
Shells and Miscellaneous Tools
HP-UX Concepts and Tutorials

HP Part Number 97089-90062

Flin- HEWLETT
Ii!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETI-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1986, 1987

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

September 1986 ... Edition 1

December 1986 ... Update 1. vt tutorial rewritten. Added new information to accurately
reflect vt as implemented on HP-UX Series 300 Release 5.2 and Series 500 Release 5.1.

April 1987 ... Edition 2. Update 1 merged.

October 1987 ... Edition 3. Added Korn Shell Tutorial.

Printing History iii

iv Printing History

Table of Contents

The Bourne Shell
UNIX System Structure ... 1
Definitions .. 3
Conventions .. 3

U sing Shell Commands
Sequential Processing. .. 5
Nonsequential Processing .. 6
Redirecting Input and Output .. 6
Pipes .. 8
Redirection in Pipes. .. 9
Pipe Example .. 10
File Name Generation .. 10

Shell Scripts
Echo and Redirection in Scripts 12
The .profile File ... 13
Customizing .profile .. 15

Basic Shell Programming
Parameters. .. 18
Parameter Substitution. .. 19
Positional Parameters .. 20
Shift ... 21
Echo ... 23
Quoting ... '.' 23
Command Substitution .. 24
Conditions: The if Statement .. 26
Test .. 27
Read ... 29
Exit .. 29
Comments .. 30
Example: Moving Files 30

Table of Contents

Advanced Programming
Looping .. 33
Case ... 35
The . (dot) Command. .. 36
The eval Command .. 38
U sing Shell Expansions .. 38
Helpful Tips ... " 39
Example: Groupcopy , 40

Detailed Reference
Command Separators. .. 45
Command Grouping .. 46
Defining Functions . 47
Input/Output ... 48
Special Commands .. 50
Return Values ... 58
Parameters Set by the Shell .. 58
Options for the sh Command. .. 59

Helpful Tips for Shell Programmers
Debugging 61
Creating Optional Pieces in a Pipe .. 62
Halting Background Processes .. 62

Glossary .. 65

Index ... 69

ii Table of Contents

The Bourne Shell

The Bourne Shell is most commonly known as a "command interpreter", taking your
commands and interpreting them to the system. This tutorial will give you many methods
which will enhance your interaction with the shell by teaching you to program the shell.

For example, if you have to execute a series of commands every day, you may get tired of
typing the commands each time. By programming the shell, you can create a shell script,
a file containing all of the commands that need to be executed each day. To execute the
commands, you only need execute the shell script.

This tutorial will discuss several concepts which are related to programming. If you are
familar with a programming language (such as C, Pascal, or BASIC) you should have
no difficulty understanding the concepts in this tutorial. If you have never programmed
before, you may wish to read about concepts such as loops, condition statements, and
variables.

UNIX System Structure
HP-UX is a fully compatible, enhanced version of UNIX@ System V. The structure
of the system consists of several parts which work together to bring you the HP-UX
operating system.

The kernel is what the master program, or operating system, is called. It controls the
computer's resources and allots time to different users and tasks. The kernel keeps track
of the programs being run and is in charge of starting each user on the system. However,
the kernel does not interact with the user to interpret the commands. The shell is a
program that the kernel runs for each user which sets up commands for execution. By
having several shells and one kernel, HP-UX is able to support many users at the same
time (the user's requests are not actually processed at the same time, but the kernel
schedules processing time in a way which simulates concurrent processing). By having
the kernel in control, it is also possible for one user to run several shells. The kernel
remains in control of all shells and programs.

* UNIX@ is a trademark of AT&T Bell Laboratories, Inc.

The Bourne Shell 1

When you log on to the system, the kernel checks if your login identifier and password are
correct. It then runs a shell program for you to interact with it (you never see this, only
the shell after successful login). Most systems will start the Bourne shell as a default,
but it is possible to run the "e" shell (csh) or "PAM" (Personal Applications Manager)
instead.

To give you an idea of processes and how the kernel schedules them, let's look at the ps

command which lists the processes the kernel is currently coordinating. Type:

ps -ef

and receive a list similar to the following:

UIO PlO
davek 28125
davek 28124
davek 28091
root 27781
root 27097
root 27092
root 25740
root 24970
root 22026
root 22024
root 22023

davek 22022

PPIO C STIME TTY
28124 0 08:50:56 12
28091 0 08:50:55 12
22022 0 08:23:17 12

1 0 06:47:58 eo
1 0 23:51:47 05
1 0 23:50:37 04
1 0 11: 59 : 58 03
1 0 Aug 3 ?
1 0 Aug 2 15
1 0 Aug 2 14
1 0 Aug 2 13
1 0 Aug 2 12

TIME COMMAND
0:02 ps -ef
0:00 sh -e ps -ef > temp
0:51 vi programming
0:01 jete/getty eonsole H 0
0:03 jete/getty tty05 H 0
0:02 jete/getty tty04 H 0
0:01 jete/getty tty03 H 0
0:01 jete/getty tty99 3 240
0:01 jete/getty tty15 H 0
0:02 jete/getty tty14 H 0
0:01 jete/getty tty13 H 0
0:08 -sh

The UID column refers to the user identifier (the person who executed this process). PIO
refers to the process identifier. There are several commands which use the PlO, such as
kill. For example,

kill -9 28125

will kill process 28125 (the first entry in the above list).

PPID is the process identifier of the parent process (the process that calls this process).
The first row shows 28124 as the parent process. Look in the PIO column for 28124 to
see what the parent process is (shown on the second row).

The C column shows processor utilization for scheduling. STIME is the starting time of the
process. TTY is the controlling terminal for the process. TIME is the cumulative execution
time for the process, and COMMAND is the command name. For more details on the ps
command, see the HP- UX Reference.

Before we begin the discussion on the Bourne shell, let us first define some terms.

2 The Bourne Shell

Definitions
The following are some definitions which will be used in this tutorial.

filename

command_list

[j

word

string

Conventions

The name of a file.

Either a line containing a command or several commands in a
pipe, or several lines containing commands (pipes will be discussed
later).

Italicized brackets used in a command syntax indicate the items
enclosed are optional.

A command name.

A string of characters.

This tutorial contains several different types of fonts:

computer

italic

bold

Computer fonts will refer to screen printouts or anything you are
to type (i.e., varname=penguin means you type the entire string).

Italic font in the text refers to words not yet defined. If you see
italic font in screen printouts or in command examples, it refers
to something you need to substitute for the italicized word(s) (i.e.,
varname=variable_ name means you actually type varname=, but you
have to substitute a variable name in place of variable_name).

Italics also indicate a term used for the first time.

Bold font refers to text being emphasized, text to which you need
to pay particular attention.

The Bourne Shell 3

Notes

4 The Bourne Shell

Using Shell Commands 1
This chapter will discuss methods for combining shell commands. You should already
be familiar executing single commands, like running the date command. In addition to
simply typing a command and pressing the return key, you have many the ability to
include options and parameters to the command.

Options to a command can be found in the HP-UX Reference under the description of
the command. These options are preceeded with a dash (-) and are separated from
the command name, other options, and parameters by blanks. Parameters, or variables,
are data the command needs to function properly. If you omit parameters from the Is

command, the current directory is listed. But if you include a directory name (or path
name) as a parameter, the list of that directory is printed. Command syntax usually
takes the following form:

command [options} [parameters}

Sequential Processing
When you enter commands line by line (pressing return after each command), you are
telling the system to complete the command (or program) before executing the next
command. Executing:

date
ps -ef
who

will complete each command before going on to the next. You can place all of the
commands on the same line by using the ";" separator. For example,

date; ps -ef; who

will accomplish the same as entering each command on a separate line. This process
is called sequential processing. New programs or commands cannot be started until the
preceeding program or command has completed.

If parameters are required by the program, they are entered as usual. The semicolon is
placed after the last parameter.

Using Shell Commands 5

While a program is running as a sequential process, there is no response to keyboard
activity until after the program has completed (other than the keyboard buffer delay).

Programs already in progress when a program with sequential processing is executed
continue to run as usual. While a program is running as a sequential process, you have
the option of waiting for the program to finish.

Nonsequential Processing
Programs can also be run nonsequentially (that is, each program runs without waiting
for the previous program to complete). Follow the program name with ct to specify
nonsequential processing.

programlct program2ct program3ct

will run the three programs at the same time. It is good to remember that if you have
output to the screen from more than one program, or input is needed from the terminal
by more than one program, the messages may appear on the screen simultaneously. It is
a good idea to not run these kinds of programs nonsequentially.

Redirecting Input and Output
Every program has at least thre~ data paths associated with it: standard input, standard
output, and error output. Programs use these data paths to interact with you. Standard
input (stdin) is normally the keyboard, and standard output (stdout) is your screen.

Redirecting input and output is a convenient way of selecting what files or devices a
program uses. The output of a program that is normally displayed on the screen can be
sent to a printer or to a file. Redirection does not affect the functioning of the program
because the destination of output from the program is changed at the system level.

The symbols for redirecting input and output allow you to change a specific data path of
a program while leaving its other data paths unchanged. For example, you can specify a
different device for standard output. Normally, the output would be sent to the screen.
You can redirect the standard output, for example, to a file if you wish to store the
output.

6 U sing Shell Commands

How to Redirect Input and Output
Symbols to redirect the input or output of a program are entered in the shell or from
a shell program. The program begins executing with the data paths specified by the
redirection symbols. To specify redirection of input or output for a program, each file
name is preceded by a redirection symbol,

programA < file_ name
programB > file_ name

Spaces between the redirection symbols and the files names are optional. The symbol
identifies the name that follows it as a file for input or output. The redirection symbols
are listed in Table 1:

Symbol

<

>

»

Table 1. Redirection Symbols

Function Example

Read standard input from an existing file. program1 <input.data

Write standard output to a file. program2 >output.data

Append standard output to an existing file. sample.prog »output.data

Note

Be careful to not use the same file for standard input and standard
output. When input and output operations access the same file,
the results are unpredictable.

If a file you specify with a redirection symbol is not in the current directory, you should
use a path name to identify it. The following actions are taken when the system does
not locate files named with the redirection symbols:

• If a file specified for input with the < symbol is not located, an error message is
displayed.

• If a file specified for output with the> or » symbol is not located, it is created and
used for program output.

• If a file specified for appending output to with the » symbol is not located, it is
created and used for program output.

U sing Shell Commands 7

Examples
The following examples show ·how the data paths of programs, commands, or utilities
can be modified with the redirection RymholR.

CHltest <datal

Runs the program CHltest using the file datal as input.

date »syslog

Adds the current time and date to the end of the file syslog.

Pipes
Two or more programs or commands can be connected so the output of one program is
used as the input of another program. The data path that joins the programs is called a
pipe. Pipes allow you to redirect program input and output without the use of temporary
files.

When programs are connected with pipes, the shell coordinates the input and output
between the programs. The pipes only transfer data in one direction, from the standard
output of one program to the standard input of another program.

How to Connect Programs With Pipes
The vertical bar (I) is the "pipe" symbol. Parameters for the program are listed after
the program name, but before the I symbol. Spacing between the program names and
vertical bars is optional. The syntax used for connecting programs with pipes is as
follows:

where word is a command or executable program. Pipes operate on or transform data
by separate programs in stages. For example, word_a could have input that you type
from the keyboard. This data would be passed by the first pipe to word_b where it would
be checked for validity, and processed. The processed data could then be passed by the
second pipe to word_c for formatting into a report, and so on.

8 U sing Shell Commands

Here are some examples:

ls I we

Print the number of files in the current directory.

ls I more

Print a listing of each file in the directory.

eat file I pr I lpr

Send file to the line printer (via the print formatter pr).

Redirection in Pipes
The redirection symbols can be used for programs connected with pipes. However, only
the data paths not connected with pipes can be changed. If you specify a change to
a data path being used with a pipe, then an error occurs. The following changes are
permitted:

• The standard input of the first program using a pipe can be redirected with the <
symboL

• The standard output of the last program using a pipe can be redirected by using
the > symbol or appended to an existing file with the » symbol.

Examples
The following commands show how programs can be connected with pipes and how
additional changes can be made to data paths with redirection symbols.

test_prog1 I /usr/output_prog

Takes the standard output from tesLprogl and uses it as standard
input to /usr/outpuLprog.

Runs four programs connected with pipes and puts the output of the fourth
program in store_file.

Using Shell Commands 9

Pipe Example
The following pipe uses several of the symbols we just discussed. Try to figure out what
will happen before you read the description below.

sort +1 pdir; « pr pdir I Ipr)& (sort +1 local)&); cat local »pdir

This pipeline will run three sets of commands sequentially. The first command is to
sort the pdir file. When it is completed, the second command set is executed. The
parentheses separate the commands so the shell knows which command to associate with
a symbol (for more on command grouping, see the section in Chapter 5). Therefore, the
two commands (pr and sort) are run nonsequentially. So, at the same time, the pdir file
is formatted and sent to the printer, and the local file is sorted. Finally, the cat command
is run which appends the local file to the pdir file.

File Name Generation
A helpful way to reduce typing is to use patterns to match file names. If you are in a
directory with a file "programming" you can see a listing with either:

Is programming

or you can use a pattern to match:

Is p*

where "*" will match any character or string of characters. If you have another file
beginning with "p", it too will be listed. The following table shows the file generation
symbols you can use:

Symbol Description

* Matches any string of characters including the null
string.

? Matches any single character.

[. ..] Matches anyone of the characters enclosed in the brack-
ets. A pair of characters separated by a minus will match
any character between the pair (lexically).

[a-z]?cubit*. [ca]

will match a file which begins with any character a through z (lower case) followed by any
single character, followed by the string "cubit", followed by any number of characters
which end in ".c" or ".a".

10 Using Shell Commands

Shell Scripts 2
Stringing commands together on a line with sequential processing, nonsequential pro­
cessing or pipes is an extremely useful tool for a limited number of commands. To save
typing the commands repetitively, in the case where you use the same sequence of com­
mands often, you can place the command line(s) into a file. This file is called a shell
script. You create a file with the commands, tell the system you want the file to be
executable (run like a program, not a data file), and then type the name of the file to
execute the commands in the shell script.

A simple shell script could contain the following command line:

date; who; ps -ef; du /users

which executes each command only when the previous command has completed. To
create the script, enter an editor (vi for example) and type the above command line.
Save the file.

To run the script, you have two methods: the sh command, or changing the permissions
on the file. The sh command will create a new shell to run the script. As mentioned in
the beginning of this tutorial, it is possible to have several shells running at the same
time (with the kernel in control). The sh command creates a new shell to execute the
file you specify (if you don't specify a file, it creates a new shell similar to the one you
are already in). To execute the script with the sh command, type:

sh scriptname

Where scriptname is the name of the file you placed the command line in.

The common way to run a script or program, however, is to declare the file executable
with the chmod command. chmod is used to alter the permissions on a file. For our
purposes, we will declare the file to be executable by everyone on the system, but only
you can update the file. Type:

chmod +x scriptname

Shell Scripts 11

Now the file is executable, and you only need enter the file name to run the script
(simply type the scriptname as if it was a command). Your script will execute, and you
will see a large output. Both sh scriptname and changing the permissions and executing
scriptname have the same net effect, they just behave differently at first. For details on
the chmod command, see the HP- UX Reference.

Scripts With More Than One Line
The example above just uses one command line for the script. You can, however, make
the script easier to read and contain more than one line of commands. Each line of
commands is executed in sequential order (the previous line must complete before the
next line is executed). So, we can take the previous example:

date; who; ps -ef; du /users

and spread the command line into four lines which accomplish the same thing:

date
who
ps -ef
du /users

When this script is executed, you get the same results as before.

Echo and Redirection in Scripts
If you have a large output from a script like in the above example, you may wish to
place some headers or comments in the output and place the output into a file. The echo
command will print titles or comments for you. It works in the following manner:

echo "string"

where string is a string of characters.

Modify your example script to look like:

echo "Current date and time: \c"
date
echo "Users logged in:\n"
who
echo "\nCurrent processes:"
ps -ef
echo "\nUser disk usage:"
du /users

12 Shell Scripts

where "\c" causes the next line of output to be printed on the same line, and ',\n" causes
an extra carriage return and line feed (for more detail see the "Echo" section in Chapter
3).

Next you can execute the file using the redirection symbols to append the output to
another file. For example, let's say our file is called status1, and the file we wish to place
the output in is called status_file:

status1 » status_file

Each time you monitor the system, you can have the output added to a file.

The .profile File
The Bourne Shell runs a script automatically when you login, called .profile. This
script sets the "environment" in which you work: it sets up certain variables which
tell the system where to look for a command, what the prompt should look like, where
to get the mail, and other variables. The .profile file is usually set up by the system
administrator, but you can customize it as you learn shell programming techniques. Here
is a sample . profile file:

PATH=/docs/tools:/bin:/usr/bin:/usr/contrib/bin:/users/hpux/davek: .
PATH=$PATH:/usr/local/bin:/users/hpux/davek/bin:/dl/usr/informix/bin:
PATH=$PATH:/d1/usr/informix/lib:/dl/usr/informix
MAIL=/usr/mail/$LOGNAME
TERM=2623
export TERM PATH MAIL HOME
stty kill '-c'
stty sane
tabs -T$TERM
if mail -e
then

fi

echo
echo "You have mail."
echo

The script sets some essential definitions for shell variables and makes them global to
the system. For example, the PATH variable sets up a search path for commands. When
you execute a command in the shell, it looks at the PATH parameter. The PATH parameter
gives the shell several directories in which to look for the command. If you execute a
program that is not in one of the directories specified by PATH, you will receive an error
message.

Shell Scripts 13

Let's go line by line and describe the entries in this sample .profile file:

• PATH sets up the search path for the shell. Each directory in the path is separated
with a colon (:). When a command is executed using the above .profile, the shell
looks in the /does/tools directory first, then the /bin directory, and so on. Notice
the last entry in the first line is a dot (.). This indicates the current directory.

The second and third line are continuations of the PATH parameter. To add to the
path, you set the variable PATH to its previous value (SPATH) followed by a colon,
then continue listing the directories.

As you learn more about shell programming and develop several programs, you
may wish to call these programs from any directory. One way to do this is to create
a "library", a directory which contains all of these shell programs. Then place the
path to the library into the PATH variable. This directory will always be searched
when you type the program name.

• MAIL sets the file in which to look for new mail.

• TERM sets the terminal type. This example is using an HP 2623 Graphics computer
terminal.

• The export command marks parameters for exporting their values to the environ­
ment. The export command can be thought of as a way of letting other commands
know the value of a variable. If you do not export a parameter, other processes will
not know its value.

• The stty command sets characteristics for your terminal. Setting the kill charac­
teristic to - e (control e) tells the computer to interrupt the current process when
control e is pressed.

• stty sane resets all modes to some predefined resonable values.

• tabs will set the tabs to the default format for your terminal. The -T option followed
by the terminal type (here it is $TERM which is a parameter we set earlier to 2623).

• The last six lines construct a condition (we will learn the details of conditions later).
These lines check if you have received any mail. If you have, the message "You have
mail." will appear on the screen.

14 Shell Scripts

Customizing .profile
If you wish to customize your . profile script, you can add any of the items discussed
in the shell programming sections. The following are some system parameters and com­
mands you can add to your .profile script which may be of interest:

• PSt is a system parameter which sets the value of the system prompt. The default
is $, but you can change that to anything by using the following format:

PS t =" string"

where string is any character string.

• To have the script clear the screen, include a line with the clear command on it.

• To have anything printed on the screen, include a line with the echo command:

echo "string"

where string is what you want to appear on the screen.

Shell Scripts 15

Here is a list of some system parameters:

Parameter

HOME

PATH

CD PATH

MAIL

Table 2. Shell Parameters.

Description

The default directory for the cd command.

The search path for commands.

The search path for the cd command.

If this parameter is set to the name of a mail file, and the
MAILPATH parameter is not set, the shell tells you when mail
arrives.

MAILCHECK This parameter tells how often (in seconds) the shell will
check for mail. The default is 600 seconds. If set to 0, the
shell will check before each prompt.

MAILPATH The search path for mail files. The shell informs the user
when mail arrives.

PSI

PS2

IFS

SHACCT

SHELL

16 Shell Scripts

Primary system prompt. The default is "$".

Secondary system prompt. The default is ">".

"Internal Field Separators" which are normally space, and
tab.

Write an accounting record in the writable file set by this
parameter.

If an 'r' is contained in the basename (last entry in a path),
the shell becomes a restricted shell.

Basic Shell Programming 3
After you have mastered simple shell scripts, you can move into the programming aspect
of shell programs (shell scripts and shell programs are the same thing, except sometimes
shell programs are thought to contain more of the programming constructs than just
lines with commands on them). This chapter will introduce ways to pass information to
a shell program, how to execute commands conditionally, and how to get data from the
keyboard during the execution of a shell program.

All of the constructs of shell programming can be executed in two ways: you can type
the commands into a file so they will all be executed when the file name is entered (after
changing the permission), or you can enter the commands directly into the shell (just as
you enter commands like "date").

When you enter shell constructs directly into the shell, you can either type them on
the same line (and press return to execute them), or you can type them over several
lines. For example, we can type the following construct two ways (don't worry what the
construct actually does, just how it can be typed). First on one line:

if test -d Id!; then echo "/d! is a directory"; fi

Then on several lines:

if test -d Id!
then

echo "/d! is a directory"
fi

Typing the command on one line is simple to do in the shell. If you type the command
on several lines, you will receive a secondary prompt (which you can define in the PS2

variable). The secondary prompt is usually a ">". So, if you were to type the above
command on several lines, the screen would look like:

$ if test -d Id!
> then
> echo "/d! is a directory"
> fi
Id! is a directory
$

where "$" is the system prompt.

Basic Shell Programming 17

What is more, you can create shells from programs such as notes, mail and most editors
(such as vi), and execute shell commands from these shells. Running a shell from another
program is usually called "forking" a shell. It may be useful if you are writing a program
and wish to test the program: you can edit the program in vi, fork a shell from vi
(by typing ": sh"), execute the program to see if it works, exit the new shell (by typing
I CTRL ~rn), and be right back in the editor to make any changes.

Parameters
In addition to shell parameters, you can create parameters of your own. The format for
user-created parameters is:

parameter=value

Note there are no blanks between the parameter, equal sign (=), and the value. You can
create these parameters while you are in the shell, and they will help you save typing.
Look at an example:

x=phantom

When you type in the above statement, the variable x is created and the value "phantom"
is assigned. To access the variable x, you will need to precede the variable name with a (
dollar sign ($). Try this: \,

echo $x

The echo command writes the value of x on the screen. One possible use of parameters is
to assign a long pathname to a variable so you do not have to type the whole pathname
each time you wish to use it. For example:

dir1=/users/hpux/davek/projects/shellp

So, to list the contents of this directory, type:

Is $dir1

18 Basic Shell Programming

Using Parameters in Shell Programs
You can use parameters within your shell programs in the same way. On one line, define
the variable with the same format. When you wish to refer to the value of the parameter,
you precede the parameter name with a dollar Sig-l ($).

One advantage of using parameters in a program is that you can concatenate the param­
eter easily. Let's say you define a parameter to be the path to a directory:

dir2=/users/hpux/dave/projects/memos

If you want to print the contents of a file in the above directory, you would use the cat
command as follows:

cat ${dir2}/junememo

where the braces differentiate between the parameter and the characters following it
and junememo is the name of a file (note we had to include a slash before the filename
or "j unememo" would have been concatenated directly to "memos" and we would have
received an error message). What has happened is called parameter substitution and will
be discussed next.

Parameter Substitution
When you wish to include the value of a parameter into a string or statement, you must
precede the parameter with a dollar sign ($). Also, the following conventions hold:

${parameter}

${parameter: -word}

${parameter: =word}

The value of the parameter in the brackets is substituted. Use
the brackets {} when the parameter is followed by a letter,
digit, or underscore which is not part of the parameter. Ex­
ample: ${dir1}123_file will substitute the value for dir1 and
append the characters 123_file.

If the parameter is set and non-null, the value will be sub­
stituted. Otherwise, the word will be substituted. Example:
${dir1: -/usr/bin}. If dir1 is null, then /usr/bin will be sub­
stituted.

If the value of parameter is not set or null, then set the value to
word and substitute that value. Example: ${dir1: =/usr/bin}.
If dir1 is null, its new value is /usr/bin.

Basic Shell Programming 19

${parameter: ?wordJ

${parameter: +wordJ

Does the same as : - except the shell program will be exited if
the parameter is null. If word is left off, the message "parameter
null or not set" is printed. Example: ${dir1:? /usr/bin} will
perform the substitution with /usr/bin if dir1 is null, and then
exit the shell.

If the parameter is set and is non-null, then substitute word.
Otherwise, substitute nothing.

Positional Parameters
When you execute a shell program, you can include parameters in the execute statement.
When you do, each parameter must be separated with a blank, like:

scopy file1 file2 file3

where scopy is a shell program with three parameters.

When the shell program runs, you can access the value of these parameters (each sepa­
rated by a blank) with positional parameters named $0, $1, $2 ... $9. If your list of values
exceeds nine parameters, the values are placed in a buffer, and you can access the values
with the shift command (discussed later in this chapter).

scopy personnel fileA

has positional parameters $1 equal to "personnel" and $2 equal to "fileA" . The positional
parameter $0 is always the command name, "scopy" in the example above.

If you need to know the number of positional parameters (let's say you wish to see if the
user included any parameters at all) you use $#.

If you need a parameter which contains all of the positional parameters separated by
blanks, use $* (this is useful if the positional parameters constitute a sentence or even a
command line).

Positional parameters are accessed within the body of the script. When the script is
executed, the parameters are assigned values only for the execution of the script. To
make the parameters retain their values in the current shell, see the dot (.) command in
Chapter 4.

20 Basic Shell Programming

Here is an example script using positional parameters:

echo "Searching for $1 in $2"
grep $1 $2
echo "Done"

This shell program has two positional parameters. The first parameter is a string, and
the second is a file. The grep command searches the file for each occurance of the string.
Here is an example of how we would type in the shell program for execution (let's call
the program "get"):

get "widget 20809" /users/dave/datafile

The $1 parameter is "widget 20809" and the $2 parameter is "/users/dave/datafile".
Notice the quotes around the first parameter. If you need to include a blank in a positional
parameter, you have to quote the expression. Quoting is discussed later in this chapter.

Shift
In the last section we learned how to access the positional parameters by using the
numbers $1 through $9. However, if we access these by name, we must already know
what to expect. In other words, we cannot have the positional parameters in an arbitrary
order nor more than nine.

The shift operation helps alleviate problems with positional parameters. Let's think of
the positional parameters as a stack, with $1 at the bottom and $9 at the top (if there
are more than nine parameters, the remainder would be stacked on top).

Shift will remove the value of $1 and replace it with the value of $2, move the value of
$3 to $2, and so on. It is like removing the bottom entry of the stack and letting the
values fall one position down. Let's look at a graphic representation of this idea:

Basic Shell Programming 21

Top ----.. $N zz $N-1 zz
· · ·

$4 D $4 E

$3 C $3 0

$2 B $2 C

Bottom ----.. $1 A $1 B

Before Shift After Shift

Figure 1. Shifting Positional Parameters

You can use shift in loops, which we will discuss next, or you can use it sequentially like
in the following example named "list":

if [$1 = yes]
then

shift
cat $1
exit

else
shift
echo "file called $1 was rejected"

fi

If the first positional parameter ($1) is equal to "yes", then the contents of the filename
(the second positional parameter) will be listed. The first time $1 is used for the test, it
may have the value "yes". After the shift, the value that was $2 is shifted to $1, and $1
would be the file name. To execute this script, you would type "list yes filename", or
even "no file2".

22 Basic Shell Programming

Echo
We have already mentioned the echo command as a method to display text on the screen.
The echo command can be used to prompt the user for input (see read), or to indicate
something has been done. You can also use parameter substitution in the echo command.

One helpful item for the echo command is the \c (backslash "c" (backslash "c")). If
you add \c to the end of an echo statement, the default linefeed is suppressed. This
means you can prompt the user to input on the same line (see the example at the end
of this section). Another helpful item is \n which adds an extra new line. For further
information on the echo command, see the echo(1) entry in the HP- UX Reference.

Quoting
Since the shell is full of special characters (with special meanings), we need a way to
suppress the meaning of a special character. If we have a string which contains a special
character we may not want it treated as such.

If you were to assign a string of characters to a parameter, and the characters contained
blanks and characters with a dual meaning (blanks in this case would indicate the end
of the parameter assignment), you may receive an error message. When you quote a
character or string of characters, you suppress any special meaning.

The Backslash
The backslash (\) will cancel the special meaning of the next character:

echo \$dirl

will echo "$dirl" instead of the parameter value of "dirl" because the dollar sign is told
to have no special meaning.

The Double Quote
The double quote (,,) quotes anything enclosed in two double quotes except \ $ " I and
• (grave accent). For example:

echo "$dirl is an \ "old directory\ 1111

The dollar sign interprets dirl as a parameter; the backslash (\) ignores the following
double quote (in other words, it does not end the echo string but includes the double
quote as part of it).

Basic Shell Programming 23

The Single Quote
The single quote (,) will quote everything enclosed in two single quotes except the single
quote itself. So the above example could be represented as:

echo $dirl' is an "old directory'"

Notice where the single quotes begin. If we place $dirl inside the single quotes, the value
of dirl will not be printed, rather the exact characters $dirl since the dollar sign would
be ignored as a special character.

Note

If you leave off a quote when entering commands in the shell, you
will receive a secondary prompt (usually a ">"). This just means
you need to type in the closing quote.

Command Substitution
The grave accent (') ind~cates a command substitution.

Note

Pay particular attention to the difference between the grave accent
(') and the single quote (,). The single quote is usually located
below the double quote (..) on the 46020A keyboard (or the it!
keyboard), and the grave accent under the tilde (-).

Command substitution means you can substitute a shell command's output into a string
like the echo string. The command is a shell command and must be enclosed between
grave accents.

The following shows a command substitution in an echo command:

echo "People currently on the system:\n\n 'who'"

24 Basic Shell Programming

This command will print something similar to the following:

People currently on the system:

tricia console Aug 8 09:45
jaci tty02 Aug 8 12:02
derald tty03 Aug 8 07:24
michael tty04 Aug 8 12:31
davea tty07 Aug 8 08: 15
davek tty12 Aug 8 12:31
richard pty/ttypO Aug 8 12:19

If you need to quote characters within grave accents, make sure you use a different quote
character than the enclosing quote. In the following, we use double quotes to enclose the
entire string, and single quotes within the grave accents:

echo "The banner command,\n 'banner 'the banner""

The result of this command will generate the following:

The banner command,

Be sure to try these commands yourself.

Basic Shell Programming 25

Conditions: The if Statement
Your shell programs may need to execute a command or set of commands only if a certain
condition exists. Let's say you want to "execute the sort command only if the file exists,
otherwise print an error message". Your statement would look like:

if test -f $1
then

sort $1
else

echo "file does not exist"
fi

where $1 is a filename. The if statement checks the status of the command following it
(in the above case, the test command follows). The else statement is executed if the
command in the if statement fails. For the case of "if this then that, else if this then
that, etc" we can use the elif statement which means "else if".

The format for the if construct looks like:

if command_list1
then command_list2
elif command_list3
then command_list4

else command_listn
fi

It is helpful to indent to indicate parts of the if construct. Make sure you end the
construct with fi.

Let's look at an example to better clarify this construct:

if grep jones personnel
then

echo "jones" » available
elif grep castle personnel

then

fi

echo "castle" » available
else

echo "empty" » available

26 Basic Shell Programming

This construct will attempt the first command list: grep j ones personnel. If the string
jones is found in the personnel file then the command echo "jones" » available will
be executed. If the search for j ones fails, we go to the elif statement and try the
grep "castle" personnel command. If this is successful, the command echo "castle"
» available will be executed. If this grep command is unsuccessful, we go to the else
statement and execute the "echo "empty" » available" command.

Test
An often used command is the test command. You can use the test command in the
if construct to test conditions such as equality. There are many options we will not
mention here, so you may wish to refer to the test(l) entry in the HP-UX Reference.

Here are two examples to explain the use of the test command:

dir1=/usr/bin
if test $dir1 = /usr/bin
then

echo "directory found"
fi

This construct "tests" if the value for dir1 (notice how we used parameter substitution)
is equal to the string "/usr/bin".

if test $# -eq 0
then

echo "no positional parameters"
fi

The -eq option is used to test the numeric equivalence of the $# and the value zero.
Remember $# is the number of positional parameters passed to the script.

To make typing easier, you can use an abbreviation for test. The square brackets
enclosing the options and parameters do the same as the test command. For example:

if [$# -eq 0]

has the same meaning as the first line in the above example (if test $# -eq 0).

Basic Shell Programming 27

Note

Be sure to separate the square brackets from any characters with
a blank. If you do not, the brackets will be assumed to be part of
the options.

Testing files is another use for test. The options with the command allow you to check if
a file is a directory, is readable, and many other options which are shown in the following
table:

Table 3. Test Options

Option Description

-r file true if file exists and is readable

-w file true if file exists and is writable

-x file true if file exists and is executable

-f file true if file exists and is a regular file

-d file true if file exists and is a directory

-c file true if file exists and is a character special file

-b file true if file exists and is a block special file

-p file true if file exists and is a named pipe (fifo)

-u file true if file exists and its set-user-ID bit is set

-g file true if file exists and its set-group-ID bit is set

-k file true if file exists and its sticky bit is set

-s file true if file exists and has a size greater than zero

-t (fildesJ true if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device

-z sl true if the length of sal is zero

-n sl true if the length of sl is non-zero

sl = s2 true if strings sl are identical

sl ! = s2 true if strings sl and s2 are not identical.

sl true if sl is not the null string

nl -eq n2 true if the integers n1 and n2 are aJgebraically equal. Any of~he
comparisons -ne, -gt, ge, It, and Ie may be uBcd also, and nl and/or
n2 can be parameter substitutions /

.. ,..-.. --.. - .. -.-,~ .-,,--

28 Basic Shell Programming

These operators can also be used:

-a

-0

(expr)

Read

unary negation

binary and operator

binary or operator (-a has higher precedence)

parentheses for grouping

If you wish to receive input during the execution of a shell program, you can use the
read statement with the following format:

read [parameter ...]

where [parameter ...] means a list of one or more parameters. When the computer
executes this statement, it gets input from the keyboard (unless you use redirection
sYLnbols to get input from a file). Each word (words are separated by blanks) typed in is
assigned to the respective parameter in the list, with the leftover words assigned to the
last parameter. To see how this is used, see the example at the end of this chapter.

Exit
Each command returns a status when it terminates. If it is unsuccessful, it returns a
code which tells the shell to print an error message. You can use the exit command to
leave a shell program with a certain exit status (see below for a table of the codes).

The default exit (no arguments) will exit the shell program with the status of the last
command executed. You can exit with a different exit status; see the HP- UX Reference
pages for the exit statuses of each command. The usual exit statuses are:

Table 4. Exit Status

Value Description

a Success.

1 A built-in command failure.

2 A syntax error has occurred.

3 Signal received that is not trapped (see
the trap command).

Basic Shell Programming 29

For example, the statement

exit 0

will give the instructions to leave the shell program successfully.

Comments
To add to a shell program comments, simply start the line with a pound sign (#). For
example:

this line is a comment

Or you can add a comment after a statement as long as you precede it with the pound
sign.

Note

Do not start your shell script (your file containing the script) with
the pound sign (#). If the first character in a script file is "#", the
system will think the script is a "e" shell (csh) script. You may
choose to always start your shell script files with a blank line, or
always include a space before you use the pound sign in comments.

Example: Moving Files
The following example uses all of the concepts we just discussed. You should try the
example yourself, and then try writing one yourself (to get you started on your own, try
writing a shell program that will do the same thing the cp (copy) command does, except
have it prompt the user for input). The name of the example script is move.

Remember to leave the first line blank, or precede any comments with a blank space or
tab.

30 Basic Shell Programming

This shell program will prompt the user for moving files. #

Test if there are any arguments
(1)
if [$# -eq 0]
then

fi

echo "No arguments: include file name."
exit

Ask if file is to be moved to directory or file
#(2)
echo "Move to directory or new file name (d or f)?\c"
read x

#(3) test if x is a directory. if not, leave script
if [${x:?} = d]
then

echo "Enter directory name ->\c"
read dir1
mv $1 $dir1 #perform the move #
echo "$1 moved to $dir1"
exit

#(4) else test if it is a file
elif [$x = f]
then

echo "Enter new file name ->\c"
read file2
mv $1 $file2 # perform the move #
echo "$1 now named $file2"
exit

#(5) x is not d or f
else

fi

echo "$x not a correct response."
exit

Basic Shell Programming 31

Explanation
The shell program was created in the vi editor. When the file was typed, the permission
was changed to allow the file to be executed: chmod +x move. To execute the command,
you would type move followed by the name of a file you want moved.

(1) The first few lines which are preceded with a # are comments. Then the next few
lines comprise an if construct. This construct uses the test command indicated by the
square brackets, which compares the number of positional parameters to zero. If there
are no positional parameters, then an error message is printed and the shell is exited.

(2) After the next comment, the main body of the program begins. The user is prompted
to type a "d" or "f" to indicate whether the file is to be moved to a directory or to another
file. The read statement accepts input from the keyboard.

(3) Next, the parameter x is tested to see if it is equal to "d". The construct S{x:?} will
exit with an error message (parameter null or not set) if the user just hits return. If a
"d" is typed, then the user is prompted to enter the name of the directory, and the move
command is executed using $1 (the positional parameter the user typed after the shell
program name) and the $dir1 parameter (the directory the user typed when prompted).

(4) If x was instead "f", the user is prompted to enter the new filename. (5) If the user
typed in neither "d" or "f", then an error message is printed. In all of the above three
cases, the exit command is used to terminate the shell program. Pay attention to how
positional parameters are used, and how you match up if's, else's, elif's and fi's.

32 Basic Shell Programming

Advanced Programming 4
The example at the end of this chapter will be a script created with the information you
will have learned. The example is similar to an HP-UX command.

Looping
Many times sequential processing in a program is just not enough. We need a mechanism
which will allow us to repeat the same set of commands using a different set of parameter
values. To accomplish this in shell programming you can choose between three looping
constructs: for, while, and until.

For
The for construct allows you to execute a set of commands once for every new value
assigned to a parameter. Look at the following format:

for parameter [in wordlistJ
do command-list
done

where parameter is any parameter name, wordlist is a set of one or more values to be
assigned to parameter, and command-list is a set of commands to be executed each time
the loop is performed. If the wordlist is omitted (and also "in"), then the parameter is
assigned the value of each positional parameter.

The word list is a versatile quantity in the for construct. It can be a list which you
specifically type (separated with blanks), or it can be a shell command (using grave
accents) which generates a list. Let's look at some examples.

for i in 'Is'
do

done

cp $i /users/rhonda/$i
echo "$i copied"

This example will assign one file at a time from the current directory (the values are
generated by the' Is' command) to the "i" parameter. The loop's command list will
copy the file to another directory, then report the success of the copy. You can use file
name generation (discussed in Chapter 2) to match files. Instead of the first line of the
above loop being "for i in 'Is''', you could use: "for i in *".

Advanced Programming 33

for direc in /dev /usr /users/bin /lib
do

num='ls $direc I wc -we
echo "$num files in $direc"

done

This example lists the values to be given to direc in the loop. The command list then
lists each respective directory (the parameters) and assigns a word count (wc) to the num
parameter. Then the word count is printed out.

for i
do

sort -d -0 ${i}.srt $i
done

This final example will assign each positional parameter respectively to "i" (since the
in clause was omitted). If the positional parameters are file names, the script will sort
the file and place the result in a file having the same name as the unsorted file with
". srt" appended to it. It will then get the next positional parameter until all have been
accessed.

You can also use pattern matching in specifying the word list. Pattern matching is
discussed towards the end of this section.

While
The while construct will repeatedly execute a list of commands in the following format:

while command-listl
do command-list2

done

All of the commands in command-listl are executed. If the last command in the list is
successful (which usually means a status code of 0), then the commands in command-list2
are executed. Then we loop back to execute command-listl until the last command in
the list is unsuccessful, and then the while loop terminates.

while [-r $1]
do

done

cat $1 » composite
shift

34 Advanced Programming

This example tests the positional parameter to see if it exists and is a readable file. If it
is, it appends the contents of the file the composite file, shifts the positional parameters
(what was $2 is now $1) and tests the new file. When the file is not readable, or there
are no more positional parameter values ($1 is null) the while loop is terminated.

Until
The until construct is basically the same as the while construct except that the com­
mands in the loop are executed until the conditions are true (instead of false like in the
while loop). Here is the format:

until command-listl
do command-list2
done

If the last command in command-listl is unsuccessful, then the commands in command­
list2 are executed. When the last command in command-listl is successful, the until
loop is terminated. Let's use the same operation in the while section to illustrate:

until [! -r $1]
do

cat $1 » composite
done

Notice the subtle difference with the while loop. The! negates the test conditions. We
execute the loop until the condition is true (or successful). The while loop executes the
commands while a condition is true (or successful).

Case
The case construct is an expansion of the if construct. If you have a condition which
may have several possible responses, you can either string together many if's or you can
use the case construct:

case parameter in
patternl [I pattern2 ... J) command-listl ;;
pattern2 [I patternS ... J) command-list2;;

esac

Advanced Programming 35

After the first line (which asks if parameter matches one of the following conditions) is
listed all of the possibilities for parameter. Each of these lines contains a pattern (or
value for parameter). The brackets ([I pattern2 ... f) refer to other values that may be
valid. The vertical bar (I) represents "or". Finally, the pattern(s) are followed by a close
parenthesis), and then by a list of commands to be executed if the patterns match.

An example may better illustrate:

case $i in
-d I -r) rmdir $dir1

echo "option -d or -r" ;;
-0 echo "option -0" ;;

-* echo "incorrect response";;
esac

Here the first positional parameter is compared to several patterns. If $1 is "-d" or
"-r", then $dir1 is removed, and a statement printed. If $1 is "-0", a statement is
printed. Finally, the last pattern uses pattern matching (which will be discussed in
detail towards the end of this chapter) and in effect says, "match anything beginning
with a -". Remember to end each command list with ;; and to end the entire case
construct with esac.

The . (dot) Command
Normally, when you execute a shell program, a subshell is created in which to execute
it. Therefore, if you define variables in the program, they are only good for as long as
the program is executing (when the program is done, you return to the current shell's
environment). If you wish to have the shell program executed in the current shell (and
thus make the defined variables good for the current shell's environment), use the "dot"
command:

. scriptname

Make sure there is a space between the dot (.) and the script name (otherwise the system
will assume it is part of the script name). Let's look at an example.

Create a file with the following commands:

echo $dog
dog=tired
echo $dog

36 Advanced Programming

Make the script executable with the chmod command ("Chmod +x dogsample", where
"dogsample" is the name of the script). Next, define the variable dog to be:

dog=rover

Run the script (by typing dogsample) without the dot command. The results will be:

rover
tired

Now, check to see what the value of dog is:

$ echo $dog
rover
$

The original value for dog appears. This is because the shell was executed in a subshell.
Now, try the dot command:

$. dogs ample
rover
tired
$

and then test the value of dog:

$ echo $dog
tired
$

The value of dog was changed because the script was run in the current script.

Advanced Programming 37

The eval Command
The eval command reads its arguments as input to the shell, and the resulting commands
are executed. The format is:

eval [arg ... J

where arg ... is one or more arguments which are shell commands or shell programs.
Here is an example:

eval "grep jones $p_file I set I echo $1 $2 $4"

eval will execute the pipe contained in double quotes in the shell.

If you use the following:

s='date &'; $s

you would receive an error message from date. The '&' is ignored as a special character
(due to the single quotes). So, to make the command function as expected, use eval:

s='eval date &'; $s

and the eval will reparse the string and thus attach the special meaning to '&'.

Using Shell Expansions
You read about File Name Generation in Chapter 1. Here are some examples which will
simplify some of the constructs you just learned.

When you generate lists for your for constructs (or any other construct where you are
trying to generate filenames without needing to type in each file name), you can use the
special characters which will match certain characters.

for i in *.C
do

mv $i /dev
done

Here we are generating a loop where each value is a filename from the current directory,
and the filename is followed by ". c".

38 Advanced Programming

case i in
?[dD].c) echo $i ;;
*[lnN]) mv $i ..
*) exit ;;
esac

This case construct will match i on the first pattern line if i begins with any single
character (?), followed by either "d.c" or "D.c". The second pattern line matches any
string (including the null) ending in any letter other than "n" or "N". The last expression
matches anything left over.

Helpful Tips
Let's wrap up this section with a couple of helpful items. If you need to print a character
that will "beep" to alert a user, use I CTRL ~rn in an echo command *. If you need to
break from a "for" or "while" loop, use the break statement. If you want to break after
a certain number of loops, add break n, where n in the number of loops. To continue the
loop, use the continue statement. To continue at a certain iteration of the looping, use:
continue n. For more items, look in the sh(1) entry in the HP- UX Reference. Some of
these features will be discussed in the next section.

* To add control characters to the vi editor you must first type I CTRL ~[YJ, then type the control string.

Advanced Programming 39

Example: Groupcopy
bool='n'
query='n'
dir='n'

This shell program copies all of the files in the current directory #
to the specified directory. #

Usage: To copy all files to a specified directory, type the #
directory as the parameter. #
To be prompted for file copy, type the -q option #
immediately following the gp command, then the #
directory as the second parameter. #
To include files in subdirectories, use the -d option. #

#(1) test to make sure the directory parameter is included
if [$# -eq 0]
then

fi

echo "gp [-opt] to_directory II
echo "Usage: include options and a directory name"
echo "options: -q, query each file"
echo II -d, include files in subdirectories"
exit

#(2) look for options
for i in $*
do
case $i in
-q) query='y'

shift ;;
-d) dir='y'

shift; ;
-*) echo "unknown option; available options are -q, -d"

exit; ;
esac
done

newdir=$l

#(3) test if parameter is a directory
if [-d $1]
then
look to see if parameter is in current directory
for g in *
do

if [$1 $g]
then

40 Advanced Programming

bool='y'
fi

done

if parameter is in current directory, fill in full path name
if [$bool = Y]

then
newdir='pwd'/$l

fi

#(4) begin main loop
for f in *
do
if [$f != $1]
then

if
then

test if file is a directory or regular file
-d $f]

test if query option is used
if [$query = y]
then # prompt user to respond 'y' to copy,

echo "copy $f? \c" # or anything else to ignore
read copy # test if user wants file copied
if [$copy = y]
then

cp $f $newdir
echo $f" copied to" $newdir

fi
else # query option not used

cp $f $newdir
echo $f" copied to" $newdir

fi
else # test for -d option
test if user wants to copy from subdirectories
if [$dir = y]
then

echo "copy subdirectory files from $f?\c"
read dcpy
if [$dcpy = Y]
then
if [$query = y]
then

else

fi

curdir='pwd'
cd $f
gp -q -d $newdir
cd $curdir

curdir='pwd'
cd $f
gp -d $newdir
cd $curdir

Advanced Programming 41

fi
done

fi
fi

fi

#(5) parameter is not a directory
else

fi

echo "$1 is not a directory"
exit

Since this is a rather lengthy example, we have provided comments throughout to explain
its function. The example is really a new command you can use, and you may find it
quite useful. The example, called "gp", (groupcopy) copies files from one directory into
another. This will save you time in typing each file individually as you copy the files.

The file has several options, you include options by typing a - (minus) followed by a
letter: -q will prompt you as each file is about to be copied, and you can choose not
to copy it; -d will look in subdirectories if that directory has any, and then copy it to
the new directory. If no options are included, all files in the directory (not including
subdirectories) are copied to the new directory. The format for the command is:

gp [options] directory

where options are those described above, and directory is the directory to where you want
the files copied. The program looks in the current directory for files to copy.

(1) The first condition (if [$# -eq 0]) looks to see if the user included any options or
a directory. If they did not, they are told how the gp command is used and the program
ends.

(2) The next section (look for options) is a for loop with a case. This construct looks
for options. If none are found, the default is assumed: copy all files from the current
directory to the directory specified. If options are found, an appropriate flag is set, and
the positional parameters are shifted.

(3) If the parameter is a directory, check if it is in the current directory, and set the "bool"

flag (then in the next construct concatenate the entire pathname to the parameter name;
this is needed when a subdirectory is being accessed).

42 Advanced Programming

(4) The main loop tests several options and executes the appropriate action. For example,
if the query option (-q) is set, it asks the user if he/she wants a file to be copies or not.

(5) Finally, if the parameter supplied is not a direr'tory, an error message is returned.

Study the example and read the comments in the code. Then type it into a file and try
to run the program yourself. By typing it in, you may come to understand the constructs
and how they operate better than just reading the code on a page in a manual. Some
additions you may wish to try are to selectively copy files that have a . c suffix (C source
files) .

Advanced Programming 43

Notes

44 Advanced Programming

Detailed Reference 5
This chapter will attempt to cover the remaining concepts and commands associated
with Bourne Shell programming. So far you have learned how to write a shell program
with conditions, loops, user prompts and other options. This section discusses execut­
ing commands, defining functions, input/output, special commands, return values and
executing the sh command.

Command Separators
When you execute commands in a shell program separated by new lines (I Return I's), the
commands are executed sequentially or in the order they appear in the file. The following
separators allow you to control the sequence of command execution.

The && Separator
This separator is a conditional separator. It will execute the next command in the
command line only if the previous command executes successfully.

test -d /users/rhonda/tools && cd /users/rhonda/tools

This command line will first test to see if /users/rhonda/tools is a directory. If it is, the
cd command is executed. If not, no further action is taken.

The II Separator
The double vertical bar separator will execute the next command only if the previous
command was unsuccessful.

test -d /users/michael/projects I I echo "directory does not exist"

This command line will test to see if the directory /users/michael/proj ects exists. If the
test fails, the echo command is executed.

Detailed Reference 45

Mixing Separators
Here is an example which mixes the above separators:

test -d /tools && cd /tools; test -z "$fn" I I sort -0 $fn $fn &

The shell uses; and & to terminate a command sequence. Thus there are two com­
mand sequences: "test -d /tools && cd /tools", and "test -z "$fn" II sort -0 Sfn
$fn". The first sequence is executed before the second (because of the ; separator).
If the first test is successful, the cd command is executed. The second command se­
quence is then executed in the background (due to the terminating &). The second test
is performed, and if unsuccessful, the sort is performed.

Command Grouping
You can group a sequence of commands together using parentheses 0 or braces {}. If you
group a series of commands with parentheses, a sub-shell is created to run the commands.

(who; Is)

This command grouping is executed separately from the current shell program. The
current shell program only sees the results of the command grouping. The advantage
of command grouping is you can place a series of commands in the background, or use
other command separators to achieve a variety of results. Here's another example:

test -f $file && (cat $file > temp; sort -0 temp; pr temp I lpr; rm temp)&

This command sequence will test if "file" is a file. If it is, it runs a command grouping
in the background (note the terminating &)*.

Another helpful command grouping is with the braces {}. This command grouping is
used primarily for redirecting combined output. You can group a series of commands
together and use the resulting output:

{

date
Is
who
} > contents

All of the commands in the braces are executed, and the resulting output from all of the
commands is placed in a file called "contents".

* Note this command line could be simplified to read:
test -f $file && sort -0 < $file I pr I Ipr

46 Detailed Reference

Defining Functions
The more complicated your shell programs get, you will want to modularize them by
using functions. This way you can create generic functions which can be re-used and
eliminate repetitive code.

To define a function, use the following syntax:

nameO {list;}

where name is the name of the function, and list is a list of commands used in the
function.

Here is an example to show how functions are defined:

statO {

}

if [-d $1]
then

echo "$1 is a directory"
return 0

else
echo "$1 is not a directory"
return 1

fi;

This function tests the filename to see if it is a directory. If it is it returns a status of 0

(see "Return Values" later in this chapter). Otherwise it returns status 1. Do not forget
to place the semi-colon (;) at the end of the last line.

You can type your function in its entirety at the beginning of the shell program. When
you wish to access it, you use the following format:

name [parameter ... }

where name is the name of the function, and [parameter ... } refers to any optional posi­
tional parameters you wish to include. Note the positional parameters are good for the
function only, so you should use the export command to refer the values to the enclosing
shell program.

Detailed Reference 47

Input/Output
The common redirection symbols can be used in shell programs (> for redirecting output
to a file, » for appending output to a file, < for redirecting input to a command from a
file). In addition are these redirection conventions:

«[-}word

This input redirection symbol will read input from the script (the same file you have
script commands in) to a line that is the same as word. The resulting document is then
used as input. Let's look at a sample section from a script file:

cat «marker
These words are
to be printed with the
cat command, until the
line with "marker" is found.
marker
echo "End of text."

The text down to (but not including) "marker" will be printed on the screen when this
script is run. Then the echo command is executed, giving an output:

These words are
to be printed with the
cat command, until the
line with "marker" is found.
End of text.

Be sure to include quotes in word if the line contains special characters for command and
parameter substitution, because they will be interpreted if not quoted. Notice it does not
just look for the word "marker" but rather the line with it alone. «is particularly useful
for multi-line input to commands (usually ed(l) commands). If you add the optional -
after «, then all leading tabs in the document are stripped.

<&digit

This input redirection symbol uses the file descriptor associated with the descriptor digit.
Most programs have standard input as 0, standard output as 1, and 2 for error output
(stdin, stdout, and stderr respectively). All programs which work properly with pipes
observe 0 and 1 (and consequently 2). Other programs may not.

48 Detailed Reference

>&digit

is the format for using descriptors, where digit can be 0, 1 , or 2. The most commonly
used redirection of this form is 1>&2 or 2>&1. For example,

echo File $name not found 1>&2

The output of this line is redirected to the standard error (your terminal). So, in effect,
you are creating your own error message and redirecting it to in the same manner as an
error from the shell. You can use this capability to ensure messages in a shell file reach
the user. In the same manner 2>&1 merges the standard error into the standard output.
And, you can use the <& capability in a similar manner to use as standard input.

The order you place the redirections is significant. The shell evaluates redirections from
left to right:

1>fileA 2>&1

will first associate file descriptor 1 (thus it is no longer associated with standard output)
with the file fileA. Then file descriptor 2 is associated with the file with file descriptor
1 (which is fileA). If we had placed the 2>&1 first, file descriptor 2 would be associated
with file descriptor 1 (the terminal), and then file descriptor 1 would be associated with
fileA.

To force both the standard output and error output into the same file, you usually use a
statement like:

>file 2>&1

To close standard input use: <&-. To close standard output use: >&-.

Detailed Reference 49

Special Commands
The following are commands which may be of help to you in your shell programs.

Exec
The exec command allows you to replace the current shell with a new shell or another
program. With the syntax:

exec [arg ...]

where arg ... can be a sequence of commands or shell programs. This command can be
helpful in cases where you do not wish to create subshells. You could have no desire to
return to the parent shell, or you may be recursing and do not wish to keep parent shells
active. A good example is a shell script which calls itself.

Expr
The expr command is very useful for performing arithmetic operations in shell programs.
It also has other operations useful for string manipulation.

With the form:

expr expression { + - } expresswn

you can add or subtract integers.

a=15
expr $a + 5

will return the string 20. To modify variables, you can use a similar format to:

a='expr $a + l'

using command substitution (grave accents) to place the new value in the variable a.

The symbols for multiplication, division, and remainder of integer-valued arguments are:
*, /, and % respectively. Note the * is preceded by a backslash (\) to escape the shell's
interpretation of the asterisk.

To compare integers you use the following format:

expr expression {=. \> • \>=. \ < • \ <=. ! =} expression

50 Detailed Reference

where ! = is "not equal to", and the other symbols represent mathematical comparisons
(again, note the backslash before the special character < and ». The function will
return 0 if the comparison is successful, and 1 if it is not. Here is an example how a
comparison might be used:

if expr $a \<= $b
then

echo The value is $a
fi

Conditions
expr expression \ I expresswn

will return the first expression if it is neither null nor O. Otherwise it will return the
second expression.

expr expression \& expression

will return the first expression if neither expression is null nor O. Otherwise it will return
O.

Expr and Strings
Expr can also be used in string manipulation (the strings can be arithmetic):

. .
expr expresswn : expresswn

will compare the first argument with the second argument which must be a regular
expression (see "Regular Expressions" in Chapter 4). The - symbol is not a special
character, however, because all patterns are anchored (begin with "~"). Normally, the
matching operator returns the number of characters matched, and 0 on failure.

expr length expression

will return the length of the expression (number of characters).

expr substr expression expression expression

will return a substring of the first expression, starting at the character specified by the
second expression, and for the length given by the third expression. For example:

Detailed Reference 51

a=batman
expr substr $a b 3

returns the string "bat".

expr index expression expression

will return the position in the first expression which contains a character found in the
second expression:

expr index $a m

returns the value 4.

Set
The set command has a variety of uses. It is mainly used to set the value of a parameter.
Let's begin with using set without arguments. If you type set, you get a list of all the
parameters the system knows. These will include system parameters set by your .profile
file, and any parameters you define.

You can define, or set, positional parameters easily with set. Simply follow the set
command with the values for the positional parameters $1, $2, and so on. Here is an
example:

set camp town ladies

Now $1 has the value "camp", $2 has the value "town", and $3 has the value "ladies".
You can also use command substitution with the set command:

set 'date'

where $1=" Thu" , $2=" Jun", and so on for a date output of "Thu Jun 28 09:34:01 MDT
1988".

There are several options you can use with set. Preceeding the option with - will turn
the flag on. Preceeding the option with + will turn the flag off. The format is as follows:

set [--aefhkntuvx [arg ... }}

where the options are shown in the following table.

52 Detailed Reference

Table 5. Options to set Command.

Option Description

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exists with a non-zero exit status.

-f Disable the file name generation.

-h Locate and remember function commands as functions are defined.

-k All keyword arguments are placed in the environment for a command,
not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and 'executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

-- Do not change any of the flags.

These options can also be used with the sh command.

Unset
This command will remove the specified variable or function. The format is:

unset [name ...]

where name ... is a list of variables or functions except PATH, PSt, PS2, MAILCHECK, IFS.

Trap
The trap command waits until signals are sent to the shell program, and traps them.
Instead of performing the default action, you can have the signals processed any way you
wish. In other words, you use the trap command to wait for certain signals from the
shell (which may be an unsuccessful command execution). When the trap sees a signal,
it executes a list of predefined commands you generate. The syntax is:

trap [command_list] [n]

where n is the signal (or signals) trap looks for, and when they are found, command_list
is executed. If n is 0, then the command list is executed when the shell is exited. If you
type trap with no arguments, a list of commands associated with each signal number is
printed. An attempt to trap signal 11 (memory fault) produces an error.

Detailed Reference 53

Here is a list of the signal numbers that can be trapped and their description:

Table 6. Signals.

Signal Description Trapable

00 Success Trapable

01 hangup Trapable (unless in background)

02 interrupt Trapable (unless in background)

03 quit Trapable (unless in background)

04 illegal instruction Trapable

05 trace trap Trapable

06 software generated (sent by abort (3C)) Trapable

07 software generated Trapable

08 floating point exception Trapable

09 kill Cannot be trapped

10 bus error Trapable

11 segmentation fault Cannot be used as argument to trap

12 bad argument to system call Trapable

13 write on a pipe with no one to read it Trapable

14 alarm clock Cannot be trapped.

15 software termination signal Trapable

16 user defined signal Trapable

17 user defined signal Trapable

18 death of a child process Cannot be used as argument to trap

19 power fail Trapable

20 virtual timer alarm Trapable

21 profiling timer alarm Trapable

22 reserved Cannot be used as argument to trap

23 window change or mouse signal Cannot be used as argument to trap

To trap for signals 0, 1, 2, 3, 15 and execute a certain set of commands, you would use
a command similar to:

trap "echo)removing temp file); rm temp" 0 123 15

54 Detailed Reference

Signals 1, 2, and 3 cannot be trapped if the script is run in the background (using
nonsequential processing symbol '&'). Signal 9 should not be used as an argument to
trap because it can never be caught, as well as signal 14 (it is used internally by sh(l)).

Hash
The format for hash is:

hash [-rJ [name ... J

where name ... is a list of command names.

The purpose of the hash command is to make searching for a command faster. Usually
the shell will look in your search path (indicated in the shell parameter PATH) and go
through each directory searching for the first occurance of the command. hash will place
the command in a table and include a pointer to the directory in which it resides. Thus,
when you call the command, the hash table is first checked. If the command is in the
hash table, it will be able to go directly to the directory instead of through all of the
directories in the search path.

If you wish to delete the remembered locations in the hash table, include the -r option.

The default for hash (no options or parameters) is to print a listing of all commands
used since login. The list includes two columns: hits which are the number of times the
command has been invoked by the shell process, and cost which is the measure of work
required to locate a command in the search path. The default hash command is used
more for information, to see how the performance of the hash table is compared to the
search path.

If you wish to see if a command is in a hash table, you can use the type command.

Type
The type command will tell you where a command is located in the directory structure.
It will also indicate if the command is hashed (see hash above). The format is:

type [name ... J

where name ... is a list of commands.

Detailed Reference 55

Readonly
The readonly command is used to set the value of a parameter permanently. The format
is as follows:

readonly {name ... J

where name... is a list of parameters. When you use the readonly command on a
parameter, it places the parameter into a set of parameters which are marked so they
cannot be changed. No attempts to change the value of the parameter are allowed. For
example, let's say we specify these parameters to be readonly:

dogs=rover
knuckles=chuckles
readonly dogs knuckles

If we attempt to change the value of, say, dogs,

dogs=spot

we get the message:

dogs: is read only

and the value remains at "rover". If you type in readonly with no parameters (the
default), you get a list of all parameters which are readonly:

readonly dogs knuckles

Newgrp
You can change your group identification with newgrp. You remain logged in, but access
permissions to files are done according to the new group environment. With newgrp you
are always given a new shell even if the command terminates unsuccessfully. The format
is as follows:

newgrp {-J {group J

where group is the new group, and the - option will cause the environment to be changed
to what it would be if you logged in again (you lose your old shell and get a new one).
With no arguments, the group is changed back to what your password entry file indicates.
For more information, see newgrp(l) in the HP-UX Reference.

56 Detailed Reference

Times
This command prints the accumulated user and system times for processes run from the
shell. The times are precise to units of 1/ HZ seconds, where HZ is processor dependent.
The output looks like:

Om37s Om25s

For more information, read times(2) in the HP-UX Reference.

Ulimit
This command provides control over process limits. The format is:

ulimi t [-fp} [n}

where n is the size limit imposed by ulimit.

The -f option imposes a size limit of n blocks on files written by child processes (with
no argument the current limit is printed). The -p option changes the pipe size to n. If
no option is given, the -f option is assumed.

Wait
The wait command will wait until the specified process is finished, and then report its
termination status. To specify the process, use this format:

wait [n}

where n is the process id. Most of the time you will not know the process number, but
if you look ahead to the section "Parameters set by the shell," you will notice one entry
(!) refers to the process number of the last background command executed. So, to wait
for that background process to terminate, you would use:

wait $!

Wait without parameters waits for all child processes to terminate.

Detailed Reference 57

Return Values
When a function or a command terminates, it sets a flag indicating the status of the
termination. In other words, if the function or command was successful in executing,
it returns a value indicating its success. The values (or error codes) normally used are
listed in the exit section. These values are only conventions; shell scripts normally use
these conventions, but programs in general do not.

When you execute a shell command incorrectly, you usually get an error message. What
usually happens is the shell command returns an error code. If the error code is, say, 2,
you will receive a message indicating a syntax error has occurred.

You can return error codes from your shell programs and functions in two ways. The
exi t statement can return any value you specify by using the following format:

exit n

where n can be an integer from 0 to 3. You can return error codes from functions by
using the return statement:

return n

To check the status of a return value, you can use a parameter called $? which is set to
the one of the four values.

Parameters Set by the Shell
During the course of interaction with the shell, you can access several special parameters
which are set automatically by the shell. As mentioned above in the "Return Values"
section, $? holds the return value of the executed command or function. Other such
parameters you can use are:

Table 7. Parameters Set by the Shell

Parameter Description

$# The number of positional parameters.

$- Flags supplied to the shell on invocation or by the set command.

$? The return value sent by the previously executed command.

$$ The process number of this shell.

$! The process number of the last background command.

58 Detailed Reference

Options for the sh Command
If the sh command is used to invoke shells or shell programs, you have several options
available. You can use the options in the following table, and you can also use the options
described in Table 5 (the set command options).

Table 8. Options for sh Command.

Option Description

-c string Read commands from string

-s (or if no arguments are specified) Read commands
from standard input. Any remaining arguments be-
come positional parameters.

-i This specifies an interactive shell: TERMINATE is ig-
nored (kill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so that wait is
interrupti ble).

-r Make the shell restricted (see below).

Restricted Bourne Shell
Making a shell restricted (or rsh) causes the following actions to be disallowed:

• changing the directory (cd)

• setting the value of PATH

• specifying path or command names containing /

• redirecting output (> and »).

The restricted shell is useful when you wish users to have limited access to the system.
Make sure the directory in which the restricted user is placed does not give him/her
access to subdirectories in which they may do damage. Also make sure they do not have
commands that let them escape the restricted shell (particularly chsh, csh, and pam).

Detailed Reference 59

Notes

60 Detailed Reference

Helpful Tips for Shell Programmers A
This appendix will give you some tips to use when programming in the Bourne Shell.

Debugging
When you use pipes in shell programs, it becomes difficult to debug since you do not
see output from commands in the pipe. One suggestion to help debug pipes is to add
cat statements in the pipes to show you what the intermediate output would be. For
example, you could add a cat command followed by an exit at one point in a pipe. The
pipe will then list the output at that stage, and it will exit the program (to avoid further
errors, and to indicate exactly where in the pipe you are).

Now, when you are ready to test the program, you need not exit the editor (which we are
assuming is vi), run the program, see the output, then enter vi again to make changes.
Rather there is a more convenient way to debug: save the program using vi command
" : w"; run the program from vi by using the command:

:! script [arguments}

The :! command executes commands in the shell outside of vi. When you see the
output, you then go back to vi (when prompted) make any necessary changes, and try
it again. You can also execute a shell from vi (by typing ":sh") then execute the script.

For making this process quicker, you can: add the "cat" statements in the program,
save the program run the program from vi, return to vi and use the u (undo) command
which will get rid of the "cat" statements (as long as you do not execute any other text
manipulation commands since the last insert).

Another suggestion is to use the "tee" command instead of "cat". "tee" will transcribe
the standard input to the standard output and makes a copy in a file(s) which are
arguments to the command. The format is:

tee [-i} [-a } [file ... }

where the -i option ignores interrupts, and the -a option causes the output to be ap­
pended to te files rather than overwriting them. More than one file can be specified.

Helpful Tips for Shell Programmers 61

Creating Optional Pieces in a Pipe
There may come a time when you need a pipe with an optionally inserted piece. In other
words, you wish to execute "a I c" if one condition exists and "a I b I c" if another
condition exists. To do this, consider the following example:

optional=' ,
if [condition]
then

optional='b II'
fi

eval "a I $optional C"

If condition is true, optional becomes "b I", and thus the eval statement executes "a I
b I c". Otherwise, "a I c" is executed.

You can also use this same idea in optional redirection statements.

Halting Background Processes
If you are running several background processes and a foreground process, you may wish
to be able to terminate all processes at the same time (instead of using the kill command
for each). This may be helpful for instrumentation related work.

Let's say you wish to use the BREAK key to terminate three processes: the one in the
foreground (terminated automatically) and two in the background. Here is a script
which would accomplish this:

proc=

echo starting process 1
process1 &
proc="$proc $!"

echo starting process 2
process2 &
proc="$proc $!"

trap "kill $proc;trap 2;exit" 2

echo starting process 3
process3

62 Helpful Tips for Shell Programmers

initialize the process list

add process number to list

add process number to list

the BREAK key will kill everything

foreground process

The first line initializes a parameter proc to a null value. The next two sections start
the two background processes: first a comment is echoed to the screen so you know the
process was started, then the process is started in the background (using the & operator),
then the parameter proc is set to the process id of the process just run (the parameter
$! is the process id if you recall).

The line containing the trap command looks for the signal 2 (which means interrupt).
When this signal is received, it executes the commands in the double quotes: kill $proc
will kill the two background processes since $proc is a list of the process ids.

The last command section starts the foreground process.

So, when this script is executed, the three processes are run. If you press the BREAK key,
the trap is activated killing the two background processes (process1 and process2)., The
foreground process (process3) is automatically terminated.

Helpful Tips for Shell Programmers 63

Notes

64 Helpful Tips for Shell Programmers

Glossary
background process
A process that has been scheduled nonsequentially (background processes are generally
transparent to the user).

control key
Used with other keys (in the same manner as the Shift key) to generate special characters.

cursor
A visual position indicator which moves with characters entered with the keyboard or
with cursor movement keys.

device file
The file associated with an I/O device. Device files are read and written just like ordinary
files, but requests to read or write result in activation of the associated device. These
files normally reside in the / dev directory.

disk
A platter for recording and storing information. A disk can be either a flexible disk or a
hard disk. In this manual, when the term "disk" is used alone, it refers to a hard disk.

driver number
A pointer to the part of the kernel needed to use the device. The driver number is used
in the mknod command when setting up a device file.

edit
Making changes in a file containing text, data or a program.

environment
System defaults which affect shell operation.

execution
Carrying out the instructions of a program or command.

file
A collection of computer information: program or data residing on a mass storage
medium (e.g., a hard disk).

Glossary 65

file types
Several file types are recognized. The file type is established at the time of the file's
creation. The types are:

• Regular files - Contains a stream of bytes. Characters can be either ASCII or non­
ASCII. T.his is generally the type of file a user considers to be a file: object code,
text files, nroff files, etc.

• Directory - Treated as regular files, with the exception that writing directly to
directories is not allowed. Directories contain information about other files.

• Block special files - Device files that buffer the I/O. Reads and writes to block
devices are done in block mode.

• Character special files - Device files that do not buffer the I/O. Reads and writes
to character devices are in raw mode.

• Network special files - contain the address of another system.

• Pipes - A temporary file used with command pipelines. When you use a pipeline, the
shell creates a temporary buffer to store information between the two commands.
This buffer is a file, and is called a pipe.

• FIFO - A named pipe. A FIFO (First In/First Out) has a directory entry and
allows processes to send data back and forth.

function key
A key on the keyboard which, when pressed, executes a specified computer function.

HP-UX
The computer's operating system. HP-UX is an HP value-added version of UNIX l

System V.

input
Data read by any program, whether from a keyboard, file or pipe.

internal memory
Electronic data storage located in the computer for program and computer operations
execution.

ITF
Integrated Terminal Family: the name for the standard keyboard.

1 UNIX is a trademark of AT&T Bell Laboratories, Inc.

66 Glossary

kernel
The core of the HP-UX operating system. The kernel is the compiled code responsible
for managing the computer's resources; it performs such functions as allocating memory
and scheduling programs for execution. The kerlel resides in RAM (Random Access
Memory).

message
An item of information generated by the computer to inform the user of an operation or
error resulting from a command.

nonsequential
In no particular order (at the same time).

operating system
The part of the system that interacts with the user and executes the user's commands.

output
The data that results from a program or computer process.

parameter
The second (and subsequent) words/data after a command or program. Parameters are
used to pass information to a program or command.

parse
Separating statements into basic units for translating into machine language or for in­
terpreting.

path
An ordered sequence of steps from origin to destination.

path name
A series of directory names separated by / characters, and ending in a directory name
or a file name.

permission
Operation allowed to a specified type of user.

Glossary 67

pipe
The name given to a command line where the output of one command becomes the input
to another command. The commands must be connected by a "I" character.

process
A process is the environment in which a program (or command) executes. It includes the
program's code, data, status of open files, and value of variables. For example, whenever
you execute a shell command, you are creating a process; whenever you log in, you create
a process.

program
A sequence of instructions performing a task.

redirection
Changing the default path of input or output (sending output to a file instead of to the
screen, for example).

screen
The device with which the user sees computer output (the CRT or terminal).

script file
A file containing commands (each on a separate line). When the entire file is executed,
the commands are executed in the order in which they appear in the file.

sequential
In order (not at the same time).

shell
A program that interfaces between the user and the operating system. HP-supported
shells are:

/bin/sh
/bin/csh
/bin/rsh
/bin/pam

variable
See Parameter.

vi
The vi editor (visualize).

68 Glossary

Index

a
* .. 10

36
? .. 10
[...] .. 10
.. 30
$.. 18, 19
&& .•..........•......................................•....•.............. 45
\ .. 23
< .. 7,9
> .. 7,9
» ... 7,9
accumulated user and system times .. 57
addition .. 50
advanced shell programming .. 33
arithmetic operations .. 50
asking questions ... 26
automatic scripts .. 13

b
background command process number 58
background processes .. 62, 65
background processing .. 6
backslash ... 23
banner ... 25
beep ... 39
block special files .. 66
Bourne shell ... 1
Bourne shell commands ... 5
break .. 62
break from a loop ... 39

Index 69

c
C•..............•... 2
\c ... 12,23
cancel special character meaning .. 23
case ... 35,40
CDPATH environment variable ... 16
changing group identification ... 56
changing permissions .. 11
character special files .. 66
chmod .. 11
combining shell commands .. 5
COMMAND ...•••.•..•.•.••••••.••.•••.••...•..•••...•••.••••.•••••..•••••.••• 2
command grouping .. 46
command interpreter ... 1
command separators ... 45
command substitution ... 24
command_list .. 3
comments .. 30
conditionally executing commands ... 45
conditions .. 26, 51
connecting programs .. 8
continue looping .. 39
control key ... 65
conventions .. 3
creating shells .. 17
creating your own parameters ... 18
cursor ... 65
customizing .profile .. 15

d
data paths .. 6
debugging .. 61
defining functions ... 47
definitions ... 3
device file .. 65
directory structure .. 55
disk ... 65
division .. 50
do ... 33
done ... 33

70 Index

dot command ... 36
double quote .. 23
driver number .. 65

e
echo .. 12, 15, 18, 23, 31
edit .. 65
else ... 26
environment .. 13, 65
environment variable:

CDPATH .. 16
HOME ... 16
IFS .. 16
MAIL .. 14,16
MAILCHECK .. 16
MAILPATH .. 16
PATH ... 13,16
PSI ... 15, 16
PS2 ... 16, 17
SHACCT .. 16
SHELL .. 16
TERM ... 14

error codes ... 58
error output ... 6
esac ... 35
eval ... 38
exec ... 50
executing commands .. 8, 45
executing commands in shell .. 38
executing nonsequential commands ... 6
executing sequential commands .. 5
executing shell programs ... 11
execution .. 65
exit ... 29,31
exit a loop 39
exi t status ... 29
export ... 14
expr ... 50, 51

Index 71

f
FIFO .. 66
file .. 65
file descriptor ... 48
file name generation ... 10
file types ... 66
filename .. 3
for .. 33
forking a shell .. 17
function key .. 66
functions ... 47

9
grave accent .. 24
group changing ... 56
grouping commands ... 46

h
halting background processes ... 62
hash ... 55
home directory .. 15, 16
HOME environment variable .. 16
HP-UX ... 1

.
I

if .. 26, 31, 40
IFS environment variable ... 16
input .. 6, 29, 66
input/output ... 48
inserting commands ... 24
Internal Field Separators ... 16
internal memory .. 66
interrupt signals .. 54
ITF ... 66
itf keyboard .. 24

k
kernel. .. 1, 67
kill .. 2

72 Index

I
leaving shells ... 29
login scripts .. 13
loops .. 33

m
MAIL environment variable. 14, 16
MAILCHECK environment variable ... 16
MAIL PATH environment variable ... 16
marker ... 48
matching patterns ... 10
message .. 67
message signals ... 54
multiplication ... 50

n
\n ... 12,23
network special files ... 66
newgrp command .. 56
nonsequential ... 67
nonsequential processing .. 6
number of positional parameters .. 20

o
operating system ... 1, 67
optional pieces in a pipe .. 62
options for set .. 53
options for sh command .. 59
options for shell commands .. 5
options for test command .. 28
output .. 6, 67

p
parameter ... 5,67
parameter passing ... 20
parameter, positional .. 20
parameter, shell ... 18
parameter substitution ... 19
parameter value definition .. 52

Index 73

parameters .. 13, 18, 19
parameters set by the shell ... 58
parent process ... 2
parse .. 67
passing parameters .. 20
path ... 67
PATH environment variable .. 13, 16
path name .. 7, 67
pattern matching .. 10
permission. .. 11, 67
PID ... 2
pipe .. 8, 9, 62, 66, 68
positional parameters .. 20
print accumulated user and system times 57
print commands as shell is executed ... 53
process ... 68
process identifier ... 2
process, parent ... 2
.profile, customizing ... 15
.profile file .. 13
program ... 68
programming, shell .. 17
prompts '" " " 16
ps command ... 2
PSI environment variable .. 15, 16
PS2 environment variable .. 16, 17

q
quoting .. 23

r
read ... 29
readonly command .. 56
redirecting combined output .. 46
redirecting input ... 6
redirecting output .. 6
redirection .. 6, 9, 12, 48, 68
regular files ... 66
remainder .. 50
replace current shell ... 50
restricted Bourne shell ... 16, 59

74 Index

return values ... 58
rsh .. 59
running commands at the same time .. 6
running sequential commands .. 5
running shell programs ... 11

s
screen ... 68
script file ... 68
searching for a command ... 55
secondary prompt ... 16, 17
sequential .. 68
sequential processing. .. 5, 12, 45
set .. 52
set command options .. 53
set value of a parameter .. 52
setting the environment .. 13
sh command .. 11, 59
sh command options ... 59
SHACCT environment variable ... 16
shell ... 68
shell command ... 5
shell command options ,............................ 5
shell command parameeters .. 5
SHELL environment variable ... 16
shell expansions ... 38
shell parameters ... 16, 18
shell programming 17
shell programming, advanced ... 33
shell programming special commands .. 50
shell script ... 11, 17
shell variables ... 13
shift ... 21
signals ... 54
single quote .. 24
special characters ... 23
special commands, shell programs ... 50
stdin ... 6
stdin ... 6
stdout .. 6
stdout .. 6

Index 75

string ... 3
string manipulation .. 50
strings ... 51
structure .. 1
stty ... 14
stty sane .. 14
subshell .. 36, 50
substitution, command ... 24
substitution, parameter .. 19
subtraction ... 50
suppressing special characters ... 23
switch ... 35
system prompt .. 15
system structure ... 1
system times .. 57

t
tabs ... 14
tee .. 61
TERM environment variable .. 14
t est command ... ".... 27
test options .. 28
times .. 57
trap command .. 53
type command .. 55

u
urn ... 2
ulimit command .. 57
unset command ... 53
until .. 35
user identifier .. 2
user times .. 57
user-created parameters .. 18

v
variable 18, 68

76 Index

w
wait command .. 57
while .. 34
word 3

Index 77

Notes

78 Index

Table of Contents

The C Shell (esh)
Introduction. .. 1
HP -UX Standard Shells. .. 2
Shell Startup and Termination. .. 3

Running C shell From the Bourne Shell. .. 3
Making C Shell Your Login Shell. .. 3
Terminating C shell .. 4

C Shell Startup .. 6
Setting Environment and Shell Variables 6
The .cshrc Shell Script File. .. 7
The .login Shell Script File .. 8

C Shell Termination. .. 9
Command History " .. 10

Re-executing Events .. 11
Reusing Command Arguments. .. 13
Modifying Previous Events .. 14
An Example. .. 17

Aliases ... 19
Aliasing Existing Commands .. 19
Creating Custom Commands .. 20
Alias Substitution .. 20
Alias Use Restrictions .. 21
U naliasing an Alias .. 21

Command Substitution ... 22
Metacharacters in C shell .. 23

Syntactic Metacharacters ... 23
Filename Metacharacters ... 24
Quotation Metacharacters. .. 25
Input/Output Metacharacters 26
Expansion/Substitution Metacharacters. .. 27
Other Metacharacters .. 27

U sing Metacharacters as Normal Characters .. 28
Built-In Shell Variables ... 29

$argv ... 29
$autologout 29
$cwd ... 30

Table of Contents i

$home .. 30
Boolean ignoreeof .. 30
$cdpath ... 30
Boolean no clobber ... 31
Boolean notify .. 32
$path ... 32
$prompt .. 32
$shell ... 33
$status ... 33

Numeric Shell Variables ... 34
File Evaluation .. 37

An Example. .. 38
Csh Commands. .. 39

The alias Command. .. 39
The echo Command .. 39
The history Command. .. 39
The logout Command .. 40
The rehash Command .. 40
The repeat Command .. 40
The set Command ... 40
The setenv Command .. 41
The source Command .. 41
The time Command. .. 42
The unalias Command. .. 42
The unset Command .. 43
The unsetenv Command .. 43

Jobs .. 44
C Shell Scripts .. 46

When Not to Use a Script. .. 46
Running a Script .. 46
Script Execution. .. 47
Shell Script Expressions .. 49
Shell Script Control Structures 50
Supplying Input to Commands 53
Catching Interrupts 54
An Example Shell Script. 55

Index ... 57

ii Table of Contents

The C Shell (csh)
Introduction
Csh, pronounced "C shell", is an HP-UX command language interpreter and a high-level
programming language. It is used to translate command lines typed into the system into
system actions, such as running programs, moving between directories, and controlling
the flow of information between programs. Csh, pronounced "C Shell", has several useful
features, including:

• Command History Buffer and associated history substitution facility. Recently
executed commands can be modified and re-executed with ease.

• an aliasing mechanism. Useful statements can be referenced with a short alias.

• an extensive, C-like command and control capability.

For additional information abuot HP-UX shells, consult the Bourne Shell tutorial.

This document uses the following conventions:

• All examples assume the C shell prompt has been changed to show the current com­
mand event number by entering the following set command in either $HOME/cshrc
or $HOME/login.

set promtp = II [\ !] % II

This prompt will appear as:

[23] % _

• Dot-matrix font is used to show what should appear on the screen. For example,
to activate the C shell, type csh. Terminating command sequences with 1 Enter lor
1 Return I is assumed.

• Bold font is used for important and key words.

• Italics font is used to emphasize important words and refer to words illustrated in
commands.

1 This software and documentation is based in part on the fourth Berkeley Software distribution under
license from the Regents of the University of California. We acknowledge the following individuals and
institutions for their role in its development: William Joy.

The C Shell (csh) 1

Several HP-UX commands are useful in setting up and verifying shell operation. They
include chsh (change login shell), netunam (used to access remote systems over a local
area network), printenv (lists currently defined envrionment variables with their corre­
sponding values), set (sets or lists system variables), setenv (used to set shell environment
variables to a given value).

Refer to the HP-UX Reference, section 1, for detailed information about these commands.

HP-UX Standard Shells
HP-UX systems support both the Bourne Shell and the C Shell command interpreters.
Systems are shipped with the Bourne shell as the default shell.

The normal shell prompt for the Bourne shell is the dollar sign ($). When C shell is
active instead, the default prompt becomes the percent (%) symbol. The prompts for
either or both shells can be changed to any character(s) you want, but more about that
later.

2 The C Shell (csh)

Shell Startup and Termination

Running C shell From the Bourne Shell
The name of the C shell program is csh. To run C shell from the Bourne shell, type:

csh

Your prompt changes to the C shell prompt, %, unless you have redefined the C shell
prompt.

Making C Shell Your Login Shell
To make C shell your default login shell, type in:

chsh login_name /bin/csh

The argument login_name is your login name.

The command chsh means change shell. When you change shells, the new shell is your
default login shell until you use chsh again. Chsh changes your login shell, not your
current working shell. To change to the new login shell, exit from your current shell,
then log in again.

C shell is stored in /bin/csh. The Bourne shell is stored in /bin/sh. To make the Bourne
shell your login shell, type:

chsh login_name

If no shell pathname is specified on the chsh command line, the login shell is set to default
(Bourne).

The C Shell (csh) 3

Terminating C shell
Various ways can be used to terminate C shell, depending on the current value of the
boolean flag ignoreeof. To determine the current value of ignoreeof, type in set without
arguments. This lists all currently defined variables and their values. Boolean variables
are listed only if set. For example:

[25] % set
argv 0
autologout 15
cwd /users/login_name
history 15
horne /users/login_name
ignoreeof
noclobber
prompt [I] %
shell /bin/C shell
status o
term hp2622

<====ignoreeof is set for this example

path (/bin /usr/bin /usr/local/bin /etc/users/login_name .)
[26] % _

exit or logout can be used to exit C shell at any time if a prompt is being displayed. If
ignoreeof is not set, you can also use I CTRL ~rn.

Returning to a Parent Shell
If you started C shell from the Bourne Shell or another C shell with ignoreeof set, type:

exit

to return to the original shell. If you use I CTRL ~rn and ignoreeof is set, the error
message:

Use "exit" to leave csh.

results. You will know that you have returned to the Bourne shell because the shell
prompt changes to your Bourne shell prompt.

If ignoreeof is not set, you can use I CTRL ~rn or exit to obtain the same result.

4 The C Shell (csh)

Logging Off the System
If C shell is your default login shell and you have not set the system variable ignoreeof,
you can terminate C shell and log off the system by typing:

exit or logout, or by pressing I CTRL ~[QJ

The system variable ignoreof is discussed later. If a file $HOMEj.logout (a file named
.logout in your home directory) exists, it is executed as part of the log-off process.

Terminating C shell with ignoreeof Set
If C shell is your default login shell and the system variable ignoreeof is set, you cannot
terminate C shell and log off the system by typing:

If you attempt to do so, the system responds with the message:

Use II logout II to logout.

The C Shell (csh) 5

C Shell Startup
Depending on whether it is your default login shell, C shell looks for one or all three of
the following files and executes them as indicated in the order indicated, if they exist:

/etc/csh.login

.cshrc

. login

If C shell is your login shell and this file exists, it is executed.

If this file exists in your home (login) directory, it is executed every
time C shell starts, whether at login or when C shell is spawned from
another shell.

If C shell is your login shell and this file exists in your home directory,
it is executed.

While none of these files is required, if present, they provide a convenient means for
customizing the shell environment to fit your needs.

Setting Environment and Shell Variables
Two kinds of variables can be set in the . cshrc and .login files:

Environment
variables

Shell variables

These variables are global (used by the login shell process and any
processes spawned by the shell process). They are usually repre­
sented by uppercase letters.

Shell variables are local (used by the login shell process only) and are
not inherited by spawned processes. They are usually represented by
lowercase letters.

Environment variables are usually defined by using the setenv command, while shell vari­
ables are typically defined by theh set command. However, three of the most commonly
used environment variables - USER, TERM, and PATH - are automatically imported
to and exported from three corresponding variables - user, term, and path. Thus, if you
execute:

set path=(/bin /usr/bin)

the value of the environment variable PATH also becomes /bin:/usr /bin (note the differ­
ence in syntax between the two variables).

The commands set and setenv can be executed interactively from a terminal, or they
can be placed in the . cshrc or .login files.

6 The C Shell (csh)

The .cshrc Shell Script File
Whenever a C shell starts during your session, it searches for the file . cshrc in your home
directory and executed it if it exists. The information in this file is used to set variables
and operating parameters that are local to the shell process.

Since every C shell created executes this file, it is customary to use it for setting shell
variables by including set commands in the file. If the .cshrc file does not exist in your
home directory, HP-UX spawns C shell using default values for needed variables.

To verify your current shell environment, execute set. A listing similar to the following
is printed on the display:

[25] % set
argv 0
autologout 15
cwd /users/login_name
history 15
home /users/login_name
ignoreeof
noclobber
prompt [I] %
shell /bin/csh
status 0
term hp2622
path (/bin /usr/bin /usr/local/bin /etc/users/login_name .)
[26] % _

Some of the commands commonly used in the . cshrc file and their meanings are shown
on the next page.

The C Shell (csh) 7

Command

set ignoreeof

set promtp = II[\!]

set history=15

set savehist=15

set noelobber

%11

Meaning

Traps I CTRL ~[[]'s to avoid accidental system log off. Use the
logout command.

This command causes your C shell prompt to be the current
event number in square brackets followed by a percent sign.
This is very helpful when using the command history buffer.

Sequentially keeps a buffer of your last (15 in this case) events.

This command saves the last (15 in this case) events when you
log off your system. When you log back onto your system, the
event history is restored.

This command stops C shell from overwriting and destroying
the information in an existing file.

You can suppress execution of the . cshrc file by using the -f option in the csh command
as follows:

esh -f

The .login Shell Script File
When you activate C shell by logging onto the system, C shell looks for the shell script
file . login in your home directory and executes it if it exists. This shell script file contains
global commands, variables, and parameters that you want executed or set up automati­
cally at the beginning of your session. Some of the commonly used commands you might
want to include in this file and their meanings are shown below. The term login_name
refers to your login name.

Command

setenv TERM hp2622

setenv TZ MST7MDT

8 The C Shell (csh)

Meaning

Sets the system variable TERM to recognize the HP
2622 as your terminal.

This command sets the time zone variable. The exam­
ple specifies U.S. Mountain Standard Time/Mountain
Daylight Savings Time Zone.

setenv PATH /bin:/usr/bin:/lbin:/usr/lbin:/etc:/users/login_name:.

This command sets the the search pattern the system
uses for finding commands.

set mail=/usr/mail/login_name Required to receive mail for HP-UX.

alias h history

alias bye logout

news I more

Make the character h an alias for your command history
file.

For some, bye is easier to remember than logout as a
session termination order.

Pipe the news through more.

C Shell Termination
\\Then C shell is your default login shell and you log off of the system (not when you
return to another shell that spawned C shell), C shell looks for a file .logout in your home
directory and executes it if it exists. Commands that are typically included in a logout
shell script include the following:

Command

echo
echo '***** You are logged out now. *****'
echo

date

sync

Meaning

Print logout message to your stan­
dard output (stdout) device.

Prints your log out date and time.

Put all information stored in all
buffers onto the system disk.

The C Shell (csh) 9

Command History
Csh maintains a Command History Buffer capable of holding one or more of your most
recent commands. By setting the hz"story variable to some integer value, the history
buffer can hold many (in this case 20) commands. These saved commands, sometimes
called events, can be accessed in many useful ways. Commands can be quite complex,
so the term event is used to refer to commands stored in the Command History Buffer
from now on. A buffer size of 10 to 20 is about right for most situations.

You can make use of the history buffer by using the C shell history substitution facility,
which enables you to use words from previous commands as parts of new commands,
repeat command events, repeat arguments from a previous command in the current
command event, and fix spelling and typographical errors in previous events.

History substitutions begin with an exclamation point (!) and cannot be nested.

To see how this all works, place the following lines in a file named .cshrc or .logz"n in your
home directory.

set history = 15
set savehist = 15
set prompt = ,,[\!] % "

These commands:

• create a fifteen-event Command History Buffer.

• save the last 15 events in your command history buffer when you log off the system
and restore them the next time you log on the system.

• cause your C shell prompt to display the event number of each event.

All of the capabilities that you are about to see can be used without this special prompt,
but they are easier to manipulate if you have a prompt that provides event numbers of
each event executed.

10 The C Shell (csh)

To see what is in your history buffer, type in the command history without arguments.
Your display may appear as shown below:

[6] % history
1 Is -als
2 vi memo
3 pr memo > /dev/lpr&
4 mail jd < memo
5 vi .cshrc
6 history

[7] % _

Re-executing Events
You can re-execute a previous event by referencing the event in your history buffer.
Events can be referenced by:

• event number.

• relative location from the current event.

• the text of the event.

As a special case, the immediately previous event can be referenced by two successive
exclamation points exclamation points (!!). The first activates the substitution facility;
the second references the most recent previous command.

Referencing by Event Number
One way to re-execute an event stored in the history buffer is to reference its event
number. For example:

[7] % !2 cat junk

This is the contents of the file junk. [8] %

re-executes event number 2. Notice that the event to be re-executed is echoed on the
terminal before it is executed, so you can verify that you are referencing the correct
event.

The C Shell (csh) 11

Referencing by Relative Location
Another way to re-execute an event is to reference its position in the history buffer
relative to the current event. For example:

[8] % !-4
mail j d < memo
[9] % _

executes event four (8-4=4), in this case sending a memo to jd again.

Referencing by Event Text
You can re-execute an event by entering the first few characters of that event's command
line. If you have previously executed history, you can see what the current history buffer
contains by using:

[9] % !h

The history substitution facility searches backward through the buffer until it finds an
event whose command line begins with the letter "h". When it finds the event with the
history command line, it re-executes it, producing:

[9] % !h
1 Is -als
2 vi memo
3 pr memo > /dev/lpr&
4 mail jd < memo
5 vi .cshrc
6 history
7 vi memo
8 mail jd < memo
9 history

[10] %

12 The C Shell (csh)

Reusing Command Arguments
The history substitution facility enables you to use parts of previous commands as build­
ing blocks of new commands. Each command argument in a command event is numbered.
To reference a command argument, specify the event with one of the methods described
previously in "Re-executing Events," then use a colon (:) followed by the argument's
position number.

The first argument, usually the command, is argument number zero (0). The second
argument is argument number one (1), etc. The last argument is given the special
reference of the dollar sigh ($). The second argument, usually the first argument after
a command word is given the special reference of the circumflex (A). To see how this
works, begin with the example shown below.

[10] % nroff -man csh.1 I col -1 > /dev/lp &

To see what the last argument in this event is, type in:

[11] % !10:$
&
[12] %

The last argument in event 10 is the ampersand (&). The history mechanism extends
the normal meaning of "argument" to include important :metacharacters. The argument
specified by a circumflex (A) is -man. To see if this is true, type in:

[12] % echo !10:­
echo -man
-man
[13} %

The referenced argument can be made part of another command. A range of event
arguments can also be specified by using a dash (-) to separate the range endpoints. For
example:

[13] % echo !10:3-$
echo I col -1 > /dev/lp &
[1] 18634 18635
[14] %

Note that the example generated a new C shell shell with the event number [1] and two
process IDs 18634 18635. This new shell is called a background process. The arguments
col -1 are printed on the line printer (/dev/lp). Jobs and job numbers are discussed
later in this tutorial.

The C Shell (csh) 13

If you want to reuse all of the arguments of an event that follow an initial command, you
can use an asterisk (*):

[14] % mkdir /users/bill /users/pete /users/mary
[15] % rmdir !14:*
rmdir /users/bill /users/pete /users/mary

Modifying Previous Events
As you use C shell, you will find that re-executing a previous event with minor modifica­
tions reduces typing. To modify and re-execute a previous event, form the new command
line by using a combination of the following steps:

1. Start the command with the re-execution character (!), followed bya reference
to the previous event. The previous event referencee can be the event number,
location relative to the current event, or text contained in the event's command
line as discussed earlier.

2. Optionally, you can specify particular words on the chosen event's command line
as discussed earlier under "Reusing Command Arguments." This specification is
usually separated from the event reference (Step 1) by a colon (:).

3. Finally, specify how you want the previous event altered by selecting from the list
of modifiers that follows. If you skipped Step 2, the modifier applies to the entire
event. If particular words were selected during Step 3, the modifier applies to those
words. Modifiers are always prefixed by a colon (:) and several can be used in
sequence.

14 The C Shell (csh)

The following list of modifiers can be used to alter or replace event arguments prior to
re-execution.

Modifier Definition Effect

s/old/new substitute Substitute new for old. Any character may be used as the de­
limiters between the substitution strings. An ampersand (&) in
the new string is replaced with the entire old string. Note that
this affects only the first occurrence of old on an event's com­
mand line. Use the "gs" combination if you want the effect to
be global.

g global

h head

p print

q quote

r root

t tail

& repeat

Use in combination with another modifier to make the effect
of the modifier global for an event's entire command line. For
example, gs/ old/new replaces all occurrences of old with new.

Note that only one substitution can be made per argument in an
event. For example, the effect of gs/joe/mary on the path name
/users/ j oe/ joe_file would be to make the following modifica­
tion: /users/mary/j oe_file.

Use only the directory path name from a specified argument in a
previous event by removing its final path name component (that
is, use only the path name's head).

Print the event specified, but do not execute it. This is useful if
you just want to verify what a particular event was. For example:

[10] % !3:p

prints event number 3 on your terminal without executing it.

Quote the modifications so that no further modifications can
take place.

Remove the filename extension. If a file name's tail ends with a
"." followed by one or more characters, the "." and the char­
acters that follow it are dropped (thus, the .0 is removed from
filenamee file. 0 leaving file).

Remove all elements of a path name except the last element (Le.,
the path name's tail).

Do the previous substitution again. The history substitution
facility keeps track of the last substitution you performed with
the s modifier, thus enabling you to easily perform the same
change on various events that you want to re-execute.

The C Shell (csh) 15

For example, suppose we enter the following commands:

[14] % car /users/jack/documents/memo
car: Command not found.
[15] %

The cat command in event 14 was misspelled. To fix this, type:

[15] % !14:s/car/cat
cat /users/jack/documents/memo

This is a test.
[16] %

This executes the command correctly, without retyping the whole path name of the file
that you want to look at. To look at a file called "list" in the same directory, you can
now enter:

[16] % !15:s/memo/list
cat /users/jack/documents/list

apples
oranges
bananas
pineapples
strawberries
plums
[17] %

Now, suppose that you want to move to the directory containing the files that you just
looked at. You can do this with:

[17] % cd !!: - : h
cd /users/jack/documents

This is quite a complex command, but typing is still saved. The double exclamation
marks specified the immediately previous event, the circumflex (A) argument specifier
selected the second argument on the event's command line, and the h modifier used only
the head of the specified argument is used ("/users/jack/documents").

To return to your home directory, type:

[18] % cd
[19] %

16 The C Shell (csh)

An Example
To see how this all comes together, let's try to debug the following C program. To do
this example, use an editor to create the file bug. c as shown by event [22] below.

[22] % cat bug.c

main()
{

printf("hello);
}
[23] % cc !$
cc bug.c

Prompt set to show current comand number.

Compile file named in last event.

"bug.c",line 4: newline in string or char constant
"bug.c",line 5: syntax error

[24] % ed ! $
ed bug.c

29
4sf) ; /II&/p

printf("hello");
w
30
q

[24] % ! c
cc bug.c

[25] % a. out

hello [26] % !e
ed bug.c

30
4s/lo/lo\\n/p

printf("hello\n");
w
32
q

[26] % ! c -0 bug
cc bug.c -0 bug

[27] % size a.out bug

Edit file named in last event.

Do last event that began with
small c character.

Not right, run ed again. Again,

Do the last c event and append
the -0 option and word "bug".

a.out: 2784+364+1028 = 4176b = Ox1050b
bug: 2784+364+1028 = 4176b = Ox1050b

The C Shell (csh) 17

[28] % Is -1 ! *
Is -1 a.out bug

Prefix last event's arguments
with an Is -I command.

-rwxr-xr-x 1 jerry
-rwxr-xr-x 1 jerry

3932 Feb 29 09:00 a.out
3932 Feb 29 09:01 bug

[29] % bug

hello

[30] % pq -n !! :s/pq/pr
pq: Command not found.

[31] % !!:s/pq/pr
pr -n -t bug.c

1 mainO
3 {
4 printf("hello\n");
5 }

[32] % !! > /dev/lp
pr -n -t bug.c > /dev/lp

[33] %

18 The C Shell (csh)

Correct spelling in last event
from "pq" to "pr".

Execute last executable event
(!!) and pipe to line printer.

Aliases
C shell provides an alias facility so you can customize commands. With aliasing, you
can define new commands or make standard commands perform nonstandard functions.
The alias facility is similar to a macro facility; when an alias is detected, it is replaced
by the alias definition.

To list existing aliases, enter alias without arguments. For example:

[41] % alias
cd
h
print
w
dir

cd l* ; Is
history
pr !* I col -1 > /dev/lp
who ; echo You are
(Is -als)

who am i

You can create the above aliases interactively from the terminal keyboard or by placing
alias commands in a shell script.

Aliasing Existing Commands
You can alias HP-UX commands so that they perform nonstandard functions. Suppose
you like to get a directory listing whenever you change directories. Do this by aliasing
cd in the following way:

[42] % alias cd 'cd \!* ; Is'

Using a command statement in the alias of the command is acceptable.

The entire alias definition is placed inside single quotes to prevent interpretation of the
semicolon as a metacharacter and to avoid unwanted substitutions

The backslach (\) in front of the exclamation point prevents the exclaimation point from
being interpreted as a history substitution. As a result, the string \ 1 * substitutes the
entire argument list to the pre-aliasing cd command.

The semicolon separates the cd and is commands so that they are executed sequentially.

The C Shell (csh) 19

Creating Custom Commands
C shell's alias facility can also be used to create new commands. Suppose you want to
get a long, alphabetical listing of your current working directory showing the size of each
file. You could type in:

Is -als

each time, but you want to make up your own command

dir

and get the same results. To do this, type in:

alias dir Is -als

Alias Substitution
After a command line is scanned, it is parsed into distinct command arguments. The
first word of each command, left-to-right, is checked to see if it has an alias. If it does,
the alias string replaces the aliased word. The process begins again. The substituted
alias string is marked to avoid looping and does not modify the rest of the command
word's arguments.

Alias and the history facility both use the same substitution scheme. A single exclamation
point represents the current event and is preceded by a backslash so that the shell does
not interpret it but instead passes it on to alias. History modifiers also work in alias
statements.

20 The C Shell (csh)

Alias Use Restrictions
There are two basic restrictions that you must adhere to when using the alias facility:

• Although you can alias the alias command to be called something else, you cannot
alias any command to be called alias. If you attempt to do so, an error message is
generated.

• To prevent the formation of an alias loop, C shell allows a particular alias string
to appear only once in another alias definition. Also, the command that is being
aliased can appear only once in its own alias definition. For example:

[32] % alias Is alias

works, but:

[33] % alias Is 'Is; Is'

does not. If you try to execute Is after it has been aliased with event 33 above, you
see:

[34] % Is
Alias loop.
[35] %

Unaliasing an Alias
The following aliases are already provided by C shell:

[41] % alias
cd cd !* ; Is
h history
print pr!* I col -1 > /dev/lp
w who ; echo You are who am i
dir (Is -als)

To unalias the change directory command (cd), type in:

[42] % unalias cd
[42] % alias

h history
print pr!* I col -1 > /dev/lp
w who ; echo You are who am i
dir (Is -als)

The C Shell (csh) 21

Command Substitution
A command enclosed in single quote characters is replaced, just before filenames are
expanded, by the output from that command. Thus it is possible to:

[43] % set pwd='pwd'

to save the current directory in the variable pwd. You can now print the value of the pwd
variable with:

[44] % echo $pwd
/users/joe/documents
[45] %

Command substitution also provides a way of generating arguments for other commands.
For example:

ex 'grep -1 TRACE*.c'

runs the editor ex, supplying as arguments those files whose names end in . c and begin
with the string TRACE.

22 The C Shell (csh)

Metacharacters in C shell
C shell recognizes a number of characters as having special meaning. Because they have
syntactic and semantic meaning to C shell, these special characters are called metachar­
acters.

Metacharacters affect C shell operation only as the characters are read into the shell.
(C shell displays an & as a prompt when reading.) Metacharacters normally recognized
by C shell are ignored by C shell when running another program, such as vi or mailx.
Thus, you can include metacharacters in text being processed by such programs without
concern for their significance to C shell.

Syntactic Metacharacters
separates commands to be executed sequentially.

separates commands in a pipeline. Commands in a pipeline execute se­
quentially with the output of one command being fed as input to the next
command.

o isolates commands separated by";" or pipelines such that the result ap­
pears as a single command. Thus, pipelines enclosed in parentheses can
be used as components in another pipeline. Commands enclosed within
parentheses are always executed in a subshell.

indicates command(s) must be executed as a background process. For
example, to print the file letter as a background process on the system
printer /dev/lp, type:

cat letter> /dev/lp &

II separates commands or pipelines in such a manner that the second is per­
formed only if the first fails.

&& separates commands or pipelines in such a manner that the second is per­
formed only if the first succeeds.

The C Shell (csh) 23

Filename Metacharacters
If a file name contains one of the metacharacters listed below, the name is a candidate
for file name substitution. File name metacharacters can represent patterns or identify
abbreviations. Characters representing patterns indicate that the name is a pattern which
the shell should replace with all file names in the specified (or current if not specified)
directory that match it. Characters that identify abbreviations cause C shell to expand
the file name, based on the abbreviation provided.

Metacharacters that represent patterns include:

? expansion character matching any single character when specifying a file­
name. For example, to collect the files filea.o, fileb.o and filec.o in the file
named total. 0, type in:

cat file?o > total.o

* expansion character matching any sequence of characters, including the
empty sequence. To remove all files beginning with the word old, type in:

rm old*

[] expansion matching of any single character or range of characters separated
with a dash (-) listed within the brackets. For example, to list all the files
with the same root name <file>, type:

Is file. [a-z]

This could produce:

file.o file.p

Metacharacters that identify abbreviations include:

{} abbreviating a set of words which have common parts. For example, the
files list, last and lost can be listed with:

Is l{aio}st

substitutes that path name of the specified user's home directory. Syntax is
a tilde followed by the login name of the desired user. If the tilde is followed
immediately by a slash (- /) and a file or path name, your home directory
is substituted instead (tilde can be used alone with the cd command to
change to your home directory). If a - appears in the middle of a word or ~
is not followed by an alphabetical character or a /, it is not interpreted as
a metacharacter and is left undisturbed.

24 The C Shell (csh)

The slash (I) character also has special significance in file names:

/ separates components of a file's pathname. For example, /bin/C shell is
the pathname to the file csh. The first slash in a pathname or a lone slash
aliases the system's root directory.

Quotation Metacharacters
\ prevents interpretation of the character which follows it as a metacharacter.

For example, typing

Is *
prints a list of all files and directories and in the current directory. Typing:

Is *

prints

* not found

prevents interpretation of a string of characters as commands or metachar­
acters. For example, if you set a variable to contain a command string,
the command string may in turn contain metacharacters. Thus, whenever
the variable is referenced, there is a risk that the metacharacters could be
inappropriately processed. By enclosing the string within single quotes,
unwanted processing of any metacharacters in the string is avoided.

prevents interpretation of metacharacters in a string, while allowing nor­
mal command and variable expansion. Double quotes are similar to single
quotes except that only metacharacters are left unprocessed

The C Shell (csh) 25

Input/Output Metacharacters
<name

>name

>&name

>! name

»name

»&name

»! name

«word

11&

indicates redirected input from name. For example,

mail boss < memo &

sends the file memo to the boss.

indicates redirected output. For example,

grep -vn filet filet> numbered. filet

puts a copy of file!, with each line numbered, in the new file num­
bered. filet. This metacharacter causes the target file to be overwritten.

directs the diagnostic output along with the standard output into the file
name.

redirects output with overwrite of target file. This is used when noclobber
is set.

redirects output by appending it to the end of name. If the file name does
not exist and the variable no clobber is set, an error occurs.

appends diagnostic output along with the standard output to the end of
name.

Acts like » except in the case where name does not exist and the no clobber
variable is set. In such a situation, »! creates name and no error occurs.

reads the shell input up to a line which is identical to word. Word is not
subjected to variable, file name, or command substitution, and each input
line is searched for word before any substitutions are performed on it. Files
are processed in this manner are commonly called here documents.

forms a pipeline between two processes. A pipeline causes the output of
the process before the vertical bar to be the input of the process after the
vertical bar.

forms a pipeline between two processes that sends diagnostic output as well
as standard output from the first process as input to the second process.

26 The C Shell (csh)

Expansion/Substitution Metacharacters
$ indicates variable substitution. For example,

set M1 = /usr/man/man3
cd $M1

The pathname is assigned variable M1. To use the variable, precede the
variable name with a dollar sign.

Note that you could also execute cd M1. C shell then looks for a directory
called "MI" and, when it cannot find it, proceeds to search for a variable
of that name. When the variable is found, its value is used as an argument
to cd.

indicates history substitution. See the History discussion earlier.

precedes substitution modifiers. See the History discussion earlier.

? used in special forms of history substitution indicating command substitu­
tion.

Other Metacharacters
indicates shell comments and begins scratch file names. Must be the first

character in a shell script to be executed by C shell.

% prefixes job name specifications. For example:

[56] % cc test.c >& test &
[1] % 3265
[57] % kill %1
[58] %

Event 57 kills the background process with the job number 1.

The C Shell (csh) 27

Using Metacharacters as Normal Characters
Metacharacters pose a problem in that we cannot use them directly as parts of command
arguments. Thus, the command

echo *

does not echo the character *. It will either echo a sorted list of file names in the current
working directory or prints the message No match if there are no files in the working
directory.

To handle metacharacters as normal characters, put them between single quotes. The
command:

echo '*'

will echo an asterisk to your display.

Three metacharacters cannot be "escaped" with single quotes:

• the exclaim mark (!)

• the backslash (\)

• the single-quote (')

The backslash must be used to cancel the special shell meaning of these metacharacters.
Thus:

echo \'\!\\

prints

, !\

These two mechanisms, the single-quote and the backslash, let you use any printable
character in a shell command. They can be combined, as in

echo \,'*'

28 The C Shell (csh)

which prints

'*

The backslash (\) escapes the first single-quote (,) and the astrisk (*) was enclosed
between single-quotes. The result is a single-quote and astrisk.

Built-In Shell Variables
C shell maintains a set of variables that can be assigned values by the set command. Shell
variables are useful for storing values for later use in commands. The most commonly
referenced shell variables are, however, those which the shell itself refers to. By changing
the values of these variables, you can directly affect the shell behavior. The following
variables are supported by C shell on HP-UX.

$argv
This variable contains the command line arguments from the calling shell.

$autologout
This variable is used to automatically log you off the system if you do not use the system
for a specified amount of time. For example,

set autologout = 60

will automatically log you off the system if you do not use the system for an hour (60
minutes).

To disable autologout, set it to zero (0) time. For example:

set autologout = 0

or

unset autologout

The C Shell (csh) 29

$cwd
The cwd variable contains the path name to your current working directory. This variable
is automatically changed with each cd (Change Directory) command. At log-on, the
default for this variable is the directory in the system variable $HOME.

$home
The home variable contains the path name to your home directory. The default value
for this variable is specified in the system file /etc/passwd. (See passwd(5).)

Boolean ignoreeof
The boolean variable ignoreeof determines whether I CTRL ~[]] is allowed to log you off
the system. If set,

set ignoreeof

logout must be used to terminate a session. If ignoreeof is unset,

unset ignoreeof

you can also use I CTRL ~[]] to log off. The default is set.

$cdpath
Use this variable to specify alternate directories to be searched by the system when
locating subdirectory arguments used with pushd, cd, and chdir commands.

30 The C Shell (csh)

Boolean noclobber
Suppose you use the following command sequence to send keyboard input to a file called
newfile.

cat > newfile

If newfile exists before this command sequence is executed, the old copy of newfile will
be overwritten and thus destroyed. To prevent accidental overwriting of a file containing
valuable information, set the boolean noclobber variable so that C shell cannot overwrite
files by including the command line:

set noclobber

in your . login file. To demonstrate its effectiveness, type the following C shell commands:

% cat > newfile
This is a test message.
EOT
%set noclobber
cat > newfile
newfile: File Exists.
%

When you try to cat to an existing file with noclobber set, the system tells you the File
Exists. and aborts the command. To override the noclobber, use the exclamation point
metacharacter. For example:

%cat > newfile
newfile: File Exists.
%cat >, newfile
This is an override test.
EOT
%

The C Shell (csh) 31

Boolean notify
If the notify variable is set, you are immediately notified when a background process
finishes. If unset, notification messages related to background process completion occur
with the next presentation of the C shell prompt. Use the set command to set notify.

Spath
The path variable is one of the most important variables in C shell operation. This
variable contains a sequence of directory names C shell searches for commands. For
example:

set path=(/bin /usr/bin /lbin /usr/bin fete .)

or

setenv PATH /bin:/usr/bin:/lbin:/ete.

PATH is a system variable, and path is a C shell variable that serves the same purpose.
The first is global, while the second is local to the running shell.

When C shell is first executed, a hash table of command locations is created. This table
is created by looking through the directories specified in $PATH (except for the current
working directory) in the order specified by $PATH. Suppose you were to write one or
more new commands and store them in your current working directory. The system has
no way of knowing they are there until you notify it of their presence by using the rehash
command.

$prompt
This variable is used to customize your C shell prompt. For example,

% set prompt = "[\!] % "
[22] % _

sets the prompt to indicate the command (event) number of the current command. This
is very useful when using the History mechanism.

32 The C Shell (csh)

$shell
Some HP-UX commands, such as mailx and vi, spawn a new shell when they begin
execution, while others may spawn one or more new shells during normal operation. If
the program or command is written so that it rec(gnizes the $shell variable, you can set
the variable to define the type of shell to be spawned by the program. For example:

set shell = /bin/csh

selects C shell, while

set shell = /bin/sh

selects Bourne shell.

This technique is valid only if the command or program recognizes that uses the variable
when spawning new shells. Be careful when using the shell variable. The result mayor
may not be what you intended.

$status
This variable returns 0 if the most recently executed command was completed without
error. A non-zero value means an error was detected.

The C Shell (csh) 33

Numeric Shell Variables
The at (@) command assigns a value to a numeric variable name, just as the set command
assigns a string to a nonnumeric variable name. Numeric values can be decimal integers.
For example:

[22] % ~ sum=(1 + 4)
[23] % echo $sum
5
[24] % ~ sum = (01 + 012)
[25] % !23
echo $sum
15
[26] %

Numeric expressions evaluated by @ are very similar to those found in the C programming
language. The syntax for this command is:

~

~ name = expression
~ name [index] = expression

The first form is equivalent to set (print csh variables).

The second form sets name to expression.

The third form sets the indexth component of name to expression (both name and its
indexth components must exist).

In an expression of this type, the following C arithmetic operators are allowed:

o Parentheses change the order of evaluation

+ Addition

Su btraction

* Multiplication

/ Division

% Remainder

Bitwise exclusive OR

Unary one's complement

34 The C Shell (csh)

and the following boolean operators are allowed:

String comparison equal

! = Boolean Not Equal

Exclamantion point for negation

Furthermore, the following are also allowed but must be enclosed in parentheses, and
their operands must be separated by white spaces, as in (operand >= operand).

> Boolean Greater Than

< Boolean Less Than

>= Boolean Greater Than or Equal

<= Boolean Less Than or Equal

» Right shift

« Left shift

& Bitwise AND

Bitwise inclusive OR

&& Logical AND

II Logical OR

The following assignment operators are recognized:

Assignment

+= As in x += y is the compressed form of x = x + y

As in x y is the compressed form of x = x - y

*= As in x *= y is the compressed form of x = x * y

/= As in x /= y is the compressed form of x = x / y

%= As in x %= y is the compressed form of x = x % y

As in x -= y is the compressed form of x = x - y

The C Shell (csh) 35

Finally, as a special case, ++ and -- can be used as postfix operators to increment and
decrement. Thus, the following statements give identical results:

% (Q i++

% (Q i = $i + 1
% (Q i += 1

Note

The ++ and -- operators do not require a $ in front of the variable
name.

Either of the following must appear alone on a line:

CD name++
CD name--

The operators &= 1= «= and »= do not work.

36 The C Shell (csh)

File Evaluation
Expressions can also return a value based on the status of a file. If the specified file
expression is true, the expression returns one (1). If not true then the expression returns
a zero (0). It the file does not exist or is not accessible, the expression returns zero (0).
The syntax for a file expression is:

-file_test filename

where file_test is selected from the following list.

e

f

o

r

w

x

z

meaning

Is filename a directory?

Does filename exist?

Is filename a plain file?

Do I own filename?

Do I have read access to filename?

Do I have write access to filename?

Can I execute filename?

If filename empty (zero bytes long)?

The C Shell (csh) 37

An Example
The following example evaluates a list of filenames and returns their status. If the
filename is a directory, the number of lines in it is also reported.

This script finds directories and lists the number of files
in them and their word count.

foreach dir ($argv)

set num = 0
if (-d $dir) then

echo '***** $dir is a directory.'
set Isfile = 'Is $dir'

echo II number of file in $dir is $#lsfile ll

for each file ($lsfile)
set string = 'wc -1 $dir/$file'
@ sum += $string[l]

end
echo II

else
total number of lines in $dir directory is $sum ll

echo II ==> $dir is not a directory. II
endif

end

Now, execute the script called "find_dir":

[45] % find_dir src find_dir
***** src is a directory.

number of files in src is 5.
total number of lines in one is 3948

==> find_dir is not a directory.
[46] %

38 The C Shell (csh)

Csh Commands
C shell supports several "built-in" commands - commands that are normally executed
within the current shell. If you invoke a command that is not a built-in C shell command,
a subshell is created (spawned) to handle its execution.

The alias Command
The alias command is used to assign new aliases and to show which aliases have been
assigned. When executed without command-line arguments, all currently defined aliases
are printed. If an argument is provided, the alias of that argument is printed. For
example:

alias Is

shows the current alias, if there is one, for the directory list command Is.

The echo Command
The echo command prints its arguments to the shells std_out file (unless redirected,
std_out is your display). Echo often used in shell scripts to print information about what
is happening in the script. For example:

echo 'Your mail is sent. '

could be used in a mailing script to inform you that mail created by the script has been
sent.

The history Command
The history command will show the contents of the history list. Numbers are assigned
to each history event and can be used to reference previous events that may be difficult
to reference using contextual mechanisms discussed previously.

The shell variable called prompt can be defined with an exclamation point (!) included
in its definition so that the number being assigned by the history buffer is also displayed
as part of normal terminal activity. This provides an easy way to reference previous
commands and re-execute previous events. To set the prompt variable, use a command
similar to the following:

set prompt='\!%'

Note that the '!' character had to be escaped here even though it was already enclosed
between single-quote characters.

The C Shell (csh) 39

The logout Command
The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash Command
The rehash command causes the shell to recompute a hash table of command locations.
This is necessary if you add a command to a directory in the current shell's search
path and want the shell to find it. Otherwise, the hashing algorithm cannot locate the
command because it was not present in that directory when the hash table was originally
computed.

The repeat Command
The repeat command can be used to repeat a command several times. For example, to
make 5 copies of the file one in the file five, you could do

repeat 5 cat one » five

The set Command
The set command with no arguments shows the value of all currently defined variables.
For example:

[26] % set
argv 0
cwd /usr/xlf
history 15
home /usr/xlf
cohorts (bill john mike steve mary lars)
ignoreeof
noclobber
path
prompt
shell
status
term
[27] %

(. /usr/lib /bin /usr/bin)
[!] %
/bin/csh
o
hp

To set variables to specific values, use the set command with the appropriate variable
names and arguments. Each of the variables shown in the preceding example were set
initially by use of the set command.

40 The C Shell (csh)

(
\

Here is an example of how to set a variable equal to a list of string values or a set of
numeric values.

[22] % set cohorts = (bill john mike steve mary lars)
[23] % echo $#cohorts
6
[24] % echo $?cohorts
1
[25] % echo $cohorts[3]
keith
[26] % unset cohorts
[27] % echo $?cohorts
o
[28] % set nums = (1.234 2 -3.45)
[29] % echo $nums[3]
-3.45
[30] %

The variable expansion sequence $# returns the number of elements in the variable array.
The sequence $? returns a one (1) if the variable exists and a zero (0) if it does not.

The setenv Command
The setenv command is used to set environment variables whose values are global to the
shell and any process it creates. For example:

setenv TERM hp2627

sets the value of the environment variable TERM to hp2627. See environ(7) in the HP-UX
Reference Manaul.

The source Command
The source command can be used to force an update of the current shell environment
by causing it to read commands from a file instead of standard intput. For example:

source .cshrc

can be used after editing your .cshrc file to change any variables that you modified. Note
that commands executed from the specified file are not placed in the history buffer; only
"source command_file" is.

The C Shell (csh) 41

The time Command
The time command is used to determine how long execution of a specified command
requires. When time is followed by a command name argument, the command is executed,
then time displays user, system, and execution time for the command. Hno argument
is used with the time command, equivalent information about the current shell and any
child processes it has created is printed instead. For example:

% time cp /etc/rc/usr/login_name/file_name
O.Ou 0.1s 0:01 8% 2+1k 3+2io 1pf+Ow
% time wc /etc/rc/usr/login_name/file_name

52 178 1347 /etc/rc
52 178 1347 /usr/login_name/rc

104 356 2694 total
O.iu 0.1s 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the copy command (cp) used a negligible amount of user time (u) and
about 1/10th of a system second (s); the elapsed time was 1 second (0:01), there was an
average memory usage of 2k bytes of program space and 1k byte of data space over the
cpu time involved (2+11); the program did three disk reads and two disk writes (3+2io),
and took one page fault and was not swapped (lpf+Ow). The wordcount command (wc)
used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of
elapsed time. The percentage 13% indicates that over the period when the command
was active, it used an average of 13 percent of the available cpu cycles of the machine.

The unalias Command
The unalias command is used to remove aliases that have been assigned to the current
shell. For example, if the alias command was used to cause the change directory command
(cd) to print the working directory (pwd) each time it was called:

alias cd 'cd\l*;pwd'

then

unalias cd

cancels the assigned definition, and cd is again interpreted as the standard HP-UX com­
mand.

42 The C Shell (csh)

The unset Command
This command removes the values previously assigned to a variable by a set command.

The unsetenv Command
This command removes the specified variable(s) from the current environment.

The C Shell (csh) 43

Jobs
When one or more commands are typed together as a pipeline or as a sequence of
commands separated by semicolons, a single job is created by the shell consisting of
these commands together as a unit. Single commands wihout pipes or semicolons create
the simplest jobs. Usualy, every line typed to the shell creates a job. Some lines that
create jobs (one per line) are:

sort < data
Is -slsort -nlhead -5
mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is run
in the background, and C shell returns immediately with a prompt, ready for another
command. The job continues running to completion in the background while normal
jobs, called foreground jobs, continue to be read and executed by the shell one at a time.
Thus

du > usage "

runs the du program, which reports on the disk usage of your working directory (as well
as any directories below it), puts the output into the file usage and returns immediately
with a prompt for the next command without waiting for du to finish. The d·u program
continues executing in the background until it is finished, freeing you and the terminal
to execute more commands in the mean time. When a background job terminates, a
message is sent to the terminal by the shell just before the next prompt telling you that
the job is complete. In the following example, the du job finishes sometime during the
execution of the mail command and its completion is reported just before the prompt
t.hat follows completion of the mail job.

%du > usage "
[1] 503
% mail bill
How do you know when a background job is finished?
EDT
[1] - Done du > usage

If t.he job did not terminate normally, the Done message might say something else, like
Killed. If you want the terminations of background jobs to be reported at the time they
occur, possibly interrupting the output of other foreground jobs, you can set the notify ~
variable. In the previous example, this would mean that the Done message might have
rome right in the middle of the message to Bill.

44: The C Shell (csh)

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands
in the job as well as the working directory where the job was started. Each job in the
table is either running in the foreground with the shell waiting for it to terminate, or
running in the background. Only one job can be running in the foreground at one time,
but several jobs can run simultaneously in the background. Each job is assigned a job
number as it starts. The job number can be used later in later references to the job,
if needed. Upon completion, the job number is cancelled and can be assigned by the
system to another job.

When a job is started in the background using '&', its number, as well as the process
numbers of all its (top level) commands, is printed by the shell before prompting you for
another command. For example:

Is -s I sort -n > usage &
[2] 2034 2035
%

runs the is program with the -s option, pipes the resulting output into the sort program
with the -n option which placess its output in the file usage. The 8& at the end of the
line runs two pipelined programs as a background job. After starting the job, the shell
prints the job number in brackets ([2] in this case) followed by the process number of
each program included in the job. Then the shell then prompts for a new command as
soon as the background job is underway.

To check and see what jobs are currently being run, use the job command. For example:

[42] % jobs -1 (lowercase L, not 1)

provides a list of current jobs and their corresponding job numbers, the commands being
executed as part of each job, and the process IDs of each command. The "running" or
"stopped" status of each job is also listed.

The C Shell (csh) 45

C Shell Scripts
Shell scripts are files containing a series of commands that the shell executes as a group.
The files . login, .cshrc and .logout are all shell scripts.

When Not to Use a Script
While shell scripts are a valuable programming and operating aid, there are some situa­
tions where scripts are not useful. Many excellent commands and program libraries are
provided with HP-UX. Before writing a script, check your HP-UX Reference. A solution
to your problem may already exist.

Running a Script
A 0 shell command script may be executed by typing in:

where script_one is the name of the shell script file to execute, and arg_l arg_2 ... is
a list of optional arguments that may be required by the script. 0 shell places these
arguments in the shell variable array argvas argv[lj, argv[2j, etc. There is no argv[Oj. (0
shell uses $0 to refer to argv[Oj instead.) In this example, $0 equals scripLone. C shell
then begins to sequentially read the commands from scripL one.

If you want to be able to execute the script file directly without beginning the command
line with csh, edit the script file so that the first character is a # (hash mark) symbol.
The hash mark is also used for comment lines in the script.

N ext, use the chmod command to make the file executable. For example:

chrnod 755 script_one

makes script_one executable and readable for everyone and writable by you. For more
information on the chrnod command, see chmod(l) in the HP-UX Reference.

Now, when you type:

C shell automatically executes the shell script file script_one. If the first character in
the file is not a hash mark (#), the Bourne shell will attempts to execute the shell script
file instead.

46 The C Shell (csh)

Script Execution
C shell parses each shell script line into command arguments. Each distinct command
is identified, and variable substitution is performed. Keyed by the dollar sign character
($), this substitution replaces the names of variables by their values. Thus

echo $sum1

when placed in a command script, echoes the current value of the variable sum1 to the
shell script's standard output file. An error results if sum1 has no value assigned.

To discover if a variable has a value currently assigned to it, use the notation

$?sum1

The question mark (?) causes the expression to return a one (1) if the variable has a
currently assigned value and a zero (0) if not. This is the only available method for
accessing a variable that does not have an assigned value without generating an error.

To determine how many component variables have been assigned to a variable, use the
notation

$#sum1

The hash sign (#) notation returns the number of component variables assigned to the
specified variable. For example,

set sum1=(a b c)
echo $?sum1
1
echo $#sum1
3
unset sum1
echo $?sum1
o
echo $#sum1
Undefined variable: sum1
%

The C Shell (csh) 47

You can readily access the individual components of a variable that has several assigned
values. Thus

echo $swn1 [1]

echoes the first component variable of sum1. In the example above a is echoed. Similarly

$sum1 [$#swn1]

returns the component variable suml, which is "c".

$argv[1-2]

returns both a and b. Other notations useful in shell scripts include:

$<n>

(where <n> is a number), which is a shorthand equivalent of

$argv<n>

and returns the <n>th component variable of argv. Another is:

which is a shorthand for

$argv

One minor difference between $n and $swn1 [n] should be noted. $sum1 [n] will yield an
error if n is not in the range 1 through $#argv while '$n' will never yield an out-of-range
subscript error. This is for compatibility with the way other shells handled parameters.

One way to avoid this type of error is to use a subrange of the form n-. If there are less
than n component variables for the given variable, an empty vector is returned. A range
of the form m-n also returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is within range.

48 The C Shell (csh)

The form

$$

expands to the process number of the current shell. Each process is unique, so the process
number can be used to generate unique temporary file names.

The form

$<

is replaced by the next line of input read from the shell's standard input, instead of using
the next line in the script being processed. This is useful when writing interactive shell
scripts. For example,

echo yes or no?
set a=($<)

would write the prompt yes or no? to the shells standard output device and then read
the answer from the shells standard input device into the variable a.

Shell Script Expressions
Construction of useful shell scripts requires that it be possible to evaluate expressions
in the shell based on the current values of certain variables. In fact, all C language
arithmetic operations are available in the shell with the same precedence that they have
in C. In particular, the operations '==' and' !=' compare strings, while the operators
'&&' and 'I' implement the boolean and/or operations. The special operators '=-' and
'!-' are similar to '==' and' !=' except that the string on the right side can have pattern­
matching metacharacters (like *.? or []) and the test is whether the string on the left
matches the pattern on the right.

The shell also allows file inquiries of the form

-? filename

where? is replaced by a number of characters. For example the expression primitive

-r filename

The C Shell (csh) 49

tells whether the file filename exists and is readable. The expression is TR UE if filename
exists. Other primitives test for read, write and execute access to the file, whether it is
a directory or ordinary file, and test for non-zero length. See TEST(l) in your HP-UX
Reference for specifications of these primitives.

You can determine whether a command terminated normally by

{ command }

This notation returns a one (1) if the command terminated normally with exit status 0,
or a zero (0) if the command terminated abnormally or with a non-zero exit status. If
more detailed information about the execution status of a command is required, the com­
mand can be executed and the system variable $status examined in the next command.
Remember, however, that $status is set by every command, so it is very transient.

For a complete list of expression components available for shell scripts, see csh(l) in the
HP- UX Reference.

Shell Script Control Structures
Control structures allowed by C shell are taken from the C programming language.

Comments (#)
Comment your script using the hash mark (#) at the beginning of each comment line or
command line that is to be ignored during execution.

The foreach Command
The syntax for this statement is:

Command_1
Command_2

end

All of the commands between the foreach line and its matching end line are executed
for each value in loop_count_value_list. The variable index_variable is set to the
successive values of loop_count_ value_list.

50 The C Shell (csh)

Within this loop, the break command can be used to stop loop execution, while the con­
tinue command can be used to prematurely terminate one iteration and begin the next.
Upon completion of the for-each loop, the value of the iteration variable index_counter
is the same as it was during the last loop in loop_count_ value_list.

The if-then-endif Command
This command has the following syntax:

if (expression) then
Command_l
Command_2

end if

Keyword placement is not flexible here due to current shell implementation. That means
the control structure has to be exactly as shown. In other words, if and then must be
in the same line and endif must be in a separate line.

You can nest these statements using the keyword else. For example:

If (expression) then
Command_l
Command_2

else if expression) then
Command_A
Command_B

else
Command_X
Command_Y

end if

Note that only one endif is used to end the entire structure.

The C Shell (csh) 51

C shell has another form of the if statement:

if (expression) Command

can be written

if (expression) \
Command

If you only need to execute one command, the endif statement can be omitted. In the
second example, the non-printing newline character is escaped with the backslash (\) to
allow the command to appear below the expression. This is to improve visual clarity.

The while Command
The while structure is like that found in the C programming language. For example:

while (expression
Command_l
Command_2

end

The switch Command
The switch structure is like that found in the C programming language. For example:

switch (word)
case strl:

commands

breaksw
case strn:

commands

breaksw
default:

commands

breaksw
endsw

52 The C Shell (csh)

(
\

Note

C programmers should note that the switch command uses
breaksw to exit and not break. While and foreach loops allow
break.

The goto Command
C shell allows the goto statement with labels, just like C.

loop:
Command_l
Command_2

goto loop

Supplying Input to Commands
By default, commands run from shell scripts use the standard input of the shell which is
running the script. This is different from how other shells run under HP-UX. This allows
C shell shell scripts to fully participate in pipelines, but extra notation is required for
commands which use in-line data.

Thus we need a metanotation for supplying in-line data to commands in shell scripts.
For example, consider this script which runs the editor to delete leading blanks from the
lines in each argument file.

#deblank - - remove leading blanks
foreach i ($argv)
ed - $i « 'EOF'
1. $s/- [] */ /
w
q
'EOF'
end

The C Shell (csh) 53

The notation « J EOF J means that the standard input for the ed command is to come
from the text in the shell script file up to the next line consisting of exactly "EOF".
The fact that the 'EOF' is enclosed in single-quote characters causes the shell to perform
variable substitution on the intervening lines. In general, if any part of the word following
the '< <' which the shell uses to terminate the text to be given to the command is quoted
then these substitutions will not be performed. In this case since we used the form '1,$'
in our editor script we needed to insure that this '$' was not variable substituted. We
could also have insured this by preceding the '$' here with a '\', that is:

l,\$s?[]*11

but quoting the 'EOF' terminator is a more reliable way of achieving the same end.

Catching Interrupts
If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. To do this, start your program with

onintr label

where label is a program label marking the code that handles the interrupt condition.
If an interrupt is received by the shell, C shell will do an automatic

goto label

and execute the desired code. If we wish to exit your program with a non-zero status,
make

exit 1

a part of your interrupt handling code.

54 The C Shell (csh)

An Example Shell Script
This script backs up a list of C programs only if they have not been previously backed
up. The files are stored in your home directory in the subdirectory backup. It makes use
of the foreach statement to execute all of the commands between the foreach statement
and its matching end.

foreach i ($argv)
if ($i \!- *.c) continue
echo $i is not .c
continue
else
echo $i is a .c program
endif

echo check file -/backup/$i:t

is it a .c file?

if(\! -r -/backup/$i:t) then # is file part of backup?

echo $i:t not in backup ... not cp\'ed
continue
endif

echo compare two files $i and -/backup/$i:t
cmp -s $i -/backup/$i:t # has the file changed?

if ($status != 0) then

echo new backup of $i
cp $i -/backup/$i:t

endif
end

The C Shell (csh) 55

Notes

56 The C Shell (csh)

Index

a
accessing variables ... 47
alias ... 19
alias .. 39
alias substitution .. 20
alias, unaliasing an .. 21
alias use restrictions ... 21
al tering event arguments ... 15
$argv .. 29
arithmetic operators, C .. 34
assignment operators .. 35
$autologout .. 29

b
boolean noclobber ... 31
boolean notify .. 32
boolean operators ... 35
Bourne shell, running C shell from .. 3
built-in commands .. 39
built-in shell variables (C shell) ... 29

c
C arithmetic operators ... 34
C shell ... 1, 3
C shell commands ... 39
C shell metacharacters 23, 24, 25, 26, 27, 28
C shell scripts .. 46
C shell startup ... 6
C shell termination ... 9
catching interrupts .. 54
$cdpath .. 30
changing event arguments .. 15
command arguments, reusing ... 13
command customization .. 19

Index 57

command history buffer .. 10
command substitution ... 22
commands ... 7, 39
commands, custom .. 20
comments .. 50
control structures ... 50
creating custom commands ... 20
.cshrc file commands .. 7
.cshrc shell script file ... 7
custom commands ... 20
customizing commands ... 19
$cwd ... 30

e
echo ... 39
endif .. 51
environment variable:

setting in C shell ... 6
environment variables ... 6
evaluating file status ... 37
event arguments, modifying ... 15
event number ... 11
event text .. 12
events, re-executing 11
events, referencing ... 11
executing scripts .. 47
expansion metacharacters .. 27
expressions, shell script .. 49

f
file status evaluation ... 37
filename metacharacters .. 24
foreach .. 50

9
goto ... 53

58 Index

h
history ... 7, 39
history substitution facility ... 10
$home .. 30

.
I

if ... 51
if-then-endif statements .. 51
ignoreeof ... 5, 7, 30
input metacharacters .. 26
input to commands .. 53
interrupts, catching .. 54

job

jobs

.
J

.. 45
44

I
logical operators .. 35
login shell ... 3
.login shell script file .. 8
logout ... 40
logout command ... 5

m
metacharacters .. 23, 27
metacharacters, expansion .. 27
metacharacters, filename ... 24
metacharacters, input .. 26
metacharacters, output 26
metacharacters, quotation .. 25
metacharacters, substitution .. 27
metacharacters, syntactic ... 23
metacharacters, using as normal characters 28
modifying event arguments ... 15
modifying previous events .. 14

Index 59

n
noclobber ... 7, 31
nonstandard functions (aliases) ... 19
notify ... 32
numeric shell variables ... 34

o
operators, arithmetic .. 34
operators, assignment .. 35
operators, boolean ... 35
operators, logical .. 35
operators, postfix .. 36
output metacharacters ... 26

p
parent shell, return to ... 4
$path .. 32
postfix operators .. 36
previous events, modifying .. 14
process number acquisition ... 49
prompt .. 7
$prompt .. 32

q
quotation metacharacters ... 25

r
re-executing events .. 11
referencing events ... 11
rehash ... 40
rehash used to update path variables .. 32
relative location ... 12
repeat ... 40
restrictions on alias use .. 21
return to parent shell ... 4
reusing command arguments .. 13 ~

running C shell from Bourne shell .. 3 ~

running scripts .. 46

60 Index

5
savehist .. 7
script execution ... 47
scripts ... 46
set .. 40
setenv ... 41
setting environment variables .. 6
setting shell variables ... 6
$shell ... 33
shell script control structures ... 50
shell termination ... 4
shell variable, setting ... 6
shell variables .. 6
shell variables, numeric .. 34
source ... 41
startup, C shell .. 6
$status .. 33
subshell .. 39
substituting aliases ... " 20
substitution metacharacters .. 27
substitution of commands .. 22
switch ... 52
syntactic metacharacters ... 23

t
terminating C shell .. 4, 9
then ... 51
time ... 42

u
unalias .. 42
unaliasing an alias ... 21
unset .. 43
unsetenv ... 43

v
variables, accessing .. 47

w
while " 0 •••••••••••••••••••••••• " 52

Index 61

Notes

62 Index

Table of Contents

Introducing the Korn Shell
Korn Shell Versus Other Shells ... 2

Features From C Shell .. 2
Differences From Bourne Shell .. 2

Definition of Terms. .. 3
Conventions .. 5

U sing Other HP -UX Manuals. .. 6

Starting and Stopping the Shell
Invoking Ksh .. 9

Running Korn Shell From the Current Shell .. 9
Making Korn Shell Your Login Shell. .. 9

Setting Environment and Shell Variables 10
Setting Up .profile and .kshrc .. 10

Setting up .profile .. 11
Setting up .kshrc. .. 13
The set Command 14

Terminating Ksh ... 18
Using exit ... 19
Using logout .. 19

U sing Metacharacters
Using Pipes ... 21

Two-Way Pipes. .. 22
Command Separators and Terminators 23
File Name Completion. .. 25

Path Name Completion '" 26
File Name Substitution .. 27
Quoting '" " 28
Input and Output. .. 29
Other Metacharacters .. 30

Table of Contents

Aliasing: Abbreviating Commands
Setting an Alias ... 32

Thacking Aliases .. 33
Exporting Aliases .. 34
Default Aliases .. 34
Special Aliasing Features. .. 36

Unsetting an Alias .. 38

Substitution Capabilities
Tilde Substitution ... 39
Parameter Substitution. .. 42

Setting and Using Keyword/Named Parameters. .. 43
Setting and Using Positional Parameters 43
Parameter Substitution Conventions. .. 45

Command Substitution .. 48

Editing Command-lines
Accessing the History File. .. 52
Using In-line Editing Modes ... 53

U sing the fc Command ... 53
U sing vi Line Edit Mode. .. 56
Using emacs and gmacs Line Edit Mode 59

Basic Ksb Programming
Creating and Executing Shell Scripts .. 62
Commenting .. 63
Inputting and Outputting Data. .. 64

Reading in Data ... 64
Printing Out Data 65

Conditional Statements .. 68
Using the if Condition .. 68
U sing the test Command. .. 69
U sing the case Statement ... 70
U sing the select Statement .. 71
U sing the for Loop .. 72
Using the while/until loops .. 72
U sing the break Statement : 73
U sing the continue Statement 74

Arithmetic Evaluation Using let ... 75
Accessing Arrays. .. 77
Writing Functions '. .. 78

ii Table of Contents

Controlling Jobs
Creating Jobs ... 81
Monitoring Jobs ... 82
Suspending Jobs .. 83
Putting Jobs in Background/Foreground 84
Killing Jobs .. 86

Advanced Concepts and Commands
The ENV Variable '" 87
Two-way Pipes '" , 89
The whence Command ... 91
The set Command ... 93
The typeset Command ... 97
The trap command , '" 100
The ulimit command " " " 101

Command Reference '" .. '" 103
Index " ... 133

Table of Contents iii

iv Table of Contents

Introducing the Korn Shell 1
This tutorial describes the Korn Shell (ksh) provided on the HP 9000 Series 300 and
Series 800 computers. Korn Shell is the command interpreter (human interface) written
by David Korn at AT &Tl Bell Laboratories.

This tutorial addresses new users who are just learning shells, as well as advanced users
who are Bourne and C Shell experts. New users should read all of this tutorial. However,
at the beginning of each chapter advanced users will be directed to only the areas they
need to concentrate on to come up to speed quickly. Both classes of users should finish
reading this section.

Please use one of the reply cards at the back of this tutorial to tell us what was helpful,
what was not, and why. Feel free to comment on depth, technical accuracy, organization,
and style. Your comments are appreciated.

1 Hewlett-Packard would like to acknowledge the following individuals and institutions in the development
of Korn Shell: AT&T and David G. Korn.

Introducing the Korn Shell 1

Korn Shell Versus Other Shells
This program (shell) is a command interpreter and programming language that executes
commands entered from a terminal or file. It is based on the Bourne Shell and C Shell.
KO,fn Shell maintains Bourne Shell's superior programming environment while adding
the unique command interpreting features of C Shell. It is 95% upward compatible with
the Bourne Shell and most programs written under the Bourne Shell will run under Korn
Shell without change. In developing Korn Shell some of the features of the C Shell were
also incorporated. This blend creates a powerful shell with improved human interface
features and faster execution performance.

Features From C Shell
The main features of the C Shell that are built into the Korn shell are:

• history buffer and history substitution capabilities

• file name completion

• command aliasing mechanisms

• arrays

• integer arithmetic evaluation

• tilde substitution

• job control features

Differences From Bourne Shell
The Korn Shell is a superset of the Bourne Shell and contains most of the Bourne Shell
constructs plus features from the C Shell. However, there are some features that Korn
Shell implements above and beyond both the C Shell and Bourne shell. They are:

• the select and function statements

• new built-in commands such as time and whence

• several new shell variables such as REPLY, PPID, EDITOR, and OLDPWD

• extended vi and emacs in-line editing commands

• increased capabilities for parameter substitution

? T nt.roollcing the Korn Shell

Definition of Terms
In learning this shell certain terminology is used to describe commands and arguments.
Be familiar with the following terms and their definitions so you understand later de­
scriptions.

metacharacter

blank

word or command

options or flags

argument and parameter

simple-command or
command-line

one of the following characters:
; & () I < > new-line space tab

a tab or space often referred to as whitespace.

a sequence of characters separated by one or more non­
quoted metacharacters or whitespace. For example:

date
The five types of command words the shell understands
are: reserved word (such as for), built-in (such as pwd),
alias (such as type), function, and others (such as a
path name).

a letter preceded by a dash (-) and separated from the
command name by a blank. For example:

-v

the words following a command or program name used
to pass information to that command or program. In
this example filei is the parameter and lp is the com­
mand:

lp file1
A parameter is also a shell variable set in the environ­
ment, such as PATH.

a sequence of blank separated words which may be in­
clude options and parameters. The first word specifies
the name of the command to be executed. For example:

cat -v filename

Introducing the Korn Shell 3

identifier or name

pipeline

list

4 Introducing the Korn Shell

a sequence of letters, digits, or underscores starting
with a letter or underscore. Identifiers are used as
names for aliases, functions, and named parameters.
For example:

new_program_1

a sequence of one or more commands separated by the
metacharacter I which is called a pipe. For example:

Is I file_list I print_script

a sequence of one or more pipelines separated by;, &,
&&, or II, and optionally terminated by;, &, or 1&. For
example:

(sort -0 temp; pr temp I Ipr; rm temp)&

Conventions
The following conventions are used throughout this tutorial.

• Italics indicate manual names and references to manual pages in the HP- UX Ref­
erence. For example, "see date{l} in the HP-UX Reference". Italics are also used
for symbolic items either typed by the user or displayed by the system as discussed
below under computer font.

• Boldface is used when a word is first defined and for general emphasis.

• Computer font indicates a literal typed to the system or displayed by the system.
A typical example is:

findstrprog.c > prog.str

Note, when a command or file name is a literal, it is shown in computer font and
not italics. However, if the command or file name is symbolic (but not literal), it
is shown in italics as the following example illustrates.

alias new_command=command_line

In this case you would type in your own command_line and new_command. Com­
puter font also indicates file names, HP-UX commands, system calls, subroutines,
and path names.

• In a syntax statement, brackets, [], designate optional parameters; ellipses (dots),
... , designate optional repetition of the word directly preceding them.

• Environment variables such as EDITOR or PATH are represented in upper-case
characters, as required by HP-UX conventions.

• A keycap such as I Return I designates the pressing of that key. If the keycaps are
connected by a hypen, press the first key down and hold it while pressing the second
key. For example:

I CTRL ~[li]

• Unless otherwise stated, all references such as "see the env{1} entry for more details"
refer to entries in the HP- UX Reference manual. If you cannot find an entry where
you expect it to be, use the HP-UX Reference manual's "Permuted Index".

Introducing the Korn Shell 5

Using Other ,HP-UX Manuals
This tutorial may be used with other HP-UX documentation. References to these man­
uals are included, where appropriate, in the text.

• The HP- UX Reference contains the syntactic and semantic details of all commands
and application programs, system calls, subroutines, special files, file formats, mis­
cellaneous facilities, and maintenance procedures available on the HP-UX Operating
System.

• A Beginner's Guide to HP-UX teaches new users how to login to HP-UX, work
with files and the directory structure, and send and receive mail.

• A Beginner's Guide to Using Shells teaches new users the basic elements of what a
shell is, how to use it, and what shells are available on HP-UX.

• A Beginner's Guide to Text Editing teaches new users how to create, edit, and save
files using the vi editor.

• The HP- UX Documentation Roadmap provides part numbers for the HP 9000 Series
200, 300, and 500 manuals.

• The Documentation Guide provides part numbers for the Series 800 manuals.

6 Introducing the Korn Shell

Starting and Stopping the Shell 2
New users should read this whole chapter; advanced users should jump to the section on
"Setting Up .profile and .kshrc".

The kernel is the HP-UX operating system. A shell is a program that the kernel runs so
each user can interact with the computer using commands in the utilities area. See the
figure below.

Figure 1-1. System Structure

Starting and Stopping the Shell 7

When you log into a system a special program called login determines if your user
name and password are correct by checking the file / etc/passwd. The / etc/passwd file
is a special system file that contains a listing of all the valid users and passwords on a
system. See your System Administrator for more details.

Once you type in the correct user and password the login program gives you (spawns)
a shell (usually the Bourne Shell). HP-UX operating systems are shipped with Bourne
Shell as the default shell. There are three other shells, the Korn Shell, the C Shell, and
PAM. When you communicate with your shell you type commands at the prompt. The
default prompt for the Korn Shell and the Bourne Shell is a dollar sign ($). The default
prompt for the C Shell is % • A prompt tells you the shell is ready to accept typed input
from the terminal. After you type in a command-line the shell interprets and executes
it. For example:

$ echo Welcome to Korn Shell
Welcome to Korn Shell
$

The command is echo which outputs to the screen the line directly following "Welcome
to Korn Shell". When the shell executes the echo command, it spawns a process for the
echo command and assigns it a process id (process identifier).

The software for each shell is shipped with HP-UX and resides on your HP-UX file
system:

• The Korn Shell software resides under the directory /bin in the file ksh.

• Likewise C Shell resides in /bin/ csh.

• Bourne Shell resides in /bin/ sh.

• PAM resides in /bin/pam.

The rest of this tutorial deals mainly with the Korn Shell. If you do not understand
the login process or the file directory system, read these topics in A Beginner's Guide to
HP- UX. If you do not understand the shell structure or interaction with the shell, read
A Beginner's Guide to Using Shells.

8 Starting and Stopping the Shell

Invoking Ksh
Normally, when you log into an HP-UX system, a default shell (Bourne) is spawned for
you. To determine if sh is your shell, type:

$ echo $SHELL
/bin/sh

The echo command prints out the contents or value (specified by using $ before a pa­
rameter) of the SHELL variable. SHELL is set to the name of the current shell at login.

The rest of this section explains how to change over to the Korn Shell on a temporary
or permanent basis.

Running Korn Shell From the Current Shell
If you would like to experiment with the shell until you gain expertise, invoke it by simply
typing:

/bin/ksh

In this manner, you are starting another shell on top of your current shell, sometimes
referred to as a subshell. If you run this shell from the Bourne Shell the prompt does not
change. However, if you are in the C Shell when you invoke the Korn Shell, the prompt
changes from % to $, unless these prompts have been redefined. It is possible to redefine
prompts; see PSI in the "Shell Parameters" table.

If you exit the shell, by typing:

$ exit

you must reinvoke it each time with the ksh command. Other methods of exiting the
shell are discussed in the "Terminating Ksh" section.

Making Korn Shell Your Login Shell
To make ksh your permanent or default login shell, type:

chsh login_ name /bin/ksh

where login_name is your user name. The chsh command (change shell) changes your
default login shell set in the / etc/passwd file to ksh. Once you have changed shells, invoke
the ksh shell by logging out and then back in.

From now on, whenever you login, ksh is your shell.

Starting and Stopping the Shell 9

Setting Environment and Shell Variables
Environment variables and shell variables (parameters) are set in the . profile and . kshre
files. These variables create part of the environment in which you work, such as your
prompt string ($). Environment variables are shell parameters that are global and used
by your shell to create a special environment when you log into or spawn a subshell.
This environment is active until you logoff. These global (or exported) environment
variables can be seen and used by subshells and other subprocesses. Shell variables are
shell parameters that are local to your login shell and not passed on to any subprocesses
or subshells.

Setting Up .profile and .kshrc
When the Korn Shell is invoked it looks for these following files and executes them, if
they exist:

jete/profile

. profile

.kshrc

This default system file is executed by the login program and
sets up default environment variables.

If Korn Shell is your login shell, and this file exists in your
home directory, it is executed next at login.

When you invoke ksh, it looks for a shell variable called ENV
which is usually set in your. profile. ENV is evaluated and if
it is set to an existing file, that file is executed. By convention,
ENV is usually set to . kshre but may be set to any file name.

These files provide the means for customizing the shell environment to fit your needs.

10 Starting and Stopping the Shell

Setting up .profile
The shell script, . profile, sets your environment by defining commands, variables, and
parameters at login. These values are global and available to subs hells and subprocesses.
This is an example of a possible . profile:

PATH=/usr/bin:/usr/lib:/bin:/users/tricia/bin: .
MAIL=/usr/mail/tricia
HOME=/users/tricia
EDITOR=/usr/bin/vi
ENV='${START[<_$- 1) + <_ = 0) - <_$- != _${-%%*i*})]}'
START=-/.kshrc
TERM=hp2392
export ENV START EDITOR TERM PATH MAIL HOME

stty sane

if mail -e
then

echo lIyou have mail. II

fi

PS1="$ II

Each line above shows an example of Korn Shell variables:

• PATH defines the search path for the shell to look up commands (executable pro­
grams or utilities) in the system file structure. Each directory in the path is sep­
arated with a colon (:). When a command is executed, the shell looks in each of
the directories specified on the line to find the command. When you type ksh, the
shell checks /usr/bin first and then /usr/lib and so on down the PATH line until
it finds the directory where the ksh program resides. In this instance, ksh is found
in the third directory, /bin.

• MAIL names the file in which your mail is delivered. The later if statement checks
whether new mail has arrived and notifies you.

• HOME sets your home directory to the directory where the shell places you when
you execute the cd (change directory) command with no options. This is usually
set automatically by the shell at login.

• EDITOR sets your default editor to the vi editor. Then whenever you need to
perform in-line command changes, you immediately enter vi mode. If you have
never used the vi editor, see A Beginner's Guide to Text Editing.

Starting and Stopping the Shell 11

• ENV is normally assigned to be .kshrc, to be executed whenever a shell is spawned.
For example:

ENV=-/.kshrc

In this example ENV is directly set to . kshrc in your home directory. The - spec­
ifies your HOME directory (see "Tilde Substitution" section in the "Substitution
Capabilities" chapter for more details). If your .kshrc is very long and involved,
spawning a new shell can take awhile. The ENV line displayed in the crt screen
above, although complicated, causes the . kshrc to not be executed, unless you are
in an interactive shell, and therefore quickly spawns a new shell. (For a complete
explanation of this command line, the START command line, and interactive shells,
see the "Advanced Concepts and Commands" chapter.)

• TERM sets the terminal type for which output should be prepared.

• The export command puts the values of these parameters in the environment (makes
them global) so that subprocesses have access to them.

• The stty command sets terminal characteristics to the default (Le., sane) values.

This is an example of just one . profile. When you create your own . profile using
an editor, you can set many different shell variables depending on how you want the
environment set up. See the "Shell Parameters" table later in this chapter for a listing
of possible variables.

12 Starting and Stopping the Shell

Setting up .kshrc
This shell script sets values, such as path names and aliases. These values can then be
accessed by shell subprocesses. A . kshrc may look like:

19=/abbreviation/of/long/path/name
alias who='who I sort '
set -0 monitor
trap "$HOME/.logout" 0

where the command-line:

cd $lg

l
places you in the /abbreviation/of/long/path/name directory. The variable 19 contains
the long path name and the cd moves you to that directory. Again, the dollar sign ($)
placed before a parameter designates using the value of 19.

The alias command is explained in the "Aliasing: Abbreviating Commands" chapter
and the set command is explained in the "Advanced Concepts and Commands" chapter.
The trap command-line is explained in the "Terminating Ksh" section. This just gives
you an example of the types of things to put in a . kshrc file.

Once again, you can create your own .kshrc using an editor, but you must set the ENV
variable to it in . profile or the system does not read it when invoking a new shell.

Starting and Stopping the Shell 13

The set Command
There is a command that displays current environment variables, the set command. If
you type set, a listing similar to this is displayed:

$ set
EDITOR=/usr/bin/vi
ENV='${START[(_$- 1) + (_ = 0) - (_$- != _${-%%*i*})]},
START=-/.kshrc
FCEDIT=/bin/ed
OLDPWD=/usr/bin
HOME=/users/tricia
IFS=
HISTFILE=.sh_history
HISTSIZE=30
LOGNAME=tricia
MAIL=/usr/mail/tricia
MAILCHECK=600
PATH=/bin:/usr/lib:/usr/bin:/users/tricia/bin: .
PPID=29590
PS1=$
PS2=>
PS3=#?
PWD=/users/tricia/ksht/man
RANDOM=15314
SECONDS=O
SHELL=/bin/ksh
START[O]=/users/tricia/.kshrc
TERM=hp2392
TMOUT=O
TZ=MST7MDT
VISUAL=vi

For an explanation of each of these, see the "Shell Parameters" table. At this time it
is not important that you understand each of these shell variables completely. These
definitions will become clearer as you become familiar with the Korn Shell.

14 Starting and Stopping the Shell

Parameter

?

$

CDPATH

COLUMNS

EDITOR

ENV

FCEDIT

IFS

HISTFILE

HISTSIZE

HOME

Table 2-1. Shell Parameters

Definition

Represents the number, in decimal, of positional parameters sup­
plied to a shell script.

Represents the flags or options supplied to the shell, on invocation,
or by other commands.

Represents the decimal value (exit value) returned by the last
executed command.

Represents the process number of this shell.

Represents the process number of the last background process
invoked.

Represents the last argument of the previous command-line.

The search path for the cd command.

This parameter, when set, defines the width of the edit window
for the shell edit modes (vi, emacs, gmacs) and for printing lists
from the select command.

When the VISUAL parameter is not set and the value of this
parameter ends in emacs, gmacs, or vi, then the corresponding set
-0 option is turned on. (See the set command in the "Advanced
Concepts and Commands" chapter.)

If this parameter is set to a script's name, when a shell is invoked
the script is executed by the new shell prior to going interactive.

Specifies the name of the editor to use when the fc command is
executed and the fc command does not designate an editor.

Internal Field Separators (i.e., space, tab, and new-line), which
are used to separate command words during command or param­
eter substitution and when using the read command.

This is set to the path name of the file to be used to store· the
command history. The default is . sh_history.

This is set to the number of saved commands accessible by the
shell. The default size is 128.

The default for the cd command, which is your home directory.

Starting and Stopping the Shell 15

Parameter

LINES

MAIL

MAILCHECK

MAILPATH

PATH

PPID

PS1

PS2

PS3

PWD

OLDPWD

Table 2-1. Shell Parameters (continued)

Definition

When this is set to a value, that value determines the column
length for printing lists created by the select command.

If this parameter is set to the name of a mail file and the MAIL­
PATH parameter is not set, then the shell tells you mail has ar­
rived in the named file.

This parameter specifies how often (in seconds) the shell checks
for the arrival of new mail. The default is 600 seconds.

The colon (:) separated search path for maiLfiles. The shell
informs you of mail arriving in any file in the list within the
time specified by MAILCHECK. If you follow each maiLfile in
the search path with a question mark (?), the message immedi­
ately following the ? appears on the screen instead of the default
message.

The search path for commands.

The process number of the parent of the current shell. You can
type in ps -f to see the number under the PPID heading and the
PID which is the current process number.

Defines the primary prompt string for a shell. The default is
II $ II. If you use the ! character the primary prompt string in­
cludes the current command's number (i.e., II! $ II).

Secondary prompt string, by default II> II used on command or
script continuation lines.

The prompt string used with the select command, by default
II#? II

The present working directory set by the last cd command.

The previous working directory set by the last cd command.

16 Starting and Stopping the Shell

Parameter

RANDOM

REPLY

SECONDS

SHELL

TMOUT

VISUAL

Table 2-1. Shell Parameters (continued)

Definition

This parameter generates a random integer when referenced.

This parameter is set by the select and read commands when no
arguments are supplied on the select command line. Instead, the
PS3 prompt is printed and the lines read from standard input are
placed in REPLY. (See the select command in the "Advanced
Concepts and Commands" chapter.)

Returns the number of seconds since the shell was invoked.

The path name where the shell itself lives. This is also the shell
used when starting a subshell. If an r is specified in the base­
name (i.e., /bin/rksh), then the shell is restricted (has fewer
capabilities) .

If this parameter is set to a value greater than zero and you do not
enter another command or I Return I within that number of seconds,
the shell terminates.

When this variable is set and ends in emacs, gmacs, or vi, then the
corresponding set -0 option is turned on. (See the set command
in the "Advanced Concepts and Commands" chapter.)

Some of these variables are set automatically at login. They are:
#, -, ?, $, -, HOME, PPID, PWD, OLDPWD, RANDOM, REPLY, SHELL, and SEC­
ONDS.

Others are also given default values: PATH, PSI, PS2, PS3, MAILCHECK, TIMEOUT,
and IFS. Again, use the set command to check these values before editing or creating a
. profile that changes them.

Starting and Stopping the Shell 17

Terminating Ksh
There are several ways to exit the shell depending on the current value of the Boolean
flag ignoreeof. The value of ignoreeof is assigned with the set command (i.e., by typing
set -0 ignoreeof). (See the "Advanced Concepts and Commands" chapter for details).
To determine the current value of ignoreeof, type:

set -0

This lists all currently defined variables and their values. For example:

$ set -0

Current option settings
allexport off
bgnice off
emacs off
errexit off
gmacs off
ignoreeof on <====ignoreeof is set
interactive off
keyword off
markdirs off
monitor off
no exec off
noglob off
nounset off
protected off
restricted off
trackall on
verbose off
vi off
viraw off
xtrace off

If ignoreeof is set to off, it is not set.

18 Starting and Stopping the Shell

Using exit
Normally, you logout using exit or I CTRL ~[[]. If you try to logout using a I CTRL ~[[]
with ignoreeof set, the system responds:

Use 'exit' to logout.

Then, when you type:

$ exit

you are logged out. If ignoreeof is not set, use I CTRL ~[[] or exit to logout.

Using logout
If you want some special action to occur when you logout, use the trap command. The
trap captures a signal and then executes a defined command-line.

If a file named $HaME/ . logout (a file named . logout in your home directory) exists, and
the following trap statement is in your .profile, . logout is executed when you logout.

Add this to . profile:

trap "$HaME/.logout" 0

This trap statement causes the shell to execute the . logout script in your HOME direc­
tory when it successfully traps a 0 signal. The 0 signal is sent on exiting your current
shell. $HaME evaluates to the value of HOME.

For details on the trap command see the "Advanced Concepts and Commands" chapter.

Your . logout script might contain things like an echoed message:

echo "Have a Nice Day".
clear

or a clear statement that clears the terminal's screen.

Starting and Stopping the Shell 19

Notes

(

20 Starting and Stopping the Shell

Using Metacharacters 3
Certain characters or combination of characters in Korn Shell have special syntatic and
semantic meanings. These characters are called metacharacters. Metacharacters affect
the operation of the Korn Shell when read by the shell and at no other time.

New users should read this chapter completely; experienced users need only read the
"Two-way Pipes" section for the new metacharacter 1&.

Using Pipes
Pipes are connectors that join two or more programs or commands together. A pipe
allows you to take the output of one program and use it as input to another program
without the use of intermediate files.

The metacharacter symbol for the pipe is the vertical bar (I). For example, suppose you
want to list all the current users logged into the system and then alphabetically sort
them and print them out. The command line reads:

who I sort

In this example, a list of people logged into a system is produced by the who command.
That output is sent as input into the sort command which outputs the sorted list of
people on the system to the display. For example:

$ who
michael tty02 Oct 4 14:49
dave tty03 Oct 4 14:49
tricia ttyOO Oct 4 13:34
stefan tty04 Oct 4 14:49
keith tty05 Oct 4 14:49
$ who sort
dave tty03 Oct 4 14:49
keith tty05 Oct 4 14:49
michael tty02 Oct 4 14:49
stefan tty04 Oct 4 14:49
tricia tty01 Oct 4 13:34

Using Metacharacters 21

Two-Way Pipes
Two-way pipes or coprocessing can be established between a parent and child process.
The parent process is the original shell and the child process (or subprocess) is the
command or shell spawned from the parent shell. Typing ps -f displays the parent
process id (PPID) and the child process id (PID).

The standard input and output of the spawned command can be written to and read
from the parent shell in a two-way pipe. A two-way pipe is created by placing the 1&
metacharacter after the command to be executed. See the "Advanced Concepts and
Commands" chapter for details on two-way pipes.

22 Using Metacharacters

Command Separators and Terminators
Certain metacharacters are used by the shell to either separate or terminate commands
in a line as well as perform special functions to the shell. For example:

date; Is 1£

where ; is the separator and 1£ is the terminator. The date command prints out the
current date and the Is command lists the files in the current directory.

Following is a table, "Separating and Terminating Metacharacters", that describes each
of the metacharacters used by the Korn Shell. For each metacharacter, there is an
example command-line followed by that example's output (when possible). Some output
is based on the files existing in the current directory; so your output will not match
exactly the output shown in the examples unless you create the files.

The examples in this chapter use the following commands:

Command Definition

cat concatenates, copies or prints files

date prints the current date

echo prints the arguments that follow the command

11 prints a long listing of detailed information about files

Ip sends files to the printer

Is lists the files in the current directory

mail reads your mail or sends mail to another user

more prints a file out for viewing on the display

ps lists your current processes

who lists the people logged into the system

whoami prints the current user's name

U sing Metacharacters 23

Table 3-1. Separating and Terminating Metacharacters

Meta-
character Example

; $ whoami; Is
stefan
file1
file2
file3

$ lp prog.c &
[1] 4094
$ echo hello
hello
request id is lp-725

Description

Separates commands that are executed in sequence.
In this example, Is is executed only after the date
command completes.

Indicates that the command is to be executed as a
process in the background. That means you can
run other commands immediately on the terminal
while the previous command runs invisibly to you
in the background. This sends the file prog. c to
the line printer to be printed while freeing up your
terminal for other work.

&& $ Is . kshrc && echo yes Separate commands such that the second command
. kshrc only runs if the first one runs successfully. In this
yes example, if the Is fails to find the file then the echo

is not executed.

$ mail II lsf
No mail.
file1
file2
file3

24 U sing Metacharacters

Separate commands such that the second command
only runs if the first one fails. In this example, the
lsf lists the files only if the mail command fails.

File Name Completion
Korn Shell implements the C Shell feature, file name completion. File name completion
allows you to type a unique subset of letters or abbreviation for a file name or path name
followed by / ESC 1 / ESC I, and the system matches and completes the name. For example,
suppose you have a file name data_structure_3 for which you want a long listing, type:

$ 11 datal ESC I ESC 1

The system responds with:

-rw-rw-rw 1 tricia users 56 Sep 14 03:59 data_structure_3

It actually expands the name and then executes the command upon receiving a / Return I.

If you have several files starting with data_structure_, such as data_structure_1,
data_structure_2, and data_structure_3, the name expands up to the point of change.
In this instance the change occurs as 1, 2, and 3, so the file name expands to just
data_structure_. Now, type in 1, 2, or 3 to complete the file name. For example:

$ Is datal ESC I ESC I

expands to:

If at this point you might want to see all the possible expansions; type:

$ Is data_structure_IEScl=

where I ESC 1= lists:

1) data_structure_1
2) data_structure_2
3) data_structure_3
$ Is data_structure ~I -a~I--~I-R-et-u-rn~1

data_structure_1
$

U sing Metacharacters 25

This leaves you at the end of the line so you can complete the file name. To do so, type
~ and the appropriate letter or letters (OJ in the above example) to complete the
file name followed by a I Return I. This special mode for adding text to a command-line is
explained in the "Editing Command-lines" chapter.

Another expansion character is *. The star expands the current word to the entire list
of file names that match. For example:

$ Is datal ESC 1*

expands to:

Another expansion feature allows you to interactively change your shell parameters, such
as PATH. For example:

$ PATH=$PATHl ESC I ESC 1

expands to:

$ PATH=/usr/bin:/usr/lib:/bin:/users/tricia/bin

You can now edit and change the value of your PATH variable using the techniques
described in the "Editing Command-lines" chapter.

Path Name Completion
This expansion process completes directory paths in a similar manner, such that:

$ 11 /users/tl ESC I ESC 1

expands to:

$ 11 /users/tricia

This only works if you provide a unique identifier after the /.

26 U sing Metacharacters

File Name Substitution
File name substitution is a quick and easy way to match file names without typing the
full name. File name metacharacters represent character patterns which are replaced
with a matching file name pattern on execution of the command. Suppose you wanted
to long list the file data_structure_3 again; type:

$ 11 data_structure_3

or use a metacharacter and type:

$ 11 data_*

which matches any character or string of characters starting with data_. If there is
more than one file starting with data_ 1 they are all listed. See the table "File Name
Substitution Metacharacters" for the metacharacters used in pattern matching.

Table 3-2. File Name Substitution Metacharacters

Meta-
character Example

? $ Is prog.?
prog.a
prog.c
prog.o

*

[...]

$ Is p*.*
p.o
pattern.mat
prog.a
prog.c
prog.a
prz.2

$ Is [a-z]rog. [co]
arog.o
crog.c
prog.a
prog.c
prog.o
zrog.c
$ Is [a.z]rog.o
arog.o
zrog.o

Description

Matches any single character. The Is command lists
all files starting with prog. and ending with any
other letter, such as prog. c and prog. o.

Matches any string of characters including the null
string. The Is command lists all files starting with
a p and having a . anywhere in the middle or at the
end.

Matches any of the characters enclosed in the brack­
ets. A pair of characters separated by a minus
matches anyone character in the range specified by
the two letters in the alphabet. In this example, Is
lists any file starting with a lower-case letter of the
alphabet, followed by rog., and ending with either
c or o. In the second Is, the comma performs the
same way as the [co] does without a comma.

Using Metacharacters 27

Quoting
Each of the metacharacters discussed above can be quoted to make it stand for itself and
not be interpreted by the shell as a special character. The table "Quoting Metacharac­
ters" covers these metacharacters.

Meta-
character

\

,

"

Table 3-3. Quoting Metacharacters

Example

$ Is prog.*
prog.*

$ echo '$PWD'
$PWD
$ echo '\$PWD'
\$PWD

$ echo "$PWD"
/users/tricia
$ echo "\$PWD"
$PWD

$ echo I am: 'whoami'
I am: tricia

Description

The backslash \ cancels the special meaning of the
following metacharacter. The backslash forces Is
to list the file actually named prog. *, not all files
starting with prog ..

The single quote (') quotes everything enclosed in
the two single quotes except the single quote itself.

The double quotes allow parameter and command
substitution. The \, inside double quotes, quotes
the characters \.' ", and $ rather than the shell
evaluating them. This example echos the path name
contained in the variable PWD. When the \ is placed
in front of the $, the echo cannot evaluate PWD.

The back quote causes the enclosed command-line
to insert its output at that point on the current
command-line.

28 Using Metacharacters

Input and Output
Standard input (stdin) is the place from which a program reads its input (the default
is the keyboard). Standard output (stdout) is the place to which a program writes its
output (the default is the terminal display). Standard error (stderr) is the place where
the system writes error messages (the default is the terminal display).

When a command is executed, its input, output, and error can be redirected using special
redirection symbols. When you redirect input or output using redirection symbols, you
place it somewhere other then the default areas, such as a file. To redirect input from a
file rather than the keyboard, use the < symbol. To redirect output to a file rather than
the display, use the> symbol. See the table "Input/Output Metacharacters".

Meta-
character

< word

> word

» word

« [-]

<&digit
>&digit

<&­
>&-

word

Table 3-4. Input/Output Metacharacters

Example

$ mail joe < letter

$ ps > processes

$ date » processes

$ cat « eof
> write
> until
> eof
write
until

$ echo output 1>&2
output

Description

This symbol redirects the contents of letter to input
to mail.

This symbol redirects output from ps into the pro­
cesses file deleting any current contents.

This symbol redirects the output from date to the end
of the processes file, unless it does not exist; then it
creates it. (It appends output to the file.)

Reads the shell input (typed after the cat command­
line at the PS2 prompts, » up to a line which is iden­
tical to word (eof) . Word is not subjected to file name
or parameter substitution. The resulting document is
commonly called a here document. If - is appended
to « then all leading tabs are stripped from word and
from the resulting document.

This input redirection symbol uses the file descrip­
tor specified by the descriptor digit. Most programs
have standard input as 0 (stdin), standard output as
1 (stdout), and standard error as 2 (stderr). The
more commonly used redirection is >&digit. In the ex­
ample, standard output (1) is redirected to standard
error (2). The 1 is optional in this example.

$ echo no output >&- This closes standard input or output, respectively.

U sing Metacharacters 29

The order in which you place redirections is significant. The shell evaluates each redirec­
tion in terms of the file descriptor associated with each file at the time of the evaluation.
For example:

2> fname 1>&2

This command-line first associates the file descriptor 2 (stderr) with fname. This dis­
associates 2 from standard error so that output is sent to the file fname rather than
the display. It then associates file descriptor 1 (stdout) with the file associated with file
descriptor 2 (which is fname). The echo command normally prints to stdout, but now
stdout points to stderr which has been redirected to a file. This means both standard
output and standard error are put in fname. For example:

r $ echo hello 2>fname 1>&2
$ more fname
hello

Other Metacharacters
A few other metacharacters to be aware of are: #, -, and %.

• Shell comments are indicated by the # symbol when it is the first character in a
word followed by other words until a new-line (e.g., # This is a comment). This is
explained in the "Basic Ksh Programming" chapter.

• The tilde substitution symbol - which allows path name substitution is explained
in the "Substitution Capabilities" chapter.

• The % symbol which allows job number substitution is explained in the "Substitution
Capabilities" and "Controlling Jobs" chapters.

30 U sing Metacharacters

Aliasing: Abbreviating Commands 4
Aliasing is a method by which you can abbreviate long command lines, create new
commands or cause standard commands to perform differently by replacing the original
command-line with a new command called an alias. The new command can be a letter
or short word when typed, but will expand to the old command-line when used. Alias­
ing can provide easier typing by both abbreviating long command lines and automatic
replacement of long path names.

Both new users and advanced users should read this chapter.

Aliasing: Abbreviating Commands 31

Setting an Alias
U sing aliases, you can define commands to shorten long command-lines to simple letters
or redefine commands that are pre-defined by the system. To create an alias, use this
syntax:

alias [-tx] new_word=' old_command_line'

Anytime alias is followed by a word, the shell assumes you are defining a new alias or
asking for the value of a defined alias. The new_ word parameter specifies the new alias's
name and the old_command_line specifies any command or long command-line. The -x

option exports aliases and -t tracks aliases. These options are discussed in the following
sections: "Tracking Aliases" and "Exporting Aliases" .

For example:

$ alias who='who I sort'

redefines the original who command to the line enclosed in single quotes. Now, when
you perform a who, you get a listing of all the users on the system sorted in alphabetical
order.

If you type the alias followed by who it returns the value of the new alias. For example:

$ alias who
who=who I sort

Suppose you want to use several aliased commands on one command-line. To do so, leave
a space as the last letter in the alias definition. If the last letter is a blank, the word
following the first alias is also checked for alias substitution. For example:

$ pwd
/tmp
$ alias hcd='echo hello; cd '
$ alias p=/users/stefan
$ hcd p
hello
$ pwd
/users/stefan

32 Aliasing: Abbreviating Commands

Since cd is followed by a space before the close quote, it can be followed by another alias,
which is p in this case.

Now the command-line hcd p prints hello and changes the directory. The command-line
actually executed is:

$ echo hello; cd /users/stefan

Tracking Aliases
Aliases can also be used to automatically set a command to its full path name the first
time it is executed after login. This reduces the execution time needed to search for
a command's location in the system directory on all later calls to the command. This
ability is called tracking.

The value of a tracked alias is defined the first time the alias command is executed and
the shell searches for the command's path.

Suppose you execute the Is command, yet, you never actually set an Is alias. The Is
command is automatically tracked. Now list your tracked aliases; type:

$ alias -t
ls=/bin/ls

The Is command shows up as a tracked alias without the need of setting it with the alias
command.

If you want every valid alias and trackable command name tracked, use the set -h
command interactively or in the file specified by your ENV variable. Not all commands
are trackable. Built-in commands, such as cd or pwd command are not trackable; although
they are aliasable. This option is turned on automatically for non-interactive shells. See
the "Advanced Concepts and Commands" chapter for details on the set command.

If the PATH variable is changed while you are in the shell, either interactively or by
rerunning your . profile or . kshrc, then the tracked alias definitions set are lost until
you execute each command again.

Aliasing: Abbreviating Commands 33

Exporting Aliases
Exporting aliases works in much the same way as exporting variables with export. When
you export an alias it becomes accessible to subshells such that when you execute a script
or new shell the alias remains defined. You export aliases interactively or from within
your .profile or .kshrc. To do so type, or add to the appropriate file:

alias -x who='who I sort'

Then, when you type alias or alias -x, who=who I sort is shown.

Default Aliases
The shell provides several default aliases that are always set by the shell. To see a listing
of those defaults, type:

$ alias

As long as this command is typed by itself, with nothing following, it provides a list of
the current shell aliases. Something similar to the following is returned:

$ alias
false=let 0
functions=typeset -f
hash=alias -t
history=fc -1
integer=typeset -i
nohup=nohup
r=fc -e -
true=:
type=whence -v

where false is the first word (the alias name) and let 0, on the other side of the = sign,
is the value of the alias. Then, when the alias name false is used, it is replaced by the
assigned value of the alias let 0. The let command is used for arithmetic evaluation and
is explained in the "Advanced Concepts and Commands" chapter. The aliases shown
are all the default aliases set by the Korn Shell upon invocation.

34 Aliasing: Abbreviating Commands

In this example, the first word of a command-line integer already has an alias defined
by the system (typeset -i, as shown in the previous example).

The function of the typeset command is to create a value and type for a parameter.
When you type:

r $ integer val=l
$ echo $val
1

typeset -i is substituted for integer and val is created and given the value 1. In this
example:

typeset -i val=l

is what is actually executed. When you echo the value of val using the $ metacharacter,
you see it was given the value 1. For more details on the typeset see the "Advanced
Concepts and Commands" chapter.

When you create an alias and then execute it, the shell adds it to the table of aliases.
After creating aliases, if you type alias, you see additions to the list:

hcd=echo hello; cd
false=let 0
functions=typeset -f
hash=alias -t
history=fc -1
integer=typeset -i
nohup=nohup
p=/users/stefan
r=fc -e -
true=:
type=whence -v
who=who I sort

<-

<-

<-

Aliasing: Abbreviating Commands 35

Special Aliasing Features
Several things you should keep in mind when defining aliases are:

• Unlike the C Shell, you can alias the alias command. For example,

$ alias a=alias

In this example, whenever you use a an alias is created such that

$ a who='who I sort'

will set up the who command as an alias.

• Reserved keywords, such as while, do, and done, cannot be changed by aliasing.

• The first character of an alias name can be any non-special printable character, but
the following characters must be alphanumeric,

$ alias ~w='who I sort> user'

Here ~w now checks who is on the system, sorts the names and places them into a
file called user.

• The replacement value on the right hand side of the aliasing = sign can contain any
valid shell script as well as metacharacters. Suppose a shell script, scrip, exists on
your system. scrip is a file containing a set of command-lines, which are executed
when you type the file name:

echo Users logged in are:
who I sort
echo I am cwhoami c

echo Current directory is cpwd c

These are the command-lines contained in the script. Now, you can set the alias:

$ alias i='scrip'
$ i
Users logged in are:
michael tty4
nick tty1
tricia tty2
I am tricia

Sep 24 09:41
Sep 24 09:41
Sep 24 14:19

Current directory is /users/tricia

Creating scripts is described in the "Basic Ksh Programming" chapter.

36 Aliasing: Abbreviating Commands

• Aliases only take effect after the alias command has been executed. If you try to
run a script or command-line which references an alias before the alias has been
executed on it, the script or command will not run.

$ i
ksh: i: not found
$ alias i='scrip'
$ i
Users logged in are:
michael tty4
nick tty1
tricia tty2
I am tricia

Sep 24 09:41
Sep 24 09:41
Sep 24 14: 19

Current directory is /users/tricia

Here trying to execute the i alias before setting it causes the system to not recognize
the new command. Once it is set, as in the second line, it runs and returns the
output.

Aliasing: Abbreviating Commands 37

Unsetting an Alias
There will be times that you set a common command such as who with a new definition
and then decide you need its old functionality back. To gain the old functionality, you
can unset aliases. Unsetting an alias is simple, just use the unalias command. In one of
the previous examples who was set to who; sort. To unset who, type:

unalias who

Then, type alias and notice from the listing that who has disappeared from the alias list
and now performs it original function. The results of running who before and then after
should look something like this depending on the directory you select:

$ who
michael tty04 Sep 24 09:41
nick tty01 Sep 24 09:41
tricia tty02 Sep 24 14:19
$ unalias who
$ who
nick ttyOl Sep 24 09:41
tricia tty02 Sep 24 14:19
michael tty04 Sep 24 09:41
$

The Korn Shells default aliases (i.e., false. integer. . ..) can be unset or redefined, as
well.

38 Aliasing: Abbreviating Commands

Substitution Capabilities 5
Earlier in the chapter "Using Metacharacters", file name substitution and completion is
discussed. In this chapter, the other substitution concepts: tilde, parameter, command,
and process, are discussed. Substitution methods are used to speed up command-line
typing and execution.

New users should read this chapter completely; advanced users should see "Tilde Sub­
stitution", "Parameter Substitution" and "Process Substitution" for special Korn Shell
features.

Tilde Substitution
This type of substitution replaces a single character, the tilde (-), with a full path name.

• A tilde by itself or in front of a / is replaced by the path name set in the HOME
variable.

• A tilde followed by a + statement is replaced with the path name in the PWD
variable. PWD is set when cd is executed.

• A tilde followed by a - statement is replaced with the path name in the OLDPWD
variable. OLDPWD is also set when cd is executed.

• If a tilde is followed by several characters and then a /, the shell checks to see if
the characters match a user's name in the /etc/passwd file. If they do, then the
- characters sequence is replaced by the user's login path.

These tilde sequences are demonstrated next.

Substitution Capabilities 39

To see the current values of HOME, PWD, and OLDPWD, use the set command with
no options. For example:

$ set
HOME=/users/tricia
PWD=/users/tricia

$ cd bin
$ pwd
/users/tricia/bin
$ set
HOME=/users/tricia
OLDPWD=/users/tricia
PWD=/users/tricia/bin

$ cd -/newdir
$ pwd
/users/tricia/newdir
$ cd -
$ pwd
$ /users/tricia
$ cd --
$ pwd
/users/tricia/newdir
$ cd -richard/anothernewdir
$ pwd
/users/richard/anothernewdir

In the first line, set lists the shell variables. The lines directly after the set show the
values of HOME and PWD. OLDPWD may not be set if you have not executed a cd
since login. The next line, changes the directory to bin. Typing pwd, displays the new
directory's path. Typing set again, displays the changed shell variables and OLDPWD.
Now, when cd - /newdir is typed the shell replaces the tilde with /users/tricia and
moves to that directory. When cd - is typed, the shell moves to HOME and when cd
-- is typed, the shell moves to OLDPWD. The last line checks for richard in the login
password file and then replaces the tilde sequence with richard's login path.

40 Substitution Capabilities

All these directory changes assume the new directories exist or the shell will send errors
such as:

ksh: /users/michael/test: bad directory

Tildes can be put in aliases:

$ pwd
/users/tricia
$ alias cdn='cd -/bin'
$ alias cdn
$ pwd
/users/tricia/bin

and when cdn is executed it places you in the bin directory in your HOME directory.

Substitution Capabilities 41

Parameter Substitution
A parameter is simply a shell variable (or argument) that is passed to or manipulated
by a command or function. A function is a group of command-lines placed together is a
certain area that can easily be accessed and used again.

The two types of parameters discussed in this section are:

• keyword or named parameters, and

• positional parameters.

Each of these is described in detail in the subsequent sections.

Parameter substitution allows a parameter to be named, assigned a value and then
accessed by a command or function. The simplest form of this has been shown in earlier
chapters:

$parameter

where the $ specifies substitution of the value of the parameter. For example:

$ x=l
$ echo $x
1

This is a simple example of a parameter which is named, (x), that is assigned a value
(1).

42 Substitution Capabilities

Setting and Using Keyword/Named Parameters
Keyword or named parameters are defined as identifiers or names containing alphanu­
merics and underscores (e.g., new_prog1). The value of a named parameter can be set
using the syntax:

name=value

or

typeset [-HLRZfilprtux [n] [name [=value]] ...]

The first line shows the most common method of assigning values to names while the
second shows the implementation unique to Korn Shell. For example:

$ x=1
$ typeset -i x=1

both set the name to x with a value of 1. However, the typeset command specifies x is
an integer.

The typeset command has many options or attributes (such as readonly, case definition,
and automatic exporting) it can assign to each name. See the "Advanced Concepts and
Commands Chapter" for details on these.

Setting and Using Positional Parameters
Positional parameters are passed to a command or shell script or set with the set com­
mand. The positional parameters follow the script or command name on the command­
line. Then every item on the line following the command or script name, separated by
a whitespace, is given a positional parameter name $0, $1, $2, $3, up to $9. These corre­
spond directly to the command-line such that $0 is the first item and script name, and
$1 thru $9 are the rest of the parameters on the line. For example:

cp file1 file2

The value of $0 is cp; the value of $1 is file1, and the value of $2 is file2. If you have
more than 9 arguments, use the shift command to bring them in from a default buffer
or access them using the syntax, ${17}. A shift moves the value in $2 into $1 continuing
down the line until it shifts a new value from the buffer into $9. The ${17} accesses the
seventeenth element on the line.

Substitution Capabilities 43

This function uses positional parameters and shifting: See the "Basic Ksh Programming"
chapter for details on functions.

$ sf()
> { for arg in $1 $2
> do
> echo This is the function $0
> echo $1 $2
> shift
> echo $1 $2
> done }
$ sf first second third
This is the function sf
first second
second third
$ sf first second
This is the function sf
first second
second

This function, sf, reads in three positional parameters on the command-line, first,
second, and third. It then prints out the contents substituting the value for the $1,
and $2. When sf is executed with only two parameters, a null value is shifted in and
echoed. Explanations of functions and the for statement are provided in the "Basic Ksh
Programming" chapter. For more details on the shift command, see the "Command
Reference" chapter.

A second way to set positional parameters is by the set command. If set is the first item
on a command-line, then the parameters immediately following are assigned to $1, $2,
$3, up to $9 just as before. So, typing:

$ set first second third
$ echo $1 $2 $3
first second third
$

assigns first to $1, second to $2, and third to $3.

44 Substitution Capabilities

Parameter Substitution Conventions
An array is collection of contiguous elements that can be accessed by a subscript. For
example, suppose arr is the name of the array and 0 is the subscript, then arr [0] rep­
resents the first element of the array. For more details on arrays see the "Basic Ksh
Programming" chapter. A subscript can also be metacharacters such as *, $(0, #, and $*.

The following section covers special conventions used during parameter substitution:

${parameter}

${#parameter}

${#array[*] }

Whenever characters following a $parameter conflict,
curly braces can be used to prevent incorrect substitu­
tion. The braces are required when parameter is fol­
lowed by a letter, digit, or underscore that you do not
want be interpreted as part of the parameter's name.

When the parameter is an integer then it is a positional
parameter, (.e.g., $1 or ${n).

If the parameter is * or (0, then all the positional param­
eters, starting with $1, are substituted. For example,
the script sc uses $(0 to echo all its parameters at one
time:

$ sc first second third
echo $(0
first second third

If the parameter describes an array with elements * or
(0, then the value for each of the elements is substituted.
For example:

echo ${array[*]}

The # specifies the number of the characters in the pa­
rameter is to be substituted. If parameter is * , the
number of positional parameters on the command-line
is substituted.

The number of elements in the array is substituted.

Substitution Capabilities 45

${parameter: -word}

${parameter: = word}

${parameter: ?word}

${parameter: + word}

${parameter#pattern}
${parameter##pattern}

${parameter%pattern}
${parameter%%pattern}

46 Substitution Capabilities

If parameter is set and non-null, the value is substituted;
otherwise word is substituted. For example:

${arg:-third}

If parameter is not set or null, the value is set to word's
value.

If parameter is set and non-null, substitute its value;
otherwise, print word and exit from the shell. When
word is omitted a standard message is printed.

If parameter is set and non-null, substitute word; oth­
erwise substitute nothing.

If the Shell pattern matches the beginning of the value
of the parameter, substitute the value of the parameter
with the matching pattern removed; otherwise substi­
tute the value of this parameter. In the first form the
smallest matching pattern is deleted and in the latter
form the largest matching pattern is deleted.

If the Shell pattern matches the end of the value of pa­
rameter, then the value of parameter with the matched
part deleted is substituted; otherwise substitute the
value of parameter. In the first form the smallest match­
ing pattern is deleted and in the latter form the largest
matching pattern is deleted.

These examples show how some of the parameter substitution techniques work:

$ x="aaaabbbbcccc"
$ echo ${x#a*b}
bbbccc
$ echo ${x#c}
aaaabbbbcccc

As you can see in this example, the pattern aaaab is matched and then removed from
the string. In the second echo, the c does not match the beginning value of the string,
therefore, the full string is substituted.

U sing the same value for x:

($ echo ${x##a*b}
cccc

matches the largest matching pattern (Le., all the b'S) and leaves just cccc.

U sing x again:

$ echo ${x%c*}
aaaabbbbccc
$ echo ${x%%c*}
aaaabbbb

the c* matches the end of the string and its smallest form is deleted, one c. The second
echo deletes the largest form, cccc.

Substitution Capabilities 47

Command Substitution
This substitution method is used to replace a command with its output within the same
command-line. The standard syntax for command substitution is placing the command
to be executed within single back quotes (, ,). For example:

$ echo "The people currently logged on the system are:\n 'who'"
The people currently logged on the system are:
tricia console Sep 11 09:01
michael tty09 Sep 11 10:35

In this example, the who enclosed in back quotes is executed and printed out within the
echo command-line. The \n provides a new-line. This escape character outputs a new­
line to the terminal. Escape characters are explained in the "Printing Out Data" section
of the "Basic Ksh Programming" chapter.

The Korn Shell implements this substitution capability using both back quotes and the
syntax $ (command). For example:

$ echo "The people currently logged on the system are:\n $(who)"
The people currently logged on the system are:
tricia console Sep 11 09:01
michael tty09 Sep 11 10:35

This performs the same function as the back quotes. The $ evaluates to the value or
output of the commands within the parenthesis (0) and replaces the command with the
command's output in the original command-line. Using this alternate syntax simplifies
nesting in substitution. For example:

$ echo 'echo \'echo hello\"
hello
$ echo $(echo $(echo hello))
hello

Back quotes cause substitution of the output of the echo command and echo is repeated
twice in the first command-line. The backslash cancels the second back quote from
closing the echo. Therefore, the third echo is evaluated and outputs the hello. The
second command-line performs the same function in a far less complicated manner.

48 Substitution Capabilities

There is no limit on the number of commands that can be placed within quotes marks
or parenthesis. The shell scans the line and executes any command it sees after the
opening quote or parenthesis until a matching, closing quote or parenthesis is found. For
example:

$ echo "Users logged in on this date\n Sedate; who)"
Fri Sep 11 16:43:34 MDT 1987
tricia console Sep 11 09:01
michael tty09 Sep 11 10:35

For Korn Shell, there is another special command substitution for the cat command.
Normally, you type:

$ echo "\n $(cat file)1I

and the contents of file are displayed.

A quicker and shorter form of the above command is:

$ echo "\n $« file)"

Again, the contents of file are displayed. An even faster syntax is:

$ echo '< file'

Although, this outputs the file on one continuous line.

Substitution Capabilities 49

Notes

50 Substitution Capabilities

Editing Command-lines 6
Typing a long command-line, finding a mistake after executing it, re-typing the command,
and finding another mistake, etc. can be very frustrating. Command-line editing allows
you to access a line typed in earlier with a few key strokes, easily enter an editing mode,
change the line, and re-execute it. This is possible through several mechanisms provided
by the Korn Shell: the fc command, the vi line edit mode, and the emacs and gmacs line
edit mode.

If you are a new user all of these sections are of interest to you; if you are an advanced
user some of the new features of vi supported by the Korn Shell and the fc command
may be of interest.

Editing Command-lines 51

Accessing the History File
In the earlier chapter, "Starting and Stopping the Shell", the two shell variables HIST­
FILE and HISTSIZE are discussed. The history file specified by HISTFILE contains the
latest commands you executed at your terminal. Every time you type a command at the
prompt and hit I Return I it is stored in this history file. HISTSIZE specifies the maximum
number of commands stored in that file. For example:

~ HISTFILE=/uBerB/tricia/.hiBt20
HISTSIZE=20

If you do not set these two variables in your . profile, the shell defaults to a file named
. sh_history of 128 lines.

The history mechanism keeps continuous record of the most recent commands you have
executed, even if you logout and back into the system many times or execute the com­
mands in a subshell.

Any command contained in HISTFILE is accessible to you for manipulation by either
the fc command or line editing modes.

To list the current contents of your history file, type:

$ history

20 11 -a
21 more file
22 ps
23 pwd
24 Isf

A listing, comparable to this, of the most recent commands you have executed is displayed
with a number beside each command. These numbers are useful for accessing the history
file commands by number.

The history command is an alias for fc -1. The fc command is explained in the next
section. ~

52 Editing Command-lines

Using In-line Editing Modes
There are three types of editing modes available in Korn Shell: the fc command, the vi
line edit mode, and the emacs and gmacs line edit mode. A discussion of each of these
methods follows. These Korn Shell editing modes emulate the corresponding editors and
all common commands are the same. In-line editing is very similar to using the editor
in that in-line editing uses the common editor's commands.

USing the fe Command
There is a built-in command, fc (fix command), special to the Korn Shell that allows
you to list your history file or run an editor on a command-line from the file. Do not
confuse this command with the fc (fortran compiler) command.

The syntax of the command is:

fc [-e editor] [-n1r] [first] [last]
fc -e - [old=new] [command]

In the first line, part of the syntax indicates listing the history file. If -1, first, and last
are indicated, the commands from the first string or number to the last string or number
are listed. This example prints the lines 20 thru 23.

$ fc -1 20 23
20 11 -a
21 more file
22 ps
23 pwd

$ fc -1 24
23 pwd
24 1sf
25 echo surprise

If followed by a number, as in fc -1 24, then command-lines from 24 on are displayed.
Two other options are available: -r which reverses the order of the commands and -n
which suppresses the command numbers from being listed. For example:

$ fc -e vi -n 24 25

Editing Command-lines 53

With this command-line, you are placed in the vi editor with the commands 24 thru
25, without command numbers. Edit the lines. When you write and exit the file, the
commands in the file are immediately executed, as shown here.

lsf
echo surprise

:wq!
/tmp/shl1l1.12
11 -a
echo surprise
adv
filel
file2
surprise

2 lines 20 characters

If you do not specify an -lor an editor name with -e, the value of the shell parameter
FCEDIT is used, if it is set; otherwise the shell returns an error.
The -1 option, used with no other arguments, displays the last 16 commands:

$ fc -1
20 11 -a
21 more file
22 ps
23 pwd
24 lsf
25 echo surprise
26 cd /users/guest
27 pwd
28 cp /users/guest/filel /users/stefan/file2
29 more file2
30 11 file2
31 chmod +x file2
32 rm /users/guest/filel
33 lsf /users/guest
34 pwd
35 x=filel
36 echo $x moved to new directory

54 Editing Command-lines

In this next example, the second syntax line, allows immediate replacement of an old
string with a new string in the command. In this instance, command can either be a
command name or line number. Korn Shell makes this substitution possible by building
into fc certain simple editing capabilities that are used when the -e editor that is specified
is a dash -. For example:

$ echo surprise
surprise
$ fc -e - surprise=neat echo
echo neat
neat

where the -e - calls on the special editor built into fc. Then, surprise is replaced by
neat and echoed to the screen.

An fc -e - without any arguments displays and executes the last item in the history file
which is also the most recent command executed:

$ fc -e -
echo neat
neat
$ r
echo neat
neat

If you type alias for a list of aliases, you see that r is set to fc -e - such that executing
r executes the last command. Since the last command just happens to be fc -e -, this
re-executes the last command, echo.

Editing Command-lines 55

Using vi Line Edit Mode
Korn Shell implements a builtin vi screen editor that works on single lines. If you are
unfamiliar with the vi editor, see HP-UX Concepts and Tutorials: Text Editors and
Processors or the A Beginner's Guide to Text Editing.

To execute a command, you normally type in the command-line followed by a I Return 1 or
I Enter I. You enter the vi edit mode by pressing the I ESC 1 key instead. After editing, you
execute the changed line by pressing the I Return 1 or I Enter I. Since the shell is not normally
in vi edit mode, you enable that mode by either executing the set command or setting
the shell parameters EDITOR or VISUAL to vi.

Enabling vi Line Edit Mode
There are several ways to enable an editor mode. One is to type:

set -0 vi

which makes the shell's default editor vi. For further details on the set command see
the "Advanced Concepts and Commands" chapter.

Another is to set and export the VISUAL shell variable in your .profile or .kshrc:

r VlSUAL=vi
export VISUAL

If VISUAL is assigned a string that ends in vi, gmacs, or emacs, then the corresponding
editor mode is enabled.

Finally, you can set and export EDITOR in your .profile or .kshrc:

r EDITOR=vi
export EDITOR

Now, if VISUAL is not set, and EDITOR is assigned a string containing vi, gmacs, or
emacs, then the corresponding editor mode is enabled.

56 Editing Command-lines

(

Performing In-line Edits
Now, you are ready to perform in-line editing. Enabling an editor mode places you
into the editor's command mode although when typing it does not appear anything has
changed. This allows you to continue typing in and executing command-lines just as you
did before. It also allows you to type , ESC 1 and enter input mode. Once you are in input
mode, you can edit the specified line using most vi commands and then re-execute it by
typing , Return I. For example, suppose you type:

$ echo surrpri

Then, before you hit the I Return I, hit 'ESC I. Now you can move on the line using the
I Back space' and space bar (not the arrow keys) to the point where you made your first
mistake. Then it's a simple matter of executing the vi delete command, x, on the extra
r and then the append command a on the end of the line:

$ echo surrpri' ESC I Back space I x 'space' a I s I e I ESC I Return 1

The above I Back space 1 is actually hit three times and the space bar is hit two times. The
new line and output looks like this:

$ echo surprise
surprise

Granted, for this example the command-line is pretty short, but on long commands
in-line editing can be very useful.

For a complete listing of all the vi commands usable within the Korn Shell vi mode, see
the ksh{l} manual page in the HP-UX Reference.

Accessing the History File From vi Mode
There are other 'ESC 1 sequences that can be executed from vi mode such as 'ESC 1 [TI,
, ESC' 0, m, [±J, and , ESC' count [[]. These sequences allow you to search the history
file:

I ESC' [TI and I ESC 1 0

mand [±J

I ESC 1 count [[]

Specifies the previous command. Once you type
, ESC 1 [TI, type just [TI to step through. This
applies to 0 also.

Specifies the next command forward. Once you
type , ESC 1 [TI or , ESC 1 0, type just OJ to step
through. This applies to [±J also.

Specifies the command with the number count.

Editing Command-lines 57

So, if the set of commands looked like:

$ fc -1

20 11 -a
21 more file
22 ps
23 pwd

and you executed an I ESC 1 CD the shell displays:

$/EscICD
$ pwd

For every CD typed after that, the shell displays one line further back at the same
prompt.

If you go too far backwards in the history file, move forward again using the OJ. For
example:

$ psOJ
$ pwd

If you use OJ or CD to roll off a command-line you are editing, all the changes are lost.

If you want to specify a certain line number, use I ESC 1 count W, such as:

$ / ESC 120 W
$ 11 - a

Once you find the command-line you are searching for, you can simply re-execute it by
typing a I Return I, or edit it using the vi in-line edit commands, and then re-execute it.

58 Editing Command-lines

Using emacs and gmacsLine Edit Mode
The other editors Korn Shell implements for in-line editing are emacs and gmacs. The
only difference between these two editor modes is the function of the I CTRL ~m command
(which transposes characters).

With these editors there is no command mode; you are always in input mode. To use
emacs or gmacs commands, you hold the I GTRL 1 key down while pressing a character key
or hold the I ESG 1 key down while pressing a character key.

Enabling emacs Line Edit Mode
Again, there are different ways to enable emacs or gmacs mode. One is to type:

set -0 emacs

or

set -0 gmacs

The other is to set either VISUAL or EDITOR as described in the vi section above.

Performing In-line Edits
Now, you are ready to perform in-line editing with emacs. As you know, enabling an
editor mode places you into the editor's command mode. Although, to you it does not
appear anything has changed as you continue typing in and executing command-lines.
To perform the in-line edits type I GTRL I and while holding it down type another character
or type I ESG 1 and while holding it down type another character. For example, suppose
you type:

$ echo surrpri

before you hit the I Return I, hit four I GTRL ~[D. This moves you left on the line to the
point where you made your first mistake. Then, it is a simple matter of executing the
I GTRL ~m or delete command on the extra r. To move forward again, use I GTRL ~[i] To
move the cursor to the end of the line. Now, simply type in the rest of the line:

$ echo surrpril GTRL H b I GTRL H d I GTRL H e I s I e I Return 1

The I GTRL ~ITJ is actually hit four times. The new line and output looks like this:

$ echo surprise
surprise

Editing Command-lines 59

There are also I ESC 1 sequences that move you forward and backwards by words rather
than letters: I ESC ~W moves you backwards one word and I ESC ~[JJ moves you forward
one word.

For a complete listing of all the emacs commands usable within the Korn Shell emacs

mode, see the ksh(l) manual page in the HP-UX Reference.

Accessing the History File From emacs Mode
There are other I CTRL 1 sequences that can be executed from emacs mode that allow you
to search the history file:

ICTRL~W

I CTRL ~[6J

I CTRL ~GJ string

Specifies the previous command.

Specifies the next command forward.

Specifies a search for the most recent command
that contains stri':lg

So, if you used the same set of commands:

$ fc -1

20 11 -a
21 more file
22 ps
23 pwd

and you executed an I CTRL ~W the shell displays:

$ICTRL~W
$ pwd

For every I CTRL ~W typed after that, the shell displays one line further back at the same
prompt. Then, if you go too far backwards in the history file, come forward using the
I CTRL ~[6J. For example:

$ psi CTRL ~[6J
$ pwd

If you want to specify a line with a certain string, use I CTRL ~GJ, such as:

$ I CTRL ~GJ 11
$ 11 - a

Once you find the command-line you are searching for, you simply re-execute it by typing
a I Return I, or edit it using the emacs in-line edit commands, and then re-execute it.

60 Editing Command-lines

Basic Ksh Programming 7

The Korn Shell is not merely a command interpreter; it is also a programming language
with all the standard constructs needed to write detailed shell scripts. The major con­
structs of the Korn Shell, such as inputting and outputting data, conditional statements,
and functions, are discussed in subsequent sections.

New users should read this entire chapter; advanced users should see the sections on the
print command, select command, and function command for features unique to the
Korn Shell.

Basic Ksh Programming 61

Creating and Executing Shell Scripts
Shell scripts are command-lines that the shell executes in a group. The files . profile
and . kshrc are examples of shell scripts. A script can be created two ways: interactively,
or by creating and editing a file.

Certain shell programming constructs allow you to interactively create a shell script, such
as curly braces ({ }) the for loop, or the if statement. (These are both explained in
subsequent sections.) When you type the first command-line cOIltaining the construct, it
tells the shell that the script continues on on the following lines until a closing command­
line tells the shell the construct is complete. After the first line, the shell prompts
you with the value of the secondary prompt, PS2, to input the rest of the script. The
default value of PS2 is >. When the shell reads the closing statement of a construct, it
automatically exits the input mode and executes the script. For example:

$ {
> echo Hello, welcome to Korn Shell
> }
Hello, welcome to Korn Shell

This example demonstrates the secondary prompts' appearance after the bracket, {, and
acceptance of input until the closing bracket, }, is typed.

The second method of creating a script is to create and edit a file using an editor, such
as vi. If you are unfamiliar with how to create a file using an editor, see the HP-UX
Concepts and Tutorials: Text Editors and Processors or the A Beginner's Guide to Text
Editing. Once you create the file (Le., the script) containing your command-lines, you
are ready to execute the script.

First, make sure the file (script) is executable; type:

$ chmod +x scripL name

This command changes file permissions on the new file so that it is executable. If you
want more details on file permissions, see the Introducing UNIX System V book. Then
type the scripLname (i.e., file name):

$ scripL name

and the script executes and prints out any output you specified.

62 Basic Ksh Programming

Commenting
When writing a program, commenting the script helps someone else reading it to under­
stand the code. To comment a line in a script place a # at the beginning of the line.
Everything after the # up to a new-line is ignored by the system. For example:

This script prints out every executable file.
for i in 'Is' # for all files in the current directory

The whole first line is ignored by the system and in the second line everything after the
is ignored.

Basic Ksh Programming 63

Inputting and Outputting Data
Programming inevitably requires inputting and outputting of data. The Korn Shell pro­
vides the echo command and the print command for outputting and the read command
and positional parameter substitution for inputting.

Reading in Data
There are several ways of passing data into a shell script. One way is by passing argu­
ments to the script through positional parameters; the other way is by using the read
command. A third way is for the script to run some command or program that reads
stderr or a named file. Positional parameters have already been described in detail in the
"Substitution Capabilities" chapter. Therefore, the following discussion focuses mainly
on the read command.

The read command provides the ability to read input during the execution of a script.
Its syntax is:

read [-prsu[n]] [name?prompt] [name ...]

where the command reads a line and places each white-space separated word into a name.
The rest of the line goes into the last name. If names are not specified, the line is read
into the Korn Shell REPLY variable (see select under "Conditional Statements"). If
the ?prompt is set the user is prompted interactively with prompt. The definitions of the
options are:

-p Read from the output of the process spawned with two-way pipes, 1&. (See
the "Advanced Concepts and Commands" chapter for two-way pipes.)

-r Do not interpret the \ at the end of a line as line continuation.

-s Put the input line into the history file.

-un Read the input from file descriptor n.

In this script contained in the file hello_script, the first line prints a prompt and leaves
the cursor one blank to the right of the ? waiting for input from you:

echo 'What is your name? '
read name
echo "Hello, $name, and welcome to Korn Shell"

64 Basic Ksh Programming

The second line reads in text from the user and saves it in $name. Finally, a line is
printed which includes the value of $name (since the string is in double, not single, quotes).
Running the script creates this output:

$ hello_script
What is your name?
Stefan
Hello, Stefan, and welcome to Korn Shell!

When you see the question mark, type in your name (Stefan is typed here), followed by
a 1 Return I.

The read command can read and store several values at one time:

read field1 field2 junk

This reads the first whitespace-separated name from the input line into $field1, the
second into $field2, and the rest into $junk, which is presumably ignored.

Printing Out Data
Sometimes you may wish to output data or comments from a script on the screen, such
as script results, and headers to describe the results. There are two output mechanisms
in the Korn Shell. The first is the echo command used in Bourne Shell and C Shell; and
the second is the print command, unique to the Korn Shell.

Using echo
The echo command can print out comments, data, or the values of positional parameters
to the display. The syntax is:

echo [arg ...]

where echo writes to standard out any args (arguments) separated by blanks, or a blank
line, if no arguments are specified.

var= , short ,
echo 'This is a' $var 'example.'
echo

Basic Ksh Programming 65

In this script, var_script, the value of var is set to short and echo prints the line This
is a short example.

($ var_script I Th~s ~s a short example.

The quotes keep the $var from being part of the text, so that the parameter substitution
is performed and it evaluates to short.

You can also prompt a user from a script using the echo command and the \c escape
character. The escape character suppresses the linefeed and leaves the cursor after the
colon (:) and blank, waiting for input. Using this idea, type:

$ {
> echo "Enter your user name: \e"
> read user
> echo 'User is ' $user
> }
Enter your user name: Stefan
User is Stefan

Certain characters can be used for formatting echoed strings. These escape characters
must be preceded by a backslash and enclosed in quotes for interpretation, such as the
\c shown above. They are:

Escape Character Results

\b backspace

\c print line without appending a new-line

\f furm-reed

\n new-line

\r carriage return

\t tab

\ v vertical tab

\ \ backslash

66 Basic Ksh Programming

Using print
The Korn Shell provides a unique output mechanism the other shells do not, the print
command. Its syntax is:

print [-Rnprsu[n]] [arg ...]

The print command provides a superset of the echo command for shell output. It prints
the specified args dependent upon the option set. A description of the options follows:

-R ignore all echo escape sequences except \n

-n do not add a new-line to output

-p write output to the process spawned with a two-way pipe, I k, instead of
standard output (See the "Advanced Concepts and Commands" chapter
for two-way pipes.)

-r ignore all echo escape sequences

- s save args in the history file

-un write to the file descriptor n

This print command:

r $ print -s ". End of the day."
$ history

puts the comment # End of the day. in your history file. This makes it easier to re­
view the current day's command-lines in the history file, because the end of yesterday's
commands is clearly marked.

Basic Ksh Programming 67

Conditional Statements
The Korn Shell provides constructs that allow a script to execute a designated set of
command-lines only if a special condition is met. These are called conditional statements.
Discussed in this section are the following conditional statements: if, case, select, for,
and while.

Using the if Condition
The if statement allows you to execute one or several commands if a certain condition
exists. The syntax is:

if command-line
then diff_command-line
else even_ diff_ command-line
fi

First, if checks if command-line is true. True means it returns O. If it is then,
diff_command-line is executed; if it is not, even_diff_command-line is executed. Such
that:

$ x=hello
$ if [$x = hello
> then echo Welcome
> else echo Goodbye
> fi
Welcome

This if statement checks whether x equals hello. If it is, Welcome is printed; if it is not,
Goodbye is printed.

68 Basic Ksh Programming

Using the test Command
This command tests or evaluates the expr and if it evaluates true, it returns a zero exit
status. If it evaluates false, it returns a nonzero exit status.

Its syntax is:

test expr

or

[expr]

As shown, the test command can be replaced by appropriately spaced brackets ([D.

An extensive list of exprs are covered in the HP-UX Reference on the test(l) manual
page. Four exprs unique to the Korn Shell are:

-L file

filel -nt file2

filel -ot file2

filel -ef file2

In this example:

$ for file in 'Is'
> do

Returns true if file is a symbolic link.

Returns true if file1 is newer than file2.

Returns true if file1 is older than file2.

Returns true if filel has the same device and i-node number
as file2. (i.e., they are identical files)

> if [-x $file]
> then echo $file is executable
> fi
> done
$

the files in the current directory are tested using brackets around the expression. Using
-x tests for an executable file. If the test returns true the executable file's name is printed.

Basic Ksh Programming 69

Using the case Statement
The case statement eliminates the need for several if then else then else fi state­
ments to be strung together. It allows you to easily check conditions and then process a
command-line if that condition evaluates to true. The syntax is:

case string in
patternl [I pattern2...]) command-lisU
patternS [I pattern4...]) command-list2

esac

The first line receives a string which is checked against each of the patterns to see if it
matches. If the pattern matches, the command-line directly following is executed. For
example:

$ case $i in
> -d I -r) rmdir $dirl; echo "directory removed"
> -0) echo "option -0" ;;

> -*) echo "not a valid option" ;;
> esac

The case statement first checks $i against each option for a match. If it matches -d or
-r, the directory is removed (the I specifies logical or). If it matches -0 or -* (all others),
an appropriate response is printed. If the string does not begin with - no action is taken.

70 Basic Ksh Programming

Using the select Statement
This is a command unique to the Korn Shell that prints on the screen a set of words each
preceded by a number. Then the PS3 prompt is printed and the line typed by the user
is read into the REPLY variable. If this line consists of the number of one of the listed
words, then the value of the parameter is set to the corresponding word and REPLY is
set to the input line (Le., the number). If this line begins with anything else, parameter
is set to the null. If you input nothing, just type 'Return I, it reprompts for input. No
matter which way it evaluates, the command_lines are executed. The loop continues
until a break is encountered. The syntax is:

select parameter in words
do

command_lines
done

For example:

$ select char in a e i 0 u
> do
> echo $char is a vowel.
> done
1) a
2) e
3) i
4) 0

5) u
#? 1
a is a vowel.
#? 4
o is a vowel.
#? 'Break 1

all the vowels in words are printed out with a number in front. The default PS3 prompt,
#?, is printed and the shell waits for a number and , Return 1 to be typed. When it receives
the number, it echos that the corresponding letter is a vowel and then prompts for the
next entry. It continues prompting until, Break 1 is pressed. If you enter 6, which is not
set, a null (is a vowel) is returned. If you enter nothing, just type Return, it reprompts.

Basic Ksh Programming 71

Using the for Loop
The for loop allows you to execute a command-line once for every new value assigned to
a parameter in a specified list. The syntax is:

for parameter [in list]
do command-line
done

In the following example:

$ for file in x y z
> do
> echo The file name is $file
> done

The first time through the loop the for statement sets $file to x and prints it out. The
second time through the loop, y is printed out and the last time, z is printed out. When
the list is completely finished, the loop is exited.

Using the while/until loops
This loop continues executing command-line and processIng through the list as long
as the item an list continues to evaluate true. Once an item evaluates false, the loop is
exited. The syntax is:

while list
do list2
done

$ x=O
$ while [$x != 10]
> do
> let x=x+1
> echo $x
> done
1
2
3
4
5
6
7
8
9
10

72 Basic Ksh Programming

This loop initializes the variable x, and then increments and prints out the value until it
equals 10 and you exit the loop.

The until loop is similar to the while loop and has the same basic syntax. However,
it executes until a nonzero status is returned; the while command executes until a zero
status is returned. Also, the until loop always executes at least once.

Using the break Statement
This command exits loops created by the keywords for, while, until, or select.

The syntax is:

break [n]

If n is specified, it breaks out of n nested loops.

$ for file in x y z none
> do
> if [-x $file]
> then echo $file
> break
> fi
> done
$

This script checks the list of files, x. y. z. none, for executable files and prints the first
executable file it encounters. If none are executable, $file is left set to to none but it is
not printed.

Basic Ksh Programming 73

Using the continue Statement
This command skips any lines following it in a for, while, until, or select loop until the
next iteration of the loop.

The syntax is:

continue [n]

If n is specified, then resume execution starting at the nth enclosing loop.

$ for file in xy z
> do
> if [-x $file
> then continue
> echo $file is executable
> fi
> echo $file is not executable
> done

This script checks for all executable files. If the file is executable the continue statement
skips both following echo statements and starts another loop. If the file is not executable,
the script prints that it is not executable. If the file is executable, nothing is printed.

74 Basic Ksh Programming

Arithmetic Evaluation Using let
In the Korn Shell, there is a unique command, let, which allows arithmetic expressions
to be used in Korn Shell scripts. This command allows for long integer arithmetic.

The syntax is:

let arg ...

where each arg is an arithmetic expression of shell parameters and operators to be eval­
uated by the shell. A list of operators, in decreasing order of precedence, follows:

Operator Description

- unary minus

! logical negation

* / % multiplication, division, remainder

+ - addition, subtraction

<= >= < > comparison

-- != equals, not equals

= assignment

In this example, x is set to 1.

l r $ r-1 $ let x=x+l*6-3/1
$ echo $x
4

When the let command executes:

• first, 1 *6 is evaluated to 6,

• then 3/1 is evaluated to 3,

• then x is added to the q which equals 7, and

• finally the 3 is subtracted from the 7 to equal 4.

Basic Ksh Programming 75

You can also use parenthesis to create this effect:

$ let "x=x+(1*6)-(3/1)"
$ let "x=(x+1)*6-3/1"

or override the operator's precedence to produce different results, 9. When using paren­
thesis, double quotes are necessary.

This script reads a value from the user, compares it to 14, and prints an appropriate
string based on the comparison:

$ read x
$ y=14
$ if « x >= y »
> then echo greater or equal
> else echo less
>fi

Using "(())" around the expression, replaces using the let:

let "x >= y"

(w hich must be quoted to allow blanks and prevent the > from being interpreted as an
I/O redirection). Also, you do not need to put $ in front of x or y. In this situation, the
let command is used as a condition.

76 Basic Ksh Programming

Accessing Arrays
Arrays are a collection of contiguous elements that can be accessed by a subscript. Dec­
laration of arrays in Korn Shell is very similar to that of the C shell. An array's syntax
is:

array [subscript] =value

The first line sets the element of the named array at the designated subscript to the
value. Unlike C Shell, the Korn Shell starts placement of values at the 0 element.

In this example:

$ testa[O]=first
$ testa[l]=second
$ echo ${testa[l]}
second
$ echo ${testa[*]}
first second

the array testa first two elements (0 and 1) are set to first and second. The following
echos, display the value of the 1 element and then the value of every array element as
designated by the *.

See the "Parameter Substitution Conventions" section of the "Substitution Capabilities"
chapter for other possible array subscripts and uses for arrays.

Basic Ksh Programming 77

Writing Functions
The function command is used to modularize programs. Modularization is the concept
of placing often used code in a certain area (module) of the shell script. Then you call
the module or function whenever it is needed rather then re-enter the same code.

The function's syntax is:

function name { shell_script }

or

name 0 { shell_script }

where using function creates a module called name and the shell script is inclosed within
curly brackets, {}. Just using name followed by parenthesis, 0, and the { shell script },
also creates a function.

To invoke the function, type the name followed by any positional parameters that need
to be passed in as arguments.

Following is a function that takes a file name ($1) as an argument and checks whether it
is executable. If it tests true, it prints out that the file is executable.

$ function exef
> {
> if [-x $1
> then echo $1 is executable
> fi
> }
$
$ exef script

where the argument being passed in is script.

78 Basic Ksh Programming

In a larger program this function is easily called by specifying the function name and the
argument list:

function exef
{

if [-x $1]
then echo $1 is executable
fi

}
for file in 'Is'
do

exef $file
done

Returning From a Function

< -call to function

Occasionally, you need to return from a function with an exit status. The return com­
mand's syntax is:

return [n]

This command stops execution of a function and then returns to the calling procedure
with an exit status of n. If n is not specified, the returning status is that of the last
command executed within the function. When return is invoked outside the boundaries
of a function it acts as an exit.

For example:

$ searchO {
> if grep xxx "$1" > /dev/null 2>&1
> then return 1
> else return 0
> fi
> }
$
$ search myfile

the first line defines a function called search which checks a given file for a string, "xxx".
This function inverts the normal return value of grep. Therefore, if the string is found,
the function returns 1, else if the string is not found or the file is not readable, it returns
o.

Basic Ksh Programming 79

A Recursive function is a function that repeatedly calls itself. It terminates when the
last call to the function returns a special value the function is testing for. For example,
suppose the file fact contained this recursive function:

function fact
{

}

integer x
if « $1 <= 2 »
then

echo $1
else

fi

«x=$1 - 1»
let x=$(fact $x)
«x=x * $1»
echo $x

fact $1

Then the second call to fact within fact calls until the value of $1 is returned and is
less than or equal to 2. Then, the recursion stops, the factorial of the inputted number
is printed, and the function exited.

80 Basic Ksh Programming

Controlling Jobs 8
A simple job is one command typed to the shell. More complex jobs consist of one or
more commands typed together as a pipeline or as a sequence of commands separated by
semicolons (sometimes called a command-line). This is an example of a command-line
that the shell interprets as a job:

$ ps -ef I sort > processes

Creating Jobs
The shell associates each command-line you type with an integer job number. Therefore,
every time a command-line is typed the shell creates a job for that command-line and
gives it a unique job number. Once a job is created, you can monitor it or manipUlate it
in other ways. The rest of this chapter covers the things you can do with jobs. Whether
you are an advanced or new user, you should read this chapter.

Controlling Jobs 81

Monitoring Jobs
The shell also keeps a table of all current jobs and their numbers. To see a listing of the
table type:

jobs

The screen displays something similar to this, if you have jobs running:

[1] + Running
[2] - Done

Ip processes
ps -ef I sort > processes

The job's number is displayed inside the brackets ([D. The + marks the job as the current
job and the - marks the job as the previous job. Done or Running specifies the status of
the actual job. The Ip processes is the actual command-line and is telling to the system
to print the processes file to the line printer.

82 Controlling Jobs

Suspending Jobs
On the Series 800, you can suspend jobs. Suspending a job is stopping it from completion
at some midway point, but not destroying it. Suspending a job allows you to stop in the
middle of the process and have control of your terminal returned to you for other work.

Suppose you type in command-line and hit I Return I, realize this process takes a long time
and you need to print another job. To suspend the current job type:

This suspends the previous command-line you typed in and returns you to the prompt
($). For example:

$ du I sort > diskusage
I CTRLH1J
[1] + Stopped du I sort > diskusage
$

The du command reports the amount of disk space used by the specified directory, or the
current directory if none is specified, as in the above example. This command then pipes
the output into the sort command to be sorted and then finally redirects, >, the final
output to a file, diskusage, for storage. This operation can take some time. To restart
suspended processes, use the fg or bg commands as explained in the next section.

Controlling Jobs 83

Putting Jobs in Background/Foreground
Fortunately, there is way to free up your terminal and at the same time still run long
processes such duo You place the process in the background. A background process is
one that runs invisibly to you at the same time a different process runs on your screen
visible to you in the foreground. The shell takes over the command-line and places it in
the background when you follow the line with an & metacharacter. For example, if you
type:

$ du I sort > diskusage&
[1] 6100

The second line indicates what the system returns, a job number and a process number.

If the set -0 monitor option is on, (Le., you type set -0 monitor at the terminal), when
a job completes it sends a message to the terminal of the form:

[1] + Done du I sort > diskusage&

signifying the job by its number and that it has completed, Done. (See the set command
in the Advanced Concepts and Commands chapter for details.)

Both the Series 300 and Series 800 system shells create and number jobs, as well as
allow background processes. However, only the Series 800 allows you to manipulate
the jobs from the shell by pulling background jobs into the foreground and suspending
foreground jobs. The Series 300 cannot reaccess background jobs once they are placed
in the background. It can only monitor their progress using the jobs command or wait
for the processes completion response by having using the set -0 monitor command.

On the Series 800, two commands allow you to manipulate jobs between the background
and foreground. They are bg and fg. The bg command allows you to place a job in
the background while the fg command allows you to pull a background job into the
foreground or back to the terminal screen.

84 Controlling Jobs

Suppose, you placed a job in the background using the & and then wanted to pull it back
to the screen; type:

$ fg %job_number

or type %% or %+ if it is the current job. If it was the previous job, that is you have typed
another command after placing the command in the background, use %-. For example:

$ du I sort > diskusage&
[1] 6100
$ sleep 999&
[2] 6102
$ fg %-
du I sort >diskusage

this brings the previous command, which is du, back to the foreground. The second
background process, sleep command, suspends execution of the shell for 999 seconds. If
you later decide you want your terminal free again, type:

$ bg %1

and put it back into the background.

You can also use these two commands on suspended jobs to restart them in the foreground
or background.

Controlling Jobs 85

Killing Jobs
Sometimes after you've started a job and placed it in the background, you realize it is
an incorrect process and you do not want to run it. In this type of instance, you can
destroy or kill a job.

Suppose, you start this process:

$ Isf 1* I sort > filenames&
[1] 6112

and then realize you do not want to list the full file system (Le., you do not use * in the
command-line), just the root directory, and decide to kill the job. To kill the process,
use the job's number, ([1]), and type:

$ kill %1
$

The kill command kills the job and the % metacharacter specifies the job number.1. As
shown above, you are returned to the prompt. Recall that %+ and %% perform the same
function as %1, since it is the current job. If it was the previous job, use %-. To see the
status of the job, type:

$ jobs
[1] + Terminated Isf 1* I sort > filenames&

The line following jobs shows you the current Isf job has been terminated.

If you log off the system while any of your processes are running, background or otherwise,
the jobs are destroyed unless you use the nohup command (see the HP-UX Reference for
details).

86 Controlling Jobs

Advanced Concepts and Commands 9
This chapter explains advanced topics and commands you will need to understand the
more difficult aspects of the Korn Shell.

The ENV Variable
In the earlier chapter, "Starting and Stopping the Shell" the ENV variable was discussed.
The ENV variable specifies a file, usually .kshre, which is executed when ever you spawn
a new interactive Korn Shell. An interactive shell, is a shell that has input and output
tied directly to the terminal. Therefore, you can access standard in, standard out, and
standard error. To determine whether on not your shell is interactive, type:

$ set -0

and look for:

interactive on

This .kshrc file normally contains commands to set up the Korn Shell's environment.
However, if this file is exceedingly long, spawning the new shell can be a long process.
This complicated ENV variable prevents .kshre from being read when not in interactive
mode.

Consequently, a very complicated but effective ENV variable had been developed. This
line, when placed in your . profile allows new Korn Shells to be created very quickly.
That ENV variable is:

ENV='${START[(_$-= 1) + (_ = 0) - (_$- != _${-%%*i*})]}'
START=-/.kshrc
export ENV START

This complicated line is broken up and each part is described in the the rest of this
section.

Advanced Concepts and Commands 87

In the first part:

ENV=' ... '

even though ENV is evaluated for parameter substitution at every use, the quotes hide
it from immediate evaluation.

${START [...]}

This parameter substitution, after the rest of line is evaluated, sets the element [0] of
array START, to the name of the . kshrc file.

(. ..) + (...) - (. ..)

Within the brackets is this arithmetic expression, which is the array parameter indices.

In this assignment statement the parameter named _<current flags> and is assigned the
value 1. The expression also evaluates to 1. The leading underscore is just a way to
insure the left side is never null even if $- evaluates to null.

_ = 0

This parameter named _ is assigned the value o.

At this point, $- and ${ ... } are being expanded, and then the resulting parameter
named _<result> is being expanded too. The parameter _<current flags> is compared
with _${ ... } and the result is either 1 (true) or 0 (false). If the result is true, they are
not equal, so the element is 0 and ENV gets set to something. If the result is false, they
are equal and ENV evaluates to null.

If the shell's options or current flags ($-) pattern matches *i*, (that is it contains an i

for interactive), then the parameter evaluates to null.

If the shell is interactive and $- includes i, the left side _$ evaluates to a non null, which
has the value 1. Since the right side is null and which has value, the two are not equal and
return true (1). Therefore the array element 0 is used and ENV evaluates to non-null.

If the shell is not interactive, $- may be null or not. If $- is not null, $_ <result> (1) is
equal to $_ (1) and the expression yields zero. Then element 1 is used which does not
have a value and ENV evaluates to null.

88 Advanced Concepts and Commands

Two-way Pipes
Two-way pipes or coprocessing can be established between a parent and child process.
The standard input and output of the spawned command can be written to and read from
the parent shell. Placing the 1& metacharacter after the command to be executed creates
a special pipe where you can use the print -p command to write the standard input of
the spawned command process and the read -p command to read from the output of the
process. See the "Basic Ksh Programming" for details on the print and read commands.

Two-way pipes allow shell scripts to pass data through pipelines and bring it back for
further use by the script again, without using temporary files. This allows a shell script
to interact with a pipeline in real time. For example, suppose you have a file, 2waypipe,
containing this script:

pi=3.14159
bs 1&

echo "Please enter value1 and value2: \c"
read value1 value2
print -p "$value1 + $value2" # add them.
read -p sum
print -p "$sum - $pi"
read -p result
"The answer is: $result"

When you execute the script:

$ 2waypipe
Please enter value1 and value2: 12 12
The answer is: 20.85841

it immediately executes the bs compiler/interpreter which allows addition and subtrac­
tion. The read statement reads from standard input the the typed numbers 12 and 12
as value1 and value2. In the print -p statement the numbers are piped to the spawned
process bs and summed and the sum read back into the script using the read -p script.
Then the values sum and pi are sent back to bs and result is read back into the script
using read -p, again. Then the output is sent to standard output.

Advanced Concepts and Commands 89

There are some limitations on what you can do with two-way pipes:

• They are only useful with commands that read standard input for data and write
standard output with results. You cannot use commands like vi(l), which must
talk to a terminal. Instead, use commands which read standard input and write
results to standard output as soon as there is something to output.

• There is currently no way to close a two-way pipe. Therefore, you cannot use them
with commands, such as sort(1) or pipelines which require reading an EOF before
emitting useful output. Instead, use commands you can tell to quit.

90 Advanced Concepts and Commands

The whence Command
This is a command unique to the Korn Shell. When a name is provided to the whence
command, it returns the way in which that name will be interpreted by the shell. The
syntax is:

whence [-v] name ...

The flag, -v, produces a more verbose report.

When a command is a reserved word, function or builtin command, the shell returns the
command name. If the command has an alias, the alias is displayed. If neither of these
is true, the full path name is printed.

$ whence -v type
type is an exported alias for whence -v

This example discovers that type is actually an exported alias for whence -v. So, just
type:

type type
type is an exported alias for whence -v

The following example shows how the different commands are interpreted:

$ thisO {
> print that
> }
$ whence while true alias this file
while

alias
this
/usr/bin/file
$ whence -v while true alias this file
while is a reserved word
true is an exported alias for :
alias is a shell builtin
this is a function
file is /usr/bin/file

The first part of this example defines a function this 0, then asks whence to explain a
series of five different words that might be used as commands.

Advanced Concepts and Commands 91

This set was chosen to demonstrate the five types of command words the shell under-·
stands, in the order in which they take precedence:

• reserved-word,

• alias,

• built-in,

• function,

• and other, such as the path name.

92 Advanced Concepts and Commands

The set Command
The set command is used to turn on and off shell options in the environment such as
tracking or automatic exporting of commands. Its second function is to reset the values
of positional parameters ($1).

Its syntax is:

set [-aefhkmnostuvx] [-0 option ...] [value ...]

where value specifies the positional parameters to be reset. The option can specify with
a word the same meaning as the the -aefhkmnostuvx letters. For example:

$ set -v
$ echo hello
echo hello
hello
$ set +v
$ echo hello
hello
$ set -0 verbose
echo hello
hello
$ set +0 verbose
$ echo hello
hello

the set -v and set -0 verbose perform the same task; print each line as it is read followed
by the output. The + in front of the v and 0, turns the verbose option off so that it can
be turned back on in the next line.

Advanced Concepts and Commands 93

A discussion of other options follows:

-a

-e

-f

-h

-k

-m

-n

-s

-t

-u

-v

-x

All subsequent parameters that are defined are automatically exported.

If the shell is non-interactive and if a command fails, execute the ERR trap,
if set, and exit immediately. This mode is disabled while reading . profile.

Disables file name generation.

Each command whose name is an identifier becomes a tracked alias when
first encountered.

All parameter assignment arguments are placed in the environment for a
command to use, not just those that follow the command name.

Background jobs will run in a separate process group and a line will print
upon completion. The exit status of background jobs is reported in a
completion message.

Read commands but do not execute them.

Sort the positional parameters.

Exit after reading and executing one command.

Treat unset parameters as an error when substituting.

Print shell input lines as they are read.

Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.

Do not change any of the flags. This is also useful in setting $1 to a value
beginning with - . If no arguments follow this option then the positional
parameters are unset.

Using + rather than - causes these flags to be turned off.

These flags are the same ones used to invoke the shell:

ksh -h

which causes the shell to create a tracked alias for every command executed.

94 Advanced Concepts and Commands

The Korn Shell implements an option, -0, that turns on the specified argument or option.
(i.e., set -0 option) Many of these options correspond to the above letters that perform
the same function without using -0. The following argument or option can be one of the
following option names:

all export

err exit

emacs

gmacs

ignoreeof

keyword

markdirs

monitor

noexec

noglob

nounset

verbose

trackall

vi.

viraw

xtrace

Same as -a.

Same as -e.

Puts you in an emacs style in-line editor for command entry.

Puts you in a gmacs style in-line editor for command entry.

The shell will not exit on end-of-file. The command exit must be used.

Same as -k .

All directory names resulting from file name generation have a trailing /
appended.

Same as -m.

Same as -no

Same as -f.

Same as -u.

Same as -v.

Same as -h.

Puts you in insert mode of a vi style in-line editor until you press the I ESC I
key. This puts you in a mode so you can move on the line. A I Return I
executes the line.

Each character is processed as it is typed in vi mode.

Same as -x.

Advanced Concepts and Commands 95

If you want a listing of all the currently set options, type:

$ set -0

Current option settings
all export off
bgnice off
emacs off
errexit off
gmacs off
ignoreeof off
interactive off
keyword off
markdirs off
monitor off
noexec off
noglob off
nounset off
protected off
restricted off
trackall on
verbose off
vi on
viraw off
xtrace off
$

without options. This could be a very lengthy list, but should have some of these items
listed. You can use the set command in other ways, as in:

$ set third first second
$ echo $1 $2 $3
third first second
$ set -s
$ echo $1 $2 $3
first second third

I
\,

where set places the three values into the appropriate positional parameters, and then
sorts them and places them in the parameters in sorted order. ~

96 Advanced Concepts and Commands

The typeset Command
This command creates a shell variable, assigns it a value, and specifies certain attributes
for the variable, such as integer and readonly.

The syntax is:

typeset [-HLRZfilprtux [n] [name [=value]] ...]

w here name is the shell variable to be created, value is to be assigned according to the
options set.

For example:

$ typeset -r year=2000
$ echo $year
$ year=2001
ksh: year: is readonly

makes year readonly.

Advanced Concepts and Commands 97

The following list of attributes may be specified by the designated option or flag:

-F

-L

-R

-z

-e

-f

-i

-1

-p

-r

-t

-u

-x

This flag provides UNIX to host-name file mapping on non-UNIX machines.

Left justify and remove leading blanks from value. If n is non-zero it defines
the width of the field, otherwise it is determined by the width of the value
of first assignment. When the parameter receives a value, it is filled on
the right with blanks or truncated to fit into the field. Leading zeros are
removed if the -z flag is also set. This turns the -R flag off.

Right justify and fill with leading blanks. If n is non-zero it defines the
width of the field, otherwise it is determined by the width of the value of
first assignment. The field is left filled with blanks or truncated from the
end if the parameter is reassigned. This turns the L flag off.

Right justify and fill with leading zeros if the first non-blank character is a
digit and the -L flag has not been set. If n is non-zero it defines the width
of the field, otherwise it is determined by the width of the value of first
assignment.

Tag the parameter as having an error. This tag is currently unused by the
shell and can be set or cleared by the user.

The names refer to function names rather than parameter names. No
assignments can be made and the only other valid flag is -x.

The name is an integer. This makes arithmetic faster. If n is non-zero it de­
fines the output arithmetic base, otherwise the first assignment determines
the output base.

All upper-case characters converted to lower-case. The upper-case flag, -u

is turned off.

The output of this command, if any, is written onto the two-way pipe

The given names are marked readon1y and these names cannot be changed
by subsequent assignment.

Tags the name. Tags are user definable and have no special meaning to
the shell.

All lower-case characters are converted to upper-case characters. This
turns the lower-case flag, -1 off.

The given names are marked for automatic export to the environment of
subsequently-executed commands.

98 Advanced Concepts and Commands

Using + rather than - causes these flags to be turned off. If no name arguments are given
but flags are specified, a list of names (and optionally the values) of the parameters which
have these flags set is printed. (Using + rather than - keeps the values to be printed.) If
no names and options are given, the names and attributes of all parameters are printed.

The following example covers some of the attributes set above:

$ typeset -i argl=3 arg2=22
$ echo $argl $arg2
$ typeset

export PATH
readonly year

$ typeset -u up=letters
$ echo $up -
LETTERS

Advanced Concepts and Commands 99

The trap command
Many times we execute a script and then realize a mistake was made and press the
I Break 1 key to stop the process. It is possible the script created several files on the system
that you would have to search for and manually delete. Fortunately, the trap command
captures an interrupt. Now you can I Break I, let the trap command capture it and then
clean up the files from within the script. The syntax is:

trap [arg] [signal...]

The trap waits for signaIB sent to the shell, traps it and then executes argo If signal is 0,
then arg is only executed once the shell is exited. After setting traps, typing trap with
no args lists all commands associated with signals.

For example:

$ temp="/tmp/xyz$$"
$ trap "rm -f $temp; exit" 0 1 2 3 15
$ trap
O:rm -f /tmp/xyz18996; exit
l:rm -f /tmp/xyz18996; exit
2:rm -f /tmp/xyz18996; exit
3:rm -f /tmp/xyz18996; exit
15:rm -f /tmp/xyz18996; exit

in the first line a temporary file $temp is defined, whose name includes xyz and the
process id number. The second line sets a trap to remove the file (without complaining
if it doesn't exist yet or if the remove fails). It then exits the shell, if the shell exits (O)
or receives one of a certain set of signals (1, 2, 3, 15), which could be given by names
(HUP, INT, QUIT, TERM). After setting the trap, trap with no options, lists all traps.
The exit in the trap is necessary because otherwise the trap would be like an interrupt
routine, returning to execution of the script on receipt of a signal.

If arg is omitted or is -, then all trap signaIB are reset to their original values. If signal
is ERR then arg will be executed whenever a command has a non-zero exit code. The
ERR trap is not inherited by functions.

If the signal is 0 or EXIT and the trap statement is executed inside the body of a function,
then the command arg is executed after the function completes. If signal is 0 or EXIT ~
for a trap set outside any function then the command arg is executed on exit from the
shell.

100 Advanced Concepts and Commands

The ulimit command
This command sets limits on specified resources used by a spawned or child process
(subprocess) .

The syntax is:

unlimit [-fp] [n]

where n is the size to be set depending on the type of limit set by the options -fp. A list
of those options follow. If no option is given, -f is assumed. If n is not given the current
limit is printed.

To see the current limit, type:

$ ulimit

To change the size of file the current process or a spawned process can create, type:

$ ulimit -f 1000

-f

-p

imposes a size limit of n blocks on files written by child pro­
cesses (files of any size may be read)

changes the pipe size to n

Advanced Concepts and Commands 101

Notes

102 Advanced Concepts and Commands

Command Reference 10
This chapter is a command reference for the Korn Shell commands. Commands are in
alphabetical order, explained briefly, and followed by their syntax and an ex.ample;"Each
example is explained.

This reference is written for the intermediate or advanced user who has a firm under­
standing of shell concepts, whether it be B'ourne, C, or Korn. It is meant as a quick
reference or refresher for the basic commands used in the Korn Shell.

alias
Syntax

alias [-tx] [word[=command] ...]

The alias command defines word to mean command such that when word is used command
is executed. This is useful for shortening long command lines to one or two letters.

Example
$ alias unpro='chmod +W'

$ unpro myfile

In this example, unpro is shorthand for (aliased to) chmod +w. Saying unpro myfile adds
write permission to myfile.

$ alias cd=mycd
$ cd there
$ \cd here

The first statement declares cd to be an alias for a function (defined elsewhere) called
mycd. The next line changes the working directory to there using that function. Using
backs lash (\), causes the last line to perform a real cd, not the function form, to the
directory here. Note, that quoting the first word (\) in any way prevents it from being
interpreted as an alias.

Command Reference 103

Just typing:

$ alias

lists, on the screen, all the current shells default and set aliases.

To track aliases, use:

alias -t [name]

such as

$ alias -t vi

This tracks the full path of name the first time it is used and sets it in a special list
of tracked aliases. This speeds up the search time for commands. Using set -h sets
automatic tracking on all commands. See the set command for more details. If PATH
is changed interactively or in login scripts, the tracked aliases become undefined. To list
tracked aliases, use the alias -t command without a name.

To export aliases, use:

alias -x [name]

such as

$ alias -x who='who I sort '

This exports name, or who in this example, for use by subshells.

104 Command Reference

bg
Syntax

bg [%n]

On the Series 800, the bg command places job n (the job's number) in the background.
The current job is put into the background, if n is not specified.

Example
$ bg %1

This places the command defined to the shell by the job number, 1, in the background.
See jobs for more information.

break
Syntax

break [n]

This command exits loops created by the keywords for, while, until, or select. If n is
specified, it breaks out of n nested loops.

Example
$ for file in x y z none
> do
> if [-x $file]
> then echo $file
> break
> fi
> done
$

This script checks the list of files, x. y. z. none, for executable files and prints the first
executable it encounters. If none are executable, $file is left set to to none, but it is not
printed.

Command Reference 105

case
Syntax

case string in
patternl [I pattern2...]) command-lz"stl
patternS [I pattern4...]) command-list2

esac

The case statement allows you to easily check several conditions and then process a
command-line if that condition evaluates to true. The first line receives a string which
is checked against each of the patterns to see if it matches. If the pattern matches, the
command-line directly following is executed.

Example
$ case $i in
> -d I -r) rmdir $dirl; echo "directory removed II
> -0) echo "option -0" ;;

> -*) echo "not a valid option" ;;
> esac

the case statement first checks $i against each option for a match. If it matches -d or -r,
the directory is removed (the I specifies logical or). If it matches -0 or -* (all others),
an appropriate response is printed. If the string does not begin with a -, no action is
taken.

106 Command Reference

cd
Syntax

cd
cd [path]
cd old new

Change directory from your current (or old) directory to your new directory.

Example
$ cd

This command transports you from your present working directory, PWD, to your home
directory, HOME, which becomes the new PWD.

$ cd -

The - transports you to the previous PWD, which is contained in OLDPWD.

$ cd .. /otherdir

This use of .. /otherdir changes the present working directory to the directory, otherdir,
which is directly above the one you are in currently.

$ cd /bin/
$ cd / /usr/

This example changes your present working directory to /bin/. Then, it replaces the old
directory (I) with the new directory (usr) and transports you to /usr/bin.

$ CDPATH=I$HOME/work:$HOME/src"
$ cd aardvark

In this example, the present working directory changes to $HOME/src/aardvark, unless
there is a directory named $PWD/aardvark or $HOME/work/aardvark. The first line sets
CD PATH to a list of directories to be searched if a full path name is not given to cd. So,
when you type the second line in the example, the shell first checks for $PWD/aardvark

$HOME/work/aardvark.

Command Reference 107

continue
Syntax

continue [n]

This command skips any lines following it in a for, while, until, or select loop and
restarts the loop at the top. If n is set, resume execution at the nth enclosing loop.

Example
$ for file in x y z
> do
> if [-x $file]
> then continue
> echo $file is executable
> fi
> echo $file is not executable
> done

This script checks for all executable files. If the file is executable the continue statement
skips both following echo statements and starts another loop. If the file is not executable,

. the script prints that it is not executable. If the file is executable, nothing is printed.

echo
Syntax

echo [arg ...]

This command writes to standard output all arguments, args, separated by blanks, or a
blank line if no arguments are specified.

Example
$ var='short'
$ echo 'This is a' $var 'example.'

In this example, echo prints the line This is a short example ..

echo lI\n\nusage: $0 argl arg2 11 >&2

This example is a line that might appear in a shell script. It prints to standard error,
first skipping two lines (\n), a usage message including the invocation name of the script,
which is designated by $0. Using double quotes rather than single quotes, causes $0 to
be interpreted. Certain characters can be used for formatting echoed strings. These

(

~scape cha~acters hmust hbe precSededhby ha backs~~Bsh .anKd ehncplosed in d.ou~leL' quotl~s for
f

~
mterpretatIOn suc as t e \n. ee t e c apter aS1C s rogrammmg lor a 1st 0 ~
these characters.

108 Command Reference

eva I
Syntax

eval [arg ...]

This command is unique because the command-line is scanned twice by the shell. First,
the shell interprets the command-line when it passes the args to the eval command and
then interprets it a second time as a result of executing the eval command. Consequently,
you can execute command-lines that normally would not be possible, as shown next.

Example
$ cmd='ps -ef > ps.out'
$ eval $cmd

When eval is executed the shell has already expanded cmd, so it runs ps -ef and redi­
rects the output to file ps. out. If eval was not used, redirection or pipes would not be
interpreted by the shell after parameter substitution.

exec
Syntax

exec [arg ...]

The exec command replaces the current shell with the new shell or program specified by
args without spawning a new process or subshell.

Example
$ exec 2>/dev/null

This example redirects the the shell's standard error to /dev/null where it is ignored by
the shell.

: ! exec ps -ef

From vi it is possible to run ps -ef without wasting time spawning another process.
Using:! causes vi to pass the command exec ps -ef to the shell for interpretation, and
then exec causes the shell to execute ps in place of itself.

Command Reference 109

exit
Syntax

exit [n]

Use this command to exit a shell. The n parameter, if set, specifies the exit status. If n
is not specified, the exit status is the same status as that of the most recently executed
command.

Example
$ if grep xxx myfile > /dev/null 2>&1
> then :
> else exit
> fi
$

This script searches myfile, using grep, for the string "xxx". If grep finds the string it
returns a 0 and writes the string to /dev/null, so the shell executes the null command
(":"). If the string is not found, or myfile isn't readable, the shell script exits with the
same return value as from grep. Notice that both standard output and standard error
from grep are ignored by sending them to / dev /null. If the third line instead read:

> else exit 15

the shell script would exit with a value of 15.

110 Command Reference

export
Syntax

export [name...]

This command marks name parameters to be passed to the environment for use by other
commands and subshells. The export command by itself lists all currently exported
values.

Example
PSi='hello: '
export PSi

In this example, the shell prompt is set to the string "hello: " which causes the same
string to be used by subshells.

For another example, in your. profile, which is read only at login time, add:

SHDEPTH= ' -i '
export SHDEPTH

initial depth; incremented in .kshrc.

Then in your . kshrc file, which is read whenever a shell starts up (depending on how
you configure things), add:

«SHDEPTH = SHDEPTH + i»

if [$SHDEPTH = 0]
then PSi=":; "
else PSi=": $SHDEPTH; "
fi

useful with ENTER key on HP terminals.

Now, in your login shell, your prompt will be :; ,and in subshells it will be ": i;

2; " , etc. where the number indicates the nested depth of the shell.
" ". , .

Command Reference 111

fe
Syntax

fc [-e editor] [-nlr] [first] [last]
fc -e - [old=new] [command]

The fc command is one of the three methods used for listing and editing command­
lines. In the first form, fc searches the history file for the command lines that contain
the commands specified by strings first through last and acts on them according to the
option specified (-nlr). The second line invokes the editor to replace the old string with
the new string in command-line specified by command and then execute the new version.

Example
$ fc -1
$ fc -e -

The first line lists the last 16 commands you have executed. The second line executes the
previous command which just happens to be fc -1 so the last 16 commands are displayed
again.

$ fc -1 ps

This lists all the commands in the history file that have been executed since the last ps.

$ fc -e - cd=ls cd

This command-line causes the replacement of cd with Is in the most recently exe­
cuted command in the history file, which contains a cd. After the replacement the
new command-line is executed.

See the chapter/on "Editing Command-lines" for a detailed explanation of fc.

112 Command Reference

fg
Syntax

fg [%n]

On the Series 800, the fg command places job n (the job's number), currently running
in the background or suspended, in the foreground. The current job is put into the
foreground, if n is not specified.

Example
$ fg %1

This places the command defined to the shell by the job number, 1, in the foreground.
See jobs for more information.

for
The for loop allows you to execute a command-line once for every new value assigned to
a parameter in a specified list.

Syntax
for parameter [in list]
do command-line
done

Example
$ for file in x y z
> do
> echo The file name is $file
> done

the first time through the loop the for statement takes the file x and prints it out. The
second time through the loop, y is printed out and the last time, z is printed out. When
the list is completely finished, the loop is exited.

Command Reference 113

function
Syntax

function name { shell_script }

or

name 0 {shell_script }

The function command is used to modularize programs. To create a function, use
function followed by the name and a shell script inclosed in curly brackets, {}, or use
just the name followed by parenthesis 0 and then { shell script}. Nothing is required
or allowed inside the parenthesis. To invoke the function, type the name followed by any
positional parameters that need to be passed in as arguments. Recursion is possible by
using the typeset command (see below). See the chapter "Basic Ksh Programming" for
details on functions.

Example
$ function exef
> {
> if [-x $1]
> then echo $1 is executable
> fi
> }
$
$ exef script

This simple function takes a file name ($1) as an argument and checks whether it is
executable. If it tests true, it prints out that the file is executable.

114 Command Reference

if
The if statement allows you to execute one or several commands if a certain condition
exists.

Syntax
if command-line
then diff_ command-line
else even_ diff_ command-line
fi

First, if checks if command-line is true. If it is then, diff_command-line is executed; if
it is not, even_diff_command-line is executed.

Example
if [$x = passwd]
then echo "Welcome to Korn"
else echo "Please log off"
fi

The if checks whether the value of x is equal to passwd. If it does equal, the first echo
line is printed; otherwise the second line is printed

jobs
Syntax

jobs [-1]

To list all the jobs currently running in your shell, including job number and status, use
the jobs command. Using the -1 option lists the process id directly after the job number,
as well.

Example
$ (sleep 20; date) t
$ jobs
$ jobs -1

This example puts a date program in the background to execute in 20 seconds, and then
looks at the waiting job using the two different command versions.

Command Referenee 115

kill
Syntax

kill [-signal] process id

This command cancels (kills) the designated process id using signal if specified. The
signals are specified by number or name; see the manual page signal(2) of the HP-UX
Reference for a list of signals. If signal is not specified, the kill uses a default signal 15
(SIGTERM) which causes software termination. Process ids can be displayed using the
ps command; see ps(l).

Example
$ sleep 20 8&
$ kill 1235

This example executes a sleep 20, which happens to be process 1235, then sends it a
SIGTERM (terminate).

$ sleep 20 8&
$ kill -9 %1

This starts sleep 20, which happens to be job 1, and then sends it a kill (SIGKILL). (

$ kill -1
$ kill -HUP 3140

Using the -1 option with kill lists the signal names. Then the second line sends a
SIGH UP to process 3140.

116 Command Reference

let
Syntax

let arg ...

This Korn Shell command allows for long integer arithmetic normally performed by the
expr command. Each arg is an arithmetic expression of shell parameters and operators
that are evaluated by the shell. A list of operators in decreasing order of precedence
follows:

Example
$ x=1

<=

$ let x=x+1

*

Operator

-

!

/ %

+ -

>= <

-- !=

=

Description

unary minus

logical negation

multiplication, division, remainder

addition, subtraction

> comparison

equals, not equals

assignment

In this example, $x is set to 1, then incremented to 2 using the let command. If the expr
command had been used a new process would have been created. Also, with let the $ is
not needed to obtain the value of x.

read x
y=14
if « x >= y »
then echo greater or equal
else echo less
fi

This script reads a value from the user, compares it to 14, and prints an appropriate
string based on the comparison. Using "(())" around the expression replaces:

let "x >= y"

(which must be quoted to allow blanks and prevent the> from being interpreted as an
I/O redirection). Again, the $ is not needed in front of x or y to obtain their values.

Command Reference 117

newgrp
Syntax

newgrp (arg...]

This command changes your group identity to the new group specified by argo If arg

is not set, it defaults to your login group. You must be a legal member of a group to
change to that group.

Example
$ newgrp other

This changes you from the current group identity to group other.

print
Syntax

print (-Rnprsu[n]] [arg ...]

The Korn Shell print command provides the same functionality as the echo command for
shell output. It prints the specified args dependent upon the option set. A description
of the options follows:

-R ignore all echo escape sequences except -n

-n do not add a new-line to output, similar to including \c in arg

-p write output to the process spawned with I k instead of standard output

-r ignore all echo escape sequences

-s write args into the history file

-un write to the file descriptor n

Example
$ print -s "# End of the day. II
$ history

This print puts the comment # End of the day. in your history file. Then, you can
easily determine the current day's commands when looking at your history file.

118 Command Reference

pwd
Syntax

pwd

This command prints the current working directory.

Example
$ cd
$ pwd
/users/guest

The first line places you in your $HOME directory and pwd prints where it is.

read
Syntax

read [-prsu(n]] [name?prompt] (name ...]

This shell input mechanism reads a line from standard input and places each word into
the parameter name using the separator specified by the IFS shell parameter. If names
are not specified, the line is read into the Korn Shell REPLY variable (see select). If
the ?prompt is included the user is prompted interactively with prompt. The definitions
of the options are:

-p read from the output of the process spawned with 1&

-r do not interpret the \ at the end of a line as line continuation

-8 put the input line into the history file

-un read the input from file descriptor n

Command Reference 119

Example
$ echo 'What is your name? \c'
$ read name
$ echo "Hello, $name ... "

The first line prints a prompt and leaves the cursor one blank to the right of the ? The
next line reads in text from the user and saves it in $name. Last, a line is printed which
includes the value of $name (since the string is in double, not single, quotes).

read fieldl field2 junk

This reads the first whitespace-separated word from an input line into $fieldl, the second
into $field2, and the rest into $junk, which is presumably ignored.

readonly
Syntax

readonly [name...]

This command marks the parameter names as readonly, such that they cannot be as­
signed values. The shell issues an error if you try to overwrite a names value. A subshell
does not inherit a variable's readonly setting. If you give no names, all the readonly (
parameters are listed. \\

Example
$ who='who am i'
$ readonly who

This example sets $who to the output of the command-line who am i, and then marks
$who so it can't be changed.

120 Command Reference

return
Syntax

return [n]

The return command stops execution of a function and then returns to the calling shell
script with an exit status of n. If n is not specified, the returning status is that of the last
command executed within the function. When return is invoked outside the boundaries
of a function it acts as an exit.

Example
$ if grep xxx myfile > /dev/null 2>&1
> then :
> else return 4
> fi
$

This is the same example used in the exit section. The only difference in the scripts
response is that it returns with the status of 4.

$ searchO {
> if grep xxx "$1" > /dev/null 2>&1
> then return 1
> else return 0
> fi
> }
$
$ search myfile

The first line defines a function called search which checks a given file for a string, "xxx".
This function inverts the normal return value of grep. Therefore, if the string is found,
the function returns 1, else if the string is not found or the file is not readable, it returns
o.

Command Reference 121

select
Syntax

select parameter in words
do

command_lines
done

This command prints on the screen a set of words each preceded by a number. Then the
PS3 prompt is printed and the line typed by the user is read into the REPLY variable. If
this line consists of the number of one of the listed words, then the value of the parameter
is set to the corresponding word and REPLY is set to the input line (Le., the number). If
this line begins with anything else, parameter is set to the null. If you input nothing, type
I Return I, it reprompts for input. No matter which way it evaluates, the command_lines
are executed. The loop continues until a break is encountered.

Example
$ select char in a e i 0 U

> do
> echo $char is a vowel.
> done
1) a
2) e
3) i
4) 0

5) u
#? 1
a is a vowel.
#? 4
o is a vowel.
#? I Break I

all the vowels in words are printed out with a number in front. The default PS3 prompt,
#?, is printed and waits for a number and I Return I to be typed in. When it receives the
number, it echos that the corresponding letter is a vowel and then prompts for the next
entry. It continues prompting until a I Break 1 is hit. If you designate 6, which is not set,
a null (is a vowel) is returned.

122 Command Reference

set
Syntax

set [-aefhkmnostuvx] [-0 option . ..] [arg...]

This command is used to set shell options as well as reset the values of positional pa­
rameters (arg). See the chapter "Advanced Concepts and Commands" for a detailed
explanation of the various options available with set.

Example
$ set

If you just type set, it lists all your currently set shell variables.

$ set -f
$ echo x*y
$ set +f

In this example, you echo x*Y without expanding it against all the filenames in the
current directory. This is a result of the -f option which disables file name substitution.
U sing the + turns the previously set f option off.

$ set -0 vi

This turns on the vi-mode history editing.

Also, set is used to set the arguments of an array:

$ set third first second
$ echo $1 $2 $3
third first second

Command Reference 123

shift

Syntax
shift [n]

The shift command moves positional parameters ($1, $2, $3, etc.) left one position such
that $1 now contains the value of $2 and $2 contains the value of $3, etc.

Example
yflag=O
zopt=' ,

for arg in "$0"
do

if ["x$arg" = x-y]
then yflag=1; shift
else zopt="$2"; shift 2
fi

done

In this shell script, $yflag is initialized to 0 and $zopt to the null string. It checks all
the parameters ("$@") passed to the script. If anyone of them matches -y, $yflag is set
to 1. Using x$arg avoids asking test (which is invoked by the brackets, [l) to interpret
-y as an option. If any shell argument doesn't match -y, it saves the next argument ($2)
in $zopt. Using quotes preserves any whitespace embedded in $2. Also, note the shifting
of arguments such that $2 has the correct value when it's needed. $0 is only evaluated
once, before the first shift takes place.

124 Command Reference

test
Syntax

test expr

or

[expr]

This command tests or evaluates the expr and if it evaluates true returns a zero exit
status. If it evaluates false it returns a nonzero exit status. The test command can be
replaced by appropriately spaced brackets ([]).

A extensive list of expr forms are covered in the HP-UX Reference on the test(l) manual
page. The four unique to the Korn Shell are:

-L file

filel -nt jile2

filel -ot jile2

filel -ef jile2

Example
$ for file in 'Is'
> do
> if [-x $file]

Returns true if file is a symbolic link

Returns true if filel is newer than file2

Returns true if filel is older than file2

Returns true if jilel has the same device and i-node
number as jile2

> then echo $file is executable
> fi
> done
$

This script tests a file for executability, using brackets around the expression, and then
prints that the file is executable if the expr returns true.

$ if [$file -nt $oldfile -a $file -ot $newfile]
> then echo $file is newer
> fi

This example, echos the filename only if it is newer then the filename in $oldfile and
older than $newfile.

Command Reference 125

time
Syntax

time command-line

This keyword executes the command-line and then displays the execution time of the
user, the system and the command-line.

Example
$ time Is

This line lists out the files in the current directory followed by three lines, real. user.
sys, showing execution times.

times
Syntax

times

This command simply prints the accumulated user and system times, to the nearest
hundredth of a second, for the shell and for processes run from the shell.

Example
$ times

126 Command Reference

trap
Syntax

trap [arg] [signal...]

This command waits for signals sent to the shell and traps it. Then it executes, arg, a
command-line. If signal is 0, then arg is only executed once the shell is exited. After
setting traps, typing trap with no args lists all commands associated with signals.

Example
$ trap 'echo "Command failed. II

' ERR

This sets a trap which says Command failed. any time a command run by the shell returns
a non-zero value. See the "Advanced Concepts and Commands" chapter for a detailed
explanation of signals and traps.

typeset
Syntax

typeset [-HLRZfilprtux[n] [name[=value]] ...]

The typeset command sets the shell variable name equal to value whose type depends
on the options used. When invoked inside a function, the value of the name is only
temporary (i.e., local) until the function is exited; then the original value is restored.

If instead of the - in front of the options, a + is used, the type is turned off. If no
options or specific options and no names are given the parameters with those options are
displayed.

Example
$ typeset -i num1 num2 total
$ typeset
$ typeset -r

This example defines the variables num1. num2, and total as integers. Then all the
attributes of all the parameters are listed followed by the -r or readonly parameters. See
the "Advanced Concepts and Commands" chapter for a detailed explanation of all the
options.

Command Reference 127

ulimit
Syntax

ulimit [-fp] [n]

This command sets limits, n, on certain resources a spawned process uses such as time,
stack area, files sizes, etc. See the "Advanced Concepts and Commands" chapter for a
detailed explanation of all the various options.

Example
$ ulimit -f 1000

This line limits the size of files written by the shell or a spawned process to 1000 disk
blocks.

umask
Syntax

umask [nnn]

This command sets the user's file-creation mask to nnn unless nnn is omitted, then the
current value of the mask is displayed.

Example
$ umask 022

If this line was in your .profile, it would set your process umask value to 022, which
means a file created later will be 644 (rw-r- -r- -) rather than 666 (rw-rw-rw-), or 755
(rwxr-xr-x) instead of 777 (rwxrwxrwx). Actually, saying umask 022 does not cause the
execute (x) bits to be turned off, because they are normally not turned on at create time
but later by chmod calls. See the Introduction to UNIX System V chapter for a detailed
explanation.

128 Command Reference

!
\

una lias
Syntax

unalias name ...

This command reverses the affect of the alias command on name and removes it from
the alias list.

Example
$ alias cd='cd; Is'
$ unalias cd

This creates an alias and then removes it.

unset
Syntax

unset [-f] name ...

The unset command removes the specified name (or function) that has been set by the
shell. You must use the -f option to unset a function. Variables with readonly set cannot
be unset.

Example
$ param=6
$ echo $param
6
$ unset param
$ echo $param

The variable param is set to 0 and the unset unsets the variable.

Command Reference 129

wait
Syntax

wait [n]

The wait command suspends the shell until the spawned process n terminates and then
reports the processes termination status. If n is not specified, currently active processes
are waited for. The shell resumes after all processes terminate or when it receives a signal
(e.g., I Break I).

Example
$ cogitate gravity &
$ mailx
$ wait
$ rm gravity

In this example you run a very slow program (cogitate) in the background, then read
your mail, and when done, wait for the background job to finish (if it hasn't already)
before removing the file it used.

whence
Syntax

whence [-v] name ...

This unique Korn Shell command indicates for each name how it would be interpreted
if used as a command name. If the -v option is set, the results are more verbose.

Example
whence history

This example discovers that history is actually an exported alias for fc -1.

See the "Advanced Concepts and Commands" chapter for a detailed explanation.

130 Command Reference

while/until
Syntax

while list
do list2
done

This loop continues executing command-line and processing through the list as long
as the item an list continues to evaluate true. Once an item evaluates false, the loop is
exited.

Example
$ x=O
$ while [$x != 10]
> do
> let x=x+1
> echo $x
> done
1
2
3
4
5
6
7
8
9
10

This loop initializes the variable x, and then increments and prints out the value until it
equals 10 and you exit the loop. The until loop has the same syntax as while. However,
it executes until a non-zero is returned and always executes the loop at least once.

Command Reference 131

Notes

132 Command Reference

Index

a
.. " " " 15

* .. 27, 45
? ... 15, 27, 46
@ .. , 45
1 .. 3, 21, 32
1& ... 22, 64, 67, 89
'c •..•..••...•••..••...•..•..•.......•...•...•...•..••...••...•....•.•... 28
, .. 28
c •• 28,48
\ .. 28
< .. 29
« ... 29
> .. 29
» ... 29
.. 15, 30, 45, 46, 63
.. 46
$.. 9,28,45
$* ... 45
$@ .. 45
% .. 8, 9, 30, 46, 85
%+ .. 85
%% .. 46,85
& .. 23,24,84
&& .. 24
() ... 48, 78
[] ... 69,82
$() .. 48
{} ... 45, 62, 78
- .. 15
%- ... 85
abbreviating commands .. 31
accessing arrays ... 77
accessing history file .. 52, 57, 60
addition .. 75

Index 133

alias ... 3, 91, 92
alias .. 13, 31, 103
aliases:

default ... 33, 38
definining rules ... 36
exported ... 33
tracked .. 33
unsetting ... 38

aliasing .. 31, 32
aliasing features ... 36
argument .. 3
arithmetic evaluation .. 75
array .. 45, 77
automatically set variables ... 17

b
back quotes ... 28, 48
back slash .. 28
background jobs ... 84
background process .. 15, 24
bg .. 84, 105
blank ... 3
bold .. 5
Bourne Shell .. 2, 8, 9
brackets [] .. 5, 27, 69, 82
break ... 73, 105
breaking ... 73
built-in .. 3, 91, 92

c
C Shell. .. 2,8
calling functions. .. 78, 79
case .. 70, 106
cat ... 23, 29, 49
cd .. 13, 15, 32, 107
CDPATH .. 14, 15
characters, escape ... 49
child process .. 22
chmod .. 62
chsh .. 9
clear .. 19

134 Index

closing input/output ... 29
COLUMNS ... 14, 15
command ... 3
command interpreter ... 1, 2,61
command mode ... 57
command precedence .. 92
command separators ... 23, 24
command substitution ... 48
command terminators .. 23, 24
command words, types of .. 92
command-line .. 3
command-line editing .. 51
commenting .. 30, 63
completing:

file names .. 25, 26
path names. .. 25, 26

computer font ... 5
conditional statements ... 68
continue .. 74, 108
continuing .. 74
control key ... 59
controlling jobs ... 81
conventions ... 45
coprocessing .. 22, 89
creating aliases 32
creating jobs .. 81
creating scripts ... 62
csh ... 8
curly brackets. .. 45, 62, 78
customizing environment ... 10

d
date ... 23
default aliases .. 33, 38
default shell ... 9
default variables .. 17
defining rules, aliases .. 36
division .. 75
double quotes ... 28
du ... 83

Index 135

e
echo .. 9, 19, 23, 24, 44, 64, 65, 108
editing command-lines ... 51
editing in-line ... 59
editing lines .. 53
editing mode ... 51, 53
EDITOR .. 11, 14, 15, 56, 59
ellipses .. 5
emacs .. 53
emacs in-line editing mode .. 59
enabling emacs editor mode ... 59
enabling vi editor mode .. 56
ENV .. 10, 11, 14, 15, 33, 87
environment .. 10
environment variables ... 5, 10
equal .. 75
error, standard .. 29
escape character .. 49, 66
escape key .. 25, 26, 56, 59
/ etc/passwd .. 8, 9
/etc/profile ... 10 (
eval .. 109
exec .. 109
executable files .. 62, 74
executing scripts .. 62
exit .. 19, 110
exiting ... 19
expansion:

file name ... 25, 26
path name. .. 25, 26

export .. 10, 11, 33, III
exporting aliases .. 33
exporting variables .. 10

f
fc ... 52, 53, 112 4
FCEDIT .. 14, 15, 54 ~

features of Korn Shell ... 2
fg .. 84, 113
file name completion ... 25, 26

136 Index

file name substitution .. 27
file name substitution metacharacters .. 27
flags ... 3, 15, 93, 94, 97
for ... 72, 113
foreground jobs ... 84
function ... 3, 42, 44, 78, 80, 91, 92
function .. 78, 114

9
global .. 10, 11
gmacs .. 53
gmacs in-line editing mode .. 59

h
HISTFILE 14, 15, 52
history .. 52
history file .. 52, 57, 60
HISTSIZE ... 14, 15, 52
HOME , ,. 11, 14, 15, 19
human interface 1,2

.
I

identifier .. 3
if .. 68, 114
IFS .. 14, 15
ignoreeof .. 18
in-line editing .. 51, 53, 59
input mode ... 57
input, standard ... 29
inputting data .. 64
integer .. 35, 97
integer arithmetic evaluation .. 75
interactive shell ... 11, 87
invoking a shell .. 9
italics ... 5

.
J

job .. 81
job control ... 81

Index 137

job number ... 85
job number substitution .. 30
jobs ... 81, 82, 115
jobs:

background ... 84
controlling .. 81
creating .. 81
foreground ... 84
killing ... 86
moni toring ... 82
suspending ... 83

k
kernel ... " 7
keyword parameters ... 42, 43
kill .. 86, 116
killing jobs ... 86
Korn Shell:

definition ... 1, 8
versus other shells .. 2

ksh .. 1,8
ksh flags ... 94
.kshrc .. 10, 11, 13,62, 87

I
let ... 75, 117
limits, process ... 101
LINES ... 14, 16
list ... 3
11 ... 23
logging in ... 8
logging out ... 19
login program ... 8
.logout .. 19
loop:

for .. 72
until .. 72
while .. 72

Ip ... 23,24
Is ... 23, 24, 27, 33

138 Index

m
MAIL. .. 11, 14, 16
mail .. 23, 24, 29
MAIL CHECK .. 14,16
MAILPATH .. 14, 16
matching file names ... 27
matching patterns ... 46, 70
metacharacter ... 3, 21, 27, 28, 29, 30
modes:

command .. 57, 59
emacs .. 59
enabling .. 56, 59
gmacs .. 59
input .. 57, 59
vi ... 56

modularization .. 78
monitoring jobs ... 82
more ... 23
multiplication ... 75

n
name ... 3
named parameters. .. 42,43
newgrp .. 118
not equal ... 75
number:

job .. 81
process .. 8

o
OLDPWD .. 14, 16
options ... 3, 15, 93, 94, 95, 97
options,fiags .. 98
output, standard .. 29
outputting data .. 64, 65, 67

P
PAM ... 8
pam ... 8
parameter ... 3

Index 139

parameter:
definition ... 42
keyword .. 42
name .. 42
positional .. 42, 44
setting ... 44
shifting .. 44
substitution ... 42, 45, 46

parent process .. 22
parenthesis ... 48, 78
passing data to scripts ... 64
PATH ... 11, 14, 16, 33
path name completion ... 25, 26
pattern matching .. 46, 70
PID ... 22
pipe .. 3, 21
pipeline ... 3
pipes, two-way .. 89
positional parameters ... 42, 43, 44
PPID ... 14, 16, 22
precedence of commands ... 92
print .. 64, 65, 67, 89, 118 ~

printing data ... 65, 67
process .. 8
process, child ... 22
process id ... 8
process identifier ... 8
process limits .. 101
process number ... 15
process, parent .. 22
. profile ... 10, 11, 19, 33, 52, 56, 62
programming language .. 2,61
prompt ... 8
ps .. 16, 22, 23, 29, 81
PS1 ... 9, 14, 16
PS2 .. 14, 16, 29
PS3 .. 14, 16, 71
PWD .. 14,16
pwd ... 32, 119

140 Index

q
quotes:

back ... 28,48
definitions .. 28
double ... 28
single .. 28

quoting metacharacters .. 28

r
RANDOM ... 15, 17
read .. 17, 64, 89, 119
reading data .. 64
readonly .. 97, 120
recursive function ... 80
redirecting input/output ... 29
redirection symbols .. 29
removing aliaes ... 38
REPLY .. 15, 17, 64, 71
reserved word ... 3, 91, 92
return .. 79, 121
returning from functions ... 79
rksh ... 17

s
scripts ... 62
SECONDS ... 15, 17
select .. 16, 17, 71, 122
separating commands .. 23, 24
set 13, 14, 17, 18, 33, 44, 56, 59, 84, 87, 93, 96, 123
setting aliases ... 32
setting environment/shell variables .. 10
setting . kshrc ... 13
setting parameters. .. 42, 43, 44
setting. profile ... 11
sh .. 8
SHELL .. 9, 15, 17
shell ... 2, 7
shell parameters ... 10
shell parameters/variables ... 15, 16, 17
shell script ... 62, 78

Index 141

shell variables ... 10
. sh_history .. 15, 52
shift ... 124
shifting positional parameters ... 44
signals .. 100
simple-command ... 3
single quotes .. 28
slash, back ... 28
sort .. 21, 32, 33
spawns .. 8
standard error .. 29
standard input .. 29
standard output ... 29
START .. 11
stderr ... 29, 64
stdin .. 29
stdout ... 29
subscript ... 45, 77
subshell ... 9
substituting parameters .. 45, 46
substitution:

command
file names

.. 48
27

parameter .. 42
tilde ... 39

subtraction ... 75
suspending jobs ... 83
system structure ... 7

t
TERM ... 11
terminating commands ... 23, 24
terminating the shell ... 18
test ... 68, 69, 125
tilde ... 39
tilde substitution .. 30, 39
time .. 126
times ... 126
TMOUT ... 15, 17
tracking aliases ... 33
trap ... 13, 19, 100, 127

142 Index

trapping signals .. 100
-~

two-way pipes .. 22, 64, 67, 89
type ... 91
typeset .. 35, 43, 97, 99, 127

u
ulimit ... 101, 128
umask ... 128
unalias ... 38, 129
unset ... 129
unsetting aliases .. 38
until ... 72, 131
utilities ... 7

v
value of a parameter ($) ... 9, 42
vi ... 53, 56
vi in-line editing mode ... 56
VISUAL ... 15, 17, 56, 59

w
wait 130
whence .. 91, 130
while ... 72, 131
whitespace .. 3
who ... 21, 23, 32, 33, 38
whoami ... 23, 24
word .. 3

Index 143

Notes

144 Index

Table of Contents

BC: An Arbitrary-Precision Desk-Calculator Language
Running BC. .. 2
Simple Computations with Integers 2
Bases .. 4
Scaling .. 7
Functions .. 8
Subscripted Variables (Arrays) .. 10
Control Statements .. 11
Some Details .. 14
Three Important Things .. 15
Notation .. " 16

Tokens ... 16
Comments .. 16
Identifiers. .. 16
Keywords. .. 16
Constants .. 17
Expressions ... 17
Function calls ... 18
Assignment Operators .. 21
Relations ... 21
Storage classes. .. 22
Statements .. 22
Expression statements .. 22
Compound statements. .. 22
Quoted string statements ... 23
Quit .. 24

Index , 25

Table of Contents

ii Table of Contents

BC: An Arbitrary-Precision
Desk-Calculator Language
BC is a language and a compiler for doing arbitrary-precision arithmetic on your HP­
UX system. The output of the compiler is interpreted and executed by a collection of
routines which can input, output, and do arithmetic on indefinitely large integers and
on scaled fixed-point numbers. These routines are based on a dynamic storage allocator.
Overflow does not occur until all available internal memory is exhausted.

The BC language has a complete control structure as well as immediate-mode operation.
Functions can be defined and saved for later execution. A small collection of library func­
tions is also available, including sin, cos, arctan, log, exponential, and Bessel functions
of integer order.

BC and BS are similiar in capabilities, with BS being a more complete language support­
ing strings and I/O, but limited to "ordinary" double-precision floating point numbers.
BC is limited in operating on numeric data, but operates on arbitrary percision numbers
and arbitrary bases. The selection of one or the other is primarily based on the need
for large value or high percision calculations. If these are not needed, BS may be the
better choice. There is no significant advantage of one over the other for activities such
as balancing your checkbook, unless you are the federal government.

Some of the uses of this compiler are to:

• perform computations on large integers

• perform computation accurate to many decimal places

• convert numbers from one base to another.

BC supports a scaling provision that permits the use of decimal point notation. Provision
is also made for input and output in bases other than decimal. Numbers can be converted
from decimal to octal by simply setting the output base te equal eight.

The maximum number of digits that can be handled depends on the amount of internal
memory in the machine. Manipulation of numbers with many hundreds of digits is
possible.

The syntax of BC is very similiar to the C programming language. Thus, users who are
familiar with C can easily use BC.

BC: An Arbitrary-Precision Desk-Calculator Language 1

Running BC
To use be, type in:

be

Your prompt is no longer displayed, and the BC calculator is ready for use.

To exit be and return to your shell, type in:

Your shell's prompt is displayed showing that you are no longer using be.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The following operators may be used:

Operator Meaning

+ addition

subtraction

/ division

% modulo (remaindering)

exponentiiation

Division by zero produces an error comment.

2 BC: An Arbitrary-Precision Desk-Calculator Language

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the unary minus sign). The expression

7+ -3

is interpreted to mean that -3 is to be added to 7 for a result of

4

More complex expressions with several operators and with parentheses are interpreted
using the following mathematical precedence hierarchy:

Precedence Operator

Highest Parentheses (may be used to force any order of operations)
Functions, user-defined and machine-resident
Exponentiation (right to left)
- (unary minus), + (unary plus)
Multiplication and Division (left to right)
Addition and Subtraction (left to right)

Lowest All relational operators (=, <, >, ...)

The following expressions are equivalent:

a/b*c and (a/b) *c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x.

When, as in this case, the outermost operator is an =, the assignment is performed but
the result is not printed. Only 26 of these named storage registers are available.

BC: An Arbitrary-Precision Desk-Calculator Language 3

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt (191)

x

produce the printed result

13

Bases

execute assignment
request current value of x

current value of x

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For exam­
ple, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however, of trying to
change the input base back to decimal by typing

ibase = 10

because the number 10 is interpreted as octal, so statement will have no effect.

If you use hexadecimal notation, the characters A through F are permitted in numbers
(no matter what base is in effect) and are interpreted as digits having values 10 through
15, respectively. The statement

ibase = A

always restores decimal input base no matter what the current input base is.

4 BC: An Arbitrary-Precision Desk-Calculator Language

Negative and large positive input bases are permitted but useless. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 and greater than
16.

The contents of obase, initially set to 10, are used as the base for output numbers. The
lines

obase 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are
permitted.

An obase Gotcha
Certain difficulties arise whenever formatting systems are developed to accommodate
arbitrary number systems. The problems are obvious to users having extensive math­
emtical experience. For those who have no formal contact with the problem, ignorance
may well be bliss. A brief synopsis is provided here. For more information, consult a
suitable mathemtical text.

Consider the following instructions. obase is set to 2, then 10 and 12 are added. The
result is 22 decimal, displayed in binary format.

obase = 2
12 + 10
10110

Suppose that you want to know what the current value of obase is. Type obase I Return I.
The result is as follows:

obase
10

Printing the base always yields a variation of the digit one followed by the digit zero,
formatted according to the current value of obase. Typing

obase - 1

produces information that is more useful.

BC: An Arbitrary-Precision Desk-Calculator Language 5

Use of Bases
Large numbers can be output in groups of five digits by setting obase to 100000. Strange
(Le., 1,0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are
continued end with a slash (\). Decimal output conversion is practically instantaneous,
but output of very large numbers (Le., more than 100 digits) with other bases is rather
slow. Non-decimal output conversion of a one hundred digit number takes about three
seconds.

It is best to remember that ibase and obase have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

6 BC: An Arbitrary-Precision Desk-Calculator Language

Scaling
A third special internal quantity called scale is used to determine the scale of calculated
quantities. We refer to the number of digits after the decimal point of a number as its
scale. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules:

• For addition and subtraction, the scale of the result is the larger of the scales of
the two operands. In this case, there is never any truncation of the result.

• For multiplications, the scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the
contents of the internal quantity scale and always less than 100.

• The scale of a quotient is the contents of the internal quantity scale. The scale of
a remainder is the sum of the scales of the quotient and the divisor.

• The result of an exponentiation is scaled as if the implied multiplications were
performed. An exponent must be an integer.

• The scale of a square root is set to the maximum of the scale of the argument and
the contents of scale.

All of the internal operations are actually carried out in terms of integers, with digits be­
ing discarded when necessary. In every case, truncation is used when digits are discarded.
No rounding is ever performed.

The contents of scale must be no greater than 99 and no less than o. It is initially set
to o.

The internal quantities scale, ibase, and obase can be used in expressions just like other
variables. The line

scale = scale + 1

BC: An Arbitrary-Precision Desk-Calculator Language 7

increases the value of scale by one, and the line

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be retained
in internal computation even when ibase or obase are not equal to 10. The internal
computations (which are still conducted in decimal, regardless of the bases) are performed
to the specified number of decimal digits, never hexadecimal or octal or any other kind
of digits.

Functions
The name of a function is a single lower-case letter. Function names are permitted to
collide with simple variable names. Twenty-six different defined functions are permitted
in addition to the twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by
one or more statements, which make up the body of the function, ending with a right
brace}. Return of control from a function occurs when a return statement is executed
or when the end of the function is reached. The return statement can take either of the
two forms

return
or

return (x)

In the first case, the value of the function is 0, and in the second, the value of the
expression in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

8 BC: An Arbitrary-Precision Desk-Calculator Language

There can be only one auto statement in a function and it must be the first statement in
the definition. These automatic variables are allocated space and initialized to zero on
entry to the function and thrown away on return. The values of any variables with the
same names outside the function are not disturbe~. Functions may be called recursively
and the automatic variables at each level of call are protected. The parameters named
in a function definition are treated in the same way as the automatic variables of that
function with the single exception that they are given a value on entry to the function.
An example of a function definition is

define a(x.y){
auto z
z = x*y
return(z)

}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the
wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them. For example:

bO

If the function

a

above has been defined, then the line

a(7.3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3.4) .5)

would cause the value of x to become 60.

BC: An Arbitrary-Precision Desk-Calculator Language 9

Subscripted Variables (Arrays)
A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and
the expression in brackets is called the subscript.

Only one-dimensional arrays are permitted.

The names of arrays are permitted to collide with the names of simple variables and
function names. Any fractional part of a subscript is discarded before use.

Subscripts must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f (a [J)
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use
of the function, and thrown away on exit from the function. Array names which refer to
whole arrays cannot be used in any other contexts.

10 BC: An Arbitrary-Precision Desk-Calculator Language

Control Statements
The if, while, and for statements may be used to alter the flow within programs or
to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the
following way

or

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

w here two expressions are related by one of the six relational operators:

Operator Meaning

< less than

> greater than

<= less than or equal

>= greater than

equals

!= not equal

Beware of using = instead of == in a relational. Unfortunately, both of them are legal,
so you will not get a diagnostic message, but = will do an assignment, not a comparison.

The if statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The while statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false,
control passes to the next statement beyond the range of the while.

BC: An Arbitrary-Precision Desk-Calculator Language 11

The f or statement begins by executing expression1. Then the relation is tested and, if
true, the statements in the range of the for are executed. Then expression2 is executed.
The relation is tested, and so on. The typical use of the for statement is for a controlled
iteration, as in the statement

for(i=l; i<=10; i=i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the
control statements.

define f(n){
auto i. x
x=l
for(i=l; i<=n; i=i+l) x=x*i
return (x)
}

The line

f (a)

prints a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n.m){
auto x. j
x=1
for(j=l; j<=m; j=j+l) x=x*(n\-j+l)/j
return (x)
}

12 BC: An Arbitrary-Precision Desk-Calculator Language

The following function computes values of the exponential function by summing the
appropriate series without regard for possible truncation errors:

scale = 20
define e(x){

}

auto a. b. c. d. n
a = 1
b = 1
c = 1
d = 0
n = 1
while (1==1) {

}

a = a*x
b = b*n
c = c + alb
n = n + 1
if(c==d) return(c)
d = c

BC: An Arbitrary-Precision Desk-Calculator Language 13

Some Details
There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several
statements on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used
anywhere that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+l]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manual for their exact workings.

x=y=z
x += y
x -= y
x =* y
x =/ y
x =% y
x =A Y

is the same as
x = x+y
x = -+y
x = x*y
x = x/y
x = x'/.y
x = x-y

x=(y=z)

Even if you don't intend to use the constructs, if you type one inadvertently, something
correct but unexpected may happen.

Note

In some of these constructions, spaces are significant. There is a
real difference between x=-y and x= -yo The first replaces x by x-y
and the second by -yo

14 Be: An Arbitrary-Precision Desk-Calculator Language

Three Important Things
• To exit a BC program, type quit or I CTRL ~[QJ.

• There is a comment convention identical to that of C. Comments begin with /* and
end with */.

• There is a library of math functions which may be obtained by typing at command
level

be -1

This command will load the following library functions:

• sin (named s)

• cos (named e)

• arctangent (named a)

• natural logarithm (named 1)

• exponential (named e) and

• Bessel functions of integer order (named j (n, x)) .

The library sets the scale to 20.

If you type

be file

be will read and execute the named file or files before accepting commands from the
keyboard. In this way, you may load your favorite programs and function definitions.

BC: An Arbitrary-Precision Desk-Calculator Language 15

Notation

Tokens
Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs, or comments. Newline characters or semicolons separate
statements.

Comments
Comments are introduced by the characters /* and terminated by */.

Identifiers
There are three kinds of identifiers:

• Ordinary identifiers include the characters a through z.

• Array identifiers are followed by square brackets, possibly enclosing an expression
describing a subscript. Arrays are singly dimensioned and may contain up to 2048
elements. Indexing begins at zero so an array may be indexed from 0 to 2047.
Subscripts are truncated to integers.

• Function identifiers are followed by parentheses, possibly enclosing arguments.

All three types consist of single lower-case letters. The three types of identifiers do not
conflict; a program can have a variable named x, an array named x[] and a function
named xO , all of which are separate and distinct.

Keywords
The following are reserved keywords:

• ibase
.obase

• while

• length

• if

• for

• auto

• sqrt

• break

• quit

16 Be: An Arbitrary-Precision Desk-Calculator Language

• scale

• define

• return

!

~

Constants
Constants consist of arbitrarily long numbers with an optional decimal point. The hex­
adecimal digits A through F are also recognized as digits with values 10 through 15,

respectively.

Expressions
The value of an expression is printed unless the main operator is an assignment. Prece­
dence is the same as the order of presentation here, with highest appearing first. Left or
right associativity, where applicable, is discussed with each operator.

Named Expressions
Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value
stored in the place named.

Simple Identifiers
Simple identifiers are named expressions. They have an initial value of zero.

Array Elements
Array elements are named expressions. They have an initial value of zero.

Scale, Ibase and Obase
The internal registers scale, ibase and obase are all named expressions .

• scale is the number of digits after the decimal point to be retained in arithmetic
operations. Scale has an initial value of zero and a maximum possible value of 99.

• ibase and obase are the input and output number radix respectively. Both ibase
and obase have initial values of 10.

BC: An Arbitrary-Precision Desk-Calculator Language 17

Function calls
A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the function arguments. A whole array passed
as an argument is specified by the array name followed by empty square brackets. All
function arguments are passed by value.

As a result, changes made to the formal parameters have no effect on the actual ar­
guments. If the function terminates by executing a return statement, the value of the
function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

sqrt(expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the
value of scale, whichever is larger.

length (expression)

The result is the total number of significant decimal digits in the expression. The scale
of the result is zero.

scale(expression)

The result is the scale of the expression. The scale of the result is zero.

Constants
Constants are primitive expressions.

Parentheses
An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

18 BC: An Arbitrary-Precision Desk-Calculator Language

Unary operators
The unary operators bind right to left.

-(expression)

The result is the negative of the expression.

++(named-expression)

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

-(named-expression

The named expression is decremented by one. The result IS the value of the named
expression after decrementing.

(named-expression)++

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

(named-expression)--

The named expression is decremented by one. The result IS the value of the named
expression before decrementing.

Exponentiation Operator
The exponentiation operator binds right to left.

(expression)-(integer_expression)

The result is the first expression raised to the power of the second expression. The second
expression must be an integer. If a is the scale of the left expression and b is the absolute
value of the right expression, then the scale of the result is:

min(axb,max(scale,a))

BC: An Arbitrary-Precision Desk-Calculator Language 19

Multiplicative Operators
The operators *, /, % bind left to right.

(expression) * (expression)

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

mine a+b,max(scale,a,b))

(expression) / (expression)

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

(expression) % (expression)

The % operator produces the remainder of the division of the two expressions. More
precisely, a%b is a-a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale.

Additive Operators
The additive operators bind left to right.

(expression) + (expression)

The result is the sum of the two expressions. The scale of the result is the maximum of
the scales of the expressions.

(expression) - (expression)

The result is the difference of the two expressions. The scale of the result is the maximum
of the scales of the expressions.

20 BC: An Arbitrary-Precision Desk-Calculator Language

Assignment Operators
The assignment operators bind right to left.

named_ expression = expression

The above expression results in assigning the value of the expression on the right to the
named expression on the left.

named_ expression =+ expression

named_expression =- expression

named_expression =* expression

named_ expression = / expression

named_ expression =% expression

named_ expression = A expression

The result of the above expressions is equivalent to named expression named expression
OP expression, where OP is the operator after the = sign.

Relations
Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

expression < expression

expression > expression

expression <= expression

expression >= expression

expression == expression

expression != expression

BC: An Arbitrary-Precision Desk-Calculator Language 21

Storage classes
There are only two storage classes in BC, global and automatic (local).

• Only identifiers that are to be local to a function need be declared with the auto
command.

• The arguments to a function are local to the function.

• All other identifiers are assumed to be global and available to all functions.

• All identifiers, global and local, have initial values of zero.

Identifiers declared as auto are allocated on entry to the function and released on return­
ing from the function. They therefore do not retain values between function calls. auto
arrays are specified by the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in C. On entry to
a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to
these names refers only to the new values.

Statements
Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

Expression statements
When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

Compound statements
Statements may be grouped together and used when one statement is expected by sur­
rounding them with { }.

22 BC: An Arbitrary-Precision Desk-Calculator Language

Quoted string statements
"any string"

This statement prints the string inside the quotes.

If Statements
if (relation) statement

The statement is executed if the relation is true.

While Statements
while (relation)statement

The statement is executed while the relation is true. The test occurs before each execution
of the statement.

For Statements
for (expression; relation; expression)statement

The for statement is the same as

first-expression
while (relation) {

statement
last-expression

}

All three expressions must be present.

Break Statements
break

Break causes termination of a for or while statement.

Auto Statements
auto ordinary_identifier.array_identifier[]

The auto statement causes the values of the identifiers to be pushed down. The identifiers
can be ordinary identifiers or array identifiers. Array identifiers are specified by following
the array name by empty square brackets. The auto statement must be the first statement
in a function definition.

BC: An Arbitrary-Precision Desk-Calculator Language 23

Define statements
The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

Return Statements
return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result
of the function is the result of the expression in parentheses.

Quit
The quit statement stops execution of a BC program and returns control to HP-UX when
it is first encountered. Because it is not treated as an executable statement, it cannot be
used in a function definition or in an if, for, or while statement.

24 BC: An Arbitrary-Precision Desk-Calculator Language

Index

a
arbitrary precision arithmetic .. 1
array identifiers ... 16
arrays ... 10, 16

b
base conversion .. 1
be language .. 1

c
constants ... , 17
converting from one base to another 1

e
expressions ... 17

f
function identifiers .. 16

.
I

identifiers .. , 16
identifiers, function
identifiers, ordinary

k

16
16

keywords ... 16

o
ordinary identifiers .. 16

Index 25

r
reserved words (be) .. 16

s
subscripted variables ... 10

t
tokens ... 16

v
variables, subscripted .. 10

26 Index

Table of Contents

DC: An Interactive Desk Calculator
Synoptic Description 2
Detailed Description. .. 4

Internal Representation of Numbers 4
The Allocator 5
Internal Arithmetic ... 6
Addition and Subtraction .. " 6
Multiplication .. 7
Division ... " 7
Remainder .. 7
Square Root. .. 8
Exponentiation .. 8
Input Conversion and Base. .. 8
Output Commands. .. 9
Output Format and Base .. 9
Internal Registers .. 9
Stack Commands ... 9
Subroutine Definitions and Calls .. 10
Internal Registers - Programming dc 10
Push-Down Registers and Arrays 10
Miscellaneous Commands .. 11
Design Choices .. 11

Table of Contents

ii Table of Contents

DC: An Interactive Desk Calculator
Dc is an interactive desk calculator program implemented in the HP-UX operating system
to do arbitrary-precision integer arithmetic. It has provision for manipulating scaled
fixed-point numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by available memory. HP­
UX can handle number sizes varying from several hundred digits on the smallest systems
to several thousand on the largest.

Dc is an arbitrary-precision arithmetic package implemented in the HP-UX operating
system in the form of an interactive desk calculator. It works like a stacking calculator
using reverse Polish notation. Ordinarily, dc operates on decimal integers, but you can
optionally specify an input base, output base, and the number of fractional digits to be
maintained.

A language called BC(l) has been developed which accepts programs written in the
familiar style of higher-level programming languages and compiles output which is in­
terpreted by dc. Some of the commands described here were designed for the compiler
interface and are not easy for a human user to manipulate.

Numbers that are typed into dc are put on a push-down stack. Dc commands then take
the top number or two off the stack, perform the desired operation, then push the result
on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

DC: An Interactive Desk Calculator 1

Synoptic Description
This section describes the de commands that are intended for use by people. The addi­
tional commands intended to be invoked by compiled output are described in the detailed
description. ~

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

+ _ * % A

s<x>

l<x>

d

p

f

x

The value of the number is pushed onto the main stack. A num­
ber is an unbroken string of the digits 0-9 and the capital letters A
thru F which are treated as digits with values 10 thru 15 respec­
tively. Negative numbers should be preceded by an underscore
(_). Numbers can contain decimal points.

The top two values on the stack are added (+), subtracted (­
), mUltiplied (*), divided (I), remaindered (%), or exponentiated
(-). The two entries are popped off the stack, combined, then the
result is pushed back on the stack in their place. The result of a
division is an integer truncated toward zero. See the detailed de­
scription below for the treatment of numbers with decimal points.
An exponent must not have any digits after the decimal point.

The top of the main stack is popped and stored into a register
named <x>, where <x> may be any character. If s is uppercase
(L), <x> is treated as a stack and the value is pushed onto it.
Any character, even blank or new-line, is a valid register name.

The value in register <x> is pushed onto the stack without being
altered. If 1 is uppercase (L), register <x> is treated as a stack
and its top value is popped onto the main stack. All registers start
with empty value which is treated as a zero by the command I
and is treated as an error by the command L

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged.

All values on the stack and in registers are printed.

Treats the top element of the stack as a character string, removes
it from the stack, and executes it as a string of de commands.

2 DC: An Interactive Desk Calculator

(
\~

[... J

q

Puts the bracketed character string onto the top of the stack.

Exits the program. If executing a string, the recursion level is
popped by two. If q is capi' alized (Q), the top value on the stack
is popped and the string execution level is popped by that value.

<x >x =x !<x !>x The top two elements of the stack are popped and compared.
!=x Register <x> is executed if they obey the stated relation. Ex­

clamation point is negation.

v

c

o

k

z

?

Replaces the top element on the stack by its square root. The
square root of an integer is truncated to an integer. For the treat­
ment of numbers with decimal points, see the detailed description
below.

Interprets the rest of the line as an HP-UX command. Control
returns to de when the HP-UX command terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number
radix for further input. If iis uppercase (1), the value of the input
base is pushed onto the stack. No mechanism has been provided
for the input of arbitrary numbers in bases less than 1 or greater
than 16.

The top value on the stack is popped and used as the number
radix for further output. If 0 is capitalized (0), the value of the
output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale
factor that influences the number of decimal places that are main­
tained during multiplication, division, and exponentiation. The
scale factor must be greater than or equal to zero and less than
100. If k is uppercase (K), the value of the scale factor is pushed
onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console)
and executed.

DC: An Interactive Desk Calculator 3

Detailed Description

Internal Representation of Numbers
N umbers are stored internally using a dynamic storage allocator. Numbers are kept in
the form of a string of digits to the base 100 stored one digit per byte (centennial digits).
The string is stored with the low-order digit at the beginning of the string. For example,
the representation of 157 is 57,1. After any arithmetic operation on a number, care is
taken that all digits are in the range 0 thru 99 and that the number has no leading zeros.
The number zero is represented by the empty string.

Negative numbers are represented in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative
number is always -1 and all other digits are in the range 0 thru 99. The digit preceding
the high order -1 digit is never a 99. The representation of -157 is 43,98,-1. We shall
call this the canonical form of a number. The advantage of this kind of representation
of negative numbers is ease of addition. When addition is performed digit by digit, the
result is formally correct. The result need only be modified, if necessary, to put it into
canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large,
addition can be carried out and the handling of carries done later when that is convenient,
as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate
the number of assumed decimal digits after the decimal point. The representation of .001
is 1,3 where the scale has been italicized to emphasize the fact that it is not the high
order digit. The value of this extra byte is called the scale factor of the number.

4 DC: An Interactive Desk Calculator

The Allocator
Dc uses a dynamic string storage allocator for all of its internal storage. All internal
reading and writing of numbers is done through the allocator. Associated with each
string in the allocator is a four-word header containing pointers to the beginning of
the string, the end of the string, the next place to write, and the next place to read.
Communication between the allocator and de is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except
the one pointing to this string are on a list of free headers. Requests for strings are made
by size. The size of the string actually supplied is the next higher power of 2. When
a request for a string is made, the allocator first checks the free list to see if there is a
string of the desired size. If none is found, the allocator finds the next larger free string
and splits it repeatedly until it has a string of the right size. Left-over strings are put
on the free list. If there are no larger strings, the allocator tries to coalesce smaller free
strings into larger ones. Since all strings are the result of splitting large strings, each
string has a neighbor that resides next to it in memory and, if free, can be combined
with it to make a string twice as long. This is an implementation of the "buddy system"
of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size
and number of strings in de. If at any time in the process of trying to allocate a string,
the allocator runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that
the characters of a string are read or written in succession by a series of read or write
calls. The write pointer is interpreted as the end of the information-containing portion
of a string and a call to read beyond that point returns an end-of-string indication. An
attempt to write beyond the end of a string causes the allocator to allocate a larger space
and then copy the old string into the larger block.

DC: An Interactive Desk Calculator 5

Internal Arithmetic
All arithmetic operations are done on integers. The operands (or operand) used in the
operation are popped from the main stack and their scale factors stripped off. Zeros are
added or digits removed as necessary to get a properly scaled result from the internal
arithmetic routine. For example, if the scale of the operands is different and decimal
alignment is required, as it is for addition, zeros are appended to the operand with the
smaller scale. After performing the required arithmetic operation, the proper scale factor
is appended to the end of the number before it is pushed on the stack.

A register called <scale> plays a part in the results of most arithmetic operations.
<scale> is the bound on the number of decimal places retained in arithmetic computa­
tions. <scale> can be set to the number on the top of the stack truncated to an integer
with the k command. K can be used to push the value of <scale> on the stack. <scale>
must be greater than or equal to 0 and less than 100. The descriptions of the individual
arithmetic operations will include the exact effect of <scale> on the computations.

Addition and Subtraction
The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller
scale is multiplied by 10 if the difference of the scales is odd. The scale of the result is
then set to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit-by-digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into
canonical form, which may require stripping of leading zeros, or for negative numbers
replacing the high-order configuration 99,-1 by the digit -1. In any case, digits which
are not in the range 0 thru 99 must be brought into that range, propagating any carries
or borrows that result.

6 DC: An Interactive Desk Calculator

(
\

Multiplication
The scales are removed from the two operands and saved. The operands are both made
positive, then multiplication is performed in a digit-by-digit manner that exactly mimics
the hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated
into a partial sum which becomes the final product. The product is put into the canonical
form and its sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register <scale> and also larger than both of the scales
of the two operands, then the scale of the result is set equal to the largest of these three
last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the
internal quantity <scale>. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of
the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend.
The result is used as the first (high-order) digit of the quotient. It may turn out be one
unit too low, but if it is, the next trial quotient will be larger than 99 and this will be
adjusted at the end of the process. The trial digit is multiplied by the divisor and the
result subtracted from the dividend and the process is repeated to get additional quotient
digits until the remaining dividend is smaller than the divisor. At the end, the digits of
the quotient are put into the canonical form, with propagation of carry as needed. The
sign is set from the sign of the operands.

Remainder
The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division
truncates toward zero, remainders have the same sign as the dividend. The scale of the
remainder is set to the maximum of the scale of the dividend and the scale of the quotient
plus the scale of the divisor.

DC: An Interactive Desk Calculator 7

Square Root
The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity <scale> and the scale of
the operand.

The method used to compute the square root of (Y) is Newton's method of successive
approximations by the rule:

Xsub(n+l) =lh X [Xsub(n) + (Y/Xsub(n)]

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation
Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided
into one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the
positions of the one-bits in the binary representation of the exponent. Enough digits
of the result are removed to make the scale of the result the same as if the indicated
multiplication had been performed.

Input Conversion and Base
Numbers are converted to internal representation as they are read in. The scale stored
with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with an underscore (_). The hexadecimal digits A
thru F correspond to the numbers 10 thru 15 regardless of input base. The i command
can be used to change the base of the input numbers. This command pops the stack,
truncates the resulting number to an integer, using it as the input base for all further
input. The input base is initialized to 10 but may, for example be changed to 8 or 16 to
do octal- or hexadecimal-to-decimal conversions. The command I will push the value of
the input base on the stack.

8 DC: An Interactive Desk Calculator

Output Commands
The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f.
The 0 command can be used to change the output base. This command uses the top of
the stack, truncated to an integer as the base for all further output. The output base in
initialized to 10. It will work correctly for any base. The command 0 pushes the value
of the output base on the stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on input and
output; they have no effect on arithmetic computations. Large numbers are output with
70 characters per line; a backslash (\) indicates a continued line. All choices of input and
output bases work correctly, although not all are useful. A particularly useful output
base is 100000, which has the effect of grouping digits in fives. Bases of 8 and 16 can be
used for decimal-to-octal or decimal-to-hexadecimal conversions.

Internal Registers
N umbers or strings may be stored in internal registers or loaded on the stack from
registers with the commands s and I. The command s<x> pops the top of the stack
and stores the result in register <x> where <x> can be any character. I<x> puts the
contents of register <x> on the top of the stack. The 1 command has no effect on the
contents of register <x>. The s command, however, is destructive.

Stack Commands
c clears the stack.

d pushes a duplicate of the number on the top of the stack on the stack.

z pushes the stack size on the stack.

X replaces the number on the top of the stack with its scale factor.

Z replaces the top of the stack with its length.

DC: An Interactive Desk Calculator 9

Subroutine Definitions and Calls
When the following commands are creatively used in conjunction with strings, the effect
is roughly equivalent ot subroutine calls and operation.

Enclosing a string in brackets ([...]) pushes the ASCII string on the stack. The q com­
mand quits or, in executing a string, pops the recursion levels by two.

Internal Registers - Programming de
The load and store commands together with [J to store strings, x to execute and the
testing commands <, >, =, ! <, ! >, and ! = can be used to program de. The x command
assumes the top of the stack is a string of de commands, and executes the string. Testing
commands remove the top two elements on the stack, test them, then, if the relation
holds, execute the register following the elements tested. For example, to print the
numbers 0-9, use the following commands:

[lipl+ si lil0>a]sa
Osi lax

Push-Down Registers and Arrays
These commands involve push-down registers and arrays, and were designed for use by
a compiler, not by people. In addition to the stack that commands work on, de can be (
thought of as having individual stacks for each register. These registers are operated on
by the commands Sand L. S<x> pushes the top value of the main stack onto the stack
for register <x>. L<x> pops the stack for register <x> and puts the result on the main
stack. The commands s and I also work on registers, but not as push-down stacks. I
doesn't affect the top of the register stack; s destroys what was there before.

The commands that work on arrays are colon (:) and semicolon (;). (: <x» pops the
stack and uses the value obtained as an index into the array <x>. The next element
on the stack is stored at the indexed location in <x>. The index value must be greater
than or equal to 0 and less than 2048. (; <x» loads the main stack from the array <x>.
The value on the top of the stack is popped and used as the index into the array <x>.
The indexed value is then loaded from the array onto the stack.

10 DC: An Interactive Desk Calculator

Miscellaneous Commands
If an exclamation point (!) appears in a line, de treats the rest of the line as an HP-UX
command and passes it to HP-UX for execution.

Another compiler command is Q. This command uses the top of the stack as the number
of levels of recursion to skip.

Design Choices
The real reason for using dynamic storage allocation was that a general purpose program
is useful for a variety of other tasks. The allocator has some value for input and for com­
piling (i.e., the bracket [... J commands) where it cannot be known in advance how long a
string will be. The result was that at a modest cost in execution time, all considerations
of string allocation and sizes of strings were removed from the remainder of the program
and debugging was made easier. The allocation method used wastes approximately 25%
of available space.

The choice of 100 as a base for internal arithmetic seems to have no compelling advantage,
but with a hardware limit of 127 and only 5% additional space required, debugging was
made a great deal easier and decimal output was made much faster.

Stack-type arithmetic design permitted all de commands from addition to subroutine ex­
ecution to be implemented in essentially the same way, resulting in a considerable degree
of logical separation of the final program into modules with very little communication
required between modules.

Eliminating interaction between the scale and the bases provided an understandable
means of proceeding after a change of base or scale when numbers had already been
entered. An earlier implementation which had global notions of scale and base did not
work out well. For example, if the value of <scale>. were to be interpreted in the current
input or output base, then a change of base or scale in the midst of a computation would
cause great confusion in the interpretation of the results.

The scheme implemented has the advantage that the value of the input and output bases
are only used for input and output, respectively, and are ignored in all other operations.
The scale value is not used during program operation, serving only to reasonably limit
the number of decimal places resulting from arithmetic operations.

DC: An Interactive Desk Calculator 11

The design rationale for scaling arithmetic results was that no significant digits should
be discarded if there was any indication that the user actually wanted them. Thus, if the
user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him the result
5.017 without requiring him to unnecessarily specify his rather obvious requirements for
precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number
of decimal places in the operands but not to give more than that number of digits unless
the user asked for them by specifying a value for <scale>. Square root can be handled
in just the same way as multiplication. The operation of division gives arbitrarily many
decimal places and there is simply no way to guess how many places the user wants. In
this case only, the user must specify a <scale> to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

12 DC: An Interactive Desk Calculator

Table of Contents

Mailx Mail Handler
Introduction. .. 1
Common Usage. .. 2

Maintaining Folders .. 10
More About Sending Mail ... 12

Tilde Escapes ... 12
Network Access. .. 17
Special Recipients. .. 18

Additional Features .. 19
Message Lists ... 19

NoninteractiveMail .. 21
List of Commands ... 21
Custom Options 29

Command Line Options .. 32
Message Format ... 33
Glossary .. 35
Summary of Commands, Options, and Escapes 36

Command Summary ... 36
Options Summary. .. 38
Tilde Escapes Summary .. 39
Command Line Flags. .. 40

Index ... 41

Table of Contents

ii Table of Contents

Mailx
Mail Handler

Introduction
M ailx provides a simple and friendly environment for sending and receiving mail. It
divides incoming mail into its constituent messages and allows the user to deal with
them in any order. In addition, it provides a set of ed-like commands for manipulating
messages and sending mail. Mailx offers the user simple editing capabilities to ease the
composition of outgoing messages, as well as providing the ability to define and send to
names which address groups of users. Finally, mailx is able to send and receive messages
across HP-UX-supported networks such as UUCP.

This document describes how to use the mailx program to send and receive messages.
You do not need to be be familiar with other message handling systems, but you should
be familiar with the HP-UX shell, the text editor, and some of the common HP-UX
commands. The HP- UX Reference and HP- UX Concepts and Tutorials manuals covering
text editors and csh can be consulted for more information on these topics.

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you
login, the system notifies you if there are any messages waiting in your system mailbox.
If you are a csh user, you will be notified when new mail arrives if you inform the shell of
the location of your mailbox. Your system mailbox is located in the directory /usr/mail
in a file with your login name. For example, if your login name is sam, you can make
csh notify you of new mail by including the following line in your . cshrc file:

set mail=/usr/mail/sam

When you read your mail using mailx, it reads your system mailbox and separates that
file into the individual messages that have been sent to you. You can then read, reply
to, delete, or save these messages. Each message is marked with its author and the date
sent.

Mailx Mail Handler 1

Common Usage
The mailx command has two distinct usages, depending on whether you want to send or
receive mail. Sending mail is simple: to send a message to a user whose login name is,
say, root, use the shell command:

% mailx root

then type your message. When you reach the end of the message, type an EOT (I CTRL ~
[]J) at the beginning of a line, causing mailx to echo an EOT and return you to the
Shell. The next time the person you sent mail to next logs in, he will receive the message:

You have mail.

indicating the availability of your message.

If, while you are composing the message you decide that you do not wish to send it
after all, you can abort the letter by pressing I DEL I (or RUBOUT). Pressing RUBOUT once
causes mailx to print (or display):

(Interrupt -- one more to kill letter)

Pressing I DEL I a second time causes mailx to save your partial letter on the file dead. letter
in your home directory and abort the letter. Once you have sent mail to someone, there
is no way to undo the act, so be careful.

The message your recipient reads will consist of the message you typed, preceded by one
or more lines telling who sent the message (your login name), the date and time it was
sent, and other information about the letter.

If you want to send the same message to several other people, you can list their login
names on the command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
I CTRL ~[]J
EDT
%

sends the reminder to sam, bob, and john.

2 Mailx Mail Handler

!

\

If, when you log in, you see the message,

You have mail.

you can read the mail by typing:

% mailx

Mailx responds by typing (displaying) its version number and date, then listing the
messages you have waiting. It then sends a prompt and awaits your next command.
Messages are assigned numbers starting with 1--, and each message is accessed by using
the assigned message number.

Mailx keeps track of which messages are new (have been sent since you last read your
mail) and read (have been read by you). New messages have an N next to them in the
header listing, while old, but unread, messages have a U next to them. mailx keeps track
of new/old and read/unread messages by putting a header field called Status into your
messages.

To look at a specific message, use the type command (abbreviated t). For example, if
you had the following messages:

N 1 root
N 2 sam

Wed Sep 21 09:21 "Tuition fees"
Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1

causing mailx to respond with, for example:

Message 1:
>From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R
Tuition fees are due next Wednesday. Don't forget!!

Mailx Mail Handler 3

Many mailx commands, such as type, that operate on messages take a message number
as an argument. For these commands, there is a notion of a current message. When you
enter the mailx program, the current message is initially the first one. Thus, you can
often omit the message number and use, for example,

t

to type (display) the current message. As a further shorthand, you can type a message
by simply giving its message number. Hence,

1

would display the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in mailx by simply typing a newline (press I Return I). As
a special case, you can type a newline (I Return I) as your first command to mailx to type
(display) the first message.

After the message has been typed or displayed, if you wish to send an immediate reply,
you can do so with the reply command. Reply, like type, takes a message number as
its argument. Mailx then begins a message addressed to the user who sent you the
message. You can then type in your letter of reply, followed by a I CTRL ~[[] (EOT) at
the beginning of a line, as before. Mailx then sends EOT followed by the ampersand
prompt to indicate it is ready for another command. In our example, if, after reading
the first message, you wished to reply to it, you might give the command:

reply

Ma£lx responds with:

To: root
Subject: Re: Tuition fees

and waits for you to enter your letter. You are now in the message-collection mode
described at the beginning of this section so mailx gathers your message up to an EOT
(I CTR L ~[[]).

4 Mailx Mail Handler

Note that mailx copies the subject header from the original message because correspon­
dence about a particular matter tends to retain the same subject heading, making it
easy to recognize. If there are other header fields in the message, that information is
also used. For example, if the letter had a To: header listing several recipients, mailx
would arrange to send your reply to the each of them. Similarly, if the original message
contained a Cc: (carbon copies to) field, mailx would send your reply to those users.
However, mailx does not send the message to you, even if you appear in the To: or Cc:

field, unless you explicitly ask to be included. See Tilde Escapes and Special Recipients
sections of this article for more details.

After typing in your letter, the dialog with mailx might look like the following:

reply
To: root
Subject: Re: Tuition fees
Thanks for the reminder
EDT
&

The reply command is especially useful for sustaining extended conversations over the
message system, with other "listening" users receiving copies of the conversation. The
reply command can be abbreviated to r.

Sometimes you will receive a message that has been sent to several people and wish to
reply only to the person who sent it. Reply with an uppercase R replies to a message,
but sends a copy to the sender only.

If, while reading your mail, you wish to send a message to someone, but not as a reply
to one of your messages, you can send the message directly using the mail command,
which takes as arguments the names of the recipients you want to send to. For example,
to send a message to "frank",

mail frank
This is to confirm our meeting next Friday at 4.
EDT
&

The mail command can be abbreviated to m.

Mailx Mail Handler 5

Normally, each message you receive is saved in the file mbox in your login directory at
the time you leave mailx. Often, however, you will not want to save a particular message
you have received because it is only of passing interest. To avoid saving a message in
mbox, delete it using the delete command. In our example,

delete 1

prevents mailx from saving message 1 (from root) in mbox. In addition to not saving
deleted messages, mailx does not let you type (display) them either. The effect is to
make the message disappear altogether, along with its number. The delete command can
be abbreviated to d.

Many features of mail can be tailored to your liking with the set command. Set has two
forms, depending on whether you are setting a binary or valued option. Binary options
are either on or off. For example, the ask option informs mailx that each time you send a
message, you want it to prompt you for a subject header, to be included in the message.
To set the ask option, type:

set ask

Another useful mailx option is hold. Unless told otherwise, mailx moves the messages
from your system mailbox to the file mbox in your home directory when you leave mailx. (
If you want mailx to keep your letters in the system mailbox instead, set the hold option: .,

set hold

Valued options tailor mailx to match your needs. For example, the shell option tells
mailx which shell you like to use. For example to select the shell /Mn/csh, type:

set SHELL=/bin/csh

Note that no spaces are allowed in SHELL=/bin/csh. A complete list of the mailx options
appears at the end of this article.

6 Mailx Mail Handler

Another important valued option is ert. If you use a fast video terminal to print long
messages, they fly by too quickly for you to read them. You can use the ert option to
force mailx to send messages longer than a given number of lines through the paging
program more. For most CRT displays, use the following command:

set crt=24

to paginate messages that will not fit on a 25-line screen. More prints a screenful of
information, then displays --MORE-- on the remaining line. Type a space to see the next
screenful.

Mailx also provides an alias option where the specified alias is a name that stands stands
for one or more real user names. Mail sent to an alias is then sent to the list of real
users associated with the alias. For example, an alias can be defined for the members of
a project, so that you can send mail to the whole project by sending mail to just a single
name. The alias command in mailx defines an alias. Suppose that the users in a project
are named Sam, Sally, Steve, and Susan. To define an alias called proJ·eet for them, use:

alias project sam sally steve susan

Alias can also be used to provide a convenient name for someone whose user name
is inconvenient. For example, if a user named "Bob Anderson" had the login name
"anderson" , you might want to use:

alias bob anderson

so that you could send mail to the shorter name, "bob".

While alias and set commands enable you to customize mailx, they must be retyped
each time you enter mailx. To make them more convenient to use, mailx always looks
for two files when it is invoked. It first reads a system-wide file jusr /lib/mailxjmailx. re,
then a user-specific file, . mailre which is found in the user's home directory. The system­
wide file is maintained by the system administrator and contains set commands that are
applicable to all system users. The . mailre file is usually set up by each user to seelect
options to fit his preference and to define individual aliases. Here is an example . mailre
file:

set ask nosave SHELL=/bin/csh

MailxMail Handler 7

As you can see, it is possible to set many options in the same set command. The nosave
option is described in the Additional Features section of this article.

Mail aliasing is implemented at the system-wide level by the mail delivery system send­
mail. These aliases are stored in the file /usr/lib/aliases and are accessible to all system
users. The lines in JusT/lib/aliases are of the form:

alias: <alias>, <name 1>, <name 2>, <name 3>, '"

where <alias> is the mailing list name and the <names> are the members of the list.
Long lists can be continued onto the next line by starting the next line with a space
or tab. Remember that you must execute the shell command newaliases after editing
JUST /lib/aliases because the delivery system uses an indexed file created by newaliases.

Note

Mailx supports alias only for mail originators on the system as
defined here. System-wide aliasing requires the sendmail facility
which is not presently available on HP-UX.

We have seen that mailx can be invoked with command line arguments (people to send
the message to), or with no arguments (to read mail). Specifying the - f flag on the
command line causes mailx to read messages from a file other than your system mailbox.
For example, if you have a collection of messages in the file letters you can use mailx to
read them with:

% rnailx -f letters

You can use all the mailx commands described in this article to examine, modify, or
delete messages from your letters file which will be rewritten when you leave mailx with
the quit command described below.

Since mail that you read is saved in the file mbox in your home directory by default, you
can read the file from your home directory by typing:

% mailx -f

8 Mailx Mail Handler

Normally, messages that you examine using the type command are saved in mbox in your
home directory if you leave mailx with the quit command described below. If you wish
to retain a message in your system mailbox you can use the preserve command to tell
mailx to leave it there. Preserve accepts a list of message numbers, just like type and can
be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your
system mailbox automatically. To save such a message saved in mbox without reading
it, use the mbox command. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when
the quit command is executed. Mbox can also be used to direct messages to your mbox
file if you have set the hold option described previously. Mbox can be abbreviated to mb.

When you have perused all messages of interest, use the quit command to leave mailx.
Any messages you have typed but not deleted are saved in the file mbox in your login
directory. Deleted messages are discarded irretrievably, and messages left untouched are
preserved in your system mailbox so that you will see them the next time you type:

% mailx

Quit can be abbreviated to q.

If, for some reason, you want to leave mailx quickly without altering either your system
mailbox or mbox, type x (short for exit), which immediately returns you to the Shell
without changing anything.

If, instead, you want to execute a Shell command without leaving mailx, type the com­
mand preceded by an exclamation point, just as in the text editor. For instance:

!date

prints the current date without leaving mail.

The help command prints out a brief summary of the mailxcommands, using only single­
character command abbreviations.

Mailx Mail Handler 9

Maintaining Folders
This section describes a simple mailx facility for maintaining groups of messages together
in folders.

To use the folder facility, you must tell mailx where you want to keep your folders. Each
folder of messages will be a single file. For convenience, all of your folders are kept in a
single directory of your choosing. To tell mailx where your folder directory is, put a line
of the form:

set folder=letters

in your. mailrc file. If, as in the example above, your folder directory does not begin with
a "I", mailx assumes that your folder directory is to be found starting from your home
directory. Thus, if your home directory is /usr /person the above example told mailx to
find your folder directory in lusr /personlletters.

Anywhere a file name is expected, you can use a folder name, preceded by a "+" with no
intervening spaces. For example, to put a message into a folder with the save command,
use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not
yet exist, it will be created. Note that messages saved by use of the save command are
automatically removed from your system mailbox.

In order to make a copy of a message in a folder without causing that message to be
removed from your system mailbox, use the copy command, which is identical in all other
respects to the save command. For example,

copy +classwork

copies the current message into the classwork folder and leaves a copy in your system
mailbox.

10 Mailx Mail Handler

The folder command can be used to direct mailx to the contents of a different folder. For
example,

folder +classwork

directs mail to read the contents of the classwork folder. All of the commands that you
can use on your system mailbox are also applicable to folders, including type, delete, and
reply. To inquire which folder you are currently editing, type:

folder

To list your current set of folders, use the folders command.

To start reading one of your folders, use the - f option described in earlier in this section.
For example,

% mailx -f +classwork

causes mailx to read your classwork folder without looking at your system mailbox.

Mailx Mail Handler 11

\

More About Sending Mail

Tilde Escapes
While typing in a message to be sent to others, it is often useful to be able to invoke the
text editor on the partial message, print the message, execute a shell command, or do
some other auxiliary function. mailx provides these capabilities through "tilde escapes"
which consist of a tilde C) at the beginning of a line, followed by a single character
indicating the function to be performed. For example, to print the text of the message
so far, use:

which will print a line of dashes, the recipients of your message, and the text of the
message so far. Since mailx requires two consecutive @IT) (or RUBOUTs) to abort a
letter, you can use a single I DEL I to abort the output of -p or any other - escape without
killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it
by using the escape:

e

which causes the message to be copied into a temporary file and an instance of the editor
to be spawned. After modifying the message to your satisfaction, write it out and quit
the editor. mailx then responds by typing (or displaying):

(continue)

after which you can continue typing text to be appended to your message, or you can
type I CTRL ~[]] to end the message. A standard text editor is provided by ma£lx.

To override the default editor, set the valued option EDITOR to specify a different shell
file such as:

set EDITOR=/usr/bin/ex
or

set EDITOR=/usr/bin/vi

12 Mailx Mail Handler

To use the screen or visual editor as an alternative to the standard text editor on your
current message, you can use the escape,

-v works like -e, except that the screen editor is invoked instead. A default screen editor
is defined by mailx. To select a different visual (screen) editor, set the valued option
VISUAL to the path name of a different editor.

It is sometimes useful to be able to include the contents of some file in your message.
The escape,

-r filename

is provided for this purpose, and causes the named file to be appended to your current
message. Mailxcomplains if the file doesn't exist or can't be read. If the read is successful,
the number of lines and characters appended to your message is printed, after which you
can continue appending text. The filename may contain shell metacharacters like * and
? which are expanded according to the conventions of your shell.

As a special case of -r, the escape,

reads in the file dead. letter from your home directory. This is often useful because mailx
copies the text of your message there when you abort a message with I DEL I.

To save the current text of your message on a file, use the escape:

-w filename

Mailx then prints out the number of lines and characters written to the file, after which
you can continue appending text to your message. Shell metacharacters can be used in
the filename, as in -r and are expanded with the conventions of your shell.

Mailx Mail Handler 13

If you are sending mail from within mailx's command mode, you can read a message sent
to you into the message you are constructing with the escape:

which reads message 4 into the current message, shifted right by one tab stop. You can
name any non-deleted message, or list of messages. To forward messages without shifting
by a tab stop, use -I (this is the usual way to forward a message).

If, in the process of composing a message, you decide to add more people to the list of
message recipients, you can do so with the escape:

-t <name1> <name2> ...

You can name as few or many additional recipients as you wish. Note that the users
originally on the recipient list will still receive the message because you cannot remove
someone from the recipient list with -to

To associate a subject with your message, use the escape:

-8 <arbitrary string of text>

which replaces any previous subject with <arbitrary string of text>. The subject, if
given, is sent near the top of the message prefixed with Subj ect:. To see what the
message will look like, use -po

For political reasons, one occasionally prefers to list certain people as recipients of carbon
copies of a message rather than direct recipients. The escape:

-c <name1> <name2> ...

adds the named people to the Cc: list as when using -t. Again, you can execute -p to
see what the message will look like.

14 Mailx Mail Handler

The recipients of the message together constitute the To: field, the subject the Subject:

field, and the carbon copies the Cc: field. If you wish to edit these in ways impossible
with the - t, - s, and -c escapes, you can use the escape:

which prints To: followed by the current list of recipients and leaves the cursor (or
printhead) at the end of the line. If you type ordinary characters, they are appended to
the end of the current list of recipients. You can also use your erase character to erase
back into the list of recipients, or your kill character to erase them altogether. Thus, for
example, if your erase and kill characters are the standard # and @ symbols,

-h

To: root kurt####bill

changes the initial recipients root kurt to root bill. When you type a newline (I Return I
or I Enter I), mailx advances to the Subj ect: field, where the same rules apply. Another
newline brings you to the Cc: field, which can be edited in the same fashion. Another
newline leaves you appending text to the end of your message. You can use -p to print
the current text of the header fields and the body of the message.

To temporarily escape to the shell, use the sequence:

- ! <command>

is used, which executes < command> and returns you to mailing mode without altering
the text of your message. If you wish, instead, to filter the body of your message through
a shell command, use:

-I <command>

which pipes your message through the command and uses the output as the new text
of your message. If the command produces no output, mailx assumes that something
is amiss and retains the old version of your message. A frequently-used filter is the
command Jmt, designed to format outgoing mail.

To effect a temporary escape to mailx command mode instead, use:

-: mailx <command>

Mailx Mail Handler 15

This is especially useful for retyping the message you are replying to, using, for example:

It is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line beginning with a
tilde, a double tilde must be used. For example,

--This line begins with a tilde.

sends the line:

-This line begins with a tilde.

Finally, the escape,

prints out a brief summary of the available tilde escapes.

On some terminals (particularly those with no lower case) tildes are difficult to type.
Mailx enables you to change the escape character by using the escape option. For exam­
ple, to use a right bracket, type:

set escape=]

As with the tilde, if you need to send a line starting with the escape character, type a
pair of adjacent escape characters as when using tilde. Redefining the escape character
removes the special significance of -.

16 Mailx Mail Handler

Network Access
This section describes how to send mail to people on other machines. Recall that sending
to a plain login name sends mail to that person on your machine only. If your recipient
logs in on a different machine connected to yours by UU CP, You must know the list of
machines through which your message must travel to arrive at his site. If his machine
has a continuous (modem or direct-connect) datacomm link to yours, you can send mail
to him using the syntax:

host!name

where host is the name of his machine and name is his login name. If your message must
go through an intermediate machine first, you must use the syntax:

intermediate!host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the network
is not known anywhere (except where people decide to write it down for convenience).
Talk to your system administrator about the machines connected to your site.

If you need to use an HP-UX-supported network to access recipients on other networks,
contact the System Administrator of the system providing the link between networks for
procedures.

When you use the reply command to respond to a letter, there is a problem of figuring
out the names of the users in the To: and Cc: lists relative to the current machine. If
the original letter was sent to you by someone on the local machine, then this problem
does not exist, but if the message came from a remote machine, the problem must be
dealt with. mailx uses a heuristic to build the correct name for each user relative to the
local machine. So, when you reply to remote mail, the names in the To: and Cc: lists
may change somewhat.

Mailx Mail Handler 17

Special Recipients
As described previously, you can send mail to either user names or alias names. It is
also possible to send messages directly to files or to programs, using special conventions.
If a recipient name has a "I" in it or begins with a "+", it is assumed to be the path
name of a file into which to send the message. If the file already exists, the message is
appended to the end of the file. If you want to name a file in your current directory (Le.,
one for which a "I" would not usually be needed) you can precede the name with ".1".
For example, to send mail to the file memo in the current directory, use the command:

'!. mailx . /memo

If the name begins with a "+", it is expanded into the full path name of the folder name
in your folder directory. This ability to send mail to files can be used for a variety of
purposes, such as maintaining a journal and keeping a record of mail sent to a certain
group of users. The second example can be done automatically by including the full
pathname of the record file in the alias command for the group. Using our previous alias
example, you could use the command:

alias project sam sally steve susan /usr/project/mail_record

to save all mail sent to project would be saved on the file / usr / project/maiL record as
well as being sent to the members of the project. This file can be examined using mailx
-f.

Sometimes it is useful to send mail directly to a program (such as a project billboard
program). To use mailx to send messages to the program, use a vertical bar followed by
the program file name: I billboard, for example.

M ailx treats recipient names that begin with a "I" as a program to send the mail to. An
alias can be set up to reference a "I" -prefaced name if desired. Caveats: the mailx shell
treats" I" specially, so it must be quoted on the command line. Also, the "I program II
must be presented as a single argument to mailx. The safest course is to surround the
entire name with double quotes. This also applies to usage in the alias command. For
example, to alias rmsgs to rmsgs - s type:

alias rmsgs "I rmsgs -s"

18 Mailx Mail Handler

Additional Features
This section describes some additional commands of use for reading your mail, setting
options, and handling lists of messages.

Message Lists
Several mailx commands accept a list of messages as an argument. Along with type and
delete, described earlier, the from command prints the message headers associated with
the message list passed to it. From is particularly useful in conjunction with some of the
message list features described below.

A <message list> consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify
messages, or one of the special characters <up arrow>, <.>, or <$> to specify the first
relevant, current, or last relevant message, respectively. For most commands, relevant
here means not deleted, (or deleted for the undelete command).

A range of messages consists of two message numbers (of the form described in the
previous paragraph) separated by a hyphen (dash). Thus, to print the first four messages,
use:

type 1-4

and to print all the messages from the current message to the last message, use:

type .-$

A <name> is a user name. The user names given in the message list are collected
together and each message selected by other means is checked to make sure it was sent
by one of the named users. If the message consists entirely of user names, then every
message sent by one those users that is relevant (in the sense described earlier) is selected.
Thus, to print every message sent to you by root, use the command:

type root

Mailx Mail Handler 19

As a shorthand notation, you can specify * to get every relevant (same sense) message.
Thus,

type *

prints all undeleted messages,

delete *

deletes all undeleted messages, and

undelete *

undeletes all deleted messages.

You can search for the presence of a word in subject lines with;' For example, to print
the headers of all messages that contain the word Pascal, use the command:

from /pascal

Note that subject searching ignores upper/lowercase differences.

20 Mailx Mail Handler

Noninteractive Mail
M ailx can be used to transmit files to recipients noninteractively, and as a background
process, if desired. Only the mailing address of the recipient and the file(s) to be trans­
mitted are needed as follows:

mailx address < filename{s)

Address is the mailing address or alias that identifies the recipient (s) to which the file
is being sent. Filename is the file(s) that are to be used as input to the mail handler.
As shown, the command operates as a foreground process, and the user terminal hangs
until the process is complete. To operate in the background, add an ampersand (&) at
the end of themailxcommandline.This frees your terminal for other activities while
the file transfer is processed.

List of Commands
This section describes all the mailx commands available when receiving mail.

Print

Reply

Used to preface a command to be executed by the shell.

The - command goes to the previous message and prints it. The - com­
mand may be given a decimal number <n> as an argument, in which case
the <n>th previous message is gone to and printed.

(abbr: P) Like print, but also print out ignored header fields. See also print
and ignore.

(abbr: R) Note the capital R in the name. Frame a reply to a one or more
messages. The reply (or replies if you are using this on multiple messages)
will be sent ONLY to the person who sent you the message (respectively,
the set of people who sent the messages you are replying to). You can
add people using the -t and - c tilde escapes. The subject in your reply is
formed by prefacing the subject in the original message with "Re:" unless
it already began thus. If the original message included a "reply-to" header
field, the reply will go only to the recipient named by "reply-to." Type
in your message using the same conventions available through the mail
command.

The Reply command is especially useful for replying to messages that were
sent to distribution groups when you really just want to send a message to
the originator. Use it often.

Type (abbr: T) Identical to the Print command.

Mailx Mail Handler 21

alias (abbr: a) Define a name to stand for a set of other names. This is used
when you want to send messages to a certain group of people and want to
avoid retyping their names. For example:

alternates

chdir

copy

delete

dp or dt

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie,
and Kathryn.

If no argument is given, all aliases are printed; one argument prints only
the alias specified.

(abbr: alt) If you have accounts on several machines, you may find it
convenient to use the /usr/lib/aliases on all the machines except one to
direct your mail to a single account.

The alternates command informs mailx that each of these other addresses
is really you, so that when you reply with messages to one of these alter­
nate names, mailx will not bother to send a copy of the message to this
other address (which would simply be directed back to you by the alias
mechanism) .

If alternates is given no argument, it lists the current set of alternate names.
Alternates is usually used in the. mailrc file.

(abbr: cd) The chdir command allows you to change your current directory.
Chdir takes a single argument, which is taken to be the pathname of the
directory to change to. If no argument is given, chdir changes to your home
directory.

(abbr: co) The copy command is identical to save except that copied mes­
sages are not marked for deletion when you quit.

(abbr: d) Deletes a list of messages. Deleted messages can be reclaimed
with the undelete command.

dpt or dt deletes the current message and prints the next message. It is
useful for quickly reading and disposing of mail. Displays At EOF if no
messages remaining.

22 Mailx Mail Handler

edit

else

endif

exit

file

folders

folder

from

(abbr: e) The edit command provides editing capabilities for individual
messages. It takes a list of messages as described under the type command
and processes each by writing the message into a file message<x> (where
<x> is the message number being edited) then executing the text editor
on the file. When you have edited the message to your satisfaction, write
the message out and quit the editor. Mailx then reads the message back
and removes the file. Edit can be abbreviated to e.

Marks the end of the then part of an if statement and the beginning of the
part to take effect if the condition of the if statement is false.

Marks the end of an if statement.

(abbr: ex or x) Leaves mailx without updating the system mailbox or the
file your were reading. Thus, if you accidentally delete several messages,
you can use exit to avoid scrambling your mailbox.

(abbr: fi) Identical to folder.

List the names of the folders in your folder directory.

(abbr: fo) The folder command switches to a new mail file or folder. With
no arguments, it tells you which file you are currently reading. If you give
it an argument, it will write out changes (such as deletions) you have made
in the current file and read the new file. Some special conventions are
recognized for the file/folder name:

Name Meaning

Previous file read

% Your system mailbox

%<name> Name's system mailbox

& Your - /mbox file

+ <folder> A file in your folder directory

(abbr: /) The from command takes a list of messages and prints out the
header lines for each one; hence

from joe

is the easy way to display all the message headers from joe.

Mailx Mail Handler 23

headers (abbr: h) When you start up mailx to read your mail, it lists the headers
from each message in your mailbox. These headers tell you who each
message is from, when they were sent, how many lines and characters each
message is, and the Subj ect: header field of each message, if present. In
addition, mailx tags the message header of each message that has been the
object of the preserve command with a P.

Messages that have been saved or written are flagged with a *. Deleted
messages are not printed at all. To reprint the current list of message
headers, use the headers command.

Headers (and thus the initial header listing) only lists the first so many
message headers. The number of headers listed depends on the speed of
your terminal. This can be overridden by specifying the number of headers
you want with the window option. mailx maintains a notion of the current
window into your messages for the purposes of printing headers.

Use the z command to move forward or back one window. You can move
mailx's notion of the current window directly to a particular message by
using, for example,

headers 40

to move mailx's attention to the messages around message 40. The headers
command can be abbreviated to h.

help Print a brief (and usually out-of-date) help message about the commands
in mailx. Refer to this manual instead.

hold (abbr: ho; also preserve) Arrange to hold a list of messages in the system
mailbox, instead of moving them to the file mbox in your home directory.
If you set the binary option hold, this will happen by default.

24 Mailx Mail Handler

zJ

zgnore

list

maZ"lx

mbox

The if command is used to conditionally execute commands in your. mailrc
file, depending on whether you are sending or receiving maiL Here is an
example of the general structure used:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

Add the list of header fields named to the ignore list. Header fields in
the ignore list are not printed on your terminal when you print a message.
This allows you to suppress printing of certain machine-generated header
fields, such as Via which are not usually of interest. The Type and Print
commands can be used to print a message in its entirety, including ignored
fields. If ignore is executed with no arguments, it lists the current set of
ignored fields.

List the valid mailx commands.

(abbr: m) Send mail to one or more people. If you have the ask option
set, mailx will prompt you for a subject to your message. Type in your
message, using tilde escapes described earlier to edit, print, or modify your
message. To signal your satisfaction with the message and send it, type
control-d at the beginning of a line, or a "." alone on a line if you set the
option dot.

To abort the message, type two interrupt characters (I DEL I or RUBOUT by
default) in a row or use the - q escape.

Indicate that a list of messages be sent to mbox in your home directory
when you quit. This is the default action for messages if you do not have
the hold option set.

Mailx Mail Handler 25

next (abbr: n; also + or I Return I) The next command goes to the next message
and types it. If given a message list, next goes to the first such message
and types it. Thus,

preserve

print

quit

reply

respond

next root

goes to the next message sent by root and types it. Next can be abbreviated
to simply a newline, which means that one can go to and type a message
by simply giving its message number or one of the magic characters: <up
arrow>, < . >, or < $ >. Thus,

(period)

prints the current message and

4

prints message 4, as described previously.

Same as hold. Preserves listed messages in your system mailbox when you
quit.

(abbr: p; similar to type) Prints all messages specified by the message list,
but does not print ignored header fields.

(abbr: q) Leave mailx and update the file, folder, or system mailbox your
were reading. Messages that you have examined are marked as read and
messages that existed when you started are marked as old. If you were
editing your system mailbox and the binary option hold is set, all messages
which have not been deleted, saved, or mboxed will be retained in your
system mailbox. If you were editing your system mailbox and hold is not
set, all messages which have not been deleted, saved, or preserved are
moved to the file mbox in your home directory.

(abbr: r) Frame a reply to the originator of a single message and send it to
the originator plus all the people who received the original message, except
you. You can add people using the - t and - c tilde escapes. The subject in
your reply is formed by prefacing the subject in the original message with
Re: unless it already began thus.

If the original message included a reply-to header field, the reply will go
only to the recipient named by reply-to. Type in your message using the
same conventions as with the mail command.

Same as reply.

26 Mailx Mail Handler

save (abbr: s) It is often useful to be able to save messages on related topics in
a file. The save command gives you ability to do this. The save command
takes as its argument a list of message numbers, followed by the name of
the file on which to save the messages. The messages are appended to the
named file, thus allowing one to keep several messages in the file, stored
in the order they were put there. Save can be abbreviated s. Here is how
save can be used relative to our running example:

set

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor
are they selected by the next command described above, unless explicitly
specified.

If the filename is preceded by a vertical bar (I), mailx treats that file as a
pipe. For example,

s 2 I Ip

submits message 2 to the printer.

(abbr: se) Set an option or give an option a value. Used to customize
mailx. Options are listed near the end of this article. Binary options are
on or off; valued options require an accompanying <value> parameter. To
set a binary option, type:

set <option>

For valued options:

set <option>=<value>

Several options can be specified in a single set command. Use unset to
disable options.

shell (abbr: sh) The shell command enables you to escape to the shell. Shell
invokes an interactive shell and allows you to type commands to it. When
you leave the shell, return is to mailx. The shell used is a default assumed
by mailx which can be overridden by setting the valued option SHELL. For
example,

source

set SHELL=/bin/csh

(abbr: so) The source command reads mailx commands from a file. It is
useful when you are trying to fix your . mailre file and you need to re-read
it.

Mailx Mail Handler 27

top

type

unalias

undelete

unset

visual

The top command takes a message list and prints the first five lines of
each addressed message. It can be abbreviated to to. If you wish, you can
change the number of lines that top prints out by setting the valued option
toplines. On a CRT terminal,

set toplines=10

might be preferred.

(abbr: t; similar to print) Print a list of messages on your terminal. If
the crt option is set to a given value, and the total number of lines in the
messages to be printed exceeds the crt value, the messages are printed by
a terminal paging program such as more.

Deletes the specified alias(es) from the alias list.

(abbr: u) The undelete command causes a message that had been deleted
previously to regain its initial status. Only messages that have been deleted
can be undeleted. This command can be abbreviated to u.

Reverse the action of setting a binary or valued option.

(abbr: v) It is sometimes useful to be able to select between two editors,
based on the type of terminal being used. To invoke a display-oriented
editor, use the visual command. Except for the type of editor being used,
visual is identical to edit.

Edit and visual commands both assume some default text editor. The
default for each can be overridden by the valued options EDITOR and VISUAL
for the standard and screen editors. For example, you could use:

set EDITOR=/usr/bin/ex VISUAL=/usr/bin/vi

write (abbr: w) The save command always writes the entire message, including
the headers, into the file. If you want to write just the message itself, you
can use the write command. Write has the same syntax as save, and can
be abbreviated to w. For example, to write the second message in file.c,
type:

xit

w 2 file.c

As suggested by this example, write is useful for such tasks as sending and
receiving source program text over the message system.

(abbr: x) Same as exit.

28 Mailx Mail Handler

z mailx presents message headers in windowfuls as described under the head­
ers command. You can move mailx's attention forward to the next window
by typing:

z+

command. Analogously, you can move to the previous window with:

z-

Custom Options

Throughout this article, we have seen examples of binary and valued options. This
section describes each of the options in alphabetical order, including some that you have
not seen yet. Options should be typed as all uppercase or all lowercase letters as listed;
don't mix letter case within an option.

EDITOR

SHELL

VISUAL

append

ask

askcc

The valued option EDITOR defines the pathname of the text editor to be
used in the ed£t command and - e. If not defined, a standard default editor
is used.

The valued option SHELL gives the path name of your shell. This shell is
used for the ! command and -! escape. In addition, this shell expands file
names with shell metacharacters like * and? in them.

The valued option VISUAL defines the pathname of your screen editor for
use in the visual command and -v escape. A standard screen editor is used
if you do not define one.

The append option is binary and causes messages saved in mbox to be
appended to the end rather than prepended. Normally, mailx will put
messages in mbox in the same order that the system puts messages in
your system mailbox. By setting append, you are requesting that mbox be
appended to, regardless. It is in any event quicker to append.

Ask is a binary option which causes mailx to prompt you for the subject of
each message you send. If you respond with simply a newline, no subject
field will be sent.

Askcc is a binary option which causes you to be prompted for additional
carbon copy recipients at the end of each message. Responding with a
newline shows your satisfaction with the current list.

Mailx Mail Handler 29

autoprint

debug

dot

escape

<folder>

hold

zgnore

ignoreeof

keep

keepsave

Autoprint is a binary option which causes the delete command to behave
like dp. Thus, after deleting a message, the next one will be typed auto­
matically. This is useful for quickly scanning and deleting messages in your
mailbox.

The binary option debug causes debugging information to be displayed.
Use of this option is the same as using the - d command line flag.

Dot is a binary option which, if set, causes mailx to interpret a period alone
on a line as the terminator of a message you are sending.

To change the escape character used when sending mail, use the valued
option escape. Only the first character of the escape option is used, and
it must be doubled if it is to appear as the first character of a line of your
message. If you change your escape character, then - loses all its special
meaning, and need no longer be doubled at the beginning of a line.

The name of the directory to use for storing folders of messages. If this
name begins with a "I", mailx considers it to be an absolute pathname;
otherwise, the folder directory is found relative to your home directory.

The binary option hold causes messages that have been read but not man­
ually dealt with to be held in the system mailbox. This prevents such
messages from being automatically swept into your mbox.

The binary option ignore causes RUBOUT characters from your terminal
to be ignored and echoed as @'s while you are sending mail. RUBOUT
characters retain their original meaning in mailx command mode. Setting
the ignore option is equivalent to supplying the - i flag on the command
line as described under Command Line Options which follows.

This option is related to dot, and causes mailx to refuse to accept a I CTRL ~
[[] as the end of a message. Ignoreeof also applies to mailx command
mode.

The keep option causes mailx to truncate your system mailbox instead of
deleting it when it is empty. This is useful if you elect to protect your
mailbox, which you would do with the shell command:

chmod 600 /usr /mail/ <yourname>

where <yourname> is your login name. If you do not do this, anyone can
probably read your mail, although people usually don't.

When you save a message, mailx usually discards it when you quit. To
retain all saved messages, set the keepsave option.

30 Mailx Mail Handler

metoo

noheader

nosave

quiet

record

screen

sendmail

toplines

verbose

When sending mail to an alias, mailx makes sure that if you are included
in the alias, that mail will not be sent to you. This is useful if a single alias
is being used by all members of the group. If however, you wish to receive
a copy of all the messages you send to the alias, you can set the binary
option metoo.

The binary option noheader suppresses the printing of the version and
headers when mailx is first invoked. Setting this option is the same as
using - N on the command line.

Normally, when you abort a message with two mID (or RUBOUTs), mailx
copies the partial letter to the file dead. letter in your home directory. Set­
ting the binary option nosave prevents this.

The binary option quiet suppresses the printing of the version when mailx
is first invoked, as well as printing the type command message number with
each message.

If you love to keep records, then the valued option record can be set to the
name of a file to save your outgoing mail. Each new message you send is
appended to the end of the file.

When mailx initially prints the message headers, it determines how many
headers to print by looking at the speed of your terminal; the faster your
terminal, the more it prints. The valued option screen overrides this cal­
culation and specifies how many message headers you want printed. This
number is also used for scrolling with the z command.

To select an alternate delivery system, set the sendmail option to the full
pathname of the program to use. Note: this is not for everyone! Most
people should use the default delivery system.

The valued option toplines defines the number of lines that the top com­
mand will print out instead of the default five lines.

The binary option "verbose" causes mailx to invoke sendmail with the - v
flag, which causes it to go into versbose mode and announce expansion of
aliases, etc. Setting the "verbose" option is equivalent to invoking mailx
with the -v flag as described earlier.

Mailx Mail Handler 31

Command Line Options
This section describes command line options for mailx and what they are used for.

-N

-d

-/ <file>

-'I,

-n

-s <string>

-u <name>

-v

-T <file>.

-h <number>

Suppress the initial printing of headers.

Turn on debugging information. Not of general interest.

Show the messages in <file> instead of your system mailbox. If
<file> is omitted, mailx reads mbox in your home directory.

Ignore tty interrupt signals. Useful on noisy phone lines, which gen­
erate spurious RUBOUT or DELETE characters. It's usually more
effective to change your interrupt character to I CTRL ~m (see the
stty shell command for more information).

Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since
/usr/lib/Mail.rc is usually empty.

Used for sending mail. <String> is used as the subject of the message
being composed. If <string> contains blanks, you must surround the
string with quote marks.

Read <name> 's mail instead of your own. Other unwitting sys­
tems users often neglect to protect their mailboxes, but discretion
is advised. Essentially, -u kathy is a shorthand way of doing -f

/usr/mail/kathy.

Use the -v flag when invoking sendmail. This feature can also be
enabled by setting the the option "verbose".

The following command line flags are also recognized, but are in­
tended for use by programs invoking mailx and not for people.

Arrange to print on <file> the contents of the article-id fields of
all messages that were either read or deleted. - T is for the readnews
program and should NOT be used for reading your mail.

Pass on hop count information. Mailx takes <number>, increments
it, and passes it with -h to the mail delivery system. -h has effect
only when sending mail and is used for network mail forwarding.

32 Mailx Mail Handler

-r <name> Used for network mail forwarding where <name> is the sender of
the message. <name> and - r are simply sent along to the mail
delivery system. M ailx waits for the message to be sent and the exit
status returned. Also restricts formatting of message.

Note that - hand - r (which are for network mail forwarding) are
not used in practice since mail forwarding is now handled separately.
They may disappear in future HP -UX versions.

Message Format
This section describes message formats. Messages begin with a From line, which consists
of the word From followed by a user name, followed by anything, followed by a date in
the format returned by the clime library routine described in section 3 of the HP- UX
Reference Manual. A possible ctime format date is:

Tue Dee 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication,
which should be three capital letters, such as MDT.

Following the From line are zero or more header field lines. Each header field line is of
the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: artiele-id, bee, ee, from, reply-to, sender, subj eet,
and to.

Other header fields may be significant to various networks. Refer to the message stan­
dards documentation for the network being used for more information. A header field
can be continued onto following lines by making the first character on the following line
a space or tab character.

Mailx Mail Handler 33

If any headers are present, they must be followed by a blank line. The part that follows
is called the body of the message, and must be ASCII text containing no null characters.
Each line in the message body must be terminated with an ASCII newline character and
no line can be longer than 512 characters. If binary data must be passed through the
mail system, it is suggested that this data be encoded in a format that encodes six bits
into a printable character.

For example, one could use the upper- and lowercase letters, the digits, comma and
period to make up a set of 64 characters. Thus, a 16-bit binary number could be sent as
three characters. These characters should be packed into lines, preferably lines about 70
characters long because long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message
each time it is forwarded through a machine.

Note that some network transport protocols enforce message length limits.

34 Mailx Mail Handler

(

Glossary
This section contains the definitions of a few phrases peculiar to mailx.

alias

]lag

header field

mail

mailbox

message

message list

option

An alternative name for a person or list of people.

An option, given on the command line of mailx, prefaced with a -.
For example, - f is a flag.

At the beginning of a message, a line containing information that is
part of the structure of the message. Popular header fields include
to, cc, and subj ect.

A collection of messages. Often used as in the phrase, "Have you
read your mail?"

The place where your mail is stored, typically in the directory
/usr/mail.

A single letter from someone, initially stored in your mailbox.

A string used in mailx command mode to describe a sequence of
messages.

A piece of special purpose information used to tailor mailx to your
taste. Options are specified with the set command.

Mailx Mail Handler 35

Summary of Commands, Options, and Escapes

Command Summary
The following tables provide a quick summary of the mailx commands, binary and valued
options, and tilde escapes. Command abbreviations, where applicable, are shown in bold
type in parentheses at the beginning of the description.

Command Description

Single command escape to shell

Back up to previous message

Print (P) Type message with ignored fields

Reply (R) Reply to author of message only

Type (T) Type message with ignored fields

alias (a) Define an alias as a set of user names

alternates (alt) List other names you are known by

chdir (cd) Change working directory, home by default

copy (co) Copy a message to a file or folder

delete (d) Delete a list of messages

dp or dt Delete current message, type next message

endif End of conditional statement; see if

edit (e) Edit a list of messages

else Start of else part of conditional; see if

ex£t (ex or x) Leave mail without changing anything

file (6) Interrogate/change current mail file

folder (fo) Same as file

folders List the folders in your folder directory

from (f) List headers of a list of messages

headers (b) List current window of messages

help Print brief summary of ma£lx commands

36 Mailx Mail Handler

hold

if
zgnore

list

local

mailx

mbox

next

preserve

print

quit

reply

save

set

shell

source

top

type

unalias

undelete

unset

visual

write

xit

z

(ho) Same as preserve

Conditional execution of mailx commands

Set/examine list of ignored header fields

List valid mailx commands

List other names for the local host

(m) Send mail to specified names

Arrange to save a list of messages in mbox

(n, +, or I Return I) Go to next message and type it

Arrange to leave list of messages in system mailbox

Print specified messages without ignored headers

(q) Leave mailx; update system mailbox and mbox as appropriate

(r) Compose a reply to a message

(s) Append messages, headers included, on a file

(se) Set binary or valued options

(sh) Invoke an interactive shell

(so) Reads mailx commands from a file.

Print first so many (5 by default) lines of list of messages

(t) Print messages

Remove one or more alias groups

(u) Undelete list of messages

Undo the operation of a set

(v) Invoke visual editor on a list of messages

(w) Append messages to a file, don't include headers

(x) Synonym for exit

Scroll to next/previous screenful of headers

Mailx Mail Handler 37

Options Summary
The following table describes the options. Each option is shown as being either a binary
or valued option.

Option Type Description

EDITOR valued Pathname of editor for -e and ed£t

SHELL valued Pathname of shell for shell, - 1, and !

VISUAL valued Pathname of screen editor for - v and visual

append binary Always append messages to end of mbox

ask binary Prompt user for Subject: field when sending

askcc binary Prompt user for additional Cc's at end of message

autoprint binary Print next message after delete

crt valued Minimum number of lines before using more

debug binary Print out debugging information

dot binary Accept . alone on line to terminate message input

escape valued Escape character to be used instead of -

folder valued Directory to store folders in

hold binary Hold messages in system mailbox by default

ignore binary Ignore I DEL I (or RUBOUT) while sending mail

ignoreeof· binary Don't terminate letters/command input with EOF

keep binary Don't unlink system mailbox when empty

keepsave binary Don't delete saved messages by default

metoo binary Include sending user in aliases

noheader binary Suppress initial printing of version and headers

nosave binary Don't save partial letter in dead. letter

quiet binary Suppress printing of mailx version and message numbers

record valued File to save all outgoing mail in

screen valued Size of window of message headers for z, etc.

sendmail valued Choose alternate mail delivery system

38 Mailx Mail Handler

toplines

verbose

valued

binary

Number of lines to print in top

Invoke sendmail with the -v flag

Tilde Escapes Summary
The following table summarizes the tilde escapes available while sending mail.

Escape and Arguments Description

- ! command Execute shell command

- c name . . . Add names to Cc: field

- d Read dead. letter into message

- e Invoke text editor on partial message

-f messages Read named messages

- h Edit the header fields

- m messages Read named messages, right shift by tab

- p Print message entered so far

- q Abort entry of letter; like I DEL I (or RUBOUT)

- r filename Read file into message

- s string Set Subject: field to string

- t name . . . Add names to To: field

-v Invoke screen editor on message

-w filename Write message on file

-I command Pipe message through command

-- string Quote a - in front of string

Mailx Mail Handler 39

Command Line Flags
The following table shows the command line flags that mailx accepts:

Flag

-N

- T <file>

-d

-/ <file>

-h <number>

-1,

-n

-r <name>

-s <string>

-u <name>

-v

Description

Suppress the initial printing of headers

Article-id's of read/deleted messages to <file>

Turn on debugging

Show messages in <file> or <- /mbox>

Pass on hop count for mail forwarding

Ignore tty interrupt signals

Inhibit reading of lusr llz"blMail. rc

Pass on <name> for mail forwarding

Use <string> as subject in outgoing mail

Read <name's> mail instead of your own

Invoke sendmail with the -v flag

Note that - T, -d, -h, and -r are not for human use.

40 Mailx Mail Handler

Index

a
.... , '" ., , '" 21
... 21

alias .. 22
alternates ... 22
argument, message lists .. 19

b
binary option 6, 29, 38

c
chdir .. 22
command line flag ... 40
command line options, mailx .. " 32
command options, mailx ... 38
commands, mailx 21, 36
copy ... 22
custom options, mailx .. 29

d
delete .. 6, 22
dp ... 22
dt ... 22

e
edit ... 23
editing in mailx ... 12
else ... 23
endif .. 23
exit ... 23

Index 41

f
file ... 23
folder ... 23
folders ... 10
folders .. 23
format, message ... 33
from ... 19, 23

h
headers .. 24
help ... 24
hold 24

.
I

if ... 25
ignore 25

I
list ... 25 ~

m
mail, maintaining folders ... 10
mail, noninteractive ... 21
mail, reading .. 2
mail, receiving .. 1, 2
mail, sending .. 1, 2, 12
mail, sending to remote systems ... 17
mailx .. 25
maz'lx ... 1
maz'lx command line options .. 32
maz'lx command options .. 38
maz'lx commands .. 21,36
maz'lx custom options .. 29
maz'lx, editing in ... " 12
maz'lx, ending a session .. 9
maz'lx, folders ... 10
maz'lx, tilde escapes .. 12, 39
mbox ... 25
message format ... 33

42 Index

message list as argument ... 19
message lists .. 19

n
network access .. 17
next ... 26
noninteractivemail .. 21

o
option, binary .. 29, 38
option, command line .. 32
option, custom (mailx) ... 29
option, valued .. 29, 38

p
preserve .. 8, 26
Print .. 21
print .. 26

q
quit 8, 26

r
reading mail ... 2
receiving mail ... 1, 2
recipients, special ... 18
remote systems, sending mail to ... 17
Reply .. 21
reply ... 4,26
respond .. 26

s
save ... 27
sending mail ... 1, 2, 12
sending mail to remote systems ... 17
set ... 6,27
shell .. 27
source ... 27
special recipients .. 18

Index 43

t
text editor, mailx .. 12
tilde escapes .. 12, 39
top .. 28
Type ... 21
type ... 28

u
unalias .. 28
undelete ... 28
unset .. 28

v
valued option ... 6, 29, 38
visual ... 28

w
write .. 28

x
xit .. 28

z
z .. 29

44 Index

Table of Contents

Using vt
Identifying Available Systems. .. 2
Accessing Remote Systems .. 3

Connecting to the Remote System 3
Logging In on the Remote System. .. 4
Disconnecting from the Remote System .. 5
Sending Shell Commands to the Remote System .. 5
File Transfers and Other vt Commands .. 5

U sing Command Mode .. 7
Description of Commands. .. 8

Example File Transfer .. 13

Installing vt
Configuration Steps .. 15
Background Daemons .. 15

vtdaemon ... 16
ptydaemon .. 17

Modifying /etc/rc .. 18
Setting up the LAN Device File. .. 19

Creating LAN Device Files on Series 300 Systems 19
Creating LAN Device Files on Series 500 Systems .. 20
Setting Device Special File Permissions 21

Setting Up LAN Kernel Support ... 22
Configuring LAN Device Drivers on Series 300 Systems 22
Adding LAN Segment to Series 500 System Boot Area. 22

Creating ptys .. 23
Starting vt .. 24
Setting Up uucp Connections (optional) 24

Creating the L-vtdevices File .. 24
Modifying the L-devices File .. 26
Modifying the L.sys File .. 26

Setting up a vt Gateway (optional) 27
Changing Network Memory (optional) 28
Shutting Down vt .. 28
Index ... 29

Table of Contents

ii Table of Contents

Using vt 1
Vt is an HP-UX command that provides a means for you to use the HP-UX system where
you are currently logged in as a virtual terminal for logging in on other HP -UX systems
that are connected to your system through a Local Area Network (LAN). Vt is currently
implemented on HP 9000 Series 300 and 500 computers running the HP-UX operating
system.

Before the vt command can be used, vt software must be installed on your system. If vt is
already installed, you can immediately start using it by following the instructions in this
chapter. If you are a system administrator and vt has not been installed, you can install
vt by following the procedures documented in Chapter 2. For additional information
about the HP-UX virtual terminal command, refer to the vt(l) and vtdaemon(lM) pages
in the HP- UX Reference.

Vt can be used essentially three ways:

• -p option to poll the LAN and identify all systems in the network that currently
have vtdaemon running. These are the systems you can currently access through
vt.

• Log in directly on another (remote) system and interact with it in the same manner
as if you were using a local terminal on that system by using Ovt's remote mode.

• Use the vt escape character to change to vt's command mode. Vt commands are
used to transfer files between the local and remote system and to perform other
tasks related to vt operation such as directory changes and shell escapes.

Using vt 1

Identifying Available Systems
You mayor may not know which systems are currently connected to the LAN and have
active vtdaemon programs running. These are the systems that can currently be accessed
through vt. If you already know which system you want to access, skip to the next topic.

To determine what systems are currently ready to communicate with your system by
means of vt, use the -p option as follows:

vt -p I Return I

Vt polls all active devices on the network and lists those systems that responded with
messages indicating that they have a currently running vtdaemon. Depending on the size
of the network, the list may be short or long. Here are some helps in interpreting the
list of systems:

• If a given system name is followed by an asterisk (*), that system serves as a gateway
into the network for vt.

• If a listed system name is followed by one or more plus signs (+), the number of
plus signs indicates how many gateways must be traversed by vt in order to access
that system.

In most cases, you will have little interest in the number of gateways between you and
the target remote system. If you are handling large amounts of data between systems,
the number of gateways involved may affect overall transfer times. For most situations,
the effects are usually insignificant.

2 Using vt

Accessing Remote Systems
Accessing a remote system consists of:

1. Establishing a communication path (network connection) to the remote system.

2. Logging in on the remote system.

3. Setting up user identification and password clearance prior to any file transfers.

4. Performing tasks on the remote computer using vt's remote mode.

5. Performing file transfers and local system shell escapes using vt's command mode.

6. Terminate the connection by logging off of the remote system or using vt's quit
command.

Connecting to the Remote System
To connect to a remote system, use the vt command as follows:

vt system_ name

where system_name is the name of the remote system as listed using the vt -p command
discussed previously (do not include the plus signs or asterisk after the name). This
command accesses the LAN through the device special file /dev/ieee (for most users, the
name of the device special file is of little interest).

If, for some reason, you need to access the LAN through a different device special file,
use the command:

where lan_device is the name of the device special file to be used instead of /dev/ieee.

Using vt 3

Logging In on the Remote System
When vt has completed its connection to the remote system, vt and the remote system
respond with a series of messages similar to the following (the first line is the original
local shell command telling vt to connect to a system named hpss3c):

vt hpss3c
Connected to hpss3c.
Escape character is '-]'.

Welcome to hpss3c.
Login:

The first two lines are produced by vt, acknowledging that the connection to hpss3c is
complete and telling you that the vt command escape character (discussed later) is I CTRL ~

OJ. This escape character must be typed as the first character on the line whenever you
need to send a command to vt instead of to the remote system.

The blank line and the next two lines following the acknowledgement messages from vt are
sent to you by the remote system acknowledging that it has recognized your connection
and is ready for you to log in as a regular system user. To successfully log in on the
remote system, you must have a valid login name and password assigned to you by the
system administrator for that remote system or permission to use a login name and
password assigned to another user on the same system.

To complete your login on the remote system, use the same procedure as on your local
system except for login name and password. You can then use the remote HP-UX system
just as you would the one to which your terminal is physically connected.

Aborting the Login Sequence
If, for some reason, you want to terminate the connection without logging in, press
I CTRL ~[[].

If you have already started the login then change your mind, send an invalid login mes­
sage, then when you receive a new login message (if you get a password prompt, simply
press I Return I to get the next login message), type I CTRL ~[]] as the first character on the
new login line. Vt will terminate and then acknowledge the disconnection.

4 Using vt

Disconnecting from the Remote System
The easiest way to terminate a remote connection from vt is usually to send a I CTRL ~[[J

just as on a local computer. The remote shell terminates gracefully, and the vt connection
is dropped. Vt then exits gracefully back to the shell from which it was invoked.

You may sometimes want to terminate vt while in command mode, which is discussed
in the topics that follow. When in command mode, it may be easier to use the quit
command discussed later.

Should you experience difficulty when using I CTRL ~[[J to log off, it may be because the
remote system's ptydaemon has been terminated or terminated and restarted since you
logged in. Should this occur, enter the vt command mode as described in the following
topics and use the quit command mentioned in the preceding paragraph.

Sending Shell Commands to the Remote System
When you log in on the remote system, vt operates in remote mode. Anything you type
on your terminal keyboard is transmitted directly to the remote system by vt (unless
the first character on the line is I CTRL ~rn which switches vt to command mode and
suspends forwarding of commands until command mode is terminated as discussed in
the next topic). Vt operates as a separate program, so anything you type is ignored by
the shell that started the vt program (when vt terminates, you are returned to the shell
that started it). Commands from your terminal that are sent to the remote system by
vt are interpreted by the remote system and processed accordingly. Error messages and
other interaction with the remote system are handled much like they would be if you
were logged in on the remote system through a direct line from a local terminal.

File Transfers and Other vt Commands
Vt also operates in command mode. Command mode is used on those occasions when
you need to use the commands that have been built into vt for such tasks as transferring
files between the remote and local system or performing other (usually related) tasks
such as changing current directories or escaping to a new subshell on the local system.
Vt commands are interpreted by the vt program itself and do not interact directly with
HP-UX or user shells on the local or remote system. Rather, vt interprets the commands,
then issues its own commands to the local or remote HP-UX system according to its own
requirements based on the command it received.

Using vt 5

Entering Command Mode
To enter vt command mode after logging in on the remote system, type the vt escape char­
acter (I CTRL ~DJ keys pressed simultaneoulsy unless defined otherwise). Vt then responds
with a prompt preceded by the local system name l that is similar to the following:

[hpss3a] vt>

Returning to Remote Mode
Except for the escape, quit, and! (shell escape) commands, vt remains in command
mode until you press I Return I without typing a command (this condition is called a null
command). When vt returns to remote mode following a shell escape, your terminal
should display the following prompt:

[return to remote]

When vt returns to remote mode following an escape or quit command or after a null
command, no prompt is provided. You can verify that you are in remote mode by pressing
I Return I again which should produce a new prompt from the remote system.

This missing prompt condition occurs because vt does not forward your vt command
keystrokes to the remote computer. This means that the remote computer has no way
of knowing that vt has been handling keyboard input and therefore cannot respond with
a new prompt. For more information about exit conditions after the escape, quit, and !
commands, refer to the discussion about commands in the next section of this chapter .

.. '

1 Having the name of the "local" system can be important if you are using vt, rlogin, telent, or some other
facility to log in on a remote system which then becomes your "local" system, from which you use vt to
access a second system, and so forth. With the availability of shell layers on Series 300 (see shl(l) in the
HP- UX Reference for details), the possibilities for moving from system to system become even greater.

6 Using vt

Using Command Mode
Here is a summary of available commands when operating in Command Mode: Vt needs
only enough characters to uniquely identify the command. Thus only the first letter of
the command is required, but you can type as many characters in the command name
as you prefer.

Table 1. vt Command Summary

Command Syntax

cd remote_directory

escape {escapcchar]

help
?

lcd (directory]

get remote_file locaLfile
recei ve remote_file locaLfile

put locaLfile remote_file
send locaLfile remoteJile

quit

user user_name{:passwordj

! {sheUcommand]

I Return I

Description

Change file-transfer directory on remote sys­
tem. Remains in command mode.

Set the escape character. Returns to remote
mode.

Print vt command summary. Remains in com­
mand mode.

Change the file-transfer directory on the local
system. Remains in command mode.

Transfer file from remote system to local sys­
tem. Remains in command mode.

Transfer file from local system to remote sys­
tem. Remains in command mode.

Terminate the connection and exit vt. Returns
to user shell on local computer.

Identify yourself to the remote vt server. Re­
mains in command mode.

Shell escape. Returns to remote mode.

Null command. Returns to remote mode.

As indicated, some vt commands execute and immediately return vt to remote mode.
Others execute and leave vt in command mode. To return vt from command mode to
remote mode, press I Return I without typing a command.

Using vt 7

Description of Commands
This section describes each vt command in detail.

Change Directory on Remote System (cd)
The cd command specifies the target file transfer directory on the remote system. The
user command must be executed before cd can be used. Syntax is as follows:

cd remote_ directory

For example, to transfer files from directory /users/pTOJ"l/jme/work, type the cd com­
mand as follows:

cd /users/proj1/jme/work I Return I

Vt remains in command mode after completion or failure due to error. If an error occurs,
an appropriate message is displayed before the new prompt.

Note

Directory and file transfer operations cannot be started until the
necessary user name and password has been provided for the re­
mote system by the user command.

Redefining the Escape Character (escape)
The escape command is used to define a new escape character or determine the current
escape character. To define a new character, use:

escape (escape_char)

where (escape_char) is the new escape character. If no new escape character is specified
(escape followed immediately by I Return I), vt will prompt you to enter one (type the new
character and press I Return I). If you press I Return I in response to the prompt, vt prints the
current escape character on the terminal display.

The default escape character is -] which is obtained by pressing the I CTRL I and OJ keys
simul taneously.

8 Using vt

On-line help summary (help or ?)
The help or? command tells vt to print a summary of available vt commands on the
terminal display. The syntax is very simple:

help

or

?

followed by ! Return I. Vt remains in command mode after displaying the command sum­
mary.

Change Directory on Local System (Icd)
The led command specifies the file transfer directory on the local system. Syntax is as
follows:

led directory

where directory is an existing directory on the local system. Vt forwards the command
to the local system for interpretation, so the rules are the same as for the normal cd
shell command (see cd(1) in the HP -UX Reference). If no directory name is provided, vt
uses your home directory. If no led command is used prior to a file transfer, the current
working directory that was in effect before vt was invoked is used for all vt file transfers
and shell escapes. Use of led affects only vt. It does not change the current working
directory for the shell from which vt was invoked.

For example, to transfer files from directory /users/proj3/jsm/work on the local com­
puter, use the led command as follows:

led /users/proj3/jsm/work!Returnl

Vt remains in command mode when finished.

Using vt 9

File Transfers from Remote to Local (get or receive)
The get and receive commands are synonymous. They are used to copy remote_file from
the defined current directory (see cd previously discussed) on the remote system to file
locaLfile in the defined or default (see lcd) current directory on the local system. Syntax
is as follows:

get remote_file locaLfile

or

recei ve remote_file locaLfile

vt prompts for missing file names if you do not supply them on the command line.

For example, to copy file vt.xfer from the remote directory defined by a previous cd
command to file vt.receive in the local (default or specified by a previous led command),
type:

get vt. xfer vt. recei ve I Return I

If no led command is executed prior to get or receive, the current working directory
that was in effect before vt was invoked is used. Vt remains in command mode upon
completion.

To abort a file transfer in progress, press the I Break I key or type the interrupt character
(defined by the stty command and usually executed during login - see stty(l) in the
HP- UX Reference.

Note

full directory pathnames can be used when specifying remote_file
and locaLfile instead of using the cd and led commands. However,
user name and password must be provided to the remote system
by the user command before any file transfers can be undertaken.

10 Using vt

File Transfers from Local to Remote (put or send)
The put and send commands are also synonymous. They are used to copy locaLfile from
the default or defined current directory (see led previously discussed) on the remote
system to file remote_file in the defined (see cd) cu-rent directory on the remote system.
Syntax is as follows:

put locaLfile remote_file

or

send locaLfile remote_file

vt prompts for missing file names if they are not specified.

For example, to copy file hpux. vt from the local directory (default or defined by a previous
led command) to file vt.xfer in the remote directory defined by a previous cd command,
type:

put hpux.vt hpux.vt.xfer I Return I

If no led command is executed prior to put or send, the current working directory that was
in effect before vt was invoked is used. Vt remains in command mode upon completion.

To abort a file transfer in progress, press the I Break I key or type the interrupt character
(defined by the stty command and usually executed during login - see stty(l) in the
HP- UX Reference).

Note

Full directory pathnames can be used when specifying remote_file
and locaLfile instead of using the cd and led commands. However,
user name and password must be provided to the remote system
by the user command before any file transfers can be undertaken.

Using vt 11

Terminating the Connection (quit)
The quit command logs off of the remote system, terminates the remote connection,
exits vt and returns you to the shell you were using when you executed the vt command.
Syntax is as follows:

quit

This command can be used to conveniently terminate vt after a file transfer if you have
no need to return to remote mode. It is also useful for terminating vt when a network
malfunction or other condition makes it impossible to log off of the remote computer
(such as the remote ptydaemon being terminated and restarted for some reason). Refer
to the earlier discussion entitled "Disconnecting from the Remote System" for more
information.

Establish File Access Permission (user)
The user command is used to set up file access permission on the remote system. Unless
you provide a valid name and password to the remote system, internal security will not
allow you to access files or change directories on the remote system. This safeguard is in
addition to the normal login name and password sequence. Syntax is:

user user _ name[:password}

vt will prompt for a password (after disabling local echo) if a colon (:) is appended to
user_name. This command must be executed successfully before any file transfers can
be performed.

For example, to identify yourself on a remote system as user "guest" with password
"guest in" , type:

user guest: I Return I

When you receive a password prompt in response, enter the password:

guestin I Return I

Terminal echo is disabled during password requests, so the password you type does not
appear on your terminal display screen. Vt remains in command mode when finished
with the user command.

12 Using vt

Shell escape (!)
The shell escape provides a means for executing an HP-UX command without terminating
vt. To execute a command, type an exclamation point (!) followed by the HP-UX
command as follows:

! [shelL command]

Vt spawns a new sub-shell to execute shelL command on the local system. If you do
not specify a shell_command after the !, the new shell is spawned and you receive a
shell prompt in response. Use I CTRL ~[[] to exit the sub-shell and return to vt. Upon
completion of shell_ command or return from the subshell by use of I CTRL ~[[], vt resumes
operation in remote mode.

For example, to list the local transfer directory, type:

! Is I Return I

Example File Transfer
The most common use for the vt package is in transferring files between the local system
and a remote system. The basic steps used in transferring files are:

1. Log in on the remote system.

2. Establish file system access permission by using the vt user command.

3. Use the vt lcd command to define the local file-transfer target directory.

4. Use the vt cd command to define the remote file-transfer target directory.

5. Use the get or put command (or their synonyms, receive and send) to transfer the
file.

The following example is a segment from a typical session and includes login, file access
permissions, and a file transfer. Other details such as sending shell commands to the
remote computer and logout procedures were discussed previously in this chapter.

Using vt 13

The steps shown in this example include logging in on the remote system named "hpss3c"
using the "guest" login name, then transferring file /users/guest/xfer/testz"ngl from
"hpss3c" to /users/jme/transferl on the local system named "hpssla". The prompt
issued by the local system is "==>", the remote system prompt is "$", and the vt com­
mand mode prompt is "[hpss1a] vt> ".

==>

System
Prompt

Welcome to
hpss3c.
login:

Password:

$

[hpss la] vt>

Password:

[hpssla] vt>

[hpssla] vt>

[hpssla] vt>

[hpssla] vt>

Your Response: Description

vt hpss3c I Return I Connect vt to the remote system.

guest I Return I Send login name to remote system.

guestpassword I Return I Local echo is disabled, so password
does not appear on the screen.

-] I Return I Enter vt command mode by pressing
the I CTRL I and rn keys simultane­
ously.

user guest: I Return I Provide user name and password for
file system access permission.

guestpsswd I Return I Local echo is again disabled, so pass­
word does not appear on the screen.

cd /users/guest/xfer I Return I Set target transfer directory on the re­
mote system (hpss3c).

lcd /users/ jme I Return I Set target transfer directory on the lo­
cal system.

get testing1 transfer1 I Return I Transfer file from remote system to lo­
cal system. Still in command mode
when finished.

I Return I Type I Return I to get out of vt command
mode. Remote system does not send
new prompt.

I Return I Type a second I Return I to get a prompt.

$ Prompt indicates remote system is
ready for command.

14 Using vt

Installing vt 2
Configuration Steps
Before system users can access vt capabilities, vt and its supporting software and devices
must be correctly installed and configured. The necessary and configuration steps are
described in this chapter in their usual order of execution:

1. Modify the /etc/rc script file to automatically start ptydaemon and vtdaemon at
boot-up.

2. Create the LAN device special file.

3. Add LAN segments in the boot area of the root disk.

4. Create pseudo-terminals (ptys)

5. Start vt.

In addition to these steps, you may want to set up optional UUCP connections or a vt
gateway. Appropriate procedures are explained later in this chapter.

Background Daemons
When a vt command is executed on the local system, vt sends a request to the target
remote system to log in on that system. The request is received by the vtdaemon program
running on that remote system which, in turn, sends a request to the ptydaemon on the
same system to assign a pty (pseudo-terminal) for use by the vtdaemon. Vtdaemon then
creates a server process to handle communication with vt on the local system over LAN,
with the pty acting as an interface between the server process spawned by vtdaemon and
the login shell on the remote system, much like a tty driver interfaces a user terminal
and shell on the local system.

Thus it is clear that vt requires two demons operating in the background on any accessible
remote system to handle incoming connection and login operations. They are vtdaemon
and ptydaemon.

Installing vt 15

vtdaemon
Vtdaemon is a background program that administers all incoming vt connections. Vt­
daemon should be started automatically by the /etc/rc script file each time the system
boots up. The procedure for modifying /etc/rc is discussed in the next section of this
chapter.

Vtdaemon performs the following functions:

• Responds to vt login requests from other systems.

• For each login request received, vtdaemon spawns a server to service commands
and system requests from the remote user.

• Determines which systems in the network are to be allowed access to the system
on which it is running. For example, the -n option tells vtdaemon to ignore all
requests that have come through a gateway, accepting only requests from systems
that can access the host system without using a gateway access.

• Creates portals and services portal requests on those systems that use uucp in
combination with vt.

A portal is a device that can be used by uucico{lM} to call out to another system
via LAN. Portals are created by vtdaemon according to the configuration infor­
mation found in the file /usr/lib/uucp/L-vtdevices. Up to 48 uucp portals can be
configured.

Vt allows up to 16 simultaneous in/out vt connections. Up to 48 uucp portals can be
configured.

Vtdaemon maintains an activity log in file /etc/vtdaemonlog. Examine this log file when
you encounter problems involving vt.

16 Installing vt

ptydaemon
Ptydaemon is another background program that should be started automatically by the
/etc/rc script file each time the system boots up. The procedure for modifying /etc/rc
is discussed in the next section of this chapter.

Ptydaemon processes requests from vtdaemon (as well as other local or network processes)
and allocates ptys on the remote system as they are needed, based on availability. Ptys
are allocated in master/slave pairs. The slave pty interacts with the shell being used
by the assigned process. The master pty interacts with the process controlling the shell.
The interaction between program and shell are handled by the pty pair just as their
counterparts handle user terminals and shells in tty drivers.

Once a pty has been assigned to the server spawned by vtdaemon after receving it from
ptydaemon, ptydaemon remains dormant until the vt connection is terminated and the
pty pair is returned to the pool of available ptys.

Ptydaemon maintains an activity log in file /etc/ptydaemonlog. Examine this log file
when you encounter problems involving ptydaemon startup or pty allocations.

Installing vt 17

Modifying /etc/rc
The shell script contained in file /ete/re is automatically executed by HP-UX at system
boot-up. This script should be modified to start ptydaemon and vtdaemon as back­
ground processes whenever it is executed (eron is also a background process that serves
a comparable role for other aspects of HP-UX system operation).

Use vi or any other suitable editor to modify the /ete/re file as follows (these changes
apply to both Series 300 and Series 500):

1. Examine the line that defines the PATH variable and be sure that it includes jete
in the list of pathnames.

2. Insert the following lines immediately before the call to npowerup.

Start ptydaemon:
ptydaemon
echo ptydaemon started

3. The vtdaemon must start after the network is powered up. To accomplish this,
modify the following lines in /ete/re from:

Start network:
npowerup < npowerup arguments> &
echo network powerup started in background

to:

Start network:
(npowerup < npowerup arguments> ; vtdaemon) &
echo network powerup and vtdaemon started in background

This enforces correct vtdaemon start-up sequencing.

18 Installing vt

Setting up the LAN Device File
The vt program uses a character-mode device special file whose major number maps to
an IEEE 802 device. A new IEEE 802 special file must be created if one does not already
exist on the system.

Vt uses device special file /dev/ieee by default. If possible, use the same name when
creating the new file so that system users do not have to specify a different device special
file name in the vt command line described in Chapter 1.

Creating LAN Device Files on Series 300 Systems
On Series 300 systems, the major number for the HP 98643A IEEE 802 interface is 18.

To determine whether any LAN device special files already exist on your system, pipe
the long listing (ll) command through grep as follows:

11 /dev 1 egrep "18119" I Return I

Any existing device special files having a major number of 18 or 19 will be listing in a
format similar to:

crw-r----­
crw-r-----

1 root
1 root

There are 3 possible scenarios:

other
other

18 Ox030000 Jun 3 19:25 ieee
19 Ox030000 Jun 3 14:39 Ian

1. If your system has a device file with 18 in the major number field as shown above,
that device file is configured to communicate with the LAN interface. If the name
of that device special file is ieee, skip to the next topic in this section: Setting
Device Special File Permissions.

If the existing device special file is not named ieee, create a link from the existing
file to a new file of that name in the / dev directory as follows:

In /dev/existing_file /dev/ieee I Return I

where existing_file is the name of the existing device special file previously identified.

2. If the listing shows a device file with major number 19 (ethernet protocol) but no
special file with major number 18 is listed, a new device file (jdev/ieee) must be
created with with major number 18 and the same minor number as the ethernet
special file with major number 19.

Installing vt 19

For example, suppose your system has an ethernet special file named Zan with major
number 19 and minor number Ox030000. To create /dev/ieee type:

/etc/mknod /dev/ieee c 38 Ox030000 I Return I

3. If no device file exists in directory /dev for major number 18 or 19, determine the
correct minor number then execute a mknod command similar to the command
shown in Step 2 to create the required device special file.

Refer to the Network Services/9000 LAN Node Manager's Guide for more details
on setting up LAN device special files.

Creating LAN Device Files on Series 500 Systems
On Series 500 systems, the major number for the HP 27125A IEEE 802 interface is 39
(the Series 500 implementation of vt does not support the HP 2285A LAN interface).

To determine whether any LAN device special files already exist on your system, pipe
the long listing (ll) command through grep as follows:

11 / dev 1 egrep "38139" I Return I

Any existing device special files having a major number of 38 or 39 will be listing in a
format similar to:

crw-r----­
crw-r-----

1 root
1 root

There are 3 possible scenarios:

other
other

39 Ox030000 Jun 3 14:39 ieee
38 Ox030000 Jun 3 19:25 Ian

1. If your system has a device file with 39 in the major number field as shown above,
that device file is configured to communicate with the LAN interface. If the name
of that device special file is ieee, skip to the next topic in this section: Setting
Device Special File Permissions.

If the existing device special file is not named ieee, create a link from the existing
file to a new file of that name in the / dev directory as follows:

In /dev/existing_file /dev/ieee I Return I

w here existing_file is the name of the existing device special file previously identified.

2. If the listing shows a device file with major number 38 (ethemet protocol) but no
special file with major number 39 is listed, a new device file (/dev/ieee) must be
created with with major number 39 and the same minor number as the ethernet
special file with major number 38.

20 Installing vt

For example, suppose your system has an ethemet special file named Ian with major
number 39 and minor number Ox030000. To create /dev/ieee type:

/etc/mknod /dev/ieee c 39 Ox030000 I Return I

3. If no device file exists in directory /dev for major number 38 or 39, determine the
correct minor number then execute a mknod command similar to the command
shown in Step 2 to create the required device special file.

Refer to the Network Services/9000 LAN Node Manager's Guide for more details
on setting up LAN device special files.

Setting Device Special File Permissions
After creating /dev/ieee, you must configure ownership and access permissions for correct
security controls. You have two options:

• If there is no need to restrict access to /dev/ieee, set the file access permission mode
to 0666, file ownership to root, and the owner's group to other. Three commands
are required to accomplish this:

chmod 666 /dev/ieee I Return I
chown root /dev/ieee \ Return \
chgrp other /dev/ieee I Return I

• If access to /dev/ieee needs to be restricted for proper system security, vt(l) must
be able to do a setuid(getuid()) and a setgid(getgid()) after it opens /dev/ieee. Set
the access permission mode for /dev/ieee to 0600, owner to match the owner of
/usr/bin/vt, and change the mode of /usr/bin/vt to 04555 (setuid bit on).

For example, if /usr /bin/vt's is owned by root, execute the following commands:

Installing vt 21

Setting Up LAN Kernel Support
Before vt can use LAN capabilities, the system must be set up to correctly provide kernel
support for vt LAN operations.

Configuring LAN Device Drivers on Series 300 Systems
On Series 300 systems, the LAN device drivers must be configured as part of kernel
customization. Refer to the kernel customization chapter of the Series 300 System Ad­
ministrator Manual for more information.

Adding LAN Segment to Series 500 System Boot Area
On Series 500 systems the boot area on the root disk must contain an optional segment
named HP27125A.opt. To determine whether the segment already exists, execute the
command:

osck -v /dev/rhdIReturnl

The osck command produces a listing of segments in the system boot area. If the listing
includes a line containing HP27125A as in the following example line:

33 669728 15536 HP-UX OPTION HP27125A 05.05

skip the rest of this section because the segment is already in place and does not need
to be added. If the output listing does not include a line containing HP27125A, execute
the following commands to install the segment and reboot the system:

1. Use the oscp command to add file HP27125A.opt to the sytem boot area:

oscp -a /system/xxxxxX/HP27125A.opt /dev/rooLvolume I Return I

where xxxxxx is the LAN software product number (such as 50954A for multi-user
LAN or 50953A for single-user LAN), and rooLvolume is the name of the root
volume device character special file.

2. Execute the system shutdown command using the automatic reboot option as fol­
lows:

shutdown -r 0 I Return I

This command shuts down the system with a zero grace period (meaning that no
advance warning is given to any currently active sytem users), then automatically
reboots the system.

22 Installing vt

Creating ptys
One or more master/slave pseudo-terminal (pty) pairs must be present in directo­
ries /dev/pty and /dev/ptym. These master/slave pty pairs may already exist if
HP Windows/gOOD is installed on your system.

Series 300
To create a master/slave pty pair on a Series 300 system, use the commands:

/etc/mknod /dev/pty/tty[p-wj[O-f] c 17 OxOOOOnn I Return I
/etc/mknod /dev/ptym/pty[p-wj[O-f] c 16 OxOOOOnn I Return I

Series 500
To create a master/slave pty pair on a Series 500 system, use the commands:

/etc/mknod /dev/pty/tty[p-wj[O-f] c 29 OxfennOO Return
/etc/mknod /dev/ptym/pty[p-wj[O-f] c 45 OxfennOO Return

where the value range for nn is 00 through Of for pO through pf, 10 through 1f for qO
through qf, etc. Refer to the section on "Pseudo Terminals" in the "Toolbox" chapter of
the System Administrator Manual for more details on naming conventions and pty setup.

The number of pty pairs that need to be present (or created) depends on the number of
applications on your system that use them. If vt is the only application on your system
that uses ptys, create only enough pty pairs for the expected number of incoming vt
connections plus one pty pair for each UUCP portal listed in /usr /libjuucp/L-vtdevices.

If you are using both vt and HP Windows/gOOD you may want to change the num­
ber of ptys that are available to HP Windows/gOOD because the ptydaemon and
HP Windows/gOOD both allocate ptys from the same default directories.

Vt allows you to place pty pairs in directories other than /dev/pty and /dev/ptym, pro­
vided you specify the correct directory on the ptydaemon command line. However, other
HP-UX commands do not allow specifying an alternate directory, so the practice is not
recommended. To access pty pairs in non-default directories, start the ptydaemon with
the following options:

ptydaemon [master pty directory] [slave pty directory]

Installing vt 23

Starting vt
Now that the vt support structure is installed and configured, the supporting processes
must be started before vt can be used. You can either reboot the system or directly
execute the start-up commands. If you reboot the system, vt is started from the letclrc
entries. If you prefer to avoid rebooting the system, execute the following commands:

Setting Up uucp Connections (optional)
Another feature of the vt package is its ability to allow uucico to communicate with other
systems running vtdaemon{lM} over the LAN. This capability speeds up file transfer
programs such as mail that use a uucp connection. To provide this capability on your
system, you must create a file called /usr/lib/uucp/L-vtdevices. You will also need to
modify lusr /lib/uucp/L-devices and file lusr Ilibluucp/L.sys.

Creating the L-vtdevices File
For each remote system that is to be accessed, add a line of the following form to file
/usr /lib/uucp/L-vtdevices:

calldev [, Ian device j nodename [< reserved for future use> j # Comment

where:

calldev is the name of the device file that will be created by vtdaemon{lM)
when it starts up. By convention, use culpn where n is a hexadecimal
digi t in the range 0 through f.

IMPORTANT

Do not use a name for calldev that already exists in the I dev
directory.

24 Installing vt

{,tan device] This optional field is used to specify an alternate device special file
w hen the LAN connection request is not being sent through the
default network special file /dev/ieee. Otherwise, it can be omit­
ted. When a.n alternate LAN device special file is specified, its name
must match one of the device file names provided as arguments to
vtdaemon when it was started.

The optional Ian device field is separated from calldev by a comma
if it is present in the line. Note that there are no spaces before or
after the comma. The square brackets ((and]) only indicate that
the field is optional. They should not be typed as part of the line.
Use of this field is clearly illustrated in the example which follows.

nodename The node name of the remote system being connected to when uucico
opens calldev.

/usr /lib/uucp/L-vtdevices can contain arbitrary white space, blank
lines and comments after a '#'.

For example, suppose you are setting up three vt connection paths to remote HP-UX sys­
tems using uucp connections where two systems are accessed through device file /dev/ieee
but the third system is accessed through device file /dev/network. For such an arrange­
ment, file L-vtdevices would resemble:

culpO hpuxal
culpl./dev/network hpuxbl
culp2 hpuxzl

Note that the vtdaemon start-up command must include the LAN device special file
argument /dev/network or the culpl entry cannot be used.

Note

Any changes that you make to L-vtdevices while the system is
running cannot be used until you kill, then restart vtdaemon.

Installing vt 25

Modifying the L-devices File
For each line in /usr/lib/uucp/L-vtdevices, add a line similar to the following to
/ usr /lib / uucp /L-devices:

OIR calldev 0 9600

where calldev is the same as the calldev in the corresponding line in /usr/lib/uucp/L- .
vtdevices (discussed in the previous topic).

Using the previous example, the following lines would be required:

OIR culpO 0 9600
OIR culp1 0 9600
DIR culp2 0 9600

Modifying the L.sys File
Add a line to /usr /lib/uucp/L.sys for each system that was included in the list of callout
devices in the previous two topics. For maximum throughput efficiency, use "f" protocol.

For example:

hpuxa1 Any.5 culpO 9600 f/culpO in: uucp word: XXXX

IMPORTANT

Do not use the "(0" convention in the login sequence because the
callout devices are not using tty discipline.

Because of a bug in uucico, if L.sys contains alternate lines for the same system following
the above line, the protocol to be used must be explicitly specified each time an entry is
set up for that system.

For example, if you have a line like:

hpuxa1 Any.5 ACUVENTEL212 1200 2284 in:-(O-in: uucp word: XXXX

you should change it to:

hpuxa1 Any.5 ACUVENTEL212 1200 g/2284 in:-(O-in: uucp word: XXXX

26 Installing vt

Setting up a vt Gateway (optional)
A vt gateway is a system that transfers data between two or more LAN s. If your system
is connected to more than one LAN and is set up as a gateway, then systems on one LAN
can communicate with systems on another LAN through the inter-LAN link provided by
your system.

To become a gateway you must use the -g option on the vtdaemon command line in
JeteJre.

Being a gateway is not simply being connected to more than one LAN. If you specify
multiple LAN device files when invoking vtdaemon but do not specify the -g option,
your system will not be a gateway, meaning other systems on each of those LANs can
communicate with your system, but cannot communicate with systems on another LAN
through a link provided by your system. In such a situation, the only workaround would
be to first vt onto your system and log in, then vt to the desired destination system.

The -g option has an optional numerical argument to limit the number of concurrent vt
gateway servers your system can run concurrently. This gives you control over how much
CPU and other resources (IEEE 802.3 SAPs) you wish to allow other systems to use.
Th~re will be no limit (other limits such as the number of IEEE 802.3 SAPs and LAN
memory will still apply) if the -g option is specified without this optional numerical
argument (SAP is an acronym for Service Access Point. Refer to the LAN User's Guide
for more information about this and other network details.

You can ignore requests that have come through a vt gateway by using the -0 option to
vtdaemon. One scenario where this option would be useful is:

• System A is a fairly unsecure test system attached to a test LAN (LAN A). The
administrator of System A trusts everyone on LAN A.

• However, System B (also connected to LAN A) is a vt gateway to a larger facility
LAN (LAN B) serving users that should not have any access to System A.

As long as System B is secure!, System A can use the -0 option to prevent nodes on
LAN B from accessing it.

1 A secure system in this context is simply a system that enforces passwords. You cannot prevent someone
from LAN B from logging in on System B then using System B to access System A through nested vts.
However, only users that have log ins on the gateway system can login and use a nested vt.

Installing vt 27

Changing Network Memory (optional)
Vt uses lots of network memory, so you may need to increase the network memory limit
if your system is supporting several connections simultaneously. On Series 300 systems,
the network memory limit is specified by an argument to the npowerup command. On
Series 500 systems, the network memory limit is specified in /etc/netdir. Vt produces an
error message when the local or remote system does not have sufficient memory available
to support the requested connection.

Shutting Down vt
All programs to vt operation can be shut down gracfully by sending a SIGTERM signal
to them (SIGTERM is equivalent to the kill command without the -9 option). If a
SIGTERM signal is sent to ptydaemon, the System V IPC message queues used by
ptydaemon for requests/responses are removed. Ptydaemon cannot be started if the
queues already exist (thus preventing it from being started twice). If ptydaemon is killed
with a SIGKILL (SIGKILL is equivalent to kill-9), ipcrm (see ipcrm(1)) just be used to
remove the message queues before the ptydaemon can be restarted.

28 Installing vt

Index

a
aborting login sequence to remote systems 4
accessing remote systems .. 3

b
background daemons .. 15

c
cd ... 7,8
command mode ... 5,7
configuration of HP-UX for vt ... 15
connecting to a remote system ... 3
creating LAN device files on Series 300 systems 0 • • • •• 19
creating ptys ... 23

d
disconnecting from remote systems ... 5

e
entering command mode .. 6
escape .. 8
escape command to set escape character 7
example file transfer ... 13

f
file transfer example ... 13
file transfer to remote systems ... 5

9
gateway , .. 2
gateway, setting up .. 27
get ... 7, 10

Index 29

h
help 7, 9

.
I

installing vt software 0 15

k
kernel support for vt 0 22

I
L-vtdevices file 0 24
LAN device file, setting up 0 19
led 00 0 0 0 0 0 0 0000000000 7,9
logging in on remote systems 0 4
Losys file 0 26

m
memory allocation, network 0 28

n
network memory allocation 0 28
network poll 0 2

p
p option 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
polling the network 0 2
pseudoterminal 0 23
ptydaemon 0 15, 17
ptys, creating 0 23
put 00 0 0 0 0 0 0 0 00000000 7, 11

q
quit 7, 12

30 Index

r
receive ... 7, 10
remote mode, returning to ... 6
remote mode, verifying .. 6
remote systems, aborting login sequence 4
remote systems, accessing ... 3
remote systems, connecting to ... 3
remote systems, disconnecting from ... 5
remote systems, file transfer ... 5
remote systems, logging in ... 4
remote systems, sending shell commands to 5
returning to remote mode ... 6

s
send .. 7, 11
sending shell commands to remote systems 5
setting up gateways .. 27
setting up the LAN device file .. 19
shell escape ... 13
shutting down vt .. 28
starting vt .. 24

u
user .. 7, 12
uucp connections .. 24

v
verifying remote mode .. 6
virtual terminal .. 1
vt command mode .. 6
vt commands ... 7, 8
vt, configuration of HP-UX for .. 15
vt, definition ... 1
vt, executing HP-UX commands from .. 13
vt, gateway ... 27
vt, shutting down 28
vt, starting ... 24
vtdaemon 0 •• 2, 15, 16

Index 31

Notes

32 Index

fold--

MANUAL COMMENT CARD
Device I/O and User Interfacing

HP-UX Concepts and Tutorials

HP Part Number 97089-90062 10/87

Please help us improve this manual. Circle the numbers in the following
statement that best indicate how useful you found this manual. Then add
any further comments in the spaces below. In appreciation of your time, we
will enter your name in a quarterly drawing for an HP calculator. Thank
you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors? __________________ _

Comments: __________________________________ __

Name: _________________________________ __

Job Title: _____________________ _

Company: __ ___

Address: ___ __

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97089-90062
Microfiche No. 97089-99062
Printed in U.S.A. 10/87

rlin- HEWLETT
a:~ PACKARD

~ II ~ ~ 1IlIIIIIlIIIIU
97[)89-9[)b64
For Internal Use Only

