File No. S360-25(08)
Order No. GY28-6638-1

IBM Systern/360 Operating System
FORTRAN IV (G) Compiler

Program Logic Manual

Program Number 360S-F0-520

This publication describes the internal logic of the
_FORTRAN IV (G) compiler.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by systems programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main-
tenance or modification responsibilities.

The FORTRAN IV (G) compiler is a processing program
of the IBM System/360 Operating System. It translates
one or more source modules written in the FORTRAN
language into an object module that can be processed
into an executable load module by the linkage editor.

Program Logic

Order No. GY28-6638-1, page revised 1/15/71 by TNL GY28-68u7

PREFACE

This publication provides customer
. engineers and other technical personnel
with information describing the internal
organization and operation of the FORTRAN
IV (G) compiler. It is part of an inte~
grated library of IBM System/360 Operating
System Program Logic Manuals. Other publi-
cations required for an understanding of
the FORTRAN IV (G) compiler are:

IBM System/360 Operating System:

Principles of Operation, Form A22-6821

FORTRAN IV Lanquage, Form C28-6515

Introduction to Control Program_ _Logic,
Program Logic Manual, Form Y28-6605

FORTRAN 1V (G and_H) Programmer's Guide,
Form C28-6817

Any reference to a Programmer's Guide
in this publication applies to FORTRAN
IV_(G_and H) Programmer's Guide, Form

Cc28-6817. The FORTRAN IV (G) Program-
mer's Guide, Form C28-6639, (to which
references may exist in this publica-

tion) has been replaced by the com-
bined G and H Programmer's Guide.

Although not required, the following
publications are related to this publica-
tion and should be consulted:

IBM System/360 Operation System:

Sequential Access Methods, Proqram_Logic
Manual, Form Y28-6604

Second Edition (May 1968)

This is a major revision of, and makes obsolete, the

previous

Concepts and Facilities, Form C28-6535

Supervisor and_ Data Management Macro-
Instructions, Form C28-6647

Program_ Logic_Manual,

Qinkag% Editor,
Form Y28-6610

System Generation, Form C28-6554

This
sections:

publication consists of two

Section 1 is an introduction that
describes the FORTRAN IV (G) compiler as a
whole, including its relationship to the
operating system. The major components of
the compiler and relationships among them
are also described in this section.

Section 2 consists of a discussion of
compiler operation. Each component of the
compiler is described in sufficient detail
to enable the reader to understand its
operation, and to provide a frame of
reference for the comments and coding supp-
lied in the program listing. Common data
such as tables, blocks, and work areas is
discussed only to the extent required to
understand the 1logic of each component.
Flowcharts are included at the end of ‘this
section,

Following Section 2, are appendixes that
contain reference material.

Iif more detailed information is
required, the reader should see the com-
ments, remarks, and coding in the FORTRAN
IV (G) program listing.

edition,

Form Y28-6638-0, and Technical Newsletters Y28-6384, Y28-6386, Y28-6388,

and Y28-6820. Changes to the text, and

small illustrations, are

indicated by a vertical line to the left of the change; changed or added
illustrations are denoted by the symbol ¢ to the left of the caption.

The specifications contained in this

publication, as
Y28-6829,

amended by TNL
dated July 23, 1969, correspond to Release 18 and as further

amended by TNL GY28-6847, dated January 15, 1971, correspond to Release

20 of the IBM System/360 Operating System.

Technical

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisjons or
Newsletters.

Requests for copies of IBM publications

should be made to your IBM

representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM

Corporation,

York, N. ¥. 10020,

Programming Publications, 1271 Avenue of the Americas, New

©® Copyright International Business Machines corporation 1968, 1970

t

IBM Technical Newsletter File Number ~ $360-25
' Re: Order No. GY28-6638-1

This Newsletter No. GY28-6826
Date November 15, 1968

Previous Newsletter Nos. None

IBM System/360 Operating System
FORTRAN 1V (G) Compiler

Program Logic Manual

This Technical Newsletter, a part of Release 17 of the IBM
System/360 Operating System, provides replacement pages for IBM
System/360 Operating System: FORTRAN IV (G) Compiler Program
Logic Manual, Form Y28-6638-T, These replacement pages remain in
effect for subsequent releases unless specifically altered. Pages
to be replaced and/or added are listed below.

Pages
Cover, preface
19-20 145-146,1
27-32 153-154.,1
35-38.1 157-158
39=40 177-178
45-46 185-186
"53=54 191-192
67-68 (67,1 added) 221=224,1
69-70,1 225-226 (225.1 added)
71=72 229-230,1
77-78 253-254

Changes to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol e to the left of the
caption,

Summary of Amendments

New information about innermost DO loops with a possible extended
range has been added. The information includes descriptions of
two new routines, XTEND LABEL and EXTND TARGET LABEL, and changes
to existing routines and flowcharts involved in phase 1 processing.
There is also additional information about the NAMELIST table
entries and the GET POLISH routine, and a description of the
improvements made by the FORTRAN object-time library in the pro-

cessing of BACKSPACE statements,

File this cover letter at the back of the publication to provide
a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y, 10020

PRINTED IN U.S.A.

IBM Technical Newsletter File Number $360-25

Re: Order No. GY28-6638-1
This Newsletter No. GY28-6829
Date July 23, 1969
Previous Newsletter Nos. GY28-6826

GY28-6847

IBM System/360 Operating System
FORTRAN IV (G) Compiler
Program Logic Manual

.This Technical Newsletter, a part of Release 18 of the IBM
System/360 Operating System, provides replacement pages for
IBM System/360 Operating System: FORTRAN IV (G) Compiler
Program. Logic Manual, Form Y28-6638-1. These replacement
pages remaln 1in etffect for subsequent releases unless speci-
fically altered. Pages to be replaced and/or added are listed

below.
Pages

Cover, preface 49-52

7,8 55-58
13,14 75-76
17,18 113-114
35-36.1 167-170
43-44.1 175-176.1
45,46 209,210

255-257

Changes to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change; changed
or added illustrations are denoted by the symbol e to the left
of the caption.

Summary of Amendments

A description of the compiler statistics messages and the
phases and subroutines which generate them is added. Illus-
trations of the formats of the messages are included.

File this cover letter at the back of the publication to
provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

IBM

Technical Newslettar

File No.

5360-25 (08)

Re: Order No. GY28-6638-1
This Newsletter No. GY28-6847
Date : January 15, 1971
Previous Newsletter Nos. GY28-6826
GY28-6829

IBM System/360 Operating System

FORTRAN IV (G) Compiler

Program Logic Manual

© International Business Machines Corporation

This newsletter provides replacement pages for the publication
IBM System/360 Operating System: FORTRAN IV (G) Compiler
Program Logic Manual, Order No. GY28-6638-1.

The specifications contained in this publication correspond to
Release 20 of the IBM System/360 Operating System. Pages to be
replaced are listed below:

Page (s) Summary of Amendment (s)

Cover-2 Release notice updated

7,8 List of illustrations updated

211-258 "Appendix F: Object-Time Library
Subprograms" has been replaced in
its entirety; new information has
been added, obsolete information
deleted, and existing information
expanded and clarified (replacement-
pages are 211-258.10)

263-272 Index updated

Changes to the text and small changes to illustrations are
indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e
to the left of the caption. File this cover letter at the
back of the publication to provide a record of changes.

IBM EOrpomn'ﬁ, F;rogmn'zming Publications, 1271 Avense of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

SECTION 1:
purpose of the Compiler . « «
Machine Configuration
Compiler and System/360 Operating
System « « o« o o o o o & o o o o
Compiler Design « « o« o o
Limitations of the Compiler
Compiler Implementation . .
POP Language « « « « o o =
Compiler Organization . .
control Phase:

Phase 1: Parse (IEYPAR) . .
Phase 2: Allocate (IEYALL) .
Phase 3: Unify (IEYUNF) . .
Phase 4: Gen (IEYGEN) . . &
Phase 5: Exit (IEYEXT) . . .

Roll (IEYROL) e« o o o

Compiler Storage Configuration

Compiler Output <« o« o o « « o o
Object Module . . .

Components of the Ob)ect Module

Object Module General Registe

USAge o o o o o o « o
Source Module Listing .
Object Module Listing « « « «

Storage MapsS « « o o @
Error Messages . « . &
Ccommon Error Messages
Compiler Data Structures .
Rolls and Roll Controls
ROLL ADR Table
BASE, BOTTOM, and TOP Tables
Special ROlIlIs . ¢ o« o & o &«
Central Items, Groups,
Stats e o o o o
Other Variables <« « o« ¢ « o «
ANSWeY BOX o ¢ o o e o o o o
Multiple Precision Arithmetic
Scan Control « ¢« « & & o o .
FlagS o« o « o o o ¢ s o o @
QUOLES & & o o o o ¢ « o o »
Messages ¢ e 4 e e e e o o @
Compiler Arrangement Genera
Register Usage « « o o « o « o
Pointers « « « o o o o o
Drivers . . o« o o« o o o
Operation Drivers . .
control Drivers

SECTION 2: COMPILER OPERATION
Invocation Phase (IEYFORT) .
IEYFORT, Chart 00 . .
IEYPRNT, Chart 00A4
PRNTHEAD, Chart 01A2
IEYREAD, Chart O1A4
IEYPCH, Chart 02A3 .
PRNTMSG, Chart 03Al
IEYMOR, Chart 01D1 .
TIEYNOCR . & o o o &
Chart 03a2 .,

* 8 o o * o o
® e 3 o o ¢ s v @
" 6 o 8 s o+ & 0 e 8

IEYRETN, P
OPTSCAN, Chart AA . . o o
DDNAMES, Chart AB . . o«

r

8 & o [de v o o

8 o & 2 & o 8 s 2 & * s o

and Group

« s o &

INTRODUCTION TO THE COMPILER

Invocation (IEYFORT)

e & o 8 o & o & o

« o o &

Phase 2 of the Compiler:
(IEYALL) ¢ o o o o o o o o o o o« o o o
Flow of Phase 2,

Phase 3 of the Compiler:
Flow of Phase 3,

CONTENTS

Chart AC . =« o o o = « =
Chart BD o o « ¢ o o o @

HEADOPT,
TIMEDAT,

Output from IEYFORT . . « . . . o«
Phase 1 of the Compiler:
Flow of Phase 1,

Parse (IEYPAR)
Chart 04 . & « o« &

PRINT and READ SOURCE, Chart BA

STA INIT, Chart BB . o &+ o ¢ & o« =«
LBL FIELD XLATE, Chart BC <« « «
STA XLATE, Chart BD . « .« « .« .

STA FINAL, Chart BE .+ « ¢ « o &
ACTIVE END STA XLATE, Chart BF . .
PROCESS POLISH, Chart BG . « « « &«

Output from Phase 1 % ¢ ¢ « « o o &«

Polish Notation
Source Listing « « o« o ¢ « o o « o
Allocate

Chart 05
ALPHA LBEL AND L SPROGS, Chart CA .
ALPHA SCALAR ARRAY AND SPROG,
Chart CA &« o o o o o o o ¢« ¢ s o
PREP EQUIV AND PRINT ERRORS, Chart
CB ¢« « @ o o @ ¢ s o o o o o o » @
BLOCK DATA PROG ALLOCATION, Chart
CC o o o o e o e o o & o a o . .
PREP DMY DIM AND PRINT ERRORS,
Chart CD « « « « & . e e e .
PROCESS DO LOOPS, Chart CE « o o o
PROCESS LBL AND LOCAL SPROGS,
Chart CF « o« « o « e o o o o o o o
BUILD PROGRAM ESD, Chart ¢G . . .
ENTRY. NAME ALLOCATION, Chart CH
COMMON ALLOCATION AND OUTPUT,
Chart CI « . « e e e e « e
EQUIV ALLOCATION PRINT ERRORS,
Chart CK « o o ¢ o« o o « o o ¢ @« o
BASE AND BRANCH TABLE ALLOC, Chart
CL ¢« « o ¢ ¢ ¢« e o o o o &« s o o =
SCALAR ALLOCATE, Chart CM .« . « &
ARRAY ALLOCATE, Chart CN
PASS 1 GLOBAL SPROG ALLOCATE,
Chart CO e e s e s e .
SPROG ARG ALLOCATION. Chart CP . .
PREP NAMELIST, Chart CQ
LITERAL CONST ALLOCATION, Chart CR
FORMAT ALLOCATION, Chart CS . . .
EQUIV MAP, Chart CT =« o « o o o o
GLOBAL SPROG ALLOCATE, Chart CU .
BUILD NAMELIST TABLE, Chart CV .
BUILD ADDITIONAL BASES, Chart CW
DEBUG ALLOCATE, Chart CX « « . .

output From Phase 2 « ¢ « « o o

Error Messages Produced by Allocat
Unclosed DO LOOPS =« « o s o s o
Storage Maps Produced by Allocate

Subprogram LISt « « « o o o o o &
Cards Produced by Allocate
Unify (IEYUNF)
Chart 07
ARRAY REF ROLL ALLOTMENT, Chart DA
CONVERT TO ADR CONST, Chart DB . .
CONVERT TO INST FORMAT, Chart DC .

45

46

46
46

46
be
ue
u7

47

DO NEST UNIFY, Chart DD
IEYROL MoAdnle o+ « o o « o @
Phase 4 of the Compiler:
(IEYGEN) o« ¢ o « ¢ o o «
Flow of Phase U4, Chart 08
ENTRY CODE GEN, Chart EA
PROLOGUE GEN, Chart EB .
EPILOGUE GEN, Chart EC .

1]
=}

GET POLISH, Chart ED . .

LBL PROCESS, Chart EF -

STA GEN, Chart EG . . « N

STA GEN FINISH, Chart EH « o o
Phase 5 of the Compiler: Exit (IEYEXT

t

a s & o 5 s s e s Yo o
e 8 & o 5 8 o

Flow of Phase %, Chart 09 . . .
PUNCH TEMP AND CONST ROLL, Char
PUNCH ADR CONST ROLL,
PUNCH CODE ROLL,
PUNCH BASE ROLL, Chart FD . .
PUNCH BRANCH ROLL, Chart FE .
PUNCH SPROG ARG ROLL, Chart FF
PUNCH GLOBAL SPROG ROLL, Chart
PUNCH USED LIBRARY ROLL, Chart
PUNCH ADCON ROLL, Chart FI « « «
ORDER AND PUNCH RLD ROLL, Chart FJ
PUNCH END CARD, Chart FK « « « o« o
PUNCH NAMELIST MPY DATA, Chart FL

Output From Phase 5 .« « ¢ o « « «

e s 2 & 5 s s s e e

o]

Chart FB
Chart FC . .

APPENDIX A: THE POP LANGUAGE « o« « o« o
POP INStYUCtiONS « o o « « o o « o« o @
Transmissive Instructions . « « «
Arithmetic and Logical Instructions
Decision Making Instructions . .
Jump Instructions . « « ¢« o« o &
Roll Control Instructions . . .
code Producing Instructions . .
Address Computation Instructions
Indirect Addressing Instruction
Labels « ¢« ¢« o o ¢ o o o o &
Global Labels .+ « « « « &
Local Labels « o o ¢ ¢ o o
Assembly and Operation . . .
POP Interpreter .« « o« «
Assembler Language Referen

(o]
Subroutines . . « . <« «
Global Jump Instructions

P

L] .
ces to P

Local Jump Instructions .
APPENDIX B: ROLLS USED IN THE COMPILER
Roll O0: LIB ROI1L ¢ ¢ ¢ « o « o o o @
ROl1l 1: SOURCE ROll ¢« « o« « o ¢ o o« @
Roll : IND VAR ROL1 ¢ « ¢ o o ¢ o o
Roll 2: NONSTD SCRIPT ROll .+ « o «
Roll 3: NEST SCRIPT ROll . ¢« ¢ o o« o
Roll 4: POLISH ROlLl « « o o o s « o «
Roll U4: LOOP SCRIPT ROll . ¢« ¢ o o« o
Roll 5: LITERAL CONST ROl1l .« « o o «
Roll 7: GLOBAL SPROG ROll . + « & o« &«
Roll 8: FX CONST RO1l ¢« v« 2 ¢ o o o« «
ROll 9: FL CONST RO1l & ¢ o o « o o
Roll 10: DP CONST ROLl « ¢« o o o o o o
Roll 11: COMPLEX CONST ROIl & « o o &
Roll 12: DP COMPLEX CONST ROll « « o«
Roll 13: TEMP NAME RO1l . ¢ o« ¢ « o« o
RoOll 13: STD SCRIPT ROl1l . &« 4 o o o
RO11 14: TEMP ROLl 4« 4 o o o « ¢ o o« «
Roll 15: DO LOOPS OPEN ROl1l . ¢ o «
Roll 15: LOOPS OPEN RO1l & ¢ « « o o

e &8 & & & 8 a & s & &
o
=3

s o o o o & 8 s s 8 & »
(8]
~

«127
«127
«127
«130
<131
«133
<133
<134
<134
<135
<135
<135
«136
<136
<136

«137
«137
L 138

<140
140
<140
<141
<141
<141
<141
<142
. 142
<142
«143
<143
<143
<143
«143
«143
<144
<144
PR
<duy

Roll
Roll
Roll
RoOl1l
Rol1l
Roll
Ro1l1l
Roll
Ro1l1l
RoO1l1l
Ro1ll
Roll
Ro1l
Ro1ll
Roll
Rol1
Ro1l1l
Roll
Rol1l
Roll
Roll
Roll
Roll
Roll
Roll
Rol1l
Roll
Roll
Roll
Roll
RoOl1l
Roll
Roll
Roll
Roll
Roll
Roll
Ro1l1
Roll
Roll
Roll
Roll
Rol1l
RoOl1l
Roll
Roll
Rol1l
Roll
Roll
RoOl1l
Rol1l
Roll
Roll
Roll
Roll
Roll
Roll
RoOll
Roll
RoO1l1l
Roll
RoOl1l
Rol1l
Roll
Roll
Roll
Roll
Roll

22:

: ARRAY REF Roll .

: ATRO1l . . . « .

ERROR MESSAGE Roll
TEMP AND CONST Roll
ERROR CHAR RoOll . .
ADCON RoOll
INIT Roll
DATA SAVE Roll
EQUIVALENCE TEMP (EQUIV

EQUIVALENCE HOL!

(EQUIV
REG ROl1l =« ¢ o « &
BASE TABLE Roll . .
ARRAY Roll
DMY DIMENSION Roll
SPROG ARG Roll . .
ENTRY NAMES Roll .
GLOBAL DMY Roll . .
ERROR ROll
ERROR LBL Roll . .
LOCAL DMY Roll . .
LOCAL SPROG Roll .

o o o s 8 s o ° s s o
" e ® o & o

EXPLICIT Roll . .
CALL LBL Roll . .
ERROR SYMBOL Roll .
NAMELIST NAMES Roll
NAMELIST ITEMS Roll
ARRAY DIMENSION Roll
BRANCH TABLE Roll .
TEMP DATA NAME Roll
TEMP POLISH Roll .
FX AC ROll . « . &
EQUIVALENCE Roll .
BYTE SCALAR Roll . .
USED LIB FUNCTION Roll

: COMMON DATA Roll . .

HALF WORD SCALAR Roll .
COMMON NAME RO1l . . .
TEMP PNTR Roll
IMPLICIT RO1l . « « .« &
EQUIVALENCE OFFSET Roll
FL AC ROll . .« « « « &
ILBL ROl
SCALAR RoOll . . .
HEX CONST Roll .
DATA VAR Roll . .

LITERAL TEMP (TEMP LITERAL

COMMON DATA TEMP Roll .
FULL WORD SCALAR Roll .

: COMMON AREA Roll . . .

NAMELIST ALLOCATION Roll
COMMON NAME TEMP Roll1l .

EQUIV ALLOCATION Roll .

RLD Roll . . . &
COMMON ALLOCATION
LOOP CONTROL Roll
FORMAT Roll . . .
SCRIPT ROll . . .
LOOP DATA Roll .
PROGRAM SCRIPT Roll
ARRAY PLEX Roll .

-

RO

® & ¢ o 82 & 8 P ° pus

ADR CONST Roll . .

SUBCHK Roll

NAMELIST MPY DATA Roll
GENERAL ALLOCATION Roll
CODE RO1l . & + « & & &

HOLD

e e+ e e 0

? ® e 9 o 5 & 8§ " s 8 8 B & 3 3 & 6 3 s 8 0 " e &

TEMP

® & 8 & 2 s 8 8 5 P e * » * s o e v 0 s

s 6 & 2 8 8 8 ~re s s »

B0 2 e 5 5 * 0 s 0 o+ s @ ® 8 8 o & B w8 e 8 & s 0 0

.144
L1404
.145
.145
.145
.145

. 145

.145
.146
.146
.146
«147
147
. 147
.1u48
.1u48
.148
.148
<149
.149
.149
.149
.149
.150
150
150
.150
.151
151
151
.151
152
.152
152
«152
-153
153
.153
.153
.153
.154
154
.154

«155
«155
155
.155
«155
.156
.156
.156
.156
.156
«157
«157
«157
.158
.158
159
159
159
160
160
160
.160

Order

Roll 60:
Roll 62:
Roll 62:

NAMELIST MPY DATA Roll
GENERAL ALLOCATION Roll
CODE RO1l ¢ o o o
Roll 63: AFTER POLISH Roll .
Work and Exit ROlLlS « o o o

WORK ROI1L . & ¢ & o o o @

EXIT ROLlL . & o .o o o & @

APPENDIX C: POLISH

e o & & & 8

NOTATION FORMATS

General Form « « «
Labeled Statements
Array References .
ENTRY Statement .
ASSIGN Statement .
Assigned GO TO Statement
Logical IF Statement . .
RETURN Statement . » « « « « &
Arithmetic and Logical Assignme
Statement . .+ . ¢ ¢ 2 o . . .
Unconditional GO TO Statement
Computed GO TO Statement . .
Arithmetic IF Statement .
DO Statement « « ¢ o o« o o
CONTINUE Statement « . . .
PAUSE and STOP Statements
END Statement . . ¢ « o &
BLOCK DATA Statement « . .
DATA Statement and DATA in
Specification Statements
I/0 List o« ¢ o o o o »
Input Statements . . .
FORMATTED READ . . .
NAMELIST READ . . .
UNFORMATTED READ . &
READ Standard Unit .
Output Statements . .
FORMATTED WRITE . .
NAMELIST WRITE ...
n

e & 9 & & o o

t

¢« 8 o
He® 3 8 o & o 5 06 0 Mo o s s o o

%
[}

Lo BN T R R T)

UNFORMATTED WRITE
PRINT &« « o o o«
PUNCH . « ¢ o o« o
Direct Access Stateme
READ, Direct Access
WRITE, Direct Access
FIND . . ¢« o o o o«
DEFINE FILE . « «
END FILE Statement .
REWIND Statement . .
BACKSPACE Statement
Statement Function .
FUNCTION Statement .
Function (Statement or
Reference .« o « o o o
Subroutine Statement .
CALL Statement « ¢« « «
Debug Facility Statemen
AT - . . Ll - L] L] - .
TRACE ON .
TRACE OFF
DISPLAY .

L L e I I O L xie o o

e s+ 6 0 8 & s s & s 8 0 o &

.
.
.
.
0
.
.
.
.
.
-
S

t

D& & 2 ¢ o & 2 & o & 3 s v @

3

6 8 8 o 8 0 s P 0 s 6 2 8 4 % s 6 b S s 6 3 3 s 0 48 B s S (s o s v B 2 s

el
[a]
o]

® 6 5 0 o & s 8 Qe s s P s 0 s e s s s B B B 3 s 3 0 0 6 s s o

Al

e o & Ye & 2 s s s s e

S

* 8 o & f e 2 8 NS 6 s 0 s o s s e
=]

o
<

APPENDIX D: OBJECT CODE PRODUCED
THE COMPILER 4 o ¢ ¢ ¢ o ¢ o o
Branches . « « o« ¢« ¢ o o o o o
Computed GO TO Statement . . .
DO Statement . .
Statement Functions . « « ¢ «

Subroutine and Function subprograms

No.

e 6 o & s 8 2 o

GY28-6638-1, page reviseda 1/15/71 by TNL GY28-6847

«160 Input/Output Operations . . « « « . . .177
«160 Formatted Read and Write Statements .177
+160 Second List Item, Formatted177
<161 Second List Array, Formatted178
«161 Final List Entry, Formatted178
«161 Unformatted Read and Write Statements 178
.161 Second List Item, Unformatted178
Second List Array, Unformatted178
«163 Final List Entry, Unformatted178
«163 Backspace, Rewind, and Write Tapemark 178
«163 STOP and PAUSE Statements179
«163 NAMELIST READ and WRITE .« « « « « « o179
<164 DEFINE FILE Statement179
<164 FIND Statement . + « « & « o o o 179
.164 Direct Access READ and WRITE
<164 Statements « o« ¢ ¢ o o ¢ o o o 2 o o 179
.164 FORMAT Statements . « . « « « « « « 4180
FORMAT Beginning and Ending
.164 Parentheses .« o« ¢« o o« « « « « « « 180
165 Slashes . o +. ¢ & ¢ o &4 & « & & o+ 180
«165 Internal Parentheses . . « «180
.165 Repetition of Individual FORMAT
«165 Specifications . . . e o« « o o+ <180
.166 I,F,E, and D FORMAT Codes . o « o 180
+166 A FORMAT COd€ 4 o « o « s« o o« o« « «180
«166 Literal Data « = o ¢ o o o« o 2 « « 180
+166 X FORMAT COd€e « « « o o« o » o« « o <181
T FORMAT COd€ .+ « o o o o « o « o« o181
«166 Scale FAactor-P . . « &« « o « « « o« o181
.167 G FORMAT COdE€ o o o o « « « o« o « o181
«167 L FORMAT Code . & 2 o o « « o « « o181
.167 Z FORMAT COd€ ¢ o « o o « o o o o o181
.168 Debug Facility . « « ¢« ¢« ¢ o o o o« « o o181
168 DEBUG Statement . o« o e s o o o ¢181
.168 Beginning of Input/Output181
.168 End of Input/Output . « « « « « « 181
.168 UNIT Option .« « o ¢ o =« o o « « » 2181
«169 TRACE Option e o s o s e e s o s e o182
.169 SUBTRACE Option . « & &+ & « o « o« o182
«169 INIT OptiOn « « o« o o o o o« o « o ¢182
.169 SUBCHK Option . . « « &« &« = » - « .183
«169 AT Statement « « o ¢ ¢ ¢ o o« o o « o« o183
169 TRACE ON Statement - « . « . .183
«170 TRACE OFF Statement . &« « « ¢« » « . .183
.170 DISPLAY Statement .« « o« o « s o« « « o183
<170
.170 APPENDIX E: MISCELLANEOUS REFERENCE
.171 DATA 4 o« o o o ¢ o« o o ¢ o o ¢ o« « « o« .185
.171 Parse Label List « « « o o e« « e« o o« o185
<171 Supplementary Parse Label LlSt e o o o »185
<171 Allocate Label List o « o« o & e o« o« ¢193
Supplementary Allocate Label LlSt - . 193
<171 Unify Label List « ¢« « « o & « ¢« ¢ o 190
<171 Supplementary Unify Label LlSt e s o » 2196
«172 Gen Label LiSt « « ¢« o o o o o o o« ¢ o« ¢198
«172 Supplementary Gen Label List198
«172 Exit Label List e ¢ o e 6 ¢ & o o o «208
<172 Supplementary Exit Label List208
«172
.173 APPENDIX F: OBJECT-TIME LIBRARY
SUBPROGRAMS o o o o o ¢ ¢ ¢ o = o o » 2212
Library Functions .« « ¢ ¢ o o o o o ¢ 212
«175 Composition of the Library212
«175 System Generation Options .« . « o« « 212
«175 Module SUMMAYi€sS « o« o o o o o o o o 213
«175 Library Interrelationships « « « « « o214
«176 Initialization « « « « ¢ o o o « & o o 215
<176 Input/Output Operations .« « « « o« o « <216

Order No. GY¥28-6638-1, page revised 1/15/71 by TNL GY28-6847

Define File e o o o+ 218 Compiler-Directed Errors: IHCIBERH . .228
Sequential Read/erte W1thout Format .218 Program INterrupts « « » « o o o ¢ o 229
Initial Call « « « « o o o o « o o« <218 Action for Interrupts 9, 11, 12,

Second Call e o o a o o e e e« o o 0219 13,and15.--onwac-|-00229
Additional List Item Calls « « « « 219 Action for Interrupt 6 . . « « ¢ o 0229
Final Call « o « o o o o« o o s o ¢ 219 Library-Detected Errors . . . « . » 230
System Block Modification and Without Extended Error Handling . .230
Reference « o« ¢« o« o ¢ o o o o o o o219 With Extended Error Handling231
Error Cconditions « « « . e o 2220 Abnormal Termination Processing . . .231
Sequential READ/WRITE With Format . 0221 Codes 4 and 12 ¢« . « o o o s o & o 0231
Processing the Format Specification 221 Codes 0 and 8 « o ¢ o o o o « o 0231
Direct Access READ/WRITE Without Extended Error Handling Facillty e o «232
FOrmat « « o« o o o « o o o o o o o o o224 Ooption Table--IHCUOPT ., . . « 232
initialization Branch . « « « «» « .224 Altering the Option Table--IHCFOPT 232
Successive Entries for List Items .225 Error Monitor--IHCERRM « « o« « » o 233
Final Branch . o « o o o s o & » & 225 Extended Error Handling
Error Conditions . . . e s o o 0226 Trackback--IHCETRCH .+ « ¢ o o o o 233
Direct Access READ/WRITE W1th Format .226 CONVErSiON o « o o o o o o o o o o o o o234
FIND ¢« o « o o o o« o o o o e o o o 2226 Mathematical and Service Routines . . .234
READ And WRITE Using NAMELIST e o« o ¢226 Mathematical Routines 4 « « o« o ¢ o o234
Read v« o o o o o o o o o o o s o » 2226 Service Subroutines . , . . e o o 0234
WELIite o ¢ ¢ s o o o o o e « o o o 0227 IHCFDVCH (Entry Name DVCHK) e o o o234
Error Conditions e o o 227 IHCFOVER (Entry Name OVERFL) ., . . .235
Stop and Pause (erte-to—Operator) o 0227 IHCFSLIT (Entry Names SLITE,
StOP « ¢ o o o o o « o o o o o o & 227 SLITET) &« o o o o o o o o o » o o 235
PAUSE « « o o ¢ ¢ o« o o o s o o o o227 IHCFEXIT (Entry Name EXIT) + o« « o o235
Backspace . o« « ¢ o o s o o o o o o 0227 IHCFDUMP (Entry Names DUMP and
ReWiNd ¢ ¢« ¢ o ¢ o o o o o o o o o o 228 PDUMP).....-.........ZBS
ENd-File . ¢« ¢« o o ¢ o o o o o o o o «228 IHCDBUG e« o e o o o » o o s « o s 236
Error Handling « « o « o « o o o o o o 228 Termination . . « o o o 5 o o o o o o +239

GLOSSARY « « ¢ ¢ ¢ ¢ ¢ o 4 ¢ o o o o = 0259

INDEX « ¢ o o o o o o o o s o o o o o +263

Order No. GY28-6638-1, page revised 1/15/71 by TNL GY28-6847

FIGURES

Figure 1. Overall Operation of

the Compiler . « o« o o o « o o o
Figure 2. Compiler Organization
Chart 2 e ® @& ® 8 2 a ®» & e ® e e
Figure 3. Compiler Storage
Configuration ® 8 e & & o e e o o
Figure U4, Compiler Output . . .
Figure 5. Object Module

conf iguration e o 6 e e o o & o o
Figure 6. Example of Use of Save
Area ©« e o o ¢ o o e 4 o o a a o
Figure 7. Roll Containing K
Bytes of Information « e & o o o
Figure 8, Roll Containing L
Bytes of Reserved Information and
K Bytes of New Information « e
Figure 9. Roll With a Group Size
of Twelve e & A4 e o e e & & e e o
Figure 10. Roll with Variable
Group Size e e e o o o ¢ e o o o
Figure 11. First Group Stats
Table .« ¢ ¢« v ¢« v o o o o o o s e
Figure 12. Second Group Stats
Table . . ¢« ¢ ¢« ¢« v v ¢« + s 4 e
Figure 13. Scan Control Variables
TABLES

Table 1. Internal Configuration
of Operation Drivers . « « « o o o
Table 2. Internal Configuration
of control Drivers (Part 1 of 2) .,
"able 3. Rolls Used by Parse ., .
rable 4, Rolls Used by Allocate
Table 5. Rolls Used by Unify . .
Table 6. Rolls Used by Gen . . .,
Table 7. Rolls Used by Exit . .
Table 8, POP Instruction
Cross-Reference LiSt « o o o o ¢

« 15
« 16

. 17
.« 18

. 23

- 2u
« 25

« 25

26 .

26
27

ILLUSTRATIONS

Figure 14. Quotes Used in the

Compiler « ¢« « v « . . . 27
Figure 15. Compiler Arrangement

with Registers 28
Figure 16. Calling Paths for

Library Routines 215
Figure 17. Control Flow for
Input/output Operations 217
Figure 18. IHCUATBL: The Data

Set Assignment 239
Figure 19. DSRN Default Value

Field of IHCUATBL Entry 240
Figure 20. Format of a Unit Block

for a Sequential Access Data Set . 240
Figure 21. Format of a Unit Block

for a Direct Access Data Set . . . 242
Figure 22. General Form of the

Option Table (IHCUOPT) 242.1
Figure 23. Preface of the Option
Table (IHCUOPT) . . . « + « o « o+ 242.,2
Figure 24. Composition of an

Option Table Entry 242,2
Figure 25. Original Values of

Option Table Entries 242.3
Table 9. Routines Affected by
Extended Error Handling Option . . 212
Table 10. Format Code Translations

and Their Meanings « .« o+ . 222
Table 11. IHCFCVTH Subroutine
Directory . « « « o« « « ¢ « o o o+ o 234
Table 12. IHCDBUG Transfer Table . 236
Table 13. DCB Default vValues . . . 240
Table 14. IHCFCOMH/IHCECOMH

Transfer and Subroutine Table . . 242.3

Order No. GY28-6638-1, page revised 1/15/71 by TNL GY28-6847

CHARTS

Chart 00. IEYFORT (Part 1 of 4) .
Chart 01. IEYFORT (Part 2 of 4) ,
Chart 02, IEYFORT (Part 3 of 4) .,
Chart 03, IEYFORT (Part 4 of u4) .
Chart AA, OPTSCAN ¢ « o« o ¢ o e o
Chart ABs DDNAMES o « o o o o o o
Chart AC, HEADOPT @« o o ¢ o @ e o
Chart AD. TIMEDAT . . « o o .
Chart 0O4,1. PHASE 1 - PARSE (Part
1 of 2) e & o o e o @ . .
Chart O04.2. PHASE 1 - PARSE (Part
20f2)-o¢..¢-o-noou
Chart BA. WRITE LISTING AND READ
SOURCE . L] L] L] L] L] L L] - . - - . .
Chart BB. INITIALIZE FOR
PROCESSING STATEMENT ¢« « o« e .
Chart BCl. PROCESS LABEL FIELD
(Part 1 of 2) e e« @ - a e
Chart BC2. PROCESS LABEL FIELD
(Part 2 of 2) . . . ¢ ¢ o a o
Chart BD. PROCESS STATEMENT e o o
Chart BE. COMPLETE STATEMENT AND

MOVE POLISH

Chart BF. PROCESS END STATEMENT .
Chart BG. PROCESS POLISH .« « « o
Chart 05, PHASE 2 - ALLOCATE
(Part 1 of 2) e e o o o e o o
chart 06, PHASE 2 - ALLOCATE
(Part 2 of 2) ¢« o o o o
Chart CA, MOVE BLD NAMES TO DATA
VAR ROLL . .

Chart CB. PREPARE EQUIVALENCE DATA
Chart CC. ALLOCATE BLOCK DATA . .
Chart CD. PREPROCESS DUMMY
DIMENSIONS ¢« ¢ « o e o o ¢ o o o o
Chart CE. CHECK FOR UNCLOSED DO
LOOPS 4« ¢ o« ¢ ¢ o o ¢ s o o o o &
Chart CF. CONSTRUCT BRANCH TABLE
ROLL o ¢ © o ¢ o« o ¢ ¢ o @ o o o o
Chart CG. ALLOCATE HEADING AND
PUNCH ESD CARDS . . . o« o
Chart CH. CHECK ASSIGNMENT OF

FUNCTION VALUE ¢ « o « ¢ o o o o o

Chart CI.
Cchart CK.

COMMON ALLOCATION .
EQUIVALENCE DATA

ALLOCATION ¢ « o e s ¢ « o o o o o

Chart CL.

SAVE AREA, BASE AND

BRANCH TABLE ALLOCATION .« o o «

Chart CM. ALLOCATE SCALARS . «
Chart CN. ALLOCATE ARRAYS « « «
Chart CO. ADD BASES FOR
SUBPROGRAM ADDRESSES . « . o s
Chart CP., ALLOCATE SUBPROGRAM

ARGUMENT LISTS « o o o . .

Chart CQ.
Chart CR.
CONSTANTS
Chart CS.
Chart CT.
Chart CU,
ADDRESSES

PREPARE NAMELIST TABLES
ALLOCATE LITERAL

L] L] e L] o L] . . - L] L] L
ALLOCATE FORMATS . . .
MAP EQUIVALENCE . .
ALLOCATE SUBPROGRAM

e 4 e & 0 @ e @ o & e o

68
68
69
70

70
71

72
73
74
75
76
77
78
79
80
81
82
83

8y
85

86
87
88
89
90

91
92

93
95
96

Chart Cv. BUILD AND PUNCH

NAMELIST TABLES &« « ¢ o o ¢ o o o » 97
Chart Cw. BUILD BASES « « « « o« « o+ 98
Chart CX. DEBUG ALLOCATE . « « « « 99
Chart 07. PHASE 3 - UNIFY . « « « .100
Chart DA. BUILD ARRAY REF ROLL . .101
Chart DB. MAKE ADDRESS CONSTANTS ,102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DD. PROCESS NESTED LOOPS . .10u4
Chart 08. PHASE 4 - GEN « .105
Chart EA. GENERATE ENTRY CODE . . .106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION . .109
Chart EF. PROCESS IABELS . . « . 110
Chart EG. GENERATE STMT COCDE . . .111
Chart EH. COMPLETE OBJECT CODE . .112
Chart 09. PHASE 5 - IEYEXT113
Chart FA. PUNCH CONSTANTS AND

TEMP STORAGE . « ¢ « o = o « o o« » o114
Chart FB. PUNCH ADR CONST ROLL . .115
Chart FC. PUNCH OBJECT CODE116
Chart FD. PUNCH BASE TABLE117
Chart FE. PUNCH BRANCH TABLE . . .118
Chart FF. PUNCH SUBPROGRAM

ARGUMENT LISTS o ¢« o © « « « o » o o119
Chart FG. PUNCH SUBPROGRAM

ADDRESSES =« o ¢ o o o o o « » a o 4120
Chart FH. COMPLETE ADDRESSES FROM :
LIBRARY . 2 o o o o » o o o o o « o121
Chart FI. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS123
Chart FK. PUNCH END CARDS124
Chart FL. PUNCH NAMELIST TABLE
POINTERS . o« « 2 o« o o o« o o o o o o125
Chart GO, IHCFCOMH/IHCECOMH

(Part 1 of U) . . & o « & e o o 2243
Chart GO, IHCFCOMH/IHCECOMH

(Part 2 of 4) «243.1
Chart GO, IHCFCOMH/IHCECOMH

(Part 3 of 4) . . . o «243.2
Chart GO. IHCFCOMH/IHCECOMH

(Part 4 of 4) . &« o o o & « » +243.3
Chart G1. IHCFIOSH/IHCEFIOS

(Part 1 of 2) a e o o o o e o -24“
Chart Gl1l. IHCFIOSH/IHCEFIOS

(Part 2 of 2) 2 204.1
Chart G2. IHCDIOSE/IHCEDIOS

(Part 1 of 5) . . . e » o245
Chart G2, IHCDIOSE/IHCEDIOS

(Part 2 of 5) . « o 0 . »245.1
Chart G2. IHCDIOSE/IHCEDIOS

(Part 3 of 5) . . . & . -245,2
Chart G2. IHCDIOSE/IHCEDIOS

(Part 4 of 5) . &« o o o o « +245.3
Chart G2. IHCDIOSE/IHCEDIOS

(Part 5 0f 5) ¢ o« ¢ o o o o o o o <246
Chart G3. IHCNAMEL ¢ o« o o e o o247
Chart Gu. IHCFINTH/IHCFFNTH

(Part 1 of 3) . ¢« « & & & e o « 2248
Chart G4, IHCFINTH/IHCEFNTH

(Part 2 of .248.1

3) ¢ e e e e o o o o

Order No. GY28-6638-1, page revised 1/15/71 by TNL GY28-6847

Chart Gl. IHCFINTH/IHCEFNTH Chart G9. IHCFOPT (Part 3 of 3) . «257
(Part 3 of 3) @ e o o o o a o o o248.2 Chart G10. IHCTRCH/IHCERTCH 258
Chart G5S. THCADIST « o o ¢ ¢ o o o249 Chart G1li. IHCFDUMP . . . « « « « «258.1
Chart Gé6. IHCIBERH « ¢« o o o o « 250 Chart G12. IHCFEXIT . « « « « « « «258.2
Chart G7. IHCSTAE (Part 1 of 2) 251 Chart G13., IHCFSLIT258.3
Chart G7. IHCSTAE (Part 2 of 2) 252 Chart Gil4, IHCFOVER « - .« .258.4
Chart G8. IHCERRM (Part 1 of 2) , 253 Chart G15. IHCFDVCH « + « + « » o «258.5
Chart G8. IHCERRM (Part 2 of 2) .254 Chart G16. IHCDBUG (Part 1 of 4) .258.6
Chart G9. TIHCFOPT (Part 1 of 3) .255 Chart G16. IHCDBUG (Part 2 of u4) . 258.7
Chart G9. IHCFOPT (Part 2 of 3) .256 chart G16. IHCDBUG (Part 3 of 4) .258.8

Chart G16. IHCDBUG (Part 4 of 4) . 258.9

This section contains general informa-
tion describing the purpose of the FORTRAN
IV (G) compiler, the minimum machine confi-
guration required, the relationship of the
compiler to the operating system, compiler
design and implementation, and compiler
output. The various rolls,1 variables,
registers, pointers, and drivers used by
the compiler are also discussed.

PURPOSE_OF THE_COMPILER

The IBM System/360 Operating System
FORTRAN IV (G) compiler 1is designed to
accept programs written in the FORTRAN IV

language as defined in the publication IBM
System/360: FORTRAN _IV__ Language, Form

C28-6515.

The compiler produces error messages for
invalid statements, and, optionally, a
listing of the source module, storage maps,
and an object module acceptable to the
System/360 Operating System linkage editor.

MACHINE CONFIGURATION

The minimum system configuration
required for the use of the IBM System/360
Operating System with the FORTRAN IV (G)
compiler is as follows:

e An IBM System/360 Model 40 computer
with a storage capacity of 128K bytes
and a standard and floating-point
instruction set,

e A device for operator communication,
such as an IBM 1052 Keyboard Printer.

e At least one direct-access device pro-
vided for system residence.

COMPILER AND SYSTEM/360 OPERATING_ SYSTEM

The FORTRAN IV (G) compiler is a proces-
sing program of the 1IBM System/360

- - ——— —— - - ———-—

iMost of the tables used by the compiler

are called rolls. (Further explanation of
rolls is given in "Rolls and Roll
Controls.")

SECTION 1: INTRODUCTION TO_THE COMPILER

Operating System. As a processing program,
the compiler communicates with the control
program for input/output and other ser-
vices. A general description of the con-
trol program is given in the publication

IBM System/360 Operating System: Introduc-
tion to Control Program Logic, Program
Logic Manual.

A compilation, or a batch of compila-
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements (DD). Alterna-
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: _FORTRAN IV_(G) Programmer's Guide.

The compiler receives control
from the calling program (e.g., job sche-—
duler or another program that CALLs, LINKs
to, or ATTACHes the compiler). Once the
compiler receives control, it uses the QSAM
access method for all of its input/output
operations. After compilation 1is com-
pleted, control is returned to the «calling
programe

initially

COMPILER DESIGN

The compiler will operate within a total
of 80K bytes of main storage. This figure
includes space for the compiler code, data
management access routines, and sufficient
working space to meet other storage
requirements stated throughout this
publication.

Any additional storage available is used
as additional roll storage.

LIMITATIONS OF THE COMPILER

e . e e

The System/360 Operating System FORTRAN
IV (G) compiler and the object module it
produces can be executed on all System/360
models from Model 40 and above, under
control of the operating system control
program. All input information must be
written in either BCD or EBCDIC representa-
tion. The compiler is designed to process
all properly written programs so that the
object code produced by the compiler is
compatible with the existing mathematical
library subroutines.

Section 1: Introduction to the Compiler 9

If ten source read errors occur during
the compilation, or if it is not possible
to use SYSPRINT, the operation of the
compiler is terminated. The operation of
the compiler is also limited by the availa-
bility of main storage space. The compila-
tion is terminated if:

¢ The roll storage area is exceeded

e Any single 1roll exceeds 64K bytes,
thereby making it unaddressable

¢ The WORK or EXIT 7roll exceeds its
allocated storage
Note: If any of these conditions occur

during the first phase of the compilation,
the statement currently being processed may
be discarded; in this case, the compilation
continues with the next statement.

COMPILER IMPLEMENTATION

The primary control and processing rou-
tines (hereafter referred to as "POP rou-
tines"™ or "compiler routines") of the com-
piler are primarily written in machine-
independent pseudc instructions called POP
instructions.

Interpretation of the pseudo instruc-
tions is accomplished by routines written
in the System/360 Operating System assembl-

er language. These routines (hereafter
referred to as "POP subroutines") are an
integral part of the compiler and perform

the operations specified by the POP ins-
tructions, e.g., saving of backup informa-
tion, maintaining data indicators, and gen-
eral housekeeping.

control of the compiler operation is
greatly affected by source language syntax
rules during the first phase of the compil-
er, Parse. During this phase, identifiers
and explicit declarations encountered in
parsing are placed in tables and a Polish
notation form of the program is produced.
(For further information on

Polish nota-
tion, see Appendix C, "Polish Notation
Formats.")

10

The compiler quite frequently uses the

method of recursion in parsing, analysis,
and optimization. All optimizing and code
generating routines, which appear in later

phases, operate directly on the tables and
Polish notation produced by Parse.

The compiler 1is also designed so that
reloading of the compiler is unnecessary in
order to accomplish multiple compilations.

POP LANGUAGE

The FORTRAN IV (G) compiler is written
in a combination of two languages: the
System/360 Operating System assembler lan-
guage, which 1is wused where it 1is most
efficient, and the POP language.

The POP 1language is a mnemonic macro
programming language whose instructions
include functions that are frequently per-
formed by a compiler. POP instructions are

written for assembly by the System/360
Operating System assembler, with the POP
instructions defined as macros. Each POP

instruction is assembled as a pair of
address constants which together indicate
an instruction code and an operand. A
statement or instruction written in the POP
language is called a POP. The POP instruc-
tions are described in Appendix A.

COMPILER ORGANIZATION

The System/360 Operating System FORTRAN

IV (G) compiler is composed of a control
phase, Invocation, and five processing
phases (see Figure 1): Parse, Allocate,

Unify, Gen, and Exit. The operating system
names for these phases are, respectively,
IEYFORT, IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT. (The first level control and
second 1level processing compiler routines
used in each phase are shown in Figure 2.)
In addition, Move is a pre-assembled work
area, IEYROL.

Figur

e 1.

IEYFCRT

r v \ r 1
| source = |--—-- >| Control | ————- >} Invocation |-=—-- > (:)
| Module] Program] | Phase |
L L (] L ¥
© : :
| r———>|Source Module] SYSPRINT
| | |listing |
V IEYPAR] O 4
r- |
| Parse = = feeeemeeeeeo 4
| (Phase 1) |
L T | r 1
| Lt——->|Source Module]| SYSPRINT
| |diagnostics |
I L d
V IEYALL fmm——————————— .
[re—————————— r—-->|Storage Maps | SYSPRINT
| Allocate] L
| (Phase 2) jteecereccmceeae- 9
e To----- I 1
| L——->|ESD and TXT | SYSPUNCH/SYSLIN
| |Cards |
V IEYUNF L 4
r R 1
| Unify |
| (Phase 3) |
L i
1
V IEYGEN
fom————m e
| Gen
| (Phase #) r 1
S T————— r-—-->|0Object Module| SYSPRINT
| | |listing |
| | . J
V IEYEXT | r
¢ a | |Object Module] SYSPUNCH/SYSLIN
| Exit —- + >|TXT cards |
| (Phase 5) | | D 4
L J I
T
| I r 1
] | |ESD, RLD, and| SYSPUNCH/SYSLIN
V IEYFORT L___>|END cards |
L J
r 1
| Invocation |
| Phase |
L & J
0*0

. ¥ *,
., * Multiple %, NO
-fbmpilationi-

*

, o
*, L%
* YES
v

®

Overall Operation of the Compiler

r
______________ >|Control

| Program
L

b s e od

Section 1:

Introduction to the Compiler

11

Control Phase: Invocation (IEYFORT)

The Invocation phase (IEYFORT) is loaded
upon invocation of the compiler and remains
in core storage throughout compilation. It
is entered initially from the calling pro-
gram, from each module at the end of its
processing, and from Exit after compilation
is complete,

At the initial entry, the Invocation
phase initializes bits in IEYFORT1 from the
options specified by the programmer for the
compilation, opens data sets, and fetches
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT via a series of LOAD macro
instructions. These modules remain in core
storage for a series of main program and
subprogram compilations unless it is deter-
mined that additional space required for
tables is not available. When this occurs,
modules that precede the active one are
deleted, and compilation 1is resumed. If
more space is required, modules that follow
the currently active one are deleted.

When a module completes processing, it
returns to IEYFORT, which ensures the pre-
sence of the next module and transfers to
it. During initialization for a subpro-
gram, IEYFORT ensures that all modules are
loaded.

The last entry is made from the Exit
phase at the completion of a compilation.
When the entry is made from Exit, the
Invocation phase checks for multiple compi-
lations. If another compilation is
required, the compiler is reinitialized and
the main storage space allocated for the
expansion of rolls is assigned to the next
compilation; otherwise, control is returned
to the calling program.

Phase 1: Parse (IEYPAR)

Parse accepts FORTRAN statements in card

format from SYSIN and scans these to pro-
duce error messages on the SYSPRINT data
set, a source module 1listing (optional),

and Polish notation for the program. The

Polish notation is maintained on internal
tables for wuse by subsequent phases. In
addition, Parse produces the roll entries
defining the symbols used in the source
module.
Phase 2: Allocate (IEYALL)

Allocate, which operates immediately

after Parse, uses the roll entries produced

12

by Parse to perform the storage allocation
for the variables defined 1in the source
module., The addressing information thus
produced is then left in main storage to be
used by the next phase.

The ESD cards for the object module
itself, COMMON blocks and subprograms, and
TXT cards for NAMELIST tables, 1literal
constants and FORMAT statements are pro-
duced by Allocate on the SYSPUNCH and/or
SYSLIN data sets. Error messages for
COMMON and EQUIVALENCE statements, unclosed
DO loops and undefined labels are produced
on SYSPRINT; on the MAP option, maps of
data storage are also produced.

Phase 3: Unify (IEYUNF)

The Unify phase optimizes the
general registers within DO 1ldops by
operating on roll data which describes
array references. The optimization applies
to references which include subscripts of
the form ax+b, where a and b are positive
constants and x 1is an active induction
variable (that is, x 1is a DO-controlled
variable and the reference occurs within
the DO loop controlling it), and where the
array does not have any adjustable dimen-
sions, The addressing portion of the
object instruction for each such array
reference is constructed to minimize the
number of registers used for the reference
and the number of registers which must be
changed as each induction variable changes.

usage of

Phase 4: Gen (IEYGEN)

Gen uses the Polish notation produced by
Parse and the memory allocation information
produced by Allocate. From this informa-
tion, Gen produces the code, prologues, and
epilogues required for the object module.
In order to produce the object code, Gen
resolves labeled statement references
(i.e., a branch target label) and subpro-
gram entry references,

The final output from Gen is a complete
form of the machine language code which is
internally maintained for writing by the
Exit phase,

Phase 5: Exit (IEYEXT)

Exit, which is the last processing phase
of the compiler, produces the TXT cards for
the remaining portion of the object module,
the RLD cards (which contain the relocat-
able information), and the END card. This
output is placed optionally on the SYSLIN

data set for 1linkage editor processing
and/or SYSPUNCH if a card deck has been
requested. Additionally, a listing of the

generated code may be written on the SYS-

PRINT data set in a format similar to that
produced by an assembly program.

Roll_ (IEYROL)

Roll contains static rolls and roll
information always required for compiler
operations. These are described under the
heading "Rolls and Roll Controls" later in
this section.

Section 1: Introduction to the Compiler 13

Form ¥28-6638-1

Page Revised 7/23/69 by TNL Y28-6829

——— ——————— ——— = —— - ——————

r-——START COMPILER
PARSE———{

]

|

l
L-——~STATEMENT PROCESS----{
L

r

|
|
|
|
|
|
|
|
|
|
%
ALLOCATE--~-- START ALLOCATE--=-----{
|
|
I
|
|
|
|
|
|
|
|
L

r

L

r

L

GEN-———- 1
| r

Lwe=GEN PROCESS=—=mmmmm=mm {

|

L

r

|

!

]

'u

EXIT e EXIT PASS—=mc—c—meman {

P—————-————_——_—————~——————_—————_———_————-—-—————-—_————————_—_———q

r——-PRINT AND READ SOURCE

STA INIT

LBL FIELD XLATE

STA XLATE

STA FINAL

REGISTER IBCOM
PROCESS POLISH
ACTIVE END STA XLATE

——-STA FINAL END

~——PREP EQUIV AND PRINT ERRORS
BLOCK DATA PROG ALLOCATION
PREP DMY DIN AND PRINT ERRORS
PROCESS DO LOOPS
PROCESS LBL AND LOCAL SPROGS
BUILD PROGRAM ESD
ENTRY NAME ALLOCATION
COMMON ALLOCATION AND OUTPUT
BASE AND BRANCH TABLE ALLOC
EQUIV ALLOCATION PRINT ERRORS
FORMAT ALLOCATION
SCALAR ALLOCATE
ARRAY ALLOCATE
PASS 1 GLOBAL SPROG ALLOCATE
SPROG ARG ALLOCATION
PREP NAMELIST
LITERAL CONST ALLOCATION
EQUIV MAP
GLOBAL SPROG ALLOCATE
BUILD NAMELIST TABLE
ALPHA LBL AND L SPROG
BUILD ADDITIONAL BASES
ALPHA SCALAR ARRAY AND SPROG
LITERAL CONST ALLOCATION
CALCULATE BASE AND DISP
—~--DEBUG ALLOCATE

—-=-ARRAY REF ROLL ALLOTMENT
DO NEST UNIFY
CONVERT TO ADR CONST
——~CONVERT TO INST FORMAT

~--MOVE ZEROS TO T AND C
ENTRY CODE GEN
PROLOGUE GEN

~---EPILOGUE GEN

-——GET POLISH

LBL PROCESS

STA GEN
---STA GEN FINISH
TEMP AND CONST ROLL
ADR CONST ROLL
CODE ROLL
BASE ROLL
BRANCH ROLL
SPROG ARG ROLL
GLOBAL SPROG ROLL
USED LIBRARY ROLL
ADCON ROLL
AND PUNCH RLD ROLL
END CARD
HEADING
PRINT A LINE
COMPILER STATISTICS

®eFigure 2, Compiler Organization Ch

14

art

r L) T

| Load |

| Module | |Content or
| Name | Components | Function

[4 KR

r T
Low |IEYFORT |IEYFORT
Core| |

| !
| IEYFORT1

I
| IEYFORT2

IEYROL

I
!
|
I
I
I
|
|
|
I
[
I
|
|
I
I
I
|
| IEYINT
I

|

I

L\\\v//4\\\\’/,/’*\\::B£izsi//’«\\\J

$
| Invocation and

| control

|]Option bits

|Loads and deletes
| other modules

Roll statistics
(bases, tops,
bottoms)

Group statistics

(displacement
group sizes)

EXIT roll
Roll address table
POP Jump Table

POP machine
language sub-

- e . = —— —— — . —— — — ——— — ——— —— t— ——. vt S et el s s e ac)

|
|
|
|
|
|
|
!
|WORK roll
|
|
]
|
|
|
|
|
|
|

Roll Storage is Allocated from this

Area

IEYPAR |IEYPAR

| Parse phase

|Quotes and

I |
I I !
I | I
		messages
IEYALL	IEYALL	Allocate phase
IEYUNF	IEYUNF {Unify phase {	
		I
IEYGEN	IEYGEN	Generate phase
High| | I |
Core|IEYEXT |IEYEXT |Exit phase |
L 4 1 -

Figure 3. Compiler Storage Configuration

COMPILER STORAGE CONFIGURATION

Figure 3 illustrates the relative posi-
tions, but not the relative sizes of the
component parts of the FORTRAN compiler as
they exist in main storage. The component
parts of each phase are described in Sec-
tion 2.

COMPILER_OUTPUT

The source module(s) to be compiled
appear as input to the compiler on the
SYSIN data set. The SYSLIN, SYSPRINT, and
SYSPUNCH data sets are used (depending on
the options specified by the wuser) to
contain the output of the compilation.

The output of the compiler is repre-
sented in EBCDIC form and consists of any
or all of the following:

Object Module (linkage editor input)

Source Module listing

Object Module listing

Storage maps

Error messages (always produced)

Relocatable card images for punching

The overall data flow and the data sets
used for compilation are illustrated in

Figure 4. The type of output is determined
by compile time parameters.

Section 1: Introduction to the Compiler 15

r-———For all
compilations

----LIST Option

----DECK Option

.
|

|

I

|

|

|

I |
| |
I I
| |
I |
| I
I |
I t
I I
| I
| [
| SYSIN |
| rm————>--=1 |
| | Source | |
| |Module | }
| eyt
I | I
I I |
| v |
| (o= 1
| | FORTRAN | |
| IV (G) F->4
| |Compiler| |
' L J ’
I |
I I
I |
I I
| |
| t
| |
I I
| |
I |
| |
| |
| L
I

|

|

|

|

Figure 4. Compiler Output

16

LOAD Option

—-—-MAP Option

-———SOURCE Option

.
| Error and
> Warning
| Messages
| (if any)
L

| SRR ——

r -
| Object

>| Module
| listing

L

_——— e

r 1
|Object Module |
>} (ESD, TXT, RLD |
|END) Card Images|
L 1

r 1
|Object Module |
>| (ESD, TXT, RLD, |
|END) Card Images|
(S J

r 1
>| Storage |
| Map I
L - 4
r 1
| Source |
>| Module |
| Listing]
L]

SYSPRINT

SYSPRINT

SYSPUNCH

SYSLIN

SYSPRINT

SYSPRINT

i s s s . v e . s S ——— — — — — — T— — —— . — A—— —— — ——— — — — ———— S — e — —— —_ A . . i St et i, s

Form ¥Y28-6638-1
Page Revised 7/23/69 by TNL Y28-6829

OBJECT MODULE

The configuration of the object module
produced by the FORTRAN IV (G) compiler is
shown in Figure 5.

Entry point---> p N
| Heading {
..................... 4
|Save area |
} 1
1)
| Base table |
- -
| Branch table |
L 4
v 1
| Subprogram argument |
|lists |
b

4
]

T
| Subprogram addresses

EQUIVALENCE variables

| Scalar variables
i

r
| |Arrays
L

r
|NAMELIST tables
b

3 -
JLiteral constants
| (texcept those used
}in DATA and PAUSE
statements)

FORMAT statements

Temporary storage
l]and constants

Program text

e s ol e s s s s . . s . ey . redbees s, e e e e

e Figure 5. Object Module Configuration

Components of the Object Module

The following paragraphs describe the
components of the object module produced by
the FORTRAN IV (G) compiler,

HEADING: The object module heading
includes all initializing instructions

required prior to the execution of the body

of the object module. Among other func-
tions, these instructions set general
register 13 (see "Object Module General

Register Usage") and perform various opera-
tions, depending on whether the prpbgram is
a main program or a subprogram and on
whether it calls subprograms. (See "Code
Produced for SUBROUTINE and FUNCTION
Subprograms. ")

_______ The save area, at maximum 72
bytes long, 1is reserved for information
saved by called subprograms. Figure 6
shows an example of the use of this area in
program Y, which is called by program X,

and which calls program Z.

The first byte of the fifth word in the
save area (Save Area of Y + 16) is set to
all ones by program Z before it returns to
program Y. Before the return is made, all
general registers are restored to their
program Y values.

BASE_TABLE: The base table is a 1list of
addresses from which the object module
loads a general register prior to accessing
data; the general register is then used as
a base in the data referencing instruction.

Because an interval of 4096 bytes of
storage can be referenced by means of the
machine instruction D field, consecutive
values representing a single control sec-
tion in this table differ from each other
by at least 4096 bytes. Only one base
table entry is constructed for an array
which exceeds 4096 bytes in length; hence,
there 1is a possibility that an interval of
more than 4096 bytes exists between conse-
cutive values for a single control section
in the table.

The addresses compiled into this table

are all relative, and are modified by the
linkage editor prior to object module
execution. Those entries constructed for

references to COMMON are modified by the
beginning address of the appropriate COMMON
block; those entries constructed for
references to variables and constants
within the object module itself are modi-
fied by the beginning address of the appro-
priate object module.

Section 1: 1Introduction to the Compiler 17

Form Y28-6638-1
Page Revised 7/23/69 by TNL Y28-6829

———
{-=~l§ bytes———=>

r
| Subprogram <=---Stored

Save Area of Y|epilogue address
N

L}
+4 |Program X save <---stored

|area address
b

[3
| Program 2 save <---Stored

Jarea address

...8

t
+12 |Register 14

+16 |Register 15
| 8

[3
|Register 0

+20
Values

e cndes et . et s e e . it . i e et s s e s S .

+72 |Register 12
L

[o — ——— —— ————— — — — —— — —— — — — — —t—

by initial entry code.

by program Y.

by program Z, if it calls subroutines-

on leaving program Y, stored by program Z.

— . s — ———— —— — o————— — —— —— — . oo s e)

Figure 6. Example of Use of Save Area

BRANCH TABLE: This table contains one
fullword entry for each branch target label
(a label referred to in a branch statement)
and statement function in the source
module. In addition, one entry occurs for
each 1label produced by the compiler in
generating the object module. These labels
refer to return points in DO loops and to
the statement following complete Logical IF
statements, and are called made labels.

In the object module code, any branch is
performed by loading general register 14

(see "Object Module General Register
Usage™) from this table, and using a BCR
instruction. The values placed in this
table by the compiler are relative ad-
dresses, Each value is modified by the
base address of the object module by the

linkage editor.

SUBPROGRAM ARGUMENT LISTS: This portion of
the object module contains the addresses of
the arquments for all subprograms called.
In calling a subprogram, the object module
uses general register 1 +to transmit a
location in this table. The subprogram
then acquires the addresses of its argu-
ments from that location and from as many
subsequent locations as there are argu-
ments. The sign bit of the word containing
the address of the last argument for each
subprogram is set to one.

18

SUBPROGRAM_ADDRESSES: This 1list contains
one entry for each FUNCTION or SUBROUTINE
subprogram referenced by the object module.
The entry will hold the address of that
subprogram when it is supplied by the
linkage editor. The compiler reserves the
correct amount of space for the list, based
on the number of subprograms referred to by
the source module.

EQUIVALENCE VARIABLES: This area of the
object module contains unsubscripted
variables and arrays, listed in EQUIVALENCE

sets which do not refer to COMMON.

SCALAR VARIABLES: All non-subscripted
variables which are not in COMMON and are
not members of EQUIVALENCE sets appear in
this area of the object module.

ARRAYS: All arrays which are not in
COMMON, and are not members of EQUIVALENCE
sets appear in this area of the object
module.

_____ For each NAMELIST name
and DISPLAY statement in the source module,
a NAMELIST table 1is constructed by the
compiler and placed in this area of the
object module. Each table consists of one
entry for each scalar variable or array
listed following the NAMELIST name or in
the DISPLAY statement, and begins with four
words of the following form:

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

T 1 T 1
| Byte| | Byte| |
|Word | 1 2 3 u { |word |1 2 3 4 |
L 3 L J
r T 4 r v 1
| 1 I |] 1 | |
| ! name field | | | name field
| 2 | 1 2 i |
| F - 1] b i
I3 I | |
] | not used | | 3 | address field
| 4]] | e e Tm—————- - |
¢ b e i | ! jno. | !

| 4y]type jmode |dimens. |length |

| e fommmame doomeeee T 1

where the name field contains the NAMELIST | l]indica-|first dimension factor |
name, right Jjustified. For the DISPLAY] 5 | tor |field |
statement, the name is DBGnn#, where nn is | b $-——- ———— e 4
the number of the DISPLAY statement within] |not |second dimension factor|
the source program or subprogram. | 6 |used |field |
T T 1

Table entries for scalar variables have] |not Jthird dimension factor |
the following form: i } 7 jused |field |
| [e e 4

T 1 | . . I
W o : |
jword | 1 2 3 T] . . |
i { 4] etc. etc. |
I T |t -
] | name field |
| 2 | } where:
| e !

] 3 | address field | name field
] F T T - 4 contains the name of the array, right
] 4 | type | mode | not used] justified.
| IR NI W N b
address field
contains the relative address of the
where: beginning of the array within the
object module.
name field
contains the name of the scalar vari- mode field
able, right justified, contains the mode of the array ele-
ments, coded as for scalar variables,
address field above.
contains the relative address of the
variable within the object module, no. dimens.
contains the number of dimensions in

type field 1
contains zero to indicate a scalar
variable.

mode field
contains the mode of +the variable,

coded as follows:

1 byte

fullword

Integer, halfword

Integer, fullword

Real, double precision

Real, single precision

Complex, double precision

Complex, single precision

Literal (not currently
compiler-generated)

Logical,
Logical,

POONIOULE WN
T | O T T I

NAMELIST table
the following form:

entries for arrays have

Section 1:

the array; this value may be 1-7.

length field
contains the length of the array
ment in bytes.

ele-

indicator field
is set to zero if the array has been
defined to have variable dimensions;
otherwise, it is set to nonzero.

first dimension factor field
contains the total size of the array
in bytes.

second dimension factor field
contains the address of the second
multiplier for the array (nl*L, where
nl is the size of the first dimension
in elements, and L is the number of
bytes per element).

Introduction to the Compiler 19

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

third dimension factor field

contains the address of the third
multiplier for the array (nl*n2%*L,
where n1 is the size of the first

dimension 1in elements, n2 is the size
of the second dimension, and L is the
numbexr of bytes per element).

A final entry for each NAMELIST table is
added after the last variable or array name
to signify the end of that particular list.

This entry is a fullword in length and
contains all zeros.
LITERAL CONSTANTS: This area contains a

list of +the literal constants used in the
source module, except for those specified
in DATA and PAUSE statements,

FORMAT STATEMENTS: The FORMAT statements
specified in the source module are con-
tained in this area of the object module.
The statements are in an encoded form in
the order of their appearance in the. source
module, (See "Appendix D: cCode Produced
by the Compiler.") The information contains
all specifications of the statement but not
the word FORMAT.

TEMPORARY STORAGE AND CONSTANTS: This area
always begins on a double precision boun-
dary and contains, in no specific order,
the constants required by the object module
code and the space for the storage of
temporary results during computations. Not
all of the source module constants neces-
sarily appear in this area, since as many
constants as possible are used as immediate
data in the code produced. Some constants
may appear which are not present in the
source module, but which have been produced
by the compiler.

PROGRAM _TEXT: If +the object module con-
tains statement functions, the code for
these statements begins the program text
and is preceded by an instruction that
branches around them to the first execut-
able statement of the progranm. (See
"Statement Functions" in Appendix D for
further explanation of this code.) Follow-
ing the code for the statement functions is
the code for the executable statements of
the source module.

Object Module General Register Usage

The object module produced by the
FORTRAN IV (G) compiler uses the System/360
general registers in the following way:

Register 0: Used as an accumulator.

Register 1: Used as an accumulator and

to hold the beginning address of the
argument 1list in branches to sub-
programs.

20

Register 2: Used as an accumulator.
Register 3: Used as an accumulator.
Registers 4 through 7: Contain index
values as required for references to

array variables, where the subscripts
are linear functions of DO variables and
the array does not have variable
dimensions.

Registers 8 and 9: Contain index values
as required for references to array
variables, where the subscripts are of
the form xtc, where x 1s a non DO-
controlled variable and ¢ is a constant.

Register 9: Contains index values as
required for references to array
variables where the subscripts are non-

linear of the form I*J, where I and J
are the variables.

Registers 10 through 12: Contain base
addresses loaded from the base table.

Register 13: Contains the beginning
address of the object module save area;
this value is loaded at the beginning of
program execution. Register 13 is also
used for access to the base table, since
the base table follows the save area in
main storage.

Contains the return
and holds the

Register 14:
address for subprograms

address of branch target instructions
during the execution of branch
instructions.

Register 15: Contains the entry point
address for subprograms as they are
called by the object module.

SOURCE MODULE LISTING

The optional source module listing is a
symbolic listing of the source module; it
contains indications of errors encountered
in the program during compilation. The
error message resulting from an erroneous
statement does not necessarily cause ter-
mination of compiler processing nor the
discarding of the statement. Recognizable
portions of declaration statements are
retained, and diagnosis always proceeds
until the end of the program.

OBJECT MODULE LISTING

The optional object module listing uses
the standard System/360 Operating System

assembler mnemonic operation codes and,
where possible, refers to the symbolic
variable names contained in the source
module. Labels used in the source module
are indicated at the appropriate places in
the object code listing.

STORAGE MAPS

The optional storage map consists of six
independent listings of storage informa-
tion. Each listing specifies the names and
locations of a particular class of vari-
able. The listings are:

e COMMON variables

e EQUIVALENCE variables
e Scalar variables

e Array variables

. NAMELIST tables

e FORMAT statements

A list of the subprograms called is also
produced.

ERROR MESSAGES

Errors are indicated by 1listing the
statement in its original form with the
erroneous phrases or characters undermarked
by the dollar sign character, followed by
comments indicating the type of the error.
This method is described in more detail in
"Phase 1 of the Compiler: Parse (IEYPAR)."

common Error Messages

NO CORE AVAILABLE is pro-
duced (through IEYFORT) by all phases of
the compiler when the program being com-
piled exhausts the main storage space
available to the compiler. This message is
produced only when the PRESS MEMORY routine
cannot provide unused main storage space on
request from the compiler.

The message

The message ROLL SIZE EXCEEDED is pro-
duced (through the Invocation phase,
IEYFORT) by all phases of the compiler when
the size of any single roll or rolls is
greater than permitted. The following cir-
cumstances cause this message to be
produced:

e The WORK roll exceeds
space assigned to it.

the fixed storage

e The EXIT roll exceeds
space assigned to it.

the fixed storage

e Any other roll, with the exception of
the AFTER POLISH roll and the CODE
roll, exceeds 64K bytes of storage. 1In
this case, the capacity of the ADDRESS
field of a pointer to the roll is
exceeded and, therefore, the informa-
tion on the roll is unaddressable. The
AFTER POLISH and CODE rolls are
excepted, since pointers to these rolls
are not required.

The compilation terminates following the
printing of either of these messages.

COMPILER DATA STRUCTURES

The POP language is designed to manipul-
ate certain well-defined data structures.

Rolls, which are the tables primarily
used by the compiler, are automatically
handled by the POP instructions; that is,
when information is moved to and from
rolls, controls indicating the status of
the rolls are automatically updated.

Items (variables) with fixed structures
are used to maintain control values for
rolls, to hold input characters being pro-
cessed, and to record Polish notation, etc.
These item structures are also handled
automatically by the POP instructions.

The arrangement of the parts of the
compiler 1is significant because of the
extensive use of relative addressing in the
compiler. General registers are used to
hold base addresses, to control some rolls,
and to assist in the interpretation of the
POP instructions.

ROLLS AND ROLL CONTROLS

Most of the tables employed by the
compiler are called rolls. This term de-
scribes a table which at any point in time
occupies only as much storage as is
required for the maximum amount of informa-
tion it has held during the present compi-
lation (exceptions to this rule are noted
later). Another distinctive feature of a
roll 1is that it is used so that the last
information placed on it 1is the first
information retrieved ~- it uses a "push
up® logic.

Section 1: Introduction to the Compiler 21

With the exception of the WORK and EXIT
rolls, the rolls of the compiler are main-
tained in an area called the roll storage
area. The rolls in this area are both
named and numbered. While the references
to rolls in this document and in the
compiler comments are primarily by name,
the names are converted to corresponding
numbers at assembly time and the rolls are
arranged 1in storage and referred to by

number.

If the roll storage area is considered
to be one block of continuous storage, the
rolls are placed in this area in ascending
sequence by roll number; that is, roll 0
begins at the base address of the roll
storage area; rolls 1, 2, 3, etc., follow
roll zero in sequence, with the roll whose
number is largest terminating the roll
storage area.

Initially, all rolls except roll 0 are
empty and occupy no space; this is accomp-
lished by having the beginning and end of
all rolls located at the same place. (RO11
0, the LIB roll, is a fixed-length roll
which contains all of its data initially.)
Wwhen information is to be placed on a roll
and no space is available due to a conflict
with the next roll, rolls greater in number
than the roll in question are moved down
(to higher addresses) to make the space
available. This is accomplished by physic-
ally moving the information on the rolls a
fixed number of storage locations and alt-
ering the controls to indicate the change.
Thus, roll 0 never changes in size, loca-
tion, or contents; all other rolls expand
to higher addresses as required. When
information is removed from a roll, the
space which had been occupied by that
information is left vacant; therefore, it
is not necessary to move rolls for each
addition of information.

With the exception of the area occupied
by roll 0, the roll storage area actually
consists of any number of non-contiguous
blocks of 4096 bytes of storage. The space
required for 1roll 0 is not part of one of
these blocks. Additional blocks of storage
are acquired by the compiler whenever cur-
rent roll storage 1is exceeded. If the
system is unable to fulfill a request for

roll storage, the PRESS MEMORY routine is
entered to find roll space that 1is no
longer in use, If 32 or more bytes are

found, the compilation continues. If fewer
than 32 bytes are found, the compilation of
the current program is terminated, the
message NO CORE AVAILABLE is printed, and
space is freed. If there are multiple
programs, the next one is compiled.

The following paragraphs describe the

controls and statistics maintained by the
compiler in order to control the storage

22

allocation for rolls and the functioning of
the "push up" logic.

ROLL ADR Table

The ROLL ADR table is a 1000-byte table
maintained in IEYROL. Each entry in this
table holds the beginning address of a
block of storage which has been assigned to
the roll storage area. The first address
in the table is always the beginning
address of roll 0. The second address is

that of the first U4K-byte block of storage
and, therefore, the beginning address of
roll 1. Initially, the last address

recorded on the table 1is the beginning
address of a block which holds the CODE and

AFTER POLISH rolls, with the CODE roll
beginning at the first 1location in the
block.

As information 1is recorded on rolls

during the operation of the conmpiler, addi-

tional storage space may eventually be
required. Whenever storage is needed for a
roll which precedes the CODE roll, an

additional 4K Dblock is requested from the
system and its address is inserted into the
ROLL ADR table immediately before the entry
describing the CODE roll base. This inser-
tion requires that any entries describing

the CODE and AFTER POLISH rolls be moved
down in the ROLL ADR table. The informa-
tion on all 1rolls following (greater in

number than) the roll requiring the space
is then moved down a fixed number of words.

The 1ro0ll which immediately precedes the
CODE roll moves into the new block of
storage. This movement of the rolls
creates the desired space for the roll

requiring it. The movement of rolls does
not respect roll boundaries; that is, it is

entirely possible that any roll or rolls
may bridge two blocks of storage.
When additional storage space is

required for the AFTER POLISH roll, a block
is requested from the system and its begin-
ning address is added to the bottom of the
ROLL ADR table. When the CODE roll
requires more space, a new block is added

in the same manner, the AFTER POLISH roll
is moved down into the new block, and the
vacated space 1is available to the CODE
roll.

The CODE and AFTER POLISH rolls are
handled separately because the amount of

information which can be expected to reside
on them makes it impractical to move them
frequently in order to satisfy storage
requirements for all other rolls. The CODE
roll is also somewhat unique in that it is
assigned a large amount of space before it
is used; that is, the AFTER POLISH roll

does not begin at the same location aé does
the CODE roll.

BASE, BOTTOM, and TOP_ Tables

In order to permit dynamic allocation as

well as to permit the use of the "push up"
logic, tables containing the variables
BASE, BOTTOM, and TOP are maintained to
record the current status of each of the

These variables indicate addresses

Information stored on rolls is
in units of fullwords; hence, these
addresses are always multiples of four.
The 1length of each of the tables is deter-
mined by the number of rolls, and the roll
number is an index to the appropriate word
in each table for the roll.

rolls,
of rolls.

Each of the variables occupies a full-
word and has the following configuration:

11 12 3

0 12 9 0 1
=== === === B A T T T T T T T hl
	Entry number	
	into the	Displacement
	ROLL ADR	(12 bits)
	Table	
L - e _ A J
The entry number points to an entry in the

ROLL ADR table and,
address of a block of roll storage. The
displacement 1is a byte count from the
beginning ofthe indicated storage block to

hence, to the beginning

the 1location to which the variable (BASE,
BOTTOM, or TOP) refers.,
It 1is significant to note that the

displacement field in these variables occu-
pies twelve Dbits. If the displacement
field is increased beyond its maximum value
(4095), the overflow increases the entry
number into the ROLL ADR table; this is the

desired result, since it simply causes the
variable to point to the next entry in the
table and effectively indicate the next
location in the 1roll storage area, the

beginning of the next block.

The first status variable for each roll,

BASE, indicates the beginning address of
that roll, minus four. The second vari-
able, BOTTOM, indicates the address of the

most recently entered word on the roll.

If the roll is completely empty, its
BOTTOM 1is equal to its BASE; otherwise,
BOTTOM always exceeds BASE by a multiple of
four. Figure 7 illustrates a roll which
contains information.

4 bytes

BASE (n) { r -
-> | <==——~ unused
ToP (n) § | [
= 1
fm————————————— 1
p———————————— 4
- 4
| . | K bytes
| . |
| . [
pommmmmmm - :
BOTTOM(n)-—-=> | [
[, 1
Figure 7. Roll Containing K Bytes of
Information

When information is to be added to a

roll, it is stored at the address pointed
to by BOTTOM, plus four, and BOTTOM is
increased by four. When a word is to be

retrieved from a roll, it is read from the
address specified by BOTTOM, and, under
most circumstances, BOTTOM is reduced by
four, thus indicating that the word is no
longer occupied by the roll. This altera-
tion of the value of BOTTOM is termed
_____ If the information retrieved from
a roll is to remain on the roll as well as
at the destination, BOTTOM is not changed.
This operation is indicated by the use of
the word "keep" in the POP instructions
that perform it.

The current length (in bytes) of a roll
is determined by subtracting its BASE from
its BOTTOM. Note that this is true even
though the entry number field appears in
these variables, since each increase in
entry number indicates 4096 bytes occupied
by the roll. Thus, there is no 1limitation
on the size of a roll from this source.

For each 1roll, an additional status
variable, called TOP, is maintained. TOP
enables the program to protect a portion of
the roll from destruction, while allowing
the use of the roll as though it were
empty. Protecting a roll in this way is
called reserving the roll. The contents of
TOP (always greater than or equal to the
contents of BASE) indicate a false BASE for
the roll. The area between BASE and TOP,
when TOP does not equal BASE, cannot be
altered or removed from the roll. Ascend-
ing locations from TOP constitute the new,
empty roll.

Like BASE, TOP points to the word imme-
diately preceding the first word into which
information can be stored. A value is
automatically stored in this unused word
when the roll is reserved; the value is the
previous value of TOP, minus the value of
BASE and 1is called the reserve _mark.
Storage of this value permits more than one
segment of the roll to be reserved.

Section 1: Introduction to the Compiler 23

A single roll (roll n), then, containing
K bytes of information, (where K is always
a multiple of four) and having no reserved
status, has the following settings for its
status variables:

BOTTOM = BASE + K = TOP + K

Figure 7 also 1illustrates this roll. If
the same roll contains L bytes reserved and
K additional bytes of information, the
settings of its status variables are as
follows:

BOTTOM = TOP + K = BASE + L + K + 4

This roll is shown in Figure 8. Note that
the relationships given above are wvalid
because of the structure of the BASE,
BOTTOM, and TOP variables.
4 bytes
[——— e 1
BASE (n)-——-—- > | <==-unused
e 1
| |
b 1
| |
pomm e 1
| .
| . | L bytes
| . |
pom oo :
| |
b .|
| |
_______________ 4
TOP (n)—————- > | <-—-previous
t TOP-BASE
]
t
|
F
|
| K bytes
|
I-
|
t
I
s
BOTTOM (n)—-—->|
L

Figure 8. Roll C(Containing L Bytes of Re-
served Infcrmation and K Bytes

of New Information

Special Rolls

The WORK roll and the EXIT roll are
special rolls in that they are not main-
tained in the roll storage area, but rather
appear in IEYROL with a fixed amount of
storage allocated to each. They are rolls

24

GROUPS:

in the sense that they employ the same push
up logic which is used for the other rolls;
however, they are not numbered, and their
controls are, therefore, not maintained in
the tables used for the other rolls.

The WORK roll 1is used as a temporary
storage area during the operations of the
compiler. Because information is moved to
and from the roll frequently it is handled
separately from other rolls.

The EXIT roll warrants special treatment
because it is used frequently in maintain-
ing exit and entrance addresses for compil-
er routines.

recorded
general

The bottom of the WORK roll is
in general register 4, WRKADR;
register 5, EXTADR, holds the address of
the bottom of the EXIT roll. These values
are absolute addresses rather than in the
format of the BOTTOM variable recorded for
other rolls.

For a more detailed explanation of the

WORK and EXIT rolls, see Appendix B "Rolls
Used by the Compiler."

Central Items, Groups, and Group Stats

CENTRAL ITEMS: The items SYMBOL 1, SYMBOL
2, SYMBOL 3, DATA 0, DATA 1, DATA 2, DATA 3
and DATA U4, two bytes each in length, and
DATA 5, eight bytes in 1length, contain
variable names and constants. These items
are called central due to the nature and
frequency of their use. They occupy
storage in the order listed, with DATA 1
aligned to a doubleword boundary.

In general, SYMBOL 1, 2, and 3 hold
variable names; DATA 1 and 2 are wused to
hold real constants, DATA 3 and 4 to hold
integer constants, DATA 1, 2, 3 and 4 to
hold dJdouble precision and complex con-
stants, and DATA 1, 2, 3, 4 and 5 to hold
double-precision complex constants.

the basic unit of informa-
tion stored on rolls is a fullword, many
rolls contain logically connected informa-
tion which requires more than a singleword
of storage. Such a collection of informa-
tion is called a group and always occupies
a multiple of four bytes. A word of a
group of more than one word is sometimes
called a runq of the group.

While

Regardless of the size of the group on a
given roll, the item BOTTOM for the roll
always points to the last word on the roll.
Figure 9 shows a roll with a group size of
twelve,

4 bytes
[e—————————] BASE (n)
I | <--
-t 4 'TOP (n)
[|
} 4
[} 1
1st group < | |
L 4
13 1
| |
i 4
r 1
| |
prmmmmm oo m e 1
2nd group « | |
prmmmmmmm e 1
| |
S pmmm e m o i
|]
F -4
3rd group ¢ | |
t !
| | <—- BOTTOM (n)
4
Figure 9. Roll With a Group Size of
Twelve

For some rolls, the size of the group is
not fixed. In these cases a construct
called a "plex" is used. The first word of
each plex holds the number of words in the

plex, exclusive of 1itself; the remainder
holds the information needed in the group.
(See Figure 10.)
4 bytes
[m——————
BASE (n)L | | <---no. words
>} - 4 in group
TOP (n)s e q
! 3 I
F 1
b 1
| | growp
b 1 information
| A
b 1
I 4 I
pmmmmmmm e 1
| I
% S
| | » plex
t 1
|]
pomm o mm oo 1
I |
prmmmm oo 1A
| 2 J(
r 1
| | plex
prmmmmmmm - s
BOTTOM (n) | |
¥l
Figure 10. Roll with Variable Group Size
The assignment of roll storage does not
respect group boundaries; thus, groups may
be split between two blocks of roll

storage.

e GROUP __STATS:

Since the size of the group
varies from roll to roll, this charac-
teristic of each roll must be tabulated in
order to provide proper manipulation of the
roll. In addition, the groups on a roll
are frequently searched against the values
held in the central items (SYMBOL 1, 2, 3,
etcC.,). Additional characteristics of the
roll must be tabulated in order to provide

for +this function. Four variables tabu-
lated in the group stats tables are
required to maintain this information.

(See Section 2 "IEYROL Module.")

The first group stats table contains a
1-word entry for each roll. The entry is
divided into two halfword values. The
first of these is the displacement in bytes
from SYMBOL 1 for a group search; that is,
the number of bytes to the right of the
beginning of SYMBOL 1 from which a compara-
tive search with the group on the roll
should begin. This value is zero for rolls
which contain variable names (since these
begin in SYMBOL 1), eight for rolls which
contain real, double-precision, complex or
double-precision complex constants (since
these begin in DATA 1), and twelve for
rolls which contain integer constants.

The second value in the first group
stats table is also a displacement; the
distance in bytes from the beginning of the
group on the roll to the byte from which a
comparative search with the central items
should begin.

The second group stats table also holds
a l-word entry for each roll; these entries
are also divided into two halfword values.
The first of these is the number of conse-
cutive bytes to be used in a comparative
search, and refers to both the group on the
roll and the group in the central items
with which it is being compared.

The second item in the second table is

the size of the group on the roll, in
bytes. For rolls which hold plexes, the
value of this item is four.

For example, the DP_CONST roll, which is

used to hold the double-precision constants
required for the object module, has an
8-byte group. The settings of the Group
Stats for +this roll are 8, 0, 8, and 8,
respectively. The first 8 indicates that
when this roll is searched in comparison
with the central items, the search should
begin eight bytes to the right of SYMBOL 1
(at DATA 1). The 0 indicates that there is
no displacement in the group itself; that
is, no information precedes the value to be
compared in the group. The second 8 is the
size of the value to be searched. The
final 8 is the number of bytes per group on
the roll.

Section 1: Introduction to the Compiler 25

The group stats for the ARRAY roll
(which holds the names and dimension infor-
mation of arrays) are 0, 0, 6, and 20.
They indicate that the search begins at
SYMBOL 1, that the search begins 0 bytes to
the right of the beginning of the group on
the roll, that the number of bytes to be
searched is 6, and that the group 6 size on
the roll is 20 bytes.

Figures 11 and 12 show the two group
stats tables containing the information on
the DP CONST roll and the ARRAY roll
discussed above. It should be noted that
the information contained on these two
tables is arranged according to roll num-
bers. In other words, the group stats for
roll 5 are in the sixth entry in the tables
(starting with entry number 0).

4 bytes
[rm— e ——— T-——————————= 1
b + i
k L i
| . |
I . |
| . |
p-o-mo————— Jo——-———————— {
DP CONST roll—-->| 8| 0]
L i i
r
| . |
| . |
| . |
b e 1
ARRAY roll--->| 0] 0}
{ L ¥}
r A
| . |
! - |
| . |
b T i
L - —_—4 —— —_—
Figure 11, First Group Stats Table
4 bytes
[T ——— FrTm e 1
pmmmm e prmmmm o 1
pmmm e Lo :
| - |
| . |
I . |
[N J
r T h)
DP CONST roll--->| 8] 8|
t 1 i
| . |
| . }
| . |
+ —_ 4
r T a
ARRAY roll-—->| 6| 20]
S) 4
| . |
| . |
| - |
F T 1
L L J

Figure 12. Second Group Stats Table

26

OTHER VARIABLES

In addition to the central items,
several other variables used in the compil-
er perform functions which are significant
to the understanding of the PCP instruc-
tions, These are described in the follow-
ing paragraphs.

Answer BoOx

The variable ANSWER BOX, which 1is re-
corded in the first byte of the first word

of each EXIT roll group, is used to hold
the true or false responses from POP
instructions. The value "true" is repre-

sented by a nonzero value in this variable,
and "false" by zero. The value is checked
by POP jump instructions.

Multiple Precision_Arithmetic

Most of the arithmetic performed in the
compiler is fullword arithmetic. When
double-precision arithmetic 1is required,
the variables MPAC 1 and MPAC 2, four bytes
each 1in 1length, are used as a double-
precision register. These variables are
maintained in main storage.

Scan Control

Several variables are used in the
character scanning performed by the first
processing phase of the compiler, Parse.
Their names, and terms associated with
their values, are frequently wused in
describing the POP instructions.

The variable CRRNT CHAR holds the source
statement character which is currently
being inspected; the variable is four bytes
long. The position (scan arrow) of the
current character within the input state-
ment (its column number, where a continuous
column count is maintained over each state-
ment) 1is held in the low-order bit posi-
tions of the fullword variable CRRNT CHAR
CNT.

Non-blank characters are called "active
characters," except when 1literal or IBM
card code information is Dbeing scanned.
The variable LAST CHAR CNT, which occupies
one word of storage, holds the column
number of the active character previous to
the one in CRRNT CHAR.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Example:

1
Column number: 1234567890

DO 50 I =1, 4

A(I) = B(I)**2
DO 50 J=1, 5
50 C(J+1) = A(I)

In the processing of the source module
which contains the above statements, state-
ment 50 is currently being parsed. The

current character from the input buffer is
J. The settings of the scan control
variables are shown in Figure 13.
e ey === 1
| (EBCDIC) J |
e e e e e e o e e e e e e i e e e 4
CRRNT CHAR
r ———- -1
I L
L J
CRRNT CHAR CNT
(scan arrow)
r - - === 1
| 1 8 |
L J

LAST CHAR CNT

Figure 13. Scan Control Variables

Flags

Several flags are used in the compiler.
These 1-word variables have two possible
values: on, represented by nonzero, and
off, represented by zero. The name of the
flag indicates the significance of the "on"
setting in all cases.

Quotes

Quotes
ceded by a halfword character

are sequences of characters pre-
count; they

are compared with the input data to deter-
mine a statement type during the Parse
phase. These constants are grouped
together at +the end of phase 1. The

location labeled QUOTE BASE is the begin-
ning location of the first quote; instruc-

tions which refer to quotes are assembled
with address fields which are relative to
this location.

Figure 14 shows some of the quotes used

by the compiler and how they -are arranged
in storage.
4 bytes
r R
QUOTE BASE | 00 02 N D |
== oo -4
| 00 08 I M|
}-- -
| E N S I
S -
| o N b b |
possmm e e e —emmee i
| 00 07 M P |
} ____,'
N
| L I c I |
L e e e e e e e e e = e ——— ‘|
T
| T b b b |
t-= i
1 00 07 L o |
- - ———mm- i
G I Cc A |
- i
L b b b |
- e eee i
. |
. |
.]
J
)
00 06 o |
-------- i
R M A T |
I 4
L |
| . |
| . |
] . |
L - - - 4
Figure 14, Quotes Used in the Compiler
Messages

The messages used in the compiler, which
are also grouped together at the end of
Phase 1, are the error messages required by
Parse for the source module 1listing. The
first byte of each message holds the condi-
tion code for the error described by the
message. The second byte of the message is
the number of bytes in the remainder of the
message. The message follows this halfword
of information.

The location labeled MESSAGE BASE is the
beginning location of the first message;
instructions which refer to messages are
assembled with address fields relative to
this location.

Section 1: Introduction to the Compiler 27

Form ¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

COMPILER ARRANGEMENT AND GENERAIL REGISTER
USAGE

Figure 15 shows the arrangement of the
compiler in main storage with the Parse
phase shown in detail. General registers

that hold base locations within the compil-
er are shown pointing to the locations they

General register 2, PGB2, holds the
beginning address of the global jump_table,
a table containing the addresses of compil-
er routines which are the targets of jump
instructions. (See Appendix A for further
discussion of this table and the way in
which it is used.) The global jump table
appears in each phase of the compiler and
is labeled PROGRAM BASE 2; thus, the value

indicate., Note that the labels CBASE and held in general register 2 is changed at
PROGRAM BASE 2 appear in each phase of the the beginning of each phase of the
compiler; the general registers CONSTR and compiler.
PGB2 contain the locations of those labels
in the operating phase.
r T - B et 1
| Register | Label | Contents |
8 L L (]
¥ 1
] Invocation Phase]
¢ T - - - -4 low
| POPPGB--->|. POP TABLE | POP Jump Table | storage
| | b i
| | POP SETUP | POP Machine Language Subroutines
| | t S—
| | | Data for POP Subroutines |
L 4 1 d
L2 T T 1
| ROLLBR--->]| ROLL BASE | Roll sStatistics (Bases, Tops, Bottoms) |
| | I o i
| ! | Group sStats (Displacements, Group Sizes) |
i | b i
| | | WORK Roll |
| | e — -4
| 1 | EXIT Roll |
| | b i
| i | ROLL ADR Table [
| | b o e e 4
| | | Roll storage _ |
WWWMWWWWMW
|) | Roll Storage*]
L e b o e e o e e e e e e e e e 1
5 4 + 1
| CONSTR--->] CBASE | Parse Data Items |
| | - e 1
| | | Parse Routines |
| ! k i
| PGB2———-- >] PROGRAM BASE 2 | Parse Global Jump Table]
| 1 T 1
] | | Parse Routines containing assembler |
] 1 | language branch targets
T S S 1
| QUOTE BASE Quotes |
' 1
| | MESSAGE BASE | Messages |
L o ———— — —— ————— e { high
PHASE 2: Allocate | storage
t-———— i
| PHASE 3: Unify |
b L o 4
| PHASE U: Gen |
L 4
r 1
| PHASE 5: Exit |
L
¢ o e 1
|*Roll storage is allocated in U4K-byte blocks, beginning from the higher end}
| of storage contiguous with Parse. Additional blocks are obtained, as]|
| needed, from preceding (lower) UuK-byte blocks of storage. |
L J

Figure 15.

28

Compiler Arrangement with Registers

Form Y28-6638-1
Page Revised 11/15/68 by TNL ¥Y28-6826

Compiler routines which contain assem-
bler language instructions and are either
branched to by other assembler language
instructions or which themselves perform
internal branches, follow the global jump
table. General register 2 is wused as a
base register for references to both the
global Jjump table and these routines.
Figure 15 shows this register in Parse,

called POPADR in the
compiler code, is used in the sequencing of
the POP operations. It holds the address
of the current POP, and is incremented by 2
as each POP is interpreted.

General register 3,

General register 4, called WRKADR, holds
the address of the current bottom of the
WORK roll.

General register 5, called EXTADR, holds
the address of the current bottom of the
EXIT roll.

General register 6,
the return location for
When POPs are being interpreted by POP
SETUP, the return is to POP SETUP; when
machine language instructions branch to the

called POPXIT, holds
POP subroutines.

POPs, it is to the next instruction.
General register 7, called ADDR, holds
the address portion of the current POP
instruction (eight bits); it is also used
in the dJdecoding of the operation code
portion of POP instructions.
General register 8, called POPPGB, holds

the beginning address of the machine lan-
guage code for the POP instructions and the

POP Jjump table. FPigure 15 shows this
register, which 1is used as a base for
references, to these areas.

General register 9, called CONSTR, holds
the beginning address of the data referred
to by the compiler routines. This area
precedes the routines themselves, and is

labeled CBASE, as indicated in Figure 15.
This register is, therefore, used as a base
register for references to data as well as

for references to the routines in the
compiler; its wvalue 1is changed at the
beginning of each phase.

General register 10, ROLLBR, holds the
beginning address of the roll area; that

is, the beginning address of the base table
(see Figure 15). The value in this
register remains constant throughout the
operation of the compiler.

General register 11, RETURN, holds
return addresses for the POP subroutines.

The remaining general registers are used
temporarily for various purposes in the
compiler.

POINTERS

Information defining a source module
variable (its name, dimensions, etc.) is
recorded by the compiler when the name of
the variable appears in an Explicit speci-
fication or DIMENSION statement. For
variables which are not explicitly defined,
this information is recorded when the first
use of the variable is encountered. All
constants are recorded when they are first
used in the source module.

All references to a given variable or
constant are indicated by a pointer to the
location at which the information defining
that variable or constant is stored. The
use of the pointer eliminates redundancy
and saves compiler space.

The pointer is a 1-word value in the
following format:

1 byte 1 byte 2 bytes
r T) Binteabatutet itk 1
| TAG | OPERATOR | ADDRESS i
L L 4 J
where:
TAG

is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates whether
the variable or constant is integer,
real, complex or logical; SIZE, indi-
cated in the lower four bits, speci-
fies the length of the variable or

constant (in bytes) minus one. (See
Figure 15.1).

T T T I |
|value | MODE | Value | SIZE |
p—mmm - fmmmmmmmeee -mmmem oo
] 0 | Integer | 0 | 1 byte |
) 1 | Real | 1 | 2 bytes |
| 2 | Complex | 3 | 4 bytes |
| 3 | Logical | 7 | 8 bytes |
] 4 | Literals/ | F | 16 bytes |
| | Hexadecimal | | |
[P S N i J

e Figure 15.1 TAG Field MODE and SIZE Values
OPERATOR

is a 1-byte item which contains the
roll number of the roll on which the

group defining the constant or vari-
able is stored.

ADDRESS
is a 2-byte item which holds the
relative address (in bytes) of the

group which contains the information
for the constant or variable; the
address 1is relative to the TOP of the
roll.

Section 1: Introduction to the Compiler 29

The pointer contains all the information
required to determine an absolute location
in the roll storage area. The roll number
(from the OPERATOR field) is first used as
an index into the TOP table. The ADDRESS
field of the pointer is then added to the

TOP, and the result is handled as follows:

1. Its entry number field (bits 12
through 19) 1is used as an index into
the ROLL ADR table.

2. 1Its displacement field (bits 20
through 31) is added to the base
address found in the ROLL ADR table.
The result of step 2 is the address
indicated by the pointer.

Example: Using a pointer whose OPERATOR
field contains the wvalue 2 and whose
ADDRESS field contains the value 4, and the
following tables:
TOP ROLL ADR

] LS Ll b I)
0| | | | 0| |
s mee S b :
1 b [1| [
2| {2 | 20 | 2 | 1000 |
| b {
| . | | . |
| . | | . 1
| . | | . |
| | | |
the location 1024 is determined. Note that
for larger values in the pointer and in

TOP, the entry number field of TOP can be
modified by the addition of ADDRESS. In
this case the result of the addition holds
2 and 24 in the entry number and displace-
ment fields, respectively.

.since relative addresses are recorded in
pointers, it is not necessary to alter a
pointer when the roll pointed to is moved.
No?e also that the relative address in the
polnter may exceed 4096 bytes with no
complication of the addressing scheme. The
only limitation on the size of a roll comes
about because of the size of the ADDRESS

field of the pointer: 16 bits permit
values less than 64K bytes to be
represented.

30

For the purposes of object code genera-
tion, the mode and size of the constant or
variable is available to influence the type
of operations which can be employed, e.g.,
integer or floating, fullword, or
doubleword.

DRIVERS

In the generation of Polish notation
from the source language statements,
"drivers" are also used. These "drivers"
are values that are one word long and have
the same format as the pointer. The two
types of drivers used by the compiler are
discussed in the following paragraphs.

Operation Drivers

One type of driver is the operation
driver, which indicates arithmetic or log-
ical operations to be performed. The
fields of the driver are:

TAG
is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates the
mode of the operation, e.g., integer,

floating-point, complex or logical;
SIZE, indicated in the lower four
bits, specifies the 1length of the
result of the operation (in bytes)
minus one.
OPERATOR

is a 1-byte item containing a value
which indicates the operation to be
performed, e.g., addition, subtrac-
tion, etc,. The values for OPERATOR
are larger than the number of any
roll, and hence, also serve to distin-

guish a driver from a pointer.

ADDRESS
is a 2-byte item containing a value
which indicates the "forcing strength"
of the operation specified by the
driver; its values range from zero to
ten.

The forcing strengths associated with
the operation drivers are given in Table 1.

Table 1. Internal Configuration of Opera-
tion Drivers
r k) T T 1
| | | | ADDRESS 1
f | | (Forcing]
|Driver {TAG* | OPERATOR| Strength) |
' {——-4 t 4
| Sprog2 | 00 | 490 | 00 00 }
L 1 1
B T T "+ ____________ 'l
| Power | 00 | 42 } 00 01]
L L 1 1 4
LB T T L]]
|Unary Minus | 00 } 43 | 00 02 |
oo e P frmmmmmmm o 4
|Multiply | 00 | 4y | 00 03]
b= 1 1
|Divide | 00 45 00 03 |
L ——— 4 __.!
3 T
|add | 00 | 46 | 00 o4]
l|= ' + I 1
T T v
| Subtract | 00 | 47 | 00 O4 1
prmmm oo s 4
|GT | 00 | 48 | 00 05 1
1 1 1 4
T T v 1
GE | 00 | 49 00 05 i
—--——1 R e
LT | 00 | 4A 00 05 |
1 Jeoo 1 4
r R T 1
LE | 00 | 4B | 00 05 |
e e i
EQ] 00 | 4c | 00 05 1
b —4---—t t i
h
| NE | 00 | 4D | 00 05 i
b S et SR fromm oo 4
| NOT | 00 | 4E | 00 06 |
L 1 X L 3
r T T Rl 1
| AND] 00 | 4F | 00 07 l
L L
F . e :
| OR | 00 50 00 08]
N 4 |
T T 1
|Plus and Below| | | |
| Phony?] 00] 3F | 00 09 |
L 1 1 1 4
T T T i 1
| EOE4 | 00 | 3F | 00 Oa i
L 1 1 _,1

the driver when it is used.
2Indicates a function reference.
|2Used to designate the beginning of an|
| expression. |
]1“Means "end of expression" and is used]

{ for that purpose. }

L
L
|1*The MODE and SIZE settings are placed in
|
|

Control Drivers

The other type of driver used in the
generation of Polish notation is called the
control driver. It is used to indicate the
type of the statement for which code is to
be written. The control driver may also
designate some other control function such
as an I/0 list, an array reference, or an
error linkage.

The fields of the control driver differ
from those of the operation driver in that
zero is contained in the TAG field, 255 in
the OPERATOR field (the distinguishing mark
for control drivers), and a unique value in
the ADDRESS field. The value in the
ADDRESS field is an entry number into a
table of branches to routines that process
each statement type or control function; it
is used in this way during the operations
of Gen. The formats of the operation
drivers and control drivers are given in
Appendix E.

Table 1 lists the operation drivers and
the values contained in each field. The
control drivers are given in Table 2. The

ADDRESS field 1is the only field given

because the TAG and OPERATOR fields are
constant. All values are represented in
hexadecimal.

Section 1: Introduction to the Compiler 31

Form Y28-6638-1

Page Revised 11/15/68 by TNL Y28-6826
Table 2. Internal Configuration of Con- eTable 2. Internal Configuration of Con-
trol Drivers (Part 1 of 2) trol Drivers (Part 2 of 2)
T - T e 1 === - 1 1
		_		
Driver	ADDRESS		Driver	ADDRESS
		I		
prmmm o fommmmm e T o 1				
AFDS	38		ERR= [210	
prmmmmm = ¢ it 3 1				
ARRAY	23c]	EXP and ARG	480	
- S Bttt i bm—————————————————— S Attt i
] ASSIGN | 20] | FIND | 4c [
F — i " 1
| ASSIGNED GOTO] 1C | | FORMAT | 208 |
R it 4 bty B 1
| ASSIGNMENT | Y 1 } FORMAT STA | 30 |
IR 3 4 N J— 4 __._.l
r T]) T
| AT | 68 | | GoOToO | 14 |
b e T § prmmomemmmem oo f-mmmmmmeoe- 1
| BSREF] 34 | IF | 24 |
et o § - - ommmm e 1
| CALL I 2c] | IOL DO CLOSE | 218 |
et R 4 e 1o 1
| CcGoTo | 18] | IOL DO DATA | 21cC |
1 1 —_ - L — — e e e e e e e e e
t + 9 t + 1
| CONTINUE | 28 | | IO LIST | 214]
et fmmommmmmee- I e e 1
| DATA | 3c] } LOGICAL IF | 60 |
¢ ¥ 1 oo 1
| DEFINE FILE | uy] | NAMELIST | 204 I
% e m e e .| | - -—- Ut 4
| DIRECT IO] 200 | | PAUSE | 38]
L 1 ,l 1 - S e e e _'
r } t 4
| DISPLAY ID I 74 | | READ WRITE [48
prmmmmm oo e I frmmmm e em 1
} Do | 10) | RETURN | 50 |
} $ I 1 S
| DuMMY | 68 | | STANDARD PRINT UNIT | 234
- e Sttt 1 b S Rttt 8!
| END 1 c | { STANDARD PUNCH UNIT I 238 |
t + 1 t + 1
| END= | 20cC | | STANDARD READ UNIT | 230 1
e TR e { - e frmmm o 4
| ERROR LINK 1 i 54 | | sTOP | 6U [
L L] 4 },___ 4 4
r R A 1 1
| ERROR LINK 2 | 58 | | SUBPROGRAM | 40 I
b - +-] e fmm 1
¥ T N
| ERROR LINK 3 | 5C] | TRACE OFF | 70 |
L . o $ {
| TRACE ON | 6C |
e e e N J

32

This section describes in detail the
Invocation phase and the five processing
phases of the compiler and their operation.
The IEYROL module is also described.

INVOCATION PHASE (IEYFORT)

The Invocation phase is the compiler

control phase and is the first and last
phase of the compiler, (The logic of the
phase is illustrated in Chart 00.) If the

compiler is invoked in an EXEC statement,
control is received from the operating
system control program. However, control

may be received from other programs through

use of one of the system macro instruc-
tions: CALL, LINK, or ATTACH.
IEYFORT performs compiler initializa-

tion, expansion of roll storage assignment,
input/output request processing, and com-
piler termination. The following para-
graphs describe these operations in greater
detail,

IEYFORT, CHART 00

IEYFORT is the basic control routine of
the Invocation phase. Its operation is
invoked by the operating system or by
another program through either the CALL,
LINK, or ATTACH macro instructions. The
execution of IEYFORT includes scanning the
specified compiler options, setting the
ddnames for designated data sets, initia-
lizing heading information, and acquiring
time and date information from the system.

IEYFORT sets pointers and indicators to
the options, data sets, and heading infor-
mation specified for use by the compiler.
The options are given in 40 or fewer
characters, and are preceded in storage by
a binary count of the option information.
This character count immediately precedes
the first location which contains the
option data. The options themselves are
represented in EBCDIC.

On entry to IEYFORT, general register 1
contains the address of a group of three or
fewer pointers. Pointer 1 of the group
holds the beginning address of an area in
storage that contains the execute options
specified by the programmer (set in the
OPTSCAN routine).

SECTION 2: COMPILER OPERATION

Pointer 2 contains the address of the
list of DD names to be used by the compiler
(set in the DDNAMES routine).

Pointer 3 contains the address of the
heading information. Heading data may
designate such information as the continua-
tion of pages, and the titles of pages.

If the FORTRAN compiler is invoked by
the control program (i.e., called by the
system), pointers 2 and 3 are not used.
However, if the compiler is invoked by some
other source, all pointers may be used.
The 1latter condition is determined through
an interrogation of the high order bit of a

pointer. If this bit is set, the remaining
pointers are nonexistent. Nevertheless,
pointers 1 and 3 may exist while pointer 2

is nonexistent; in this pointer 2

contains all zeros.

case,

During the operation of IEYFORT, the
SYSIN and SYSPRINT data sets are always

opened through use of the OPEN macro
instruction. The SYSLIN and SYSPUNCH data
sets are also opened depending upon the

specification of the LOAD and DECK options.
The block sizes of these data sets are set
to 80, 120, 80 and 80, respectively. These
data sets may be blocked or unblocked
(RECFM=F, FB, or FBA) depending upon the
DCB specification in the DD statements.
IEYFORT concludes the compiler initializa-
tion process with a branch to the first
processing phase of the compiler, Parse
(IEYPAR).

From this point in the operation of the
compiler, each processing phase calls the
next phase to be executed. However, the
Invocation phase is re-entered periodically
when the compiler performs such input/
output operations as printing, punching, or
reading. The last entry to the Invocation
phase is at the completion of the compiler
operation,

IEYPRNT, Chart OOAY

IEYPRNT is the routine that is called by
the compiler when any request for printing
is issued. The routine sets and checks the
print controls such as setting the 1line
count, advancing the line count, checking
the lines used, and controlling the spacing
before and after the printing of each line.
These control items are set, checked, and
inserted into the SYSPRINT control format,

Section 2: Compiler Operation 33

and the parameter information and print
addresses are initialized for SYSPRINT.

If there is an error during the printing
operation, EREXITPR sets the error code
resulting from the print error. Any error
occurring during an input/output operation
results in a termination of compiler
operation.

PRNTHEAD, Chart 01A2

PRNTHEAD is called by IEYPRNT after it
has been determined that the next print
operation begins on a new page. The pro-
gram name and the new page number placed
into the heading format and any parameter
information and origin addresses are
inserted into the SYSPRINT format. If an
optional heading is specified by the pro-
grammer, it is inserted into the print line
format. A PUT macro instruction is issued
to print the designated line, and all print
controls are advanced for the next print
operation.

IEYREAD, Chart Ol1AY4

IEYREAD is called by the compiler at the
time that a read operation is indicated.
It reads input in card format from SYSIN
using the GET macro instruction. IEYREAD
can handle concatenated data sets.

If an error occurs during the read
operation, the routine EREXITIN is called.
This routine checks the error code
generated and prints the appropriate error
message,

IEYPCH, Chart 02A3
When a punch output operation is

requested by the compiler, control is tran-
sferred to the IEYPCH routine. The LOAD
and DECK options are checked to determine
what output to perform.

Any errors' detected during output result

in a transfer of control to the EREXITPC,
for SYSPUNCH, or EREXITLN, for SYSLIN,
routine, The routine sets a flag so that

no further output is placed on the affected
file.

34

PRNTMSG, Chart 03Al

PRNTMSG 1is called when
message 1is to be printed.

any type of
The print area

is initialized with blanks and the origin
and displacement controls are set. The
message is printed in two segments; each

segment 1is inserted into the print area
after the complete message length is deter-

mined and the length and origin of each
segment has been calculated, Once the
entire message has been inserted, the car-

printing is set and
system to

riage control for
control is transferred to the
print the message.

IEYMOR, Chart 01D1

IEYMOR is called when additional roll
storage area is needed for compiler opera-
tion. This routine may be entered from any
of the processing phases of the compiler.
The GETMAIN mac¢ro instruction is issued by

this routine and transfers control to the
system for the allocation of one UK-byte
block of contiguous storage. The system

returns to IEYMOR with the absolute address
of the beginning of the storage block in
general register 1. Oonce the requested
storage space has been obtained, IEYMOR
returns to the invoking phase. I1f the
system is unable to allocate the requested
storage, inactive modules of the compiler
are deleted. Those preceding the currently
active module are deleted first; then those
following it are deleted, if necessary.
Should additional space be needed after all

inactive modules are deleted, compiler
operations are terminated.

When IEYMOR returns to the invoking
phase with the absolute address of the

storage block in general register 1, the
invoking phase then stores the contents of
register 1 in the ROLL ADR table.

The ROLL ADR table is wused by the
compiler to record the addresses of the
different blocks of storage that have been
allocated for additional 1roll capacity.
The contents of the table are later used in
IEYRETN for releasing of the same storage
blocks.

IEYNOCR

IEYNOCR is called by PRESS MEMORY
(IEYPAR) whenever it is unable to obtain at
least 32 bytes of unused storage. IEYNOCR
prints the message NO CORE AVAILABLE,
branches to a subroutine that checks to see
if there are any source language cards to
be disregarded, and then exits to IEYRETN.

Form Y¥28-6638-1
Page Revised 7/23/69 by TNL Y28-6829

IEYRETN, Chart 03A2

The compiler termination routine
(IEYRETN) is invoked by Exit (IEYEXT) or by
one of the input/output routines after the
detection of an error.

The routine first obtains the error
condition code returned by the compiler and
tests this value against any previous value
received during the compilation. The com-
piler communications area for the -error
code 1is set to the highest code received
and a program name of "Main" is set in the
event of multiple compilations. The rou-
tine then checks general register 1 for the
address of the ROLL ADR table. Each entry
of the ROLL ADR table indicates the begin-
ning of a 4K-byte block of roll storage
that must be released. A FREEMAIN macro
instruction is issued for each block of
storage indicated in the table until a zero
entry is encountered (this denotes the end
of the ROLL ADR table).

The presence of more than one source
module in the input stream is checked by
interrogating the end-of-file indication
and the first card following this notation.
1f another compilation is indicated, the
line, card, and page count control items
are reinitialized and all save registers
used by the Invocation phase are restored.
The number of diagnostic messages generated
for the compilation is added to a total
count for the multiple compilation and the
diagnostic error count is reset to zero.
The first processing phase of the compiler,
Parse (IEYPAR), is called and the operation
of the compiler proceeds as described in
the previous paragraphs and those pertain-
ing to the processing phases.

If another compilation is not indicated,
a check is made to determine if there was a

multiple compilation. If there was a mul-
tiple compilation, an indication of the
total number of diagnostic messages

generated for all of the compilations is
printed. BAlso, routine IEYFINAL closes the
data set files used by the compiler (by
means of the CLOSE macro instruction), The
terminal error condition code is obtained
and set for the return to the invoking
program, and all saved registers are
restored before the return is made.

Routine IEYFINAL also receives control
from other compiler routines when an input/
output error is detected.

OPTSCAN, Chart_ AA

OPTSCAN determines the existence of the
parameters specifying the compiler options.
If options are specified, the wvalidity of
each option is checked against the parame-
ter table and the pointer to these options
is set once the options have been vali-
dated. The program name is noted depending
upon the presence or absence of the NAME
parameter. However, if these options are
not specified, the first pointer of the
group of three supplied to the compiler by
the system contains zero.

DDNAMES, _Chart AB

DDNAMES scans the entries made for the
names of the data sets to be used by the
compiler. The entries corresponding to
SYSN, SYSIN, SYSPRINT, and SYSPUNCH are
checked; if an alternate name has been
provided, it is inserted into the DCB area.

HEADOPT, Chart AC

HEADOPT determines the existence of the
optional heading information. If such
information exists, its length is deter-
mined, it is centered for printing, and
then 1is inserted into the Printmsg Table,
with pointer 3 being set.

TIMEDAT, Chart AD

TIMEDAT serves only to obtain the time
and date information from the system and to
insert the data into the heading line.

OUTPUT FROM IEYFORT

The following paragraphs describe the
error messages produced during the opera-
tion of the Invocation phase. These mes-
sages denote the progress of the compila-
tion, and denote the condition which
results in the termination of the compiler.

IEY028I NO CORE AVAILABLE -
TERMINATED

COMPILATION

The system was unable to provide a
UK-byte block of additional roll
storage and PRESS MEMORY was
entered. 1It, too, was unable to
obtain space. The condition code
is 1e.

Section 2: cCompiler Operation 35

Form Y28-6638-1
Page Revised 7/23/69 by TNL Y28-6829

IEY029I DECK OUTPUT DELETED

The DECK option has been specified,
and an error occurred during the
process of punching the designated
output. No error condition code is
generated for this error.

IEY030I LINK EDIT OUTPUT DELETED

The LOAD ‘option has been specified,
and an error occurred during the
process of generating the 1load
module. The condition code is 16,

IEY031I ROLL SIZE EXCEEDED

This message is produced when: (1)
The WORK or EXIT roll has exceeded
the storage capacity assigned; or
(2) Another roll used by the com-

piler has exceeded 64K bytes of
storage, thus making it unaddress-
able. (This condition applies to

all rolls
and CODE
code is 16.

except the AFTER POLISH
rolls.) The condition

IEY032I NULL PROGRAM

This message is produced when an
end-of-data set is encountered on
the input data set prior to any
valid source statement. The condi-
tion code is 0.

IEYO34I I/0 ERROR [COMPILATION TERMINATED]
XXXe o ¢« XXX

This message is produced when an
input/output error is detected dur-
ing compilation. If the error
occurred on SYSPUNCH, compilation
is continued and the COMPILATION
TERMINATED portion of the message
is not printed. The condition code
is 8, If the error occurred on
SYSIN, SYSPRINT, or SYSLIN, compi-
lation is terminated. The condi-
tion code is 16. XXX...XXXx is the
character string formatted by the
SYNADAF macro instruction. For an
interpretation of this information,
see the publication IBM System/360
Operating _System: Supervisor_and
Data Management Macro-Instructions,
Form C28-66u47,

IEY0351I UNABLE TO OPEN ddname

This message is produced when the

required ddname data definition
card is missing or the ddname is
misspelled.

36

Multiple Compilations

The following message
the end of a multiple

to indicate the total number of
errors that occurred. The message
will not appear if the compiler is
terminated because of an error con-
dition or if the compilation con-
sisted of only one main or one
subprograinm.

appears at
compilation

STATISTICS NO DIAGNOSTICS THIS
STEP

or

STATISTICS nnn
STEP

DIAGNOSTICS THIS

where:
nnn is the total number of diagnostic

messages for the multiple compilation
expressed as a decimal integer.

PARSE (IEYPAR)

PHASE 1 OF THE COMPILER:

The first processing phase of the
FORTRAN IV (G) compiler, Parse, accepts
FORTRAN statements in card format as input
and translates them. Specification state-
ments are translated to entries on rolls
which define the symbols of the program.
Active statements are translated to Polish
notation. The Polish notation and roll
entries produced by Parse are its
output. In addition, Parse writes out all
erroneous statements and the associated
error messages. Parse produces a full
source module 1listing when the SOURCE
option is specified.

The following description of Parse con-
sists of two parts. The first part, "Flow
of Phase 1," describes the overall logic of
the phase by means of both narrative and
flowcharts.

The second part, "Output from Phase 1,"
describes the Polish notation produced by
Parse. The construction of this output,
from which subsequent phases produce object
code, 1is the primary function performed by
Parse. See Appendix C for the Polish
format for each statement type.

The source listing format and the error
messages produced by Parse are also
discussed.

The rolls manipulated by Parse are
listed in Table 3 and are mentioned in the
following description of the phase. At the
first mention of a 1roll, its nature is
briefly described. See Appendix B for a
complete description of a format of a roll.

Form Y28-6638-1
Page Revised 7/23/69 by TNL Y28-6829

Table 3. Rolls Used by Parse
T ===
|Ro11 {Roll
INo, Roll Name |No. Roll Name
] 0 Lib | 28 Local Sprog
| 1 Source | 29 Explicit
| 2 1Ind Var | 30 call Lbl
| 4 Polish | 31 Namelist Names
| 5 Literal Const | 32 Namelist Items
] 6 Hex Const | 33 Array Dimension
| 7 Global | 35 Temp Data Name
| 8 Fx Const | 36 Temp Polish
| 9 Fl Const | 37 Equivalence
| 10 Dp Const | 38 Used Lib
] 11 Complex Const | Function
| 12 Dp Complex | 39 Common Data
] const | 40 Common Name
| 13 Temp Name | 41 Implicit
| 14 Temp | 42 Equivalence
| 14 Error Temp | Offset
| 15 DO Loops Open | 43 Lbl
| 16 Error Message | 44 Scalar
| 17 Error Char | 45 Data Var
| 18 1Init | 46 Literal Temp
| 19 Xtend Lbl | 53 Format
] 20 Xtend Target | 54 Script
| Lbl | 55 Loop Data
| 22 Array | 56 Program Script
| 24 Entry Names | 59 AT
| 25 Global Dmy | 60 Subchk
| 26 Error | 63 After Polish
| 27 Local Dmy |
L 4.

Section 2:

compiler Operation

36.1

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

FLOW OF PHASE 1, CHART 04

START COMPILER initializes the operation
of Parse, setting flags from the wuser
options, reading and writing out (on
option) any initial comment cards in the
source module, and leaving the first card
of the first statement in an input area.
This routine concludes with the transfer of
control to STATEMENT PROCESS.

STATEMENT PROCESS (G0631) controls the
operation of Parse. The first routine
called by STATEMENT PROCESS is PRINT AND
READ SOURCE. On return from that routine,
the previous source statement and its error
messages have been written out (as defined
by wuser options), and the statement to be
processed (including any comment cards)
plus the first card of the next statement
will be on the SQURCE roll. (This roll

holds the source statements, one character
per byte.) STATEMENT. PROCESS then calls

STA INIT +to initialize for the processing
of the statement and LBL FIELD XLATE to
process the label field of the statement.

On return from LBL FIELD XLATE, if an
error has been detected in the label field
or in column 6, STATEMENT PROCESS restarts.

Otherwise, STA XLATE and STA FINAL are
called to complete the translation of the
source statement. On return from STA
FINAL, if the last statement of the source
module has not been scanned, STATEMENT
PROCESS restarts.

When the last card of a source module

has been scanned, STATEMENT PROCESS deter-
mines whether it was an END card; if not,
it writes a message. The routine then sets
a flag to indicate that no further card
images should be read, and calls PRINT AND
READ SOURCE to write out the last statement
for the source listing (depending on wheth-
er the SOURCE option was specified or was
indicated as the default condition at sys-
tem generation time).

When no END card appears, two tests are
made: (1) If the last statement was an
Arithmetic IF statement, the Polish nota-~-
tion must be moved to +the AFTER POLISH
roll; (2) If the last statement was of a
type which does not continue in sequence to
the next statement (e.g., GO TO, RETURN),
no code is required to terminate the object
module, and the Polish notation for an END
statement is constructed on the POLISH
roll. If the NEXT STA LBL FLAG is off,
indicating that the last statement was not
of this type, the Polish notation for a
STOP or RETURN statement is constructed on

the POLISH roll, depending on whether the
source module is a main program or a
subprogram.

After the Polish notation for the STOP
or RETURN has been constructed on the
POLISH roll, the Polish notation for the

END statement is then constructed.

Parse keeps track of all inner DO 1loops
that may possibly have an extended range.
Parse tags the LABEL _roll entries for those
labels within the DO loops that are poss-
ible re-entry points from an extended
range. These tags indicate the points at
which general registers # through 7 must be
restored. The appropriate LOOP DATA roll
groups are also tagged to indicate to the
Gen phase which of the inner DO loops may
possibly have an extended range. Gen then
produces object code to save registers 4
through 7.

After processing the last statement of
the source module, a pointer to the LOOP
IND VAR roll is released, and, 1if the
source module was a main program, the
routine REGISTER IBCOM (G0707) is called to
record IBCOM as a required subprogram. For
all source modules, the information
required for Allocate is then moved to the
appropriate area, and the Parse phase is
terminated.

PRINT _and READ SQURCE, Chart BA

PRINT AND READ SOURCE
three functions:

(G0837) serves

1. It writes out the previous source
statement and its error messages as
indicated by user options.

2. It reads the new source statement to
be processed, including any comment
cards, as well as the first card of
the statement following the one to be
processed.

3. It performs an initial classification
of the statement to be processed.

The statement to be written out is found
on the SOURCE roll. One line at a time is
removed from this roll and placed in a
120-byte output area from which it is
written out. The new statement being read
into the SOURCE roll is placed in an

80-byte input area and replaces the state-
ment being written out as space on the
SOURCE roll becomes available. Any blank

card images in the source module are elimi-
nated before they reach the SOURCE roll.
Comment cards are placed on the SOURCE roll
exactly as they appear in the source
module. The last card image placed on the
SOURCE roll is the first card of the source
statement following the one about to be

Section 2: Compiler Operation 37

Form ¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

processed; therefore, any comment cards
that appear between two statements are
processed with the statement which precedes
them. When an END card has been read, no
further reading is performed.

The initial classification of the state-
ment that occurs during the operation of
this routine determines, at most, two
characteristics about the statement to be
processed: (1) If it is a statement of the
assignment type, i.e., either an arithmetic
or logical assignment statement or a state-
ment function, or (2) If it is a Logical IF
statement, whether the statement "S" (the
consequence of the Logical IF) is an
assignment statement. Two flags are set to
indicate the results of this classification
for later routines.

At the conclusion of this routine, all
of the previous source statements and their
errors have been removed from the SOQURCE
roll and are written out. In addition, all
of the statements +to be processed (up to
and including the first card of the state-
ment following it) have been placed on the
SOURCE roll,

STA INIT, Chart BB

STA INIT (G0632) initializes for the
Parse processing of a source statement. It
sets the CRRNT CHAR CNT and the LAST CHAR
CNT to 1, and places the character from
column 1 of the source card in the wvariable
CRRNT CHAR.

It then determines, from a count made
during input of the statement, the number
of card images in the statement; multiply-
ing this value by 80, STA INIT sets up a
variable (LAST SOURCE CHAR) to indicate the
character number of the last character in
the statement.

The routine finally releases the TEMP
NAME roll and sets several flags and
variables to constant initial values before
returning to STATEMENT PROCESS.

LBL _FIELD XLATE, Chart BC

LBL FIELD XLATE (G0635) first saves the
address of the current WORK and EXIT roll
bottoms. It then inspects the first six
columns of the first card of a statement.
It determines whether a label appears, and
records the 1label if it does. If any
errors are detected in the label field or
in c¢olumn 6 of the source card, LBL FIELD
XLATE records these errors for later print-

38

ing and returns to STATEMENT PROCESS
(through SYNTAX FAIL) with the ANSWER BOX
set to false.

Pointers to all labels within DO 1loops
are placed on the XTEND LBL roll. Labels
that are jump targets (other than jumps
within the DO loop) are tagged to indicate
to Gen at which points to restore general
registers 4 through 7.

If +the statement being processed is the
statement following an Arithmetic IF state-
ment, LBL FIELD XLATE moves the Polish
notation for the Arithmetic IF statement to
the AFTER POLISH roll after adding a point-
er to the label of the present statement to
it.

STA XLATE, Chart BD

Under the control of STA XLATE (G0636)
the source module statement on the SOURCE
roll is processed and the Polish notation
for that statement is produced on the
POLISH roll, which holds Polish notation
for source statements, one statement at a
time. Errors occurring in the statément
are recorded for writing on the source
module listing.

The addresses of the bottoms of the WORK
and EXIT rolls are saved. Then, if the
statement is of the assignment type (the
first flag set by PRINT AND READ SOURCE is
on), STA XLATE ensures that a BLOCK DATA
subprogram 1is not being compiled and falls
through to ASSIGNMENT STA XLATE (G0637).
If a BLOCK DATA subprogram is being com-
piled, STA XLATE returns after recording an
invalid statement error message. If ‘the
statement is not of the assignment type, a
branch is made +to LITERAL TEST (G0640),
which determines the nature of the state-
ment from its first word(s), and branches
to the appropriate routine for processing
the statement. The names of the statement
processing routines indicate their func-
tions; for example, DO statements are
translated by DO STA XLATE, while Computed
GO TO statements are translated by CGOTO
STA XLATE.

With the exception of LOGICAL IF STA
XLATE, the statement processing routines
terminate their operation through STA XLATE
EXIT. LOGICAL IF STA XLATE moves the
second flag set by PRINT AND READ SOURCE
(which indicates whether the statement "S"
is an assignment statement) into the first
flag, and calls STA XLATE as a subroutine

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

for the translation of the statement "S."
When all of the Logical IF statement,
including "S," has been translated, LOGICAL

IF STA XLATE also terminates
XLATE EXIT.

through STA

STA XLATE
whether errors

EXIT (G0723) determines
in +the statement are of a

severity level which warrants discarding
the statement. If such errors exist, and
the statement is active (as opposed to a
specification statement), the Polish nota-
tion produced for the statement is removed
and replaced by an invalid statement driver
before a return is made to STATEMENT
PROCESS. Otherwise, the Polish notation is
left intact, and a return is made to
STATEMENT PROCESS.

Section 2: Compiler Operation 38.1

Form Y28~6638-1
Page Revised 11/15/68 by TNL ¥Y28-68B26

STA_FINAL, cChart BE

STA FINAL (G0633) increases the state-
ment number by one for the statement just
processed. It then determines whether any
Polish notation has been produced on ' the
POLISH roll; if no Polish notation -is
present, STA FINAL returns +to0 STATEMENT
PROCESS.

If the statement produced Polish nota-
tion of a type which may not c¢lose a DO

loop, STA FINAL bypasses the check for the
close of a DO loop., Otherwise, STA FINAL
determines whether the label (if there is

to the
statement of a DO

one) of the statement corresponds
label of the terminal
loop. If so, the label pointer (or poin-
ters, if the statement terminates several
DO loops) is removed from the DO_LOOPS QPEN

roll, which holds pointers to DQ loop
terminal statements until the terminal

statements are found.,

When the statement is the target of a DO
loop, extended range checking is continued.
DO loops which have no transfers out of the
loop are eliminated as extended range can-
didates. 1In addition, the nest level count
is reduced by one and the information
concerning the array references in the
closed loop 1is moved from the SCRIPT roll

to the PROGRAM SCRIPT roll.

STA FINAL then places the label pointer
(if it is required) on the Polish notation
for the statement, and, at STA FINAL END,
adds the statement number to the Polish,

Except when the statement just processed
was an Arithmetic IF statement, STA FINAL
END terminates its operation by moving the
Polish notation for the statement to the
AFTER POLISH roll. In the case of the
Arithmetic 1IF, the Polish notation is not
moved until the label of the next statement
has been processed by LBL FIELD XLATE.
When the Polish notation has been moved,.
STA FINAL returns to STATEMENT PROCESS.

ACTIVE_END_STA_XLATE, Chart BF

ACTIVE END STA XLATE (GQ642) is invoked

by STATEMENT PROCESS when the END card has
been omitted and the last statement in the
source module has been read. If the last
statement was not a branch; - the routine
determines whether a subprogram or a main
program is being terminated. If it is .a
subprogram, the Polish notation for a
RETURN is constructed; if it is a main
program, the Polish notation " for a STOP
statement 1is constructed. If the last
statement was a branch, this routine
returns without doing anything.

- for that

error

. statement, the Polish notation is

PROCESS_POLISH, Chart BG

PROCESS POLISH (GO844) moves a count of
the number of words in the Polish notation
for a statement, and the Polish notation
statement, to the AFTER POLISH
roll.)

OUTPUT FROM PHASE 1

‘The output from Parse is the Polish
notation and roll entries produced for
source module active statements, the roll
entries produced for source module specifi-
cation .statements, and the source module
listing (on option SOURCE) and error mes-
sages. The following paragraphs describe
the Polish notation and +the source and
listings. See Appendix B for
descriptions of roll formats.

‘Polish Notation

The primary output from Phase 1 of the
compiler is the Polish notation for the
source module active statements. This
representation of the statements is pro-
duced one statement at a time on the POLISH
roll. At the end of the processing of each

trans-
where it
required by 1later

ferred to the AFTER POLISH roll,
is held until it is
phases of the compiler.

The format of the Polish notation dif-
fers from one type of statement to another.
The following paragraphs describe the gen-
eral rules for the construction of Polish
notation for expressions. The specific
formats of the Polish notation produced for
the various FORTRAN statements are given in
Appendix C,

Polish notation is a method of writing
arithmetic expressions whereby the tradi-
tional sequence of "operand," "operation"”
"operand," is altered to a functional nota-
tion of "operation" "operand," “operand,."
Use of this notation has the advantage of
eliminating the need for brackets of

various levels to indicate the order of
~operations, since any "operand" may itself
be a sequence of the form "operation"
"operand® "operand," to any level of
nesting. :
Assuming expressions which do not

include any terms enclosed in parentheses,
the following procedure is used to con-
struct the Polish notation for an
expression:

Section 2: Compiler Operation 39

1. At the beginning of the expression, an
artificial driver is placed on the
WORK roll; this driver is the Plus and
Below Phony driver, and has a lower
forcing strength than any arith-
metic or logical operator. (Forcing
strengths are given in Table 1.)

2. As each variable name or constant in
the expression is encountered, a
pointer to the defining group is
placed on the POLISH roll.

3. When an operator is encountered, the
corresponding driver is constructed
and it 1is compared with the 1last
driver on the WORK roll:

a. If the current driver has a higher
forcing strength than the driver

on the bottom of the WORK roll
(the "previous" driver, for the
purposes of this discussion), the

current driver is added to the
WORK roll and the analysis of the
expression continues,.

b. If the current driver has a forc-
ing strength which is lower than
or equal to the forcing strength
of the previous driver, then:

(1) If the previous driver is the
Plus and Below Phony driver,
the current driver replaces
the previous driver on the
WORK roll (this situation can
only occur when the current
driver is an EOE driver, indi-
cating the end of the expres-
sion) and the analysis of the
expression is terminated.

(2) If the previous driver is not
the Plus and Below Phony driv-
er, the previous driver is

removed from the WORK roll and

placed on the POLISH roll, and
the comparison of the current
driver against the previous
driver 1is repeated (that is,
using the same current driver,
this procedure is repeated
from 3).

The segquence of operations which occurs
when the analysis of an expression is

terminated removes the EOE driver from the
WORK roll.
Example_1: The expression A + B produces
the Polish notation

A

B

+

40

where:

A represents a pointer to the defining
group for the variable A

+ represents the Add driver. This nota-
tion is produced from the top down; when it
is read from the bottom up, the sequence
described above for Polish notation is
satisfied.

following operations

Explanation: The
of this Polish

occur 1in the production
notation:

1. The Plus and Below Phony driver is
placed on the WORK roll.

2. A pointer to A is placed on the POLISH
roll.

3. An Add driver is constructed and com-
pared with the Plus and Below Phony
driver on the bottom of the WORK roll;
the Add driver has a higher forcing
strength and is therefore added to the
WORK 1roll (according to rule 3a,
above).

4., A pointer to B is placed on the POLISH
roll.

5. An EOE (end of expression) driver is
constructed and compared with the Add
driver on the bottom of the WORK roll;
the EOE driver has a lower forcing
strength, and the Add driver is there-
fore removed from the WORK roll and
added to the POLISH roll (rule 3b2).

6. The EOE driver is compared with the
Plus and Below Phony driver on the
bottom of the WORK 1roll; the EOE
driver has a lower forcing strength,
and therefore (according to rule 3bl)
replaces the Plus and Below Phony
driver on the WORK roll,

7. The analysis of +the expression is
terminated and the EOE driver is
removed from the WORK roll. The
Polish notation for the expression is
on the POLISH roll.

Example 2: The expression A + B / C

produces the Polish notation

+NQwy

which, read from the bottom up, is + 7 C B

A.

Explanation: The following operations
occur in the production of this Polish
notation:

1. The Plus and Below Phony driver is

placed on the WORK roll.

2. A pointer to A is placed on the POLISH
roll.

3. An Add driver is constructed and com-
pared with the Plus and Below Phony
driver; the Add driver has the higher
forcing strength and is placed on the
WORK roll.

4, A pointer to B is placed on the POLISH
roll.
constructed and

5. A Divide driver is

compared with the Add driver; the
Divide driver has the higher forcing
strength and 1is placed on the WORK

roll.

6. A pointer to C is placed on the POLISH
roll.

7. An EOE driver is constructed and com-
pared with the Divide driver; since
the EOE driver has the 1lower forcing
strength, the Divide driver is moved
to the POLISH roll.

8. The EOE driver is compared with the
Add Adriver; since the EOE driver has
the lower forcing strength, the Add
driver is moved to the POLISH roll.

9. The EOE driver 1is compared with the
Plus and Below Phony driver; since the

EOE driver has the 1lower forcing
strength, it replaces the Plus and
Below Phony driver on the WORK roll,

and the analysis of the expression
terminates with the removal of one
group from the WORK roll.

Example 3: The expression A / B - C

produces the Polish notation

A

B

/

C
which, read from the bottom up, is - C / B
A.
Explanation: The following operations
occur in the production of this Polish
notation:

1. The Plus and Below Phony driver is

placed on the WORK roll.

2. A pointer to A is placed on the POLISH
roll.

3. A Divide driver is constructed and
compared with the Plus and Below Phony
driver; the Divide driver has the
higher forcing strength and is added
to the WORK roll.

4, A pointer to B is placed on the POLISH
roll.

5. A Subtract driver is constructed and
compared with the Divide driver; the
Subtract driver has a lower forcing
strength, therefore the Divide driver
is moved to the POLISH roll.

6. The Subtract driver is compared with
the Plus and Below Phony driver; the
Subtract driver has the higher forcing
strength and 1is added to the WORK
roll.

7. A pointer to C is placed on the POLISH
roll.

8. An EOE driver is constructed and com-
pared with the Subtract driver; since
the EOE driver has a lower forcing
strength, the Subtract driver is moved
to the POLISH roll.

9. The EOE driver is compared with the
Plus and Below Phony driver; the EOE
driver replaces the Plus and Below
Phony driver on the WORK roll and the
analysis of the expression is ter-
minated.

Recursion is used in the translation of
an expression when a left parenthesis is
found; therefore, the term enclosed in the
parentheses is handled as a separate
expression. The following three examples
illustrate the resulting Polish notation

when more complicated expressions are
transformed:

Expression Polish Notation

1. A-B*(C+D) -*+DCBA

2. (A-B)/(C*D) /*DC-BA

3¢ X/Z/ (X=C) +C**X +**XC/-CX/ZX
The following should be noted with re-
spect to the exponentiation operation:

¢ Exponentiations on the same level are
scanned right to 1left, Thus, the
expression A*#B#*C**D is equivalent to
the expression A** (B**(C*%*D)),

¢ Two groups are added to the POLISH roll
to indicate each exponentiation opera-
tion. The first of these is the Power
driver; the second is a pointer to the

group on the global subprogram roll
(G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>