returns the number of non-null characters in s. (The "length" of a string does not count the null
terminator.)

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c (an 8-bit ASCII value) in string
s, or NULL if c does not occur in the string. The null character terminating a string is considered to be
part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, or NULL if no
character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s1 which consists entirely of characters
from (not from) string s2.

Strtak considers the string s1 to consist of a sequence of zero or more text tokens separated by spans of
one or more characters from the separator string s2. The first call (with pointer s1 specified) returns a
pointer to the first character of the first token, and will have written a NULL character into s1 immedi­
ately following the returned token. Subsequent calls with zero for the first argument, will work through
the string s1 in this way until no tokens remain. The separator string s2 may be different from call to call.
When no token remains in s1, a NULL is returned.

HARDWARE DEPENDENCIES
Series 200:

BUGS

N is limited to the amount of physical memory on the machine.

Series 500:
N is limited to about 500 Mbytes.

All string movement is performed character by character starting at the left. Thus overlapping moves
toward the left will work as expected, but overlapping moves to the right (Le. higher addresses) may
yield surprises.

The copy operations cannot check for overflow of any receiving string. NULL destinations cause errors;
NULL sources are treated as zero-length strings.

-2-

SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
char *from, *to;
int nbytes;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pointed to by from to the position pOinted to by to, exchanging adjacent even
and odd bytes. It is useful for carrying binary data between byte-swapped and non-byte-swapped
machines. Nbytes should be even.

-1-

SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *string;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

SYSTEM(3S)

System causes the string to be given to sh (1) as input as if the string had been typed as a command at a
terminal. The current process waits until the shell has completed, then returns the exit status of the shell.

SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System terminates unsuccessfully if it can't execute sh(1).

-1-

TERMCAP(3) TERMCAP(3)

NAME
tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - access terminal capabilities in termcap(5)

SYNOPSIS
char PC;
char*BC;
char*UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char*cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)O;

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termeap(5). These are
low level routines.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a character buffer of size
1024 and must be retained through all subsequent calls to tgetnum, tgetjlag, and tgetstr. Tgetent returns
-1 if it cannot open the termeap file, a if the terminal name given does not have an entry, and 1 if all goes
well. It will look in the environment for a TERM CAP variable. If found, and the value does not begin
with a slash, and the terminal type name is the same as the environment string TERM, the TERMCAP
string is used instead of reading the termeap file. If it does begin with a slash, the string is used as a path
name rather than /etcitermeap. This can speed up entry into programs that call tgetent, as well as to help
debug new terminal descriptions or to make one for your terminal if you can't write the file /etcitermeap.

Tgetnum gets the numeric value of capability id, returning -1 if it is not given for the terminal. Tgetnum is
useful only with capabilities having numeric values.

Tgetflag returns 1 if the specified capability is present in the terminal's entrY, and a if it is not. Tgetflag is
useful only with capabilities that are boolean in nature (Le. either present or missing in termcap(5)).

Tgetstr gets the string value of capability id, placing it in the buffer at area, advancing the area pointer. It
decodes the abbreviations for this field described in termeap(5), except for cursor addreSSing and pad­
ding information. Tgetstr is useful only with capabilities having string values.

Tgoto returns a cursor addreSSing string decoded from em (see termeap(5)) to go to column desteol in line
destline. It uses the external variables UP (from the up capability) and BC (if bc is given rather than bs) if
necessary to avoid placing ""-n, ~D or ~@ in the returned string. (Programs which call tgoto should be
sure to turn off the XTABS bit(s), since tgoto may now output a tab. See tty(4). Note that programs
using termeap should in general turn off XTABS anyway since some terminals use control-I for other

-1-

TERMCAP(3) TERMCAP(3)

FILES

functions, such as nondestructive space.) If a % sequence is given which is not understood, then tgoto
returns "OOPS".

Tputs decodes the leading padding information of the string ep. A//ent gives the number of lines affected
by the operation, or 1 if this is not applicable. Oute is a routine which is called with each character in
turn. The external variable ospeed should contain the output speed of the terminal as encoded by
st01(2). The external variable PC should contain a pad character to be used (from the pc capability) if a
null (@) is inappropriate.

lusr!1ib/libtermcap.a -ltermcap library
letc/termcap data base

SEE ALSO
ex(l), tty(4), termcap(5).

-2-

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile ()

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

TMPFILE (3S)

Tmpfile creates a temporary file and returns a corresponding FILE pointer. Arrangements are made so
that the file will automatically be deleted when the process using it terminates. The file is opened for
update.

Tmpfile uses a name generated by tmpnam.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S).

-1-

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam - create a name for a temporary file

SYNOPSIS
#incIude <stdio.h>

char *tmpnam (5)
char *5;

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Tmpnam generates a file name that can safely be used for a temporary file. If (int)s is zero, tmpnam
leaves its result in an internal static area and returns a pointer to that area. The next call to tmpnam will
destroy the contents of the area. If Ont)s is nonzero, s is assumed to be the address of an array of at least
Ltmpnam bytes; tmpnam places its result in that array and returns s as its value. Tmpnam generates a
different file name each time it is called. Files created using tmpnam and either jopen or creat are only
temporary in the sense that they reside in a directory intended for temporary use, and their names are
unique. It is the user's responsibility to use unlink (2) to remove the file when its use is ended.

File names are initially of the form lusr/tmp/[a-zHa-zHa-zlXXXXXX and are then passed to mktemp
before returning the result.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), mktemp(3C).

If called more than 17,576 times in a single process, tmpnam will start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some other process to
create a file with the same name. This can never happen if that other process is using tmpnam or
mktemp, and the file names are chosen so as to render duplication by other means unlikely.

-1-

TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

TRIG(3M)

Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the argument
should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sine in the range -1T/2 to 1T/2.

Acos returns the arc cosine in the range 0 to 1T.

Atan returns the arc tangent of x in the range -1T/2 to 1T/2.

Atan2 returns the arc tangent ofylx in the range -1T to 1T.

HARDWARE DEPENDENCIES
Series 200/500:

The approximate limit for the values returned by these functions is 1.49'8.

The algorithms used for all functions except atan2 are from HP 9000 BASIC.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value O.

For sin, cos, tan, if the argument is out of range of accurate calculations, errno is set to EDaM and zero is
returned.

-1-

TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)

int isatty (fildes)

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

TTYNAME(3C)

Ttyname returns a pointer to the null-terminated path name of the terminal device associated with file
descriptor fiZdes .

!satty returns 1 iffiZdes is associated with a terminal device, 0 otherwise.

FILES
Idev/*

DIAGNOSTICS
Ttyname returns a null pointer (0) HfiZdes does not describe a terminal device in directory Idev.

BUGS
The return value points to static data whose content is overwritten by each call.

-1-

UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
char c;
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the next getc
call on that stream. Ungetc returns EOF on error, zero on success.

One character of pushback is guaranteed provided something has been read from the stream and the
stream is actually buffered. Attempts to push EOF are rejected.

F seek (3S) erases all memory of pushed back characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot push a character back.

-1-

INTRO(4) INTRO(4)

NAME
intro - introduction to special files

HP-UX COMPATIBILITY
Remarks: In general, device drivers are not portable across systems; however, every effort has been

made to make their behavior portable. Due to variation in hardware, this is not always pos­
sible. Programs which use these drivers directly are at higher than average risk of not being
portable.

DESCRIPTION
This section describes various special files that refer to specific HP peripherals and device drivers. The
names of the entries are generally derived from the type of device being described (disc, plotter, etc.),
not the names of the special files themselves. Characteristics of both the hardware device and the
corresponding HP-UX device driver are discussed where applicable.

The devices are divided into two catagories, unblocked and blocked. An unblocked device is also called
a raw or a character mode device. An unblocked device, such as a line printer, uses a character special
file.

Blocked devices, as the name implies, transfers data in blocks via the systems normal buffering mechan­
ism. Block devices use block special files.

For specific details about the default special files shipped with your system, consult the System Adminis­
trator Manual for your system.

You associate the name you want with a specific device when you create a special file for that device
using the mkdev(8) and mknod(8) commands. When creating additional special files, it is recommended
that the following naming convention be followed:

[r J dev_id [procLno J [modeUnitialJ [sldli J [.J [digit J

where:

r

dev-id

procLno

modeUnitial

sldli

. digit

indicates that the device is treated as a raw device;

consists of one of the folloWing mnemonics:

Mnemonic Meaning

ct CS-80 cartridge tape unit
hd hard disc
mt tape
fd flexible disc
lp printer
dig digitizer
pit plotter or graphics CRT

is the HP product number for the device;

is the initial (if any) associated with the product number for the device;

used with the HP 9895A; specifies whether the media is single-Sided (s), double­
sided (d), or in IBM format;

used when more than one identical device is connected to the system; for example,
if two HP 2631G printers are connected, their special file names would be Ip2631g
and Ip2631g.1. Or, you might name them lp and lp.l. You create and name special
files with the mknod(8) and mkdev(8) commands.

-1-

INTRO(4)

HARDWARE DEPENDENCIES
Series 500:

You cannot open a block special file for reading or writing.

The IBM format is not supported for the HP 9895A.

-2-

INTRO(4)

D1SC(4) D1SC(4)

NAME
disc - direct disc access

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: HP

DESCRIPTION
This page describes the actions of the general HP-UX disc drivers when referring to a disc as either a
blocked or unblocked (raw or character special) device.

Block special files access discs via the system's normal buffering mechanism. Buffering is done in such a
way that concurrent access through multiple opens or mounts of the same physical device do not get out
of phase. Block special files may be read and written without regard to physical disc records. Each I/O
operation results in one or more logical block (lK bytes) transactions.

There is also a raw interface via a character special file which provides for direct transmission between
the disc and the user's read or write buffer. A single read or write operation results in exactly one tran­
saction. Therefore raw I/O is considerably more efficient when many bytes are transmitted in a single
operation because blocked disc access requires potentially several transactions and does not transmit
directly to user space.

In raw I/O, there may be implementation dependent restrictions on the alignment of the user buffer in
memory. Also, each transfer must occur on a sector boundary and must read a whole number of sec­
tors. The sector size is a hardware dependent value.

Each raw access is independent of other raw accesses and of block accesses to the same physical device.
Thus, transfers are not guaranteed to occur in any particular order.

In both raw and blocked 110, each operation is completed to the device before the call returns. In addi­
tion, blocked 110 potentially does a one (or more) block read-ahead.

The name of a raw device (its character special file name) is typically the same as the name of the
corresponding blocked device (its block special file name) prefixed with an "r".

SEE ALSO
intro(4), mkdev(8), mknod(8), and the HP-UX System Administrator Manual included with your system
(part number 97089-90045 or 98680-90010).

WARNING
On some systems, having both a mounted file system and a block special file open on the same device is
asking for trouble; this should be avoided if possible. This is because it may be possible for some files to
have private buffers in some systems.

Like discs, the cartridge tape units in command set 80 disc drives are also accessed as blocked or raw
devices. However, using a cartridge tape as a file system will quickly destroy the tape drive.

-1-

GRAPHICS (4) Series 200 Only GRAPHICS (4)

NAME
crt graphics - information for crt graphics devices

HP-UX COMPATIBILITY
Level: HP-UXINON-STANDARD

Origin: HP

Remarks: This information is valid for the Series 200 only.

DESCRIPTION
The crt graphics devices are raster frame buffer based displays. These devices use memory mapped I/O
to obtain much higher performance than is possible with tty based graphics terminals. The crt graphics
devices may only be accessed through the DGL libraries. They may not be piped or redirected to, as
they are not serial devices.

A crt graphics device may be written to by multiple programs at one time. Each program will be able to
overwrite the output of the others. The programs will noUnterfere with each other in any other way, so
cooperating programs can "share" a screen.

The special (device) files for crt graphics devices are character special files with major number 12. A
minor number of zero corresponds to the internal graphics crt. This is device independent for the entire
Series 200 family. A file with minor number 1 or greater corresponds to a 98627 A rgb monitor card. All
98627 A cards present are automatically located by the system. They are sorted by their select code set­
tings. The rgb card with the lowest select code corresponds to major 12, minor 1. The next rgb card is
minor 2, and so on.

SEE ALSO
section 4, mknod(8).
Device-independent Graphics Library Programmer Reference Manual (part number 97084-90000);
Device-independent Graphics Library Supplement for HP-UX Systems (part number 97084-90001);
Graphics/9000 Device Handlers Manual (part number 97084-90025).

-1-

HPIB(4) HPIB(4)

NAME
hpib - hpib interface information

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

DESCRIPTION
HP-IB is Hewlett-Packard's implementation of the Institute of Electrical and Electronic Engineers Stan­
dard Digital Interface for Programmable Instrumentation. For more information about the standard,
consult any of the following documents:

IEEE Std 488-1978
IEC Pub 625-1
ANSI MC1.1

A read operation on a device connected to an HP-IB configures the computer as "listener" and the
device as "talker". The read operation terminates when either the number of bytes requested has been
transferred, or the device asserts the EOI (end or identify) line. A write operation configures the compu­
ter as "talker" and the device as "listener". The write operation terminates when the number of bytes
specified has been transferred and it has asserted EOL

Devices connected to an HP-IB are addressed using three values. The first value, called the major value,
is used to select the appropriate device driver. The second value is called the select code. The select code
refers to the I/O interface card or slot number to which the device is connected. The third value is called
the HP-IB address. The HP-IB address is usually set by an in-line or rotary switch on the device itself.
Refer to the device reference manual for information on setting the HP-IB address.

This driver is also used to access HP-IB plotters, digitizers and printers in raw mode. A printer in raw
mode is used as a graphics device.

HARDWARE DEPENDENCIES
Series 200:

The major value for HP-IB raw mode printers, plotters, and digitizers is always 14.

The HP-IB address is in the range 0 through 7.

Series 500:
The major value for HP-IB printers, plotters, and digitizers is always 12.

The HP-IB address is in the range 0 through 30.

Terminating a write operation does not depend on an asserted EOL

SEE ALSO
intro(4), mknod(8), documentation for the specific device.

-1-

LP(4) LP(4)

NAME
Ip - printer information

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

DESCRIPTION
All file names in /dev containing the mnemonic lp are special files providing the interface to a particular
line printer. A line printer is a character device whose data is either interpreted or not interpreted.

If a particular printer special file has been created using a low-level raw mode driver, the lp mnemonic
should be preceded by the character r, which indicates that data sent to a printer via this special file is
sent in raw mode. (This could assume, for example, a graphic printer operation.) In raw mode, no inter­
pretation is done on the data to be printed, and no page formatting is performed. The bytes are simply
sent to the printer and printed as is. (Note that the name given to the special file does not determine the
mode in which data is printed; it simply enables you to identify which special files have been created for
raw mode output.)

If the lp mnemonic is not preceded by the character r, then the data is interpreted according to the fol­
lowing rules:

multiple form-feeds are ignored;

a form-feed is generated after every 60 lines;

the new-line character is mapped into the carriage-returnlline-feed sequence;

tab characters are expanded into the appropriate number of blanks (tab stops are assumed to
occur every eight character positions).

HARDWARE DEPENDENCIES

FILES

Series 500:
The behavior of the printer driver can be altered through the volume number used in creating
the special file for the printer. Refer to the section entitled "Creating Special Files" in the chap­
ter "The System Administrator's Toolbox", in The System Administrator Manual. The printer
attributes that can be modified are the characters per line, and wrap-around capability.

/devllp default or standard printer used by some HP-UX commands;

/dev/[r]lp* special files for printers

SEE ALSO
Ipr(1), hpib(4), intro(4).

-1-

MEM(4) Series 200 Only MEM(4)

NAME
mem, kmem - core memory

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Remarks: Mem and kmem are implemented on the Series 200 only.

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the computer. It may be used, for example,
to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent locations
cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or write­
only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical memory is
accessed.

/dev/mem
/dev/kmem

Memory files are accessed one byte at a time.

-1-

MT(4) MT(4)

NAME
magtape - magnetic tape interface and controls

HP-UX COMPATIBILITY
Level: Magnetic Tape Support -- HP-UX/RUN ONLY

Origin: UCB and HP

DESCRIPTION
The files /dev/mi* and /dev/rmt* refer to specific tape drives; the behavior of the specific unit is speci­
fied by several bits in the least significant digit of the minor number in the mknod(8} command.

There are three bits controlling the operation of the tape drive. These bits are usually encoded into the
minor number of mknod(8}. Refer to the System Administrator Manual for your computer for details.

rewind When this bit is cleared, the tape is automatically rewound upon close. This is normally done
for units numbered 0-3 and 8-11.

mode When this bit is set, the tape drive behaves like the Berkeley tape drivers; when clear the driver
behaves like System III. The details are described below. The ioctl operations described
below work in both modes on raw tapes only.

density When cleared, the tape drive is run at 1600 bpi; when set it is run at 800 bpi. The 800 bpi
drives are usually numbered 0-7, and 1600 bpi are usually numbered 8-15.

When opened for reading or writing, the tape is assumed to be positioned as desired.

When a file is opened for writing and then closed, a double end-of-file (double tape mark) is written. If
the device has the rewind bit set, the tape is rewound; otherwise, the tape is positioned before the
second EOF just written.

When a read-only file is closed and the rewind bit is set, the tape is rewound. If the rewind bit is not set,
the behavior depends on the mode bit. For System III compatibility, the tape is positioned after the EOF
following the data just read. For Berkeley compatibility, the tape is not re-positioned in any way.

The EOF is returned as a zero-length read.

By judiciously choosing mt files, it is possible to read and write multi-file tapes.

A tape treated as a block device consists of several 512 byte records terminated by an EOF. To the
extent possible, the system makes it possible to treat the tape like any other file. Seeks have their usual
meaning and it is possible to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape in a way compatible with
ordinary files. When foreign tapes are to be dealt with, and especially when long records are to be read
or written, the raw interface is appropriate. The raw interface is described below.

The special files associated with a raw tape interface are named rmt*. Each read or write call reads or
writes the next record on the tape. In the write case the record has the same length as the buffer given.

During a read, the record size is passed back as the number of bytes read, up to the buffer size specified.
The number of bytes ignored is available in the mLresid field of the mtget structure via the MTIOCGET
call of ioctl. In raw tape 110, the buffer and size may have implementation dependent alignment restric­
tions. Seeks are ignored, instead the ioctl operations described below are available. An EOF is returned
as a zero-length read, with the tape positioned after the EOF, so that the next read will return the next
record.

The ioctl system call can be used to manipulate magnetic tapes; the following is included from
sys/mtio.h and describes the possible operations:

/* mtio.h */
/* Structures and definitions for mag tape
* 110 control commands
*/

-1-

MT(4)

1* mag tape 1/0 control commands * I
#define MTIOCTOP (('m'«8)11) 1* do mag tape op *1
#define MTIOCGET (('m'«8)12) 1* get mag tape status * I
1* structure for MTIOCTOP - mag tape op command *1

struct mtop {

};

short
daddLt

1* operations *1

mLop;
mLcount;

1* operations defined below *1
1* how many of them *1

#define MTWEOF 0 1* write end-of-file record *1
#define MTFSF 1 1* forward space file *1
#define MTBSF 2 1* backward space file *1
#define MTFSR 3 1* forward space record *1
#define MTBSR 4 1* backward space record *1
#define MTREW 5 1* rewind *1
#define MTOFFL 6 1* rewind, put drive offline *1
#define MTNOP 7 1* no-op, sets status only *1

1* structure for MTIOCGET - mag tape get status command *1

struct mtget {
long
long

mUype;
mLresid;

1* type of magtape dev. *1
1* residual count * I

1* The following two registers are device dependent * I
long mLdsreg; 1* drive status register *1
long mLerreg; 1* error register *1

1* The following two are not yet implemented *1

daddLt mLfileno; 1* file no. of current pos. *1
daddLt mLblkno; 1* blk no. of current pos. *1

1* end not yet implemented *1
};

1*
* Constants for mLtype long
*1

#define
define
#define
#define

MT_ISTS
MT_ISHT
MT_ISTM
MT_IS7970E

01
02
03
04

MT(4)

HARDWARE DEPENDENCIES
Series 200:

Block magnetic tape is not supported.

The density bit cannot select 800 bpi; 800 bpi is not supported.

The settings of the mode, rewind, and density bits are reflected in the minor numbers used to
create the special file names (see mkdev(8».

Series 500:
Block magnetic tape is not supported.

The density bit cannot select 800 bpi; 800 bpi is not supported.

-2-

MT(4)

FILES
/dev/mt*
/dev/rmt*

MT(4)

-3-

NULL(4)

NAME
null- null file ("bit bucket")

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
Idev/null

-1-

NULL(4)

TTY(4) TTY(4)

NAME
tty - general terminal interface

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
This section describes both a particular special file and the general nature of the terminal interface.

The file Idev/tty is, in each process, a synonym for the control terminal associated with the process
group of that process, if any. It is useful for programs or shell sequences that wish to be sure of writing
messages on the terminal no matter how output has been redirected. It can also be used for programs
that demand the name of a file for output, when typed output is desired and it is tiresome to find out
what terminal is currently in use.

As for terminals in general: all of the asynchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this section discusses the common
features of this interface.

When a terminal file is opened, it normally causes the process to wait until a connection is established.
In practice, users' programs seldom open these files; they are opened by getty(8} and become a user's
standard input, output, and error files. The very first terminal file opened by the process group leader of
a terminal file not already associated with a process group becomes the control terminal for that process
group. The control terminal plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a fork (2). A process can break this
association by changing its process group using setpgrp (2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the system's character input
buffers become completely full, which is rare, or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program. This limit is dependent on
the particular implementation, but is at least 256. When the input limit is reached, all the saved charac­
ters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a new-line (ASCII LF)
character, an end-of-file (ASCII EOT) character, or an end-af-Iine character. This means that a program
attempting to read will be suspended until an entire line has been typed. Also, no matter how many
characters are requested in the read call, at most one line will be returned. It is not, however, necessary
to read a whole line at once; any number of characters may be requested in a read, even one, without
losing information.

During input, erase and kill processing is normally done. By default, the character # erases the last
character typed, except that it will not erase beyond the beginning of the line. By default, the character
@ kills (deletes) the entire input line, and optionally outputs a new-line character. Both these characters
operate on a key-stroke basis, independently of any backspacing or tabbing that may have been done.
Both the erase and kill characters may be entered literally by preceding them with the escape character
("'-.). In this case the escape character is not read. The erase and kill characters may be changed.

Certain characters have special functions on input. These functions and their default character values
are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent to all processes with the
associated control terminal. Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to receive a trap to an agreed-upon
location; see signal (2).

QUIT (Control- or ASCII FS) generates a quit signal. Its treatment is identical to the interrupt signal
except that, unless a receiving process has made other arrangements, it will not only be ter­
minated but a core image file (called core) will be created in the current working directory if the
implementation supports core files.

-1-

TTY(4) TTY(4)

ERASE (#) erases the preceding character. It will not erase beyond the start of a line, as delimited by a
Nl, EOF, or EOl character.

KIll (@) deletes the entire line, as delimited by a Nl, EOF, or EOl character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal. When
received, all the characters waiting to be read are immediately passed to the program, without
waiting for a new-line, and the EOF is discarded. Thus, if there are no characters waiting,
which is to say the EOF occurred at the beginning of a line, zero characters will be passed back,
which is the standard end-of-file indication.

Nl (ASCII IF) is the normal line delimiter. It can not be changed or escaped.

EOl (ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful with CRT ter­
minals to prevent output from disappearing before it can be read. While output is suspended,
STOP characters are ignored and not read.

START (Control-q or ASCII DCI) is used to resume output which has been suspended by a STOP
character. While output is not suspended, START characters are ignored and not read. The
start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KIll, EOF, and EOl may be changed to suit individual
tastes. The ERASE, KIll, and EOF characters may be escaped by a preceding" character, in which
case no special function is done.

When the carrier signal from the data-set drops, a hangup signal is sent to all processes that have this ter­
minal as the control terminal. Unless other arrangements have been made, this signal causes the pro­
cesses to terminate. If the hangup signal is ignored, any subsequent read returns with an end-of-file
indication. Thus programs that read a terminal and test for end-of-file can terminate appropriately when
hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as previously­
written characters have finished typing. Input characters are echoed by putting them in the output
queue as they arrive. If a process produces characters more rapidly than they can be typed, it will be
suspended when its output queue exceeds some limit. When the queue has drained down to some
threshold, the program is resumed.

Several ioetl(2) system calls apply to terminal files. The primary calls use the follOWing structure, defined
in <termio.h>:

#define NCC 8
struct termio{

unsigned short uflag; /* input modes * /
unsigned short coflag; /* output modes * /
unsigned short ccflag; /* control modes * /
unsigned short clflag; /* local modes * /

char cline; /* line discipline */
unsigned char ccc[NCC); /* control chars * /

};

The special control characters are defined by the array Lee. The relative positions and initial values for
each function are as follows:

0 INTR DEL
I QUIT FS
2 ERASE #
3 KILL @
4 EOF EOT
5 EOL NUL
6 reserved

-2-

TTY(4) TTY(4)

7 reserved

The ciflag field describes the basic terminal input control:

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
ISTRIP
INLCR
IGNCR
ICRNL
IUCLC
IXON
IXANY
IXOFF

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0001000
0002000
0004000
0010000

Ignore break condition.
Signal interrupt on break.
Ignore characters with parity errors.
Mark parity errors.
Enable input parity check.
Strip character.
Map NL to CR on input.
Ignore CR.
Map CR to NL on input.
Map upper-case to lower-case on input.
Enable start/stop output control.
Enable any character to restart output.
Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored, that is, not
put on the input queue and therefore not read by any process. Otherwise if BRKINT is set, the break
condition will generate an interrupt signal and flush both the input and output queues. If IGNPAR is set,
characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as the three
character sequence: 0377, 0, X, where X is the data of the character received in error. To avoid ambi­
guity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377,0377. If PARMRK is not
set, a framing or parity error which is not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is disabled.
This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7 -bits, otherwise allS-bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a received CR
character is ignored (not read). Otherwise if ICRNL is set, a received CR character is translated into a
NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding lower­
case character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend output and
a received START character will restart output. All start/stop characters are ignored and not read. If
IXANY is set, any input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the input queue is nearly
empty/full.

If IENQAK is set, the system will transmit ASCII ENQ after every SO characters sent and then wait until
the terminal responds with ASCII ACK. The terminal will respond in this way when it has sufficiently
emptied its buffer. If the terminal does not respond after 5 seconds, the system will resume transmission
anyway. The ASCII ACK that the terminal sends will not get entered into the input queue if it was sent
in response to ASCII ENQ.

The initial input control value is all bits clear.

The coflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.
ONLRET 0000040 NL performs CR function.

-3-

TTY(4)

OFILL
OFDEL
NLDLY
NLO
NLl
CRDLY
CRO
CRI
CR2
CR3
TABDLY
TABO
TAB I
TAB2
TAB3
BSDLY
BSO
BSI
VTDLY
VTO
VTI
FFDLY
FFO
FFI

0000100 Use fill characters for delay.
0000200 Fill is DEL, else NUL.
0000400 Select new-line delays:
o
0000400
0003000 Select carriage-return delays:
o
0001000
0002000
0003000
0014000 Select horizontal-tab delays:
o
0004000
0010000
0014000 Expand tabs to spaces.
0020000 Select backspace delays:
o
0020000
0040000 Select vertical-tab delays:
o
0040000
0100000 Select form-feed delays:
o
0100000

TTY(4)

If OPOST is set, output characters are post-processed as indicated by the remaining flags, otherwise
characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case
character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set, the CR
character is transmitted as the NL character. If ONOCR is set, no CR character is transmitted when at
column 0 (first position). If ONLRET is set, the NL character is assumed to do the carriage-return func­
tion; the column pointer will be set to 0 and the delays specified for CR will be used. Otherwise the NL
character is assumed to do just the line-feed function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement when
certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If OFILL is set, fill
characters will be transmitted for delay instead of a timed delay. This is useful for high baud rate ter­
minals which need only a minimal delay. If OFDEL is set, the fill character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used instead
of the new-line delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10 seconds,
and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill characters, and type 2
four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10 seconds.
Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, two fill characters will be
transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

-4-

TTY(4)

The initial output control value is all bits clear.

The ccflag field describes the hardware control of the terminal:

CBAUD 0000037 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B 11 0 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B900 0000011 900 baud
B1200 0000012 1200 baud
B1800 0000013 1800 baud
B2400 0000014 2400 baud
B3600 0000015 3600 baud
B4800 0000016 4800 baud
B7200 0000017 7200 baud
B9600 0000020 9600 baud
B19200 0000021 19200 baud
B38400 0000022 38400 baud
EXT A 0000036 External A
EXTB 0000037 External B
CSIZE 0000140 Character size:
CS5 0 5 bits
CS6 0000040 6 bits
CS7 0000100 7 bits
CS8 0000140 8 bits
CSTOPB 0000200 Send two stop bits, else one.
CREAD 0000400 Enable receiver.
PARENB 0001000 Parity enable.
PARODD 0002000 Odd parity, else even.
HUPCL 0004000 Hang up on last close.
CLOCAL 0010000 Local line, else dial-up.
CRTS 0020000 Assert request-to-send.

TTY(4)

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connection. If
BO is specified, the data-terminal-ready signal will not be asserted. Normally, this will disconnect the
line. For any particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception. This size does not
include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one stop bit. For
example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each character.
If parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

If HUPCL is set, the line will be disconnected when the last process with the line open closes it or ter­
minates. That is, the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem control. Oth­
erwise modem control is assumed.

-5-

TTY(4) TTY(4)

Modem control is defined as asserting data-terminal-ready whenever the device is open, and dropping it
on closing the device the last time. Any open to a modem-controlled device will hang until carrier detect
is asserted unless the open is asynchronous (O~DELAY). Without modem control, data-terminal­
ready is not asserted, and the state of carrier-detect is ignored.

Asynchronous changes to CLOCAL on an open line directly control the data-terminal-ready modem
control line. If CLOCAL is asynchronously turned off on an already open line, subsequent opens (with
wait) will hang until carrier-detect is asserted, already open lines will not be affected. Reads to lines
which are not in CLOCAL and for which carrier-detect is not asserted will return end-of-file, writes will
be discarded as if they had been successful.

If CRTS is set, the request-to-send line is asserted, otherwise it is not. This line may be raised or lowered
at any time as needed for controlling the attached device.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

The c.Jflag field of the argument structure is used by the line discipline to control terminal functions.
The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase, kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control characters INTR and QUIT. If an
input character matches one of these control characters, the function associated with that character is
performed. If ISIG is not set, no checking is done. Thus these special input functions are possible only if
ISIG is set. These functions may be disabled individually by changing the value of the control character
to an unlikely or impossible value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions, and the
assembly of input characters into lines delimited by NL, EOF, and EOL. If ICANON is not set, read
requests are satisfied directly from the input queue. A read will not be satisfied until at least MIN charac­
ters have been received or the timeout value TIME has expired. (Note that the timeout TIME begins
after the first character is read, not at the beginning of the read operation.) This allows fast bursts of input
to be read efficiently while still allOWing single character input. The MIN and TIME values are stored in
the position for the EOF and EOL characters respectively. The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a "
character, and is output preceded by a "character. In this mode, the following escape sequences are
generated on output and accepted on input:

for: use: ,,-
"I "A

{ "(
} ")

" " " For example, A is input as "a, "n as" "n, and "N as " " "n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set, the
erase character is echoed as ASCII BS SP BS, which will clear the last character from a CRT screen. If
ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If ECHOK is set, the
NL character will be echoed after the kill character to emphasize that the line will be deleted. Note that

-6-

TTY(4) TTY(4)

an escape character preceding the erase or kill character removes any special function. If ECHONL is
set, the NL character will be echoed even if ECHO is not set. This is useful for terminals set to local echo
(so-called half duplex). Unless escaped, the EOF character is not echoed. Because EOT is the default
EOF character, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with the quit and interrupt
characters will not be done.

The initial line-diScipline control value is all bits clear.

The primary ioctl(2} system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGET A Get the parameters associated with the terminal and store in the termio structure
referenced by argo

TCSETA Set the parameters associated with the terminal from the structure referenced by
argo The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters. This form should
be used when changing parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new
parameters.

Additional ioctl(2} calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for at least
0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart suspended output.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush both the
input and output queues.

Conversion Aids for stty(2)/gtty(2)
The following conversion information is supplied to help you port programs from pwbN6 UNIX to your
current HP-UX system. Note that these conversions do not work for programs ported from Version 7
UNIX, since some Version 7 flags are defined differently.

The following data structure is defined in the include file sgtty.h:

struct sgttyb {
char
char
char
char
short

}

sg~speed;

s~ospeed;
s~erase;

s~ill;
s~flags;

The flags, as defined in sgtty.h, are:

#define HUPCL 01
define XT ABS 02
#define LCASE 04
#define ECHO 010
#define CRMOD 020
#define RAW 040

-7-

/* input speed */
/* output speed * /
/* erase character * /
/* kill character * /
/* mode flags * /

TTY(4) TTY(4)

#define ODDP 0100
#define EVENP 0200
#define ANYP 0300
#define NLDELAY 001400
#define TBDELAY 002000
#define CRDELAY 030000
#define VTDELAY 040000
#define BSDELAY 0100000

#define CRO 0
#define CRI 010000
#define CR2 020000
#define CR3 030000
#define NLO 0
#define NLl 000400
#define NL2 001000
#define NL3 001400
#define TABO 0
#define TABI 002000
#define NOAL 004000
#define FFO 0
#define FFI 040000
#define BSO 0
#define BSI 0100000

When the ioctl TIOCSETP (stO'(2)) command is executed, the flags in the old sgttyb structure are map­
ped into their new equivalents in the termio structure. Then the TCSETA command is executed as
defined above.

The following table shows the mapping between the old sgttyb flags and the current termio flags. Note
that flags contained in the termio structure that are not mentioned below are cleared.

HUPCL (if set)
sets the termio HUPCL flag;

HUPCL (if clear)
clears the termio HUPCL flag;

XTABS (if set)
sets the termio TAB3 flag;

XTABS (if clear)
clears the termio TAB3 flag;

TBDELAY (if set)
sets the termio TABI flag;

TBDELAY (if clear)
clears the termio TABI flag;

LCASE (if set)
sets the termio IUCLC, OLCUC, and XCASE flags;

LCASE (if clear)
clears the termio IUCLC, OLCUC, and XCASE flags;

ECHO (if set)
sets the termio ECHO flag;

ECHO (if clear)
clears the termio ECHO flag;

NOAL (if set)
sets the termio ECHOK flag;

NOAL (if clear)
clears the termio ECHOK flag;

-8-

TTY(4) TTY(4)

CRMOD (if set)
sets the termio ICRNL and ONLCR flags; also, if CRI is set, the termio CRI flag is set, and if CR2
is set, the termio ONOCR and CR2 flags are set;

CRMOD (if clear)
sets the termio ONLRET flag; also, if NLl is set, the termio CRI flag is set, and if NL2 is set, the
termio CR2 flag is set;

RAW (if set)
sets the termio CS8 flag, and clears the termio ICRNL and IUCLC flags; also, default values of 6
characters and 0.1 seconds are assigned to MIN and TIME, respectively;

RAW (if clear)
sets the termio BRKINT, IGNPAR, ISTRIP, IXON, IXANY, OPOST, CS7, PARENB, ICANON,
and ISIG flags; also, the default values control-D and null are assigned to the control characters
EOF and EOL, respectively;

ODDP (if set)
if EVENP is also set, clears the termio INPCK flag; otherwise, sets the termio PARODD flag;

VTDELAY (if set)
sets the termio FFDL Y flag;

VTDELAY (if clear)
clears the termio FFDL Y flag;

BSDELA Y (if set)
sets the termio BSDL Y flag;

BSDELAY (if clear)
clears the termio BSDL Y flag.

In addition, the termio CREAD bit is set, and, if the baud rate is 110, the CSTOPB bit is set.

When using TIOCSETP, the ispeed entry in the sgttyb structure is mapped into the appropriate speed in
the termio CBAUD field. The erase and kill sgttyb entries are mapped into the termio erase and kill
characters.

When the ioctl TIOCGETP (gtty(2)) command is executed, the current TCGETA command is first exe­
cuted. The resulting termio structure is then mapped into the sgttyb structure, which is then returned to
the user.

The following table shows how the termio flags are mapped into the old sgttyb structure. Note that all
flags contained in the sgttyb structure that are not mentioned below are cleared.

HUPCL (if set)
sets the sgttyb HUPCL flag;

HUPCL (if clear)
clears the sgttyb HUPCL flag;

ICANON (if set)
sets the sgttyb RAW flag;

ICANON (if clear)
clears the sgttyb RAW flag;

XCASE (if set)
sets the sgttyb LCASE flag;

XCASE (if clear)
clears the sgttyb LCASE flag;

ECHO (if set)
sets the sgttyb ECHO flag;

ECHO (if clear)
clears the sgttyb ECHO flag;

ECHOK (if set)
sets the sgttyb NOAL flag;

ECHOK (if clear)
clears the sgttyb NOAL flag;

PARODD (if set)

-9-

TTY(4)

sets the sgttyb ODDP flag;
PARODD (if clear)

clears the sgttyb ODDP flag;
INPCK (if set)

sets the sgttyb EVENP flag;
PARODD, INPCK (if both clear)

sets the sgttyb ODDP and EVENP flags;
ONLCR (if set)

TTY(4)

sets the sgttyb CRMOD flag; also, if CRI is set, the sgttyb CRI flag is set, and if CR2 is set, the
sgttyb CR2 flag is set;

ONLCR (if clear)
if CRI is set, the sgttyb NLl flag is set, and if CR2 is set, the sgttyb NL2 flag is set;

TAB3 (if set)
sets the sgttyb XT ABS flag;

TAB3 (if clear)
clears the sgttyb XT ABS flag;

TABI (if set)
sets the sgttyb TBDELA Y flag;

TABI (if clear)
clears the sgttyb TBDELAY flag;

FFDL Y (if set)
sets the sgttyb VTDELA Y flag;

FFDL Y (if clear)
clears the sgttyb VTDELAY flag;

BSDL Y (if set)
sets the sgttyb BSDELA Y flag;

BSDL Y (if clear)
clears the sgttyb BSDELA Y flag.

When using TIOCGETP, the termio CBAUD field is mapped into the is peed and os peed entries of the
sgttyb structure. Also, the termio erase and kill characters are mapped into the erase and kill sgttyb
entries.

Note that, since there is not a one-to-one mapping between the sgttyb and termio structures, unexpec­
ted results may occur when using the older TIOCSETP and TIOCGETP calls. Thus, the TIOCSETP
and TIOCGETP calls should be replaced in all future code by the current eqUivalents, TCSETA and
TCGETA, respectively.

HARDWARE DEPENDENCIES
Series 200:

The ciflag field parameter IXANY (enable any character to restart output) is not supported by
the HP 98628B interface card.

The ciflag field parameter IENQAK (enable output pacing control) is not supported by the HP
98628B interface card.

Timed delays for the HP 98628B interface card are unpredictable due to the card's output buf­
fer.

The HP 98628B interface does not support the follOWing baud rates: 900, 7200, and 38400.
You must use 300 baud if you want to guarantee that no characters will be dropped in any con­
figuration.

38400 baud is not supported by the RS-232 interface.

European modems are not currently supported.

-10-

TTY(4)

FILES

TTY(4)

Series 500:
An additional terminal input control parameter is supported. It is IENQAK (0020000), which
enables pacing control.

38400 baud is not supported by the RS-232 interface.

European modems are not currently supported.

The following abbreviations are used for the following dependencies: ASI stands for the HP
27128A Asynchronous Serial Interface; MUX stands for the HP 27130A 8-Channel Asynchro­
nous Multiplexor; 520 stands for the internal terminal of the HP 9000 Model 520 computer.

[ASIIMUXl520] There is no support for output delays for certain characters, tab expansion, or
upper- to lower-case mapping.

[ASI/MUX] The kill character is echoed as <backslash><CR><LF>, and the ECHOK flag is
set equal to the ECHO flag.

[ASIIMUXl520] When the type-ahead limit is reached, input is not flushed. Rather, further
characters are either ignored (ASIIMUX) or cause a beep (520).

[ASIIMUX] There is no parity error marking on terminal input.

[ASI/MUX] The echoing of carriage-return and new-line characters may not be quite as expec­
ted in more obscure driver configurations.

[ASIIMUX] EOF character echoing is not suppressed on terminal input.

[ASIIMUX/520] There is no support for the ONLRET, ONOCR, and OCRNL flags on terminal
output.

[ASIIMUXl520] The MIN and TIME parameters for raw terminal input are not supported.

[ASIIMUXl520] The ECHONL flag is not supported.

[ASIIMUXl520] If ECHOE is set and ECHO is not, nothing is echoed for the erase character.

[ASI] The baud rate, number of bits/character, parity, and the CLOCAL flag are governed by
switches on the card.

[MUX] The CLOCAL flag is permanently set.

[ASI] On terminals that are hard-wired via direct-connect cables, the carrier-detect line is
always false (cleared). Thus, clearing the CLOCAL flag causes a hang-up signal to be sent.

[520] The following ioetl flags are not supported, because there is no asynchronous data com­
munication to deal with: IGNPAR, PARMRK, INPCK, IXOFF, IENQAK, CBAUD, CSIZE,
CSTOPB, PARENB, PARODD, HUPCL, CLOCAL, CRTS.

Idev/tty
Idev/tty*
I dev I console

SEE ALSO
stty(l), ioctl(2), stty(2), mknod(8).

-11-

INTRO(5)

NAME
intro - introduction to file formats

HP-UX COMPATIBILITY
Remarks: Header files are often used to hide hardware incompatibilities.

DESCRIPTION

INTRO(5)

This section outlines the formats of various files. The C struct declarations for the file formats are given
where applicable. Usually, these structures can be found in the directories lusr/include or
lusr/include/sys.

-1-

A.OUT(5) Series 200 Implementation A.OUT(5)

NAME
a.out - assembler and link editor output

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

Remarks: This manual page describes the a.out file format for the Series 200 computer. Refer to other
a.out(5) manual pages for descriptions valid for other implementations.

DESCRIPTION
A.out is the output file of the link editor ld. It will make a.out executable if there were no errors in link­
ing, and no unresolved external references. A file of the same structure but not executable is the output
of the assembler as.

This file has six sections: a header, the program text and data segments, a pascal interface section, a
symbol table, and text and data relocation information (in that order). The pascal interface text will only
be present in those pascal code segments that have not been linked. The last two sections may be mis­
sing if the program was linked with the -s option of ld (1) or if the symbol table and relocation bits were
removed by strip (1). Also note that if there were no unresolved external references after linking, the
relocation information will be removed.

The sizes of each segment (contained in the header, discussed below) are in bytes. The sizes of the text,
data and bss segments are four-byte aligned. The size of the header is not included in any of the other
sizes.

When an a.out file is loaded into memory for execution, three logical segments are set up: the text seg­
ment, the data segment (initialized data followed by uninitialized, the latter actually being initialized to all
O's), and a stack. The text segment begins at location 0x2000 in the core image; the header is not
loaded. If the magic number (the first field in the header) is Ox107, it indicates that the text segment is
not to be write-protected or shared, so the data segment will be contiguous with the text segment. If the
magic number is Ox108, the data segment begins at the first 0 mod Ox80000 byte boundary following
the text segment, and the text segment is not writable by the program; if other processes are executing
the same a.out file, they will share a single text segment.

The stack will occupy the highest possible locations in the core image: from OxlOOOOOO and growing
downwards. The stack is automatically extended as required. The data segment is only extended as
requested by the brk(2) system call.

The header entries dealing with symbolic debugging a_dstdir and a_dsyms are not currently being used.

The start of the text segment in the a.out file is hsize (the size of the header-64 decimal bytes); the start
of the data segment is hsize + a_text.

The value of a word in the text or data portions that is not a reference to an undefined external symbol is
exactly the value that will appear in memory when the file is executed. If a word in the text or data por­
tion involves a reference to an undefined external symbol, as indicated by the relocation information
(discussed below) for that word, then the value of the word as stored in the file is an offset from the asso­
ciated external symbol. When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

-1-

A.OUT(5) Series 200 Implementation

Header
The format of the a.out header for the MC68000 is as follows:

struct exec {

};

MAGIC
short
short
long
long
long
long
long
long
long
long
long
long
long
long
long
long

a_magic;
a_stamp;
a_dstdir;
a-Eiparehp;
a_text;
a_data;
CLbss;
a_trsize;
a_drsize;
a_pasint;
a~esyms;
a_dsyms;
a_entry;
a_spare1;
a_spare2;
CLspare3;
a-Eipare4;

Pascal Interface Section

1* magic number *1
I * version stamp * I

1* size of text segment *1
1* size of data segment *1
1* size of bss segment *1
1* size of text relocation info *1
I * size of data relocation info * I
I * size of interface text * I
1* size of symbol table *1

1* entry point of program *1

A.OUT(5)

The Pascal interface section consists of the ascii representation of the interface text for that Pascal
module.

The start of the Pascal interface section is:

hsize + a_text + a_data

Symbol Table
The symbol table consists of entries of the form:

struct nlist {
long

};

unsigned char
unsigned char
short
short

n_value;
n_type;
n~ength;

n_unit;
n-Eidindex;

Following this structure is n_length ascii characters which compose the symbol name.

The n_type field indicates the type of the symbol; the following values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol

One of these values ANDed with 040 indicates an external symbol. One of these values ANDed with
020 indicates an aligned symbol.

The start of the symbol table is:

hsize + a_text + a_data + a_pasint

-2-

A.OUT(5) Series 200 Implementation

Relocation
If relocation information is present, it amounts to eight bytes per relocatable datum.

The format of the relocation data is:

struct Linfo

};

long
short
char
char

Laddress;
Lsymbolnum;
Lsegment;
Liength;

The r_address field indicates the position of the relocation within the segment.

A.OUT(5)

The r_segment field indicates the segment referred to by the text or data word associated with the reloca­
tion word:

00 indicates the reference is to the text segment;
01 indicates the reference is to initialized data;
02 indicates the reference is to bss (uninitialized data);
03 indicates the reference is to an undefined external symbol.

The field r~ymbolnum contains a symbol number in the case of external references, and is unused oth­
erwise. The first symbol is numbered 0, the second 1, etc.

The field r_Iength indicates the length of the datum to be relocated.

00 indicates it is a byte
01 indicates it is a short
02 indicates it is a long
03 indicates it is a special align symbol

The start of the text relocation section is:

hsize + a_text + a_data + a_pasint + a_Iesyms.

The start of the data relocation section is:

hsize + a_text + a_data + a_pasint + a_Iesyms + a_trsize.

SEE ALSO
as(l), Id(l), nm(l), strip(l), magic(5).

-3-

A.OUT(5) Series 500 Implementation A.OUT(5)

NAME
a.out - executable linker output file

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: HP

Remarks: This manual entry describes the a.out file format for the Series 500. Refer to other a.out
manual pages for information valid for other implementations.

DESCRIPTION
A.out is the output file of the linker ld(l). Ld will make a.out executable if there are no errors during
compilation and linking, and no unresolved external references.

This file has five sections - a file header, a segment table, a segment information section, a symbol
tablets) section, and a name pool(s) section. It looks as follows:

File Header

Segment Table

Segment Information

- segment image (code/data)
- fix-up information (loader)
- relocation information (ld)

Symbol Tables:

- linker symbol table
- information for debugger

support (not currently
implemented)

Name Pool (strings)

Note that the above pictOrial representation represents the logical order of the file, not necessarily the
physical order. A description of each section of the file follows.

File Header
The a.out file header is conceptually divided into two pieces. The first is a section of "scalar" values,
and the second is a "file map" containing data pertaining to the rest of the file. The entire file header is
made up of 128 bytes of information, 32 of which make up the scalar section. The following is a pic­
torial representation of the scalar section:

Byte

o
4

8

12

16

20

24

28

System 10 File Type

Reserved for Future Use

Flags

Program Entry Point

Version Stamp

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

-1-

A.OUT(5) Series 500 Implementation A.OUT(5)

Each horizontal" slice" represents a word made up of four eight-bit bytes. The first word is called the
"magic number" , which is made up of two half-words called the system ID and the file type. The sys­
tem ID identifies the target machine upon which the object code will run. The file type specifies whether
or not the file is executable (hex 107), shareable (hex 108), or relocatable (hex 106).

The third word is used to specify the settings of three flags. The left-most three bits of this word are signi­
ficant; the remainder of the word is ignored. Bit 1, the left-most of the flag bits, marks the program as
using a single data segment, if set. You can override this with the -Tor -A ld options, which force the
program to reside in one or two data segments, respectively. Bit 2 marks the file as relinkable, if set
(meaning that the file contains relocation records and a symbol table). Bit 3 marks the file as debug­
gable, if set.

The Program Entry Point word contains an external program pointer (EPP) referencing the starting code
for the program. Ld normally assigns the starting address of the main program to this word. This can be
changed with the -e linker option.

The Version Stamp is a user-supplied 32-bit integer which is used to distinguish one version of an appli­
cation program from another. The user can specify this integer using the -V Id(l} option at link time.

The file map portion of the header looks as follows:

Byte

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

Code Segment Tbl: offset

Code Segment Tbl: size

Code Seg Images: offset

Code Seg Images: size

Data Segment Tbl: offset

Data Segment Tbl: size

Data Seg Images: offset

Data Seg Images: size

Link Symbol Tbl: offset

Link Symbol Tbl: size

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Name Pool: offset

Name Pool: size

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

-2-

A.OUT(5) Series 500 Implementation A.OUT(5)

Each offset entry in the file map shows where the given section starts, relative to the beginning of the
a.out file. Each size entry gives the size, in bytes, for that section.

Segment Table
The segment table collects, in one place, all information about the code and data segments making up
the program. The segment table consists of an array of entries. Each entry describes one code or data
segment of the program.

The following information is given for both code and data segment table entries:

a segment name, which consists of an offset into the name pool, relative to the beginning of the
name pool. This is useful for symbolically referring to code or data segments (not currently
implemented).

a segment type, which specifies one of three possible types of segments - code, direct data (in
GDS), or indirect data (in GDS or EDS).

a list of segment attributes. The segments can be paged, virtual, demand loadable, writable, and
privileged. The linker sets the attributes for executable files.

a segment offset, which references a particular code or data segment within the segment image
area. The reference is given relative to the beginning of the segment image area.

a segment size, which is the size, in bytes, of the particular code or data segment being described
in the entry.

a segment fixup size, which specifies the size, in bytes, of the loader fixup area in the particular
segment being described.

a segment relocation information size, which specifies the number of bytes of relocation records
for this segment.

The following information is given for data segment table entries only:

a segment limit, which specifies the maximum number of bytes that the indirect data segment
can contain. Attempting to increase the size beyond this stated limit results in an error. The
linker assigns a default value of 1.5 megabytes to this field, but it may be changed with the-m
chatr(l) option.

a segment zero-padding size, which is a byte count of the uninitialized data area. The linker com­
putes this value from the data relocation records.

The following information is given for code segment table entries only:

a segment local procedures count, which specifies the number of procedures defined in that seg­
ment, but only known locally within it.

a segment external procedures count, which specifies the number of procedures defined in that
segment, but externally known.

Several words are left unused in each segment table entry to allow for future growth.

Segment Information
This section of the file contains the segment images for each segment included in the final, executable
file. This section contains a subsection for each program segment. Each subsection is in turn made up
of three parts - the contents of the segment (code or data), a list of pointers that the loader must II fix
up II in that segment, and the relocation records for that segment. Each subsection looks as follows:

Code/Data Image

Loader Fixup Information

Relocation Records

-3-

A.OUT(5) Series 500 Implementation A.OUT(5)

The code image contains the compiled machine code for each program segment. The data image con­
tains an image of initialized data for the program. Contained in this code are pointers. The loader fixup
information area contains offsets that reference these pointers (the offsets are given relative to the begin­
ning of the code/data image area). These offsets must be "fixed up" at run time (Le., the program
loader exec must update the segment number fields with the correct values). The linker generates the
loader fixup information.

Symbol Tables
The linker symbol table contains data on relocatable symbols relevant to the linker (e.g. name and type
for each global symbol). Refer to nm(l) (Series 500 only) for a complete description of each symbol
type and the parameters associated with them. The contents of the symbol table may be listed in several
different ways with nm.

Name Pool
The name pool contains a list of null-terminated strings, which specify the names of the symbols in the
program. The symbol table entries contain indexes into the name pool instead of the names them­
selves. This permits arbitrarily long names to be used instead of fixed-length names. The first string in
the name pool is always a null string. This enables zero to be used as an index into the name pool for
entities which have no names.

SEE ALSO
magic(5).

-4-

AR(S) AR(S)

NAME
ar - archive file format

SYNOPSIS
#include <ar.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Ar(l) is used to concatenate several files into an archival file. Archives are used mainly as libraries to be
searched by the link editor Id(l).

A file produced by ar has a magic-number at the start, followed by the constituent files, each preceded
by a file header. The magic_number is a 32-bit word as defined in magic.h (see magic(5)). The header
of each file is 28 bytes long:

struct aLhdr {

};

long aLdate;
long aLsize;
short aLmode;
char aLuid;
char aLgid;
char aLname[14);
short aLfill:

Each file begins on an even byte boundary; null bytes are inserted between files if necessary.
Nevertheless, the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

All HP-UX versions share the same archive format, which may not match that of other UNIX machines.

SEE ALSO
ar(l), arcv(l), Id(l), magic(5).

-1-

CHECKLIST(5)

NAME
checklist -list of file systems processed by fsck

HP-UX COMPATIBILITY
Level: HP-UXfNUCLEUS

Origin: System III

DESCRIPTION

CHECKLIST(5)

Checklist resides in directory fete and contains a list of at most 15 special file names. Each special file
name is contained on a separate line and corresponds to a file system. Each file system will then be
automatically processed by the fsck (8) command.

HARDWARE DEPENDENCIES
Series 500:

There is no limit to the number of special file names in checklist.

SEE ALSO
fsck(8).

-1-

CORE(5) Series 200 Only CORE(5)

NAME
core - format of core image file

HP-UX COMPATIBILITY
Level: Assembly option - HP-UXISTANDARD

Origin: System III

Remarks: Core(S) is implemented on the Series 200 only.

DESCRIPTION
HP-UX writes out a core image of a terminated process when any of various errors occur. See signal(2)
for the list of reasons; the most common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is written in the process's working direc­
tory (provided it can be; normal access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for the process, including the
registers as they were at the time of the fault. The size of this section depends on parameters defined in
lusr/include/sys/param.h. The remainder represents the actual contents of the user's core area when
the core image was written. If the text segment is read-only and shared, or separated from data space, it
is not dumped.

The format of the information in the first section is described by the user structure of the system, defined
in lusr/include/sys/user.h. The important stuff not detailed therein is the locations of the registers,
which are outlined in lusr/include/sys/reg.h.

SEE ALSO
adb(1), setuid(2), signa1(2).

-1-

CPIO(5) CPIO(5)

NAME
cpio - format of cpio archive

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
The header structure, when the c option is not used, is:

struct {
short h_magic,

h_dev,
h~no,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2J,
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];
} Hdr;

When the c option is used, the header information is described by the statement below:

sscanf(Chdr, "%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%1110%6ho%1110" ,
&Hdr. h_magic,&Hdr. h_dev,&Hdr. h_ino, &Hdr. h_mode,
&Hdr. h_uid,&Hdr. h_gid,&Hdr. h_nlink,&Hdr. h_rdev,
&Longtime,&Hdr. h_namesize,&Longfile);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively. The contents of
each file is recorded together with other items describing the file. Every instance of h-magic contains the
constant 070707 (octal). The items h_dev through h_mtime have meanings explained in stat(2). The
length of the null-terminated path name h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Directories and the trailer are recor­
ded with h_filesize equal to zero.

It will not always be the case that h_dev and h_ino correspond to the results of stat(2), but the values are
always sufficient to tell whether two files in the archive are linked to each other.

When a device special file is archived by HP-UX cpio (using -x), h_rdev will contain a magic constant
which is dependent upon the implementation which is doing the writing. h_rdev flags the device file as
an HP-UX 32-bit device specifier, and h_filesize will contain the 32-bit device specifier (see stat(2)). If
the -x option is not present, special files are not archived or restored. Non-HP-UX device special files are
never restored.

SEE ALSO
cpio(l), find(l), stat(2).

-1-

CRONTAB(5) CRONTAB(5)

NAME
crontab - scheduling file for cron(8)

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
The file crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns that specify the minute (0-59), hour (0-23), day of the month (1-31), month of
the year (1-12), and day of the week (0-6, with 0 = Sunday). Each of these patterns may contain:

a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these numbers); or
an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at the specified time(s). A % in this field is transla­
ted into a new-line character. Only the first line (up to a % or the end of the line) of the command field is
executed by the shell. The other lines are made available to the command as standard input.

EXAMPLES

FILES

o 0 * * * letclbackup -fsck

This example executes backup(8) at midnight every night, all year long.

0,15,30,45 2-23 * * * lusr/lib/atrun

This example looks for and executes programs scheduled through at(l) every quarter hour from 2am
until 11 pm, every day, all year long.

lusr/lib/crontab

SEE ALSO
cron(8).

-1-

DlR(5) Series 200 Only DlR(5)

NAME
dir - format of directories

SYNOPSIS
#include <types.h>
#include <sys/dir.h>

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

Remarks: This entry describes the directory format for the Series 200. Refer to other dir(5) manual
pages for information valid for other implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory. The fact
that a file is a directory is indicated by a bit in the flag word of its i-node entry (seefs(5)). The structure
of a directory entry as given in the dir.h include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

};

d~no;
d_name[DIRSIZ];

By convention, the first two entries in each directory are for. and ... The first is an entry for the directory
itself. The second is for the parent directory. The meaning of .. is modified for the root directory of the
master file system; there is no parent, so .. has the same meaning as ..

SEE ALSO
fs(5).

-1-

DIR(5) Series 500 Implementation DIR(5)

NAME
dir - SDF directory format

SYNOPSIS
#include <types.h>
#include <sys/dir.h>

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: HP

Remarks: This entry describes the SDF directory format for the Series 500. Refer to other dir manual
pages for information valid for other implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory. The fact
that a file is a directory is indicated by a field in its i-node entry (see inode(5)). The structure of a direc­
tory entry as given in sys/dir.h is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif

struct direct
{

};

char
short
short
ino_t

d_name[DIRSIZ + 2];
cLobjecLtype;
d_file_code;
cLino;

/* 16-char file name * /
/* not referenced by UNIX * /
/* not referenced by UNIX * /
/* use fir # for i-node * /

The SDF implementation of directories eliminates the entries for . and ... Instead, this information is
available as part of the i-node.

File names are stored in directories in a special manner. There are two such cases:

When a file name has imbedded blanks, the blanks are represented by the null character on
the disc. This is apparent when accessing the disc via raw (character) mode.

When a file name is blank padded, all unspecified characters are set to blanks. Again, these are
only shown when reading from the disc in raw mode.

Reading from a directory that has been opened via open (2), shows file names to be null-terminated and
to have imbedded blanks where they belong.

SEE ALSO
fs(5), inode(5).

-1-

ERRFILE(5) Series 500 Implementation ERRFILE(5)

NAME
errfile - system error logging file

HP-UX COMPATIBILITY
Level: HP-UXJSTANDARD

Origin: HP

Remarks: This manual page describes errfile as implemented on the Series 500. Refer to other errfile
manual pages for information valid for other implementations.

DESCRIPTION

FILES

Errfile is a logging file containing lines of ASCII text. Each line describes certain system errors that have
occurred, or warnings about serious system conditions. Only those system error messages deemed
serious enough to be of interest to the system administrator are logged. Urgent messages are also writ­
ten to /dev/console.

HP-UX creates errfile if it does not exist.

The system administrator needs to check the contents of errfile periodically and note errors that need
his/her attention. Also, errfile tends to grow without bounds, so outdated information needs to be remo­
ved on a regular basis.

/usrladm/ errfile

-1-

FS(5) Series 200 Only FS(5)

NAME
fs - format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

Remarks: This manual page describes the format of the system volume as implemented on the Series
200. Refer to other Is(5) manual pages for information valid for other implementations.

DESCRIPTION
Every file system storage volume (e.g., RP04 disc) has a common format for certain vital information.
Every such volume is divided into a certain number of 256 word (512 byte) blocks. Block 0 is unused
and is available to contain a bootstrap program or other information.

Block 1 is the super-block. Starting from its first word, the format of a super-block is:

1 * fundamental constants of the filesystem *1

#define BSIZE 1024
#define BMASK (BSIZE-l)

#define NINDIR
#define NMASK

#define INOPB
#define INOMOD

#define ROOTINO
#define SUPERB

#define DIRSIZ

#if (BSIZE = = 1024)
#define INOSHFT
#define BSHIFT
#define NSHIFT
#define NICINOD
#define NICFREE
#endif

#if (BSIZE= =512)
#define INOSHFT
#define BSHIFT
#define NSHIFT
#define NICINOD
#define NICFREE
#endif

(BSIZE/sizeof(daddLt))
(NINDIR-l)

(BSIZE/sizeof(struct dinode))
(INOPB-l)

((ino_t)2)
((daddLt)I)

14 1 * max characters per directory * 1

4
10
8
250
100

3
9
7
100
50

1* LOG2(INOPB) *1
1* LOG2(BSIZE) *1
1* LOG2(NINDIR) *1
1* no. of superblock inodes *1
1* no. of superblock free blocks *1

1* LOG2(INOPB) *1
1* LOG2(BSIZE) *1
1* LOG2(NINDIR) *1
1 * no. of superblock inodes *1
1* no. of superblock free blocks *1

1* Some macros for units conversion *1

1 * pages to disk blocks * 1
#define ctod(x) (x*(BSIZE/PAGESIZE))

1* inumber to disk address *1

1* or 512; block size *1
1* BSIZE-l *1

1* NINDIR-l *1

1* in odes per block *1
1* value for offset *1

1* inumber of all roots *1
1* superblock block no. *1

#define itod(x) (daddLt)((((unsigned)x + INOPB*2-1»>INOSHFT))

-1-

FS(5) Series 200 Only

1* inumber to disk offset *1
#define itoo(x) (int)(((unsigned)x + INOPB*2-1)&INOMOD)

1* structure of the super-block *1

struct filsys
{

};

long
daddLt
long
daddLt
long
ino_t
char
char
char
char
time_t
short
daddLt
ino_t
char
char

s~size;

Lfsize;
Lnfree;
Lfree[NICFREE];
s_ninode;
Linode[NICINOD];
s_flock;
s_ilock;
Lfmod;
s_ronly;
s_time;
s_dinfo[4];
Ltfree;
s_tinode;
Lfname[6];
Lfpack[6];

1* i-list size (blocks) *1
1* entire volume size (blocks) *1
I * no. of addresses in s_free * I
1* free block list *1
1* no. of i-nodes in s_inode *1
1* free i-node list *1
1* lock during free list manipulation *1
1* lock during i-list manipulation *1
I * super block modified flag * I
1* mounted read-only flag *1
I * last super block update * I
1* device information *1
1* total free blocks *1
1* total free inodes *1
I * file system name * I
1* file system pack name *1

FS(5)

S_isize is the address of the first data block after the i-list; the i-list starts just after the super-block, in
block 2. Thus, the i-list is Lisize-2 blocks long. S_fsize is the first block not potentially available for allo­
cation to a file. These numbers are used by the system to check for bad block numbers; if an "impos­
sible" block number is allocated from the free list or is freed, a diagnostic is written on the on-line con­
sole. Moreover, the free array is cleared, so as to prevent further allocation from a presumably corrup­
ted free list.

The free list for each volume is maintained as follows. The Lfree array contains, in Lfree[ll, ... ,
Lfree[Lnfree-ll, up to NICFREE-l numbers of free blocks. S-free[O] is the block number of the head
of a chain of blocks constituting the free list. The first long in each free-chain block is the number (up to
NICFREE) of free-block numbers listed in the next NICFREE longs of this chain member. The first of
these NICFREE blocks is the link to the next member of the chain. To allocate a block, decrement
Lnfree, and the new block is Lfree[Lnfree]. If the new block number is 0, there are no blocks left, so an
error is given. If Lnfree became 0, the block named by the new block number is read, Lnfree is replaced
by its first word, and the block numbers in the next NICFREE longs are copied into the Lfree array. To
free a block, check if Lnfree is NICFREE; if so, copy LJI,free and the Lfree array into it, write it out, and
set Lnfree to 0. In any event set Lfree [Lnfree] to the freed block's number and increment Lnfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the Linode array. To allocate an i-node: if Lninode is
greater than 0, decrement it and return Linode[s-.ninode]. If it was 0, read the i-list and place the num­
bers of all free i-nodes (up to NICINOD) into the Linode array, then try again. To free an i-node (provi­
ded Lninode is less than NICINOD), place its number into Linode[Lninode] and increment Lninode. If
Lninode is already NICINOD, do not bother to enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the information as to whether the i-node is really free or not is
maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_flock and Lilock are flags maintained in the core copy of the file system while it is mounted and their
values on disc are immaterial. The value of Lfmod on disc is likewise immaterial; it is used as a flag to
indicate that the super-block has changed and should be copied to the disc during the next periodic

-2-

FS(5)

FILES

Series 200 Only FS(5)

update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a
reboot, the Ltime of the super -block for the root file system is used to set the system's idea of the time.

S_fname is the name of the file system and s-fpack is the name of the pack.

I-numbers begin at 1. and the storage for i-nodes begins in block 2. Also, i-nodes are 64 bytes long, so 8
of them fit into a block. Therefore, i-node i is located in block (i + 31)/16, and begins
64 x ((i + 31) (mod 16)) bytes from its start. I-node 1 is reserved forfuture use. I-node 2 is reserved for
the root directory of the file system, but no other i-number has a built-in meaning. Each i-node
represents one file. For the format of an i-node and its flags, see inode(5).

lusr/include/sys/filsys. h
lusr/include/sys/stat. h

SEE ALSO
inode(5), fsck(8), fsdb(8), mkfs(8).

-3-

FS(5) Series 500 Implementation FS(5)

NAME
fs - format of system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/filsys.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: This manual page describes the format of the system volume as implemented on the Series
500. Refer to other fs manual pages for information valid for other implementations.

DESCRIPTION
Every Structured Directory Format (SDF) volume is divided into logical blocks, the size of which is selec­
ted when init is executed. Block 0 is the superblock. It has the following format:

struct filsys {
ushort
ushort
char
time_ios
int
daddLt
int
daddLt
int
daddLt

};

Lcorrupt;
Lfname[161;
Linit;
Lblksz;
Lboot;
Lbootsz;
Lfa;
Lversion;
Lmaxblk;
s_passwd[161;
Lbkup;

1* disc fmt, should = Ox700 Unix *1
1* non-zero if directory corrupt *1
1* root dir name, blank padded *1
1* date initialized I unique id *1
1* no. bytes per block *1
1* boot area starting block *1
I * size of boot area in blks *1
1* FA file starting block *1
1* version no., 0 for Unix *1
1* largest addressable blk *1
1* volume password, Unix unused *1
1* last backup date, Unix unused *1
1* rest of blk unused *1

The file attributes file (FA file) begins at the block specified by Lfa in the superblock. It has five major
sections:

Entry 0: I-node for FA file

Entry 1: I-node for root dir (/)

Entry 2: Unused

Entry 3: Free map

Entry n:

Entry n + 1: File entries

End of FA File

-1-

FS(5)

FILES

Series 500 Implementation FS(5)

Each entry consists of 128 bytes. Entry 0 is the i-node of the FA file itself (see inode(5) for a description
of the i-node structure). Entry 1 is the i-node for the file system's root directory, I.

Entry 3 through entry n consists of the free map, which keeps track of every free (unused) block of
memory on the device. The free map contains a bit for each block on the device. If a bit is set, the
corresponding block of memory is free; otherwise, the corresponding block is being used. The free map
is zero-padded to guarantee that it ends on a 128-byte boundary.

Entry n + 1 through the end of the FA file contains an entry for every file in the system. Each entry is
either an i-node, an extent map, or unused. An extent map contains 128 bytes of information, and
looks as follows:

struct em_rec {
ushort
ushort
int
ino_t
ino_t
ino_t
daddLt
struct {

e_exnum;
e_res1;
e_next;
e_last;
e_inode;
e_boffset;

1* = 2 for extent maps * I
1* # extents in this rec. * I
1* unused *1
I * next map in list; none = neg * I
I * last map in list; none = neg *1
1* owneri-node no. *1
1* blk offset of 1st extent from start of file *1

daddLt e~tartblk; I * extent start blk *1
int e_numblk;
e_extent[13l;

};

lusr/include/sys/param. h
lusr/include/syslfilsys. h
lusr/include/sys/ino. h

1 * # blks in extent * I

SEE ALSO
inode(5), fsck(8).

-2-

FSPEC(5) FSPEC(5)

NAME
fspec - format specification in text files

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
It is sometimes convenient to maintain text files on UNIX with non-standard tabs, (Le., tabs which are not
set at every eighth column). Such files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can be processed by UNIX com­
mands. A format specification occurring in the first line of a text file specifies how tabs are to be expan­
ded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded by the
brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately by a value.
The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must be one of the
following:

1. a list of column numbers separated by commas, indicating tabs set at the specified
columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t-8, or equivalently, tl,9,17,25,etc. The canned tabs which
are recognized are defined by the tabs (1) command.

SSlze The S parameter specifies a maximum line size. The value of size must be an integer. Size
checking is performed after tabs have been expanded, but before the margin is prepended.

mmargzn The m parameter specifies a number of spaces to be prepended to each line. The value of
margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the format
specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to prevail
only until another format specification is encountered in the file.

Default values, which, are assumed for parameters not supplied, are t-8 and mO. If the S parameter is
not specified, no size checking is performed. If the first line of a file does not contain a format specifica­
tion, the above defaults are assumed for the entire file. The following is an example of a line containing
a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d parameter.

SEE ALSO
ed(1}, tabs(1}.

BUGS
Does not work with vi (1) and ex (I).

-1-

GROUP(5) GROUP(5)

NAME
group, grp. h - group file

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

FILES

fete/group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in group

This is an ASCII file. The fields are separated by colons; each group is separated from the next by a
new-line. If the password field is null, no password is demanded.

Actually, /etc/passwd defines the group id for each user. fete/group exists to supply names for each
group, and to support changing groups via newgrp(l).

This file resides in directory fete. Because of the encrypted passwords, it can and does have general
read permission and can be used, for example, to map numerical group ID's to names.

Grp.h describes the group structure returned by getgrent(3), etc:

struct group { /* see getgrent(3) */
char *gLname;
char *gLpasswd;
int gLgid;
char **gLmem;

};

fete/group

SEE ALSO

BUGS

newgrp(1), passwd(l), crypt(3C), getgrent(3), passwd(5).

There is no tool that helps you ensure that /etc/passwd and /etc/group are compatible.

There is no tool that helps you set group passwords in fete/group.

-1-

INITTAB(5) INITTAB(5)

NAME
inittab - control information for init(8)

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

FILES

When a system state is entered, init reads the file /etc!inittab. Entries in this file have the format:

state:id:flags:command

The state field contains an integer in the range 1 through 9. When init reads inittab, only those lines
beginning with an integer matching init's new state are read and evaluated.

fd is a two-character string supplied by the user. This string is associated with the process created by the
inittab entry, if any. fd can then be used to refer to that process in later entries in inittab, without
having to know its process number.

Flags can be any of the characters c, 0, t, and/or k. The 0 flag specifies that init is to ignore the entry.
The t and k flags specify that the existing process (if any) associated with id is to be terminated (signal
15) or killed (signal 9), or both. They may be specified in either order. Note that the signal is sent to all
processes in the process group associated with id, at the time the new state is entered. The c flag speci­
fies that the process associated with id is to be continually reinvoked each time it terminates. This field
may be left blank, in which case the created process, if any, is spawned only once and allowed to ter­
minate.

Command is a character string specifying a shell command to be invoked. The string may include any
legal arguments for the command, as well as I/O redirection and/or pipeline symbols. fnit spawns a shell
to execute the command. The resulting process is remembered by the specified id. All processes run as
if invoked by the super-user. Each process is a group leader. This field may be empty, in which case no
new process is created.

/etc/inittab

SEE ALSO
init(8).

-1-

INODE(5)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

Series 200 Only INODE(5)

Remarks: This entry describes the i-node structure for the Series 200. Refer to other inode(5) manual
pages for information valid for other implementations.

DESCRIPTION

FILES

An i-node for a plain file or directory in a file system has the folloWing structure as defined by
<sys/ino.h>:

1* Inode structure as it appears on a disk block * I
struct dinode
{

};
#define

ushort
short
ushort
ushort
ofLt
union {

}dLun;
time_t
time_t
time_t

dLmode;
dLnlink;
dLuid;
dLgid;
dLsize;

dLatime;
dLmtime;
dLctime;

dLaddr
#define dLrdev
1*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*1

I * mode and type of file *1
1* number of links to file *1
I * owner's user id * I
I * owner's group id * I
1* number of bytes in file *1

dLa[40l;
dLr;

1* disk block addresses *1

I * time last accessed * I
I * time last modified * I
I * time created *1

dLun.dLa
dLun.dLr

For the meaning of the defined types off-t and time_t see types (7).

lusr/include/sys/ino. h

SEE ALSO
stat(2), fs(5), types(7).

-1-

INODE(5)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ino.h>

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Series 500 Implementation INODE(5)

Remarks: This entry describes the i-node structure for the Series 500. Refer to other inode manual
pages for information valid for other implementations.

DESCRIPTION
An i-node for an ordinary file or directory in a file system has the following structure, as defined in
sys/ino.h:

/*
* I-node structure as it appears on disc. This i-node is actually
* a file information record (FIR) in the HP SDF disc format.
*/

struct din ode {
ushort dUype
ushort dUtype;
ushort dLcount;
short dLuftype;
time-ios dLctime;
unsigned dLother;
ino_t dLprotect;
ino_t dLiabel;
int dLblksz;
int dLmax;
ushort dLexsz;
ushort dLexnum;
struct {

daddLt dLstartblk;
int dLnumblk;

} dLextent[4];
ino_t dLexmap;

int dLsize;

/* Warning! Next 2 fields apply only to directories * /

dLparent;
dLname[16];

/* The remaining fields defined only for local * /
/* implementation of structured directory format. * /

time_t
time-ios
int
ushort

dLatime;
dLmtime;
dLrecsz;
dLuid;

-1-

/* = 1 for inodes * /
/* file type * /
/* reference count * /
/* user file type (LIF) * /
/* time created * /
/* public capabilities * /
/* file protect rec. none = -
/* file label rec. none = -1 ~

/* file size in blocks * /
/* largest byte writable */
/* recom. extent size * /
/* no. i-node extents (1-4)

/* extent start blk */
/* no. blks in extent * /

/* inode 1st extent map * /
/* none = -1 */
/* current size, bytes * /

/* inode of parent * /
/* name of this directory *,

/* time last accessed */
/* time last mod. * /
/* logical record size * /
/* owner's user id * /

INODE(5) Series 500 Implementation

};

ushort
ushort
char

dLgid;
dLmode;
dLres2[2];

1* The next field used only if file is *1
1* a device file; otherwise it is zero *1

dLdev;

The meaning of the type declarations included above can be found in rypes(7).

FILES
lusr/include/sys/ino. h

SEE ALSO
dir(5), fs(5), types(7).

-2-

INODE(5)

1* owner's group id *1
1* mode, type of file *1
1* unused *1

1* description of device *1

MAGIC(5) MAGIC(5)

NAME
magic - magic numbers for HP-UX implementations

SYNOPSIS
#include <magic.h>

HP-UX COMPATIBILITY
Level: Use: HP-UXIRUN ONLY

Header: HP-UXIDEVELOPMENT

Origin: HP

DESCRIPTION
Magic.h localizes all information about HP-UX "magic numbers" in one file, and thus facilitates uni­
form treatment of this entity. This file specifies the offset of the number within a file (always the start of
the file) and the structure of that field:

struct magic_number
{
unsigned short int system~d;
unsigned short int file_type;

};
typedef struct magic_number MAGIC;

Magic.h includes definitions for the system IDs of all HP machines running HP-UX, and file types that
are common to all implementations. There may be additional implementation-dependent file types.
The predefined file types are:

/* for object code files * /
#define RELOC~AGIC Ox106 /* relocatable only */
#define EXEC~AGIC Ox107 /* normal executable */
#define SHARE-MAGIC Ox108 /* shared executable */

/* for archive files * /
#define AFLMAGIC OxFF65 /* ar format * /

SEE ALSO
ar(l), chatr(l), Id(l), a.out(5), ar(5)

BUGS
Cpio files use a different form of magic number that is incompatible with magic (5).

-1-

MKNOD(5) MKNOD(5)

NAME
mknod - create a special file entry

SYNOPSIS
#include <mknod.h>

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

DESCRIPTION
Mknod.h provides utilities to pack and unpack device names as used by mknod(2). It contains the
macro dev = makedev(major, minor) which packs the major and minor fields into a form suitable for
mknod(2). It also contains major(dev) and minor(dev) which extract the corresponding fields. The
macro MINOfLFORMA T is a print! specification that prints the minor field in the format best suited to
the particular implementation. The specification given by MINOR-FORMAT must cause the resulting
string to indicate the base of the number in the same format as that used for C: no leading zero for
decimal, leading zero for octal, and leading zero and 'x' for hexadecimal.

When a minor field is printed in the format specified by MINOR-FORMAT, each sub-field contained in
the minor will be wholly contained in the mininum possible number of digits of the resulting string.
(Splitting a field across unnecessary digits for the sake of packing is not done.)

SEE ALSO
mknod(2), section 4, mknod(8).

-1-

MNTTAB(5) MNTTAB(5)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <sys/types.h>

struct mnttab {
char
char
short
time_t

mLdev[MNTLEN];
mLfilsys[MNTLEN];
mLrojlg;
mLtime;

};

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices mounted by the mount(l) command.

Each entry is (2 x MNTLEN + 6) bytes in length (MNTLEN is defined in /usr/include/mnttab.h). The
first MNTLEN bytes are the null-padded name of the place where the special file is mounted; the next
MNTLEN bytes represent the null-padded root name of the mounted special file; the remaining 6 bytes
contain the mounted special file's read/write permissions and the date on which it was mounted.

The maximum number of entries in mnttab is based on the system parameter NMOUNT defined in
/usr/include/mnttab.h, which defines the maximum number of mounted special files allowed.

/usr/include/mnttab.h also contains the declaration of the mnttab structure shown above. You can
include mnttab.h instead of declaring the structure explicitly. Either way, /usr/include/sys/types.h must
be included before the structure declaration.

HARDWARE DEPENDENCIES
Series 200:

MNTLEN = 10, NMOUNT = 20.

Series 500:
MNTLEN = 17, NMOUNT = 20.

SEE ALSO
mount(l).

-1-

MODEL(5) MODEL(5)

NAME
model- HP-UX machine identification

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: HP

SYNOPSIS
#indude <model.h>

DESCRIPTION
There are some distinctions between the implementations of HP-UX due to hardware differences.
Where such distinctions exist, conditional compilation or other definitions can be used to isolate the dif­
ferences. Flags and typedefs to resolve these distinctions are collected in model.h. This file contains con­
stants indentifying various HP-UX implementations. The current values are:

HP _S~OO 1* HP 9000 Series 200 *1
HP _S_500 1* HP 9000 Series 500 *1

Other such constants will be added as HP-UX extends to other machines.

In addition, model.h has a statement defining the preprocessor constant MYSYS to represent the speci­
fic implementation for which compilation is desired. MYSYS will be equal to one of the constants
above.

Conditional compilation may be used to adapt one file for execution on more than one HP-UX
implementation, if it contains implementation- or architecture-dependent features. For instance,

#if MYSYS = = HP _S~OO
<statements>

#endif

will cause the statements following the if statement to be compiled only for the HP 9000 Series 200.

Model.h also contains typedefs for several predefined types to enhance portability of certain types of
code and of files.

iot8
tLint8
iot16
u_int16
int32
u_int32
iot64
tLint64
machptr
tLmachptr
longmachptr
tLloogmachptr

HARDWARE DEPENDENCIES
Series 200:

A conditional compilation variable, HP _9000_S_200, is implemented. It is predefined to the C
preprocessor.

Series 500:
A conditional compilation variable, HP _9000_S_500, is implemented. It is predefined to the C
preprocessor.

SEE ALSO
cc(l), cpp(l), magic(5).

-1-

PASSWD(5) PASSWD(5)

NAME
passwd, pwd. h - password file

HP-UX COMPATIBILITY
Level: Multi-user - HP-UXISTANDARD

Origin: System III

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group 10
comment field
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon. Each user
is separated from the next by a new-line. If the password field is null, no password is required. If the
Shell field is null, Ihin/sh is used.

This file resides in directory lete. Because of the encrypted passwords, it can and does have general
read permission and can be used, for example, to map numerical user 10' s to names.

The encrypted password consists of 13 characters chosen from a 64 character alphabet (., I, 0-9, A-Z,
a-z) , except when the password is null, in which case the encrypted password is also null. Login can be
prevent by entering in the password field a character that is not part of the above alphabet (e.g. *).

Each character in the above alphabet is part of the base 64 character set, and has a decimal value as
shown in the following table:

Base 64 Character: I 0-9 A-Z a-z

Decimal Equivalent: 0 1 2-11 12-37 38-63

Password aging is effected for a particular user if his encrypted password in the password file is followed
by a comma and a non-null string of characters from the above alphabet. (Such a string must be intro­
duced in the first instance by the super-user.) This string defines the "age" needed to implement
password aging. The first character of the age denotes the maximum number of weeks for which a
password is valid. A user who attempts to login after his password has expired will be forced to supply a
new one. The next character denotes the minimum period in weeks which must expire before the
password may be changed. The remaining characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string is equivalent to zero.)

If the first and second characters are both zero (Le. first and second characters are both"."), the user
will be forced to change his password the next time he logs in (and the "age" will disappear from his
entry in the password file). If the second character has a greater decimal eqUivalent than the first (e.g.
".!"), only the super-user will be able to change the password.

Pwd.h deSignates the broken out password file as obtained by getpwent(3C):

struct passwd {
char
char
unsigned int

*pw_name;
*pw_passwd;
*pw_uid;

-1-

PASSWD(5)

};

unsigned int
char
char
char
char
char

*pw_gid;
*pw_age;
*pw_comment;
*pw_gecos;
*pw_dir;
*pw_shell;

PASSWD(5)

A range of 0-99 is suggested for user and group 10's (pw_uid and pw4id in the above structure).

HARDWARE DEPENDENCIES
Series 200/500:

FILES

The following fields have character limitations as noted:

the login name field can be no longer than 8 characters;

the initial working directory field can be no longer than 63 characters;

the program field can be no longer than 44 characters.

The results are unpredictable if these fields are longer than the limits specified above.

letc/passwd

SEE ALSO
login(l), passwd(l), a641(3C), crypt(3C), getpwent(3C), group(5).

-2-

PROFILE(5) PROFILE(5)

NAME
profile - set up user's environment at login time

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

If the file /etc/profile exists, it is executed by the shell for every user who logs in. /etciprofile should be set
up to do only those things that are desirable for every user on the system, or to set reasonable defaults.

If your login (home) directory contains a file named .profile, that file will also be executed by the shell
before your session begins. .Profile files are useful for setting various environment parameters, setting
terminal modes, or overriding some or all of the results of executing fete/profile.

/etc/profile
$HOME/. profile

SEE ALSO
env(1), login(1), mail(l), sh(1), stty(1), su(1), environ(7), term(7).

-1-

RANLIB(5) RANLIB(5)

NAME
ranlib - table of contents format for object libraries

SYNOPSIS
#include <ranlib.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

DESCRIPTION
Ranlib creates a table of contents for object file libraries, thus allowing the linker ld to scan libraries in
random (rather than sequential) order.

Ranlib executes the ar command to install the table of contents as the first element of the library. The
file name of the table of contents is always __ .SYMDEF.

The table of contents lists each externally known name in the archive, together with the offset of the
archive element that defines that name. This offset is useful as an input argument to Iseek(2) or fseek(3).

HARDWARE DEPENDENCIES
Series 500:

The __ .SYMDEF file contains the table of contents and a name pool of strings (the names of
external symbols). This allows for symbols with arbitrarily long names. The rLhdr structure
defines the layout of the file, and the rLref structure defines the contents of a table of contents
entry. These structures have the following format:

struct rLhdr {

};

long int rLtcbas;
long int rLtclen;
long int rLnmbas;
long int rLnmlen;

struct rLref {

};

long int name_pas;
long int lib_pas;

1* offset of table *1
1* length of table *1
1* offset of name pool *1
1* length of name pool *1

1* index into name pool *1
1* offset of defining file * 1

Series 200:

SEE ALSO

The __ .SYMDEF file contains a header, a name pool of strings (the names of external sym­
bols), and the table of contents. This allows for symbols with arbitrarily long names. The
header contains a short integer which specifies the number of ranlib entries, and a long integer
which specifies the size of the string table. Following this is the name pool. The last section of
the file contains the ranlib entries. The structure of these entries is defined below:

typedef long ofLt;

struct ranlib {
union {

} ran_un;

ofLtraru;trx;
char *rarLname;

ofLt ran_off;
};

1* string table index *1

1* lib member offset *1

ar(1), ld(1), ranlib(1), ar(5).

-1-

SCCSFILE (5) SCCSFILE (5)

NAME
sccsfile - format of sees file

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
An secs file is an ASCII file. It consists of six logical parts: the checksum, the delta table (contains infor­
mation about each delta), user names (contains login names and/or numerical group IDs of users who
may add deltas), flags (contains definitions of internal keywords), comments (contains arbitrary descrip­
tive information about the file), and the body (contains the actual text lines intermixed with control lines).

Throughout an secs file there are lines which begin with the ASCII SOH (start of heading) character
(octal 001). This character is hereafter referred to as the control character and will be represented gra­
phically as @. Any line described below which is not depicted as beginning with the control character is
prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sces file. The form of the line is:

cajhDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The @h
provides a magic number of (octal) 000550 (0168 hex).

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <sees 10> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD .. .
@xDDDDD .. .
@gDDDDD .. .
@m <MR number>

@c <comments> .. ,

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively. The
second line (@d) contains the type of the delta (currently, normal: 0, and removed: R), the
sces ID of the delta, the date and time of creation of the delta, the login name corresponding
to the real user ID at the time the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c lines
contain comments associated with the delta.

-1-

SCCSFILE(5) SCCSFILE(5)

The @le line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may add deltas to the file,
separated by new-lines. The lines containing these login names and/or numerical group IDs are
surrounded by the bracketing lines (aJu and (a;u. An empty list allows anyone to make a delta.

Keywords used internally (see admin(l) for more information on their use). Each flag line takes
the form:

(a)f <flag> <optional text>

The following flags are defined:
@lft <type of program>
@If v <program name>
(aJfi
@fb
(a)f m <module name>
@ff <floor>
(a)f c <ceiling>
@fd <default-sid>
@fn
@fj
@fl <lock-releases>
@f q <user defined>

The t flag defines the replacement for the % Y% identification keyword. The v flag controls
prompting for MR numbers in addition to comments; if the optional text is present it defines an
MR number validity checking program. The i flag controls the warning/error aspect of the "No
id keywords" message. When the i flag is not present, this message is only a warning; when the
i flag is present, this message will cause a "fatal" error (the file will not be gotten, or the delta
will not be made). When the b flag is present the -b keyletter may be used on the get com­
mand to cause a branch in the delta tree. The m flag defines the first choice for the replacement
text of the %M% identification keyword. The f flag defines the "floor" release; the release
below which no deltas may be added. The c flag defines the "ceiling" release; the release
above which no deltas may be added. The d flag defines the default SID to be used when none
is specified on a get command. The n flag causes delta to insert a "null" delta (a delta that
applies no changes) in those releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n flag causes skipped releases to be completely empty. The j flag causes get to allow concurrent
edits of the same base SID. The I flag defines a list of releases that are locked against editing
(get(1) with the -e keyletter). The q flag defines the replacement for the %Q% identification
keyword.

Comments
Arbitrary text surrounded by the bracketing lines @t and (wT. The comments section typically
will contain a deSCription of the file's purpose.

Body The body consists of text lines and control lines. Text lines don't begin with the control charac­
ter, control lines do. There are three kinds of control lines: insert, delete, and end, represented
by:

(cdDDDDD
(ci;DDDDDD
(cl;EDDDDD

-2-

sees FILE (5) sees FILE (5)

respectively. The digit string is the serial number corresponding to the delta for the control line.

SEE ALSO
admin(l), delta(1), get(l), prs(l).
Source Code Control System User's Guide in HP-UX Selected Articles.

-3-

TERMCAP(5) TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
letc!termcap

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Termcap is a data base describing terminals used by vi(l). Terminals are described in termcap by giving
a set of their capabilities, and by describing how operations are performed. Padding requirements and
initialization sequences are included in termcap.

Entries in termcap consist of a number of colon-separated fields. The first entry for each terminal gives
the names which are known for the terminal, separated by vertical bar characters. The first name is
always 2 characters long. The second name given is the most common abbreviation for the terminal,
and the last name given should be a long name fully identifying the terminal. The second name should
contain no blanks; the last name may contain blanks for readability.

Several examples of termcap entries for various terminals are included in the"following discussion. These
examples do not imply support of the associated terminals. Also, note that the termcap data base may
contain entries that have not been tested for various unsupported terminals.

Capabilities
In the following list, (P) indicat~s padding may be specified, and (P*) indicates that padding may be
based on the number of lines affected.

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not ~H
bs bool Terminal can backspace with ~H
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default ~M)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line

-1-

TERMCAP(5) TERMCAP(5)

dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei =:" if ic
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default AL)
hc bool Hardcopy terminal
hd str Half-line down (forward 1I2linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 1I2linefeed)
hz str Hazeltine; can't print -, s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give ":im =:" if ic
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terrninalleft arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
li num Number of lines on screen or page
11 str Last line, first column (if no em)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default "'-n)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal- must be last
te i str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though it doesn't overstrike

-2-

TERMCAP(5) TERMCAP(5)

up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
xb bool Beehive (£1 = escape, f2 = ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ce ""r ""n (Delta Data)
xs bool Standout not erased by writing over it (HP 2647)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry
The following entry describes the HP 2622 terminal.

hhl26221hp26221hp 26221hp 262x series: ""
:if = /usr/lib/tabsetlstdcrt: ""
:al = ""ELam: bs: bt = ""Ei: ""
:cd = ""EJ:ce = ""EKch = ""E&a%dC:cl = ""EH""EJ: ""
:cm = ""E&a%dy%dC:cv = ""E&a%dY: ""
:co#80:da:db:dc = ""EP:dl = ""EM:do = ""EB:ei = ""ER: ""
:im = ""EQ:ml = ""El:mu = ""Em: ""
:kb = 'H:kd = ""EB: kh = ""Eh: kl = ""ED: kr = ""EC: ku = ""EA ""
:ke = ""E&sOAks = ""E&slA ""
:li#24:mi:nd = ""EC:pt: ""
:se = ""E&d@:so = ""E&dB: ""
:ue = ""E&d@:ul:us= ""E&dD: ""
:up = ""EAxs:

Entries may continue onto multiple lines by giving a "" as the last character of a line, and empty fields
may be included for readability. Capabilities in termcap are of three types:

boolean capabilities which indicate that the terminal has some particular feature;

numeric capabilities giving dimensions of the terminal or the length of particular delays;

string capabilities, which give a sequence which can be used to perform particular terminal
operations.

Types of Capabilities
All capabilities have two-letter codes. For instance, the fact that a terminal has "automatic margins"
(Le. an automatic return and linefeed when the end of a line is reached) is indicated by the boolean
capability am. Hence the description of such a terminal includes am.

Numeric capabilities are followed by the character # and then a value. For example, co indicates the
number of columns on a terminal. Therefore, co#80 gives the value 80 as the number of columns for a
terminal.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the two charac­
ter code, an =, and then a string terminated with a:. A delay in milliseconds may appear after the = in
such a capability, and padding characters are supplied by the editor after the remainder of the string is
sent to proVide this delay. The delay can be either an integer (e.g. 20), or an integer followed by an *
(e.g. 3*). A * indicates that the padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-unit padding required. When a * is specified, it is
sometimes useful to give a delay of the form 3.5*, to specify a delay per unit to tenths of milliseconds.

A number of escape sequences are proVided in the string valued capabilities for easy encoding of
characters there. A ""E maps to an ESCAPE character, 'x maps to a control-x for any appropriate x, and
the sequences ""n ""r ""t ""b ""f give a newline, return, tab, backspace and formfeed, respectively.
Finally, characters may be given as three octal digits after a "", and the characters' and"" may be given
as "'" and"" "". If it is necessary to place a : in a capability it must be escaped in octal as ",,072. If it is
necessary to place a null character in a string capability it must be encoded as ""200. The routines

-3-

· TERMCAP(5) TERMCAP(5)

which deal with termcap use C strings, and strip the high bits of the output very late so that ",200 comes
out as "'000.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the description of a similar ter­
minal in termcap and to build up a description gradually, using partial descriptions with ex to verify that
they are correct. Be aware that a very unusual terminal may expose deficiencies in the ability of the
termcap file to describe it, or bugs in ex. To easily test a new terminal description you can set the environ­
ment variable TERM CAP to a path name of a file containing the description you are working on, and the
editor will look there rather than in letcltermcap.

Basic Capabilities
The number of columns on each line for the terminal is given by the co numeric capability. If the ter­
minal is a CRT, then the number of lines on the screen is given by the Ii capability. If the terminal wraps
around to the beginning of the next line when it reaches the right margin, then it should have the am
capability. If the terminal can clear its screen, then this is given by the cI string capability. If the terminal
can backspace, then it should have the bs capability, unless a backspace is accomplished by a character
other than AH, in which case you should give this character as the be string capability. If it overstrikes
(rather than clearing a position when a character is struck over), then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined at the left
and top edges of a CRT terminal. The editor will never attempt to backspace around the left edge, nor
will it attempt to go up locally off the top. The editor assumes that feeding off the bottom of the screen
will cause the screen to scroll up, and the am capability tells whether the cursor sticks at the right edge of
the screen. If the terminal has switch selectable automatic margins, the termcap file usually assumes that
this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 teletype is
described as

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as

clladm3131lsi adm3:am:bs:cl = AZ:Ii#24:co#80

(Note that these terminals are not supported on HP-UX, and their descriptions here are included only as
examples of terminals with only the basic capabilities.)

Cursor Addressing
Cursor addreSSing is described by the em string capability, containing escapes similar to those used by
printf(3S) (%x). These escaped characters (%x) substitute to encodings of the current line or column
position, while other characters are passed through unchanged. If the em string is thought of as being a
function, then its arguments are the line and the column to which motion is desired, and the %
encodings have the follOWing meanings:

%d as in printf(3S), 0 origin
%2 like %2d in printf(3S)
%3 like %3d in printf(3S)
%. like %c in printf(3S)
% + x adds x to value, then %.
%>xy if value> x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
% % gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16*(x/10)) + (x%10), no output.
%0 Reverse coding (x-2*(x%16)), no output. (Delta Data).

-4-

TERMCAP(5) TERMCAP(5)

Consider the HP 9000 Model 236 Internal Terminal Emulator (ITE) which, to get to row 3 and column
12, needs to be sent "'-E&a12c03Y. Note that the order of the rows and columns is inverted here.
Thus its cm capability is cm = "'-E&a%r%dc%dY. Terminals which use %. need to be able to back­
space the cursor (bs or bc) and to move the cursor up one line on the screen (up introduced below).
This is necessary because it is not always safe to transmit "'-t, "'-n, AD, and "'-r, as the system may
change or discard them.

Cursor Motions
If the terminal can move the cursor one position to the right, leaving the character at the current position
unchanged, then this sequence should be given as nd (non-destructive space). If it can move the cursor
up a line on the screen in the same column, this should be given as up. If the terminal has no cursor
addressing capability, but can do a screen-relative home of the cursor (to very upper left corner of
screen), then this can be given as ho; similarly a fast way of getting to the lower left hand corner of the
screen can be given as II; this may involve going up with up from the home position, but the editor will
never do this itself (unless II does) because it makes no assumption about the effect of moving up from
the home position.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as ceo If the terminal can clear from the current position to the end of the display, then
this should be given as cd. The editor only uses cd from the first column of a line.

Insert/Delete Line
If the terminal can open a new blank line above the cursor, this should be given as al; this is done only
from the first position of a line. The cursor must then appear on the newly blank line. If the terminal can
delete the line the cursor is on, then this should be given as dl; this is done only from the first position on
the line to be deleted. If the terminal can scroll the screen backwards, then this can be given as sb, but
just al suffices. If the terminal can retain display memory above then the da capability should be given;
if display memory can be retained below then db should be given. These let the editor understand that
deleting a line on the screen may bring non-blank lines up from below or that scrolling back with sb may
bring down non-blank lines. If the terminal can scroll forward, sf is specified. Note that both sf and sr
require that the terminal continue to scroll even after the end of display memory is reached. Therefore,
some terminals, like the HP 2622, cannot use the sf and sr capabilities in termcap, even though they do
have a scrolling capability.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to the insert/delete character function
which can be described using termcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other terminals
make a distinction between typed and untyped blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either eliminated, or expanded to two untyped blanks.
You can find out which kind of terminal you have by clearing the screen and then typing text separated
by cursor motions. Type "abc def" using local cursor motions (not spaces) between the abc and the
def. Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc shifts over to the def which then move
together around the end of the current line and onto the next as you insert, you have the second type of
terminal, and should give the capability in, which stands for insert null. If your terminal does something
different and unusual then you may have to modify the editor to get it to use the insert mode your ter­
minal defines.

The editor can handle both terminals which have an insert mode, and terminals which send a simple
sequence to open a blank position on the current line. Give the sequence im to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a blank position. Give the sequence ei
to leave insert mode (assign an empty value for ei if you specified an empty value for im). Give as ic
any sequence needed to be sent just before sending the character to be inserted. Most terminals with a
true insert mode will not give ic; terminals which send a sequence to open a screen position should give
it here. (Insert mode is preferable to the sequence to open a position on the screen if your terminal has

-5-

TERMCAP(5) TERMCAP(5)

both.) If post insert padding is needed, give this as a number of milliseconds in ip (a string option). Any
other sequence which may need to be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the same line
(e.g. if there is a tab after the insertion position). If your terminal allows motion while in insert mode you
can give the capability rni to speed up inserting in this case. Omitting rni will affect only speed. Some
terminals must not have rni because of the way their insert mode works.

Finally, you can specify delete mode by giving drn and ed to enter and exit delete mode, and de to
delete a single character while in delete mode.

Highlighting, Underlining, and Visible Bells
If your terminal has sequences to enter and exit standout mode these can be given as so and se, respec­
tively. If there are several flavors of standout mode, such as inverse Video, blinking, or underlining (half
bright is not usually an acceptable standout mode unless the terminal is in inverse video mode con­
stantly), the preferred mode is inverse video by itself. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, then ug should be given to tell how many spaces are
left.

Codes to begin underlining and end underlining can be given as us and ue, respectively. If the terminal
has a code to underline the current character and move the cursor one space. to the right, this can be
given as ue. (If the underline code does not move the cursor to the right, give the code followed by a
nondestructive space.)

Many terminals, such as the HP 2623, automatically leave standout mode when they move to a new
line or the cursor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error qUietly (a bell replacement) then this
can be given as vb; it must not move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ex, this can be given as vs and ve, sent at the start and end of these
modes respectively. These can be used to change, for example, from a underline to a block cursor and
back.

If the terminal needs to be in a special mode when running a program that addresses the cursor, the
codes to enter and exit this mode can be given as ti and teo This arises, for example, from terminals with
more than one page of memory. If the terminal has only memory relative cursor addressing and not
screen relative cursor addressing, a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even though it
does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys are pressed, this information can be
given. Note that it is not possible to handle terminals where the keypad only works in local. If the
keypad can be set to transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is
assumed to always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kl, kr, ku, kd, and kh, respectively. If there are function keys such as fO, fl,
... , f9, the codes they send can be given as kO, kl, ... , k9. If these keys have labels other than the default
fo through f9, the labels can be given as 10, 11, ... , 19. If there are other keys that transmit the same code
as the terminal expects for the corresponding function, such as clear screen, the termcap two-letter codes
can be given in the ko capability, for example, :ko = cl,ll,sf,sb:, which says that the terminal has clear,
home down, scroll down, and scroll up keys that transmit the same thing as the cl, 11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have single character arrow keys. It
is obsolete, and therefore is not recommended for future design. This field is redundant with kl, kr, ku,
kd, and kh. It consists of groups of two characters. In each group, the first character is what an arrow
key sends, the second character is the corresponding vi command. These commands are h for kl, j for
kd, k for ku, I for kr, and H for kh. For example, :rna = AKfZkAXI: indicates arrow keys left (AH), down

-6-

TERMCAP(5) TERMCAP(5)

FILES

(AK), up ("Z), and right (AX). (No home key is defined.)

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than AI to tab, then this
can be given as tao

Terminals which don't allow - characters to be printed should indicate hz. Terminals which echo carri­
age return/linefeed for carriage return and then ignore a following linefeed should indicate nco Ter­
minals which ignore a linefeed immediately after an am wrap should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing on top of it), xs should be given. Terminals
where tabs turn all characters moved over to blanks should indicate xt. Other specific terminal problems
may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file containing
long initialization strings. These strings are expected to properly clear and then set the tabs on the ter­
minal, if the terminal has settable tabs. If both are given, is will be printed before if. This is useful where
if is lusrllibltabsetlstd but is clears the tabs first.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability tc can be given with the name of the similar terminal. This capability must be
last and the combined length of the two entries must not exceed 1024 characters. Since termlib routines
search the entry from left to right, and since the tc capability is replaced by the corresponding entry, the
capabilities given at the left override the ones in the similar terminal. A capability can be cancelled with
xx@ where xx is the capability. For example, the entry

telhp 9816/9836 terminal emulators - rev B: "'­
: bt = "'-Ei: "'-
:ke@:ks@:"'-
:ml@:mu@:"'-
:tc= hp:

defines an HP 98X6 terminal emulator that has backtabs defined as ESCAPE-i, and does not have
memory lock or keypad send capabilities, but otherwise has the capabilities specified by the hp termcap
entry. The tc capability can be useful for different modes of a terminal, or for different user preferences.

/etc/termcap file containing terminal descriptions

SEE ALSO

BUGS
ex(1), more(1), tset(1), ul(1), vi(1), termcap(3).

Ex allows only 256 characters for string capabilities, and the routines in termcap(3) do not check for
overflow of this buffer. The total length of a Single entry (excluding only escaped newlines) may not
exceed 1024.

-7-

TTYTYPE(5) Series 200 Only

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: UCB

Remarks: This terminal data base is implemented on the Series 200 only.

DESCRIPTION

TTYTYPE(5)

Ttytype is a database containing, for each tty port on the system, the kind of terminal that is attached to
that port. There is one line per port, containing the terminal kind (as a name listed in termcap(5)), a
space, and the name of the tty, less the initial "/dev/". For example, for an HP 2622 terminal on tty02:

2622 tty02

This information is read by tset(1) and by login(1) to initialize the TERM variable at login time.

SEE ALSO
login(1), tset(1).

BUGS
Some lines are merely known as "dialup" or "plugboard" .

-1-

UTMP(5) UTMP(5)

NAME
utmp, wtmp - utmp and wtmp entry format

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
The files utmp and wimp hold user and accounting information for use by commands such as who(1),
acctconl (see acctcon(l)), and login(l). They have the fo1\owing structure, as defined by <utmp.h>:

struct utmp
{

};

char
char
long

uLline[8];
uLname[8];
uLtime;

1* tty name *1
1 * login name * 1
1* time on *1

Note that uLline is the tty name, except in the case of date change entries, when it is either a vertical bar
(I) or a left brace ({) (see date(l)).

ULname is valid for login entries only; otherwise the first character is nu1\. There are logout entries in
both utmp and wimp. In utmp, these entries refer to terminals that are not currently logged in; in
wimp, they record history.

Note that wimp tends to grow without bound, and should be checked regularly. Information that is no
longer useful should be removed periodica1\y to prevent it from becoming too large.

HARDWARE DEPENDENCIES
Series 200/500:

FILES

Acctcon(l) is not currently supported.

letc/utmp
lusrladm/wtmp
lusrlinclude/utmp. h

SEE ALSO
acctcon(l), 10gin(l), who(l), write(1), fwtmp(8).

-1-

INTRO(7)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(7)

This section describes miscellaneous facilities such as macro packages, data type declarations and struc­
tures, terminal type names, etc.

-1-

ENVIRON(7) ENVIRON(7)

NAME
environ - user environment

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
An array of strings called the "environment" is made available by exec(2) when a process begins. By
convention, these strings have the form "name = value". The following names are used by various
commands:

PATH The sequence of directory prefixes that sh(l), time(l), nice(1), nohup(l), etc., apply in searching
for a file known by an incomplete path name. The prefixes are separated by colons (:).
Login (1) sets PATH = :/bin:/usr/bin.

HOME Name of the user's login directory, set by login (1) from the password file passwd(5).
TERM The kind of terminal for which output is to be prepared. This information is used by com­

mands, such as mm (1) or tplot (1 G), which may exploit special capabilities of that terminal.
TZ Time zone information. The format is xxxnzzz where xxx is standard local time zone abbrevia­

tion, n is the difference in hours from GMT, and zzz is the abbreviation for the daylight-saving
local time zone, if any; for example, EST5EDT.

Further names may be placed in the environment by the export command and "name = value"
arguments in sh(l), or by exec(2). It is unwise to conflict with certain shell variables that are frequently
exported by .profile files: MAIL, PSI, PS2, IFS.

SEE ALSO
env(l), 10gin(1), sh(1), exec(2), getenv(3C), profile(5), term(7).

-1-

FCNTL(7)

NAME
fcntl- file control options

SYNOPSIS
#include <fcntl.h>

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

FCNTL(7)

The fcntl(2) function provides for control over open files. This include file describes requests and
arguments tofcntl and open(2).

1* Flag values accessible to open(2) and fcntl(2) *1
1* (The first three can only be set by open(2)) *1

#define O_RDONL Y 0
#define 0_ WRONL Y 1
#define O_RDWR 2
#define O_NDELAY 04
#define O.....APPEND 010

1* Flag values accessible only to open(2) *1

#define O_CREAT 00400
#define O_TRUNC 01000
#define O_EXCL 02000

1* fcntl(2) requests *1

#define F _DUPFD
#define F _GETFD
#define LSETFD
#define F _GETFL
#define F _SETFL

SEE ALSO
fcntl(2), open(2).

o
1
2
3
4

1* Non-blocking I/O *1
1 * append (guaranteed) *1

1* open with file create (uses third open arg) *1
1* Open with truncation *1
1* exclusive open *1

1* duplicate fildes *1
1 * Get close-on-exec flag * 1
1* set close-on-exec flag *1
1* Getfile status flags *1
1* Set file status flags *1

-1-

MAN(7) MAN(7)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rsl] files

HP-UX COMPATIBILITY
Level: Text Processing - HP-UXISTANDARD

Origin: System III

DESCRIPTION
These troff(1) macros are used to layout the format of the entries of this manual. A skeleton entry may
be found in the file /usr/man/manO/skeleton. These macros are used by the man (1) command.

The default page size is 8.5" x II" , with a 6.5" x 10" text area. The -rsl option reduces these dimen­
sions to 6" x 9" and 4.75" x 8.375", respectively. This option (which is not effective in nroff(I)) also
reduces the default type size from la-point to 9-point, and the vertical line spacing from 12-point to 10-
point. The -rV2 option may be used to set certain parameters to values appropriate for certain Versatec
printers: it sets the line length to 82 characters, the page length to 84 lines, and it inhibits underlining.
This option should not be confused with the - T vp option of the man (1) command, which is available at
some HP-UX sites.

Any text argument below may be one to six "words". Double quotes (" ") may be used to include
blanks in a "word". If text is empty, the special treatment is applied to the next line that contains text to
be printed. For example, .I may be used to italicize a whole line, or .SM followed by .B to make small
bold text. By default, hyphenation is turned off for nroff, but remains on for troff.

Type font and size are reset to default values before each paragraph and after processing font- and size­
setting macros, e.g., .I, .RB, .SM. Tab stops are neither used nor set by any macro except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous indent is used. This remembered
indent is set to its default value (7.2 ens in troff, 5 ens in nroff - this corresponds to 0.5" in the default
page size) by .TH, .PP, and .RS, and restored by .RE.

.THtscn

. SH text

. SS text

. B text

.I text

. SM text

. RIa b

. P

.HPin

.TPin

.IP tin

.RSin

.REk

.PMm

. DT

.PDv

Set the title and entry heading; t is the title, s is the section number, c is extra commentary,
e.g., "local", n is new manual name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two fonts for up to six arguments .
Similar macros alternate between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size, and indent. .PP is a synonym for .P .
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The next line that contains text to be printed is
taken as the tag. If the tag does not fit, it is printed on a separate line.
Same as ,TP in with tag t; often used to get an indented paragraph without a tag .
Increase relative indent (initially zero). Indent all output an extra in units from the current left
margin.
Return to the kth relative indent level (initially, k = 1; k = a is equivalent to k = 1); if k is omit­
ted, return to the most recent lower indent level.
Produces proprietary markings; where m may be P for PRIVATE, N for NOTICE, BP for
BELL LABORATORIES PROPRIETARY, or BR for BELL LABORATORIES
RESTRICTED.
Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff) .
Set the interparagraph distance to v vertical spaces. If v is omitted, set the interparagraph

-1-

MAN(7) MAN(7)

distance to the default value (O.4v in troff, Iv in nroff).

The following strings are defined:

'" *R ® in troff(l), (Reg.) in nroff(1).
'" *S Change to default type size.

The following number registers are given default values by .TH:

IN
LL
PO

Left margin indent relative to subheads (default is 7.2 ens in troff, 5 ens in nroff).
Line length including IN.
Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned above, there are defined a number
of internal macros, strings, and number registers. Except for names predefined by troff(l) and number
registers d, m, and y, all such internal names are of the form XA, where X is one of),], and }, and A
stands for any alphanumeric character.

If a manual entry needs to be preprocessed by eqn(l) (or neqn), and/or tbl(l), it must begin with a
special line (described in man(l)), causing the man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for this Manual assume the
NAME section of each entry consists of a single line of input that has the following format:

name[, name, name ... 1 "'-explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in the SYNOPSIS section
of each entry.

The macro package itself uses only the roman font (so that one can replace, for example, the bold font
by the constant-width font). Of course, if the input text of an entry contains requests for other fonts
(e.g., .I, .RB, ",fI), the corresponding fonts must be mounted.

lusr/lib/tmac/tmac.an
lusr/lib/macrosl cmp. [ntl. [dtl.an
lusr/lib/macros/ucmp. [ntl.an
lusr/man/manO/skeleton

SEE ALSO

BUGS
man(l), troff(l).

If the argument to .TH contains any blanks and is not enclosed by double quotes (" "), the output can
be incorrectly formatted.

-2-

MM(7) MM(7)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options 1 [files 1
nroff -mm [options 1 [files 1
nroff -em [options 1 [files 1

mmt [options 1 [files 1
troff -mm [options 1 [files 1
troff -em [options 1 [files 1

HP-UX COMPATIBILITY
Level: Text Processing - HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of documents. The manner in
which a document is typed in and edited is essentially independent of whether the document is to be
eventually formatted at a terminal or is to be phototypeset. See the references below for further details.

The -mm option causes nroff(1) and troff(1) to use the non-compacted version of the macro package,
while the -em option results in the use of the compacted version, thus speeding up the process of
loading the macro package.

lusrllib/tmacltmac.m
lusrllib/macros/mm[ntl
lusrllib/macros/cmp.[ntl.[dtl.m
lusrllib/macros/ucmp. [ntl.m

pointer to the non-compacted version of the package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of the package

SEE ALSO
mm(l), mmt(l), troff(l).
MM-Memorandum Macros in HP-UX Selected Articles.

-1-

REGEXP(7) REGEXP(7)

NAME
INIT, GETC, PEEKC, UNGETC, RETURN, ERROR, compile, step, advance - regular expression com­
pile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile(instring, expbuf, endbuf, eo£)
char *instring, *expbuf, *endbuf;

int step(string, expbuf)
char *string, *expbuf;

int advance (string, expbu£)
char *string, *expbuf;

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
This page describes general purpose regular expression matching routines in the form of ed(1), defined
in lusr/include/regexp.h. Programs such as ed(1), sed(1), grep(1), bs(1), expr(1), etc., which perform
regular expression matching use this source file. In this way, only this file need be changed to maintain
regular expression compatibility.

The interface to this file is complex. Programs that include this file must have the following five macros
declared before the "#include <regexp.h>" statement. These macros are used by the compile
routine.

GETC()

PEEKC{)

UNGETC{c)

RETURN (pointer)

ERROR{val)

Return the value of the next character in the regular expression pattern. Suc­
cessive calls to GETC() should return successive characters of the regular
expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the next
character returned by GETC()).

Cause the argument c to be returned by the next call to GETC{) (and
PEEKC()). No more than one character of pushback is ever needed and this
character is guaranteed to be the last character read by GETC(). The value of
the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of the
argument pointer is a pointer to the character after the last character of the com­
piled regular expression. This is useful to programs which have memory alloca­
tion to manage.

This is the abnormal return from the compile routine. The argument val is an
error number (see table below for meanings). This call should never return.

-1-

REGEXP(7) REGEXP(7)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 " ""-digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 ""-(""-) imbalance.
43 Too many ""-(.
44 More than 2 numbers given in ""-{ ""-}.
45 } expected after ",,-.
46 First number exceeds second in ""-{ ""-}.
49 [1 imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile{instring, expbuf, endbuf, eo£)

The first parameter instring is never used explicitly by the compile routine but is useful for programs that
pass down different pointers to input characters. It is sometimes used in the INIT declaration (see
below). Programs which call functions to input characters or have characters in an external array can
pass down a value of ((char *) O} for this parameter.

The next parameter expbu! is a character pointer. It points to the place where the compiled regular
expression will be placed.

The parameter endbu! is one more than the highest address that the compiled regular expression may
occupy. If the compiled expression cannot fit in (endbu!-expbuf) bytes, a call to ERROR(50) is made.

The parameter eo! is the character which marks the end of the regular expression. For example, in
ed (1), this character is usually a I.

Each program that includes this file must have a #define statement for IN IT. This definition will be pla­
ced right after the declaration for the function compile and the opening curly brace ({). It is used for
dependent declarations and initializations. Most often it is used to set a variable to point to the beginning
of the regular expression so that this variable can be used in the declarations for GETC(), PEEKC() and
UNGETC(}. Otherwise it can be used to declare external variables that might be used by GETC(),
PEEKC() and UNGETC(). See the example below of the declarations taken from grep(I).

There are other functions in this file which perform actual regular expression matching, one of which is
the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This string
should be null terminated.

The second parameter expbu! is the compiled regular expression which was obtained by a call of the
function compile.

The function step returns the value one, if the given string matches the regular expression, and zero if the
expressions do not match. If there is a match, two external character pointers are set as a side effect to
the call to step. The variable set in step is locI. This is a pointer to the first character that matched the
regular expression. The variable loc2, which is set by the function advance, points to the character after
the last character that matches the regular expression. Thus if the regular expression matches the entire
line, locI will point to the first character of string and loc2 will point to the null at the end of string.

Step uses the external variable eire! which is set by compile if the regular expression begins with~. If this
is set then step will only try to match the regular expression to the beginning of the string. If more than
one regular expression is to be compiled before the the first is executed, the value of eire! should be
saved for each compiled expression and eire! should be set to that saved value before each call to step.

-2-

REGEXP(7) REGEXP(7)

The function advance is called from step with the same arguments as step. The purpose of step is to step
through the string argument and call advance until advance returns a one indicating a match or until the
end of string is reached. If one wants to constrain string to the beginning of the line in all cases, step need
not be called, simply call advance.

When advance encounters a * or "'"' { "'"'} sequence in the regular expression it will advance its pointer to
the string to be matched as far as possible and will recursively call itself trying to match the rest of the
string to the rest of the regular expression. As long as there is no match, advance will back up along the
string until it finds a match or reaches the point in the string that initially matched the * or "'"' { "'"'}. It is
sometimes desirable to stop this backing up before the initial point in the string is reached. If the external
character pointer lacs is equal to the point in the string where the match first occurred at sometime
during the backing up process, advance will break out of the loop that backs up and will return zero.
This is used by ed(l) and sed(l) for substitutions done globally (not just the first occurrence, but the
whole line) so, for example, expressions like s/y*llg do not loop forever.

The routines ecmp and getrange are trivial and are called by the routines previously mentioned.

EXAMPLES

FILES

The follOWing is an example of how the regular expression macros and calls look from an old version of
grep(l):

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#inc1ude <regexp.h>

register char * sp = instring;
(*sp+ +)
(*sp)
(-sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE], '",",0');

if(step{linebuf, expbuf))
succeed();

lusr/inc1ude/regexp. h

SEE ALSO

BUGS

ed(l), grep(l), sed(l).

The handling of circ/is poor.

The routine ecmp is equivalent to the Standard lIO routine strncmp and should be replaced by that
routine.

-3-

STAT(7)

NAME
stat - data returned by stat/fstat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION

STAT(7)

The system calls stat and Jstat(2) return data whose structure is defined by this include file. The
encoding of the field sLmode is defined in this file also.

FILES

/*
* Structure of the result of stat/fstat
*/

struct stat {
dev_t

};

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ino_t
ushort
short
ushort
ushort
dev_t
ofLt
time_t
time_t
time_t

sLdev;
sLino;
sLmode;
sLnlink;
sLuid;
sLgid;
sLrdev;
sLsize;
sLatime;
sLmtime;
sLctime;

S_IFMT
S_IFDIR
S_IFCHR
S_IFBLK
S_IFREG
S_IFIFO
S_IFSRM
S_IFNWK
S_ISUID
S_ISGID
S_ISVTX
S_IREAD
S_IWRITE
S_IEXEC

0170000
0040000
0020000
0060000
0100000
0010000
0150000
0110000
04000
02000
01000
00400
00200
00100

/usr/include/sys/types. h
/usr/include/sys/stat. h

SEE ALSO
stat(2).

/* type of file * /
/* directory * /
/* character special * /
/* block special * /
/* regular * /
/* fifo */
/* SRM special * /
/* network special * /
/* set user ID on ex. * /
/* set group ID on ex. * /
/* save swapped text * /
/* read perm., owner * /
/* write perm., owner * /
/* ex/search perm., owner */

-1-

TERM(7) TERM(7)

NAME
term - conventional device names

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III and UCB

DESCRIPTION
The variable TERM is maintained as a part of the shell environment (see sh(I), profile (5) , and
environ(7)). The tset(l) command can be used to set the TERM variable (as well as the associated
TERMCAP variable). When tset is used, the name to which TERM is set must be listed in the letcltermcap
data base (see termcap(5)). The following names are available in the letcltermcap data base for use with
HP-UX supported terminals.

hpsub Minimal subset of the capabilities of all Hewlett-Packard terminals and terminal emulators

hp

9836
9826
262x
2622
2623
2624
te

supported on both Series 500 and Series 200 HP-UX.
Minimal subset of the capabilities of Hewlett-Packard terminals supported on both Series
200 and Series 500 HP-UX (does not include 98x6 Internal Terminal Emulator).
Internal Terminal Emulator (ITE) for the HP 9000 Models 236 and 220 computers.
Internal Terminal Emulator (ITE) for the HP 9000 Model 226 computer.
Hewlett-Packard 262x family. Includes the HP 2622, HP 2623, and HP 2624 terminals.
Hewlett-Packard HP 2622 terminal.
Hewlett-Packard HP 2623 graphics terminal.
Hewlett-Packard HP 2624 terminal.
Hewlett-Packard HP 9836 or HP 9816 running the HP block mode terminal emulator
(HP part number 98790).

Other terminal names listed in the letcltermcap data base do not imply support of those terminals.

The TERM variable is also used by certain commands (e. g. nroff(1), man(1), tabs(1)), some of which use
terminal and printer description files from the lusrlliblterms directory. TERM names which have files in
this directory include the folloWing (note that the publication of these names and presence of these files
does not imply support of these devices):

2631 Hewlett-Packard 2631 line printer.
2631-c Hewlett-Packard 2631 line printer - compressed mode.
2631-e Hewlett-Packard 2631 line printer - expanded mode.
300 DASI/DTC/GSI 300 and others using the Hy Type I printer.
300-12 Same as 300, in 12-pitch mode.
300s DASI/DTC/GSI 300s
300s-12 Same as 300s, in 12-pitch mode.
382 DTC382.
37 TELETYPE Model 27 KSR.
4000A Trendata 4000A.
450 DASI450 (same as Diablo 1620).
450-12 Same as 450, in 12-pitch mode.
lp Generic name for a line printer.
tn300 General Electric TermiNet 300.

A basic terminal name can be up to eight characters chosen from A-Z, a-z, 0-9, and -. Terminal sub­
models and operational modes are distinguished by suffixes beginning with a -. Names should gen­
erally be based on original vendors, rather than local distributors.

Commands whose behavior depends on the type of terminal should accept arguments of the form
- Tterm. If no such argument is present, such commands should obtain the terminal type from the
environment variable TERM, which, in turn, should contain term.

SEE ALSO
ex(I), mm(1), more(I), nroff(l), sh(I), stty(I), tabs(I), tset(I), ul(l), termcap(3), profile(5), termcap(5),
ttytype(5), environ(7).

-1-

TERM(7) TERM(7)

BUGS
The TERM variable is used differently by commands which originated from UCB code (such as vi(1)
and more(l)) and commands which originated from Bell System III code (such as nroff(l) and tabs(l)).
These different usages of TERM can be confusing. This area of HP-UX is still under revision.

-2-

TYPES(7)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

TYPES(7)

The data types defined in the include file are used in HP-UX system code; some data of these types are
accessible to user code:

#define

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

13 1* no. of regs saved *1

struct { int r[1]; }
long
char
unsigned short
unsigned long
short
long
int
long
long
long

*physadr;
daddLt;
*caddLt;
ushort;
ino_t:
cnLt;
time_t;
labeLt[NREGS_S];
dev_t;
ofLt;
paddLt;

The form daddLt is used for disc addresses except in an i-node on disc, seefs(5}. Times are encoded in
seconds since 00:00:00 GMT, January 1, 1970. Offsets are measured in bytes from the beginning of a
file. The labeLt variables are used to save the processor state while another process is running.

HARDWARE DEPENDENCIES
Series 500:

The types NREGS_S and labeLt are not implemented.

SEE ALSO
fs(5}.

-1-

INTRO(8) INTRO(8)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION
This section outlines certain procedures that will be of interest to those charged with the task of system
maintenance. Included are discussions on such topics as boot procedures, recovery from crashes, file
backups, etc.

-1-

BACKUP(8) Series 200 Implementation BACKUP(8)

NAME
backup - backup or archive file system

SYNOPSIS
Ilbin/backup [-archive] [-fsck]

HP-UX COMPATIBILITY
Level: HP-UXINON-STANDARD

Origin: HP

Remarks: This manual page describes backup as it is implemented on the Series 200 computer. Refer
to other backup(8) manual pages for information valid for other implementations.

DESCRIPTION

FILES

Backup uses find(1) and cpia(1) to save a cpia archive of all files which have been modified since the
modification time of letclarchivedate on the default tape drive (ldev/rct). Backup should be periodi­
cally invoked to ensure adequate file backup.

The -archive option causes backup to save all files, regardless of their modification date, and then
update letc/archivedate using tauch(l).

Backup prompts you to mount a new tape and continue if there is no more room on the current tape.
Note that this prompting does not occur if you are running backup from cron(8).

The -fsck option causes backup to start a file system consistency check (without correction) after the
backup is complete. For correct results, it is important that the system be effectively single-user while
fsck is running, especially if -fsck is allowed to automatically fix whatever inconsistencies it finds. Backup
does not ensure that the system is Single-user.

You may edit Ilbin/backup to "customize" it for your system. For example, backup uses tcia(1) with
cpia to backup your files on an HP Command Set 80 disc's streaming tape. You will need to modify
backup to use cpio(l) if you want to access a standard HP Tape Drive.

Several local values are used which can be customized:

backupdirs

backuplog

archive

remind

outdev

fscklog

specifies which directories to recurSively back up (usually I, meaning all directories);

file name where start and finish times, block counts, and error messages are logged;

file name whose date is the date of the last archive;

file name that is checked by letclprofile to remind the next person who logs in to
change the backup tape;

specifies the output device for the backed-up files;

file name where start and finish times andfsck output is logged.

You may want to make other changes, such as whether or notfsck does automatic correction (according
to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read using tcia
and cpio with the c option.

letc/archivedate
parameterized file names

SEE ALSO

BUGS

cpio(l), find(l), touch(l), cron(8), fsck(8).

Refer to BUGS ·in cpio(1).

When cpia runs out of tape, it sends an error to stderr and demands a new special file name from
Idev/tty.

-1-

BACKUP(8) Series 200 Implementation BACKUP(8)

To continue, rewind the tape, mount the new tape, type the name of the new special file at the system
console, and press RETURN.

If backup is left running overnight and the tape runs out, backup terminates, leaving the find process still
waiting. You need to kill this process when you return.

-2-

BACKUP(8) Series 500 Implementation BACKUP(8)

NAME
backup - backup or archive file system

SYNOPSIS
Ilbin/backup [-archive] [-fsck]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes backup as it is implemented on the Series 500 computers. Refer
to other backup(S) manual pages for information valid for other implementations.

DESCRIPTION

FILES

Backup uses find(I} and cpio(I} to save on the default tape drive (Idev/rmt79xx) a cpio archive of all files
which have been modified since the modification time of letc/archivedate. Backup should be periodi­
cally invoked by cron(S} at night, or when the system is otherwise idle.

The -archive option causes backup to save all files, regardless of their modification date, and then
update letc!archivedate using touch(l}.

Backup prompts you to mount a new tape and continue if there is no more room on the current tape.
Note that this prompting does not occur if you are running backup from cron(S}.

The -fsck option causes backup to start a file system consistency check (without correction) after the
backup is complete. This is the normal mode of nightly operation. For correct results, it is important
that the system be effectively Single-user while fsck is running, especially if it is allowed to automatically
fix whatever inconsistencies it finds. Backup does not ensure that the system is single-user.

You should edit Ilbin/backup to "customize" it for your system. For example, backup uses tcio(I} by
default. You will need to modify backup to use cpio(I} if you want to access a raw device.

Several parameters are used which can be customized:

backupdirs specifies which directories to recursively back up (usually I, meaning all directories);

backuplog file name where start and finish times, block counts, and error messages are logged;

archive

remind

rootdev

fscklog

file name whose date is the date of the last archive;

file name that is checked by lete/profile to remind the next person who logs in to
change the backup tape;

list of places for fsck (usually a character special file that points to the root device);

file name where start and finish times andfsck output is logged.

You may want to make other changes, such as whether or not fsck does automatic correction (according
to its arguments), where cpio output is directed, other information logging, etc.

In all cases, the output from backup is a normal cpio archive file (or volume) which can be read using cpio
with the c and B options.

letc!archivedate
parameterized file names

SEE ALSO

BUGS

cpio(1}, find(l}, touch(1), cron(S}, fsck(S}.

Refer to BUGS in cpio(l}.

When cpio runs out of tape, it sends an error to stderr (which is logged, so it does not appear on your
CRT), and demands a new special file name from Idev/tty. To continue, rewind the tape, mount the
new tape, type the name of the new special file at the system console, and press RETURN.

-1-

BACKUP(8) Series 500 Implementation BACKUP(8)

If backup is left running overnight and the tape runs out, backup terminates, leaving the find process still
waiting. You need to kill this process when you return.

-2-

CATMAN(8)

NAME
catman - create the cat files for the manual

SYNOPSIS
/etc/catman [-p] [-n] [-w] [sections]

HP-UX. COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

CATMAN(8)

Catman creates the preformatted versions of the on-line manual from the nro!!input files. Each manual
page is examined and those whose pre formatted versions are missing or out of date are recreated. If
any changes are made, catman will recreate the /usr/Jib/whatis database.

FILES

By default, catman processes the sub-directories man[OI23456789Inp]/*. You can specify a subset of
these, or a complete new list of man sub-directories, with the sections parameter. For example

catman 123

will cause the updating to only happen to manual sections man 1, man2, and man3.

Options:

-n prevents creation of /usr/Jib/whatis.

-p prints what would be done instead of doing it.

-w causes only the /usr/Jib/whatis database to be created. No manual reformatting is done.

/usr/man/man?/*. *
/usr/man/cat?/*. *
/usr/lib/mkwhatis

raw (nro!!input) manual sections
preformatted manual pages
commands to make whatis database

SEE ALSO
mantI).

-1..,.

CHSYS(8) Series 500 Only CHSYS(8)

NAME
chsys - change to different operating system or version

SYNOPSIS
Ilbin/chsys sysname

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: Chsys is implemented on the Series 500 only.

DESCRIPTION
Chsys is a shell script that enables you to boot a different operating system, or a different version of the
same operating system, using only one boot area on one disc. Sysname is one of a number of operating
system names defined within chsys. Chsys uses oscp(8) to rebuild the boot area on Idevlrhd with the
selected system, reading from ordinary files containing operating system code. Chsys then invokes
osck(8) to confirm that the new system is "healthy". (Note that osck performs a redundant check, so its
invocation in chsys may be removed if you want to save time.)

Chsys invokes oscp as quietly as possible. Chsys causes oscp to read the new system ID string from a file
selected by the sysname given, and redirects the output from oscp to Idev/null. If oscp and osck are suc­
cessful, chsys calls reboot(8) to switch to the new operating system. Note that oscp and osck together can
take longer than a minute to run. DUring this time, chsys keeps you informed as to what actions are
being taken.

If you simply want to re-boot the operating system already in the boot area, do not use chsys. Instead,
invoke reboot(8) directly.

If you want to allocate and use several boot areas on several discs, see osmgr(8).

You should modify chsys to localize it for your system. You may want to add or delete available
sysnames, change the names or meanings of sysnames, change the name of the character special file
(ldevlrhd) which points to the boot volume, etc. Chsys recognizes four default sysnames. They stand for:

HP-UX Model 520 single-user minimal system;
HP-UX Model 520 single-user complete system;
BASIC minimal system;
BASIC complete system.

These sysnames serve as examples for any others you may want to add. They mayor may not be useful
to you.

Chsys should only be invoked by the effective super-user unless both of the following are true:

the special file which points to the boot device must be readable and writable by whoever
invokes chsys;

the reboot command must be owned by root and have the set-user-ID bit set.

If either of the above are not true, either the oscp or the reboot command will fail.

Chsys must be invoked with a $PATH that includes the directories containing the oscp, osck, reboot, and
echo commands.

RETURN VALUES
If any of the invoked commands fails, chsys writes a message to standard error and exits with the same
return value as that returned by the unsuccessful command. Chsys returns 1 if invoked improperly.

SEE ALSO
sh(1), osmgr(8), shutdown(8), stopsys(8), sync(8).

WARNINGS
Chsys does not check that the system is idle, and it does not notify all users that the system is going
down. You should usually execute shutdown(8) before executing chsys.

-1-

CHSYS(8) Series 500 Only CHSYS(8)

Chsys does not ask you to confirm that the intended operating system or version has been selected
before the system is re-booted. However, osck ensures that the system is rebootable, and reboot per­
forms a sync(8). Note that new operating systems built in the boot area by oscp are always marked as
loadable (see osmark(8».

-2-

CLRI(8) Series 200 Only CLRI(8)

NAME
clri - clear i-node

SYNOPSIS
/etc/c1ri file-system i-number ...

HP-UX COMPATIBILITY
Level: Bell File System - HP-UXINUCLEUS

Origin: System III

Remarks: Clri is implemented on the Series 200 only.

DESCRIPTION
Clri writes zeros on the 64 bytes occupied by the i-node numbered i-number. File-system must be a
special file name referring to a device containing a file system. After clri has executed, any blocks in the
affected file will show up as "missing" in an fsck(8) of the file-system. This command should only be
used in emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system device. The i-node becomes alloca­
table.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If
it is used to zero out an i-node which does appear in a directory, care should be taken to track down the
entry and remove it. Otherwise, when the i-node is reallocated to some new file, the old entry will still
point to that file. At that point removing the old entry will destroy the new file. The new entry will again
point to an unallocated i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO
fs(5), fsck(8), fsdb(8), ncheck(8).

BUGS
If the file is open, clri is likely to be ineffective.

-1-

CRON(8) CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Gron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab. Because cron never exits, it should be executed only once. This is best done by run­
ning cron from the initialization process through the file /etc/rc (see init(8)). Gron forks a copy of itself,
thus explicit asynchronous execution (using &) is unnecessary.

Gron examines crontab once a minute to see if it has changed; if it has, cron reads it. Thus it takes only a
minute for entries to become effective.

/usrllib/crontab
/usr/adm/cronlog

SEE ALSO
sh{l), crontab(5), init(8).

DIAGNOSTICS

BUGS

A history of all actions by cron is recorded in /usr/adm/cronlog, if it exists and is writable when cron
starts.

Gron reads crontab only when it. has changed, but it reads the in-core version of that table once a
minute.

-1-

DEVNM(8) Series 200 Only DEVNM(8)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

Remarks: Devnm(8) is implemented on the Series 200 only.

DESCRIPTION
Devnm identifies the special file associated with the mounted file system where the argument name
resides.

This command is most commonly used by letc/rc (see rc(8)) to construct a mount table entry for the
root device.

EXAMPLE

FILES

The command:

letc!devnm lusr

produces

hd lusr

if /usr is mounted on Idev/hd.

Idev/hd
/etc/mnttab

SEE ALSO
setmnt(8).

-1-

FSCK(8) Series 200 Implementation FSCK(8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [-y 1 [-n 1 [-sX 1 [-SX 1 [-tfilename 1 [file-system 1 ...

HP-UX COMPATIBILITY
Level: Bell File System - HP -UX/NUCLEUS

Origin: System III

Remarks: This manual page describes Fsck as implemented on the Series 200 computer. Refer to
other fsck (8) manual pages for information valid for other implementations.

DESCRIPTION
Fsck audits and interactively repairs inconsistent conditions in the file system. If the file system is con­
sistent then the number of files, number of blocks used, and number of blocks free are reported. If the
file system is inconsistent the operator is prompted for concurrence before each correction is attempted.
It should be noted that most corrective actions will result in some loss of data. The amount and severity
of data lost may be determined from the diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or no. If the operator does not have write permis­
sionfsck will default to the -n option described below.

Fsck has more consistency checks than its predecessors check, dcheck,fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by fsck; and do not open the file system for writing.

-sX Ignore the actual free list and unconditionally reconstruct a new one by rewriting the super-block
of the file system. The file system should be unmounted while this is done. If this is not possible,
care should be taken that the system is in the Single-user state (see init(8)) when fsck is executed
and that the system is rebooted immediately afterward fsck is finished. This precaution is neces­
sary so that the old in-core copy of the superblock will not continue to be used, nor written on
the file system.

The -sX option allows for creating an optimal free-list organization. The following forms of X
are supported for the following devices:

-sBiocks-per-cylinder:Blocks-to-skip

If X is not given, the values used when the file system was created are used. If these values were
not specified, then the default values shown below are used:

An HP 7908A uses 35:2;
An HP 7933A uses 23: 15;
An HP 7911A uses 16: 12;
An HP 7912A uses 16: 12;
An HP 7914A uses 16:12;
The default for fsck(8) is 400:9;
The default for mkfs(8) is 500:3.

-SX Conditionally reconstruct the free list. This option is like -sX above except that the free list is
rebuilt only if there were no discrepancies discovered in the file system. Using -S will force a no
response to all questions asked by fsck. This option is useful for forcing free list reorganization on
uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t option is
specified, the file named in the next argument is used as the scratch file, if needed. Without the -t
flag, fsck will prompt the operator for the name of the scratch file. The file chosen should not be

-1-

FSCK(8) Series 200 Implementation FSCK(8)

FILES

on the file system being checked. If the file does not exist, fsck will create it. If the scratch file is not
a special file, it is removed when fsck completes.

If no file-systems are specified, fsck will read a list of default file systems from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free list.

2. Blocks claimed by an i-node or the free list outside the range of the file system.

3. Incorrect link counts.

4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.

6. Blocks not accounted for anywhere.

7. Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

8. Super Block checks:

More than 65536 i-nodes.
More blocks for i-nodes than there are in the file system.

9. Bad free block list format.

10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, recon­
nected by placing them in the /Iost + found directory. The name assigned is the i-node number. The
only restriction is that the directory lost + found must pre-exist in the root of the file system being
checked and must have empty slots in which entries can be made. This is accomplished by making
lost + found, copying a number of files to the directory (optimally in multiples of 64), and then removing
them before fsck is executed.

F sck can check file systems on both raw and blocked devices. Checking raw devices is almost always
faster, but should not be used on the root or other mounted file system.

/etclchecklist
contains default list of file systems to check.

SEE ALSO
checklist(5), fs(5).
HP-UX System Administrator Manual (part number 98680-90010).

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

WARNING
It is recommended that the system administrator have total responsibility for runningfsck.

BUGS
Inode numbers for. and .. in each directory should be checked for validity.

-2-

FSCK(8) Series 500 Implementation FSCK(8)

NAME
fsck - file system consistency check, interactive repair

SYNOPSIS
letc!fsck [-y 1 [-n 1 [-s 1 [-d 1 [file system 1 ...

HP-UX COMPATIBILITY
Level: SDF File System - HP-UXINUCLEUS

Origin: HP

Remarks: This manual page describes fsck as implemented on the Series 500. Refer to other fsck(8)
manual pages for information valid for other implementations.

DESCRIPTION
Fsck checks and interactively repairs inconsistent conditions for SDF file systems. If the file system is
consistent, then the number of files, the number of blocks used, the number of blocks free, and the per­
cent of volume unused are reported. If the file system is inconsistent, the operator is prompted for con­
currence before each correction is attempted. Note that many corrective actions will result in some loss
of data. The amount and severity of the loss may be determined from the diagnostic output. The
default action for each consistency correction is to wait for the operator to respond yes or no. If the
operator does not have write permission, fsck will default to a -n action.

File system is a raw device file name referring to the device where the file system to be checked resides.

F sck makes multiple passes over the file system, so care should be taken to ensure that the system is
quiescent. You should un mount the file system being checked, if possible.

The following flags are interpreted by fsck:

-y Assume a yes response to all questions asked;

-n Assume a no response to all questions asked; do not open the file system for writing.

-s Ignore the actual free list and unconditionally reconstruct a new one. This option is useful in
correcting mUltiply claimed blocks when one of the claimants is the free list. When using this
option, the number of unclaimed blocks reported by fsck includes all the blocks in the free map.
This can produce extensive output if -d is also selected.

-s should only be selected after a previous fsck indicates a conflict between a file and the free map.
After fsck -s has executed, the integrity of the conflicting file(s) should be checked.

If -s is used to correct a problem on a virtual memory device, there is a high probability that the
final step in fsck will fail and you will be forced to re-boot. Should this occur, an appropriate error
message will be printed. No damage should occur.

-d Dump additional information. The more d's that are present, the more information that is dumped.
You may specify up to five d's. Using more than two, however, can result in an overwhelming
amount of output.

F sck also recognizes, and ignores, the -S and -t options found in other versions of fsck. An appropriate
warning is printed.

If no file system (s) are specified, fsck will read a list of default file systems from the file letc!checklist.

Error messages fromfsck are written to stderr. Information generated because of the -d option and nor­
mal output is written to stdout. Both are unbuffered.

Inconsistencies checked include:

1. Blocks claimed by more than one i-node, or by the free list;

2. Blocks claimed by an i-node or the free list outside the range of the file system;

3. Incorrect link counts;

4. Blocks not accounted for anywhere;

-1-

FSCK(8) Series 500 Implementation FSCK(8)

FILES

5. Bad i-node format;

6. Directory checks:
Files pointing to unallocated i-nodes;
I-node numbers out of range;
Multiply linked directories;
Link to the parent directory.

Orphaned files (allocated but unreferencedl with non-zero sizes are, with the operator's concurrence,
reconnected by placing them in the lost + found directory. The name assigned is the i-node number.
The only restriction is that lost + found must exist in the root of the file system being checked, and must
have empty slots in which entries can be made. This is accomplished by creating lost + found, copying a
number of files to it, and then removing them (before fsck is executed).

Orphaned directories and files with zero size are, with the operator's concurrence, returned directly to
the free list. This will also happen if the lost + found directory does not exist.

You should run a backup prior to runningfsck for repairs.

fete/checklist

SEE ALSO

contains the default list of file systems to check

checklist(S}, fs(S}.

DIAGNOSTICS

BUGS

The diagnostics are intended to be self-explanatory.

All file systems must be described by a character special device file.

Do not redirect stdout or stderr to a file on the device being checked. This includes pipes when checking
the root volume.

Fsck cannot check devices with a logical block size greater than 1024.

-2-

FSDB(8) Series 200 Only FSDB(8)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-J

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

Remarks: Fsdb(8) is implemented on the Series 200 only.

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It has conversions to translate block
and i-numbers into their corresponding disk addresses. Also included are mnemonic offsets to access
different parts of an i-node. These greatly simplify the process of correcting control block entries or des­
cending the file system tree.

Fsdb contains several error checking routines to verify i-node and block addresses. These can be disa­
bled if necessary by invokingfsdb with the optional- argument or by the use of the 0 symbol. (Fsdb
reads the i-size and f-size entries from the superblock of the file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. DUring any
assignment operation, numbers are checked for a possible truncation error due to a size mismatch
between source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as block I/O. A buffer management
routine is used to retain commonly used blocks of data in order to reduce the number of read system
calls. All assignment operations result in an immediate write-through of the corresponding block.

The symbols recognized by fsdb are:

i
b
d
+-,
q
>,<

=+

_II

o
p
f
B
W
D

absolute address
convert from i-number to i-node address
convert to block address
directory slot offset
address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The current address is normalized to an
appropriate boundary before printing begins. It advances with the printing and is left at the address of
the last item printed. The output can be terminated at any time by typing the delete character. If a num­
ber follows the p symbol, that many entries are printed. A check is made to detect block boundary over­
flows since logically sequential blocks are generally not physically sequential. If a count of zero is used,
all entries to the end of the current block are printed. The print options available are:

i
d
o

print as i-nodes
print as directories
print as octal words

-1-

FSDB(8)

e
c
b

Series 200 Only

print as decimal words
print as characters
print as octal bytes

FSDB(8)

The f symbol is used to print data blocks associated with the current i-node. If followed by a number,
that block of the file is printed. (Blocks are numbered from zero.) The desired print option letter follows
the block number, if present, or the f symbol. This print facility works for small as well as large files. It
checks for special devices and that the block pointers used to find the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not necessary. A line with just a new­
line character will increment the current address by the size of the data type last printed. That is, the
address is set to the next byte, word, double word, directory entry or i-node, allowing the user to step
through a region of a file system. Information is printed in a format appropriate to the data type. Bytes,
words and double words are displayed with the octal address followed by the value in octal and decimal.
A .B or .0 is appended to the address for byte and double word values, respectively. Directories are
printed as a directory slot offset followed by the decimal i-number and the character representation of
the entry name. Inodes are printed with labeled fields describing each element.

The follOWing mnemonics are used for i-node examination and refer to the current working i-node:

EXAMPLES
386i

In=4

In= + 1

fc

2i.fd

d5i.fc

1b.pOo

md mode
In link count
uid user ID number
gid group 10 number
sO high byte of file size
sl low word of file size
a# data block numbers (0 - 12)
at
mt
maj
min

access time
modification time
major device number
minor device number

prints i-number 386 in an i-node format. This now becomes the current working i­
node.

changes the link count for the working i-node to 4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated with the working i-node.

prints the first 32 directory entries for the root i-node of this file system.

changes the current i-node to that associated with the 5th directory entry (numbered
from zero) found from the above command. The first 512 bytes of the file are then
printed in ASCII.

prints the superblock of this file system in octal.

2i.aOb.d7=3 changes the i-number for the seventh directory slot in the root directory to 3. This
example also shows how several operations can be combined on one command
line.

d7.nm = 11 name" changes the name field in the directory slot to the given string. Quotes are optional
when used with nm if the first character is alphabetic.

SEE ALSO
dir(5), fs(5}, fsck(8}.

WARNING
The use offsdb should be limited to experienced/sdb users.

-2-

GETIY(8) GETIY(8)

NAME
getty - set the modes of a terminal

SYNOPSIS
/etc/getty name [type [delay II

HP-UX COMPATIBILITY
Level: HP-UXIRUNONLY

Origin: System III

DESCRIPTION
Getty is normally invoked by init(8) as the first step in allowing users to login to the system. Lines in
/etc/inittab tell init to invoke getty with the proper arguments.

Name should be the name of a terminal in /dev (e.g., tty03); type should be a single character chosen
from -, 0, 1, 2, 3, 4, 5, 6, or 7, which selects a speed table in getty, or I, which tells getty to update
/etc/utmp and exit. Type defaults to zero.

Delay is relevant for dial-up ports only. It specifies the time in seconds that should elapse before the port
is disconnected if the user does not respond to the login: request. Delay defaults to zero.

First, getty types the login: message. The login: message depends on the speed table being used. Then
the user's login name is read, a character at a time.

While reading, getty tries to adapt to the terminal, speed, and mode that is being used. If a null character
is received, it is assumed to be the result of a "break" (" interrupt"). The speed is then changed based
on the speed table that getty is using, and login: is typed again. Subsequent breaks cause a cycling
through the speeds in the speed table being used.

The user's login name is terminated by a new-line or carriage-return character (the characters you type
in must match those specified for your login name exactly, including case). The latter results in the sys­
tem being set to treat carriage returns appropriately. If the login name contains only upper-case alpha­
betic characters, the system is told to map any future upper-case characters into the corresponding
lower-case characters.

Finally, login (1) is called with the user's login name as argument.

If getty is invoked with file deSCriptor 0 already open, it must be a terminal, and the name argument must
be omitted from the command line. Getty uses the already-open terminal for standard input, output,
and error, as if the name of the terminal was specified on the command line.

If the type argument is I, getty ensures that the utmp and wtmp files exist and that there is a logged-out
entry in utmp for name, and adds a logout entry to wtmp for name. Then, if delay is specified as zero,
getty exits immediately. Otherwise, it tries to open name, but waits no more than delay seconds (2
seconds if delay is not specified). Then it sets BO and HUPCL (see tty(4)) for file descriptor 0 if the open
succeeded or the file was already open, and exits.

Speed sequences for the speed tables:

B110; for 110 baud console TTY.
o B300-BI50-BII0-BI200; normal dial-up sequence starting at B300.
1 B150; no sequence.
2 B2400; no sequence.
3 BI200-B300-BI50-BII0; normal dial-up sequence starting at B1200.
4 B300; for console DECwriter.
5 B9600; no sequence.
6 B4800-B9600; for Tektronix 4014.
7 B4800;

HARDWARE DEPENDENCIES
Series 200:

The character U may be specified as a type; it represents a speed of 1200 baud.

-1-

GETTY(8) GETTY(8)

Series 500:
The character H may be specified as a type; it represents a speed of 9600 baud for HP terminals.

Upper-case letters are mapped into lower-case during getty only.

SEE ALSO
login(l), tty(4), inittab(5), utmp(5), init(8).

BUGS
Ideally, the speed tables would be read from a file, not compiled into getty.

-2-

INIT(8) INIT(8)

NAME
init - process control initialization

SYNOPSIS
letc/init [state 1

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
[nit is invoked inside HP-UX as the last step in the boot procedure. It is process number one, and is the
ancestor of every other process in the system. As such, it can be used to control the process structure of
the system. If init is invoked with an argument by the super-user, it will cause an asynchronous change
in the state of process one.

[nit has 9 states, 1 through 9. It is invoked by the system in state 1, and it performs the same functions
on entering each state. When a state is entered, init reads the file letc/inittab (see inittab(5)).

After reading letc/inittab and signaling running processes as required, but before invoking any pro­
cesses under the new state, letc/rc is invoked (see rc(8)). [nit will also execute letc/rc at the request of
the operating system (e.g., when recovering from power failure). In this last case, the first argument has
an x appended to it.

When letc/rc has finished executing (or after five minutes), init invokes all commands waiting to be exe­
cuted. (A command is waiting to be executed if there is no process currently running that has the same id
as the command.) The flag c (continuous) requires the command to be continuously reinvoked
whenever the process with that id dies. The flag 0 (off) causes the command to be ignored. This is
useful for turning lines off without extensive editing. Otherwise, the command is invoked a maximum of
one time in the current state.

[nit invokes the command field read from letc/inittab by opening 1 for reading on file descriptors 0, 1,
and 2, resetting all signals to system default, setting up a new process group (setpgrp (2)), and execing:

Ibin/sh -c "exec command"

Whenever init changes state, all commands saved for execution in the previous state are discarded.

[nit inherits all orphan processes (those whose parent process died before the child). In such cases, init
notices them when they terminate, but otherwise does nothing.

HARDWARE DEPENDENCIES
Series 2001500:

FILES

[nit does not execute letclrc at the request of the operating system, so rc's first argument never has
an x appended to it.

letc/inittab
letc/rc
Ibin/sh
Idev/console

SEE ALSO
10gin(1), sh(l), exec(2), setpgrp(2), inittab(5), getty(8), rc(8).

DIAGNOSTICS

BUGS

When init can do nothing else because of a missing letc/inittab or when it has no children left, it will try
to execute a shell on Idev/console. When the problem has been fixed, it is necessary to change states,
and termin'\!e the shell.

[nit does not complain if the state id pairs in letc/inittab are not unique. For any given pair, the last one
in the file is valid.

-1-

INSTALL(8) INSTALL(8)

NAME
install- install commands

SYNOPSIS
letc/install [-c dira] [-f dirb] H] [-n dire] [-0] [-s] file [dirx ...]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Install is a command most commonly used in "makefiles" (see make(1)) to install afile (updated target
file) in a specific place within a file system. Each file is installed by copying it into the appropriate direc­
tory, thereby retaining the mode and owner of the original command. The program prints messages tel­
ling the user exactly what files it is replacing or creating and where they are going.

Install is useful for installing new commands, or new versions of existing commands, in the standard
directories (Le. Ibin, letc, etc.).

If no options or directories (dirx ...) are given, install will search (using find (1)) a set of default direc­
tories (Ibin, lusr/bin, letc, llib, and lusr/lib, in that order) for a file with the same name asfile. When the
first occurrence is found, install issues a message saying that it is overwriting that file with file (the new
version), and proceeds to do so. If the file is not found, the program states this and exits without further
action.

If one or more directories (dirx ...) are specified after file, those directories will be searched before the
directories specified in the default list.

The meanings of the options are:

-c dira

-f dirb

-i

-n dire

-0

-s

Installs a new command in the directory specified in dira. Looks for file in dira
and installs it there if it is not found. If it is found, install issues a message saying
that the file already exists, and exits without overwriting it. May be used alone
or with the -s option.

Forces file to be installed in given directory, whether or not one already exists.
If the file being installed does not already exist, the mode and owner of the new
file will be set to 755 and bin, respectively. If the file already exists, the mode
and owner will be that of the already existing file. May be used alone or with the
-0 or -s options.

Ignores default directory list, searching only through the given directories (dirx
...). May be used alone or with any other options other than -c and -f.

If file is not found in any of the searched directories, it is put in the directory
specified in dire. The mode and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other options other than -c and -f.

If file is found, this option saves the "found" file by moving it to OLD file in the
directory in which it was found. May be used alone or with any other options
other than -c.

Suppresses printing of messages other than error messages. May be used alone
or with any other options.

SEE ALSO
mk(8).

BUGS
Install cannot create alias links for a command (for example, vi(1) is an alias link fur ext 1)).

-1-

KILLALL(8) KILLALL(8)

NAME
killall- send signal to all user processes

SYNOPSIS
letclkillall [signal]

HP-UX COMPATIBILITY
Level:· HP-UXISTANDARD

Origin: System III

DESCRIPTION
Killall sends the specified signal to all user processes in the system, with the following exceptions:

the init process;

all processes (including background processes) associated with the terminal from which killall
was invoked;

any ps -ef process, if owned by root;

any sed -e process, if owned by root;

any shutdown process;

any killall process;

any letclrc process.

Killall obtains its process information from ps(l), and thus may not be able to perfectly identify which
processes to signal.

If no signal is specified, signal 9 (kill) is sent by default.

Killall is invoked automatically by shutdown(8). The use of shutdown is recommended over using killall
by itself.

SEE ALSO
kilI(l), ps(l), signal(2), chsys(8), shutdown(8), stopsys(8).

-1-

MAKEKEY(8) MAKEKEY(8)

NAME
make key - generate encryption key

SYNOPSIS
lusr/lib/makekey

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the amount
of time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes
on its standard output. The output depends on the input in a way intended to be difficult to compute
(Le., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are
best chosen from the set of digits, ., I, and upper- and lower-case letters. The salt characters are
repeated as the first two characters of the output. The remaining 11 output characters are chosen from
the same set as the salt and constitute the output key.

The transformation performed is essentially the folloWing: the salt is used to select one of 4,096 crypto­
graphic machines all based on the National Bureau of Standards DES algorithm, but broken in 4,096
different ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(1) and crypt(I)). Usually, its input
and output will be pipes.

SEE ALSO
crypt(1), ed(I), passwd(5).

-1-

MKDEV(8) MKDEV(8)

NAME
mkdev - make device files

SYNOPSIS
/etc!mkdev

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

DESCRIPTION
This shell script helps the system administrator install and maintain an HP-UX system. It is used as a
template for creating device files. It consists of a machine-dependent list of commands which can create
device files. It also changes permissions as appropriate for the device files.

This command makes it easier to build (or rebuild) special files all at once.

Mkdev automatically changes the working directory (using cd) to /dev before starting execution.

Mkdev is specifically intended for modification before (each) use. Command lines for non-desired dev­
ices should be commented out with "#" so that they are still available for later use. You may want to
use shorter device names than those suggested, especially for default devices. For HP-UX naming con­
ventions, see intro(4).

SEE ALSO
chmod(l), mkdir(l), intro(4), mknod(8).

DIAGNOSTICS
Each command line in mkdev is echoed as it is executed. Error messages, if any, are generated by the
commands invoked.

Since the super-user must modify this script before using it the first time, an error is given if it has not
been modified.

-1-

MKFS(8) Series 200 Only MKFS(8)

NAME
mkfs - construct a file system

SYNOPSIS
/ete/mkfs special blocks[:inodes) [gap blocks)
/etc/mkfs special proto [gap blocks)

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

Remarks: Mkfs(8) is implemented on the Series 200 only.

DESCRIPTION
Mkfs constructs a file system by writing on the special file according to the directions found in the
remainder of the command line. If the second argument is given as a string of digits, mkfs builds a file
system with a single empty directory on it. The size of the file system is the value of blocks interpreted as
a decimal number. The boot program is left uninitialized. If the optional number of inodes is not given,
the default is the number of blocks divided by 4.

If the second argument is a file name that can be opened, mkfs assumes it to be a prototype file proto,
and will take its directions from that file. The prototype file contains tokens separated by spaces or
new-lines. The first token is the name of a file to be copied onto block zero as the bootstrap program.
The second token is a number specifying the size of the created file system. Typically it will be the num­
ber of blocks on the device, perhaps diminished by space for swapping. The next token is the i-list size
in blocks (refer to fs(5) for information about i-nodes per block). The next set of tokens comprise the
specification for the root file. File specifications consist of tokens giving the mode, the user ID, the group
ID, and the initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters -bed specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-id mode or not. The third is 9 or - for the
set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions (see chmod (1)).

Two decimal number tokens come after the mode; they specify the user and group ID's of the owner of
the file.

If the file is a regular file, the next token is a path name whence the contents and size are copied. If the
file is a block or character special file, two decimal number tokens follow which give the major and minor
device numbers. If the file is a directory, mkfs makes the entries. and .. and then reads a list of names
and (recursively) file specifications for the entries in the directory. The scan is terminated with the token
$.

A sample prototype specification follows:

Istandldiskboot
4872110
d--77731
usr d--777 3 1

sh ---75531 Ibin/sh
ken d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

In both command syntaxes, the rotational gap and the number of blocks can be specified. For RP04
type drives, these numbers should be 7 and 418.

-1-

MKFS(8) Series 200 Only MKFS(8)

SEE ALSO
dir(5), fs(5).

BUGS
If a prototype is used, it is not possible to initialize a file with second- or third-level indirects.

-2-

MKNOD(8) MKNOD(8)

NAME
mknod - create special, fifo, files

SYNOPSIS
/etc!mknod name clb major minor
/etc!mknod name p

HP-UX COMPATABILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special file. Name is the path name of
the special file to be created.

In the first synopsis shown, the second argument should be b if the special file is block-type (discs, tape),
or c if it is character-type (other devices). Major and minor are numbers specifying the major device type
(e.g. device driver number) and the minor device number (typically, but not exclUSively, the unit, drive,
HP-IB bus address and/or line number). Major and minor may be specified in hex, octal, or decimal,
using the C language conventions (decimal numbers must not have a leading zero, octal must have a
leading zero, and hex must have a leading zero followed by 'x'). Refer to the HP-UX System Adminis­
trator Manual for your implementation for details on using mknod.

Mknod can also be used to create fifo's (named pipes) (second synopsis shown).

A real ID of 0 (super-user) is required on the first synopsis shown above. All users may use mknod in the
form shown in the second synopsis.

The newly created file has a mode of 0666, minus the current setting of the user's umask.

HARDWARE DEPENDENCIES

FILES

Series 500:
An additional form of mknod is implemented, enabling the super-user to create a network
special file. Its synopsis is:

/etc!mknod name n node name

A network special file addresses another node on a local area network. Name is the path name
of the network file to be created. N odename is the name by which the node is known on the
network.

/etc/devnm

SEE ALSO
Isdev(l), mknod(2), section 4, mknod(5).

-1-

OPTINSTALL(8) Series 500 Only OPTINSTALL(8)

NAME
optinstall, optupdate - install/update optional HP-UX products

SYNOPSIS
optinstall productnumber [unload] [debug]
optupdate productnumber [unload] [debug]

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED

Origin: HP

Remarks: Optinstall and optupdate are implemented on the Series 500 only.

DESCRIPTION

FILES

Optinstall is used to configure an optional HP-UX software product to its initial state prior to use.

Optupdate is used to receive a periodic update of an HP-UX optional product when a prior release of the
same product is already present.

Productnumber uniquely identifies the particular HP-UX software product to be installed or updated. It is
a number of the form [0-9]*A and is the same number that appears on the media on which the product
is supplied.

Only the super-user can execute optinstall.

Both routines are interactive. They print information about the addresses of the mass storage devices to
be used, and accept input from the user which can change these addresses.

If the literal string unload is specified, the cartridge tape is automatically unloaded when optinstall or
optupdate completes.

If the literal string debug is specified, the -x shell option is automatically set (see sh(l)).

Note that optinstall and optupdate work only on the 88140LlS tape cartridge media.

/dev/[r]ext*

/dev/[r]mtc*
/optinstall. dst
/optinstall.src

device files enabling access to destination device, if it is not the root
volume;
device files enabling access to source device;
directory on which destination disc is mounted (if not root).
directory on which source device is mounted.

SEE ALSO
sh(1), upm(1), shutdown(8).

WARNING

BUGS

Do not allow users to execute a command that is part of the product being updated while the update is
in progress. Single-user mode is advisable.

Only one product may be installed or updated at a time, even if several products reside on the same
tape.

There is no way to prevent aCcidentally installing or updating an older version of a product over a newer
one.

The routines fail if either the source media or the destination disc is currently mounted (see mount(l)).
This restriction does not apply if the destination disc is the root device.

It cannot be guaranteed that valid productnumbers will always be in the range [0-9] *A.

-1-

OSCK(8) Series 500 Only OSCK(8)

NAME
osck - check integrity of OS in SDF boot area(s)

SYNOPSIS
Ilbin/osck [-v 1 volume

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: Osck is implemented on the Series 500 only.

DESCRIPTION
Osck checks one operating system in the boot area on the volume specified by volume (a character
special file).

The OSF must be the first section of an n-section operating system. If n is greater than one, osck prompts
for additional volumes as needed. The volumes must be mounted in order.

The -v (verbose) option causes osck to print additional information about each volume and each code
segment as they are encountered. If -v is not specified, it is silent except for warnings, errors, and
prompts for new volumes.

Osck checks the following:

SEE ALSO

OSF headers are valid and consistent across multiple volumes;

the first code segment is a power-up segment;

the code segment chain contains correct headers and lengths;

all segment checksums are correct;

the system terminates correctly after the last segment.

oscp(8), osmark(8), osmgr(8), sdfinit(8).

DIAGNOSTICS
Osck gives an appropriate error message and returns a non-zero value if volume cannot be accessed or is
not an SDF volume, there is no boot area, or the boot area contents appear invalid. Error messages are
also given if any integrity violation is found. See osmgr(8) for a complete list of return values.

-1-

OSCP(8) Series 500 Only OSCP(8)

NAME
oscp - copy, create, append to, split operating system

SYNOPSIS
Ilbin/oscp [-0 1 [-v 1 fromvolume tovolume
Ilbin/oscp -m [-v 1 file ... tovolume
Ilbin/oscp -a [-v 1 file ... tovolume
Ilbin/oscp -s [-v 1 fromvolume

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: Oscp is implemented on the Series 500 only.

DESCRIPTION
Oscp enables you to perform:

boot-to-boot copy
Copy an operating system from the boot areas on one or more SDF volumes to the boot area on
one SDF volume;

files-to-boot copy (-m, -a options)
Create a new operating system or append to an existing operating system from a list of ordinary
files, and put the resulting system in one boot area;

boot-to-Jiles copy (-s option)
Split up the segments in an operating system from one or more boot areas to one or more ordi­
nary files.

Fromvolume and tovolume are usually character special files.

Boot-to-Boot Copy
If -m, -a, and -s are not specified, oscp does boot-to-boot copy. For normal, multi-volume boot-to­
boot copy, oscp requires that the OSF on the firstfromvolume be the first section of an n-section operating
system. If n is greater than one, oscp prompts you for additional volumes as required. The additional
volumes must be mounted in order.

Before starting the copy, oscp clears the OSF header on tovolume. The OSF header values are corrected
on tovolume after the copy is done. This new header may include a new system 10 string that you enter
when you are prompted (the same 10 string displayed by the boot loader).

The -0 (one volume only) option tells oscp to copy only one OSF (which may be part or all of a system)
from fromvolume to tovolume, without changing the OSF header.

The -v (verbose) option tells oscp to print additional information about each volume as it is encountered.
Otherwise, oscp is silent except for warnings, errors, and prompts for new volumes and new system ID
strings.

Files-to-Boot Copy
If the -m (merge) option is given, oscp does a files-to-boot copy from the specified files. The source files
may be BASIC/9000 BIN files or HP-UX ordinary files. The files must all be accessible and contain valid
code segments. The code segments must all be of the same system type. The last code segment in each
file must be followed by two null bytes.

Note that segments of unknown type, and old power-up segments (before February 1983) are "generic
donors", and may be merged with any other type. Also note that, when creating a new system, oscp
uses the first OSF header magic number in its internal list (i.e. OxE9C28206).

Once you enter the new system ID string, oscp destroys the old OSF (if any) in the boot area before wri­
ting the new system.

-1-

OSCP(8) Series 500 Only OSCP(8)

The -a (append) option allows you to append code segments from ordinary files to an existing OSF on
tovolume. There must be enough unused space in the boot area after the OSF, and the OSF must be a
complete system in itself (Le. volume 1 of 1). The existing OSF is not invalidated until the last segment is
copied to the boot area.

In conjunction with -m or -a, the -v (verbose) option gives you additional information about the boot
area and each segment as it is encountered.

Boot-to-Files Copy
The -s (split) option allows you to split an operating system into one or more ordinary files (HP-UX ordi­
nary files only, not BASIC BIN files). For each code segment in the operating system, you are prompted
for a file name to which the code segment is appended. If you enter a null line, the code segment is
appended to the same file as was used in the previous append operation.

If the size of the specified file is greater than zero, oscp backs up two bytes from the end of the file to
overwrite the previous terminator before appending the code segment to the file.

The -v (verbose) option gives you additional information about the boot area and each segment as it is
encountered.

Note that the resulting ordinary files may be owned by the owner of the oscp command, depending on
its permissions.

Copying to Boot Areas
Before beginning the copy, oscp prompts you for the 80-character operating system ID string to use for
all volumes.

Before writing to tovolume, oscp first checks that it contains a boot area with sufficient unused space.

SEE ALSO
osck(8), osmark(8), osmgr(8), sdfinit(8).

DIAGNOSTICS

BUGS

Oscp prints an appropriate error message and returns a non-zero value if fromvolume or tovolume cannot
be accessed or is not an SDF volume, there is no boot area, the boot area contents appear invalid, or the
source OSF is not section 1 of an n-section system.

Errors are also given if:
fromvolume and tovolume are the same (by name);
fromvolumes are mounted out of order;
a specified ordinary file is inaccessible or has invalid contents;
the first segment is not a power-up segment;
any segment has a mismatching system type.

See osmgr(8) for the exact list of return values.

Oscp -a checks that all appended segments are mutually compatible, but it does not check them against
the segments in the existing OSF.

Performing an oscp -a to a boot area with less than 1024 free bytes results in an error before the copy
completes.

Before appending, oscp -s backspaces over the existing two-null-byte terminator at the end of each ordi­
nary file, but it does not check that the bytes overwritten were actually two null bytes.

A boot area of less the 1024 bytes, at the end of a volume, results in a read error.

-2-

OSMARK(8) Series 500 Only OSMARK(8)

NAME
osmark - mark SDF OS file as loadable/non-loadable

SYNOPSIS
Ilbin/osmark [-m I-u 1 [-v 1 volume

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: Osmark is implemented on the Series 500 only.

DESCRIPTION
Osmark marks an operating system file (OSF) in a boot area as loadable (-m option) or non-loadable
(-u option). Volume is usually a character special file specifying the SDF volume on which the boot area
is found.

If neither -m nor -u are specified, osmark reports the status of the OSF.

The -v (verbose) option causes osmark to print additional information about the volume in the same for­
mat as that used by osck and oscp.

When dealing with a multi-volume operating system, be sure that each OSF in the system is properly
marked, not just the first.

SEE ALSO
osck(8), oscp(8), osmgr(8).

DIAGNOSTICS
Osmark outputs an appropriate error message and returns a non-zero value if filespec cannot be
accessed or is not an SDF volume, there is no boot area, or the boot area contents appear invalid. Refer
to osmgr(8) for a list of possible return values.

-1-

OSMGR(8) Series 500 Only OSMGR(8)

NAME
osmgr - operating system manager package description

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This entry describes the operating system manager package, which is implemented on the
Series 500 only.

DESCRIPTION
This group of three commands helps you manage the operating systems which reside in the boot areas
on your Structured Directory Format (SDF) volumes. The package includes:

oscp copy systems or create them from ordinary files;
osck check operating system integrity;
osmark mark an operating system file as loadable or not loadable, or inquire about current state of

operating system file.

Oscp, osck, and osmark are multiple links to a single program.

Boot Areas:

Each SDF volume has one boot area consisting of zero or more contiguous logical blocks. The boot
area is completely outside the file area. Its size is determined when the volume is initialized. To change
the size of a boot area, you must re-initialize the volume.

Each boot area may contain at most (one part of) one operating system.

The logical block size for a boot area is the same as that for the rest of the volume (Le., whatever size you
request when you initialize the volume).

Operating Systems:

Every HP 9000 operating system consists of a series of code segments. An operating system may reside
in the boot area on one volume, or it may be distributed in sections over several volumes (not neces­
sarily with a whole number of segments per volume).

An operating system can also reside in a number of ordinary files, each containing a whole number of
segments, and terminated by two null bytes. This is the same format used for BASIC/9000 BIN files. In
this form, the system is not loadable, but its files can be combined into a loadable system by oscp.

Operating System Files:

Each boot area contains zero or one operating system files (OSF's). If an operating system resides in
sections in several boot areas, each section occupies one OSF on one SDF volume.

Operating System File Headers:

Each OSF starts with a header that includes a "loadable II flag, a volume number, and the total number
of volumes over which this operating system is distributed. The loader only boots an OSF if it is marked
loadable. If required, it requests additional volumes until it has loaded from all volumes in the set. You
should ensure that all parts of a multi-volume operating system are marked loadable.

Each OSF header also includes an 80-character identification string. The loader displays this string
before it starts to load from each volume.

RETURN VALUES
The following list contains all the possible return values, mnemonics, and meanings given by OS
manager commands:

o
1 USAGE
2 FILESYS
3 VOLSEQ
4 VOLCONT

no error;
bad argument list;
error during file system access;
volumes mounted out of order;
bad volume (not SDF, no boot area, etc.);

-1-

j

OSMGR(8)

5 HEADER
6 FIRSTSEG
7 SEGTYPE
8 SEGLEN
9 CHECKSUM
10 TERM

SEE ALSO

Series 500 Only

invalid or inconsistent OSF header(s);
first segment is not a power-up segment;
incompatible segment system types or revisions;
segment length out of range or not whole words;
segment checksum does not match reference value;
system terminator ("-1" word) missing.

osck(8), oscp(8), osmark(8), sdfinit(8).

-2-

OSMGR(8)

PWCK(8)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
pwck [file]
grpck [file]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

PWCK(8)

Pwck scans the password file and notes any inconsistencies. The checks include validation of the num­
ber of fields, login name, user lD, group lD, and whether the login directory and optional program name
exist. The default password file is /etc/passwd.

FILES

Grpck verifies all entries in the group file. This verification includes a check of the number of fields,
group name, group lD, and whether all login names appear in the password file. The default group file is
jete/group.

jete/group
/etc/passwd

SEE ALSO
group(5), passwd(5).

DIAGNOSTICS
Group entries in jete/group with no login names are flagged.

-1-

RC(8) RC(8)

NAME
rc - system initialization shell script

SYNOPSIS
lete/re arg1 arg2 arg3

HP-UX COMPATIBILITY
Level: HP-UXIRUN ONLY

Origin: System III

DESCRIPTION
The letelre shell script is executed by init(8) whenever the init state is changed. Argl is the current state
of init, arg2 is the number of times that state has been previously entered, and arg3 is the previous state
(for example, 1 00 for system boot-up). These arguments are supplied by init.

Rc performs housekeeping functions, such as setting the hostname of your computer, creating the
mnttab table, mounting volumes, starting cron, preserving editor temporary files, and checking for the
existence of any temporary files. Much of rc is only executed the first time (for argl = 1, arg3 = 0).
Comments are inserted in the shell script to gUide you in II customizing II rc for your particular system.

SEE ALSO
init(8).

-1-

REVCK(8) Series 500 Only REVCK(8)

NAME
revck - check internal revision numbers of HP-UX files

SYNOPSIS
Ilbin/revck reLfiles

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: Revck is implemented on the Series 500 only.

DESCRIPTION

FILES

Revck checks the internal revision numbers of lists of files against reference lists. Each ref_file must con­
tain a list of absolute path names (each beginning with" I") and whatstrings (revision information strings
from what(1)). Path names begin in column one of a line, and have a colon appended to them. Each
path name is followed by zero or more lines of whatstrings, one per line, each indented by at least one
tab (this is the same format in which what(1) outputs its results).

For each path name, revck checks that the file exists, and that executing what(1) on the current path
name produces results identical to the whatstrings in the reference file. Only the first 1024 bytes of
whatstrings are checked.

Ref_files are usually the absolute path names of the revlist files shipped with HP-UX. Each HP-UX
software product includes a file named Isystemlproductlrevlist (for example, Isystem/97070A/revlist).
The rev list file for each product is a reference list for the ordinary files shipped with the product, plus any
empty directories on which the product depends.

Isystemlproductlrevlist

SEE ALSO

lists of HP-UX files and revision numbers

what(1).

DIAGNOSTICS
Revck is silent except for reporting missing files or mismatches. If a ref_file is not in the right format, you
will get unpredictable results.

-1-

ROOTMARK(8) Series 500 Only ROOTMARK(8)

NAME
rootmark - mark/unmark volume as HP-UX root volume

SYNOPSIS
Ilbin/rootmark [-m I -u 1 filespec

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks: Rootmark is implemented on the Series 500 only.

DESCRIPTION
Rootmark enables you to control which mass storage device contains your HP-UX root (I) directory.
The HP-UX operating system searches mass storage devices and uses the first root volume it finds.

Filespec is usually a character special file which points to a mass storage volume initialized with Struc­
tured Directory Format (SDF). If invoked with no option, rootmark tells the current state of the specified
volume. If -m is specified, then the specified volume is marked as a root volume. If -u is specified, the
specified volume is marked as not a root volume. Rootmark is silent if successful.

RETURN VALUE
Rootmark sends an error message to standard error and returns a non-zero value if it cannot read or
write a volume, or if a volume is not SDF. Rootmark returns 1 for incorrect syntax, 2 for a file system
problem, and 3 for a volume that is not in SDF.

SEE ALSO
mount(l), osmgr(8), sdfinit(8).

WARNINGS
A volume must not be marked as a root volume unless it contains all the directories and files that HP-UX
requires for system initialization.

Never mark any media shipped from Hewlett-Packard as not a root volume, in case you need to re­
install HP-UX from that media.

-1-

SCONFlG(8) Series 200 Only SCONFlG(8)

NAME
sconfig - system swap space reconfiguration

SYNOPSIS
letc/sconfig [-f file] [-d major minor] start size

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

Remarks: Sconfig(8) is implemented on the Series 200 only. It will be replaced in a later release with a
more generalized configuration procedure.

DESCRIPTION
There are three parameters the kernel uses when dealing with the swap area: swap area starting block
number, swap area size (in blocks), and the major and minor numbers for the swapping device. Nor­
mally the swap area is on the same disc as the root file system, with the swap area starting at the end of
the file system.

Sconfig allows the user to reconfigure the system swap parameters. The following arguments are recog­
nized:

-ffile File is the path name of the file containing the kernel. If file is not specified it
defaults to Ihp-ux. This file is updated with the new swap configuration. In order for
the changes to take effect, file must be copied to Ihp-ux, and the system rebooted.

-d major minor Major and minor are the major and minor numbers for the disc device on which the
swap area is to be located. If this option is not specified, then the default of major 0,
minor 1 is used.

start

slze

EXAMPLES

Start is the block number of the start of the swap area. This is normally (end of file
system + 1). See the HP-UX System Administrator Manual for a list of the suppor­
ted discs and their sizes.

Size is the number of 1024-byte disc blocks to be dedicated to swapping. Size must
be in the range 2000 to (maximum blocks for the given disc). See the HP-UX Sys­
tem Administrator Manual for a list of the supported discs and their sizes.

To set the swap area of an HP 7912 disc on major 0, minor 1 at 2 megabytes:

sconfig 62064 2000

To set the swap area of a 7912 disc on major 0, minor 5 at 10 megabytes for the kernel in file
ItesLkernel:

sconfig -d 0 5 -f ItesLkernel 54064 10000

This example describes how sconfig is used in the installation process. It is assumed that the user is fami­
liar with the installation procedure as documented in the HP-UX System Administrator Manual.

1) Follow the instructions for system installation through copying the image from the tape to the
disc.

2) Boot the system. Before executing the sysinstall command, run sconfig indicating the amount of
swap space to be allocated. Make sure that the updated file is copied to Ihp-ux.

3) Execute sysinstall adjusting the file system size parameter to reflect the swap space size. All sizes
are in units of disc blocks. The size parameter to sysinstall is calculated as follows:

size = disc~ize + 2000 - desired_swap_size

Disc-size is found in the disc table in the HP-UX System Administrator Manual.

4) Continue with the documented installation process.

-1-

SCONFIG(8) Series 200 Only SCONFIG(8)

FILES
Ihp-ux

SEE ALSO
HP-UX System Administrator Manual
mkdev(8l, mkfs(8).

WARNINGS

BUGS

This command is intended to be used in conjunction with the installation process.

Care should be taken when redefining the swap area. If start is set too low then swapping will overwrite
the file system. If size is too large then an 10 error will be generated during a swap operation. This will
lead to a kernel panic (10 error in swap).

Sconfig should be replaced with a more general configuration command which allows the user to
change other tunable system parameters (buffer cache size, number of processes, etc).

-2-

SDFINIT(8) Series 500 Only SDFINIT(8)

NAME
sdfinit - initialize Structured Directory Format volume

SYNOPSIS
/lbin/sdfinit [-i 1 pathname [blocksize [bootsize [interleave III

HP-UX COMPATIBILITY
Level: Structured Directory Format - HP-UXINUCLEUS

Origin: HP

Remarks: Sdfinit is implemented on the Series 500 only.

DESCRIPTION
Sdfinit initializes a volume on a special file in the Structured Directory Format (SDF).

Pathname refers to a character or block special file, which must be accessible and not mounted.

Blocksize is the number of bytes per logical block. It is rounded up, if necessary, to the next multiple of
the physical record size for the volume. If absent or less than 1, the system sets a reasonable default for
you.

Bootsize is the number of bytes to allocate for the boot area on the volume. It is rounded up to a whole
number of logical blocks. It defaults to 0 (no boot area).

Interleave is the sector interleave factor. It defaults to 1 (not necessarily the best value for all deVices). In
the special case of initializing memory volumes (those volumes accessed via driver number 10 - refer to
the "Drivers" section in your System Administrator Manual), interleave is used to specify the number of
256-byte physical sectors that are to be used for the memory volume "device". The maximum number
of sectors allowed is 2047 (yielding 524 032 bytes).

The -i option inhibits formatting and certification, so the volume is only initialized. That is, only a direc­
tory structure is written. This saves a considerable amount of time in most cases. However, the -i
option is not recommended for most removable media, unless it was recently formatted and certified in
the same type of drive.

S dfinit does not return until the operation is completed. This can require considerable time. For
example, formatting can take 47 minutes on an HP 7933 hard disc, or up to 67 minutes on an HP
88140L (DC-600) cartridge tape. Initialization takes an additional one to five minutes.

Note that, during this formatting and initialization process, you are prevented from doing anything else
on the same select code, so avoid running sdfinit on the same select code with the disc containing your
root volume.

The root directory on the newly initialized volume is always owned by the super-user, and has a mode
of 777.

Note that your effective user ID must be that of the super-user (0).

SEE ALSO
lifinit(l), section 4, osmgr(8).

DIAGNOSTICS
Appropriate error messages are given if the argument list is incorrect, pathname cannot be initialized, or
any other error occurs.

WARNING
Aborting sdfinit prematurely requires that you re-execute sdfinit to format and initialize the media.

Serious problems arise if you power down the HP 9000 Model 520 computer while sdfinit is formatting
and initializing the internal 10 megabyte Winchester disc. This is because sdfinit writes critical records to
the disc that specify what records are spared. When you power down, these tables become garbage,
and cause the disc to fail its read/write self-test when you power up again. If this problem occurs, call
your local HP Sales and Support Office for assistance.

-1-

SETMNT(8)

NAME
setmnt - establish mnttab table

SYNOPSIS
/etc/setmnt

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

SETMNT(8)

Setmnt creates the /etc/mnttab table (see mnttab(5)), which is needed for both the mount(l) and
umount(l) commands. Setmnt reads standard input and creates a mnttab entry for each line. Input lines
have the format:

FILES

filesys node

where filesys is the name of the file system's special file and node is the root name of that file system.
Thus filesys and node become the first two strings in the mnttab (5) entry.

/etc/mnttab

SEE ALSO
mnttab(5).

BUGS
Filesys and node are truncated to MNTLEN bytes.
Setmnt silently enforces an upper limit on the maximum number of mnttab entries.
It is unwise to use setmnt to create false entries for mount(l) and umount(l).

-1-

SHUTDOWN(8) SHUTDOWN(8)

NAME
shutdown - terminate all processing

SYNOPSIS
jete/shutdown [grace]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System 11I

DESCRIPTION
Shutdown is part of the HP-UX operation procedures. Its primary function is to terminate all currently
running processes in an orderly and cautious manner. The procedure is designed to interact with the
operator (Le., the person who invoked shutdown). Shutdown may instruct the operator to perform some
specific tasks, or to supply certain responses before execution can resume. Shutdown goes through the
follOWing steps:

All users logged on the system are notified to log off the system by a broad casted message. The
operator may display his/her own message at this time. Otherwise, the standard file save message is
displayed.

If the operator wishes to run the file-save procedure, shutdown unmounts all file systems.

All file systems' super blocks are updated before the system is to be stopped (see sync(S)}. This must
be done before re-booting the system, to insure file system integrity. The most common error diag­
nostic that will occur is device busy. This diagnostic happens when a particular file system could not
be unmounted. See umount(l}.

Grace specifies, in seconds, a grace period for users to log off before shutting down. The default is 60
seconds. If grace is zero, shutdown runs more qUickly and gives the user very little time to log out.

HARDWARE DEPENDENCIES
Series 500:

A file-save procedure is not implemented.

SEE ALSO
mount(l}, sync(S}.

-1-

STOPSYS(8) Series 500 Only STOPSYS(8)

NAME
stopsys - stop operating system with optional reboot

SYNOPSIS
/Ibin/stopsys [-r 1

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP

Remarks: Stopsys is implemented on the Series 500 only.

DESCRIPTION
Stopsys dumps all system I/O buffers to mass storage volumes (Le. performs a sync(8)), and shuts down
all virtual memory activity. Then, stopsys either stops the operating system so that the hardware may be
powered down (no option), or it reboots the system (resets the machine's processor(s) to the power-on
state) (-r option). The reboot (-r) option results in the activation of the system boot loader, almost
exactly as if the power was just turned on, except that I/O cards are not power-cycled.

Just before it stops the system, stopsys writes a message to /dev/console indicating that the system is stop­
ped and can be safely powered down.

Stopsys may be invoked only by the effective super-user. However, it may be made public by setting the
set-user-ID bit and assigning ownership to root.

Stopsys does not ensure that the system is idle. If any user processes are running, the sync(8) may be
ineffective. You should execute shutdown(8), or at least kill all non-essential processes, prior to running
stopsys.

SEE ALSO
chsys(8), killall(8), shutdown(8), sync(8).

DIAGNOSTICS

BUGS

Stopsys returns only if a non-fatal error occurs, in which case it writes a message to standard error and
returns 1. Non-fatal errors include:

invocation with improper arguments;
invocation by other than the effective super-user;
any failure to stop the system, as long as the system is still usable.

If stopsys fails to stop the system for any reason, but the system is then not in a usable state, stopsys writes
an error message to Idev/console and then attempts to reboot (if -r was specified). If -r was not speci­
fied, or if the reboot attempt fails, stopsys writes "system stopped" on /dev!console, and you must
reboot the system yourself (using the power switch or the front panel).

Note that if the reboot fails it indicates a hardware problem with the HP 9000 Model 20 keyboard on
select code 6, or the HP 9000 Model 30/40 system control module on select code 7.

At this time, stopsys does not shut down Local Area Net (LAN) activity.

-1-

SYNC(8)

NAME
sync - update the super block

SYNOPSIS
sync

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

SYNC(8)

Sync executes the sync system intrinsic. If the system is to be stopped, sync must be called to insure file
system integrity. See sync(2) for details.

SEE ALSO
sync(2).

-1-

UCONFIG(8) Series 500 Only UCONFIG(8)

NAME
uconfig - system reconfiguration

SYNOPSIS
/Ibin/uconfig [option booLdevice]

HP-UX COMPATIBILITY
Level: HP-UXlEXTENDED

Origin: HP

Remarks: U config is implemented on the Series 500 only.

DESCRIPTION
Uconfig enables you to reconfigure certain system parameters. When invoked with no arguments, ucon­
fig lists the current system configuration. The following options are recognized:

-f file reconfigures the system parameters in the boot area according to the specifications given in
file. File may contain any combination of system parameters. Each line in file has the fol­
lowing format:

id value (#comment]

where id is a pre-defined system parameter name, value is one or more values associ­
ated with the parameter, and comment is a descriptive comment for that line. All
characters between the comment delimiter (#) and a new-line are ignored. The id,
value, and comment fields are delimited by one or more blanks and/or tabs.

The valid ids and values are:

vm_device driveLname addr1 addr2 addr3 addr4
where drivecname is an integer specifying the virtual device driver, and addr 1 -
addr4 are integers specifying the device select code, HP-IB address, unit, and
volume, respectively.

cache_buLsize size
where size is an integer in the range 256 to (maximum memory) divided by
(minimum number of cache buffers), specifying the number of bytes in each
individual cache buffer. Size is rounded down to the closest multiple of 256.

cache_buLnum num
where num is an integer in the range 1 to (maximum memory) divided by
(minimum size of cache buffers), specifying the number of individual cache buf­
fers forming the cache.

read_ahead_level level
where level is an integer in the range 1 to the value of cache_buLnum,
specifying the number of buffers that can be filled in one sequential read opera­
tion.

swap_time time
where time is an integer in the range of 1 to 32767 ticks (a tick equals 10msec),
specifying the time a virtual segment remains memory resident before being
swapped to disc.

page_size size
where size is an integer in the range 256 to 16384, specifying the size of paged
data in bytes. If size is an odd number, it is rounded down to the next even num­
ber.

vm_pooLsize size
where size is an integer in the range 16384 to maximum memory, specifying the
maximum size in bytes of the virtual memory page pool. Size is rounded down
to the nearest 16 Kbyte boundary.

-1-

UCONFIG(8) Series 500 Only UCONFIG(8)

FILES

scrolLpages num_pages
where num_pages is an integer in the range 1 to 10, specifying the number of
pages of display buffering (one page = 24 lines of display). The actual number
of pages allocated depends on current available memory. This parameter
applies to the Model 20 only.

staclLsize size
where size is an integer in the range 16384 to maximum memory, specifying the
maximum stack size in bytes for any partition.

segmenLnum num_segments
where numJegments is an integer in the range 200 to 950, specifying the max­
imum number of entries in the system segment table.

worlLseLratio ratio
where ratio is a floating-point number in the range 0 to 1, specifying the
minimum virtual memory working set ratio.

mruLproc_peLusr max-useLprocess
where max_user_process is an integer specifying the maximum number of pro­
cesses a single user can have.

-d reconfigures the system parameters in the boot area to their default values. The default
values, as contained in the file letc/uconfigtab, are:

vm_device 00000; root device as determined by the system at power-up;

cache_buLsize 1024 bytes;

cache_buLnum 50;

reacLahead .. Jevel

swap_time

page_size

vm_pooLsize

scrolLpages

staclLsize

segmenLnum

worlLseLratio

4;

20 ticks; (one tick = 10 msec)

4096 bytes;

0; this value is dynamically computed;

2;

2097152;

700;

0.00375.

max-proc_peLusr 25;

The -f and -d options are mutually exclusive.

BooLdevice is the path name of a character special file containing a boot area. The new configuration is
written out to the boot area on booLdevice, and takes effect the next time the system is booted.

letcluconfigtab
list of default system configuration parameters

WARNING
Do not use uconfig to change the system parameters of an operating system in a boot area unless that
operating system is identical to the operating system you are currently running. If the two operating sys­
tems differ, uconfig will execute successfully, but the new operating system will either fail to boot, or, if it
boots successfully, exhibit strange behavior.

-2-

UUCLEAN(8) UUCLEAN(8)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
lusr/Jib/uucp/uuclean [options 1 ...

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uuclean on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified prefix and delete all those which are
older than the specified number of hours.

The following options are available.

-ddirectory
Clean directory instead of the spool directory.

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A -p without
any pre following will cause all files older than the specified time to be deleted.

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied. (default
time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

This program will typically be started by cron(S) at regular intervals, to remove files like old LCK and TM
files, and to remove any ST files older than a specific time.

lusr/lib/uucp
lusrlspool/uucp

directory with commands used by uuclean internally
spool directory

SEE ALSO
uucp(lC), uux(lC).

-1-

UUSUB(8) UUSUB(8)

NAME
uusub - monitor uucp network

SYNOPSIS
lusr/lib/uucp/uusub [options 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-UX/STANDARD

Origin: System III

Remarks: Uusub on the Series 500 is part of an optional product numbered 97076A.

DESCRIPTION

FILES

Uusub defines a uucp subnetwork and monitors the connection and traffic among the members of the
subnetwork. The following options are available:

-asys Add sys to the subnetwork.
-dsys Delete sys from the subnetwork.
-I Report the statistics on connections.
-r Report the statistics on traffic amount.
-f Flush the connection statistics.
-uhr Gather the traffic statistics over the past hr hours.
-csys Exercise the connection to the system sys. If sys is specified as all, then exercise the connec-

tion to all the systems in the subnetwork.

The meanings of the connections report are:

sys call ok time dev login nack other

where sys is the remote system name, call is the number of times the local system tried to call sys since
the last flush was done, ok is the number of successful connections, time is the latest successful connect
time, dev is the number of unsuccessful connections because of no available device (e.g. ACU), login is
the number of unsuccessful connections because of login failure, nack is the number of unsuccessful
connections because of no response (e.g. line busy, system down), and other is the number of unsuc­
cessful connections because of other reasons.

The meanings of the traffic statistics are:

sys sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent over the period of time indi­
cated in the latest uusub command with the -uhr option. Similarly, rfile and rbyte are the numbers of
files and bytes received.

The command:

uusub -call -u24

is typically started by cron(8) once a day.

/usrlspool/uucp/SYSLOG
lusr/lib/uucp/Lsub
/usr/lib/uucp/R_sub

system log file
connection statistics
traffic statistics

SEE ALSO
uucp(lC), uustat(lC).

-1-

INTRO(9) INTRO(9)

NAME
intro - introduction to glossary section

DESCRIPTION
This section contains a glossary of common HP-UX terms. References to other HP-UX documentation
are included as appropriate. References to entities such as wait(2), sh(1), or Jopen(3S) refer to entries in
the HP-UX Reference manual. References to items in italics but having no parenthetical suffixes refer to
other entries in the glossary. Finally, any references to italicized manuals refer to separate manuals that
are included with your system.

-1-

GLOSSARY (9)

absolute path name

address

affiliation

a.out

archive

ASCII

backup

block

block special file

boot or boot-up

boot area

boot ROM

bus address

GLOSSARY (9)

A path name beginning with a slash (I). It indicates that the file's loca­
tion is given relative to the root directory (I). and that the search
begins there.

In the context of peripheral devices. a set of values which specify the
location of an I/O device to the computer. The address is composed
of up to four elements: the select code. bus address. unit number
(id). and volume number (id).

See terminal affiliation.

The format of object code files on HP-UX. The format is machine­
dependent. and is described in a.out(5). A.out is also the default out­
put file name used by the linker. ld(1).

A file which is made up of the contents of other files (such as a group
of object (i.e. a.out) files to be used by the linker. Id(l)). An archive
file is created and maintained by ar(1). or by similar programs. such
as tar(1) or cpio(1). An archive is often called a library.

An acronym for American Standard Code for Information Inter­
change. It consists of a set of characters including letters. numerals,
punctuation. and control characters. each of which is represented
internally by 7 bits (0 - 127).

The process of making a copy of all or part of the file system in order
to preserve it should a system crash occur (usually due to a power
failure. hardware error. etc.). This is a highly recommended practice.

On the Series 200. the fundamental unit of information HP-UX uses
for access and storage allocation on a mass storage medium. A block
is 1024 bytes (lK).

For the Series 500. see logical block size.

A special file associated with a mass storage device (such as a hard
disc or a CS-80 tape cartridge drive) that transfer data in units of
blocks. Block special files may be mounted.

The process of loading. initialiZing. and running an operating system.

On the Series 200. a portion of a mass storage medium (block zero)
on which the volume header and a small" bootstrap" program used
in booting the operating system reside. The boot area is reserved
exclusively for use by HP-UX.

On the Series 500. the portion of an SDF mass storage medium
which contains an operating system.

On the Series 200. a program residing in ROM (Read Only Memory)
that executes each time the computer is powered-up. The function
of the boot ROM is to run tests on the computer's hardware, find all
devices accessible through the computer. and then load either a
specified operating system or the first operating system found accor­
ding to a specific search algorithm.

The Series 500 computers have a program that is identical in func­
tion. but differs in implementation. See system loader.

A number which makes up part of the address HP-UX uses to "find"
a particular device. The bus address is determined by a switch setting
on a peripheral device which allows the computer to distinguish

-1-

GLOSSARY(9)

CSI80 or CS-80

character special file

child process

command

command interpreter

control character

crash

current directory

current working directory

daemon

data encryption

default search path

GLOSSARY (9)

between two devices connected to the same interface. A bus address
is sometimes called a "device address" .

A family of mass storage devices that communicate via the CSI80
(Command Set '80) command set. Examples are the HP 7908, HP
7911, HP 7912, and HP 7914 disc/tape drives.

A special file associated with devices which transfer data character­
by-character. Examples are printers, terminals, nine-track magnetic
tapes, and discs accessed in "raw" mode (see raw disc).

A new process created by a pre-existing process via the fork(2) sys­
tem call. The new process is thereafter known to the pre-existing
process as its child process. The pre-existing process is the parent
process of the new process. See parent process and fork.

A stand-alone unit of executable code (a program), or a file con­
taining a list of other programs to execute in order (a shell script). In
HP-UX, commands are executed through the shell (sh(l)) command
interpreter. Arguments following the command name are passed on
to the command program. You can write your own commands,
either as executable programs, or as shell scripts (written in the shell
programming language).

A program which reads lines of text from standard input (typed at the
keyboard or redirected from a file), and interprets them as requests to
execute other programs. The command interpreter for HP-UX is cal­
led the shell. See sh(l).

A member of a character set which produces action in a device other
than printing or displaying a character. In the ASCII character set,
control characters are those in the range 0 through 31, and 127.
Control characters can be generated by holding down [CRTL],
[CONTROL), or [CNTL] (depending on what the control key is
labeled on your terminal) and pressing a character key. These two­
key sequences are often written as ctrl-d, for example, or 'D, where'
stands for the control key. Both representations assume that the con­
trol key is held down while the second key is pressed.

The unexpected shutdown of a system, usually requiring the system
to be re-booted.

See working directory.

See working directory.

A process which runs in the background, and which is usually
immune to termination instructions from a terminal. Its purpose is to
perform various scheduling, clean-up, and maintenance jobs. Lpd(1)
is an example of a daemon that exists to perform these functions for
line printer jobs queued by Ipr(l). An example of a permanent dae­
mon (Le. it never should die) is cron(8).

A method for encoding information in order to protect sensitive or
proprietary data. For example, all users' passwords are automatically
encrypted by HP-UX. The encryption method used by HP-UX con­
verts ASCII text into a base-64 representation using the alphabet ", I,
0-9, A-Z, a-z. See passwd(5) for the numerical eqUivalents associated
with this alphabet.

The sequence of directory prefixes that sh(l), time(l), and other HP­
UX commands apply in searching for a file known by an incomplete

-2-

GLOSSARY (9)

delta

demon

device file

directory

effective group ID

effective user ID

GLOSSARY(9)

path name (Le. a path name not beginning with a slash, f). It is
defined by the environment variable PATH (see environ(7)).
Login(l) sets PATH equal to :fbin:/usr/bin, which means that your
working directory is the first directory searched, followed by /bin, fol­
lowed by /usr/bin. You can redefine the search path by modifying
the value of PATH. This is usually done in /etciprofile, and/or in the
.profile file found in your home directory.

A term used in the Source Code Control System (SCCS) to describe
a unit of one or more textual changes to an SCCS file. Each time you
edit an SCCS file, the changes you make to the file are stored separa­
tely as a delta. Then, using the get(1) command, you can specify
which deltas are to be applied to or excluded from the SCCS file,
thus yielding a particular version of the file. Contrast this with the vi
or ed editor, which incorporates your changes into the file immedi­
ately, prohibiting you from obtaining a previous version of that file.
See sees, sees file.

See daemon.

See special file.

A file which provides the mapping between the names of files and
their contents. For every file name contained in a directory, that
directory contains, among other things, pointers to the disc blocks
where the file's contents can be found, the number of links to the file,
and the file's name. Each user is free to create (using mkdir(1)) as
many directories as he needs, proViding that the parent directory of
the new directory gives him permission to do so. Once a directory
has been created, it is ready to contain ordinary files and other direc­
tories. An HP-UX directory is named and behaves exactly like an
ordinary file, with one exception: no user (including the super-user)
is allowed to write data on the directory itself; this privilege is reserved
for the HP-UX operating system.

Every process has an effective group 10 that is used to determine file
access permissions. A process's effective group 10 is determined by
the file (command) that process is executing. If that file's set-group-
10 bit is set (located in the mode of the file - see mode), then the
process's effective group 10 is set equal to the file's group 10. This
makes the process appear to belong to the file's group, perhaps ena­
bling the process to access files which must be accessed in order for
the program to execute successfully. If the file's set-group-ID bit is
not set, then the process's effective group 10 is inherited from the
process's parent. The setting of the process's effective group 10 lasts
only as long as the program is being executed, after which the
process's effective group 10 is set equal to its real group 10. See
group, real group ID, and set-group-ID bit.

A process has an effective user 10 that is used to determine file access
permissions (and other permissions with respect to system calls, if the
effective user 10 is a - that of the super-user). A process's effective
user 10 is determined by the file (command) that process is execu­
ting. If that file's set-user-ID bit is set (located in the mode of the file -
see mode), then the process's effective user 10 is set equal to the file's
user 10. This makes the process appear to be the file's owner, ena­
bling the process to access files which must be accessed in order for
the program to execute successfully. (Many HP-UX commands

-3-

GLOSSARY (9)

environment

end-of-file character

file

file descriptor

file name

file pointer

GLOSSARY (9)

which are owned by root, such as mkdir and mail, have their set­
user-ID bit set so other users can execute these commands.) If the
file's set-user-ID bit is not set, then the process's effective user ID is
inherited from that process's parent. The setting of the process's
effective user ID lasts only as long as the program is being executed,
after which the process's effective user ID is set equal to its real user
[D. See real user ID and set-user-ID bit.

The set of defined shell variables (some of which are PATH, TERM,
SHELL, EXINIT, HOME, etc.) which define the conditions under
which your commands run. These conditions can include your ter­
minal characteristics, your home directory, and your default search
path. Each shell variable setting in the current process is passed on to
all child processes that are created, provided that each shell variable
setting has been exported via the export command (see sh(1)). Unex­
ported shell variable settings are meaningful only to the current
process, and any child processes created are given the default set­
tings given certain shell variables in /etc!profile and/or
$HOME/.profile.

(1) the character returned when attempting to read past the logical
end of a file (via stdio(3S) routines). (2) The character generated by
typing [CTRL]-[D] from the keyboard. (3) The character which indi­
cates end of data when using read(2).

An HP-UX file is simply a stream of bytes representing ASCII text
(text files) or binary data (such as executable code). Thus, direc­
tories, ordinary files, special files, etc. can all be considered files.
Every file must have a file name (see file name) which enables the
user (and many of the HP-UX commands) to reference the contents
of the file. The size of a file is exactly the number of bytes the file con­
tains - the system imposes no particular structure on the contents of a
file (although some programs do). Files may be accessed serially or
randomly (indexed by byte offset). The interpretation of file contents
and structure is up to the programs that access the file.

A unique integer identifier, in the range 0 - 19, which is used to refer
to a file that has been opened for reading and/or writing. A file
deSCriptor is obtained through the open(2), creat(2), dup(2), fcntl(2),
or pipe(2) system calls, and is an index into the user's table of open
files. The opened file must be identified by its file deSCriptor when
using system calls to read or write the file. No process may have
more than 20 file deSCriptors open at the same time.

A string of up to 14 characters which is used to refer to the contents of
an ordinary file, special file, or directory. These characters may be
any ASCII character except ASCII values 0 (null) and 47 (slash - /).
Note that it is generally unwise to use *, ?, [, !, or] as part of file
names because of the special meaning the shell attaches to these
characters (see sh(1)). It is also not wise to begin a file name with-,
+, or =, because some programs assume that these characters indi­
cate that a command argument follows.

A data element, obtained through any of the fopen(3S) standard I/O
library routines, which "points to" (refers to) a file opened for
reading and/or writing, and which keeps track of where the next I/O
operation will take place in the file (in the form of a byte offset relative
to the beginning of the file). After obtaining the file pointer, it must

-4-

GLOSSARY (9)

file system

filter

fork

group

hierarchical directory

home directory

host name

tmage

GLOSSARY (9)

thereafter be used to refer to the open file when using any of the stan­
dard 110 library routines. (See stdio(3S) for a list of these routines.)

The supporting data structures, HP-UX directory structure, and asso­
ciated files that reside on one or more mass storage volumes. Refer
to the System Administrator Manual supplied with your system for
details concerning file system implementation and maintenance.

A command which reads data from the standard input, performs a
transformation on the data, and writes it to the standard output.

An HP-UX system call (fork(2)) which, when invoked by an existing
process, causes a new process to be created. The new process is cal­
led the child process; the existing process is called the parent process.
The child process is created by making an exact copy of the parent
process. The parent and child processes are able to identify them­
selves by the value returned by their corresponding fork call (see
fork(2) for details).

An association of zero or more users who must all be permitted to
access the same set of files. The members of a group are defined in
the file /etc!passwd via a numerical group ID (users with identical
group IDs are members of the same group). An ASCII group name is
associated with each group ID in the file /etc!group (the members of
each group can be listed in jete/group, also, but this information is
purely for user benefit, and is of little use to the system). A group
name is associated with every file in the file system, and the mode of
each file contains a set of permission bits which apply only to groups
of which the file owner is a member. Thus, if you are a member of
the group name associated with the file (as determined by the infor­
mation in fete/group and fete/passwd), and if the appropriate permis­
sions are given to your group in the file's mode, you may access the
file. See real group ID, effective group ID, and set-group-ID bit.

A directory (or file system) structure in which each directory may con­
tain other directories as well as files.

The directory name given by the value of the shell variable HOME.
When you first log in, login(1) automatically sets HOME equal to your
login directory (see login directory). You may change its value at any
time, however. This is usually done in the .profile file contained in
your login directory. Setting HOME in no way affects your login
directory, but simply gives you a convenient way of referring to what
should be your most commonly-used directory.

An ASCII string of at most 8 characters which uniquely identifies an
HP-UX system on a uucp network. The host name for your system
may be viewed and/or set with the hostname(l) command. Systems
without a defined host name are described as "unknown" on the
uucp network. Do not confuse a host name with a node name, which
is a string that uniquely identifies an HP-UX system on a Local Area
Network (LAN). Although your host and node names may be identi­
cal, they are set and used by totally different software. See node
name.

The current state of your computer (or your portion of the computer,
on a multi-user system) during the execution of a command. Often
thought of as a "snapshot" of the state of the machine at any parti­
cular moment during execution.

-5-

GLOSSARY (9) GLOSSARY (9)

init A special process (the initialization process) with a process 10 of 1. It
is the ancestor of every other process in the system and is used to
start login processes.

interleave factor A number which determines the order in which sectors on a mass
storage medium are accessed. It can be optimized to make data
acquisition more efficient.

Internal Terminal Emulator (ITE) The" device driver" code contained in the HP-UX kernel and asso­
ciated with the computer's built-in keyboard and display or a particu­
lar keyboard and display connected to the computer, depending on
the Series and Model of your HP-UX computer. See system console
and the System Adminstrator Manual supplied with your system for
details.

interrupt signal The signal sent by SIGINT. It is the ASCII DEL (rubout) character
or the [DEL] or [BREAK] keys. This signal generally terminates
whatever program you are running. The key which sends this signal
(see signal(2)} can be redefined with ioctl(2} or st{Y(l}.

intrinsic See system call.

I/O redirection A mechanism provided by the HP-UX shell for changing the source
of data for standard input and/or the destination of data for standard
output and standard error. See sh(l}.

kernel The HP-UX operating system. The kernel is the executable code
responsible for managing the computer's resources, such as alloca­
ting memory, creating processes, and scheduling programs for exe­
cution. The kernel resides in RAM (Random Access Memory)
whenever HP-UX is running.

library An archive file containing a set of subroutines and variables which
may be accessed by user programs. For example, Ilib/libc.a is a
library containing all functions of section 2, and all functions of sec­
tion 3 marked (3C) and (3S), in the HP-UX Reference. Similarly,
Ilibllibm.a is a library containing all functions in section 3 marked
(3M) in the HP-UX Reference. See intro(3}.

LIF An acronym for Logical Interchange Format. A standard format for
mass storage implemented on many Hewlett-Packard computers to
aid in media transportability. The lif*(1} commands are used to per­
form various functions using LIF.

link A directory entry for any type of file. The information constituting a
link includes the name of the file, and where the contents of that file
may be found on a mass storage medium. One physical file may
have several links to it. If the links appear in different directories, the
file mayor may not have the same name in each. If the links appear
in one directory, however, each link must have a unique name in that
directory. Multiple links to directories are not allowed (except for the
super-user). See cp(l}, link(l}, link(2}, and unlink(2}. Also, to
prepare a program for execution, see linker.

linker The linker combines one or more object programs into one program,
searches libraries to resolve user program references, and builds an
executable file in a.out format. This executable file is ready to be exe­
cuted through the program loader, exec(2}. The linker is invoked
with the ld(1) command. The linker is often called a link editor.

logical block size The smallest unit of memory which can be allocated on a Series 500

-6-

GLOSSARY (9)

login

login directory

magic number

major number

metacharacter

minor number

mode

mountable file system

multi-user state

new-line

GLOSSARY(9)

SDF volume; a multiple of the physical sector size. This value is set at
system initialization time; see init.

The process of gaining access to HP-UX. This consists of entering a
valid user name and its associated password (if one exists).

The directory in which you are placed immediately after you log in.
This directory is defined for each user in the file /etclpasswd. The shell
variable HOME is set automatically to your login directory by login(l)
immediately after you log in. See home directory.

The first word of an a.out-format or archive file. This word contains
the system ID, which tells what machine (hardware) the file will run
on, and the file type (executable, shareable executable, archive, etc.).

A number used exclusively to create special files that enable I/O
to/from specific devices. This number indicates which device driver
to use for the device. Refer to mknod(8) and the System Administrator
Manual supplied with your system for details.

A character which has special meaning to the HP-UX shell. The set
of metacharacters includes: *, 7, !, [,], <, >, ;, I, " " ", and &.
Refer to sh(1) for the meaning associated with each.

A number used exclusively to create special files that enable I/O
tolfrom specific devices. This number is passed to the device driver,
and indicates the HP-IB address, select code, and the unit and/or
volume numbers, enabling the device driver to select between mul­
tiple devices that are supported. Refer to the System Administrator
Manual supplied with your system for details. See address.

A 16-bit word associated with every file in the file system. The least­
significant 12 bits of this word determine the read, write, and execute
permissions for the file owner, file group, and all others, and contain
the set-user-ID, set-group-ID, and "sticky" (save text image after
execution) bits. The least-significant 12 bits are settable by the
chmod(l) command if you are the file's owner or the super-user. The
sticky bit can only be set by the super-user. These 12 bits are
sometimes referred to as permission bits. The most-significant 4 bits
specify the file type for the associated file. These bits are set
exclusively by the HP-UX system.

A removable blocked file system contained on some mass storage
medium with its own root directory and an independent hierarchy of
directories and files. See block special file and mount(1).

The condition of the HP-UX operating system in which terminals in
addition to the system console are allOWing communication between
the system and its users. By default, the Series 200 multi-user state is
state 2, and the Series 500 multi-user state is state 1. Do not confuse
the multi-user system with the multi-user state. A multi-user system is
a system which may have more than one user actively communica­
ting with the system when it is in the multi-user state. The multi-user
state removes the Single-user restriction imposed by the Single-user
state. See single-user state. See inittab(5).

The character with an ASCII value of 10 (line-feed) used to separate
lines of characters. It is represented by ""'n in the C language and in
various utilities. The terminal driver (see tly(4)) normally interprets
the carriage-return/line-feed sequence sent by a terminal as a single
new-line character.

-7-

GLOSSARY (9)

node name

ordinary file

orphan process

aSF

owner

parent directory

parent process

password

path name

GLOSSARY (9)

A string of up to 31 characters, not including control characters or
spaces, that uniquely identifies a node on a Local Area Network
(LAN). The node name for each system is set by the npowerup com­
mand, which is one of the commands supplied with the optional
LAN/9000 product. Do not confuse a node name with a host name,
which is a string that uniquely identifies an HP-UX system on a uucp
network. Your node and host names can be identical, but they are
used and set by totally different software. See host name, LAN/9000
User's Guide, and LAN /9000 Node Manager's Guide.

A type of HP-UX file containing ASCII text (e.g. program source),
binary data (e.g. executable code), etc. Ordinary files can be created
by the user through I/O redirection, editors, or HP-UX commands.

Whenever a parent process terminates for any reason and leaves
behind one or more child processes that are still active, those child
processes are called orphan processes. Init(8) inherits (becomes the
effective parent of) all orphan processes.

An acronym for Operating System File. An OSF resides in the SDF
boot area on a Series 500 system, and contains all or part of an
operating system. See osmgr(8), oscp(8), osck(8), and osmark(8).

The owner of a file is usually the creator of that file. However, the
ownership of a file can be changed by the super-user or the current
owner with the chown(l) command or the chown(2) system call. The
file owner is able to do whatever he wants with his files, including
remove them, copy them, move them, change their contents, etc.
He is also able to change the files' modes.

A directory's parent directory is the directory one level above it in the
file hierarchy. All directories except the root directory (I) have one
(and only one) parent directory. The parent directory is sometimes
referred to as the superior directory.

Whenever a new process is created by a currently-existing process
(via fork(2)), the currently-existing process is said to be the parent
process of the newly-created process. Every process has exactly one
parent process (except the init process - see init), but each process
can create several new processes with the fork(2) system call. The
parent process 1D of any process is the process 1D of its creator.

A string of ASCII characters used to verify the identity of a user.
Passwords can be associated with users and groups. If a user has a
password, it is automatically encrypted and entered in the second
field of that user's line in the /etclpasswd file. A user may create or
change a password for himself with the passwd(1) command.

(sometimes written as one word, pathname). A sequence of directory
names separated by slashes, and ending with any file name. All file
names except the last in the sequence must be directories. If a path
name begins with a slash (I), it is an absolute path name (see absolute
path name); otherwise it is a relative path name (see relative path
name). A path name defines the path to be followed through the
hierarchical file system in order to find a particular file.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if
it named a non-existent file.

-8-

GLOSSARY (9)

permission bits

pipe

prod

process

process group

process group ID

process group leader

process ID

program

prompt

quit signal

GLOSSARY (9)

The nine least-significant bits of a file's mode. These bits determine
read, write, and execute permissions for the file's owner, the file's
group, and all others.

An inter-process 1/0 channel used to pass data between two pro­
cesses. It is commonly used by the shell to transfer data from the
standard output of one process to the standard input of another. On
a command line, a pipe is signaled by a vertical bar (I). The output
from the command(s) on the left of the vertical bar is channeled
directly into the standard input of the command(s) on the right.

See init.

An invocation of a program, or the execution of an image. No com­
mand can be executed without a process in which it can execute.
Alternately, a process cannot exist without a command or image in
some stage of execution. Several processes can all be running the
same program, but each may have different data and be in different
stages of execution.

An association of one or more processes is called a process group. A
process's membership in a particular process group is established by
a numerical process group !D. Each process can belong to only one
process group. Every process group has a process group leader. See
process group I D and process group leader.

A positive integer in the range 1 - 30 000 associated with every active
process, which establishes that process's membership with a particu­
lar process group. All members of a process group have the same
process group ID. A process group ID is always the process ID of the
process group leader. This grouping permits the signalling of related
processes. See kill(2), process group, and process group leader.

A process group leader is a process whose process group !D and
process ID are equal. A process becomes a process group leader
through the setpgrp(2) system call. All processes created by the
process group leader become members of that process group. All
processes created by the init process (see init) are process group
leaders. For example, when you log in on the system, the shell you
receive to interpret your commands is a process group leader, and all
subsequent process's created by your shell are members of your
shell's process group. See process group ID and process group.

Each active process in the system is uniquely identified by a positive
integer called a process !D. The range of this ID is from a to 30 000.
This permits the selective sending of signals to processes with kill(l),
kill(2) , or signal(2). The process !D of any user process is available
with the ps(1) command. If a background process is created, the shell
reports its process ID to you when execution has begun.

A sequence of instructions to the computer in the form of binary code
(resulting from the compilation and assembly of program source).

The character(s) displayed by the shell on the display indicating that
the system is ready for a command. The prompt is usually a dollar
sign ($) for ordinary users and a pound sign (#) for the super-user,
but the user can re-define it to be any string by setting the shell vari­
able PS 1 in his .profile file.

The signal sent by SIGQUIT. See signal(2). The quit signal is gen­
erated by typing the ASCII FS character (ASCII value 28, generated

-9-

GLOSSARY (9)

randomized library

raw disc

real group ID

real user ID

regular expression

relative path name

root directory

root volume

GLOSSARY (9)

by typing ctrl- '"',J. This signal usuaUy causes a running program to
terminate and, on the Series 200, generates a file containing the
" core image" of the terminated process. The core image is useful for
debugging purposes.

An archive file that has been processed by ranlib(l). The first
element in the archive is a table of contents of externaUy known sym­
bols. The table of contents must be more up-to-date than any file in
the archive foUowing it, or the table of contents is ignored by the
linker, and the archive is no longer random. See ranlib(l) and Id(1).

The name given to a disc for which there exists a character special file
which aUows direct transmission between the disc and the user's read
or write buffer. A single read or write caU results in exactly one I/O
call.

A positive integer which is assigned to every user on the system. The
association of a user and his real group ID is done in the file
fetclpasswd. The modifier "real" is used because a user can also
have an effective group ID (see effective group ID). The real group ID
can then be mapped to a group name in the file fetclgroup, although it
need not be. Thus, every user is a member of some group (which
may be nameless), even if that group has only one member.

Every time a process creates a child process (viafork(2)), that process
has a real group ID equal to the parent process's real group ID. This
is useful for determining file access privileges within the process.

A positive integer which is assigned to every user on the system. A
real user ID is assigned to every valid login name in the file
letclpasswd. The modifier "real" is used because a user can also
have an effective user ID (see effective user ID).

Every time a process creates a child process (viafork(2)), that process
has a real user 10 equal to the parent process's real user 10. This is
useful for determining file access privileges within the process.

A string of zero or more characters which selects text. The characters
contained in the string may aU be literal, which means that the regular
expression matches itself only, or one or more of the characters may
be a metacharacter, which means that a single regular expression
could match several literal strings. Regular expressions are most
often encountered in text editors (ed(l), ex(l), vi(l)), where searches
are performed for a specific piece of text, or in commands that were
created to search for a particular string in a file (most notably grep(1)).
Regular expressions are also encountered in the sheU, sh(l), especi­
aUy when referencing file names on command lines. See ed(1).

A path name that does not begin with a slash. It indicates that a file's
location is given relative to your current working directory, and that
the search begins there (instead of at the root directory). An example
is dirllfile2, which searches for the directory dirl in your current
working directory. Dirl is then searched for the file file2.

The highest level directory of the hierarchical file system, from which
aU other files branch. In HP -UX, the "f" character refers to the root
directory. The root directory is the only directory in the file system
which is its own parent directory.

The mass storage volume which contains the boot area {which

-10-

GLOSSARY (9)

sees

sees file

SDP

secondary prompt

select code

set-group-ID bit

set-user-ID bit

shell

shell program

shell script

GLOSSARY (9)

contains the HP-UX kernel) and the root directory of the HP-UX file
system.

An acronym for Source Code Control System. The Source Code
Control System is a set of HP-UX commands which enable you to
store changes to an SCCS file as separate "units" (called deltas).
These units, each of which contains one or more textual changes to
the file, can then be applied to or excluded from the SCCS file to
obtain different versions of the file. The commands that make up
SCCS are admin(l), cdc(1), delta(l), get(l), prs(1), rmdel(1), sact(l),
sccsdlff(l), unget(l), val(l), and what(l). See delta, sees file.

An ordinary text file which has been modified so that the Source
Code Control System (SCCS) may be used with it. This modification
is done automatically by the admin(l) command. See sees, delta.

An acronym for Structured Directory Format. SDF is implemented
on the Series 500 computers only, and provides tree-structured
access to files through the root directory of the volume.

One or more characters that the shell prints on the display, indicating
that more input is needed. This prompt is much less often encoun­
tered than the shell's primary prompt (see prompt). When it occurs, it
is usually caused by an omitted right quote on a string (which con­
fuses the shell), or when you enter a shell programming language
control-flow construct (such as a for construct) from the command
line. By default, the shell's secondary prompt is the greater-than sign
(», but you can re-define it by setting the shell variable PS2
appropriately in your .profile file.

Part of an address used for devices. A number determined by a set­
ting on the interface card to which a peripheral device is connected,
or by the particular I/O slot the I/O card resides in. Multiple peri­
pherals connected to the same interface card share the same select
code.

A single bit in the mode of every file in the file system. If a file is exe­
cuted whose set-group-ID bit is set, then the effective group ID of the
process which executed the file is set equal to the real group ID of the
owner of the file. See effective group ID, group, and real group ID.

A single bit in the mode of every file in the file system. If a file is exe­
cuted whose set-user-ID bit is set, then the effective user ID of the
process which executed the file is set equal to the real user ID of the
owner of the file. See effective user ID and real user ID.

The shell functions as both a command interpreter and an interpre­
tive programming language. The shell is automatically invoked for
every user who logs in, in order to provide a user-interface to the
HP-UX operating system. See sh(l) and rsh(l), and the tutorials sup­
plied with your" system for details.

See shell script.

A sequence of shell commands and shell programming language
constructs stored in a file and invoked as a user command (program).
No compilation is needed prior to execution, because the shell recog­
nizes the commands and constructs that make up the shell program­
ming language. A shell script is often called a shell program or a com­
mand file. See the shell programming article included in HP-UX
Selected Articles.

-11-

GLOSSARY (9)

signal

single-user state

special file

standard error

standard input

standard output

sticky bit

sub-directory

subordinate directory

super block

super-user

superior directory

system call

GLOSSARY (9)

Signals are software interrupts sent to processes, informing them of
special situations or events. HP-UX currently provides for 19 types of
signals. See signal(2).

A condition of the HP-UX operating system in which the system con­
sole provides the only communication mechanism between the sys­
tem and its user. By default, the Series 200 single-user state is state
1, and the Series 500 multi-user state is state 2. Do not confuse the
single-user state, in which the software is limiting a multi-user system
to a single-user communication, with a single-user system, which can
never communicate with more than one fixed terminal. See multi­
user state.

Often called a device file, this is a file associated with an I/O device.
Special files are read and written just like ordinary files, but requests
to read or write result in activation of the associated device. Due to
convention and consistency, these files should always reside in the
Idev directory.

The destination of error and special messages from a program. The
standard error file is often called stderr, and is automatically opened
for writing on file descriptor 2 for every command invoked. By
default, the user's terminal is the destination of all data written to
stderr, but it can be redirected elsewhere.

The source of input data for a program. The standard input file is
often called stdin, and is automatically opened for reading on file
deSCriptor 0 for every command invoked. By default, the user's ter­
minal is the source of all data read from stdin, but it can be redirected
from another source.

The destination of output data from a program. The standard output
file is often called stdout, and is automatically opened for writing on
file deSCriptor 1 for every command invoked. By default, the user's
terminal is the destination of all data written to stdout, but it can be
redirected elsewhere.

A single bit in the mode of every file in the file system. If set, then the
contents of the file stay permanently in memory instead of being
swapped back out to disc when the file has finished executing. Only
the super-user can set the sticky bit. The sticky bit is read each time
the file is executed (via exec(2)).

A directory that is one (or perhaps more) levels lower in the file sys­
tem hierarchy than a given directory. Sometimes called a subordinate
directory.

See sub-directory.

A block on each file system's mass storage medium which describes
the file system. The contents of the super-block vary between
implementations. Refer to the System Administrator Manual supplied
with your system, and the appropriatefs(5) entry for details.

The HP.-UX system administrator. This user has access to all files,
and can perform privileged operations. He has a real and effective
user ID of 0, and, by convention, the user name of root.

See parent directory.

An HP-UX operating system kernel function available to the user
through a high-level language (such as FORTRAN, Pascal, or C).

-12-

GLOSSARY (9)

system console

system loader

terminal affiliation

terminal group

GLOSSARY (9)

Also called an "intrinsic" or a "system intrinsic". The available sys­
tem calls are documented in section 2 of the HP-UX Reference
manual.

A keyboard and display (or terminal) given a unique status by HP­
UX and associated with the special file Idev/console. All boot ROM or
system loader error messages, HP-UX system error messages, and
certain system status messages are sent to the system console. Under
certain conditions (such as the single-user state), the system console
provides the only mechanism for communicating with HP-UX. See
HP-UX Selected Articles and the System Administrator Manual provi­
ded with your system for details on configuration and use of the sys­
tem console.

On the Series 500, a piece of executable code that permanently
resides in the computer. When the computer is powered up, the sys­
tem loader is automatically loaded and run. Its function is to find and
load an operating system. The-Series 200 has an identical program
which differs only in implementation. On the Series 200, the pro­
gram resides ii} Read Only Memory (ROM). For a complete descrip­
tion of the system loader's function for all implementations, see boot
ROM.

The process by which a process group leader establishes an associa­
tion between itself and a particular terminal. A terminal becomes affi­
liated with a process group leader (and subsequently all processes
created by the process group leader - see terminal group) whenever
the process group leader executes (either directly or indirectly) an
open(2) or creat(2) system call to open a terminal. Then, if the
process which is executing open(2) or creat(2) is a process group
leader, and if that process group leader is not yet affiliated with a ter­
minal, and if the terminal being opened is not yet affiliated with a
process group, the affiliation is established.

An affiliated terminal keeps track of its process group affiliation by
storing the process group's process group ID in an internal structure.

Two benefits are realized by terminal affiliation. First, all signals sent
from the terminal are sent to all processes in the terminal group.
Second, all processes in the terminal group can perform 110 from/to
the generic terminal driver Idev/tty, which automatically selects the
affiliated terminal.

Terminal affiliation is broken with a terminal group when the process
group leader terminates, after which the hangup signal is sent to all
processes remaining in the process group. Also, if a process (which is
not a process group leader) in the terminal group becomes a process
group leader via the setpgrp(2) system call, its terminal affiliation is
broken.

See process group, process group leader, terminal group, and setpgrp(2).

A terminal group is a process group whose process group leader has
established affiliation with a particular terminal. .once a process
group leader has established affiliation with a terminal, all processes
in that process group created after the affiliation are members of that
terminal group. Processes existing before and during the time when
affiliation is established do not inherit the affiliation, and are thus not

-13-

,<.",

GLOSSARY (9)

unit number

volume number

working directory

zombie process

GLOSSARY (9)

part of the terminal group. A terminal group is sometimes called a tty
group.

See process group, process group leader, terminal affiliation, and
setpgrp(2).

Part of an address used for devices. A number whose meaning is
software- and device-dependent, but which is often used to specify a
particular disc drive in a device with a multi-drive controller. See the
System Administrator Manual supplied with your system for details.

Part of an address used for devices. A number whose meaning is
software- and device-dependent, but which is often used to specify a
particular volume on a multi-volume disc drive. See the System
Administrator Manual supplied with your system for details.

The directory in which you currently reside. Also, the directory in
which relative path name (Le. when a given path name does not
begin with 11 / ") searches begin. It is sometimes referred to as the
current directory, or the current working directory.

The name given to a process which terminates for any reason, but
whose parent process has not yet waited for it to terminate (via
wait(2)). The process which terminated continues to occupy a slot in
the process table until its parent process waits for it. Because it has
terminated, however, there is no other space allocated to it either in
user or kernel space. It is therefore a relatively harmless occurrence
which will rectify itself the next time its parent process waits. The
pst 1) command lists zombie processes as II defunct ".

-14-

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

Part No. 09000-90006
E 1183

Microfiche No. 09000-99006

Flin- HEWLETT
a:~ PACKARD

Printed in U.S.A.
First Edition, November 1983

